WorldWideScience

Sample records for alkaline polymer electrolyte

  1. Alkaline polymer electrolyte fuel cells: Principle, challenges, and recent progress

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Polymer electrolyte membrane fuel cells (PEMFC) have been recognized as a significant power source in future energy systems based on hydrogen. The current PEMFC technology features the employment of acidic polymer electrolytes which, albeit superior to electrolyte solutions, have intrinsically limited the catalysts to noble metals, fundamentally preventing PEMFC from widespread deployment. An effective solution to this problem is to develop fuel cells based on alkaline polymer electrolytes (APEFC), which not only enable the use of non-precious metal catalysts but also avoid the carbonate-precipitate issue which has been troubling the conventional alkaline fuel cells (AFC). This feature article introduces the principle of APEFC, the challenges, and our research progress, and focuses on strategies for developing key materials, including high-performance alkaline polyelectrolytes and stable non-precious metal catalysts. For alkaline polymer electrolytes, high ionic conductivity and satisfactory mechanical property are difficult to be balanced, therefore polymer cross-linking is an ultimate strategy. For non-precious metal catalysts, it is urgent to improve the catalytic activity and stability. New materials, such as transition-metal complexes, nitrogen-doped carbon nanotubes, and metal carbides, would become applicable in APEFC.

  2. Stability in alkaline aqueous electrolyte of air electrode protected with fluorinated interpenetrating polymer network membrane

    Science.gov (United States)

    Bertolotti, Bruno; Messaoudi, Houssam; Chikh, Linda; Vancaeyzeele, Cédric; Alfonsi, Séverine; Fichet, Odile

    2015-01-01

    We developed original anion exchange membranes to protect air electrodes operating in aqueous lithium-air battery configuration, i.e. supplied with atmospheric air and in concentrated aqueous lithium hydroxide. These protective membranes have an interpenetrating polymer network (IPN) architecture combining a hydrogenated cationic polyelectrolyte network based on poly(epichlorohydrin) (PECH) and a fluorinated neutral network based on perfluoropolyether (Fluorolink® MD700). Two phases, each one rich in one of the polymer, are co-continuous in the materials. This morphology allows combining their properties according to the weight proportions of each polymer. Thus, PECH/Fluorolink IPNs show ionic conductivity varying from 1 to 2 mS cm-1, water uptake from 30 to 90 wt.% and anionic transport number from 0.65 to 0.80 when the PECH proportion varies from 40 to 90 wt.%. These membranes have been systematically assembled on air electrodes. Air electrode protected with PECH/Fluorolink 70/30 IPN shows outstanding stability higher than 1000 h, i.e. a 20-fold increase in the lifetime of the non-modified electrode. This efficient membrane/air electrode assembly is promising for development of alkaline electrolyte based storage or production energy systems, such as metal air batteries or alkaline fuel cells.

  3. Alkaline solid polymer electrolytes and their application to rechargeable batteries; Electrolytes solides polymeres alcalins application aux generateurs electrochimiques rechargeables

    Energy Technology Data Exchange (ETDEWEB)

    Guinot, S.

    1996-03-15

    A new family of solid polymer electrolytes (SPE) based on polyoxyethylene (POE), KOH and water is investigated in view of its use in rechargeable batteries. After a short review on rechargeable batteries, the preparation of various electrolyte compositions is described. Their characterization by differential scanning calorimetry (DSC), thermogravimetric analysis, X-ray diffraction and microscopy confirm a multi-phasic structure. Conductivity measurements give values up to 10 sup -3 S cm sup -1 at room temperature. Their use in cells with nickel as negative electrode and cadmium or zinc as positive electrode has been tested; cycling possibility has been shown to be satisfactory. (C.B.) 113 refs.

  4. Nanoporous polymer electrolyte

    Science.gov (United States)

    Elliott, Brian; Nguyen, Vinh

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  5. Zero-Gap Alkaline Water Electrolysis Using Ion-Solvating Polymer Electrolyte Membranes at Reduced KOH Concentrations

    DEFF Research Database (Denmark)

    Kraglund, Mikkel Rykær; Aili, David; Jankova Atanasova, Katja;

    2016-01-01

    , reaching about 10-1 S cm-1 or higher in 15-25 wt% KOH. Herein, m-PBI membranes are systematically characterized with respect to performance and short-term stability as electrolyte in a zero-gap alkaline water electrolyzer at different KOH concentrations. Using plain uncatalyzed nickel foam electrodes...

  6. 3-Methyltrimethylammonium poly(2,6-dimethyl-1,4-phenylene oxide) based anion exchange membrane for alkaline polymer electrolyte fuel cells

    Indian Academy of Sciences (India)

    K Hari Gopi; S Gouse Peera; S D Bhat; P Sridhar; S Pitchumani

    2014-06-01

    Hydroxyl ion (OH–) conducting anion exchange membranes based on modified poly (phenylene oxide) are fabricated for their application in alkaline polymer electrolyte fuel cells (APEFCs). In the present study, chloromethylation of poly(phenylene oxide) (PPO) is performed by aryl substitution rather than benzyl substitution and homogeneously quaternized to form an anion exchange membrane (AEM). 1H NMR and FT–IR studies reveal successful incorporation of the above groups in the polymer backbone. The membrane is characterized for its ion exchange capacity and water uptake. The membrane formed by these processes show good ionic conductivity and when used in fuel cell exhibited an enhanced performance in comparison with the state-of-the-art commercial AHA membrane. A peak power density of 111 mW/cm2 at a load current density of 250 mA/cm2 is obtained for PPO based membrane in APEFCs at 30 °C.

  7. Progress in alkaline polymer electrolyte for zinc-nickel battery%锌镍电池用碱性聚合物电解质的研究进展

    Institute of Scientific and Technical Information of China (English)

    黄琳琳; 景义军

    2009-01-01

    介绍了碱性聚合物电解质离子传输机理和性能要求,综述了近年来聚氧化乙烯(PEO)、聚乙烯醇(PVA)、聚丙烯酸钾(PAAK)用于锌镍电池碱性聚合物电解质的研究进展.%The transfers mechanism and performance of alkaline polymer electrolyters used in zinc-nickel battery is reviewed. It summarizs the research development trends of alkaline polymer electrolyters based on poly(ethylene oxide)(PEO), polyvinyl alcohol(PVA) and potassium poly(acrylate) (PAAK).

  8. 用于镍氢电池的PVA/PAAK碱性聚合物电解质的制备及性能%Preparation and Properties of PVA/PAAK Alkaline Polymer Electrolytes for Nickel-Metal Hydride Batteries

    Institute of Scientific and Technical Information of China (English)

    吴仁香; 陆霞; 朱云峰; 李李泉

    2013-01-01

    通过溶液浇铸和碱液活化的简易方法制备了聚乙烯醇(PVA)/聚丙烯酸钾(PAAK)碱性聚合物电解质.运用交流阻抗法、循环伏安(CV)和X射线衍射(XRD)等技术对碱性聚合物电解质进行表征,分析了PAAK对聚合物电解质离子电导率的影响.结果表明,PAAK对聚合物电解质导电性的作用主要表现在:一是使聚合物电解质中容纳更多的KOH溶液;二是能降低PVA的结晶度,从而提高聚合物电解质的离子电导率.所制备的PVA/PAAK碱性聚合物电解质最大室温电导率达3.074×10-2 S/cm,电化学稳定窗口为2.2V.以其实验室制备的镁基储氢合金为负极,组装的聚合物镍氢电池(MH-Ni电池)的循环寿命较传统的MH-Ni电池明显改善.%Poly ( vinyl alcohol)/, potassium polyacrylate poly ( acrylic acid) ( PVA/PAAK) alkaline polymer electrolyte were prepared by solution casting method and alkaline solution activating. The alkaline polymer electrolyte were characterized by alternating current (AC) impedance method, cyclic voltammetry ( CV) and XRD. The influence of PAAK on the ionic conductivity of polymer electrolyte was analyzed. The results indicate that PAAK can make the polymer electrolyte system containing more KOH solution. On the other hand, the addition of PAAK decreases the crystallinity of PVA, and the results to the improvement of ionic conductivity of polymer electrolyte. The PVA/PAAK alkaline polymer electrolyte exhibits a good electrochemical performance with a highest ionic-conductivity of 3.074 × 10-2 S/cm at ambient temperature and electrochemical stable window of 2.2 V. Polymer metal hydride (MH)-Ni battery was assembled successfully using the PVA/PAAK alkaline polymer electrolyte and Mg-based hydrogen storage alloy as the negative electrode. It is shown that the polymer MH-Ni battery has a better cycle life than the conventional MH-Ni battery.

  9. Electrochemical polymer electrolyte membranes

    CERN Document Server

    Fang, Jianhua; Wilkinson, David P

    2015-01-01

    Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabricationPoints out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performanceAnalyzes the cur

  10. Research on Application and Modification of Alkaline Polymer Electrolyte%碱性聚合物电解质的应用进展及其改性研究

    Institute of Scientific and Technical Information of China (English)

    王风彦; 屈年瑞; 王洪超

    2012-01-01

    Alkaline polymer electrolyte had particular advantages,such as high ion conductivity at room temperature,easy preparation,low cost,and had potential application value in alkaline secondary zinc batteries,MH/Ni batteries,Cd/Ni batteries,fuel cells,super-capacitors and other aspects.The compositions and classification,research status in application field as well as modification methods of alkaline polymer electrolyte were introduced.The forecasts of the future development trend of alkaline polymer electrolyte were proposed.%碱性聚合物电解质具有较高的室温电导率、易于合成、成本较低等特点,在碱性二次锌电池、MH/Ni电池、Cd/Ni电池、燃料电池、超级电容器等方面具有潜在的应用价值。介绍了碱性聚合物电解质的结构与分类、应用研究现状及其改性方法,并对今后的发展方向提出了展望。

  11. Composite solid polymer electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Formato, Richard M. (Shrewsbury, MA); Kovar, Robert F. (Wrentham, MA); Osenar, Paul (Watertown, MA); Landrau, Nelson (Marlborough, MA); Rubin, Leslie S. (Newton, MA)

    2001-06-19

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  12. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes....... With the thermally resistant polymer, e.g., polybenzimidazole or a mixture of polybenzimidazole and other thermoplastics as binder, the carbon-supported noble metal catalyst is tape-cast onto a hydrophobic supporting substrate. When doped with an acid mixture, electrodes are assembled with an acid doped solid...

  13. High cation transport polymer electrolyte

    Science.gov (United States)

    Gerald, II, Rex E.; Rathke, Jerome W.; Klingler, Robert J.

    2007-06-05

    A solid state ion conducting electrolyte and a battery incorporating same. The electrolyte includes a polymer matrix with an alkali metal salt dissolved therein, the salt having an anion with a long or branched chain having not less than 5 carbon or silicon atoms therein. The polymer is preferably a polyether and the salt anion is preferably an alkyl or silyl moiety of from 5 to about 150 carbon/silicon atoms.

  14. Polymer Electrolytes for Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    The Nam Long Doan

    2012-08-01

    Full Text Available This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes.

  15. PVA-PAA-KOH碱性聚合物电解质膜的制备及其性能%Preparation and properties of PVA-PAA-KOH alkaline polymer electrolyte membrane

    Institute of Scientific and Technical Information of China (English)

    陆霞; 吴仁香; 朱云峰; 李李泉

    2013-01-01

    PAA was prepared by the situ polymerization of AA with various neutralization degrees in PVA solution under the action of initiator and crosslinker and PVA-PAA blended membrane was prepared by the solution casting method. PVA-PAA-KOH alkaline polymer electrolyte was activated by the alkaline solution. The morphology and structure of the polymer electrolyte were characterized by means of SEM, XRD and FT-IR. The electrochemical properties were represented by the AC impedance and the cyclic voltammetry. The results indicated that a homogeneous PVA-PAA blended membrane was successfully obtained. The increased water content of the membrane and the decreased crystallinity of the PVA owed to the presence of PAA. The maximum ionic conductivity of the electrolyte reached to 3. 55 X 10-2 S/cm. The alkaline polymer electrolyte with 7 : 3 mass ratio of PVA : AA could achieve a good synthetical property with electrochemical stability window more than 2V and could meet the demands of MH-Ni battery.%采用溶液浇铸法,向PVA溶液中加入不同中和度的AA,在引发剂、交联剂的作用下,经原位聚合得到PVA-PAA共混膜;接着采用碱液活化法,制备了PVA-PAA-KOH碱性聚合物电解质膜.通过扫描电镜、X射线衍射、红外光谱等测试手段研究了聚合物共混膜的形貌与结构,同时采用交流阻抗、循环伏安法表征聚合物电解质膜电化学性能.研究表明,成功制备了均相PVA-PAA共混膜,同时PAA的合成可以提高体系的含水量以及降低PVA的结晶度.电解质膜的离子电导率最大可达3.55× 10-2S/cm,PVA-AA配比为7∶3的碱性聚合物电解质膜综合性能最优,电化学稳定窗口2V以上,能够满足镍氢电池的要求.

  16. Conductivity behaviour of polymer gel electrolytes: Role of polymer

    Indian Academy of Sciences (India)

    S S Sekhon

    2003-04-01

    Polymer is an important constituent of polymer gel electrolytes along with salt and solvent. The salt provides ions for conduction and the solvent helps in the dissolution of the salt and also provides the medium for ion conduction. Although the polymer added provides mechanical stability to the electrolytes yet its effect on the conductivity behaviour of gel electrolytes as well as the interaction of polymer with salt and solvent has not been conclusively established. The conductivity of lithium ion conducting polymer gel electrolytes decreases with the addition of polymer whereas in the case of proton conducting polymer gel electrolytes an increase in conductivity has been observed with polymer addition. This has been explained to be due to the role of polymer in increasing viscosity and carrier concentration in these gel electrolytes.

  17. New polysaccharide-based polymer electrolytes; Nouveaux electrolytes polymeres a base de polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez-Morales, P.; Le Nest, J.F.; Gandini, A. [Ecole Francaise de Papeterie et des Industries Graphique, 38 - Saint Martin d`Heres (France)

    1996-12-31

    Polysaccharides like cellulose and chitosan are known for their filmic properties. This paper concerns the synthesis and the study of chitosan-based polymer electrolytes. A preliminary work concerns the study of glucosamine reactivity. The poly-condensation of chitosan ethers (obtained by reaction with ethylene oxide or propylene oxide) with bifunctional and monofunctional oligo-ethers leads to the formation of thin lattices (10 {mu}m) having excellent mechanical properties. The presence of grafted polyether chains along the polysaccharide skeleton allows to modify the vitreous transition temperature and the molecular disorder of the system. Two type of polymer electrolytes have been synthesized: electrolytes carrying a dissolved alkaline metal salt and ionomers. The analysis of their thermal, dynamical mechanical, nuclear magnetic relaxation, electrical, and electrochemical properties shows that this new class of polymer electrolytes has the same performances as ethylene poly-oxide based amorphous lattices plus the advantage of having good filmic properties. Abstract only. (J.S.)

  18. Organic/inorganic nanocomposite polymer electrolyte

    Institute of Scientific and Technical Information of China (English)

    Li Qi; Shao Jun Dong

    2007-01-01

    The organic/inorganic nanocomposites polymer electrolytes were designed and synthesized. The organic/inorganic nanocom posites membrane materials and their lithium salt complexes have been found thermally stable below 200 ℃. The conductivity of the organic/inorganic nanocomposites polymer electrolytes prepared at room temperature was at magnitude range of 10-6 S/cm.

  19. Nanocomposite polymer electrolyte for rechargeable magnesium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yuyan; Rajput, Nav Nidhi; Hu, Jian Z.; Hu, Mary Y.; Liu, Tianbiao L.; Wei, Zhehao; Gu, Meng; Deng, Xuchu; Xu, Suochang; Han, Kee Sung; Wang, Jiulin; Nie, Zimin; Li, Guosheng; Zavadil, K.; Xiao, Jie; Wang, Chong M.; Henderson, Wesley A.; Zhang, Jiguang; Wang, Yong; Mueller, Karl T.; Persson, Kristin A.; Liu, Jun

    2014-12-28

    Nanocomposite polymer electrolytes present new opportunities for rechargeable magnesium batteries. However, few polymer electrolytes have demonstrated reversible Mg deposition/dissolution and those that have still contain volatile liquids such as tetrahydrofuran (THF). In this work, we report a nanocomposite polymer electrolyte based on poly(ethylene oxide) (PEO), Mg(BH4)2 and MgO nanoparticles for rechargeable Mg batteries. Cells with this electrolyte have a high coulombic efficiency of 98% for Mg plating/stripping and a high cycling stability. Through combined experiment-modeling investigations, a correlation between improved solvation of the salt and solvent chain length, chelation and oxygen denticity is established. Following the same trend, the nanocomposite polymer electrolyte is inferred to enhance the dissociation of the salt Mg(BH4)2 and thus improve the electrochemical performance. The insights and design metrics thus obtained may be used in nanocomposite electrolytes for other multivalent systems.

  20. Hyperbranched Polymer-Based Electrolyte for Lithium Polymer Batteries

    Institute of Scientific and Technical Information of China (English)

    Takahito Itoh

    2005-01-01

    @@ 1Introduction Solid polymer electrolytes have attracted much attention as electrolyte materials for all solid-state recharge able lithium batteries, and poly ( ethylene oxide) ( PEO)-based polymer electrolytes are among the most intensively studied systems[1-3]. Hyperbranched polymers have unique properties such as completely amorphous, highly soluble in common organic solvent and processible because of the highly branched nature[4,5].

  1. PVA基碱性聚合物电解质Ni(OH)2/AC超级电容器的电化学性能%Electrochemical Performance of Nickel Hydroxide/Activated Carbon Supercapacitors Using a Modified Polyvinyl Alcohol Based Alkaline Polymer Electrolyte

    Institute of Scientific and Technical Information of China (English)

    孙紫红; 袁安保

    2009-01-01

    Polyvinyl alcohol (PVA)-sodium polyacrylate (PAAS)-KOH-H2O alkaline polymer electrolyte film with high ionic conductivity was prepared by a solution-casting method. Polymer Ni(OH)2/activated carbon (AC) hybrid supercapacitors with different electrode active material mass ratios (positive to negative) were fabricated using this alkaline polymer electrolyte, nickel hydroxide positive electrodes, and AC negative electrodes. Galvanostatic charge/ discharge and electrochemical impedance spectroscopy (EIS) methods were used to study the electrochemical per-formance of the capacitors, such as charge/discharge specific capacitance, rate charge/discharge ability, and charge/discharge cyclic stability. Experimental results showed that with the decreasing of active material mass ratio m(Ni(OH)2)/m(AC), the charge/discharge specific capacitance increases, but the rate charge/discharge ability and the charge/discharge cyclic stability decrease.

  2. Microporous polymer electrolyte based on PVDF-PEO

    Institute of Scientific and Technical Information of China (English)

    LI Jian; XI Jingyu; SONG Qing; TANG Xiaozhen

    2005-01-01

    @@ Since Wright et al.[1] found that the complex of PEO/alkali metals salt had the ability of ionic conductivity in 1973, in-depth studies have been carried out about various polymer electrolytes, which were applied to replacing the liquid electrolytes in lithium ion battery[2,3]. At present, polymer electrolytes mainly include three kinds: dry polymer electrolytes, gel polymer electrolytes and microporous polymer electrolytes.

  3. Proton Conducting Polymer Electrolytes and Its Applications

    Institute of Scientific and Technical Information of China (English)

    S. Selvasekarapandian; G. Hirankumar; R. Baskaran; M.S. Bhuvaneswari

    2005-01-01

    @@ 1Introduction Proton conducting solid polymer electrolytes have been extensively studied due to their potential applications in electrochemical devices such as batteries, super capacitors, electrochromic windows, sensors etc[1,2]Many researchers have studied the behaviour of inorganic based polymer electrolytes as proton conductors and their applications in solid state devices at room temperature[3]. But, inorganic acid doped electrolytes have some serious disadvantages like corrosion towards the electrode and hazardous. Hence, there is need for searching new electrolyte which is stable towards the electrode. It has been reported that the ammonium salts which behaves like alkali metal salt are good dopant to the polymer matrix[4, 5] for the development of proton conducting polymer electrolyte. The proton conductors based on poly (ethylene oxide)[6], poly (ethylene succinate)[7], poly (ethylene glycol)[8], as host matrix doped with ammonium salt have already been reported.

  4. Solid polymer electrolyte water electrolysis

    Science.gov (United States)

    Takenaka, H.; Torikai, E.; Kawami, Y.; Wakabayashi, N.

    Electrocatalyst performances and bonding to solid polymer electrolytes used for water electrolysis are investigated. Noble metal and metal alloy catalysts were plated to Nafion perfluorosulfonic acid polymer membranes without a binder by the use of a reducing agent solution held on the opposite side of the membrane from a metal salt solution. It was found that pretreatment of the membrane by hydrothermal treatment or gas plasma surface roughening improves metal adhesivity and thus reduces contact resistance between the membrane and the catalyst. Measurements of the constituents of cell voltage for platinum, rhodium and iridium anodes with platinum cathodes reveals that anodic overvoltage is a major component of voltage loss and depends on the type of electrocatalyst, being greatest for Pd and least for Ir. Ir and Ir-alloy electrodes, which were found to be the best catalysts for oxygen evolution, are found to have Tafel slopes of 0.04-0.06 V/decade. In a cell with a Pt cathode and Ir anode, cell voltage is observed to decrease with increasing temperature, reaching 1.56-1.59 V at a current density of 50 A/sq dm and 90 C, which corresponds to a thermal efficiency of 93-95%.

  5. Effect of the alkaline cation size on the conductivity in gel polymer electrolytes and their influence on photo electrochemical solar cells.

    Science.gov (United States)

    Bandara, T M W J; Fernando, H D N S; Furlani, M; Albinsson, I; Dissanayake, M A K L; Ratnasekera, J L; Mellander, B-E

    2016-04-28

    The nature and concentration of cationic species in the electrolyte exert a profound influence on the efficiency of nanocrystalline dye-sensitized solar cells (DSSCs). A series of DSSCs based on gel electrolytes containing five alkali iodide salts (LiI, NaI, KI, RbI and CsI) and polyacrylonitrile with plasticizers were fabricated and studied, in order to investigate the dependence of solar cell performance on the cation size. The ionic conductivity of electrolytes with relatively large cations, K(+), Rb(+) and Cs(+), was higher and essentially constant, while for the electrolytes containing the two smaller cations, Na(+) and Li(+), the conductivity values were lower. The temperature dependence of conductivity in this series appears to follow the Vogel-Tamman-Fulcher equation. The sample containing the smallest cation shows the lowest conductivity and the highest activation energy of ∼36.5 meV, while K(+), Rb(+) and Cs(+) containing samples show an activation energy of ∼30.5 meV. DSSCs based on the gel electrolyte and a TiO2 double layer with the N719 dye exhibited an enhancement in the open circuit voltage with increasing cation size. This can be attributed to the decrease in the recombination rate of electrons and to the conduction band shift resulting from cation adsorption by TiO2. The maximum efficiency value, 3.48%, was obtained for the CsI containing cell. The efficiencies shown in this study are lower compared to values reported in the literature, and this can be attributed to the use of a single salt and the absence of other additives, since the focus of the present study was to analyze the cation effect. The highest short circuit current density of 9.43 mA cm(-2) was shown by the RbI containing cell. The enhancement of the solar cell performance with increasing size of the cation is discussed in terms of the effect of the cations on the TiO2 anode and ion transport in the electrolyte. In liquid electrolyte based DSSCs, the short circuit current density

  6. Solid polymer electrolyte from phosphorylated chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Fauzi, Iqbal, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  7. Solid polymer electrolyte from phosphorylated chitosan

    International Nuclear Information System (INIS)

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10−6 S/cm up to 6.01 × 10−4 S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10−3 S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications

  8. Ultrafiltration of a polymer-electrolyte mixture

    NARCIS (Netherlands)

    Vonk, P; Noordman, T.R; Schippers, D; Tilstra, B; Wesselingh, J.A

    1997-01-01

    We present a mathematical model to describe the ultrafiltration behaviour of polymer-electrolyte mixtures. The model combines the proper thermodynamic forces (pressure, chemical potential and electrical potential differences) with multicomponent diffusion theory. The model is verified with experimen

  9. Water-free Alkaline Polymer-inorganic Acid Complexes with High Conductivity at Ambient Temperature

    Institute of Scientific and Technical Information of China (English)

    O.V.Chervakov; M.V.Andriianova; V.V.Riabenko; A.V.Markevich; E.M.Shembel; D.Meshri

    2007-01-01

    1 Results Recently increased interest is shown to proton conducting materials based on the alkaline polymer-inorganic acid complexes that is caused by a possibility of their application as the high-temperature electrolyte systems for various electrochemical devices (fuel cells,sensors,lithium power sources etc.).Complexes of inorganic acids with the alkaline polymers (polybenzimidazoles[1],polyvinylpyridines[2]) are characterized by high ionic conductivity at ambient temperatures (up to 10-2 Ω-1·cm-1) a...

  10. Mechanisms of proton conductance in polymer electrolyte membranes

    DEFF Research Database (Denmark)

    Eikerling, M.; Kornyshev, A. A.; Kuznetsov, A. M.;

    2001-01-01

    We provide a phenomenological description of proton conductance in polymer electrolyte membranes, based on contemporary views of proton transfer processes in condensed media and a model for heterogeneous polymer electrolyte membrane structure. The description combines the proton transfer events i...

  11. Novel PVA/SiO2 Alkaline Micro-porous Polymer Electrolytes for Polymer Ni-MH Batteries%用于聚合物镍氢电池的新型PVA/SiO2碱性微孔聚合物电解质

    Institute of Scientific and Technical Information of China (English)

    陆霞; 吴仁香; 李波波; 朱云峰; 李李泉

    2013-01-01

    New po1y(vinyl alcohol)/silica (designated as PVA/SiO2) alkaline micro-porous polymer electrolytes (AMPEs)were prepared by soaking PVA/SiO2 micro-porous composite membranes,obtained by solution casting of PVA/PEG/SiO2 membrane in acetone solution,into an electrolyte solution of 6 mol/L KOH aqueous solution.The morphology and structure of PVA/SiO2 composite polymer membranes were characterized by scanning electron microscopy (SEM) and X-Ray diffraction (XRD).The SEM photographs showed that the nano-SiO2 filler content was a crucial issue for the well-dispersed and optimal-sized pores which could storage charge carrier durably.Meanwhile,the crystalline of PVA decreased effectively for a large number of crystal defects and free volume appeared in the interface of inorganic particles and polymer for the addition of nann-SiO2 filler.The electrochemical properties of the AMPEs were measured by the alternating current impedance (AC impedance) and the cyclic voltammetry (CV) techniques.The results indicated that the PVA/SiO2 AMPEs containing 5 ωnano-SiO2 filler exhibited good performances at room temperature,such as 1.62 × 10-2 S·cm-1 for ionic conductivity and 2.20 V for electrochemical stability window.What's more,we used the gravimetric method to obtain the electrolyte uptake of various PVA/SiO2 composite micro-porous polymer membranes.From the data,we learned that the maximum electrolyte uptake could reach to 102.7% and it had very relevance to the size of pores in PVA/SiO2 composite polymer membranes,andthen influenced the ionic conductivity.Each polymer Ni-MH battery was assembled by three parts:the new AMPE,Mg-based hydrogen storage alloy and the commercial sintered Ni(OH)2/NiOOH electrode,in which each part did for electrolyte and diaphragm,negative electrode and positive electrode,respectively.The cycle experiments of the batteries exhibited a high first-cycle discharge capacity of 613 mAh·g-1 and stable discharge capacities about 330 mAh·g-1 for the

  12. High temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters...

  13. Electrolytic hydrogen fuel production with solid polymer electrolyte technology.

    Science.gov (United States)

    Titterington, W. A.; Fickett, A. P.

    1973-01-01

    A water electrolysis technology based on a solid polymer electrolyte (SPE) concept is presented for applicability to large-scale hydrogen production in a future energy system. High cell current density operation is selected for the application, and supporting cell test performance data are presented. Demonstrated cell life data are included to support the adaptability of the SPE system to large-size hydrogen generation utility plants as needed for bulk energy storage or transmission. The inherent system advantages of the acid SPE electrolysis technology are explained. System performance predictions are made through the year 2000, along with plant capital and operating cost projections.

  14. Electrochromic window with lithium conductive polymer electrolyte

    OpenAIRE

    Baudry, Paul; Aegerter, Michel A.; Deroo, Daniel; Valla, Bruno

    1991-01-01

    An electrochromic window was built using WO3 as the electrochromic material and V2O5 as the counter-electrode. Both were deposited onto ITO coated glass panes by vacuum evaporation and were amorphous to X-ray diffraction. The electrolyte was a lithium conducting polymer constituted by a Poly (ethylene oxide) - lithium salt complex. The electrochemical characterization of electrodes was realized by cyclic voltammetry, coulometric titration, and impedance spectroscopy, which allowd the determin...

  15. High temperature polymer electrolyte membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    K.Scott; M. Mamlouk

    2006-01-01

    One of the major issues limiting the introduction of polymer electrolyte membrane fuel cells (PEMFCs) is the low temperature of operation which makes platinum-based anode catalysts susceptible to poisoning by the trace amount of CO, inevitably present in reformed fuel. In order to alleviate the problem of CO poisoning and improve the power density of the cell, operating at temperature above 100 ℃ is preferred. Nafion(R) -type perfluorosulfonated polymers have been typically used for PEMFC. However, the conductivity of Nafion(R) -type polymers is not high enough to be used for fuel cell operations at higher temperature ( > 90 ℃) and atmospheric pressure because they dehydrate under these condition.An additional problem which faces the introduction of PEMFC technology is that of supplying or storing hydrogen for cell operation,especially for vehicular applications. Consequently the use of alternative fuels such as methanol and ethanol is of interest, especially if this can be used directly in the fuel cell, without reformation to hydrogen. A limitation of the direct use of alcohol is the lower activity of oxidation in comparison to hydrogen, which means that power densities are considerably lower. Hence to improve activity and power output higher temperatures of operation are preferable. To achieve this goal, requires a new polymer electrolyte membrane which exhibits stability and high conductivity in the absence of liquid water.Experimental data on a polybenzimidazole based PEMFC were presented. A simple steady-state isothermal model of the fuel cell is also used to aid in fuel cell performance optimisation. The governing equations involve the coupling of kinetic, ohmic and mass transport. This paper also considers the advances made in the performance of direct methanol and solid polymer electrolyte fuel cells and considers their limitations in relation to the source and type of fuels to be used.

  16. Performance of Lithium Polymer Cells with Polyacrylonitrile based Electrolyte

    DEFF Research Database (Denmark)

    Perera, Kumudu; Dissanayake, M.A.K.L.; Skaarup, Steen;

    2006-01-01

    The performance of lithium polymer cells fabricated with Polyacrylonitrile (PAN) based electrolytes was studied using cycling voltammetry and continuous charge discharge cycling. The electrolytes consisted of PAN, ethylene carbonate (EC), propylene carbonate (PC) and lithium trifluoromethanesulfo......The performance of lithium polymer cells fabricated with Polyacrylonitrile (PAN) based electrolytes was studied using cycling voltammetry and continuous charge discharge cycling. The electrolytes consisted of PAN, ethylene carbonate (EC), propylene carbonate (PC) and lithium...

  17. Electrolytic denitrification of alkaline nitrate and nitrite solution

    International Nuclear Information System (INIS)

    Processing of high-level waste at the Savannah River Plant (SRP) will produce a low-level alkaline salt solution, containing approximately 17% sodium nitrate and sodium nitrite. This solution will be incorporated into a cement wasteform, saltstone, and placed in an engineered landfill. Laboratory experiments have demonstrated the technical feasibility of electrochemically reducing the nitrate and nitrite in a synthetic, nonradioactive salt solution similar in composition to that expected to be produced at SRP. Greater than ninety-five percent of the sodium nitrate and sodium nitrite can be reduced electrolytically, producing ammonia, nitrogen, oxygen, and sodium hydroxide. Reduction of the nitrate and nitrite will reduce the leaching of nitrate and nitrite from the saltstone monolith. In addition, significant reductions in the volume of saltstone may be realized if the sodium hydroxide produced by electrolysis can be recycled

  18. Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.

    Science.gov (United States)

    Osada, Irene; de Vries, Henrik; Scrosati, Bruno; Passerini, Stefano

    2016-01-11

    The advent of solid-state polymer electrolytes for application in lithium batteries took place more than four decades ago when the ability of polyethylene oxide (PEO) to dissolve suitable lithium salts was demonstrated. Since then, many modifications of this basic system have been proposed and tested, involving the addition of conventional, carbonate-based electrolytes, low molecular weight polymers, ceramic fillers, and others. This Review focuses on ternary polymer electrolytes, that is, ion-conducting systems consisting of a polymer incorporating two salts, one bearing the lithium cation and the other introducing additional anions capable of plasticizing the polymer chains. Assessing the state of the research field of solid-state, ternary polymer electrolytes, while giving background on the whole field of polymer electrolytes, this Review is expected to stimulate new thoughts and ideas on the challenges and opportunities of lithium-metal batteries. PMID:26783056

  19. Synthesis and characterizations of novel polymer electrolytes

    Science.gov (United States)

    Chanthad, Chalathorn

    Polymer electrolytes are an important component of many electrochemical devices. The ability to control the structures, properties, and functions of polymer electrolytes remains a key subject for the development of next generation functional polymers. Taking advantage of synthetic strategies is a promising approach to achieve the desired chemical structures, morphologies, thermal, mechanical, and electrochemical properties. Therefore, the major goal of this thesis is to develop synthetic methods for of novel proton exchange membranes and ion conductive membranes. In Chapter 2, new classes of fluorinated polymer- polysilsesquioxane nanocomposites have been designed and synthesized. The synthetic method employed includes radical polymerization using the functional benzoyl peroxide initiator for the telechelic fluorinated polymers with perfluorosulfonic acids in the side chains and a subsequent in-situ sol-gel condensation of the prepared triethoxylsilane-terminated fluorinated polymers with alkoxide precursors. The properties of the composite membranes have been studied as a function of the content and structure of the fillers. The proton conductivity of the prepared membranes increases steadily with the addition of small amounts of the polysilsesquioxane fillers. In particular, the sulfopropylated polysilsesquioxane based nanocomposites display proton conductivities greater than Nafion. This is attributed to the presence of pendant sulfonic acids in the fillers, which increases ion-exchange capacity and offers continuous proton transport channels between the fillers and the polymer matrix. The methanol permeability of the prepared membranes has also been examined. Lower methanol permeability and higher electrochemical selectivity than those of Nafion have been demonstrated in the polysilsesquioxane based nanocomposites. In Chapter 3, the synthesis of a new class of ionic liquid-containing triblock copolymers with fluoropolymer mid-block and imidazolium methacrylate

  20. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    Science.gov (United States)

    Liu, Han; LaConti, Anthony B.; Mittelsteadt, Cortney K.; McCallum, Thomas J.

    2011-01-11

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  1. Cellulose based Lithium ion polymer electrolytes for Lithium batteries

    OpenAIRE

    Chelmecki, Marcin

    2004-01-01

    The separator membrane in batteries and fuel cells is of crucial importance for the function of these devices. In lithium ion batteries the separator membrane as well as the polymer matrix of the electrodes consists of polymer electrolytes which are lithium ion conductors. To overcome the disadvantage of currently used polymer electrolytes which are highly swollen with liquids and thus mechanically and electrochemically unstable, the goal of this work is a new generation of solid polymer e...

  2. Development and Characterization of Temperature-resistant Polymer Electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Hjuler, Hans Aage; Bjerrum, Niels

    1999-01-01

    Acid-doped PBI polymer electrolyte membranes have been developed and characterized for fuel cell applications at temperatures up to 200°C. Electric conductivity as high as 0.13 S/cm is obtained at 160°C at high doping levels. The water osmotic drag coefficient of the polymer electrolyte is found...

  3. Novel All Solid-state Polymer Electrolytes for Lithium Battery

    Institute of Scientific and Technical Information of China (English)

    Hui Jiang; Shibi Fang

    2005-01-01

    @@ 1Introduction All solid-state polymer electrolytes for lithium battery was proved to be an attractive direction. Compared with prevenient polymer electrolytes all solid-state polymer electrolytes were superiority in more broad electrochemical window, more stable/low interfacial resistance especially when situ-polymerization utilized, excellent mechanical properties and dissepiment free. A lithium secondary battery using all solid-state polymer electrolyte meet the challenge of energy source for both portable electronic devices and electric vehicles (EV) or engine/battery hybrid vehicles (HEV). All solid-state comb-like network polymer electrolytes (CNPE) based on polysiloxane with internal plasticizing chain (IPC) has been designed and synthesized. See Fig. 1.

  4. PMMA-based Gel Polymer Electrolytes with Crosslinking Network

    Institute of Scientific and Technical Information of China (English)

    H.P. Zhang; Y. P. Wu; H. Q. Wu; M. Sun

    2005-01-01

    @@ 1Introduction The lithium-ion battery has a good rate capability and low-temperature performance, but its safety is relatively low due to the possibility of leakage of liquid electrolyte. The use of a solid or gel type electrolyte can lower the probability of leakage liquid electrolyte, and the electrochemical performance of gel electrolyte doesn't decrease so markedly as the solid electrolyte. Now, new types of advanced lithium-ion battery with gel polymer electrolytes are under developing which can be used in the future.

  5. Electrochemical Stability of Model Polymer Electrolyte/Electrode Interfaces

    Science.gov (United States)

    Hallinan, Daniel; Yang, Guang

    2015-03-01

    Polymer electrolytes are promising materials for high energy density rechargeable batteries. However, typical polymer electrolytes are not electrochemically stable at the charging voltage of advanced positive electrode materials. Although not yet reported in literature, decomposition is expected to adversely affect the performance and lifetime of polymer-electrolyte-based batteries. In an attempt to better understand polymer electrolyte oxidation and design stable polymer electrolyte/positive electrode interfaces, we are studying electron transfer across model interfaces comprising gold nanoparticles and organic protecting ligands assembled into monolayer films. Gold nanoparticles provide large interfacial surface area yielding a measurable electrochemical signal. They are inert and hence non-reactive with most polymer electrolytes and lithium salts. The surface can be easily modified with ligands of different chemistry and molecular weight. In our study, poly(ethylene oxide) (PEO) will serve as the polymer electrolyte and lithium bis(trifluoromethanesulfonyl) imide salt (LiTFSI) will be the lithium salt. The effect of ligand type and molecular weight on both optical and electrical properties of the gold nanoparticle film will be presented. Finally, the electrochemical stability of the electrode/electrolyte interface and its dependence on interfacial properties will be presented.

  6. Migration of Cations and Anions in Amorphous Polymer Electrolytes

    Institute of Scientific and Technical Information of China (English)

    N.A.Stolwijk; S.H.Obeidi; M.Wiencierz

    2007-01-01

    1 Results Polymer electrolytes are used as ion conductors in batteries and fuel cells.Simple systems consist of a polymer matrix complexing an inorganic salt and are fully amorphous at the temperatures of interest.Both cations and anions are mobile and contribute to charge transport.Most studies on polymer electrolytes use the electrical conductivity to characterize the ion mobility.However,conductivity measurements cannot discriminate between cations and anions.This paper reports some recent results fr...

  7. Characterization of Novel Castor Oil-Based Polyurethane Polymer Electrolytes

    OpenAIRE

    Salmiah Ibrahim; Azizan Ahmad; Nor Sabirin Mohamed

    2015-01-01

    Castor oil-based polyurethane as a renewable resource polymer has been synthesized for application as a host in polymer electrolyte for electrochemical devices. The polyurethane was added with LiI and NaI in different wt% to form a film of polymer electrolytes. The films were characterized by using attenuated total reflectance-Fourier transform infrared spectroscopy, dynamic mechanical analysis, electrochemical impedance spectroscopy, linear sweep voltammetry and transference number measurem...

  8. CO tolerance of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gubler, L.; Scherer, G.G.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Reformed methanol can be used as a fuel for polymer electrolyte fuel cells instead of pure hydrogen. The reformate gas contains mainly H{sub 2}, CO{sub 2} in the order of 20% and low levels of CO in the order of 100 ppm. CO causes severe voltage losses due to poisoning of the anode catalyst. The effect of CO on cell performance was investigated at different CO levels up to 100 ppm. Various options to improve the CO tolerance of the fuel cell were assessed thereafter, of which the injection of a few percents of oxygen into the fuel feed stream proved to be most effective. By mixing 1% of oxygen with hydrogen containing 100 ppm CO, complete recovery of the cell performance could be attained. (author) 2 figs., 2 tabs., 3 refs.

  9. Solid-polymer-electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, T.F.

    1992-07-01

    A transport model for polymer electrolytes is presented, based on concentrated solution theory and irreversible thermodynamics. Thermodynamic driving forces are developed, transport properties are identified and experiments devised. Transport number of water in Nafion 117 membrane is determined using a concentration cell. It is 1.4 for a membrane equilibrated with saturated water vapor at 25{degrees}C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the water content approaches zero. The relation between transference number, transport number, and electroosmotic drag coefficient is presented, and their relevance to water-management is discussed. A mathematical model of transport in a solid-polymer-electrolyte fuel cell is presented. A two-dimensional membrane-electrode assembly is considered. Water management, thermal management, and utilization of fuel are examined in detail. The membrane separators of these fuel cells require sorbed water to maintain conductivity; therefore it is necessary to manage the water content in membranes to ensure efficient operation. Water and thermal management are interrelated. Rate of heat removal is shown to be a critical parameter in the operation of these fuel cells. Current-voltage curves are presented for operation on air and reformed methanol. Equations for convective diffusion to a rotating disk are solved numerically for a consolute point between the bulk concentration and the surface. A singular-perturbation expansion is presented for the condition where the bulk concentration is nearly equal to the consolute-point composition. Results are compared to Levich's solution and analysis.

  10. Solid-polymer-electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, T.F.

    1992-07-01

    A transport model for polymer electrolytes is presented, based on concentrated solution theory and irreversible thermodynamics. Thermodynamic driving forces are developed, transport properties are identified and experiments devised. Transport number of water in Nafion 117 membrane is determined using a concentration cell. It is 1.4 for a membrane equilibrated with saturated water vapor at 25{degrees}C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the water content approaches zero. The relation between transference number, transport number, and electroosmotic drag coefficient is presented, and their relevance to water-management is discussed. A mathematical model of transport in a solid-polymer-electrolyte fuel cell is presented. A two-dimensional membrane-electrode assembly is considered. Water management, thermal management, and utilization of fuel are examined in detail. The membrane separators of these fuel cells require sorbed water to maintain conductivity; therefore it is necessary to manage the water content in membranes to ensure efficient operation. Water and thermal management are interrelated. Rate of heat removal is shown to be a critical parameter in the operation of these fuel cells. Current-voltage curves are presented for operation on air and reformed methanol. Equations for convective diffusion to a rotating disk are solved numerically for a consolute point between the bulk concentration and the surface. A singular-perturbation expansion is presented for the condition where the bulk concentration is nearly equal to the consolute-point composition. Results are compared to Levich`s solution and analysis.

  11. Polymer--Ionic liquid Electrolytes for Electrochemical Capacitors

    Science.gov (United States)

    Ketabi, Sanaz

    Polymer electrolyte, comprised of ionic conductors, polymer matrix, and additives, is one of the key components that control the performance of solid flexible electrochemical capacitors (ECs). Ionic liquids (ILs) are highly promising ionic conductors for next generation polymer electrolytes due to their excellent electrochemical and thermal stability. Fluorinated ILs are the most commonly applied in polymer-IL electrolytes. Although possessing high conductivity, these ILs have low environmental favorability. The aim of this work was to develop environmentally benign polymer-ILs for both electrochemical double layer capacitors (EDLCs) and pseudocapacitors, and to provide insights into the influence of constituent materials on the ion conduction mechanism and the structural stability of the polymer-IL electrolytes. Solid polymer electrolytes composed of poly(ethylene oxide) (PEO) and 1-ethyl-3-methylimidazolium hydrogen sulfate (EMIHSO4) were investigated for ECs. The material system was optimized to achieve the two criteria for high performance polymer-ILs: high ionic conductivity and highly amorphous structure. Thermal and structural analyses revealed that EMIHSO4 acted as an ionic conductor and a plasticizer that substantially decreased the crystallinity of PEO. Two types of inorganic nanofillers were incorporated into these polymer electrolytes. The effects of SiO2 and TiO2 nanofillers on ionic conductivity, crystallinity, and dielectric properties of PEO-EMIHSO 4 were studied over a temperature range from -10 °C and 80 °C. Using an electrochemical capacitor model, impedance (complex capacitance) and dielectric analyses were performed to understand the ionic conduction process with and without fillers in both semi crystalline and amorphous states of the polymer electrolytes. Despite their different nanostructures, both SiO2 and TiO2 promoted an amorphous structure in PEO-EMIHSO 4 and increased the ionic conductivity 2-fold. While in the amorphous state, the

  12. Fuel cells with solid polymer electrolyte and their application on vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Fateev, V.

    1996-04-01

    In Russia, solid polymer electrolyte MF-4-SK has been developed for fuel cells. This electrolyte is based on perfluorinated polymer with functional sulfogroups. Investigations on electrolyte properties and electrocatalysts have been carried out.

  13. Lithium carbon batteries with solid polymer electrolyte; Accumulateur lithium carbone a electrolyte solide polymere

    Energy Technology Data Exchange (ETDEWEB)

    Andrieu, X.; Boudin, F. [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1996-12-31

    The lithium carbon batteries studied in this paper use plasticized polymer electrolytes made with passive polymer matrix swollen by a liquid electrolyte with a high ionic conductivity (> 10{sup -3} S/cm at 25 deg. C). The polymers used to prepare the gels are polyacrylonitrile (PAN) and vinylidene poly-fluoride (PVdF). The electrochemical and physical properties of these materials are analyzed according to their composition. The behaviour of solid electrolytes with different materials of lithium ion insertion (graphite and LiNiO{sub 2}) are studied and compared to liquid electrolytes. The parameters taken into account are the reversible and irreversible capacities, the cycling performance and the admissible current densities. Finally, complete lithium ion batteries with gelled electrolytes were manufactured and tested. (J.S.) 2 refs.

  14. Can Biochemistry Usefully Guide the Search for Better Polymer Electrolytes?

    Directory of Open Access Journals (Sweden)

    J. Woods Halley

    2013-09-01

    Full Text Available I review some considerations that suggest that the biochemical products of evolution may provide hints concerning the way forward for the development of better electrolytes for lithium polymer batteries.

  15. Advanced Proton Conducting Polymer Electrolytes for Electrochemical Capacitors

    Science.gov (United States)

    Gao, Han

    Research on solid electrochemical energy storage devices aims to provide high performance, low cost, and safe operation solutions for emerging applications from flexible consumer electronics to microelectronics. Polymer electrolytes, minimizing device sealing and liquid electrolyte leakage, are key enablers for these next-generation technologies. In this thesis, a novel proton-conducing polymer electrolyte system has been developed using heteropolyacids (HPAs) and polyvinyl alcohol for electrochemical capacitors. A thorough understanding of proton conduction mechanisms of HPAs together with the interactions among HPAs, additives, and polymer framework has been developed. Structure and chemical bonding of the electrolytes have been studied extensively to identify and elucidate key attributes affecting the electrolyte properties. Numerical models describing the proton conduction mechanism have been applied to differentiate those attributes. The performance optimization of the polymer electrolytes through additives, polymer structural modifications, and synthesis of alternative HPAs has achieved several important milestones, including: (a) high proton mobility and proton density; (b) good ion accessibility at electrode/electrolyte interface; (c) wide electrochemical stability window; and (d) good environmental stability. Specifically, high proton mobility has been addressed by cross-linking the polymer framework to improve the water storage capability at normal-to-high humidity conditions (e.g. 50-80% RH) as well as by incorporating nano-fillers to enhance the water retention at normal humidity levels (e.g. 30-60% RH). High proton density has been reached by utilizing additional proton donors (i.e. acidic plasticizers) and by developing different HPAs. Good ion accessibility has been achieved through addition of plasticizers. Electrochemical stability window of the electrolyte system has also been investigated and expanded by utilizing HPAs with different heteroatoms

  16. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    Science.gov (United States)

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  17. Modeling of ionic transport in solid polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Cheang, P L; Teo, L L; Lim, T L, E-mail: plcheang@mmu.edu.my [Centre for Foundation Studies and Extension Education, Multimedia University, Jln Ayer Keroh Lama, 75450 Melaka (Malaysia)

    2010-05-15

    A Monte Carlo model describing the ionic trans port in solid polyme relectrolyte is developed. Single cation simulation is carried out using hopping rate to study the transport mechanism of a thermally activated ion in solid polymer electrolyte. In our model, the ion is able to hop along a polymer chain and to jump between different chains, surmounting energy barriers that consist of polymer's activation energy and the externally applied electric field. The model is able to trace the motion of ion across polymer electrolyte. The mean hopping distance is calculated based on the available open bond in the next nearest side. Random numbers are used to determine the hopping distances, free flight times, final energy and direction of the cation after successful hop. Drift velocity and energy of cation are simulated in our work. The model is expected to be able to simulate the lithium-polymer battery in future.

