WorldWideScience

Sample records for alkaline polymer electrolyte

  1. Alkaline polymer electrolyte fuel cells: Principle, challenges, and recent progress

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Polymer electrolyte membrane fuel cells (PEMFC) have been recognized as a significant power source in future energy systems based on hydrogen. The current PEMFC technology features the employment of acidic polymer electrolytes which, albeit superior to electrolyte solutions, have intrinsically limited the catalysts to noble metals, fundamentally preventing PEMFC from widespread deployment. An effective solution to this problem is to develop fuel cells based on alkaline polymer electrolytes (APEFC), which not only enable the use of non-precious metal catalysts but also avoid the carbonate-precipitate issue which has been troubling the conventional alkaline fuel cells (AFC). This feature article introduces the principle of APEFC, the challenges, and our research progress, and focuses on strategies for developing key materials, including high-performance alkaline polyelectrolytes and stable non-precious metal catalysts. For alkaline polymer electrolytes, high ionic conductivity and satisfactory mechanical property are difficult to be balanced, therefore polymer cross-linking is an ultimate strategy. For non-precious metal catalysts, it is urgent to improve the catalytic activity and stability. New materials, such as transition-metal complexes, nitrogen-doped carbon nanotubes, and metal carbides, would become applicable in APEFC.

  2. Novel alkaline polymer electrolyte for water electrolysis with enhanced conductivity

    Czech Academy of Sciences Publication Activity Database

    Hnát, J.; Bouzek, B.; Paidar, M.; Schauer, Jan

    Praha : Process Engineering, 2010. s. 110-111. ISBN 978-80-02-02246-6. [International Congress of Chemical and Process Engineering CHISA 2010 /19./ and European Congress of Chemical Engineering ECCE-7 /7./. 28.08.2010-01.09.2010, Praha] Institutional research plan: CEZ:AV0Z40500505 Keywords : novel alkaline polymer * polyelectrolytes Subject RIV: CD - Macromolecular Chemistry

  3. Polymer electrolytes

    Czech Academy of Sciences Publication Activity Database

    Abbrent, Sabina; Greenbaum, S.; Peled, E.; Golodnitsky, D.

    Singapore: World Scientific Publishing, 2015 - (Dudney, N.; West, W.; Nanda, J.), s. 523-589 ISBN 978-981-4651-89-9 Institutional support: RVO:61389013 Keywords : polymer electrolytes * applications * mesuring techniques Subject RIV: CD - Macromolecular Chemistry

  4. Alkaline solid polymer electrolytes and their application to rechargeable batteries; Electrolytes solides polymeres alcalins application aux generateurs electrochimiques rechargeables

    Energy Technology Data Exchange (ETDEWEB)

    Guinot, S.

    1996-03-15

    A new family of solid polymer electrolytes (SPE) based on polyoxyethylene (POE), KOH and water is investigated in view of its use in rechargeable batteries. After a short review on rechargeable batteries, the preparation of various electrolyte compositions is described. Their characterization by differential scanning calorimetry (DSC), thermogravimetric analysis, X-ray diffraction and microscopy confirm a multi-phasic structure. Conductivity measurements give values up to 10 sup -3 S cm sup -1 at room temperature. Their use in cells with nickel as negative electrode and cadmium or zinc as positive electrode has been tested; cycling possibility has been shown to be satisfactory. (C.B.) 113 refs.

  5. Imidazolium-Functionalized Anion Exchange Polymer Electrolytes with High Tensile Strength and Stability for Alkaline Membrane Fuel Cells

    International Nuclear Information System (INIS)

    This study reports novel kinds of high tensile strength alkaline anion-exchange membranes composed of imidazolium-functionalized anion exchange polymer electrolytes. The membranes were prepared by a combined thermal and chemical cross-linking of poly (vinyl alcohol) and poly (3-methyl-1-vinylimidazolium chloride)-co-(1-vinylpyrrolidone) (PMVIC-co-VP). Characterizations by AC impedance technique, mechanical property, FTIR spectroscopy, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), along with the water uptake, alkaline resistance and oxidation stability were carried out on the membranes consisting of different PVA/PVA-PMVIC-co-VP mass ratios to evaluate their applicability in alkaline fuel cells. The membrane in a mass ratio of 1:0.4 exhibited high tensile stress at break in the range of 59.3∼76.6 MPa, and the elongation at break around 9.2∼14.9%, depending on the annealing temperature from 130∼190 °C. The OH− conductivity of the membranes was found to be increased with increasing annealing temperature and mass ratio, and reached high up to 1.7 × 10−2 S cm−1. Besides, the membranes showed perfect oxidation stability in 30% H2O2 for 250 hours with no obvious weight loss was observed. XPS analysis indicated that some degradation occurred when the membrane was exposed to 8 M KOH at 85 °C for 312 h, but no lessened OH− conductivity was detected. SEM pictures revealed an ordered microvoid structure with pore size ca. 100∼150 nm uniformly dispersed on the membrane surface, which imparted the PVA/PVA-PMVIC-co-VP membrane with good OH− conductivity

  6. Nanoporous polymer electrolyte

    Science.gov (United States)

    Elliott, Brian; Nguyen, Vinh

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  7. Polymer anion-selective membranes for electrolytic splitting of water. Part II: enhancement of ionic conductivity and performance under conditions of alkaline water electrolysis

    Czech Academy of Sciences Publication Activity Database

    Hnát, J.; Paidar, M.; Schauer, Jan; Žitka, Jan; Bouzek, K.

    2012-01-01

    Roč. 42, č. 8 (2012), s. 545-554. ISSN 0021-891X R&D Projects: GA MŠk(CZ) 7E08005 EU Projects: European Commission(XE) 212903 - WELTEMP Institutional research plan: CEZ:AV0Z40500505 Keywords : water electrolysis * alkaline environment * polymer electrolyte Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.836, year: 2012

  8. 3-Methyltrimethylammonium poly(2,6-dimethyl-1,4-phenylene oxide) based anion exchange membrane for alkaline polymer electrolyte fuel cells

    Indian Academy of Sciences (India)

    K Hari Gopi; S Gouse Peera; S D Bhat; P Sridhar; S Pitchumani

    2014-06-01

    Hydroxyl ion (OH–) conducting anion exchange membranes based on modified poly (phenylene oxide) are fabricated for their application in alkaline polymer electrolyte fuel cells (APEFCs). In the present study, chloromethylation of poly(phenylene oxide) (PPO) is performed by aryl substitution rather than benzyl substitution and homogeneously quaternized to form an anion exchange membrane (AEM). 1H NMR and FT–IR studies reveal successful incorporation of the above groups in the polymer backbone. The membrane is characterized for its ion exchange capacity and water uptake. The membrane formed by these processes show good ionic conductivity and when used in fuel cell exhibited an enhanced performance in comparison with the state-of-the-art commercial AHA membrane. A peak power density of 111 mW/cm2 at a load current density of 250 mA/cm2 is obtained for PPO based membrane in APEFCs at 30 °C.

  9. Electrochemical polymer electrolyte membranes

    CERN Document Server

    Fang, Jianhua; Wilkinson, David P

    2015-01-01

    Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabricationPoints out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performanceAnalyzes the cur

  10. Aprotic gel polymer electrolytes

    Czech Academy of Sciences Publication Activity Database

    Vondrák, Jiří; Sedlaříková, M.; Krejza, O.

    Brno : University of Technology Brno, 2008, s. 71-72. ISBN 978-80-214-3659-6. [International Conference Advanced Batteries and Accumulators /9./. Brno (CZ), 29.06.2008-03.07.2008] R&D Projects: GA ČR(CZ) GA104/06/1471; GA AV ČR(CZ) KJB208130604 Institutional research plan: CEZ:AV0Z40320502 Keywords : gel polymer electrolytes Subject RIV: CA - Inorganic Chemistry

  11. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes. With the...... thermally resistant polymer, e.g., polybenzimidazole or a mixture of polybenzimidazole and other thermoplastics as binder, the carbon-supported noble metal catalyst is tape-cast onto a hydrophobic supporting substrate. When doped with an acid mixture, electrodes are assembled with an acid doped solid...

  12. Composite solid polymer electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Formato, Richard M. (Shrewsbury, MA); Kovar, Robert F. (Wrentham, MA); Osenar, Paul (Watertown, MA); Landrau, Nelson (Marlborough, MA); Rubin, Leslie S. (Newton, MA)

    2001-06-19

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  13. High cation transport polymer electrolyte

    Science.gov (United States)

    Gerald, II, Rex E.; Rathke, Jerome W.; Klingler, Robert J.

    2007-06-05

    A solid state ion conducting electrolyte and a battery incorporating same. The electrolyte includes a polymer matrix with an alkali metal salt dissolved therein, the salt having an anion with a long or branched chain having not less than 5 carbon or silicon atoms therein. The polymer is preferably a polyether and the salt anion is preferably an alkyl or silyl moiety of from 5 to about 150 carbon/silicon atoms.

  14. Polymer Electrolytes for Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    The Nam Long Doan

    2012-08-01

    Full Text Available This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes.

  15. New polysaccharide-based polymer electrolytes; Nouveaux electrolytes polymeres a base de polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez-Morales, P.; Le Nest, J.F.; Gandini, A. [Ecole Francaise de Papeterie et des Industries Graphique, 38 - Saint Martin d`Heres (France)

    1996-12-31

    Polysaccharides like cellulose and chitosan are known for their filmic properties. This paper concerns the synthesis and the study of chitosan-based polymer electrolytes. A preliminary work concerns the study of glucosamine reactivity. The poly-condensation of chitosan ethers (obtained by reaction with ethylene oxide or propylene oxide) with bifunctional and monofunctional oligo-ethers leads to the formation of thin lattices (10 {mu}m) having excellent mechanical properties. The presence of grafted polyether chains along the polysaccharide skeleton allows to modify the vitreous transition temperature and the molecular disorder of the system. Two type of polymer electrolytes have been synthesized: electrolytes carrying a dissolved alkaline metal salt and ionomers. The analysis of their thermal, dynamical mechanical, nuclear magnetic relaxation, electrical, and electrochemical properties shows that this new class of polymer electrolytes has the same performances as ethylene poly-oxide based amorphous lattices plus the advantage of having good filmic properties. Abstract only. (J.S.)

  16. Conductivity behaviour of polymer gel electrolytes: Role of polymer

    Indian Academy of Sciences (India)

    S S Sekhon

    2003-04-01

    Polymer is an important constituent of polymer gel electrolytes along with salt and solvent. The salt provides ions for conduction and the solvent helps in the dissolution of the salt and also provides the medium for ion conduction. Although the polymer added provides mechanical stability to the electrolytes yet its effect on the conductivity behaviour of gel electrolytes as well as the interaction of polymer with salt and solvent has not been conclusively established. The conductivity of lithium ion conducting polymer gel electrolytes decreases with the addition of polymer whereas in the case of proton conducting polymer gel electrolytes an increase in conductivity has been observed with polymer addition. This has been explained to be due to the role of polymer in increasing viscosity and carrier concentration in these gel electrolytes.

  17. PVA基碱性聚合物电解质Ni(OH)2/AC超级电容器的电化学性能%Electrochemical Performance of Nickel Hydroxide/Activated Carbon Supercapacitors Using a Modified Polyvinyl Alcohol Based Alkaline Polymer Electrolyte

    Institute of Scientific and Technical Information of China (English)

    孙紫红; 袁安保

    2009-01-01

    Polyvinyl alcohol (PVA)-sodium polyacrylate (PAAS)-KOH-H2O alkaline polymer electrolyte film with high ionic conductivity was prepared by a solution-casting method. Polymer Ni(OH)2/activated carbon (AC) hybrid supercapacitors with different electrode active material mass ratios (positive to negative) were fabricated using this alkaline polymer electrolyte, nickel hydroxide positive electrodes, and AC negative electrodes. Galvanostatic charge/ discharge and electrochemical impedance spectroscopy (EIS) methods were used to study the electrochemical per-formance of the capacitors, such as charge/discharge specific capacitance, rate charge/discharge ability, and charge/discharge cyclic stability. Experimental results showed that with the decreasing of active material mass ratio m(Ni(OH)2)/m(AC), the charge/discharge specific capacitance increases, but the rate charge/discharge ability and the charge/discharge cyclic stability decrease.

  18. Organic/inorganic nanocomposite polymer electrolyte

    Institute of Scientific and Technical Information of China (English)

    Li Qi; Shao Jun Dong

    2007-01-01

    The organic/inorganic nanocomposites polymer electrolytes were designed and synthesized. The organic/inorganic nanocom posites membrane materials and their lithium salt complexes have been found thermally stable below 200 ℃. The conductivity of the organic/inorganic nanocomposites polymer electrolytes prepared at room temperature was at magnitude range of 10-6 S/cm.

  19. Nanocomposite polymer electrolyte for rechargeable magnesium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yuyan; Rajput, Nav Nidhi; Hu, Jian Z.; Hu, Mary Y.; Liu, Tianbiao L.; Wei, Zhehao; Gu, Meng; Deng, Xuchu; Xu, Suochang; Han, Kee Sung; Wang, Jiulin; Nie, Zimin; Li, Guosheng; Zavadil, K.; Xiao, Jie; Wang, Chong M.; Henderson, Wesley A.; Zhang, Jiguang; Wang, Yong; Mueller, Karl T.; Persson, Kristin A.; Liu, Jun

    2015-03-01

    Nanocomposite polymer electrolytes present new opportunities for rechargeable magnesium batteries. However, few polymer electrolytes have demonstrated reversible Mg deposition/dissolution and those that have still contain volatile liquids such as tetrahydrofuran (THF). In this work, we report a nanocomposite polymer electrolyte based on poly(ethylene oxide) (PEO), Mg(BH4)2 and MgO nanoparticles for rechargeable Mg batteries. Cells with this electrolyte have a high coulombic efficiency of 98% for Mg plating/stripping and a high cycling stability. Through combined experiment-modeling investigations, a correlation between improved solvation of the salt and solvent chain length, chelation and oxygen denticity is established. Following the same trend, the nanocomposite polymer electrolyte is inferred to enhance the dissociation of the salt Mg(BH4)2 and thus improve the electrochemical performance. The insights and design metrics thus obtained may be used in nanocomposite electrolytes for other multivalent systems.

  20. Hyperbranched Polymer-Based Electrolyte for Lithium Polymer Batteries

    Institute of Scientific and Technical Information of China (English)

    Takahito Itoh

    2005-01-01

    @@ 1Introduction Solid polymer electrolytes have attracted much attention as electrolyte materials for all solid-state recharge able lithium batteries, and poly ( ethylene oxide) ( PEO)-based polymer electrolytes are among the most intensively studied systems[1-3]. Hyperbranched polymers have unique properties such as completely amorphous, highly soluble in common organic solvent and processible because of the highly branched nature[4,5].

  1. Microporous polymer electrolyte based on PVDF-PEO

    Institute of Scientific and Technical Information of China (English)

    LI Jian; XI Jingyu; SONG Qing; TANG Xiaozhen

    2005-01-01

    @@ Since Wright et al.[1] found that the complex of PEO/alkali metals salt had the ability of ionic conductivity in 1973, in-depth studies have been carried out about various polymer electrolytes, which were applied to replacing the liquid electrolytes in lithium ion battery[2,3]. At present, polymer electrolytes mainly include three kinds: dry polymer electrolytes, gel polymer electrolytes and microporous polymer electrolytes.

  2. Proton Conducting Polymer Electrolytes and Its Applications

    Institute of Scientific and Technical Information of China (English)

    S. Selvasekarapandian; G. Hirankumar; R. Baskaran; M.S. Bhuvaneswari

    2005-01-01

    @@ 1Introduction Proton conducting solid polymer electrolytes have been extensively studied due to their potential applications in electrochemical devices such as batteries, super capacitors, electrochromic windows, sensors etc[1,2]Many researchers have studied the behaviour of inorganic based polymer electrolytes as proton conductors and their applications in solid state devices at room temperature[3]. But, inorganic acid doped electrolytes have some serious disadvantages like corrosion towards the electrode and hazardous. Hence, there is need for searching new electrolyte which is stable towards the electrode. It has been reported that the ammonium salts which behaves like alkali metal salt are good dopant to the polymer matrix[4, 5] for the development of proton conducting polymer electrolyte. The proton conductors based on poly (ethylene oxide)[6], poly (ethylene succinate)[7], poly (ethylene glycol)[8], as host matrix doped with ammonium salt have already been reported.

  3. Polymer anion-selective membrane for electrolytic water splitting: the impact of a liquid electrolyte composition on the process parameters and long-term stability

    Czech Academy of Sciences Publication Activity Database

    Hnát, J.; Paidar, M.; Schauer, Jan; Bouzek, K.

    2014-01-01

    Roč. 39, č. 10 (2014), s. 4779-4787. ISSN 0360-3199 Institutional support: RVO:61389013 Keywords : water electrolysis * alkaline environment * polymer electrolyte Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.313, year: 2014

  4. Solid polymer electrolyte water electrolysis

    Science.gov (United States)

    Takenaka, H.; Torikai, E.; Kawami, Y.; Wakabayashi, N.

    Electrocatalyst performances and bonding to solid polymer electrolytes used for water electrolysis are investigated. Noble metal and metal alloy catalysts were plated to Nafion perfluorosulfonic acid polymer membranes without a binder by the use of a reducing agent solution held on the opposite side of the membrane from a metal salt solution. It was found that pretreatment of the membrane by hydrothermal treatment or gas plasma surface roughening improves metal adhesivity and thus reduces contact resistance between the membrane and the catalyst. Measurements of the constituents of cell voltage for platinum, rhodium and iridium anodes with platinum cathodes reveals that anodic overvoltage is a major component of voltage loss and depends on the type of electrocatalyst, being greatest for Pd and least for Ir. Ir and Ir-alloy electrodes, which were found to be the best catalysts for oxygen evolution, are found to have Tafel slopes of 0.04-0.06 V/decade. In a cell with a Pt cathode and Ir anode, cell voltage is observed to decrease with increasing temperature, reaching 1.56-1.59 V at a current density of 50 A/sq dm and 90 C, which corresponds to a thermal efficiency of 93-95%.

  5. Effect of the alkaline cation size on the conductivity in gel polymer electrolytes and their influence on photo electrochemical solar cells.

    Science.gov (United States)

    Bandara, T M W J; Fernando, H D N S; Furlani, M; Albinsson, I; Dissanayake, M A K L; Ratnasekera, J L; Mellander, B-E

    2016-04-20

    The nature and concentration of cationic species in the electrolyte exert a profound influence on the efficiency of nanocrystalline dye-sensitized solar cells (DSSCs). A series of DSSCs based on gel electrolytes containing five alkali iodide salts (LiI, NaI, KI, RbI and CsI) and polyacrylonitrile with plasticizers were fabricated and studied, in order to investigate the dependence of solar cell performance on the cation size. The ionic conductivity of electrolytes with relatively large cations, K(+), Rb(+) and Cs(+), was higher and essentially constant, while for the electrolytes containing the two smaller cations, Na(+) and Li(+), the conductivity values were lower. The temperature dependence of conductivity in this series appears to follow the Vogel-Tamman-Fulcher equation. The sample containing the smallest cation shows the lowest conductivity and the highest activation energy of ∼36.5 meV, while K(+), Rb(+) and Cs(+) containing samples show an activation energy of ∼30.5 meV. DSSCs based on the gel electrolyte and a TiO2 double layer with the N719 dye exhibited an enhancement in the open circuit voltage with increasing cation size. This can be attributed to the decrease in the recombination rate of electrons and to the conduction band shift resulting from cation adsorption by TiO2. The maximum efficiency value, 3.48%, was obtained for the CsI containing cell. The efficiencies shown in this study are lower compared to values reported in the literature, and this can be attributed to the use of a single salt and the absence of other additives, since the focus of the present study was to analyze the cation effect. The highest short circuit current density of 9.43 mA cm(-2) was shown by the RbI containing cell. The enhancement of the solar cell performance with increasing size of the cation is discussed in terms of the effect of the cations on the TiO2 anode and ion transport in the electrolyte. In liquid electrolyte based DSSCs, the short circuit current density

  6. Water-free Alkaline Polymer-inorganic Acid Complexes with High Conductivity at Ambient Temperature

    Institute of Scientific and Technical Information of China (English)

    O.V.Chervakov; M.V.Andriianova; V.V.Riabenko; A.V.Markevich; E.M.Shembel; D.Meshri

    2007-01-01

    1 Results Recently increased interest is shown to proton conducting materials based on the alkaline polymer-inorganic acid complexes that is caused by a possibility of their application as the high-temperature electrolyte systems for various electrochemical devices (fuel cells,sensors,lithium power sources etc.).Complexes of inorganic acids with the alkaline polymers (polybenzimidazoles[1],polyvinylpyridines[2]) are characterized by high ionic conductivity at ambient temperatures (up to 10-2 Ω-1·cm-1) a...

  7. Solid polymer electrolyte from phosphorylated chitosan

    International Nuclear Information System (INIS)

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10−6 S/cm up to 6.01 × 10−4 S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10−3 S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications

  8. Solid polymer electrolyte from phosphorylated chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Fauzi, Iqbal, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  9. Transpassive electrodissolution of depleted uranium in alkaline electrolytes

    International Nuclear Information System (INIS)

    To aid in removal of oralloy from the nuclear weapons stockpile, scientists at the Los Alamos National Laboratory Plutonium Facility are decontaminating oralloy parts by electrodissolution in neutral to alkaline electrolytes composed of sodium nitrate and sodium sulfate. To improve the process, electrodissolution experiments were performed with depleted uranium to understand the effects of various operating parameters. Sufficient precipitate was also produced to evaluate the feasibility of using ultrafiltration to separate the uranium oxide precipitates from the electrolyte before it enters the decontamination fixture. In preparation for the experiments, a potential-pH diagram for uranium was constructed from thermodynamic data for fully hydrated species. Electrodissolution in unstirred solutions showed that uranium dissolution forms two layers, an acidic bottom layer rich in uranium and an alkaline upper layer. Under stirred conditions results are consistent with the formation of a yellow precipitate of composition UO3·2H2O, a six electron process. Amperometric experiments showed that current efficiency remained near 100% over a wide range of electrolytes, electrolyte concentrations, pH, and stirring conditions

  10. Mechanisms of proton conductance in polymer electrolyte membranes

    DEFF Research Database (Denmark)

    Eikerling, M.; Kornyshev, A. A.; Kuznetsov, A. M.;

    2001-01-01

    We provide a phenomenological description of proton conductance in polymer electrolyte membranes, based on contemporary views of proton transfer processes in condensed media and a model for heterogeneous polymer electrolyte membrane structure. The description combines the proton transfer events i...

  11. Macroscopic Modeling of Polymer-Electrolyte Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Weber, A.Z.; Newman, J.

    2007-04-01

    In this chapter, the various approaches for the macroscopic modeling of transport phenomena in polymer-electrolyte membranes are discussed. This includes general background and modeling methodologies, as well as exploration of the governing equations and some membrane-related topic of interest.

  12. Acid doped polybenzimidazoles, a new polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Wainright, J.S.; Wang, J.T.; Savinell, R.F.; Litt, M.; Moaddel, H.; Rogers, C. [Case Western Reserve Univ., Cleveland, OH (United States)

    1994-12-31

    Polybenzimidazole films doped with phosphoric acid are being investigated as potential polymer electrolytes for use in hydrogen/air and direct methanol fuel cells. The advantages of this electrolyte include good mechanical properties, and low vapor permeability. Combined, these factors allow for the use of thin (< 0.005 cm) membranes in fuel cells without excessive adverse effects from fuel gas crossover to the cathode compartment and subsequent cathode depolarization. In this paper the authors discuss experimental data on the proton conductivity, thermal stability and gas permeability of this material.

  13. Electrolytic hydrogen fuel production with solid polymer electrolyte technology.

    Science.gov (United States)

    Titterington, W. A.; Fickett, A. P.

    1973-01-01

    A water electrolysis technology based on a solid polymer electrolyte (SPE) concept is presented for applicability to large-scale hydrogen production in a future energy system. High cell current density operation is selected for the application, and supporting cell test performance data are presented. Demonstrated cell life data are included to support the adaptability of the SPE system to large-size hydrogen generation utility plants as needed for bulk energy storage or transmission. The inherent system advantages of the acid SPE electrolysis technology are explained. System performance predictions are made through the year 2000, along with plant capital and operating cost projections.

  14. Electrochromic window with lithium conductive polymer electrolyte

    OpenAIRE

    Baudry, Paul; Aegerter, Michel A.; Deroo, Daniel; Valla, Bruno

    1991-01-01

    An electrochromic window was built using WO3 as the electrochromic material and V2O5 as the counter-electrode. Both were deposited onto ITO coated glass panes by vacuum evaporation and were amorphous to X-ray diffraction. The electrolyte was a lithium conducting polymer constituted by a Poly (ethylene oxide) - lithium salt complex. The electrochemical characterization of electrodes was realized by cyclic voltammetry, coulometric titration, and impedance spectroscopy, which allowd the determin...

  15. Electrodeposition of Metal from Polymer Electrolytes

    Czech Academy of Sciences Publication Activity Database

    Dočkal, M.; Sedlaříková, M.; Vondrák, Jiří

    Brno: University of Technology Brno, 2002, s. 13-1-13-2. ISBN 80-214-2082-0. [Advanced Batteries and Accumulators /3./. Brno (CZ), 16.06.2002-20.06.2002] R&D Projects: GA ČR GA104/02/0731; GA AV ČR IAA4032002 Institutional research plan: CEZ:AV0Z4032918 Keywords : electrodeposition * cadmium * polymer electrolytes Subject RIV: CA - Inorganic Chemistry

  16. High temperature polymer electrolyte membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    K.Scott; M. Mamlouk

    2006-01-01

    One of the major issues limiting the introduction of polymer electrolyte membrane fuel cells (PEMFCs) is the low temperature of operation which makes platinum-based anode catalysts susceptible to poisoning by the trace amount of CO, inevitably present in reformed fuel. In order to alleviate the problem of CO poisoning and improve the power density of the cell, operating at temperature above 100 ℃ is preferred. Nafion(R) -type perfluorosulfonated polymers have been typically used for PEMFC. However, the conductivity of Nafion(R) -type polymers is not high enough to be used for fuel cell operations at higher temperature ( > 90 ℃) and atmospheric pressure because they dehydrate under these condition.An additional problem which faces the introduction of PEMFC technology is that of supplying or storing hydrogen for cell operation,especially for vehicular applications. Consequently the use of alternative fuels such as methanol and ethanol is of interest, especially if this can be used directly in the fuel cell, without reformation to hydrogen. A limitation of the direct use of alcohol is the lower activity of oxidation in comparison to hydrogen, which means that power densities are considerably lower. Hence to improve activity and power output higher temperatures of operation are preferable. To achieve this goal, requires a new polymer electrolyte membrane which exhibits stability and high conductivity in the absence of liquid water.Experimental data on a polybenzimidazole based PEMFC were presented. A simple steady-state isothermal model of the fuel cell is also used to aid in fuel cell performance optimisation. The governing equations involve the coupling of kinetic, ohmic and mass transport. This paper also considers the advances made in the performance of direct methanol and solid polymer electrolyte fuel cells and considers their limitations in relation to the source and type of fuels to be used.

  17. Electrolytic denitrification of alkaline nitrate and nitrite solution

    International Nuclear Information System (INIS)

    Processing of high-level waste at the Savannah River Plant (SRP) will produce a low-level alkaline salt solution, containing approximately 17% sodium nitrate and sodium nitrite. This solution will be incorporated into a cement wasteform, saltstone, and placed in an engineered landfill. Laboratory experiments have demonstrated the technical feasibility of electrochemically reducing the nitrate and nitrite in a synthetic, nonradioactive salt solution similar in composition to that expected to be produced at SRP. Greater than ninety-five percent of the sodium nitrate and sodium nitrite can be reduced electrolytically, producing ammonia, nitrogen, oxygen, and sodium hydroxide. Reduction of the nitrate and nitrite will reduce the leaching of nitrate and nitrite from the saltstone monolith. In addition, significant reductions in the volume of saltstone may be realized if the sodium hydroxide produced by electrolysis can be recycled

  18. Performance of Lithium Polymer Cells with Polyacrylonitrile based Electrolyte

    DEFF Research Database (Denmark)

    Perera, Kumudu; Dissanayake, M.A.K.L.; Skaarup, Steen;

    2006-01-01

    The performance of lithium polymer cells fabricated with Polyacrylonitrile (PAN) based electrolytes was studied using cycling voltammetry and continuous charge discharge cycling. The electrolytes consisted of PAN, ethylene carbonate (EC), propylene carbonate (PC) and lithium trifluoromethanesulfo...

  19. Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.

    Science.gov (United States)

    Osada, Irene; de Vries, Henrik; Scrosati, Bruno; Passerini, Stefano

    2016-01-11

    The advent of solid-state polymer electrolytes for application in lithium batteries took place more than four decades ago when the ability of polyethylene oxide (PEO) to dissolve suitable lithium salts was demonstrated. Since then, many modifications of this basic system have been proposed and tested, involving the addition of conventional, carbonate-based electrolytes, low molecular weight polymers, ceramic fillers, and others. This Review focuses on ternary polymer electrolytes, that is, ion-conducting systems consisting of a polymer incorporating two salts, one bearing the lithium cation and the other introducing additional anions capable of plasticizing the polymer chains. Assessing the state of the research field of solid-state, ternary polymer electrolytes, while giving background on the whole field of polymer electrolytes, this Review is expected to stimulate new thoughts and ideas on the challenges and opportunities of lithium-metal batteries. PMID:26783056

  20. Ionic Transport Across Interfaces of Solid Glass and Polymer Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Tenhaeff, Wyatt E [ORNL; Yu, Xiang [ORNL; Hong, Kunlun [ORNL; Perry, Kelly A [ORNL; Dudney, Nancy J [ORNL

    2011-01-01

    A study of lithium cation transport across solid-solid electrolyte interfaces to identify critical resistances in nanostructured solid electrolytes is reported. Bilayers of glass and polymer thin film electrolytes were fabricated and characterized for this study. The glass electrolyte was lithium phosphorous oxynitride (Lipon), and two polymer electrolytes were studied: poly(methyl methacrylate-co-poly(ethylene glycol) methyl ether methacrylate) and poly(styrene-co-poly(ethylene glycol) methyl ether methacrylate). Both copolymers contained LiClO{sub 4} salt. In bilayers where polymer electrolyte layers are fabricated on top of Lipon, the interfacial resistance dominates transport. At 25 C, the interfacial resistance is at least three times greater than the sum of the Lipon and polymer electrolyte resistances. By reversing the structure and fabricating Lipon on top of the polymer electrolytes, the interfacial resistance is eliminated. Experiments to elucidate the origin of the interfacial resistance in the polymer-on-Lipon bilayers reveal that the solvent mixtures used to fabricate the polymer layers do not degrade the Lipon layer. The importance of the polymer electrolytes' mechanical properties is also discussed.

  1. Synthesis and characterizations of novel polymer electrolytes

    Science.gov (United States)

    Chanthad, Chalathorn

    Polymer electrolytes are an important component of many electrochemical devices. The ability to control the structures, properties, and functions of polymer electrolytes remains a key subject for the development of next generation functional polymers. Taking advantage of synthetic strategies is a promising approach to achieve the desired chemical structures, morphologies, thermal, mechanical, and electrochemical properties. Therefore, the major goal of this thesis is to develop synthetic methods for of novel proton exchange membranes and ion conductive membranes. In Chapter 2, new classes of fluorinated polymer- polysilsesquioxane nanocomposites have been designed and synthesized. The synthetic method employed includes radical polymerization using the functional benzoyl peroxide initiator for the telechelic fluorinated polymers with perfluorosulfonic acids in the side chains and a subsequent in-situ sol-gel condensation of the prepared triethoxylsilane-terminated fluorinated polymers with alkoxide precursors. The properties of the composite membranes have been studied as a function of the content and structure of the fillers. The proton conductivity of the prepared membranes increases steadily with the addition of small amounts of the polysilsesquioxane fillers. In particular, the sulfopropylated polysilsesquioxane based nanocomposites display proton conductivities greater than Nafion. This is attributed to the presence of pendant sulfonic acids in the fillers, which increases ion-exchange capacity and offers continuous proton transport channels between the fillers and the polymer matrix. The methanol permeability of the prepared membranes has also been examined. Lower methanol permeability and higher electrochemical selectivity than those of Nafion have been demonstrated in the polysilsesquioxane based nanocomposites. In Chapter 3, the synthesis of a new class of ionic liquid-containing triblock copolymers with fluoropolymer mid-block and imidazolium methacrylate

  2. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    Science.gov (United States)

    Liu, Han; LaConti, Anthony B.; Mittelsteadt, Cortney K.; McCallum, Thomas J.

    2011-01-11

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  3. Cellulose based Lithium ion polymer electrolytes for Lithium batteries

    OpenAIRE

    Chelmecki, Marcin

    2004-01-01

    The separator membrane in batteries and fuel cells is of crucial importance for the function of these devices. In lithium ion batteries the separator membrane as well as the polymer matrix of the electrodes consists of polymer electrolytes which are lithium ion conductors. To overcome the disadvantage of currently used polymer electrolytes which are highly swollen with liquids and thus mechanically and electrochemically unstable, the goal of this work is a new generation of solid polymer e...

  4. Acid-doped polybenzimidazoles: A new polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Wainright, J.S.; Wang, J.T.; Weng, D.; Savinell, R.F.; Litt, M. [Case Western Reserve Univ., Cleveland, OH (United States)

    1995-07-01

    Polybenzimidazole films doped with phosphoric acid are being investigated as potential polymer electrolytes for use in hydrogen/air and direct methanol fuel cells. In this paper, the authors present experimental findings on the proton conductivity, water content, and methanol vapor permeability of this material, as well as preliminary fuel cell results. The low methanol vapor permeability of these electrolytes significantly reduces the adverse effects of methanol crossover typically observed in direct methanol polymer electrolyte membrane fuel cells.

  5. Novel All Solid-state Polymer Electrolytes for Lithium Battery

    Institute of Scientific and Technical Information of China (English)

    Hui Jiang; Shibi Fang

    2005-01-01

    @@ 1Introduction All solid-state polymer electrolytes for lithium battery was proved to be an attractive direction. Compared with prevenient polymer electrolytes all solid-state polymer electrolytes were superiority in more broad electrochemical window, more stable/low interfacial resistance especially when situ-polymerization utilized, excellent mechanical properties and dissepiment free. A lithium secondary battery using all solid-state polymer electrolyte meet the challenge of energy source for both portable electronic devices and electric vehicles (EV) or engine/battery hybrid vehicles (HEV). All solid-state comb-like network polymer electrolytes (CNPE) based on polysiloxane with internal plasticizing chain (IPC) has been designed and synthesized. See Fig. 1.

  6. PMMA-based Gel Polymer Electrolytes with Crosslinking Network

    Institute of Scientific and Technical Information of China (English)

    H.P. Zhang; Y. P. Wu; H. Q. Wu; M. Sun

    2005-01-01

    @@ 1Introduction The lithium-ion battery has a good rate capability and low-temperature performance, but its safety is relatively low due to the possibility of leakage of liquid electrolyte. The use of a solid or gel type electrolyte can lower the probability of leakage liquid electrolyte, and the electrochemical performance of gel electrolyte doesn't decrease so markedly as the solid electrolyte. Now, new types of advanced lithium-ion battery with gel polymer electrolytes are under developing which can be used in the future.

  7. Electrochemical Stability of Model Polymer Electrolyte/Electrode Interfaces

    Science.gov (United States)

    Hallinan, Daniel; Yang, Guang

    2015-03-01

    Polymer electrolytes are promising materials for high energy density rechargeable batteries. However, typical polymer electrolytes are not electrochemically stable at the charging voltage of advanced positive electrode materials. Although not yet reported in literature, decomposition is expected to adversely affect the performance and lifetime of polymer-electrolyte-based batteries. In an attempt to better understand polymer electrolyte oxidation and design stable polymer electrolyte/positive electrode interfaces, we are studying electron transfer across model interfaces comprising gold nanoparticles and organic protecting ligands assembled into monolayer films. Gold nanoparticles provide large interfacial surface area yielding a measurable electrochemical signal. They are inert and hence non-reactive with most polymer electrolytes and lithium salts. The surface can be easily modified with ligands of different chemistry and molecular weight. In our study, poly(ethylene oxide) (PEO) will serve as the polymer electrolyte and lithium bis(trifluoromethanesulfonyl) imide salt (LiTFSI) will be the lithium salt. The effect of ligand type and molecular weight on both optical and electrical properties of the gold nanoparticle film will be presented. Finally, the electrochemical stability of the electrode/electrolyte interface and its dependence on interfacial properties will be presented.

  8. Migration of Cations and Anions in Amorphous Polymer Electrolytes

    Institute of Scientific and Technical Information of China (English)

    N.A.Stolwijk; S.H.Obeidi; M.Wiencierz

    2007-01-01

    1 Results Polymer electrolytes are used as ion conductors in batteries and fuel cells.Simple systems consist of a polymer matrix complexing an inorganic salt and are fully amorphous at the temperatures of interest.Both cations and anions are mobile and contribute to charge transport.Most studies on polymer electrolytes use the electrical conductivity to characterize the ion mobility.However,conductivity measurements cannot discriminate between cations and anions.This paper reports some recent results fr...

  9. Characterization of Novel Castor Oil-Based Polyurethane Polymer Electrolytes

    OpenAIRE

    Salmiah Ibrahim; Azizan Ahmad; Nor Sabirin Mohamed

    2015-01-01

    Castor oil-based polyurethane as a renewable resource polymer has been synthesized for application as a host in polymer electrolyte for electrochemical devices. The polyurethane was added with LiI and NaI in different wt% to form a film of polymer electrolytes. The films were characterized by using attenuated total reflectance-Fourier transform infrared spectroscopy, dynamic mechanical analysis, electrochemical impedance spectroscopy, linear sweep voltammetry and transference number measurem...

  10. CO tolerance of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gubler, L.; Scherer, G.G.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Reformed methanol can be used as a fuel for polymer electrolyte fuel cells instead of pure hydrogen. The reformate gas contains mainly H{sub 2}, CO{sub 2} in the order of 20% and low levels of CO in the order of 100 ppm. CO causes severe voltage losses due to poisoning of the anode catalyst. The effect of CO on cell performance was investigated at different CO levels up to 100 ppm. Various options to improve the CO tolerance of the fuel cell were assessed thereafter, of which the injection of a few percents of oxygen into the fuel feed stream proved to be most effective. By mixing 1% of oxygen with hydrogen containing 100 ppm CO, complete recovery of the cell performance could be attained. (author) 2 figs., 2 tabs., 3 refs.

  11. Solid-polymer-electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, T.F.

    1992-07-01

    A transport model for polymer electrolytes is presented, based on concentrated solution theory and irreversible thermodynamics. Thermodynamic driving forces are developed, transport properties are identified and experiments devised. Transport number of water in Nafion 117 membrane is determined using a concentration cell. It is 1.4 for a membrane equilibrated with saturated water vapor at 25{degrees}C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the water content approaches zero. The relation between transference number, transport number, and electroosmotic drag coefficient is presented, and their relevance to water-management is discussed. A mathematical model of transport in a solid-polymer-electrolyte fuel cell is presented. A two-dimensional membrane-electrode assembly is considered. Water management, thermal management, and utilization of fuel are examined in detail. The membrane separators of these fuel cells require sorbed water to maintain conductivity; therefore it is necessary to manage the water content in membranes to ensure efficient operation. Water and thermal management are interrelated. Rate of heat removal is shown to be a critical parameter in the operation of these fuel cells. Current-voltage curves are presented for operation on air and reformed methanol. Equations for convective diffusion to a rotating disk are solved numerically for a consolute point between the bulk concentration and the surface. A singular-perturbation expansion is presented for the condition where the bulk concentration is nearly equal to the consolute-point composition. Results are compared to Levich's solution and analysis.

  12. Solid-polymer-electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, T.F.

    1992-07-01

    A transport model for polymer electrolytes is presented, based on concentrated solution theory and irreversible thermodynamics. Thermodynamic driving forces are developed, transport properties are identified and experiments devised. Transport number of water in Nafion 117 membrane is determined using a concentration cell. It is 1.4 for a membrane equilibrated with saturated water vapor at 25{degrees}C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the water content approaches zero. The relation between transference number, transport number, and electroosmotic drag coefficient is presented, and their relevance to water-management is discussed. A mathematical model of transport in a solid-polymer-electrolyte fuel cell is presented. A two-dimensional membrane-electrode assembly is considered. Water management, thermal management, and utilization of fuel are examined in detail. The membrane separators of these fuel cells require sorbed water to maintain conductivity; therefore it is necessary to manage the water content in membranes to ensure efficient operation. Water and thermal management are interrelated. Rate of heat removal is shown to be a critical parameter in the operation of these fuel cells. Current-voltage curves are presented for operation on air and reformed methanol. Equations for convective diffusion to a rotating disk are solved numerically for a consolute point between the bulk concentration and the surface. A singular-perturbation expansion is presented for the condition where the bulk concentration is nearly equal to the consolute-point composition. Results are compared to Levich`s solution and analysis.

  13. The Effect of Electrolyte Concentration and Polymer Content on the Rheological Behavior of Magnesium Hydroxide Suspension

    OpenAIRE

    Moghimipour, Eskandar; Handali, Somayeh; Salimi, Anayatollah; Masoum, Maryam

    2013-01-01

    Aims: Magnesium hydroxide (Mg (OH)2) is an alkaline compound that is used as an anti-acid and laxative agent. The objective of the study was to find the effect of electrolyte concentration and polymers on the rheological behavior of Mg (OH)2 suspension. Place and Duration of Study: Department of Pharmaceutics, Faculty of Pharmacy and Nanotechnology Research Center Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. Methodology: To evaluate the effect of structural vehicle, some sus...

  14. Polymer--Ionic liquid Electrolytes for Electrochemical Capacitors

    Science.gov (United States)

    Ketabi, Sanaz

    Polymer electrolyte, comprised of ionic conductors, polymer matrix, and additives, is one of the key components that control the performance of solid flexible electrochemical capacitors (ECs). Ionic liquids (ILs) are highly promising ionic conductors for next generation polymer electrolytes due to their excellent electrochemical and thermal stability. Fluorinated ILs are the most commonly applied in polymer-IL electrolytes. Although possessing high conductivity, these ILs have low environmental favorability. The aim of this work was to develop environmentally benign polymer-ILs for both electrochemical double layer capacitors (EDLCs) and pseudocapacitors, and to provide insights into the influence of constituent materials on the ion conduction mechanism and the structural stability of the polymer-IL electrolytes. Solid polymer electrolytes composed of poly(ethylene oxide) (PEO) and 1-ethyl-3-methylimidazolium hydrogen sulfate (EMIHSO4) were investigated for ECs. The material system was optimized to achieve the two criteria for high performance polymer-ILs: high ionic conductivity and highly amorphous structure. Thermal and structural analyses revealed that EMIHSO4 acted as an ionic conductor and a plasticizer that substantially decreased the crystallinity of PEO. Two types of inorganic nanofillers were incorporated into these polymer electrolytes. The effects of SiO2 and TiO2 nanofillers on ionic conductivity, crystallinity, and dielectric properties of PEO-EMIHSO 4 were studied over a temperature range from -10 °C and 80 °C. Using an electrochemical capacitor model, impedance (complex capacitance) and dielectric analyses were performed to understand the ionic conduction process with and without fillers in both semi crystalline and amorphous states of the polymer electrolytes. Despite their different nanostructures, both SiO2 and TiO2 promoted an amorphous structure in PEO-EMIHSO 4 and increased the ionic conductivity 2-fold. While in the amorphous state, the

  15. Fuel cells with solid polymer electrolyte and their application on vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Fateev, V.

    1996-04-01

    In Russia, solid polymer electrolyte MF-4-SK has been developed for fuel cells. This electrolyte is based on perfluorinated polymer with functional sulfogroups. Investigations on electrolyte properties and electrocatalysts have been carried out.

  16. Lithium carbon batteries with solid polymer electrolyte; Accumulateur lithium carbone a electrolyte solide polymere

    Energy Technology Data Exchange (ETDEWEB)

    Andrieu, X.; Boudin, F. [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1996-12-31

    The lithium carbon batteries studied in this paper use plasticized polymer electrolytes made with passive polymer matrix swollen by a liquid electrolyte with a high ionic conductivity (> 10{sup -3} S/cm at 25 deg. C). The polymers used to prepare the gels are polyacrylonitrile (PAN) and vinylidene poly-fluoride (PVdF). The electrochemical and physical properties of these materials are analyzed according to their composition. The behaviour of solid electrolytes with different materials of lithium ion insertion (graphite and LiNiO{sub 2}) are studied and compared to liquid electrolytes. The parameters taken into account are the reversible and irreversible capacities, the cycling performance and the admissible current densities. Finally, complete lithium ion batteries with gelled electrolytes were manufactured and tested. (J.S.) 2 refs.

  17. Can Biochemistry Usefully Guide the Search for Better Polymer Electrolytes?

    Directory of Open Access Journals (Sweden)

    J. Woods Halley

    2013-09-01

    Full Text Available I review some considerations that suggest that the biochemical products of evolution may provide hints concerning the way forward for the development of better electrolytes for lithium polymer batteries.

  18. Advanced Proton Conducting Polymer Electrolytes for Electrochemical Capacitors

    Science.gov (United States)

    Gao, Han

    Research on solid electrochemical energy storage devices aims to provide high performance, low cost, and safe operation solutions for emerging applications from flexible consumer electronics to microelectronics. Polymer electrolytes, minimizing device sealing and liquid electrolyte leakage, are key enablers for these next-generation technologies. In this thesis, a novel proton-conducing polymer electrolyte system has been developed using heteropolyacids (HPAs) and polyvinyl alcohol for electrochemical capacitors. A thorough understanding of proton conduction mechanisms of HPAs together with the interactions among HPAs, additives, and polymer framework has been developed. Structure and chemical bonding of the electrolytes have been studied extensively to identify and elucidate key attributes affecting the electrolyte properties. Numerical models describing the proton conduction mechanism have been applied to differentiate those attributes. The performance optimization of the polymer electrolytes through additives, polymer structural modifications, and synthesis of alternative HPAs has achieved several important milestones, including: (a) high proton mobility and proton density; (b) good ion accessibility at electrode/electrolyte interface; (c) wide electrochemical stability window; and (d) good environmental stability. Specifically, high proton mobility has been addressed by cross-linking the polymer framework to improve the water storage capability at normal-to-high humidity conditions (e.g. 50-80% RH) as well as by incorporating nano-fillers to enhance the water retention at normal humidity levels (e.g. 30-60% RH). High proton density has been reached by utilizing additional proton donors (i.e. acidic plasticizers) and by developing different HPAs. Good ion accessibility has been achieved through addition of plasticizers. Electrochemical stability window of the electrolyte system has also been investigated and expanded by utilizing HPAs with different heteroatoms

  19. Computer Simulations of Ion Transport in Polymer Electrolyte Membranes.

    Science.gov (United States)

    Mogurampelly, Santosh; Borodin, Oleg; Ganesan, Venkat

    2016-06-01

    Understanding the mechanisms and optimizing ion transport in polymer membranes have been the subject of active research for more than three decades. We present an overview of the progress and challenges involved with the modeling and simulation aspects of the ion transport properties of polymer membranes. We are concerned mainly with atomistic and coarser level simulation studies and discuss some salient work in the context of pure binary and single ion conducting polymer electrolytes, polymer nanocomposites, block copolymers, and ionic liquid-based hybrid electrolytes. We conclude with an outlook highlighting future directions. PMID:27070764

  20. Study of novel lithium salt-based, plasticized polymer electrolytes

    Science.gov (United States)

    Silva, Maria Manuela; Barros, Sandra Cerqueira; Smith, Michael J.; MacCallum, James R.

    The results of a preliminary investigation of a series of polymer electrolytes based on a novel polymer host, poly(trimethylene carbonate) (p(TMC)), with lithium triflate or lithium perchlorate and various plasticizing additives, are described in this presentation. Electrolytes with lithium salt compositions of about n=10 (where n represents the molar ratio of (OCOCH 2CH 2CH 2O) units per lithium ion) and additive compositions between 5 and 15 wt.% (with respect to p(TMC)), were prepared by co-dissolution of salt and polymer in anhydrous solvent with a controlled amount of additive. The homogeneous solutions obtained were evaporated within a preparative glovebox and under a dry argon atmosphere to form thin films of electrolyte. The solvent-free electrolyte films produced were characterized by measurements of total ionic conductivity, differential scanning calorimetry and thermogravimetry. In general the triflate-based electrolytes were found to show moderate ionic conductivity and good thermal stability while perchlorate-based electrolytes showed higher levels of conductivity but lower thermal stability. Electrolytes based on this host polymer, with both lithium salts, were obtained as very flexible, transparent, completely amorphous films.

  1. A study of the anodic behaviour of aluminium alloys in alkaline electrolytes

    OpenAIRE

    Walters, B N

    1988-01-01

    Recent studies an the discharge performance of aluminium alloys in alkaline media have led to improved alloys with significantly lower corrosion rates and more anodic potentials. Performance, of various alkaline electrolytes have also been examined and considerable progress has been made in this area. A review of the available literature reveals a list of several elements which are suitable for alloying with aluminium as regards reducing corrosion and overpotential. Previous work at the Chemi...

  2. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    Science.gov (United States)

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  3. POE-based nanocomposite polymer electrolytes reinforced with cellulose whiskers

    International Nuclear Information System (INIS)

    Nanocomposite polymer electrolytes based on high-molecular weight poly(oxyethylene) (POE) were prepared from high aspect ratio cellulosic whiskers and lithium trifluoromethyl sulfonyl imide (LiTFSI). Prior to the polymer electrolyte characterization, the polymer/whiskers nanocomposites were characterized using wide-angle X-ray scattering (WAXS), differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). Interactions between cellulose and POE were evidenced. The main effect of the filler was a thermal stabilization of the storage modulus for the composites above the melting point of the complexes POE/LiTFSI. The ionic conductivity was quite consistent with the specifications of lithium batteries

  4. Modeling of ionic transport in solid polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Cheang, P L; Teo, L L; Lim, T L, E-mail: plcheang@mmu.edu.my [Centre for Foundation Studies and Extension Education, Multimedia University, Jln Ayer Keroh Lama, 75450 Melaka (Malaysia)

    2010-05-15

    A Monte Carlo model describing the ionic trans port in solid polyme relectrolyte is developed. Single cation simulation is carried out using hopping rate to study the transport mechanism of a thermally activated ion in solid polymer electrolyte. In our model, the ion is able to hop along a polymer chain and to jump between different chains, surmounting energy barriers that consist of polymer's activation energy and the externally applied electric field. The model is able to trace the motion of ion across polymer electrolyte. The mean hopping distance is calculated based on the available open bond in the next nearest side. Random numbers are used to determine the hopping distances, free flight times, final energy and direction of the cation after successful hop. Drift velocity and energy of cation are simulated in our work. The model is expected to be able to simulate the lithium-polymer battery in future.

  5. Modeling of ionic transport in solid polymer electrolytes

    International Nuclear Information System (INIS)

    A Monte Carlo model describing the ionic trans port in solid polyme relectrolyte is developed. Single cation simulation is carried out using hopping rate to study the transport mechanism of a thermally activated ion in solid polymer electrolyte. In our model, the ion is able to hop along a polymer chain and to jump between different chains, surmounting energy barriers that consist of polymer's activation energy and the externally applied electric field. The model is able to trace the motion of ion across polymer electrolyte. The mean hopping distance is calculated based on the available open bond in the next nearest side. Random numbers are used to determine the hopping distances, free flight times, final energy and direction of the cation after successful hop. Drift velocity and energy of cation are simulated in our work. The model is expected to be able to simulate the lithium-polymer battery in future.

  6. Molecular motion in polymer electrolytes. An investigation of methods for improving the conductivity of solid polymer electrolytes

    CERN Document Server

    Webster, M I

    2002-01-01

    Three methods were explored with a view to enhancing the ionic conductivity of polymer electrolytes; namely the addition of an inert, inorganic filler, the addition of a plasticizer and the incorporation of the electrolyte in the pores of silica matrices. There have been a number of reports, which suggest the addition of nanocrystalline oxides to polymer electrolytes increases the ionic conductivities by about a factor of two. In this thesis studies of the polymer electrolyte NaSCN.P(EO) sub 8 with added nanocrystalline alumina powder are reported which show no evidence of enhanced conductivity. The addition of a plasticizer to polymer electrolytes will increase the ionic conductivity. A detailed study was made of the polymer electrolytes LiT.P(EO) sub 1 sub 0 and LiClO sub 4.P(EO) sub 1 sub 0 with added ethylene carbonate plasticizer. The conductivities showed an enhancement, however this disappeared on heating under vacuum. The present work suggests that the plasticised system is not thermodynamically stabl...

  7. Hydroponics gel as a new electrolyte gelling agent for alkaline zinc-air cells

    Science.gov (United States)

    Othman, R.; Basirun, W. J.; Yahaya, A. H.; Arof, A. K.

    The viability of hydroponics gel as a new alkaline electrolyte gelling agent is investigated. Zinc-air cells are fabricated employing 12 wt.% KOH electrolyte immobilised with hydroponics gel. The cells are discharged at constant currents of 5, 50 and 100 mA. XRD and SEM analysis of the anode plates after discharge show that the failure mode is due to the formation of zinc oxide insulating layers and not due to any side reactions between the gel and the plate or the electrolyte.

  8. Advanced Polymer Electrolytes for High-energy-density Power Sources

    Institute of Scientific and Technical Information of China (English)

    D. Golodnitsky; E. Livshits; R. Kovarsky; E. Peled

    2005-01-01

    @@ 1Introduction The preparation of highly controlled thin films of lithium ion conducting organic materials is becoming a challenging but rewarding goal in view of obtaining high-performance technological devices like solid-state polymer batteries and capacitors. The classical polymer electrolyte consists of organic macromolecules (usually polyether polymer) that are doped with inorganic (typically lithium) salts. Poly(ethylene oxide) (PEO) is the most commonly employed polymer in PEs because of the peculiar array in the (-CH2-CH2-O-)n chain providing the ability to solvate low-lattice-energy lithium salts. For three decades the major research attention was focused on amorphous polymer electrolytes in the belief that ionic conductivity occurs in a manner somewhat analogous to gas diffusion through polymer membranes. Segmental motion of the polymer chains continuously creates free volume, into which the ions migrate, and this process allows ions to progress across the electrolyte. Such a view was established by a number of experiments, and denied the possibility of ionic conductivity in crystalline polymer phases. This concept has been recently overturned by our group, demonstrating that conductivity comes about as a result of permanent conducting pathways for the movement of ions.

  9. PEO nanocomposite polymer electrolyte for solid state symmetric capacitors

    Indian Academy of Sciences (India)

    Nirbhay K Singh; Mohan L Verma; Manickam Minakshi

    2015-10-01

    Physical and electrochemical properties of polyethylene oxide (PEO)-based nanocomposite solid polymer electrolytes (NPEs) were investigated for symmetric capacitor applications. Nanosize fillers, i.e., Al2O3 and SiO2 incorporated polymer electrolyte exhibited higher ionic conductivity than those with filler-free composites. The composites have been synthesized by the completely dry (solution-free) hot-press method. The addition of filler in fractional amount to the solid polymer matrix at room temperature further enhances the ionic conductivity. Nature of the NPEs were studied using X-ray diffraction and energy-dispersive spectra analyses. Thermal stability of the resulting electrolyte was analysed by thermogravimetric analysis and differential scanning calorimetric studies. Morphology changes occurred during the addition of fillers was evidenced by scanning electronic microscope images. Solid polymer electrolytes exhibiting these parameters was found to be suitable for solid state capacitors. The results obtained from the electrolytes with an optimum compositions (PEO70AgI30)93 (Al2O3)7 and (PEO70AgI30)95 (SiO2)5 used in the (PEO70AgI30)70 (AC)30 electrodes for symmetric capacitor applications and their performances were analysed by impedance spectroscopic, Bode plot, cyclic voltammetry, discharge characteristics and leakage current profile.

  10. Electrical characterization of proton conducting polymer electrolyte based on bio polymer with acid dopant

    Science.gov (United States)

    Kalaiselvimary, J.; Pradeepa, P.; Sowmya, G.; Edwinraj, S.; Prabhu, M. Ramesh

    2016-05-01

    This study describes the biodegradable acid doped films composed of chitosan and Perchloric acid with different ratios (2.5 wt %, 5 wt %, 7.5 wt %, 10 wt %) was prepared by the solution casting technique. The temperature dependence of the proton conductivity of complex electrolytes obeys the Arrhenius relationship. Proton conductivity of the prepared polymer electrolyte of the bio polymer with acid doped was measured to be approximately 5.90 × 10-4 Scm-1. The dielectric data were analyzed using Complex impedance Z*, Dielectric loss ɛ', Tangent loss for prepared polymer electrolyte membrane with the highest conductivity samples at various temperature.

  11. Cathode degradation of the polymer electrolyte membrane fuel cell (PEMFC)

    International Nuclear Information System (INIS)

    Morphological changes occurring in membrane electrode assemblies (MEAs) of polymer electrolyte membrane fuel cells (PEMFC's) were monitored using scanning microscopy (SEM) during the course of 600 hours testing of hydrogen/air polymer electrolyte fuel cells (PEFCs). The microstructural study suggests a structural change caused by loss of the recast ionomer could result in deterioration of the integrity of the electrode, a drop in both ionic and electronic conductivities, loss of platinum particle clusters (for carbon support), and increased resistance within the interfacial zone of the membrane and catalyst layer.(author)

  12. Morphology of Polyvinylidene Fluoride Based Gel Polymer Electrolytes

    Institute of Scientific and Technical Information of China (English)

    田立颖; 黄小彬; 唐小真

    2004-01-01

    Two series of polyvinylidene fluoride (PVDF) based gel polymer electrolytes, with different LiClO4 or propylene carbonate (PC) content, were prepared and analyzed by infrared spectrometer, differential scanning calorimetry, scanning electron microscope and complex impedance spectrometer. The results show that there are great interactions between PVDF, PC and lithium cations. Both LiClO4 and PC content lead to evident change of the morphology of the gel polymer electrolytes. The content of LiClO4 and PC also influences the ionic conductivity of the samples,and an ionic conductivity of above 10-3S·cm-1 can be reached at room temperature.

  13. Investigation on poly (vinylidene fluoride) based gel polymer electrolytes

    Indian Academy of Sciences (India)

    S Rajendran; P Sivakumar; Ravi Shanker Babu

    2006-12-01

    An investigation is carried out on gel polymer electrolytes consisting of poly (vinylidene fluoride) (PVdF) as a host polymer, lithium perchlorate (LiClO4), lithium triflate (LiCF3SO3) as salts and mixture of ethylene carbonate (EC) and propylene carbonate (PC) as plasticizers. Polymer thin films were prepared by solvent casting technique and the obtained films were subjected to different characterizations, to confirm their structure, complexation and thermal changes. X-ray diffraction revealed that the salts and plasticizers disrupted the crystalline nature of PVdF based polymer electrolytes and converted them into an amorphous phase. TG/DTA studies showed the thermal stability of the polymer electrolytes. The role of interaction between polymer hosts on conductivity is discussed using the results of a.c. impedance studies. Room temperature (28°C) conductivity of 2.786 × 10-3 Scm-1 was observed in PVdF (24)–EC/PC (68)–LiCF3SO3 (2)/LiClO4 (6) polymer system.

  14. New polymer lithium secondary batteries based on ORMOCER (R) electrolytes-inorganic-organic polymers

    DEFF Research Database (Denmark)

    Popall, M.; Buestrich, R.; Semrau, G.;

    2001-01-01

    Based on new plasticized inorganic-organic polymer electrolytes CM. Popall, M. Andrei, J. Kappel, J. Kron, K. Olma, B. Olsowski,'ORMOCERs as Inorganic-organic Electrolytes for New Solid State Lithium Batteries and Supercapacitors', Electrochim. Acta 43 (1998) 1155] new flexible foil-batteries in...... electrolyte, typical for polymer electrolytes. Cycling tests (more than 900 cycles) proved that the unplasticized electrolyte can act as binder in composite cathodes of lithium secondary batteries [2]. Charge/discharge cycles of complete batteries like (Cu/active carbon/ORMOCER(R)/LiCoO2/Al) with an ORMOCER...... 'coffee bag arrangement' were assembled and tested. The electrolyte works as separator and binder for the cathodes. Self-diffusion NMR studies on the system (EC/PC/Li+N(SO2CF3)(2)(-)/ORMOCER(R)) resulted in cationic transport numbers t(+)) of 0.42 for the EC/PC/salt system and 0.35 for the ternary...

  15. Electrostatic model of semiconductor nanoparticles trapped in polymer electrolytes

    Indian Academy of Sciences (India)

    Divya Singh; Pramod K Singh; Nitin A Jadhav; Bhaskar Bhattacharya

    2013-11-01

    A simple electrostatic model is applied to study the solvation energy and localization energy to inorganic semiconductor nanocrystallites trapped in polymer and ion conducting polymer electrolytes. The effective mass approximation has been applied to the system. In the single charge configuration, the dielectric constant of the medium has been identified as the selection criteria for hosting the nanoparticles. Solvation energy has been shown to depend on the host medium and the size of the crystallite.