  18. Molecular motion in polymer electrolytes. An investigation of methods for improving the conductivity of solid polymer electrolytes

    CERN Document Server

    Webster, M I

    2002-01-01

    Three methods were explored with a view to enhancing the ionic conductivity of polymer electrolytes; namely the addition of an inert, inorganic filler, the addition of a plasticizer and the incorporation of the electrolyte in the pores of silica matrices. There have been a number of reports, which suggest the addition of nanocrystalline oxides to polymer electrolytes increases the ionic conductivities by about a factor of two. In this thesis studies of the polymer electrolyte NaSCN.P(EO) sub 8 with added nanocrystalline alumina powder are reported which show no evidence of enhanced conductivity. The addition of a plasticizer to polymer electrolytes will increase the ionic conductivity. A detailed study was made of the polymer electrolytes LiT.P(EO) sub 1 sub 0 and LiClO sub 4.P(EO) sub 1 sub 0 with added ethylene carbonate plasticizer. The conductivities showed an enhancement, however this disappeared on heating under vacuum. The present work suggests that the plasticised system is not thermodynamically stabl...

  19. A study of the anodic behaviour of aluminium alloys in alkaline electrolytes

    OpenAIRE

    Walters, B N

    1988-01-01

    Recent studies an the discharge performance of aluminium alloys in alkaline media have led to improved alloys with significantly lower corrosion rates and more anodic potentials. Performance, of various alkaline electrolytes have also been examined and considerable progress has been made in this area. A review of the available literature reveals a list of several elements which are suitable for alloying with aluminium as regards reducing corrosion and overpotential. Previous work at the Chemi...

  20. Advanced Polymer Electrolytes for High-energy-density Power Sources

    Institute of Scientific and Technical Information of China (English)

    D. Golodnitsky; E. Livshits; R. Kovarsky; E. Peled

    2005-01-01

    @@ 1Introduction The preparation of highly controlled thin films of lithium ion conducting organic materials is becoming a challenging but rewarding goal in view of obtaining high-performance technological devices like solid-state polymer batteries and capacitors. The classical polymer electrolyte consists of organic macromolecules (usually polyether polymer) that are doped with inorganic (typically lithium) salts. Poly(ethylene oxide) (PEO) is the most commonly employed polymer in PEs because of the peculiar array in the (-CH2-CH2-O-)n chain providing the ability to solvate low-lattice-energy lithium salts. For three decades the major research attention was focused on amorphous polymer electrolytes in the belief that ionic conductivity occurs in a manner somewhat analogous to gas diffusion through polymer membranes. Segmental motion of the polymer chains continuously creates free volume, into which the ions migrate, and this process allows ions to progress across the electrolyte. Such a view was established by a number of experiments, and denied the possibility of ionic conductivity in crystalline polymer phases. This concept has been recently overturned by our group, demonstrating that conductivity comes about as a result of permanent conducting pathways for the movement of ions.

  1. Hydroponics gel as a new electrolyte gelling agent for alkaline zinc-air cells

    Science.gov (United States)

    Othman, R.; Basirun, W. J.; Yahaya, A. H.; Arof, A. K.

    The viability of hydroponics gel as a new alkaline electrolyte gelling agent is investigated. Zinc-air cells are fabricated employing 12 wt.% KOH electrolyte immobilised with hydroponics gel. The cells are discharged at constant currents of 5, 50 and 100 mA. XRD and SEM analysis of the anode plates after discharge show that the failure mode is due to the formation of zinc oxide insulating layers and not due to any side reactions between the gel and the plate or the electrolyte.

  2. New polymer lithium secondary batteries based on ORMOCER (R) electrolytes-inorganic-organic polymers

    DEFF Research Database (Denmark)

    Popall, M.; Buestrich, R.; Semrau, G.;

    2001-01-01

    Based on new plasticized inorganic-organic polymer electrolytes CM. Popall, M. Andrei, J. Kappel, J. Kron, K. Olma, B. Olsowski,'ORMOCERs as Inorganic-organic Electrolytes for New Solid State Lithium Batteries and Supercapacitors', Electrochim. Acta 43 (1998) 1155] new flexible foil-batteries in ......Based on new plasticized inorganic-organic polymer electrolytes CM. Popall, M. Andrei, J. Kappel, J. Kron, K. Olma, B. Olsowski,'ORMOCERs as Inorganic-organic Electrolytes for New Solid State Lithium Batteries and Supercapacitors', Electrochim. Acta 43 (1998) 1155] new flexible foil...

  3. PEO nanocomposite polymer electrolyte for solid state symmetric capacitors

    Indian Academy of Sciences (India)

    Nirbhay K Singh; Mohan L Verma; Manickam Minakshi

    2015-10-01

    Physical and electrochemical properties of polyethylene oxide (PEO)-based nanocomposite solid polymer electrolytes (NPEs) were investigated for symmetric capacitor applications. Nanosize fillers, i.e., Al2O3 and SiO2 incorporated polymer electrolyte exhibited higher ionic conductivity than those with filler-free composites. The composites have been synthesized by the completely dry (solution-free) hot-press method. The addition of filler in fractional amount to the solid polymer matrix at room temperature further enhances the ionic conductivity. Nature of the NPEs were studied using X-ray diffraction and energy-dispersive spectra analyses. Thermal stability of the resulting electrolyte was analysed by thermogravimetric analysis and differential scanning calorimetric studies. Morphology changes occurred during the addition of fillers was evidenced by scanning electronic microscope images. Solid polymer electrolytes exhibiting these parameters was found to be suitable for solid state capacitors. The results obtained from the electrolytes with an optimum compositions (PEO70AgI30)93 (Al2O3)7 and (PEO70AgI30)95 (SiO2)5 used in the (PEO70AgI30)70 (AC)30 electrodes for symmetric capacitor applications and their performances were analysed by impedance spectroscopic, Bode plot, cyclic voltammetry, discharge characteristics and leakage current profile.

  4. Electrical characterization of proton conducting polymer electrolyte based on bio polymer with acid dopant

    Science.gov (United States)

    Kalaiselvimary, J.; Pradeepa, P.; Sowmya, G.; Edwinraj, S.; Prabhu, M. Ramesh

    2016-05-01

    This study describes the biodegradable acid doped films composed of chitosan and Perchloric acid with different ratios (2.5 wt %, 5 wt %, 7.5 wt %, 10 wt %) was prepared by the solution casting technique. The temperature dependence of the proton conductivity of complex electrolytes obeys the Arrhenius relationship. Proton conductivity of the prepared polymer electrolyte of the bio polymer with acid doped was measured to be approximately 5.90 × 10-4 Scm-1. The dielectric data were analyzed using Complex impedance Z*, Dielectric loss ɛ', Tangent loss for prepared polymer electrolyte membrane with the highest conductivity samples at various temperature.

  5. Morphology of Polyvinylidene Fluoride Based Gel Polymer Electrolytes

    Institute of Scientific and Technical Information of China (English)

    田立颖; 黄小彬; 唐小真

    2004-01-01

    Two series of polyvinylidene fluoride (PVDF) based gel polymer electrolytes, with different LiClO4 or propylene carbonate (PC) content, were prepared and analyzed by infrared spectrometer, differential scanning calorimetry, scanning electron microscope and complex impedance spectrometer. The results show that there are great interactions between PVDF, PC and lithium cations. Both LiClO4 and PC content lead to evident change of the morphology of the gel polymer electrolytes. The content of LiClO4 and PC also influences the ionic conductivity of the samples,and an ionic conductivity of above 10-3S·cm-1 can be reached at room temperature.

  6. Investigation on poly (vinylidene fluoride) based gel polymer electrolytes

    Indian Academy of Sciences (India)

    S Rajendran; P Sivakumar; Ravi Shanker Babu

    2006-12-01

    An investigation is carried out on gel polymer electrolytes consisting of poly (vinylidene fluoride) (PVdF) as a host polymer, lithium perchlorate (LiClO4), lithium triflate (LiCF3SO3) as salts and mixture of ethylene carbonate (EC) and propylene carbonate (PC) as plasticizers. Polymer thin films were prepared by solvent casting technique and the obtained films were subjected to different characterizations, to confirm their structure, complexation and thermal changes. X-ray diffraction revealed that the salts and plasticizers disrupted the crystalline nature of PVdF based polymer electrolytes and converted them into an amorphous phase. TG/DTA studies showed the thermal stability of the polymer electrolytes. The role of interaction between polymer hosts on conductivity is discussed using the results of a.c. impedance studies. Room temperature (28°C) conductivity of 2.786 × 10-3 Scm-1 was observed in PVdF (24)–EC/PC (68)–LiCF3SO3 (2)/LiClO4 (6) polymer system.

  7. FTIR AND IONIC CONDUCTIVITY STUDIES ON BLEND POLYMER ELECTROLYTES

    Directory of Open Access Journals (Sweden)

    J. Senthil

    2011-08-01

    Full Text Available Investigations on structural and conductivity properties of solid polymer complexes have attracted a high degree of attention. The main applications of solid polymer electrolytes (SPEs are found in varioussecondary batteries and energy conversion units. In view of the abundant resources, low costs and relatively low reactivity of magnesium, solid-state batteries using magnesium metal are worthy of investigations. The polymer electrolytes were prepared using poly methyl methacrylate (PMMA, poly vinyl chloride (PVC and magnesium chloride (MgCl2 by solvent casting technique. The complex formation and ionic conductivity were characterized by Fourier Transform Infra Red spectroscopy (FTIR and impedance spectroscopy respectively.The FTIR studies provide the evidence of interaction of cation Mg2+ with the polymers. The maximum conductivity found for PMMA-MgCl2 is 0.57 x 10-7 Scm-1 at room temperature.

  8. Electrostatic model of semiconductor nanoparticles trapped in polymer electrolytes

    Indian Academy of Sciences (India)

    Divya Singh; Pramod K Singh; Nitin A Jadhav; Bhaskar Bhattacharya

    2013-11-01

    A simple electrostatic model is applied to study the solvation energy and localization energy to inorganic semiconductor nanocrystallites trapped in polymer and ion conducting polymer electrolytes. The effective mass approximation has been applied to the system. In the single charge configuration, the dielectric constant of the medium has been identified as the selection criteria for hosting the nanoparticles. Solvation energy has been shown to depend on the host medium and the size of the crystallite.

  9. Lithium ion conducting solid polymer blend electrolyte based on bio-degradable polymers

    Indian Academy of Sciences (India)

    Natarajan Rajeswari; Subramanian Selvasekarapandian; Moni Prabu; Shunmugavel Karthikeyan; C Sanjeeviraja

    2013-04-01

    Lithium ion conducting polymer blend electrolyte films based on poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) with different Mwt% of lithium nitrate (LiNO3) salt, using a solution cast technique, have been prepared. The polymer blend electrolyte has been characterized by XRD, FTIR, DSC and impedance analyses. The XRD study reveals the amorphous nature of the polymer electrolyte. The FTIR study confirms the complex formation between the polymer and salt. The shifts in g values of 70 PVA–30 PVP blend and 70 PVA–30 PVP with different Mwt% of LiNO3 electrolytes shown by DSC thermograms indicate an interaction between the polymer and the salt. The dependence of g and conductivity upon salt concentration has been discussed. The ion conductivity of the prepared polymer electrolyte has been found by a.c. impedance spectroscopic analysis. The PVA–PVP blend system with a composition of 70 wt% PVA: 30 wt% PVP exhibits the highest conductivity of 1.58 × 10-6 Scm-1 at room temperature. Polymer samples of 70 wt% PVA–30 wt% PVP blend with different molecular weight percentage of lithium nitrate with DMSO as solvent have been prepared and studied. High conductivity of 6.828 × 10-4 Scm-1 has been observed for the composition of 70 PVA:30 PVP:25 Mwt% of LiNO3 with low activation energy 0.2673 eV. The conductivity is found to increase with increase in temperature. The temperature dependent conductivity of the polymer electrolyte follows the Arrhenius relationship which shows hopping of ions in the polymer matrix. The relaxation parameters () and () of the complexes have been calculated by using loss tangent spectra. The mechanical properties of polymer blend electrolyte such as tensile strength, elongation and degree of swelling have been measured and the results are presented.

  10. Toughness of membranes applied in polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, J.; Brack, H.P.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Since several years we apply the radiation-grafting technique to prepare polymeric membranes for application in polymer electrolyte fuel cells (PEFCs). Our investigations presented here focus on changes in toughness of these materials after the various synthesis steps and the importance of membrane toughness for their application in PEFCs. (author) 2 figs., 4 refs.

  11. NMR study of starch based polymer gel electrolytes: Humidity effects

    International Nuclear Information System (INIS)

    In this work, nuclear magnetic resonance spectroscopy (NMR) was used to study the effect of water absorption in polymer gel electrolytes formed by amylopectin rich starch, plasticized with glycerol and containing lithium perchlorate. The position of the 7Li spin-lattice relaxation rate maximum is shifted progressively towards lower temperatures with increasing hydration, reflecting an increase of the lithium mobility. The mechanism responsible for the spin-lattice relaxation of the 7Li nuclei in the gel electrolytes are the fluctuations of the quadrupolar interaction due to the lithium motions. The 7Li relaxation results of the gel electrolyte hydrated with 2.2 water per complex unit suggest that the lithium ions are almost decoupled from the polymer chain and coordinate, hence preferring the water molecules

  12. Plasma membranes modified by plasma treatment or deposition as solid electrolytes for potential application in solid alkaline fuel cells.

    Science.gov (United States)

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-07-30

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane.

  13. Metastable zinc–nickel alloys deposited from an alkaline electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Magagnin, Luca; Nobili, Luca, E-mail: luca.nobili@polimi.it; Cavallotti, Pietro Luigi

    2014-12-05

    Highlights: • Zn–Ni coatings with high corrosion resistance were prepared by electrodeposition. • The electrodeposited γ alloy is found to be different from the equilibrium γ phase. • A random atomic distribution is proposed for the electrodeposited alloy. • The calculated free energy function can explain the phase composition of Zn–Ni coatings. - Abstract: Zinc alloy offers superior sacrificial protection to steel as the alloy dissolves more slowly than pure zinc. The degree of protection and the rate of dissolution depend on the alloying metal and its composition. In this work, the physico-chemical characterization of zinc–nickel electrodeposits obtained from an alkaline bath is carried out and a description of the structural and thermodynamic properties of these alloys is proposed. Contrary to the common acceptance, XRD spectra and DSC thermal analysis show that the electrodeposited γ alloy has to be regarded as a metastable phase, whose atomic arrangement is different from that of the equilibrium γ intermetallic compound. A model for atomic distribution in the electrodeposited alloy is proposed. The Gibbs free-energy function for the electrodeposited phase has been evaluated and the metastable boundaries of the single-phase and two-phase fields have been calculated. Reasonable agreement is found with experimental values reported in the literature for Zn–Ni coatings with different composition.

  14. All-solid-state proton battery using gel polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Kuldeep, E-mail: mishkuldeep@gmail.com [Department of Applied Science and Humanities, ABES Engineering College, Ghaziabad-201009, India and Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida-201307 (India); Pundir, S. S.; Rai, D. K. [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida-201307 (India)

    2014-04-24

    A proton conducting gel polymer electrolyte system; PMMA+NH{sub 4}SCN+EC/PC, has been prepared. The highest ionic conductivity obtained from the system is 2.5 × 10−4 S cm{sup −1}. The optimized composition of the gel electrolyte has been used to fabricate a proton battery with Zn/ZnSO{sub 4}⋅7H{sub 2}O anode and MnO{sub 2} cathode. The open circuit voltage of the battery is 1.4 V and the highest energy density is 5.7 W h kg−1 for low current drain.

  15. Highly selective determination of copper corrosion products by voltammetric reduction in a strongly alkaline electrolyte.

    Science.gov (United States)

    Nakayama, Shigeyoshi; Notoya, Takenori; Osakai, Toshiyuki

    2012-01-01

    Until recently, there had been two conflicting views about the order of copper oxides (Cu(2)O and CuO) in their cathodic reduction with a neutral or weak alkaline electrolyte (typically 0.1 M KCl). In 2001, we successfully employed a strongly alkaline electrolyte (SAE; i.e., 6 M KOH + 1 M LiOH) to achieve a perfect separation of the reduction peaks of the two oxides. It was then found that the oxides were reduced in SAE according to a thermodynamic order, i.e., "CuO → Cu(2)O", and also that the reduction of CuO occurred in one step. At an extremely slow scan rate of atmospheric corrosion of copper. PMID:22498457

  16. Characterization of Novel Castor Oil-Based Polyurethane Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Salmiah Ibrahim

    2015-04-01

    Full Text Available Castor oil-based polyurethane as a renewable resource polymer has been synthesized for application as a host in polymer electrolyte for electrochemical devices. The polyurethane was added with LiI and NaI in different wt% to form a film of polymer electrolytes. The films were characterized by using attenuated total reflectance-Fourier transform infrared spectroscopy, dynamic mechanical analysis, electrochemical impedance spectroscopy, linear sweep voltammetry and transference number measurement. The highest conductivity of 1.42 × 10−6 S cm−1 was achieved with the addition of 30 wt% LiI and 4.28 × 10−7 S·cm−1 upon addition of 30 wt% NaI at room temperature. The temperature dependence conductivity plot indicated that both systems obeyed Arrhenius law. The activation energy for the PU-LiI and PU-NaI systems were 0.13 and 0.22 eV. Glass transition temperature of the synthesized polyurethane decreased from −15.8 °C to ~ −26 to −28 °C upon salts addition. These characterizations exhibited the castor oil-based polyurethane polymer electrolytes have potential to be used as alternative membrane for electrochemical devices.

  17. Electrochemical behaviors of novel composite polymer electrolytes for lithium batteries

    Institute of Scientific and Technical Information of China (English)

    Guorong Chen; Pengfei Shi; Yongping Bai; Taibing Fan

    2004-01-01

    A novel composite polymer electrolyte was prepared by blending an appropriate amount of LiClO4 and 10% (mass fraction)fumed SiO2 with the block copolymer of poly (ethylene oxide) (PEO) synthesized by poly (ethylene glycol) (PEG) 400 and CH2Cl2.The ionic conductivity, electrochemical stability, interfacial characteristic and thermal behavior of the composite polymer electrolytewere studied by the measurements of AC impedance spectroscopy, linear sweep voltammetry and differential scanning calorimetry(DSC), respectively. The glass transition temperature acts as a function of salt concentration, which increases with the LiClO4 content.Lewis acid-base model interaction mechanism was introduced to interpret the interactive relation between the filled fumed SiO2 andthe lithium salt in the composite polymer electrolyte. Over the salt concentration range and the measured temperature, the maximumionic conductivity of the composite polymer electrolyte (10-4.41 S/cm) appeared at EO/Li=25 (mole ratio) and 30℃, and the begin-ning oxidative degradation potential versus Li beyond 5 V.

  18. Modeling of Water Sorption and Swelling in Polymer Electrolyte Membranes: Diagnostic Applications

    OpenAIRE

    Safiollah, Motahareh

    2015-01-01

    The polymer electrolyte membrane (PEM) fulfills vital functions as separator, proton conductor, and electronic insulator in a polymer electrolyte fuel cell (PEFC). The well-studied and practically used solid polymer electrolyte membranes are perfluorosulfonic acid (PFSA) polymer membranes such as Nafion. These membranes offer high proton conductivity, high mechanical strength and good chemical stability. The efficiency of the chemical-to-electrical energy conversion in a PEFC critically depen...

  19. Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries

    OpenAIRE

    Luca Porcarelli; Claudio Gerbaldi; Federico Bella; Jijeesh Ravi Nair

    2016-01-01

    Here we demonstrate that by regulating the mobility of classic −EO− based backbones, an innovative polymer electrolyte system can be architectured. This polymer electrolyte allows the construction of all solid lithium-based polymer cells having outstanding cycling behaviour in terms of rate capability and stability over a wide range of operating temperatures. Polymer electrolytes are obtained by UV-induced (co)polymerization, which promotes an effective interlinking between the polyethylene o...

  20. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells.

    OpenAIRE

    Mansor, N.; Jorge, A. B.; Corà, F.; Gibbs, C.; Jervis, R.; Mcmillan, P. F.; X. Wang; Brett, D. J.

    2014-01-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li(+)Cl(-)), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion...

  1. Novel Ceramic Materials for Polymer Electrolyte Membrane Water Electrolysers' Anodes

    DEFF Research Database (Denmark)

    Polonsky, J.; Bouzek, K.; Prag, Carsten Brorson;

    2012-01-01

    Tantalum carbide was evaluated as a possible new support for the IrO2 for use in anodes of polymer electrolyte membrane water electrolysers. A series of supported electrocatalysts varying in mass content of iridium oxide was prepared. XRD, powder conductivity measurements and cyclic and linear...... sweep voltammetry were used to characterise the electrocatalysts. The most performing composition was found to lie between 50 and 90 wt.% IrO2 on TaC...

  2. Modelling cathode catalyst degradation in polymer electrolyte fuel cells

    OpenAIRE

    Rinaldo, Steven Giordano

    2013-01-01

    Nano-sized Pt particles in the cathode catalyst layer of a polymer electrolyte fuel cell afford a high initial electrochemically active surface-area. However, the gain in active surface area for desired surface reactions is offset in part by enhanced rates of degradation processes that cause losses in catalyst mass, catalyst surface-area, and electrocatalytic activity. The loss of electrochemically active surface-area of the catalyst causes severe performance degradation over relevant lifetim...

  3. Improved power conversion efficiency of dye-sensitized solar cells using side chain liquid crystal polymer embedded in polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Woosum [Department of Chemistry Education, and Department of Frontier Materials Chemistry, and Institute for Plastic Information and Energy Materials, Pusan National University, Busan 609-735 (Korea, Republic of); Lee, Jae Wook, E-mail: jlee@donga.ac.kr [Department of Chemistry, Dong-A University, Busan 604-714 (Korea, Republic of); Gal, Yeong-Soon [Polymer Chemistry Lab, College of General Education, Kyungil University, Hayang 712-701 (Korea, Republic of); Kim, Mi-Ra, E-mail: mrkim2@pusan.ac.kr [Department of Polymer Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Jin, Sung Ho, E-mail: shjin@pusan.ac.kr [Department of Chemistry Education, and Department of Frontier Materials Chemistry, and Institute for Plastic Information and Energy Materials, Pusan National University, Busan 609-735 (Korea, Republic of)

    2014-02-14

    Side chain liquid crystal polymer (SCLCP) embedded in poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-co-HFP)-based polymer electrolytes (PVdF-co-HFP:side chain liquid crystal polymer (SCLCP)) was prepared for dye-sensitized solar cell (DSSC) application. The polymer electrolytes contained tetrabutylammonium iodide (TBAI), iodine (I{sub 2}), and 8 wt% PVdF-co-HFP in acetonitrile. DSSCs comprised of PVdF-co-HFP:SCLCP-based polymer electrolytes displayed enhanced redox couple reduction and reduced charge recombination in comparison to those of the conventional PVdF-co-HFP-based polymer electrolyte. The significantly increased short-circuit current density (J{sub sc}, 10.75 mA cm{sup −2}) of the DSSCs with PVdF-co-HFP:SCLCP-based polymer electrolytes afforded a high power conversion efficiency (PCE) of 5.32% and a fill factor (FF) of 0.64 under standard light intensity of 100 mW cm{sup −2} irradiation of AM 1.5 sunlight. - Highlights: • We developed the liquid crystal polymer embedded on polymer electrolyte for DSSCs. • We fabricated the highly efficient DSSCs using polymer electrolyte. • The best PCE achieved for P1 is 5.32% using polymer electrolyte.

  4. Polymer chain organization in tensile-stretched poly(ethylene oxide)-based polymer electrolytes

    Science.gov (United States)

    Burba, Christopher M.; Woods, Lauren; Millar, Sarah Y.; Pallie, Jonathan

    2011-01-01

    Polymer chain orientation in tensile-stretched poly(ethylene oxide)-lithium trifluoromethanesulfonate polymer electrolytes are investigated with polarized infrared spectroscopy as a function of the degree of strain and salt composition (ether oxygen atom to lithium ion ratios of 20:1, 15:1, and 10:1). The 1359 and 1352 cm-1 bands are used to probe the crystalline PEO and P(EO)3LiCF3SO3 domains, respectively, allowing a direct comparison of chain orientation for the two phases. Two-dimensional correlation FT-IR spectroscopy indicates that the two crystalline domains align at the same rate as the polymer electrolytes are stretched. Quantitative measurements of polymer chain orientation obtained through dichroic infrared spectroscopy show that chain orientation predominantly occurs between strain values of 150% and 250%, regardless of salt composition investigated. There are few changes in chain orientation for either phase when the films are further elongated to a strain of 300%; however, the PEO domains are slightly more oriented at the high strain values. The spectroscopic data are consistent with stretching-induced melt-recrystallization of the unoriented crystalline domains in the solution-cast polymer films. Stretching the films pulls polymer chains from the crystalline domains, which subsequently recrystallize with the polymer helices parallel to the stretch direction. If lithium ion conduction in crystalline polymer electrolytes is viewed as consisting of two major components (facile intra-chain lithium ion conduction and slow helix-to-helix inter-grain hopping), then alignment of the polymer helices will affect the ion conduction pathways for these materials by reducing the number of inter-grain hops required to migrate through the polymer electrolyte. PMID:22184475

  5. Polymer chain organization in tensile-stretched poly(ethylene oxide)-based polymer electrolytes.

    Science.gov (United States)

    Burba, Christopher M; Woods, Lauren; Millar, Sarah Y; Pallie, Jonathan

    2011-12-15

    Polymer chain orientation in tensile-stretched poly(ethylene oxide)-lithium trifluoromethanesulfonate polymer electrolytes are investigated with polarized infrared spectroscopy as a function of the degree of strain and salt composition (ether oxygen atom to lithium ion ratios of 20:1, 15:1, and 10:1). The 1359 and 1352 cm(-1) bands are used to probe the crystalline PEO and P(EO)(3)LiCF(3)SO(3) domains, respectively, allowing a direct comparison of chain orientation for the two phases. Two-dimensional correlation FT-IR spectroscopy indicates that the two crystalline domains align at the same rate as the polymer electrolytes are stretched. Quantitative measurements of polymer chain orientation obtained through dichroic infrared spectroscopy show that chain orientation predominantly occurs between strain values of 150% and 250%, regardless of salt composition investigated. There are few changes in chain orientation for either phase when the films are further elongated to a strain of 300%; however, the PEO domains are slightly more oriented at the high strain values. The spectroscopic data are consistent with stretching-induced melt-recrystallization of the unoriented crystalline domains in the solution-cast polymer films. Stretching the films pulls polymer chains from the crystalline domains, which subsequently recrystallize with the polymer helices parallel to the stretch direction. If lithium ion conduction in crystalline polymer electrolytes is viewed as consisting of two major components (facile intra-chain lithium ion conduction and slow helix-to-helix inter-grain hopping), then alignment of the polymer helices will affect the ion conduction pathways for these materials by reducing the number of inter-grain hops required to migrate through the polymer electrolyte.

  6. Polymer stability and function for electrolyte and mixed conductor applications

    Science.gov (United States)

    Hammond, Paula; Davis, Nicole; Liu, David; Amanchukwu, Chibueze; Lewis, Nate; Shao-Horn, Yang

    2015-03-01

    Polymers exhibit a number of attractive properties as solid state electrolytes for electrochemical energy devices, including the light weight, flexibility, low cost and adaptive transport properties that polymeric materials can exhibit. For a number of applications, mixed ionic and electronic conducting materials are of interest to achieve transport of electrons and holes or ions within an electrode or at the electrode-electrolyte interface (e.g. aqueous batteries, solar water splitting, lithium battery electrode). Using layer-by-layer assembly, a mode of alternating adsorption of charged or complementary hydrogen bonding group, we can design composite thin films that contain bicontinuous networks of electronically and ionically conducting polymers. We have found that manipulation of salt concentration and the use of divalent ions during assembly can significantly enhance the number of free acid anions available for ion hopping. Unfortunately, for certain electrochemical applications, polymer stability is a true challenge. In separate studies, we have been investigating macromolecular systems that may provide acceptable ion transport properties, but withstand the harsh oxidative environment of lithium air systems. An investigation of different polymeric materials commonly examined for electrochemical applications provides insight into polymer design for these kinds of environments. NSF Center for Chemical Innovation, NDSEG Fellowship and Samsung Corporation.

  7. Computationally Guided Design of Polymer Electrolytes for Battery Applications

    Science.gov (United States)

    Wang, Zhen-Gang; Webb, Michael; Savoie, Brett; Miller, Thomas

    We develop an efficient computational framework for guiding the design of polymer electrolytes for Li battery applications. Short-times molecular dynamics (MD) simulations are employed to identify key structural and dynamic features in the solvation and motion of Li ions, such as the structure of the solvation shells, the spatial distribution of solvation sites, and the polymer segmental mobility. Comparative studies on six polyester-based polymers and polyethylene oxide (PEO) yield good agreement with experimental data on the ion conductivities, and reveal significant differences in the ion diffusion mechanism between PEO and the polyesters. The molecular insights from the MD simulations are used to build a chemically specific coarse-grained model in the spirit of the dynamic bond percolation model of Druger, Ratner and Nitzan. We apply this coarse-grained model to characterize Li ion diffusion in several existing and yet-to-be synthesized polyethers that differ by oxygen content and backbone stiffness. Good agreement is obtained between the predictions of the coarse-grained model and long-timescale atomistic MD simulations, thus providing validation of the model. Our study predicts higher Li ion diffusivity in poly(trimethylene oxide-alt-ethylene oxide) than in PEO. These results demonstrate the potential of this computational framework for rapid screening of new polymer electrolytes based on ion diffusivity.

  8. Physical properties of Li ion conducting polyphosphazene based polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, S.; Zawodzinski, T.; Hermes, R.; Davey, J.; Dai, Hongli

    1996-12-31

    We report a systematic study of the transport properties and the underlying physical chemistry of some polyphosphazene (PPhz)-based polymer electrolytes. We synthesized MEEP and variants which employed mixed combinations of different length oxyethylene side-chains. We compare the conductivity and ion-ion interactions in polymer electrolytes obtained with lithium triflate and lithium bis(trifluoromethanesulfonyl)imide (TFSI) salts added to the polymer. The combination of the lithium imide salt and MEEP yields a maximum conductivity of 8 x 10{sup -5} {Omega}{sup -1} cm{sup -1} at room temperature at a salt loading of 8 monomers per lithium. In one of the mixed side-chain variations, a maximum conductivity of 2 x 10{sup -4} {Omega}{sup -1} cm{sup -1} was measured at the same molar ratio. Raman spectral analysis shows some ion aggregation and some polymer - ion interactions in the PPhz-LiTFSI case but much less than observed with Li CF{sub 3}SO{sub 3}. A sharp increase in the Tg as salt is added corresponds to concentrations above which the conductivity significantly decreases and ion associations appear.

  9. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qui; Dan Wilson; Phil Dowling

    2004-05-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding in the swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to the naturally fractured reservoirs or those with thief zones because much of the injected solution bypasses the target pore space containing oil. The objective of this work is to investigate whether combining these two technologies could broaden the applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium--polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values of 9.2 to 12.9.

  10. Study on rare earth/alkaline earth oxide-doped CeO2 solid electrolyte

    Institute of Scientific and Technical Information of China (English)

    YAN Kai; ZHEN Qiang; Song Xiwen

    2007-01-01

    Five types of rare earth/alkaline earth oxide-doped CeO2 superfine-powders were synthesized by a low-temperature combustion technique. The relevant solid electrolyte materials were also sintered by pressureless sintering at different temperatures. The results of X-ray diffraction and transmission electron microscopy showed that the grain size of the powders was approximately 20-30 nm, and rare earth/alkaline earth oxides were completely dissolved into ceria-based solid solution with fluorite structure. The electrical conductivities of the Sm2O3-CeO2 system were measured by the ac impedance technique in air at temperatures ranging from 513-900℃. The results indicated that the ionic conductivities of Sm0.20Ce0.8O1.875 solid electrolyte increase with increasing sintering temperature, and the relationship between the conductivities and measuring temperature obeys the Arrhenius equation. Then the Sm2O3-CeO2 material was further doped with other rare earth/alkaline earth oxide, and the conductivities improve with the effective index.

  11. Mechanisms Underlying Ionic Mobilities in Nanocomposite Polymer Electrolytes

    Science.gov (United States)

    Ganesan, Venkat; Hanson, Benjamin; Pryamitsyn, Victor

    2014-03-01

    Recently, a number of experiments have demonstrated that addition of ceramics with nanoscale dimensions can lead to substantial improvements in the low temperature conductivity of the polymeric materials. However, the origin of such behaviors, and more generally, the manner by which nanoscale fillers impact the ion mobilities remain unresolved. In this communication, we report the results of atomistic molecular dynamics simulations which used multibody polarizable force-fields to study lithium ion diffusivities in an amorphous poly(ethylene-oxide) (PEO) melt containing well-dispersed TiO2 nanoparticles. We observed that the lithium ion diffusivities decrease with increased particle loading. Our analysis suggests that the ion mobilities are correlated to the nanoparticle-induced changes in the polymer segmental dynamics. Interestingly, the changes in polymer segmental dynamics were seen to be related to the nanoparticle's influence on the polymer conformational features. Overall, our results indicate that addition of nanoparticle fillers modify polymer conformations and the polymer segmental dynamics, and thereby influence the ion mobilities of polymer electrolytes.

  12. The Role of Polymer Electrolytes in Drug Delivery

    Science.gov (United States)

    Latham, R. J.; Linford, R. G.; Schlindwein, W. S.

    2002-12-01

    30 years ago Michel Armand, who was working on intercalation cathode materials in high energy power sources, identified the need to develop flexible, ionically conducting, electronically insulating electrolyte materials to accommodate the gross dimensional changes that occur on charge and discharge. In 1973, Peter Wright produced the first such materials designed for this purpose. His "polymer electrolytes" consisted of thin films of sodium or potassium salts dissolved in poly (ethylene oxide) PEO. Many polymer electrolytes had been developed in the ensuing years. Those for power source use have focussed on Lithium as the conducting species whereas complementary materials have been utilised for sensor and other applications. It is well known that the flexible matrix, a heteropolymer usually modified by additives such as plasticisers and/or inert fillers, provides a facile conducting pathway for ions. It is a significant disadvantage of many early polymer electrolytes that both the electrochemically active cations and the charge-compensating anions were mobile. Classic methods of drug delivery have embraced a number of routes into the site of pharmacological action, including ingestion into the lung, the digestive tract or the colon; injection into muscle tissue; and intravenous delivery through a catheter (a "drip"). Modern preference, wherever possible, is for a non-invasive route to minimise the chance of cross infection, especially of the AIDS virus. The skin, which is the largest organ in the human body, is a particularly appealing route as, in the absence of wounds and blemishes, it offers a natural, high-integrity, barrier to the outside world. Skin patches containing active drug that is allowed to diffuse across the external skin barrier into the bloodstream now enjoy wide application but a problem is that the rate of egress is often slow. Transport can be enhanced by artificially dilating the skin pores and/or by opening up additional pores by the

  13. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Performance and produced polymer evaluation of four alkaline-surfactant-polymer projects concluded that only one of the projects could have benefited from combining the alkaline-surfactant-polymer and gelation technologies. Cambridge, the 1993 Daqing, Mellott Ranch, and the Wardlaw alkaline-surfacant-polymer floods were studied. An initial gel treatment followed by an alkaline-surfactant-polymer flood in the Wardlaw field would have been a benefit due to reduction of fracture flow. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls or 3.3% OOIP when a gel was placed in the B sand. Alkaline-surfactant-polymer flood oil recovery improvement over a waterflood was 392,000 bbls or 6.5% OOIP. Placing a gel into the B sand prior to an alkaline-surfactant-polymer flood resulted in 989,000 bbl or 16.4% OOIP more oil than only water injection. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls or 9.9% OOIP when a gel was placed in the B sand.

  14. Preparation and characterization of a mixing soft-segment waterborne polyurethane polymer electrolyte

    Institute of Scientific and Technical Information of China (English)

    Feng Wu; Yue JiaoLi; Ren Jie Chen; Shi Chen

    2009-01-01

    The mixing soft-segment WPU (waterborne polyurethane) polymer electrolytes were synthesized by using PEO (poly(ethylene oxide)) and PDMS (polydimethylsiloxane) as the soft segments. These polymer electrolytes exhibit good thermal and electro-chemical stability. The conductivity of the gel polymer electrolyte is 2.52×10-3 S/cm at 25 ℃ with the LiTFSI/(DMC + EC) content of 130%.

  15. Preliminary study of application of Moringa oleifera resin as polymer electrolyte in DSSC solar cells

    Science.gov (United States)

    Saehana, Sahrul; Darsikin, Muslimin

    2016-04-01

    This study reports the preliminary study of application of Moringa oleifera resin as polymer electrolyte in dye-sensitized solar cell (DSSC). We found that polymer electrolyte membrane was formed by using solution casting methods. It is observed that polymer electrolyte was in elastic form and it is very potential to application as DSSC component. Performance of DSSC which employing Moringa oleifera resin was also observed and photovoltaic effect was found.

  16. Lithium dendrite growth through solid polymer electrolyte membranes

    Science.gov (United States)

    Harry, Katherine; Schauser, Nicole; Balsara, Nitash

    2015-03-01

    Replacing the graphite-based anode in current batteries with a lithium foil will result in a qualitative increase in the energy density of lithium batteries. The primary reason for not adopting lithium-foil anodes is the formation of dendrites during cell charging. In this study, stop-motion X-ray microtomography experiments were used to directly monitor the growth of lithium dendrites during electrochemical cycling of symmetric lithium-lithium cells with a block copolymer electrolyte. In an attempt to understand the relationship between viscoelastic properties of the electrolyte on dendrite formation, a series of complementary experiments including cell cycling, tomography, ac impedance, and rheology, were conducted above and below the glass transition temperature of the non-conducting poly(styrene) block; the conducting phase is a mixture of rubbery poly(ethylene oxide) and a lithium salt. The tomography experiments enable quantification of the evolution of strain in the block copolymer electrolyte. Our work provides fundamental insight into the dynamics of electrochemical deposition of metallic films in contact with high modulus polymer electrolytes. Rational approaches for slowing down and, perhaps, eliminating dendrite growth are proposed.

  17. Composite polymer electrolyte membranes supported by non-woven fabrics for lithium-ion polymer batteries

    Institute of Scientific and Technical Information of China (English)

    TANG Dingguo; LIU Jianhong; QI Lu; CHEN Hui; CI Yunxiang

    2005-01-01

    Poly(vinylidene fluoride-co-hexafluoropropyle- ne) (PVDF-HFP) is one of the most popular polymers for polymer electrolyte membranes because of its excellent operating characteristics and superior electrochemical properties. The electrochemical performances of polymer electrolyte membrane can be enhanced by evenly dispersing nano-meter SiO2 particles in the polymer. In this paper, non-woven fabrics were immersed in the mixed solution of PVDF-HFP/ SiO2/butanone/butanol/plasticizer, and then dried in a vacuum oven to remove the solvents and the plasticizer and to make porous composite polymer electrolyte membranes. The prepared composite membranes supported by non-woven fabrics boast good mechanical strength and excellent electrochemical properties: the electrochemical stability window is 4.8 V vs. Li+/Li, and the ionic conductivity is 3.35×10-4 S/cm (around 60% of that of a common PE membrane) at room temperature. The lithium-ion polymer battery assembled by the composite membrane exhibits high rate capability and excellent cycling performance.

  18. Polymer electrolytes based on aromatic lithium sulfonyl-imide compounds; Electrolytes polymeres a base de sulfonylimidures de lithium aromatiques

    Energy Technology Data Exchange (ETDEWEB)

    Reibel, L.; Bayoudh, S. [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France). Institut Charles Sadron; Baudry, P. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Majastre, H. [Bollore Technologies, 29 - Quimper (France); Herlem, G. [UFR de Sciences et Techniques, L.E.S., 25 - Besancon (France)

    1996-12-31

    This paper presents ionic conductivity results obtained with polymer electrolytes and also with propylene carbonate solutions. The domain of electrochemical activity of this salt has been determined using cycle volt-amperometry in propylene carbonate. Preliminary experiments on the stability of the polymer electrolyte with respect to the lithium electrode have been carried out for a possible subsequent use in lithium batteries. (J.S.) 4 refs.

  19. Transport and spectroscopic studies of liquid and polymer electrolytes

    Science.gov (United States)

    Bopege, Dharshani Nimali

    Liquid and polymer electrolytes are interesting and important materials to study as they are used in Li rechargeable batteries and other electrochemical devices. It is essential to investigate the fundamental properties of electrolytes such as ionic conductivity, diffusion, and ionic association to enhance battery performance in different battery markets. This dissertation mainly focuses on the temperature-dependent charge and mass transport processes and ionic association of different electrolyte systems. Impedance spectroscopy and pulsed field gradient nuclear magnetic resonance spectroscopy were used to measure the ionic conductivity and diffusion coefficients of ketone and acetate based liquid electrolytes. In this study, charge and mass transport in non-aqueous liquid electrolytes have been viewed from an entirely different perspective by introducing the compensated Arrhenius formalism. Here, the conductivity and diffusion coefficient are written as an Arrhenius-like expression with a temperature-dependent static dielectric constant dependence in the exponential prefactor. The compensated Arrhenius formalism reported in this dissertation very accurately describes temperature-dependent conductivity data for acetate and ketone-based electrolytes as well as temperature-dependent diffusion data of pure solvents. We found that calculated average activation energies of ketone-based electrolytes are close to each other for both conductivity and diffusion data (in the range 24-26 kJ/mol). Also, this study shows that average activation energies of acetate-based electrolytes are higher than those for the ketone systems (in the range 33-37 kJ/mol). Further, we observed higher dielectric constants and ionic conductivities for both dilute and concentrated ketone solutions with temperature. Vibrational spectroscopy (Infrared and Raman) was used to probe intermolecular interactions in both polymer and liquid electrolytes, particularly those which contain lithium

  20. Water removal studies on high power hydrogen-oxygen fuel cells with alkaline electrolytes

    Science.gov (United States)

    Kordesch, K.; Oliveira, J. C. T.; Gruber, Ch.; Winkler, G.

    1989-08-01

    Research in verification of bipolar fuel cell design, containing mass-produceable all-carbon electrodes which can be used in alkaline or acidic cells with liquid or immobilized (matrix) electrolytes, is described. Spin-offs from the research related to the Hermes manned spaceplane could be useful for applications on Earth. Peak-power plants, electric vehicles and storage devices used in combination with renewable energy sources could all benefit from the research. A subsequent investigation of water transpiration properties of carbon electrodes is described.

  1. PE-g-MMA polymer electrolyte membrane for lithium polymer battery

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Kun; Hu, Xinguo; Yi, Tingfeng; Dai, Changsong [Departments of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2006-10-25

    PE-g-MMA membranes with different degrees of grafting (DG) were prepared by electron beam radiation-induced graft copolymerization of methylmethacrylate (MMA) monomer onto polyethylene (PE) separator. The grafted membranes (GMs) were characterized using SEM, FTIR. The new polymer electrolytes based on GMs were prepared through immersion in a solution of LiPF{sub 6}-EC/DMC (1:1 by volume). It was found that the GMs with different DG exhibited the different uptake and retention ability of liquid electrolyte. Moreover, the ion conductivities of activated polymer electrolytes (APEs) were also found to vary with the different DG and reached a magnitude of 10{sup -3}Scm{sup -1} at the DG of 42%. Compared with those containing PE separators, the LiCoO{sub 2}-MCMB coin cells containing GMs demonstrated better cycle life and excellent rate performance. (author)

  2. PE-g-MMA polymer electrolyte membrane for lithium polymer battery

    Energy Technology Data Exchange (ETDEWEB)

    Gao Kun [Departments of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: gaokun@hit.edu.cn; Hu Xinguo [Departments of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Yi Tingfeng [Departments of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Dai Changsong [Departments of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2006-10-25

    PE-g-MMA membranes with different degrees of grafting (DG) were prepared by electron beam radiation-induced graft copolymerization of methylmethacrylate (MMA) monomer onto polyethylene (PE) separator. The grafted membranes (GMs) were characterized using SEM, FTIR. The new polymer electrolytes based on GMs were prepared through immersion in a solution of LiPF{sub 6}-EC/DMC (1:1 by volume). It was found that the GMs with different DG exhibited the different uptake and retention ability of liquid electrolyte. Moreover, the ion conductivities of activated polymer electrolytes (APEs) were also found to vary with the different DG and reached a magnitude of 10{sup -3} S cm{sup -1} at the DG of 42%. Compared with those containing PE separators, the LiCoO{sub 2}-MCMB coin cells containing GMs demonstrated better cycle life and excellent rate performance.

  3. Cold-start characteristics of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mishler, Jeff [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Wang, Yun [UNIV. CAL. RIVERSIDE; Mishler, Jeff [UNIV. CAL. RIVERSIDE; Mukherjee, Partha P [ORNL

    2010-01-01

    In this paper, we investigate the electrochemical reaction kinetics, species transport, and solid water dynamics in a polymer electrolyte fuel cell (PEFC) during cold start. A simplitied analysis is developed to enable the evaluation of the impact of ice volume fraction on cell performance during coldstart. Supporting neutron imaging data are also provided to reveal the real-time water evolution. Temperature-dependent voltage changes due to the reaction kinetics and ohmic loss are also analyzed based on the ionic conductivity of the membrane at subfreezing temperature. The analysis is valuable for the fundamental study of PEFC cold-start.

  4. Polymer electrolyte fuel cells physical principles of materials and operation

    CERN Document Server

    Eikerling, Michael

    2014-01-01

    The book provides a systematic and profound account of scientific challenges in fuel cell research. The introductory chapters bring readers up to date on the urgency and implications of the global energy challenge, the prospects of electrochemical energy conversion technologies, and the thermodynamic and electrochemical principles underlying the operation of polymer electrolyte fuel cells. The book then presents the scientific challenges in fuel cell research as a systematic account of distinct components, length scales, physicochemical processes, and scientific disciplines. The main part of t

  5. Conductivity Studies of the Plasticized-Poly(methylmethacrylate) Polymer Electrolytes

    Institute of Scientific and Technical Information of China (English)

    A.Ahmad; Z.Osman

    2007-01-01

    1 Results In this work,five systems of polymethylmethacrylate (PMMA)-based polymer electrolytes films have been prepared by the solution casting technique.The five systems are the (PMMA-EC) system,the (PMMA + PC) system,the (PMMA+LiCF3SO3) system,the ([PMMA+EC]+LiCF3SO3) system and the ([PMMA+PC]+LiCF3SO3) system.The conductivity for each system is characterized using impedance spectroscopy.The conductivity of the pure PMMA,the (PMMA+EC) system and the (PMMA+PC) system at room temperature is 2.37×10-9,3...

  6. Gelation Behavior of Poly (Vinylidene Fluoride )-based Gel Polymer Electrolyte

    Institute of Scientific and Technical Information of China (English)

    WANG Biao-bing; GU Li-xia

    2006-01-01

    Poly ( vinylidene fluoride ) ( PVdF )-based gel polymer electrolytes with various compositions were prepared by solution casting technique. The kinetics of gelation was analyzed via the correlation between the apparent gelation rate and concentration of PVdF at a given temperature.Combination the results of the kinetics of gelation and the DSC study, it revealed that the phase separation was the major behavior and the fibrils were the major junction joints of the three-dimensional network even in the ease the concentration of PVdF was higher than 25 wt%. The porous surface observed by ESEM also reflected that the phase separation took place during the gelation.

  7. Polymer electrolyte fuel cells: flow field for efficient air operation

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F.N.; Tsukada, A.; Haas, O.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    A new flow field was designed for a polymer electrolyte fuel cell stack with an active area of 200 cm{sup 2} for operation at low air stoichiometry and low air over pressure. Optimum of gas flow and channel dimensions were calculated based on the required pressure drop in the fluid. Single cells and a bi-cell stack with the new flow field show an improved current/voltage characteristic when operated at low air stoichiometries as compared to that of the previous non optimized design. (author) 4 figs., 3 refs.