  16. Polymer effect on lithium ion dynamics in gel polymer electrolytes: Cationic versus acrylate polymer

    International Nuclear Information System (INIS)

    In this work we study different ternary polymer gel electrolytes in order to analyze the influence of the type of polymer and its concentration on the lithium ion transport. Four ternary systems are prepared, containing either poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)-imide (PDADMATFSI) or poly(methyl methacrylate) (PMMA) as polymeric component, lithium bis(trifluoromethanesulfonyl)-imide (LiTFSI) as conducting salt, and either ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide (PYR14TFSI) or propylene carbonate (PC) as solvent. We study the lithium ion dynamics in dependence on polymer concentration for all systems. The samples are studied by 7Li and 19F Pulsed Field Gradient (PFG) nuclear magnetic resonance (NMR) diffusion experiments of the lithium ion as well as the TFSI− anion. The diffusion coefficients of the ions decrease strongly with increasing concentration of PMMA, but they decrease less significantly for increasing concentration of PDADMATFSI. Various comparisons of diffusion coefficient ratios highlight the role of the solvent and the polymer, respectively. Spin-lattice relaxation rates give an insight about the change in short range (local) dynamics of the lithium ion. In summary, the result show that PDADMATFSI acts as an efficient ionic cluster breaker between lithium and TFSI− and is thus a far better suitable polymer in electrolytes than PMMA

  17. Lithium ion conducting solid polymer blend electrolyte based on bio-degradable polymers

    Indian Academy of Sciences (India)

    Natarajan Rajeswari; Subramanian Selvasekarapandian; Moni Prabu; Shunmugavel Karthikeyan; C Sanjeeviraja

    2013-04-01

    Lithium ion conducting polymer blend electrolyte films based on poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) with different Mwt% of lithium nitrate (LiNO3) salt, using a solution cast technique, have been prepared. The polymer blend electrolyte has been characterized by XRD, FTIR, DSC and impedance analyses. The XRD study reveals the amorphous nature of the polymer electrolyte. The FTIR study confirms the complex formation between the polymer and salt. The shifts in g values of 70 PVA–30 PVP blend and 70 PVA–30 PVP with different Mwt% of LiNO3 electrolytes shown by DSC thermograms indicate an interaction between the polymer and the salt. The dependence of g and conductivity upon salt concentration has been discussed. The ion conductivity of the prepared polymer electrolyte has been found by a.c. impedance spectroscopic analysis. The PVA–PVP blend system with a composition of 70 wt% PVA: 30 wt% PVP exhibits the highest conductivity of 1.58 × 10-6 Scm-1 at room temperature. Polymer samples of 70 wt% PVA–30 wt% PVP blend with different molecular weight percentage of lithium nitrate with DMSO as solvent have been prepared and studied. High conductivity of 6.828 × 10-4 Scm-1 has been observed for the composition of 70 PVA:30 PVP:25 Mwt% of LiNO3 with low activation energy 0.2673 eV. The conductivity is found to increase with increase in temperature. The temperature dependent conductivity of the polymer electrolyte follows the Arrhenius relationship which shows hopping of ions in the polymer matrix. The relaxation parameters () and () of the complexes have been calculated by using loss tangent spectra. The mechanical properties of polymer blend electrolyte such as tensile strength, elongation and degree of swelling have been measured and the results are presented.

  18. Molecular level mechanisms of quartz dissolution at neutral and alkaline conditions with the presence of electrolytes

    Science.gov (United States)

    Liu, Y.; Zhang, S.

    2012-12-01

    The mechanisms of quartz dissolution are intricately affected by pH and electrolyte types. While most of previous studies have focused on mechanisms of quartz dissolution under a single specific condition (e.g., temperature, pH, saturation, or electrolyte type), this study investigates the molecular level mechanisms at combinations of electrolyte and pH conditions, which are more complicated but closer to the reality. Under neutral and alkaline pH conditions, with one of the Ca2+, Mg2+ or Na+ electrolytes in the solution, the dissolution of Q1(Si) and Q2(Si) sites on quartz surface, which represents the most important part of the quartz dissolution story, were investigated by first-principles quantum chemistry calculation methods. Also, large cluster models were used to represent the surface structures of quartz. The M05-2X/6-311+G** level DFT (Density Functional Theory) calculations and the STQN (Synchronous Transit-Guided Quasi-Newton) method (i.e., the QST3 method in Gaussian 03) were used to search transition-state structures and calculate energy barriers of the elementary Si-O bond breaking steps. Our results confirm that the dissolution of quartz can be significantly enhanced with the presence of electrolytes under neutral pH conditions, while under alkaline pH conditions, the behaviors of electrolytes are complicated, depending on where and how the electrolytes bond to quartz surfaces. Under neutral conditions, almost all types of electrolytes can directly bond to the bridging oxygen (BO) sites, leading to a weakened Si-Obr bonding and an increase of quartz dissolution. At alkaline conditions, however, electrolytes can no longer link to BO sites but rather link to terminal oxygen sites, leading to different dissolution mechanisms of quartz. The behaviors of specific electrolytes Na+, Ca2+, and Mg2+ on Q1(Si) and Q2 (Si) sites are also different, leading to more complicated dissolution mechanisms. Finally, the calculated energy barriers of possible hydrolysis

  19. New polymer lithium secondary batteries based on ORMOCER (R) electrolytes-inorganic-organic polymers

    DEFF Research Database (Denmark)

    Popall, M.; Buestrich, R.; Semrau, G.; Eichinger, G.; Andrei, M.; Parker, W. O.; Skaarup, Steen; West, Keld

    Based on new plasticized inorganic-organic polymer electrolytes CM. Popall, M. Andrei, J. Kappel, J. Kron, K. Olma, B. Olsowski,'ORMOCERs as Inorganic-organic Electrolytes for New Solid State Lithium Batteries and Supercapacitors', Electrochim. Acta 43 (1998) 1155] new flexible foil-batteries in...

  20. Ionic Liquid-Doped Gel Polymer Electrolyte for Flexible Lithium-Ion Polymer Batteries

    OpenAIRE

    Ruisi Zhang; Yuanfen Chen; Reza Montazami

    2015-01-01

    Application of gel polymer electrolytes (GPE) in lithium-ion polymer batteries can address many shortcomings associated with liquid electrolyte lithium-ion batteries. Due to their physical structure, GPEs exhibit lower ion conductivity compared to their liquid counterparts. In this work, we have investigated and report improved ion conductivity in GPEs doped with ionic liquid. Samples containing ionic liquid at a variety of volume percentages (vol %) were characterized for their electrochemi...

  1. Solid state NMR and DFT study of polymer electrolytes

    Czech Academy of Sciences Publication Activity Database

    Spěváček, Jiří; Brus, Jiří; Dybal, Jiří; Kang, Y. S.

    Linz : Institut für Organische Chemie, Johannes Kepler Universität, 2004 - (Müller, N.). s. 28 [Central European NMR Symposium /6./. 27.09.2004, Linz] R&D Projects: GA AV ČR IAA4050209 Keywords : solid polymer electrolytes * solid state NMR * quantum-chemical DFT calculation Subject RIV: CD - Macromolecular Chemistry

  2. Polymer – ionic liquid electrolytes for electrochemical gas sensors

    Czech Academy of Sciences Publication Activity Database

    Nádherná, Martina; Opekar, F.; Reiter, Jakub

    2008-01-01

    Roč. 102, - (2008), s. 118-119. ISSN 0009-2770 R&D Projects: GA MŠk LC523; GA AV ČR KJB400320701 Institutional research plan: CEZ:AV0Z40320502 Keywords : polymer electrolytes * electrochemical characterization Subject RIV: CA - Inorganic Chemistry Impact factor: 0.593, year: 2008

  3. Toughness of membranes applied in polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, J.; Brack, H.P.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Since several years we apply the radiation-grafting technique to prepare polymeric membranes for application in polymer electrolyte fuel cells (PEFCs). Our investigations presented here focus on changes in toughness of these materials after the various synthesis steps and the importance of membrane toughness for their application in PEFCs. (author) 2 figs., 4 refs.

  4. Novel Ceramic Materials for Polymer Electrolyte Membrane Water Electrolysers' Anodes

    DEFF Research Database (Denmark)

    Polonsky, J.; Bouzek, K.; Prag, Carsten Brorson;

    2012-01-01

    Tantalum carbide was evaluated as a possible new support for the IrO2 for use in anodes of polymer electrolyte membrane water electrolysers. A series of supported electrocatalysts varying in mass content of iridium oxide was prepared. XRD, powder conductivity measurements and cyclic and linear...

  5. NMR study of starch based polymer gel electrolytes: Humidity effects

    International Nuclear Information System (INIS)

    In this work, nuclear magnetic resonance spectroscopy (NMR) was used to study the effect of water absorption in polymer gel electrolytes formed by amylopectin rich starch, plasticized with glycerol and containing lithium perchlorate. The position of the 7Li spin-lattice relaxation rate maximum is shifted progressively towards lower temperatures with increasing hydration, reflecting an increase of the lithium mobility. The mechanism responsible for the spin-lattice relaxation of the 7Li nuclei in the gel electrolytes are the fluctuations of the quadrupolar interaction due to the lithium motions. The 7Li relaxation results of the gel electrolyte hydrated with 2.2 water per complex unit suggest that the lithium ions are almost decoupled from the polymer chain and coordinate, hence preferring the water molecules

  6. Plasma Membranes Modified by Plasma Treatment or Deposition as Solid Electrolytes for Potential Application in Solid Alkaline Fuel Cells

    Directory of Open Access Journals (Sweden)

    Christophe Coutanceau

    2012-07-01

    Full Text Available In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane.

  7. Polymer anion selective membranes for electrolytic splitting of water. Part I: stability of ion-exchange groups and impact of the polymer binder

    Czech Academy of Sciences Publication Activity Database

    Hnát, J.; Paidar, M.; Schauer, Jan; Žitka, Jan; Bouzek, K.

    2011-01-01

    Roč. 41, č. 9 (2011), s. 1043-1052. ISSN 0021-891X. [International Congress of Chemical and Process Engineering CHISA 2010 /19./ and European Congress of Chemical Engineering ECCE-7 /7./. Praha, 28.08.2010-01.09.2010] R&D Projects: GA MŠk(CZ) 7E08005 Institutional research plan: CEZ:AV0Z40500505 Keywords : water electrolysis * alkaline environment * polymer electrolyte Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.745, year: 2011

  8. Gel Polymer Electrolytes Based on PMMA

    Czech Academy of Sciences Publication Activity Database

    Vondrák, Jiří; Klápště, Břetislav; Velická, Jana; Reiter, Jakub

    Vol. 1. Brno: Akademické nakladatelství CERM, 2000 - (Vondrák, J.; Sedlaříková, M.), s. 1.1-1.4 ISBN 80-214-1614-9. [Advanced Batteries and Accumulators /1./. Brno (CZ), 28.08.2000-01.09.2000] R&D Projects: GA AV ČR IAA4032002; GA MŠk ME 216 Institutional research plan: CEZ:AV0Z4032918 Keywords : PMMA * gel * electrolytes Subject RIV: CG - Electrochemistry

  9. Highly selective determination of copper corrosion products by voltammetric reduction in a strongly alkaline electrolyte.

    Science.gov (United States)

    Nakayama, Shigeyoshi; Notoya, Takenori; Osakai, Toshiyuki

    2012-01-01

    Until recently, there had been two conflicting views about the order of copper oxides (Cu(2)O and CuO) in their cathodic reduction with a neutral or weak alkaline electrolyte (typically 0.1 M KCl). In 2001, we successfully employed a strongly alkaline electrolyte (SAE; i.e., 6 M KOH + 1 M LiOH) to achieve a perfect separation of the reduction peaks of the two oxides. It was then found that the oxides were reduced in SAE according to a thermodynamic order, i.e., "CuO → Cu(2)O", and also that the reduction of CuO occurred in one step. At an extremely slow scan rate of atmospheric corrosion of copper. PMID:22498457

  10. Understanding ternary poly(potassium benzimidazolide)-based polymer electrolytes

    DEFF Research Database (Denmark)

    Aili, David; Jankova Atanasova, Katja; Han, Junyoung;

    2016-01-01

    swelling, high electrolyte uptake, dramatic plasticization and increase of the ion conductivity for the formed poly(potassium benzimidazolide)-based structure. Further increasing the concentration of the bulk solution to 50 wt.% resulted in dehydration and extensive crystallization of the polymer matrix......Poly(2,20-(m-phenylene)-5,50-bisbenzimidazole) (m-PBI) can dissolve large amounts of aqueous electrolytes to give materials with extraordinary high ion conductivity and the practical applicability has been demonstrated repeatedly in fuel cells, water electrolysers and as anion conducting component...

  11. All-solid-state proton battery using gel polymer electrolyte

    International Nuclear Information System (INIS)

    A proton conducting gel polymer electrolyte system; PMMA+NH4SCN+EC/PC, has been prepared. The highest ionic conductivity obtained from the system is 2.5 × 10−4 S cm−1. The optimized composition of the gel electrolyte has been used to fabricate a proton battery with Zn/ZnSO4⋅7H2O anode and MnO2 cathode. The open circuit voltage of the battery is 1.4 V and the highest energy density is 5.7 W h kg−1 for low current drain

  12. Characterization of Novel Castor Oil-Based Polyurethane Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Salmiah Ibrahim

    2015-04-01

    Full Text Available Castor oil-based polyurethane as a renewable resource polymer has been synthesized for application as a host in polymer electrolyte for electrochemical devices. The polyurethane was added with LiI and NaI in different wt% to form a film of polymer electrolytes. The films were characterized by using attenuated total reflectance-Fourier transform infrared spectroscopy, dynamic mechanical analysis, electrochemical impedance spectroscopy, linear sweep voltammetry and transference number measurement. The highest conductivity of 1.42 × 10−6 S cm−1 was achieved with the addition of 30 wt% LiI and 4.28 × 10−7 S·cm−1 upon addition of 30 wt% NaI at room temperature. The temperature dependence conductivity plot indicated that both systems obeyed Arrhenius law. The activation energy for the PU-LiI and PU-NaI systems were 0.13 and 0.22 eV. Glass transition temperature of the synthesized polyurethane decreased from −15.8 °C to ~ −26 to −28 °C upon salts addition. These characterizations exhibited the castor oil-based polyurethane polymer electrolytes have potential to be used as alternative membrane for electrochemical devices.

  13. Electrochemical behaviors of novel composite polymer electrolytes for lithium batteries

    Institute of Scientific and Technical Information of China (English)

    Guorong Chen; Pengfei Shi; Yongping Bai; Taibing Fan

    2004-01-01

    A novel composite polymer electrolyte was prepared by blending an appropriate amount of LiClO4 and 10% (mass fraction)fumed SiO2 with the block copolymer of poly (ethylene oxide) (PEO) synthesized by poly (ethylene glycol) (PEG) 400 and CH2Cl2.The ionic conductivity, electrochemical stability, interfacial characteristic and thermal behavior of the composite polymer electrolytewere studied by the measurements of AC impedance spectroscopy, linear sweep voltammetry and differential scanning calorimetry(DSC), respectively. The glass transition temperature acts as a function of salt concentration, which increases with the LiClO4 content.Lewis acid-base model interaction mechanism was introduced to interpret the interactive relation between the filled fumed SiO2 andthe lithium salt in the composite polymer electrolyte. Over the salt concentration range and the measured temperature, the maximumionic conductivity of the composite polymer electrolyte (10-4.41 S/cm) appeared at EO/Li=25 (mole ratio) and 30℃, and the begin-ning oxidative degradation potential versus Li beyond 5 V.

  14. X-ray evaluation of the boundary between polymer electrolyte and platinum and carbon functionalization to conduct protons in polymer electrolyte fuel cells

    Science.gov (United States)

    Oka, Kazuki; Ogura, Yuta; Izumi, Yasuo

    2014-07-01

    In polymer electrolyte fuel cells (PEFCs), it is important to secure proximate diffusion paths of reactants and electrons. One approach is to optimize the boundary between polymer electrolyte and Pt nanoparticle surface. Based on synchrotron X-ray absorption fine structure to monitor directly the status of catalysts in PEFCs, it was found that Pt sites were reduced to Pt0 by alcohols contained in polymer electrolyte dispersion solution during the preparation of cathode of PEFC. As in membrane electrolyte assembly, only the Pt sites not covered by polymer electrolyte re-oxidized to Pt2+/4+. Thus, the interface between Pt and polymer electrolyte was evaluated. The other approach is to functionalize carbon surface with sulfonate/sulfate group to conduct protons. Similar level of proton conductivity was observed in current-voltage dependence compared to using polymer electrolyte, but polymer electrolyte was advantageous to lose less voltage for activation. Based on this comparison, optimum catalyst on cathode is proposed comprising surface sulfonate/sulfate group on carbon mixed with polymer electrolyte. Further optimization of cathode catalyst is proposed to functionalize carbon with sulfonate group linked to fluorocarbon branch.

  15. Polymer electrolyte membrane assembly for fuel cells

    Science.gov (United States)

    Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)

    2002-01-01

    An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.

  16. Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries

    OpenAIRE

    Luca Porcarelli; Claudio Gerbaldi; Federico Bella; Jijeesh Ravi Nair

    2016-01-01

    Here we demonstrate that by regulating the mobility of classic −EO− based backbones, an innovative polymer electrolyte system can be architectured. This polymer electrolyte allows the construction of all solid lithium-based polymer cells having outstanding cycling behaviour in terms of rate capability and stability over a wide range of operating temperatures. Polymer electrolytes are obtained by UV-induced (co)polymerization, which promotes an effective interlinking between the polyethylene o...

  17. Modeling of Water Sorption and Swelling in Polymer Electrolyte Membranes: Diagnostic Applications

    OpenAIRE

    Safiollah, Motahareh

    2015-01-01

    The polymer electrolyte membrane (PEM) fulfills vital functions as separator, proton conductor, and electronic insulator in a polymer electrolyte fuel cell (PEFC). The well-studied and practically used solid polymer electrolyte membranes are perfluorosulfonic acid (PFSA) polymer membranes such as Nafion. These membranes offer high proton conductivity, high mechanical strength and good chemical stability. The efficiency of the chemical-to-electrical energy conversion in a PEFC critically depen...

  18. Agar-based films for application as polymer electrolytes

    International Nuclear Information System (INIS)

    New types of polymer electrolytes based on agar have been prepared and characterized by impedance spectroscopy, X-ray diffraction measurements, UV-vis spectroscopy and scanning electronic microscopy (SEM). The best ionic conductivity has been obtained for the samples containing a concentration of 50 wt.% of acetic acid. As a function of the temperature the ionic conductivity exhibits an Arrhenius behavior increasing from 1.1 x 10-4 S/cm at room temperature to 9.6 x 10-4 S/cm at 80 deg. C. All the samples showed more than 70% of transparency in the visible region of the electromagnetic spectrum, a very homogeneous surface and a predominantly amorphous structure. All these characteristics imply that these polymer electrolytes can be applied in electrochromic devices.

  19. Integration of polymer electrolytes in dye sensitized solar cells by initiated chemical vapor deposition

    International Nuclear Information System (INIS)

    The mesoporous titanium dioxide electrode of dye sensitized solar cells (DSSC) has been successfully filled with polymer electrolyte to replace the conventional liquid electrolyte. Polymer electrolyte was directly synthesized and deposited using the initiated chemical vapor deposition (iCVD) process, and an iodide-triiodide redox couple in different redox solvents was then incorporated into the polymer. We have investigated different candidate polymer electrolytes, including poly(2-hydroxyethyl methacrylate) (PHEMA). The open circuit voltage of cells fabricated with iCVD PHEMA was found to be higher when compared with a liquid electrolyte that is attributed to a lower rate of electron recombination.

  20. The Characteristic Thickness of Polymer Electrolyte Membrane and the

    Czech Academy of Sciences Publication Activity Database

    Němec, Tomáš; Maršík, František; Mičan, O.

    2009-01-01

    Roč. 30, č. 7 (2009), s. 574-581. ISSN 0145-7632 R&D Projects: GA AV ČR KJB400760701; GA MŠk(CZ) 1M06031; GA ČR(CZ) GA101/07/1612 Institutional research plan: CEZ:AV0Z20760514 Keywords : hydrogen fuel cell * polymer electrolyte membrane * irreversible thermodynamics Subject RIV: BJ - Thermodynamics Impact factor: 0.841, year: 2009 http://dx.doi.org/10.1080/01457630802594978

  1. Nanoflow of Protons and Water in Polymer Electrolyte Membranes

    OpenAIRE

    Benjaminsen, Bjørn Eirik

    2013-01-01

    This master thesis studies the applicability of continuum mean-field theories such as the Poisson-Nernst-Planck equations and the Stokes equation. In particular, we investigate electro-osmotic flow of water and protons in infinite cylindrical nano-scale pores with a uniform surface charge density, representing pores in polymer electrolyte membranes. The impact of different modifications to the continuum theory is explored. Including finite-size ions in the Poisson-Boltzmann equation and spati...

  2. Modelling cathode catalyst degradation in polymer electrolyte fuel cells

    OpenAIRE

    Rinaldo, Steven Giordano

    2013-01-01

    Nano-sized Pt particles in the cathode catalyst layer of a polymer electrolyte fuel cell afford a high initial electrochemically active surface-area. However, the gain in active surface area for desired surface reactions is offset in part by enhanced rates of degradation processes that cause losses in catalyst mass, catalyst surface-area, and electrocatalytic activity. The loss of electrochemically active surface-area of the catalyst causes severe performance degradation over relevant lifetim...

  3. The Stirred Tank Reactor Polymer Electrolyte Membrane Fuel Cell

    OpenAIRE

    Benziger, Jay; Chia, E.; Karnas, E.; Moxley, J.; Teuscher, C.; Kevrekidis, I. G.

    2003-01-01

    The design and operation of a differential Polymer Electrolyte Membrane (PEM) fuel cell is described. The fuel cell design is based on coupled Stirred Tank Reactors (STR); the gas phase in each reactor compartment was well mixed. The characteristic times for reactant flow, gas phase diffusion and reaction were chosen so that the gas compositions at both the anode and cathode are uniform. The STR PEM fuel cell is one-dimensional; the only spatial gradients are transverse to the membrane. The S...

  4. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qui; Dan Wilson; Phil Dowling

    2004-05-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding in the swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to the naturally fractured reservoirs or those with thief zones because much of the injected solution bypasses the target pore space containing oil. The objective of this work is to investigate whether combining these two technologies could broaden the applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium--polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values of 9.2 to 12.9.

  5. Improved power conversion efficiency of dye-sensitized solar cells using side chain liquid crystal polymer embedded in polymer electrolytes

    International Nuclear Information System (INIS)

    Side chain liquid crystal polymer (SCLCP) embedded in poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-co-HFP)-based polymer electrolytes (PVdF-co-HFP:side chain liquid crystal polymer (SCLCP)) was prepared for dye-sensitized solar cell (DSSC) application. The polymer electrolytes contained tetrabutylammonium iodide (TBAI), iodine (I2), and 8 wt% PVdF-co-HFP in acetonitrile. DSSCs comprised of PVdF-co-HFP:SCLCP-based polymer electrolytes displayed enhanced redox couple reduction and reduced charge recombination in comparison to those of the conventional PVdF-co-HFP-based polymer electrolyte. The significantly increased short-circuit current density (Jsc, 10.75 mA cm−2) of the DSSCs with PVdF-co-HFP:SCLCP-based polymer electrolytes afforded a high power conversion efficiency (PCE) of 5.32% and a fill factor (FF) of 0.64 under standard light intensity of 100 mW cm−2 irradiation of AM 1.5 sunlight. - Highlights: • We developed the liquid crystal polymer embedded on polymer electrolyte for DSSCs. • We fabricated the highly efficient DSSCs using polymer electrolyte. • The best PCE achieved for P1 is 5.32% using polymer electrolyte

  6. Study on rare earth/alkaline earth oxide-doped CeO2 solid electrolyte

    Institute of Scientific and Technical Information of China (English)

    YAN Kai; ZHEN Qiang; Song Xiwen

    2007-01-01

    Five types of rare earth/alkaline earth oxide-doped CeO2 superfine-powders were synthesized by a low-temperature combustion technique. The relevant solid electrolyte materials were also sintered by pressureless sintering at different temperatures. The results of X-ray diffraction and transmission electron microscopy showed that the grain size of the powders was approximately 20-30 nm, and rare earth/alkaline earth oxides were completely dissolved into ceria-based solid solution with fluorite structure. The electrical conductivities of the Sm2O3-CeO2 system were measured by the ac impedance technique in air at temperatures ranging from 513-900℃. The results indicated that the ionic conductivities of Sm0.20Ce0.8O1.875 solid electrolyte increase with increasing sintering temperature, and the relationship between the conductivities and measuring temperature obeys the Arrhenius equation. Then the Sm2O3-CeO2 material was further doped with other rare earth/alkaline earth oxide, and the conductivities improve with the effective index.

  7. Analysis of the electrodeposition process of rhenium and rhenium oxides in alkaline aqueous electrolyte

    International Nuclear Information System (INIS)

    Highlights: • The electrodeposition of rhenium and rhenium oxides from alkaline aqueous electrolyte was investigated. • The authors propose that the electrocrystallization process follows a multi-step reduction mechanism. • The electrodeposited material corresponds to a mixture of metallic rhenium, rhenium (IV) oxide and rhenium (VI) oxide. -- Abstract: The electrodeposition of rhenium and rhenium oxides from an alkaline aqueous solution containing 0.125 mol dm−3 NH4ReO4 + 0.01 mol dm−3 NaOH (pH 13.3 ± 0.1) has been studied. Cyclic voltammetry studies were carried out using two electrodes, polycrystalline platinum and polycrystalline gold, and the galvanostatic electrodeposition was conducted on a pure copper electrode (99.9%). Information regarding rhenium electrodeposits has been obtained by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results in an alkaline aqueous electrolyte suggest that the electrocrystallization process follows a multi-step mechanism influenced by hydrogen adsorption. The main conclusion was that rhenium, rhenium (IV) oxide and rhenium (VI) oxide coexist in the electrodeposited material

  8. Synthesis and characterization of aminated perfluoro polymer electrolytes

    Science.gov (United States)

    Page-Belknap, Zachary Stephan Glenn

    Polymer electrolytes have been developed for use in anion exchange membrane fuel cells for years. However, due to the highly corrosive environment within these fuel cells, poor chemical stability of the polymers and low ion conductivity have led to high development costs and thus prevention from widespread commercialization. The work in this study aims to provide a solution to these problems through the synthesis and characterization of a novel polymer electrolyte. The 800 EW 3M PFSA sulfonyl fluoride precursor was aminated with 3-(dimethylamino)-1-propylamine to yield a functional polymer electrolyte following quaternization, referred to in this work as PFSa-PTMa. 1 M solutions of LiPF6, HCL, KOH, NaOH, CsOH, NaHCO3 and Na2CO3 were used to exchange the polymer to alternate counterion forms. Chemical structure analysis was performed using both FT and ATR infrared spectroscopy to confirm sulfonyl fluoride replacement and the absence of sulfonic acid sites. Mechanical testing of the polymer, following counterion exchange with KOH, at saturated conditions and 60 ºC exhibited a tensile strength of 13 +/- 2.0 MPa, a Young's modulus of 87 +/- 16 MPa and a degree of elongation reaching 75% +/- 9.1%, which indicated no mechanical degradation following exposure to a highly basic environment. Conductivities of the polymer in the Cl- and OH- counterion forms at saturated conditions and 90 ºC were observed at 26 +/- 8.0 mS cm-1 and 1.1 +/- 0.1 mS cm-1, respectively. OH- conductivities were slightly above those observed for CO32- and HCO 3- counterions at the same conditions, 0.63 +/- 0.18 and 0.66 +/- 0.21 mS cm-1 respectively. The ion exchange capacity (IEC) of the polymer in the Cl- counterion form was measured via titration at 0.57 meq g-1 which correlated to 11.2 +/- 0.10 water molecules per ion site when at 60ºC and 95% relative humidity. The IEC of the polymer in the OH- counterion form following titration expressed nearly negligible charge density, less than 0.01 meq

  9. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Performance and produced polymer evaluation of four alkaline-surfactant-polymer projects concluded that only one of the projects could have benefited from combining the alkaline-surfactant-polymer and gelation technologies. Cambridge, the 1993 Daqing, Mellott Ranch, and the Wardlaw alkaline-surfacant-polymer floods were studied. An initial gel treatment followed by an alkaline-surfactant-polymer flood in the Wardlaw field would have been a benefit due to reduction of fracture flow. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls or 3.3% OOIP when a gel was placed in the B sand. Alkaline-surfactant-polymer flood oil recovery improvement over a waterflood was 392,000 bbls or 6.5% OOIP. Placing a gel into the B sand prior to an alkaline-surfactant-polymer flood resulted in 989,000 bbl or 16.4% OOIP more oil than only water injection. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls or 9.9% OOIP when a gel was placed in the B sand.

  10. Cation dynamics in PVdF-based polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Mustarelli, P.; Quartarone, E.; Capiglia, C.; Tomasi, C.; Magistris, A. [Department of Physical Chemistry and C.S.T.E.-C.N.R., University of Pavia, Via Taramelli 16, 27100 Pavia (Italy)

    1999-07-25

    Poly(vynilidene fluoride) P(VdF)/hexafluoropropylene (HFP) copolymers are well suited to prepare hybrid electrolytes which can be useful in solid-state electrochemical devices. We study with modulated differential scanning calorimetry (MDSC) and nuclear magnetic resonance (NMR) the polymer-solution interactions in 30 wt% P(VdF-HFP)-70 wt% (ethylene carbonate-propylene carbonate-LiN(CF{sub 3}SO{sub 2}){sub 3}) hybrid electrolyte. We show that both {sup 7}Li-NMR lineshape narrowing and spin-lattice relaxation are driven by the ion dynamics. The behaviour of the longitudinal relaxation times, T{sub 1}, confirms that the host polymer matrix simply behaves like an inert cage for the cations, at least at the polymer-to-solution ratio examined in the present study. These results are confined by {sup 13}C-NMR-MAS data, which show that the presence of the polymer does not significantly affect the chemical shift changes induced in the EC/PC carbons by the imide salt

  11. Physical properties of Li ion conducting polyphosphazene based polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, S.; Zawodzinski, T.; Hermes, R.; Davey, J.; Dai, Hongli

    1996-12-31

    We report a systematic study of the transport properties and the underlying physical chemistry of some polyphosphazene (PPhz)-based polymer electrolytes. We synthesized MEEP and variants which employed mixed combinations of different length oxyethylene side-chains. We compare the conductivity and ion-ion interactions in polymer electrolytes obtained with lithium triflate and lithium bis(trifluoromethanesulfonyl)imide (TFSI) salts added to the polymer. The combination of the lithium imide salt and MEEP yields a maximum conductivity of 8 x 10{sup -5} {Omega}{sup -1} cm{sup -1} at room temperature at a salt loading of 8 monomers per lithium. In one of the mixed side-chain variations, a maximum conductivity of 2 x 10{sup -4} {Omega}{sup -1} cm{sup -1} was measured at the same molar ratio. Raman spectral analysis shows some ion aggregation and some polymer - ion interactions in the PPhz-LiTFSI case but much less than observed with Li CF{sub 3}SO{sub 3}. A sharp increase in the Tg as salt is added corresponds to concentrations above which the conductivity significantly decreases and ion associations appear.

  12. Polymer stability and function for electrolyte and mixed conductor applications

    Science.gov (United States)

    Hammond, Paula; Davis, Nicole; Liu, David; Amanchukwu, Chibueze; Lewis, Nate; Shao-Horn, Yang

    2015-03-01

    Polymers exhibit a number of attractive properties as solid state electrolytes for electrochemical energy devices, including the light weight, flexibility, low cost and adaptive transport properties that polymeric materials can exhibit. For a number of applications, mixed ionic and electronic conducting materials are of interest to achieve transport of electrons and holes or ions within an electrode or at the electrode-electrolyte interface (e.g. aqueous batteries, solar water splitting, lithium battery electrode). Using layer-by-layer assembly, a mode of alternating adsorption of charged or complementary hydrogen bonding group, we can design composite thin films that contain bicontinuous networks of electronically and ionically conducting polymers. We have found that manipulation of salt concentration and the use of divalent ions during assembly can significantly enhance the number of free acid anions available for ion hopping. Unfortunately, for certain electrochemical applications, polymer stability is a true challenge. In separate studies, we have been investigating macromolecular systems that may provide acceptable ion transport properties, but withstand the harsh oxidative environment of lithium air systems. An investigation of different polymeric materials commonly examined for electrochemical applications provides insight into polymer design for these kinds of environments. NSF Center for Chemical Innovation, NDSEG Fellowship and Samsung Corporation.

  13. Tetrazole substituted polymers for high temperature polymer electrolyte fuel cells

    DEFF Research Database (Denmark)

    Henkensmeier, Dirk; My Hanh Duong, Ngoc; Brela, Mateusz;

    2015-01-01

    interesting for use in a high temperature fuel cell (HT PEMFC). Based on these findings, two polymers incorporating the proposed TZ groups were synthesised, formed into membranes, doped with PA and tested for fuel cell relevant properties. At room temperature, TZ-PEEN and commercial meta-PBI showed an...

  14. Water removal studies on high power hydrogen-oxygen fuel cells with alkaline electrolytes

    Science.gov (United States)

    Kordesch, K.; Oliveira, J. C. T.; Gruber, Ch.; Winkler, G.

    1989-08-01

    Research in verification of bipolar fuel cell design, containing mass-produceable all-carbon electrodes which can be used in alkaline or acidic cells with liquid or immobilized (matrix) electrolytes, is described. Spin-offs from the research related to the Hermes manned spaceplane could be useful for applications on Earth. Peak-power plants, electric vehicles and storage devices used in combination with renewable energy sources could all benefit from the research. A subsequent investigation of water transpiration properties of carbon electrodes is described.

  15. The Role of Polymer Electrolytes in Drug Delivery

    Science.gov (United States)

    Latham, R. J.; Linford, R. G.; Schlindwein, W. S.

    2002-12-01

    30 years ago Michel Armand, who was working on intercalation cathode materials in high energy power sources, identified the need to develop flexible, ionically conducting, electronically insulating electrolyte materials to accommodate the gross dimensional changes that occur on charge and discharge. In 1973, Peter Wright produced the first such materials designed for this purpose. His "polymer electrolytes" consisted of thin films of sodium or potassium salts dissolved in poly (ethylene oxide) PEO. Many polymer electrolytes had been developed in the ensuing years. Those for power source use have focussed on Lithium as the conducting species whereas complementary materials have been utilised for sensor and other applications. It is well known that the flexible matrix, a heteropolymer usually modified by additives such as plasticisers and/or inert fillers, provides a facile conducting pathway for ions. It is a significant disadvantage of many early polymer electrolytes that both the electrochemically active cations and the charge-compensating anions were mobile. Classic methods of drug delivery have embraced a number of routes into the site of pharmacological action, including ingestion into the lung, the digestive tract or the colon; injection into muscle tissue; and intravenous delivery through a catheter (a "drip"). Modern preference, wherever possible, is for a non-invasive route to minimise the chance of cross infection, especially of the AIDS virus. The skin, which is the largest organ in the human body, is a particularly appealing route as, in the absence of wounds and blemishes, it offers a natural, high-integrity, barrier to the outside world. Skin patches containing active drug that is allowed to diffuse across the external skin barrier into the bloodstream now enjoy wide application but a problem is that the rate of egress is often slow. Transport can be enhanced by artificially dilating the skin pores and/or by opening up additional pores by the

  16. Preliminary study of application of Moringa oleifera resin as polymer electrolyte in DSSC solar cells

    Science.gov (United States)

    Saehana, Sahrul; Darsikin, Muslimin

    2016-04-01

    This study reports the preliminary study of application of Moringa oleifera resin as polymer electrolyte in dye-sensitized solar cell (DSSC). We found that polymer electrolyte membrane was formed by using solution casting methods. It is observed that polymer electrolyte was in elastic form and it is very potential to application as DSSC component. Performance of DSSC which employing Moringa oleifera resin was also observed and photovoltaic effect was found.

  17. Preparation and characterization of a mixing soft-segment waterborne polyurethane polymer electrolyte

    Institute of Scientific and Technical Information of China (English)

    Feng Wu; Yue JiaoLi; Ren Jie Chen; Shi Chen

    2009-01-01

    The mixing soft-segment WPU (waterborne polyurethane) polymer electrolytes were synthesized by using PEO (poly(ethylene oxide)) and PDMS (polydimethylsiloxane) as the soft segments. These polymer electrolytes exhibit good thermal and electro-chemical stability. The conductivity of the gel polymer electrolyte is 2.52×10-3 S/cm at 25 ℃ with the LiTFSI/(DMC + EC) content of 130%.

  18. Lithium dendrite growth through solid polymer electrolyte membranes

    Science.gov (United States)

    Harry, Katherine; Schauser, Nicole; Balsara, Nitash

    2015-03-01

    Replacing the graphite-based anode in current batteries with a lithium foil will result in a qualitative increase in the energy density of lithium batteries. The primary reason for not adopting lithium-foil anodes is the formation of dendrites during cell charging. In this study, stop-motion X-ray microtomography experiments were used to directly monitor the growth of lithium dendrites during electrochemical cycling of symmetric lithium-lithium cells with a block copolymer electrolyte. In an attempt to understand the relationship between viscoelastic properties of the electrolyte on dendrite formation, a series of complementary experiments including cell cycling, tomography, ac impedance, and rheology, were conducted above and below the glass transition temperature of the non-conducting poly(styrene) block; the conducting phase is a mixture of rubbery poly(ethylene oxide) and a lithium salt. The tomography experiments enable quantification of the evolution of strain in the block copolymer electrolyte. Our work provides fundamental insight into the dynamics of electrochemical deposition of metallic films in contact with high modulus polymer electrolytes. Rational approaches for slowing down and, perhaps, eliminating dendrite growth are proposed.

  19. Composite polymer electrolyte membranes supported by non-woven fabrics for lithium-ion polymer batteries

    Institute of Scientific and Technical Information of China (English)

    TANG Dingguo; LIU Jianhong; QI Lu; CHEN Hui; CI Yunxiang

    2005-01-01

    Poly(vinylidene fluoride-co-hexafluoropropyle- ne) (PVDF-HFP) is one of the most popular polymers for polymer electrolyte membranes because of its excellent operating characteristics and superior electrochemical properties. The electrochemical performances of polymer electrolyte membrane can be enhanced by evenly dispersing nano-meter SiO2 particles in the polymer. In this paper, non-woven fabrics were immersed in the mixed solution of PVDF-HFP/ SiO2/butanone/butanol/plasticizer, and then dried in a vacuum oven to remove the solvents and the plasticizer and to make porous composite polymer electrolyte membranes. The prepared composite membranes supported by non-woven fabrics boast good mechanical strength and excellent electrochemical properties: the electrochemical stability window is 4.8 V vs. Li+/Li, and the ionic conductivity is 3.35×10-4 S/cm (around 60% of that of a common PE membrane) at room temperature. The lithium-ion polymer battery assembled by the composite membrane exhibits high rate capability and excellent cycling performance.

  20. Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Hjuler, Hans Aage; Bjerrum, Niels

    2000-01-01

    Oxygen reduction on carbon supported platinum catalysts has been investigated in H3PO4, H3PO4-doped Nafion and polybenzimidazole (PBI) polymer electrolytes in a temperature range up to 190 degrees C. Compared with pure H3PO4, the combination of H3PO4 and polymer electrolytes can significantly...... improve the oxygen reduction kinetics due to increased oxygen solubility and suppressed adsorption of phosphoric acid anions. Further enhancement of the catalytic activity can be obtained by operating the polymer electrolytes at higher temperatures. Efforts have been made to develop a polymer electrolyte...

  1. Polymer electrolytes based on aromatic lithium sulfonyl-imide compounds; Electrolytes polymeres a base de sulfonylimidures de lithium aromatiques

    Energy Technology Data Exchange (ETDEWEB)

    Reibel, L.; Bayoudh, S. [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France). Institut Charles Sadron; Baudry, P. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Majastre, H. [Bollore Technologies, 29 - Quimper (France); Herlem, G. [UFR de Sciences et Techniques, L.E.S., 25 - Besancon (France)

    1996-12-31

    This paper presents ionic conductivity results obtained with polymer electrolytes and also with propylene carbonate solutions. The domain of electrochemical activity of this salt has been determined using cycle volt-amperometry in propylene carbonate. Preliminary experiments on the stability of the polymer electrolyte with respect to the lithium electrode have been carried out for a possible subsequent use in lithium batteries. (J.S.) 4 refs.

  2. PE-g-MMA polymer electrolyte membrane for lithium polymer battery

    International Nuclear Information System (INIS)

    PE-g-MMA membranes with different degrees of grafting (DG) were prepared by electron beam radiation-induced graft copolymerization of methylmethacrylate (MMA) monomer onto polyethylene (PE) separator. The grafted membranes (GMs) were characterized using SEM, FTIR. The new polymer electrolytes based on GMs were prepared through immersion in a solution of LiPF6-EC/DMC (1:1 by volume). It was found that the GMs with different DG exhibited the different uptake and retention ability of liquid electrolyte. Moreover, the ion conductivities of activated polymer electrolytes (APEs) were also found to vary with the different DG and reached a magnitude of 10-3 S cm-1 at the DG of 42%. Compared with those containing PE separators, the LiCoO2-MCMB coin cells containing GMs demonstrated better cycle life and excellent rate performance

  3. Polymer electrolyte fuel cells: flow field for efficient air operation

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F.N.; Tsukada, A.; Haas, O.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    A new flow field was designed for a polymer electrolyte fuel cell stack with an active area of 200 cm{sup 2} for operation at low air stoichiometry and low air over pressure. Optimum of gas flow and channel dimensions were calculated based on the required pressure drop in the fluid. Single cells and a bi-cell stack with the new flow field show an improved current/voltage characteristic when operated at low air stoichiometries as compared to that of the previous non optimized design. (author) 4 figs., 3 refs.

  4. Cold-start characteristics of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mishler, Jeff [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Wang, Yun [UNIV. CAL. RIVERSIDE; Mishler, Jeff [UNIV. CAL. RIVERSIDE; Mukherjee, Partha P [ORNL

    2010-01-01

    In this paper, we investigate the electrochemical reaction kinetics, species transport, and solid water dynamics in a polymer electrolyte fuel cell (PEFC) during cold start. A simplitied analysis is developed to enable the evaluation of the impact of ice volume fraction on cell performance during coldstart. Supporting neutron imaging data are also provided to reveal the real-time water evolution. Temperature-dependent voltage changes due to the reaction kinetics and ohmic loss are also analyzed based on the ionic conductivity of the membrane at subfreezing temperature. The analysis is valuable for the fundamental study of PEFC cold-start.

  5. Conductivity Studies of the Plasticized-Poly(methylmethacrylate) Polymer Electrolytes

    Institute of Scientific and Technical Information of China (English)

    A.Ahmad; Z.Osman

    2007-01-01

    1 Results In this work,five systems of polymethylmethacrylate (PMMA)-based polymer electrolytes films have been prepared by the solution casting technique.The five systems are the (PMMA-EC) system,the (PMMA + PC) system,the (PMMA+LiCF3SO3) system,the ([PMMA+EC]+LiCF3SO3) system and the ([PMMA+PC]+LiCF3SO3) system.The conductivity for each system is characterized using impedance spectroscopy.The conductivity of the pure PMMA,the (PMMA+EC) system and the (PMMA+PC) system at room temperature is 2.37×10-9,3...

  6. Polymer electrolyte fuel cells physical principles of materials and operation

    CERN Document Server

    Eikerling, Michael

    2014-01-01

    The book provides a systematic and profound account of scientific challenges in fuel cell research. The introductory chapters bring readers up to date on the urgency and implications of the global energy challenge, the prospects of electrochemical energy conversion technologies, and the thermodynamic and electrochemical principles underlying the operation of polymer electrolyte fuel cells. The book then presents the scientific challenges in fuel cell research as a systematic account of distinct components, length scales, physicochemical processes, and scientific disciplines. The main part of t

  7. Ionic Transport Across Interfaces of Solid Glass and Polymer Electrolytes for Lithium Ion Batteries

    International Nuclear Information System (INIS)

    A study of lithium cation transport across solid-solid electrolyte interfaces to identify critical resistances in nanostructured solid electrolytes is reported. Bilayers of glass and polymer thin film electrolytes were fabricated and characterized for this study. The glass electrolyte was lithium phosphorous oxynitride (Lipon), and two polymer electrolytes were studied: poly(methyl methacrylate-co-poly(ethylene glycol) methyl ether methacrylate) and poly(styrene-co-poly(ethylene glycol) methyl ether methacrylate). Both copolymers contained LiClO4 salt. In bilayers where polymer electrolyte layers are fabricated on top of Lipon, the interfacial resistance dominates transport. At 25 C, the interfacial resistance is at least three times greater than the sum of the Lipon and polymer electrolyte resistances. By reversing the structure and fabricating Lipon on top of the polymer electrolytes, the interfacial resistance is eliminated. Experiments to elucidate the origin of the interfacial resistance in the polymer-on-Lipon bilayers reveal that the solvent mixtures used to fabricate the polymer layers do not degrade the Lipon layer. The importance of the polymer electrolytes' mechanical properties is also discussed.

  8. Radiation processing for the preparation of biomaterials and polymer electrolytes

    International Nuclear Information System (INIS)

    It is known that a radiation processing of polymeric materials has some unique advantages over other chemical and physical processing. For example, the use of toxic chemicals and strict temperature/moisture controls may not be needed during a radiation processing. Furthermore, the shape distortion of a product can be minimized during a radiation curing process. Since sterilization can also be incorporated in the process, a radiation processing could be efficient to manufacture bio material and medical products. In this presentation, our recent research outcomes in the fields of a radiation processing for biomaterials and polymer electrolytes carried out at the Korea Atomic Energy Research Institute (KAERI) are presented. In the field of a bio material production, two radiation sources, Co-60 gamma ray and electron beam are generally utilized to induce a crosslinking of natural or biocompatible synthetic polymers for the preparation of biomaterials, more specifically hydrogels. In this process, an extra process such as a removal process of toxic chemicals and a sterilization process are not necessary. Hydrogels for a wound treatment, ato pic dermatitis treatment, tissue scaffolds, and post-surgical anti-adhesion barriers have been developed or being developed by our research institute. The preparation of polymer electrolytes such as fuel cell membranes and lithium battery separators are also very attractive research fields using a radiation processing. Commercial polymer membranes such as fluoropolymer and polyethylene can be modified by a radiation induced grafting and/or crosslinking process to introduce desired functionalities onto the membranes for a specific purpose. In our research institute, these radiation-treated membranes for a specific purpose. In our research institute, these radiation-treated membranes have been successfully utilized to prepare fuel cell membranes and lithium battery separators with higher ion conductivities and desired mechanical

  9. Current-Distribution Measurement in Polymer Electrolyte Water Electrolysis Equipment and Polymer Electrolyte Fuel Cell Using NMR Sensor

    Science.gov (United States)

    Yokouchi, Yasuo; Ogawa, Kuniyasu; Haishi, Tomoyuki; Ito, Kohei

    In a polymer electrolyte fuel cell (PEFC), the current density through the polymer electrolyte membrane (PEM) is distributed along the electrode on the membrane electrode assembly (MEA). To increase the electric power density of a PEFC, it is necessary to locate local decreases in current density where electric power generation decreases due to a lack of hydrogen, flooding, and so on. Therefore, achieving a higher current density in a PEFC requires monitoring the local current density. We developed a new method to estimate the spatial distribution of current flowing through the MEA in a polymer electrolyte water electrolysis equipment (PEWEE) and a PEFC using Nuclear-Magnetic-Resonance (NMR) sensors. The magnetic field strength induced by current through the MEA in a PEWEE is acquired as the frequency shift of the NMR signal which is measured by the NMR sensor. The spatial distributions of the frequency shifts occurring along the MEA in a PEWEE and a PEFC was measured. In order to verify the method, the magnetic field strength induced by the current through the gas diffusion layer (GDL) in a PEWEE was analyzed theoretically under the assumption that the current through MEA was uniform. The frequency shift was then calculated as a function of the geometry of the GDL, current, and the position of the NMR sensor. From experimental and theoretical results, the frequency shift of the NMR signal is proportional to current density and depends on the position of the sensors. Using the measurement system, we also obtained the current distribution through the GDL in a PEFC generating electric power. In these studies, the experimental and theoretical results agree.

  10. Investigation of polymer electrolyte based on agar and ionic liquids

    Directory of Open Access Journals (Sweden)

    M. M. Silva

    2012-12-01

    Full Text Available The possibility to use natural polymer as ionic conducting matrix was investigated in this study. Samples of agarbased electrolytes with different ionic liquids were prepared and characterized by physical and chemical analyses. The ionic liquids used in this work were 1-ethyl-3-methylimidazolium ethylsulfate, [C2mim][C2SO4], 1-ethyl-3-methylimidazolium acetate, [C2mim][OAc] and trimethyl-ethanolammonium acetate, [Ch][OAc]. Samples of solvent-free electrolytes were prepared and characterized by ionic conductivity measurements, thermal analysis, electrochemical stability, X-ray diffraction, scanning electron microscopy and Fourier Transform infrared spectroscopy. Electrolyte samples are thermally stable up to approximately 190°C. All the materials synthesized are semicrystalline. The electrochemical stability domain of all samples is about 2.0 V versus Li/Li+. The preliminary studies carried out with electrochromic devices (ECDs incorporating optimized compositions have confirmed that these materials may perform as satisfactory multifunctional component layers in the field of ‘smart windows’, as well as ECD-based devices.

  11. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2004-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Neither aluminum citrate-polyacrylamide nor silicate-polyacrylamide gel systems produced significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of

  12. Experimental investigations on a proton conducting nanocomposite polymer electrolyte

    International Nuclear Information System (INIS)

    A new proton conducting nanocomposite polymer electrolyte (NCPE) comprising polyethylene oxide (PEO)-NH4HSO4 salt complex dispersed with nanosized SiO2 particles has been investigated. The NCPE films have been formed following the usual solution cast method. The results of various studies based on scanning electron microscopy, x-ray diffraction, differential scanning calorimetry, Fourier transform infra-red spectroscopy as well as some basic ionic transport parameters, namely conductivity, and ionic transference number, are presented and discussed. SiO2 concentration dependent conductivity measurements have been carried out on the NCPE films at room temperature. This study revealed the existence of two conductivity maxima at SiO2 concentrations ∼3 and 12 wt% which have been attributed to two percolation thresholds in the composite polymer electrolyte phase. An optimum value of conductivity (σ ∼ 6.2 x 10-5 S cm-1 at 27 0C) was achieved for the NCPE film with 3 wt% SiO2 dispersion. This has been referred to as optimum conducting composition. The temperature dependence of conductivity exhibited an Arrhenius-type thermally activated behaviour both below and above the semicrystalline-amorphous phase transition temperature of PEO

  13. Polybenzimidazoles based on high temperature polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Linares Leon, Jose Joaquin; Camargo, Ana Paula M.; Ashino, Natalia M.; Morgado, Daniella L.; Frollini, Elisabeth; Paganin, Valdecir A.; Gonzalez, Ernesto Rafael [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil); Bajo, Justo Lobato [University of Castilla-La Mancha, Ciudad Real (Spain). Dept. of Chemical Engineering

    2010-07-01

    This work presents an interesting approach in order to enhance the performance of Polymer Electrolyte Membrane Fuel Cells (PEMFC) by means of an increase in the operational temperature. For this, two polymeric materials, Poly(2,5-bibenzimidazole) (ABPBI) and Poly[2,2'-(m-phenyl en)-5,5' bib enzimidazol] (PBI), impregnated with phosphoric acid have been utilized. These have shown excellent properties, such as thermal stability above 500 deg C, reasonably high conductivity when impregnated with H{sub 3}PO{sub 4} and a low permeability to alcohols compared to Nafion. Preliminary fuel cells measurements on hydrogen based Polymer Electrolyte Membrane Fuel Cell (PEMFC) displayed an interestingly reasonable good fuel cell performance, a quite reduced loss when the hydrogen stream was polluted with carbon monoxide, and finally, when the system was tested with an ethanol/water (E/W) fuel, it displayed quite promising results that allows placing this system as an attractive option in order to increase the cell performance and deal with the typical limitations of low temperature Nafion-based PEMFC. (author)

  14. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  15. New Polymer and Liquid Electrolytes for Lithium Batteries

    International Nuclear Information System (INIS)

    All non-aqueous lithium battery electrolytes are Lewis bases that interact with cations. Unlike water, they don't interact with anions. The result is a high degree of ion pairing and the formation of triplets and higher aggregates. This decreases the conductivity and the lithium ion transference and results in polarization losses in batteries. Approaches that have been used to increase ion dissociation in PEO based electrolytes are the use of salts with low lattice energy, the addition of polar plasticizers to the polymer, and the addition of cation completing agents such as crown ethers or cryptands. Complexing of the anions is a more promising approach since it should increase both ion dissociation and the lithium transference. At Brookhaven National Laboratory (BNL) we have synthesized two new families of neutral anion completing agents, each based on Lewis acid centers. One is based on electron deficient nitrogen sites on substituted aza-ethers, wherein the hydrogen on the nitrogen is replaced by electron withdrawing groups such as CF3SO3-. The other is based on electron deficient boron sites on borane or borate compounds with various fluorinated aryl or alkyl groups. Some of the borane based anion receptors can promote the dissolution of LiF in several solvents. Several of these compounds, when added in equivalent amounts, produce 1.2M LiF solutions in DME, an increase in volubility of LiF by six orders of magnitude. Some of these LiF electrolytes have conductivities as high as 6 x 10-3 Scm-1. The LiF electrolytes with borane anion acceptors in PC:EC:DEC solvents have excellent electrochemical stability. This has been demonstrated in small Li/LiMn2O4 cells

  16. Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Bergqvist, R. S.; Hjuler, H. A.;

    1999-01-01

    Oxygen reduction on carbon supported platinum catalysts has been investigated in H3PO4, H3PO4-doped Nafion and PBI polymer electrolytes in a temperature range from 80 to 190°C. Compared with pure H3PO4, using the H3PO4 doped Nafion and PBI polymer electrolytes can significantly improve the oxygen...

  17. Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview

    International Nuclear Information System (INIS)

    Polymer electrolytes are promising materials for electrochemical device applications, namely, high energy density rechargeable batteries, fuel cells, supercapacitors, electrochromic displays, etc. The area of polymer electrolytes has gone through various developmental stages, i.e. from dry solid polymer electrolyte (SPE) systems to plasticized, gels, rubbery to micro/nano-composite polymer electrolytes. The polymer gel electrolytes, incorporating organic solvents, exhibit room temperature conductivity as high as ∼10-3 S cm-1, while dry SPEs still suffer from poor ionic conductivity lower than 10-5 S cm-1. Several approaches have been adopted to enhance the room temperature conductivity in the vicinity of 10-4 S cm-1 as well as to improve the mechanical stability and interfacial activity of SPEs. In this review, the criteria of an ideal polymer electrolyte for electrochemical device applications have been discussed in brief along with presenting an overall glimpse of the progress made in polymer electrolyte materials designing, their broad classification and the recent advancements made in this branch of materials science. The characteristic advantages of employing polymer electrolyte membranes in all-solid-state battery applications have also been discussed. (topical review)

  18. A quasi-direct methanol fuel cell system based on blend polymer membrane electrolytes

    DEFF Research Database (Denmark)

    Li, Qingfeng; Hjuler, Hans Aage; Hasiotis, C.;

    2002-01-01

    On the basis of blend polymer electrolytes of polybenzimidazole and sulfonated polysulfone, a polymer electrolyte membrane fuel cell was developed with an operational temperature up to 200degrees C. Due to the high operational temperature, the fuel cell can tolerate 1.0-3.0 vol % CO in the fuel...

  19. Ionic mobility in ternary polymer electrolytes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Highlights: ► Polymer electrolytes having room temperature conductivity. ► Development of non-flammable and non-volatile electrolytes. ► Lithium coordination in polymer electrolytes. - Abstract: Different compositions of a ternary solid polymer electrolyte (SPE) system consisting solely of poly(ethylene oxide), lithium bis(trifluoromethansulfonyl)imide (LiTFSI) and the ionic liquid N-methyl-N-butyl-pyrrolidinium bis(trifluoromethane-sulfonyl) imide (Pyr14TFSI) were tested. Differential scanning calorimetry shows that a few ternary polymer electrolytes with selected salt and ionic liquid contents are amorphous at room temperature. The Li+ coordination in the ternary electrolytes was analyzed by Raman spectroscopy while the Li+ transport properties were investigated by means of pulsed-field-gradient NMR (PFG-NMR), impedance spectroscopy and DC methods.

  20. A general approach toward enhancement of pseudocapacitive performance of conducting polymers by redox-active electrolytes

    KAUST Repository

    Chen, Wei

    2014-12-01

    A general approach is demonstrated where the pseudocapacitive performance of different conducting polymers is enhanced in redox-active electrolytes. The concept is demonstrated using several electroactive conducting polymers, including polyaniline, polypyrrole, and poly(3,4-ethylenedioxythiophene). As compared to conventional electrolytes, the redox-active electrolytes, prepared by simply adding a redox mediator to the conventional electrolyte, can significantly improve the energy storage capacity of pseudocapacitors with different conducting polymers. The results show that the specific capacitance of conducting polymer based pseudocapacitors can be increased by a factor of two by utilization of the redox-active electrolytes. In fact, this approach gives some of the highest reported specific capacitance values for electroactive conducting polymers. Moreover, our findings present a general and effective approach for the enhancement of energy storage performance of pseudocapacitors using a variety of polymeric electrode materials. © 2014 Elsevier B.V. All rights reserved.

  1. Effects of alkaline cations (M+ = Li+, Na+, K+, Cs+) on the electrochemical synthesis of polyaniline in nitric acid electrolyte

    Institute of Scientific and Technical Information of China (English)

    WU Kezhong; WANG Xindong; MENG Xu

    2005-01-01

    The effects of alkaline cations (M+ = Li+, Na+, K+, Cs+) on the electrochemical synthesis of polyaniline were cartied out under cyclovoltammetric conditions using nitrates of Li+, Na+, K+, and Cs+ as the supporting electrolytes. The results show that the oxidation potentials of aniline in the electrolytes decrease as the protonation extent of aniline decreases from the first scan, which is caused by the decrease of the ionic radius of alkaline metal ions at the same concentration of alkaline cations. With the scan number increasing, the deposit charge Q as the characteristic growth function also depends on the protonation of aniline, and it increases with the ionic radius of alkaline cations increasing. SEM images show the effect of alkaline cations on the morphology of polyaniline. It is clear that the ionic mobility of alkaline cations is further lower than that of H+. Alkaline cations and counter-ions were the species responsible for the enhancement of Pani electrosynthesis. Therefore, this is exactly what SEM images show: a relatively rough fibrous structure in the case of Pani-H+ suggesting a sponge-like structure and a highly orderly fiber-like structure in the case of Pani-M+.

  2. Virus-Assembled Flexible Electrode-Electrolyte Interfaces for Enhanced Polymer-Based Battery Applications

    OpenAIRE

    Peter Kofinas; Culver, James N.; Ayan Ghosh; Chunsheng Wang; Brown, Adam D.; Juchen Guo; Elizabeth Royston

    2012-01-01

    High-aspect-ratio cobalt-oxide-coated Tobacco mosaic virus (TMV-) assembled polytetrafluoroethylene (PTFE) nonstick surfaces were integrated with a solvent-free polymer electrolyte to create an anode-electrolyte interface for use in lithium-ion batteries. The virus-assembled PTFE surfaces consisted primarily of cobalt oxide and were readily intercalated with a low-molecular-weight poly (ethylene oxide) (PEO) based diblock copolymer electrolyte to produce a solid anode-electrolyte system. The ...

  3. Electrocatalysis in Water Electrolysis with Solid Polymer Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Rasten, Egil

    2001-10-01

    Development and optimization of the electrodes in a water electrolysis system using a polymer membrane as electrolyte have been carried out in this work. A cell voltage of 1.59 V (energy consumption of about 3.8 kWh/Nm{sub 3} H{sub 2}) has been obtained at practical operation conditions of the electrolysis cell (10 kA . m2, 90{sup o}C) using a total noble metal loading of less than 2.4 mg.cm{sub 2} and a Nafion -115 membrane. It is further shown that a cell voltage of less than 1.5 V is possible at the same conditions by combination of the best electrodes obtained in this work. The most important limitation of the electrolysis system using polymer membrane as electrolyte has proven to be the electrical conductivity of the catalysts due to the porous backing/current collector system, which increases the length of the current path and decreases the cross section compared to the apparent one. A careful compromise must therefore be obtained between electrical conductivity and active surface area, which can be tailored by preparation and annealing conditions of the metal oxide catalysts. Anode catalysts of different properties have been developed. The mixed oxide of Ir-Ta (85 mole% Ir) was found to exhibit highest voltage efficiency at a current density of 10 kA.m{sub 2} or below, whereas the mixed oxide of Ir and Ru (60-80 mole% Ir) was found to give the highest voltage efficiency for current densities of above 10 kA.m{sub 2}. Pt on carbon particles, was found to be less suitable as cathode catalyst in water electrolysis. The large carbon particles introduced an unnecessary porosity into the catalytic layer, which resulted in a high ohmic drop. Much better voltage efficiency was obtained by using Pt-black as cathode catalyst, which showed a far better electrical conductivity. Ru-oxide as cathode catalyst in water electrolysis systems using a polymer electrolyte was not found to be of particular interest due to insufficient electrochemical activity and too low

  4. Alkaline direct ethanol fuel cell performance using alkali-impregnated polyvinyl alcohol/functionalized carbon nano-tube solid electrolytes

    Science.gov (United States)

    Huang, Chien-Yi; Lin, Jia-Shiun; Pan, Wen-Han; Shih, Chao-Ming; Liu, Ying-Ling; Lue, Shingjiang Jessie

    2016-01-01

    This study investigates the application of a polyvinyl alcohol (PVA)/functionalized carbon nano-tubes (m-CNTs) composite in alkaline direct ethanol fuel cells (ADEFC). The m-CNTs are functionalized with PVA using the ozone mediation method, and the PVA composite containing the modified CNTs is prepared. Adding m-CNT into the PVA matrix enhances the alkaline uptake and the ionic conductivity of the KOH-doped electrolyte. Meanwhile, the m-CNT-containing membrane exhibited a lower swelling ratio and suppressed ethanol permeability compared to the pristine PVA film. The optimal condition for the ADEFC is determined to be under operation at an anode feed of 3 M ethanol in a 5 M KOH solution (at a flow rate of 5 cm3 min-1) with a cathode feed of moisturized oxygen (with a flow rate of 100 cm3 min-1) and the KOH-doped PVA/m-CNT electrolyte. We achieved a peak power density value of 65 mW cm-2 at 60 °C, which is the highest among the ADEFC literature data and several times higher than the proton-exchange direct ethanol fuel cells using sulfonated membrane electrolytes. Therefore, the KOH-doped PVA/m-CNT electrolyte is a suitable solid electrolyte for ADEFCs and has potential for commercialization in alkaline fuel cell applications.

  5. Optimizing end-group cross-linking polymer electrolytes for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung [Los Alamos National Laboratory; Lee, Kwan Soo [Los Alamos National Laboratory; Jeong, Myung - Hwan [GIST, KOREA; Lee, Jae - Suk [GIST, KOREA

    2009-01-01

    This paper demonstrates the optimization of proton conductivity and water uptake for cross-linkable polymer electrolytes through synthesis and characterization of end-group cross-linkable sulfonated poly(arylene ether) copolymers (ESF-BPs). The extent of reaction of cross-linking was controlled by reaction time resulting in a series of polymers with two, independent tunable parameters, degree of sulfonation (DS) and degree of cross-linking (DC). For the polymers presented, cross-linking improved proton conductivity while reducing water uptake, an uncommon trend in polymer electrolytes where water is critical for proton conduction. Other trends relating to changes are reported and the results yield insight into the role of DS and DC and how to optimize electrochemical properties and performance of polymer electrolytes through these tunable parameters. Select polymer electrolytes were tested in fuel cells where performance and durability with accelerated relative humidity cycling were compared with Nafion{reg_sign}.

  6. Electrochemical characterizations on MnO2 supercapacitors with potassium polyacrylate and potassium polyacrylate-co-polyacrylamide gel polymer electrolytes

    KAUST Repository

    Lee, Kuang-Tsin

    2009-11-01

    MnO2·nH2O supercapacitors with potassium polyacrylate (PAAK) and potassium polyacrylate-co-polyacrylamide (PAAK-co-PAAM) gel polymer electrolytes (GPEs) having the weight compositions of polymer:KCl:H2O = 9%:6.7%:84.3% have been characterized for their electrochemical performance. Compared with the liquid electrolyte (LE) counterpart, the GPE cells exhibit remarkable (∼50-130%) enhancement in specific capacitance of the oxide electrode, and the extent of the enhancement increases with increasing amount of the carboxylate groups in the polymers as well as with increasing oxide/electrolyte interfacial area. In situ X-ray absorption near-edge structure (XANES) analysis indicates that the oxide electrodes of the GPE cells possess higher Mn-ion valences and are subjected to greater extent of valence variation than that of the LE cell upon charging/discharging over the same potential range. Copolymerization of PAAK with PAAM greatly improves the cycling stability of the MnO2·nH2O electrode, and the improvement is attributable to the alkaline nature of the amino groups. Both GPEs exhibit ionic conductivities greater than 1.0 × 10-1 S cm-1 and are promising for high-rate applications. © 2009 Elsevier Ltd. All rights reserved.

  7. Novel VN/C nanocomposites as methanol-tolerant oxygen reduction electrocatalyst in alkaline electrolyte

    Science.gov (United States)

    Huang, K.; Bi, K.; Liang, C.; Lin, S.; Zhang, R.; Wang, W. J.; Tang, H. L.; Lei, M.

    2015-06-01

    A novel VN/C nanostructure consisting of VN nanoparticles and graphite-dominant carbon layers is synthesized by nitridation of V2O5 using melamine as reductant under inert atmosphere. High crystalline VN nanoparticles are observed to be uniformly distributed in carbon layers with an average size of ca13.45 nm. Moreover, the electrocatalytic performance of VN/C towards oxygen reduction reaction (ORR) in alkaline electrolyte is fascinating. The results show that VN/C has a considerable ORR activity, including a 75 percent value of the diffusion-limited current density and a 0.11 V smaller value about the onset potential with respect to Pt/C catalyst. Moreover, the excellent methanol-tolerance performance of VN/C has also been verified with 3 M methanol. Combined with the competitive prices, this VN/C nanocomposite can serve as an appropriate non-precious methanol-tolerant ORR catalyst for alkaline fuel cells.

  8. Preparation and Characterization of Lithium Ion Conducting Solid Polymer Electrolytes from Biodegradable Polymers Starch And PVA

    Directory of Open Access Journals (Sweden)

    B. Chatterjee,

    2015-06-01

    Full Text Available Solid Polymer electrolyte films have been prepared from Starch-Poly vinyl alcohol (PVA blend a well acknowledged biodegradable material. Solution cast technique was employed for the preparation of solid polymer electrolyte films added with Lithium Bromide (LiBr salt. X-ray diffraction (XRD studies of the prepared films portrayed the evolution of an amorphous structure with increasing content of salt which is an important factor that leads to the augmentation of conductivity. Electrochemical impedance spectroscopic analysis revealed noticeable ionic conductivity ~ 5x 10-3 S/cm for 20 wt% of salt at ambient conditions. Ionic conductivity showed an increasing trend with salt content at ambient conditions. Transference number measurements confirmed the ionic nature of the prepared solid polymer electrolyte films. Dielectric studies revealed a sharp increase in the number of charge carriers which contributed to enhancement in conductivity. Low values of activation energy extracted from temperature dependent conductivity measurements could be favorable for device applications. For the composition with highest conductivity a temperature independent relaxation mechanism was confirmed by electric modulus scaling.

  9. Solid Polymer Electrolytes Based on Cross-linkable Oligo (oxyethylene)-Branched Oligo (organophosphazenes)

    Institute of Scientific and Technical Information of China (English)

    Shuhua Zhou; Shibi Fang

    2005-01-01

    @@ 1Introduction Solid polymer electrolytes have attracted considerable interest because of their potential application in secondary high energy density lithium batteries. The poly(ethylene oxide)(PEO) has been widely studied as the classical polymer matrix for solid polymer electrolytes. However, the poor room temperature conductivity due to its crystalline is the principal problem to be overcomed. This has prompted many researchers to attempt to modify the properties of PEO.

  10. Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes.

    Science.gov (United States)

    Cohen, Jamie L; Volpe, David J; Abruña, Héctor D

    2007-01-01

    The oxidation pathways of methanol (MeOH) have been the subject of intense research due to its possible application as a liquid fuel in polyelectrolyte membrane (PEM) fuel cells. The design of improved catalysts for MeOH oxidation requires a deep understanding of these complex oxidation pathways. This paper will provide a discussion of the literature concerning the extensive research carried out in acidic and alkaline electrolytes. It will highlight techniques that have proven useful in the determination of product ratios, analysis of surface poisoning, anion adsorption, and oxide formation processes, in addition to the effects of temperature on the MeOH oxidation pathways at bulk polycrystalline platinum (Pt(poly)) electrodes. This discussion will provide a framework with which to begin the analysis of activation energy (E(a)) values. This kinetic parameter may prove useful in characterizing the rate-limiting step of the MeOH oxidation at an electrode surface. This paper will present a procedure for the determination of E(a) values for MeOH oxidation at a Pt(poly) electrode in acidic and alkaline media. Values from 24-76 kJ mol(-1) in acidic media and from 36-86 kJ mol(-1) in alkaline media were calculated and found to be a function of applied potential and direction of the potential sweep in a voltammetric experiment. Factors that influence the magnitude of the calculated E(a) include surface poisoning from MeOH oxidation intermediates, anion adsorption from the electrolyte, pH effects, and oxide formation processes. These factors are all potential, and temperature, dependent and must clearly be addressed when citing E(a) values in the literature. Comparison of E(a) values must be between systems of comparable electrochemical environment and at the same potential. E(a) values obtained on bulk Pt(poly), compared with other catalysts, may give insight into the superiority of other Pt-based catalysts for MeOH oxidation and lead to the development of new catalysts

  11. The Stirred Tank Reactor Polymer Electrolyte Membrane Fuel Cell

    CERN Document Server

    Benziger, J; Karnas, E; Moxley, J; Teuscher, C; Kevrekidis, Yu G; Benziger, Jay

    2003-01-01

    The design and operation of a differential Polymer Electrolyte Membrane (PEM) fuel cell is described. The fuel cell design is based on coupled Stirred Tank Reactors (STR); the gas phase in each reactor compartment was well mixed. The characteristic times for reactant flow, gas phase diffusion and reaction were chosen so that the gas compositions at both the anode and cathode are uniform. The STR PEM fuel cell is one-dimensional; the only spatial gradients are transverse to the membrane. The STR PEM fuel cell was employed to examine fuel cell start- up, and its dynamic responses to changes in load, temperature and reactant flow rates. Multiple time scales in systems response are found to correspond to water absorption by the membrane, water transport through the membrane and stress-related mechanical changes of the membrane.

  12. The model of stress distribution in polymer electrolyte membrane

    CERN Document Server

    Atrazhev, Vadim V; Dmitriev, Dmitry V; Erikhman, Nikolay S; Sultanov, Vadim I; Patterson, Timothy; Burlatsky, Sergei F

    2014-01-01

    An analytical model of mechanical stress in a polymer electrolyte membrane (PEM) of a hydrogen/air fuel cell with porous Water Transfer Plates (WTP) is developed in this work. The model considers a mechanical stress in the membrane is a result of the cell load cycling under constant oxygen utilization. The load cycling causes the cycling of the inlet gas flow rate, which results in the membrane hydration/dehydration close to the gas inlet. Hydration/dehydration of the membrane leads to membrane swelling/shrinking, which causes mechanical stress in the constrained membrane. Mechanical stress results in through-plane crack formation. Thereby, the mechanical stress in the membrane causes mechanical failure of the membrane, limiting fuel cell lifetime. The model predicts the stress in the membrane as a function of the cell geometry, membrane material properties and operation conditions. The model was applied for stress calculation in GORE-SELECT.

  13. Communication: Nanoscale ion fluctuations in Nafion polymer electrolyte

    International Nuclear Information System (INIS)

    Ion conduction mechanisms and the nanostructure of ion conduction networks remain poorly understood in polymer electrolytes which are used as proton-exchange-membranes (PEM) in fuel cell applications. Here we study nanoscale surface-potential fluctuations produced by Brownian ion dynamics in thin films of low-hydration Nafion™, the prototype PEM. Images and power spectra of the fluctuations are used to derive the local conductivity-relaxation spectrum, in order to compare with bulk behavior and hopping-conductivity models. Conductivity relaxation-times ranged from hours to milliseconds, depending on hydration and temperature, demonstrating that the observed fluctuations are produced by water-facilitated hydrogen-ion hopping within the ion-channel network. Due to the small number of ions probed, non-Gaussian statistics of the fluctuations can be used to constrain ion conduction parameters and mechanisms

  14. Communication: Nanoscale ion fluctuations in Nafion polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Rumberger, Brant; Bennett, Mackenzie; Zhang, Jingyun; Israeloff, N. E. [Department of Physics, Northeastern University, Boston, Massachusetts 02115 (United States); Dura, J. A. [National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland 20899 (United States)

    2014-08-21

    Ion conduction mechanisms and the nanostructure of ion conduction networks remain poorly understood in polymer electrolytes which are used as proton-exchange-membranes (PEM) in fuel cell applications. Here we study nanoscale surface-potential fluctuations produced by Brownian ion dynamics in thin films of low-hydration Nafion™, the prototype PEM. Images and power spectra of the fluctuations are used to derive the local conductivity-relaxation spectrum, in order to compare with bulk behavior and hopping-conductivity models. Conductivity relaxation-times ranged from hours to milliseconds, depending on hydration and temperature, demonstrating that the observed fluctuations are produced by water-facilitated hydrogen-ion hopping within the ion-channel network. Due to the small number of ions probed, non-Gaussian statistics of the fluctuations can be used to constrain ion conduction parameters and mechanisms.

  15. Preparation and characterization of a novel polymer electrolyte based on lithium hexafluoroarsenate

    Energy Technology Data Exchange (ETDEWEB)

    Barros, S.C.; Silva, M.M.; Smith, M.J. [IBQF, Univ. do Minho, Braga (Portugal); MacCallum, J.R. [School of Chemistry, Univ. of St. Andrews, St. Andrews (United Kingdom)

    2004-07-01

    In this presentation the results of a study of a new solid polymer electrolyte based on poly(trimethylene carbonate), henceforth designated as p(TMC), and lithium hexafluoroarsenate are described. Samples of electrolytes with different salt contents were prepared by solvent casting from tetrahydrofuran and characterized by conductivity measurements and thermal analysis using DSC and TGA. The salt content of these electrolytes was identified by the conventional notation based on the polymer/salt ratio. In accordance with this notation the value of n represents the number of ((C=O)OCH{sub 2}CH{sub 2}CH{sub 2}O) units per lithium ion. The appearance and morphology of electrolyte samples with compositions of n between 4 and 80 was similar to that observed with electrolytes based on the same host polymer with other lithium salts. Over this composition range thin films of electrolyte were transparent, freestanding and completely amorphous. (orig.)

  16. PREPARATION AND CHARACTERIZATION OF AMIDATED PECTIN BASED POLYMER ELECTROLYTE MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    R.K.Mishra; A.Anis; S.Mondal; M.Dutt; A.K.Banthia

    2009-01-01

    The work presents the synthesis and characterization of ami dated pectin(AP)based polymer electrolyte membranes(PEM)crosslinked with glutaraldehyde(GA).The prepared membranes are characterized by Fourier transform infrared spectroscopy(FTIR),organic elemental analysis,X-ray diffraction studies(XRD),thermogravimetric analysis (TGA)and impedance spectroscopy.Mechanical properties of the membranes are evaluated by tensile tests.The degree of amidation(DA),molar and mass reaction yields(YM and YN)are calculated based on the results of organic elemental analysis.FTIR spectroscopy indicated the presence of primary and secondary amide absorption bands.XRD pattern of membranes clearly indicates that there is a considerable increase in crystallinity as compared to parent pectin.TGA studies indicate that AP is less thermally stable than reference pectin.A maximum room temperature conductivity of 1.098×10-3 Scm-1 is obtained in the membrane,which is designated as AP-3.These properties make them good candidates for low cost biopolymer electrolyte membranes for fuel cell applications.

  17. High elastic modulus polymer electrolytes suitable for preventing thermal runaway in lithium batteries

    Science.gov (United States)

    Mullin, Scott; Panday, Ashoutosh; Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2014-04-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics. In another aspect, the electrolyte exhibits a conductivity drop when the temperature of electrolyte increases over a threshold temperature, thereby providing a shutoff mechanism for preventing thermal runaway in lithium battery cells.

  18. Effect of complexing salt on conductivity of PVC/PEO polymer blend electrolytes

    Indian Academy of Sciences (India)

    S Rajendran; Ravi Shanker Babu; M Usha Rani

    2011-12-01

    Solid polymer electrolyte membrane comprising poly(vinyl chloride) (PVC), poly(ehylene oxide) (PEO) and different lithium salts (LiClO4, LiBF4 and LiCF3SO3) were prepared by the solution casting technique. The effect of complexing salt on the ionic conductivity of the PVC/PEO host polymer is discussed. Solid polymer electrolyte films were characterized by X-ray diffraction, FTIR spectroscopy, TG/DTA and ac impedance spectroscopic studies. The conductivity studies of these solid polymer electrolyte (SPE) films are carried out as a function of frequency at various temperatures ranging from 302 K to 353 K. The maximum room temperature ionic conductivity is found to be 0.079 × 10-4 S cm-1 for the film containing LiBF4 as the complexing salt. The temperature dependence of the conductivity of polymer electrolyte films seems to obey the Vogel–Tamman–Fulcher (VTF) relation.

  19. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  20. Characterization of plasticized PMMA–LiBF4 based solid polymer electrolytes

    Indian Academy of Sciences (India)

    S Rajendran; T Uma

    2000-02-01

    Polymer electrolyte films prepared from poly(methyl methacrylate) and LiBF4 with different concentrations of plasticizer (DBP) are described. The formation of polymer–salt complex has been confirmed by FTIR spectral studies. The temperature dependence of conductivity of polymer films seems to obey the VTF relation. Values of conductivities of the polymer complexes are presented and discussed.

  1. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries.

    Science.gov (United States)

    Sun, Xiao-Guang; Fang, Youxing; Jiang, Xueguang; Yoshii, Kazuki; Tsuda, Tetsuya; Dai, Sheng

    2016-01-01

    A polymer gel electrolyte using AlCl3 complexed acrylamide as a functional monomer and acidic ionic liquid based on a mixture of 1-ethyl-3-methylimidazolium chloride (EMImCl) and AlCl3 (EMImCl-AlCl3, 1-1.5, in molar ratio) as a plasticizer has been successfully prepared for the first time via free radical polymerization. Aluminum deposition is successfully achieved using a polymer gel electrolyte containing 80 wt% ionic liquid. The polymer gel electrolytes are also good candidates for rechargeable aluminum ion batteries. PMID:26511160

  2. Aluminum corrosion mitigation in alkaline electrolytes containing hybrid inorganic/organic inhibitor system for power sources applications

    Science.gov (United States)

    Gelman, Danny; Lasman, Itay; Elfimchev, Sergey; Starosvetsky, David; Ein-Eli, Yair

    2015-07-01

    The severe corrosion accompanied with hydrogen evolution process is the main obstacle preventing the implementation of Al as an anode in alkaline batteries. It impairs the functionality of alkaline battery, due to a drastic capacity loss and a short shelf life. The possibility to reduce Al corrosion rate in alkaline solution with the use of hybrid organic∖inorganic inhibitor based on poly (ethylene glycol) di-acid (PEG di-acid) and zinc oxide (ZnO) was examined in this work. A correlation between an Al corrosion rates and the concentrations of both PEG di-acid and ZnO in alkaline is shown. Selecting 5000 ppm PEG di-acid and 16 gr/l ZnO provides substantial corrosion protection of Al, reducing the corrosion rate in a strong alkaline solution by more than one order of magnitude. Moreover, utilizing the same formulation results in increase in Al-air battery discharge capacity, from 44.5 (for a battery utilizing only KOH in the electrolyte) to 70 mhA/cm2 (for a battery utilizing ZnO/PEG di-acid hybrid inhibitor in the electrolyte). The morphology and composition of the Al electrode surface (studied by SEM, EDS, and XRD) depend on PEG di-acid and ZnO concentrations.

  3. Crosslinked polymer gel electrolytes based on polyethylene glycol methacrylate and ionic liquid for lithium battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Chen [ORNL; Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL

    2013-01-01

    Gel polymer electrolytes were synthesized by copolymerization polyethylene glycol methyl ether methacrylate with polyethylene glycol dimethacrylate in the presence of a room temperature ionic liquid, methylpropylpyrrolidinium bis(trifluoromethanesulfonyl)imide (MPPY TFSI). The physical properties of gel polymer electrolytes were characterized by thermal analysis, impedance spectroscopy, and electrochemical tests. The ionic conductivities of the gel polymer electrolytes increased linearly with the amount of MPPY TFSI and were mainly attributed to the increased ion mobility as evidenced by the decreased glass transition temperatures. Li||LiFePO4 cells were assembled using the gel polymer electrolytes containing 80 wt% MPPY TFSI via an in situ polymerization method. A reversible cell capacity of 90 mAh g 1 was maintained under the current density of C/10 at room temperature, which was increased to 130 mAh g 1 by using a thinner membrane and cycling at 50 C.

  4. Synthesis and Ionic Conductivity of Network Polymer Electrolytes with Internal Plasticizers

    Institute of Scientific and Technical Information of China (English)

    Jun Jie KANG; Shi Bi FANG

    2004-01-01

    Network polymer electrolytes with free oligo(oxyethylene) chains as internal plasticizers were prepared by cross-linking poly(ethylene glycol) acrylates. The effects of salt concentration and properties of internal plasticizers on ionic conductivity were studied.

  5. Ion Conductive Polymer Electrolyte Membranes and Simulation of Their Fractal Growth Patterns

    International Nuclear Information System (INIS)

    Due to their high ionic conductivity, solid polymer electrolyte (SPE) systems have attracted wide spread attention as the most appropriate choice to fabricate all-solid-state electrochemical devices, namely batteries, sensors and fuel cells. In this work, ion conductive polymer electrolyte membranes have been prepared for battery fabrication. However, fractals were found to grow in these polymer electrolyte membranes weeks after they were prepared. It was believed that the formation of fractal aggregates in these membranes were due to ionic movement. The discovery of fractal growth pattern can be used to understand the effects of such phenomenon in the polymer electrolyte membranes. Digital images of the fractal growth patterns were taken and a simulation model was developed based on the Brownian motion theory and a fractal dialect known as L-system. A computer coding has been designed to simulate and visualize the fractal growth. (author)

  6. Cheap glass fiber mats as a matrix of gel polymer electrolytes for lithium ion batteries

    OpenAIRE

    Yusong Zhu; Faxing Wang; Lili Liu; Shiyin Xiao; Yaqiong Yang; Yuping Wu

    2013-01-01

    Lithium ion batteries (LIBs) are going to play more important roles in electric vehicles and smart grids. The safety of the current LIBs of large capacity has been remaining a challenge due to the existence of large amounts of organic liquid electrolytes. Gel polymer electrolytes (GPEs) have been tried to replace the organic electrolyte to improve their safety. However, the application of GPEs is handicapped by their poor mechanical strength and high cost. Here, we report an economic gel-type...

  7. Novel polymer electrolytes based on cationic polyurethane with different alkyl chain length

    Science.gov (United States)

    Liu, Libin; Wu, Xiwen; Li, Tianduo

    2014-03-01

    A series of comb-like cationic polyurethanes (PUs) were synthesized by quaternizing different bromoalkane (C2H5Br, C8H17Br, and C14H29Br) with polyurethane. Solid polymer electrolytes were prepared by complexes cationic PUs with different content of LiClO4. All the solid polymer electrolytes had sufficient thermal stability as confirmed by TGA and exhibited a single-phase behavior evidenced by DSC results. For these electrolytes, FT-IR spectra indicated the formation of polymer-ion complexes. The ac impedance spectra show that the conductivity of the electrolytes follow the Arrhenius behavior, and ionic conductivity is associated with both the charge migration of ions between coordination sites and transmission between aggregates, as confirmed by FT-IR and SEM. Alkyl quaternary ammonium salts in the polymer backbone are recognized as inherent plasticizers, which make the electrolytes exhibit liquid-like behavior. The plasticizing effect of PU-C8 and PU-C14 electrolytes are more effective than that of PU-C2 electrolyte. Maximum ionic conductivity at room temperature for PU-C8 electrolytes containing 50 wt% LiClO4 reached 1.1 × 10-4 S cm-1. This work provides a new research clue that alkyl quaternary ammonium salts could be used as inherent plasticizers and hence make the system behave like a liquid with high ionic conductivity, while preserving the dimensional stability of the solids.

  8. PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries

    DEFF Research Database (Denmark)

    Miao, Ruiying; Liu, Bowen; Zhu, Zhongzheng;

    2008-01-01

    As a potential electrolyte for lithium-ion batteries, a porous polymer electrolyte membrane based on poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP) was prepared by a phase inversion method. The casting solution, effects of the solvent and non-solvent and addition of micron scale TiO2 par...

  9. Fabrication of Pt deposited on carbon nanotubes and performance of its polymer electrolyte membrane fuel cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new method of depositing nano-sized Pt particles on the surface of the carbon nano-tubes was introduced, and the performance of Pt/carbon nanotube compound on polymer electrolyte membrane fuel cells was measured. The experimental results show that the fine platinum particles (about 3 nm) were well dispersed on carbon nanotubes, which demonstrates the excellent catalytic properties of the Pt/CNTs compound in polymer electrolyte membrane fuel cells.

  10. Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety

    OpenAIRE

    Jinqiang Zhang; Bing Sun; Xiaodan Huang; Shuangqiang Chen; Guoxiu Wang

    2014-01-01

    Lithium ion batteries have shown great potential in applications as power sources for electric vehicles and large-scale energy storage. However, the direct uses of flammable organic liquid electrolyte with commercial separator induce serious safety problems including the risk of fire and explosion. Herein, we report the development of poly(vinylidene difluoride-co-hexafluoropropylene) polymer membranes with multi-sized honeycomb-like porous architectures. The as-prepared polymer electrolyte m...

  11. A unified model for temperature dependent electrical conduction in polymer electrolytes

    OpenAIRE

    Mikrajuddin; Lenggoro, I. Wuled; Okuyama, Kikuo

    2001-01-01

    The observed temperature dependence of electrical conduction in polymer electrolytes is usually fitted with two separated equations: an Arrhenius equation at low temperatures and Vogel-Tamman-Fulcher (VTF) at high temperatures. We report here a derivation of a single equation to explain the variation of electrical conduction in polymer electrolytes at all temperature ranges. Our single equation is in agreement with the experimental data

  12. The effects of functional ionic liquid on properties of solid polymer electrolyte

    International Nuclear Information System (INIS)

    Highlights: → The functional ionic liquid(IL)-polymer electrolytes were successfully prepared. → The ionic conductivity of PEO electrolytes was raised to above 10-4 S.cm-1 at room temperature by functional IL. → The cells using functional IL-PEO electrolyte show higher reversible capacity and long cycle life. - Abstract: Polyethylene oxide (PEO) based solid state electrolytes have been thought as promising electrolytes to replace the organic liquid electrolyte for lithium ion batteries. But the lower ionic conductivities at room temperature restrict their application. In this paper, functional ionic liquid and polymer mixed electrolytes are prepared from N-methyoxymethyl-N-methylpiperidinium bis(trifluoromethanesulfonyl)imide (PP1.1O1TFSI) and polyethylene oxide. The PP1.1O1TFSI, a kind of room-temperature molten salt, was added to the conventional P(EO)20LiTFSI polymer electrolyte and resulted in a significant improvement of the ionic conductivity at room temperature. LiFePO4/Li and Li4Ti5O12/Li cells using this kind of electrolyte show high reversible capacity and stable cycle performance.

  13. Electrode structures of polymer-electrolyte fuel cells (PEFC). An electron microscopy approach to the characterization of the electrode structure of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Scheiba, Frieder

    2009-01-28

    Polymer electrolyte fuel cells (PEFC) have a complex electrode structure, which usually consists of a catalyst, a catalyst support, a polymer electrolyte and pores. The materials used are largely amorphous, have a strong defective structure or have particle diameter of only a few nanometers. In the electrode the materials form highly disordered aggregated structures. Both aspects complicate a systematic structural analysis significantly. However, thorough knowledge of the electrode structure, is needed for systematic advancement of fuel cell technology and to obtain a better understanding of mass and charge carrier transport processes in the electrode. Because of the complex structure of the electrode, an approach based on the examination of electrode thin-sections by electron microscopy was chosen in this work to depicting the electrode structure experimentally. The present work presents these studies of the electrode structure. Some fundamental issues as the influence of the polymer electrolyte concentration and the polarity of the solvent used in the electrode manufacturing process were addressed. During the analysis particular attention was payed to the distribution and structure of the polymer electrolyte. A major problem to the investigations, were the low contrast between the polymer electrolyte, the catalyst support material and the embedding resin. Therefore, dilerent techniques were investigated in terms of their ability to improve the contrast. In this context, a computer-assisted acquisition procedure for energy filtered transmission electron microscopy (EF-TEM) was developed. The acquisition procedure permits a significant extension of the imageable sample. At the same time, it was possible to substantially reduce beam damage of the specimen and to minimize drift of the sample considerably. This allowed unambiguous identification of the polymer electrolyte in the electrode. It could further be shown, that the polymer electrolyte not only coats the

  14. Electrostatics of polymer translocation events in electrolyte solutions.

    Science.gov (United States)

    Buyukdagli, Sahin; Ala-Nissila, T

    2016-07-01

    We develop an analytical theory that accounts for the image and surface charge interactions between a charged dielectric membrane and a DNA molecule translocating through the membrane. Translocation events through neutral carbon-based membranes are driven by a competition between the repulsive DNA-image-charge interactions and the attractive coupling between the DNA segments on the trans and the cis sides of the membrane. The latter effect is induced by the reduction of the coupling by the dielectric membrane. In strong salt solutions where the repulsive image-charge effects dominate the attractive trans-cis coupling, the DNA molecule encounters a translocation barrier of ≈10 kBT. In dilute electrolytes, the trans-cis coupling takes over image-charge forces and the membrane becomes a metastable attraction point that can trap translocating polymers over long time intervals. This mechanism can be used in translocation experiments in order to control DNA motion by tuning the salt concentration of the solution. PMID:27394120

  15. Membrane electrode assemblies for unitised regenerative polymer electrolyte fuel cells

    Science.gov (United States)

    Wittstadt, U.; Wagner, E.; Jungmann, T.

    Membrane electrode assemblies for regenerative polymer electrolyte fuel cells were made by hot pressing and sputtering. The different MEAs are examined in fuel cell and water electrolysis mode at different pressure and temperature conditions. Polarisation curves and ac impedance spectra are used to investigate the influence of the changes in coating technique. The hydrogen gas permeation through the membrane is determined by analysing the produced oxygen in electrolysis mode. The analysis shows, that better performances in both process directions can be achieved with an additional layer of sputtered platinum on the oxygen electrode. Thus, the electrochemical round-trip efficiency can be improved by more than 4%. Treating the oxygen electrode with PTFE solution shows better performance in fuel cell and less performance in electrolysis mode. The increase of the round-trip efficiency is negligible. A layer sputtered directly on the membrane shows good impermeability, and hence results in high voltages at low current densities. The mass transportation is apparently constricted. The gas diffusion layer on the oxygen electrode, in this case a titanium foam, leads to flooding of the cell in fuel cell mode. Stable operation is achieved after pretreatment of the GDL with a PTFE solution.

  16. Microfabricated polymer electrolyte membrane fuel cells with low catalyst loadings

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, D.; Ponath, N.; Mueller, J. [Hamburg University of Technology, Hamburg (Germany). Department of Micro Systems Technology

    2005-11-01

    Miniaturized fuel cells as compact power sources fabricated in Pyrex glass using standard polymer electrolyte membrane (PEM) and electrode materials are presented. Photolithographic patterned and wet chemically etched serpentine flow channels of 1 mm in width and 250 {mu} m in depth transport the fuels to the cell of 1.44 cm{sup 2} active electrode area. Feeding H{sub 2}/O{sub 2} a maximum power density of 149 mW cm{sup -2} is attained at a very low Pt loading of 0.054 mg cm{sup -2}, ambient pressure, and room temperature. Operated with methanol and oxygen about 9 mW cm{sup -2} are achieved at ambient pressure, 60 C, and 1 mg cm{sup -2} PtRu/Pt (anode/cathode) loading. A planar two-cell stack to demonstrate and investigate the assembly of a fuel cell system on Pyrex wafers has successfully been fabricated. (author)

  17. Flexible solid polymer electrolyte membran formed by photopolymerization

    Science.gov (United States)

    Cao, Jinwei; Kyu, Thein

    2014-03-01

    Binary and ternary phase diagrams of poly(ethylene glycol) dimethacrylate (PEGDMA,succinonitrile(SCN), and bis(trifluoromethane)sulfonimide (LiTFSI) blends have been established to provide guidance to fabricationof polymer electrolyte membrane (PEM). The phase diagram of binary PEGDMA/SCN mixture is of a typical eutectic typ, whereas the binary PEGDMA/LiTFSI mixture reveals a eutectic trend exhibiting a wide single phase region at intermediate composition. Likewise, the ternary phase diagram of PEGDMA/SCN/LiTFSI mixture shows a wide isotropic regio. The PEM network, formed by UV-crosslinking of PEGDMA in the isotropic region, is a solid amorphous network, but flexible and stretchable. Ion conductivity of PEMwas measured as a function of temperature at different ratios of PEGDMA/SCN and SCN/LiTFSI. Of particular importance is that these PEM networks possessvery high roo-temperature ion conductivity on the order of 10-3 S cm-1, which reaches the level of 10-2 S cm-1 at elevated temperatures of 60-70 °C. The electrochemical stability of the solid PEM will be evaluated by cyclic voltammetry and its potential applicabilityinflexible lithium ion battery will be discussed.

  18. Electrostatics of polymer translocation events in electrolyte solutions

    Science.gov (United States)

    Buyukdagli, Sahin; Ala-Nissila, T.

    2016-07-01

    We develop an analytical theory that accounts for the image and surface charge interactions between a charged dielectric membrane and a DNA molecule translocating through the membrane. Translocation events through neutral carbon-based membranes are driven by a competition between the repulsive DNA-image-charge interactions and the attractive coupling between the DNA segments on the trans and the cis sides of the membrane. The latter effect is induced by the reduction of the coupling by the dielectric membrane. In strong salt solutions where the repulsive image-charge effects dominate the attractive trans-cis coupling, the DNA molecule encounters a translocation barrier of ≈10 kBT. In dilute electrolytes, the trans-cis coupling takes over image-charge forces and the membrane becomes a metastable attraction point that can trap translocating polymers over long time intervals. This mechanism can be used in translocation experiments in order to control DNA motion by tuning the salt concentration of the solution.

  19. Characterization of proton conducting blend polymer electrolyte using PVA-PAN doped with NH4SCN

    Science.gov (United States)

    Premalatha, M.; Mathavan, T.; Selvasekarapandian, S.; Genova, F. Kingslin Mary; Umamaheswari, R.

    2016-05-01

    Polymer electrolytes with proton conductivity based on blend polymer using polyvinyl alcohol (PVA) and poly acrylo nitrile (PAN) doped with ammonium thiocyanate have been prepared by solution casting method using DMF as solvent. The complex formation between the blend polymer and the salt has been confirmed by FTIR Spectroscopy. The amorphous nature of the blend polymer electrolytes have been confirmed by XRD analysis. The highest conductivity at 303 K has been found to be 3.25 × 10-3 S cm-1 for 20 mol % NH4SCN doped 92.5PVA:7.5PAN system. The increase in conductivity of the doped blend polymer electrolytes with increasing temperature suggests the Arrhenius type thermally activated process. The activation energy is found to be low (0.066 eV) for the highest conductivity sample.

  20. Porous polymer electrolytes with high ionic conductivity and good mechanical property for rechargeable batteries

    Science.gov (United States)

    Liang, Bo; Jiang, Qingbai; Tang, Siqi; Li, Shengliang; Chen, Xu

    2016-03-01

    Porous polymer electrolytes (PPEs) are attractive for developing lithium-ion batteries because of the combined advantages of liquid and solid polymer electrolytes. In the present study, a new porous polymer membrane doped with phytic acid (PA) is prepared, which is used as a crosslinker in polymer electrolyte matrix and can also plasticize porous polymer electrolyte membranes, changing them into soft tough flexible materials. A PEO-PMMA-LiClO4-x wt.% PA (x = weight of PA/weight of polymer, PEO: poly(ethylene oxide); PMMA: poly(methyl methacrylate)) polymer membrane is prepared by a simple evaporation method. The effects of the ratio of PA to PEO-PMMA on the properties of the porous membrane, including morphology, porous structure, and mechanical property, are systematically studied. PA improves the porous structure and mechanical properties of polymer membrane. The maximum tensile strength and elongation of the porous polymer membranes are 20.71 MPa and 45.7% at 15 wt.% PA, respectively. Moreover, the PPEs with 15 wt.% PA has a conductivity of 1.59 × 10-5 S/cm at 20 °C, a good electrochemical window (>5 V), and a low interfacial resistance. The results demonstrate the compatibility of the mechanical properties and conductivity of the PPEs, indicating that PPEs have good application prospects for lithium-ion batteries.

  1. Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety.

    Science.gov (United States)

    Zhang, Jinqiang; Sun, Bing; Huang, Xiaodan; Chen, Shuangqiang; Wang, Guoxiu

    2014-01-01

    Lithium ion batteries have shown great potential in applications as power sources for electric vehicles and large-scale energy storage. However, the direct uses of flammable organic liquid electrolyte with commercial separator induce serious safety problems including the risk of fire and explosion. Herein, we report the development of poly(vinylidene difluoride-co-hexafluoropropylene) polymer membranes with multi-sized honeycomb-like porous architectures. The as-prepared polymer electrolyte membranes contain porosity as high as 78%, which leads to the high electrolyte uptake of 86.2 wt%. The PVDF-HFP gel polymer electrolyte membranes exhibited a high ionic conductivity of 1.03 mS cm(-1) at room temperature, which is much higher than that of commercial polymer membranes. Moreover, the as-obtained gel polymer membranes are also thermally stable up to 350 °C and non-combustible in fire (fire-proof). When applied in lithium ion batteries with LiFePO4 as cathode materials, the gel polymer electrolyte demonstrated excellent electrochemical performances. This investigation indicates that PVDF-HFP gel polymer membranes could be potentially applicable for high power lithium ion batteries with the features of high safety, low cost and good performance. PMID:25168687

  2. Dielectric behavior of different nanofillers incorporated in PVC-PMMA based polymer electrolyte membranes

    Science.gov (United States)

    Sowmya, G.; Pradeepa, P.; Kalaiselvimary, J.; Edwinraj, S.; Prabhu, M. Ramesh

    2016-05-01

    The Poly (methyl methacrylate) (PMMA)-Poly (vinyl chloride) (PVC) based polymer electrolytes were prepared by solvent casting technique. The prepared polymer electrolytes were subjected to conductivity studies by using electrochemical impedance spectroscopy and the maximum ionic conductivity value was found to be 0.8011 × 10-3 Scm-1 at 303K for PVC (17.5wt%) - PMMA (7.5wt %) - LiClO4 (8wt %) - PC (67wt %) - BaTiO3 (8wt%) electrolyte system. The dielectric behavior of the samples also studied.

  3. Nanocomposite polymer electrolytes based on poly(oxyethylene and cellulose whiskers

    Directory of Open Access Journals (Sweden)

    My Ahmed Saïd Azizi Samir

    2005-06-01

    Full Text Available Solid lithium-conducting nanocomposite polymer electrolytes based on poly(oxyethylene (POE were prepared from high aspect ratio cellulosic whiskers and lithium imide salt, LiTFSI. The cellulosic whiskers were extracted from tunicate -a sea animal- and consisted of slender parallelepiped rods that have an average length around 1 µm and a width close to 15 nm. High performance nanocomposite electrolytes were obtained. The filler provided a high reinforcing effect while a high level of ionic conductivity was retained with respect to unfilled polymer electrolytes. Cross-linking and plasticizing of the matrix as well as preparation of the composites from an organic medium were also investigated.

  4. Synthesis and Characterization of a Novel Polymer Electrolyte for Lithium-ion Battery

    Institute of Scientific and Technical Information of China (English)

    Yan Ping Liang; Hong Zhu MA; Bo WANG

    2004-01-01

    A novel polymer electrolyte with the formula of Li2B4O7-PVA for lithium-ion battery was synthesized and its ion conductivity and mechanical properties were also tested. It is found that the conductivity of the prepared polymer electrolytes is higher than that of LiClO4/PEO or LiClO4/EC-DMC by two or three orders in magnitude and a large delocalized bond formed in Li2B4O7-PVA lead to transportation of Li ion easier, this electrolyte possesses high thermo-stability and can be used under 200°C.

  5. Virus-Assembled Flexible Electrode-Electrolyte Interfaces for Enhanced Polymer-Based Battery Applications

    International Nuclear Information System (INIS)

    High-aspect-ratio cobalt-oxide-coated Tobacco mosaic virus (TMV-) assembled polytetrafluoroethylene (PTFE) nonstick surfaces were integrated with a solvent-free polymer electrolyte to create an anode-electrolyte interface for use in lithium-ion batteries. The virus-assembled PTFE surfaces consisted primarily of cobalt oxide and were readily intercalated with a low-molecular-weight poly (ethylene oxide) (PEO) based di block copolymer electrolyte to produce a solid anode-electrolyte system. The resulting polymer-coated virus-based system was then peeled from the PTFE backing to produce a flexible electrode-electrolyte component. Electrochemical studies indicated the virus-structured metal-oxide PEO-based interface was stable and displayed robust charge transfer kinetics. Combined, these studies demonstrate the development of a novel solid-state electrode architecture with a unique peel able and flexible processing attribute.

  6. Enhanced Lithium-Ion Transport in Polyphosphazene based Gel Polymer Electrolytes

    International Nuclear Information System (INIS)

    Highlights: • “MEEP” based gel polymer electrolytes: high ionic conductivities (σtotal = 2.3 mS cm−1 at 30 °C and high lithium transference number (T+ = 0.31 at 90 °C) . • Electrochemically stable vs. lithium metal to 4.5 V. • 500 cycles of lithium plating/stripping without dendrite formation. • High capacity of 140 mAh g−1 using “MEEP” gel polymer electrolyte with LiFePO4 cathode at 5 C discharge rate. - Abstract: A detailed electrochemical study is presented of the lithium ion transport in polyphosphazene based gel polymer electrolytes. The polyphosphazene poly[bis(2-(2-methoxyethoxy) ethoxy) phosphazene (MEEP) was chosen for the polymeric network. In combination with liquid electrolytes (organic carbonates with lithium bis(oxalato) borate and lithium(hexafluoro) phosphate) gel polymer electrolyte membranes with very good ionic conductivities of 2.3 mS cm−1 at 30 °C and high lithium transference numbers of 0.31 at 90 °C were prepared. The investigated electrolytes exhibited very good interface stability at lithium metal electrodes during long term lithium plating/stripping experiments with up to 500 cycles. Discharge rate investigations on full cells consisting of lithium metal ∣ MEEP gel polymer ∣ LiFePO4 delivered high capacities of 140 mAh g−1 at a discharge rate of 5C

  7. Effects of surfactants on agarose-based magnetic polymer electrolyte for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Highlights: ► A novel agarose magnetic polymer electrolyte for DSSC was investigated. ► Four surfactants were introduced to improve the dispersivity of Fe3O4 nanoparticle. ► Fe3O4 nanoparticles are well dispersed and the ionic conductivity was improved. ► TW-80 was selected as the proper surfactant for magnetic polymer electrolyte. -- Abstract: Four surfactants, sodium dodecyl sulfate (SDS), polyvinylpyrrolidone (PVP), polyethylene glycol (PEG200) and polysorbate 80 (TW-80), were added to disperse Fe3O4 nanoparticles in agarose based magnetic polymer electrolyte, for the purpose of improving the performance of dye-sensitized solar cell (DSSC). Fourier transform infrared spectroscopy (FTIR) was employed to characterize the interactions between surfactants and magnetic polymer electrolyte. TW-80 and PEG200 showed good dispersion properties according to surface morphology tests. Through electrochemical impedance spectroscopy (EIS) study, the ionic conductivity, charge transfer resistance, charge recombination resistance and electron lifetime of polymer electrolytes were all improved by modification, while TW-80 modified electrolyte reached the highest ionic conductivity of 2.98 × 10−3 S/cm. Moreover, the photoelectric properties were also significantly enhanced and the best energy conversion efficiency achieved 1.83% with TW-80 modification

  8. Preparation and properties of biodegradable polymer-layered silicate nanocomposite electrolytes for zinc based batteries

    International Nuclear Information System (INIS)

    Highlights: • Organically modified MMT is used as nanofiller to enhance the properties of the polymer PCL-zinc triflate salt complex. • The nanocomposite showed enhancement in conductivity, excellent electrochemical and thermal stability. • Cyclic voltammetry revealed feasibility of intercalation/deintercalation of Zn2+ ions with MnO2 cathode. • Best conducting electrolyte showed remarkable degradability in soil compost over a period of 90 days. - Abstract: Polymer-layered silicate nanocomposite electrolytes (PLSNEs) were prepared by utilizing a biodegradable polymer namely poly(ϵ-caprolactone) as host polymer and zinc triflate as dopant salt with the incorporation of varying concentrations of octadecylamine modified montmorillonite nanoclay and further characterized using various experimental techniques. A maximum conductivity of 9.5 × 10−5 S cm−1 was achieved for a 15 wt% loading of the nanoclay. X-ray diffraction and differential scanning calorimetric studies revealed the change occurring in the crystalline behavior of the electrolyte as a result of incorporation of the nanoclay. An appreciably good thermal and electrochemical stability was also observed thus suggesting applicability of the prepared electrolyte in commericial systems and therefore the feasibility of reduction and oxidation processes of MnO2 cathode with the prepared electrolyte system has also been evaluated by means of cyclic voltammetry. The best conducting sample of the polymer electrolyte showed a remarkable degradability over a degradation period of 90 days in soil compost

  9. The Potential of Cellulose Extracted from Acacia mangium as Solid Polymer Electrolyte (SPE)

    International Nuclear Information System (INIS)

    Cellulosic materials derived from Acacia mangium was extracted at atmospheric pressure using peroxyacetate acid delignification method at 95 to 100 degree Celsius for three hours,to remove lignin. In second stage, the cellulose was divided into two parts. Each part was bleached in acidified 4 % hydrogen peroxide solution and in 0.8 % NaOH solution containing 4 % of hydrogen peroxide. Both bleaching procedures were treated at 60 to 70 degree Celsius for 45 minutes, with solution to solid ratio maintained at 20 mg/l. In final stage, bleached cellulose was treated with 17.5 % solution of NaOH at 25 degree Celsius for 15 minutes. From X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) data's, it is proven that cellulose bleached in either acidic and alkaline media has shown cellulose I structure. However, this structure was transformed to cellulose II when treated with strong alkali solution. The preparation of solid polymer electrolyte (SPE) membrane was obtained by dissolving the cellulosic material in molten 1-butyl-3- methylimidazolium chloride (BMIMCL) in the presence of lithium perchlorate (LiClO4). All SPE membranes obtained exhibit conductivity in the range of 4.49 x 10-5 to 5.7 x 10-5 Scm-1 at 25 degree Celsius. Importantly, it was also observed that the conductivity of the SPE is affected by type of extraction. (author)

  10. Stretchable supercapacitors based on highly stretchable ionic liquid incorporated polymer electrolyte

    International Nuclear Information System (INIS)

    Mechanical stability of electrolyte in all-solid-state supercapacitor attains immense attention as it addresses safety aspects. In this study, we have demonstrated, the fabrication of stretchable supercapacitor based on stretchable electrolyte and hydrogen exfoliated graphene electrode. We synthesized ionic liquid incorporated stretchable Poly(methyl methacrylate) electrolyte which plays dual role as electrolyte and stretchable support for electrode material. The molecular vibration studies show composite nature of the electrolyte. At least four-fold stretchability has been observed along with good ionic conductivity (0.78 mS cm−1 at 28 °C) for this polymer electrolyte. This stretchable supercapacitor shows a low equivalent series resistance (16 Ω) due to the compatibility at electrode–electrolyte interface. The performance of the device has been determined under strain as well. - Highlights: • A stretchable supercapacitor has been fabricated using stretchable electrolyte. • Here ionic liquid incorporated polymer plays dual role as electrolyte and stretchable support. • The developed device shows low equivalent series resistance. • The device has specific capacitance of 83 F g−1, at the specific current of 2.67 A g−1. • The energy density and power density of 25.7 Wh kg−1 and 35.2 kW kg−1, respectively

  11. Stretchable supercapacitors based on highly stretchable ionic liquid incorporated polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Tamilarasan, P.; Ramaprabhu, S., E-mail: ramp@iitm.ac.in

    2014-11-14

    Mechanical stability of electrolyte in all-solid-state supercapacitor attains immense attention as it addresses safety aspects. In this study, we have demonstrated, the fabrication of stretchable supercapacitor based on stretchable electrolyte and hydrogen exfoliated graphene electrode. We synthesized ionic liquid incorporated stretchable Poly(methyl methacrylate) electrolyte which plays dual role as electrolyte and stretchable support for electrode material. The molecular vibration studies show composite nature of the electrolyte. At least four-fold stretchability has been observed along with good ionic conductivity (0.78 mS cm{sup −1} at 28 °C) for this polymer electrolyte. This stretchable supercapacitor shows a low equivalent series resistance (16 Ω) due to the compatibility at electrode–electrolyte interface. The performance of the device has been determined under strain as well. - Highlights: • A stretchable supercapacitor has been fabricated using stretchable electrolyte. • Here ionic liquid incorporated polymer plays dual role as electrolyte and stretchable support. • The developed device shows low equivalent series resistance. • The device has specific capacitance of 83 F g{sup −1}, at the specific current of 2.67 A g{sup −1}. • The energy density and power density of 25.7 Wh kg{sup −1} and 35.2 kW kg{sup −1}, respectively.

  12. Synthesis and characterization of amorphous poly(ethylene oxide)/poly(trimethylene carbonate) polymer blend electrolytes

    International Nuclear Information System (INIS)

    Solid polymer electrolytes (SPEs) have been proposed as substitutes for conventional non-aqueous electrolytes in various electrochemical devices. These promising materials may be of interest in various practical devices including batteries, sensors and electrochromic displays as they can offer high performance in terms of specific energy and specific power (batteries), safe operation, form flexibility in device arquitecture and low manufacturing costs. Many different host polymers have been characterized over the last 30 years, however a relatively un-explored strategy involves the use of interpenetrating blends incorporating two or more polymers. Electrolyte systems based on interpenetrating blends of known host polymers, poly(ethylene oxide) and poly(trimethylene carbonate), doped with lithium perchlorate, were prepared by co-dissolution in acetonitrile. This combination of polymer components results in the formation of a material that may be applicable in batteries and electrochromic devices. The results of characterization of polymer electrolyte systems based on interpenetrating blends of amorphous poly(ethylene oxide) and poly(trimethylene carbonate) host matrices, with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as guest salt, are described in this study. Electrolytes with compositions of n between 5 and 15 (where n represents the total number of cation-coordinating units per lithium ion) were obtained as flexible, transparent and free-standing films that were characterized by measurements of conductivity, cyclic voltammetry, differential scanning calorimetry and thermogravimetry.

  13. Nanopore gating with an anchored polymer in a switching electrolyte bias

    Science.gov (United States)

    Wells, Craig C.; Jou, Ining A.; Melnikov, Dmitriy V.; Gracheva, Maria E.

    2016-03-01

    In this work, we theoretically study the interaction between a solid state membrane equipped with a nanopore and a tethered, negatively charged polymer chain subjected to a time-dependent applied electrolyte bias. In order to describe the movement of the chain in the biomolecule-membrane system immersed in an electrolyte solution, Brownian dynamics is used. We show that we can control the polymer's equilibrium position with various applied electrolyte biases: for a sufficiently positive bias, the chain extends inside the pore, and the removal of the bias causes the polymer to leave the pore. Corresponding to a driven process, we find that the time it takes for a biomolecular chain to enter and extend into a nanopore in a positive bias almost increases linearly with chain length while the amount of time it takes for a polymer chain to escape the nanopore is mainly governed by diffusion.

  14. Impedance studies of a green blend polymer electrolyte based on PVA and Aloe-vera

    Science.gov (United States)

    Selvalakshmi, S.; Mathavan, T.; Vijaya, N.; Selvasekarapandian, Premalatha, M.; Monisha, S.

    2016-05-01

    The development of polymer electrolyte materials for energy generating and energy storage devices is a challenge today. A new type of blended green electrolyte based on Poly-vinyl alcohol (PVA) and Aloe-vera has been prepared by solution casting technique. The blending of polymers may lead to the increase in stability due to one polymer portraying itself as a mechanical stiffener and the other as a gelled matrix supported by the other. The prepared blend electrolytes were subjected to Ac impedance studies. It has been found out that the polymer film in which 1 gm of PVA was dissolved in 40 ml of Aloe-vera extract exhibits highest conductivity and its value is 3.08 × 10-4 S cm-1.

  15. Feasibility of the recovery of uranium from alkaline waste by amidoximated grafted polypropylene polymer matrix

    International Nuclear Information System (INIS)

    The amidoximated grafted polypropylene polymer matrix was prepared by post irradiation grafting of acrylonitrile (AN) onto thermally bonded non-woven matrix of poly(propylene) sheet using electron beams. This precursor polymer was reacted with hydroxylamine to convert AN to poly(acrylamidoxime) (AO) groups, and conditioned by treating them with 2.5 % KOH at 80 deg C for 1 h. The polymer matrix was having the degree of AN grafting ∼106 wt% and its subsequent conversion to AO groups ∼70 %. The water uptake capacity of AO polymer matrix were found to be 100 ± 5 % (w/w). Quantitative recovery of uranium from alkaline waste (ammonium diuranate supernatant) solution was achieved by this polymer matrix. The other radionuclides present in the waste solution were not extracted by the polymer matrix. For all other radionuclides, the uptake was found to be <6 %. (author)

  16. Poly(vinylidene fluoride-hexafluoropropylene) polymer electrolyte for paper-based and flexible battery applications

    Science.gov (United States)

    Aliahmad, Nojan; Shrestha, Sudhir; Varahramyan, Kody; Agarwal, Mangilal

    2016-06-01

    Paper-based batteries represent a new frontier in battery technology. However, low-flexibility and poor ionic conductivity of solid electrolytes have been major impediments in achieving practical mechanically flexible batteries. This work discuss new highly ionic conductive polymer gel electrolytes for paper-based battery applications. In this paper, we present a poly(vinylidene fluoride-hexafluoropropylene) (PVDH-HFP) porous membrane electrolyte enhanced with lithium bis(trifluoromethane sulphone)imide (LiTFSI) and lithium aluminum titanium phosphate (LATP), with an ionic conductivity of 2.1 × 10-3 S cm-1. Combining ceramic (LATP) with the gel structure of PVDF-HFP and LiTFSI ionic liquid harnesses benefits of ceramic and gel electrolytes in providing flexible electrolytes with a high ionic conductivity. In a flexibility test experiment, bending the polymer electrolyte at 90° for 20 times resulted in 14% decrease in ionic conductivity. Efforts to further improving the flexibility of the presented electrolyte are ongoing. Using this electrolyte, full-cell batteries with lithium titanium oxide (LTO) and lithium cobalt oxide (LCO) electrodes and (i) standard metallic current collectors and (ii) paper-based current collectors were fabricated and tested. The achieved specific capacities were (i) 123 mAh g-1 for standard metallic current collectors and (ii) 99.5 mAh g-1 for paper-based current collectors. Thus, the presented electrolyte has potential to become a viable candidate in paper-based and flexible battery applications. Fabrication methods, experimental procedures, and test results for the polymer gel electrolyte and batteries are presented and discussed.

  17. Preparation and Characterization of Organic-Inorganic Hybrid Hydrogel Electrolyte Using Alkaline Solution

    OpenAIRE

    Masanobu Chiku; Shoji Tomita; Eiji Higuchi; Hiroshi Inoue

    2011-01-01

    Organic-inorganic hybrid hydrogel electrolytes were prepared by mixing hydrotalcite, cross-linked potassium poly(acrylate) and 6 M KOH solution. The organic-inorganic hybrid hydrogel electrolytes had high ionic conductivity (0.456–0.540 S cm−1) at 30 °C. Moreover, the mechanical strength of the hydrogel electrolytes was high enough to form a 2–3 mm thick freestanding membrane because of the reinforcement with hydrotalcite.

  18. Characterization of solid polymer electrolytes based on poly(trimethylenecarbonate) and lithium tetrafluoroborate

    International Nuclear Information System (INIS)

    The results of an investigation of a polymer electrolyte system based on the poly(trimethylene carbonate) host matrix, designated as p(TMC), with lithium tetrafluoroborate guest salt are described in this presentation. Electrolytes with lithium salt compositions with n between 3 and 80 (where n represents the number of (O=COCH2CH2CH2O) units per lithium ion) were prepared by co-dissolution of salt and polymer in anhydrous tetrahydrofuran. The homogeneous solutions obtained by this procedure were evaporated, within a preparative glovebox and under a dry argon atmosphere, to form thin films of electrolyte. The solvent-free electrolyte films produced were obtained as very flexible, transparent, completely amorphous films and were characterized by measurements of total ionic conductivity, cyclic voltammetry, differential scanning calorimetry and thermogravimetry

  19. Characterization of solid polymer electrolytes based on poly (trimethylenecarbonate) and lithium tetrafluoroborate

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M.M.; Barros, S.C.; Smith, M.J. [Universidad do Minho, Braga (Portugal). Centro de Quimica; MacCallum, J.R. [University of St. Andrews (United Kingdom). School of Chemistry

    2004-05-15

    The results of an investigation of a polymer electrolyte system based on the poly(trimethylene carbonate) host matrix, designated as p(TMC), with lithium tetrafluoroborate guest salt are described in this presentation. Electrolytes with lithium salt compositions with n between 3 and 80 (where n represents the number of (O=COCH{sub 2}CH{sub 2}CH{sub 2}O) units per lithium ion) were prepared by co-dissolution of salt and polymer in anhydrous tetrahydrofuran. The homogeneous solutions obtained by this procedure were evaporated, within a preparative glovebox and under a dry argon atmosphere, to form thin films of electrolyte. The solvent-free electrolyte films produced were obtained as very flexible, transparent, completely amorphous films and were characterized by measurements of total ionic conductivity, cyclic voltammetry, differential scanning calorimetry and thermogravimetry. (Author)

  20. Characterization of solid polymer electrolytes based on poly(trimethylenecarbonate) and lithium tetrafluoroborate

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Maria Manuela; Barros, Sandra Cerqueira; Smith, Michael J.; MacCallum, James R

    2004-05-15

    The results of an investigation of a polymer electrolyte system based on the poly(trimethylene carbonate) host matrix, designated as p(TMC), with lithium tetrafluoroborate guest salt are described in this presentation. Electrolytes with lithium salt compositions with n between 3 and 80 (where n represents the number of (O=COCH{sub 2}CH{sub 2}CH{sub 2}O) units per lithium ion) were prepared by co-dissolution of salt and polymer in anhydrous tetrahydrofuran. The homogeneous solutions obtained by this procedure were evaporated, within a preparative glovebox and under a dry argon atmosphere, to form thin films of electrolyte. The solvent-free electrolyte films produced were obtained as very flexible, transparent, completely amorphous films and were characterized by measurements of total ionic conductivity, cyclic voltammetry, differential scanning calorimetry and thermogravimetry.

  1. Effect of polymer electrolyte on the performance of natural dye sensitized solar cells

    Science.gov (United States)

    Adel, R.; Abdallah, T.; Moustafa, Y. M.; Al-sabagh, A. M.; Talaat, H.

    2015-10-01

    Polymer electrolyte based on polyacrylonitrile (PAN), Ethylene Carbonate (EC) and Acetonitrile (ACN) mixed with Potassium Iodide and Iodine in liquid and thin film forms were employed in natural dye sensitized solar cells (NDSSCs). Three natural dyes; black berry, hibiscus and rose are used as the sensitizing dye. The NDSSCs used, follow the configuration: FTO/TiO2/Natural Dye/Electrolyte/ Carbon/FTO. The liquid form polymer electrolyte with black berry natural dye gives an increase of 111% in short circuit photocurrent density (Jsc), 17.5% to open circuit voltage (Voc), fill factor of 0.57 ± 0.05 and three times increase in the conversion efficiency of 0.242 ± 0.012% compared to the iodine electrolyte.

  2. Preparation and characterization of plasticized high molecular weight PVC-based polymer electrolytes

    Indian Academy of Sciences (India)

    S Ramesh; Geok Bee Teh; Rong-Fuh Louh; Yong Kong Hou; Pung Yen Sin; Lim Jing Yi

    2010-02-01

    Poly(vinyl chloride) (PVC)-based polymer electrolytes films consisting of lithium trifluromethanesulfonate (LiCF3SO3)-ethylene carbonate (EC) were prepared by the solution-casting method. Ionic conductivities of the electrolytes have been determined by an impedance studies in the temperature range of 298–373 K. Complexation of the prepared electrolytes is studied by X-ray diffraction (XRD) analysis. Thermogravimetric analysis (TGA) was used to confirm the thermal stability of the polymer electrolytes. The conductivity–temperature plots were found to follow an Arrhenius nature. All these films are found to be thermally stable until 132–167°C.

  3. Multiphase transport in polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Gauthier, Eric D.

    Polymer electrolyte membrane fuel cells (PEMFCs) enable efficient conversion of fuels to electricity. They have enormous potential due to the high energy density of the fuels they utilize (hydrogen or alcohols). Power density is a major limitation to wide-scale introduction of PEMFCs. Power density in hydrogen fuel cells is limited by accumulation of water in what is termed fuel cell `flooding.' Flooding may occur in either the gas diffusion layer (GDL) or within the flow channels of the bipolar plate. These components comprise the electrodes of the fuel cell and balance transport of reactants/products with electrical conductivity. This thesis explores the role of electrode materials in the fuel cell and examines the fundamental connection between material properties and multiphase transport processes. Water is generated at the cathode catalyst layer. As liquid water accumulates it will utilize the largest pores in the GDL to go from the catalyst layer to the flow channels. Water collects to large pores via lateral transport at the interface between the GDL and catalyst layer. We have shown that water may be collected in these large pores from several centimeters away, suggesting that we could engineer the GDL to control flooding with careful placement and distribution of large flow-directing pores. Once liquid water is in the flow channels it forms slugs that block gas flow. The slugs are pushed along the channel by a pressure gradient that is dependent on the material wettability. The permeable nature of the GDL also plays a major role in slug growth and allowing bypass of gas between adjacent channels. Direct methanol fuel cells (DMFCs) have analogous multiphase flow issues where carbon dioxide bubbles accumulate, `blinding' regions of the fuel cell. This problem is fundamentally similar to water management in hydrogen fuel cells but with a gas/liquid phase inversion. Gas bubbles move laterally through the porous GDL and emerge to form large bubbles within the

  4. Understanding the transport processes in polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Cheah, May Jean

    Polymer electrolyte membrane (PEM) fuel cells are energy conversion devices suitable for automotive, stationary and portable applications. An engineering challenge that is hindering the widespread use of PEM fuel cells is the water management issue, where either a lack of water (resulting in membrane dehydration) or an excess accumulation of liquid water (resulting in fuel cell flooding) critically reduces the PEM fuel cell performance. The water management issue is addressed by this dissertation through the study of three transport processes occurring in PEM fuel cells. Water transport within the membrane is a combination of water diffusion down the water activity gradient and the dragging of water molecules by protons when there is a proton current, in a phenomenon termed electro-osmotic drag, EOD. The impact of water diffusion and EOD on the water flux across the membrane is reduced due to water transport resistance at the vapor/membrane interface. The redistribution of water inside the membrane by EOD causes an overall increase in the membrane resistance that regulates the current and thus EOD, thereby preventing membrane dehydration. Liquid water transport in the PEM fuel cell flow channel was examined at different gas flow regimes. At low gas Reynolds numbers, drops transitioned into slugs that are subsequently pushed out of the flow channel by the gas flow. The slug volume is dependent on the geometric shape, the surface wettability and the orientation (with respect to gravity) of the flow channel. The differential pressure required for slug motion primarily depends on the interfacial forces acting along the contact lines at the front and the back of the slug. At high gas Reynolds number, water is removed as a film or as drops depending on the flow channel surface wettability. The shape of growing drops at low and high Reynolds number can be described by a simple interfacial energy minimization model. Under flooding conditions, the fuel cell local current

  5. Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries

    Science.gov (United States)

    Porcarelli, Luca; Gerbaldi, Claudio; Bella, Federico; Nair, Jijeesh Ravi

    2016-01-01

    Here we demonstrate that by regulating the mobility of classic -EO- based backbones, an innovative polymer electrolyte system can be architectured. This polymer electrolyte allows the construction of all solid lithium-based polymer cells having outstanding cycling behaviour in terms of rate capability and stability over a wide range of operating temperatures. Polymer electrolytes are obtained by UV-induced (co)polymerization, which promotes an effective interlinking between the polyethylene oxide (PEO) chains plasticized by tetraglyme at various lithium salt concentrations. The polymer networks exhibit sterling mechanical robustness, high flexibility, homogeneous and highly amorphous characteristics. Ambient temperature ionic conductivity values exceeding 0.1 mS cm-1 are obtained, along with a wide electrochemical stability window (>5 V vs. Li/Li+), excellent lithium ion transference number (>0.6) as well as interfacial stability. Moreover, the efficacious resistance to lithium dendrite nucleation and growth postulates the implementation of these polymer electrolytes in next generation of all-solid Li-metal batteries working at ambient conditions.