  8. Luminescent polymer electrolytes based on chitosan and containing europium triflate

    Institute of Scientific and Technical Information of China (English)

    R Alves; ASS de Camargo; A Pawlicka; MM Silva

    2016-01-01

    Solid polymer electrolytes based on chitosan and europium triflate were prepared by solvent casting and characterized by X-ray diffraction, scanning electron microscopy (SEM), atomic force microscopy (AFM), and photoluminescence spectroscopy. The X-ray diffraction exhibited that the samples were essentially amorphous with organized regions over the whole range of the salt content studied. The AFM analysis demonstrated that the smoother sample had roughness of 4.39 nm. Surface visualization through SEM revealed good homogeneity without any phase separation for more conductive samples and the less conductive showed some im-perfections on the surface. The emission and excitation spectra displayed the characteristic bands of Eu(CF3SO3)3 in addition to broad bands corresponding to the polymer host. The excited state5D0 lifetime values ranged from 0.29–0.37 ms for the studied samples.

  9. Current-Distribution Measurement in Polymer Electrolyte Water Electrolysis Equipment and Polymer Electrolyte Fuel Cell Using NMR Sensor

    Science.gov (United States)

    Yokouchi, Yasuo; Ogawa, Kuniyasu; Haishi, Tomoyuki; Ito, Kohei

    In a polymer electrolyte fuel cell (PEFC), the current density through the polymer electrolyte membrane (PEM) is distributed along the electrode on the membrane electrode assembly (MEA). To increase the electric power density of a PEFC, it is necessary to locate local decreases in current density where electric power generation decreases due to a lack of hydrogen, flooding, and so on. Therefore, achieving a higher current density in a PEFC requires monitoring the local current density. We developed a new method to estimate the spatial distribution of current flowing through the MEA in a polymer electrolyte water electrolysis equipment (PEWEE) and a PEFC using Nuclear-Magnetic-Resonance (NMR) sensors. The magnetic field strength induced by current through the MEA in a PEWEE is acquired as the frequency shift of the NMR signal which is measured by the NMR sensor. The spatial distributions of the frequency shifts occurring along the MEA in a PEWEE and a PEFC was measured. In order to verify the method, the magnetic field strength induced by the current through the gas diffusion layer (GDL) in a PEWEE was analyzed theoretically under the assumption that the current through MEA was uniform. The frequency shift was then calculated as a function of the geometry of the GDL, current, and the position of the NMR sensor. From experimental and theoretical results, the frequency shift of the NMR signal is proportional to current density and depends on the position of the sensors. Using the measurement system, we also obtained the current distribution through the GDL in a PEFC generating electric power. In these studies, the experimental and theoretical results agree.

  10. Investigation of polymer electrolyte based on agar and ionic liquids

    Directory of Open Access Journals (Sweden)

    M. M. Silva

    2012-12-01

    Full Text Available The possibility to use natural polymer as ionic conducting matrix was investigated in this study. Samples of agarbased electrolytes with different ionic liquids were prepared and characterized by physical and chemical analyses. The ionic liquids used in this work were 1-ethyl-3-methylimidazolium ethylsulfate, [C2mim][C2SO4], 1-ethyl-3-methylimidazolium acetate, [C2mim][OAc] and trimethyl-ethanolammonium acetate, [Ch][OAc]. Samples of solvent-free electrolytes were prepared and characterized by ionic conductivity measurements, thermal analysis, electrochemical stability, X-ray diffraction, scanning electron microscopy and Fourier Transform infrared spectroscopy. Electrolyte samples are thermally stable up to approximately 190°C. All the materials synthesized are semicrystalline. The electrochemical stability domain of all samples is about 2.0 V versus Li/Li+. The preliminary studies carried out with electrochromic devices (ECDs incorporating optimized compositions have confirmed that these materials may perform as satisfactory multifunctional component layers in the field of ‘smart windows’, as well as ECD-based devices.

  11. Experimental investigations on a proton conducting nanocomposite polymer electrolyte

    International Nuclear Information System (INIS)

    A new proton conducting nanocomposite polymer electrolyte (NCPE) comprising polyethylene oxide (PEO)-NH4HSO4 salt complex dispersed with nanosized SiO2 particles has been investigated. The NCPE films have been formed following the usual solution cast method. The results of various studies based on scanning electron microscopy, x-ray diffraction, differential scanning calorimetry, Fourier transform infra-red spectroscopy as well as some basic ionic transport parameters, namely conductivity, and ionic transference number, are presented and discussed. SiO2 concentration dependent conductivity measurements have been carried out on the NCPE films at room temperature. This study revealed the existence of two conductivity maxima at SiO2 concentrations ∼3 and 12 wt% which have been attributed to two percolation thresholds in the composite polymer electrolyte phase. An optimum value of conductivity (σ ∼ 6.2 x 10-5 S cm-1 at 27 0C) was achieved for the NCPE film with 3 wt% SiO2 dispersion. This has been referred to as optimum conducting composition. The temperature dependence of conductivity exhibited an Arrhenius-type thermally activated behaviour both below and above the semicrystalline-amorphous phase transition temperature of PEO

  12. A quasi-direct methanol fuel cell system based on blend polymer membrane electrolytes

    DEFF Research Database (Denmark)

    Li, Qingfeng; Hjuler, Hans Aage; Hasiotis, C.;

    2002-01-01

    On the basis of blend polymer electrolytes of polybenzimidazole and sulfonated polysulfone, a polymer electrolyte membrane fuel cell was developed with an operational temperature up to 200degrees C. Due to the high operational temperature, the fuel cell can tolerate 1.0-3.0 vol % CO in the fuel...

  13. Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Hjuler, Hans Aage; Bjerrum, Niels

    2000-01-01

    Oxygen reduction on carbon supported platinum catalysts has been investigated in H3PO4, H3PO4-doped Nafion and polybenzimidazole (PBI) polymer electrolytes in a temperature range up to 190 degrees C. Compared with pure H3PO4, the combination of H3PO4 and polymer electrolytes can significantly imp...

  14. Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Bergqvist, R. S.; Hjuler, H. A.;

    1999-01-01

    Oxygen reduction on carbon supported platinum catalysts has been investigated in H3PO4, H3PO4-doped Nafion and PBI polymer electrolytes in a temperature range from 80 to 190°C. Compared with pure H3PO4, using the H3PO4 doped Nafion and PBI polymer electrolytes can significantly improve the oxygen...

  15. Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview

    International Nuclear Information System (INIS)

    Polymer electrolytes are promising materials for electrochemical device applications, namely, high energy density rechargeable batteries, fuel cells, supercapacitors, electrochromic displays, etc. The area of polymer electrolytes has gone through various developmental stages, i.e. from dry solid polymer electrolyte (SPE) systems to plasticized, gels, rubbery to micro/nano-composite polymer electrolytes. The polymer gel electrolytes, incorporating organic solvents, exhibit room temperature conductivity as high as ∼10-3 S cm-1, while dry SPEs still suffer from poor ionic conductivity lower than 10-5 S cm-1. Several approaches have been adopted to enhance the room temperature conductivity in the vicinity of 10-4 S cm-1 as well as to improve the mechanical stability and interfacial activity of SPEs. In this review, the criteria of an ideal polymer electrolyte for electrochemical device applications have been discussed in brief along with presenting an overall glimpse of the progress made in polymer electrolyte materials designing, their broad classification and the recent advancements made in this branch of materials science. The characteristic advantages of employing polymer electrolyte membranes in all-solid-state battery applications have also been discussed. (topical review)

  16. A general approach toward enhancement of pseudocapacitive performance of conducting polymers by redox-active electrolytes

    KAUST Repository

    Chen, Wei

    2014-12-01

    A general approach is demonstrated where the pseudocapacitive performance of different conducting polymers is enhanced in redox-active electrolytes. The concept is demonstrated using several electroactive conducting polymers, including polyaniline, polypyrrole, and poly(3,4-ethylenedioxythiophene). As compared to conventional electrolytes, the redox-active electrolytes, prepared by simply adding a redox mediator to the conventional electrolyte, can significantly improve the energy storage capacity of pseudocapacitors with different conducting polymers. The results show that the specific capacitance of conducting polymer based pseudocapacitors can be increased by a factor of two by utilization of the redox-active electrolytes. In fact, this approach gives some of the highest reported specific capacitance values for electroactive conducting polymers. Moreover, our findings present a general and effective approach for the enhancement of energy storage performance of pseudocapacitors using a variety of polymeric electrode materials. © 2014 Elsevier B.V. All rights reserved.

  17. Virus-Assembled Flexible Electrode-Electrolyte Interfaces for Enhanced Polymer-Based Battery Applications

    OpenAIRE

    Ayan Ghosh; Juchen Guo; Brown, Adam D; Elizabeth Royston; Chunsheng Wang; Peter Kofinas; Culver, James N.

    2012-01-01

    High-aspect-ratio cobalt-oxide-coated Tobacco mosaic virus (TMV-) assembled polytetrafluoroethylene (PTFE) nonstick surfaces were integrated with a solvent-free polymer electrolyte to create an anode-electrolyte interface for use in lithium-ion batteries. The virus-assembled PTFE surfaces consisted primarily of cobalt oxide and were readily intercalated with a low-molecular-weight poly (ethylene oxide) (PEO) based diblock copolymer electrolyte to produce a solid anode-electrolyte system. The ...

  18. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  19. Electrocatalysis in Water Electrolysis with Solid Polymer Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Rasten, Egil

    2001-10-01

    Development and optimization of the electrodes in a water electrolysis system using a polymer membrane as electrolyte have been carried out in this work. A cell voltage of 1.59 V (energy consumption of about 3.8 kWh/Nm{sub 3} H{sub 2}) has been obtained at practical operation conditions of the electrolysis cell (10 kA . m2, 90{sup o}C) using a total noble metal loading of less than 2.4 mg.cm{sub 2} and a Nafion -115 membrane. It is further shown that a cell voltage of less than 1.5 V is possible at the same conditions by combination of the best electrodes obtained in this work. The most important limitation of the electrolysis system using polymer membrane as electrolyte has proven to be the electrical conductivity of the catalysts due to the porous backing/current collector system, which increases the length of the current path and decreases the cross section compared to the apparent one. A careful compromise must therefore be obtained between electrical conductivity and active surface area, which can be tailored by preparation and annealing conditions of the metal oxide catalysts. Anode catalysts of different properties have been developed. The mixed oxide of Ir-Ta (85 mole% Ir) was found to exhibit highest voltage efficiency at a current density of 10 kA.m{sub 2} or below, whereas the mixed oxide of Ir and Ru (60-80 mole% Ir) was found to give the highest voltage efficiency for current densities of above 10 kA.m{sub 2}. Pt on carbon particles, was found to be less suitable as cathode catalyst in water electrolysis. The large carbon particles introduced an unnecessary porosity into the catalytic layer, which resulted in a high ohmic drop. Much better voltage efficiency was obtained by using Pt-black as cathode catalyst, which showed a far better electrical conductivity. Ru-oxide as cathode catalyst in water electrolysis systems using a polymer electrolyte was not found to be of particular interest due to insufficient electrochemical activity and too low

  20. Electrochemical characterizations on MnO2 supercapacitors with potassium polyacrylate and potassium polyacrylate-co-polyacrylamide gel polymer electrolytes

    KAUST Repository

    Lee, Kuang-Tsin

    2009-11-01

    MnO2·nH2O supercapacitors with potassium polyacrylate (PAAK) and potassium polyacrylate-co-polyacrylamide (PAAK-co-PAAM) gel polymer electrolytes (GPEs) having the weight compositions of polymer:KCl:H2O = 9%:6.7%:84.3% have been characterized for their electrochemical performance. Compared with the liquid electrolyte (LE) counterpart, the GPE cells exhibit remarkable (∼50-130%) enhancement in specific capacitance of the oxide electrode, and the extent of the enhancement increases with increasing amount of the carboxylate groups in the polymers as well as with increasing oxide/electrolyte interfacial area. In situ X-ray absorption near-edge structure (XANES) analysis indicates that the oxide electrodes of the GPE cells possess higher Mn-ion valences and are subjected to greater extent of valence variation than that of the LE cell upon charging/discharging over the same potential range. Copolymerization of PAAK with PAAM greatly improves the cycling stability of the MnO2·nH2O electrode, and the improvement is attributable to the alkaline nature of the amino groups. Both GPEs exhibit ionic conductivities greater than 1.0 × 10-1 S cm-1 and are promising for high-rate applications. © 2009 Elsevier Ltd. All rights reserved.

  1. Preparation and Characterization of Lithium Ion Conducting Solid Polymer Electrolytes from Biodegradable Polymers Starch And PVA

    Directory of Open Access Journals (Sweden)

    B. Chatterjee,

    2015-06-01

    Full Text Available Solid Polymer electrolyte films have been prepared from Starch-Poly vinyl alcohol (PVA blend a well acknowledged biodegradable material. Solution cast technique was employed for the preparation of solid polymer electrolyte films added with Lithium Bromide (LiBr salt. X-ray diffraction (XRD studies of the prepared films portrayed the evolution of an amorphous structure with increasing content of salt which is an important factor that leads to the augmentation of conductivity. Electrochemical impedance spectroscopic analysis revealed noticeable ionic conductivity ~ 5x 10-3 S/cm for 20 wt% of salt at ambient conditions. Ionic conductivity showed an increasing trend with salt content at ambient conditions. Transference number measurements confirmed the ionic nature of the prepared solid polymer electrolyte films. Dielectric studies revealed a sharp increase in the number of charge carriers which contributed to enhancement in conductivity. Low values of activation energy extracted from temperature dependent conductivity measurements could be favorable for device applications. For the composition with highest conductivity a temperature independent relaxation mechanism was confirmed by electric modulus scaling.

  2. Solid Polymer Electrolytes Based on Cross-linkable Oligo (oxyethylene)-Branched Oligo (organophosphazenes)

    Institute of Scientific and Technical Information of China (English)

    Shuhua Zhou; Shibi Fang

    2005-01-01

    @@ 1Introduction Solid polymer electrolytes have attracted considerable interest because of their potential application in secondary high energy density lithium batteries. The poly(ethylene oxide)(PEO) has been widely studied as the classical polymer matrix for solid polymer electrolytes. However, the poor room temperature conductivity due to its crystalline is the principal problem to be overcomed. This has prompted many researchers to attempt to modify the properties of PEO.

  3. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells.

    Science.gov (United States)

    Mansor, Noramalina; Jorge, A Belen; Corà, Furio; Gibbs, Christopher; Jervis, Rhodri; McMillan, Paul F; Wang, Xiaochen; Brett, Daniel J L

    2014-04-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li(+)Cl(-)), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li(+)Cl(-) catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA.

  4. The Stirred Tank Reactor Polymer Electrolyte Membrane Fuel Cell

    CERN Document Server

    Benziger, J; Karnas, E; Moxley, J; Teuscher, C; Kevrekidis, Yu G; Benziger, Jay

    2003-01-01

    The design and operation of a differential Polymer Electrolyte Membrane (PEM) fuel cell is described. The fuel cell design is based on coupled Stirred Tank Reactors (STR); the gas phase in each reactor compartment was well mixed. The characteristic times for reactant flow, gas phase diffusion and reaction were chosen so that the gas compositions at both the anode and cathode are uniform. The STR PEM fuel cell is one-dimensional; the only spatial gradients are transverse to the membrane. The STR PEM fuel cell was employed to examine fuel cell start- up, and its dynamic responses to changes in load, temperature and reactant flow rates. Multiple time scales in systems response are found to correspond to water absorption by the membrane, water transport through the membrane and stress-related mechanical changes of the membrane.

  5. The model of stress distribution in polymer electrolyte membrane

    CERN Document Server

    Atrazhev, Vadim V; Dmitriev, Dmitry V; Erikhman, Nikolay S; Sultanov, Vadim I; Patterson, Timothy; Burlatsky, Sergei F

    2014-01-01

    An analytical model of mechanical stress in a polymer electrolyte membrane (PEM) of a hydrogen/air fuel cell with porous Water Transfer Plates (WTP) is developed in this work. The model considers a mechanical stress in the membrane is a result of the cell load cycling under constant oxygen utilization. The load cycling causes the cycling of the inlet gas flow rate, which results in the membrane hydration/dehydration close to the gas inlet. Hydration/dehydration of the membrane leads to membrane swelling/shrinking, which causes mechanical stress in the constrained membrane. Mechanical stress results in through-plane crack formation. Thereby, the mechanical stress in the membrane causes mechanical failure of the membrane, limiting fuel cell lifetime. The model predicts the stress in the membrane as a function of the cell geometry, membrane material properties and operation conditions. The model was applied for stress calculation in GORE-SELECT.

  6. Communication: Nanoscale ion fluctuations in Nafion polymer electrolyte

    International Nuclear Information System (INIS)

    Ion conduction mechanisms and the nanostructure of ion conduction networks remain poorly understood in polymer electrolytes which are used as proton-exchange-membranes (PEM) in fuel cell applications. Here we study nanoscale surface-potential fluctuations produced by Brownian ion dynamics in thin films of low-hydration Nafion™, the prototype PEM. Images and power spectra of the fluctuations are used to derive the local conductivity-relaxation spectrum, in order to compare with bulk behavior and hopping-conductivity models. Conductivity relaxation-times ranged from hours to milliseconds, depending on hydration and temperature, demonstrating that the observed fluctuations are produced by water-facilitated hydrogen-ion hopping within the ion-channel network. Due to the small number of ions probed, non-Gaussian statistics of the fluctuations can be used to constrain ion conduction parameters and mechanisms

  7. Communication: Nanoscale ion fluctuations in Nafion polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Rumberger, Brant; Bennett, Mackenzie; Zhang, Jingyun; Israeloff, N. E. [Department of Physics, Northeastern University, Boston, Massachusetts 02115 (United States); Dura, J. A. [National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland 20899 (United States)

    2014-08-21

    Ion conduction mechanisms and the nanostructure of ion conduction networks remain poorly understood in polymer electrolytes which are used as proton-exchange-membranes (PEM) in fuel cell applications. Here we study nanoscale surface-potential fluctuations produced by Brownian ion dynamics in thin films of low-hydration Nafion™, the prototype PEM. Images and power spectra of the fluctuations are used to derive the local conductivity-relaxation spectrum, in order to compare with bulk behavior and hopping-conductivity models. Conductivity relaxation-times ranged from hours to milliseconds, depending on hydration and temperature, demonstrating that the observed fluctuations are produced by water-facilitated hydrogen-ion hopping within the ion-channel network. Due to the small number of ions probed, non-Gaussian statistics of the fluctuations can be used to constrain ion conduction parameters and mechanisms.

  8. Effects of alkaline cations (M+ = Li+, Na+, K+, Cs+) on the electrochemical synthesis of polyaniline in nitric acid electrolyte

    Institute of Scientific and Technical Information of China (English)

    WU Kezhong; WANG Xindong; MENG Xu

    2005-01-01

    The effects of alkaline cations (M+ = Li+, Na+, K+, Cs+) on the electrochemical synthesis of polyaniline were cartied out under cyclovoltammetric conditions using nitrates of Li+, Na+, K+, and Cs+ as the supporting electrolytes. The results show that the oxidation potentials of aniline in the electrolytes decrease as the protonation extent of aniline decreases from the first scan, which is caused by the decrease of the ionic radius of alkaline metal ions at the same concentration of alkaline cations. With the scan number increasing, the deposit charge Q as the characteristic growth function also depends on the protonation of aniline, and it increases with the ionic radius of alkaline cations increasing. SEM images show the effect of alkaline cations on the morphology of polyaniline. It is clear that the ionic mobility of alkaline cations is further lower than that of H+. Alkaline cations and counter-ions were the species responsible for the enhancement of Pani electrosynthesis. Therefore, this is exactly what SEM images show: a relatively rough fibrous structure in the case of Pani-H+ suggesting a sponge-like structure and a highly orderly fiber-like structure in the case of Pani-M+.

  9. PREPARATION AND CHARACTERIZATION OF AMIDATED PECTIN BASED POLYMER ELECTROLYTE MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    R.K.Mishra; A.Anis; S.Mondal; M.Dutt; A.K.Banthia

    2009-01-01

    The work presents the synthesis and characterization of ami dated pectin(AP)based polymer electrolyte membranes(PEM)crosslinked with glutaraldehyde(GA).The prepared membranes are characterized by Fourier transform infrared spectroscopy(FTIR),organic elemental analysis,X-ray diffraction studies(XRD),thermogravimetric analysis (TGA)and impedance spectroscopy.Mechanical properties of the membranes are evaluated by tensile tests.The degree of amidation(DA),molar and mass reaction yields(YM and YN)are calculated based on the results of organic elemental analysis.FTIR spectroscopy indicated the presence of primary and secondary amide absorption bands.XRD pattern of membranes clearly indicates that there is a considerable increase in crystallinity as compared to parent pectin.TGA studies indicate that AP is less thermally stable than reference pectin.A maximum room temperature conductivity of 1.098×10-3 Scm-1 is obtained in the membrane,which is designated as AP-3.These properties make them good candidates for low cost biopolymer electrolyte membranes for fuel cell applications.

  10. Charge-discharge characteristics of nickel/zinc battery with polymer hydrogel electrolyte

    Science.gov (United States)

    Iwakura, Chiaki; Murakami, Hiroki; Nohara, Shinji; Furukawa, Naoji; Inoue, Hiroshi

    A new nickel/zinc (Ni/Zn) battery was assembled by using polymer hydrogel electrolyte prepared from cross-linked potassium poly(acrylate) and KOH aqueous solution, and its charge-discharge characteristics were investigated. The experimental Ni/Zn cell with the polymer hydrogel electrolyte exhibited well-defined charge-discharge curves and remarkably improved charge-discharge cycle performance, compared to that with a KOH aqueous solution. Moreover, it was found that dendritic growth hardly occurred on the zinc electrode surface during charge-discharge cycles in the polymer hydrogel electrolyte. These results indicate that the polymer hydrogel electrolyte can successfully be used in Ni/Zn batteries as an electrolyte with excellent performance.

  11. High elastic modulus polymer electrolytes suitable for preventing thermal runaway in lithium batteries

    Science.gov (United States)

    Mullin, Scott; Panday, Ashoutosh; Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2014-04-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics. In another aspect, the electrolyte exhibits a conductivity drop when the temperature of electrolyte increases over a threshold temperature, thereby providing a shutoff mechanism for preventing thermal runaway in lithium battery cells.

  12. Composite Electrolytes for Lithium Batteries: Ionic Liquids in APTES Crosslinked Polymers

    Science.gov (United States)

    Tigelaar, Dean M.; Meador, Mary Ann B.; Bennett, William R.

    2007-01-01

    Solvent free polymer electrolytes were made consisting of Li(+) and pyrrolidinium salts of trifluoromethanesulfonimide added to a series of hyperbranched poly(ethylene oxide)s (PEO). The polymers were connected by triazine linkages and crosslinked by a sol-gel process to provide mechanical strength. The connecting PEO groups were varied to help understand the effects of polymer structure on electrolyte conductivity in the presence of ionic liquids. Polymers were also made that contain poly(dimethylsiloxane) groups, which provide increased flexibility without interacting with lithium ions. When large amounts of ionic liquid are added, there is little dependence of conductivity on the polymer structure. However, when smaller amounts of ionic liquid are added, the inherent conductivity of the polymer becomes a factor. These electrolytes are more conductive than those made with high molecular weight PEO imbibed with ionic liquids at ambient temperatures, due to the amorphous nature of the polymer.

  13. Effect of complexing salt on conductivity of PVC/PEO polymer blend electrolytes

    Indian Academy of Sciences (India)

    S Rajendran; Ravi Shanker Babu; M Usha Rani

    2011-12-01

    Solid polymer electrolyte membrane comprising poly(vinyl chloride) (PVC), poly(ehylene oxide) (PEO) and different lithium salts (LiClO4, LiBF4 and LiCF3SO3) were prepared by the solution casting technique. The effect of complexing salt on the ionic conductivity of the PVC/PEO host polymer is discussed. Solid polymer electrolyte films were characterized by X-ray diffraction, FTIR spectroscopy, TG/DTA and ac impedance spectroscopic studies. The conductivity studies of these solid polymer electrolyte (SPE) films are carried out as a function of frequency at various temperatures ranging from 302 K to 353 K. The maximum room temperature ionic conductivity is found to be 0.079 × 10-4 S cm-1 for the film containing LiBF4 as the complexing salt. The temperature dependence of the conductivity of polymer electrolyte films seems to obey the Vogel–Tamman–Fulcher (VTF) relation.

  14. Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes.

    Science.gov (United States)

    Cohen, Jamie L; Volpe, David J; Abruña, Héctor D

    2007-01-01

    The oxidation pathways of methanol (MeOH) have been the subject of intense research due to its possible application as a liquid fuel in polyelectrolyte membrane (PEM) fuel cells. The design of improved catalysts for MeOH oxidation requires a deep understanding of these complex oxidation pathways. This paper will provide a discussion of the literature concerning the extensive research carried out in acidic and alkaline electrolytes. It will highlight techniques that have proven useful in the determination of product ratios, analysis of surface poisoning, anion adsorption, and oxide formation processes, in addition to the effects of temperature on the MeOH oxidation pathways at bulk polycrystalline platinum (Pt(poly)) electrodes. This discussion will provide a framework with which to begin the analysis of activation energy (E(a)) values. This kinetic parameter may prove useful in characterizing the rate-limiting step of the MeOH oxidation at an electrode surface. This paper will present a procedure for the determination of E(a) values for MeOH oxidation at a Pt(poly) electrode in acidic and alkaline media. Values from 24-76 kJ mol(-1) in acidic media and from 36-86 kJ mol(-1) in alkaline media were calculated and found to be a function of applied potential and direction of the potential sweep in a voltammetric experiment. Factors that influence the magnitude of the calculated E(a) include surface poisoning from MeOH oxidation intermediates, anion adsorption from the electrolyte, pH effects, and oxide formation processes. These factors are all potential, and temperature, dependent and must clearly be addressed when citing E(a) values in the literature. Comparison of E(a) values must be between systems of comparable electrochemical environment and at the same potential. E(a) values obtained on bulk Pt(poly), compared with other catalysts, may give insight into the superiority of other Pt-based catalysts for MeOH oxidation and lead to the development of new catalysts

  15. Characterization of plasticized PMMA–LiBF4 based solid polymer electrolytes

    Indian Academy of Sciences (India)

    S Rajendran; T Uma

    2000-02-01

    Polymer electrolyte films prepared from poly(methyl methacrylate) and LiBF4 with different concentrations of plasticizer (DBP) are described. The formation of polymer–salt complex has been confirmed by FTIR spectral studies. The temperature dependence of conductivity of polymer films seems to obey the VTF relation. Values of conductivities of the polymer complexes are presented and discussed.

  16. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  17. Performance of ferrite fillers on electrical behavior of polymer nanocomposite electrolyte

    Science.gov (United States)

    Pandey, Kamlesh; Mauli Dwivedi, Mrigank; Singh, Markandey; Agrawal, S. L.

    2011-04-01

    Dispersal of nanofillers in polymer electrolytes have shown to improve the ionic properties of Polyethylene oxide (PEO)-based polymer electrolytes in recent times. The effects of different nanoferrite fillers (i.e., Al-Zn ferrite, Mg-Zn ferrite, and Zn ferrite) on the electrical transport properties have been studied here on the composite polymer electrolyte system. The interaction of salt/filler with electrolyte has been investigated by XRD studies. SEM image and infrared spectral studies give an indication of nanocomposite formation. In conductivity studies, all electrolyte systems are seen to follow universal power law. Composition dependence (with ferrite filler) gives the maximum conductivity in [93PEO-7NH4SCN]: X ferrite (where X = 2% in Al-Zn ferrite, 1% Mg-Zn ferrite, and 1% Zn ferrite) system.

  18. PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries

    DEFF Research Database (Denmark)

    Miao, Ruiying; Liu, Bowen; Zhu, Zhongzheng;

    2008-01-01

    As a potential electrolyte for lithium-ion batteries, a porous polymer electrolyte membrane based on poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP) was prepared by a phase inversion method. The casting solution, effects of the solvent and non-solvent and addition of micron scale TiO2...... particles were investigated. The membranes were characterized by SEM, XRD, AC impedance, and charge/discharge tests. By using acetone as the solvent and water as the non-solvent, the prepared membranes showed good ability to absorb and retain the lithium ion containing electrolyte. Addition of micron TiO2...... particles to the polymer electrolyte was found to enhance the tensile strength, electrolyte uptake, ion conductivity and the electrolyte/electrode interfacial stability of the membrane....

  19. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

    2005-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability

  20. Crosslinked polymer gel electrolytes based on polyethylene glycol methacrylate and ionic liquid for lithium battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Chen [ORNL; Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL

    2013-01-01

    Gel polymer electrolytes were synthesized by copolymerization polyethylene glycol methyl ether methacrylate with polyethylene glycol dimethacrylate in the presence of a room temperature ionic liquid, methylpropylpyrrolidinium bis(trifluoromethanesulfonyl)imide (MPPY TFSI). The physical properties of gel polymer electrolytes were characterized by thermal analysis, impedance spectroscopy, and electrochemical tests. The ionic conductivities of the gel polymer electrolytes increased linearly with the amount of MPPY TFSI and were mainly attributed to the increased ion mobility as evidenced by the decreased glass transition temperatures. Li||LiFePO4 cells were assembled using the gel polymer electrolytes containing 80 wt% MPPY TFSI via an in situ polymerization method. A reversible cell capacity of 90 mAh g 1 was maintained under the current density of C/10 at room temperature, which was increased to 130 mAh g 1 by using a thinner membrane and cycling at 50 C.

  1. Synthesis and Ionic Conductivity of Network Polymer Electrolytes with Internal Plasticizers

    Institute of Scientific and Technical Information of China (English)

    Jun Jie KANG; Shi Bi FANG

    2004-01-01

    Network polymer electrolytes with free oligo(oxyethylene) chains as internal plasticizers were prepared by cross-linking poly(ethylene glycol) acrylates. The effects of salt concentration and properties of internal plasticizers on ionic conductivity were studied.

  2. Ion Conductive Polymer Electrolyte Membranes and Simulation of Their Fractal Growth Patterns

    International Nuclear Information System (INIS)

    Due to their high ionic conductivity, solid polymer electrolyte (SPE) systems have attracted wide spread attention as the most appropriate choice to fabricate all-solid-state electrochemical devices, namely batteries, sensors and fuel cells. In this work, ion conductive polymer electrolyte membranes have been prepared for battery fabrication. However, fractals were found to grow in these polymer electrolyte membranes weeks after they were prepared. It was believed that the formation of fractal aggregates in these membranes were due to ionic movement. The discovery of fractal growth pattern can be used to understand the effects of such phenomenon in the polymer electrolyte membranes. Digital images of the fractal growth patterns were taken and a simulation model was developed based on the Brownian motion theory and a fractal dialect known as L-system. A computer coding has been designed to simulate and visualize the fractal growth. (author)

  3. Novel polymer electrolytes based on cationic polyurethane with different alkyl chain length

    Science.gov (United States)

    Liu, Libin; Wu, Xiwen; Li, Tianduo

    2014-03-01

    A series of comb-like cationic polyurethanes (PUs) were synthesized by quaternizing different bromoalkane (C2H5Br, C8H17Br, and C14H29Br) with polyurethane. Solid polymer electrolytes were prepared by complexes cationic PUs with different content of LiClO4. All the solid polymer electrolytes had sufficient thermal stability as confirmed by TGA and exhibited a single-phase behavior evidenced by DSC results. For these electrolytes, FT-IR spectra indicated the formation of polymer-ion complexes. The ac impedance spectra show that the conductivity of the electrolytes follow the Arrhenius behavior, and ionic conductivity is associated with both the charge migration of ions between coordination sites and transmission between aggregates, as confirmed by FT-IR and SEM. Alkyl quaternary ammonium salts in the polymer backbone are recognized as inherent plasticizers, which make the electrolytes exhibit liquid-like behavior. The plasticizing effect of PU-C8 and PU-C14 electrolytes are more effective than that of PU-C2 electrolyte. Maximum ionic conductivity at room temperature for PU-C8 electrolytes containing 50 wt% LiClO4 reached 1.1 × 10-4 S cm-1. This work provides a new research clue that alkyl quaternary ammonium salts could be used as inherent plasticizers and hence make the system behave like a liquid with high ionic conductivity, while preserving the dimensional stability of the solids.

  4. Electrochemical characterization of an ambient temperature rechargeable Li battery based on low molecular weight polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Bonino, F.; Croce, F.; Panero, S. (Dept. of Chemistry, Univ. of Rome ' La Sapienza' , Rome (Italy))

    1994-06-01

    Preliminary applications of low molecular weight polymer electrolyte (PEG) and lithium salt in lithium rechargeable batteries have been reported. The electrochemical characteristics of these electrolytes have been tested by cyclic voltammetry, charge-discharge cycles and ac impedance methods. Surface layers appear to be present on both electrodes, but they develop upon time with different extension

  5. Fabrication of Pt deposited on carbon nanotubes and performance of its polymer electrolyte membrane fuel cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new method of depositing nano-sized Pt particles on the surface of the carbon nano-tubes was introduced, and the performance of Pt/carbon nanotube compound on polymer electrolyte membrane fuel cells was measured. The experimental results show that the fine platinum particles (about 3 nm) were well dispersed on carbon nanotubes, which demonstrates the excellent catalytic properties of the Pt/CNTs compound in polymer electrolyte membrane fuel cells.

  6. Water Transport Analysis in Polymer Electrolyte Membrane Fuel Cells by Magnetic Resonance Imaging

    Institute of Scientific and Technical Information of China (English)

    S.Tsushima; S.Hirai

    2007-01-01

    1 Results Polymer electrolyte fuel cells (PEFCs) have beenintensively developedfor future vehicle applications andon-site power generation owing to its high energy efficiency and high power density.In PEFCs ,appropriatewater management to maintain polymer electrolyte membrane (PEM) hydratedis of great i mportance ,becausethe ion conductivity of membraneislower at lower water content .Consequently,it is of great interest to watercontent and water transport process in PEMs during fuel cell operation.

  7. A unified model for temperature dependent electrical conduction in polymer electrolytes

    OpenAIRE

    Mikrajuddin; Lenggoro, I. Wuled; Okuyama, Kikuo

    2001-01-01

    The observed temperature dependence of electrical conduction in polymer electrolytes is usually fitted with two separated equations: an Arrhenius equation at low temperatures and Vogel-Tamman-Fulcher (VTF) at high temperatures. We report here a derivation of a single equation to explain the variation of electrical conduction in polymer electrolytes at all temperature ranges. Our single equation is in agreement with the experimental data

  8. Electrode structures of polymer-electrolyte fuel cells (PEFC). An electron microscopy approach to the characterization of the electrode structure of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Scheiba, Frieder

    2009-01-28

    Polymer electrolyte fuel cells (PEFC) have a complex electrode structure, which usually consists of a catalyst, a catalyst support, a polymer electrolyte and pores. The materials used are largely amorphous, have a strong defective structure or have particle diameter of only a few nanometers. In the electrode the materials form highly disordered aggregated structures. Both aspects complicate a systematic structural analysis significantly. However, thorough knowledge of the electrode structure, is needed for systematic advancement of fuel cell technology and to obtain a better understanding of mass and charge carrier transport processes in the electrode. Because of the complex structure of the electrode, an approach based on the examination of electrode thin-sections by electron microscopy was chosen in this work to depicting the electrode structure experimentally. The present work presents these studies of the electrode structure. Some fundamental issues as the influence of the polymer electrolyte concentration and the polarity of the solvent used in the electrode manufacturing process were addressed. During the analysis particular attention was payed to the distribution and structure of the polymer electrolyte. A major problem to the investigations, were the low contrast between the polymer electrolyte, the catalyst support material and the embedding resin. Therefore, dilerent techniques were investigated in terms of their ability to improve the contrast. In this context, a computer-assisted acquisition procedure for energy filtered transmission electron microscopy (EF-TEM) was developed. The acquisition procedure permits a significant extension of the imageable sample. At the same time, it was possible to substantially reduce beam damage of the specimen and to minimize drift of the sample considerably. This allowed unambiguous identification of the polymer electrolyte in the electrode. It could further be shown, that the polymer electrolyte not only coats the

  9. Development of structured polymer electrolyte membranes for fuel cell applications

    Science.gov (United States)

    Gasa, Jeffrey

    The objective of this research was to explore structure-property relationships to develop the understanding needed for introduction of superior PEM materials. Polymer electrolyte membranes based on sulfonated poly(ether ketone ketone) (SPEKK) were fabricated using N-methyl pyrrolidone as casting solvent. The membranes were characterized in terms of properties that were relevant to fuel cell applications, such as proton conductivity, methanol permeability, and swelling properties, among others. It was found in this study that the proton conductivity of neat SPEKK membranes could reach the conductivity of commercial membranes such as NafionRTM. However, when the conductivity of SPEKK was comparable to NafionRTM, the swelling of SPEKK in water was quite excessive. The swelling problem was remedied by modifying the microstructure of SPEKK using different techniques. One of them involved blending of lightly sulfonated PEKK with highly acidic particles (sulfonated crosslinked polystyrene-SXLPS). Low sulfonation level of SPEKK was used to reduce the swelling of the membrane in water and the role of the highly acidic particles was to enhance the proton conductivity of the membrane. Because of the residual crystallinity in SPEKK with low sulfonation levels (IEC blending with non-conductive polymers (poly(ether imide) and poly(ether sulfone)) to act as mechanical reinforcement. It was found that miscibility behavior of the blends had a significant impact on the transport and swelling properties of these blends, which could be explained by the blend microstructure. The miscibility behavior was found to be strongly dependent on the sulfonation level of SPEKK. The conductivities of the blends were enhanced by as much as two orders of magnitude when the morphology was modified by electric field. The last approach was ionic crosslinking of the sulfonate groups in SPEKK using divalent cations, specifically barium ions. The crosslinking treatment has greatly improved the thermal

  10. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  11. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  12. Aluminum corrosion mitigation in alkaline electrolytes containing hybrid inorganic/organic inhibitor system for power sources applications

    Science.gov (United States)

    Gelman, Danny; Lasman, Itay; Elfimchev, Sergey; Starosvetsky, David; Ein-Eli, Yair

    2015-07-01

    The severe corrosion accompanied with hydrogen evolution process is the main obstacle preventing the implementation of Al as an anode in alkaline batteries. It impairs the functionality of alkaline battery, due to a drastic capacity loss and a short shelf life. The possibility to reduce Al corrosion rate in alkaline solution with the use of hybrid organic∖inorganic inhibitor based on poly (ethylene glycol) di-acid (PEG di-acid) and zinc oxide (ZnO) was examined in this work. A correlation between an Al corrosion rates and the concentrations of both PEG di-acid and ZnO in alkaline is shown. Selecting 5000 ppm PEG di-acid and 16 gr/l ZnO provides substantial corrosion protection of Al, reducing the corrosion rate in a strong alkaline solution by more than one order of magnitude. Moreover, utilizing the same formulation results in increase in Al-air battery discharge capacity, from 44.5 (for a battery utilizing only KOH in the electrolyte) to 70 mhA/cm2 (for a battery utilizing ZnO/PEG di-acid hybrid inhibitor in the electrolyte). The morphology and composition of the Al electrode surface (studied by SEM, EDS, and XRD) depend on PEG di-acid and ZnO concentrations.

  13. Electrostatics of polymer translocation events in electrolyte solutions.

    Science.gov (United States)

    Buyukdagli, Sahin; Ala-Nissila, T

    2016-07-01

    We develop an analytical theory that accounts for the image and surface charge interactions between a charged dielectric membrane and a DNA molecule translocating through the membrane. Translocation events through neutral carbon-based membranes are driven by a competition between the repulsive DNA-image-charge interactions and the attractive coupling between the DNA segments on the trans and the cis sides of the membrane. The latter effect is induced by the reduction of the coupling by the dielectric membrane. In strong salt solutions where the repulsive image-charge effects dominate the attractive trans-cis coupling, the DNA molecule encounters a translocation barrier of ≈10 kBT. In dilute electrolytes, the trans-cis coupling takes over image-charge forces and the membrane becomes a metastable attraction point that can trap translocating polymers over long time intervals. This mechanism can be used in translocation experiments in order to control DNA motion by tuning the salt concentration of the solution. PMID:27394120

  14. Microfabricated polymer electrolyte membrane fuel cells with low catalyst loadings

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, D.; Ponath, N.; Mueller, J. [Hamburg University of Technology, Hamburg (Germany). Department of Micro Systems Technology

    2005-11-01

    Miniaturized fuel cells as compact power sources fabricated in Pyrex glass using standard polymer electrolyte membrane (PEM) and electrode materials are presented. Photolithographic patterned and wet chemically etched serpentine flow channels of 1 mm in width and 250 {mu} m in depth transport the fuels to the cell of 1.44 cm{sup 2} active electrode area. Feeding H{sub 2}/O{sub 2} a maximum power density of 149 mW cm{sup -2} is attained at a very low Pt loading of 0.054 mg cm{sup -2}, ambient pressure, and room temperature. Operated with methanol and oxygen about 9 mW cm{sup -2} are achieved at ambient pressure, 60 C, and 1 mg cm{sup -2} PtRu/Pt (anode/cathode) loading. A planar two-cell stack to demonstrate and investigate the assembly of a fuel cell system on Pyrex wafers has successfully been fabricated. (author)

  15. Electrostatics of polymer translocation events in electrolyte solutions.

    Science.gov (United States)

    Buyukdagli, Sahin; Ala-Nissila, T

    2016-07-01

    We develop an analytical theory that accounts for the image and surface charge interactions between a charged dielectric membrane and a DNA molecule translocating through the membrane. Translocation events through neutral carbon-based membranes are driven by a competition between the repulsive DNA-image-charge interactions and the attractive coupling between the DNA segments on the trans and the cis sides of the membrane. The latter effect is induced by the reduction of the coupling by the dielectric membrane. In strong salt solutions where the repulsive image-charge effects dominate the attractive trans-cis coupling, the DNA molecule encounters a translocation barrier of ≈10 kBT. In dilute electrolytes, the trans-cis coupling takes over image-charge forces and the membrane becomes a metastable attraction point that can trap translocating polymers over long time intervals. This mechanism can be used in translocation experiments in order to control DNA motion by tuning the salt concentration of the solution.

  16. Membrane electrode assemblies for unitised regenerative polymer electrolyte fuel cells

    Science.gov (United States)

    Wittstadt, U.; Wagner, E.; Jungmann, T.

    Membrane electrode assemblies for regenerative polymer electrolyte fuel cells were made by hot pressing and sputtering. The different MEAs are examined in fuel cell and water electrolysis mode at different pressure and temperature conditions. Polarisation curves and ac impedance spectra are used to investigate the influence of the changes in coating technique. The hydrogen gas permeation through the membrane is determined by analysing the produced oxygen in electrolysis mode. The analysis shows, that better performances in both process directions can be achieved with an additional layer of sputtered platinum on the oxygen electrode. Thus, the electrochemical round-trip efficiency can be improved by more than 4%. Treating the oxygen electrode with PTFE solution shows better performance in fuel cell and less performance in electrolysis mode. The increase of the round-trip efficiency is negligible. A layer sputtered directly on the membrane shows good impermeability, and hence results in high voltages at low current densities. The mass transportation is apparently constricted. The gas diffusion layer on the oxygen electrode, in this case a titanium foam, leads to flooding of the cell in fuel cell mode. Stable operation is achieved after pretreatment of the GDL with a PTFE solution.

  17. Electrostatics of polymer translocation events in electrolyte solutions

    Science.gov (United States)

    Buyukdagli, Sahin; Ala-Nissila, T.

    2016-07-01

    We develop an analytical theory that accounts for the image and surface charge interactions between a charged dielectric membrane and a DNA molecule translocating through the membrane. Translocation events through neutral carbon-based membranes are driven by a competition between the repulsive DNA-image-charge interactions and the attractive coupling between the DNA segments on the trans and the cis sides of the membrane. The latter effect is induced by the reduction of the coupling by the dielectric membrane. In strong salt solutions where the repulsive image-charge effects dominate the attractive trans-cis coupling, the DNA molecule encounters a translocation barrier of ≈10 kBT. In dilute electrolytes, the trans-cis coupling takes over image-charge forces and the membrane becomes a metastable attraction point that can trap translocating polymers over long time intervals. This mechanism can be used in translocation experiments in order to control DNA motion by tuning the salt concentration of the solution.

  18. Characterization of proton conducting blend polymer electrolyte using PVA-PAN doped with NH4SCN

    Science.gov (United States)

    Premalatha, M.; Mathavan, T.; Selvasekarapandian, S.; Genova, F. Kingslin Mary; Umamaheswari, R.

    2016-05-01

    Polymer electrolytes with proton conductivity based on blend polymer using polyvinyl alcohol (PVA) and poly acrylo nitrile (PAN) doped with ammonium thiocyanate have been prepared by solution casting method using DMF as solvent. The complex formation between the blend polymer and the salt has been confirmed by FTIR Spectroscopy. The amorphous nature of the blend polymer electrolytes have been confirmed by XRD analysis. The highest conductivity at 303 K has been found to be 3.25 × 10-3 S cm-1 for 20 mol % NH4SCN doped 92.5PVA:7.5PAN system. The increase in conductivity of the doped blend polymer electrolytes with increasing temperature suggests the Arrhenius type thermally activated process. The activation energy is found to be low (0.066 eV) for the highest conductivity sample.

  19. Porous polymer electrolytes with high ionic conductivity and good mechanical property for rechargeable batteries

    Science.gov (United States)

    Liang, Bo; Jiang, Qingbai; Tang, Siqi; Li, Shengliang; Chen, Xu

    2016-03-01

    Porous polymer electrolytes (PPEs) are attractive for developing lithium-ion batteries because of the combined advantages of liquid and solid polymer electrolytes. In the present study, a new porous polymer membrane doped with phytic acid (PA) is prepared, which is used as a crosslinker in polymer electrolyte matrix and can also plasticize porous polymer electrolyte membranes, changing them into soft tough flexible materials. A PEO-PMMA-LiClO4-x wt.% PA (x = weight of PA/weight of polymer, PEO: poly(ethylene oxide); PMMA: poly(methyl methacrylate)) polymer membrane is prepared by a simple evaporation method. The effects of the ratio of PA to PEO-PMMA on the properties of the porous membrane, including morphology, porous structure, and mechanical property, are systematically studied. PA improves the porous structure and mechanical properties of polymer membrane. The maximum tensile strength and elongation of the porous polymer membranes are 20.71 MPa and 45.7% at 15 wt.% PA, respectively. Moreover, the PPEs with 15 wt.% PA has a conductivity of 1.59 × 10-5 S/cm at 20 °C, a good electrochemical window (>5 V), and a low interfacial resistance. The results demonstrate the compatibility of the mechanical properties and conductivity of the PPEs, indicating that PPEs have good application prospects for lithium-ion batteries.

  20. Synthesis and Characterization of a Novel Polymer Electrolyte for Lithium-ion Battery

    Institute of Scientific and Technical Information of China (English)

    Yan Ping Liang; Hong Zhu MA; Bo WANG

    2004-01-01

    A novel polymer electrolyte with the formula of Li2B4O7-PVA for lithium-ion battery was synthesized and its ion conductivity and mechanical properties were also tested. It is found that the conductivity of the prepared polymer electrolytes is higher than that of LiClO4/PEO or LiClO4/EC-DMC by two or three orders in magnitude and a large delocalized bond formed in Li2B4O7-PVA lead to transportation of Li ion easier, this electrolyte possesses high thermo-stability and can be used under 200°C.

  1. Dielectric behavior of different nanofillers incorporated in PVC-PMMA based polymer electrolyte membranes

    Science.gov (United States)

    Sowmya, G.; Pradeepa, P.; Kalaiselvimary, J.; Edwinraj, S.; Prabhu, M. Ramesh

    2016-05-01

    The Poly (methyl methacrylate) (PMMA)-Poly (vinyl chloride) (PVC) based polymer electrolytes were prepared by solvent casting technique. The prepared polymer electrolytes were subjected to conductivity studies by using electrochemical impedance spectroscopy and the maximum ionic conductivity value was found to be 0.8011 × 10-3 Scm-1 at 303K for PVC (17.5wt%) - PMMA (7.5wt %) - LiClO4 (8wt %) - PC (67wt %) - BaTiO3 (8wt%) electrolyte system. The dielectric behavior of the samples also studied.