  6. Polymer Electrolytes Based on Electrospun PEO-P(VdF-HFP) Blends for Lithium-Polymer Batteries

    Institute of Scientific and Technical Information of China (English)

    P.Raghvan; J.Manuel; G.Cheruvally; J.H.Ahn

    2007-01-01

    1 Results Electrospinning has attracted immense attention recently as a versatile and easy method to prepare polymer membranes that are made up of thin fibers of micron and sub-micron diameters.Such membranes are particularly suitable as host matrices for polymer electrolytes (PEs) since the interlaying of fibers generate large porosity with fully interconnected pore structure facilitating the easy transport of ions.Characterization of PEs based on electrospun membranes of poly(vinylidene fluoride) (PVd...

  7. Investigations of proton conducting polymers and gas diffusion electrodes in the polymer electrolyte fuel cell

    OpenAIRE

    Gode, Peter

    2005-01-01

    Polymer electrolyte fuel cells (PEFC) convert the chemically bound energy in a fuel, e.g. hydrogen, directly into electricity by an electrochemical process. Examples of future applications are energy conversion such as combined heat and power generation (CHP), zero emission vehicles (ZEV) and consumer electronics. One of the key components in the PEFC is the membrane / electrode assembly (MEA). Both the membrane and the electrodes consist of proton conducting polymers (ionomers). In the membr...

  8. Gel polymer electrolytes based on PMMA III. PMMA gels containing cadmium

    Czech Academy of Sciences Publication Activity Database

    Vondrák, Jiří; Sedlaříková, M.; Velická, Jana; Klápště, Břetislav; Novák, V.; Reiter, Jakub

    2003-01-01

    Roč. 48, č. 8 (2003), s. 1001-1004. ISSN 0013-4686 R&D Projects: GA AV ČR IAA4032002; GA ČR GA104/02/0731; GA MŠk ME 216 Institutional research plan: CEZ:AV0Z4032918; CEZ:MSM 262200010 Keywords : gel polymer electrolytes * polymethylmethacrylate * cadmium gel electrolyte Subject RIV: CA - Inorganic Chemistry Impact factor: 1.996, year: 2003

  9. Nafion and modified-Nafion membranes for polymer electrolyte fuel cells: An overview

    Indian Academy of Sciences (India)

    A K Sahu; S Pitchumani; P Sridhar; A K Shukla

    2009-06-01

    Polymer electrolyte fuel cells (PEFCs) employ membrane electrolytes for proton transport during the cell reaction. The membrane forms a key component of the PEFC and its performance is controlled by several physical parameters, viz. water up-take, ion-exchange capacity, proton conductivity and humidity. The article presents an overview on Nafion membranes highlighting their merits and demerits with efforts on modified-Nafion membranes.

  10. [Some aspects of water electrolysis with the use of a solid polymer electrolyte].

    Science.gov (United States)

    Zorina, N G

    2006-01-01

    Electrochemical process in cells with a solid polymer electrolyte is dependent on catalyst durability in harsh environments and catalyst sputtering technology to ensure efficient power consumption. Active polymer electrolytes will permit to reduce substantially non-productive layouts and design a cost-effective, compact and safe system generator of high-purity oxygen and hydrogen. The existing designs of combined oxide systems integrating rear-earth and earth metals with a structure of Ln3+x Me2+1-x CoO3 containing perofskites were shown to be active catalysts in cells with a solid polymer electrolyte, and the sputtering technology was proven to reduce non-productive layouts in 2 or 2.5 times. PMID:17405280

  11. Phase stability of Li-ion conductive, ternary solid polymer electrolytes

    International Nuclear Information System (INIS)

    The chemical–physical properties of a ternary solid polymer electrolyte (SPE) system consisting of poly(ethylene oxide) and two salts, namely lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and the ionic liquid N-methyl-N-butyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI), are reported in this work. The ternary phase diagram shows the composition limits of the thermodynamically stabilized amorphous phase where the polymer electrolyte achieved the maximum conductivity. The important conductivity threshold of 10−3 S cm−1 at 40 °C is exceeded for these compositions. Two reasons for the high conductivity are identified; the decreased overall coordination to the Li+-ion and a Tg as low as −67 °C. Also presented is the thermal stability characterization of such polymer electrolytes. The amorphous phase seems to be thermodynamically unfavored; however, the recrystallization process is slow

  12. Conductivity and properties of polysiloxane-polyether cluster-LiTFSI networks as hybrid polymer electrolytes

    Science.gov (United States)

    Boaretto, Nicola; Joost, Christine; Seyfried, Mona; Vezzù, Keti; Di Noto, Vito

    2016-09-01

    This report describes the synthesis and the properties of a series of polymer electrolytes, composed of a hybrid inorganic-organic matrix doped with LiTFSI. The matrix is based on ring-like oligo-siloxane clusters, bearing pendant, partially cross-linked, polyether chains. The dependency of the thermo-mechanic and of the transport properties on several structural parameters, such as polyether chains' length, cross-linkers' concentration, and salt concentration is studied. Altogether, the materials show good thermo-mechanical and electrochemical stabilities, with conductivities reaching, at best, 8·10-5 S cm-1 at 30 °C. In conclusion, the cell performances of one representative sample are shown. The scope of this report is to analyze the correlations between structure and properties in networked and hybrid polymer electrolytes. This could help the design of optimized polymer electrolytes for application in lithium metal batteries.

  13. Compliant glass-polymer hybrid single ion-conducting electrolytes for lithium batteries.

    Science.gov (United States)

    Villaluenga, Irune; Wujcik, Kevin H; Tong, Wei; Devaux, Didier; Wong, Dominica H C; DeSimone, Joseph M; Balsara, Nitash P

    2016-01-01

    Despite high ionic conductivities, current inorganic solid electrolytes cannot be used in lithium batteries because of a lack of compliance and adhesion to active particles in battery electrodes as they are discharged and charged. We have successfully developed a compliant, nonflammable, hybrid single ion-conducting electrolyte comprising inorganic sulfide glass particles covalently bonded to a perfluoropolyether polymer. The hybrid with 23 wt% perfluoropolyether exhibits low shear modulus relative to neat glass electrolytes, ionic conductivity of 10(-4) S/cm at room temperature, a cation transference number close to unity, and an electrochemical stability window up to 5 V relative to Li(+)/Li. X-ray absorption spectroscopy indicates that the hybrid electrolyte limits lithium polysulfide dissolution and is, thus, ideally suited for Li-S cells. Our work opens a previously unidentified route for developing compliant solid electrolytes that will address the challenges of lithium batteries. PMID:26699512

  14. A Synopsis of Interfacial Phenomena in Lithium-Based Polymer Electrolyte Electrochemical Cells

    Science.gov (United States)

    Baldwin, Richard S.; Bennett, William R.

    2007-01-01

    The interfacial regions between electrode materials, electrolytes and other cell components play key roles in the overall performance of lithium-based batteries. For cell chemistries employing lithium metal, lithium alloy or carbonaceous materials (i.e., lithium-ion cells) as anode materials, a "solid electrolyte interphase" (SEI) layer forms at the anode/electrolyte interface, and the properties of this "passivating" layer significantly affect the practical cell/battery quality and performance. A thin, ionically-conducting SEI on the electrode surface can beneficially reduce or eliminate undesirable side reactions between the electrode and the electrolyte, which can result in a degradation in cell performance. The properties and phenomena attributable to the interfacial regions existing at both anode and cathode surfaces can be characterized to a large extent by electrochemical impedance spectroscopy (EIS) and related techniques. The intention of the review herewith is to support the future development of lithium-based polymer electrolytes by providing a synopsis of interfacial phenomena that is associated with cell chemistries employing either lithium metal or carbonaceous "composite" electrode structures which are interfaced with polymer electrolytes (i.e., "solvent-free" as well as "plasticized" polymer-binary salt complexes and single ion-conducting polyelectrolytes). Potential approaches to overcoming poor cell performance attributable to interfacial effects are discussed.

  15. A novel and high-effective redox-mediated gel polymer electrolyte for supercapacitor

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Alkali and P-phenylenediamine doped polyvinyl alcohol gel electrolyte is prepared. • The PVA-KOH-PPD gel electrolyte can also be used as separator. • The introduction of PPD increases the ionic conductivity of electrolyte. • The supercapacitor exhibits flexible and high energy density. - Abstract: A supercapacitor utilize a novel redox-mediated gel polymer (PVA-KOH-PPD) as electrolyte and separator, and activated carbon as electrodes is assembled. The PVA-KOH-PPD gel polymer as potential electrolyte for supercapacitor is investigated by cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy techniques. It is found that the supercapacitor exhibits high ionic conductivity (25 mS cm−1), large electrode specific capacitance (611 F g−1) and high energy density (82.56 Wh kg−1). The high performance is attributed to the addition of quick redox reactions at the electrolyte|electrode interface as PPD undergoes a two-proton/two-electron reduction and oxidation during cycling. Furthermore, the supercapacitor with PVA-KOH-PPD gel polymer shows excellent charge-discharge stability, after 1000 charge-discharge cycles, the supercapacitor still retains a high electrode specific capacitance of 470 F g−1. It is believed that the idea using redox mediator has a good prospect for improving the performances of supercapacitors

  16. Novel solid polymer electrolytes based on poly(trimethylene carbonate) and lithium hexafluoroantimonate

    Science.gov (United States)

    Manuela Silva, Maria; Barbosa, Paula; Evans, Alan; Smith, Michael John

    2006-11-01

    The results of the characterization of a polymer electrolyte system based on the poly(trimethylene carbonate) host matrix, with lithium hexafluoroantimonate as guest salt, are described in this study. Electrolytes with lithium salt compositions with values of n between 5 and 100 (where n represents the total number of monomeric cation-coordinating units sbnd (O dbnd COCH 2CH 2CH 2O) sbnd per lithium ion) were prepared by co-dissolution and deposition from acetonitrile. The solvent-casting technique was used to prepare flexible, transparent and self-supporting films of electrolytes which were characterized by measurements of conductivity, cyclic voltammetry, differential scanning calorimetry and thermogravimetry.

  17. Study on the Ion Association in PVdF-based Gel Polymer Electrolyte

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Gel polymer electrolytes based on the poly (vinylidene fluoride) (PVdF) and the electrolyte of LiClO4 in propylene carbonate (PC) were prepared by the solution casting technique. The ionic conductivity of the gel electrolytes was concentration of lithium salt. Because of the strong coulombiq attractions, the dissolved salt ions might aggregate into ion pairs and multiple ion aggregates. The analysis of DSC and X-ray diffraction revealed that the ions association occurred at higher concentration of lithium salt.

  18. Luminescent Polymer Electrolyte Composites Using Silica Coated-Y2O3:Eu as Fillers

    OpenAIRE

    Mikrajuddin Abdullah; Kikuo Okuyama

    2003-01-01

    Luminescent polymer electrolyte composites composed of silica coated Y2O3:Eu in polyethylene glycol (PEG) matrix has been produced by initially synthesizing silica coated Y2O3:Eu and mixing with polyethylene glycol in a lithium salt solution. High luminescence intensity at round 600 nm contributed by electron transitions in Eu3+ (5D0 -> 7F0, 5D0 -> 7F1, and 5D0 -> 7F3 transitions) were observed. The measured electrical conductivity was comparable to that reported for polymer electrolyte compo...

  19. Solidification of liquid electrolyte with imidazole polymers for quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Quasi-solid-state electrolytes were prepared by employing the imidazole polymers to solidify the liquid electrolyte containing lithium iodide, iodine and ethylene carbonate (EC)/propylene carbonate (PC) mixed solvent. The ionic conductivity and diffusion behavior of triiodide in the quasi-solid-state electrolytes were examined in terms of the polymer content. Application of the quasi-solid-state electrolytes to the dye-sensitized solar cells, the maximum energy conversion efficiency of 7.6% (AM 1.5, 100 mW cm-2) was achieved. The dependence of the photovoltaic performance on the polymer content and on the different anions of the imidazole polymers was studied by electrochemical impedance spectroscopy and cyclic voltammetry. The results indicate the charge transfer behaviors occurred at nanocrystalline TiO2/electrolyte and Pt/electrolyte interface play an important role in influencing the photovoltaic performance of quasi-solid-state dye-sensitized solar cells

  20. Solidification of liquid electrolyte with imidazole polymers for quasi-solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang Miao [Beijing National laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Lin Yuan [Beijing National laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China)], E-mail: linyuan@iccas.ac.cn; Zhou Xiaowen; Xiao Xurui [Beijing National laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China); Yang Lei [Beijing National laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Feng Shujing; Li Xueping [Beijing National laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China)

    2008-01-15

    Quasi-solid-state electrolytes were prepared by employing the imidazole polymers to solidify the liquid electrolyte containing lithium iodide, iodine and ethylene carbonate (EC)/propylene carbonate (PC) mixed solvent. The ionic conductivity and diffusion behavior of triiodide in the quasi-solid-state electrolytes were examined in terms of the polymer content. Application of the quasi-solid-state electrolytes to the dye-sensitized solar cells, the maximum energy conversion efficiency of 7.6% (AM 1.5, 100 mW cm{sup -2}) was achieved. The dependence of the photovoltaic performance on the polymer content and on the different anions of the imidazole polymers was studied by electrochemical impedance spectroscopy and cyclic voltammetry. The results indicate the charge transfer behaviors occurred at nanocrystalline TiO{sub 2}/electrolyte and Pt/electrolyte interface play an important role in influencing the photovoltaic performance of quasi-solid-state dye-sensitized solar cells.

  1. Epoxidised Natural Rubber Based Composite Polymer Electrolyte Systems For Use In Electrochemical Device Applications

    International Nuclear Information System (INIS)

    Composite polymer electrolyte (CPE) comprising epoxy-fimctionalized rubber (ENR), HDDA monomer, mixed plasticizer-propylene carbonate/ethylene carbonate, silica filler and lithium bis(trifluoromethanesulfonylimide), Li[(CF3SO2)2N]have been prepared using photo-induced polymerization by UV irradiation technique. The irradiated samples of filled and non-filled silica of composites electrolytes have formed dry solid-flexible and transparent films in the self-constructed Teflon mould. Thermal behaviors, FTIR, morphology and ionic conductivity were performed on such ENR based PE polymer composites having varied compositions. The thermal stability has improved slightly in the temperature range 120-200 deg. C with optimized composition. FTIR measurements data revealed that the interaction of lithium with the epoxy groups of the un-bonded electrons within polymer occurred. The results suggest that the variation of conductivity with temperature indicates that the silica filled composite has achieved optimal ionic conductivity 10-4 S cm-1 and retained high percent of plasticizer. The ionic conductivity behavior of the silica-filled ENR based composite polymer electrolyte is consistent at elevated temperature compared to non-filled CPE system. This finding opens a new pathway for further investigation to diffusion of ions in the complex polymer electrolyte systems.

  2. Effect of organic-inorganic hybrid P123-em-SBA15 on lithium transport properties of composite polymer electrolyte

    Institute of Scientific and Technical Information of China (English)

    XI Jingyu; HUANG Xiaobin; TANG Xiaozhen

    2004-01-01

    A novel PEO-based composite polymer electrolyte by using organic-inorganic hybrid EO20PO70EO20-em- mesoporous silica (P123-em-SBA15) as the filler has been developed. The experiment results show that P123-em- SBA15 can enhance the lithium-ion transference number of the composite polymer electrolyte, which is induced by the special topology structure of P123 in P123-em-SBA15 hybrid. In addition, room temperature ionic conductivity of the composite polymer electrolyte can also be increased by about two orders of magnitude. The excellent lithium transport properties suggest that PEO-LiClO4-P123-em-SBA15 composite polymer electrolyte can be used as electrolyte materials for all solid-state rechargeable lithium polymer batteries.

  3. Morphology and conductivity of in-situ PEO-LiClO4-TiO2 composite polymer electrolyte

    Institute of Scientific and Technical Information of China (English)

    PAN Chun-yue; FENG Qing; WANG Li-jun; ZHANG Qian; CHAO Meng

    2007-01-01

    PEO-LiClO4-TiO2 composite polymer electrolyte films were prepared. TiO2 was formed directly in matrix by hydrolysis and condensation reaction of tetrabutyl titanate. The crystallinity, morphology and ionic conductivity of composite polymer electrolyte films were examined by differential scanning calorimetry, scanning electron microscopy, atom force microscopy and alternating current impedance spectroscopy, respectively. The glass transition temperature and the crystallinity of composite polymer electrolytes are decreased compared with those of PEO-LiClO4 polymer electrolyte film. The results show that TiO2 particles are uniformly dispersed in PEO-LiClO4-5%TiO2 composite polymer electrolyte film. The maximal conductivity of 5.5×10-5 S/cm at 20 ℃ of PEO-LiClO4-TiO2 film is obtained at 5% mass fraction of TiO2.

  4. Obtention and evaluation of polyethylene-based solid polymer electrolyte membranes fro hydrogen production

    Science.gov (United States)

    Masson, J. P.; Molina, R.; Roth, E.; Gaussens, G.; Lemaire, F.

    The fabrication and testing of a polyethylene-based solid polymer electrolyte for use in hydrogen production by water electrolysis are discussed. The fabrication process involves the radiation grafting of styrene groups onto a polyethylene matrix, followed by the chemical sulphonation of the resulting polymer. The membrane produced has exhibited resistivities as low as 60 ohm cm for a 1-mm thickness, and other properties of the same order of magnitude as those of the commercially available but more expensive Nafion 014 membrane. Life tests carried out at a current density of 2 kA/sq m in single-cell modules with 10-sq cm active surface have revealed no noticeable degradation in membrane mechanical or electrical properties after 3000 hours for membranes reinforced by an organic polymer fabric. The development of an electrolyzer specifically designed for operation with a solid polymer electrolyte is currently under way.

  5. Characteristics of Subfreezing Operation of Polymer Electrolyte Membrane Fuel Cells

    Science.gov (United States)

    Mishler, Jeffrey Harris

    Polymer Electrolyte Membrane (PEM) Fuel Cells are capable of high efficiency operation, and are free of NOx, SOx, and CO2 emissions when using hydrogen fuel, and ideally suited for use in transportation applications due to their high power density and low operating temperatures. However, under subfreezing conditions which may be encountered during winter seasons in some areas, product water will freeze within the membrane, cathode side catalyst layer and gas diffusion media, leading to voltage loss and operation failure. Experiments were undertaken in order to characterize the amount and location of water during fuel cell operation. First, in-situ neutron radiography was undertaken on the fuel cells at a normal operating temperature for various operating current densities, inlet relative humidities, and diffusion media hydrophobicities. It was found that more hydrophobic cathode microporous layer (MPL) or hydrophilic anode MPL may result in a larger amount of water transporting back to the anode. The water profiles along the channels were measured and the point of liquid water emergence, where two phase flow begins, was compared to previous models. Secondly, under subfreezing temperatures, neutron imaging showed that water ice product accumulates because of lack of a water removal mechanism. Water was observed under both the lands and channels, and increased almost linearly with time. It is found that most ice exists in the cathode side. With evidence from experimental observation, a cold start model was developed and explained, following existing approaches in the literature. Three stages of cold start are explained: membrane saturation, ice storage in catalyst layer pores, and then ice melting. The voltage losses due to temperature change, increased transport resistance, and reduced electrochemical surface area. The ionic conductivity of the membrane at subfreezing temperatures was modeled. Voltage evolution over time for isothermal cold starts was predicted and

  6. 'PolyMOB'-lithium salt complexes: from salt-in-polymer to polymer-in-salt electrolytes

    International Nuclear Information System (INIS)

    Lithium polyMOB has been investigated as the polymer in a polymer-in-salt type electrolyte incorporating the salts lithium perchlorate (LiClO4), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium tetrafluoroborate (LiBF4). While all salts give rubbery solids at high salt contents, only LiClO4 provides high conductivity because only in the case of LiClO4 is the lithium cation motion highly decoupled from the structural relaxation. The crystallization of the salt at high salt contents prevents a favorable combination of mechanical and electrical properties, but the system provides an excellent example of the principle of the polymer-in-salt ionic rubber electrolyte and the factors determining its performance

  7. Gel polymer electrolytes for Li - ions batteries with reduced flammability

    Czech Academy of Sciences Publication Activity Database

    Michálek, Jiří; Nováková Abbrent, S.; Musil, M.; Širc, Jakub; Kovářová, Jana; Přádný, Martin

    Pisa : European Polymer Federation, 2013. P5-22. [European Polymer Congress - EPF 2013. 16.06.2013-21.06.2013, Pisa] R&D Projects: GA ČR(CZ) GAP102/10/2091 Institutional support: RVO:61389013 Keywords : gel polyelectrolytes * methacrylates * Li-ions batteries Subject RIV: CG - Electrochemistry

  8. New polymer electrolytes for low temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sundholm, F.; Elomaa, M.; Ennari, J.; Hietala, S.; Paronen, M. [Univ. of Helsinki (Finland). Lab. of Polymer Chemistry

    1998-12-31

    Proton conducting polymer membranes for demanding applications, such as low temperature fuel cells, have been synthesised and characterised. Pre-irradiation methods are used to introduce sulfonic acid groups, directly or using polystyrene grafting, in stable, preformed polymer films. The membranes produced in this work show promise for the development of cost-effective, highly conducting membranes. (orig.)

  9. Characterization of Plasticized PEO Based Solid Polymer Electrolyte by XRD and AC Impedance Methods

    Directory of Open Access Journals (Sweden)

    K. Ragavendran

    2004-01-01

    Full Text Available The ionic conductivity of lithium based solid polymer films prepared from poly (ethylene oxide (PEO and lithium hexafluoarsenate (LiAsF6 with varying compositions of plasticizers likedibutyl sebacate (DBS and ethylene carbonate (EC was measured by AC impedance method. Polymer film composition viz. (PEO8-LiAsF6-(DBS0.4-(EC0.1 has been evaluated as an optimum composition as evidenced from its high conductivity and freestanding ability. The high conductivity observed for the polymer electrolyte with this composition has been attributed to an enhanced amorphous character and a reduced energy barrier to the segmental motion of lithium ions in the matrix. The temperature dependence of conductivity on the polymer films, with and without plasticizers, appears to obey the Arrhenius law. However, the activation energy of the plasticized polymer film is 0.81 KJ/mol, a value considerably lower than 10 KJ/mol obtained for the unplasticized electrolyte, making the polymer to be a prospective candidate as lithium-ion conducting electrolyte for rechargeable lithium batteries.

  10. Efficiency of non-optimized direct carbon fuel cell with molten alkaline electrolyte fueled by carbonized biomass

    Science.gov (United States)

    Kacprzak, A.; Kobyłecki, R.; Włodarczyk, R.; Bis, Z.

    2016-07-01

    The direct carbon fuel cells (DCFCs) belong to new generation of energy conversion devices that are characterized by much higher efficiencies and lower emission of pollutants than conventional coal-fired power plants. In this paper the DCFC with molten hydroxide electrolyte is considered as the most promising type of the direct carbon fuel cells. Binary alkali hydroxide mixture (NaOH-LiOH, 90-10 mol%) is used as electrolyte and the biochar of apple tree origin carbonized at 873 K is applied as fuel. The performance of a lab-scale DCFC with molten alkaline electrolyte is investigated and theoretical, practical, voltage, and fuel utilization efficiencies of the cell are calculated and discussed. The practical efficiency is assessed on the basis of fuel HHV and LHV and the values are estimated at 40% and 41%, respectively. The average voltage efficiency is calculated as roughly 59% (at 0.65 V) and it is in a relatively good agreement with the values obtained by other researchers. The calculated efficiency of fuel utilization exceeds 95% thus indicating a high degree of carbon conversion into the electric power.

  11. Bifunctional, Carbon-Free Nickel/Cobalt-Oxide Cathodes for Lithium-Air Batteries with an Aqueous Alkaline Electrolyte

    International Nuclear Information System (INIS)

    Highlights: • High activity bi-functional catalyst combination for ORR and OER . • An optimum ratio of high active bi-functional catalysts was found. • Novel electrodes without carbon to avoid carbon corrosion during OER mode. • EIS model for OER describes influence of a growing oxide layers. • Long-term test exhibited an excellent long-term stability over 1200 cycles. - Abstract: Lithium-air batteries with an aqueous alkaline electrolyte promise a very high practical energy density and capacity. These batteries are mainly limited by high overpotentials on the bifunctional cathode during charge and discharge. To reduce overpotentials the bifunctional cathode of such batteries must be improved significantly. Nickel is relatively inexpensive and has a good catalytic activity in alkaline media. Co3O4 was found to be a promising metal oxide catalyst for oxygen evolution in alkaline media but it has a low electronic conductivity. On the other hand since nickel has a good electronic conductivity Co3O4 can be added to pure nickel electrodes to enhance performance due to a synergetic effect. Due to the poor stability of carbon materials at high anodic potentials, gas diffusion electrodes were prepared without carbon to improve especially long-term stability. Gas diffusion electrodes were electrochemically investigated in a half cell. In addition, cyclic voltammogrametry (CV) and electrochemical impedance spectroscopy (EIS) were carried out. SEM was used for the physical and morphological investigations. Investigations showed that electrodes containing 20 wt.% Co3O4 exhibited the highest performance

  12. Electrospun polyimide-based fiber membranes as polymer electrolytes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Polymer electrolytes based on electrospun polyimide (PI) membranes are incorporated with electrolyte solution containing 1 mol L−1 LiPF6/ethylene carbonate/ethylmethyl carbonate/dimethyl carbonate to examine their potential application for lithium ion batteries. The as-electrospun non-woven membranes demonstrate a uniformly interconnected structure with an average fiber diameter of 800 nm. The membranes, showing superior thermal stability and flame retardant property compared to the commercial Celgard® membranes, exhibit high porosity and high uptake when activated with the liquid electrolyte. The resulting PI electrolytes (PIs) have a high ionic conductivity up to 2.0 × 10−3 S cm−1 at 25 °C, and exhibit a high electrochemical stability potential more than 5.0 V (vs. Li/Li+). They also possess excellent charge/discharge performance and capacity retention. The initial discharge capacities of the Li/PIs/Li4Ti5O12 cells are 178.4, 167.4, 160.3, 148.3 and 135.9 mAh g−1 at the charge/discharge rates of 0.2 C, 1 C, 2 C, 5 C and 10 C, respectively. After 200 cycles at 5 C, a capacity around ∼146.8 mAh g−1 can be still achieved. The PI-based polymer electrolytes with strong mechanical properties and good electrochemical performance are proved to be promising electrolytes for lithium ion batteries

  13. Development of alkaline/surfactant/polymer (ASP flooding technology for recovery of Karazhanbas oil

    Directory of Open Access Journals (Sweden)

    Birzhan Zhappasbaev

    2016-03-01

    Full Text Available The tertiary oil recovery methods like alkaline, surfactant and polymer (ASP flooding are very perspective in order to achieve the synergetic effect out of the different impacts which are caused by these chemicals, which affect oil and water filtration in the reservoir and increase oil recovery. In this communication, we consider the applicability of hydrophobically modified polyampholyte – poly(hexadecylaminocrotonatebetaine (PHDACB as ASP flooding agent for recovery of oil from Karazhanbas oilfield. As “polysoap”, the aqueous solution of PHDACB dissolved in aqueous KOH was used. This system combines the advantages of alkaline, surfactant and polymer and exhibits the synergistic effect. The laboratory results showed that the ASP flooding considerably increases the oil recovery in addition to water flooding. In perspective, the ASP flooding may substitute the steam injection and other thermal enhanced oil recovery (EOR technologies.

  14. Preparation of a Star Network PEG-based Gel Polymer Electrolyte and Its Application to Electrochromic Devices

    Institute of Scientific and Technical Information of China (English)

    GONG Yong-Feng; FU Xiang-Kai; ZHANG Shu-Peng; JIANG Qing-Long

    2007-01-01

    A star network polymer with a pentaerythritol core linking four PEG-block polymeric arms was synthesized,and its corresponding gel polymer electrolyte based on lithium perchlorate and plasticizers EC/PC with the character being colorless and highly transparent has been also prepared. The polymer host was characterized and confirmed to be of a star network and an amorphous structure by FTIR, 1H NMR and XRD studies. The polymer host hold good mechanical properties for pentaerythritol cross-linking. Maximum ionic conductivity of the prepared electrolyte showed that the thermal stability was up to at least 150 ℃. The gel polymer electrolyte was further evaluated in electrochromic devices fabricated by transparent PET-ITO and electrochromically active viologen derivative films, and its excellent performance promised the usage of the gel polymer electrolyte as ionic conductor material in electrochrornic devices.

  15. Single lithium-ion conducting polymer electrolytes based on poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl)imide] anions

    International Nuclear Information System (INIS)

    Highlights: ► Single lithium-ion conducting polymer electrolytes based on highly delocalized polyanions are prepared. ► Phase behavior and transport properties are measured. ► They show high lithium ion transference number approaching unity. ► They show high ionic conductivity at room temperature. - Abstract: New single lithium-ion conducting polymer electrolytes are prepared by a copolymerization of the two monomers, lithium (4-styrenesulfonyl)(trifluoromethanesulfonyl)imide (LiSTFSI) and methoxy-polyethylene glycol acrylate (MPEGA, CH2=CHCO2-(CH2CH2O)n-CH3, n = 8) in various monomer ratios. The structures and compositions of the prepared lithium poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl) imide-co-methoxy-polyethylene glycol acrylate] (Li[PSTFSI-co-MPEGA]) copolymers are characterized by 1H and 19F NMR, and gel permeation chromatography (GPC). For comparison, the corresponding blended polymer electrolytes comprising lithium poly[(4-styrenesulfonyl) (trifluoromethanesulfonyl)imide] (LiPSTFSI) and poly(ethylene oxide) (PEO) are also prepared and characterized. The fundamental properties of these two types of lithium-ion conducting polymer electrolytes are comparatively studied, in terms of phase transitions, thermal stability, XRD, ionic conductivities, lithium-ion transference numbers (tLi+), and electrochemical stabilities. Both types of the polymer electrolytes are thermally stable up to 300 °C. While both types of polymer electrolytes exhibit single lithium-ion conducting behavior with tLi+ > 0.9, the solid-state ionic conductivities of the Li[PSTFSI-co-MPEGA] copolymer electrolytes are all higher by 1–3 orders in magnitude than those of the blended ones, irrespective of the concentration of lithium ions. The highest ionic conductivities for the copolymer electrolytes are 7.6 × 10−6 S cm−1 at 25 °C and reach 10−4 S cm−1 at 60 °C, which are obtained at the ethylene oxide (EO) unit/Li+ ratio of 20.5

  16. Flow maldistribution in the anode of a polymer electrolyte membrane electrolysis cell employing interdigitated channels

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Kær, Søren Knudsen

    In this work a macroscopic, steady-state, three-dimensional, computational fluid dynamics model of the anode of a high-pressure polymer electrolyte membrane electrolysis cell (PEMEC) is presented. The developed model is used for studying the effect of employing an interdigitated, planar...

  17. Properties of Polymer Electrolyte Membranes Prepared by Blending of Sulfonated Polystyrene-Lignosulfonate

    Directory of Open Access Journals (Sweden)

    Siang Tandi Gonggo

    2012-11-01

    Full Text Available Electrolyte polymer membrane widely used in PEMFC and DMFC is a perfluorosulfonated membrane such as Nafion. This membrane material exhibits good chemical stability and proton conductivity, but it is very expensive and difficult to recycle. It has high cross-over methanol in DMFC that causes the decrease efficiency and performance of fuel cell, so that the electrolyte polymer membrane with low cross-over methanol has been needed to substitute Nafion membrane. One of the materials used as a polymer electrolyte membrane is polyblends of a sulfonated polystyrene-lignosulfonate (SPS-LS. These polyblends have been prepared by casting polymer solution and characterized as a polyelectrolyte membrane for DMFC. SPS was prepared by sulfonation of polystyrene with acetyl sulfate used as a sulfonating agent. The membranes of SPS-LS were characterized by analysis of functional groups, mechanical properties, and methanol permeability. The maximum mechanical properties of the SPS-LS membrane were observed in LS ratio of 7.5%. However, the methanol permeability of membrane increases as the increase of LS ratio in SPS-LS membranes. The properties of membranes, especially the mechanical property and methanol permeability close to that of Nafion® 117 membrane, so the SPS-LS membrane is highly potential used as the electrolyte membrane for direct methanol fuel cell.

  18. An update of solid polymer electrolyte water electolysis programs at General Electric

    Science.gov (United States)

    Russell, J. H.

    At the previous two world hydrogen energy conferences in 1976 and 1978 the status of General Electric solid polymer electrolyte water electrolysis development program for large scale hydrogen generator was presented (Nuttall 1976, 1978). This paper updates the progress of this ongoing development program and also describes several new associated programs aimed at gaining early field experience on prototype systems.

  19. Status of the development of solid polymer electrolyte water electrolysis for large scale hydrogen generation

    Science.gov (United States)

    Russell, J. H.

    1982-02-01

    Solid polymer electrolyte water electrolysis for large scale hydrogen generation is reported. The program was aimed at performance improvement. Reductions in cell impedance were demonstrated which improve cell performance by over 100 mV. A prototype 500 SCFH system for field evaluation was developed.

  20. Numerical investigations on two-phase flow in polymer electrolyte fuel cells

    NARCIS (Netherlands)

    Qin, C.Z.

    2012-01-01

    Numerical modeling plays an important role in understanding various transport processes in polymer electrolyte fuel cells (PEFCs). It can not only provide insights into the development of new PEFC architectures, but also optimize operating conditions for better cell performance. Water balance is cri

  1. Application of polyacrylonitrile-based polymer electrolytes in rechargeable lithium batteries

    DEFF Research Database (Denmark)

    Perera, K.S.; Dissanayake, M.A.K.L.; Skaarup, Steen;

    2008-01-01

    Polyacrylonitrile (PAN)-based polymer electrolytes have obtained considerable attention due to their fascinating characteristics such as appreciable ionic conductivity at ambient temperatures and mechanical stability. This study is based on the system PAN-ethylene carbonate (EC)-propylene carbona...

  2. Modelling multiphase flow inside the porous media of a polymer electrolyte membrane fuel cell

    DEFF Research Database (Denmark)

    Berning, Torsten; Kær, Søren Knudsen

    2011-01-01

    Transport processes inside polymer electrolyte membrane fuel cells (PEMFC’s) are highly complex and involve convective and diffusive multiphase, multispecies flow through porous media along with heat and mass transfer and electrochemical reactions in conjunction with water transport through an el...

  3. A novel polymer gel electrolyte based on cyanoethylated cellulose for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    A polymer gel electrolyte with the cyanoethylated hydroxypropyl cellulose (CN-HPC) as polymer matrix was prepared and applied in dye-sensitized solar cells (DSSCs). The ionic conductivities of the gel electrolytes based on LiI/I2 and 1-methyl-3-hexylimidazolium iodide (MHII)/I2 as the I−/I3− redox couple were determined, being 2.94 mS cm−1 and 2.46 mS cm−1 with the respective diffusion constants of I3− (Dapp) of 2.54 × 10−6 cm2 S−1, 2.15 × 10−6 cm2 S−1. Under the optimized condition, the overall conversion efficiencies of quasi-solid DSSCs were determined to be 7.40% based on a triphenylamine dye (SD2) and 7.55% based on a ruthenium dye (N719), which is 94% of those with liquid electrolyte.

  4. Exploring polymeric lithium tartaric acid borate for thermally resistant polymer electrolyte of lithium batteries

    International Nuclear Information System (INIS)

    A novel polymeric lithium tartaric acid borate (PLTB) was synthesized via an one-step reaction in aqueous solution. The polymer electrolyte of PLTB@PVDF-HFP (poly(vinylidene fluoride-co-hexafluoropropene)) was developed by a doctor-blading followed by a soaking process in propylene carbonate (PC). It was manifested that the PC swollen PLTB@PVDF-HFP exhibited excellent electrochemical stability and compatibility with lithium metal electrode, high ionic conductivity and high lithium ion transference number at an operating temperature of 80 °C. The cells using the PC swollen PLTB@PVDF-HFP as electrolyte showed stable charge/discharge profiles, preferable rate capability and satisfactory cycling performance at high temperature. These superior performances of PC swollen PLTB@PVDF-HFP could endow this class of polymer electrolyte a very promising application in lithium batteries operating at relatively high temperature

  5. Highly conductive polymer electrolyte membranes modified with polyethylene glycol-bis-carbamate

    Science.gov (United States)

    Fu, Guopeng; Dempsey, Janel; Kyu, Thein

    By virtue of its non-flammability and chemical stability, polyethylene glycol (PEG) networks have shown potential application in all solid-state polymer electrolyte membranes (PEM). However, room temperature ionic conductivity of these PEG based PEMs is inherently low. Plasticization of these PEMs is needed to improve the ionic conductivity. It was demonstrated by this group that small-molecule plasticizers such as succinonitrile, ethylene carbonate, or urea-carbamate can boost ionic conductivity of solid-state polymer electrolyte membranes. Polyethylene glycol bis-carbamate (PEGBC) was synthesized via condensation reaction of polyethylene glycol diamine and ethylene carbonate. The PEGBC modified PEM has shown higher ionic conductivity relative to the unmodified PEM. Moreover, PEGBC modified PEM has a better thermal stability relative to ethylene carbonate based liquid electrolyte with enhanced ionic conductivity. Supported by NSF-DMR 1161070, 1502543 and REU 1359321.

  6. Effect of TiO2 Inclusion in the Poly(vinylidene fluoride-co-hexafluoropropylene)-Based Polymer Electrolyte of Dye-Sensitized Solar Cell

    International Nuclear Information System (INIS)

    The lack of long-term stability, however, could occur by the leakage or evaporation of liquid electrolyte components. Many efforts were paid to replace the liquid electrolyte by various types of quasi-solid-state polymer electrolyte. The approach of using polymer electrolytes has been attracted with high interest but usually resulted in lower conversion efficiency than conventional Graetzel cell with liquid electrolyte. Among many polymer electrolytes, the poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) as polymer matrix material in DSSC has been known to be quite useful because of its photoelectrochemical stability under potential application. The previous result of PVdF-HFP polymer electrolyte presented somewhat low conversion efficiency of about 2-3%. We have considered that the low efficiency might be due to the inhibition of ion migration by the viscosity originated from polymer chain obstacles. Thus, we tried to modify the PVdF-HFP polymer electrolyte system to improve ion migration

  7. The change in dielectric constant, AC conductivity and optical band gaps of polymer electrolyte film: Gamma irradiation

    International Nuclear Information System (INIS)

    The effects of gamma (γ) irradiation on dielectric and optical properties of polymer electrolyte film were investigated. The dielectric constant and ac conductivity increases with γ dose. Also optical band gap decreased from 4.23 to 3.78ev after irradiation. A large dependence of the polymer properties on the irradiation dose was noticed. This suggests that there is a possibility of improving polymer electrolyte properties on gamma irradiation

  8. Ionic Conductivity of PEMA-LiClO4 Polymer Electrolytes

    International Nuclear Information System (INIS)

    Solid polymer electrolytes comprised of various weight percent ratios of poly(ethyl methacrylate) (PEMA) and lithium perchlorate (LiClO4) salt were prepared via solution casting technique using N,N-dimethylformamide (DMF) as the solvent. The conductivity values of the electrolytes were determined via impedance spectroscopy. The conductivity of the PEMA-LiClO4 electrolytes increased with increasing salt concentration and the highest conductivity obtained was in the order of 10-6 S cm-1 at salt concentration of 20 wt %. The conductivity decreased for higher salt concentration. In order to understand the conductivity behavior, XRD and dielectric studies were done. The results showed that the conductivity was influenced by the fraction of amorphous region and number of charge carriers in the system. The transference number measurement was also performed on the highest conducting electrolyte systems. The result of the measurement indicated that the systems were ionic conductors. (author)

  9. Electrochemical and solid state NMR characterization of composite PEO-based polymer electrolytes

    International Nuclear Information System (INIS)

    A comprehensive matrix of composite poly(ethyleneoxide) (PEO)-based solid-state electrolytes was developed in order to systematically study a number of variables and their impact upon the electrochemical properties of the resulting materials. The different parameters studied in the fabrication of these materials include: (i) the lithium electrolyte salt type, (ii) the ether oxygen to lithium ratio, (iii) the molecular weight of PEO, (iv) the type of ceramic additive used, either aluminum oxide (Al2O3), silicon oxide (SiO2), or titanium oxide (TiO2), (v) the particle size of the additives used, and (vi) the concentration of additive (wt.%). The standard lithium salt used for the preparation of these electrolytes was lithium trifluoromethanesulfonate (lithium triflate or LiSO3CF3), which served as the baseline electrolyte salt. Other lithium salts investigated include: lithium perchlorate (LiClO4) and lithium bis-trifluoromethanesulfonimide (LiN(SO2CF3)2). Conductivity measurements were performed for each electrolyte membrane over a wide temperature range (23-100 deg. C). In addition, cyclic voltammetry measurements were performed on selected PEO membranes as a function of temperature to determine the impact of various parameters upon the electrochemical stability. It was observed that the parameter that displayed the most significant effect upon the PEO-base polymer conductivity was the lithium salt type employed. The lithium triflate salt-containing PEO polymers demonstrated the best mechanical properties before and after heat treatment. Ceramic fillers also appear to enhance the mechanical properties of PEO polymer electrolytes at temperatures above the melting point of PEO (60-70 deg. C). In addition to investigating the electrochemical characteristics of the composite membrane, solid state 7Li NMR characterization was performed to study ionic mobility by measuring spectral line widths and lithium self-diffusion coefficients. It was determined that ceramic

  10. Electrical analysis of amorphous corn starch-based polymer electrolyte membranes doped with LiI

    International Nuclear Information System (INIS)

    In this work, polymer electrolytes have been prepared by doping starch with lithium iodide (LiI). The incorporation of 30 wt% LiI optimizes the room temperature conductivity of the electrolyte at (1.83 ± 0.47) × 10−4 S cm−1. Further conductivity enhancement to (9.56 ± 1.19) × 10−4 S cm−1 is obtained with the addition of 30 wt% glycerol. X-ray diffraction analysis indicates that the conductivity enhancement is due to the increase in amorphous content. The activation energy, Ea, of 70 wt% starch–30 wt% LiI electrolyte is 0.26 eV, while 49 wt% starch–21 wt% LiI–30 wt% glycerol electrolyte exhibits an Ea of 0.16 eV. Dielectric studies show that all the electrolytes obey non-Debye behavior. The power law exponent s is obtained from the variation of dielectric loss, εi, with frequency at different temperatures. The conduction mechanism of 70 wt% starch–30 wt% LiI electrolyte can be explained by the correlated barrier hopping model, while the conduction mechanism for 49 wt% starch–21 wt% LiI–30 wt% glycerol electrolyte can be represented by the quantum mechanical tunneling model. (paper)

  11. Li+ and H+ single-ion conducting polymer electrolytes

    Czech Academy of Sciences Publication Activity Database

    Reiter, Jakub; Michálek, Jiří; Přádný, Martin; Chmelíková, Dana; Širc, Jakub

    Brno : University of Technology Brno, 2008, s. 53-57. ISBN 978-80-214-3659-6. [International Conference Advanced Batteries and Accumulators /9./. Brno (CZ), 29.06.2008-03.07.2008] R&D Projects: GA MŠk LC523; GA AV ČR KJB400320701 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40500505 Keywords : electrolytes Subject RIV: CA - Inorganic Chemistry

  12. Nanoporous Polymer-Ceramic Composite Electrolytes for Lithium Metal Batteries

    KAUST Repository

    Tu, Zhengyuan

    2013-09-16

    A nanoporous composite material that offers the unique combination of high room-temperature ionic conductivity and high mechanical modulus is reported. When used as the separator/electrolyte in lithium batteries employing metallic lithium as anode, the material displays unprecedented cycling stability and excellent ability to prevent premature cell failure by dendrite-induced short circuits © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Advanced semi-interpenetrating polymer network gel electrolyte for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Graphical abstract: A semi-interpenetrating polymer network (Semi-IPN) gel polymer electrolyte (GPE) membrane based on the cross-linked PEGDA-co-PVC and linear PVDF-HFP has been prepared by UV-cured technology. It exhibits excellent interface stability to lithium metal electrode, superior thermal stability and mechanical properties. Its use in Li/LiFePO4 cell shows superior cycling stability and rate performance. - Highlights: • A new type of Semi-IPN GPE was prepared via UV-cured technology. • This electrolyte shows superior thermal stability and good mechanical properties. • The GPE membrane has excellent interface stability toward Li electrode. • Li/LiFePO4 cell using GPE membrane displays excellent electrochemical behavior. - Abstract: A new type of semi-interpenetrating polymer network (Semi-IPN) gel polymer electrolyte (GPE) membrane based on the cross-linked poly(ethylene glycol) diacrylate-co-poly(vinylene carbonate) P(EGDA-co-VC) and PVDF-HFP linear polymer is successfully synthesized by UV-cured technology. The cross-linked P(EGDA-co-VC) can accommodate a large amount of liquid electrolyte inside the non-porous membrane via its strong interaction with Li+ and solvents, which avoids the liquid electrolyte leakage. The ionic conductivity of the Semi-IPN GPE reaches 1.49 × 10−3 S cm−1 at 25 °C and the electrochemical stability window up to 4.2 V (versus Li/Li+). It demonstrates excellent interface stability to lithium metal electrode, superior thermal stability and good mechanical properties. A symmetric Li/Li cell with the above electrolyte displays a lower voltage polarization and longer valid cycle life than that based on conventional liquid electrolyte. Moreover, the Li/LiFePO4 cells using the Semi-IPN GPE show superior cycling stability and rate performance comparable to the cell based on conventional liquid electrolyte. This Semi-IPN GPE is promising for rechargeable lithium batteries with high safety and energy density

  14. Host-guest interactions in fluorinated polymer electrolytes: A 7Li-13C NMR study

    Science.gov (United States)

    Mustarelli, P.; Quartarone, E.; Capiglia, C.; Tomasi, C.; Ferloni, P.; Magistris, A.

    1999-08-01

    Gel-type electrolytes based on fluorinated polymers are of interest for electrochemical devices. We present a 7Li-13C solid-state NMR and modulated differential scanning calorimetry (MDSC) study of gel electrolytes based on a copolymer poly(vinylidene fluoride) (PVdF)-hexafluoropropylene (HFP) activated with a nonaqueous solution ethylene carbonate (EC)-propylene carbonate (PC)-LiN(CF3SO2)2. We show that the narrowing of the Li lineshape is decoupled from the glass transition. The behavior of the longitudinal relaxation times, T1, confirms that the host polymer matrix simply behaves like a quasiinert cage for the solution. These results are confirmed by 13C NMR at the magic angle (MAS) data, which show that the presence of the polymer does not significantly affect the chemical shift changes induced in the EC/PC carbons by the imide salt.

  15. Nanomaterials for Polymer Electrolyte Membrane Fuel Cells; Materials Challenges Facing Electrical Energy Storate

    Energy Technology Data Exchange (ETDEWEB)

    Gopal Rao, MRS Web-Editor; Yury Gogotsi, Drexel University; Karen Swider-Lyons, Naval Research Laboratory

    2010-08-05

    Symposium T: Nanomaterials for Polymer Electrolyte Membrane Fuel Cells Polymer electrolyte membrane (PEM) fuel cells are under intense investigation worldwide for applications ranging from transportation to portable power. The purpose of this seminar is to focus on the nanomaterials and nanostructures inherent to polymer fuel cells. Symposium topics will range from high-activity cathode and anode catalysts, to theory and new analytical methods. Symposium U: Materials Challenges Facing Electrical Energy Storage Electricity, which can be generated in a variety of ways, offers a great potential for meeting future energy demands as a clean and efficient energy source. However, the use of electricity generated from renewable sources, such as wind or sunlight, requires efficient electrical energy storage. This symposium will cover the latest material developments for batteries, advanced capacitors, and related technologies, with a focus on new or emerging materials science challenges.

  16. Synthesis of a Lewis-acidic boric acid ester monomer and effect of its addition to electrolyte solutions and polymer gel electrolytes on their ion transport properties

    International Nuclear Information System (INIS)

    A polymerizable anion receptor based on a boric acid ester was synthesized. When the anion receptor was added to different electrolyte solutions consisting of an aprotic solvent and a lithium salt, the ionic conductivity of certain electrolyte solutions, composed of low polar solvents or salts with low dissociation abilities, was enhanced appreciably. Viscosity measurements for the electrolyte solutions, with and without the added anion receptor, indicated that the conductivity enhancement was caused by an increase in the ionic dissociation due to the addition of the anion receptor. Pulse-field-gradient spin-echo (PGSE) NMR and 11B-NMR spectra supported that the ionic dissociation was facilitated by interaction between the Lewis-acidic anion receptor and Lewis-basic anions. The polymerizable anion receptor was crosslinked with a polyether macromonomer in different electrolyte solutions. Ionic conductivity of the resulting polymer gel electrolytes was also altered like that of the electrolyte solutions containing the anion receptor monomer

  17. Correlation between ionic conductivity and fluidity of polymer gel electrolytes containing NH4CF3SO3

    Indian Academy of Sciences (India)

    Harinder Pal Singh; Rajiv Kumar; S S Sekhon

    2005-08-01

    Nonaqueous polymer gel electrolytes containing ammonium triflate (NH4CF3SO3) and dimethylacetamide (DMA) with polymethylmethacrylate (PMMA) as the gelling polymer have been synthesized which show high value of conductivity (∼ 10-2 S/cm) at 25°C. The conductivity of polymer gel electrolytes containing different concentrations of NH4CF3SO3 shows a small decrease with the addition of PMMA and this has been correlated with the variation of fluidity of these gel electrolytes. The small decrease in conductivity with PMMA addition shows that polymer plays the role of stiffener and this is supported by FTIR results which also indicates the absence of any active interaction between polymer and NH4CF3SO3 in these gel electrolytes.

  18. Scalable plasticized polymer electrolytes reinforced with surface-modified sepiolite fillers - A feasibility study in lithium metal polymer batteries

    Science.gov (United States)

    Mejía, Alberto; Devaraj, Shanmukaraj; Guzmán, Julio; Lopez del Amo, Juan Miguel; García, Nuria; Rojo, Teófilo; Armand, Michel; Tiemblo, Pilar

    2016-02-01

    Electrochemical properties of (polyethylene oxide) (PEO)/lithium trifluoromethanesulfonate (LiTf)/ethylene carbonate (EC)/sepiolite extruded composite electrolytes were studied. Appreciable electrochemical stability of 4.5 V at 70 °C was observed for polymer composite membranes with D-α-tocopherol-polyethylene glycol 1000 succinate-coated sepiolite fillers. Lithium plating/stripping analysis indicated no evidence of dendrite formation with good interfacial properties which were further confirmed by postmortem analysis of the cells. Solid state NMR studies show the presence of two Li+ population in the membranes. The feasibility of these electrolytes has been shown with LiFePO4 cathode materials. Initial discharge capacity of 142 mAh/g was observed remaining at 110 mAh/g after 25 cycles with a coulombic efficiency of 96%. The upscaling of these polymers can be easily achieved by extrusion technique and the capacity can be improved by varying the cathode architecture.

  19. High voltage electric double layer capacitor using a novel solid-state polymer electrolyte

    Science.gov (United States)

    Sato, Takaya; Marukane, Shoko; Morinaga, Takashi; Kamijo, Toshio; Arafune, Hiroyuki; Tsujii, Yoshinobu

    2015-11-01

    We designed and fabricated a bipolar-type electric double layer capacitor (EDLC) with a maximum 7.5 V operating voltage using a new concept in solid electrolytes. A cell having a high operating voltage, that is free from liquid leakage and is non-flammable is achieved by a bipolar design utilizing a solid polymer electrolyte made up of particles in a three-dimensional array, such as crystals composed of 75 wt% of hybrid particles decorated with a concentrated ionic liquid polymer brush (PSiP) and 25wt% of an ionic liquid (IL). The resulting solid film had sufficient physical strength and a high enough ionic conductivity to function as an electrolyte. Solidification as well as ionic conduction is due to the regular array of PSiPs, thereby producing a high ion-conductivity from a networked path between cores containing an appropriate amount of IL as a plasticizer. The demonstration cell shows a relatively good cycle durability and rate properties up to a 10C discharge process. It also has a very small leakage current in continuous charging and better self-discharge properties, even at 60 °C, compared with conventional cells. This paper demonstrates the first successful fabrication of a bipolar EDLC in a simple structure using this novel polymer solid electrolyte.

  20. Direct dimethyl ether high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Vassiliev, Anton; Jensen, Jens Oluf; Li, Qingfeng;

    A high temperature polybenzimidazole (PBI) polymer fuel cell was fed with dimethyl ether (DME) and water vapour mixture on the anode at ambient pressure with air as oxidant. A peak power density of 79 mW/cm2 was achieved at 200°C. A conventional polymer based direct DME fuel cell is liquid fed and...... suffers from low DME solubility in water. When the DME - water mixture is fed as vapour miscibility is no longer a problem. The increased temperature is more beneficial for the kinetics of the direct oxidation of DME than of methanol. The Open Circuit Voltage (OCV) with DME operation was 50 to 100 m...

  1. Study on characteristics of PVDF/nano-clay composite polymer electrolyte using PVP as pore-forming agent

    International Nuclear Information System (INIS)

    Polyvinylidene fluoride (PVDF) based polymer electrolytes have a high dielectric constant, which can assist in greater ionization of lithium salts. The main advantages of PVDF are its durability in long battery operation and its ability to be a good ion conductor. However, the limitation of this polymer is its crystalline molecular structure. Dispersing nano-particles in the polymer matrix may improve the characteristics of the PVDF polymer. This paper aims to investigate the impact of nano-clay addition on the characteristics of PVDF polymer to be used as a polymer electrolyte membrane. In addition, the effect of poly(vinyl pyrrolidone) (PVP) is also investigated. The membrane was prepared by phase separation method whereas the polymer electrolyte membranes was prepared by immersing into 1 M lithium hexafluorophosphate (LiPF6) in ethylene carbonate/dimethyl carbonate (EC/DMC) electrolytes for 1 h. The membranes were characterized by scanning electron microscope (SEM), porosity and electrolyte uptake and performance in battery cell. The results showed that both nano-clay and PVP have significant impacts on the improvement of PVDF membranes to be used as polymer electrolyte

  2. Study on characteristics of PVDF/nano-clay composite polymer electrolyte using PVP as pore-forming agent

    Energy Technology Data Exchange (ETDEWEB)

    Dyartanti, Endah R., E-mail: heru.susanto@undip.ac.id, E-mail: endah-rd@uns.ac.id [Departement of Chemical Engineering, Sebelas Maret University, Surakarta (Indonesia); Department of Chemical Engineering, Diponegoro University, Semarang (Indonesia); Purwanto, Agus [Departement of Chemical Engineering, Sebelas Maret University, Surakarta (Indonesia); Widiasa, I. Nyoman; Susanto, Heru, E-mail: heru.susanto@undip.ac.id, E-mail: endah-rd@uns.ac.id [Department of Chemical Engineering, Diponegoro University, Semarang (Indonesia)

    2016-02-08

    Polyvinylidene fluoride (PVDF) based polymer electrolytes have a high dielectric constant, which can assist in greater ionization of lithium salts. The main advantages of PVDF are its durability in long battery operation and its ability to be a good ion conductor. However, the limitation of this polymer is its crystalline molecular structure. Dispersing nano-particles in the polymer matrix may improve the characteristics of the PVDF polymer. This paper aims to investigate the impact of nano-clay addition on the characteristics of PVDF polymer to be used as a polymer electrolyte membrane. In addition, the effect of poly(vinyl pyrrolidone) (PVP) is also investigated. The membrane was prepared by phase separation method whereas the polymer electrolyte membranes was prepared by immersing into 1 M lithium hexafluorophosphate (LiPF{sub 6}) in ethylene carbonate/dimethyl carbonate (EC/DMC) electrolytes for 1 h. The membranes were characterized by scanning electron microscope (SEM), porosity and electrolyte uptake and performance in battery cell. The results showed that both nano-clay and PVP have significant impacts on the improvement of PVDF membranes to be used as polymer electrolyte.

  3. Study on characteristics of PVDF/nano-clay composite polymer electrolyte using PVP as pore-forming agent

    Science.gov (United States)

    Dyartanti, Endah R.; Purwanto, Agus; Widiasa, I. Nyoman; Susanto, Heru

    2016-02-01

    Polyvinylidene fluoride (PVDF) based polymer electrolytes have a high dielectric constant, which can assist in greater ionization of lithium salts. The main advantages of PVDF are its durability in long battery operation and its ability to be a good ion conductor. However, the limitation of this polymer is its crystalline molecular structure. Dispersing nano-particles in the polymer matrix may improve the characteristics of the PVDF polymer. This paper aims to investigate the impact of nano-clay addition on the characteristics of PVDF polymer to be used as a polymer electrolyte membrane. In addition, the effect of poly(vinyl pyrrolidone) (PVP) is also investigated. The membrane was prepared by phase separation method whereas the polymer electrolyte membranes was prepared by immersing into 1 M lithium hexafluorophosphate (LiPF6) in ethylene carbonate/dimethyl carbonate (EC/DMC) electrolytes for 1 h. The membranes were characterized by scanning electron microscope (SEM), porosity and electrolyte uptake and performance in battery cell. The results showed that both nano-clay and PVP have significant impacts on the improvement of PVDF membranes to be used as polymer electrolyte.

  4. Advancing Polymer-Supported Ionogel Electrolytes Formed via Radical Polymerization

    Science.gov (United States)

    Visentin, Adam F.

    Applications ranging from consumer electronics to the electric grid have placed demands on current energy storage technologies. There is a drive for devices that store more energy for rapid consumption in the case of electric cars and the power grid, and safer, versatile design options for consumer electronics. Electrochemical double-layer capacitors (EDLCs) are an option that has garnered attention as a means to address these varied energy storage demands. EDLCs utilize charge separation in electrolytes to store energy. This energy storage mechanism allows for greater power density (W kg -1) than batteries and higher energy density (Wh kg-1) than conventional capacitors - along with a robust lifetime in the range of thousands to millions of charge-discharge cycles. Safety and working voltage windows of EDLCs currently on the market are limited by the organic solvents utilized in the electrolyte. A potential solution lies in the replacement of the organic solvents with ionic liquids, or room-temperature molten salts. Ionic liquids possess many superior properties in comparison to conventional solvents: wide electrochemical window, low volatility, nonflammability, and favorable ionic conductivity. It has been an endeavor of this work to exploit these advantages while altering the liquid form factor into a gel. An ionic liquid/solid support scaffold composite electrolyte, or ionogel, adds additional benefits: flexible device design, lower encapsulation weight, and elimination of electrolyte leakage. This work has focused on investigations of a UV-polymerizable monomer, poly(ethylene glycol) diacrylate, as a precursor for forming ionogels in situ. The trade-off between gaining mechanical stability at the cost of ionic conductivity has been investigated for numerous ionogel systems. While gaining a greater understanding of the interactions between the gel scaffold and ionic liquid, an ionogel with the highest known ionic conductivity to date (13.1 mS cm-1) was

  5. Ionic conductivity and transport properties of poly(vinylidene fluoride-co-hexafluoropropylene)-based solid polymer electrolytes

    Science.gov (United States)

    Abreha, Merhawi; Subrahmanyam, A. R.; Siva Kumar, J.

    2016-08-01

    Polymer electrolytes containing poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) and various concentrations of lithium triflate were prepared to determine the optimal polymer-salt composition for maximum ionic conductivity. Complex formation was ascertained from X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) studies. The conductivity measurements reveal that the ionic conductivity of the polymer electrolytes containing various salt concentrations increases with temperature and obeys the Arrhenius rule. It is found that the electrolyte containing 25 wt.% of lithium triflate exhibits the highest room temperature conductivity. Moreover, Ionic transference measurements show predominance of ionic motion.

  6. Static and dynamic filtrations of different clay, electrolytes, polymer systems; Filtrations statiques et dynamiques de differents systemes argile, electrolytes, polymere

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.

    1996-04-16

    Filtration properties of model drilling fluids composed of water, clays, electrolytes and water soluble polymers have been studied in static and dynamic conditions on paper filters and rock slices. Filtration experiments combined with cake observations by cryo-S.E.M. and T.E.M., show the influence of the size shape of clay particles as well as their associating mode in suspension, on the texture of the cake, its permeability, and relaxation properties. These parameters depend on the nature of the electrolyte. The polymer reduces the cake permeability by enhancing the dispersion of the clay within the suspension, but mainly by plugging the porous network due its auto aggregation properties. The cake construction in dynamic conditions, is related to the state of aggregation of the initial suspension, its poly-dispersity, its sensitivity to shear rates, and also, to the permeability of the cake built at the beginning of the filtration. In all cases, the rate of thickening of the cake is slower and larger filtrate volumes are obtained compared to the static conditions. Shear rate has two effects: first, to dissociate the weak aggregates in suspension, second, to impose a size selection of the particles in the case of a poly-dispersed suspension. At high shear rates, a cake of constant thin thickness is quickly obtained. The thickness of this limiting cake depends on the fraction of small particles present in suspension, or that can be formed by dissociation of weak aggregates under shear rate. The permeability of this limiting cake formed in dynamic conditions is, as in static conditions, controlled by the size and the shape of the particles that form the cake or by the presence of a build loss reducer water soluble polymer. Filtrations carried out on Fontainebleau sandstones allow to visualize the internal cake and to precise the risks of formation damage by the drilling fluid. (author) 127 refs.