  2. Virus-Assembled Flexible Electrode-Electrolyte Interfaces for Enhanced Polymer-Based Battery Applications

    Directory of Open Access Journals (Sweden)

    Ayan Ghosh

    2012-01-01

    Full Text Available High-aspect-ratio cobalt-oxide-coated Tobacco mosaic virus (TMV- assembled polytetrafluoroethylene (PTFE nonstick surfaces were integrated with a solvent-free polymer electrolyte to create an anode-electrolyte interface for use in lithium-ion batteries. The virus-assembled PTFE surfaces consisted primarily of cobalt oxide and were readily intercalated with a low-molecular-weight poly (ethylene oxide (PEO based diblock copolymer electrolyte to produce a solid anode-electrolyte system. The resulting polymer-coated virus-based system was then peeled from the PTFE backing to produce a flexible electrode-electrolyte component. Electrochemical studies indicated the virus-structured metal-oxide PEO-based interface was stable and displayed robust charge transfer kinetics. Combined, these studies demonstrate the development of a novel solid-state electrode architecture with a unique peelable and flexible processing attribute.

  3. Preparation and properties of biodegradable polymer-layered silicate nanocomposite electrolytes for zinc based batteries

    International Nuclear Information System (INIS)

    Highlights: • Organically modified MMT is used as nanofiller to enhance the properties of the polymer PCL-zinc triflate salt complex. • The nanocomposite showed enhancement in conductivity, excellent electrochemical and thermal stability. • Cyclic voltammetry revealed feasibility of intercalation/deintercalation of Zn2+ ions with MnO2 cathode. • Best conducting electrolyte showed remarkable degradability in soil compost over a period of 90 days. - Abstract: Polymer-layered silicate nanocomposite electrolytes (PLSNEs) were prepared by utilizing a biodegradable polymer namely poly(ϵ-caprolactone) as host polymer and zinc triflate as dopant salt with the incorporation of varying concentrations of octadecylamine modified montmorillonite nanoclay and further characterized using various experimental techniques. A maximum conductivity of 9.5 × 10−5 S cm−1 was achieved for a 15 wt% loading of the nanoclay. X-ray diffraction and differential scanning calorimetric studies revealed the change occurring in the crystalline behavior of the electrolyte as a result of incorporation of the nanoclay. An appreciably good thermal and electrochemical stability was also observed thus suggesting applicability of the prepared electrolyte in commericial systems and therefore the feasibility of reduction and oxidation processes of MnO2 cathode with the prepared electrolyte system has also been evaluated by means of cyclic voltammetry. The best conducting sample of the polymer electrolyte showed a remarkable degradability over a degradation period of 90 days in soil compost

  4. A flexible Li polymer primary cell with a novel gel electrolyte based on poly(acrylonitrile)

    Science.gov (United States)

    Akashi, Hiroyuki; Tanaka, Ko-ichi; Sekai, Koji

    The performance of a Li polymer primary cell with fire-retardant poly(acrylonitrile) (PAN)-based gel electrolytes is reported. By optimizing electrodes, electrolytes, the packaging material, and the structural design of the polymer cell, we succeeded in developing a "film-like" Li polymer primary cell with sufficient performance for practical use. The cell is flexible and less than 0.5 mm thick, which makes it suitable for a power source for some smart devices, such as an IC card. Fast cation conduction in the gel electrolyte minimizes the drop of the discharge capacity even at -20 °C. The high chemical stability of the gel electrolytes and the new packaging material allow the self-discharge rate to be limited to under 4.3%, which is equivalent to that of conventional coin-shaped or cylindrical Li-MnO 2 cells.

  5. Organic dopant added polyvinylidene fluoride based solid polymer electrolytes for dye-sensitized solar cells

    Science.gov (United States)

    Senthil, R. A.; Theerthagiri, J.; Madhavan, J.

    2016-02-01

    The effect of phenothiazine (PTZ) as dopant on PVDF/KI/I2 electrolyte was studied for the fabrication of efficient dye-sensitized solar cell (DSSC). The different weight percentage (wt%) ratios (0, 20, 30, 40 and 50%) of PTZ doped PVDF/KI/I2 electrolyte films were prepared by solution casting method using DMF as a solvent. The following techniques such as Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC), X-ray diffractometer (XRD) and AC-impedance analysis have been employed to characterize the prepared polymer electrolyte films. The FT-IR studies revealed the complex formation between PVDF/KI/I2 and PTZ. The crystalline and amorphous nature of polymer electrolytes were confirmed by DSC and XRD analysis respectively. The ionic conductivities of polymer electrolyte films were calculated from the AC-impedance analysis. The undoped PVDF/KI/I2 electrolyte exhibited the ionic conductivity of 4.68×10-6 S cm-1 and this value was increased to 7.43×10-5 S cm-1 when PTZ was added to PVDF/KI/I2 electrolyte. On comparison with different wt% ratios, the maximum ionic conductivity was observed for 20% PTZ-PVDF/KI/I2 electrolyte. A DSSC assembled with the optimized wt % of PTZ doped PVDF/KI/I2 electrolyte exhibited a power conversion efficiency of 2.92%, than the undoped PVDF/KI/I2 electrolyte (1.41%) at similar conditions. Hence, the 20% PTZ-PVDF/KI/I2 electrolyte was found to be optimal for DSSC applications.

  6. Impedance studies of a green blend polymer electrolyte based on PVA and Aloe-vera

    Science.gov (United States)

    Selvalakshmi, S.; Mathavan, T.; Vijaya, N.; Selvasekarapandian, Premalatha, M.; Monisha, S.

    2016-05-01

    The development of polymer electrolyte materials for energy generating and energy storage devices is a challenge today. A new type of blended green electrolyte based on Poly-vinyl alcohol (PVA) and Aloe-vera has been prepared by solution casting technique. The blending of polymers may lead to the increase in stability due to one polymer portraying itself as a mechanical stiffener and the other as a gelled matrix supported by the other. The prepared blend electrolytes were subjected to Ac impedance studies. It has been found out that the polymer film in which 1 gm of PVA was dissolved in 40 ml of Aloe-vera extract exhibits highest conductivity and its value is 3.08 × 10-4 S cm-1.

  7. Poly(vinylidene fluoride-hexafluoropropylene) polymer electrolyte for paper-based and flexible battery applications

    Science.gov (United States)

    Aliahmad, Nojan; Shrestha, Sudhir; Varahramyan, Kody; Agarwal, Mangilal

    2016-06-01

    Paper-based batteries represent a new frontier in battery technology. However, low-flexibility and poor ionic conductivity of solid electrolytes have been major impediments in achieving practical mechanically flexible batteries. This work discuss new highly ionic conductive polymer gel electrolytes for paper-based battery applications. In this paper, we present a poly(vinylidene fluoride-hexafluoropropylene) (PVDH-HFP) porous membrane electrolyte enhanced with lithium bis(trifluoromethane sulphone)imide (LiTFSI) and lithium aluminum titanium phosphate (LATP), with an ionic conductivity of 2.1 × 10-3 S cm-1. Combining ceramic (LATP) with the gel structure of PVDF-HFP and LiTFSI ionic liquid harnesses benefits of ceramic and gel electrolytes in providing flexible electrolytes with a high ionic conductivity. In a flexibility test experiment, bending the polymer electrolyte at 90° for 20 times resulted in 14% decrease in ionic conductivity. Efforts to further improving the flexibility of the presented electrolyte are ongoing. Using this electrolyte, full-cell batteries with lithium titanium oxide (LTO) and lithium cobalt oxide (LCO) electrodes and (i) standard metallic current collectors and (ii) paper-based current collectors were fabricated and tested. The achieved specific capacities were (i) 123 mAh g-1 for standard metallic current collectors and (ii) 99.5 mAh g-1 for paper-based current collectors. Thus, the presented electrolyte has potential to become a viable candidate in paper-based and flexible battery applications. Fabrication methods, experimental procedures, and test results for the polymer gel electrolyte and batteries are presented and discussed.

  8. Stable Lithium Deposition Generated from Ceramic-Cross-Linked Gel Polymer Electrolytes for Lithium Anode.

    Science.gov (United States)

    Tsao, Chih-Hao; Hsiao, Yang-Hung; Hsu, Chun-Han; Kuo, Ping-Lin

    2016-06-22

    In this work, a composite gel electrolyte comprising ceramic cross-linker and poly(ethylene oxide) (PEO) matrix is shown to have superior resistance to lithium dendrite growth and be applicable to gel polymer lithium batteries. In contrast to pristine gel electrolyte, these nanocomposite gel electrolytes show good compatibility with liquid electrolytes, wider electrochemical window, and a superior rate and cycling performance. These silica cross-linkers allow the PEO to form the lithium ion pathway and reduce anion mobility. Therefore, the gel not only features lower polarization and interfacial resistance, but also suppresses electrolyte decomposition and lithium corrosion. Further, these nanocomposite gel electrolytes increase the lithium transference number to 0.5, and exhibit superior electrochemical stability up to 5.0 V. Moreover, the lithium cells feature long-term stability and a Coulombic efficiency that can reach 97% after 100 cycles. The SEM image of the lithium metal surface after the cycling test shows that the composite gel electrolyte with 20% silica cross-linker forms a uniform passivation layer on the lithium surface. Accordingly, these features allow this gel polymer electrolyte with ceramic cross-linker to function as a high-performance lithium-ionic conductor and reliable separator for lithium metal batteries. PMID:27247991

  9. Understanding the transport processes in polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Cheah, May Jean

    Polymer electrolyte membrane (PEM) fuel cells are energy conversion devices suitable for automotive, stationary and portable applications. An engineering challenge that is hindering the widespread use of PEM fuel cells is the water management issue, where either a lack of water (resulting in membrane dehydration) or an excess accumulation of liquid water (resulting in fuel cell flooding) critically reduces the PEM fuel cell performance. The water management issue is addressed by this dissertation through the study of three transport processes occurring in PEM fuel cells. Water transport within the membrane is a combination of water diffusion down the water activity gradient and the dragging of water molecules by protons when there is a proton current, in a phenomenon termed electro-osmotic drag, EOD. The impact of water diffusion and EOD on the water flux across the membrane is reduced due to water transport resistance at the vapor/membrane interface. The redistribution of water inside the membrane by EOD causes an overall increase in the membrane resistance that regulates the current and thus EOD, thereby preventing membrane dehydration. Liquid water transport in the PEM fuel cell flow channel was examined at different gas flow regimes. At low gas Reynolds numbers, drops transitioned into slugs that are subsequently pushed out of the flow channel by the gas flow. The slug volume is dependent on the geometric shape, the surface wettability and the orientation (with respect to gravity) of the flow channel. The differential pressure required for slug motion primarily depends on the interfacial forces acting along the contact lines at the front and the back of the slug. At high gas Reynolds number, water is removed as a film or as drops depending on the flow channel surface wettability. The shape of growing drops at low and high Reynolds number can be described by a simple interfacial energy minimization model. Under flooding conditions, the fuel cell local current

  10. Preparation and characterization of plasticized high molecular weight PVC-based polymer electrolytes

    Indian Academy of Sciences (India)

    S Ramesh; Geok Bee Teh; Rong-Fuh Louh; Yong Kong Hou; Pung Yen Sin; Lim Jing Yi

    2010-02-01

    Poly(vinyl chloride) (PVC)-based polymer electrolytes films consisting of lithium trifluromethanesulfonate (LiCF3SO3)-ethylene carbonate (EC) were prepared by the solution-casting method. Ionic conductivities of the electrolytes have been determined by an impedance studies in the temperature range of 298–373 K. Complexation of the prepared electrolytes is studied by X-ray diffraction (XRD) analysis. Thermogravimetric analysis (TGA) was used to confirm the thermal stability of the polymer electrolytes. The conductivity–temperature plots were found to follow an Arrhenius nature. All these films are found to be thermally stable until 132–167°C.

  11. Feasibility of the recovery of uranium from alkaline waste by amidoximated grafted polypropylene polymer matrix

    International Nuclear Information System (INIS)

    The amidoximated grafted polypropylene polymer matrix was prepared by post irradiation grafting of acrylonitrile (AN) onto thermally bonded non-woven matrix of poly(propylene) sheet using electron beams. This precursor polymer was reacted with hydroxylamine to convert AN to poly(acrylamidoxime) (AO) groups, and conditioned by treating them with 2.5 % KOH at 80 deg C for 1 h. The polymer matrix was having the degree of AN grafting ∼106 wt% and its subsequent conversion to AO groups ∼70 %. The water uptake capacity of AO polymer matrix were found to be 100 ± 5 % (w/w). Quantitative recovery of uranium from alkaline waste (ammonium diuranate supernatant) solution was achieved by this polymer matrix. The other radionuclides present in the waste solution were not extracted by the polymer matrix. For all other radionuclides, the uptake was found to be <6 %. (author)

  12. Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries

    Science.gov (United States)

    Porcarelli, Luca; Gerbaldi, Claudio; Bella, Federico; Nair, Jijeesh Ravi

    2016-01-01

    Here we demonstrate that by regulating the mobility of classic -EO- based backbones, an innovative polymer electrolyte system can be architectured. This polymer electrolyte allows the construction of all solid lithium-based polymer cells having outstanding cycling behaviour in terms of rate capability and stability over a wide range of operating temperatures. Polymer electrolytes are obtained by UV-induced (co)polymerization, which promotes an effective interlinking between the polyethylene oxide (PEO) chains plasticized by tetraglyme at various lithium salt concentrations. The polymer networks exhibit sterling mechanical robustness, high flexibility, homogeneous and highly amorphous characteristics. Ambient temperature ionic conductivity values exceeding 0.1 mS cm-1 are obtained, along with a wide electrochemical stability window (>5 V vs. Li/Li+), excellent lithium ion transference number (>0.6) as well as interfacial stability. Moreover, the efficacious resistance to lithium dendrite nucleation and growth postulates the implementation of these polymer electrolytes in next generation of all-solid Li-metal batteries working at ambient conditions.

  13. Polymer Electrolytes Based on Electrospun PEO-P(VdF-HFP) Blends for Lithium-Polymer Batteries

    Institute of Scientific and Technical Information of China (English)

    P.Raghvan; J.Manuel; G.Cheruvally; J.H.Ahn

    2007-01-01

    1 Results Electrospinning has attracted immense attention recently as a versatile and easy method to prepare polymer membranes that are made up of thin fibers of micron and sub-micron diameters.Such membranes are particularly suitable as host matrices for polymer electrolytes (PEs) since the interlaying of fibers generate large porosity with fully interconnected pore structure facilitating the easy transport of ions.Characterization of PEs based on electrospun membranes of poly(vinylidene fluoride) (PVd...

  14. Nafion and modified-Nafion membranes for polymer electrolyte fuel cells: An overview

    Indian Academy of Sciences (India)

    A K Sahu; S Pitchumani; P Sridhar; A K Shukla

    2009-06-01

    Polymer electrolyte fuel cells (PEFCs) employ membrane electrolytes for proton transport during the cell reaction. The membrane forms a key component of the PEFC and its performance is controlled by several physical parameters, viz. water up-take, ion-exchange capacity, proton conductivity and humidity. The article presents an overview on Nafion membranes highlighting their merits and demerits with efforts on modified-Nafion membranes.

  15. Solid State Polymer Electrolytes for Dye-sensitized Solar Cell

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Introduction Over the past decade,Dye-sensitized solar cells (DSSCs) have been intensively investigated as potential alternatives to conventional inorganic photovoltaic devices due to their low production cost and high energy conversion[1-4]. This type of solar cell has achieved an impressive energy conversion efficiency of over 10%,whose electrolyte is a voltaic organic liquid solvent containing iodide/triiodide as redox couple.However,the use of a liquid electrolyte brings difficulties in the practi...

  16. [Some aspects of water electrolysis with the use of a solid polymer electrolyte].

    Science.gov (United States)

    Zorina, N G

    2006-01-01

    Electrochemical process in cells with a solid polymer electrolyte is dependent on catalyst durability in harsh environments and catalyst sputtering technology to ensure efficient power consumption. Active polymer electrolytes will permit to reduce substantially non-productive layouts and design a cost-effective, compact and safe system generator of high-purity oxygen and hydrogen. The existing designs of combined oxide systems integrating rear-earth and earth metals with a structure of Ln3+x Me2+1-x CoO3 containing perofskites were shown to be active catalysts in cells with a solid polymer electrolyte, and the sputtering technology was proven to reduce non-productive layouts in 2 or 2.5 times. PMID:17405280

  17. Conductivity and properties of polysiloxane-polyether cluster-LiTFSI networks as hybrid polymer electrolytes

    Science.gov (United States)

    Boaretto, Nicola; Joost, Christine; Seyfried, Mona; Vezzù, Keti; Di Noto, Vito

    2016-09-01

    This report describes the synthesis and the properties of a series of polymer electrolytes, composed of a hybrid inorganic-organic matrix doped with LiTFSI. The matrix is based on ring-like oligo-siloxane clusters, bearing pendant, partially cross-linked, polyether chains. The dependency of the thermo-mechanic and of the transport properties on several structural parameters, such as polyether chains' length, cross-linkers' concentration, and salt concentration is studied. Altogether, the materials show good thermo-mechanical and electrochemical stabilities, with conductivities reaching, at best, 8·10-5 S cm-1 at 30 °C. In conclusion, the cell performances of one representative sample are shown. The scope of this report is to analyze the correlations between structure and properties in networked and hybrid polymer electrolytes. This could help the design of optimized polymer electrolytes for application in lithium metal batteries.

  18. Preparation and Characterization of Organic-Inorganic Hybrid Hydrogel Electrolyte Using Alkaline Solution

    Directory of Open Access Journals (Sweden)

    Masanobu Chiku

    2011-09-01

    Full Text Available Organic-inorganic hybrid hydrogel electrolytes were prepared by mixing hydrotalcite, cross-linked potassium poly(acrylate and 6 M KOH solution. The organic-inorganic hybrid hydrogel electrolytes had high ionic conductivity (0.456–0.540 S cm−1 at 30 °C. Moreover, the mechanical strength of the hydrogel electrolytes was high enough to form a 2–3 mm thick freestanding membrane because of the reinforcement with hydrotalcite.

  19. Preparation and Characterization of Organic-Inorganic Hybrid Hydrogel Electrolyte Using Alkaline Solution

    OpenAIRE

    Masanobu Chiku; Shoji Tomita; Eiji Higuchi; Hiroshi Inoue

    2011-01-01

    Organic-inorganic hybrid hydrogel electrolytes were prepared by mixing hydrotalcite, cross-linked potassium poly(acrylate) and 6 M KOH solution. The organic-inorganic hybrid hydrogel electrolytes had high ionic conductivity (0.456–0.540 S cm−1) at 30 °C. Moreover, the mechanical strength of the hydrogel electrolytes was high enough to form a 2–3 mm thick freestanding membrane because of the reinforcement with hydrotalcite.

  20. A novel and high-effective redox-mediated gel polymer electrolyte for supercapacitor

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Alkali and P-phenylenediamine doped polyvinyl alcohol gel electrolyte is prepared. • The PVA-KOH-PPD gel electrolyte can also be used as separator. • The introduction of PPD increases the ionic conductivity of electrolyte. • The supercapacitor exhibits flexible and high energy density. - Abstract: A supercapacitor utilize a novel redox-mediated gel polymer (PVA-KOH-PPD) as electrolyte and separator, and activated carbon as electrodes is assembled. The PVA-KOH-PPD gel polymer as potential electrolyte for supercapacitor is investigated by cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy techniques. It is found that the supercapacitor exhibits high ionic conductivity (25 mS cm−1), large electrode specific capacitance (611 F g−1) and high energy density (82.56 Wh kg−1). The high performance is attributed to the addition of quick redox reactions at the electrolyte|electrode interface as PPD undergoes a two-proton/two-electron reduction and oxidation during cycling. Furthermore, the supercapacitor with PVA-KOH-PPD gel polymer shows excellent charge-discharge stability, after 1000 charge-discharge cycles, the supercapacitor still retains a high electrode specific capacitance of 470 F g−1. It is believed that the idea using redox mediator has a good prospect for improving the performances of supercapacitors

  1. A Synopsis of Interfacial Phenomena in Lithium-Based Polymer Electrolyte Electrochemical Cells

    Science.gov (United States)

    Baldwin, Richard S.; Bennett, William R.

    2007-01-01

    The interfacial regions between electrode materials, electrolytes and other cell components play key roles in the overall performance of lithium-based batteries. For cell chemistries employing lithium metal, lithium alloy or carbonaceous materials (i.e., lithium-ion cells) as anode materials, a "solid electrolyte interphase" (SEI) layer forms at the anode/electrolyte interface, and the properties of this "passivating" layer significantly affect the practical cell/battery quality and performance. A thin, ionically-conducting SEI on the electrode surface can beneficially reduce or eliminate undesirable side reactions between the electrode and the electrolyte, which can result in a degradation in cell performance. The properties and phenomena attributable to the interfacial regions existing at both anode and cathode surfaces can be characterized to a large extent by electrochemical impedance spectroscopy (EIS) and related techniques. The intention of the review herewith is to support the future development of lithium-based polymer electrolytes by providing a synopsis of interfacial phenomena that is associated with cell chemistries employing either lithium metal or carbonaceous "composite" electrode structures which are interfaced with polymer electrolytes (i.e., "solvent-free" as well as "plasticized" polymer-binary salt complexes and single ion-conducting polyelectrolytes). Potential approaches to overcoming poor cell performance attributable to interfacial effects are discussed.

  2. Fabrication of stable photovoltachromic cells using a solvent-free hybrid polymer electrolyte.

    Science.gov (United States)

    Yang, Ming-Che; Cho, Hsun-Wei; Wu, Jih-Jen

    2014-08-21

    In this work, photovoltachromic cells (PVCCs) are fabricated using a solvent-free polyethylene glycol (PEG)-titanium hybrid polymer electrolyte. With appropriate addition of 1,2-dimethyl-3-propylimidazolium iodide in the electrolyte, the range of tunable colored-state transmittance of the PVCC is enlarged due to an improved fill factor. A transmittance modulation larger than 40% can be maintained for at least 3 months, demonstrating the good long-term stability of PVCCs fabricated using the solvent-free PEG-Ti hybrid electrolyte.

  3. Study on the Ion Association in PVdF-based Gel Polymer Electrolyte

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Gel polymer electrolytes based on the poly (vinylidene fluoride) (PVdF) and the electrolyte of LiClO4 in propylene carbonate (PC) were prepared by the solution casting technique. The ionic conductivity of the gel electrolytes was concentration of lithium salt. Because of the strong coulombiq attractions, the dissolved salt ions might aggregate into ion pairs and multiple ion aggregates. The analysis of DSC and X-ray diffraction revealed that the ions association occurred at higher concentration of lithium salt.

  4. Luminescent Polymer Electrolyte Composites Using Silica Coated-Y2O3:Eu as Fillers

    OpenAIRE

    Mikrajuddin Abdullah; Kikuo Okuyama

    2003-01-01

    Luminescent polymer electrolyte composites composed of silica coated Y2O3:Eu in polyethylene glycol (PEG) matrix has been produced by initially synthesizing silica coated Y2O3:Eu and mixing with polyethylene glycol in a lithium salt solution. High luminescence intensity at round 600 nm contributed by electron transitions in Eu3+ (5D0 -> 7F0, 5D0 -> 7F1, and 5D0 -> 7F3 transitions) were observed. The measured electrical conductivity was comparable to that reported for polymer electrolyte compo...

  5. Synthesis and characterization of an electrolyte system based on a biodegradable polymer

    Directory of Open Access Journals (Sweden)

    K. Sownthari

    2013-06-01

    Full Text Available A polymer electrolyte system has been developed using a biodegradable polymer namely poly-ε-caprolactone (PCL in combination with zinc triflate [Zn(CF3SO32] in different weight percentages and characterized during this investigation. Free-standing thin films of varying compositions were prepared by solution casting technique. The successful doping of the polymer has been confirmed by means of Fourier transform infrared spectroscopy (FTIR by analyzing the carbonyl (C=O stretching region of the polymer. The maximum ionic conductivity obtained at room temperature (25°C was found to be 8.8x10–6 S/cm in the case of PCL complexed with 25 wt% Zn(CF3SO32 which is five orders of magnitude higher than that of the pure polymer host material. The increase in amorphous phase with an increase in salt concentration of the prepared polymer electrolyte has also been confirmed from the concordant results obtained from X-ray diffraction (XRD, differential scanning calorimetry (DSC and scanning electron microscopic (SEM analyses. Furthermore, the electrochemical stability window of the prepared polymer electrolyte was found to be 3.7 V. An electrochemical cell has been fabricated based on Zn/MnO2 electrode couple as an application area and its discharge characteristics were evaluated.

  6. Performance of AA5052 alloy anode in alkaline ethylene glycol electrolyte with dicarboxylic acids additives for aluminium-air batteries

    Science.gov (United States)

    Wang, DaPeng; Zhang, DaQuan; Lee, KangYong; Gao, LiXin

    2015-11-01

    Dicarboxylic acid compounds, i.e. succinic acid (SUA), adipic acid (ADA) and sebacic acid (SEA), are used as electrolyte additives in the alkaline ethylene glycol solution for AA5052 aluminium-air batteries. It shows that the addition of dicarboxylic acids lowers the hydrogen gas evolution rate of commercial AA5052 aluminium alloy anode. AA5052 aluminium alloy has wide potential window for electrochemical activity and better discharge performance in alkaline ethylene glycol solution containing dicarboxylic acid additives. ADA has the best inhibition effect for the self-corrosion of AA5052 anode among the three dicarboxylic acid additives. Fourier transform infrared spectroscopy (FT-IR) reveals that dicarboxylic acids and aluminium ions can form coordination complexes. Quantum chemical calculations shows that ADA has a smaller energy gap (ΔE, the energy difference between the lowest unoccupied orbital and the highest occupied orbital), indicating that ADA has the strongest interaction with aluminium ions.

  7. Solidification of liquid electrolyte with imidazole polymers for quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Quasi-solid-state electrolytes were prepared by employing the imidazole polymers to solidify the liquid electrolyte containing lithium iodide, iodine and ethylene carbonate (EC)/propylene carbonate (PC) mixed solvent. The ionic conductivity and diffusion behavior of triiodide in the quasi-solid-state electrolytes were examined in terms of the polymer content. Application of the quasi-solid-state electrolytes to the dye-sensitized solar cells, the maximum energy conversion efficiency of 7.6% (AM 1.5, 100 mW cm-2) was achieved. The dependence of the photovoltaic performance on the polymer content and on the different anions of the imidazole polymers was studied by electrochemical impedance spectroscopy and cyclic voltammetry. The results indicate the charge transfer behaviors occurred at nanocrystalline TiO2/electrolyte and Pt/electrolyte interface play an important role in influencing the photovoltaic performance of quasi-solid-state dye-sensitized solar cells

  8. Solidification of liquid electrolyte with imidazole polymers for quasi-solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang Miao [Beijing National laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Lin Yuan [Beijing National laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China)], E-mail: linyuan@iccas.ac.cn; Zhou Xiaowen; Xiao Xurui [Beijing National laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China); Yang Lei [Beijing National laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Feng Shujing; Li Xueping [Beijing National laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China)

    2008-01-15

    Quasi-solid-state electrolytes were prepared by employing the imidazole polymers to solidify the liquid electrolyte containing lithium iodide, iodine and ethylene carbonate (EC)/propylene carbonate (PC) mixed solvent. The ionic conductivity and diffusion behavior of triiodide in the quasi-solid-state electrolytes were examined in terms of the polymer content. Application of the quasi-solid-state electrolytes to the dye-sensitized solar cells, the maximum energy conversion efficiency of 7.6% (AM 1.5, 100 mW cm{sup -2}) was achieved. The dependence of the photovoltaic performance on the polymer content and on the different anions of the imidazole polymers was studied by electrochemical impedance spectroscopy and cyclic voltammetry. The results indicate the charge transfer behaviors occurred at nanocrystalline TiO{sub 2}/electrolyte and Pt/electrolyte interface play an important role in influencing the photovoltaic performance of quasi-solid-state dye-sensitized solar cells.

  9. Obtention and evaluation of polyethylene-based solid polymer electrolyte membranes fro hydrogen production

    Science.gov (United States)

    Masson, J. P.; Molina, R.; Roth, E.; Gaussens, G.; Lemaire, F.

    The fabrication and testing of a polyethylene-based solid polymer electrolyte for use in hydrogen production by water electrolysis are discussed. The fabrication process involves the radiation grafting of styrene groups onto a polyethylene matrix, followed by the chemical sulphonation of the resulting polymer. The membrane produced has exhibited resistivities as low as 60 ohm cm for a 1-mm thickness, and other properties of the same order of magnitude as those of the commercially available but more expensive Nafion 014 membrane. Life tests carried out at a current density of 2 kA/sq m in single-cell modules with 10-sq cm active surface have revealed no noticeable degradation in membrane mechanical or electrical properties after 3000 hours for membranes reinforced by an organic polymer fabric. The development of an electrolyzer specifically designed for operation with a solid polymer electrolyte is currently under way.

  10. Effect of organic-inorganic hybrid P123-em-SBA15 on lithium transport properties of composite polymer electrolyte

    Institute of Scientific and Technical Information of China (English)

    XI Jingyu; HUANG Xiaobin; TANG Xiaozhen

    2004-01-01

    A novel PEO-based composite polymer electrolyte by using organic-inorganic hybrid EO20PO70EO20-em- mesoporous silica (P123-em-SBA15) as the filler has been developed. The experiment results show that P123-em- SBA15 can enhance the lithium-ion transference number of the composite polymer electrolyte, which is induced by the special topology structure of P123 in P123-em-SBA15 hybrid. In addition, room temperature ionic conductivity of the composite polymer electrolyte can also be increased by about two orders of magnitude. The excellent lithium transport properties suggest that PEO-LiClO4-P123-em-SBA15 composite polymer electrolyte can be used as electrolyte materials for all solid-state rechargeable lithium polymer batteries.

  11. Morphology and conductivity of in-situ PEO-LiClO4-TiO2 composite polymer electrolyte

    Institute of Scientific and Technical Information of China (English)

    PAN Chun-yue; FENG Qing; WANG Li-jun; ZHANG Qian; CHAO Meng

    2007-01-01

    PEO-LiClO4-TiO2 composite polymer electrolyte films were prepared. TiO2 was formed directly in matrix by hydrolysis and condensation reaction of tetrabutyl titanate. The crystallinity, morphology and ionic conductivity of composite polymer electrolyte films were examined by differential scanning calorimetry, scanning electron microscopy, atom force microscopy and alternating current impedance spectroscopy, respectively. The glass transition temperature and the crystallinity of composite polymer electrolytes are decreased compared with those of PEO-LiClO4 polymer electrolyte film. The results show that TiO2 particles are uniformly dispersed in PEO-LiClO4-5%TiO2 composite polymer electrolyte film. The maximal conductivity of 5.5×10-5 S/cm at 20 ℃ of PEO-LiClO4-TiO2 film is obtained at 5% mass fraction of TiO2.

  12. Durability aspects of polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Sethuraman, Vijay Anand

    activity. The H2O 2 selectivity in ORR was independent of oxygen concentration but increased with decrease in water activity (i.e., decreased humidity). Presences of trace impurities (such as CO, H2S, NH3, etc.) in the fuel also affect PEMFC durability. Among these impurities, H 2S causes significantly higher performance loss and irreversible catalytic poisoning. A concise mechanism for the poisoning kinetics of H2S on composite solid polymer electrolyte Pt (SPE-Pt) electrode was validated experimentally by charge balances and theoretically by a model, which predicted the oxidation current as a function of the applied potential. H2S dissociatively adsorbed onto SPE-Pt electrode as linear and bridge bonded sulfur (S) species and, under favorable potentials, underwent electro-oxidation to sulfur and then to sulfur dioxide (SO2). Fraction of the adsorbed S species remained as 'hard-to-oxidize' adsorbents and caused irreversible loss of catalytic activity. Deactivation of bridge sites occurred first followed by the loss of linear sites. A method to estimate the catalytic sites irreversibly lost due to sulfur poisoning was developed.

  13. Novelionic Polymer Electrolytes for Dye Sensitized Solar Cell

    Institute of Scientific and Technical Information of China (English)

    Li Wang; Shibi Fang; Yuan Lin

    2005-01-01

    @@ 1Introduction In recent years, dye-sensitized solar cells(DSC) based on nanocrystalline porous TiO2 films have attracted much attention because of their relatively higher efficiency and low cost compared with conventional inorganic photovoltaic devices[1]. This type of solar cell has achieved an impressive photo-to-energy conversion efficiency of over 10% where the electrolyte is volatile organic liquid solvents containing I-/I-3- as redox couple. Because of high volatilities, solvent losses occur during long-term operations, resulting in lowered DSC performances.And leakage of liquid electrolyte also limits the durability of DSC.

  14. New polymer electrolytes for low temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sundholm, F.; Elomaa, M.; Ennari, J.; Hietala, S.; Paronen, M. [Univ. of Helsinki (Finland). Lab. of Polymer Chemistry

    1998-12-31

    Proton conducting polymer membranes for demanding applications, such as low temperature fuel cells, have been synthesised and characterised. Pre-irradiation methods are used to introduce sulfonic acid groups, directly or using polystyrene grafting, in stable, preformed polymer films. The membranes produced in this work show promise for the development of cost-effective, highly conducting membranes. (orig.)

  15. Understanding ternary poly(potassium benzimidazolide)-based polymer electrolytes

    DEFF Research Database (Denmark)

    Aili, David; Jankova Atanasova, Katja; Han, Junyoung;

    2016-01-01

    Poly(2,20-(m-phenylene)-5,50-bisbenzimidazole) (m-PBI) can dissolve large amounts of aqueous electrolytes to give materials with extraordinary high ion conductivity and the practical applicability has been demonstrated repeatedly in fuel cells, water electrolysers and as anion conducting component...

  16. Preparation of a Star Network PEG-based Gel Polymer Electrolyte and Its Application to Electrochromic Devices

    Institute of Scientific and Technical Information of China (English)

    GONG Yong-Feng; FU Xiang-Kai; ZHANG Shu-Peng; JIANG Qing-Long

    2007-01-01

    A star network polymer with a pentaerythritol core linking four PEG-block polymeric arms was synthesized,and its corresponding gel polymer electrolyte based on lithium perchlorate and plasticizers EC/PC with the character being colorless and highly transparent has been also prepared. The polymer host was characterized and confirmed to be of a star network and an amorphous structure by FTIR, 1H NMR and XRD studies. The polymer host hold good mechanical properties for pentaerythritol cross-linking. Maximum ionic conductivity of the prepared electrolyte showed that the thermal stability was up to at least 150 ℃. The gel polymer electrolyte was further evaluated in electrochromic devices fabricated by transparent PET-ITO and electrochromically active viologen derivative films, and its excellent performance promised the usage of the gel polymer electrolyte as ionic conductor material in electrochrornic devices.

  17. Characterization of new polyacrylonitrile-co-bis[2-(2-methoxyethoxy)ethyl]itaconate based gel polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B.K.; Kim, Y.W. [Dankook Univ., Seoul (Korea). Dept. of Applied Physics; Gong, M.S. [Dankook Univ., Seoul (Korea). Dept. of Chemistry; Ahn, S.H. [Battery Research Center, LG Chemical Ltd., Taejon (Korea)

    2001-07-01

    Since the gel polymer electrolytes based on polyacrylonitrile (PAN) host have not been sufficient to fulfil the requirements as a separator of current lithium polymer battery, a new polymer host copolymerized with PAN, polyacrylonitrile-co-bis[2-(2-methoxyethoxy)ethyl]itaconate (abbreviated as PANI), was synthesized in expectation of enhanced trapping ability of liquid electrolytes. Electrical, electrochemical, thermal and mechanical studies have been carried out on PAN and PANI blended gel polymer electrolytes, complexed with ethylene carbonate (EC) and {sup g}amma{sup -}butyrolactone (BL) containing LiClO{sub 4} salt. The addition of PANI as a host polymer in the PAN-based gel polymer electrolytes has beneficial effects such as higher ionic conductivity, better thermal and electrochemical stabilities and enhanced ability of trapping organic solvent, possibly due to ion chelating ability of itaconate unit, though it shows less mechanical rigidity caused by amorphization of the PAN matrix. (Author).

  18. The effect of crystal orientation on the aluminum anodes of the aluminum-air batteries in alkaline electrolytes

    Science.gov (United States)

    Fan, Liang; Lu, Huimin; Leng, Jing; Sun, Zegao; Chen, Chunbo

    2015-12-01

    Recently, aluminum-air (Al-air) batteries have received attention from researchers as an exciting option for safe and efficient batteries. The electrochemical performance of Aluminum anode remains an active area of investigation. In this paper, the electrochemical properties of polycrystalline Al, Al (001), (110) and (111) single crystals are investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in 4 M NaOH and KOH. Hydrogen corrosion rates of the Al anodes are determined by hydrogen collection. Battery performance using the anodes is tested by constant current discharge at 10 mA cm-2. This is the first report showing that the electrochemical properties of Al are closely related to the crystallographic orientation in alkaline electrolytes. The (001) crystallographic plane has good corrosion resistance but (110) is more sensitive. Al (001) single crystals display higher anode efficiency and capacity density. Controlling the crystallographic orientation of the Al anode is another way to improve the performance of Al-air batteries in alkaline electrolytes.

  19. Numerical investigations on two-phase flow in polymer electrolyte fuel cells

    NARCIS (Netherlands)

    Qin, C.Z.

    2012-01-01

    Numerical modeling plays an important role in understanding various transport processes in polymer electrolyte fuel cells (PEFCs). It can not only provide insights into the development of new PEFC architectures, but also optimize operating conditions for better cell performance. Water balance is cri

  20. Properties of Polymer Electrolyte Membranes Prepared by Blending of Sulfonated Polystyrene-Lignosulfonate

    Directory of Open Access Journals (Sweden)

    Siang Tandi Gonggo

    2012-11-01

    Full Text Available Electrolyte polymer membrane widely used in PEMFC and DMFC is a perfluorosulfonated membrane such as Nafion. This membrane material exhibits good chemical stability and proton conductivity, but it is very expensive and difficult to recycle. It has high cross-over methanol in DMFC that causes the decrease efficiency and performance of fuel cell, so that the electrolyte polymer membrane with low cross-over methanol has been needed to substitute Nafion membrane. One of the materials used as a polymer electrolyte membrane is polyblends of a sulfonated polystyrene-lignosulfonate (SPS-LS. These polyblends have been prepared by casting polymer solution and characterized as a polyelectrolyte membrane for DMFC. SPS was prepared by sulfonation of polystyrene with acetyl sulfate used as a sulfonating agent. The membranes of SPS-LS were characterized by analysis of functional groups, mechanical properties, and methanol permeability. The maximum mechanical properties of the SPS-LS membrane were observed in LS ratio of 7.5%. However, the methanol permeability of membrane increases as the increase of LS ratio in SPS-LS membranes. The properties of membranes, especially the mechanical property and methanol permeability close to that of Nafion® 117 membrane, so the SPS-LS membrane is highly potential used as the electrolyte membrane for direct methanol fuel cell.

  1. Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Aili, David; Allward, Todd; Alfaro, Silvia Martinez;

    2014-01-01

    Composite membranes based on poly(2,2′(m-phenylene)-5,5́bibenzimidazole) (PBI) and sulfonated polyhedral oligosilsesquioxane (S-POSS) with S-POSS contents of 5 and 10wt.% were prepared by solution casting as base materials for high temperature polymer electrolyte membrane fuel cells. With membran...

  2. An update of solid polymer electrolyte water electolysis programs at General Electric

    Science.gov (United States)

    Russell, J. H.

    At the previous two world hydrogen energy conferences in 1976 and 1978 the status of General Electric solid polymer electrolyte water electrolysis development program for large scale hydrogen generator was presented (Nuttall 1976, 1978). This paper updates the progress of this ongoing development program and also describes several new associated programs aimed at gaining early field experience on prototype systems.

  3. Status of the development of solid polymer electrolyte water electrolysis for large scale hydrogen generation

    Science.gov (United States)

    Russell, J. H.

    1982-02-01

    Solid polymer electrolyte water electrolysis for large scale hydrogen generation is reported. The program was aimed at performance improvement. Reductions in cell impedance were demonstrated which improve cell performance by over 100 mV. A prototype 500 SCFH system for field evaluation was developed.

  4. Application of polyacrylonitrile-based polymer electrolytes in rechargeable lithium batteries

    DEFF Research Database (Denmark)

    Perera, K.S.; Dissanayake, M.A.K.L.; Skaarup, Steen;

    2008-01-01

    Polyacrylonitrile (PAN)-based polymer electrolytes have obtained considerable attention due to their fascinating characteristics such as appreciable ionic conductivity at ambient temperatures and mechanical stability. This study is based on the system PAN-ethylene carbonate (EC)-propylene carbonate...

  5. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Li, Qingfeng

    Polymer electrolyte membrane fuel cell (PEMFC) technology based on Nafion membranes can operate at temperatures around 80°C. The new development in the field is high temperature PEMFC for operation above 100°C, which has been successfully demonstrated through the previous EC Joule III and the 5th...

  6. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf

    The new development in the field of polymer electrolyte membrane fuel cell (PEMFC) is high temperature PEMFC for operation above 100°C, which has been successfully demonstrated through the previous EC Joule III and the 5th framework programme. New challenges are encountered, bottlenecks for the new...

  7. Microfibrillated cellulose as reinforcement for Li-ion battery polymer electrolytes with excellent mechanical stability

    Science.gov (United States)

    Chiappone, A.; Nair, Jijeesh R.; Gerbaldi, C.; Jabbour, L.; Bongiovanni, R.; Zeno, E.; Beneventi, D.; Penazzi, N.

    Methacrylic-based thermo-set gel-polymer electrolyte membranes obtained by a very easy, fast and reliable free radical photo-polymerisation process and reinforced with microfibrillated cellulose particles are here presented. The morphology of the composite electrolytes is investigated by scanning electron microscopy and their thermal behaviour (characteristic temperatures, degradation temperature) are investigated by thermo-gravimetric analysis and differential scanning calorimetry. The composite membranes prepared exhibit excellent mechanical properties, with a Young's modulus as high as about 80 MPa at ambient temperature. High ionic conductivity (approaching 10 -3 S cm -1 at 25 °C) and good overall electrochemical performances are maintained, enlightening that such specific approach would make these hybrid organic, cellulose-based composite polymer electrolyte systems a strong contender in the field of thin and flexible lithium based power sources.

  8. Highly conductive polymer electrolyte membranes modified with polyethylene glycol-bis-carbamate

    Science.gov (United States)

    Fu, Guopeng; Dempsey, Janel; Kyu, Thein

    By virtue of its non-flammability and chemical stability, polyethylene glycol (PEG) networks have shown potential application in all solid-state polymer electrolyte membranes (PEM). However, room temperature ionic conductivity of these PEG based PEMs is inherently low. Plasticization of these PEMs is needed to improve the ionic conductivity. It was demonstrated by this group that small-molecule plasticizers such as succinonitrile, ethylene carbonate, or urea-carbamate can boost ionic conductivity of solid-state polymer electrolyte membranes. Polyethylene glycol bis-carbamate (PEGBC) was synthesized via condensation reaction of polyethylene glycol diamine and ethylene carbonate. The PEGBC modified PEM has shown higher ionic conductivity relative to the unmodified PEM. Moreover, PEGBC modified PEM has a better thermal stability relative to ethylene carbonate based liquid electrolyte with enhanced ionic conductivity. Supported by NSF-DMR 1161070, 1502543 and REU 1359321.

  9. Electrochemical and solid state NMR characterization of composite PEO-based polymer electrolytes

    International Nuclear Information System (INIS)

    A comprehensive matrix of composite poly(ethyleneoxide) (PEO)-based solid-state electrolytes was developed in order to systematically study a number of variables and their impact upon the electrochemical properties of the resulting materials. The different parameters studied in the fabrication of these materials include: (i) the lithium electrolyte salt type, (ii) the ether oxygen to lithium ratio, (iii) the molecular weight of PEO, (iv) the type of ceramic additive used, either aluminum oxide (Al2O3), silicon oxide (SiO2), or titanium oxide (TiO2), (v) the particle size of the additives used, and (vi) the concentration of additive (wt.%). The standard lithium salt used for the preparation of these electrolytes was lithium trifluoromethanesulfonate (lithium triflate or LiSO3CF3), which served as the baseline electrolyte salt. Other lithium salts investigated include: lithium perchlorate (LiClO4) and lithium bis-trifluoromethanesulfonimide (LiN(SO2CF3)2). Conductivity measurements were performed for each electrolyte membrane over a wide temperature range (23-100 deg. C). In addition, cyclic voltammetry measurements were performed on selected PEO membranes as a function of temperature to determine the impact of various parameters upon the electrochemical stability. It was observed that the parameter that displayed the most significant effect upon the PEO-base polymer conductivity was the lithium salt type employed. The lithium triflate salt-containing PEO polymers demonstrated the best mechanical properties before and after heat treatment. Ceramic fillers also appear to enhance the mechanical properties of PEO polymer electrolytes at temperatures above the melting point of PEO (60-70 deg. C). In addition to investigating the electrochemical characteristics of the composite membrane, solid state 7Li NMR characterization was performed to study ionic mobility by measuring spectral line widths and lithium self-diffusion coefficients. It was determined that ceramic

  10. Ionic Conductivity of PEMA-LiClO4 Polymer Electrolytes

    International Nuclear Information System (INIS)

    Solid polymer electrolytes comprised of various weight percent ratios of poly(ethyl methacrylate) (PEMA) and lithium perchlorate (LiClO4) salt were prepared via solution casting technique using N,N-dimethylformamide (DMF) as the solvent. The conductivity values of the electrolytes were determined via impedance spectroscopy. The conductivity of the PEMA-LiClO4 electrolytes increased with increasing salt concentration and the highest conductivity obtained was in the order of 10-6 S cm-1 at salt concentration of 20 wt %. The conductivity decreased for higher salt concentration. In order to understand the conductivity behavior, XRD and dielectric studies were done. The results showed that the conductivity was influenced by the fraction of amorphous region and number of charge carriers in the system. The transference number measurement was also performed on the highest conducting electrolyte systems. The result of the measurement indicated that the systems were ionic conductors. (author)

  11. Direct dimethyl ether high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Vassiliev, Anton; Jensen, Jens Oluf; Li, Qingfeng;

    A high temperature polybenzimidazole (PBI) polymer fuel cell was fed with dimethyl ether (DME) and water vapour mixture on the anode at ambient pressure with air as oxidant. A peak power density of 79 mW/cm2 was achieved at 200°C. A conventional polymer based direct DME fuel cell is liquid fed......V higher than that of methanol, indicating less fuel crossover....

  12. Electrical analysis of amorphous corn starch-based polymer electrolyte membranes doped with LiI

    Science.gov (United States)

    Shukur, M. F.; Ibrahim, F. M.; Majid, N. A.; Ithnin, R.; Kadir, M. F. Z.

    2013-08-01

    In this work, polymer electrolytes have been prepared by doping starch with lithium iodide (LiI). The incorporation of 30 wt% LiI optimizes the room temperature conductivity of the electrolyte at (1.83 ± 0.47) × 10-4 S cm-1. Further conductivity enhancement to (9.56 ± 1.19) × 10-4 S cm-1 is obtained with the addition of 30 wt% glycerol. X-ray diffraction analysis indicates that the conductivity enhancement is due to the increase in amorphous content. The activation energy, Ea, of 70 wt% starch-30 wt% LiI electrolyte is 0.26 eV, while 49 wt% starch-21 wt% LiI-30 wt% glycerol electrolyte exhibits an Ea of 0.16 eV. Dielectric studies show that all the electrolytes obey non-Debye behavior. The power law exponent s is obtained from the variation of dielectric loss, ɛi, with frequency at different temperatures. The conduction mechanism of 70 wt% starch-30 wt% LiI electrolyte can be explained by the correlated barrier hopping model, while the conduction mechanism for 49 wt% starch-21 wt% LiI-30 wt% glycerol electrolyte can be represented by the quantum mechanical tunneling model.

  13. Electrical analysis of amorphous corn starch-based polymer electrolyte membranes doped with LiI

    International Nuclear Information System (INIS)

    In this work, polymer electrolytes have been prepared by doping starch with lithium iodide (LiI). The incorporation of 30 wt% LiI optimizes the room temperature conductivity of the electrolyte at (1.83 ± 0.47) × 10−4 S cm−1. Further conductivity enhancement to (9.56 ± 1.19) × 10−4 S cm−1 is obtained with the addition of 30 wt% glycerol. X-ray diffraction analysis indicates that the conductivity enhancement is due to the increase in amorphous content. The activation energy, Ea, of 70 wt% starch–30 wt% LiI electrolyte is 0.26 eV, while 49 wt% starch–21 wt% LiI–30 wt% glycerol electrolyte exhibits an Ea of 0.16 eV. Dielectric studies show that all the electrolytes obey non-Debye behavior. The power law exponent s is obtained from the variation of dielectric loss, εi, with frequency at different temperatures. The conduction mechanism of 70 wt% starch–30 wt% LiI electrolyte can be explained by the correlated barrier hopping model, while the conduction mechanism for 49 wt% starch–21 wt% LiI–30 wt% glycerol electrolyte can be represented by the quantum mechanical tunneling model. (paper)

  14. Efficiency of non-optimized direct carbon fuel cell with molten alkaline electrolyte fueled by carbonized biomass

    Science.gov (United States)

    Kacprzak, A.; Kobyłecki, R.; Włodarczyk, R.; Bis, Z.