  7. How a gel polymer electrolyte affects performance of lithium/sulfur batteries

    International Nuclear Information System (INIS)

    Highlights: •Conventional separator is coated with a 50PEO-50SiO2 (wt.%) composite layer. •Composite coating increases tensile strength and electrolyte wettability. •Coated separator offers an alternative approach for making gel polymer Li/S battery. •Li/S battery takes benefits of gel polymer electrolyte at the expense of capacity. -- Abstract: Gel polymer electrolyte (GPE) and composite gel polymer electrolyte (CGPE) have been widely employed to improve the safety and cycling performance of rechargeable lithium and lithium-ion batteries. In order to determine whether this approach is applicable to lithium/sulfur (Li/S) battery, we examine the effect of CGPE on the cycling and storage performances of Li/S cells by comparing a 50PEO-50SiO2 (wt.%) composite coated separator (C-separator) with a pristine separator (P-separator). Results show that the composite coating significantly enhances the wettability of liquid electrolyte on the separator and that resulting CGPE can tightly glue the separator and electrode together. In comparison with the P-separator, the C-separator offers Li/S cells similar capacity retention and rate capability; however it greatly affects the specific capacity of sulfur. The analysis on the impedance spectrum of a lithium polysulfide (PS) solution reveal that the reduction of sulfur specific capacity is due to the high viscosity of the CGPE and the strong adsorption of SiO2 filler to the PS species, which trap PS species in the separator and hence reduce the utilization of sulfur active material. Therefore, the benefits of the GPE and CGPE to the Li/S batteries can be taken only at the expense of sulfur specific capacity

  8. Development status of the General Electric solid polymer electrolyte water electrolysis technology

    Science.gov (United States)

    Nuttall, L. J.

    The solid polymer electrolyte used by the considered technology is a thin sheet (5 to 10 mil thickness) of a sulfonated fluoropolymer. It is a high strength plastic material which serves as the sole electrolyte, and also forms a rugged barrier between the hydrogen and oxygen chambers. The electrodes consist of a thin catalyst layer bonded to the surfaces of the plastic sheet. A description is presented of a 60-cell module, operating at the normal design point of 1000 amps per square foot. The module generates more than 2000 standard cubic feet per hour of hydrogen at a pressure of approximately 100 psig. Performance and cost projections are discussed.

  9. Dye-sensitized solar cells and solar module using polymer electrolytes: Stability and performance investigations

    OpenAIRE

    Jilian Nei de Freitas; Viviane Carvalho Nogueira; Bruno Ieiri Ito; Mauro Alfredo Soto-Oviedo; Claudia Longo; Marco-Aurelio De Paoli; Ana Flávia Nogueira

    2006-01-01

    We present recent results on solid-state dye-sensitized solar cell research using a polymer electrolyte based on a poly(ethylene oxide) derivative. The stability and performance of the devices have been improved by a modification in the method of assembly of the cells and by the addition of plasticizers in the electrolyte. After 30 days of solar irradiation (100 mW cm-2) no changes in the cell's efficiency were observed using this new method. The effect of the active area size on cell perform...

  10. Temperature dependence of conductivity enhancement induced by nanoceramic fillers in polymer electrolytes

    Science.gov (United States)

    Gao, S.; Yan, X. L.; Zhong, J.; Xue, G. B.; Wang, B.

    2013-04-01

    The microstructure and ionic conductivity of polymer nanocomposite electrolytes doped with ZnO have been systematically studied. Compared with the undoped one, a less crystalline phase, a restrained main chain movement, a reduced symmetry in the configuration of ethylene oxide/lithium ion, and an at least five-fold increase in conductivity were observed for the filler incorporated electrolyte. Lewis acid-base interactions are determining in causing these changes. The temperature dependence of conductivity is explained by the Vogel-Tammann-Fulcher equation based on the free volume theory. The mechanism of temperature dependent conductivity enhancement is interpreted by a modeling function proposed.

  11. Small angle neutron scattering data of polymer electrolyte membranes partially swollen in water.

    Science.gov (United States)

    Zhao, Yue; Yoshida, Miru; Oshima, Tatsuya; Koizumi, Satoshi; Rikukawa, Masahiro; Szekely, Noemi; Radulescu, Aurel; Richter, Dieter

    2016-06-01

    In this article, we show the small-angle neutron scattering (SANS) data obtained from the polymer electrolyte membranes (PEMs) equilibrated at a given relative humidity. We apply Hard-Sphere (HS) structure model with Percus-Yervick interference interactions to analyze the dataset. The molecular structure of these PEMs and the morphologies of the fully water-swollen membranes have been elucidated by Zhao et al. "Elucidation of the morphology of the hydrocarbon multi-block copolymer electrolyte membranes for proton exchange fuel cells" [1]. PMID:27054164

  12. A multiscale physical model of a polymer electrolyte membrane water electrolyzer

    International Nuclear Information System (INIS)

    In this paper we report a multiscale physical and transient model describing the operation of a polymer electrolyte membrane water electrolyzer single cell. This model includes a detailed description of the elementary electrode kinetics, a description of the behavior of the nanoscale catalyst–electrolyte interface, and a microstructural description of the transport of chemical species and charges at the microscale along the whole membrane electrodes assembly (MEA). We present an impact study of different catalyst materials on the performance of the PEMWEs and a sensitivity study to the operation conditions, both evaluated from numerical simulations and with results discussed in comparison with available experimental data

  13. The Characterization of Comblike Polymer Electrolyte by Means of NMR

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The comblike polymers based on poly (styrene-co-maleic anhydride) backbone with poly (ethylene glycol) methyl ether as side chains were synthesized and characterized by 1H NMR, with the result compared with that of IR.It is found that it is both feasible and simple to synthesize this kind of compounds with the help of 1H NMR.

  14. Preparation and characterization of nanocomposite polymer electrolytes poly(vinylidone fluoride)/nanoclay

    Energy Technology Data Exchange (ETDEWEB)

    Rahmawati, Suci A.; Sulistyaningsih,; Putro, Alviansyah Z. A.; Widyanto, Nugroho F.; Jumari, Arif; Purwanto, Agus; Dyartanti, Endah R., E-mail: endahrd@uns.ac.id [Research Group of Battery & Advanced Material, Department of Chemical Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A Kentingan, Surakarta Indonesia 57126 (Indonesia)

    2016-02-08

    Polymer electrolytes are defined as semi solid electrolytes used as separator in lithium ion battery. Separator used as medium for transfer ions and to prevent electrical short circuits in battery cells. To obtain the optimal battery performance, separator with high porosity and electrolyte uptake is required. This can reduce the resistance in the transfer of ions between cathode and anode. The main objective of this work is to investigate the impact of different solvent (Dimethyl acetamide (DMAc), N-methyl-2-pyrrolidone (NMP) and dimethyl formamide (DMF)), pore forming agent poly(vinylpyrolidone) (PVP) and nanoclay as filler in addition of membrane using phase inversion method on the morphology, porosity, electrolyte uptake and degree of crystallinity. The membrane was prepared by the phase inversion method by adding PVP and Nanoclay using different solvents. The phase inversion method was prepared by dissolving Nanoclay and PVP in solvent for 1-2 hours, and then add the PVDF with stirring for 4 hours at 60°C. The membranes were characterized by porosity test, electrolyte uptake test, scanning electron microscope (SEM), and X-ray diffraction (XRD). The results showed that DMAc as solvent gives the highest value of porosity and electrolyte uptake. The addition of nanoclay and PVP enlarge the size of the pores and reduce the degree of crystallinity. So, the usage of DMAc as solvent is better than NMP or DMF.

  15. Preparation and characterization of nanocomposite polymer electrolytes poly(vinylidone fluoride)/nanoclay

    Science.gov (United States)

    Rahmawati, Suci A.; Sulistyaningsih, Putro, Alviansyah Z. A.; Widyanto, Nugroho F.; Jumari, Arif; Purwanto, Agus; Dyartanti, Endah R.

    2016-02-01

    Polymer electrolytes are defined as semi solid electrolytes used as separator in lithium ion battery. Separator used as medium for transfer ions and to prevent electrical short circuits in battery cells. To obtain the optimal battery performance, separator with high porosity and electrolyte uptake is required. This can reduce the resistance in the transfer of ions between cathode and anode. The main objective of this work is to investigate the impact of different solvent (Dimethyl acetamide (DMAc), N-methyl-2-pyrrolidone (NMP) and dimethyl formamide (DMF)), pore forming agent poly(vinylpyrolidone) (PVP) and nanoclay as filler in addition of membrane using phase inversion method on the morphology, porosity, electrolyte uptake and degree of crystallinity. The membrane was prepared by the phase inversion method by adding PVP and Nanoclay using different solvents. The phase inversion method was prepared by dissolving Nanoclay and PVP in solvent for 1-2 hours, and then add the PVDF with stirring for 4 hours at 60°C. The membranes were characterized by porosity test, electrolyte uptake test, scanning electron microscope (SEM), and X-ray diffraction (XRD). The results showed that DMAc as solvent gives the highest value of porosity and electrolyte uptake. The addition of nanoclay and PVP enlarge the size of the pores and reduce the degree of crystallinity. So, the usage of DMAc as solvent is better than NMP or DMF.

  16. Preparation and characterization of nanocomposite polymer electrolytes poly(vinylidone fluoride)/nanoclay

    International Nuclear Information System (INIS)

    Polymer electrolytes are defined as semi solid electrolytes used as separator in lithium ion battery. Separator used as medium for transfer ions and to prevent electrical short circuits in battery cells. To obtain the optimal battery performance, separator with high porosity and electrolyte uptake is required. This can reduce the resistance in the transfer of ions between cathode and anode. The main objective of this work is to investigate the impact of different solvent (Dimethyl acetamide (DMAc), N-methyl-2-pyrrolidone (NMP) and dimethyl formamide (DMF)), pore forming agent poly(vinylpyrolidone) (PVP) and nanoclay as filler in addition of membrane using phase inversion method on the morphology, porosity, electrolyte uptake and degree of crystallinity. The membrane was prepared by the phase inversion method by adding PVP and Nanoclay using different solvents. The phase inversion method was prepared by dissolving Nanoclay and PVP in solvent for 1-2 hours, and then add the PVDF with stirring for 4 hours at 60°C. The membranes were characterized by porosity test, electrolyte uptake test, scanning electron microscope (SEM), and X-ray diffraction (XRD). The results showed that DMAc as solvent gives the highest value of porosity and electrolyte uptake. The addition of nanoclay and PVP enlarge the size of the pores and reduce the degree of crystallinity. So, the usage of DMAc as solvent is better than NMP or DMF

  17. Electrical properties of biodegradable poly(ε-caprolactone): lithium thiocyanate complexed polymer electrolyte films

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • The minimum Tm and χc values are observed in 15 wt% LiSCN complexed film. • The conductivity of PCL:LiSCN complexed films follows Johnscher's power law. • Conductivity and dielectric constant follows the same trend. • The charge carriers responsible for both conduction and relaxation are the same. - Abstract: Lithium ion conducting polymer electrolyte films based on biodegradable poly(ε-caprolactone) (PCL) complexed with lithium thiocyanate (LiSCN) salt were prepared by solution cast technique. Thermal and electrical properties of the polymer electrolyte films were studied using differential scanning calorimetry (DSC) and ac impedance spectroscopy. In order to investigate the ion conduction mechanism and relaxation behavior of complex polymer electrolyte films, the conductivity, dielectric constant, loss tangent and electric modulus were analyzed as a function of frequency and temperature. The variation of conductivity with frequency obeyed the Johnscher's power law. The dielectric constant exhibited a higher value at a lower frequency and increased with rising temperature due to the polar nature of host polymer. The activation energies for both dc conductivity and relaxation had the same value (∼0.87 eV), implying that the charge carriers responsible for both conduction and relaxation were the same

  18. Enhancement of Li+ ion conductivity in solid polymer electrolytes using surface tailored porous silica nanofillers

    Science.gov (United States)

    Mohanta, Jagdeep; Singh, Udai P.; Panda, Subhendu K.; Si, Satyabrata

    2016-09-01

    The current study represents the design and synthesis of polyethylene oxide (PEO)-based solid polymer electrolytes by solvent casting approach using surface tailored porous silica as nanofillers. The surface tailoring of porous silica nanostructure is achieved through silanization chemistry using 3-glycidyloxypropyl trimethoxysilane in which silane part get anchored to the silica surface whereas epoxy group get stellated from the silica surface. Surface tailoring of silica with epoxy group increases the room temperature electrochemical performances of the resulting polymer electrolytes. Ammonical hydrolysis of organosilicate precursor is used for both silica preparation and their surface tailoring. The composite solid polymer electrolyte films are prepared by solution mixing of PEO with lithium salt in presence of silica nanofillers and cast into film by solvent drying, which are then characterized by impedance measurement for conductivity study and wide angle x-ray diffraction for change in polymer crystallinity. Room temperature impedance measurement reveals Li+ ion conductivity in the order of 10‑4 S cm‑1, which is correlated to the decrease in PEO crystallinity. The enhancement of conductivity is further observed to be dependent on the amount of silica as well as on their surface characteristics.

  19. Novel cellulose reinforcement for polymer electrolyte membranes with outstanding mechanical properties

    International Nuclear Information System (INIS)

    Highlights: ► UV-cured methacrylic-based composite gel-polymer electrolyte membranes for rechargeable lithium batteries. ► Excellent mechanical stability by reinforcement with classical cellulose handsheets. ► Fast and environmentally friendly preparation process, green and low cost cellulose reinforcement. ► Good electrochemical behaviour, stable cyclability and long-term performances in real battery configuration. - Abstract: Methacrylic-based thermo-set gel-polymer electrolytes obtained by an easy and reliable free radical photo-polymerisation process demonstrate good behaviour in terms of ionic conductivity, interfacial stability with the Li-metal electrode and cyclability in lithium cells. Though the obtained membranes are flexible, self standing and easy to handle, there is room for improving mechanical strength. In this respect, a novel approach is adopted in this work, in which a cellulose hand-sheet (paper), specifically designed for the specific application, is used as a composite reinforcing agent. To enhance its compatibility with the polymer matrix, cellulose is modified by UV-grafting of poly(ethylene glycol) methyl ether methacrylate on it. Excellent mechanical properties are obtained and good overall electrochemical performances are maintained; highlighting that such specific approach would make these hybrid organic, green, cellulose-based composite polymer electrolyte systems a strong contender in the field of thin and flexible Li-based power sources.

  20. Structure and ionic conductivity of ionic liquid embedded PEO- LiCF3SO3 polymer electrolyte

    OpenAIRE

    Karmakar, A.; Ghosh, A.

    2014-01-01

    In this paper we have reported electrical and other physical properties of polyethylene oxide (PEO) - LiCF3SO3 polymer electrolytes embedded with 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid. The addition of the ionic liquid to PEO- LiCF3SO3 electrolyte increases the amorphous phase content considerably and decreases the glass transition temperature. The relative amounts of different ionic species present in these electrolytes have been determined. It is observed that th...

  1. Solid-state sodium batteries using polymer electrolytes and sodium intercalation electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering]|[Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.

    1996-08-01

    Solid-state sodium cells using polymer electrolytes (polyethylene oxide mixed with sodium trifluoromethanesulfonate: PEO{sub n}NaCF{sub 3}SO{sub 3}) and sodium cobalt oxide positive electrodes are characterized in terms of discharge and charge characteristics, rate capability, cycle life, and energy and power densities. The P2 phase Na{sub x}CoO{sub 2} can reversibly intercalate sodium in the range of x = 0.3 to 0.9, giving a theoretical specific energy of 440 Wh/kg and energy density of 1,600 Wh/l. Over one hundred cycles to 60% depth of discharge have been obtained at 0.5 mA/cm{sup 2}. Experiments show that the electrolyte/Na interface is stable and is not the limiting factor to cell cycle life. Na{sub 0.7}CoO{sub 2} composite electrodes containing various amounts of carbon black additive are investigated. The transport properties of polymer electrolytes are the critical factors for performance. These properties (the ionic conductivity, salt diffusion coefficient, and ion transference number) are measured for the PEO{sub n}NaCF{sub 3}SO{sub 3} system over a wide range of concentrations at 85 C. All the three transport properties are very salt-concentration dependent. The ionic conductivity exhibits a maximum at about n = 20. The transference number, diffusion coefficient, and thermodynamic factor all vary with salt concentration in a similar fashion, decreasing as the concentration increases, except for a local maximum. These results verify that polymer electrolytes cannot be treated as ideal solutions. The measured transport-property values are used to analyze and optimize the electrolytes by computer simulation and also cell testing. Salt precipitation is believed to be the rate limiting process for cells using highly concentrated solutions, as a result of lower values of these properties, while salt depletion is the limiting factor when a dilute solution is used.

  2. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf

    The new development in the field of polymer electrolyte membrane fuel cell (PEMFC) is high temperature PEMFC for operation above 100°C, which has been successfully demonstrated through the previous EC Joule III and the 5th framework programme. New challenges are encountered, bottlenecks for the new...... of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer and afterburner, that are compatible with the HT-PEMFC; and (3) integration of the HT...... catalytic burner are to be developed and integrated with the stack. The key issue of the project is development and improvement of the temperature-resistant polymer membranes with respect to durability, conductivity, mechanical and other properties. For this purpose, basic polymers will be first synthesized...

  3. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Li, Qingfeng

    Polymer electrolyte membrane fuel cell (PEMFC) technology based on Nafion membranes can operate at temperatures around 80°C. The new development in the field is high temperature PEMFC for operation above 100°C, which has been successfully demonstrated through the previous EC Joule III and the 5th...... system integration of the high temperature PEMFC. The strategic developments of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer, afterburner and......, conductivity, mechanical and other properties. For this purpose, basic polymers will be first synthesized and optimized. Different routes to functionalize the polymers will be explored to increate proton conductivity. By the development of advanced materials, demonstration of the high temperature PEMFC stack...

  4. Development of solid polymer electrolytes for water electrolysis at intermediate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Linkous, C.A. (Florida Solar Energy Center, Cape Canaveral, FL (United States))

    1993-08-01

    The hydrolytic stability of a number of high-temperature polymers was determined at 200[sup o], 300[sup o] and 400[sup o]C. None of the better-known ion-conducting polymers, such as perfluorinated alkyl sulfonate and poly(ethylene oxide) were stable at these temperatures. Based on 24 h exposure under steam/H[sub 2] and steam/O[sub 2] atmospheres at 200[sup o]C, liquid crystal polyesters, polybenzimidazoles and some polyimides showed sufficient stability to warrant further study. Polyphenylene sulfides, polysulfones, polyketones and some polyimides showed reasonable stability at 300[sup o]C. No candidates were found to be stable under steam/O[sub 2] at 400[sup o]C, although some were stable under steam/H[sub 2] at that temperature. The possibility of converting high temperature polymers into highly conductive polymer electrolytes is discussed. (Author)

  5. Studies on AC Electrical Conductivity of CdCl2 Doped PVA Polymer Electrolyte

    Directory of Open Access Journals (Sweden)

    M. B. Nanda Prakash

    2013-01-01

    Full Text Available PVA-based polymer electrolytes were prepared with various concentrations of CdCl2 using solvent casting method. Prepared polymer films were investigated using line profile analysis employing X-ray diffraction (XRD data. XRD results show that the crystallite size decreases and then increases with increase in CdCl2. AC conductivity in these polymer increases films first and then decreases. These observations are in agreement with XRD results. The highest ionic conductivity of 1.68E − 08 Scm−1 was observed in 4% of CdCl2 in PVA polymer blend. Crystallite ellipsoids for different concentrations of CdCl2 are computed here using whole pattern powder fitting (WPPF indicating that crystallite area decreases with increase in the ionic conductivity.

  6. Electrolytic membrane formation of fluoroalkyl polymer using a UV-radiation-based grafting technique and sulfonation

    Energy Technology Data Exchange (ETDEWEB)

    Shironita, Sayoko; Mizoguchi, Satoko; Umeda, Minoru, E-mail: mumeda@vos.nagaokaut.ac.jp [Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Niigata (Japan)

    2011-03-15

    A sulfonated fluoroalkyl graft polymer (FGP) membrane was prepared as a polymer electrolyte. First, the FGP membrane was grafted with styrene under UV irradiation. The grafted FGP was then sulfonated to functionalize it for proton conductivity. The grafting degree of the membrane increased with increasing grafting time during UV irradiation. The proton conductivity of the membrane increased with increasing grafting degree. The swelling ratio was independent of the grafting time, however, the water uptake increased with increasing grafting degree. Based on these results, it was found that the UV-initiated styrene grafting occurred along the membrane thickness direction. Moreover, the membrane was embedded within the glass fibers of the composite. This composite electrolytic membrane had 1.15 times the proton conductivity of a Nafion 117 membrane.

  7. Hot-Pressing Effects on Polymer Electrolyte Membrane Investigated by 2H NMR Spectroscopy

    International Nuclear Information System (INIS)

    The structural change of Nafion polymer electrolyte membrane (PEM) induced by hot-pressing, which is one of the representative procedures for preparing membrane-electrode-assembly for low temperature fuel cells, was investigated by 2H nuclear magnetic resonance (NMR) spectroscopy. The hydrophilic channels were asymmetrically flattened and more aligned in the membrane plane than along the hot-pressing direction. The average O-2H director of 2H2O in polymer electrolyte membrane was employed to extract the structural information from the 2H NMR peak splitting data. The dependence of 2H NMR data on water contents was systematically analyzed for the first time. The approach presented here can be used to understand the chemicals' behavior in nano-spaces, especially those reshaping and functioning interactively with the chemicals in the wet and/or mixed state

  8. Solid polymer electrolyte 49 % poly(methyl methacrylate)-grafted natural rubber-lithium tetrafluoroborate)

    International Nuclear Information System (INIS)

    The potential of 49 % poly(methyl methacrylate) grafted natural rubber (MG49) as a solid polymer electrolyte film for application in electrochemical device system has been investigated. The MG49 films with LiBF4 as a doping salt were prepared by solution casting technique. The ionic conductivity investigated by electrochemical impedance spectroscopy showed the optimum ionic conductivity was given by 25 wt % of LiBF4 salt loading with ionic conductivity value, 1.49 x 10-9 S.cm-1 at room temperature. The observation on structural and morphology studies have been done by X-ray diffraction and scanning electron microscopy. Results showed that complexation and crystallization occurred in polymer electrolyte system. This gave low electrical conductivity value even though the addition of LiBF4 salt has reached the optimum level. (author)

  9. High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte.

    Science.gov (United States)

    Sun, Yubao; Li, Gai; Lai, Yuanchu; Zeng, Danli; Cheng, Hansong

    2016-01-01

    Lithium-sulfur batteries are highly promising for electric energy storage with high energy density, abundant resources and low cost. However, the battery technologies have often suffered from a short cycle life and poor rate stability arising from the well-known "polysulfide shuttle" effect. Here, we report a novel cell design by sandwiching a sp(3) boron based single ion conducting polymer electrolyte film between two carbon films to fabricate a composite separator for lithium-sulfur batteries. The dense negative charges uniformly distributed in the electrolyte membrane inherently prohibit transport of polysulfide anions formed in the cathode inside the polymer matrix and effectively blocks polysulfide shuttling. A battery assembled with the composite separator exhibits a remarkably long cycle life at high charge/discharge rates. PMID:26898772

  10. Mass transport aspects of polymer electrolyte fuel cells under two-phase flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, D.

    2007-03-15

    This well-illustrated, comprehensive dissertation by Dr. Ing. Denis Kramer takes an in-depth look at polymer electrolyte fuel cells (PEFC) and the possibilities for their application. First of all, the operating principles of polymer electrolyte fuel cells are described and discussed, whereby thermodynamics aspects and loss mechanisms are examined. The mass transport diagnostics made with respect to the function of the cells are discussed. Field flow geometry, gas diffusion layers and, amongst other things, liquid distribution, the influence of flow direction and the low-frequency behaviour of air-fed PEFCs are discussed. Direct methanol fuel cells are examined, as are the materials chosen. The documentation includes comprehensive mathematical and graphical representations of the mechanisms involved.

  11. High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte

    Science.gov (United States)

    Sun, Yubao; Li, Gai; Lai, Yuanchu; Zeng, Danli; Cheng, Hansong

    2016-02-01

    Lithium-sulfur batteries are highly promising for electric energy storage with high energy density, abundant resources and low cost. However, the battery technologies have often suffered from a short cycle life and poor rate stability arising from the well-known “polysulfide shuttle” effect. Here, we report a novel cell design by sandwiching a sp3 boron based single ion conducting polymer electrolyte film between two carbon films to fabricate a composite separator for lithium-sulfur batteries. The dense negative charges uniformly distributed in the electrolyte membrane inherently prohibit transport of polysulfide anions formed in the cathode inside the polymer matrix and effectively blocks polysulfide shuttling. A battery assembled with the composite separator exhibits a remarkably long cycle life at high charge/discharge rates.

  12. Characterization of ι-carrageenan and its derivative based green polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Jumaah, Fatihah Najirah; Mobaraka, Nadhratun Naiim; Ahmad, Azizan; Ramli, Nazaruddin [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    The new types of green polymer electrolytes based on ι-carrageenan derivative have been prepared. ι-carrageenan act as precursor was reacted with monochloroacetic acid to produce carboxymethyl ι-carrageenan. The powders were characterized by Attenuated Total Reflection Fourier Transform infrared (ATR-FTIR) spectroscopy and {sup 1}H nuclear magnetic resonance (NMR) to confirm the substitution of targeted functional group in ι-carrageenan. The green polymer electrolyte based on ι-carrageenan and carboxymethyl ι-carrageenan was prepared by solution-casting technique. The films were characterized by electrochemical impedance spectroscopy to determine the ionic conductivity. The ionic conductivity ι-carrageenan film were higher than carboxymethyl ι-carrageenan which 4.87 ×10{sup −6} S cm{sup −1} and 2.19 ×10{sup −8} S cm{sup −1}, respectively.

  13. NMR and conductivity study of PEO-based composite polymer electrolytes

    International Nuclear Information System (INIS)

    The influence of the space charge created by the presence of TiO2 nanoparticles on the lithium and polymer chain mobility have been investigated in solid composite polymer electrolytes (CPE), poly(ethylene oxide) (PEO) LiClO4, by using complex impedance spectroscopy and nuclear magnetic resonance (NMR). Special care was taken with the synthesis and the characterization of the TiO2 particles and with the composite preparation. The conductivity and NMR measurements were undertaken in composite samples nanoparticles having constant total surface area. Proton (1H) and lithium (7Li) lineshapes and spin-lattice relaxation times were measured as a function of temperature. Activation energies extracted from the 7Li relaxation data are in the range 0.20-0.22 eV. The NMR decoupling experiment suggests that the Li-Li interactions are stronger in the composites when compared with those of the ceramic free electrolytes

  14. Characterization of ɽ -carrageenan and its derivative based green polymer electrolytes

    Science.gov (United States)

    Jumaah, Fatihah Najirah; Mobaraka, Nadhratun Naiim; Ahmad, Azizan; Ramli, Nazaruddin

    2013-11-01

    The new types of green polymer electrolytes based on ɽ -carrageenan derivative have been prepared. ɽ -carrageenan act as precursor was reacted with monochloroacetic acid to produce carboxymethyl ɽ -carrageenan. The powders were characterized by Attenuated Total Reflection Fourier Transform infrared (ATR-FTIR) spectroscopy and 1H nuclear magnetic resonance (NMR) to confirm the substitution of targeted functional group in ɽ -carrageenan. The green polymer electrolyte based on ɽ -carrageenan and carboxymethyl ɽ -carrageenan was prepared by solution-casting technique. The films were characterized by electrochemical impedance spectroscopy to determine the ionic conductivity. The ionic conductivity ɽ -carrageenan film were higher than carboxymethyl ɽ -carrageenan which 4.87 ×10-6 S cm-1 and 2.19 ×10-8 S cm-1, respectively.

  15. Temperature dependent dielectric properties and ion transportation in solid polymer electrolyte for lithium ion batteries

    Science.gov (United States)

    Sengwa, R. J.; Dhatarwal, Priyanka; Choudhary, Shobhna

    2016-05-01

    Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF4) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governed by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10-6 S cm-1 which suggests the suitability of the SPE film for rechargeable lithium batteries.

  16. Studies of plastic crystal gel polymer electrolytes based on poly(vinylidene chloride-co-acrylonitrile)

    Science.gov (United States)

    Hambali, D.; Zainuddin, Z.; Supa'at, I.; Osman, Z.

    2016-02-01

    In this work, we have prepared systems of poly(vinylidene chloride-co-acrylonitrile) (PVdC-co-AN) based gel polymer electrolytes (GPEs) which are single plasticized-GPEs and double plasticized-GPEs. Both systems comprised plastic crystal succinonitrile SN to form plastic crystal gel polymer electrolyte (PGPE) films. The ionic conductivity of the PGPE films were analysed by means of a.c. impedance spectroscopy at room temperature as well as at the temperature range of 303 K to 353 K. The temperature dependence ionic conductivity was found to obey the VTF rule. To study the interactions among the constituents in the PGPEs, Fourier Transform Infrared Spectroscopy (FTIR) was carried out and hence, the complexation between them has also been confirmed.

  17. Electrochemical behavior of CrN coating for polymer electrolyte membrane fuel cell

    International Nuclear Information System (INIS)

    CrN films on a bipolar plate in polymer electrolyte membrane fuel cells have several advantages owing to their excellent corrosion resistance and mechanical properties. Three CrN samples deposited at various radio frequency (RF) powers by RF magnetron sputtering were evaluated under potentiodynamic, potentiostatic and electrochemical impedance spectroscopy conditions. The electrochemical impedance spectroscopy data were monitored for 168 h in a corrosive environment at 70 0C to determine the coating performance at +600 mVSCE under simulated cathodic conditions in a polymer electrolyte membrane fuel cell. The electrochemical behavior of the coatings increased with decreasing RF power. CrN films on the AISI 316 stainless steel substrate showed high protective efficiency and charge transfer resistance, i.e. increasing corrosion resistance with decreasing RF power. X-ray diffraction confirmed the formation of a CrN(200) preferred orientation at low RF power.

  18. An overview of polymer electrolyte membrane electrolyzer for hydrogen production: Modeling and mass transport

    Science.gov (United States)

    Abdol Rahim, A. H.; Tijani, Alhassan Salami; Kamarudin, S. K.; Hanapi, S.

    2016-03-01

    Polymer electrolyte membrane electrolyzer (PEME) is a candidate for advanced engineering technology. There are many polymer electrolyte membrane fuel cell (PEMFC) models that have been reported, but none regarding PEME. This paper presents state of the art mass transport models applied to PEME, a detailed literature review of these models and associate methods have been conducted. PEME models are typically developed using analytical, semi empirical and mechanistic techniques that are based on their state and spatial dimensions. Methods for developing the PEME models are introduced and briefly explained. Furthermore the model cell voltage of PEME, which consists of Nernst voltage, ohmic over potential, activation over potential, and diffusion over potential is discussed with focus on mass transport modeling. This paper also presents current issues encountered with PEME model.

  19. Polymer electrolyte system based on carrageenan-poly(3,4- ethylenedioxythiophene) (PEDOT) composite for dye sensitized solar cell

    Science.gov (United States)

    Ng, C. A.; Camacho, D. H.

    2015-06-01

    Poly(3,4-ethylenedioxythiophene) (PEDOT)-κ-carregeenan polymer electrolyte blend was prepared and incorporated as the electrolyte system in dye-sensitized solar cells (DSSC). Polymer blends prepared with different κ-carrageenan concentrations and molecular weights were investigated. It was found that the conductivity of the polymer blend increases with higher κ-carrageenan concentration, and lowers with degraded κ-carregeenan. The polymer blend was incorporated in a DSSC and yielded a solar cell with efficiency (η) of 0.421%.

  20. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries

    Science.gov (United States)

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G.; Lee, Yoon-Sung; Kim, Dong-Won

    2016-05-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures.

  1. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries.

    Science.gov (United States)

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G; Lee, Yoon-Sung; Kim, Dong-Won

    2016-01-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures. PMID:27189842

  2. Conductivity through Polymer Electrolytes and Its Implications in Lithium-Ion Batteries: Real-World Application of Periodic Trends

    Science.gov (United States)

    Compton, Owen C.; Egan, Martin; Kanakaraj, Rupa; Higgins, Thomas B.; Nguyen, SonBinh T.

    2012-01-01

    Periodic conductivity trends are placed in the scope of lithium-ion batteries, where increases in the ionic radii of salt components affect the conductivity of a poly(ethyleneoxide)-based polymer electrolyte. Numerous electrolytes containing varying concentrations and types of metal salts are prepared and evaluated in either one or two laboratory…

  3. Radiolytic preparation of PFA-g-PVBSA membranes as a polymer electrolyte membrane

    Energy Technology Data Exchange (ETDEWEB)

    Fei Geng [Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Nansanhuan Road 99, Changshu, Jiangsu 215-500 (China); Hwang, Mi-Lim; Sohn, Joon-Yong; Nho, Young Chang [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Shin, Junhwa, E-mail: shinj@kaeri.re.kr [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)

    2012-03-01

    In this study, a polymer electrolyte membrane, PFA-g-PVBSA was prepared through the radiation-induced graft copolymerization of vinylbenzyl chloride (VBC) monomer onto a poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) (PFA) film and subsequent sulfonation processes. The IEC values and water uptakes of the prepared membranes increased when increasing the contents of the poly(vinylbenzyl sulfonic acid) (PVBSA) graft polymers in the membranes. Compared with Nafion 212, the degree of grafting (DOG) of membranes of 50% and 70% showed higher proton conductivity with significantly lower methanol permeability. The combination of these properties suggests that the prepared membranes are promising for future application in direct methanol fuel cells.

  4. Enhanced electrical transport in ionic liquid dispersed TMAI-PEO solid polymer electrolyte

    International Nuclear Information System (INIS)

    A polymer composite is prepared by dispersing ionic liquid [Bmim][BF4] in Polyethylene oxide-tetra methyl ammonium iodide composite and subsequent microwave treatment. X-ray diffraction patterns confirm the composite nature. To explore possibility of proton conductivity in these films, electrical transport is studied by impedance spectroscopy and DC polarization. It is revealed that addition of ionic liquid in host TMAI-PEO solid polymer electrolyte enhances the conductivity by ∼ 2 orders of magnitude. Polarization measurements suggest that composites are essentially ion conducting in nature. The maximum ionic conductivity is found to be ∼2 × 10−5 for 10 wt % ionic liquid

  5. Polymer electrolytes for lithium-ion batteries operating at elevated temperatures

    Czech Academy of Sciences Publication Activity Database

    Reiter, Jakub; Dominko, R.; Jakubec, Ivo; Michálek, J.

    Brno : University of Technology Brno, 2008, s. 58-61. ISBN 978-80-214-3659-6. [International Conference Advanced Batteries and Accumulators /9./. Brno (CZ), 29.06.2008-03.07.2008] R&D Projects: GA MŠk LC523; GA AV ČR KJB400320701 Institutional research plan: CEZ:AV0Z40320502 Keywords : polymer electrolytes Subject RIV: CA - Inorganic Chemistry

  6. Estimation of localized current anomalies in polymer electrolyte fuel cells from magnetic flux density measurements

    Science.gov (United States)

    Nara, Takaaki; Koike, Masanori; Ando, Shigeru; Gotoh, Yuji; Izumi, Masaaki

    2016-05-01

    In this paper, we propose novel inversion methods to estimate defects or localized current anomalies in membrane electrode assemblies (MEAs) in polymer electrolyte fuel cells (PEFCs). One method is an imaging approach with L1-norm regularization that is suitable for estimation of focal anomalies compared to Tikhonov regularization. The second is a complex analysis based method in which multiple pointwise current anomalies can be identified directly and algebraically from the measured magnetic flux density.

  7. Li Ion Conducting Polymer Gel Electrolytes Based on Ionic Liquid/PVDF-HFP Blends

    OpenAIRE

    Ye, Hui; Huang, Jian; Xu, Jun John; Khalfan, Amish; Greenbaum, Steve G.

    2007-01-01

    Ionic liquids thermodynamically compatible with Li metal are very promising for applications to rechargeable lithium batteries. 1-methyl-3-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P13TFSI) is screened out as a particularly promising ionic liquid in this study. Dimensionally stable, elastic, flexible, nonvolatile polymer gel electrolytes (PGEs) with high electrochemical stabilities, high ionic conductivities and other desirable properties have been synthesized by dissolving Li i...

  8. A new nanocomposite polymer electrolyte based on poly(vinyl alcohol) incorporating hypergrafted nano-silica

    KAUST Repository

    Hu, Xian-Lei

    2012-01-01

    Solid-state nanocomposite polymer electrolytes based on poly(vinyl alcohol)(PVA) incorporating hyperbranched poly(amine-ester) (HBPAE) grafted nano-silica (denoted as SiO2-g-HBPAE) have been prepared and investigated. Through surface pretreatment of nanoparticles, followed by Michael-addition and a self-condensation process, hyperbranched poly(amine-ester) was directly polymerized from the surface of nano-silica. Then the hypergrafted nanoparticles were added to PVA matrix, and blended with lithium perchlorate via mold casting method to fabricate nanocomposite polymer electrolytes. By introducing hypergrafted nanoparticles, ionic conductivity of solid composite is improved significantly at the testing temperature. Hypergrafted nano-silica may act as solid plasticizer, promoting lithium salt dissociation in the matrix as well as improving segmental motion of matrix. In addition, tensile testing shows that such materials are soft and tough even at room temperature. From the dielectric spectra of nanocomposite polymer electrolyte as the function of temperature, it can be deduced that Arrhenius behavior appears depending on the content of hypergrafted nano-silica and concentration of lithium perchlorate. At a loading of 15 wt% hypergrafted nano-silica and 54 wt% lithium perchlorate, promising ionic conductivities of PVA nanocomposite polymer electrolyte are achieved, about 1.51 × 10 -4 S cm-1 at 25 °C and 1.36 × 10-3 S cm-1 at 100 °C. © The Royal Society of Chemistry.

  9. Polymer electrolyte membrane degradation and mobility in fuel cells : a solid-state NMR investigation

    OpenAIRE

    Ghassemzadeh Khoshkroodi, Lida

    2010-01-01

    It is generally believed that fuel cells will play an important role in energy technology already in the near future. Operating polymer electrolyte membrane fuel cells (PEMFCs) at temperatures higher than 100 °C and reduced humidity is anticipated to avoid most of the shortcomings associated with the low-temperature fuel cell operation, such as CO poisoning of the electrode catalysts, slow electrode kinetics of the oxygen reduction reaction and expensive water/thermal management. To date, the...

  10. High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte

    OpenAIRE

    Yubao Sun; Gai Li; Yuanchu Lai; Danli Zeng; Hansong Cheng

    2016-01-01

    Lithium-sulfur batteries are highly promising for electric energy storage with high energy density, abundant resources and low cost. However, the battery technologies have often suffered from a short cycle life and poor rate stability arising from the well-known “polysulfide shuttle” effect. Here, we report a novel cell design by sandwiching a sp 3 boron based single ion conducting polymer electrolyte film between two carbon films to fabricate a composite separator for lithium-sulfur batterie...

  11. Study and development of a hydrogen/oxygen fuel cell in solid polymer electrolyte technology

    Energy Technology Data Exchange (ETDEWEB)

    Mosdale, R.

    1992-10-29

    The hydrogen/oxygen fuel cell appears today as the best candidate to the replacing of the internal combustion engine for automobile traction. This system uses the non explosive electrochemical recombination of hydrogen and oxygen. It is a clean generator whom only reactive product is water. This thesis shows a theoretical study of this system, the synthesis of different kinds of used electrodes and finally an analysis of water movements in polymer electrolyte by different original technologies. 70 refs., 73 figs., 15 tabs.

  12. Inhomogeneous transport in model hydrated polymer electrolyte supported ultra-thin films

    OpenAIRE

    Borges, D. Damasceno; Franco, A A; Malek, K.; Gebel, G.; Mossa, S.

    2013-01-01

    Structure of polymer electrolytes membranes, e.g., Nafion, inside fuel cell catalyst layers has significant impact on the electrochemical activity and transport phenomena that determine cell performance. In those regions, Nafion can be found as an ultra-thin film, coating the catalyst and the catalyst support surfaces. The impact of the hydrophilic/hydrophobic character of these surfaces on the structural formation of the films and, in turn, on transport properties, has not been sufficiently ...

  13. The use of additive manufacture for metallic bipolar plates in polymer electrolyte fuel cell stacks

    OpenAIRE

    Dawson, Richard; Patel, Anant; Rennie, Allan; White, Simon

    2014-01-01

    The bipolar plate is of critical importance to the efficient and long lasting operation of a polymer electrolyte fuel cell (PEMFC) stack. With advances in membrane electrode assembly (MEA) design greater attention has been focused on the bipolar plate and the important role it plays in performance and durability. Although carbon composite plates are a likely candidate for the mass introduction of fuel cells, it is metallic plates made from thin strip materials (typically 0.2 mm thick stainles...

  14. Surface Analytical Methods for the Development of Electrochemical Components of Polymer Electrolyte Fuel Cells

    OpenAIRE

    Biswas, Indro; Gazdzicki, Pawel; Schulze, Mathias

    2013-01-01

    The transition from fossil to renewable energies implies significant changes in the energy system regarding the distribution, storage and energy conversion due to the intrinsic natural fluctuations of renewable power sources. Polymer electrolyte fuel cells (PEFC) are highly efficient electrochemical energy converters that may be implemented in a wide range of power and dynamics. Their high gravimetric energy density makes them attractive for many applications, especially for mobile purpos...

  15. Characterization of Self-Assembly and Charge Transport in Model Polymer Electrolyte Membranes

    OpenAIRE

    Beers, Keith Morgan

    2012-01-01

    There is broad interest in creating polymer electrolyte membranes (PEMs) that have a charged hydrophilic nanophase, where the size and geometry of the phase can be precisely controlled. The applications for such materials range from portable power generating devices to water purification. There is a need to better characterize the self-assembly, thermodynamics, and performance of both current and future PEMs. To this end a series of chapters is presented, that explore the development of techn...

  16. Comparing Triflate and Hexafluorophosphate Anions of Ionic Liquids in Polymer Electrolytes for Supercapacitor Applications

    OpenAIRE

    Chiam-Wen Liew; Ramesh, S

    2014-01-01

    Two different ionic liquid-based biopolymer electrolyte systems were prepared using a solution casting technique. Corn starch and lithium hexafluorophosphate (LiPF6) were employed as polymer and salt, respectively. Additionally, two different counteranions of ionic liquids, viz. 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6) and 1-butyl-3-methylimidazolium trifluoromethanesulfonate (also known as 1-butyl-3-methylimidazolium triflate) (BmImTf) were used and studied in this present...

  17. Characterization of pore network structure in catalyst layers of polymer electrolyte fuel cells

    OpenAIRE

    El Hannach, Mohamed; Soboleva, Tatyana; Malek, Kourosh; Franco, Alejandro A.; Prat, Marc; Pauchet, Joël; Holdcroft, Steven

    2014-01-01

    International audience We model and validate the effect of ionomer content and Pt nanoparticles on nanoporous structure of catalyst layers in polymer electrolyte fuel cells. By employing Pore network modeling technique and analytical solutions, we analyze and reproduce experimental N2-adsorption isotherms of carbon, Pt/ carbon and catalyst layers with various ionomer contents. The porous catalyst layer structures comprise of Ketjen Black carbon, Pt and Nafion ionomer. The experimental pore...

  18. Computational fluid dynamics modelling of a polymer electrolyte membrane fuel cell under transient automotive operations

    OpenAIRE

    Choopanya, Pattarapong

    2016-01-01

    A polymer electrolyte membrane (PEM) fuel cell is probably the most promising technology that will replace conventional internal combustion engines in the near future. As a primary power source for an automobile, the transient performance of a PEM fuel cell is of prime importance. In this thesis, a comprehensive, three-dimensional, two-phase, multi-species computational fuel cell dynamics model is developed in order to investigate the effect of flow-field design on the magnitude of current ov...

  19. Hydrophobicity Patterning of Gas Diffusion Media for Polymer Electrolyte Fuel Cells

    OpenAIRE

    Biswas, Indro; Gazdzicki, Pawel; Tomas, Martin; Schulze, Mathias

    2014-01-01

    Polymer electrolyte fuel cells with their high gravimetric energy density face a water balance problem especially under variable loads, e.g. in automotive conditions: The excess product water needs to be removed from the fuel cell while maintaining a humidifed membrane. The gas diffusion layer, which also provides contact to the electro- chemically active components, has to achieve the passive management of the water balance. Heterogeneously hydrophobic gas diffusion media ...

  20. SAXS Studies of TiO2 Nanoparticles in Polymer Electrolytes and in Nanostructured Films

    Directory of Open Access Journals (Sweden)

    Sigrid Bernstorff

    2010-11-01

    Full Text Available Polymer electrolytes as nanostructured materials are very attractive components for batteries and opto-electronic devices. (PEO8ZnCl2 polymer electrolytes were prepared from PEO and ZnCl2. The nanocomposites (PEO8ZnCl2/TiO2 themselves contained TiO2 nanograins. In this work, the influence of the TiO2 nanograins on the morphology and ionic conductivity of the nanocomposite was systematically studied by transmission small-angle X-ray scattering (SAXS simultaneously recorded with wide-angle X-ray diffraction (WAXD and differential scanning calorimetry (DSC at the synchrotron ELETTRA. Films containing nanosized grains of titanium dioxide (TiO2 are widely used in the research of optical and photovoltaic devices. The TiO2 films, prepared by chemical vapor deposition and e-beam epitaxy, were annealed in hydrogen atmospheres in the temperature range between 20 °C and 900 °C in order to study anatase-rutile phase transition at 740 °C. Also, grazing-incidence small angle X-ray scattering (GISAXS spectra for each TiO2 film were measured in reflection geometry at different grazing incident angles. Environmentally friendly galvanic cells, as well as solar cells of the second generation, are to be constructed with TiO2 film as working electrode, and nanocomposite polymer as electrolyte.

  1. Conductivity and Structural Studies of Plasticised Polyacrylonitrile (PAN)-Lithium Triflate Polymer Electrolyte Films

    International Nuclear Information System (INIS)

    The effect of different plasticizers on the properties of PAN-LiCF3SO3 polymer electrolytes has been studied. Propylene carbonate (PC) and ethylene carbonate (EC) having different values of donor numbers, dielectric constant and viscosity have been used as plasticizers. The highest room temperature conductivity for the film in the PAN-LiCF3SO3 system was 3.04 x 10-4 S cm-1. The highest room temperature conductivity for the films in the PAN-EC-LiCF3SO3 system and the PAN-PC-LiCF3SO3 system was 1.32 x 10-3 and 8.64 x 10-4 S cm-1. The addition of plasticizers has been found to enhance the conductivity of polymer electrolytes by increasing the amorphous content as well as by dissociating the ion aggregates present in polymer electrolyte. Conductivity temperature-dependence studies of these plasticised PAN-salt systems were carried out in the temperature range of 303 to 373 K. The conductivity versus temperature plots obeyed an Arrhenius type variation. The structural and complex formations were studied by X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy. (author)

  2. Alkaline Exchange Membrane (AEM) for High-Efficiency Fuel Cells, Electrolyzers and Regenerative Fuel Cell Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an alkaline exchange membrane (AEM)for use as a polymer electrolyte in both fuel cell and electrolyzer systems.  The ultimate goal in AEM development...

  3. Conductivity studies of LiCF3SO3 doped PVA: PVdF blend polymer electrolyte

    International Nuclear Information System (INIS)

    Different composition of lithium ion conducting PVA: PVdF: Lithium triflate (LiCF3SO3) polymer electrolytes have been prepared by solution casting technique. Dielectric and conductivity studies have been carried out for the prepared samples. The addition of salt into the polymer matrix increases the ionic conductivity of blend polymer electrolytes. The conductivity analysis reveals 80PVA: 20PVdF: 15LiCF3SO3 polymer electrolyte exhibits the maximum ionic conductivity of 2.7×10−3 S cm−1 at 303 K. The temperature dependence of ionic conductivity for all the composition of PVA: PVdF: LiCF3SO3 polymer films obey Arrhenius relation. Low activation energy has been obtained for highest conducting sample. The dielectric spectra show absolute β-relaxation peak

  4. Polymer electrolyte based on crosslinked poly(glycidyl methacrylate) and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

    Science.gov (United States)

    Fei, Beatrice Wong Chui; Hanifah, Sharina Abu; Ahmad, Azizan; Hassan, Nur Hasyareeda

    2015-09-01

    Polymer electrolytes based on crosslinked poly(glycidyl methacrylate) as polymer host and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimTFSI) as incorporated salt were prepared by in-situ photopolymerization technique. The complexes with different mass ratio of glycidyl methacrylate (GMA) monomer to BmimTFSI were investigated. The ionic conductivity of the polymer electrolyte was increased and reach the highest value of 7.50 × 10-4 S cm-1 at the ratio of 3:7 (GMA: BmimTFSI). The interaction between the polymer host and ionic liquid was proved by Attenuated Total Reflectance-Fourier Transformation Infra-Red Spectroscopy (ATR-FTIR). Meanwhile, the X-ray diffraction analysis shows the amorphousity of the polymer electrolyte film increase with the ionic liquid ratio.

  5. Polymer electrolyte based on crosslinked poly(glycidyl methacrylate) and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

    International Nuclear Information System (INIS)

    Polymer electrolytes based on crosslinked poly(glycidyl methacrylate) as polymer host and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimTFSI) as incorporated salt were prepared by in-situ photopolymerization technique. The complexes with different mass ratio of glycidyl methacrylate (GMA) monomer to BmimTFSI were investigated. The ionic conductivity of the polymer electrolyte was increased and reach the highest value of 7.50 × 10−4 S cm−1 at the ratio of 3:7 (GMA: BmimTFSI). The interaction between the polymer host and ionic liquid was proved by Attenuated Total Reflectance-Fourier Transformation Infra-Red Spectroscopy (ATR-FTIR). Meanwhile, the X-ray diffraction analysis shows the amorphousity of the polymer electrolyte film increase with the ionic liquid ratio

  6. Polymer electrolyte based on crosslinked poly(glycidyl methacrylate) and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Beatrice Wong Chui; Hanifah, Sharina Abu; Ahmad, Azizan; Hassan, Nur Hasyareeda [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43000 Bangi, Selangor Darul Ehsan (Malaysia)

    2015-09-25

    Polymer electrolytes based on crosslinked poly(glycidyl methacrylate) as polymer host and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimTFSI) as incorporated salt were prepared by in-situ photopolymerization technique. The complexes with different mass ratio of glycidyl methacrylate (GMA) monomer to BmimTFSI were investigated. The ionic conductivity of the polymer electrolyte was increased and reach the highest value of 7.50 × 10{sup −4} S cm{sup −1} at the ratio of 3:7 (GMA: BmimTFSI). The interaction between the polymer host and ionic liquid was proved by Attenuated Total Reflectance-Fourier Transformation Infra-Red Spectroscopy (ATR-FTIR). Meanwhile, the X-ray diffraction analysis shows the amorphousity of the polymer electrolyte film increase with the ionic liquid ratio.

  7. The effect of grain size on aluminum anodes for Al-air batteries in alkaline electrolytes

    Science.gov (United States)

    Fan, Liang; Lu, Huimin

    2015-06-01

    Aluminum is an ideal material for metallic fuel cells. In this research, different grain sizes of aluminum anodes are prepared by equal channel angular pressing (ECAP) at room temperature. Microstructure of the anodes is examined by electron backscatter diffraction (EBSD) in scanning electron microscope (SEM). Hydrogen corrosion rates of the Al anodes in 4 mol L-1 NaOH are determined by hydrogen collection method. The electrochemical properties of the aluminum anodes are investigated in the same electrolyte using electrochemical impedance spectroscopy (EIS) and polarization curves. Battery performance is also tested by constant current discharge at different current densities. Results confirm that the electrochemical properties of the aluminum anodes are related to grain size. Finer grain size anode restrains hydrogen evolution, improves electrochemical activity and increases anodic utilization rate. The proposed method is shown to effectively improve the performance of Al-air batteries.

  8. Modeling and Simulation for Fuel Cell Polymer Electrolyte Membrane

    Directory of Open Access Journals (Sweden)

    Takahiro Hayashi

    2013-01-01

    Full Text Available We have established methods to evaluate key properties that are needed to commercialize polyelectrolyte membranes for fuel cell electric vehicles such as water diffusion, gas permeability, and mechanical strength. These methods are based on coarse-graining models. For calculating water diffusion and gas permeability through the membranes, the dissipative particle dynamics–Monte Carlo approach was applied, while mechanical strength of the hydrated membrane was simulated by coarse-grained molecular dynamics. As a result of our systematic search and analysis, we can now grasp the direction necessary to improve water diffusion, gas permeability, and mechanical strength. For water diffusion, a map that reveals the relationship between many kinds of molecular structures and diffusion constants was obtained, in which the direction to enhance the diffusivity by improving membrane structure can be clearly seen. In order to achieve high mechanical strength, the molecular structure should be such that the hydrated membrane contains narrow water channels, but these might decrease the proton conductivity. Therefore, an optimal design of the polymer structure is needed, and the developed models reviewed here make it possible to optimize these molecular structures.

  9. Preparation and performance of a non-ionic plastic crystal electrolyte with the addition of polymer for lithium ion batteries

    International Nuclear Information System (INIS)

    A soft matter solid electrolyte was prepared by polymerizing a monomer trimethylolpropane trimethylacrylate (TMPTMA) using in situ thermal polymerization into a non-ionic plastic crystal electrolyte, which is consisted of 5 mol% lithium bis-trifluoromethanesulfonimide dissolved in succinonitrile (SN). X-ray diffraction, differential scanning calorimetry and conductivity measurements are used to investigate the structural and electrochemical performance of the polymer electrolyte films. It exhibits high ionic conductivities, wide electrochemical window and excellent mechanical strength. The solid electrolyte with 7.5 wt% TMPTMA displays a high initial discharge capacity of 160.3 mA h g−1 at 0.1 C when combined with a LiFePO4 cathode and excellent capacity retention. With their beneficial properties, the polymer electrolytes are considered to have significant potential applications for lithium ion batteries

  10. Influence of Al2O3 on the ionic conductivity of plasticized PVC-PEG blend polymer electrolytes

    Science.gov (United States)

    Ravindran, D.; Vickraman, P.

    2016-05-01

    Polymer electrolytes with PVC-PEG blend as host matrix and LiClO4 as dopant salt was prepared through conventional solution casting method. To enhance the conductivity propylene carbonate (PC) was used as plasticizer. The influence of ceramic filler Al2O3 on the conductivity of the electrolyte films were studied by varying the (PVC: Al2O3) ratio. The films were subjected to XRD, complex impedance analysis and SEM analysis. The XRD studies reveal a marginal increase in the amorphous phase of the electrolyte films due to the incorporation of filler. The AC impedance analysis shows the dependency of ionic conductivity on the content (wt %) of filler and exhibit a maximum at 4 wt% filler. The SEM analysis depicts the occurrence of phase separation in electrolyte which is attributed to the poor solubility of polymer PVC in the liquid electrolyte.

  11. Present status of solid state photoelectrochemical solar cells and dye sensitized solar cells using PEO-based polymer electrolytes

    International Nuclear Information System (INIS)

    Due to energy crises in the future, much effort is being directed towards alternate sources. Solar energy is accepted as a novel substitute for conventional sources of energy. Out of the long list of various types of solar cells available on the market, solid state photoelectrochemical solar cells (SSPECs) and dye sensitized solar cells (DSSCs) are proposed as an alternative to costly crystalline solar cell. This review provides a common platform for SSPECs and DSSCs using polymer electrolyte, particularly on polyethylene oxide (PEO)-based polymer electrolytes. Due to numerous advantageous properties of PEO, it is frequently used as an electrolyte in both SSPECs as well as DSSCs. In DSSCs, so far high efficiency (more than 11%) has been obtained only by using volatile liquid electrolyte, which suffers many disadvantages, such as corrosion, leakage and evaporation. The PEO-based solid polymer proves its importance and could be used to solve the problems stated above. The recent developments in SSPECs and DSSCs using modified PEO electrolytes by adding nano size inorganic fillers, blending with low molecular weight polymers and ionic liquid (IL) are discussed in detail. The role of ionic liquid in modifying the electrical, structural and photoelectrochemical properties of PEO polymer electrolytes is also described. (review)

  12. Preparation and electrochemical performance of polyphosphazene based salt-in-polymer electrolyte membranes for lithium ion batteries

    Science.gov (United States)

    Jankowsky, S.; Hiller, M. M.; Wiemhöfer, H.-D.

    2014-05-01

    This work presents a detailed study of the electrochemical performance of polyphosphazene based electrolyte membranes consisting of a linear polymer with -(Ndbnd PR2)- units, grafted with ethylene oxide side chains of the type R = -(OCH2CH2)3OCH3 and containing LiTFSI and LiBOB as dissolved lithium salts. The average molecular weight was 105 g mol-1. Mechanical stability was achieved by UV induced in-situ cross-linking of the thin polymer electrolyte films. Favorable properties of this type of polymer electrolytes are the good thermal and electrochemical stability of the electrolyte membranes, the broad electrochemical stability window ranging between 0 V and 4.7 V versus the Li/Li+ reference and a very good interface stability at lithium metal electrodes where a stable SEI was formed during initial contact. Total ionic conductivities up to 10-4 S cm-1 were measured at 30 °C. The transference numbers of lithium ions at 50 °C ranged between 0.06 and 0.07 and hence are lower by a factor of about three as compared to other typical polymer electrolytes. Nevertheless, the partial lithium ion conductivity estimated from the product of total conductivity and lithium ion transference number is as high or slightly higher compared to PEO based polymer electrolytes.

  13. Detection of distributed static and dynamic loads with electrolyte-enabled distributed transducers in a polymer-based microfluidic device

    International Nuclear Information System (INIS)

    This paper reports on the use of electrolyte-enabled distributed transducers in a polymer-based microfluidic device for the detection of distributed static and dynamic loads. The core of the device is a polymer rectangular microstructure integrated with electrolyte-enabled distributed transducers. Distributed loads acting on the polymer microstructure are converted to different deflections along the microstructure length, which are further translated to electrical resistance changes by electrolyte-enabled distributed transducers. Owing to the great simplicity of the device configuration, a standard polymer-based fabrication process is employed to fabricate this device. With custom-built electronic circuits and custom LabVIEW programs, fabricated devices filled with two different electrolytes, 0.1 M NaCl electrolyte and 1-ethyl-3-methylimidazolium dicyanamide electrolyte, are characterized, demonstrating the capability of detecting distributed static and dynamic loads with a single device. As a result, the polymer-based microfluidic device presented in this paper is promising for offering the capability of detecting distributed static and dynamic loads in biomedical/surgical, manufacturing and robotics applications. (paper)

  14. Synthesis and characterization of ionomers as polymer electrolytes for energy conversion devices

    Science.gov (United States)

    Oh, Hyukkeun

    Single-ion conducting electrolytes present a unique alternative to traditional binary salt conductors used in lithium-ion batteries. Secondary lithium batteries are considered as one of the leading candidates to replace the combustible engines in automotive technology, however several roadblocks are present which prevent their widespread commercialization. Power density, energy density and safety properties must be improved in order to enable the current secondary lithium battery technology to compete with existing energy technologies. It has been shown theoretically that single-ion electrolytes can eliminate the salt concentration gradient and polarization loss in the cell that develops in a binary salt system, resulting in substantial improvements in materials utilization for high power and energy densities. While attempts to utilize single-ion conducting electrolytes in lithium-ion battery systems have been made, the low ionic conductivities prevented the successful operation of the battery cells in ambient conditions. This work focuses on designing single-ion conducting electrolytes with high ionic conductivities and electrochemical and mechanical stability which enables the stable charge-discharge performance of battery cells. Perfluorosulfonate ionomers are known to possess exceptionally high ionic conductivities due to the electron-withdrawing effect caused by the C-F bonds which stabilizes the negative charge of the anion, leading to a large number of free mobile cations. The effect of perfluorinated sulfonic acid side chains on transport properties of proton exchange membrane polymers was examinated via a comparison of three ionomers, having different side chain structures and a similar polymer backbone. The three different side chain structures were aryl-, pefluoro alkyl-, and alkyl-sulfonic acid groups, respectively. All ionomers were synthesized and characterized by 1H and 19F NMR. A novel ionomer synthesized with a pendant perfluorinated sulfonic acid

  15. Efficient polymer solar cells employing a non-conjugated small-molecule electrolyte

    Science.gov (United States)

    Ouyang, Xinhua; Peng, Ruixiang; Ai, Ling; Zhang, Xingye; Ge, Ziyi

    2015-08-01

    Polymer solar cells have drawn a great deal of attention due to the attractiveness of their use in renewable energy sources that are potentially lightweight and low in cost. Recently, numerous significant research efforts have resulted in polymer solar cells with power conversion efficiencies in excess of 9% (ref. 1). Nevertheless, further improvements in performance are sought for commercial applications. Here, we report polymer solar cells with a power conversion efficiency of 10.02% that employ a non-conjugated small-molecule electrolyte as an interlayer. The material offers good contact for photogenerated charge carrier collection and allows optimum photon harvesting in the device. Furthermore, the enhanced performance is attributed to improved electron mobility, enhanced active-layer absorption and properly active-layer microstructures with optimal horizontal phase separation and vertical phase gradation. Our discovery opens a new avenue for single-junction devices by fully exploiting the potential of various material systems with efficiency over 10%.

  16. Green polymer electrolytes based on chitosan and 1-butyl-3-methylimidazolium acetate

    International Nuclear Information System (INIS)

    Green polymer electrolytes based on chitosan as the polymer matrix and ionic liquid 1-butyl-3-methylimidazolium acetate [Bmim][OAc] as charge carriers were prepared by solution casting technique. Complexes with various amount of ionic liquid loading were investigated as possible ionic conducting polymers. The ionic conductivity was found to increase with increasing weight percent of ionic liquid. The highest ionic conductivity of the charged chitosan-[Bmim][OAc] was 2.44 × 10−3 S cm−1 at 90 wt.% of [Bmim][OAc] content at ambient temperature. Attenuated Total Reflection Fourier Transform infrared (ATR-FTIR) spectroscopy has proven the interaction between chitosan and [Bmim][OAc]. X-ray Diffraction (XRD) has shown that the amorphosity of the complexes increase as the amount of [Bmim][OAc] increase

  17. Green polymer electrolytes based on chitosan and 1-butyl-3-methylimidazolium acetate

    Energy Technology Data Exchange (ETDEWEB)

    Shamsudin, Intan Juliana [Chemistry Department, Centre for Defence Foundation Studies, National Defence University of Malaysia, 57000 Kuala Lumpur (Malaysia); Ahmad, Azizan; Hassan, Nur Hasyareeda [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan (Malaysia)

    2014-09-03

    Green polymer electrolytes based on chitosan as the polymer matrix and ionic liquid 1-butyl-3-methylimidazolium acetate [Bmim][OAc] as charge carriers were prepared by solution casting technique. Complexes with various amount of ionic liquid loading were investigated as possible ionic conducting polymers. The ionic conductivity was found to increase with increasing weight percent of ionic liquid. The highest ionic conductivity of the charged chitosan-[Bmim][OAc] was 2.44 × 10{sup −3} S cm{sup −1} at 90 wt.% of [Bmim][OAc] content at ambient temperature. Attenuated Total Reflection Fourier Transform infrared (ATR-FTIR) spectroscopy has proven the interaction between chitosan and [Bmim][OAc]. X-ray Diffraction (XRD) has shown that the amorphosity of the complexes increase as the amount of [Bmim][OAc] increase.

  18. Studies on the development of mossy zinc electrodeposits from flowing alkaline electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Mc Vay, L.

    1991-07-01

    The initiation and characteristics of mossy zinc electrodeposits have been investigated. Batteries with zinc electrodes are candidates for electric vehicle applications; however, this electrode is prone to form non-compact deposits that contribute to capacity loss and battery failure. Moss is deposited when the current density is far from the limiting current. This morphology first appears only after the bulk deposit is approximately 1 {mu}m thick. In this investigation, the effects of flow rate (Re=0--4000), current density (0--50 mA/cm{sup 2}), concentration of the electroactive species (0.25 and 0.5 M), and the concentration of supporting electrolyte (3, 6, and 12 M) on the initiation of moss were examined. The rotating concentric cylinder electrode was employed for most of the experiments; and a flow channel was used to study the development of morphology. After the experiment, the deposit was characterized using microscopic, x-ray diffraction, and profilometric techniques. 94 refs., 72 figs.

  19. NMR spectroscopy study of agar-based polymers electrolytes

    International Nuclear Information System (INIS)

    Full text: This communication presents the results of preparation and characterization of transparent films obtained from agar and acetic acid. The films were characterized by electrochemical impedance spectroscopy (EIS) and nuclear magnetic resonance (NMR). The film formed by agar (Sigma Aldrich) was dispersed in water and kept under stirring and heating at 100 deg C. Next, glycerol, formaldehyde and different quantities of acetic acid (25 and 50 wt%) were added to this solution. The obtained solution was placed on a glass plate and left to dry for 48 hours in oven at 50 deg C to obtain the films, which were kept under vacuum before characterization. The ionic conductivity of the films display an Arrhenius behavior with activation energy Ea = 78 (25 wt% of acetic acid) and Ea = 87 kJ/mol (50 wt% of acetic acid). The conductivity values were 3:0 X 10-6 and 1:2 X 10-4 S/cm at room temperature and 4:4 X 10-4 and 1:5 X 10-3S/cm at 70 deg C, for the 25 and 50 wt% of acetic acid respectively. To investigate the mechanism of protonic conduction in the polymer proton conductor proton NMR measurements were performed in the temperature range 200-370 K. The 1H-NMR results exhibit the qualitative feature associated with the proton mobility, namely the presence of well defined 1H spin-lattice relaxation maxima at 300 K. Activation energy of the order of 40 kJ/mol was obtained from the 1H-NMR line narrowing data. The ionic conductivity of the film combined with their transparency, flexibility, homogeneity and good adhesion to the glasses or metals indicate that agar-based SPEs are promising materials for used on optoelectronic applications. (author)

  20. NMR spectroscopy study of agar-based polymers electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Mattos, R.I.; Tambelli, C.E. [Universidade de Sao Paulo (USP), Pirassununga, SP (Brazil). Fac. de Zootecnia e Engenharia de Alimentos; Raphael, E. [Universidade Federal de Sao Joao del-Rey (UFSJ), MG (Brazil). Dept. de Ciencias Naturais; Silva, I.D.A.; Magon, C.J.; Donoso, J.P. [Universidade de Sao Paulo (IFSC/USP), Sao Carlos, SP (Brazil). Inst. de Fisica

    2012-07-01

    Full text: This communication presents the results of preparation and characterization of transparent films obtained from agar and acetic acid. The films were characterized by electrochemical impedance spectroscopy (EIS) and nuclear magnetic resonance (NMR). The film formed by agar (Sigma Aldrich) was dispersed in water and kept under stirring and heating at 100 deg C. Next, glycerol, formaldehyde and different quantities of acetic acid (25 and 50 wt%) were added to this solution. The obtained solution was placed on a glass plate and left to dry for 48 hours in oven at 50 deg C to obtain the films, which were kept under vacuum before characterization. The ionic conductivity of the films display an Arrhenius behavior with activation energy E{sub a} = 78 (25 wt% of acetic acid) and E{sub a} = 87 kJ/mol (50 wt% of acetic acid). The conductivity values were 3:0 X 10{sup -6} and 1:2 X 10{sup -4} S/cm at room temperature and 4:4 X 10{sup -4} and 1:5 X 10{sup -3}S/cm at 70 deg C, for the 25 and 50 wt% of acetic acid respectively. To investigate the mechanism of protonic conduction in the polymer proton conductor proton NMR measurements were performed in the temperature range 200-370 K. The {sup 1}H-NMR results exhibit the qualitative feature associated with the proton mobility, namely the presence of well defined {sup 1}H spin-lattice relaxation maxima at 300 K. Activation energy of the order of 40 kJ/mol was obtained from the {sup 1}H-NMR line narrowing data. The ionic conductivity of the film combined with their transparency, flexibility, homogeneity and good adhesion to the glasses or metals indicate that agar-based SPEs are promising materials for used on optoelectronic applications. (author)

  1. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO{sub 4} for lithium ion battery application

    Energy Technology Data Exchange (ETDEWEB)

    Nurhadini,, E-mail: nur-chem@yahoo.co.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Division, Faculty of Mathematics and Natural Sciences, Institiut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132 (Indonesia)

    2015-09-30

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO{sub 4} membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10{sup −4} S/cm was observed in SA/PEO/LiClO{sub 4} membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application.

  2. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO4 for lithium ion battery application

    Science.gov (United States)

    Nurhadini, Arcana, I. Made

    2015-09-01

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO4 membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10-4 S/cm was observed in SA/PEO/LiClO4 membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application.

  3. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO4 for lithium ion battery application

    International Nuclear Information System (INIS)

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO4 membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10−4 S/cm was observed in SA/PEO/LiClO4 membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application

  4. Removal of charged micropollutants from water by ion-exchange polymers -- effects of competing electrolytes.

    Science.gov (United States)

    Bäuerlein, Patrick S; Ter Laak, Thomas L; Hofman-Caris, Roberta C H M; de Voogt, Pim; Droge, Steven T J

    2012-10-15

    A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV/H(2)O(2), activated carbon (AC) or membranes). We studied the sorption affinity of some ionic organic compounds to both AC and different charged polymeric materials. Ion-exchange polymers may be effective as additional extraction phases in water treatment, because sorption of all charged compounds to oppositely charged polymers was stronger than to AC, especially for the double-charged cation metformin. Tested below 1% of the polymer ion-exchange capacity, the sorption affinity of charged micropollutants is nonlinear and depends on the composition of the aqueous medium. Whereas oppositely charged electrolytes do not impact sorption of organic ions, equally charged electrolytes do influence sorption indicating ion-exchange (IE) to be the main sorption mechanism. For the tested polymers, a tenfold increased salt concentration lowered the IE-sorption affinity by a factor two. Different electrolytes affect IE with organic ions in a similar way as inorganic ions on IE-resins, and no clear differences in this trend were observed between the sulphonated and the carboxylated cation-exchanger. Sorption of organic cations is five fold less in Ca(2+) solutions compared to similar concentrations of Na(+), while that of anionic compounds is three fold weaker in SO(4)(2-) solutions compared to equal concentrations of Cl(-). PMID:22818952

  5. Ion transport in polycarbonate based solid polymer electrolytes: experimental and computational investigations.

    Science.gov (United States)

    Sun, Bing; Mindemark, Jonas; V Morozov, Evgeny; Costa, Luciano T; Bergman, Martin; Johansson, Patrik; Fang, Yuan; Furó, István; Brandell, Daniel

    2016-03-30

    Among the alternative host materials for solid polymer electrolytes (SPEs), polycarbonates have recently shown promising functionality in all-solid-state lithium batteries from ambient to elevated temperatures. While the computational and experimental investigations of ion conduction in conventional polyethers have been extensive, the ion transport in polycarbonates has been much less studied. The present work investigates the ionic transport behavior in SPEs based on poly(trimethylene carbonate) (PTMC) and its co-polymer with ε-caprolactone (CL) via both experimental and computational approaches. FTIR spectra indicated a preferential local coordination between Li(+) and ester carbonyl oxygen atoms in the P(TMC20CL80) co-polymer SPE. Diffusion NMR revealed that the co-polymer SPE also displays higher ion mobilities than PTMC. For both systems, locally oriented polymer domains, a few hundred nanometers in size and with limited connections between them, were inferred from the NMR spin relaxation and diffusion data. Potentiostatic polarization experiments revealed notably higher cationic transference numbers in the polycarbonate based SPEs as compared to conventional polyether based SPEs. In addition, MD simulations provided atomic-scale insight into the structure-dynamics properties, including confirmation of a preferential Li(+)-carbonyl oxygen atom coordination, with a preference in coordination to the ester based monomers. A coupling of the Li-ion dynamics to the polymer chain dynamics was indicated by both simulations and experiments. PMID:26984668

  6. Improved electrical properties of Fe nanofiller impregnated PEO + PVP:Li+ blended polymer electrolytes for lithium battery applications

    Science.gov (United States)

    Naveen Kumar, K.; Saijyothi, K.; Kang, Misook; Ratnakaram, Y. C.; Hari Krishna, K.; Jin, Dahee; Lee, Yong Min

    2016-07-01

    Solid polymer-blended electrolyte films of polyethylene oxide (PEO) + polyvinyl pyrrolidone (PVP)/lithium perchlorate embedded with iron (Fe) nanofiller in different concentrations have been synthesized by a solution casting method. The semicrystalline nature of these polymer electrolyte films has been confirmed from their XRD profiles. Polymer complex formation and ion-polymer interactions are systematically studied by FTIR and laser Raman spectral analysis. Surface morphological studies are carried out from SEM analysis. Dispersed Fe nanofiller size evaluation study has been carried out using transmission electron microscopy (TEM). In order to evaluate the thermal stability, decomposition temperature, and thermogravimetric dynamics, we carried out the TG/DTA measurement. Upon addition of Fe nanofiller to the PEO + PVP/Li+ electrolyte system, it was found to result in the enhancement of ionic conductivity. The maximum ionic conductivity has been set up to be 1.14 × 10-4 Scm-1 at the optimized concentration of 4 wt% Fe nanofiller-embedded PEO + PVP/Li+ polymer electrolyte nanocomposite at an ambient temperature. PEO + PVP/Li+ + Fe nanofiller (4 wt%) cell exhibited better performance in terms of cell parameters. Based on the cell parameters, the 4 wt% Fe nanofiller-dispersed PEO + PVP/Li+ polymer electrolyte system could be suggested as a perspective candidate for solid-state battery applications.

  7. Gel polymer electrolyte lithium-ion cells with improved low temperature performance

    Energy Technology Data Exchange (ETDEWEB)

    Smart, M.C.; Ratnakumar, B.V.; Behar, A.; Whitcanack, L.D. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Yu, J.-S. [LG Chem/Research Park, P.O. Box 61Yu Song, Science Town, Daejon (Korea); Alamgir, M. [Compact Power, Inc., 1857 Technology Drive, Troy, MI 48083 (United States)

    2007-03-20

    For a number of NASA's future planetary and terrestrial applications, high energy density rechargeable lithium batteries that can operate at very low temperature are desired. In the pursuit of developing Li-ion batteries with improved low temperature performance, we have also focused on assessing the viability of using gel polymer systems, due to their desirable form factor and enhanced safety characteristics. In the present study we have evaluated three classes of promising liquid low-temperature electrolytes that have been impregnated into gel polymer electrolyte carbon-LiMn{sub 2}O{sub 4}-based Li-ion cells (manufactured by LG Chem. Inc.), consisting of: (a) binary EC + EMC mixtures with very low EC-content (10%), (b) quaternary carbonate mixtures with low EC-content (16-20%), and (c) ternary electrolytes with very low EC-content (10%) and high proportions of ester co-solvents (i.e., 80%). These electrolytes have been compared with a baseline formulation (i.e., 1.0 M LiPF{sub 6} in EC + DEC + DMC (1:1:1%, v/v/v), where EC, ethylene carbonate, DEC, diethyl carbonate, and DMC, dimethyl carbonate). We have performed a number of characterization tests on these cells, including: determining the rate capacity as a function of temperature (with preceding charge at room temperature and also at low temperature), the cycle life performance (both 100% DOD and 30% DOD low earth orbit cycling), the pulse capability, and the impedance characteristics at different temperatures. We have obtained excellent performance at low temperatures with ester-based electrolytes, including the demonstration of >80% of the room temperature capacity at -60 C using a C/20 discharge rate with cells containing 1.0 M LiPF{sub 6} in EC + EMC + MB (1:1:8%, v/v/v) (MB, methyl butyrate) and 1.0 M LiPF{sub 6} in EC + EMC + EB (1:1:8%, v/v/v) (EB, ethyl butyrate) electrolytes. In addition, cells containing the ester-based electrolytes were observed to support 5C pulses at -40 C, while still

  8. The effect of porosity on performance of phosphoric acid doped polybenzimidazole polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Celik, Muhammet; Genc, Gamze; Elden, Gulsah; Yapici, Huseyin

    2016-03-01

    A polybenzimidazole (PBI) based polymer electrolyte fuel cells, which called high temperature polymer electrolyte fuel cells (HT-PEMS), operate at higher temperatures (120-200°C) than conventional PEM fuel cells. Although it is known that HT-PEMS have some of the significant advantages as non-humidification requirements for membrane and the lack of liquid water at high temperature in the fuel cell, the generated water as a result of oxygen reduction reaction causes in the degradation of these systems. The generated water absorbed into membrane side interacts with the hydrophilic PBI matrix and it can cause swelling of membrane, so water transport mechanism in a membrane electrode assembly (MEA) needs to be well understood and water balance must be calculated in MEA. Therefore, the water diffusion transport across the electrolyte should be determined. In this study, various porosity values of gas diffusion layers are considered in order to investigate the effects of porosity on the water management for two phase flow in fuel cell. Two-dimensional fuel cell with interdigitated flow-field is modelled using COMSOL Multiphysics 4.2a software. The operating temperature and doping level is selected as 160°C and 6.75mol H3PO4/PBI, respectively.

  9. Chaotic behavior of ion exchange phenomena in polymer gel electrolytes through irradiated polymeric membrane

    International Nuclear Information System (INIS)

    A desktop experiment has been done to show the nonlinearity in the I–V characteristics of an ion conducting electrochemical micro-system. Its chaotic dynamics is being reported for the first time which has been captured by an electronic circuit. Polyvinylidene fluoride-co-hexafluoropropene (PVdF-HFP) gel electrolyte comprising of a combination of plasticizers (ethylene carbonate and propylene carbonate) and salts have been prepared to study the exchange of ions through porous polyethylene terephthalate (PET) membranes. The nonlinearity of this system is due to the ion exchange of the polymer gel electrolytes (PGEs) through a porous membrane. The different regimes of spiking and non-spiking chaotic motions are being presented. The possible applications are highlighted. -- Highlights: ► For the first time, the nonlinear dynamics of an electrochemical micro-system has been reported. ► The nonlinearity generates due to the ion exchange of polymer gel electrolytes through irradiated polymeric membrane. ► The nonlinearity can be tailored by changing the pore size of irradiated membrane. ► Sprott's circuit has been modified to capture the phenomena of ion transport through membrane. ► Attractor formation and Lyapunov exponent confirms the chaotic behavior of presently investigated system.

  10. Newly Elaborated Multipurpose Polymer Electrolyte Encompassing RTILs for Smart Energy-Efficient Devices.

    Science.gov (United States)

    Nair, Jijeesh R; Porcarelli, Luca; Bella, Federico; Gerbaldi, Claudio

    2015-06-17

    Profoundly ion-conducting, self-standing, and tack-free ethylene oxide-based polymer electrolytes encompassing a room-temperature ionic liquid (RTIL) with specific amounts of lithium salt are successfully prepared via a rapid and easily upscalable process including a UV irradiation step. All prepared materials are thoroughly characterized in terms of their physical, chemical, and morphological properties and eventually galvanostatically cycled in lab-scale lithium batteries (LIBs) exploiting a novel direct polymerization procedure to get intimate electrode/electrolyte interfacial characteristics. The promising multipurpose characteristics of the newly elaborated materials are demonstrated by testing them in dye-sensitized solar cells (DSSCs), where the introduction of the iodine/iodide-based redox mediator in the polymer matrix assured the functioning of a lab-scale test cell with conversion efficiency exceeding 6% at 1 sun. The reported results enlighten the promising prospects of the material to be successfully implemented as stable, durable, and efficient electrolyte in next-generation energy conversion and storage devices. PMID:26020809

  11. Li+ conducting polymer electrolyte based on ionic liquid for lithium and lithium-ion batteries

    International Nuclear Information System (INIS)

    Polymer electrolyte (PE), based on PVdF-co-HFP polymer network and MePrPipNTf2 + LiNTf2 ionic liquid (MePrPip: N-methyl-N-propylpiperidinium cation, NTf2 is bis(trifluoromethanesulphonyl)imide anion) was prepared. PE contained small amounts of vinylene carbonate. The performance of metallic-lithium and graphite (G) anodes working together with the electrolyte were tested with the use of: electrochemical impedance spectroscopy (EIS), galvanostatic charging/discharging and scanning electron microscopy (SEM). Specific conductance of the membrane was ca. 4 mS cm−1 at 25 °C with activation energy of 14.35 kJ mol−1. Scanning electron microscopy images showed that the charged/discharged graphite anodes differed in morphology from the pristine material. The surface of graphite flakes was covered with small crystals with a diameter of ca. 1 μm (the solid electrolyte interface, SEI). When the graphite anode was soaked with the 1 M LiPF6 solution in PC + DMC (propylene carbonate and dimethyl carbonate, respectively), before the G|PE|Li cell assembling, its reversible capacity was ca. 340 mAh g−1 (after the 50th cycle)

  12. A gel polymer electrolyte based on initiator-free photopolymerization for lithium secondary batteries

    International Nuclear Information System (INIS)

    Highly ion-conductive gel polymer electrolyte (GPE) with mechanical flexibility is developed by incorporating liquid electrolyte into polymer films that are fabricated by initiator-free photopolymerization of poly(ethylene glycol) dimethacrylate (acrylate monomer) and pentaerythritol tetrakis (3-mercaptopropionate) (thiol monomer) blend. When UV is irradiated on the blend, the thiol monomers themselves produce radicals to initiate the polymerization. GPEs with 40–50 wt.% of thiol monomer content show mechanically free standing characteristics with sufficient flexibility. The ionic conductivity of the GPE reaches1.1 × 10−3 S cm−1 at 25 °C and is thus high enough to be applied for lithium secondary batteries. The GPE is electrochemically stable up to 4.4 V versus Li/Li+ and the unit cells consisting of LiCoO2/GPE/lithium metal show good cycling performance. This GPE is thus considered a good electrolyte candidate for future flexible and wearable lithium secondary batteries.

  13. Comparing Triflate and Hexafluorophosphate Anions of Ionic Liquids in Polymer Electrolytes for Supercapacitor Applications

    Directory of Open Access Journals (Sweden)

    Chiam-Wen Liew

    2014-05-01

    Full Text Available Two different ionic liquid-based biopolymer electrolyte systems were prepared using a solution casting technique. Corn starch and lithium hexafluorophosphate (LiPF6 were employed as polymer and salt, respectively. Additionally, two different counteranions of ionic liquids, viz. 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6 and 1-butyl-3-methylimidazolium trifluoromethanesulfonate (also known as 1-butyl-3-methylimidazolium triflate (BmImTf were used and studied in this present work. The maximum ionic conductivities of (1.47 ± 0.02 × 10−4 and (3.21 ± 0.01 × 10−4 S∙cm−1 were achieved with adulteration of 50 wt% of BmImPF6 and 80 wt% of BmImTf, respectively at ambient temperature. Activated carbon-based electrodes were prepared and used in supercapacitor fabrication. Supercapacitors were then assembled using the most conducting polymer electrolyte from each system. The electrochemical properties of the supercapacitors were then analyzed. The supercapacitor containing the triflate-based biopolymer electrolyte depicted a higher specific capacitance with a wider electrochemical stability window compared to that of the hexafluorophosphate system.

  14. The effect of porosity on performance of phosphoric acid doped polybenzimidazole polymer electrolyte membrane fuel cell

    Directory of Open Access Journals (Sweden)

    Celik Muhammet

    2016-01-01

    Full Text Available A polybenzimidazole (PBI based polymer electrolyte fuel cells, which called high temperature polymer electrolyte fuel cells (HT-PEMS, operate at higher temperatures (120-200°C than conventional PEM fuel cells. Although it is known that HT-PEMS have some of the significant advantages as non-humidification requirements for membrane and the lack of liquid water at high temperature in the fuel cell, the generated water as a result of oxygen reduction reaction causes in the degradation of these systems. The generated water absorbed into membrane side interacts with the hydrophilic PBI matrix and it can cause swelling of membrane, so water transport mechanism in a membrane electrode assembly (MEA needs to be well understood and water balance must be calculated in MEA. Therefore, the water diffusion transport across the electrolyte should be determined. In this study, various porosity values of gas diffusion layers are considered in order to investigate the effects of porosity on the water management for two phase flow in fuel cell. Two-dimensional fuel cell with interdigitated flow-field is modelled using COMSOL Multiphysics 4.2a software. The operating temperature and doping level is selected as 160°C and 6.75mol H3PO4/PBI, respectively.

  15. P(AN-MMA)/TiO_2 Nano-composite Polymer Electrolyte by in-situ Polymerization

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Introduction With the development of portable electric devices,polymer lithium ion batteries (PLiBs) have been widely used as the power sources because of their high energy density and safe property[1].P(AN-MMA) copolymer is a kind of cheap macromolecules easily dissolving in the polar solvents such as carbonate,it has been applied as gel polymer electrolyte in PLiBs.Here we prepare a kind of highly conductive nano-composite polymer electrolytes using the P(AN-MMA) copolymer incorporated with TiO2 nan...

  16. Gel polymer electrolytes based on nanofibrous polyacrylonitrile–acrylate for lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dul-Sun [Department of Chemical and Biological Engineering, Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Woo, Jang Chang [Department of Textile Engineering, Inha University, 100 Inharo, Nam-gu Incheon 402-751 (Korea, Republic of); Youk, Ji Ho, E-mail: youk@inha.ac.kr [Department of Textile Engineering, Inha University, 100 Inharo, Nam-gu Incheon 402-751 (Korea, Republic of); Manuel, James [Department of Chemical and Biological Engineering, Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon, E-mail: jhahn@gnu.ac.kr [Department of Chemical and Biological Engineering, Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of)

    2014-10-15

    Graphical abstract: - Highlights: • Nanofibrous polyacrylonitrile–acrylate membranes were prepared by electrospinning. • Trimethylolpropane triacrylate was used as a crosslinking agent of fibers. • The GPE based on PAN–acrylate (1/0.5) showed good electrochemical properties. - Abstract: Nanofibrous membranes for gel polymer electrolytes (GPEs) were prepared by electrospinning a mixture of polyacrylonitrile (PAN) and trimethylolpropane triacrylate (TMPTA) at weight ratios of 1/0.5 and 1/1. TMPTA is used to achieve crosslinking of fibers thereby improving mechanical strength. The average fiber diameters increased with increasing TMPTA concentration and the mechanical strength was also improved due to the enhanced crosslinking of fibers. GPEs based on electrospun membranes were prepared by soaking them in a liquid electrolyte of 1 M LiPF{sub 6} in ethylene carbonate (EC)/dimethyl carbonate (DMC) (1:1, v/v). The electrolyte uptake and ionic conductivity of GPEs based on PAN and PAN–acrylate (weight ratio; 1/1 and 1/0.5) were investigated. Ionic conductivity of GPEs based on PAN–acrylate was the highest for PAN/acrylate (1/0.5) due to the proper swelling of fibers and good affinity with liquid electrolyte. Both GPEs based on PAN and PAN–acrylate membranes show good oxidation stability, >5.0 V vs. Li/Li{sup +}. Cells with GPEs based on PAN–acrylate (1/0.5) showed remarkable cycle performance with high initial discharge capacity and low capacity fading.

  17. Polymer Gel Electrolytes Based on 49 % Methyl-Grafted Natural Rubber

    International Nuclear Information System (INIS)

    Polymer gel electrolytes (PGEs) based on 49 % methyl-grafted natural rubber (MG49) were first prepared by dissolving ammonium triflate (NH4CF3SO3) in propylene carbonate (PC) by various molar concentrations of NH4CF3SO3 to obtain liquid electrolytes and were characterized by AC electrical impedance spectroscopy (EIS) measurements to study their conducting behaviour. The liquid electrolyte with optimum conductivity (0.7 M) was then gelled with MG49 and their conductivity was also studied. The highest conductivity of liquid electrolyte was 3.6 x 10-3 Scm-1 and 2.9x10-2 Scm-1 for PGEs. The molecular interactions between components of NH4CF3SO3, PC, and MG49 have been observed by ATR-FTIR spectroscopy study. The downshifting of C=O stretching frequency of PC from 1785 cm-1 to 1780 cm-1 and NH4+ band from 1634 cm-1 to 1626 cm-1 that has been obtained by spectroscopic data in addition of NH4CF3SO3 confirmed the complexation occurrence. Interaction between NH4CF3SO3 and MG49 has also been investigated. This study is focused on the interactions between components in the PGE system and relates them with their conducting behavior. (author)

  18. Solid-state electrochromic devices using pTMC/PEO blends as polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, P.C.; Rodrigues, L.C. [Centro de Quimica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Silva, M.M., E-mail: nini@quimica.uminho.p [Centro de Quimica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Smith, M.J. [Centro de Quimica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Parola, A.J.; Pina, F. [Requimte, Dep. Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Pinheiro, Carlos, E-mail: carlosp@dq.fct.unl.p [Requimte, Dep. Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); YDreams, Madan Parque, Quinta da Torre, 2829-516 Caparica (Portugal)

    2010-01-25

    Flexible, transparent and self-supporting electrolyte films based on poly(trimethylene carbonate)/poly(ethylene oxide) (p(TMC)/PEO) interpenetrating networks doped with LiClO{sub 4} were prepared by the solvent casting technique. These novel solid polymer electrolyte (SPE) systems were characterized by measurements of conductivity, cyclic voltammetry, differential scanning calorimetry and thermogravimetry. The incorporation of solid electrolytes as components of electrochromic devices can offer certain operational advantages in real-world applications. In this study, all-solid-state electrochromic cells were characterized, using Prussian blue (PB) and poly-(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT) as complementary electrochromic compounds on poly(ethyleneterphthalate) (PET) coated with indium tin oxide (ITO) as flexible electrodes. Assembled devices with PET/ITO/PB/SPE/PEDOT/ITO/PET 'sandwich-like' structure were assembled and successfully cycled between light and dark blue, corresponding to the additive optical transitions for PB and PEDOT electrochromic layers. The cells required long cycle times (>600 s) to reach full color switch and have modest stability towards prolonged cycling tests. The use of short duration cycling permitted the observation of changes in the coloration-bleaching performance in cells with different electrolyte compositions.

  19. Solid-state electrochromic devices using pTMC/PEO blends as polymer electrolytes

    International Nuclear Information System (INIS)

    Flexible, transparent and self-supporting electrolyte films based on poly(trimethylene carbonate)/poly(ethylene oxide) (p(TMC)/PEO) interpenetrating networks doped with LiClO4 were prepared by the solvent casting technique. These novel solid polymer electrolyte (SPE) systems were characterized by measurements of conductivity, cyclic voltammetry, differential scanning calorimetry and thermogravimetry. The incorporation of solid electrolytes as components of electrochromic devices can offer certain operational advantages in real-world applications. In this study, all-solid-state electrochromic cells were characterized, using Prussian blue (PB) and poly-(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT) as complementary electrochromic compounds on poly(ethyleneterphthalate) (PET) coated with indium tin oxide (ITO) as flexible electrodes. Assembled devices with PET/ITO/PB/SPE/PEDOT/ITO/PET 'sandwich-like' structure were assembled and successfully cycled between light and dark blue, corresponding to the additive optical transitions for PB and PEDOT electrochromic layers. The cells required long cycle times (>600 s) to reach full color switch and have modest stability towards prolonged cycling tests. The use of short duration cycling permitted the observation of changes in the coloration-bleaching performance in cells with different electrolyte compositions.

  20. New Polymer Electrolyte Membranes Based on Acid Doped PBI For Fuel Cells Operating above 100°C

    DEFF Research Database (Denmark)

    Li, Qingfeng

    The technical achievement and challenges for the PEMFC technology based on perfluorosulfonic acid (PFSA) polymer membranes (e.g. Nafion®) are briefly discussed. The newest development for alternative polymer electrolytes for operation above 100°C. As one of the successful approaches to high...... operational temperatures, the development and evaluation of acid doped PBI membranes are reviewed, covering polymer synthesis, membrane casting, acid doping, physiochemical characterization and fuel cell tests....

  1. Performance of laboratory polymer electrolyte membrane hydrogen generator with sputtered iridium oxide anode

    Science.gov (United States)

    Labou, D.; Slavcheva, E.; Schnakenberg, U.; Neophytides, S.

    The continuous improvement of the anode materials constitutes a major challenge for the future commercial use of polymer electrolyte membranes (PEM) electrolyzers for hydrogen production. In accordance to this direction, iridium/titanium films deposited directly on carbon substrates via magnetron sputtering are operated as electrodes for the oxygen evolution reaction interfaced with Nafion 115 electrolyte in a laboratory single cell PEM hydrogen generator. The anode with 0.2 mg cm -2 Ir catalyst loading was electrochemically activated by cycling its potential value between 0 and 1.2 V (vs. RHE). The water electrolysis cell was operated at 90 °C with current density 1 A cm -2 at 1.51 V without the ohmic contribution. The corresponding current density per mgr of Ir catalyst is 5 A mg -1. The achieved high efficiency is combined with sufficient electrode stability since the oxidation of the carbon substrate during the anodic polarization is almost negligible.

  2. Dye-sensitized solar cells and solar module using polymer electrolytes: Stability and performance investigations

    Directory of Open Access Journals (Sweden)

    Jilian Nei de Freitas

    2006-01-01

    Full Text Available We present recent results on solid-state dye-sensitized solar cell research using a polymer electrolyte based on a poly(ethylene oxide derivative. The stability and performance of the devices have been improved by a modification in the method of assembly of the cells and by the addition of plasticizers in the electrolyte. After 30 days of solar irradiation (100 mW cm-2 no changes in the cell's efficiency were observed using this new method. The effect of the active area size on cell performance and the first results obtained for the first solar module composed of 4.5 cm2 solid-state solar cells are also presented.

  3. Interpretation of the current-voltage characteristics of polymer electrolyte fuel cells by impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Andreaus, B.; McEvoy, A.J.; Scherer, G.

    2003-03-01

    We applied electrochemical impedance spectroscopy (EIS) to elucidate the origins of the voltage losses of a H{sub 2} /O{sub 2} polymer electrolyte fuel cell (PEFC) as a function of current density. The results indicate that the commercial electrodes utilized in these experiments suffer from a substantial loss in active catalyst sur-face already at relatively low current densities. The drying out of the electrolyte in the membrane adjacent to the anode as well as in the anode active layer results in an additional voltage loss at high current densities. Therefore, the purely structural aspects of a robust triple phase boundary sustaining harsh conditions under load is at least equally important as the proper choice of catalyst for a high performance PEFC-electrode. (author)

  4. Preparation and characterization of radiation-grafted polymer electrolyte membrane for applications in fuel cells

    International Nuclear Information System (INIS)

    Polymer electrolyte membrane (PEM) is a key material that strongly affects the cell performance, cost and application prospect of the PEM fuel cell. The membrane acts as a separator to prevent mixing of the reactant gases and as an electrolyte for proton transportation. Radiation-grafted PEM has a special chemical structure, composing of fluorinated main chains and sulfonated side chains. The main chain acts as a stable backbone that gives the necessary strength, dimensional stability and gas barrier while the side chain gives the ability of proton transportation. In our study, the suitability of some base films, monomers and crosslinkers, as well as the preparation processes have been investigated in detail in order to develop a high performance radiation-grafted PEM. (authors)

  5. Ionic transport in P(VdF–HFP)–PEO based novel microporous polymer electrolytes

    Indian Academy of Sciences (India)

    M Deka; A Kumar

    2009-12-01

    A novel microporous polymer electrolyte (MPE) comprising blends of poly(vinylidene fluoride-cohexafluoropropylene) [P(VdF–HFP)] and polyethylene oxide (PEO) was prepared by phase inversion technique. It was observed that addition of PEO improved the pore configuration, such as pore size, pore connectivity and porosity of P(VdF–HFP) based membranes. The room temperature ionic conductivity was significantly enhanced. The highest porosity of about 65% and ionic conductivity of about 7 × 10-4 S cm-1 was obtained when the weight ratio of PEO was 40%. The liquid electrolyte uptake was found to increase with increase in porosity and pore size. However, at higher weight ratio of PEO (> 40%) porosity, pore size and ionic conductivity was decreased. This descending trend with further increase of PEO weight ratio was attributed to conglomeration effect of PEO at the pores.

  6. Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Composite membranes based on poly(2,2′(m-phenylene)-5,5′bibenzimidazole) (PBI) and sulfonated polyhedral oligosilsesquioxane (S-POSS) with S-POSS contents of 5 and 10 wt.% were prepared by solution casting as base materials for high temperature polymer electrolyte membrane fuel cells. With membranes based on pure PBI as a reference point, the composite membranes were characterized with respect to spectroscopic and physicochemical properties. After doping with phosphoric acid, the composite membranes showed considerably improved ex situ proton conductivity under anhydrous as well as under fully humidified conditions in the 120-180 °C temperature range. The conductivity improvements were also confirmed by in situ fuel cell tests at 160 °C and further supported by the electrochemical impedance spectroscopy data based on the operating membrane electrode assemblies, demonstrating the technical feasibility of the novel electrolyte materials

  7. Modification of chitosan membranes with nanosilica particles as polymer electrolyte membranes

    Science.gov (United States)

    Kusumastuti, Ella; Siniwi, Widasari Trisna; Mahatmanti, F. Widhi; Jumaeri, Atmaja, Lukman; Widiastuti, Nurul

    2016-04-01

    Chitosan has been widely used as polymer matrix for Polymer Electrolyte Membrane (PEM) application replacing Nafion which has shortcomings in terms of high methanol permeability that degrades the performance of fuel cells. Chitosan membranes modification is performed by adding nanosilica to prevent methanol transport through the membrane. Nanosilica is synthesized by sol-gel method and the particle diameter is obtained by analysis using Breunner Emmet Teller (BET) that is 6.59 nm. Nanosilica is mixed with chitosan solution to obtain nanosilica-chitosan as polymer electrolyte membrane. The membranes are synthesized through phase inversion method with nanosilica composition including 0; 0.5; 1; 2; 3; 5; and 10% w/w of chitosan. Characterization of the membranes indicate that the results of water swelling, proton conductivity and methanol permeability of the membrane with 3% nanosilica respectively were 49.23%, 0.231 S/cm, and 5.43 x 10-7 cm2/s. Based on the results of membrane selectivity calculation, the optimum membrane is the composition of 3% nanosilica with value 5.91 x 105 S s cm-3. The results of functional groups analysis with FTIR showed that it was only physical interaction that occurred between chitosan and nanosilica since no significant changes found in peak around the wave number 1000-1250 cm--1.

  8. The polymer electrolyte based on polysiloxane containing both alkyl cyanide and oligo ethylene oxide pendants

    International Nuclear Information System (INIS)

    The monomers (3-cyanopropyl) methylsiloxane cyclics (D4CN) and (3-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)propyl) methylsiloxane cyclics (D4TEG) were prepared by a hydrosilylation reaction of 2,4,6,8-tetramethylcyclotetrasiloxane (D4H) with allyl cyanide and tri(ethylene glycol) methyl allyl ether (allyl TEG), respectively, in toluene using a platinum(0)-1,3-divinyl-1,1,3,3-tetramethyl disiloxane complex as the catalyst. The new crosslinkable polymers with alkyl cyanide and ethylene oxide groups as the pendent were synthesized by ring opening polymerization and characterized by GPC and 1H NMR. And then, the crosslinked solid polymer electrolyte was prepared by UV radiation curing. The conductivities of samples were measured by impedance spectroscopy using an indium-tin oxide (ITO) electrode. As the results, the maximum ionic conductivities of the polymer were 1.15 x 10-5 S cm-1 at 20 deg. C and 1 x 10-4 S cm-1 at 60 deg. C. The electrolyte was stable electrochemically to 5 V versus Li+/Li at room temperature

  9. Conductivity enhancement via chemical modification of chitosan based green polymer electrolyte

    International Nuclear Information System (INIS)

    The potential of carboxymethyl chitosan as a green polymer electrolyte has been explored. Chitosan produced from partial deacetylation of chitin was reacted with monochloroacetic acid to form carboxymethyl chitosan. A green polymer electrolyte based chitosan and carboxymethyl chitosan was prepared by solution-casting technique. The powder and films were characterized by reflection Fourier transform infrared (ATR-FTIR) spectroscopy, 1H nuclear magnetic resonance, elemental analysis and X-ray diffraction, electrochemical impedance spectroscopy, and scanning electron microscopy. The shift of wavenumber that represents hydroxyl and amine stretching confirmed the polymer solvent complex formation. The XRD spectra results show that chemical modification of chitosan has improved amorphous properties of chitosan. The ionic conductivity was found to increase by two magnitudes higher with the chemical modification of chitosan. The highest conductivity achieved was 3.6 × 10−6 S cm−1 for carboxymethyl chitosan at room temperature and 3.7 × 10−4 S cm−1 at 60 °C

  10. Tubular array, dielectric, conductivity and electrochemical properties of biodegradable gel polymer electrolyte

    International Nuclear Information System (INIS)

    Highlights: • A new finding of tubular array of 10–20 μm in length and 1–2 μm in thickness of gel polymer electrolyte (GPE) having 2.2 × 10−3 S cm−1 conductivity is reported. • Thermal and electrochemical characterizations of GPEs show good interaction among the polymer, plasticizer and salt. • GPE based supercapacitor demonstrates high capacitance of 186 F g−1. • Low temperature studies did not influence much on capacitance values obtained from AC impedance studies. • Charge–discharge exhibits high capacity with excellent cyclic stability and energy density. -- Abstract: A supercapacitor based on a biodegradable gel polymer electrolyte (GPE) has been fabricated using guar gum (GG) as the polymer matrix, LiClO4 as the doping salt and glycerol as the plasticizer. The scanning electron microscopy (SEM) images of the gel polymer showed an unusual tubular array type surface morphology. FTIR, DSC and TGA results of the GPE indicated good interaction between the components used. Highest ionic conductivity and lowest activation energy values were 2.2 × 10−3 S cm−1 and 0.18 eV, respectively. Dielectric studies revealed ionic behavior and good capacitance with varying frequency of the GPE system. The fabricated supercapacitor showed a maximum specific capacitance value of 186 F g−1 using cyclic voltammetry. Variation of temperature from 273 K to 293 K did not significantly influence the capacitance values obtained from AC impedance studies. Galvanostatic charge–discharge study of supercapacitor indicated that the device has good stability, high energy density and power density

  11. Studies on the Properties of Plasticizer and Lithium Salt on PMMA-based Solid Polymer Electrolytes

    International Nuclear Information System (INIS)

    The effects of plasticizer and lithium salt on PMMA-based solid polymer electrolyte have been investigated. In current project, three system samples consisted of pure poly(methyl methacrylate (PMMA) system, plasticized poly(methyl methacrylate)(PMMA-EC) system and the LiCF3SO3 salted-poly(methyl methacrylate) containing a fixed amount of plasticizer ([PMMA-EC]-LiCF3SO3) system have been prepared using solution casting technique. The conductivities of the films from each system are characterized by impedance spectroscopy and infrared spectrum. With the addition of plasticizer, results show improvement on the ionic conductivity value where the value of 6.25x10-10 Scm-1 is obtained. This may be due to the nature of plasticizer that softens the polymer and hence enhanced the ionic transportation across the polymer. The room temperature conductivity for the highest conducting sample in the ([PMMA-EC]-LiCF3SO3) system is 1.36x10-5 Scm-1. Fourier Transform Infrared Spectroscopy (FTIR) indicates complexation between the polymer and the plasticizer and the polymer, the plasticizer and the salts, and the result of XRD further supports the observation.

  12. Electronic behavior of micro-structured polymer foils immersed in electrolyte

    International Nuclear Information System (INIS)

    The presence of impurities in polymers makes them electroactive. When immersed in electrolytes, polymers can incorporate additional ions, thus changing their electronic properties. The aim of the present work is to characterize the electronic behavior of polymers with microstructures obtained from proton irradiation and etching. To that end, polyethylene terephthalate foils were irradiated with a 2.0 × 2.0 μm2 proton beam of 3 MeV. Subsequently, the foils were submitted to an etching procedure with NaOH, leading to microstructures of the order of 1000 μm2. Finally, the polymers were immersed in a solution of NaCl and submitted to an AC voltage from a function generator. The results show that the etching procedure after proton irradiation leads to buried structures in the polymers. Pristine and microstructured foils show an Ohmic behavior for frequencies below 1 kHz and a capacitive behavior above this frequency up to 1 MHz. This behavior is independent of the foil thickness and the area of the structures

  13. Lithium iodide effect on the electrochemical behavior of agarose based polymer electrolyte for dye-sensitized solar cell

    International Nuclear Information System (INIS)

    Highlights: · Conduction behavior in agarose electrolyte system. · Charge recombination resistance is reduced with the increasing LiI concentration. · Charge transfer resistance is also reduced with the increasing LiI concentration. · Electron lifetime is shortened by increasing LiI concentrations. · LiI addition enhances the back reaction in DSSC. - Abstract: The effect of lithium iodide (LiI: 0-85 wt%) on the electrochemical behavior of agarose-based polymer electrolytes for dye-sensitized solar cells (DSSC) was investigated. Fourier Transform Infrared Spectroscopy (FTIR) and scanning electronic microscopy (SEM) were employed to characterize the interactions between polymer matrix and salt and the morphology of the agarose electrolytes, respectively. From the AC impedance spectra study, it was determined that the conduction behavior of the agarose-based polymer electrolyte matches the 'salt-in-polymer' like behavior of low LiI content (0-25 wt%) and 'polymer-in-salt' like behavior of high LiI content (25-85 wt%). Detailed analysis of characteristic electrochemical processes occurring in DSSC with these agarose electrolytes was also obtained by employing the EIS technique. The impedance spectra showed that the electron lifetime of DSSC was shortened with increasing LiI concentration, while the charge transfer resistance and charge recombination resistance were reduced when LiI concentration was increased.

  14. Synthesis and properties of aromatic polyethers containing poly(ethylene oxide) side chains as polymer electrolytes for lithium ion batteries

    International Nuclear Information System (INIS)

    Polymer electrolytes consisting of polar pyridine units in the backbone and poly(ethylene oxide) (PEO) side chains are designed for possible application in lithium ion batteries. In particular, aromatic polyethers bearing PEO side chains with varying length are synthesized either by copolymerization of the corresponding PEO based diols with different arylfluorides or by modification of dihydroxyl functionalized precursor polymers with poly(ethylene oxide) methyl ether tosylate. The formation of free standing films is dependent on the PEO content, polymers' composition as well as on the different monomers used. The mechanical properties study shows that the glass transition temperature can be controlled by varying the PEO content. Thermal stability is also influenced by the PEO length: the shorter the PEO side chain, the higher the stability. XRD analysis gives information about the desired amorphous character of these polymers, which is independent of the PEO content. Solid polymer electrolytes prepared by blending the PEO-based polymers with lithium salt and PEO 2000 (used as plasticizer) show ambient temperature conductivities in the range of 10−6 S/cm. To further improve conductivity doping of PEO-based polymers in liquid electrolyte (1 M LiPF6 in EC/DMC 1/1) in some cases results in high conductivities in the range of 10−3 S cm−1 at 80 °C. - Highlights: • Polymer electrolytes bearing PEO side chains of varying lengths were designed. • DMA and TGA show that Tg and Td can be controlled by varying the PEO content. • XRD confirms polymers amorphous character, independent of the PEO content. • Membranes doped in liquid electrolyte have high conductivities (10−3 S cm−1, 80 °C)

  15. Comparative study of polymer matrices for gelled electrolytes of lithium batteries; Etude comparative de matrices polymeres pour electrolytes gelifies de batteries au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Du Pasquier, A.; Sarrazin, C.; Fauvarque, J.F. [CNAM, 75 - Paris (France); Andrieu, X. [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1996-12-31

    A solid electrolyte for lithium batteries requires several properties: a good ionic conductivity of about 10{sup -3} S/cm at 298 deg. K, a high cationic transport number (greater than 0.5), a redox stability window higher than 4.5 V, a good stability of the interface with the lithium electrode, and a sufficient mechanical stability. The family of gelled or hybrid electrolytes seems to meet all these requirements. Thus, a systematic study of the gelling of an ethylene carbonate and lithium bistrifluorosulfonimide (LiTFSI) based electrolyte has been carried out. The polymers used for gel or pseudo-gel synthesis are POE, PMMA and PAN which represent 3 different cases of interaction with the electrolyte. All the properties mentioned above have been studied according to the nature of the polymer and to the concentration of lithium salt, showing the advantages and drawbacks of each polymer. The possibility of using some of these gels in lithium-ion batteries has been tested by lithium intercalation tests in UF2 graphite at the C/10 regime and by the cycling of LiCoO{sub 2}/UF{sub 2} batteries at the C/5 regime. Interesting performances have been obtained on Li/PPy batteries which can operate at the 7.5 C regime. (J.S.)

  16. Structural and ionic conductivity studies of electrospun polymer blend P(VdF-co-HFP)/PMMA electrolyte membrane for lithium battery application

    Energy Technology Data Exchange (ETDEWEB)

    Padmaraj, O.; Satyanarayana, N., E-mail: nallanis2011@gmail.com [Department of Physics, Pondicherry University, Pondicherry 605 014 (India); Venkateswarlu, M. [R& D, Amara Raja Batteries Ltd., Karakambadi 517 520 (India)

    2015-06-24

    A novel fibrous polymer blend [(100-x) % P(VdF-co-HFP)/x % PMMA, x = 10, 20, 30, 40, 50] electrolyte membranes were prepared by electrospinning technique. Structural, thermal and surface morphology of all the compositions of electrospun polymer blend membranes were studied by using XRD, DSC & SEM. The newly developed five different compositions of polymer blend fibrous electrolyte membranes were obtained by soaking in an electrolyte solution contains 1M LiPF{sub 6} in EC: DEC (1:1,v/v). The wet-ability and conductivity of all the compositions of polymer blend electrolyte membranes are evaluated through electrolyte uptake and impedance measurements. The polymer blend [90% P(VdF-co-HFP)/10% PMMA] electrolyte membrane showed good wet-ability and high conductivity (1.788 × 10{sup −3} Scm{sup −1}) at room temperature.

  17. Structural and ionic conductivity studies of electrospun polymer blend P(VdF-co-HFP)/PMMA electrolyte membrane for lithium battery application

    International Nuclear Information System (INIS)

    A novel fibrous polymer blend [(100-x) % P(VdF-co-HFP)/x % PMMA, x = 10, 20, 30, 40, 50] electrolyte membranes were prepared by electrospinning technique. Structural, thermal and surface morphology of all the compositions of electrospun polymer blend membranes were studied by using XRD, DSC & SEM. The newly developed five different compositions of polymer blend fibrous electrolyte membranes were obtained by soaking in an electrolyte solution contains 1M LiPF6 in EC: DEC (1:1,v/v). The wet-ability and conductivity of all the compositions of polymer blend electrolyte membranes are evaluated through electrolyte uptake and impedance measurements. The polymer blend [90% P(VdF-co-HFP)/10% PMMA] electrolyte membrane showed good wet-ability and high conductivity (1.788 × 10−3 Scm−1) at room temperature

  18. Kinetic factors determining conducting filament formation in solid polymer electrolyte based planar devices

    Science.gov (United States)

    Krishnan, Karthik; Aono, Masakazu; Tsuruoka, Tohru

    2016-07-01

    Resistive switching characteristics and conducting filament formation dynamics in solid polymer electrolyte (SPE) based planar-type atomic switches, with opposing active Ag and inert Pt electrodes, have been investigated by optimizing the device configuration and experimental parameters such as the gap distance between the electrodes, the salt inclusion in the polymer matrix, and the compliance current applied in current-voltage measurements. The high ionic conductivities of SPE enabled us to make scanning electron microscopy observations of the filament formation processes in the sub-micrometer to micrometer ranges. It was found that switching behaviour and filament growth morphology depend strongly on several kinetic factors, such as the redox reaction rate at the electrode-polymer interfaces, ion mobility in the polymer matrix, electric field strength, and the reduction sites for precipitation. Different filament formations, resulting from unidirectional and dendritic growth behaviours, can be controlled by tuning specified parameters, which in turn improves the stability and performance of SPE-based devices.Resistive switching characteristics and conducting filament formation dynamics in solid polymer electrolyte (SPE) based planar-type atomic switches, with opposing active Ag and inert Pt electrodes, have been investigated by optimizing the device configuration and experimental parameters such as the gap distance between the electrodes, the salt inclusion in the polymer matrix, and the compliance current applied in current-voltage measurements. The high ionic conductivities of SPE enabled us to make scanning electron microscopy observations of the filament formation processes in the sub-micrometer to micrometer ranges. It was found that switching behaviour and filament growth morphology depend strongly on several kinetic factors, such as the redox reaction rate at the electrode-polymer interfaces, ion mobility in the polymer matrix, electric field strength

  19. Identification of liquid water constraints in micro polymer electrolyte fuel cells without gas diffusion layers

    International Nuclear Information System (INIS)

    A simplified, miniaturized polymer electrolyte fuel cell without gas diffusion layers was investigated under operation by neutron radiography. By visualizing liquid water, it was possible to identify limiting effects, which are directly related to the simplified construction principle. Depending on the operation conditions, undesired water accumulation either in particular micro-channels or on the cathode catalyst layer as well as drying of the anode catalyst layer was observed. As a consequence, the design of a fuel cell without gas diffusion layers must take into account these limitations visualized by neutron radiography.

  20. Range Extender Vehicle Concept Based on High Temperature Polymer Electrolyte Membrane Fuel Cell

    OpenAIRE

    Dickinson, Dave; Nasri, Mounir

    2014-01-01

    Battery electric vehicles that would be suitable for urban traffic as well as for longer distances will be equipped with a range extender (REX). In this range extender vehicle concept, the powertrain is driven mainly by the high performance li-ion battery added by a HT-PEFC (Polymer Electrolyte Membrane Fuel Cell). The on-board fuel cell range extender serves as an additional energy source, which charges the high performance battery during the trip especially in a long distance trip. O...

  1. Properties of solid polymer electrolyte fluorocarbon film. [used in hydrogen/oxygen fuel cells

    Science.gov (United States)

    Alston, W. B.

    1973-01-01

    The ionic fluorocarbon film used as the solid polymer electrolyte in hydrogen/oxygen fuel cells was found to exhibit delamination failures. Polarized light microscopy of as-received film showed a lined region at the center of the film thickness. It is shown that these lines were not caused by incomplete saponification but probably resulted from the film extrusion process. The film lines could be removed by an annealing process. Chemical, physical, and tensile tests showed that annealing improved or sustained the water contents, spectral properties, thermo-oxidative stability, and tensile properties of the film. The resistivity of the film was significantly decreased by the annealing process.

  2. Increased Water Retention in Polymer Electrolyte Membranes at Elevated Temperatures Assisted by Capillary Condensation

    International Nuclear Information System (INIS)

    We establish a new systematic methodology for controlling the water retention of polymer electrolyte membranes. Block copolymer membranes comprising hydrophilic phases with widths ranging from 2 to 5 nm become wetter as the temperature of the surrounding air is increased at constant relative humidity. The widths of the moist hydrophilic phases were measured by cryogenic electron microscopy experiments performed on humid membranes. Simple calculations suggest that capillary condensation is important at these length scales. The correlation between moisture content and proton conductivity of the membranes is demonstrated.

  3. Increased Water Retention in Polymer Electrolyte Membranes at Elevated Temperatures Assisted by Capillary Condensation

    Energy Technology Data Exchange (ETDEWEB)

    Park, M.J.; Downing, K.H.; Jackson, A.; Gomez, E.D.; Minor, A.M.; Cookson, D.; Weber, A.Z.; Balsara, N.P. (UCB); (NIST); (LBNL); (UC)

    2008-10-03

    We establish a new systematic methodology for controlling the water retention of polymer electrolyte membranes. Block copolymer membranes comprising hydrophilic phases with widths ranging from 2 to 5 nm become wetter as the temperature of the surrounding air is increased at constant relative humidity. The widths of the moist hydrophilic phases were measured by cryogenic electron microscopy experiments performed on humid membranes. Simple calculations suggest that capillary condensation is important at these length scales. The correlation between moisture content and proton conductivity of the membranes is demonstrated.

  4. Elucidating through-plane liquid water profile in a polymer electrolyte membrane fuel cell.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yun (University of California, Irvine, CA); Chen, Ken Shuang

    2010-10-01

    In this paper, a numerical model incorporating micro-porous layers (MPLs) is presented for simulating water transport within the gas diffusion layers (GDLs) and MPLs as well as across their interfaces in a polymer electrolyte membrane (PEM) fuel cell. One-dimensional analysis is conducted to investigate the impacts of MPL and GDL properties on the liquid-water profile across the anode GDL-MPL and cathode MPL-GDL regions. Furthermore, two-dimensional numerical simulations that take MPLs into account are also carried out to elucidate liquid water transport, particularly through-plane liquid-water profile in a PEM fuel cell. Results from case studies are presented.

  5. Nanostructured electrodes and gel-polymer electrolyte for an improved Li-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Bodoardo, S.; Bongiovanni, R.; Gerbaldi, C.; Meligrana, G.; Nair, J. [Dipartimento di Scienza dei Materiali e Ingegneria Chimica, Politecnico di Torino (Italy); Mulas, G. [Dipartimento di Chimica, Universita di Sassari (Italy); Penazzi, N.

    2009-06-15

    The present communication deals with the results obtained by the electrochemistry research group at the Politecnico di Torino in Italy in the field of materials for Li-ion cells. Cathode (LiFePO{sub 4}/C powder), anode (Ni{sub 3}Sn{sub 4}-C alloy) and electrolyte (gel-polymer membrane) cell components have been prepared with the aim of obtaining, beyond high performance, cheap materials from easily disposable reagents via simple and reliable preparations. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  6. Ionic conductivity and dielectric permittivity of polymer electrolyte plasticized with polyethylene glycol

    Science.gov (United States)

    Das, S.; Ghosh, A.

    2016-05-01

    We have studied ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with polyethylene glycol (PEG). The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. The maximum dielectric constant is observed for 30 wt. % of PEG content. To get further insights into the ion dynamics, the complex dielectric permittivity has been studied with Havriliak-Negami function. The variation of relaxation time with inverse temperature obtained from HN formalism follows VTF nature.

  7. Oxide-supported PtCo alloy catalyst for intermediate temperature polymer electrolyte fuel cells

    OpenAIRE

    Stassi, Alessandro; Gatto, Irene; Baglio, Vincenzo; Passalacqua, Enza; Aricò, Antonino S.

    2013-01-01

    International audience A Pt-Co alloy catalyst supported on a Ta-doped Ti-oxide was investigated for the oxygen reduction reaction in a polymer electrolyte fuel cell (PEMFC) operating between 80° and 110 °C at different relative humidity (100% and 33% R.H.). A crystalline Anatase phase was obtained for the Ta-doped Ti-oxide support with BET surface area of about 150 m2/g. Pt and Pt3Co1 nanoparticles dispersed on the Ta-doped Ti-oxide showed a crystallite size of 3.9 and 2.9 nm, respectively...

  8. Using a Quasipotential Transformation for Modeling Diffusion Media inPolymer-Electrolyte Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Adam Z.; Newman, John

    2008-08-29

    In this paper, a quasipotential approach along with conformal mapping is used to model the diffusion media of a polymer-electrolyte fuel cell. This method provides a series solution that is grid independent and only requires integration along a single boundary to solve the problem. The approach accounts for nonisothermal phenomena, two-phase flow, correct placement of the electronic potential boundary condition, and multilayer media. The method is applied to a cathode diffusion medium to explore the interplay between water and thermal management and performance, the impact of the rib-to-channel ratio, and the existence of diffusion under the rib and flooding phenomena.

  9. Effect of epoxidation on 30% poly(methyl methacrylate)-grafted natural rubber polymer electrolytes

    International Nuclear Information System (INIS)

    Epoxidized 30% poly(methyl methacrylate)-grafted natural rubber (EMG 30) as a polymer host in solid polymer electrolytes (SPEs) has been investigated. EMG30 was synthesized via performicepoxidation method onto 30% poly(methyl methacrylate)-grafted natural rubber (MG30) and the formations of epoxy group were discussed. The EMG30 were characterized by proton nuclear magnetic resonance (1HNMR) to investigate their chemical structure and differential scanning calorimeter to determine their crystallinity. A new peak in 1HNMR spectra (2.71 ppm) confirmed the appearance of epoxy group. SPE based on EMG30 doped with 40 wt% LiCF3SO3 show the highest conductivity. The complexation between EMG30 and LiCF3SO3 were confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR)

  10. Effect of epoxidation on 30% poly(methyl methacrylate)-grafted natural rubber polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, Khuzaimah; Aziz, Ahmad Fairoz [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Adam, Nurul Ilham [Faculty of Applied Sciences, Universiti Teknologi MARA, KampusTapah, 35400 Tapah Road, Tapah, Perak (Malaysia); Yahya, Muhd Zu Azhan [Faculty of Defence Sciences and Technology, Universiti Pertahanan Nasional Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur (Malaysia); Ali, Ab Malik Marwan [Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2015-08-28

    Epoxidized 30% poly(methyl methacrylate)-grafted natural rubber (EMG 30) as a polymer host in solid polymer electrolytes (SPEs) has been investigated. EMG30 was synthesized via performicepoxidation method onto 30% poly(methyl methacrylate)-grafted natural rubber (MG30) and the formations of epoxy group were discussed. The EMG30 were characterized by proton nuclear magnetic resonance ({sup 1}HNMR) to investigate their chemical structure and differential scanning calorimeter to determine their crystallinity. A new peak in {sup 1}HNMR spectra (2.71 ppm) confirmed the appearance of epoxy group. SPE based on EMG30 doped with 40 wt% LiCF{sub 3}SO{sub 3} show the highest conductivity. The complexation between EMG30 and LiCF{sub 3}SO{sub 3} were confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR)

  11. Synthesis and characterization of nanocomposite polymer blend electrolyte thin films by spin-coating method

    Science.gov (United States)

    Chapi, Sharanappa; Niranjana, M.; Devendrappa, H.

    2016-05-01

    Solid Polymer blend electrolytes based on Polyethylene oxide (PEO) and poly vinyl pyrrolidone (PVP) complexed with zinc oxide nanoparticles (ZnO NPs; Synthesized by Co-precipitation method) thin films have prepared at a different weight percent using the spin-coating method. The complexation of the NPs with the polymer blend was confirmed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR). The variation in film morphology was examined by polarized optical micrographs (POMs). The thermal behavior of blends was investigated under non-isothermal conditions by differential thermal analyses (DTA). A single glass transition temperature for each blend was observed, which supports the existence of compatibility of such system. The obtained results represent that the ternary based thin films are prominent materials for battery and optoelectronic device applications.