    2016-07-01

    The direct carbon fuel cells (DCFCs) belong to new generation of energy conversion devices that are characterized by much higher efficiencies and lower emission of pollutants than conventional coal-fired power plants. In this paper the DCFC with molten hydroxide electrolyte is considered as the most promising type of the direct carbon fuel cells. Binary alkali hydroxide mixture (NaOH-LiOH, 90-10 mol%) is used as electrolyte and the biochar of apple tree origin carbonized at 873 K is applied as fuel. The performance of a lab-scale DCFC with molten alkaline electrolyte is investigated and theoretical, practical, voltage, and fuel utilization efficiencies of the cell are calculated and discussed. The practical efficiency is assessed on the basis of fuel HHV and LHV and the values are estimated at 40% and 41%, respectively. The average voltage efficiency is calculated as roughly 59% (at 0.65 V) and it is in a relatively good agreement with the values obtained by other researchers. The calculated efficiency of fuel utilization exceeds 95% thus indicating a high degree of carbon conversion into the electric power.

  15. Nanoporous Polymer-Ceramic Composite Electrolytes for Lithium Metal Batteries

    KAUST Repository

    Tu, Zhengyuan

    2013-09-16

    A nanoporous composite material that offers the unique combination of high room-temperature ionic conductivity and high mechanical modulus is reported. When used as the separator/electrolyte in lithium batteries employing metallic lithium as anode, the material displays unprecedented cycling stability and excellent ability to prevent premature cell failure by dendrite-induced short circuits © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Alkaline degradation studies of anion exchange polymers to enable new membrane designs

    Science.gov (United States)

    Nunez, Sean Andrew

    Current performance targets for anion-exchange membrane (AEM) fuel cells call for greater than 95% alkaline stability for 5000 hours at temperatures up to 120 °C. Using this target temperature of 120 °C, an incisive 1H NMR-based alkaline degradation method to identify the degradation products of n-alkyl spacer tetraalkylammonium cations in various AEM polymers and small molecule analogs. Herein, the degradation mechanisms and rates of benzyltrimethylammonium-, n-alkyl interstitial spacer- and n-alkyl terminal pendant-cations are studied on several architectures. These findings demonstrate that benzyltrimethylammonium- and n-alkyl terminal pendant cations are more labile than an n-alkyl interstitial spacer cation and conclude that Hofmann elimination is not the predominant mechanism of alkaline degradation. Additionally, the alkaline stability of an n-alkyl interstitial spacer cation is enhanced when combined with an n-alkyl terminal pendant. Interestingly, at 120 °C, an inverse trend was found in the overall alkaline stability of AEM poly(styrene) and AEM poly(phenylene oxide) samples than was previously shown at 80 °C. Successive small molecule studies suggest that at 120 °C, an anion-induced 1,4-elimination degradation mechanism may be activated on styrenic AEM polymers bearing an acidic alpha-hydrogen. In addition, an ATR-FTIR based method was developed to assess the alkaline stability of solid membranes and any added resistance to degradation that may be due to differential solubilities and phase separation. To increase the stability of anion exchange membranes, Oshima magnesate--halogen exchange was demonstrated as a method for the synthesis of new anion exchange membranes that typically fail in the presence of organolithium or Grignard reagents alone. This new chemistry, applied to non-resinous polymers for the first time, proved effective for the n-akyl interstitial spacer functionalization of poly(phenylene oxide) and poly(styrene- co

  17. Development of alkaline/surfactant/polymer (ASP flooding technology for recovery of Karazhanbas oil

    Directory of Open Access Journals (Sweden)

    Birzhan Zhappasbaev

    2016-03-01

    Full Text Available The tertiary oil recovery methods like alkaline, surfactant and polymer (ASP flooding are very perspective in order to achieve the synergetic effect out of the different impacts which are caused by these chemicals, which affect oil and water filtration in the reservoir and increase oil recovery. In this communication, we consider the applicability of hydrophobically modified polyampholyte – poly(hexadecylaminocrotonatebetaine (PHDACB as ASP flooding agent for recovery of oil from Karazhanbas oilfield. As “polysoap”, the aqueous solution of PHDACB dissolved in aqueous KOH was used. This system combines the advantages of alkaline, surfactant and polymer and exhibits the synergistic effect. The laboratory results showed that the ASP flooding considerably increases the oil recovery in addition to water flooding. In perspective, the ASP flooding may substitute the steam injection and other thermal enhanced oil recovery (EOR technologies.

  18. Bifunctional, Carbon-Free Nickel/Cobalt-Oxide Cathodes for Lithium-Air Batteries with an Aqueous Alkaline Electrolyte

    International Nuclear Information System (INIS)

    Highlights: • High activity bi-functional catalyst combination for ORR and OER . • An optimum ratio of high active bi-functional catalysts was found. • Novel electrodes without carbon to avoid carbon corrosion during OER mode. • EIS model for OER describes influence of a growing oxide layers. • Long-term test exhibited an excellent long-term stability over 1200 cycles. - Abstract: Lithium-air batteries with an aqueous alkaline electrolyte promise a very high practical energy density and capacity. These batteries are mainly limited by high overpotentials on the bifunctional cathode during charge and discharge. To reduce overpotentials the bifunctional cathode of such batteries must be improved significantly. Nickel is relatively inexpensive and has a good catalytic activity in alkaline media. Co3O4 was found to be a promising metal oxide catalyst for oxygen evolution in alkaline media but it has a low electronic conductivity. On the other hand since nickel has a good electronic conductivity Co3O4 can be added to pure nickel electrodes to enhance performance due to a synergetic effect. Due to the poor stability of carbon materials at high anodic potentials, gas diffusion electrodes were prepared without carbon to improve especially long-term stability. Gas diffusion electrodes were electrochemically investigated in a half cell. In addition, cyclic voltammogrametry (CV) and electrochemical impedance spectroscopy (EIS) were carried out. SEM was used for the physical and morphological investigations. Investigations showed that electrodes containing 20 wt.% Co3O4 exhibited the highest performance

  19. The electrical and optical studies of the KC1 doped PVA polymer electrolyte materials

    Science.gov (United States)

    Kamani, K. K.; Madhu, B. J.; Nethravathi, M.; Ashwini, S. T.

    2013-06-01

    In the recent years the greatest attention has been paid to determine the conductivity of different concentration solutions conducting polymers exhibit a wide range of novel electrochemical and chemical properties that has led to their use in a diverse array of applications including sensors PVA is fully degradable and dissolves quickly. PVA biodegradation is believed to be due to a random chain cleavage process. PVA molecular matrix and KC1 solutions were prepared with distilled water as solvent. The saturated solutions electric conductivity, pH values reveals the increase of ionic concentrations with increase of dopant weight fractions. Dielectric properties and UV visible studies of PVA and KC1 polymer complex experimental observations suggest the variations in the ionic nature electrolyte. Material. We are reporting the conducting properties of the PVA and KC1 polymer matrix and electrical nature of the PVA complex structure as electrolyte.

  20. Nanomaterials for Polymer Electrolyte Membrane Fuel Cells; Materials Challenges Facing Electrical Energy Storate

    Energy Technology Data Exchange (ETDEWEB)

    Gopal Rao, MRS Web-Editor; Yury Gogotsi, Drexel University; Karen Swider-Lyons, Naval Research Laboratory

    2010-08-05

    Symposium T: Nanomaterials for Polymer Electrolyte Membrane Fuel Cells Polymer electrolyte membrane (PEM) fuel cells are under intense investigation worldwide for applications ranging from transportation to portable power. The purpose of this seminar is to focus on the nanomaterials and nanostructures inherent to polymer fuel cells. Symposium topics will range from high-activity cathode and anode catalysts, to theory and new analytical methods. Symposium U: Materials Challenges Facing Electrical Energy Storage Electricity, which can be generated in a variety of ways, offers a great potential for meeting future energy demands as a clean and efficient energy source. However, the use of electricity generated from renewable sources, such as wind or sunlight, requires efficient electrical energy storage. This symposium will cover the latest material developments for batteries, advanced capacitors, and related technologies, with a focus on new or emerging materials science challenges.

  1. Ionic Liquid-Based Polymer Electrolytes via Surfactant-Assisted Polymerization at the Plasma-Liquid Interface.

    Science.gov (United States)

    Tran, Quoc Chinh; Bui, Van-Tien; Dao, Van-Duong; Lee, Joong-Kee; Choi, Ho-Suk

    2016-06-29

    We first report an innovative method, which we refer to as interfacial liquid plasma polymerization, to chemically cross-link ionic liquids (ILs). By this method, a series of all-solid state, free-standing polymer electrolytes is successfully fabricated where ILs are used as building blocks and ethylene oxide-based surfactants are employed as an assisted-cross-linking agent. The thickness of the films is controlled by the plasma exposure time or the ratio of surfactant to ILs. The chemical structure and properties of the polymer electrolyte are characterized by scanning electron microscopy (SEM), Fourier transformation infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), and electrochemical impedance spectroscopy (EIS). Importantly, the underlying polymerization mechanism of the cross-linked IL-based polymer electrolyte is studied to show that fluoroborate or halide anions of ILs together with the aid of a small amount of surfactants having ethylene oxide groups are necessary to form cross-linked network structures of the polymer electrolyte. The ionic conductivity of the obtained polymer electrolyte is 2.28 × 10(-3) S·cm(-1), which is a relatively high value for solid polymer electrolytes synthesized at room temperature. This study can serve as a cornerstone for developing all-solid state polymer electrolytes with promising properties for next-generation electrochemical devices.

  2. Synthesis and Characterization of a New Network Polymer Electrolyte Containing Polyether in the Main Chains and Side Chains

    Institute of Scientific and Technical Information of China (English)

    Wang; Cheng-chien; Chen; Chuh-yung

    2007-01-01

    1 Results A new network polymer electrolyte matrix with polyether in the side chains and main chains was synthesized by the azo-macroinitiator method and urethane reaction.The macroinitiator,polymer and network polymer were confirmed by Fourier-transform infrared (FT-IR) spectroscopy and 1H NMR.FT-IR was also used to study the environment of lithium ions doped in these network polymer electrolytes.Three important groups are considered: N-H,carbonyl,and ether groups.The thermal properties of the polymer ...

  3. Scalable plasticized polymer electrolytes reinforced with surface-modified sepiolite fillers - A feasibility study in lithium metal polymer batteries

    Science.gov (United States)

    Mejía, Alberto; Devaraj, Shanmukaraj; Guzmán, Julio; Lopez del Amo, Juan Miguel; García, Nuria; Rojo, Teófilo; Armand, Michel; Tiemblo, Pilar

    2016-02-01

    Electrochemical properties of (polyethylene oxide) (PEO)/lithium trifluoromethanesulfonate (LiTf)/ethylene carbonate (EC)/sepiolite extruded composite electrolytes were studied. Appreciable electrochemical stability of 4.5 V at 70 °C was observed for polymer composite membranes with D-α-tocopherol-polyethylene glycol 1000 succinate-coated sepiolite fillers. Lithium plating/stripping analysis indicated no evidence of dendrite formation with good interfacial properties which were further confirmed by postmortem analysis of the cells. Solid state NMR studies show the presence of two Li+ population in the membranes. The feasibility of these electrolytes has been shown with LiFePO4 cathode materials. Initial discharge capacity of 142 mAh/g was observed remaining at 110 mAh/g after 25 cycles with a coulombic efficiency of 96%. The upscaling of these polymers can be easily achieved by extrusion technique and the capacity can be improved by varying the cathode architecture.

  4. Correlation between ionic conductivity and fluidity of polymer gel electrolytes containing NH4CF3SO3

    Indian Academy of Sciences (India)

    Harinder Pal Singh; Rajiv Kumar; S S Sekhon

    2005-08-01

    Nonaqueous polymer gel electrolytes containing ammonium triflate (NH4CF3SO3) and dimethylacetamide (DMA) with polymethylmethacrylate (PMMA) as the gelling polymer have been synthesized which show high value of conductivity (∼ 10-2 S/cm) at 25°C. The conductivity of polymer gel electrolytes containing different concentrations of NH4CF3SO3 shows a small decrease with the addition of PMMA and this has been correlated with the variation of fluidity of these gel electrolytes. The small decrease in conductivity with PMMA addition shows that polymer plays the role of stiffener and this is supported by FTIR results which also indicates the absence of any active interaction between polymer and NH4CF3SO3 in these gel electrolytes.

  5. High voltage electric double layer capacitor using a novel solid-state polymer electrolyte

    Science.gov (United States)

    Sato, Takaya; Marukane, Shoko; Morinaga, Takashi; Kamijo, Toshio; Arafune, Hiroyuki; Tsujii, Yoshinobu

    2015-11-01

    We designed and fabricated a bipolar-type electric double layer capacitor (EDLC) with a maximum 7.5 V operating voltage using a new concept in solid electrolytes. A cell having a high operating voltage, that is free from liquid leakage and is non-flammable is achieved by a bipolar design utilizing a solid polymer electrolyte made up of particles in a three-dimensional array, such as crystals composed of 75 wt% of hybrid particles decorated with a concentrated ionic liquid polymer brush (PSiP) and 25wt% of an ionic liquid (IL). The resulting solid film had sufficient physical strength and a high enough ionic conductivity to function as an electrolyte. Solidification as well as ionic conduction is due to the regular array of PSiPs, thereby producing a high ion-conductivity from a networked path between cores containing an appropriate amount of IL as a plasticizer. The demonstration cell shows a relatively good cycle durability and rate properties up to a 10C discharge process. It also has a very small leakage current in continuous charging and better self-discharge properties, even at 60 °C, compared with conventional cells. This paper demonstrates the first successful fabrication of a bipolar EDLC in a simple structure using this novel polymer solid electrolyte.

  6. Photoelectrochemical solar cells with polyacrylonitrile-based and polyethylene oxide-based polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ileperuma, O.A.; Somasunderam, S. [University of Peradeniya (Sri Lanka). Dept. of Chemistry; Dissanayake, M.A.K.L.; Bandara, L.R.A.K. [University of Peradeniya (Sri Lanka). Dept. of Physics

    2004-10-01

    Two types of photoelectrochemical (PEC) solar cells, FTO/TiO{sub 2}/dye/PAN, EC, PC, Pr{sub 4}N{sup +-}, I{sub 2}/Pt/FTO, and FTO/TiO{sub 2}/dye/PEO, EC, PC, KI/I{sub 2}{sup P}t /FTO have been fabricated using a PAN-based gel polymer electrolyte and a PEO-based plasticised polymer electrolyte. The PAN-based gel electrolyte, made of polyacrylonitrile (PAN), ethylene carbonate (EC), propylene carbonate (PC) and tetrapropylammoniumiodide (Pr{sub 4}N{sup +-}) as the completing salt exhibited a room temperature conductivity of 2.9 x 10{sup -1} S m{sup -1} for the composition, PAN (13%):EC (31%):PC (45%):Pr{sub 4}N{sup +}I{sup -} (7%):I{sub 2} (4%) by weight ratio. The PEO-based polymer electrolyte had a conductivity of 2.2 x 10{sup -3} S cm{sup -1} for the composition PEO (37.5%):EC (37.5%):PC (20.7%):KI (3.9%):12 (0.4%). These solar cells have been characterised using current-voltage characteristics and action spectra. The PAN-based solar cells had an overall quantum efficiency of 2.3%. However, the PEO-based solar cells had an overall quantum efficiency of only 0.6%. (author)

  7. PREPARATION AND CHARACTERIZATION OF PVA BASED SOLID POLYMER ELECTROLYTES FOR ELECTROCHEMICAL CELL APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    Anji Reddy Polu; Ranveer Kumar

    2013-01-01

    Solid polymer electrolyte films containing poly(vinyl alcohol) (PVA) and magnesium nitrate (Mg(NO3)2) were prepared by solution casting technique and characterized by using XRD,FT1R,DSC and AC impedance spectroscopic analysis.The amorphous nature of the polymer electrolyte films has been confirmed by XRD.The complex formation between PVA and Mg salt has been confirmed by FTIR.The glass transition temperature decreases with increasing the Mg salt concentration.The AC impedance studies are performed to evaluate the ionic conductivity of the polymer electrolyte films in the range of 303-383 K,and the temperature dependence seems to obey the Arrhenius behavior.Transport number measurements show that the charge transport is mainly due to ions.Electrochemical cell of configuration Mg/(PVA + Mg(NO3)2) (70:30)/(I2 + C + electrolyte) has been fabricated.The discharge characteristics of the cell were studied for a constant load of 100 kΩ.

  8. Study on characteristics of PVDF/nano-clay composite polymer electrolyte using PVP as pore-forming agent

    Energy Technology Data Exchange (ETDEWEB)

    Dyartanti, Endah R., E-mail: heru.susanto@undip.ac.id, E-mail: endah-rd@uns.ac.id [Departement of Chemical Engineering, Sebelas Maret University, Surakarta (Indonesia); Department of Chemical Engineering, Diponegoro University, Semarang (Indonesia); Purwanto, Agus [Departement of Chemical Engineering, Sebelas Maret University, Surakarta (Indonesia); Widiasa, I. Nyoman; Susanto, Heru, E-mail: heru.susanto@undip.ac.id, E-mail: endah-rd@uns.ac.id [Department of Chemical Engineering, Diponegoro University, Semarang (Indonesia)

    2016-02-08

    Polyvinylidene fluoride (PVDF) based polymer electrolytes have a high dielectric constant, which can assist in greater ionization of lithium salts. The main advantages of PVDF are its durability in long battery operation and its ability to be a good ion conductor. However, the limitation of this polymer is its crystalline molecular structure. Dispersing nano-particles in the polymer matrix may improve the characteristics of the PVDF polymer. This paper aims to investigate the impact of nano-clay addition on the characteristics of PVDF polymer to be used as a polymer electrolyte membrane. In addition, the effect of poly(vinyl pyrrolidone) (PVP) is also investigated. The membrane was prepared by phase separation method whereas the polymer electrolyte membranes was prepared by immersing into 1 M lithium hexafluorophosphate (LiPF{sub 6}) in ethylene carbonate/dimethyl carbonate (EC/DMC) electrolytes for 1 h. The membranes were characterized by scanning electron microscope (SEM), porosity and electrolyte uptake and performance in battery cell. The results showed that both nano-clay and PVP have significant impacts on the improvement of PVDF membranes to be used as polymer electrolyte.

  9. Study on characteristics of PVDF/nano-clay composite polymer electrolyte using PVP as pore-forming agent

    Science.gov (United States)

    Dyartanti, Endah R.; Purwanto, Agus; Widiasa, I. Nyoman; Susanto, Heru

    2016-02-01

    Polyvinylidene fluoride (PVDF) based polymer electrolytes have a high dielectric constant, which can assist in greater ionization of lithium salts. The main advantages of PVDF are its durability in long battery operation and its ability to be a good ion conductor. However, the limitation of this polymer is its crystalline molecular structure. Dispersing nano-particles in the polymer matrix may improve the characteristics of the PVDF polymer. This paper aims to investigate the impact of nano-clay addition on the characteristics of PVDF polymer to be used as a polymer electrolyte membrane. In addition, the effect of poly(vinyl pyrrolidone) (PVP) is also investigated. The membrane was prepared by phase separation method whereas the polymer electrolyte membranes was prepared by immersing into 1 M lithium hexafluorophosphate (LiPF6) in ethylene carbonate/dimethyl carbonate (EC/DMC) electrolytes for 1 h. The membranes were characterized by scanning electron microscope (SEM), porosity and electrolyte uptake and performance in battery cell. The results showed that both nano-clay and PVP have significant impacts on the improvement of PVDF membranes to be used as polymer electrolyte.

  10. Advancing Polymer-Supported Ionogel Electrolytes Formed via Radical Polymerization

    Science.gov (United States)

    Visentin, Adam F.

    Applications ranging from consumer electronics to the electric grid have placed demands on current energy storage technologies. There is a drive for devices that store more energy for rapid consumption in the case of electric cars and the power grid, and safer, versatile design options for consumer electronics. Electrochemical double-layer capacitors (EDLCs) are an option that has garnered attention as a means to address these varied energy storage demands. EDLCs utilize charge separation in electrolytes to store energy. This energy storage mechanism allows for greater power density (W kg -1) than batteries and higher energy density (Wh kg-1) than conventional capacitors - along with a robust lifetime in the range of thousands to millions of charge-discharge cycles. Safety and working voltage windows of EDLCs currently on the market are limited by the organic solvents utilized in the electrolyte. A potential solution lies in the replacement of the organic solvents with ionic liquids, or room-temperature molten salts. Ionic liquids possess many superior properties in comparison to conventional solvents: wide electrochemical window, low volatility, nonflammability, and favorable ionic conductivity. It has been an endeavor of this work to exploit these advantages while altering the liquid form factor into a gel. An ionic liquid/solid support scaffold composite electrolyte, or ionogel, adds additional benefits: flexible device design, lower encapsulation weight, and elimination of electrolyte leakage. This work has focused on investigations of a UV-polymerizable monomer, poly(ethylene glycol) diacrylate, as a precursor for forming ionogels in situ. The trade-off between gaining mechanical stability at the cost of ionic conductivity has been investigated for numerous ionogel systems. While gaining a greater understanding of the interactions between the gel scaffold and ionic liquid, an ionogel with the highest known ionic conductivity to date (13.1 mS cm-1) was

  11. Ionic conductivity and transport properties of poly(vinylidene fluoride-co-hexafluoropropylene)-based solid polymer electrolytes

    Science.gov (United States)

    Abreha, Merhawi; Subrahmanyam, A. R.; Siva Kumar, J.

    2016-08-01

    Polymer electrolytes containing poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) and various concentrations of lithium triflate were prepared to determine the optimal polymer-salt composition for maximum ionic conductivity. Complex formation was ascertained from X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) studies. The conductivity measurements reveal that the ionic conductivity of the polymer electrolytes containing various salt concentrations increases with temperature and obeys the Arrhenius rule. It is found that the electrolyte containing 25 wt.% of lithium triflate exhibits the highest room temperature conductivity. Moreover, Ionic transference measurements show predominance of ionic motion.

  12. Static and dynamic filtrations of different clay, electrolytes, polymer systems; Filtrations statiques et dynamiques de differents systemes argile, electrolytes, polymere

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.

    1996-04-16

    Filtration properties of model drilling fluids composed of water, clays, electrolytes and water soluble polymers have been studied in static and dynamic conditions on paper filters and rock slices. Filtration experiments combined with cake observations by cryo-S.E.M. and T.E.M., show the influence of the size shape of clay particles as well as their associating mode in suspension, on the texture of the cake, its permeability, and relaxation properties. These parameters depend on the nature of the electrolyte. The polymer reduces the cake permeability by enhancing the dispersion of the clay within the suspension, but mainly by plugging the porous network due its auto aggregation properties. The cake construction in dynamic conditions, is related to the state of aggregation of the initial suspension, its poly-dispersity, its sensitivity to shear rates, and also, to the permeability of the cake built at the beginning of the filtration. In all cases, the rate of thickening of the cake is slower and larger filtrate volumes are obtained compared to the static conditions. Shear rate has two effects: first, to dissociate the weak aggregates in suspension, second, to impose a size selection of the particles in the case of a poly-dispersed suspension. At high shear rates, a cake of constant thin thickness is quickly obtained. The thickness of this limiting cake depends on the fraction of small particles present in suspension, or that can be formed by dissociation of weak aggregates under shear rate. The permeability of this limiting cake formed in dynamic conditions is, as in static conditions, controlled by the size and the shape of the particles that form the cake or by the presence of a build loss reducer water soluble polymer. Filtrations carried out on Fontainebleau sandstones allow to visualize the internal cake and to precise the risks of formation damage by the drilling fluid. (author) 127 refs.

  13. The Characterization of Comblike Polymer Electrolyte by Means of NMR

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The comblike polymers based on poly (styrene-co-maleic anhydride) backbone with poly (ethylene glycol) methyl ether as side chains were synthesized and characterized by 1H NMR, with the result compared with that of IR.It is found that it is both feasible and simple to synthesize this kind of compounds with the help of 1H NMR.

  14. Dye-sensitized solar cells and solar module using polymer electrolytes: Stability and performance investigations

    OpenAIRE

    Jilian Nei de Freitas; Viviane Carvalho Nogueira; Bruno Ieiri Ito; Mauro Alfredo Soto-Oviedo; Claudia Longo; Marco-Aurelio De Paoli; Ana Flávia Nogueira

    2006-01-01

    We present recent results on solid-state dye-sensitized solar cell research using a polymer electrolyte based on a poly(ethylene oxide) derivative. The stability and performance of the devices have been improved by a modification in the method of assembly of the cells and by the addition of plasticizers in the electrolyte. After 30 days of solar irradiation (100 mW cm-2) no changes in the cell's efficiency were observed using this new method. The effect of the active area size on cell perform...

  15. Modelling multiphase flow inside the porous media of a polymer electrolyte membrane fuel cell

    DEFF Research Database (Denmark)

    Berning, Torsten; Kær, Søren Knudsen

    2011-01-01

    Transport processes inside polymer electrolyte membrane fuel cells (PEMFC’s) are highly complex and involve convective and diffusive multiphase, multispecies flow through porous media along with heat and mass transfer and electrochemical reactions in conjunction with water transport through...... an electrolyte membrane. We will present a computational model of a PEMFC with focus on capillary transport of water through the porous layers and phase change and discuss the impact of the liquid phase boundary condition between the porous gas diffusion layer and the flow channels, where water droplets can...

  16. Development status of the General Electric solid polymer electrolyte water electrolysis technology

    Science.gov (United States)

    Nuttall, L. J.

    The solid polymer electrolyte used by the considered technology is a thin sheet (5 to 10 mil thickness) of a sulfonated fluoropolymer. It is a high strength plastic material which serves as the sole electrolyte, and also forms a rugged barrier between the hydrogen and oxygen chambers. The electrodes consist of a thin catalyst layer bonded to the surfaces of the plastic sheet. A description is presented of a 60-cell module, operating at the normal design point of 1000 amps per square foot. The module generates more than 2000 standard cubic feet per hour of hydrogen at a pressure of approximately 100 psig. Performance and cost projections are discussed.

  17. Small angle neutron scattering data of polymer electrolyte membranes partially swollen in water

    Directory of Open Access Journals (Sweden)

    Yue Zhao

    2016-06-01

    Full Text Available In this article, we show the small-angle neutron scattering (SANS data obtained from the polymer electrolyte membranes (PEMs equilibrated at a given relative humidity. We apply Hard-Sphere (HS structure model with Percus–Yervick interference interactions to analyze the dataset. The molecular structure of these PEMs and the morphologies of the fully water-swollen membranes have been elucidated by Zhao et al. “Elucidation of the morphology of the hydrocarbon multi-block copolymer electrolyte membranes for proton exchange fuel cells” [1].

  18. A multiscale physical model of a polymer electrolyte membrane water electrolyzer

    International Nuclear Information System (INIS)

    In this paper we report a multiscale physical and transient model describing the operation of a polymer electrolyte membrane water electrolyzer single cell. This model includes a detailed description of the elementary electrode kinetics, a description of the behavior of the nanoscale catalyst–electrolyte interface, and a microstructural description of the transport of chemical species and charges at the microscale along the whole membrane electrodes assembly (MEA). We present an impact study of different catalyst materials on the performance of the PEMWEs and a sensitivity study to the operation conditions, both evaluated from numerical simulations and with results discussed in comparison with available experimental data

  19. Preparation and characterization of nanocomposite polymer electrolytes poly(vinylidone fluoride)/nanoclay

    Energy Technology Data Exchange (ETDEWEB)

    Rahmawati, Suci A.; Sulistyaningsih,; Putro, Alviansyah Z. A.; Widyanto, Nugroho F.; Jumari, Arif; Purwanto, Agus; Dyartanti, Endah R., E-mail: endahrd@uns.ac.id [Research Group of Battery & Advanced Material, Department of Chemical Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A Kentingan, Surakarta Indonesia 57126 (Indonesia)

    2016-02-08

    Polymer electrolytes are defined as semi solid electrolytes used as separator in lithium ion battery. Separator used as medium for transfer ions and to prevent electrical short circuits in battery cells. To obtain the optimal battery performance, separator with high porosity and electrolyte uptake is required. This can reduce the resistance in the transfer of ions between cathode and anode. The main objective of this work is to investigate the impact of different solvent (Dimethyl acetamide (DMAc), N-methyl-2-pyrrolidone (NMP) and dimethyl formamide (DMF)), pore forming agent poly(vinylpyrolidone) (PVP) and nanoclay as filler in addition of membrane using phase inversion method on the morphology, porosity, electrolyte uptake and degree of crystallinity. The membrane was prepared by the phase inversion method by adding PVP and Nanoclay using different solvents. The phase inversion method was prepared by dissolving Nanoclay and PVP in solvent for 1-2 hours, and then add the PVDF with stirring for 4 hours at 60°C. The membranes were characterized by porosity test, electrolyte uptake test, scanning electron microscope (SEM), and X-ray diffraction (XRD). The results showed that DMAc as solvent gives the highest value of porosity and electrolyte uptake. The addition of nanoclay and PVP enlarge the size of the pores and reduce the degree of crystallinity. So, the usage of DMAc as solvent is better than NMP or DMF.

  20. Development and Characterization of Poly(1-vinylpyrrolidone-co-vinyl acetate Copolymer Based Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Nurul Nadiah Sa’adun

    2014-01-01

    Full Text Available Gel polymer electrolytes (GPEs are developed using poly(1-vinylpyrrolidone-co-vinyl acetate [P(VP-co-VAc] as the host polymer, lithium bis(trifluoromethane sulfonimide [LiTFSI] as the lithium salt and ionic liquid, and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl imide [EMImTFSI] by using solution casting technique. The effect of ionic liquid on ionic conductivity is studied and the optimum ionic conductivity at room temperature is found to be 2.14 × 10−6 S cm−1 for sample containing 25 wt% of EMImTFSI. The temperature dependence of ionic conductivity from 303 K to 353 K exhibits Arrhenius plot behaviour. The thermal stability of the polymer electrolyte system is studied by using thermogravimetric analysis (TGA while the structural and morphological properties of the polymer electrolyte is studied by using Fourier transform infrared (FTIR spectroscopy and X-ray diffraction analysis (XRD, respectively.

  1. Enhancement of Li+ ion conductivity in solid polymer electrolytes using surface tailored porous silica nanofillers

    Science.gov (United States)

    Mohanta, Jagdeep; Singh, Udai P.; Panda, Subhendu K.; Si, Satyabrata

    2016-09-01

    The current study represents the design and synthesis of polyethylene oxide (PEO)-based solid polymer electrolytes by solvent casting approach using surface tailored porous silica as nanofillers. The surface tailoring of porous silica nanostructure is achieved through silanization chemistry using 3-glycidyloxypropyl trimethoxysilane in which silane part get anchored to the silica surface whereas epoxy group get stellated from the silica surface. Surface tailoring of silica with epoxy group increases the room temperature electrochemical performances of the resulting polymer electrolytes. Ammonical hydrolysis of organosilicate precursor is used for both silica preparation and their surface tailoring. The composite solid polymer electrolyte films are prepared by solution mixing of PEO with lithium salt in presence of silica nanofillers and cast into film by solvent drying, which are then characterized by impedance measurement for conductivity study and wide angle x-ray diffraction for change in polymer crystallinity. Room temperature impedance measurement reveals Li+ ion conductivity in the order of 10‑4 S cm‑1, which is correlated to the decrease in PEO crystallinity. The enhancement of conductivity is further observed to be dependent on the amount of silica as well as on their surface characteristics.

  2. Electrical properties of biodegradable poly(ε-caprolactone): lithium thiocyanate complexed polymer electrolyte films

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • The minimum Tm and χc values are observed in 15 wt% LiSCN complexed film. • The conductivity of PCL:LiSCN complexed films follows Johnscher's power law. • Conductivity and dielectric constant follows the same trend. • The charge carriers responsible for both conduction and relaxation are the same. - Abstract: Lithium ion conducting polymer electrolyte films based on biodegradable poly(ε-caprolactone) (PCL) complexed with lithium thiocyanate (LiSCN) salt were prepared by solution cast technique. Thermal and electrical properties of the polymer electrolyte films were studied using differential scanning calorimetry (DSC) and ac impedance spectroscopy. In order to investigate the ion conduction mechanism and relaxation behavior of complex polymer electrolyte films, the conductivity, dielectric constant, loss tangent and electric modulus were analyzed as a function of frequency and temperature. The variation of conductivity with frequency obeyed the Johnscher's power law. The dielectric constant exhibited a higher value at a lower frequency and increased with rising temperature due to the polar nature of host polymer. The activation energies for both dc conductivity and relaxation had the same value (∼0.87 eV), implying that the charge carriers responsible for both conduction and relaxation were the same

  3. Novel cellulose reinforcement for polymer electrolyte membranes with outstanding mechanical properties

    International Nuclear Information System (INIS)

    Highlights: ► UV-cured methacrylic-based composite gel-polymer electrolyte membranes for rechargeable lithium batteries. ► Excellent mechanical stability by reinforcement with classical cellulose handsheets. ► Fast and environmentally friendly preparation process, green and low cost cellulose reinforcement. ► Good electrochemical behaviour, stable cyclability and long-term performances in real battery configuration. - Abstract: Methacrylic-based thermo-set gel-polymer electrolytes obtained by an easy and reliable free radical photo-polymerisation process demonstrate good behaviour in terms of ionic conductivity, interfacial stability with the Li-metal electrode and cyclability in lithium cells. Though the obtained membranes are flexible, self standing and easy to handle, there is room for improving mechanical strength. In this respect, a novel approach is adopted in this work, in which a cellulose hand-sheet (paper), specifically designed for the specific application, is used as a composite reinforcing agent. To enhance its compatibility with the polymer matrix, cellulose is modified by UV-grafting of poly(ethylene glycol) methyl ether methacrylate on it. Excellent mechanical properties are obtained and good overall electrochemical performances are maintained; highlighting that such specific approach would make these hybrid organic, green, cellulose-based composite polymer electrolyte systems a strong contender in the field of thin and flexible Li-based power sources.

  4. Experimental Study on the Molecular Dimension and Configuration of Polymer and Its Flow Characteristics from Electrolyte Effect

    Institute of Scientific and Technical Information of China (English)

    LU,Xiangguo; WANG,Xiaoyan; JIANG,Weidong

    2009-01-01

    Molecular clew dimension and configuration of polymer,and flow characteristics of polymer solution were studied from electrolyte effect,by making use of dynamic light scattering (DLS),scanning electron microscopy (SEM),apparent viscosity method and core flow experiment.It can be observed that with the electrolyte concentration increasing,there exists a variation trend of "decreasing,increasing and decreasing again" to the molecular clew dimension of the polymer.The compression action of Ca2+ or Mg2+ to the double electrode layer of polymer molecules is more powerful by comparison against Na+,which results in that Ca2+ and Mg2+ have a more extensive effect on the viscosity of polymer solution,and clew dimensions and their distribution.With the electrolyte concentration increasing,the polymer molecular configuration of multi-layer stereoscopic random reticulation transformed into a dendritic one.During the succeeding water flooding,the variation degree of injection pressure of core was mainly determined by the swelling extent of molecular clew of retained polymer and the produced amount of polymer.And the bigger the molecular weight of polymer is,the stronger the compression or swelling action of electrolyte to the molecule clews is,and the greater the increasing degree of injection pressure during succeeding water flooding is.The greater difference of electrolyte concentrations in used water between polymer flooding and succeeding water flooding can result in greater increasing degree of injection pressure during the succeeding water flooding.So,an advisable increasing in difference of electrolyte concentrations in used water between the polymer flooding and succeeding water flooding was proposed when designing the polymer flooding performance in oilfields,which has promising result for improving effect of polymer flooding.

  5. Electrochemistry study on PEO-LiClO4-ZSM5 composite polymer electrolyte

    Institute of Scientific and Technical Information of China (English)

    XI Jingyu; MA Xiaomei; CUI Mengzhong; HUANG Xiaobin; ZHENG Zhen; TANG Xiaozhen

    2004-01-01

    A novel all solid-state composite polymer electrolyte, PEO-LiClO4-LiZSM5, by using "shape-selective" molecular sieves ZSM-5 as filler was obtained by the solvent casting method. The experimental results showed that the addition of LiZSM5 could enhance the ionic conductivity of the pristine PEO-LiClO4 electrolyte, the ionic conductivity of PEO10-LiClO4-10%LiZSM5 achieved 1.4×10-5 S cm-1 at 25℃. Lithium ion transference number was tested by AC impedance combined with the steady-state current method, the results showed that LiZSM5 could improve the Li+ transference number of the CPE effectively. The broad electrochemical stability window ensured the use of PEO-Li- ClO4-LiZSM5 as electrolyte materials for all solid-state rechargeable lithium ion batteries.

  6. Electrochemical Performance of Solid Polymer Electrolyte PEO20-LiTf-Urea1.s

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ding; YAN Hui; ZHANG Huan; QI Lu

    2011-01-01

    A new solid polymer electrolyte PEO20-LiTf-Urea1.5 was prepared by solution casting technique. The energy of frontier orbitals for the components of the electrolyte was predicted by quantum chemistry calculations, and TG stability and electrochemical features were measured. Urea exhibited a lower HOMO energy than PEO, implying its enhanced stability against electrochemical oxidation. Experimentally addition of urea increases the ionic conductivity, which guarantees conductivity requirement for lithium ion batteries. It also results in significant improved electrochemical stability with good thermal stability. Favorable lithium stripping/plating performance is yielded, and it confirms the good stability of the solid electrolyte interphase for the PEO20-LiTf-Urea1.5 system.

  7. Solid-state sodium batteries using polymer electrolytes and sodium intercalation electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering]|[Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.

    1996-08-01

    Solid-state sodium cells using polymer electrolytes (polyethylene oxide mixed with sodium trifluoromethanesulfonate: PEO{sub n}NaCF{sub 3}SO{sub 3}) and sodium cobalt oxide positive electrodes are characterized in terms of discharge and charge characteristics, rate capability, cycle life, and energy and power densities. The P2 phase Na{sub x}CoO{sub 2} can reversibly intercalate sodium in the range of x = 0.3 to 0.9, giving a theoretical specific energy of 440 Wh/kg and energy density of 1,600 Wh/l. Over one hundred cycles to 60% depth of discharge have been obtained at 0.5 mA/cm{sup 2}. Experiments show that the electrolyte/Na interface is stable and is not the limiting factor to cell cycle life. Na{sub 0.7}CoO{sub 2} composite electrodes containing various amounts of carbon black additive are investigated. The transport properties of polymer electrolytes are the critical factors for performance. These properties (the ionic conductivity, salt diffusion coefficient, and ion transference number) are measured for the PEO{sub n}NaCF{sub 3}SO{sub 3} system over a wide range of concentrations at 85 C. All the three transport properties are very salt-concentration dependent. The ionic conductivity exhibits a maximum at about n = 20. The transference number, diffusion coefficient, and thermodynamic factor all vary with salt concentration in a similar fashion, decreasing as the concentration increases, except for a local maximum. These results verify that polymer electrolytes cannot be treated as ideal solutions. The measured transport-property values are used to analyze and optimize the electrolytes by computer simulation and also cell testing. Salt precipitation is believed to be the rate limiting process for cells using highly concentrated solutions, as a result of lower values of these properties, while salt depletion is the limiting factor when a dilute solution is used.

  8. Kinetic factors determining conducting filament formation in solid polymer electrolyte based planar devices.

    Science.gov (United States)

    Krishnan, Karthik; Aono, Masakazu; Tsuruoka, Tohru

    2016-08-01

    Resistive switching characteristics and conducting filament formation dynamics in solid polymer electrolyte (SPE) based planar-type atomic switches, with opposing active Ag and inert Pt electrodes, have been investigated by optimizing the device configuration and experimental parameters such as the gap distance between the electrodes, the salt inclusion in the polymer matrix, and the compliance current applied in current-voltage measurements. The high ionic conductivities of SPE enabled us to make scanning electron microscopy observations of the filament formation processes in the sub-micrometer to micrometer ranges. It was found that switching behaviour and filament growth morphology depend strongly on several kinetic factors, such as the redox reaction rate at the electrode-polymer interfaces, ion mobility in the polymer matrix, electric field strength, and the reduction sites for precipitation. Different filament formations, resulting from unidirectional and dendritic growth behaviours, can be controlled by tuning specified parameters, which in turn improves the stability and performance of SPE-based devices.

  9. Studies on AC Electrical Conductivity of CdCl2 Doped PVA Polymer Electrolyte

    Directory of Open Access Journals (Sweden)

    M. B. Nanda Prakash

    2013-01-01

    Full Text Available PVA-based polymer electrolytes were prepared with various concentrations of CdCl2 using solvent casting method. Prepared polymer films were investigated using line profile analysis employing X-ray diffraction (XRD data. XRD results show that the crystallite size decreases and then increases with increase in CdCl2. AC conductivity in these polymer increases films first and then decreases. These observations are in agreement with XRD results. The highest ionic conductivity of 1.68E − 08 Scm−1 was observed in 4% of CdCl2 in PVA polymer blend. Crystallite ellipsoids for different concentrations of CdCl2 are computed here using whole pattern powder fitting (WPPF indicating that crystallite area decreases with increase in the ionic conductivity.

  10. Hybrid capacitor with activated carbon electrode, Ni(OH) 2 electrode and polymer hydrogel electrolyte

    Science.gov (United States)

    Nohara, Shinji; Asahina, Toshihide; Wada, Hajime; Furukawa, Naoji; Inoue, Hiroshi; Sugoh, Nozomu; Iwasaki, Hideharu; Iwakura, Chiaki

    A new hybrid capacitor (HC) cell was assembled using an activated carbon (AC) negative electrode, an Ni(OH) 2 positive electrode and a polymer hydrogel electrolyte prepared from crosslinked potassium poly(acrylate) (PAAK) and KOH aqueous solution. The HC cell was characterized compared with an electric double layer capacitor (EDLC) using two AC electrodes and the polymer hydrogel electrolyte. It was found that the HC cell successfully worked in the larger voltage range and exhibited ca. 2.4 times higher capacitance than the EDLC cell. High-rate dischargeability of the HC cell was also superior to that of the EDLC cell. These improved characteristics strongly suggest that the HC cell can be a promising system of capacitors with high energy and power densities.

  11. An overview of polymer electrolyte membrane electrolyzer for hydrogen production: Modeling and mass transport

    Science.gov (United States)

    Abdol Rahim, A. H.; Tijani, Alhassan Salami; Kamarudin, S. K.; Hanapi, S.

    2016-03-01

    Polymer electrolyte membrane electrolyzer (PEME) is a candidate for advanced engineering technology. There are many polymer electrolyte membrane fuel cell (PEMFC) models that have been reported, but none regarding PEME. This paper presents state of the art mass transport models applied to PEME, a detailed literature review of these models and associate methods have been conducted. PEME models are typically developed using analytical, semi empirical and mechanistic techniques that are based on their state and spatial dimensions. Methods for developing the PEME models are introduced and briefly explained. Furthermore the model cell voltage of PEME, which consists of Nernst voltage, ohmic over potential, activation over potential, and diffusion over potential is discussed with focus on mass transport modeling. This paper also presents current issues encountered with PEME model.

  12. Characterization of ι-carrageenan and its derivative based green polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Jumaah, Fatihah Najirah; Mobaraka, Nadhratun Naiim; Ahmad, Azizan; Ramli, Nazaruddin [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    The new types of green polymer electrolytes based on ι-carrageenan derivative have been prepared. ι-carrageenan act as precursor was reacted with monochloroacetic acid to produce carboxymethyl ι-carrageenan. The powders were characterized by Attenuated Total Reflection Fourier Transform infrared (ATR-FTIR) spectroscopy and {sup 1}H nuclear magnetic resonance (NMR) to confirm the substitution of targeted functional group in ι-carrageenan. The green polymer electrolyte based on ι-carrageenan and carboxymethyl ι-carrageenan was prepared by solution-casting technique. The films were characterized by electrochemical impedance spectroscopy to determine the ionic conductivity. The ionic conductivity ι-carrageenan film were higher than carboxymethyl ι-carrageenan which 4.87 ×10{sup −6} S cm{sup −1} and 2.19 ×10{sup −8} S cm{sup −1}, respectively.

  13. Mass transport aspects of polymer electrolyte fuel cells under two-phase flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, D.

    2007-03-15

    This well-illustrated, comprehensive dissertation by Dr. Ing. Denis Kramer takes an in-depth look at polymer electrolyte fuel cells (PEFC) and the possibilities for their application. First of all, the operating principles of polymer electrolyte fuel cells are described and discussed, whereby thermodynamics aspects and loss mechanisms are examined. The mass transport diagnostics made with respect to the function of the cells are discussed. Field flow geometry, gas diffusion layers and, amongst other things, liquid distribution, the influence of flow direction and the low-frequency behaviour of air-fed PEFCs are discussed. Direct methanol fuel cells are examined, as are the materials chosen. The documentation includes comprehensive mathematical and graphical representations of the mechanisms involved.

  14. Composite polymer electrolyte based on PEO/Pvdf-HFP with MWCNT for lithium battery applications

    Science.gov (United States)

    Pradeepa, P.; Edwinraj, S.; Sowmya, G.; Kalaiselvimary, J.; Selvakumar, K.; Prabhu, M. Ramesh

    2016-05-01

    In the present study PEO and PVdF-HFP blend based composite polymer electrolytes (CPEs) has been prepared by using Multi Walled Carbon Nanotube (MWCNT), in order to examine the filler addition effect on the electrochemical properties. The complexed nanocomposite polymer electrolytes were obtained in the form of dimensionally stable and free standing films by using solution casting technique. The electrochemical properties of CPEs were measured by the AC impedance method. From the ionic conductivity results, the CPE containing MWCNT 2wt% showed the highest ionic conductivity with an excellent thermal stability at room temperature. The dielectric loss curve s for the sample 6.25wt% PEO: 18.75 wt% PVdF-HFP: 2wt% MWCNT reveal the low frequency β relaxation peak pronounced at high temperature, and it may caused by side group dipoles.

  15. Temperature dependent dielectric properties and ion transportation in solid polymer electrolyte for lithium ion batteries

    Science.gov (United States)

    Sengwa, R. J.; Dhatarwal, Priyanka; Choudhary, Shobhna

    2016-05-01

    Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF4) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governed by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10-6 S cm-1 which suggests the suitability of the SPE film for rechargeable lithium batteries.

  16. Studies of plastic crystal gel polymer electrolytes based on poly(vinylidene chloride-co-acrylonitrile)

    Science.gov (United States)

    Hambali, D.; Zainuddin, Z.; Supa'at, I.; Osman, Z.

    2016-02-01

    In this work, we have prepared systems of poly(vinylidene chloride-co-acrylonitrile) (PVdC-co-AN) based gel polymer electrolytes (GPEs) which are single plasticized-GPEs and double plasticized-GPEs. Both systems comprised plastic crystal succinonitrile SN to form plastic crystal gel polymer electrolyte (PGPE) films. The ionic conductivity of the PGPE films were analysed by means of a.c. impedance spectroscopy at room temperature as well as at the temperature range of 303 K to 353 K. The temperature dependence ionic conductivity was found to obey the VTF rule. To study the interactions among the constituents in the PGPEs, Fourier Transform Infrared Spectroscopy (FTIR) was carried out and hence, the complexation between them has also been confirmed.