  12. Lithium Polymer Electrolytes Based On PMMA / PEG And Penetrant Diffusion In Kraton Penta-Block Ionomer

    Science.gov (United States)

    Meng, Yan

    The study of diffusion in polymeric material is critical to many research fields and applications, such as polymer morphology, protective coatings (paints and varnishes), separation membranes, transport phenomena, polymer electrolytes, polymer melt, and controlled release of drugs from polymer carriers [1-9]. However, it is still a challenge to understand, predict and control the diffusion of molecules and ions of different sizes in polymers [2]. This work studied the medium to long range diffusion of species (i.e., ions and molecules) in solid polymer electrolytes based on poly(ethylene glycol)/poly(methyl methacrylate) (PEG/PMMA) for Li-based batteries, and polymeric permselective membranes via pulsed-field gradient NMR and a.c. impedance. Over the past decades polymer electrolytes have attracted much attention because of their promising technological application as an ion-conducting medium in solid-state batteries, fuel cells, electrochromic displays, and chemical sensors [10, 11]. However, despite numerous studies related to ionic transport in these electrolytes the understanding of the migration mechanism is still far from being complete, and progress in the field remains largely empirical [10, 12-15]. Among various candidates for solid polymer electrolyte (SPE) material, the miscible polymer pair, poly(ethylene oxide)/poly(methyl methacrylate) (PEO/PMMA), is an attractive one, because there is a huge difference in mobility between PEO and PMMA in their blends, and PEO chains remain exceptionally mobile in the blend even at temperature below the glass transition temperature of the blend [ 16]. Thus the mechanical strength and dimensional stability is maintained by PMMA component, while the chain motions or rearrangements of the PEO component virtually contribute to the ion transport [17]. The current work prepared two types of SPE based on poly(ethylene glycol) (PEG) /PMMA (40/60 by weight) for Li-based batteries: lithium bis(trifluoromethylsulfonylimide) (Li

  13. Chlorine isotope enrichment on a strong alkaline anion exchanger in dependence of type and concentration of the strange electrolytic solution

    International Nuclear Information System (INIS)

    Chlorine isotope enrichment for heterogenous ionexchange equilibria was studied. The dependence of element separation effects on the anion of the strange electrolyte (for same cation), on the cation of the strange electrolyte (for same anion), on the concentration of the strange electrolyte and also on the acetone: water ratio of the solvent was investigated. (orig./HBR)

  14. Synthesis of polycarbonate polymer electrolytes for lithium ion batteries and study of additives to raise the ionic conductivity

    OpenAIRE

    Andersson, Jonas

    2015-01-01

    Polymer electrolyte films based on poly(trimethylene carbonate) (PTMC) mixed with LiTFSI salt in different compositions were synthesized and investigated as electrolytes for lithium ion batteries, where the ionic conductivity is the most interesting material property. Electrochemical impedance spectroscopy (EIS) and DSC were used to measure the ionic conductivity and thermal properties, respectively. Additionally, FTIR and Raman spectroscopy were used to examine ion coordination in the materi...

  15. Study of Ion Transport Behaviour in (PVA-NH4I):SIO2 Nano Composite Polymer Electrolyte

    Science.gov (United States)

    Tripathi, Mridula; Trivedi, Shivangi; Upadhyay, Ruby; Singh, Markandey; Pandey, N. D.; Pandey, Kamlesh

    2013-07-01

    Development and characterization of Poly vinyl alcohol (PVA) based nano composite polymer electrolytes comprising of (PVA-NH4I):SiO2 is reported. Sol-gel derived silica powder of nano dimension has been used as ceramic filler for development of nano composite electrolyte. Formation of nano composites, change in the structural and microscopic properties of the system have been investigated by X-ray differaction, SEM and conductivity.

  16. U.S. DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications

    OpenAIRE

    Dimitrios C. Papageorgopoulos; Reginald Tyler; Jason Marcinkoski; Kathi Epping Martin; Donna Lee Ho; Garland, Nancy L.; David Peterson; John Kopasz; Spendelow, Jacob S.; Greg J. Kleen; Cassidy Houchins

    2012-01-01

    Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel ...

  17. Anti-thermal shrinkage nanoparticles/polymer and ionic liquid based gel polymer electrolyte for lithium ion battery

    International Nuclear Information System (INIS)

    Highlights: ► Anti-thermal shrinkage nanoparticle/polymer and ionic liquid based GPE is developed. ► The nanoparticle/polymer separator has good dimensional stability. ► The GPE has good ionic conductivity and excellent compatibility with anode and cathode. ► Battery Li/GPE/LiFePO4 exhibits good rate and cycle performance. -- Abstract: A new gel polymer electrolyte (GPE) system for lithium ion battery was developed by using anti-thermal shrinkagable nanoparticles/polymer incorporating with ionic liquid. Polyethylene-supported SiO2/poly(methyl methacrylate–acrylonitrile–vinyl acetate) (P(MMA–AN–VAc)) and Al2O3/P(MMA–AN–VAc) separators were prepared and the corresponding GPEs, SiO2/P(MMA–AN–VAc) + LiTFSI + PYR14TFSI/VC and Al2O3/P(MMA–AN–VAc) + LiTFSI + PYR14TFSI/VC, were obtained by immersing the separators in an ionic liquid electrolyte of 0.5 mol kg−1 LiTFSI in PYR14TFSI/VC. The structure and performance of the separators and corresponding GPEs were characterized by thermogravimetric analysis (TGA), air permeability, scanning electron spectroscopy (SEM), electrochemical impedance spectroscopy (EIS), linear sweep voltammetry (LSV), cyclic voltammetry (CV) and charge–discharge test. It is found that the nanoparticles/polymer separators have good dimensional stability and the corresponding GPEs have good ionic conductivity and excellent compatibility with the electrodes of lithium ion battery. SiO2/P(MMA–AN–VAc) and Al2O3/P(MMA–AN–VAc) separators are stable up to 310 °C and have a Gurley value of 8 s. SiO2/P(MMA–AN–VAc) based GPE has an ionic conductivity of 1.2 × 10−3 S cm−1 at room temperature and an oxidative decomposition potential of 5.3 V (vs. Li/Li+). The interfacial resistance between anode lithium and GPE is changed from 47 Ω cm2 on the first day to 118 Ω cm2 after the 25 days. The battery Li/GPE/LiFePO4 shows good rate and cyclic performance

  18. High-Performance Flexible Solid-State Supercapacitor with an Extended Nanoregime Interface through in Situ Polymer Electrolyte Generation.

    Science.gov (United States)

    Anothumakkool, Bihag; Torris A T, Arun; Veeliyath, Sajna; Vijayakumar, Vidyanand; Badiger, Manohar V; Kurungot, Sreekumar

    2016-01-20

    Here, we report an efficient strategy by which a significantly enhanced electrode-electrolyte interface in an electrode for supercapacitor application could be accomplished by allowing in situ polymer gel electrolyte generation inside the nanopores of the electrodes. This unique and highly efficient strategy could be conceived by judiciously maintaining ultraviolet-triggered polymerization of a monomer mixture in the presence of a high-surface-area porous carbon. The method is very simple and scalable, and a prototype, flexible solid-state supercapacitor could even be demonstrated in an encapsulation-free condition by using the commercial-grade electrodes (thickness = 150 μm, area = 12 cm(2), and mass loading = 7.3 mg/cm(2)). This prototype device shows a capacitance of 130 F/g at a substantially reduced internal resistance of 0.5 Ω and a high capacitance retention of 84% after 32000 cycles. The present system is found to be clearly outperforming a similar system derived by using the conventional polymer electrolyte (PVA-H3PO4 as the electrolyte), which could display a capacitance of only 95 F/g, and this value falls to nearly 50% in just 5000 cycles. The superior performance in the present case is credited primarily to the excellent interface formation of the in situ generated polymer electrolyte inside the nanopores of the electrode. Further, the interpenetrated nature of the polymer also helps the device to show a low electron spin resonance and power rate and, most importantly, excellent shelf-life in the unsealed flexible conditions. Because the nature of the electrode-electrolyte interface is the major performance-determining factor in the case of many electrochemical energy storage/conversion systems, along with the supercapacitors, the developed process can also find applications in preparing electrodes for the devices such as lithium-ion batteries, metal-air batteries, polymer electrolyte membrane fuel cells, etc. PMID:26697922

  19. Conductivity study of PEO–LiClO4 polymer electrolyte doped with ZnO nanocomposite ceramic filler

    Indian Academy of Sciences (India)

    S U Patil; S S Yawale; S P Yawale

    2014-10-01

    The preparation and characterization of composite polymer electrolytes comprising PEO and LiClO4 with different concentrations of ZnO nanoparticles are studied. Conductivity measurements were carried out and discussed. In order to ascertain the thermal stability of the polymer electrolyte with maximum conductivity, films were subjected to TG/DTA analysis in the range of 298–823 K. In the present work, FTIR spectroscopy is used to study polymer structure and interactions between PEO and LiClO4, which can make changes in the vibrational modes of the atoms or molecules in the material. FTIR spectra show the complexation of LiClO4 with PEO. The SEM photographs indicated that electrolytes are miscible and homogeneous.

  20. Polymer-metal complex as gel electrolyte for quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    A kind of polymer-metal complex gel electrolyte is successfully prepared and is used in dye-sensitized solar cells. Raman and X-ray photoelectron spectroscopy confirm the structure of this complex and is found that the metal ion reacts with nitrogen in the polymer. This novel electrolyte shows apparent diffusion coefficient of iodide of 8.37 x 10-7 cm2 s-1 and the energy conversion efficiency of 6.10% when the amount of ZnI2 is 0.04 M. By studying the dissociation active energy of the inorganic salt in electrolytes, we find that the metal salts can dissociate more easily after reacting with polymer and as a result can provide extra free iodide ion. The cell maintains ca. 93% of its initial efficiency after 20 d without further sealing, which shows good long-time stability.

  1. Compatibility and thermal stability studies on plasticized PVC/PMMA blend polymer electrolytes complexed with different lithium salts

    Directory of Open Access Journals (Sweden)

    R. Nimma Elizabeth

    2005-03-01

    Full Text Available The lithium salt (x (X= LiAsF6, LiPF6, LiN(C2F5SO22 , LiN(CF3SO22, LiBF4 was complexed with a host of poly(vinyl chloride (PVC/ poly(methyl methacrylate (PMMA blend polymer and plasticized with a combination of ethylene carbonate (EC and propylene carbonate(PC. The polymer electrolyte films were prepared for constant PVC/PMMA blend ratio. The electrochemical stability and thermal stability of the solid polymer electrolytes were reported. The role of PMMA to the phenomena occurring at the interface between the electrolyte and the lithium metal electrode was explored.

  2. Superionic solid-state polymer electrolyte membrane for high temperature applications

    Science.gov (United States)

    Kyu, Thein; He, Ruixuan; Cao, Jinwei

    2015-03-01

    Completely amorphous, flexible, solid-state polymer electrolyte membranes (ss-PEM) consisted of polyethylene glycol diacrylate /succinonitrile plasticizer (SCN)/lithium trifluorosulfonyl imide were fabricated via UV polymerization. The room temperature ionic conductivity of our ss-PEM is extremely high (i.e., 10-3S/cm), which is already in the superionic conductor range of inorganic and/or liquid electrolyte counterparts. Of particular interest is that our ss-PEM is thermally stable up to 140°C, which is superior to the liquid electrolyte counterpart that degrades above 80°C. The ss-PEM exhibits cyclic stability in both LiFePO4/Li and Li4Ti5O12 /Li half-cells up to 50 cycles tested. The trend of conductivity enhancement with temperature is reproducible in the repeated cycles, showing melting transitions of the SCN plastic crystals. In the compositions close to the solid (SCN plastic crystal)-liquid coexistence line, polymerization-induced crystallization occurs during photo-curing. The effect of solid-liquid segregation on ionic conductivity behavior is discussed. Supported by NSF-DMR 1161070.

  3. Cheap glass fiber mats as a matrix of gel polymer electrolytes for lithium ion batteries.

    Science.gov (United States)

    Zhu, Yusong; Wang, Faxing; Liu, Lili; Xiao, Shiyin; Yang, Yaqiong; Wu, Yuping

    2013-01-01

    Lithium ion batteries (LIBs) are going to play more important roles in electric vehicles and smart grids. The safety of the current LIBs of large capacity has been remaining a challenge due to the existence of large amounts of organic liquid electrolytes. Gel polymer electrolytes (GPEs) have been tried to replace the organic electrolyte to improve their safety. However, the application of GPEs is handicapped by their poor mechanical strength and high cost. Here, we report an economic gel-type composite membrane with high safety and good mechanical strength based on glass fiber mats, which are separator for lead-acid batteries. The gelled membrane exhibits high ionic conductivity (1.13 mS cm(-1)), high Li(+) ion transference number (0.56) and wide electrochemical window. Its electrochemical performance is evaluated by LiFePO4 cathode with good cycling. The results show this gel-type composite membrane has great attraction to the large-capacity LIBs requiring high safety with low cost. PMID:24216756

  4. Photo-polymerized films of lithium ion conducting solid polymer electrolyte for electrochromic windows (ECWs)

    Energy Technology Data Exchange (ETDEWEB)

    Varshney, P.; Deepa, M.; Agnihotry, S.A. [Electronic Materials Division, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India); Ho, K.C. [National Taiwan University, Taipei ROC-10617 (Taiwan)

    2003-09-30

    Films of solid polymer electrolyte (spe) have been prepared by the photo-polymerization of the monomer: 2-hydroxyethylmethacrylate (HEMA) simultaneously accompanied by chemical crosslinking with neopentyl glycol which is dissolved in a liquid electrolyte, namely, 1M LiClO{sub 4} in EC:PC binary solvent mixed in two different volume ratios. The spe films exhibit ionic conductivities greater than 10{sup -3}Scm{sup -1} at 25C. Thermal and structural characteristics of the films have been determined by DSC and XRD, respectively. The electrochemical redox behavior of an electrochromic device (PWECD) fabricated with an electrodeposited tungsten oxide film as the primary electrode, a prussian blue film as the counter electrode and a poly(HEMA) based electrolyte film as well as that of the individual components of the device has been examined by cyclic voltammetry. Transmission modulation of =60% ({lambda}=650nm) shown by the PWECD renders it to be a promising candidate for electrochromic window applications.

  5. Effect of plasticizer and fumed silica on ionic conductivity behaviour of proton conducting polymer electrolytes containing HPF6

    Indian Academy of Sciences (India)

    Jitender Paul Sharma; S S Sekhon

    2013-08-01

    The effect of addition of propylene carbonate (PC) and nano-sized fumed silica on the ionic conductivity behaviour of proton conducting polymer electrolytes containing different concentrations of hexafluorophosphoric acid (HPF6) in polyethylene oxide (PEO) has been studied. The addition of PC results in an increase in ionic conductivity, whereas the addition of nano-sized fumed silica improves mechanical strength of electrolytes along with a small increase in ionic conductivity. It was observed that the simultaneous addition of PC and fumed silica results in electrolytes with optimum value of ionic conductivity and other properties.

  6. Thin and flexible solid-state organic ionic plastic crystal-polymer nanofibre composite electrolytes for device applications.

    Science.gov (United States)

    Howlett, Patrick C; Ponzio, Florian; Fang, Jian; Lin, Tong; Jin, Liyu; Iranipour, Nahid; Efthimiadis, Jim

    2013-09-01

    All solid-state organic ionic plastic crystal-polymer nanofibre composite electrolytes are described for the first time. The new composite materials exhibit enhanced conductivity, excellent thermal, mechanical and electrochemical stability and allow the production of optically transparent, free-standing, flexible, thin film electrolytes (10's μms thick) for application in electrochemical devices. Stable cycling of a lithium cell incorporating the new composite electrolyte is demonstrated, including cycling at lower temperatures than previously possible with the pure material. PMID:23753038

  7. Liquid electrolyte-free cylindrical Al polymer capacitor review: Materials and characteristics

    Science.gov (United States)

    Yoo, Jeeyoung; Kim, Jaegun; Kim, Youn Sang

    2015-06-01

    The manufacturing methods for liquid electrolyte-free Al polymer capacitors are introduced by using new materials like novel oxidants, separators and negative current collectors. The Al polymer capacitor is constructed by an Al foil as an anode, Al2O3 as a dielectric, and poly(3, 4-ethylenedioxythiophene) (PEDOT) as a cathode. There are also various synthetic methods of 3, 4-ethylenedioxythiophene (EDOT) and the chemical polymerization of PEDOT from EDOT using iron benzenesulfonate as a new oxidant and dopant. Furthermore, various cathodic current collectors such as conventional Al foils, carbon and titanium dioxide deposited on Al foils or substrates, as well as various separators with manila-esparto paper and synthetic fibers (series of acryl, PET, etc.) are studied. The Al polymer capacitors with the newly introduced oxidant (iron benzenesulfonate), separator (aramid based synthetic fibers) and current collector (TiO2) exhibit considerably enhanced capacitance values and the extremely low resistance (7 mΩ), so there is low power consumption and high reliability. Additionally, the newly developed Al polymer capacitor is guaranteed for 5,000 h at 125 °C, which means there is a long life time operation over ∼ 5 × 106 h at 65 °C.

  8. Ti3C2Tx Filler Effect on the Proton Conduction Property of Polymer Electrolyte Membrane.

    Science.gov (United States)

    Liu, Yahua; Zhang, Jiakui; Zhang, Xiang; Li, Yifan; Wang, Jingtao

    2016-08-10

    Conductive polymer electrolyte membranes are increasingly attractive for a wide range of applications in hydrogen-relevant devices, for instance hydrogen fuel cells. In this study, two-dimensional Ti3C2Tx, a typical representative of the recently developed MXene family, is synthesized and employed as a universal filler for its features of large specific surface area, high aspect ratio, and sufficient terminated -OH groups. The Ti3C2Tx is incorporated into polymer matrix to explore its function on membrane microstructure and proton conduction property. Both phase-separated (acidic Nafion and sulfonated poly(ether ether ketone)) and non-phase-separated (basic chitosan) polymers are utilized as membrane matrixes. The microstructures, physicochemical properties, and proton conduction properties of the membranes are extensively investigated. It is demonstrated that Ti3C2Tx generates significant promotion effect on proton conduction of the composite membrane by facilitating both vehicle-type and Grotthuss-type proton transfer, yielding several times increased proton conductivity for every polymer-based composite membrane under various conditions, and the composite membrane achieves elevated hydrogen fuel cell performance. The stable Ti3C2Tx also reinforces the thermal and mechanical stabilities of these composite membranes. Since the MXene family includes more than 70 members, this exploration is expected to open up new perspectives for expanding their applications, especially as membrane modifiers and proton conductors. PMID:27430190

  9. Effect of low energy oxygen ion beam irradiation on ionic conductivity of solid polymer electrolyte

    International Nuclear Information System (INIS)

    Over the past three decades, solid polymer electrolytes (SPEs) have drawn significant attention of researchers due to their prospective commercial applications in high energy-density batteries, electrochemical sensors and super-capacitors. The optimum conductivity required for such applications is about 10−2 – 10−4 S/cm, which is hard to achieve in these systems. It is known that the increase in the concentration of salt in the host polymer results in a continuous increase in the ionic conductivity. However, there is a critical concentration of the salt beyond which the conductivity decreases due to formation of ion pairs with no net charge. In the present study, an attempt is made to identify the concentration at which ion pair formation occurs in PEO: RbBr. We have attempted to modify microstructure of the host polymer matrix by low energy ion (Oxygen ion, O+1 with energy 100 keV) irradiation. Ionic conductivity measurements in these systems were carried out using Impedance Spectroscopy before and after irradiation to different fluencies of the oxygen ion. It is observed that the conductivity increases by one order in magnitude. The increase in ionic conductivity may be attributed to the enhanced segmental motion of the polymer chains. The study reveals the importance of ion irradiation as an effective tool to enhance conductivity in SPEs

  10. Ion beam irradiation as a tool to improve the ionic conductivity in solid polymer electrolyte systems

    Science.gov (United States)

    Manjunatha, H.; Damle, R.; Kumaraswamy, G. N.

    2016-05-01

    Solid polymer electrolytes (SPEs) have potential applications in solid state electronic and energy devices. The optimum conductivity of SPEs required for such applications is about 10-1 - 10-3 Scm-1, which is hard to achieve in these systems. It is observed that ionic conductivity of SPEs continuously increase with increasing concentration of inorganic salt in the host polymer. However, there is a critical concentration of the salt beyond which the conductivity of SPEs decreases due to the formation of ion pairs. In the present study, solid polymer thin films based on poly (ethylene oxide) (PEO) complexed with NaBr salt with different concentrations have been prepared and the concentration at which ion pair formation occurs in PEOxNaBr is identified. The microstructure of the SPE with highest ionic conductivity is modified by irradiating it with low energy O+1 ion (100 keV) of different fluencies. It is observed that the ionic conductivity of irradiated SPEs increases by one order in magnitude. The increase in ionic conductivity may be attributed to the enhanced segmental motion of the polymer chains due to radiation induced micro structural modification.

  11. Effect of salt species on electrochemical properties of gel-type polymer electrolyte based on chemically crosslinking rubber

    International Nuclear Information System (INIS)

    In our study, for ion-polymer interaction in gel-type polymer electrolyte (GPE), two kinds of ions were used. GPE systems were composed of Mg or Li salt, organic solvent (γ-BL), and polymer matrix prepared by chemical crosslinking of NBR with poly(ethylene glycol)methylethermethacrylate (PEGMEM) having polar group (-CH2-CH2-O-) in the side chain of monomer. GPE consisting of Li+ ion had higher ionic conductivity than that of Mg2+ ion at below 100 wt.% of electrolyte content (1 M salt/γ-BL). On the other hand, GPE consisting of Mg2+ ion had higher ionic conductivity than that consisting of Li+ ion at over 120 wt.% of electrolyte content (1 M salt/γ-BL). The maximum liquid electrolyte content was 200 wt.% for all GPE systems. And the highest ionic conductivity of 3.3 x 10-2 S cm-1 was achieved for the case of Mg2+-GPE with 200 wt.% of liquid electrolyte contents at 20 deg. C. The interaction between ionic species and polymer matrix in GPE was investigated by using Fourier transform infrared spectroscopy (FT-IR). Also, cyclic voltammogram of Mg2+-GPE confirmed the electrochemical property of divalent cation with two electron-transfer reactions

  12. Composite polymer electrolytes based on MG49 and carboxymethyl cellulose from kenaf

    Energy Technology Data Exchange (ETDEWEB)

    Jafirin, Serawati; Ahmad, Ishak; Ahmad, Azizan [Polymer Research Centre (PORCE), School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    The development of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) and carboxymethyl cellulose as a composite polymer electrolyte film incorporating LiCF{sub 3}SO{sub 3} were explored. Carboxymethyl cellulose was synthesized from kenaf bast fibres via carboxymethylation process by alkali catalyzed reaction of cellulose with sodium chloroacetate. Reflection fourier transform infrared (ATR-FTIR) spectroscopy showed the presence of carboxyl peak after modification of cellulose with sodium chloroacetate. X-ray diffraction (XRD) analysis revealed that the crystallinity of cellulose was decrease after synthesis. High performance composite polymer electrolytes were prepared with various composition of carboxymethyl cellulose (2–10 wt%) via solution-casting method. The conductivity was increased with carboxymethyl cellulose loading. The highest conductivity value achieved was 3.3 × 10{sup −7} Scm{sup −1} upon addition of 6% wt carboxymethyl cellulose. 6% wt carboxymethyl cellulose composition showed the highest tensile strength value of 7.9 MPa and 273 MPa of modulus value which demonstrated high mechanical performance with accepatable level of ionic conductivity.

  13. A UV-prepared linear polymer electrolyte membrane for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    The effects of LiClO4 and LiFS3SO3 on poly(glycidyl methacrylate)-based solid polymer electrolyte and its photoelectrochemical performance in a dye sensitized solar cell consisting of FTO/TiO2–dye/P(GMA)–LiClO4–EC/Pt were investigated. The electrochemical stability of films was studied by cyclic voltammetry (CV). The highest ionic conductivities obtained were 4.2×10−5 and 3.7×10−6 S cm−1 for the film containing 30 wt% LiClO4 and 25 wt% LiCF3SO3, respectively. The polymer electrolytes showed electrochemical stability windows up to 3 V and 2.8 V for LiClO4 and LiCF3SO3, respectively. The assembled dye-sensitized solar cell showed a sunlight conversion efficiency of 0.679% (Jsc=3 mA cm−2, Voc=0.48 V and FF=0.47), under light intensity of 100 mW cm−2

  14. Composite polymer electrolytes based on MG49 and carboxymethyl cellulose from kenaf

    International Nuclear Information System (INIS)

    The development of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) and carboxymethyl cellulose as a composite polymer electrolyte film incorporating LiCF3SO3 were explored. Carboxymethyl cellulose was synthesized from kenaf bast fibres via carboxymethylation process by alkali catalyzed reaction of cellulose with sodium chloroacetate. Reflection fourier transform infrared (ATR-FTIR) spectroscopy showed the presence of carboxyl peak after modification of cellulose with sodium chloroacetate. X-ray diffraction (XRD) analysis revealed that the crystallinity of cellulose was decrease after synthesis. High performance composite polymer electrolytes were prepared with various composition of carboxymethyl cellulose (2–10 wt%) via solution-casting method. The conductivity was increased with carboxymethyl cellulose loading. The highest conductivity value achieved was 3.3 × 10−7 Scm−1 upon addition of 6% wt carboxymethyl cellulose. 6% wt carboxymethyl cellulose composition showed the highest tensile strength value of 7.9 MPa and 273 MPa of modulus value which demonstrated high mechanical performance with accepatable level of ionic conductivity

  15. Gel polymer electrolyte based on polyvinylidenefluoride-co-hexafluoropropylene and ionic liquid for lithium ion battery

    International Nuclear Information System (INIS)

    Gel-type polymer electrolytes with 1-butyl-4-methylpyridinium bis(trifluoromethanesulfonyl)imide (B4MePyTFSI) ionic liquid are formed by the solution casting method. The conductivity and transference number measurements are carried out to investigate conductivity and charge transport in the gel polymer electrolytes. The conductivity of the samples increases when the amount of B4MePyTFSI ionic liquid is increased. The lithium ion ionic conductivity reaches the maximum value (2.01 × 10−4 S cm−1) when GPE contains 33.3 wt% B4MePyTFSI. The electrochemical stability window of ILGPE is about 5.5 V versus Li+/Li at 20 °C, meeting the basic requirement of rechargeable lithium batteries. Discharge performance of lithium battery using this ILGPE membrane shows a capacity of about 160 mAh g−1. The excellent performance with higher capacity, good cycle stability and compatibility are observed for the Li/ILGPE/LiFePO4 cells. The interfacial resistances between ILGPE and electrodes have the less change after 10 cycles

  16. A UV-prepared linear polymer electrolyte membrane for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Imperiyka, M., E-mail: imperiyka@gmail.com [Faculty of Arts and Sciences, Kufra Campus, University of Benghazi, Al Kufrah (Libya); Ahmad, A.; Hanifah, S.A. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Polymer Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Bella, F. [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Department of Applied Science and Technology – DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2014-10-01

    The effects of LiClO{sub 4} and LiFS{sub 3}SO{sub 3} on poly(glycidyl methacrylate)-based solid polymer electrolyte and its photoelectrochemical performance in a dye sensitized solar cell consisting of FTO/TiO{sub 2}–dye/P(GMA)–LiClO{sub 4}–EC/Pt were investigated. The electrochemical stability of films was studied by cyclic voltammetry (CV). The highest ionic conductivities obtained were 4.2×10{sup −5} and 3.7×10{sup −6} S cm{sup −1} for the film containing 30 wt% LiClO{sub 4} and 25 wt% LiCF{sub 3}SO{sub 3}, respectively. The polymer electrolytes showed electrochemical stability windows up to 3 V and 2.8 V for LiClO{sub 4} and LiCF{sub 3}SO{sub 3}, respectively. The assembled dye-sensitized solar cell showed a sunlight conversion efficiency of 0.679% (J{sub sc}=3 mA cm{sup −2}, V{sub oc}=0.48 V and FF=0.47), under light intensity of 100 mW cm{sup −2}.

  17. Prism-patterned Nafion membrane for enhanced water transport in polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Kim, Sang Moon; Kang, Yun Sik; Ahn, Chiyeong; Jang, Segeun; Kim, Minhyoung; Sung, Yung-Eun; Yoo, Sung Jong; Choi, Mansoo

    2016-06-01

    Here, we report a simple and effective strategy to enhance the performance of the polymer electrolyte membrane fuel cell by imprinting prism-patterned arrays onto the Nafion membrane, which provides three combined effects directly related to the device performance. First, a locally thinned membrane via imprinted micro prism-structures lead to reduced membrane resistance, which is confirmed by electrochemical impedance spectroscopy. Second, increments of the geometrical surface area of the prism-patterned Nafion membrane compared to a flat membrane result in the increase in the electrochemical active surface area. Third, the vertically asymmetric geometry of prism structures in the cathode catalyst layer lead to enhanced water transport, which is confirmed by oxygen gain calculation. To explain the enhanced water transport, we propose a simple theoretical model on removal of water droplets existing in the asymmetric catalyst layer. These three combined effects achieved via incorporating prism patterned arrays into the Nafion membrane effectively enhance the performance of the polymer electrolyte membrane fuel cell.

  18. Electron beam and gamma ray irradiated polymer electrolyte films: Dielectric properties

    Directory of Open Access Journals (Sweden)

    S. Raghu

    2016-04-01

    Full Text Available In this study, polymer electrolyte films were irradiated with electron beam (EB and Gamma ray (GR at 50 and 150 kGy. The induced chemical changes in films due to irradiations have been confirmed from the Fourier Transform Infra red (FT-IR spectra. The X-ray Diffractometry (XRD results show that crystallinity decreases by ∼20% in EB and ∼10% in GR irradiated films respectively compared to non-irradiated film. The micro structural arrangement was investigated by Scanning Electronic Microscopy (SEM and the images reveal that there is a substantial improvement in the surface morphology in irradiated films. The real (ε′ and imaginary (ε″ dielectric constant and AC conductivity are found to increase with increase in irradiation dose. Improved dielectric properties and conductivity (1.74 x 10−4 & 1.15 x 10−4 S/cm, respectively, for EB and GR irradiated films at room temperature after irradiation and it confirm that EB and GR irradiation can be simple and effective route to obtaining highly conductive polymer electrolytes. From this study it is confirm that EB is more effectiveness than GR irradiation.

  19. Ion conduction and relaxation in PEO-LiTFSI-Al2O3 polymer nanocomposite electrolytes

    International Nuclear Information System (INIS)

    Ion conduction and relaxation in PEO-LiTFSI-Al2O3 polymer nanocomposite electrolytes have been studied for different concentrations of Al2O3 nanoparticles. X-ray diffraction and differential scanning calorimetric studies show that the maximum amorphous phase of PEO is observed for PEO-LiTFSI embedded with 5 wt. % Al2O3. The maximum ionic conductivity ∼3.3 × 10−4 S cm−1 has been obtained for this composition. The transmission electron microscopic image shows a distribution of Al2O3 nanoparticles in all compositions with size of <50 nm. The temperature dependence of the ionic conductivity follows Vogel-Tamman-Fulcher nature, indicating a strong coupling between ionic and polymer chain segmental motions. The scaling of the ac conductivity implies that relaxation dynamics follows a common mechanism for different temperatures and Al2O3 concentrations. The imaginary modulus spectra are asymmetric and skewed toward the high frequency sides of the maxima and analyzed using Havriliak-Negami formalism. The temperature dependence of the relaxation time obtained from modulus spectra also exhibits Vogel-Tamman-Fulcher nature. The values of the stretched exponent obtained from Kohlrausch-Williams-Watts fit to the modulus data are fairly low, suggesting highly non-exponential relaxation for all concentrations of Al2O3 in these electrolytes

  20. Electro-thermal impedance spectroscopy applied to an open-cathode polymer electrolyte fuel cell

    Science.gov (United States)

    Engebretsen, Erik; Robinson, James B.; Obeisun, Oluwamayowa; Mason, Tom; Finegan, Donal; Hinds, Gareth; Shearing, Paul R.; Brett, Daniel J. L.

    2016-01-01

    The development of in-situ diagnostic techniques is critical to ensure safe and effective operation of polymer electrolyte fuel cell systems. Infrared thermal imaging is an established technique which has been extensively applied to fuel cells; however, the technique is limited to measuring surface temperatures and is prone to errors arising from emissivity variations and reflections. Here we demonstrate that electro-thermal impedance spectroscopy can be applied to enhance infrared thermal imaging and mitigate its limitations. An open-cathode polymer electrolyte fuel cell is used as a case study. The technique operates by imposing a periodic electrical stimulus to the fuel cell and measuring the consequent surface temperature response (phase and amplitude). In this way, the location of heat generation from within the component can be determined and the thermal conduction properties of the materials and structure between the point of heat generation and the point of measurement can be determined. By selectively 'locking-in' to a suitable modulation frequency, spatially resolved images of the relative amplitude between the current stimulus and temperature can be generated that provide complementary information to conventional temporal domain thermograms.

  1. Preparation and characterization of high salts polymer electrolyte based on poly(lithium acrylate)

    Institute of Scientific and Technical Information of China (English)

    TANG Ai-dong; HUANG Ke-long; PAN Chun-yue; LU Cui-hong

    2005-01-01

    Novel polymer electrolytes were prepared by highly mixing poly(lithium acrylate)(PPALi) with eutectic lithium salts of lithium acetate and lithium nitrate.Poly(lithium acrylate) was preparaed by inverse emulsion polymerization from crylic acid and LiOH.Phase transition temperatures were measured for all the eutectic lithium of binary system samples as a function of the concentration of Li(CH3 COO),and the mixtures exhibit the lowest phase transition temperatures of (448±2) K at about 50% (mass fraction) Li(CH3 COO).Thermogravimetry(TG)and X-ray diffraction(XRD) analysis indicate the formation of a novel polymer-salt complex.The highest conductivity(approximately 4.97 ×10-5S·cm-1) is found at room temperature with the electrolyte composition of eutectic mixture of about 80% (mass fraction),poly(lithium acrylate) 20% under quickly cooling condition,which is 150%higher than that under natural cooling condition.

  2. Synthesis and characterization of mixing soft-segmented waterborne polyurethane polymer electrolyte with room temperature ionic liquid

    Institute of Scientific and Technical Information of China (English)

    Yue Jiao Li; Feng Wu; Ren Jie Chen

    2009-01-01

    Composite polymer electrolytes based on mixing soft-segment waterborne polyurethane (WPU) and 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (BMImTFSI) have been prepared and characterized.The addition of BMImTFSI results in an increase of the ionic conductivity.At high BMImTFSI concentration (BMImTFSI/WPU = 3 in weight ratio),the ionic conductivity reaches 4.27 × 10-3 S/cm at 30 ℃.These composite polymer electrolytes exhibit good thermal and electrochemical stability,which are high enough to be applied in lithium batteries.

  3. Satellite TiO2 nanoparticles induced by silver ion in polymer electrolytes membrane for propylene/propane separation

    International Nuclear Information System (INIS)

    Silver polymer electrolyte membranes containing inorganic nanoparticles have showed excellent facilitated olefin transport properties. However, the application of facilitated transport membranes has been significantly hampered because of the poor stability of silver ions carrier. The structural changes of the facilitated transport membranes corresponding to the reduced separation performance with an extended time have rarely been studied. In this study, titanium dioxide (TiO2) nanoparticles were introduced into poly(ethylene oxide) (PEO)/silver tetrafluoroborate polymer electrolyte membranes for propylene/propane separation. X-ray diffraction (XRD) analysis indicated that the addition of TiO2 and silver salt reduced the crystallinity of PEO. The selectivity of propylene/propane of the polymer electrolyte membrane increased with increasing concentration of silver salt and TiO2 in the polymer matrix. However, the propylene/propane selectivity decreased from 19.04 to 5.40 as the silver carrier ions became deactivated over the course of 196 h experiment. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that the satellite TiO2 nanoparticles were formed around the silver salt after the composite membrane was placed in the air for 10 d. The findings in this work highlight the understanding of the carrier stability in polymer electrolyte membranes, and provide a potential opportunity to develop more stable polymer/carrier systems for the application of facilitated olefin transport membranes. - Highlights: • Composite polymer electrolyte membrane is prepared by sol–gel method. • Propylene/propane selectivity increases with silver salt concentration increase. • Separation factor of propylene/propane decreases with the carrier inactivation. • Structure alteration of composite membrane reveals the carrier stability. • Satellite TiO2 nanoparticles form induced by silver ion carrier

  4. Fabrication of polymer electrolyte membranes fuel cell as reduction of ETFE film polymer structure using electron beam

    International Nuclear Information System (INIS)

    Crosslinking of ETFE polymer electrolyte membranes (PEMs) by combining several sources such as, -Electron beam (EB) -Thermal energy Characteristics of ETFE membrane: Ion exchange capacity (IEC), Water-uptake(WU) Size increment(SI), Tensile test, Chemical resistance Ionic conductivity (IC) Electric characteristics in PEMFC. Grafting monomer: Styrene (S), Methylstyrene (MS), Ion exchange capacity: Titration method with 0.1N NaOH Water-uptake : 24hr in DI water, room temp. = 26 .deg. C Tensile test: In stron analyzer Chemical resistance: 28% H2O2, 50 .deg. C Size increment: % wt-change after Di water-swelled at 26 .deg. C and for 24hr Ionic conductivity: 4 probe, measured in DI water at 26 .deg. C Electric characteristics: PEMFC (H2/O2), Cell size : 1 Χ 1 cm2 Temp. range: 50∼70 .deg. C, Pt loading : 0.4mg/cm2

  5. The effects of polyethylene glycol (PEG) as an electrolyte additive on the corrosion behavior and electrochemical performances of pure aluminum in an alkaline zincate solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.Y. [Department of Chemistry, Zhejiang University, Hangzhou (China); Binzhou Medical College, Yantai (China); Wang, J.M.; Wang, Q.L.; Shao, H.B. [Department of Chemistry, Zhejiang University, Hangzhou (China); Zhang, J.Q. [Department of Chemistry, Zhejiang University, Hangzhou (China); State Key Laboratory for Corrosion and Protection of Metal, Institute of Metal Research, Chinese Academy of Sciences, Shenyang (China)

    2011-12-15

    The effects of zinc oxide and/or polyethylene glycol (PEG) as electrolyte additives on the corrosion and electrochemical performances of pure aluminum in 4.0 M KOH solutions were investigated by means of hydrogen collection, polarization curve, galvanostatic discharge, scanning electron microscopy (SEM), and energy dispersive analysis of X-ray (EDAX). The addition of ZnO markedly inhibited the corrosion of aluminum in 4.0 M KOH solutions, resulting from the deposition of zinc with high hydrogen evolution overpotential in aluminum surfaces. The introduction of PEG in the alkaline zincate solution obviously improved the deposition of zinc by increase in the overpotential of zinc deposition, thus the corrosion rate of aluminum in the alkaline zincate solutions with PEG was further decreased. The enhancement effect of PEG on the inhibition of zinc oxide first increased and then decreased with increasing the content of PEG in the electrolyte. The electrolyte system with 0.2 M ZnO and 2.0 mM PEG presented the highest inhibition efficiency (98.8%) for the corrosion of aluminum. The results of galvanostatic discharge indicated that the aluminum anode shows excellent discharge performances in the 4.0 M KOH solution with 0.2 M ZnO and 2.0 mM PEG. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. STUDY ON THE PREPARATION AND PERFORMANCES OF P(VAc-MMA) POLYMER ELECTROLYTES FOR LITHIUM ION BATTERY

    Institute of Scientific and Technical Information of China (English)

    Dao-jun Yang; Xiang-kai Fu; Yong-feng Gong

    2008-01-01

    A random copolymer P(VAc-MMA) was synthesized via seeded emulsion copolymerization with vinyl acetate (VAc) and methyl methacrylate (MMA) as monomers, and the polymer electrolytes comprising blend of corresponding copolymer P(VAc-MMA) as a host polymer and LiC104 as a dopant were prepared by solution casting technique. Performances of the synthesized copolymer and prepared polymer membrane and electrolyte were studied by FTIR, XRD, TG, DSC, mechanical testing and AC impedance. According to the study of FTIR and DSC, it was found that P(VAc-MMA) had been formed. XRD indicates that the amorphous nature in copolymer increased with increasing the ratio of VAc in monomers, resulting in expedite migration of ions. The polymer electrolytes based on P(VAc-MMA) possess excellent thermal stability, fine mechanical performance and high ionic conductivity. The maximum ionic conductivity value was found to reach 1.27 × 10-3S·cm-1 at 25℃. The temperature dependence of the polymer electrolyte complexes appeared to obey Arrhenius equation.

  7. Factors determining the gas crossover through pinholes in polymer electrolyte fuel cell membranes

    International Nuclear Information System (INIS)

    Highlights: ► Small defects (10 μm) do not decrease the fuel cell performance. ► The gas diffusion electrode controls the gas crossover through defects. ► Hydrogen permeating through defects is not oxidized quantitatively at the catalyst. ► Liquid water can fill and seal defects and eliminate the gas crossover. - Abstract: Membrane degradation in polymer electrolyte fuel cells often results in pinhole formation, which does not force an immediate fuel cell shutdown, as the performance is still good and the gas crossover is moderate for low membrane defect densities. However, the gas crossover increases locally at defects, which may accelerate chemical polymer decomposition and enlarge the defect. Hence, a fundamental understanding of the gas crossover through small pinholes is required to deduce strategies mitigating fast membrane degradation. Methods are developed to implement pinholes (10 μm) artificially in polymer electrolyte membranes. The pinhole morphology and chemical environment are characterized by X-ray tomographic microscopy and FTIR spectro-microscopy. The gas crossover is measured in situ for different fuel cell operating conditions using a mass spectrometry based method. In saturated environment liquid water can seal pinholes and eliminate the crossover. This sealing effect depends on the pinhole size and the pressure gradient between anode and cathode. Increasing temperature or humidity reduces the gas crossover. Hydrogen, permeating through defects, does not oxidize quantitatively at the cathode catalyst layer, but permeates through the gas diffusion layer (GDL) into the gas channel. Then, the permeability of the GDL, in particular its micro-porous layer, limits the gas crossover through pinholes significantly.

  8. Approaches and Recent Development of Polymer Electrolyte Membranes For Fuel Cells Operational Above 100°C

    DEFF Research Database (Denmark)

    Li, Qingfeng; He, Ronghuan; Jensen, Jens Oluf;

    2003-01-01

    encompassing modified PFSA membranes, alternative sulfonated polymer and their composite membranes, and acidbase complex membranes. PFSA membranes have been modified by swelling with nonvolatile solvents and preparing composites with hydrophilic oxides and solid proton conductors. DMFC and H2/O2(air) cells......The state-of-the-art of polymer electrolyte membrane fuel cell (PEMFC) technology is based on perfluorosulfonic acid (PFSA) polymer membranes operating at a typical temperature of 80 °C. Some of the key issues and shortcomings of the PFSA-based PEMFC technology are briefly discussed. These include...... water management, CO poisoning, hydrogen, reformate and methanol as fuels, cooling, and heat recovery. As a means to solve these shortcomings, hightemperature polymer electrolyte membranes for operation above 100 °C are under active development. This treatise is devoted to a review of the area...

  9. Mixed solid device based on conducting polymer composite and polymer electrolyte

    Directory of Open Access Journals (Sweden)

    Neves Silmara

    2004-01-01

    Full Text Available Tetraethyl orthosilicate (TEOS derived sol-gel porous films have been utilized as template for the electrochemical polymerization of aniline. Polyaniline-silica composites were obtained and the redox behavior and charge/discharge capacities of a lithium polymeric battery using poly (dimethylsiloxane- co-ethylene oxide as gel polymeric electrolyte, were investigated. The composite presented a high initial capacity (140 mA h g-1 and a reversible capacity of 75 mA h g-1 after 100 charge/discharge cycles. The decrease in the specific capacity was attributed to an increase in charge transfer resistance and a decrease in the diffusion coefficient measured by electrochemical impedance spectroscopy.

  10. Stable trifluorostyrene containing compounds grafted to base polymers, and their use as polymer electrolyte membranes

    Science.gov (United States)

    Yang, Zhen-Yu; Roelofs, Mark Gerrit

    2010-11-09

    A fluorinated ion exchange polymer prepared by grafting at least one grafting monomer on to at least one base polymer, wherein the grafting monomer comprises structure 1a or 1b: wherein Z comprises S, SO.sub.2, or POR wherein R comprises a linear or branched perfluoroalkyl group of 1 to 14 carbon atoms optionally containing oxygen or chlorine, an alkyl group of 1 to 8 carbon atoms, an aryl group of 6 to 12 carbon atoms or a substituted aryl group of 6 to 12 carbon atoms; RF comprises a linear or branched perfluoroalkene group of 1 to 20 carbon atoms, optionally containing oxygen or chlorine; Q is chosen from F, --OM, NH.sub.2, --N(M)SO.sub.2R.sup.2.sub.F, and C(M)(SO.sub.2R.sup.2.sub.F).sub.2, wherein M comprises H, an alkali cation, or ammonium; R.sup.2.sub.F groups comprises alkyl of 1 to 14 carbon atoms which may optionally include ether oxygens or aryl of 6 to 12 carbon atoms where the alkyl or aryl groups may be perfluorinated or partially fluorinated; and n is 1 or 2 for 1a, and n is 1, 2, or 3 for 1b. These ion exchange polymers are useful in preparing catalyst coated membranes and membrane electrode assemblies used in fuel cells.

  11. Preliminary Study of Membrane Preparation for Fuel Cell Polymer Electrolyte Membrane

    International Nuclear Information System (INIS)

    Proton conducting membranes for polymer electrolyte membrane fuel cells (PEMFC) have been prepared by radiation graft copolymerization of acrylic acid onto back bone polymers such as linear low density polyethylene (LLDPE), high density polyethylene (HDPE), and polypropylene (PP). Graft copolymers are prepared by γ-radiation and electron beam irradiation. The methods used are grafting on radiation-peroxide and grafting initiated by trapped radicals, in which the grafting reaction is done after the irradiation process (pre-irradiation grafting). The influence of the preparation conditions and the role of the initial polymer matrixes are studied. The degrees of grafting are determined by the total absorbed dose during irradiation, monomer’s concentration, grafting temperature, and the time of grafting. It is found that dose rate does not have a significant effect on the yield of grafting. The best suitable conditions for the grafting are as follows: 45 kGy for total dose, 40% (v/v) for monomer’s concentration, 70 °C for temperature and 90 minutes for period of grafting. Membranes based on different polymer matrixes show differences in their water uptake from liquid water. Apparently the ability of the membranes to take in the solvent depends on matrixes of the back bone polymers. It reflects the hydrophilic membranes properties. The preliminary characterization of the prepared grafted membranes is done by the treatment of metal uptake, using atomic absorption technique. The maximum uptake of the membranes for a given metal is Fe > Cu > Co except for LLDPE-g-Aac in which the uptake of Co > Cu. The maximum uptake of the membranes for a mixture of the metals in the same feed solution is Fe > Cu > Co. (author)

  12. Zirconium dioxide nanofilled poly(vinylidene fluoride-hexafluoropropylene) complexed with lithium trifluoromethanesulfonate as composite polymer electrolyte for electrochromic devices

    International Nuclear Information System (INIS)

    Highlights: • Successful synthesis of electrolyte by blending PVdF-HFP, ZrO2 and LiCF3SO3. • ZrO2 increased electrolyte conductivity by two orders of magnitude. • ZrO2 doubled bulk mechanical strength of electrolyte in terms of Young’s modulus. • Electrolytes gave a optimum optical transmittance of 52.6%. - Abstract: Poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) polymer electrolyte containing zirconium dioxide nanocrystals (ZrO2-NC) and lithium trifluoromethanesulfonate (LiCF3SO3) has been synthesized using the conventional solution casting method. The addition of ZrO2-NC into the polymeric substrate gave remarkable properties in terms of the electrolyte’s ionic conductivity as well as its bulk mechanical strength. The enhanced amorphicity of the polymeric substrate due to ZrO2 and the nanofiller’s high dielectric constant make an excellent combination to increase the ionic conductivity (above 10−4 S cm−1). Increasing the nanofiller content raises the ionic conductivity of the electrolyte by two orders of magnitude of which the optimum is 2.65 × 10−4 S cm−1 at 13.04 wt% ZrO2-NC loading. Also, the Young’s modulus, an indicator of electrolyte’s mechanical stability, dramatically increased to 207 MPa upon loading 13.04 wt% ZrO2-NC. Using UV–vis spectroscopy, the electrolytes with 13.04% ZrO2-NC scanned from 200–800 nm wavelengths exhibited a maximum optical transmittance of 52.6% at 10 μm film thickness. The enhanced conductivity, high mechanical strength and reasonable optical transmittance shown by our composite polymer electrolyte make an excellent electrolyte for future energy saving smart windows such as electrochromic devices

  13. Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte

    Science.gov (United States)

    Kammoun, M.; Berg, S.; Ardebili, H.

    2015-10-01

    Enhanced safety of flexible batteries is an imperative objective due to the intimate interaction of such devices with human organs such as flexible batteries that are integrated with touch-screens or embedded in clothing or space suits. In this study, the fabrication and testing of a high performance thin-film Li-ion battery (LIB) is reported that is both flexible and relatively safer compared to the conventional electrolyte based batteries. The concept is facilitated by the use of solid polymer nanocomposite electrolyte, specifically, composed of polyethylene oxide (PEO) matrix and 1 wt% graphene oxide (GO) nanosheets. The flexible LIB exhibits a high maximum operating voltage of 4.9 V, high capacity of 0.13 mA h cm-2 and an energy density of 4.8 mW h cm-3. The battery is encapsulated using a simple lamination method that is economical and scalable. The laminated battery shows robust mechanical flexibility over 6000 bending cycles and excellent electrochemical performance in both flat and bent configurations. Finite element analysis (FEA) of the LIB provides critical insights into the evolution of mechanical stresses during lamination and bending.Enhanced safety of flexible batteries is an imperative objective due to the intimate interaction of such devices with human organs such as flexible batteries that are integrated with touch-screens or embedded in clothing or space suits. In this study, the fabrication and testing of a high performance thin-film Li-ion battery (LIB) is reported that is both flexible and relatively safer compared to the conventional electrolyte based batteries. The concept is facilitated by the use of solid polymer nanocomposite electrolyte, specifically, composed of polyethylene oxide (PEO) matrix and 1 wt% graphene oxide (GO) nanosheets. The flexible LIB exhibits a high maximum operating voltage of 4.9 V, high capacity of 0.13 mA h cm-2 and an energy density of 4.8 mW h cm-3. The battery is encapsulated using a simple lamination method

  14. 7Li nuclear magnetic resonance studies of dynamics in a ternary gel polymer electrolyte based on polymeric ionic liquids

    International Nuclear Information System (INIS)

    The influence of the polymeric ionic liquid (PIL) Poly(diallyldimethylammonium bis(trifluoromethylsulfonyl) imide) (PDADMATFSI) on the lithium dynamics was investigated in a ternary gel polymer electrolyte consisting of PDADMATFSI as stabilizing polymer, ionic liquid (1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide, P14TFSI) and lithium salt (lithium bis(trifluoromethylsulfonyl) imide, LiTFSI). The diffusion coefficient of the lithium ions is investigated by pulsed-field-gradient NMR, the conductivity of the electrolyte is determined by impedance spectroscopy. The local lithium dynamics is characterized by 7Li spin lattice relaxation rates (R1). The relaxation rates are well described by Blombergen-Purcell-Pound (BPP) theory at all polymer concentrations (up to 45 mol%), implying that the Li dynamics is governed by one single motional mode. Interestingly, activation energies for this motion decrease from 20 kJ/mol to 15 kJ/mol with increasing polymer content and are independent on the salt content. We thus conclude that the polymer is interacting with the anion coordination shell, which is accompanied by a very beneficial effect on the local lithium dynamics, as the polymer PDADMATFSI reduces the Li-TFSI interactions. This result is promising for further investigations for potential use of PDADMATFSI-containing gels as electrolytes in energy storage devices

  15. Plastic crystalline-semi crystalline polymer composite electrolyte based on non-woven poly(vinylidenefluoride-co-hexafluoropropylene) porous membranes for lithium ion batteries

    International Nuclear Information System (INIS)

    The advantageous properties of both solid soft matter electrolytes and polymer gel electrolytes (PGEs) are combined to develop a electrospun polymer composite electrolyte (PCE) for lithium ion batteries, based on addition of butanedinitrile (BDN, the plastic crystal) to poly(vinylidenefluoride-co-hexafluoropropylene) {P(VdF-co-HFP)} (semi crystalline polymer). Polymer composite electrolytes are prepared by activating the fibrous membrane with 1 M LiPF6 in EC/DEC. The electrochemical characterization shows that the addition of BDN significantly improves the ionic conductivity of composite electrolytes even at lower temperatures due to the active role played by BDN in ion conduction. Also the compatibility of the polymer composite electrolyte with lithium electrode improves by incorporation of BDN. Galvanostatic cycling test demonstrates the suitability of these polymer composite electrolytes for lithium ion batteries in both Li/PCE/LiFePO4 (half cell) and LTO/PCE/LiFePO4 (full cell) configurations. The addition of BDN improves the charge discharge performance and cycling stability of the polymer composite electrolytes

  16. Synthesis and proton conductivity studies of doped azole functional polymer electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ozden, Sehmus [Department of Chemistry, Fatih University, 34500 Bueyuekcekmece-Istanbul (Turkey); Celik, Sevim Unueguer, E-mail: sunugur@fatih.edu.t [Department of Chemistry, Fatih University, 34500 Bueyuekcekmece-Istanbul (Turkey); Bozkurt, Ayhan [Department of Chemistry, Fatih University, 34500 Bueyuekcekmece-Istanbul (Turkey)

    2010-12-01

    The development of anhydrous proton-conducting membranes is important for the operation of polymer electrolyte membrane fuel cell (PEMFC) at intermediate temperature (100-200 {sup o}C). In this work, poly(vinylbenzylchloride), PVBC was produced by free radical polymerization of 4-vinylbenzylchloride and then it was modified with 5-aminotetrazole (ATET) to obtain poly(vinylbenzylaminotetrazole), PVBC-ATET. The composition of the polymer was verified by elemental analysis (EA) and the structure was characterized by FT-IR and {sup 13}C NMR spectra. According to the elemental analysis result, PVBC was modified by ATET with 80% yield. The polymer was doped with trifluoromethanesulfonic acid (TA) at various molar ratios, x = 1.25, 2.5, 3.75 with respect to tetrazole unit. The proton transfer from TA to the tetrazole rings was proved with FT-IR spectroscopy. Thermogravimetry (TG) analysis showed that the samples are thermally stable up to approximately 200 {sup o}C. Differential scanning calorimetry (DSC) results illustrated the homogeneity of the materials. Cyclic voltammetry (CV) study illustrated that the electrochemical stability domain for PVBC-ATET-TA{sub 2.5} extends over 3.0 V. The proton conductivity of these materials increased with dopant concentration and the temperature. Maximum proton conductivity of PVBC-ATET-TA{sub 2.5} was found to be 0.01 S/cm at 150 {sup o}C in the anhydrous state.

  17. Synthesis and proton conductivity studies of doped azole functional polymer electrolyte membranes

    International Nuclear Information System (INIS)

    The development of anhydrous proton-conducting membranes is important for the operation of polymer electrolyte membrane fuel cell (PEMFC) at intermediate temperature (100-200 oC). In this work, poly(vinylbenzylchloride), PVBC was produced by free radical polymerization of 4-vinylbenzylchloride and then it was modified with 5-aminotetrazole (ATET) to obtain poly(vinylbenzylaminotetrazole), PVBC-ATET. The composition of the polymer was verified by elemental analysis (EA) and the structure was characterized by FT-IR and 13C NMR spectra. According to the elemental analysis result, PVBC was modified by ATET with 80% yield. The polymer was doped with trifluoromethanesulfonic acid (TA) at various molar ratios, x = 1.25, 2.5, 3.75 with respect to tetrazole unit. The proton transfer from TA to the tetrazole rings was proved with FT-IR spectroscopy. Thermogravimetry (TG) analysis showed that the samples are thermally stable up to approximately 200 oC. Differential scanning calorimetry (DSC) results illustrated the homogeneity of the materials. Cyclic voltammetry (CV) study illustrated that the electrochemical stability domain for PVBC-ATET-TA2.5 extends over 3.0 V. The proton conductivity of these materials increased with dopant concentration and the temperature. Maximum proton conductivity of PVBC-ATET-TA2.5 was found to be 0.01 S/cm at 150 oC in the anhydrous state.

  18. Crystallinity, magnetic and electrochemical studies of PVDF/Co3O4 polymer electrolyte

    International Nuclear Information System (INIS)

    Highlights: ► PVDF–Co3O4 nanocomposite films are prepared by spin coating method. ► Porosity and crystallinity of the films are discussed. ► Magnetic properties of the films are studied. ► Presence of Co3O4 in PVDF enhanced its conductivity. - Abstract: Organic–inorganic nanocomposites are gaining importance in the recent times as polymer electrolyte membranes. In the present work, composites were prepared by combining nano sized Co3O4 and poly(vinyledene fluoride) (PVDF), using spin coating technique. The surface of the PVDF/Co3O4 system characterized through field emission scanning electron microscopy (FESEM) revealed a porous structure of the films. The nanoparticles tend to aggregate on the surface and inside the pores, leading to a decrease in the porosity with an increase in Co3O4 content. Co3O4 nanoparticles prohibit crystallization of the polymer. Differential scanning calorimetry (DSC) studies revealed a decrease in crystallinity of PVDF/Co3O4 system with an increase in the oxide content. Magnetic property studies of the composite films revealed that with an increase in Co3O4 content, the saturation magnetization values of the nanocomposites increased linearly, showing successful incorporation of the nanoparticles in the polymer matrix. Further, ionic conductivity of the composite films was evaluated from electrochemical impedance spectroscopy. Addition of Co3O4 nanoparticles enhanced the conductivity of PVDF/Co3O4 system.

  19. Degradation of polymer electrolyte membrane fuel cell by siloxane in biogas

    Science.gov (United States)

    Seo, Ji-Sung; Kim, Da-Yeong; Hwang, Sun-Mi; Seo, Min Ho; Seo, Dong-Jun; Yang, Seung Yong; Han, Chan Hui; Jung, Yong-Min; Guim, Hwanuk; Nahm, Kee Suk; Yoon, Young-Gi; Kim, Tae-Young

    2016-06-01

    We studied the degradation and durability of polymer electrolyte membrane fuel cell (PEMFC) at membrane-electrode-assembly (MEA) level by injection of octamethylcyclotetrasiloxane (D4) as a representative siloxane, which has been found in many industrial and personal products. Specifically, i) GC/MS analysis demonstrated that the ring-opening polymerization of D4 could result in the formation of various linear and cyclic siloxanes in both electrodes of MEA; ii) post-test analysis revealed that the transformed siloxanes were transported from the anode to the cathode via free-volumes in the polymer membrane; iii) RDE measurement and DFT calculation revealed that D4 was not directly responsible for the electrocatalytic activity of Pt; iv) electrochemical analysis demonstrated that the residual methyl groups of siloxane and various siloxanes did not hinder the proton transport in the polymer membrane; and v) siloxanes accumulated in the primary and secondary pores with the exception of an external surface of carbon, causing an increase in the oxygen reactant's resistance and resulting in a decrease of the cell performance. In addition, we confirmed that injection of D4 did not affect the carbon corrosion adversely because the siloxane had little influence on water sorption in the catalyst layer.

  20. Studies of structural, thermal and electrical behavior of polymer nanocomposite electrolytes

    Directory of Open Access Journals (Sweden)

    2008-09-01

    Full Text Available Structural, thermal and electrical behavior of polymer-clay nanocomposite electrolytes consisting of polymer (polyethylene oxide (PEO and NaI as salt with different concentrations of organically modified Na+ montmorillonite (DMMT filler have been investigated. The formation of nanocomposites and changes in the structural properties of the materials were investigated by X-ray diffraction (XRD analysis. Complex impedance analysis shows the existence of bulk and material-electrode interface properties of the composites. The relative dielectric constant (εr decreases with increase in frequency in the low frequency region whereas frequency independent behavior is observed in the high frequency region. The electrical modulus representation shows a loss feature in the imaginary component. The relaxation associated with this feature shows a stretched exponential decay. Studies of frequency dependence of dielectric and modulus formalism suggest that the ionic and polymer segmental motion are strongly coupled manifeasting as peak in the modulus (M″ spectra with no corresponding feature in dielectric spectra. The frequency dependence of ac (alternating current conductivity obeys Jonscher power law feature in the high frequency region, where as the low frequency dispersion indicating the presence of electrode polarization effect in the materials.

  1. Characterization and electrical properties of polyvinyl alcohol based polymer electrolyte films doped with ammonium thiocyanate

    International Nuclear Information System (INIS)

    Highlights: • Polyvinyl alcohol (PVA). • Ammonium thiocyanate (NH4SCN). • Electrical conductivity. • Fractals. - Abstract: In this communication, films of polyvinyl alcohol (PVA) polymer complexed with ammonium thiocyanate (NH4SCN) salt were studied. XRD (X-ray diffraction) was used to study the complexation of salt with the polymer matrix and amorphicity in the films. DSC (differential scanning calorimetry) studies showed that the glass transition temperatures (Tg) of the PVA:NH4SCN complexed films were less than pristine PVA. Raman analysis was analyzed in order to study the change in the vibrational bands due to the complexation of salt with PVA. Optical micrographs confirm the fractal formation in 75:25 and 70:30 PVA:NH4SCN films. Ionic transference number was estimated by Wagner's polarization method and its large value indicates that conduction takes place mainly due to mobile ionic species. Maximum conductivity ∼10−3 S/cm at room temperature was obtained for 70:30 ratio of PVA: NH4SCN polymer electrolyte films

  2. Conducting polymer actuator based on chemically deposited polypyrrole and polyurethane-based solid polymer electrolyte working in air

    International Nuclear Information System (INIS)

    Conducting polymers (CPs), such as polypyrrole, polythiophene, and polyaniline, are unique in that they have switchable properties due to their two or more mechanically stable oxidation states. Thus, their films or coatings can be easily switched by the application of a small voltage and current to change their volume during electrochemical redox processes. In particular, polypyrrole (PPy) has been studied most extensively because of its high electrical conductivity and good environmental stability under ambient conditions. In this work, we have studied a new CP actuator, fully polymeric, assembled with two PPy film electrodes and a solid polymer electrolyte (SPE), polyurethane/Mg(ClO4)2. Polyurethanes (PUs) were synthesized from 4,4'-diphenylmethane diisocyanate (MDI), 1,4-butanediol (1,4-BD) and three types of polyol: poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG), and PPG-block-PEG-block-PPG (PPG-co-PEG). The chemical polymerization of PPy by immersion in Py monomer aqueous solution and oxidant aqueous solution is an adequate method to prepare PU/PPy composite film as an actuator. To find the proper thickness of the PPy coating layer for actuation, we measured the displacements of the actuators according to the thickness of the PPy coating layer. The displacement of all actuators is discussed in connection with the properties of the SPE and PPy. All the results obtained in this work show the feasibility of electrochemomechanical devices based on PPy and SPE film being able to work in air

  3. A novel stability-enhanced lithium-oxygen battery with cellulose-based composite polymer gel as the electrolyte

    International Nuclear Information System (INIS)

    Highlights: • A novel cellulose-based composite polymer gel electrolyte (PGE) membrane is prepared. • PGE exhibits excellent ionic conductivity and electrochemical stability. • PEG reduces the penetration of oxygen to lithium anode and electrolyte loss. • Non-aqueous Li/O2 battery employing PGE membrane displays good cyclic stability. - Abstract: A novel lithium-oxygen (Li-O2) battery with a polymer gel electrolyte (PGE) membrane is successfully prepared. The membrane is a blend of cellulose acetate (CA) and poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) and is fabricated using a solution casting technique followed by impregnation with lithium bis(trifluoromethane sulfonimide) (LiTFSI) solution. We demonstrate that the PGE membrane has good electrolyte uptake and shows high ionic conductivity as well as excellent thermal and electrochemical stability. A Li-O2 battery containing our PGE as the electrolyte and separator exhibits good rate capability and enhanced cycling capacity retention compared to a battery using commercial liquid electrolyte and a polyethylene (PE) separator under the same conditions. We attribute this enhanced performance to the PGE, which maybe restrain the diffusion of oxygen from the air cathode to the Li metal anode. This study may prove valuable for resolving the problem of poor cycling stability in Li-O2 batteries caused by oxygen diffusion from cathode to anode

  4. AC impedance and dielectric spectroscopic studies of Mg2+ ion conducting PVA–PEG blended polymer electrolytes

    Indian Academy of Sciences (India)

    Anji Reddy Polu; Ranveer Kumar

    2011-08-01

    Polyvinyl alcohol (PVA)–polyethylene glycol (PEG) based solid polymer blend electrolytes with magnesium nitrate have been prepared by the solution cast technique. Impedance spectroscopic technique has been used, to characterize these polymer electrolytes. Complex impedance analysis was used to calculate bulk resistance of the polymer electrolytes. The a.c.-impedance data reveal that the ionic conductivity of PVA–PEG–Mg(NO3)2 system is changed with the concentration of magnesium nitrate, maximum conductivity of 9.63 × 10-5 S/cm at room temperature was observed for the system of PVA–PEG–Mg(NO3)2 (35–35–30). However, ionic conductivity of the above system increased with the increase of temperature, and the highest conductivity of 1.71 × 10-3 S/cm was observed at 100°C. The effect of ionic conductivity of polymer blend electrolytes was measured by varying the temperature ranging from 303 to 373 K. The variation of imaginary and real parts of dielectric constant with frequency was studied.

  5. Influence of silica aerogel on the properties of polyethylene oxide-based nanocomposite polymer electrolytes for lithium battery

    Energy Technology Data Exchange (ETDEWEB)

    Chen-Yang, Y.W.; Wang, Y.L.; Chen, Y.T.; Li, Y.K. [Department of Chemistry, Center for Nanotechnology and R and D Center for Membrane Technology, Chung Yuan Christian University, Chung-Li 32023 (China); Chen, H.C.; Chiu, H.Y. [Taiwan Textile Research Institute, Taipei County 23674 (China)

    2008-07-15

    In this study, a series of nanocomposite polymer electrolytes (NCPEs) with high conductivity and lithium ion transference number, PEO/LiClO{sub 4}/SAP, were prepared from high molecular weight polyethylene oxide (PEO), LiClO{sub 4} and low content of homemade silica aerogel powder (SAP), which had higher surface area and pore volume than the conventional silica particle. From the SEM images it was found that the SAP nanoparticles were well dispersed in the PEO polymer electrolyte matrix. The characterization and interactions in the CPEs were studied by DSC, XRD, FT-IR and {sup 7}Li NMR analysis. The ac impedance results showed that the ionic conductivity of the CPE was significantly improved by the addition of the as-prepared SAP. The maximum ambient ionic conductivity obtained from the CPE with EO/Li = 6 and 2 wt.% of SAP (O6A2) was about threefold higher than that of the corresponding polymer electrolyte without SAP (O6). In addition, the lithium ion transference number (t{sup +}) of O6A2 at 70 C was as high as 0.67, which was also three times higher than that of O6 and has not been previously reported for the PEO-LiX-based polymer electrolytes. (author)

  6. Development of a solid polymer electrolyte electrolysis cell module and ancillary components for a breadboard water electrolysis system

    Science.gov (United States)

    Porter, F. J., Jr.

    1972-01-01

    Solid polymer electrolyte technology in a water electrolysis system along with ancillary components to generate oxygen and hydrogen for a manned space station application are considered. Standard commercial components are utilized wherever possible. Presented are the results of investigations, surveys, tests, conclusions and recommendations for future development efforts.

  7. Development and manufacture of printable next-generation gel polymer ionic liquid electrolyte for Zn/MnO2 batteries

    Science.gov (United States)

    Winslow, R.; Wu, C. H.; Wang, Z.; Kim, B.; Keif, M.; Evans, J.; Wright, P.

    2013-12-01

    While much energy storage research focuses on the performance of individual components, such as the electrolyte or a single electrode, few investigate the electrochemical system as a whole. This research reports on the design, composition, and performance of a Zn/MnO2 battery as affected by the manufacturing method and next-generation gel polymer electrolyte composed of the ionic liquid [BMIM][Otf], ZnOtf salt, and PVDF-HFP polymer binder. Materials and manufacturing tests are discussed with a focus on water concentration, surface features as produced by printing processes, and the effect of including a gel polymer phase. Cells produced for this research generated open circuit voltages from 1.0 to 1.3 V. A dry [BMIM][Otf] electrolyte was found to have 87.3 ppm of H2O, while an electrolyte produced in ambient conditions contained 12400 ppm of H2O. Cells produced in a dry, Ar environment had an average discharge capacity of 0.0137 mAh/cm2, while one produced in an ambient environment exhibited a discharge capacity at 0.05 mAh/cm2. Surface features varied significantly by printing method, where a doctor blade produced the most consistent features. The preliminary results herein suggest that water, surface roughness, and the gel polymer play important roles in affecting the performance of printed energy storage.

  8. Development and manufacture of printable next-generation gel polymer ionic liquid electrolyte for Zn/MnO2 batteries

    International Nuclear Information System (INIS)

    While much energy storage research focuses on the performance of individual components, such as the electrolyte or a single electrode, few investigate the electrochemical system as a whole. This research reports on the design, composition, and performance of a Zn/MnO2 battery as affected by the manufacturing method and next-generation gel polymer electrolyte composed of the ionic liquid [BMIM][Otf], ZnOtf salt, and PVDF-HFP polymer binder. Materials and manufacturing tests are discussed with a focus on water concentration, surface features as produced by printing processes, and the effect of including a gel polymer phase. Cells produced for this research generated open circuit voltages from 1.0 to 1.3 V. A dry [BMIM][Otf] electrolyte was found to have 87.3 ppm of H2O, while an electrolyte produced in ambient conditions contained 12400 ppm of H2O. Cells produced in a dry, Ar environment had an average discharge capacity of 0.0137 mAh/cm2, while one produced in an ambient environment exhibited a discharge capacity at 0.05 mAh/cm2. Surface features varied significantly by printing method, where a doctor blade produced the most consistent features. The preliminary results herein suggest that water, surface roughness, and the gel polymer play important roles in affecting the performance of printed energy storage

  9. Control and experimental characterization of a methanol reformer for a 350W high temperature polymer electrolyte membrane fuel cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Jensen, Hans-Christian Becker; Sahlin, Simon Lennart

    High temperature polymer electrolyte membrane(HTPEM) fuel cells offer many advantages due to their increased operating tempera-tures compared to similar Nafion-based membrane tech-nologies, that rely on the conductive abilities of liquid water. The polybenzimidazole (PBI) membranes are especially...

  10. The use of poly(vinylpyridine-co-acrylonitrile) in polymer electrolytes for quasi-solid dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minyu [Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Feng, Shujing; Fang, Shibi; Xiao, Xurui; Li, Xueping; Zhou, Xiaowen; Lin, Yuan [Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China)

    2007-04-01

    Poly(vinylpyridine-co-acrylonitrile) (P(VP-co-AN)) was used to form polymer electrolytes for dye-sensitized solar cells (DSSCs). The effects of P(VP-co-AN) on the photovoltaic performances of DSSCs have been investigated with nonaqueous electrolytes containing alkali-iodide and iodine. It was found that the effect of P(VP-co-AN) on V{sub oc} closely related to its amount in the electrolyte. Lower amount of P(VP-co-AN) was benefit for the construction of a solar cell containing P(VP-co-AN) with higher energy conversion efficiency. Chemically crosslinking solidification with backbone polymer P(VP-co-AN) amount of 3% fabricated quasi-solid DSSCs with 10% increased conversion efficiencies with relative to that of the initial liquid DSSCs. (author)

  11. The use of poly(vinylpyridine-co-acrylonitrile) in polymer electrolytes for quasi-solid dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Poly(vinylpyridine-co-acrylonitrile) (P(VP-co-AN)) was used to form polymer electrolytes for dye-sensitized solar cells (DSSCs). The effects of P(VP-co-AN) on the photovoltaic performances of DSSCs have been investigated with nonaqueous electrolytes containing alkali-iodide and iodine. It was found that the effect of P(VP-co-AN) on V oc closely related to its amount in the electrolyte. Lower amount of P(VP-co-AN) was benefit for the construction of a solar cell containing P(VP-co-AN) with higher energy conversion efficiency. Chemically crosslinking solidification with backbone polymer P(VP-co-AN) amount of 3% fabricated quasi-solid DSSCs with 10% increased conversion efficiencies with relative to that of the initial liquid DSSCs

  12. Influence of Hydration Level on Polymer and Water Dynamics in Alkaline Anion Exchange Fuel Cell Membranes

    Science.gov (United States)

    Tarver, Jacob; Kim, Jenny; Tyagi, Madhu; Soles, Christopher; Tsai, Tsung-Han; Coughlin, Bryan

    2015-03-01

    Triblock copolymers based on poly(chloromethylstyrene)-b-poly(ethylene)-b-poly(chloromethylstyrene) can be quaternized to different extents to yield anion exchange membranes for alkaline fuel cells. In the absence of moisture, these membranes demonstrate bilayer lamellar morphology. Upon high levels of hydration, however, in-situ small angle neutron scattering reveals the emergence of higher-order diffraction peaks. This phenomena has previously been observed in analogous diblock copolymer-based membranes and has been attributed to the induction of a multilayer lamellar morphology in which selective striping of water occurs in the center of the ion-rich domain. By conducting humidity-resolved quasielastic neutron scattering (QENS) measurements using deuterated water, we are able to isolate differences in the pico- to nanosecond timescale dynamics of the hydrogenated membrane upon hydration. QENS measurements in the presence of a hydrogenated water source subsequently permit deconvolution and isolation of the translational and rotational dynamics of water as a function of relative humidity, revealing spatial and temporal changes in polymer and water motion at high levels of hydration.

  13. A green and environment-friendly gel polymer electrolyte with higher performances based on the natural matrix of lignin

    Science.gov (United States)

    Gong, Sheng-Dong; Huang, Yun; Cao, Hai-Jun; Lin, Yuan-Hua; Li, Yang; Tang, Shui-Hua; Wang, Ming-Shan; Li, Xing

    2016-03-01

    In order to explore one truly green and environment-friendly gel polymer electrolyte (GPE), the natural biopolymer of lignin is firstly all over the world used as matrix to prepare GPE. The electrolyte membrane based on lignin can be easily fabricated just with lignin, liquid electrolyte and distilled water. Through comprehensive investigation of obtained GPE, it is found that the liquid electrolyte uptake reaches up to 230 wt.%; before 100 °C, GPE does not lose any weight and is thermal stable; at room temperature the ion conductivity is 3.73 mS cm-1; the amazing property of lithium ion transference number is high up to 0.85; GPE expresses complete electrochemical stability before 7.5 V and favorable compatibility with lithium anode; the outstanding cell performance of C-rate and cycle capacity. All these remarkably excellent performances endow lignin with application potential in GPE used in lithium ion batteries (LIBs) with higher performances.

  14. Radiation Effects on Platinum Nanostructured Electrocatalysts for Polymer Electrolyte Fuel Cells

    Science.gov (United States)

    Cemmi, A.; Paoletti, C.; Pozio, A.; Baccaro, S.; Giorgi, L.; Serra, E.

    2008-06-01

    Polymer Electrolyte Fuel Cells (PEFCs) offer low weight and high power density and are being considered for automotive and stationary power production besides space and electronic applications. In this work, gamma radiation effects on carbon materials (carbon powder and multiwalled carbon nanotubes) used as substrates in PEFCs electrodes, were studied. The enhancing of free radicals formation (especially on carbon powder) was observed and studied by EPR spectroscopy. This evidence leads to a significant activation of carbon materials because paramagnetic sites represent the preferential position for platinum electrocatalyst nucleation. Galvanostatic techniques were applied to deposits platinum nanoparticles on carbon substrates while FEG-SEM characterization and cyclic voltammetry (CV) were carried out to study the morphology and the electrochemical performances of PEFCs electrodes.

  15. Partially Perfluorinated Hydrocarbon Ionomer for Cathode Catalyst Layer of Polymer Electrolyte Membrane Fuel Cell

    International Nuclear Information System (INIS)

    Hydrocarbon ionomers have not been successfully employed in the cathode of polymer electrolyte fuel cell (PEFC)s due to their low oxygen permeabilities. In this work, we propose a partially fluorinated aromatic polyether with sulfonic acid groups (s-PFPE) as an ionomer for the cathode catalyst layer. Compared to sulfonated poly(ether ether ketone) (s-PEEK), it exhibited more than 1.5 times higher oxygen permeability at RH 40% and 1.3 times higher at RH 100%. The catalyst layer based on s-PFPE showed higher power performance than that based on s-PEEK owing to enhanced oxygen transport and fast proton conduction through the s-PFPE ionomer phase covering the catalyst layer. We demonstrate that the introduction of the perfluorinated moieties to the hydrocarbon backbone is an effective strategy for the use of hydrocarbon ionomer in the cathode of PEMFCs

  16. Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Aili, David; Allward, Todd; Alfaro, Silvia Martinez;

    2014-01-01

    Composite membranes based on poly(2,2′(m-phenylene)-5,5́bibenzimidazole) (PBI) and sulfonated polyhedral oligosilsesquioxane (S-POSS) with S-POSS contents of 5 and 10wt.% were prepared by solution casting as base materials for high temperature polymer electrolyte membrane fuel cells. With membranes...... based on pure PBI as a reference point, the composite membranes were characterized with respect to spectroscopic and physicochemical properties. After doping with phosphoric acid, the composite membranes showed considerably improved ex situ proton conductivity under anhydrous as well as under fully...... humidified conditions in the 120-180°C temperature range. The conductivity improvements were also confirmed by in situ fuel cell tests at 160°C and further supported by the electrochemical impedance spectroscopy data based on the operating membrane electrode assemblies, demonstrating the technical...

  17. Solid polymer electrolyte water electrolysis system development. [to generate oxygen for manned space station applications

    Science.gov (United States)

    1975-01-01

    Solid polymer electrolyte technology used in a water electrolysis system (WES) to generate oxygen and hydrogen for manned space station applications was investigated. A four-man rated, low pressure breadboard water electrolysis system with the necessary instrumentation and controls was fabricated and tested. A six man rated, high pressure, high temperature, advanced preprototype WES was developed. This configuration included the design and development of an advanced water electrolysis module, capable of operation at 400 psig and 200 F, and a dynamic phase separator/pump in place of a passive phase separator design. Evaluation of this system demonstrated the goal of safe, unattended automated operation at high pressure and high temperature with an accumulated gas generation time of over 1000 hours.

  18. Metallic plate corrosion and uptake of corrosion products by nafion in polymer electrolyte membrane fuel cells.

    Science.gov (United States)

    Bozzini, Benedetto; Gianoncelli, Alessandra; Kaulich, Burkhard; Kiskinova, Maya; Prasciolu, Mauro; Sgura, Ivonne

    2010-07-19

    Nafion contamination by ferrous-alloy corrosion products, resulting in dramatic drops of the Ohmic potential, is a suspected major failure mode of polymer electrolyte membrane fuel cells that make use of metallic bipolar plates. This study demonstrates the potential of scanning transmission X-ray microscopy combined with X-ray absorption and fluorescence microspectroscopy for exploring corrosion processes of Ni and Fe electrodes in contact with a hydrated Nafion film in a thin-layer cell. The imaged morphology changes of the Ni and Fe electrodes and surrounding Nafion film that result from relevant electrochemical processes are correlated to the spatial distribution, local concentration, and chemical state of Fe and Ni species. The X-ray fluorescence maps and absorption spectra, sampled at different locations, show diffusion of corrosion products within the Nafion film only in the case of the Fe electrodes, whereas the Ni electrodes appear corrosion resistant. PMID:20564283

  19. Visualization of Water Accumulation Process in Polymer Electrolyte Fuel Cell Using Neutron Radiography

    Science.gov (United States)

    Murakawa, Hideki; Sugimoto, Katsumi; Kitamura, Nobuki; Sawada, Masataka; Asano, Hitoshi; Takenaka, Nobuyuki; Saito, Yasushi

    In order to clarify the water-accumulation phenomena in an operating polymer electrolyte fuel cell (PEFC), the water distribution in a small fuel cell was measured in the through-plane direction by using neutron radiography. The fuel cell had nine parallel channels for classifying the water-accumulation process in the gas diffusion layer (GDL) under the lands and channels. The experimental results were compared with numerical results. The water accumulation in the GDL under the lands was larger than that under the channels during the period of early PEFC operation. The difference of the water accumulation in the GDL under the land and channel was related to the water vapor. Because of the land, the vapor fraction in the GDL under the land was also higher than that under the channel. As a result, condensation was easy to occur in the GDL under the land.

  20. A mathematical model of the solid-polymer-electrolyte fuel cell

    Science.gov (United States)

    Bernardi, Dawn M.; Verbrugge, Mark W.

    1992-09-01

    A mathematical model of the solid-polymer-electrolyte fuel cell is presented and applied to investigate factors that limit cell performance and elucidate the mechanism of species transport in the complex network of gas, liquid, and solid phases of the cell. Calculations of cell polarization behavior compare favorably with existing experimental data. For most practical electral thicknesses, model results indicate that the volume fraction of the cathode available for gas transport must exceed 20 percent in order to avoid unacceptably low cell-limiting current densities. It is shown that membrane dehydration can also pose limitations on operating current density. Circumvention of this problem by appropriate membrane and electrode design and efficient water-management schemes is discussed. It is found that for a broad range of practical current densities there are no external water requirements because the water produced at the cathode is sufficient to satisfy the water requirement of the membrane.

  1. A mathematical model of the solid-polymer-electrolyte fuel cell

    International Nuclear Information System (INIS)

    This paper presents a mathematical model of the solid-polymer-electrolyte fuel cell and apply it to (i) investigate factors that limit cell performance and (ii) elucidate the mechanism of species transport in the complex network of gas, liquid, and solid phases of the cell. Calculations of cell polarization behavior compare favorably with existing experimental data. For most practical electrode thicknesses, model results indicate that the volume fraction of the cathode available for gas transport must exceed 20% in order to avoid unacceptably low cell-limiting current densities. It is shown that membrane dehydration can also pose limitations on operating current density; circumvention of this problem by appropriate membrane and electrode design and efficient water-management schemes is discussed. The authors' model results indicate that for a broad range of practical current densities there are no external water requirements because the water produced at the cathode is enough to satisfy the water requirement of the membrane

  2. New pore-filled polymer electrolyte membranes by electrons induced grafting

    International Nuclear Information System (INIS)

    Pore-filled polymer electrolyte membranes have been prepared for possible use in direct methanol fuel cell. The pores of porous poly (tetrafluoroethylene) (PTFE) films were saturated with styrene monomer and subsequently treated with electron beam radiation using simultaneous method in air and at ambient temperature. The content of polystyrene grafted in the pores was found to be a function of irradiation dose. The grafted films were sulfonated in a post grafting reactions. The changes in the chemical structure and the morphology of the obtained membranes were determined by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), respectively. The physico-chemical properties of the membranes such as water uptake and ion exchange capacity were evaluated and correlated with grafting yield. The overall results indicate that the pores of PTFE films were occluded with polystyrene during grafting and converted to hydrophilic action exchange regions after being sulfonated

  3. Dynamic water management of polymer electrolyte membrane fuel cells using intermittent RH control

    KAUST Repository

    Hussaini, I.S.

    2010-06-01

    A novel method of water management of polymer electrolyte membrane (PEM) fuel cells using intermittent humidification is presented in this study. The goal is to maintain the membrane close to full humidification, while eliminating channel flooding. The entire cycle is divided into four stages: saturation and de-saturation of the gas diffusion layer followed by de-hydration and hydration of membrane. By controlling the duration of dry and humid flows, it is shown that the cell voltage can be maintained within a narrow band. The technique is applied on experimental test cells using both plain and hydrophobic materials for the gas diffusion layer and an improvement in performance as compared to steady humidification is demonstrated. Duration of dry and humid flows is determined experimentally for several operating conditions. © 2010 Elsevier B.V. All rights reserved.

  4. Performance of diagonal control structures at different operating conditions for polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Serra, Maria; Husar, Attila; Feroldi, Diego; Riera, Jordi [Institut de Robotica i Informatica Industrial, Universitat Politecnica de Catalunya, Consejo Superior de Investigaciones Cientificas, C. Llorens i Artigas 4, 08028 Barcelona (Spain)

    2006-08-25

    This work is focused on the selection of operating conditions in polymer electrolyte membrane fuel cells. It analyses efficiency and controllability aspects, which change from one operating point to another. Specifically, several operating points that deliver the same amount of net power are compared, and the comparison is done at different net power levels. The study is based on a complex non-linear model, which has been linearised at the selected operating points. Different linear analysis tools are applied to the linear models and results show important controllability differences between operating points. The performance of diagonal control structures with PI controllers at different operating points is also studied. A method for the tuning of the controllers is proposed and applied. The behaviour of the controlled system is simulated with the non-linear model. Conclusions indicate a possible trade-off between controllability and optimisation of hydrogen consumption. (author)

  5. Positron trapping and possible presence of SO3H clusters in dry fluorinated polymer electrolyte membranes

    Science.gov (United States)

    Mohamed, Hamdy F. M.; Kobayashi, Y.; Kuroda, S.; Ohira, A.

    2012-08-01

    The behavior of positrons that do not form positronium in dry fluorinated polymer electrolyte membranes (Nafion®, Fumapem® and Aquivion®) with various ion exchange capacities (IECs) was studied by the combined use of Doppler broadening of annihilation radiation (DBAR) and the positron lifetime technique. The drastic increase of the S parameter, measured by DBAR, with increasing IEC above 0.91 meq/g indicates that increasing numbers of positrons are trapped by oxygen atoms and annihilate with the electrons bound in them. Reversed micelle like SO3H nanoclusters to trap positrons possibly appear at IEC = 0.91 meq/g and their concentration increases with increasing IEC.

  6. Miniaturized polymer electrolyte fuel cell (PEFC) stack using micro structured bipolar plate

    Energy Technology Data Exchange (ETDEWEB)

    Veziridis, Z.; Scherer, G.G.; Marmy, Ch.; Glaus, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    In Polymer Electrolyte Fuel Cell (PEFC) technology the reducing of volume and mass of the fuel cell stack and the improvement of catalyst utilization are of great interest. These parameters affect applicability and system cost. In this work we present an alternative way for reducing the stack volume by combining gas distribution and catalytic active area in one plate. Micro machined glassy carbon electrodes serve as support material for the platinum catalyst, as well as gas distributor at the same time. A comparison of these electrodes with conventional platinum-black gas diffusion electrodes under fuel cell conditions shows that the new system is a promising electrode type for enhanced power density and catalyst utilization. (author) 3 figs., 5 refs.

  7. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M.S.; Moeller-Holst, S.; Webb, D.M.; Zawodzinski, C.; Gottesfeld, S. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.

    1998-08-01

    The objective is to develop and demonstrate a 4 kW, hydrogen-fueled polymer electrolyte fuel cell (PEFC) stack, based on non-machined stainless steel hardware and on membrane/electrode assemblies (MEAs) of low catalyst loadings. The stack is designed to operate at ambient pressure on the air-side and can accommodate operation at higher fuel pressures, if so required. This is to be accomplished by working jointly with a fuel cell stack manufacturer, based on a CRADA. The performance goals are 57% energy conversion efficiency hydrogen-to-electricity (DC) at a power density of 0.9 kW/liter for a stack operating at ambient inlet pressures. The cost goal is $600/kW, based on present materials costs.

  8. Ionic drift velocity measurement on hot-pressed Ag+ ion conducting glass-polymer electrolytes

    Indian Academy of Sciences (India)

    Angesh Chandra

    2015-12-01

    Ionic drift velocity (d) measurements of a new Ag+ ion conducting glass-polymer electrolytes (GPEs): (1−x) PEO : x[0.8(0.75AgI:0.25AgCl) : 0.2(Ag2 O:V2O5)], where 0 < x < 50 wt%, were reported. GPEs were casted using the hot-press techniques developed in recent times. The composition: 70PEO : 30[0.8(0.75AgI : 0.25AgCl) : 0.2(Ag2O : V2O5)] with conductivity ()∼ 7.7 × 10−7 S cm−1 was identified as highest conducting composition from the compositional-dependent conductivity studies. The ionic mobility (), mobile ion concentration (), ionic transference number (ion) and ionic drift velocity (d) of GPEs were determined at different temperatures with the help of the d.c. polarization technique and other well-known important relations.

  9. Effects of plasticization on ionic conductivity enhancement of crosslinked polymer electrolyte membrane

    Science.gov (United States)

    He, Ruixuan; Kyu, Thein; Kyu's Team, Dr.

    Glass transition temperatures (Tg) of solid polymer electrolyte membranes (PEM), comprised of polyethylene glycol diacrylate (PEGDA) prepolymer, lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt, and succinonitrile (SCN) plasticizer, were systematically examined before and after crosslinking in the isotropic region guided by their ternary phase diagram. With increasing LiTFSI concentration, the Tg of uncured binary PEGDA/LiTFSI mixture increases drastically due to molecular complexation between lithium cation and ether oxygen, but ionic conductivity is very low (conductivity. Upon adding SCN plasticizer, the Tg of PEM has significantly decreased to -60 oC and ionic conductivity also increased to the superionic conductor level of 10-3 S cm-1. The analysis of ionic conductivity vs. Tg behavior by Vogel-Tamman-Fulcher(VTF) equation revealed that this ionic conductivity enhancement is due to SCN plasticization resulting in lowering the network Tg as well as lowering the activation energy. Supported by NSF-DMR 1161070.

  10. Magnetic resonance and conductivity study of a gelatin-based polymer gel electrolyte

    International Nuclear Information System (INIS)

    This work reports results from proton nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR) and complex impedance spectroscopy of gelatin-based polymer gel electrolytes containing chloridric acid, cross-linked with formaldehyde and plasticized with glycerol. Ionic conductivity of 4 × 10−5 S/cm were obtained at room temperature for samples prepared with 0.1 M of HCl. Proton (1H) lineshapes and spin-lattice relaxation times were measured as a function of temperature. Activation energies extracted from the 1H NMR relaxation data are in the range of 23–25 kJ/mol. The EPR spectra, which were carried out in samples doped with copper perchlorate, were interpreted with the aid of an axial spin Hamiltonian and indicate the presence of two different Cu2+ species in axially distorted sites. Copper complexation with both hydrogen and nitrogen was verified by electron spin-echo envelope modulation (ESEEM) techniques.

  11. The effects of hyperbranched poly(siloxysilane)s on conductive polymer aluminum solid electrolytic capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Nogami, Katsunori [Graduate School of Tokyo Institute Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Nippon Chemi-Con Co., 185-1, Marunouchi, Yabuki-machi, Nishi-Shirakawa-gun, Fukushima 969-0235 (Japan); Sakamoto, Kiyoshi [Nippon Chemi-Con Co., 185-1, Marunouchi, Yabuki-machi, Nishi-Shirakawa-gun, Fukushima 969-0235 (Japan); Hayakawa, Teruaki; Kakimoto, Masa-aki [Graduate School of Tokyo Institute Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2007-04-15

    An aluminum solid electrolytic capacitor, using poly-(3,4-ethylenedioxythiophene) (PEDOT) as a counter electrode, was prepared with hyperbranched poly(siloxysilane)s (HBPSi) that has a large number of vinyl groups to improve the interfacial properties between aluminum oxide and PEDOT. Capacitance and equivalent series resistance (Rs) were significantly improved compared to untreated oxide film and vinyl terminated polydimethylsiloxane coated interfaces. From electrochemical measurement of the withstand voltage, damage to the oxide film from chemical polymerization of PEDOT was less with the HBPSi treatment. Frequency characteristics and electrical conductivity measurements of the polymer indicated that the resistance inside the etched porous layer was greatly reduced. These results show that the HBPSi pre-coating layer inhibited degradation of the oxide film by chemical polymerization of PEDOT and the conductivity of PEDOT in the etched porous oxide layer, and also enlarges the contact area by improving interfacial adhesion. (author)

  12. Improved electrochemical in-situ characterization of polymer electrolyte membrane fuel cell stacks

    Science.gov (United States)

    Hartung, I.; Kirsch, S.; Zihrul, P.; Müller, O.; von Unwerth, T.

    2016-03-01

    In-situ diagnostics for single polymer electrolyte membrane fuel cells are well known and established. Comparable stack level techniques are urgently needed to enhance the understanding of degradation during real system operation, but have not yet reached a similar level of sophistication. We have therefore developed a new method for the quantification of the hydrogen crossover current in stacks, which in combination with a previously published technique now allows a clear quantitative characterization of the individual cells' membranes and electrodes. The limits of the reported methods are theoretically assessed and application is then demonstrated on automotive short stacks. The results prove to be highly reproducible and are validated for individual cells of the respective stacks by direct comparison with cyclic voltammetry results, showing good quantitative agreement for the hydrogen crossover current, the double layer capacitance and the electrochemically active surface area.

  13. IONIC CONDUCTIVITY AND ELECTRICAL PROPERTIES OF CARBOXYMETHYL CELLULOSE - NH4Cl SOLID POLYMER ELECTROLYTES

    Directory of Open Access Journals (Sweden)

    N. H. AHMAD

    2016-06-01

    Full Text Available In this present work, carboxymethyl cellulose (CMC – ammonium chloride (NH4Cl solid polymer electrolyte (SPE films were prepared by solution casting method. The ionic conductivity and electrical properties of SPE films were investigated using Electrical Impedance Spectroscopy. SPE film containing 16 wt. % NH4Cl exhibited the highest ionic conductivity of 1.43 x 10-3 S/cm at ambient temperature, 303K. The temperature dependence SPE films showed an Arrhenius-type relation where the regression values obtained from the log conductivity versus reciprocal temperature is close to unity (R2≈1. The electrical properties have been measured as a function of frequency of Ԑr,Ԑi, Mr, Mi shown a non-Debye type behavior

  14. Experimental Study of Polymer Electrolyte Membrane Fuel Cell Performance Under Low Operating Temperatures

    International Nuclear Information System (INIS)

    In this study, the performance characteristics of a polymer electrolyte membrane fuel cell (PEMFC) were investigated at low operating temperatures under steady-state and dynamic conditions. The performance of the PEMFC was analyzed according to the external humidifying rate and air stoichiometry. The ohmic resistance was also investigated using EIS tests. At the operating temperature of 35 ℃, voltage fluctuation occurred to a greater degree compared to that at 45 ℃. Therefore, it was found that the air stoichiometry should be higher than 2.5 for the stable operation of the fuel cell. In addition, the relative humidity of the reactant gases should be higher than 60 to reduce the ohmic resistance

  15. Multiplex lithography for multilevel multiscale architectures and its application to polymer electrolyte membrane fuel cell.

    Science.gov (United States)

    Cho, Hyesung; Moon Kim, Sang; Sik Kang, Yun; Kim, Junsoo; Jang, Segeun; Kim, Minhyoung; Park, Hyunchul; Won Bang, Jung; Seo, Soonmin; Suh, Kahp-Yang; Sung, Yung-Eun; Choi, Mansoo

    2015-01-01

    The production of multiscale architectures is of significant interest in materials science, and the integration of those structures could provide a breakthrough for various applications. Here we report a simple yet versatile strategy that allows for the LEGO-like integrations of microscale membranes by quantitatively controlling the oxygen inhibition effects of ultraviolet-curable materials, leading to multilevel multiscale architectures. The spatial control of oxygen concentration induces different curing contrasts in a resin allowing the selective imprinting and bonding at different sides of a membrane, which enables LEGO-like integration together with the multiscale pattern formation. Utilizing the method, the multilevel multiscale Nafion membranes are prepared and applied to polymer electrolyte membrane fuel cell. Our multiscale membrane fuel cell demonstrates significant enhancement of performance while ensuring mechanical robustness. The performance enhancement is caused by the combined effect of the decrease of membrane resistance and the increase of the electrochemical active surface area. PMID:26412619

  16. Development status of solid polymer electrolyte water electrolysis for manned spacecraft life support systems

    Science.gov (United States)

    Nuttall, L. J.; Titterington, W. A.

    1974-01-01

    Details of the design and system verification test results are presented for a six-man-rated oxygen generation system. The system configuration incorporates components and instrumentation for computer-controlled operation with automatic start-up/shutdown sequencing, fault detection and isolation, and with self-contained sensors and controls for automatic safe emergency shutdown. All fluid and electrical components, sensors, and electronic controls are designed to be easily maintainable under zero-gravity conditions. On-board component spares are utilized in the system concept to sustain long-term operation (six months minimum) in a manned spacecraft application. The system is centered on a 27-cell solid polymer electrolyte water electrolysis module which, combined with the associated system components and controls, forms a total system envelope 40 in. high, 40 in. wide, and 30 in. deep.

  17. Preparation and investigation of cheap polymer electrolyte membranes for fuel cells

    DEFF Research Database (Denmark)

    Larsen, Mikkel Juul; Ma, Yue; Lund, Peter Brilner;

    The electrolyte of choice for low temperature polymer electrolyte fuel cells (PEFCs) has tra­di­ti­o­nal­ly been DuPontTM Nafion® membranes or similar poly(perfluorosulfonic acid)s. The chemical struc­ture and morphology in the hydrated state of Nafion® is shown in figure 1 from which it is seen...... methanol crossover, and relatively poor thermal stability constitute seri­ous drawbacks with respect to their fuel cell use. [ii], [iii], [iv] These aspects propel the search for cheaper and better alternatives.           In this study membrane systems consisting of a hydrophobic poly......­tro­ly­tic pro­per­ti­es. Grafting with a fraction of DVB in the order of 1-2 vol-% of the total mo­no­mers seems to be advantageous for both of the two grafting sys­tems as a com­pro­mise between high chemical stability and good proton con­duc­tivity of the final membrane. The use of methyl­sty­rene and t...

  18. All Solid-State Lithium Metal Batteries Using Cross-linked Polymer Electrolytes

    Science.gov (United States)

    Pan, Qiwei; Li, Christopher; Soft Materials Team

    Nowadays, to prepare all solid-state lithium metal batteries with high rate capability and stability using solid polymer electrolytes (SPEs) is still a grand challenge because of the interfaces between the SPE and the electrodes. In this presentation, we report a series of hybrid SPEs with controlled network structures by using POSS as cross-linker. These hybrid network SPEs show promising ionic conductivity, mechanical properties, and lithium dendrite growth resistance. All solid-state LiFePO4/Li batteries were also prepared using these SPEs as the electrolytes to study the effect of conductivity and mechanical properties of the SPEs on the performance of the batteries. At 90 °C, the prepared cells show high rate capability and stability. Capacity up to 160 mAh/g can be obtained at a C/2 rate during the galvanostatic cycling. Capacity retention of the cells is higher than 80% after 250 cycles. Battery performance at 60 °C and decay mechanism of the batteries will also be discussed.

  19. Optimization of performances of gelatin/LiBF4-based polymer electrolytes by plasticizing effects

    International Nuclear Information System (INIS)

    Gelatin is a cheap and abundant natural product with very good biodegradation properties and can be used to obtain acetic acid or LiClO4-based gel polymer electrolytes (GPEs) with high ionic conductivity and good stability. This article presents results of GPEs obtained by the plasticization of gelatin and addition of LiBF4, where the optimization of the system was achieved by using a factorial design type 22 with two variables: glycerol and LiBF4. From this analysis it was stated that the effect of glycerol as a plasticizer on the ionic conductivity results is much more important than the effect obtained by varying the lithium salt content or the effect of the interaction of both variables. Also all the samples were characterized by X-ray diffraction measurements, UV-vis-NIR spectroscopy and scanning electron microscopy (SEM) and impedance spectroscopy. The ionic conductivity results of all analyzed samples as a function of temperature obey predominantly an Arrhenius relationship and the samples are stable up to 160 deg. C. Good conductivity results combined with transparency and good adhesion to the electrodes have shown that gelatin-based GPEs are very promising materials to be used as solid electrolytes in electrochromic devices.

  20. Effect of Eutectic Concentration on Conductivity in PEO:LiX Based Solid Polymer Electrolytes

    Science.gov (United States)

    Zhan, Pengfei; Ganapatibhotla, Lalitha; Maranas, Janna

    Polyethylene oxide (PEO) and lithium salt based solid polymer electrolytes (SPEs) have been widely proposed as a substitution for the liquid electrolyte in Li-ion batteries. As salt concentration varies, these systems demonstrate rich phase behavior. Conductivity as a function of salt concentration has been measured for decades and various concentration dependences have been observed. A PEO:LiX mixture can have one or two conductivity maximums, while some mixtures with salt of high ionic strength will have higher conductivity as the salt concentration decrease. The factors that affect the conductivity are specific for each sample. The universal factor that affects conductivity is still not clear. In this work, we measured the conductivity of a series of PEO:LiX mixtures and statistical analysis shows conductivity is affected by the concentration difference from the eutectic concentration (Δc). The correlation with Δc is stronger than the correlation with glass transition temperature. We believe that at the eutectic concentration, during the solidification process, unique structures can form which aid conduction. Currently at Dow Chemical.

  1. Theoretical studies on membranes and non-platinum catalysts for polymer electrolyte fuel cells

    International Nuclear Information System (INIS)

    Mechanism of proton transfer among high-density acid groups in the interface between organic and inorganic materials for polymer electrolyte fuel cells has been theoretically examined. It has been clearly shown that the interactions between the phosphate groups at the surface of the inorganic material, zirconium phosphate (ZrP), and the adsorbed water molecules are relatively large and a strong hydrogen-bond network is generated locally. Because of the strong interactions, water molecules can be attached to ZrP and the O–O distance becomes shorter than that in bulk water systems. Because of the short O–O distances and the delocalized charge of each atom, the activation energy of proton transfer at the ZrP surface decreases and causes high proton conductivity even under conditions of high temperature and low humidity. Based on the above studies, the origin of the high proton conductivity of hybrid electrolytes is also discussed. We will also discuss the mechanism of oxygen reduction reaction on non-platinum catalysts such as Ta3N5

  2. Li+ Ion Transport in Polymer Electrolytes Based on a Glyme-Li Salt Solvate Ionic Liquid

    International Nuclear Information System (INIS)

    Polymer electrolytes (PEs) have served as the focus of intensive research as new ion-conducting materials, especially for lithium battery applications. A new strategy to develop fast lithium-conducting PEs is reported here. The thermal, ionic transport, and electrochemical properties of polymer solutions in a glyme-Li salt solvate ionic liquid, [Li(G4)1][TFSA], composed of an equimolar mixture of lithium bis(trifluoromethanesulfonyl) amide (Li[TFSA]) and tetraglyme (G4), were characterized. Poly(ethylene oxide) (PEO), poly(methyl methacrylate) (PMMA), and poly(butyl acrylate) (PBA) were combined with [Li(G4)1][TFSA] in order to explore the effects of polymer structure on the properties. The self-diffusion coefficient ratio of the glyme and Li+ ions (DG/DLi) was investigated to evaluate the stability of the complex (solvate) cations. The DG/DLi values suggested that the [Li(G4)1]+ complex cations underwent a ligand exchange reaction between G4 and PEO in the PEO-based solution, whereas the cations remained stable (DG/DLi = 1) in the PMMA- and PBA-based solutions. The robustness of the [Li(G4)1]+ complex cations in the PMMA- and PBA-based solutions was reflected in high weight-loss temperature, greater Li transference number, and high oxidative stability. Owing to the lower glass transition temperature and low affinity towards Li+ ions, the PBA-based solutions yielded superior lithium transport properties (ionic conductivity of 10−4∼10−3 Scm−1 and Li transference number as high as 0.5) among the investigated polymer solutions

  3. Theoretical voltammetric response of electrodes coated by solid polymer electrolyte membranes

    International Nuclear Information System (INIS)

    Highlights: • Discretized model for an interface of covered electrodes. • Two limiting behaviors are capture: double-layer and conductive interfaces. • Additional phenomena are included easily: acid/base equilibrium, ion mobility. • The model provides explanations to observed phenomena that is vaguely explained in the literature. • Implications on electrodes in fuel cells are given and it opens avenues to understand and design such systems. - Abstract: A model for the differential capacitance of metal electrodes coated by solid polymer electrolyte membranes, with acid/base groups attached to the membrane backbone, and in contact with an electrolyte solution is developed. With proper model parameters, the model is able to predict a limit response, given by Mott–Schottky or Gouy–Chapman–Stern theories depending on the dissociation degree and the density of ionizable acid/base groups. The model is also valid for other ionic membranes with proton donor/acceptor molecules as membrane counterions. Results are discussed in light of the electron transfer rate at membrane-coated electrodes for electrochemical reactions that strongly depend on the double layer structure. In this sense, the model provides a tool towards the understanding of the electro-catalytic activity on modified electrodes. It is shown that local maxima and minima in the differential capacitance as a function of the electrode potential may occur as consequence of the dissociation of acid/base molecular species, in absence of specific adsorption of immobile polymer anions on the electrode surface. Although the model extends the conceptual framework for the interpretation of cyclic voltammograms for these systems and the general theory about electrified interfaces, structural features of real systems are more complex and so, presented results only are qualitatively compared with experiments

  4. Performance of solid state supercapacitors based on polymer electrolytes containing different ionic liquids

    Science.gov (United States)

    Tiruye, Girum Ayalneh; Muñoz-Torrero, David; Palma, Jesus; Anderson, Marc; Marcilla, Rebeca

    2016-09-01

    Four Ionic Liquid based Polymer Electrolytes (IL-b-PE) were prepared by blending a Polymeric Ionic Liquid, Poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PILTFSI), with four different ionic liquids: 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) (IL-b-PE1), 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide (PYR14FSI) (IL-b-PE2), 1-(2-hydroxy ethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HEMimTFSI) (IL-b-PE3), and 1-Butyl-1-methylpyrrolidinium dicyanamide, (PYR14DCA) (IL-b-PE4). Physicochemical properties of IL-b-PE such as ionic conductivity, thermal and electrochemical stability were found to be dependent on the IL properties. For instance, ionic conductivity was significantly higher for IL-b-PE2 and IL-b-PE4 containing IL with small size anions (FSI and DCA) than IL-b-PE1 and IL-b-PE3 bearing IL with bigger anion (TFSI). On the other hand, wider electrochemical stability window (ESW) was found for IL-b-PE1 and IL-b-PE2 having ILs with electrochemically stable pyrrolidinium cation and FSI and TFSI anions. Solid state Supercapacitors (SCs) were assembled with activated carbon electrodes and their electrochemical performance was correlated with the polymer electrolyte properties. Best performance was obtained with SC having IL-b-PE2 that exhibited a good compromise between ionic conductivity and electrochemical window. Specific capacitance (Cam), real energy (Ereal) & real power densities (Preal) as high as 150 F g-1, 36 Wh kg-1 & 1170 W kg-1 were found at operating voltage of 3.5 V.

  5. Comparative Studies on Plasticised and Unplasticized Polyacrylonitrile (PAN) Polymer Electrolytes Containing Lithium and Sodium Salts

    International Nuclear Information System (INIS)

    Polymer electrolytes based on polyacrylonitrile (PAN) containing inorganic salts; lithium triflate (LiCF3SO3) and sodium triflate (NaCF3SO3) and ethylene carbonate (EC) as plasticizer were prepared using solvent casting technique. In this study, five systems of plasticised and unplasticized polymer electrolyte films for example PAN-EC, PAN-LiCF3SO3, PAN-NaCF3SO3 PAN-EC-LiCF3SO3 and PAN-EC-NaCF3SO3 systems have been prepared. The structural and morphological properties of the films were studied using infrared spectroscopy and scanning electron microscopy (SEM) while the conductivity study was done by using impedance spectroscopy. The infrared results revealed that interaction had taken place between the nitrogen atoms of PAN and Li+ and Na+ ions from the salts. SEM micrographs showed that the plasticised film, PAN-EC-NaCF3SO3 has bigger pores than PAN-EC-LiCF3SO3 film resulting in the film containing NaCF3SO3 salt being more conductive. On addition of salts and plasticizer, the conductivity of pure PAN increases to three orders of magnitude. The plasticised film containing NaCF3SO3 salt has a higher conductivity compared to that containing LiCF3SO3 salt. This result showed that the interaction between Li+-ion and the nitrogen atom of PAN was stronger than that of Na+-ion. The conductivity-temperature dependence of the highest conducting film from each system follows Arrhenius equation in the temperature range of 303 to 353 K. The conductivity-pressure study in the range of 0.01 - 0.09 MPa showed that the conductivity decreased when pressure was increased. This can be explained in term of free volume model. (author)

  6. Effect of ZrO2 on conductivity of PVC–PMMA–LiBF4–DBP polymer electrolytes

    Indian Academy of Sciences (India)

    S Rajendran; T Uma

    2000-02-01

    The preparation and characterization of composite polymer electrolytes of PVC–PMMA–LiBF4–DBP for different concentrations of ZrO2 have been investigated. FTIR studies indicate complex formation between the polymers, salt and plasticizer. The electrical conductivity values measured by a.c. impedance spectroscopy is found to depend upon the ZrO2 concentration. The temperature dependence of the conductivity of the polymer films seems to obey the VTF relation. The conductivity values are presented and results discussed.

  7. Synthesis and characterization of NiFe2O4 electrocatalyst for the hydrogen evolution reaction in alkaline water electrolysis using different polymer binders

    Czech Academy of Sciences Publication Activity Database

    Chanda, D.; Hnát, J.; Paidar, M.; Schauer, Jan; Bouzek, K.

    2015-01-01

    Roč. 285, 1 July (2015), s. 217-226. ISSN 0378-7753 Institutional support: RVO:61389013 Keywords : alkaline water electrolysis * spinel oxides * polymer binder Subject RIV: CG - Electrochemistry Impact factor: 6.217, year: 2014

  8. A study on optical properties of poly (ethylene oxide) based polymer electrolyte with different alkali metal iodides

    Science.gov (United States)

    Rao, B. Narasimha; Suvarna, R. Padma

    2016-05-01

    Polymer electrolytes were prepared by adding poly (ethylene glycol) dimethyl ether (PEGDME), TiO2 (nano filler), different alkali metal iodide salts RI (R+=Li+, Na+, K+, Rb+, Cs+) and I2 into Acetonitrile gelated with Poly (ethylene oxide) (PEO). Optical properties of poly (ethylene oxide) based polymer electrolytes were studied by FTIR, UV-Vis spectroscopic techniques. FTIR spectrum reveals that the alkali metal cations were coordinated to ether oxygen of PEO. The optical absorption studies were made in the wavelength range 200-800 nm. It is observed that the optical absorption increases with increase in the radius of alkali metal cation. The optical band gap for allowed direct transitions was evaluated using Urbach-edges method. The optical properties such as optical band gap, refractive index and extinction coefficient were determined. The studied polymer materials are useful for solar cells, super capacitors, fuel cells, gas sensors etc.

  9. Tungsten oxide in polymer electrolyte fuel cell electrodes-A thin-film model electrode study

    Energy Technology Data Exchange (ETDEWEB)

    Wickman, Bjoern, E-mail: bjorn.wickman@chalmers.s [Competence Centre for Catalysis, Department of Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Wesselmark, Maria; Lagergren, Carina; Lindbergh, Goeran [Applied Electrochemistry, School of Chemical Science and Engineering, KTH, SE-100 44 Stockholm (Sweden)

    2011-10-30

    Highlights: > Platinum and tungsten oxide thin-film electrocatalysts. > Single cell fuel cell evaluation. > Hydrogen-tungsten bronze formation. > CO oxidation on platinum on tungsten oxide. - Abstract: Thin films of WO{sub x} and Pt on WO{sub x} were evaporated onto the microporous layer of a gas diffusion layer (GDL) and served as model electrodes in the polymer electrolyte fuel cell (PEFC) as well as in liquid electrolyte measurements. In order to study the effects of introducing WO{sub x} in PEFC electrodes, precise amounts of WO{sub x} (films ranging from 0 to 40 nm) with or without a top layer of Pt (3 nm) were prepared. The structure of the thin-film model electrodes was characterized by scanning electron microscopy and X-ray photoelectron spectroscopy prior to the electrochemical investigations. The electrodes were analyzed by cyclic voltammetry and the electrocatalytic activity for hydrogen oxidation reaction (HOR) and CO oxidation was examined. The impact of Nafion in the electrode structure was examined by comparing samples with and without Nafion solution sprayed onto the electrode. Fuel cell measurements showed an increased amount of hydrogen tungsten bronzes formed for increasing WO{sub x} thicknesses and that Pt affected the intercalation/deintercalation process, but not the total amount of bronzes. The oxidation of pre-adsorbed CO was shifted to lower potentials for WO{sub x} containing electrodes, suggesting that Pt-WO{sub x} is a more CO-tolerant catalyst than Pt. For the HOR, Pt on thicker films of WO{sub x} showed an increased limiting current, most likely originating from the increased electrochemically active surface area due to proton conductivity and hydrogen permeability in the WO{sub x} film. From measurements in liquid electrolyte it was seen that the system behaved very differently compared to the fuel cell measurements. This exemplifies the large differences between the liquid electrolyte and fuel cell systems. The thin-film model

  10. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO2 are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO2 compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO2 blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM)

  11. Preparation and characterization of plasticized palm-based polyurethane solid polymer electrolyte

    International Nuclear Information System (INIS)

    Palm-based polyurethane solid polymer electrolyte was prepared via prepolymerization method between palm kernel oil based polyols (PKO-p) and 2,4’-diphenylmethane diisocyanate (2,4’-MDI) in acetone at room temperature with the vary amount of lithium trifuoromethanesulfonate (LiCF3SO3) salt and polyethylene glycol (PEG). The film was analyzed using attenuated total reflection infrared (ATR-IR) spectroscopy, electrochemical impedance spectroscopy (EIS) and X-ray diffractometry (XRD). EIS result indicated ionic conductivity obtained with 30 wt% LiCF3SO3 increased to 6.55 × 10−6 S cm−1 when 10 wt.% of plasticizer was added into the system. FTIR analysis showed the interaction between lithium ions and amine (-N-H) at 3600–3100 cm−1, carbonyl (-C=O) at 1750–1650 cm−1 and ether (-C-O-C-) at 1150–1000 cm−1 of the polyurethane forming polymer-salt complexes. The XRD result confirmed that LiCF3SO3 salt completely dissociated within the polyurethane film with the absence of crystalline peaks of LiCF3SO3

  12. Lithium battery with solid polymer electrolyte based on comb-like copolymers

    Science.gov (United States)

    Daigle, Jean-Christophe; Vijh, Ashok; Hovington, Pierre; Gagnon, Catherine; Hamel-Pâquet, Julie; Verreault, Serge; Turcotte, Nancy; Clément, Daniel; Guerfi, Abdelbast; Zaghib, Karim

    2015-04-01

    In this paper we report on the synthesis of comb-like copolymers as solid polymer electrolytes (SPE). The synthesis involved anionic polymerization of styrene (St) and 4-vinylanisole (VA) as the followed by grafting of poly(ethylene glycol) monomethyl ether methacrylate (PEGMA) by Atom Transfer Radical Polymerization (ATRP). The comb-like copolymer's structure was analyzed by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). The membranes were made by solvent casting and the morphologies were analyzed by atomic forces microscopy (AFM) and scanning electron microscopy (SEM). We observed that a nano and micro phase separation occurs which improves ionic conductivity. The ionic conductivities were determined by AC Impedance, which showed that the SPEs have good conductivities (10-5 Scm-1) at room temperature owing to the negligible values (<10 kJ mol-1) of the activation energies for conductivity. The batteries with these polymers exhibit a capacity of 146 mAh g-1 at C/24, and no evidence of degradation after intense cycling was observed. However, poor cycle life was observed at C/6 and C/3, which is a consequence of several factors. We partially explain that behavior by arguing that whereas PEO lightly "solvates" Li+ thus slowing Li-ion mobility, and PEGMA chains "solvate" Li ions too strongly, trapping and inhibiting their mobility.

  13. Preparation and characterization of plasticized palm-based polyurethane solid polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Daud, Farah Nadia; Ahmad, Azizan; Badri, Khairiah Haji [School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    Palm-based polyurethane solid polymer electrolyte was prepared via prepolymerization method between palm kernel oil based polyols (PKO-p) and 2,4’-diphenylmethane diisocyanate (2,4’-MDI) in acetone at room temperature with the vary amount of lithium trifuoromethanesulfonate (LiCF{sub 3}SO{sub 3}) salt and polyethylene glycol (PEG). The film was analyzed using attenuated total reflection infrared (ATR-IR) spectroscopy, electrochemical impedance spectroscopy (EIS) and X-ray diffractometry (XRD). EIS result indicated ionic conductivity obtained with 30 wt% LiCF3SO3 increased to 6.55 × 10{sup −6} S cm{sup −1} when 10 wt.% of plasticizer was added into the system. FTIR analysis showed the interaction between lithium ions and amine (-N-H) at 3600–3100 cm{sup −1}, carbonyl (-C=O) at 1750–1650 cm{sup −1} and ether (-C-O-C-) at 1150–1000 cm{sup −1} of the polyurethane forming polymer-salt complexes. The XRD result confirmed that LiCF{sub 3}SO{sub 3} salt completely dissociated within the polyurethane film with the absence of crystalline peaks of LiCF{sub 3}SO{sub 3}.

  14. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Putri, Zufira, E-mail: zufira.putri@gmail.com, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: zufira.putri@gmail.com, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung (Indonesia)

    2014-03-24

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO{sub 2} are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO{sub 2} compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO{sub 2} blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM)

  15. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Putri, Zufira; Arcana, I. Made

    2014-03-01

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO2 are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO2 compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO2 blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM).

  16. Enhancement in ionic conductivity on solid polymer electrolytes containing large conducting species

    Science.gov (United States)

    Praveen, D.; Damle, Ramakrishna

    2016-05-01

    Solid Polymer Electrolytes (SPEs) lack better conducting properties at ambient temperatures. Various methods to enhance their ionic conductivity like irradiation with swift heavy ions, γ-rays, swift electrons and quenching at low temperature etc., have been explored in the literature. Among these, one of the oldest methods is incorporation of different conducting species into the polymer matrix and/or addition of nano-sized inert particles into SPEs. Various new salts like LiBr, Mg(ClO4)2, NH4I etc., have already been tried in the past with some success. Also various nanoparticles like Al2O3, TiO2 etc., have been tried in the past. In this article, we have investigated an SPE containing Rubidium as a conducting species. Rubidium has a larger ionic size compared to lithium and sodium ions which have been investigated in the recent past. In the present article, we have investigated the conductivity of large sized conducting species and shown the enhancement in the ionic conductivity by addition of nano-sized inert particles.

  17. Solid-state electric double layer capacitors fabricated with plastic crystal based flexible gel polymer electrolytes: Effective role of electrolyte anions

    International Nuclear Information System (INIS)

    Flexible gel polymer electrolyte (GPE) thick films incorporated with solutions of lithium trifluoromethanesulfonate (Li-triflate or LiTf) and lithium bis trifluoromethane-sulfonimide (LiTFSI) in a plastic crystal succinonitrile (SN), entrapped in poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) have been prepared and characterized. The films have been used as electrolytes in the electrical double layer capacitors (EDLCs). Coconut-shell derived activated carbon with high specific surface area (∼2100 m2 g−1) and mixed (micro- and meso-) porosity has been used as EDLC electrodes. The structural, thermal, and electrochemical characterization of the GPEs have been performed using scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), impedance measurements and cyclic voltammetry. The high ionic conductivity (∼10−3 S cm−1 at 25 °C), good electrochemical stability window (>4.0 V) and flexible nature of the free-standing films of GPEs show their competence in the fabrication of EDLCs. The EDLCs have been tested using electrochemical impedance spectroscopy, cyclic voltammetry, and charge–discharge studies. The EDLCs using LiTf based electrolyte have been found to give higher values of specific capacitance, specific energy, power density (240–280 F g−1, ∼39 Wh kg−1 and ∼19 kW kg−1, respectively) than the EDLC cell with LiTFSI based gel electrolyte. EDLCs have been found to show stable performance for ∼104 charge–discharge cycles. The comparative studies indicate the effective role of electrolyte anions on the capacitive performance of the solid-state EDLCs. - Graphical abstract: Display Omitted - Highlights: • Flexible EDLCs with succinonitrile based gel electrolyte membranes are reported. • Anionic size of salts in gel electrolytes plays important role on capacitive performance. • Li-triflate incorporated gel electrolyte shows better performance over LiTFSI-based gel. • Highest

  18. Solid-state electric double layer capacitors fabricated with plastic crystal based flexible gel polymer electrolytes: Effective role of electrolyte anions

    Energy Technology Data Exchange (ETDEWEB)

    Suleman, Mohd; Kumar, Yogesh; Hashmi, S.A., E-mail: sahashmi@physics.du.ac.in

    2015-08-01

    Flexible gel polymer electrolyte (GPE) thick films incorporated with solutions of lithium trifluoromethanesulfonate (Li-triflate or LiTf) and lithium bis trifluoromethane-sulfonimide (LiTFSI) in a plastic crystal succinonitrile (SN), entrapped in poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) have been prepared and characterized. The films have been used as electrolytes in the electrical double layer capacitors (EDLCs). Coconut-shell derived activated carbon with high specific surface area (∼2100 m{sup 2} g{sup −1}) and mixed (micro- and meso-) porosity has been used as EDLC electrodes. The structural, thermal, and electrochemical characterization of the GPEs have been performed using scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), impedance measurements and cyclic voltammetry. The high ionic conductivity (∼10{sup −3} S cm{sup −1} at 25 °C), good electrochemical stability window (>4.0 V) and flexible nature of the free-standing films of GPEs show their competence in the fabrication of EDLCs. The EDLCs have been tested using electrochemical impedance spectroscopy, cyclic voltammetry, and charge–discharge studies. The EDLCs using LiTf based electrolyte have been found to give higher values of specific capacitance, specific energy, power density (240–280 F g{sup −1}, ∼39 Wh kg{sup −1} and ∼19 kW kg{sup −1}, respectively) than the EDLC cell with LiTFSI based gel electrolyte. EDLCs have been found to show stable performance for ∼10{sup 4} charge–discharge cycles. The comparative studies indicate the effective role of electrolyte anions on the capacitive performance of the solid-state EDLCs. - Graphical abstract: Display Omitted - Highlights: • Flexible EDLCs with succinonitrile based gel electrolyte membranes are reported. • Anionic size of salts in gel electrolytes plays important role on capacitive performance. • Li-triflate incorporated gel electrolyte shows better

  19. UV-Induced Radical Photo-Polymerization: A Smart Tool for Preparing Polymer Electrolyte Membranes for Energy Storage Devices

    Directory of Open Access Journals (Sweden)

    Claudio Gerbaldi

    2012-10-01

    Full Text Available In the present work, the preparation and characterization of quasi-solid polymer electrolyte membranes based on methacrylic monomers and oligomers, with the addition of organic plasticizers and lithium salt, are described. Noticeable improvements in the mechanical properties by reinforcement with natural cellulose hand-sheets or nanoscale microfibrillated cellulose fibers are also demonstrated. The ionic conductivity of the various prepared membranes is very high, with average values approaching 10-3 S cm-1 at ambient temperature. The electrochemical stability window is wide (anodic breakdown voltages > 4.5 V vs. Li in all the cases along with good cyclability in lithium cells at ambient temperature. The galvanostatic cycling tests are conducted by constructing laboratory-scale lithium cells using LiFePO4 as cathode and lithium metal as anode with the selected polymer electrolyte membrane as the electrolyte separator. The results obtained demonstrate that UV induced radical photo-polymerization is a well suited method for an easy and rapid preparation of easy tunable quasi-solid polymer electrolyte membranes for energy storage devices.

  20. Preparation and characterization of PAN–KI complexed gel polymer electrolytes for solid-state battery applications

    Indian Academy of Sciences (India)

    N KRISHNA JYOTHI; K K VENKATARATNAM; P NARAYANA MURTY; K VIJAYA KUMAR

    2016-08-01

    The free standing and dimensionally stable gel polymer electrolyte films of polyacrylonitrile (PAN): potassium iodide (KI) of different compositions, using ethylene carbonate as a plasticizer and dimethyl formamide as solvent, are prepared by adopting ‘solution casting technique’ and these films are examined for their conductivities. The structural, miscibility and the chemical rapport between PAN and KI are investigated using X-ray diffraction, Fourier transform infrared spectroscopy and differential scanning calorimetry methods. The conductivity is enhanced with the increase in KI concentration and temperature. The maximum conductivity at 30$^{\\circ}$C is found to be $2.089 \\times 10^{−5}$ S cm$^{−1}$ for PAN:KI (70:30) wt%, which is nine orders greater than that of pure PAN (${\\lt}10^{−14}$ S cm$^{−1}$). The conductivity-temperature dependence of these polymer electrolyte films obeys Arrhenius behaviour with activation energy ranging from 0.358 to 0.478 eV. The conducting carriers of charge transport in these polymer electrolyte films are identified by Wagner’s polarization technique and it is found that the charge transport is predominantlydue to ions. The better conducting sample is used to fabricate the battery with configuration K/PAN $+$ KI/I$_2$ $+$ C $+$ electrolyte and good discharge characteristics of battery are observed.