  17. Conductivity and characterization of plasticized polymer electrolyte based on (polyacrylonitrile-b-polyethylene glycol) copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yu-Hao; Chen, Chuh-Yung [Department of Chemical Engineering, National Cheng-Kung University, Tainan 70148 (China); Wang, Cheng-Chien [Department of Chemical and Material Engineering, Southern Taiwan University, Tainan 710 (China)

    2007-10-25

    A block copolymer polyacrylonitrile-b-polyethylene glycol was synthesized by the macroinitiator method. The copolymer mixed with a plasticizer - propylene carbonate (PC) and LiClO{sub 4} to form plasticized polymer electrolytes. FT-IR spectra show that the lithium ion interacts with the groups that contain the un-bonded electrons. The results of FT-IR also indicate that the EO segment can improve the dissociation of lithium salt. The differential scanning calorimeter (DSC) used to study the thermal behaviors of different compositions. In this study, the conductivity increases with the content of PEG. Additionally, the plasticized polymer electrolyte based on the block copolymer has a good conductivity and can retain good mechanical strength. (author)

  18. High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte

    Science.gov (United States)

    Sun, Yubao; Li, Gai; Lai, Yuanchu; Zeng, Danli; Cheng, Hansong

    2016-02-01

    Lithium-sulfur batteries are highly promising for electric energy storage with high energy density, abundant resources and low cost. However, the battery technologies have often suffered from a short cycle life and poor rate stability arising from the well-known “polysulfide shuttle” effect. Here, we report a novel cell design by sandwiching a sp3 boron based single ion conducting polymer electrolyte film between two carbon films to fabricate a composite separator for lithium-sulfur batteries. The dense negative charges uniformly distributed in the electrolyte membrane inherently prohibit transport of polysulfide anions formed in the cathode inside the polymer matrix and effectively blocks polysulfide shuttling. A battery assembled with the composite separator exhibits a remarkably long cycle life at high charge/discharge rates.

  19. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries

    Science.gov (United States)

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G.; Lee, Yoon-Sung; Kim, Dong-Won

    2016-05-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures.

  20. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries.

    Science.gov (United States)

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G; Lee, Yoon-Sung; Kim, Dong-Won

    2016-01-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures. PMID:27189842

  1. Conductivity through Polymer Electrolytes and Its Implications in Lithium-Ion Batteries: Real-World Application of Periodic Trends

    Science.gov (United States)

    Compton, Owen C.; Egan, Martin; Kanakaraj, Rupa; Higgins, Thomas B.; Nguyen, SonBinh T.

    2012-01-01

    Periodic conductivity trends are placed in the scope of lithium-ion batteries, where increases in the ionic radii of salt components affect the conductivity of a poly(ethyleneoxide)-based polymer electrolyte. Numerous electrolytes containing varying concentrations and types of metal salts are prepared and evaluated in either one or two laboratory…

  2. Preparation and electrochemical characterization of polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene)/polyacrylonitrile blend/composite membranes for lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Raghavan, Prasanth; Zhao, Xiaohui; Shin, Chorong; Baek, Dong-Ho; Choi, Jae-Won; Manuel, James; Heo, Min-Yeong; Ahn, Jou-Hyeon [Department of Chemical and Biological Engineering and Engineering Research Institute, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea); Nah, Changwoon [Department of Polymer-Nano Science and Technology, Chonbuk National University, 664-14, Duckjin-dong, Jeonju 561-756 (Korea)

    2010-09-15

    Apart from PEO based solid polymer electrolytes, tailor-made gel polymer electrolytes based on blend/composite membranes of poly(vinylidene fluoride-co-hexafluoropropylene) and polyacrylonitrile are prepared by electrospinning using 14 wt% polymer solution in dimethylformamide. The membranes show uniform morphology with an average fiber diameter of 320-490 nm, high porosity and electrolyte uptake. Polymer electrolytes are prepared by soaking the electrospun membranes in 1 M lithium hexafluorophosphate in ethylene carbonate/dimethyl carbonate. Temperature dependent ionic conductivity and their electrochemical performance are studied. The blend/composite polymer electrolytes show good ionic conductivity in the range of 10{sup -3}Scm{sup -1} at ambient temperature and good electrochemical performance. All the Polymer electrolytes show an anodic stability >4.6 V with stable interfacial resistance with storage time. The prototype cell shows good charge-discharge properties and stable cycle performance with comparable capacity fade compared to liquid electrolyte under the test conditions. (author)

  3. High resolution neutron imaging of water in the polymer electrolyte fuel cell membrane

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Partha P [Los Alamos National Laboratory; Makundan, Rangachary [Los Alamos National Laboratory; Spendelow, Jacob S [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Hussey, D S [NIST; Jacobson, D L [NIST; Arif, M [NIST

    2009-01-01

    Water transport in the ionomeric membrane, typically Nafion{reg_sign}, has profound influence on the performance of the polymer electrolyte fuel cell, in terms of internal resistance and overall water balance. In this work, high resolution neutron imaging of the Nafion{reg_sign} membrane is presented in order to measure water content and through-plane gradients in situ under disparate temperature and humidification conditions.

  4. Inhomogeneous transport in model hydrated polymer electrolyte supported ultra-thin films

    OpenAIRE

    Borges, D. Damasceno; Franco, A A; Malek, K.; Gebel, G.; Mossa, S.

    2013-01-01

    Structure of polymer electrolytes membranes, e.g., Nafion, inside fuel cell catalyst layers has significant impact on the electrochemical activity and transport phenomena that determine cell performance. In those regions, Nafion can be found as an ultra-thin film, coating the catalyst and the catalyst support surfaces. The impact of the hydrophilic/hydrophobic character of these surfaces on the structural formation of the films and, in turn, on transport properties, has not been sufficiently ...

  5. Impedance Diagrams of the Electrodes in the Polymer Electrolyte Membrane Fuel Cell

    OpenAIRE

    Meland, Anne-Kristine

    2007-01-01

    The objective of this thesis was to better understand the electrodes of the polymer electrolyte membrane fuel cell (PEMFC), and especially the anode. We were interested in how CO poisoning affected the fuel cell and therefore we started by looking at the unpoisoned anode. It was important to get a good understanding of the mechanisms of the unpoisoned electrode to have a good background to understand the poisoned one.The electrodes were investigated using in situ electrochemical impedance spe...

  6. Characterization of pore network structure in catalyst layers of polymer electrolyte fuel cells

    OpenAIRE

    El Hannach, Mohamed; Soboleva, Tatyana; Malek, Kourosh; Franco, Alejandro A.; Prat, Marc; Pauchet, Joël; Holdcroft, Steven

    2014-01-01

    International audience We model and validate the effect of ionomer content and Pt nanoparticles on nanoporous structure of catalyst layers in polymer electrolyte fuel cells. By employing Pore network modeling technique and analytical solutions, we analyze and reproduce experimental N2-adsorption isotherms of carbon, Pt/ carbon and catalyst layers with various ionomer contents. The porous catalyst layer structures comprise of Ketjen Black carbon, Pt and Nafion ionomer. The experimental pore...

  7. Computational fluid dynamics modelling of a polymer electrolyte membrane fuel cell under transient automotive operations

    OpenAIRE

    Choopanya, Pattarapong

    2016-01-01

    A polymer electrolyte membrane (PEM) fuel cell is probably the most promising technology that will replace conventional internal combustion engines in the near future. As a primary power source for an automobile, the transient performance of a PEM fuel cell is of prime importance. In this thesis, a comprehensive, three-dimensional, two-phase, multi-species computational fuel cell dynamics model is developed in order to investigate the effect of flow-field design on the magnitude of current ov...

  8. Hydrophobicity Patterning of Gas Diffusion Media for Polymer Electrolyte Fuel Cells

    OpenAIRE

    Biswas, Indro; Gazdzicki, Pawel; Tomas, Martin; Schulze, Mathias

    2014-01-01

    Polymer electrolyte fuel cells with their high gravimetric energy density face a water balance problem especially under variable loads, e.g. in automotive conditions: The excess product water needs to be removed from the fuel cell while maintaining a humidifed membrane. The gas diffusion layer, which also provides contact to the electro- chemically active components, has to achieve the passive management of the water balance. Heterogeneously hydrophobic gas diffusion media ...

  9. The use of additive manufacture for metallic bipolar plates in polymer electrolyte fuel cell stacks

    OpenAIRE

    Dawson, Richard; Patel, Anant; Rennie, Allan; White, Simon

    2014-01-01

    The bipolar plate is of critical importance to the efficient and long lasting operation of a polymer electrolyte fuel cell (PEMFC) stack. With advances in membrane electrode assembly (MEA) design greater attention has been focused on the bipolar plate and the important role it plays in performance and durability. Although carbon composite plates are a likely candidate for the mass introduction of fuel cells, it is metallic plates made from thin strip materials (typically 0.2 mm thick stainles...

  10. A new nanocomposite polymer electrolyte based on poly(vinyl alcohol) incorporating hypergrafted nano-silica

    KAUST Repository

    Hu, Xian-Lei

    2012-01-01

    Solid-state nanocomposite polymer electrolytes based on poly(vinyl alcohol)(PVA) incorporating hyperbranched poly(amine-ester) (HBPAE) grafted nano-silica (denoted as SiO2-g-HBPAE) have been prepared and investigated. Through surface pretreatment of nanoparticles, followed by Michael-addition and a self-condensation process, hyperbranched poly(amine-ester) was directly polymerized from the surface of nano-silica. Then the hypergrafted nanoparticles were added to PVA matrix, and blended with lithium perchlorate via mold casting method to fabricate nanocomposite polymer electrolytes. By introducing hypergrafted nanoparticles, ionic conductivity of solid composite is improved significantly at the testing temperature. Hypergrafted nano-silica may act as solid plasticizer, promoting lithium salt dissociation in the matrix as well as improving segmental motion of matrix. In addition, tensile testing shows that such materials are soft and tough even at room temperature. From the dielectric spectra of nanocomposite polymer electrolyte as the function of temperature, it can be deduced that Arrhenius behavior appears depending on the content of hypergrafted nano-silica and concentration of lithium perchlorate. At a loading of 15 wt% hypergrafted nano-silica and 54 wt% lithium perchlorate, promising ionic conductivities of PVA nanocomposite polymer electrolyte are achieved, about 1.51 × 10 -4 S cm-1 at 25 °C and 1.36 × 10-3 S cm-1 at 100 °C. © The Royal Society of Chemistry.

  11. Characterization of Self-Assembly and Charge Transport in Model Polymer Electrolyte Membranes

    OpenAIRE

    Beers, Keith Morgan

    2012-01-01

    There is broad interest in creating polymer electrolyte membranes (PEMs) that have a charged hydrophilic nanophase, where the size and geometry of the phase can be precisely controlled. The applications for such materials range from portable power generating devices to water purification. There is a need to better characterize the self-assembly, thermodynamics, and performance of both current and future PEMs. To this end a series of chapters is presented, that explore the development of techn...

  12. PREPARATION AND ELECTROCHEMICAL CHARACTERISTICS OF POLYMER ELECTROLYTE MEMBRANES BASED ON SAN/PVDF-HFP BLENDS

    Institute of Scientific and Technical Information of China (English)

    Ding-guo Tang; Lu Qi; Yun-xiang Ci

    2006-01-01

    A copolymer of poly(acrylonitrile-co-styrene) (SAN) was synthesized via an emulsion polymerization method.Novel polymer electrolyte membranes cast from the blends of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), SAN and fumed silica (SiO2) are microporous and can be used in polymer lithium-ion batteries. The membrane shows excellent characteristics such as high ionic conductivity and good mechanical strength when the mass ratio between SAN and PVDF-HFP and SiO2 is 3.5/31.5/5. The ionic conductivity of the membrane soaked in a liquid electrolyte of 1 mol/L LiPF6/EC/DMC/DEC is 4.9 × 10-3 Scm-1 at 25℃. The membrane is electrochemical stable up to 5.5 V versus Li+/Li in the liquid electrolyte. The influences of SiO2 content on the porosity and mechanical strength of the membranes were studied.Polymer lithium-ion batteries based on the membranes were assembled and their performances were also studied.

  13. SAXS Studies of TiO2 Nanoparticles in Polymer Electrolytes and in Nanostructured Films

    Directory of Open Access Journals (Sweden)

    Sigrid Bernstorff

    2010-11-01

    Full Text Available Polymer electrolytes as nanostructured materials are very attractive components for batteries and opto-electronic devices. (PEO8ZnCl2 polymer electrolytes were prepared from PEO and ZnCl2. The nanocomposites (PEO8ZnCl2/TiO2 themselves contained TiO2 nanograins. In this work, the influence of the TiO2 nanograins on the morphology and ionic conductivity of the nanocomposite was systematically studied by transmission small-angle X-ray scattering (SAXS simultaneously recorded with wide-angle X-ray diffraction (WAXD and differential scanning calorimetry (DSC at the synchrotron ELETTRA. Films containing nanosized grains of titanium dioxide (TiO2 are widely used in the research of optical and photovoltaic devices. The TiO2 films, prepared by chemical vapor deposition and e-beam epitaxy, were annealed in hydrogen atmospheres in the temperature range between 20 °C and 900 °C in order to study anatase-rutile phase transition at 740 °C. Also, grazing-incidence small angle X-ray scattering (GISAXS spectra for each TiO2 film were measured in reflection geometry at different grazing incident angles. Environmentally friendly galvanic cells, as well as solar cells of the second generation, are to be constructed with TiO2 film as working electrode, and nanocomposite polymer as electrolyte.

  14. Conductivity and Structural Studies of Plasticised Polyacrylonitrile (PAN)-Lithium Triflate Polymer Electrolyte Films

    International Nuclear Information System (INIS)

    The effect of different plasticizers on the properties of PAN-LiCF3SO3 polymer electrolytes has been studied. Propylene carbonate (PC) and ethylene carbonate (EC) having different values of donor numbers, dielectric constant and viscosity have been used as plasticizers. The highest room temperature conductivity for the film in the PAN-LiCF3SO3 system was 3.04 x 10-4 S cm-1. The highest room temperature conductivity for the films in the PAN-EC-LiCF3SO3 system and the PAN-PC-LiCF3SO3 system was 1.32 x 10-3 and 8.64 x 10-4 S cm-1. The addition of plasticizers has been found to enhance the conductivity of polymer electrolytes by increasing the amorphous content as well as by dissociating the ion aggregates present in polymer electrolyte. Conductivity temperature-dependence studies of these plasticised PAN-salt systems were carried out in the temperature range of 303 to 373 K. The conductivity versus temperature plots obeyed an Arrhenius type variation. The structural and complex formations were studied by X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy. (author)

  15. Polymer electrolyte based on crosslinked poly(glycidyl methacrylate) and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Beatrice Wong Chui; Hanifah, Sharina Abu; Ahmad, Azizan; Hassan, Nur Hasyareeda [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43000 Bangi, Selangor Darul Ehsan (Malaysia)

    2015-09-25

    Polymer electrolytes based on crosslinked poly(glycidyl methacrylate) as polymer host and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimTFSI) as incorporated salt were prepared by in-situ photopolymerization technique. The complexes with different mass ratio of glycidyl methacrylate (GMA) monomer to BmimTFSI were investigated. The ionic conductivity of the polymer electrolyte was increased and reach the highest value of 7.50 × 10{sup −4} S cm{sup −1} at the ratio of 3:7 (GMA: BmimTFSI). The interaction between the polymer host and ionic liquid was proved by Attenuated Total Reflectance-Fourier Transformation Infra-Red Spectroscopy (ATR-FTIR). Meanwhile, the X-ray diffraction analysis shows the amorphousity of the polymer electrolyte film increase with the ionic liquid ratio.

  16. Alkaline Exchange Membrane (AEM) for High-Efficiency Fuel Cells, Electrolyzers and Regenerative Fuel Cell Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an alkaline exchange membrane (AEM)for use as a polymer electrolyte in both fuel cell and electrolyzer systems.  The ultimate goal in AEM development...

  17. Modeling and Simulation for Fuel Cell Polymer Electrolyte Membrane

    Directory of Open Access Journals (Sweden)

    Takahiro Hayashi

    2013-01-01

    Full Text Available We have established methods to evaluate key properties that are needed to commercialize polyelectrolyte membranes for fuel cell electric vehicles such as water diffusion, gas permeability, and mechanical strength. These methods are based on coarse-graining models. For calculating water diffusion and gas permeability through the membranes, the dissipative particle dynamics–Monte Carlo approach was applied, while mechanical strength of the hydrated membrane was simulated by coarse-grained molecular dynamics. As a result of our systematic search and analysis, we can now grasp the direction necessary to improve water diffusion, gas permeability, and mechanical strength. For water diffusion, a map that reveals the relationship between many kinds of molecular structures and diffusion constants was obtained, in which the direction to enhance the diffusivity by improving membrane structure can be clearly seen. In order to achieve high mechanical strength, the molecular structure should be such that the hydrated membrane contains narrow water channels, but these might decrease the proton conductivity. Therefore, an optimal design of the polymer structure is needed, and the developed models reviewed here make it possible to optimize these molecular structures.

  18. Influence of Al2O3 on the ionic conductivity of plasticized PVC-PEG blend polymer electrolytes

    Science.gov (United States)

    Ravindran, D.; Vickraman, P.

    2016-05-01

    Polymer electrolytes with PVC-PEG blend as host matrix and LiClO4 as dopant salt was prepared through conventional solution casting method. To enhance the conductivity propylene carbonate (PC) was used as plasticizer. The influence of ceramic filler Al2O3 on the conductivity of the electrolyte films were studied by varying the (PVC: Al2O3) ratio. The films were subjected to XRD, complex impedance analysis and SEM analysis. The XRD studies reveal a marginal increase in the amorphous phase of the electrolyte films due to the incorporation of filler. The AC impedance analysis shows the dependency of ionic conductivity on the content (wt %) of filler and exhibit a maximum at 4 wt% filler. The SEM analysis depicts the occurrence of phase separation in electrolyte which is attributed to the poor solubility of polymer PVC in the liquid electrolyte.

  19. Detection of distributed static and dynamic loads with electrolyte-enabled distributed transducers in a polymer-based microfluidic device

    International Nuclear Information System (INIS)

    This paper reports on the use of electrolyte-enabled distributed transducers in a polymer-based microfluidic device for the detection of distributed static and dynamic loads. The core of the device is a polymer rectangular microstructure integrated with electrolyte-enabled distributed transducers. Distributed loads acting on the polymer microstructure are converted to different deflections along the microstructure length, which are further translated to electrical resistance changes by electrolyte-enabled distributed transducers. Owing to the great simplicity of the device configuration, a standard polymer-based fabrication process is employed to fabricate this device. With custom-built electronic circuits and custom LabVIEW programs, fabricated devices filled with two different electrolytes, 0.1 M NaCl electrolyte and 1-ethyl-3-methylimidazolium dicyanamide electrolyte, are characterized, demonstrating the capability of detecting distributed static and dynamic loads with a single device. As a result, the polymer-based microfluidic device presented in this paper is promising for offering the capability of detecting distributed static and dynamic loads in biomedical/surgical, manufacturing and robotics applications. (paper)

  20. The effect of grain size on aluminum anodes for Al-air batteries in alkaline electrolytes

    Science.gov (United States)

    Fan, Liang; Lu, Huimin

    2015-06-01

    Aluminum is an ideal material for metallic fuel cells. In this research, different grain sizes of aluminum anodes are prepared by equal channel angular pressing (ECAP) at room temperature. Microstructure of the anodes is examined by electron backscatter diffraction (EBSD) in scanning electron microscope (SEM). Hydrogen corrosion rates of the Al anodes in 4 mol L-1 NaOH are determined by hydrogen collection method. The electrochemical properties of the aluminum anodes are investigated in the same electrolyte using electrochemical impedance spectroscopy (EIS) and polarization curves. Battery performance is also tested by constant current discharge at different current densities. Results confirm that the electrochemical properties of the aluminum anodes are related to grain size. Finer grain size anode restrains hydrogen evolution, improves electrochemical activity and increases anodic utilization rate. The proposed method is shown to effectively improve the performance of Al-air batteries.

  1. Synthesis and characterization of ionomers as polymer electrolytes for energy conversion devices

    Science.gov (United States)

    Oh, Hyukkeun

    Single-ion conducting electrolytes present a unique alternative to traditional binary salt conductors used in lithium-ion batteries. Secondary lithium batteries are considered as one of the leading candidates to replace the combustible engines in automotive technology, however several roadblocks are present which prevent their widespread commercialization. Power density, energy density and safety properties must be improved in order to enable the current secondary lithium battery technology to compete with existing energy technologies. It has been shown theoretically that single-ion electrolytes can eliminate the salt concentration gradient and polarization loss in the cell that develops in a binary salt system, resulting in substantial improvements in materials utilization for high power and energy densities. While attempts to utilize single-ion conducting electrolytes in lithium-ion battery systems have been made, the low ionic conductivities prevented the successful operation of the battery cells in ambient conditions. This work focuses on designing single-ion conducting electrolytes with high ionic conductivities and electrochemical and mechanical stability which enables the stable charge-discharge performance of battery cells. Perfluorosulfonate ionomers are known to possess exceptionally high ionic conductivities due to the electron-withdrawing effect caused by the C-F bonds which stabilizes the negative charge of the anion, leading to a large number of free mobile cations. The effect of perfluorinated sulfonic acid side chains on transport properties of proton exchange membrane polymers was examinated via a comparison of three ionomers, having different side chain structures and a similar polymer backbone. The three different side chain structures were aryl-, pefluoro alkyl-, and alkyl-sulfonic acid groups, respectively. All ionomers were synthesized and characterized by 1H and 19F NMR. A novel ionomer synthesized with a pendant perfluorinated sulfonic acid

  2. Green polymer electrolytes based on chitosan and 1-butyl-3-methylimidazolium acetate

    Energy Technology Data Exchange (ETDEWEB)

    Shamsudin, Intan Juliana [Chemistry Department, Centre for Defence Foundation Studies, National Defence University of Malaysia, 57000 Kuala Lumpur (Malaysia); Ahmad, Azizan; Hassan, Nur Hasyareeda [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan (Malaysia)

    2014-09-03

    Green polymer electrolytes based on chitosan as the polymer matrix and ionic liquid 1-butyl-3-methylimidazolium acetate [Bmim][OAc] as charge carriers were prepared by solution casting technique. Complexes with various amount of ionic liquid loading were investigated as possible ionic conducting polymers. The ionic conductivity was found to increase with increasing weight percent of ionic liquid. The highest ionic conductivity of the charged chitosan-[Bmim][OAc] was 2.44 × 10{sup −3} S cm{sup −1} at 90 wt.% of [Bmim][OAc] content at ambient temperature. Attenuated Total Reflection Fourier Transform infrared (ATR-FTIR) spectroscopy has proven the interaction between chitosan and [Bmim][OAc]. X-ray Diffraction (XRD) has shown that the amorphosity of the complexes increase as the amount of [Bmim][OAc] increase.

  3. NMR spectroscopy study of agar-based polymers electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Mattos, R.I.; Tambelli, C.E. [Universidade de Sao Paulo (USP), Pirassununga, SP (Brazil). Fac. de Zootecnia e Engenharia de Alimentos; Raphael, E. [Universidade Federal de Sao Joao del-Rey (UFSJ), MG (Brazil). Dept. de Ciencias Naturais; Silva, I.D.A.; Magon, C.J.; Donoso, J.P. [Universidade de Sao Paulo (IFSC/USP), Sao Carlos, SP (Brazil). Inst. de Fisica

    2012-07-01

    Full text: This communication presents the results of preparation and characterization of transparent films obtained from agar and acetic acid. The films were characterized by electrochemical impedance spectroscopy (EIS) and nuclear magnetic resonance (NMR). The film formed by agar (Sigma Aldrich) was dispersed in water and kept under stirring and heating at 100 deg C. Next, glycerol, formaldehyde and different quantities of acetic acid (25 and 50 wt%) were added to this solution. The obtained solution was placed on a glass plate and left to dry for 48 hours in oven at 50 deg C to obtain the films, which were kept under vacuum before characterization. The ionic conductivity of the films display an Arrhenius behavior with activation energy E{sub a} = 78 (25 wt% of acetic acid) and E{sub a} = 87 kJ/mol (50 wt% of acetic acid). The conductivity values were 3:0 X 10{sup -6} and 1:2 X 10{sup -4} S/cm at room temperature and 4:4 X 10{sup -4} and 1:5 X 10{sup -3}S/cm at 70 deg C, for the 25 and 50 wt% of acetic acid respectively. To investigate the mechanism of protonic conduction in the polymer proton conductor proton NMR measurements were performed in the temperature range 200-370 K. The {sup 1}H-NMR results exhibit the qualitative feature associated with the proton mobility, namely the presence of well defined {sup 1}H spin-lattice relaxation maxima at 300 K. Activation energy of the order of 40 kJ/mol was obtained from the {sup 1}H-NMR line narrowing data. The ionic conductivity of the film combined with their transparency, flexibility, homogeneity and good adhesion to the glasses or metals indicate that agar-based SPEs are promising materials for used on optoelectronic applications. (author)

  4. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO4 for lithium ion battery application

    International Nuclear Information System (INIS)

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO4 membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10−4 S/cm was observed in SA/PEO/LiClO4 membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application

  5. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO{sub 4} for lithium ion battery application

    Energy Technology Data Exchange (ETDEWEB)

    Nurhadini,, E-mail: nur-chem@yahoo.co.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Division, Faculty of Mathematics and Natural Sciences, Institiut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132 (Indonesia)

    2015-09-30

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO{sub 4} membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10{sup −4} S/cm was observed in SA/PEO/LiClO{sub 4} membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application.

  6. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO4 for lithium ion battery application

    Science.gov (United States)

    Nurhadini, Arcana, I. Made

    2015-09-01

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO4 membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10-4 S/cm was observed in SA/PEO/LiClO4 membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application.

  7. Removal of charged micropollutants from water by ion-exchange polymers -- effects of competing electrolytes.

    Science.gov (United States)

    Bäuerlein, Patrick S; Ter Laak, Thomas L; Hofman-Caris, Roberta C H M; de Voogt, Pim; Droge, Steven T J

    2012-10-15

    A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV/H(2)O(2), activated carbon (AC) or membranes). We studied the sorption affinity of some ionic organic compounds to both AC and different charged polymeric materials. Ion-exchange polymers may be effective as additional extraction phases in water treatment, because sorption of all charged compounds to oppositely charged polymers was stronger than to AC, especially for the double-charged cation metformin. Tested below 1% of the polymer ion-exchange capacity, the sorption affinity of charged micropollutants is nonlinear and depends on the composition of the aqueous medium. Whereas oppositely charged electrolytes do not impact sorption of organic ions, equally charged electrolytes do influence sorption indicating ion-exchange (IE) to be the main sorption mechanism. For the tested polymers, a tenfold increased salt concentration lowered the IE-sorption affinity by a factor two. Different electrolytes affect IE with organic ions in a similar way as inorganic ions on IE-resins, and no clear differences in this trend were observed between the sulphonated and the carboxylated cation-exchanger. Sorption of organic cations is five fold less in Ca(2+) solutions compared to similar concentrations of Na(+), while that of anionic compounds is three fold weaker in SO(4)(2-) solutions compared to equal concentrations of Cl(-). PMID:22818952

  8. Improved electrical properties of Fe nanofiller impregnated PEO + PVP:Li+ blended polymer electrolytes for lithium battery applications

    Science.gov (United States)

    Naveen Kumar, K.; Saijyothi, K.; Kang, Misook; Ratnakaram, Y. C.; Hari Krishna, K.; Jin, Dahee; Lee, Yong Min

    2016-07-01

    Solid polymer-blended electrolyte films of polyethylene oxide (PEO) + polyvinyl pyrrolidone (PVP)/lithium perchlorate embedded with iron (Fe) nanofiller in different concentrations have been synthesized by a solution casting method. The semicrystalline nature of these polymer electrolyte films has been confirmed from their XRD profiles. Polymer complex formation and ion-polymer interactions are systematically studied by FTIR and laser Raman spectral analysis. Surface morphological studies are carried out from SEM analysis. Dispersed Fe nanofiller size evaluation study has been carried out using transmission electron microscopy (TEM). In order to evaluate the thermal stability, decomposition temperature, and thermogravimetric dynamics, we carried out the TG/DTA measurement. Upon addition of Fe nanofiller to the PEO + PVP/Li+ electrolyte system, it was found to result in the enhancement of ionic conductivity. The maximum ionic conductivity has been set up to be 1.14 × 10-4 Scm-1 at the optimized concentration of 4 wt% Fe nanofiller-embedded PEO + PVP/Li+ polymer electrolyte nanocomposite at an ambient temperature. PEO + PVP/Li+ + Fe nanofiller (4 wt%) cell exhibited better performance in terms of cell parameters. Based on the cell parameters, the 4 wt% Fe nanofiller-dispersed PEO + PVP/Li+ polymer electrolyte system could be suggested as a perspective candidate for solid-state battery applications.

  9. 凝胶聚合物电解质的研究进展%Research Progress of Gel Polymer Electrolytes

    Institute of Scientific and Technical Information of China (English)

    万玉荣; 乔庆东; 李琪

    2015-01-01

    Several kinds of polymer materials used as the matrix of gel polymer electrolytes were introduced, such as polyethylene oxide (PEO), polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), poly (vinylidene fluoride) (PVDF). Currently, research on gel polymer electrolyte is still in the primary stage. And there are many problems in the study of gel polymer electrolytes. In this article, modification methods of gel polymer electrolytes were discussed, such as crosslinking, copolymerization, blending or adding fillers, and so on. The application prospect of gel polymer electrolytes was analyzed.%介绍了几种聚合物高分子材料,常以其作为凝胶聚合物电解质基体。如聚氧化乙烯(PEO)、聚丙烯腈(PAN)、聚甲基丙烯酸甲酯(PMMA)、聚偏氟乙烯(PVDF)。对于凝胶聚合物电解质的研究,目前仍处于初级阶段,还存在许多问题。本文探讨了凝胶聚合物电解质的改性方法,主要有交联、共聚、共混或添加填料等,并展望了凝胶聚合物电解质的应用前景。

  10. The effect of porosity on performance of phosphoric acid doped polybenzimidazole polymer electrolyte membrane fuel cell

    Directory of Open Access Journals (Sweden)

    Celik Muhammet

    2016-01-01

    Full Text Available A polybenzimidazole (PBI based polymer electrolyte fuel cells, which called high temperature polymer electrolyte fuel cells (HT-PEMS, operate at higher temperatures (120-200°C than conventional PEM fuel cells. Although it is known that HT-PEMS have some of the significant advantages as non-humidification requirements for membrane and the lack of liquid water at high temperature in the fuel cell, the generated water as a result of oxygen reduction reaction causes in the degradation of these systems. The generated water absorbed into membrane side interacts with the hydrophilic PBI matrix and it can cause swelling of membrane, so water transport mechanism in a membrane electrode assembly (MEA needs to be well understood and water balance must be calculated in MEA. Therefore, the water diffusion transport across the electrolyte should be determined. In this study, various porosity values of gas diffusion layers are considered in order to investigate the effects of porosity on the water management for two phase flow in fuel cell. Two-dimensional fuel cell with interdigitated flow-field is modelled using COMSOL Multiphysics 4.2a software. The operating temperature and doping level is selected as 160°C and 6.75mol H3PO4/PBI, respectively.

  11. Nuclear magnetic resonance study of PEO-chitosan based polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Donoso, J.P.; Lopes, L.V.S. [IFSC, Universidade de Sao Paulo, PO Box 369, 13560-970 Sao Carlos-SP (Brazil); Pawlicka, A. [IQSC, Universidade de Sao Paulo, PO Box 780, 13560-970 Sao Carlos-SP (Brazil); Fuentes, S. [Department of Physics, Faculty of Sciences, Universidad Catolica del Norte, Angamos 0610, Antofagasta (Chile); Retuert, P.J. [Department of Material Sciences, Faculty of Mathematical and Physical Sciences, Universidad de Chile, Tupper 2069, Santiago (Chile); Gonzalez, G. [Department of Chemistry, Faculty of Sciences, Universidad de Chile, Casilla 653, Santiago (Chile)

    2007-12-31

    This work investigates lithium dynamics in a series of polymer electrolytes formed by poly(ethylene oxide) PEO, chitosan (QO), amino propil siloxane (pAPS) and lithium perchlorate by means of nuclear magnetic resonance techniques. Lithium ({sup 7}Li) lineshapes and spin-lattice relaxation times were measured as a function of temperature. The results suggest that the chemical functionality of QO, particularly the amine group, participate in coordinating lithium ion in the composites. The competition between QO and PEO for lithium ions is evident in the binary system. In the ternary electrolyte containing PEO, QO and pAPS, it is observed that the lithium ions can competitively interact with the two polymers. The heterogeneity, at a local microscopic scale, is revealed by a temperature-dependent equilibrium of lithium ion concentration between at least two different microphases; on 37dominated by the interactions with chitosan and the other one with polyether. The data of the ternary electrolyte was analysed by assuming two lithium dynamics, the first one associated to the motion of the lithium ion dissolved in PEO and the second one associated to those complexed by the chitosan. (author)

  12. Gel polymer electrolyte lithium-ion cells with improved low temperature performance

    Energy Technology Data Exchange (ETDEWEB)

    Smart, M.C.; Ratnakumar, B.V.; Behar, A.; Whitcanack, L.D. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Yu, J.-S. [LG Chem/Research Park, P.O. Box 61Yu Song, Science Town, Daejon (Korea); Alamgir, M. [Compact Power, Inc., 1857 Technology Drive, Troy, MI 48083 (United States)

    2007-03-20

    For a number of NASA's future planetary and terrestrial applications, high energy density rechargeable lithium batteries that can operate at very low temperature are desired. In the pursuit of developing Li-ion batteries with improved low temperature performance, we have also focused on assessing the viability of using gel polymer systems, due to their desirable form factor and enhanced safety characteristics. In the present study we have evaluated three classes of promising liquid low-temperature electrolytes that have been impregnated into gel polymer electrolyte carbon-LiMn{sub 2}O{sub 4}-based Li-ion cells (manufactured by LG Chem. Inc.), consisting of: (a) binary EC + EMC mixtures with very low EC-content (10%), (b) quaternary carbonate mixtures with low EC-content (16-20%), and (c) ternary electrolytes with very low EC-content (10%) and high proportions of ester co-solvents (i.e., 80%). These electrolytes have been compared with a baseline formulation (i.e., 1.0 M LiPF{sub 6} in EC + DEC + DMC (1:1:1%, v/v/v), where EC, ethylene carbonate, DEC, diethyl carbonate, and DMC, dimethyl carbonate). We have performed a number of characterization tests on these cells, including: determining the rate capacity as a function of temperature (with preceding charge at room temperature and also at low temperature), the cycle life performance (both 100% DOD and 30% DOD low earth orbit cycling), the pulse capability, and the impedance characteristics at different temperatures. We have obtained excellent performance at low temperatures with ester-based electrolytes, including the demonstration of >80% of the room temperature capacity at -60 C using a C/20 discharge rate with cells containing 1.0 M LiPF{sub 6} in EC + EMC + MB (1:1:8%, v/v/v) (MB, methyl butyrate) and 1.0 M LiPF{sub 6} in EC + EMC + EB (1:1:8%, v/v/v) (EB, ethyl butyrate) electrolytes. In addition, cells containing the ester-based electrolytes were observed to support 5C pulses at -40 C, while still

  13. P(AN-MMA)/TiO_2 Nano-composite Polymer Electrolyte by in-situ Polymerization

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Introduction With the development of portable electric devices,polymer lithium ion batteries (PLiBs) have been widely used as the power sources because of their high energy density and safe property[1].P(AN-MMA) copolymer is a kind of cheap macromolecules easily dissolving in the polar solvents such as carbonate,it has been applied as gel polymer electrolyte in PLiBs.Here we prepare a kind of highly conductive nano-composite polymer electrolytes using the P(AN-MMA) copolymer incorporated with TiO2 nan...

  14. 4.4 V lithium-ion polymer batteries with a chemical stable gel electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Takeru; Hara, Tomitaro; Akashi, Hiroyuki [Sony Corporation, Energy Business Group, R and D Division, 1-1 Aza, Shimosugishita, Takakura, Hiwada-machi, Koriyama-shi, Fukushima 963-0531 (Japan); Segawa, Ken; Honda, Kazuo [Sony Energy Device Corporation, PB Technology Center, 1-1 Aza, Shimosugishita, Takakura, Hiwada-machi, Koriyama-shi, Fukushima 963-0531 (Japan)

    2007-12-06

    We tested 4.2 V Li-ion polymer batteries (LIPB) with physical gel electrolyte, poly(vinylidene fluoride) (PVDF), 4.4 V LIPB and 4.4 V Li-ion batteries (LIB) with a liquid electrolyte. The discharge capacity of the 4.4 V LIPB reached 520 Wh l{sup -1} which was 9% higher than that of the 4.2 V LIPB. The 4.4 V LIPB had a high capacity retention ratio of 91.4% at 3 C because of the excellent ion conductivity of the PVDF gel. The capacity retention ratio of the 4.4 V LIPB was 82% after 500 cycles, which is comparable to those of some commercial LIBs. The 4.4 V LIPB retained its original thickness even after many cycles and after being stored at 90 C, whereas the 4.4 V LIB swelled by over 20%. Peaks in the FT-IR spectrum of the discolored separator in the 4.4 V LIB after storage were assigned to C=C double bonds, suggesting that the separator in direct contact with the 4.4 V cathode had been oxidized. The PVDF gel electrolyte not only had a high ionic conductivity but also completely suppressed oxidation. The 4.4 V LIPB with PVDF gel electrolyte has properties suitable for practical cells, namely, high energy density, high permanence and it is safe to use. (author)

  15. Gel polymer electrolytes based on nanofibrous polyacrylonitrile–acrylate for lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dul-Sun [Department of Chemical and Biological Engineering, Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Woo, Jang Chang [Department of Textile Engineering, Inha University, 100 Inharo, Nam-gu Incheon 402-751 (Korea, Republic of); Youk, Ji Ho, E-mail: youk@inha.ac.kr [Department of Textile Engineering, Inha University, 100 Inharo, Nam-gu Incheon 402-751 (Korea, Republic of); Manuel, James [Department of Chemical and Biological Engineering, Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon, E-mail: jhahn@gnu.ac.kr [Department of Chemical and Biological Engineering, Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of)

    2014-10-15

    Graphical abstract: - Highlights: • Nanofibrous polyacrylonitrile–acrylate membranes were prepared by electrospinning. • Trimethylolpropane triacrylate was used as a crosslinking agent of fibers. • The GPE based on PAN–acrylate (1/0.5) showed good electrochemical properties. - Abstract: Nanofibrous membranes for gel polymer electrolytes (GPEs) were prepared by electrospinning a mixture of polyacrylonitrile (PAN) and trimethylolpropane triacrylate (TMPTA) at weight ratios of 1/0.5 and 1/1. TMPTA is used to achieve crosslinking of fibers thereby improving mechanical strength. The average fiber diameters increased with increasing TMPTA concentration and the mechanical strength was also improved due to the enhanced crosslinking of fibers. GPEs based on electrospun membranes were prepared by soaking them in a liquid electrolyte of 1 M LiPF{sub 6} in ethylene carbonate (EC)/dimethyl carbonate (DMC) (1:1, v/v). The electrolyte uptake and ionic conductivity of GPEs based on PAN and PAN–acrylate (weight ratio; 1/1 and 1/0.5) were investigated. Ionic conductivity of GPEs based on PAN–acrylate was the highest for PAN/acrylate (1/0.5) due to the proper swelling of fibers and good affinity with liquid electrolyte. Both GPEs based on PAN and PAN–acrylate membranes show good oxidation stability, >5.0 V vs. Li/Li{sup +}. Cells with GPEs based on PAN–acrylate (1/0.5) showed remarkable cycle performance with high initial discharge capacity and low capacity fading.

  16. Phthaloylchitosan-Based Gel Polymer Electrolytes for Efficient Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    S. N. F. Yusuf

    2014-01-01

    Full Text Available Phthaloylchitosan-based gel polymer electrolytes were prepared with tetrapropylammonium iodide, Pr4NI, as the salt and optimized for conductivity. The electrolyte with the composition of 15.7 wt.% phthaloylchitosan, 31.7 wt.% ethylene carbonate (EC, 3.17 wt.% propylene carbonate (PC, 19.0 wt.% of Pr4NI, and 1.9 wt.% iodine exhibits the highest room temperature ionic conductivity of 5.27 × 10−3 S cm−1. The dye-sensitized solar cell (DSSC fabricated with this electrolyte exhibits an efficiency of 3.5% with JSC of 7.38 mA cm−2, VOC of 0.72 V, and fill factor of 0.66. When various amounts of lithium iodide (LiI were added to the optimized gel electrolyte, the overall conductivity is observed to decrease. However, the efficiency of the DSSC increases to a maximum value of 3.71% when salt ratio of Pr4NI : LiI is 2 : 1. This cell has JSC, VOC and fill factor of 7.25 mA cm−2, 0.77 V and 0.67, respectively.

  17. Solid-state electrochromic devices using pTMC/PEO blends as polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, P.C.; Rodrigues, L.C. [Centro de Quimica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Silva, M.M., E-mail: nini@quimica.uminho.p [Centro de Quimica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Smith, M.J. [Centro de Quimica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Parola, A.J.; Pina, F. [Requimte, Dep. Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Pinheiro, Carlos, E-mail: carlosp@dq.fct.unl.p [Requimte, Dep. Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); YDreams, Madan Parque, Quinta da Torre, 2829-516 Caparica (Portugal)

    2010-01-25

    Flexible, transparent and self-supporting electrolyte films based on poly(trimethylene carbonate)/poly(ethylene oxide) (p(TMC)/PEO) interpenetrating networks doped with LiClO{sub 4} were prepared by the solvent casting technique. These novel solid polymer electrolyte (SPE) systems were characterized by measurements of conductivity, cyclic voltammetry, differential scanning calorimetry and thermogravimetry. The incorporation of solid electrolytes as components of electrochromic devices can offer certain operational advantages in real-world applications. In this study, all-solid-state electrochromic cells were characterized, using Prussian blue (PB) and poly-(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT) as complementary electrochromic compounds on poly(ethyleneterphthalate) (PET) coated with indium tin oxide (ITO) as flexible electrodes. Assembled devices with PET/ITO/PB/SPE/PEDOT/ITO/PET 'sandwich-like' structure were assembled and successfully cycled between light and dark blue, corresponding to the additive optical transitions for PB and PEDOT electrochromic layers. The cells required long cycle times (>600 s) to reach full color switch and have modest stability towards prolonged cycling tests. The use of short duration cycling permitted the observation of changes in the coloration-bleaching performance in cells with different electrolyte compositions.

  18. Solid-state electrochromic devices using pTMC/PEO blends as polymer electrolytes

    International Nuclear Information System (INIS)

    Flexible, transparent and self-supporting electrolyte films based on poly(trimethylene carbonate)/poly(ethylene oxide) (p(TMC)/PEO) interpenetrating networks doped with LiClO4 were prepared by the solvent casting technique. These novel solid polymer electrolyte (SPE) systems were characterized by measurements of conductivity, cyclic voltammetry, differential scanning calorimetry and thermogravimetry. The incorporation of solid electrolytes as components of electrochromic devices can offer certain operational advantages in real-world applications. In this study, all-solid-state electrochromic cells were characterized, using Prussian blue (PB) and poly-(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT) as complementary electrochromic compounds on poly(ethyleneterphthalate) (PET) coated with indium tin oxide (ITO) as flexible electrodes. Assembled devices with PET/ITO/PB/SPE/PEDOT/ITO/PET 'sandwich-like' structure were assembled and successfully cycled between light and dark blue, corresponding to the additive optical transitions for PB and PEDOT electrochromic layers. The cells required long cycle times (>600 s) to reach full color switch and have modest stability towards prolonged cycling tests. The use of short duration cycling permitted the observation of changes in the coloration-bleaching performance in cells with different electrolyte compositions.

  19. Dye-sensitised photoelectrochemical solar cells with polyacrylonitrile based solid polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ileperuma, O.A.; Somasundaram, S. [University of Peradeniya (Sri Lanka). Dept. of Chemistry; Dissanayake, M.A.K.L. [University of Peradeniya (Sri Lanka). Dept. of Physics

    2002-07-05

    Novel all solid state dye-sensitised photoelectrochemical solar cells of the type, FTO-TiO{sub 2}-dye-PAN, EC, PC, Pr{sub 4}N{sup +}I{sup -}, I{sub 2}-Pt-FTO, have been fabricated and characterised using current-voltage characteristics and action spectra. Liquid electrolyte generally used for such solar cells has been successfully replaced by a quasi solid electrolyte comprised of polyacrylonitrile (PAN) with ethylene carbonate (EC) and propylene carbonate (PC) as plasticisers and Pr{sub 4}N{sup +}I{sup -}/I{sub 2} redox couple with tetrapropylammoniumiodide as the complexing salt. For the polymer electrolyte, the optimum conductivity of 2.95 x 10{sup -3} S cm{sup -1} was obtained for the electrolyte composition, PAN:EC:PC=15:35:50 (wt.%). The short circuit current density (J{sub SC}) and the open circuit voltage (V{sub OC}) obtained for an incident light intensity of 600 W m{sup -2} were 3.73 mA cm{sup -2} and 0.69 V, respectively. This corresponds to an overall quantum efficiency of 2.99%. From the action spectrum, the maximum incident photon conversion efficiency (IPCE) of 33% was obtained for incident light of wavelength 480 nm.(author)

  20. Studies on the development of mossy zinc electrodeposits from flowing alkaline electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Mc Vay, L.

    1991-07-01

    The initiation and characteristics of mossy zinc electrodeposits have been investigated. Batteries with zinc electrodes are candidates for electric vehicle applications; however, this electrode is prone to form non-compact deposits that contribute to capacity loss and battery failure. Moss is deposited when the current density is far from the limiting current. This morphology first appears only after the bulk deposit is approximately 1 {mu}m thick. In this investigation, the effects of flow rate (Re=0--4000), current density (0--50 mA/cm{sup 2}), concentration of the electroactive species (0.25 and 0.5 M), and the concentration of supporting electrolyte (3, 6, and 12 M) on the initiation of moss were examined. The rotating concentric cylinder electrode was employed for most of the experiments; and a flow channel was used to study the development of morphology. After the experiment, the deposit was characterized using microscopic, x-ray diffraction, and profilometric techniques. 94 refs., 72 figs.

  1. Synthesis, spectroscopic and electrochemical performance of pasted β-nickel hydroxide electrode in alkaline electrolyte

    Science.gov (United States)

    Shruthi, B.; Bheema Raju, V.; Madhu, B. J.

    2015-01-01

    β-Nickel hydroxide (β-Ni(OH)2) was successfully synthesized using precipitation method. The structure and property of the β-Ni(OH)2 were characterized by X-ray diffraction (XRD), Fourier Transform infra-red (FT-IR), Raman spectra and thermal gravimetric-differential thermal analysis (TG-DTA). The results of the FTIR spectroscopy and TG-DTA studies indicate that the β-Ni(OH)2 contains water molecules and anions. The microstructural and composition studies have been performed using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) analysis. A pasted-type electrode is prepared using β-Ni(OH)2 powder as the active material on a nickel sheet as a current collector. Cyclic voltammetry (CV) and Electrochemical impedance spectroscopy (EIS) studies were performed to evaluate the electrochemical performance of the β-Ni(OH)2 electrode in 6 M KOH electrolyte. CV curves showed a pair of strong redox peaks as a result of the Faradaic redox reactions of β-Ni(OH)2. The proton diffusion coefficient (D) for the present β-Ni(OH)2 electrode material is found to be 1.44 × 10-12 cm2 s-1. Further, electrochemical impedance studies confirmed that the β-Ni(OH)2 electrode reaction processes are diffusion controlled.

  2. Dye-sensitized solar cells and solar module using polymer electrolytes: Stability and performance investigations

    Directory of Open Access Journals (Sweden)

    Jilian Nei de Freitas

    2006-01-01

    Full Text Available We present recent results on solid-state dye-sensitized solar cell research using a polymer electrolyte based on a poly(ethylene oxide derivative. The stability and performance of the devices have been improved by a modification in the method of assembly of the cells and by the addition of plasticizers in the electrolyte. After 30 days of solar irradiation (100 mW cm-2 no changes in the cell's efficiency were observed using this new method. The effect of the active area size on cell performance and the first results obtained for the first solar module composed of 4.5 cm2 solid-state solar cells are also presented.

  3. Performance of laboratory polymer electrolyte membrane hydrogen generator with sputtered iridium oxide anode

    Science.gov (United States)

    Labou, D.; Slavcheva, E.; Schnakenberg, U.; Neophytides, S.

    The continuous improvement of the anode materials constitutes a major challenge for the future commercial use of polymer electrolyte membranes (PEM) electrolyzers for hydrogen production. In accordance to this direction, iridium/titanium films deposited directly on carbon substrates via magnetron sputtering are operated as electrodes for the oxygen evolution reaction interfaced with Nafion 115 electrolyte in a laboratory single cell PEM hydrogen generator. The anode with 0.2 mg cm -2 Ir catalyst loading was electrochemically activated by cycling its potential value between 0 and 1.2 V (vs. RHE). The water electrolysis cell was operated at 90 °C with current density 1 A cm -2 at 1.51 V without the ohmic contribution. The corresponding current density per mgr of Ir catalyst is 5 A mg -1. The achieved high efficiency is combined with sufficient electrode stability since the oxidation of the carbon substrate during the anodic polarization is almost negligible.

  4. Ionic transport in P(VdF–HFP)–PEO based novel microporous polymer electrolytes

    Indian Academy of Sciences (India)

    M Deka; A Kumar

    2009-12-01

    A novel microporous polymer electrolyte (MPE) comprising blends of poly(vinylidene fluoride-cohexafluoropropylene) [P(VdF–HFP)] and polyethylene oxide (PEO) was prepared by phase inversion technique. It was observed that addition of PEO improved the pore configuration, such as pore size, pore connectivity and porosity of P(VdF–HFP) based membranes. The room temperature ionic conductivity was significantly enhanced. The highest porosity of about 65% and ionic conductivity of about 7 × 10-4 S cm-1 was obtained when the weight ratio of PEO was 40%. The liquid electrolyte uptake was found to increase with increase in porosity and pore size. However, at higher weight ratio of PEO (> 40%) porosity, pore size and ionic conductivity was decreased. This descending trend with further increase of PEO weight ratio was attributed to conglomeration effect of PEO at the pores.

  5. Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Composite membranes based on poly(2,2′(m-phenylene)-5,5′bibenzimidazole) (PBI) and sulfonated polyhedral oligosilsesquioxane (S-POSS) with S-POSS contents of 5 and 10 wt.% were prepared by solution casting as base materials for high temperature polymer electrolyte membrane fuel cells. With membranes based on pure PBI as a reference point, the composite membranes were characterized with respect to spectroscopic and physicochemical properties. After doping with phosphoric acid, the composite membranes showed considerably improved ex situ proton conductivity under anhydrous as well as under fully humidified conditions in the 120-180 °C temperature range. The conductivity improvements were also confirmed by in situ fuel cell tests at 160 °C and further supported by the electrochemical impedance spectroscopy data based on the operating membrane electrode assemblies, demonstrating the technical feasibility of the novel electrolyte materials

  6. Modification of chitosan membranes with nanosilica particles as polymer electrolyte membranes

    Science.gov (United States)

    Kusumastuti, Ella; Siniwi, Widasari Trisna; Mahatmanti, F. Widhi; Jumaeri, Atmaja, Lukman; Widiastuti, Nurul

    2016-04-01

    Chitosan has been widely used as polymer matrix for Polymer Electrolyte Membrane (PEM) application replacing Nafion which has shortcomings in terms of high methanol permeability that degrades the performance of fuel cells. Chitosan membranes modification is performed by adding nanosilica to prevent methanol transport through the membrane. Nanosilica is synthesized by sol-gel method and the particle diameter is obtained by analysis using Breunner Emmet Teller (BET) that is 6.59 nm. Nanosilica is mixed with chitosan solution to obtain nanosilica-chitosan as polymer electrolyte membrane. The membranes are synthesized through phase inversion method with nanosilica composition including 0; 0.5; 1; 2; 3; 5; and 10% w/w of chitosan. Characterization of the membranes indicate that the results of water swelling, proton conductivity and methanol permeability of the membrane with 3% nanosilica respectively were 49.23%, 0.231 S/cm, and 5.43 x 10-7 cm2/s. Based on the results of membrane selectivity calculation, the optimum membrane is the composition of 3% nanosilica with value 5.91 x 105 S s cm-3. The results of functional groups analysis with FTIR showed that it was only physical interaction that occurred between chitosan and nanosilica since no significant changes found in peak around the wave number 1000-1250 cm--1.

  7. Conductivity enhancement via chemical modification of chitosan based green polymer electrolyte

    International Nuclear Information System (INIS)

    The potential of carboxymethyl chitosan as a green polymer electrolyte has been explored. Chitosan produced from partial deacetylation of chitin was reacted with monochloroacetic acid to form carboxymethyl chitosan. A green polymer electrolyte based chitosan and carboxymethyl chitosan was prepared by solution-casting technique. The powder and films were characterized by reflection Fourier transform infrared (ATR-FTIR) spectroscopy, 1H nuclear magnetic resonance, elemental analysis and X-ray diffraction, electrochemical impedance spectroscopy, and scanning electron microscopy. The shift of wavenumber that represents hydroxyl and amine stretching confirmed the polymer solvent complex formation. The XRD spectra results show that chemical modification of chitosan has improved amorphous properties of chitosan. The ionic conductivity was found to increase by two magnitudes higher with the chemical modification of chitosan. The highest conductivity achieved was 3.6 × 10−6 S cm−1 for carboxymethyl chitosan at room temperature and 3.7 × 10−4 S cm−1 at 60 °C

  8. Studies on the structure and transport properties of hexanoyl chitosan-based polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Winie, Tan, E-mail: tanwinie@salam.uitm.edu.m [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam (Malaysia); Ramesh, S. [Faculty of Engineering and Science, University Tunku Abdul Rahman, 53300 Kuala Lumpur (Malaysia); Arof, A.K. [Physics Department, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2009-11-15

    Polymer electrolytes composed of hexanoyl chitosan as the host polymer, lithium trifluoromethanesulfonate (LiCF{sub 3}SO{sub 3}) as the salt, diethyl carbonate (DEC)/ethylene carbonate (EC) as the plasticizers were prepared and characterized by X-ray diffraction and impedance spectroscopy. The X-ray diffraction results reveal the variation in conductivity from structural aspect. This is reflected in terms of amorphous content. Sample with higher amorphous content exhibits higher conductivity. In order to further understand the source of the conductivity variation with varying plasticizers compositions as well as temperatures, the ionic charge carrier concentration and their mobility in polymer electrolyte were determined. The Rice and Roth model was proposed to be used to estimate the ionic charge carrier concentration, n. Knowing n and combining the result with dc conductivity, the mobility of the ionic charge carrier can be calculated. It is found that the conductivity change with DEC/EC composition is due mainly to the change in ionic charge carrier concentration while the conductivity change with temperature is due primarily to the change in mobility.

  9. Tubular array, dielectric, conductivity and electrochemical properties of biodegradable gel polymer electrolyte

    International Nuclear Information System (INIS)

    Highlights: • A new finding of tubular array of 10–20 μm in length and 1–2 μm in thickness of gel polymer electrolyte (GPE) having 2.2 × 10−3 S cm−1 conductivity is reported. • Thermal and electrochemical characterizations of GPEs show good interaction among the polymer, plasticizer and salt. • GPE based supercapacitor demonstrates high capacitance of 186 F g−1. • Low temperature studies did not influence much on capacitance values obtained from AC impedance studies. • Charge–discharge exhibits high capacity with excellent cyclic stability and energy density. -- Abstract: A supercapacitor based on a biodegradable gel polymer electrolyte (GPE) has been fabricated using guar gum (GG) as the polymer matrix, LiClO4 as the doping salt and glycerol as the plasticizer. The scanning electron microscopy (SEM) images of the gel polymer showed an unusual tubular array type surface morphology. FTIR, DSC and TGA results of the GPE indicated good interaction between the components used. Highest ionic conductivity and lowest activation energy values were 2.2 × 10−3 S cm−1 and 0.18 eV, respectively. Dielectric studies revealed ionic behavior and good capacitance with varying frequency of the GPE system. The fabricated supercapacitor showed a maximum specific capacitance value of 186 F g−1 using cyclic voltammetry. Variation of temperature from 273 K to 293 K did not significantly influence the capacitance values obtained from AC impedance studies. Galvanostatic charge–discharge study of supercapacitor indicated that the device has good stability, high energy density and power density

  10. Electronic behavior of micro-structured polymer foils immersed in electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Souza, C.T.; Stori, E.M. [Programa de Pós-Graduação em Ciência dos Materiais, Universidade Federal do Rio Grande do Sul, CP 15051, CEP 91501-970, Porto Alegre, RS (Brazil); Instituto de Fisica, Universidade Federal do Rio Grande do Sul, CP 15051, CEP 91501-970, Porto Alegre, RS (Brazil); Fink, D. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, CP 15051, CEP 91501-970, Porto Alegre, RS (Brazil); Departamento de Fisica, Universidad Autónoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 México, DF, México (Mexico); Nuclear Physics Institute, 25068 Řež (Czech Republic); Vacík, V.; Švorčík, V. [Nuclear Physics Institute, 25068 Řež (Czech Republic); Papaléo, R.M. [Pontifícia Universidade Católica do Rio Grande do Sul, Av, Ipiranga 6681, CEP 90619-900, Porto Alegre, RS (Brazil); Amaral, L. [Programa de Pós-Graduação em Ciência dos Materiais, Universidade Federal do Rio Grande do Sul, CP 15051, CEP 91501-970, Porto Alegre, RS (Brazil); Instituto de Fisica, Universidade Federal do Rio Grande do Sul, CP 15051, CEP 91501-970, Porto Alegre, RS (Brazil); and others

    2013-07-01

    The presence of impurities in polymers makes them electroactive. When immersed in electrolytes, polymers can incorporate additional ions, thus changing their electronic properties. The aim of the present work is to characterize the electronic behavior of polymers with microstructures obtained from proton irradiation and etching. To that end, polyethylene terephthalate foils were irradiated with a 2.0 × 2.0 μm{sup 2} proton beam of 3 MeV. Subsequently, the foils were submitted to an etching procedure with NaOH, leading to microstructures of the order of 1000 μm{sup 2}. Finally, the polymers were immersed in a solution of NaCl and submitted to an AC voltage from a function generator. The results show that the etching procedure after proton irradiation leads to buried structures in the polymers. Pristine and microstructured foils show an Ohmic behavior for frequencies below 1 kHz and a capacitive behavior above this frequency up to 1 MHz. This behavior is independent of the foil thickness and the area of the structures.

  11. Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-performance solid-state supercapacitors

    Science.gov (United States)

    Pandey, Gaind P.; Liu, Tao; Hancock, Cody; Li, Yonghui; Sun, Xiuzhi Susan; Li, Jun

    2016-10-01

    A flexible, free-standing, thermostable gel polymer electrolyte based on plastic crystalline succinonitrile (SN) and ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) entrapped in copolymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) is prepared and optimized for application in solvent-free solid-state supercapacitors. The synthesized gel polymer electrolyte exhibits a high ionic conductivity over a wide temperature range (from ∼5 × 10-4 S cm-1 at -30 °C up to ∼1.5 × 10-2 S cm-1 at 80 °C) with good electrochemical stability window (-2.9 to 2.5 V). Thermal studies confirm that the SN containing gel polymer electrolyte remains stable in the same gel phase over a wide temperature range from -30 to 90 °C. The electric double layer capacitors (EDLCs) have been fabricated using activated carbon as active materials and new gel polymer electrolytes. Electrochemical performance of the EDLCs is assessed through cyclic voltammetry, galvanostatic charge-discharge cycling and impedance spectroscopy. The EDLC cells with the proper SN-containing gel polymer electrolyte has been found to give high specific capacitance 176 F g-1 at 0.18 A g-1 and 138 F g-1 at 8 A g-1. These solid-state EDLC cells show good cycling stability and the capability to retain ∼80% of the initial capacitance after 10,000 cycles.

  12. Structural and ionic conductivity studies of electrospun polymer blend P(VdF-co-HFP)/PMMA electrolyte membrane for lithium battery application

    Energy Technology Data Exchange (ETDEWEB)

    Padmaraj, O.; Satyanarayana, N., E-mail: nallanis2011@gmail.com [Department of Physics, Pondicherry University, Pondicherry 605 014 (India); Venkateswarlu, M. [R& D, Amara Raja Batteries Ltd., Karakambadi 517 520 (India)

    2015-06-24

    A novel fibrous polymer blend [(100-x) % P(VdF-co-HFP)/x % PMMA, x = 10, 20, 30, 40, 50] electrolyte membranes were prepared by electrospinning technique. Structural, thermal and surface morphology of all the compositions of electrospun polymer blend membranes were studied by using XRD, DSC & SEM. The newly developed five different compositions of polymer blend fibrous electrolyte membranes were obtained by soaking in an electrolyte solution contains 1M LiPF{sub 6} in EC: DEC (1:1,v/v). The wet-ability and conductivity of all the compositions of polymer blend electrolyte membranes are evaluated through electrolyte uptake and impedance measurements. The polymer blend [90% P(VdF-co-HFP)/10% PMMA] electrolyte membrane showed good wet-ability and high conductivity (1.788 × 10{sup −3} Scm{sup −1}) at room temperature.

  13. Structural and ionic conductivity studies of electrospun polymer blend P(VdF-co-HFP)/PMMA electrolyte membrane for lithium battery application

    Science.gov (United States)

    Padmaraj, O.; Venkateswarlu, M.; Satyanarayana, N.

    2015-06-01

    A novel fibrous polymer blend [(100-x) % P(VdF-co-HFP)/x % PMMA, x = 10, 20, 30, 40, 50] electrolyte membranes were prepared by electrospinning technique. Structural, thermal and surface morphology of all the compositions of electrospun polymer blend membranes were studied by using XRD, DSC & SEM. The newly developed five different compositions of polymer blend fibrous electrolyte membranes were obtained by soaking in an electrolyte solution contains 1M LiPF6 in EC: DEC (1:1,v/v). The wet-ability and conductivity of all the compositions of polymer blend electrolyte membranes are evaluated through electrolyte uptake and impedance measurements. The polymer blend [90% P(VdF-co-HFP)/10% PMMA] electrolyte membrane showed good wet-ability and high conductivity (1.788 × 10-3 Scm-1) at room temperature.

  14. Structural and ionic conductivity studies of electrospun polymer blend P(VdF-co-HFP)/PMMA electrolyte membrane for lithium battery application

    International Nuclear Information System (INIS)

    A novel fibrous polymer blend [(100-x) % P(VdF-co-HFP)/x % PMMA, x = 10, 20, 30, 40, 50] electrolyte membranes were prepared by electrospinning technique. Structural, thermal and surface morphology of all the compositions of electrospun polymer blend membranes were studied by using XRD, DSC & SEM. The newly developed five different compositions of polymer blend fibrous electrolyte membranes were obtained by soaking in an electrolyte solution contains 1M LiPF6 in EC: DEC (1:1,v/v). The wet-ability and conductivity of all the compositions of polymer blend electrolyte membranes are evaluated through electrolyte uptake and impedance measurements. The polymer blend [90% P(VdF-co-HFP)/10% PMMA] electrolyte membrane showed good wet-ability and high conductivity (1.788 × 10−3 Scm−1) at room temperature

  15. Comparative study of polymer matrices for gelled electrolytes of lithium batteries; Etude comparative de matrices polymeres pour electrolytes gelifies de batteries au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Du Pasquier, A.; Sarrazin, C.; Fauvarque, J.F. [CNAM, 75 - Paris (France); Andrieu, X. [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1996-12-31

    A solid electrolyte for lithium batteries requires several properties: a good ionic conductivity of about 10{sup -3} S/cm at 298 deg. K, a high cationic transport number (greater than 0.5), a redox stability window higher than 4.5 V, a good stability of the interface with the lithium electrode, and a sufficient mechanical stability. The family of gelled or hybrid electrolytes seems to meet all these requirements. Thus, a systematic study of the gelling of an ethylene carbonate and lithium bistrifluorosulfonimide (LiTFSI) based electrolyte has been carried out. The polymers used for gel or pseudo-gel synthesis are POE, PMMA and PAN which represent 3 different cases of interaction with the electrolyte. All the properties mentioned above have been studied according to the nature of the polymer and to the concentration of lithium salt, showing the advantages and drawbacks of each polymer. The possibility of using some of these gels in lithium-ion batteries has been tested by lithium intercalation tests in UF2 graphite at the C/10 regime and by the cycling of LiCoO{sub 2}/UF{sub 2} batteries at the C/5 regime. Interesting performances have been obtained on Li/PPy batteries which can operate at the 7.5 C regime. (J.S.)

  16. Kinetic factors determining conducting filament formation in solid polymer electrolyte based planar devices

    Science.gov (United States)

    Krishnan, Karthik; Aono, Masakazu; Tsuruoka, Tohru

    2016-07-01

    Resistive switching characteristics and conducting filament formation dynamics in solid polymer electrolyte (SPE) based planar-type atomic switches, with opposing active Ag and inert Pt electrodes, have been investigated by optimizing the device configuration and experimental parameters such as the gap distance between the electrodes, the salt inclusion in the polymer matrix, and the compliance current applied in current-voltage measurements. The high ionic conductivities of SPE enabled us to make scanning electron microscopy observations of the filament formation processes in the sub-micrometer to micrometer ranges. It was found that switching behaviour and filament growth morphology depend strongly on several kinetic factors, such as the redox reaction rate at the electrode-polymer interfaces, ion mobility in the polymer matrix, electric field strength, and the reduction sites for precipitation. Different filament formations, resulting from unidirectional and dendritic growth behaviours, can be controlled by tuning specified parameters, which in turn improves the stability and performance of SPE-based devices.Resistive switching characteristics and conducting filament formation dynamics in solid polymer electrolyte (SPE) based planar-type atomic switches, with opposing active Ag and inert Pt electrodes, have been investigated by optimizing the device configuration and experimental parameters such as the gap distance between the electrodes, the salt inclusion in the polymer matrix, and the compliance current applied in current-voltage measurements. The high ionic conductivities of SPE enabled us to make scanning electron microscopy observations of the filament formation processes in the sub-micrometer to micrometer ranges. It was found that switching behaviour and filament growth morphology depend strongly on several kinetic factors, such as the redox reaction rate at the electrode-polymer interfaces, ion mobility in the polymer matrix, electric field strength

  17. Elucidating through-plane liquid water profile in a polymer electrolyte membrane fuel cell.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yun (University of California, Irvine, CA); Chen, Ken Shuang

    2010-10-01

    In this paper, a numerical model incorporating micro-porous layers (MPLs) is presented for simulating water transport within the gas diffusion layers (GDLs) and MPLs as well as across their interfaces in a polymer electrolyte membrane (PEM) fuel cell. One-dimensional analysis is conducted to investigate the impacts of MPL and GDL properties on the liquid-water profile across the anode GDL-MPL and cathode MPL-GDL regions. Furthermore, two-dimensional numerical simulations that take MPLs into account are also carried out to elucidate liquid water transport, particularly through-plane liquid-water profile in a PEM fuel cell. Results from case studies are presented.

  18. Properties of solid polymer electrolyte fluorocarbon film. [used in hydrogen/oxygen fuel cells

    Science.gov (United States)

    Alston, W. B.

    1973-01-01

    The ionic fluorocarbon film used as the solid polymer electrolyte in hydrogen/oxygen fuel cells was found to exhibit delamination failures. Polarized light microscopy of as-received film showed a lined region at the center of the film thickness. It is shown that these lines were not caused by incomplete saponification but probably resulted from the film extrusion process. The film lines could be removed by an annealing process. Chemical, physical, and tensile tests showed that annealing improved or sustained the water contents, spectral properties, thermo-oxidative stability, and tensile properties of the film. The resistivity of the film was significantly decreased by the annealing process.

  19. Nanostructured electrodes and gel-polymer electrolyte for an improved Li-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Bodoardo, S.; Bongiovanni, R.; Gerbaldi, C.; Meligrana, G.; Nair, J. [Dipartimento di Scienza dei Materiali e Ingegneria Chimica, Politecnico di Torino (Italy); Mulas, G. [Dipartimento di Chimica, Universita di Sassari (Italy); Penazzi, N.

    2009-06-15

    The present communication deals with the results obtained by the electrochemistry research group at the Politecnico di Torino in Italy in the field of materials for Li-ion cells. Cathode (LiFePO{sub 4}/C powder), anode (Ni{sub 3}Sn{sub 4}-C alloy) and electrolyte (gel-polymer membrane) cell components have been prepared with the aim of obtaining, beyond high performance, cheap materials from easily disposable reagents via simple and reliable preparations. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  20. Ionic conductivity and dielectric permittivity of polymer electrolyte plasticized with polyethylene glycol

    Science.gov (United States)

    Das, S.; Ghosh, A.

    2016-05-01

    We have studied ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with polyethylene glycol (PEG). The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. The maximum dielectric constant is observed for 30 wt. % of PEG content. To get further insights into the ion dynamics, the complex dielectric permittivity has been studied with Havriliak-Negami function. The variation of relaxation time with inverse temperature obtained from HN formalism follows VTF nature.

  1. Using a Quasipotential Transformation for Modeling Diffusion Media inPolymer-Electrolyte Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Adam Z.; Newman, John

    2008-08-29

    In this paper, a quasipotential approach along with conformal mapping is used to model the diffusion media of a polymer-electrolyte fuel cell. This method provides a series solution that is grid independent and only requires integration along a single boundary to solve the problem. The approach accounts for nonisothermal phenomena, two-phase flow, correct placement of the electronic potential boundary condition, and multilayer media. The method is applied to a cathode diffusion medium to explore the interplay between water and thermal management and performance, the impact of the rib-to-channel ratio, and the existence of diffusion under the rib and flooding phenomena.

  2. Oxide-supported PtCo alloy catalyst for intermediate temperature polymer electrolyte fuel cells

    OpenAIRE

    Stassi, Alessandro; Gatto, Irene; Baglio, Vincenzo; Passalacqua, Enza; Aricò, Antonino S.

    2013-01-01

    International audience A Pt-Co alloy catalyst supported on a Ta-doped Ti-oxide was investigated for the oxygen reduction reaction in a polymer electrolyte fuel cell (PEMFC) operating between 80° and 110 °C at different relative humidity (100% and 33% R.H.). A crystalline Anatase phase was obtained for the Ta-doped Ti-oxide support with BET surface area of about 150 m2/g. Pt and Pt3Co1 nanoparticles dispersed on the Ta-doped Ti-oxide showed a crystallite size of 3.9 and 2.9 nm, respectively...

  3. Pseudo one-dimensional analysis of polymer electrolyte fuel cell cold-start

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Partha P [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Wang, Yun [NON LANL; Mishlera, Jeff [NON LANL

    2009-01-01

    This paper investigates the electrochemical kinetics, oxygen transport, and solid water formation in polymer electrolyte fuel cell (PEFC) during cold start. Following [Yo Wang, J. Electrochem. Soc., 154 (2007) B1041-B1048], we develop a pseudo one-dimensional analysis, which enables the evaluation of the impact of ice volume fraction and temperature variations on cell performance during cold-start. The oxygen profile, starvation ice volume fraction, and relevant overpotentials are obtained. This study is valuable for studying the characteristics of PEFC cold-start.

  4. New Polymer Electrolyte Membranes Based on Acid Doped PBI For Fuel Cells Operating above 100°C

    DEFF Research Database (Denmark)

    Li, Qingfeng

    2003-01-01

    The technical achievement and challenges for the PEMFC technology based on perfluorosulfonic acid (PFSA) polymer membranes (e.g. Nafion®) are briefly discussed. The newest development for alternative polymer electrolytes for operation above 100°C. As one of the successful approaches to high opera...... operational temperatures, the development and evaluation of acid doped PBI membranes are reviewed, covering polymer synthesis, membrane casting, acid doping, physiochemical characterization and fuel cell tests.......The technical achievement and challenges for the PEMFC technology based on perfluorosulfonic acid (PFSA) polymer membranes (e.g. Nafion®) are briefly discussed. The newest development for alternative polymer electrolytes for operation above 100°C. As one of the successful approaches to high...

  5. Influence of Cellulose Nanofillers on the Rheological Properties of Polymer Electrolytes

    Science.gov (United States)

    El Kissi, Nadia; Alloin, Fannie; Dufresne, Alain; Sanchez, Jean-Yves; Bossard, Frédéric; D'Aprea, Alessandra; Leroy, Séverine

    2008-07-01

    In this study, nanocomposite polymer electrolytes, based on high molecular weight PEO were prepared from high aspect ratio natural cellulosic nanofillers. The thermomechanical behaviour of the resulting nanocomposites was investigated using differential scanning calorimetry, dynamic mechanical analysis and rheometrical measurements. The influence of entanglements versus percolation mechanism on the determination of the mechanical properties of the composite was also investigated. Shear rheometry of the unfilled PEO and related nanocomposites shows that the shear viscosity first decreases when the concentration in cellulose increases. Then typical suspension behaviour is obtained and the viscosity increases with the concentration. This observation is in agreement with DSC and DMA results and is explained in terms of polymer-filler interactions. Interactions between cellulose fillers, are responsible for the reinforcing effect above the melting temperature of the matrix, through the formation of a stiff network that is well predicted by a percolation concept.

  6. Effect of epoxidation on 30% poly(methyl methacrylate)-grafted natural rubber polymer electrolytes

    International Nuclear Information System (INIS)

    Epoxidized 30% poly(methyl methacrylate)-grafted natural rubber (EMG 30) as a polymer host in solid polymer electrolytes (SPEs) has been investigated. EMG30 was synthesized via performicepoxidation method onto 30% poly(methyl methacrylate)-grafted natural rubber (MG30) and the formations of epoxy group were discussed. The EMG30 were characterized by proton nuclear magnetic resonance (1HNMR) to investigate their chemical structure and differential scanning calorimeter to determine their crystallinity. A new peak in 1HNMR spectra (2.71 ppm) confirmed the appearance of epoxy group. SPE based on EMG30 doped with 40 wt% LiCF3SO3 show the highest conductivity. The complexation between EMG30 and LiCF3SO3 were confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR)

  7. Synthesis and characterization of nanocomposite polymer blend electrolyte thin films by spin-coating method

    Science.gov (United States)

    Chapi, Sharanappa; Niranjana, M.; Devendrappa, H.

    2016-05-01

    Solid Polymer blend electrolytes based on Polyethylene oxide (PEO) and poly vinyl pyrrolidone (PVP) complexed with zinc oxide nanoparticles (ZnO NPs; Synthesized by Co-precipitation method) thin films have prepared at a different weight percent using the spin-coating method. The complexation of the NPs with the polymer blend was confirmed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR). The variation in film morphology was examined by polarized optical micrographs (POMs). The thermal behavior of blends was investigated under non-isothermal conditions by differential thermal analyses (DTA). A single glass transition temperature for each blend was observed, which supports the existence of compatibility of such system. The obtained results represent that the ternary based thin films are prominent materials for battery and optoelectronic device applications.

  8. Effect of epoxidation on 30% poly(methyl methacrylate)-grafted natural rubber polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, Khuzaimah; Aziz, Ahmad Fairoz [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Adam, Nurul Ilham [Faculty of Applied Sciences, Universiti Teknologi MARA, KampusTapah, 35400 Tapah Road, Tapah, Perak (Malaysia); Yahya, Muhd Zu Azhan [Faculty of Defence Sciences and Technology, Universiti Pertahanan Nasional Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur (Malaysia); Ali, Ab Malik Marwan [Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2015-08-28

    Epoxidized 30% poly(methyl methacrylate)-grafted natural rubber (EMG 30) as a polymer host in solid polymer electrolytes (SPEs) has been investigated. EMG30 was synthesized via performicepoxidation method onto 30% poly(methyl methacrylate)-grafted natural rubber (MG30) and the formations of epoxy group were discussed. The EMG30 were characterized by proton nuclear magnetic resonance ({sup 1}HNMR) to investigate their chemical structure and differential scanning calorimeter to determine their crystallinity. A new peak in {sup 1}HNMR spectra (2.71 ppm) confirmed the appearance of epoxy group. SPE based on EMG30 doped with 40 wt% LiCF{sub 3}SO{sub 3} show the highest conductivity. The complexation between EMG30 and LiCF{sub 3}SO{sub 3} were confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR)

  9. U.S. DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications

    OpenAIRE

    Dimitrios C. Papageorgopoulos; Reginald Tyler; Jason Marcinkoski; Kathi Epping Martin; Donna Lee Ho; Garland, Nancy L.; David Peterson; John Kopasz; Spendelow, Jacob S.; Greg J. Kleen; Cassidy Houchins

    2012-01-01

    Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel ...

  10. Synthesis of polycarbonate polymer electrolytes for lithium ion batteries and study of additives to raise the ionic conductivity

    OpenAIRE

    Andersson, Jonas

    2015-01-01

    Polymer electrolyte films based on poly(trimethylene carbonate) (PTMC) mixed with LiTFSI salt in different compositions were synthesized and investigated as electrolytes for lithium ion batteries, where the ionic conductivity is the most interesting material property. Electrochemical impedance spectroscopy (EIS) and DSC were used to measure the ionic conductivity and thermal properties, respectively. Additionally, FTIR and Raman spectroscopy were used to examine ion coordination in the materi...

  11. Compatibility and thermal stability studies on plasticized PVC/PMMA blend polymer electrolytes complexed with different lithium salts

    Directory of Open Access Journals (Sweden)

    R. Nimma Elizabeth

    2005-03-01

    Full Text Available The lithium salt (x (X= LiAsF6, LiPF6, LiN(C2F5SO22 , LiN(CF3SO22, LiBF4 was complexed with a host of poly(vinyl chloride (PVC/ poly(methyl methacrylate (PMMA blend polymer and plasticized with a combination of ethylene carbonate (EC and propylene carbonate(PC. The polymer electrolyte films were prepared for constant PVC/PMMA blend ratio. The electrochemical stability and thermal stability of the solid polymer electrolytes were reported. The role of PMMA to the phenomena occurring at the interface between the electrolyte and the lithium metal electrode was explored.

  12. Effect of nanosized silica in poly(methyl methacrylate)-lithium bis(trifluoromethanesulfonyl)imide based polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, S.; Lu, Soon-Chien [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Setapak, 53300 Kuala Lumpur (Malaysia)

    2008-12-01

    The effect of nanosized silica when incorporated in polymer electrolytes is analyzed by means of Fourier transform infrared (FTIR) spectroscopy, conductivity and thermal properties. Nanocomposite polymer electrolytes are synthesized by the dispersion of nanosized silica (SiO{sub 2}), up to 10 wt.% maximum, into a matrix formed by poly(methyl methacrylate) (PMMA) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The highest conductivity is 2.44 x 10{sup -6} S cm{sup -1} at room temperature, with 4 wt.% of silica added. The FTIR spectra show evidence of complexation between PMMA, LiTFSI and SiO{sub 2}. The addition of silica to the polymer electrolytes also improves the thermal stability and the ability to retain conductivity over time. (author)

  13. Conductivity study of PEO–LiClO4 polymer electrolyte doped with ZnO nanocomposite ceramic filler

    Indian Academy of Sciences (India)

    S U Patil; S S Yawale; S P Yawale

    2014-10-01

    The preparation and characterization of composite polymer electrolytes comprising PEO and LiClO4 with different concentrations of ZnO nanoparticles are studied. Conductivity measurements were carried out and discussed. In order to ascertain the thermal stability of the polymer electrolyte with maximum conductivity, films were subjected to TG/DTA analysis in the range of 298–823 K. In the present work, FTIR spectroscopy is used to study polymer structure and interactions between PEO and LiClO4, which can make changes in the vibrational modes of the atoms or molecules in the material. FTIR spectra show the complexation of LiClO4 with PEO. The SEM photographs indicated that electrolytes are miscible and homogeneous.

  14. Superionic solid-state polymer electrolyte membrane for high temperature applications

    Science.gov (United States)

    Kyu, Thein; He, Ruixuan; Cao, Jinwei

    2015-03-01

    Completely amorphous, flexible, solid-state polymer electrolyte membranes (ss-PEM) consisted of polyethylene glycol diacrylate /succinonitrile plasticizer (SCN)/lithium trifluorosulfonyl imide were fabricated via UV polymerization. The room temperature ionic conductivity of our ss-PEM is extremely high (i.e., 10-3S/cm), which is already in the superionic conductor range of inorganic and/or liquid electrolyte counterparts. Of particular interest is that our ss-PEM is thermally stable up to 140°C, which is superior to the liquid electrolyte counterpart that degrades above 80°C. The ss-PEM exhibits cyclic stability in both LiFePO4/Li and Li4Ti5O12 /Li half-cells up to 50 cycles tested. The trend of conductivity enhancement with temperature is reproducible in the repeated cycles, showing melting transitions of the SCN plastic crystals. In the compositions close to the solid (SCN plastic crystal)-liquid coexistence line, polymerization-induced crystallization occurs during photo-curing. The effect of solid-liquid segregation on ionic conductivity behavior is discussed. Supported by NSF-DMR 1161070.

  15. Photo-polymerized films of lithium ion conducting solid polymer electrolyte for electrochromic windows (ECWs)

    Energy Technology Data Exchange (ETDEWEB)

    Varshney, P.; Deepa, M.; Agnihotry, S.A. [Electronic Materials Division, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India); Ho, K.C. [National Taiwan University, Taipei ROC-10617 (Taiwan)

    2003-09-30

    Films of solid polymer electrolyte (spe) have been prepared by the photo-polymerization of the monomer: 2-hydroxyethylmethacrylate (HEMA) simultaneously accompanied by chemical crosslinking with neopentyl glycol which is dissolved in a liquid electrolyte, namely, 1M LiClO{sub 4} in EC:PC binary solvent mixed in two different volume ratios. The spe films exhibit ionic conductivities greater than 10{sup -3}Scm{sup -1} at 25C. Thermal and structural characteristics of the films have been determined by DSC and XRD, respectively. The electrochemical redox behavior of an electrochromic device (PWECD) fabricated with an electrodeposited tungsten oxide film as the primary electrode, a prussian blue film as the counter electrode and a poly(HEMA) based electrolyte film as well as that of the individual components of the device has been examined by cyclic voltammetry. Transmission modulation of =60% ({lambda}=650nm) shown by the PWECD renders it to be a promising candidate for electrochromic window applications.

  16. Alkaline earth-based coordination polymers derived from a cyclotriphosphazene-functionalized hexacarboxylate

    Science.gov (United States)

    Ling, Yajing; Bai, Dongjie; Feng, Yunlong; He, Yabing

    2016-10-01

    Combination of hexakis(4-carboxylatephenoxy)cyclotriphosphazene with alkaline earth ions of increasing ionic radii (Mg2+, Ca2+ and Ba2+) under different solvothermal conditions yielded three new coordination polymers, and their crystal structures were determined by single-crystal X-ray diffraction analysis. The magnesium compound displays a three dimensional (3D) network structure constructed from the deprotonated ligand and the secondary building block Mg(COO)4, which can be rationalized as a (4,6)-connected topological net with the Schläfli symbol of (44·62)3(49·66)2. The calcium compound consists of 1D infinite "Ca-O" inorganic chains connected by the deprotonated ligands to from a 3D framework. The barium compound exhibits a 3D framework in which 1D "Ba-O" inorganic chains are connected together by the deprotonated organic linkers. Due to the semi-rigid nature, the ligand adopts distinctly different conformations in the three compounds. The metal ions' influence exerted on the final structure of the resulting coordination polymers is also discussed. When the radii of alkaline earth ions increases descending down the group from Mg(II) to Ba(II), the coordination number becomes larger and more versatile: from 6 in the magnesium compound, to 6,7 and 10 in the calcium compound, and to 8 and 9 in the barium compound, thus substantially influencing the resulting final framework structures. Also, the photophysical properties were investigated systematically, revealing that the three compounds are photoluminscent in the solid state at room temperature. This work demonstrates that although the multiplicity of conformation in the hexacarboxylate ligand based on the inorganic scaffold cyclotriphosphazene makes it difficult to predict how this ligand will form extended network, but provides unique opportunities for the formation of diverse inorganic-organic hybrids exhibiting rich structural topologies.

  17. Effect of plasticizer and fumed silica on ionic conductivity behaviour of proton conducting polymer electrolytes containing HPF6

    Indian Academy of Sciences (India)

    Jitender Paul Sharma; S S Sekhon

    2013-08-01

    The effect of addition of propylene carbonate (PC) and nano-sized fumed silica on the ionic conductivity behaviour of proton conducting polymer electrolytes containing different concentrations of hexafluorophosphoric acid (HPF6) in polyethylene oxide (PEO) has been studied. The addition of PC results in an increase in ionic conductivity, whereas the addition of nano-sized fumed silica improves mechanical strength of electrolytes along with a small increase in ionic conductivity. It was observed that the simultaneous addition of PC and fumed silica results in electrolytes with optimum value of ionic conductivity and other properties.

  18. Thin and flexible solid-state organic ionic plastic crystal-polymer nanofibre composite electrolytes for device applications.

    Science.gov (United States)

    Howlett, Patrick C; Ponzio, Florian; Fang, Jian; Lin, Tong; Jin, Liyu; Iranipour, Nahid; Efthimiadis, Jim

    2013-09-01

    All solid-state organic ionic plastic crystal-polymer nanofibre composite electrolytes are described for the first time. The new composite materials exhibit enhanced conductivity, excellent thermal, mechanical and electrochemical stability and allow the production of optically transparent, free-standing, flexible, thin film electrolytes (10's μms thick) for application in electrochemical devices. Stable cycling of a lithium cell incorporating the new composite electrolyte is demonstrated, including cycling at lower temperatures than previously possible with the pure material. PMID:23753038

  19. Liquid electrolyte-free cylindrical Al polymer capacitor review: Materials and characteristics

    Science.gov (United States)

    Yoo, Jeeyoung; Kim, Jaegun; Kim, Youn Sang

    2015-06-01

    The manufacturing methods for liquid electrolyte-free Al polymer capacitors are introduced by using new materials like novel oxidants, separators and negative current collectors. The Al polymer capacitor is constructed by an Al foil as an anode, Al2O3 as a dielectric, and poly(3, 4-ethylenedioxythiophene) (PEDOT) as a cathode. There are also various synthetic methods of 3, 4-ethylenedioxythiophene (EDOT) and the chemical polymerization of PEDOT from EDOT using iron benzenesulfonate as a new oxidant and dopant. Furthermore, various cathodic current collectors such as conventional Al foils, carbon and titanium dioxide deposited on Al foils or substrates, as well as various separators with manila-esparto paper and synthetic fibers (series of acryl, PET, etc.) are studied. The Al polymer capacitors with the newly introduced oxidant (iron benzenesulfonate), separator (aramid based synthetic fibers) and current collector (TiO2) exhibit considerably enhanced capacitance values and the extremely low resistance (7 mΩ), so there is low power consumption and high reliability. Additionally, the newly developed Al polymer capacitor is guaranteed for 5,000 h at 125 °C, which means there is a long life time operation over ∼ 5 × 106 h at 65 °C.

  20. Ti3C2Tx Filler Effect on the Proton Conduction Property of Polymer Electrolyte Membrane.

    Science.gov (United States)

    Liu, Yahua; Zhang, Jiakui; Zhang, Xiang; Li, Yifan; Wang, Jingtao

    2016-08-10

    Conductive polymer electrolyte membranes are increasingly attractive for a wide range of applications in hydrogen-relevant devices, for instance hydrogen fuel cells. In this study, two-dimensional Ti3C2Tx, a typical representative of the recently developed MXene family, is synthesized and employed as a universal filler for its features of large specific surface area, high aspect ratio, and sufficient terminated -OH groups. The Ti3C2Tx is incorporated into polymer matrix to explore its function on membrane microstructure and proton conduction property. Both phase-separated (acidic Nafion and sulfonated poly(ether ether ketone)) and non-phase-separated (basic chitosan) polymers are utilized as membrane matrixes. The microstructures, physicochemical properties, and proton conduction properties of the membranes are extensively investigated. It is demonstrated that Ti3C2Tx generates significant promotion effect on proton conduction of the composite membrane by facilitating both vehicle-type and Grotthuss-type proton transfer, yielding several times increased proton conductivity for every polymer-based composite membrane under various conditions, and the composite membrane achieves elevated hydrogen fuel cell performance. The stable Ti3C2Tx also reinforces the thermal and mechanical stabilities of these composite membranes. Since the MXene family includes more than 70 members, this exploration is expected to open up new perspectives for expanding their applications, especially as membrane modifiers and proton conductors. PMID:27430190

  1. Ion beam irradiation as a tool to improve the ionic conductivity in solid polymer electrolyte systems

    Science.gov (United States)

    Manjunatha, H.; Damle, R.; Kumaraswamy, G. N.

    2016-05-01

    Solid polymer electrolytes (SPEs) have potential applications in solid state electronic and energy devices. The optimum conductivity of SPEs required for such applications is about 10-1 - 10-3 Scm-1, which is hard to achieve in these systems. It is observed that ionic conductivity of SPEs continuously increase with increasing concentration of inorganic salt in the host polymer. However, there is a critical concentration of the salt beyond which the conductivity of SPEs decreases due to the formation of ion pairs. In the present study, solid polymer thin films based on poly (ethylene oxide) (PEO) complexed with NaBr salt with different concentrations have been prepared and the concentration at which ion pair formation occurs in PEOxNaBr is identified. The microstructure of the SPE with highest ionic conductivity is modified by irradiating it with low energy O+1 ion (100 keV) of different fluencies. It is observed that the ionic conductivity of irradiated SPEs increases by one order in magnitude. The increase in ionic conductivity may be attributed to the enhanced segmental motion of the polymer chains due to radiation induced micro structural modification.

  2. Preparation and characterization of high salts polymer electrolyte based on poly(lithium acrylate)

    Institute of Scientific and Technical Information of China (English)

    TANG Ai-dong; HUANG Ke-long; PAN Chun-yue; LU Cui-hong

    2005-01-01

    Novel polymer electrolytes were prepared by highly mixing poly(lithium acrylate)(PPALi) with eutectic lithium salts of lithium acetate and lithium nitrate.Poly(lithium acrylate) was preparaed by inverse emulsion polymerization from crylic acid and LiOH.Phase transition temperatures were measured for all the eutectic lithium of binary system samples as a function of the concentration of Li(CH3 COO),and the mixtures exhibit the lowest phase transition temperatures of (448±2) K at about 50% (mass fraction) Li(CH3 COO).Thermogravimetry(TG)and X-ray diffraction(XRD) analysis indicate the formation of a novel polymer-salt complex.The highest conductivity(approximately 4.97 ×10-5S·cm-1) is found at room temperature with the electrolyte composition of eutectic mixture of about 80% (mass fraction),poly(lithium acrylate) 20% under quickly cooling condition,which is 150%higher than that under natural cooling condition.

  3. Composite polymer electrolytes based on MG49 and carboxymethyl cellulose from kenaf

    Energy Technology Data Exchange (ETDEWEB)

    Jafirin, Serawati; Ahmad, Ishak; Ahmad, Azizan [Polymer Research Centre (PORCE), School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    The development of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) and carboxymethyl cellulose as a composite polymer electrolyte film incorporating LiCF{sub 3}SO{sub 3} were explored. Carboxymethyl cellulose was synthesized from kenaf bast fibres via carboxymethylation process by alkali catalyzed reaction of cellulose with sodium chloroacetate. Reflection fourier transform infrared (ATR-FTIR) spectroscopy showed the presence of carboxyl peak after modification of cellulose with sodium chloroacetate. X-ray diffraction (XRD) analysis revealed that the crystallinity of cellulose was decrease after synthesis. High performance composite polymer electrolytes were prepared with various composition of carboxymethyl cellulose (2–10 wt%) via solution-casting method. The conductivity was increased with carboxymethyl cellulose loading. The highest conductivity value achieved was 3.3 × 10{sup −7} Scm{sup −1} upon addition of 6% wt carboxymethyl cellulose. 6% wt carboxymethyl cellulose composition showed the highest tensile strength value of 7.9 MPa and 273 MPa of modulus value which demonstrated high mechanical performance with accepatable level of ionic conductivity.

  4. Synthesis and Ionic Conductivity of Siloxane Based Polymer Electrolytes with Propyl Butyrate Pendant Groups

    Energy Technology Data Exchange (ETDEWEB)

    Jalagonia, Natia; Tatrishvili, Tamara; Markarashvili, Eliza; Aneli, Jimsher; Mukbaniani, Omar [Javakhishvili Tbilisi State University, Tbilisi (Georgia); Grazulevicius, Jouzas Vidas [Kaunas University of Technology, Kaunas (Lithuania)

    2016-02-15

    Hydrosilylation reactions of 2.4.6.8-tetrahydro-2.4.6.8-tetramethylcyclotetrasiloxane with allyl butyrate catalyzed by Karstedt's, H2PtCl6 and Pt/C catalyst were studied and 2.4.6.8-tetra (propyl butyrate)-2.4.6.8-tetramethylcyclotetrasiloxane was obtained. The reaction order, activation energies and rate constants were determined. Ringopening polymerization of 2.4.6.8-tetra (propyl butyrate)-2.4.6.8-tetramethylcyclotetrasiloxane in the presence of CaF2, LiF, KF and anhydrous potassium hydroxide in 60-70 .deg. C temperature range was carried out and methylsiloxane oligomers with regular arrangement of propyl butyrate pendant groups were obtained. The synthesized products were studied by FTIR and NMR spectroscopy. The polysiloxanes were characterized by wide-angle X-ray, gel-permeation chromatography and DSC analyses. Via sol-gel processes of oligomers doped with lithium trifluoromethylsulfonate or lithium bis (trifluoromethylsulfonyl)imide, solid polymer electrolyte membranes were obtained. The dependences of ionic conductivity of obtained polyelectrolytes on temperature and salt concentration were investigated, and it was shown that electric conductivity of the polymer electrolyte membranes at room temperature changed in the range 3.5x10{sup -4} - 6.4xa0{sup -7} S/cm.

  5. A UV-prepared linear polymer electrolyte membrane for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Imperiyka, M., E-mail: imperiyka@gmail.com [Faculty of Arts and Sciences, Kufra Campus, University of Benghazi, Al Kufrah (Libya); Ahmad, A.; Hanifah, S.A. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Polymer Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Bella, F. [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Department of Applied Science and Technology – DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2014-10-01

    The effects of LiClO{sub 4} and LiFS{sub 3}SO{sub 3} on poly(glycidyl methacrylate)-based solid polymer electrolyte and its photoelectrochemical performance in a dye sensitized solar cell consisting of FTO/TiO{sub 2}–dye/P(GMA)–LiClO{sub 4}–EC/Pt were investigated. The electrochemical stability of films was studied by cyclic voltammetry (CV). The highest ionic conductivities obtained were 4.2×10{sup −5} and 3.7×10{sup −6} S cm{sup −1} for the film containing 30 wt% LiClO{sub 4} and 25 wt% LiCF{sub 3}SO{sub 3}, respectively. The polymer electrolytes showed electrochemical stability windows up to 3 V and 2.8 V for LiClO{sub 4} and LiCF{sub 3}SO{sub 3}, respectively. The assembled dye-sensitized solar cell showed a sunlight conversion efficiency of 0.679% (J{sub sc}=3 mA cm{sup −2}, V{sub oc}=0.48 V and FF=0.47), under light intensity of 100 mW cm{sup −2}.

  6. Copper-ion conducting solid-polymer electrolytes based on polyacrylonitrile (PAN)

    Energy Technology Data Exchange (ETDEWEB)

    Perera, Kumudu; Dissanayake, M.A.K.L.; Bandaranayake, P.W.S.K. [University of Peradeniya (Slovakia). Dept. of Physics

    2000-07-01

    Two copper-ion conducting solid-polymer electrolyte systems based on polyacrylonitrile (PAN) have been synthesized and characterized using DC polarization tests and impedance measurements. The system with 21 mol% PAN: 30 mol% EC: 45 mol% PC: 04 mol% CuCNS has a room temperature conductivity of 3.30 x 10{sup -5} S cm{sup -1} and an activation energy of 0.25 eV. The conductivity versus temperature plot obeys an Arrhenius type variation. It is predominantly an ionic conductor with negligible electronic conductivity. It has a high anionic transference number (t = 0.80) due to CNS{sup -} ions and a low cationic transference number (t{sub +} = 0.20) due to Cu{sup +} ions. The system with 20 mol% PAN: 41 mol% EC: 34 mol% PC: 5 mol% CuTf has a room temperature conductivity of 4.10 x l0{sup -3} S cm{sup -1} and an activation energy of 0.14 eV. It obeys the VTF equation. The system appears to be a mixed conductor with a cationic (Cu{sup 2+}/ Cu{sup +}) transference number of t{sub +} = 0.50 and an electronic transference number of t{sub e} = 0.50 with negligible anionic conductivity. Both systems yielded free standing stable polymer electrolyte films (Author)

  7. Prism-patterned Nafion membrane for enhanced water transport in polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Kim, Sang Moon; Kang, Yun Sik; Ahn, Chiyeong; Jang, Segeun; Kim, Minhyoung; Sung, Yung-Eun; Yoo, Sung Jong; Choi, Mansoo

    2016-06-01

    Here, we report a simple and effective strategy to enhance the performance of the polymer electrolyte membrane fuel cell by imprinting prism-patterned arrays onto the Nafion membrane, which provides three combined effects directly related to the device performance. First, a locally thinned membrane via imprinted micro prism-structures lead to reduced membrane resistance, which is confirmed by electrochemical impedance spectroscopy. Second, increments of the geometrical surface area of the prism-patterned Nafion membrane compared to a flat membrane result in the increase in the electrochemical active surface area. Third, the vertically asymmetric geometry of prism structures in the cathode catalyst layer lead to enhanced water transport, which is confirmed by oxygen gain calculation. To explain the enhanced water transport, we propose a simple theoretical model on removal of water droplets existing in the asymmetric catalyst layer. These three combined effects achieved via incorporating prism patterned arrays into the Nafion membrane effectively enhance the performance of the polymer electrolyte membrane fuel cell.

  8. Electron beam and gamma ray irradiated polymer electrolyte films: Dielectric properties

    Directory of Open Access Journals (Sweden)

    S. Raghu

    2016-04-01

    Full Text Available In this study, polymer electrolyte films were irradiated with electron beam (EB and Gamma ray (GR at 50 and 150 kGy. The induced chemical changes in films due to irradiations have been confirmed from the Fourier Transform Infra red (FT-IR spectra. The X-ray Diffractometry (XRD results show that crystallinity decreases by ∼20% in EB and ∼10% in GR irradiated films respectively compared to non-irradiated film. The micro structural arrangement was investigated by Scanning Electronic Microscopy (SEM and the images reveal that there is a substantial improvement in the surface morphology in irradiated films. The real (ε′ and imaginary (ε″ dielectric constant and AC conductivity are found to increase with increase in irradiation dose. Improved dielectric properties and conductivity (1.74 x 10−4 & 1.15 x 10−4 S/cm, respectively, for EB and GR irradiated films at room temperature after irradiation and it confirm that EB and GR irradiation can be simple and effective route to obtaining highly conductive polymer electrolytes. From this study it is confirm that EB is more effectiveness than GR irradiation.

  9. Ion conduction and relaxation in PEO-LiTFSI-Al2O3 polymer nanocomposite electrolytes

    International Nuclear Information System (INIS)

    Ion conduction and relaxation in PEO-LiTFSI-Al2O3 polymer nanocomposite electrolytes have been studied for different concentrations of Al2O3 nanoparticles. X-ray diffraction and differential scanning calorimetric studies show that the maximum amorphous phase of PEO is observed for PEO-LiTFSI embedded with 5 wt. % Al2O3. The maximum ionic conductivity ∼3.3 × 10−4 S cm−1 has been obtained for this composition. The transmission electron microscopic image shows a distribution of Al2O3 nanoparticles in all compositions with size of <50 nm. The temperature dependence of the ionic conductivity follows Vogel-Tamman-Fulcher nature, indicating a strong coupling between ionic and polymer chain segmental motions. The scaling of the ac conductivity implies that relaxation dynamics follows a common mechanism for different temperatures and Al2O3 concentrations. The imaginary modulus spectra are asymmetric and skewed toward the high frequency sides of the maxima and analyzed using Havriliak-Negami formalism. The temperature dependence of the relaxation time obtained from modulus spectra also exhibits Vogel-Tamman-Fulcher nature. The values of the stretched exponent obtained from Kohlrausch-Williams-Watts fit to the modulus data are fairly low, suggesting highly non-exponential relaxation for all concentrations of Al2O3 in these electrolytes

  10. Chlorine isotope enrichment on a strong alkaline anion exchanger in dependence of type and concentration of the strange electrolytic solution

    International Nuclear Information System (INIS)

    Chlorine isotope enrichment for heterogenous ionexchange equilibria was studied. The dependence of element separation effects on the anion of the strange electrolyte (for same cation), on the cation of the strange electrolyte (for same anion), on the concentration of the strange electrolyte and also on the acetone: water ratio of the solvent was investigated. (orig./HBR)

  11. Lowering the platinum loading of high temperature polymer electrolyte membrane fuel cells with acid doped polybenzimidazole membranes

    DEFF Research Database (Denmark)

    Fernandez, Santiago Martin; Li, Qingfeng; Jensen, Jens Oluf

    2015-01-01

    Membrane electrode assemblies (MEAs) with ultra-low Pt loading electrodes were prepared for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) based on acid doped polybenzimidazole. With no electrode binders or ionomers, the triple phase boundary of the catalyst layer was establ......Membrane electrode assemblies (MEAs) with ultra-low Pt loading electrodes were prepared for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) based on acid doped polybenzimidazole. With no electrode binders or ionomers, the triple phase boundary of the catalyst layer...

  12. Synthesis and characterization of mixing soft-segmented waterborne polyurethane polymer electrolyte with room temperature ionic liquid

    Institute of Scientific and Technical Information of China (English)

    Yue Jiao Li; Feng Wu; Ren Jie Chen

    2009-01-01

    Composite polymer electrolytes based on mixing soft-segment waterborne polyurethane (WPU) and 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (BMImTFSI) have been prepared and characterized.The addition of BMImTFSI results in an increase of the ionic conductivity.At high BMImTFSI concentration (BMImTFSI/WPU = 3 in weight ratio),the ionic conductivity reaches 4.27 × 10-3 S/cm at 30 ℃.These composite polymer electrolytes exhibit good thermal and electrochemical stability,which are high enough to be applied in lithium batteries.

  13. Satellite TiO{sub 2} nanoparticles induced by silver ion in polymer electrolytes membrane for propylene/propane separation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Haixiang, E-mail: sunhaixiang@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); College of Science, China University of Petroleum (East China), Qingdao 266580 (China); Ma, Cheng [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Research Institute of Drilling Engineering Technology of Zhongyuan Petroleum Exploration Bureau, Puyang 457001 (China); Wang, Tao; Xu, Yanyan [College of Science, China University of Petroleum (East China), Qingdao 266580 (China); Yuan, Bingbing; Kong, Ying [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China)

    2014-12-15

    Silver polymer electrolyte membranes containing inorganic nanoparticles have showed excellent facilitated olefin transport properties. However, the application of facilitated transport membranes has been significantly hampered because of the poor stability of silver ions carrier. The structural changes of the facilitated transport membranes corresponding to the reduced separation performance with an extended time have rarely been studied. In this study, titanium dioxide (TiO{sub 2}) nanoparticles were introduced into poly(ethylene oxide) (PEO)/silver tetrafluoroborate polymer electrolyte membranes for propylene/propane separation. X-ray diffraction (XRD) analysis indicated that the addition of TiO{sub 2} and silver salt reduced the crystallinity of PEO. The selectivity of propylene/propane of the polymer electrolyte membrane increased with increasing concentration of silver salt and TiO{sub 2} in the polymer matrix. However, the propylene/propane selectivity decreased from 19.04 to 5.40 as the silver carrier ions became deactivated over the course of 196 h experiment. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that the satellite TiO{sub 2} nanoparticles were formed around the silver salt after the composite membrane was placed in the air for 10 d. The findings in this work highlight the understanding of the carrier stability in polymer electrolyte membranes, and provide a potential opportunity to develop more stable polymer/carrier systems for the application of facilitated olefin transport membranes. - Highlights: • Composite polymer electrolyte membrane is prepared by sol–gel method. • Propylene/propane selectivity increases with silver salt concentration increase. • Separation factor of propylene/propane decreases with the carrier inactivation. • Structure alteration of composite membrane reveals the carrier stability. • Satellite TiO{sub 2} nanoparticles form induced by silver ion carrier.

  14. STUDY ON THE PREPARATION AND PERFORMANCES OF P(VAc-MMA) POLYMER ELECTROLYTES FOR LITHIUM ION BATTERY

    Institute of Scientific and Technical Information of China (English)

    Dao-jun Yang; Xiang-kai Fu; Yong-feng Gong

    2008-01-01

    A random copolymer P(VAc-MMA) was synthesized via seeded emulsion copolymerization with vinyl acetate (VAc) and methyl methacrylate (MMA) as monomers, and the polymer electrolytes comprising blend of corresponding copolymer P(VAc-MMA) as a host polymer and LiC104 as a dopant were prepared by solution casting technique. Performances of the synthesized copolymer and prepared polymer membrane and electrolyte were studied by FTIR, XRD, TG, DSC, mechanical testing and AC impedance. According to the study of FTIR and DSC, it was found that P(VAc-MMA) had been formed. XRD indicates that the amorphous nature in copolymer increased with increasing the ratio of VAc in monomers, resulting in expedite migration of ions. The polymer electrolytes based on P(VAc-MMA) possess excellent thermal stability, fine mechanical performance and high ionic conductivity. The maximum ionic conductivity value was found to reach 1.27 × 10-3S·cm-1 at 25℃. The temperature dependence of the polymer electrolyte complexes appeared to obey Arrhenius equation.

  15. Approaches and Recent Development of Polymer Electrolyte Membranes For Fuel Cells Operational Above 100°C

    DEFF Research Database (Denmark)

    Li, Qingfeng; He, Ronghuan; Jensen, Jens Oluf;

    2003-01-01

    encompassing modified PFSA membranes, alternative sulfonated polymer and their composite membranes, and acidbase complex membranes. PFSA membranes have been modified by swelling with nonvolatile solvents and preparing composites with hydrophilic oxides and solid proton conductors. DMFC and H2/O2(air) cells......The state-of-the-art of polymer electrolyte membrane fuel cell (PEMFC) technology is based on perfluorosulfonic acid (PFSA) polymer membranes operating at a typical temperature of 80 °C. Some of the key issues and shortcomings of the PFSA-based PEMFC technology are briefly discussed. These include...... water management, CO poisoning, hydrogen, reformate and methanol as fuels, cooling, and heat recovery. As a means to solve these shortcomings, hightemperature polymer electrolyte membranes for operation above 100 °C are under active development. This treatise is devoted to a review of the area...

  16. Cellulose acetate-lithium bis(trifluoromethanesulfonyl)imide solid polymer electrolyte: ATR-FTIR and ionic conductivity behavior

    Science.gov (United States)

    Mohd Razalli, Siti Masyitah; Sheikh Mohd Saaid, Siti Irma Yuana; Marwan Ali, Ab Malik; Hassan, Oskar Hasdinor; Yahya, Muhd Zu Azhan

    2015-05-01

    Solid polymer electrolytes (SPEs) based on cellulose acetate (CA) doped with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt are prepared by solution cast technique. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy of the polymer salt complexes are recorded in the frequency range between 400 cm-1 and 4000 cm-1. The shifting of carbonyl band (C=O) at 1737 cm-1 to a lower wavenumber confirms the occurrence of complexation between the polymer and the salt. The electrochemical impedance spectroscopy (EIS) analysis discovered that the film with 25 wt.% of salt shows the highest ionic conductivity at room temperature. The change in real dielectric permittivity (ɛr) as a function of frequency at different salt concentrations which exhibits a dispersive behavior at low frequencies and decays at higher frequencies, shows the electrode polarization and space charge effect. The real modulus formalism (Mr) analysis shows that the polymer electrolytes in this work are ionic conductors.

  17. Stable trifluorostyrene containing compounds grafted to base polymers, and their use as polymer electrolyte membranes

    Science.gov (United States)

    Yang, Zhen-Yu; Roelofs, Mark Gerrit

    2010-11-09

    A fluorinated ion exchange polymer prepared by grafting at least one grafting monomer on to at least one base polymer, wherein the grafting monomer comprises structure 1a or 1b: wherein Z comprises S, SO.sub.2, or POR wherein R comprises a linear or branched perfluoroalkyl group of 1 to 14 carbon atoms optionally containing oxygen or chlorine, an alkyl group of 1 to 8 carbon atoms, an aryl group of 6 to 12 carbon atoms or a substituted aryl group of 6 to 12 carbon atoms; RF comprises a linear or branched perfluoroalkene group of 1 to 20 carbon atoms, optionally containing oxygen or chlorine; Q is chosen from F, --OM, NH.sub.2, --N(M)SO.sub.2R.sup.2.sub.F, and C(M)(SO.sub.2R.sup.2.sub.F).sub.2, wherein M comprises H, an alkali cation, or ammonium; R.sup.2.sub.F groups comprises alkyl of 1 to 14 carbon atoms which may optionally include ether oxygens or aryl of 6 to 12 carbon atoms where the alkyl or aryl groups may be perfluorinated or partially fluorinated; and n is 1 or 2 for 1a, and n is 1, 2, or 3 for 1b. These ion exchange polymers are useful in preparing catalyst coated membranes and membrane electrode assemblies used in fuel cells.

  18. Zirconium dioxide nanofilled poly(vinylidene fluoride-hexafluoropropylene) complexed with lithium trifluoromethanesulfonate as composite polymer electrolyte for electrochromic devices

    International Nuclear Information System (INIS)

    Highlights: • Successful synthesis of electrolyte by blending PVdF-HFP, ZrO2 and LiCF3SO3. • ZrO2 increased electrolyte conductivity by two orders of magnitude. • ZrO2 doubled bulk mechanical strength of electrolyte in terms of Young’s modulus. • Electrolytes gave a optimum optical transmittance of 52.6%. - Abstract: Poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) polymer electrolyte containing zirconium dioxide nanocrystals (ZrO2-NC) and lithium trifluoromethanesulfonate (LiCF3SO3) has been synthesized using the conventional solution casting method. The addition of ZrO2-NC into the polymeric substrate gave remarkable properties in terms of the electrolyte’s ionic conductivity as well as its bulk mechanical strength. The enhanced amorphicity of the polymeric substrate due to ZrO2 and the nanofiller’s high dielectric constant make an excellent combination to increase the ionic conductivity (above 10−4 S cm−1). Increasing the nanofiller content raises the ionic conductivity of the electrolyte by two orders of magnitude of which the optimum is 2.65 × 10−4 S cm−1 at 13.04 wt% ZrO2-NC loading. Also, the Young’s modulus, an indicator of electrolyte’s mechanical stability, dramatically increased to 207 MPa upon loading 13.04 wt% ZrO2-NC. Using UV–vis spectroscopy, the electrolytes with 13.04% ZrO2-NC scanned from 200–800 nm wavelengths exhibited a maximum optical transmittance of 52.6% at 10 μm film thickness. The enhanced conductivity, high mechanical strength and reasonable optical transmittance shown by our composite polymer electrolyte make an excellent electrolyte for future energy saving smart windows such as electrochromic devices

  19. Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte

    Science.gov (United States)

    Kammoun, M.; Berg, S.; Ardebili, H.

    2015-10-01

    Enhanced safety of flexible batteries is an imperative objective due to the intimate interaction of such devices with human organs such as flexible batteries that are integrated with touch-screens or embedded in clothing or space suits. In this study, the fabrication and testing of a high performance thin-film Li-ion battery (LIB) is reported that is both flexible and relatively safer compared to the conventional electrolyte based batteries. The concept is facilitated by the use of solid polymer nanocomposite electrolyte, specifically, composed of polyethylene oxide (PEO) matrix and 1 wt% graphene oxide (GO) nanosheets. The flexible LIB exhibits a high maximum operating voltage of 4.9 V, high capacity of 0.13 mA h cm-2 and an energy density of 4.8 mW h cm-3. The battery is encapsulated using a simple lamination method that is economical and scalable. The laminated battery shows robust mechanical flexibility over 6000 bending cycles and excellent electrochemical performance in both flat and bent configurations. Finite element analysis (FEA) of the LIB provides critical insights into the evolution of mechanical stresses during lamination and bending.Enhanced safety of flexible batteries is an imperative objective due to the intimate interaction of such devices with human organs such as flexible batteries that are integrated with touch-screens or embedded in clothing or space suits. In this study, the fabrication and testing of a high performance thin-film Li-ion battery (LIB) is reported that is both flexible and relatively safer compared to the conventional electrolyte based batteries. The concept is facilitated by the use of solid polymer nanocomposite electrolyte, specifically, composed of polyethylene oxide (PEO) matrix and 1 wt% graphene oxide (GO) nanosheets. The flexible LIB exhibits a high maximum operating voltage of 4.9 V, high capacity of 0.13 mA h cm-2 and an energy density of 4.8 mW h cm-3. The battery is encapsulated using a simple lamination method

  20. 7Li nuclear magnetic resonance studies of dynamics in a ternary gel polymer electrolyte based on polymeric ionic liquids

    International Nuclear Information System (INIS)

    The influence of the polymeric ionic liquid (PIL) Poly(diallyldimethylammonium bis(trifluoromethylsulfonyl) imide) (PDADMATFSI) on the lithium dynamics was investigated in a ternary gel polymer electrolyte consisting of PDADMATFSI as stabilizing polymer, ionic liquid (1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide, P14TFSI) and lithium salt (lithium bis(trifluoromethylsulfonyl) imide, LiTFSI). The diffusion coefficient of the lithium ions is investigated by pulsed-field-gradient NMR, the conductivity of the electrolyte is determined by impedance spectroscopy. The local lithium dynamics is characterized by 7Li spin lattice relaxation rates (R1). The relaxation rates are well described by Blombergen-Purcell-Pound (BPP) theory at all polymer concentrations (up to 45 mol%), implying that the Li dynamics is governed by one single motional mode. Interestingly, activation energies for this motion decrease from 20 kJ/mol to 15 kJ/mol with increasing polymer content and are independent on the salt content. We thus conclude that the polymer is interacting with the anion coordination shell, which is accompanied by a very beneficial effect on the local lithium dynamics, as the polymer PDADMATFSI reduces the Li-TFSI interactions. This result is promising for further investigations for potential use of PDADMATFSI-containing gels as electrolytes in energy storage devices

  1. The effects of polyethylene glycol (PEG) as an electrolyte additive on the corrosion behavior and electrochemical performances of pure aluminum in an alkaline zincate solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.Y. [Department of Chemistry, Zhejiang University, Hangzhou (China); Binzhou Medical College, Yantai (China); Wang, J.M.; Wang, Q.L.; Shao, H.B. [Department of Chemistry, Zhejiang University, Hangzhou (China); Zhang, J.Q. [Department of Chemistry, Zhejiang University, Hangzhou (China); State Key Laboratory for Corrosion and Protection of Metal, Institute of Metal Research, Chinese Academy of Sciences, Shenyang (China)

    2011-12-15

    The effects of zinc oxide and/or polyethylene glycol (PEG) as electrolyte additives on the corrosion and electrochemical performances of pure aluminum in 4.0 M KOH solutions were investigated by means of hydrogen collection, polarization curve, galvanostatic discharge, scanning electron microscopy (SEM), and energy dispersive analysis of X-ray (EDAX). The addition of ZnO markedly inhibited the corrosion of aluminum in 4.0 M KOH solutions, resulting from the deposition of zinc with high hydrogen evolution overpotential in aluminum surfaces. The introduction of PEG in the alkaline zincate solution obviously improved the deposition of zinc by increase in the overpotential of zinc deposition, thus the corrosion rate of aluminum in the alkaline zincate solutions with PEG was further decreased. The enhancement effect of PEG on the inhibition of zinc oxide first increased and then decreased with increasing the content of PEG in the electrolyte. The electrolyte system with 0.2 M ZnO and 2.0 mM PEG presented the highest inhibition efficiency (98.8%) for the corrosion of aluminum. The results of galvanostatic discharge indicated that the aluminum anode shows excellent discharge performances in the 4.0 M KOH solution with 0.2 M ZnO and 2.0 mM PEG. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Conducting polymer actuator based on chemically deposited polypyrrole and polyurethane-based solid polymer electrolyte working in air

    International Nuclear Information System (INIS)

    Conducting polymers (CPs), such as polypyrrole, polythiophene, and polyaniline, are unique in that they have switchable properties due to their two or more mechanically stable oxidation states. Thus, their films or coatings can be easily switched by the application of a small voltage and current to change their volume during electrochemical redox processes. In particular, polypyrrole (PPy) has been studied most extensively because of its high electrical conductivity and good environmental stability under ambient conditions. In this work, we have studied a new CP actuator, fully polymeric, assembled with two PPy film electrodes and a solid polymer electrolyte (SPE), polyurethane/Mg(ClO4)2. Polyurethanes (PUs) were synthesized from 4,4'-diphenylmethane diisocyanate (MDI), 1,4-butanediol (1,4-BD) and three types of polyol: poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG), and PPG-block-PEG-block-PPG (PPG-co-PEG). The chemical polymerization of PPy by immersion in Py monomer aqueous solution and oxidant aqueous solution is an adequate method to prepare PU/PPy composite film as an actuator. To find the proper thickness of the PPy coating layer for actuation, we measured the displacements of the actuators according to the thickness of the PPy coating layer. The displacement of all actuators is discussed in connection with the properties of the SPE and PPy. All the results obtained in this work show the feasibility of electrochemomechanical devices based on PPy and SPE film being able to work in air

  3. Synthesis and proton conductivity studies of doped azole functional polymer electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ozden, Sehmus [Department of Chemistry, Fatih University, 34500 Bueyuekcekmece-Istanbul (Turkey); Celik, Sevim Unueguer, E-mail: sunugur@fatih.edu.t [Department of Chemistry, Fatih University, 34500 Bueyuekcekmece-Istanbul (Turkey); Bozkurt, Ayhan [Department of Chemistry, Fatih University, 34500 Bueyuekcekmece-Istanbul (Turkey)

    2010-12-01

    The development of anhydrous proton-conducting membranes is important for the operation of polymer electrolyte membrane fuel cell (PEMFC) at intermediate temperature (100-200 {sup o}C). In this work, poly(vinylbenzylchloride), PVBC was produced by free radical polymerization of 4-vinylbenzylchloride and then it was modified with 5-aminotetrazole (ATET) to obtain poly(vinylbenzylaminotetrazole), PVBC-ATET. The composition of the polymer was verified by elemental analysis (EA) and the structure was characterized by FT-IR and {sup 13}C NMR spectra. According to the elemental analysis result, PVBC was modified by ATET with 80% yield. The polymer was doped with trifluoromethanesulfonic acid (TA) at various molar ratios, x = 1.25, 2.5, 3.75 with respect to tetrazole unit. The proton transfer from TA to the tetrazole rings was proved with FT-IR spectroscopy. Thermogravimetry (TG) analysis showed that the samples are thermally stable up to approximately 200 {sup o}C. Differential scanning calorimetry (DSC) results illustrated the homogeneity of the materials. Cyclic voltammetry (CV) study illustrated that the electrochemical stability domain for PVBC-ATET-TA{sub 2.5} extends over 3.0 V. The proton conductivity of these materials increased with dopant concentration and the temperature. Maximum proton conductivity of PVBC-ATET-TA{sub 2.5} was found to be 0.01 S/cm at 150 {sup o}C in the anhydrous state.

  4. Crystallinity, magnetic and electrochemical studies of PVDF/Co3O4 polymer electrolyte

    International Nuclear Information System (INIS)

    Highlights: ► PVDF–Co3O4 nanocomposite films are prepared by spin coating method. ► Porosity and crystallinity of the films are discussed. ► Magnetic properties of the films are studied. ► Presence of Co3O4 in PVDF enhanced its conductivity. - Abstract: Organic–inorganic nanocomposites are gaining importance in the recent times as polymer electrolyte membranes. In the present work, composites were prepared by combining nano sized Co3O4 and poly(vinyledene fluoride) (PVDF), using spin coating technique. The surface of the PVDF/Co3O4 system characterized through field emission scanning electron microscopy (FESEM) revealed a porous structure of the films. The nanoparticles tend to aggregate on the surface and inside the pores, leading to a decrease in the porosity with an increase in Co3O4 content. Co3O4 nanoparticles prohibit crystallization of the polymer. Differential scanning calorimetry (DSC) studies revealed a decrease in crystallinity of PVDF/Co3O4 system with an increase in the oxide content. Magnetic property studies of the composite films revealed that with an increase in Co3O4 content, the saturation magnetization values of the nanocomposites increased linearly, showing successful incorporation of the nanoparticles in the polymer matrix. Further, ionic conductivity of the composite films was evaluated from electrochemical impedance spectroscopy. Addition of Co3O4 nanoparticles enhanced the conductivity of PVDF/Co3O4 system.

  5. Enhancing Cation Diffusion and Suppressing Anion Diffusion via Lewis-Acidic Polymer Electrolytes

    CERN Document Server

    Savoie, Brett M; Miller, Thomas F

    2016-01-01

    Solid polymer electrolytes (SPE) have the potential to increase both the energy density and stability of lithium-based batteries, but low Li-ion conductivity remains a barrier to technological viability. SPEs are designed to maximize Li-ion diffusivity relative to the anion, while maintaining sufficient salt solubility. It is thus remarkable that polyethylene oxide (PEO), the most widely used SPE, exhibits Li-ion diffusivity that is an order of magnitude smaller than that of typical counter-ions, such as TFSI, at moderate salt concentrations. Here, we show that Lewis-basic polymers like PEO intrinsically favor slow cation and rapid anion diffusion while this relationship can be reversed in Lewis-acidic polymers. Using molecular dynamics (MD) simulations, Lewis-acidic polyboranes are identified that achieve up to a ten-fold increase in Li-ion diffusivity and a significant decrease in anion diffusivity, relative to PEO. The results for this new class of Lewis-acidic SPEs illustrate a general principle for incre...

  6. Studies of structural, thermal and electrical behavior of polymer nanocomposite electrolytes

    Directory of Open Access Journals (Sweden)

    2008-09-01

    Full Text Available Structural, thermal and electrical behavior of polymer-clay nanocomposite electrolytes consisting of polymer (polyethylene oxide (PEO and NaI as salt with different concentrations of organically modified Na+ montmorillonite (DMMT filler have been investigated. The formation of nanocomposites and changes in the structural properties of the materials were investigated by X-ray diffraction (XRD analysis. Complex impedance analysis shows the existence of bulk and material-electrode interface properties of the composites. The relative dielectric constant (εr decreases with increase in frequency in the low frequency region whereas frequency independent behavior is observed in the high frequency region. The electrical modulus representation shows a loss feature in the imaginary component. The relaxation associated with this feature shows a stretched exponential decay. Studies of frequency dependence of dielectric and modulus formalism suggest that the ionic and polymer segmental motion are strongly coupled manifeasting as peak in the modulus (M″ spectra with no corresponding feature in dielectric spectra. The frequency dependence of ac (alternating current conductivity obeys Jonscher power law feature in the high frequency region, where as the low frequency dispersion indicating the presence of electrode polarization effect in the materials.

  7. Degradation of polymer electrolyte membrane fuel cell by siloxane in biogas

    Science.gov (United States)

    Seo, Ji-Sung; Kim, Da-Yeong; Hwang, Sun-Mi; Seo, Min Ho; Seo, Dong-Jun; Yang, Seung Yong; Han, Chan Hui; Jung, Yong-Min; Guim, Hwanuk; Nahm, Kee Suk; Yoon, Young-Gi; Kim, Tae-Young

    2016-06-01

    We studied the degradation and durability of polymer electrolyte membrane fuel cell (PEMFC) at membrane-electrode-assembly (MEA) level by injection of octamethylcyclotetrasiloxane (D4) as a representative siloxane, which has been found in many industrial and personal products. Specifically, i) GC/MS analysis demonstrated that the ring-opening polymerization of D4 could result in the formation of various linear and cyclic siloxanes in both electrodes of MEA; ii) post-test analysis revealed that the transformed siloxanes were transported from the anode to the cathode via free-volumes in the polymer membrane; iii) RDE measurement and DFT calculation revealed that D4 was not directly responsible for the electrocatalytic activity of Pt; iv) electrochemical analysis demonstrated that the residual methyl groups of siloxane and various siloxanes did not hinder the proton transport in the polymer membrane; and v) siloxanes accumulated in the primary and secondary pores with the exception of an external surface of carbon, causing an increase in the oxygen reactant's resistance and resulting in a decrease of the cell performance. In addition, we confirmed that injection of D4 did not affect the carbon corrosion adversely because the siloxane had little influence on water sorption in the catalyst layer.

  8. Characterization and electrical properties of polyvinyl alcohol based polymer electrolyte films doped with ammonium thiocyanate

    International Nuclear Information System (INIS)

    Highlights: • Polyvinyl alcohol (PVA). • Ammonium thiocyanate (NH4SCN). • Electrical conductivity. • Fractals. - Abstract: In this communication, films of polyvinyl alcohol (PVA) polymer complexed with ammonium thiocyanate (NH4SCN) salt were studied. XRD (X-ray diffraction) was used to study the complexation of salt with the polymer matrix and amorphicity in the films. DSC (differential scanning calorimetry) studies showed that the glass transition temperatures (Tg) of the PVA:NH4SCN complexed films were less than pristine PVA. Raman analysis was analyzed in order to study the change in the vibrational bands due to the complexation of salt with PVA. Optical micrographs confirm the fractal formation in 75:25 and 70:30 PVA:NH4SCN films. Ionic transference number was estimated by Wagner's polarization method and its large value indicates that conduction takes place mainly due to mobile ionic species. Maximum conductivity ∼10−3 S/cm at room temperature was obtained for 70:30 ratio of PVA: NH4SCN polymer electrolyte films

  9. A novel stability-enhanced lithium-oxygen battery with cellulose-based composite polymer gel as the electrolyte

    International Nuclear Information System (INIS)

    Highlights: • A novel cellulose-based composite polymer gel electrolyte (PGE) membrane is prepared. • PGE exhibits excellent ionic conductivity and electrochemical stability. • PEG reduces the penetration of oxygen to lithium anode and electrolyte loss. • Non-aqueous Li/O2 battery employing PGE membrane displays good cyclic stability. - Abstract: A novel lithium-oxygen (Li-O2) battery with a polymer gel electrolyte (PGE) membrane is successfully prepared. The membrane is a blend of cellulose acetate (CA) and poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) and is fabricated using a solution casting technique followed by impregnation with lithium bis(trifluoromethane sulfonimide) (LiTFSI) solution. We demonstrate that the PGE membrane has good electrolyte uptake and shows high ionic conductivity as well as excellent thermal and electrochemical stability. A Li-O2 battery containing our PGE as the electrolyte and separator exhibits good rate capability and enhanced cycling capacity retention compared to a battery using commercial liquid electrolyte and a polyethylene (PE) separator under the same conditions. We attribute this enhanced performance to the PGE, which maybe restrain the diffusion of oxygen from the air cathode to the Li metal anode. This study may prove valuable for resolving the problem of poor cycling stability in Li-O2 batteries caused by oxygen diffusion from cathode to anode

  10. Electrical Conductivity Study of Polymer Electrolyte Magnetic Nanocomposite Based Poly(Vinyl) Alcohol (PVA) Doping Lithium and Nickel Salt

    Science.gov (United States)

    Aji, Mahardika Prasetya; Rahmawati, Silvia, Bijaksana, Satria; Khairurrijal, Abdullah, Mikrajuddin

    2010-10-01

    Composite polymer electrolyte magnetic systems composed of poly(vinyl) alcohol (PVA) as the host polymer, lithium and nickel salt as dopant were studied. The effect upon addition of lithium ions in polimer PVA had been enhanced conductivity with the increase of lithium concentration. The conductivity values were 1.19x10-6, 1.25x10-5, 4.89x-5, 1.88x10-4, and 1.33x10-3 Sṡcm-1 for pure PVA and 1%, 3%, 5% and 7% LiOH complexed PVA, respectively. Meanwhile, the addition nickel salt into polymer electrolyte PVA-LiOH does not significantly change of conductivity value, on order 10-3 Sṡcm-1. The ionic transport is dominantly regarded by Li+ ions present in polymer electrolyte magnetic because the atomic mass Li+ is smaller than Ni2+. The absence of external magnetic field in polimer electrolyte magnetic causes the existence Ni2+ ions not significantly affected of conductivity.

  11. Development of a solid polymer electrolyte electrolysis cell module and ancillary components for a breadboard water electrolysis system

    Science.gov (United States)

    Porter, F. J., Jr.

    1972-01-01

    Solid polymer electrolyte technology in a water electrolysis system along with ancillary components to generate oxygen and hydrogen for a manned space station application are considered. Standard commercial components are utilized wherever possible. Presented are the results of investigations, surveys, tests, conclusions and recommendations for future development efforts.

  12. AC impedance and dielectric spectroscopic studies of Mg2+ ion conducting PVA–PEG blended polymer electrolytes

    Indian Academy of Sciences (India)

    Anji Reddy Polu; Ranveer Kumar

    2011-08-01

    Polyvinyl alcohol (PVA)–polyethylene glycol (PEG) based solid polymer blend electrolytes with magnesium nitrate have been prepared by the solution cast technique. Impedance spectroscopic technique has been used, to characterize these polymer electrolytes. Complex impedance analysis was used to calculate bulk resistance of the polymer electrolytes. The a.c.-impedance data reveal that the ionic conductivity of PVA–PEG–Mg(NO3)2 system is changed with the concentration of magnesium nitrate, maximum conductivity of 9.63 × 10-5 S/cm at room temperature was observed for the system of PVA–PEG–Mg(NO3)2 (35–35–30). However, ionic conductivity of the above system increased with the increase of temperature, and the highest conductivity of 1.71 × 10-3 S/cm was observed at 100°C. The effect of ionic conductivity of polymer blend electrolytes was measured by varying the temperature ranging from 303 to 373 K. The variation of imaginary and real parts of dielectric constant with frequency was studied.

  13. The use of poly(vinylpyridine-co-acrylonitrile) in polymer electrolytes for quasi-solid dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minyu [Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Feng, Shujing; Fang, Shibi; Xiao, Xurui; Li, Xueping; Zhou, Xiaowen; Lin, Yuan [Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China)

    2007-04-01

    Poly(vinylpyridine-co-acrylonitrile) (P(VP-co-AN)) was used to form polymer electrolytes for dye-sensitized solar cells (DSSCs). The effects of P(VP-co-AN) on the photovoltaic performances of DSSCs have been investigated with nonaqueous electrolytes containing alkali-iodide and iodine. It was found that the effect of P(VP-co-AN) on V{sub oc} closely related to its amount in the electrolyte. Lower amount of P(VP-co-AN) was benefit for the construction of a solar cell containing P(VP-co-AN) with higher energy conversion efficiency. Chemically crosslinking solidification with backbone polymer P(VP-co-AN) amount of 3% fabricated quasi-solid DSSCs with 10% increased conversion efficiencies with relative to that of the initial liquid DSSCs. (author)

  14. The use of poly(vinylpyridine-co-acrylonitrile) in polymer electrolytes for quasi-solid dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Poly(vinylpyridine-co-acrylonitrile) (P(VP-co-AN)) was used to form polymer electrolytes for dye-sensitized solar cells (DSSCs). The effects of P(VP-co-AN) on the photovoltaic performances of DSSCs have been investigated with nonaqueous electrolytes containing alkali-iodide and iodine. It was found that the effect of P(VP-co-AN) on V oc closely related to its amount in the electrolyte. Lower amount of P(VP-co-AN) was benefit for the construction of a solar cell containing P(VP-co-AN) with higher energy conversion efficiency. Chemically crosslinking solidification with backbone polymer P(VP-co-AN) amount of 3% fabricated quasi-solid DSSCs with 10% increased conversion efficiencies with relative to that of the initial liquid DSSCs

  15. A green and environment-friendly gel polymer electrolyte with higher performances based on the natural matrix of lignin

    Science.gov (United States)

    Gong, Sheng-Dong; Huang, Yun; Cao, Hai-Jun; Lin, Yuan-Hua; Li, Yang; Tang, Shui-Hua; Wang, Ming-Shan; Li, Xing

    2016-03-01

    In order to explore one truly green and environment-friendly gel polymer electrolyte (GPE), the natural biopolymer of lignin is firstly all over the world used as matrix to prepare GPE. The electrolyte membrane based on lignin can be easily fabricated just with lignin, liquid electrolyte and distilled water. Through comprehensive investigation of obtained GPE, it is found that the liquid electrolyte uptake reaches up to 230 wt.%; before 100 °C, GPE does not lose any weight and is thermal stable; at room temperature the ion conductivity is 3.73 mS cm-1; the amazing property of lithium ion transference number is high up to 0.85; GPE expresses complete electrochemical stability before 7.5 V and favorable compatibility with lithium anode; the outstanding cell performance of C-rate and cycle capacity. All these remarkably excellent performances endow lignin with application potential in GPE used in lithium ion batteries (LIBs) with higher performances.

  16. Water balance simulations of a polymer-electrolyte membrane fuel cell using a two-fluid model

    DEFF Research Database (Denmark)

    Berning, Torsten; Odgaard, M.; Kær, Søren Knudsen

    2011-01-01

    A previously published computational multi-phase model of a polymer-electrolyte membrane fuel cell cathode has been extended in order to account for the anode side and the electrolyte membrane. The model has been applied to study the water balance of a fuel cell during operation under various...... humidification conditions. It was found that the specific surface area of the electrolyte in the catalyst layers close to the membrane is of critical importance for the overall water balance. Applying a high specific electrolyte surface area close to the membrane (a water-uptake layer) can prevent drying out...... of the anode and flooding at the cathode while the average membrane water content is only weakly affected. The results also indicate that in contrast to common presumption membrane dehydration may occur at either anode or cathode side, entirely depending on the direction of the net water transport because...

  17. Neutron Computed Tomography of Freeze/thaw Phenomena in Polymer Electrolyte Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Matthew M. Mech; Jack Brenizer; Kenan Unlu; A.K. Heller

    2008-12-12

    This report summarizes the final year's progress of the three-year NEER program. The overall objectives of this program were to 1) design and construct a sophisticated hight-resolution neutron computed tomography (NCT) facility, 2) develop novel and sophisticated liquid water and ice quantification analysis software for computed tomography, and 3) apply the advanced software and NCT capability to study liquid and ice distribution in polymer electrolyte fuel cells (PEFCs) under cold-start conditions. These objectives have been accomplished by the research team, enabling a new capability for advanced 3D image quantification with neutron imaging for fuel cell and other applications. The NCT water quantification methodology and software will greatly add to the capabilities of the neutron imaging community, and the quantified liquid water and ice distribution provided by its application to PEFCs will enhance understanding and guide design in the fuel cell community.

  18. The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells.

    Science.gov (United States)

    Bodner, Merit; Cermenek, Bernd; Rami, Mija; Hacker, Viktor

    2015-12-08

    Membrane degradation is a severe factor limiting the lifetime of polymer electrolyte fuel cells. Therefore, obtaining a deeper knowledge is fundamental in order to establish fuel cells as competitive product. A segmented single cell was operated under open circuit voltage with alternating relative humidity. The influence of the catalyst layer on membrane degradation was evaluated by measuring a membrane without electrodes and a membrane-electrode-assembly under identical conditions. After 100 h of accelerated stress testing the proton conductivity of membrane samples near the anode and cathode was investigated by means of ex situ electrochemical impedance spectroscopy. The membrane sample near the cathode inlet exhibited twofold lower membrane resistance and a resulting twofold higher proton conductivity than the membrane sample near the anode inlet. The results from the fluoride ion analysis have shown that the presence of platinum reduces the fluoride emission rate; which supports conclusions drawn from the literature.

  19. Radiation Effects on Platinum Nanostructured Electrocatalysts for Polymer Electrolyte Fuel Cells

    Science.gov (United States)

    Cemmi, A.; Paoletti, C.; Pozio, A.; Baccaro, S.; Giorgi, L.; Serra, E.

    2008-06-01

    Polymer Electrolyte Fuel Cells (PEFCs) offer low weight and high power density and are being considered for automotive and stationary power production besides space and electronic applications. In this work, gamma radiation effects on carbon materials (carbon powder and multiwalled carbon nanotubes) used as substrates in PEFCs electrodes, were studied. The enhancing of free radicals formation (especially on carbon powder) was observed and studied by EPR spectroscopy. This evidence leads to a significant activation of carbon materials because paramagnetic sites represent the preferential position for platinum electrocatalyst nucleation. Galvanostatic techniques were applied to deposits platinum nanoparticles on carbon substrates while FEG-SEM characterization and cyclic voltammetry (CV) were carried out to study the morphology and the electrochemical performances of PEFCs electrodes.

  20. Miniaturized polymer electrolyte fuel cell (PEFC) stack using micro structured bipolar plate

    Energy Technology Data Exchange (ETDEWEB)

    Veziridis, Z.; Scherer, G.G.; Marmy, Ch.; Glaus, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    In Polymer Electrolyte Fuel Cell (PEFC) technology the reducing of volume and mass of the fuel cell stack and the improvement of catalyst utilization are of great interest. These parameters affect applicability and system cost. In this work we present an alternative way for reducing the stack volume by combining gas distribution and catalytic active area in one plate. Micro machined glassy carbon electrodes serve as support material for the platinum catalyst, as well as gas distributor at the same time. A comparison of these electrodes with conventional platinum-black gas diffusion electrodes under fuel cell conditions shows that the new system is a promising electrode type for enhanced power density and catalyst utilization. (author) 3 figs., 5 refs.

  1. Ionic drift velocity measurement on hot-pressed Ag+ ion conducting glass-polymer electrolytes

    Indian Academy of Sciences (India)

    Angesh Chandra

    2015-12-01

    Ionic drift velocity (d) measurements of a new Ag+ ion conducting glass-polymer electrolytes (GPEs): (1−x) PEO : x[0.8(0.75AgI:0.25AgCl) : 0.2(Ag2 O:V2O5)], where 0 < x < 50 wt%, were reported. GPEs were casted using the hot-press techniques developed in recent times. The composition: 70PEO : 30[0.8(0.75AgI : 0.25AgCl) : 0.2(Ag2O : V2O5)] with conductivity ()∼ 7.7 × 10−7 S cm−1 was identified as highest conducting composition from the compositional-dependent conductivity studies. The ionic mobility (), mobile ion concentration (), ionic transference number (ion) and ionic drift velocity (d) of GPEs were determined at different temperatures with the help of the d.c. polarization technique and other well-known important relations.

  2. Performance of diagonal control structures at different operating conditions for polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Serra, Maria; Husar, Attila; Feroldi, Diego; Riera, Jordi [Institut de Robotica i Informatica Industrial, Universitat Politecnica de Catalunya, Consejo Superior de Investigaciones Cientificas, C. Llorens i Artigas 4, 08028 Barcelona (Spain)

    2006-08-25

    This work is focused on the selection of operating conditions in polymer electrolyte membrane fuel cells. It analyses efficiency and controllability aspects, which change from one operating point to another. Specifically, several operating points that deliver the same amount of net power are compared, and the comparison is done at different net power levels. The study is based on a complex non-linear model, which has been linearised at the selected operating points. Different linear analysis tools are applied to the linear models and results show important controllability differences between operating points. The performance of diagonal control structures with PI controllers at different operating points is also studied. A method for the tuning of the controllers is proposed and applied. The behaviour of the controlled system is simulated with the non-linear model. Conclusions indicate a possible trade-off between controllability and optimisation of hydrogen consumption. (author)

  3. Metallic plate corrosion and uptake of corrosion products by nafion in polymer electrolyte membrane fuel cells.

    Science.gov (United States)

    Bozzini, Benedetto; Gianoncelli, Alessandra; Kaulich, Burkhard; Kiskinova, Maya; Prasciolu, Mauro; Sgura, Ivonne

    2010-07-19

    Nafion contamination by ferrous-alloy corrosion products, resulting in dramatic drops of the Ohmic potential, is a suspected major failure mode of polymer electrolyte membrane fuel cells that make use of metallic bipolar plates. This study demonstrates the potential of scanning transmission X-ray microscopy combined with X-ray absorption and fluorescence microspectroscopy for exploring corrosion processes of Ni and Fe electrodes in contact with a hydrated Nafion film in a thin-layer cell. The imaged morphology changes of the Ni and Fe electrodes and surrounding Nafion film that result from relevant electrochemical processes are correlated to the spatial distribution, local concentration, and chemical state of Fe and Ni species. The X-ray fluorescence maps and absorption spectra, sampled at different locations, show diffusion of corrosion products within the Nafion film only in the case of the Fe electrodes, whereas the Ni electrodes appear corrosion resistant. PMID:20564283

  4. Multiplex lithography for multilevel multiscale architectures and its application to polymer electrolyte membrane fuel cell.

    Science.gov (United States)

    Cho, Hyesung; Moon Kim, Sang; Sik Kang, Yun; Kim, Junsoo; Jang, Segeun; Kim, Minhyoung; Park, Hyunchul; Won Bang, Jung; Seo, Soonmin; Suh, Kahp-Yang; Sung, Yung-Eun; Choi, Mansoo

    2015-01-01

    The production of multiscale architectures is of significant interest in materials science, and the integration of those structures could provide a breakthrough for various applications. Here we report a simple yet versatile strategy that allows for the LEGO-like integrations of microscale membranes by quantitatively controlling the oxygen inhibition effects of ultraviolet-curable materials, leading to multilevel multiscale architectures. The spatial control of oxygen concentration induces different curing contrasts in a resin allowing the selective imprinting and bonding at different sides of a membrane, which enables LEGO-like integration together with the multiscale pattern formation. Utilizing the method, the multilevel multiscale Nafion membranes are prepared and applied to polymer electrolyte membrane fuel cell. Our multiscale membrane fuel cell demonstrates significant enhancement of performance while ensuring mechanical robustness. The performance enhancement is caused by the combined effect of the decrease of membrane resistance and the increase of the electrochemical active surface area. PMID:26412619

  5. Visualization of Water Accumulation Process in Polymer Electrolyte Fuel Cell Using Neutron Radiography

    Science.gov (United States)

    Murakawa, Hideki; Sugimoto, Katsumi; Kitamura, Nobuki; Sawada, Masataka; Asano, Hitoshi; Takenaka, Nobuyuki; Saito, Yasushi

    In order to clarify the water-accumulation phenomena in an operating polymer electrolyte fuel cell (PEFC), the water distribution in a small fuel cell was measured in the through-plane direction by using neutron radiography. The fuel cell had nine parallel channels for classifying the water-accumulation process in the gas diffusion layer (GDL) under the lands and channels. The experimental results were compared with numerical results. The water accumulation in the GDL under the lands was larger than that under the channels during the period of early PEFC operation. The difference of the water accumulation in the GDL under the land and channel was related to the water vapor. Because of the land, the vapor fraction in the GDL under the land was also higher than that under the channel. As a result, condensation was easy to occur in the GDL under the land.

  6. Dynamic water management of polymer electrolyte membrane fuel cells using intermittent RH control

    KAUST Repository

    Hussaini, I.S.

    2010-06-01

    A novel method of water management of polymer electrolyte membrane (PEM) fuel cells using intermittent humidification is presented in this study. The goal is to maintain the membrane close to full humidification, while eliminating channel flooding. The entire cycle is divided into four stages: saturation and de-saturation of the gas diffusion layer followed by de-hydration and hydration of membrane. By controlling the duration of dry and humid flows, it is shown that the cell voltage can be maintained within a narrow band. The technique is applied on experimental test cells using both plain and hydrophobic materials for the gas diffusion layer and an improvement in performance as compared to steady humidification is demonstrated. Duration of dry and humid flows is determined experimentally for several operating conditions. © 2010 Elsevier B.V. All rights reserved.

  7. Ionic transport and electrochemical stability of PVDF-HFP based gel polymer electrolytes

    Science.gov (United States)

    Rosdi, A.; Zainol, N. H.; Osman, Z.

    2016-02-01

    The gel polymer electrolytes (GPEs) samples consisting of polyvinylidenefluoride-co-hexafluoropropylene (PVDF-HFP), ethylene carbonate (EC) and propylene carbonate (PC) with different concentrations of magnesium triflate salt, Mg(CF3SO3)2 were prepared using the solution casting technique. The ionic conductivity of the GPEs was studied by using a.c impedance spectroscopy and the sample containing 20 wt% salt exhibited the highest conductivity of 5.11 × l0-3 Scm-1. Ionic transport number of the GPEs shows that the samples contain ionic species as main charge carrier while cationic transport number for the highest conducting sample was found to be 0.27. The electrochemical properties of the GPEs were studied using Linear Sweep Voltammetry (LSV) and Cyclic Voltammetry (CV). The GPEs show high electrochemical stability ˜3.5V (versus Mg2+/Mg) where the highest conducting sample exhibited the highest stability.

  8. IONIC CONDUCTIVITY AND ELECTRICAL PROPERTIES OF CARBOXYMETHYL CELLULOSE - NH4Cl SOLID POLYMER ELECTROLYTES

    Directory of Open Access Journals (Sweden)

    N. H. AHMAD

    2016-06-01

    Full Text Available In this present work, carboxymethyl cellulose (CMC – ammonium chloride (NH4Cl solid polymer electrolyte (SPE films were prepared by solution casting method. The ionic conductivity and electrical properties of SPE films were investigated using Electrical Impedance Spectroscopy. SPE film containing 16 wt. % NH4Cl exhibited the highest ionic conductivity of 1.43 x 10-3 S/cm at ambient temperature, 303K. The temperature dependence SPE films showed an Arrhenius-type relation where the regression values obtained from the log conductivity versus reciprocal temperature is close to unity (R2≈1. The electrical properties have been measured as a function of frequency of Ԑr,Ԑi, Mr, Mi shown a non-Debye type behavior

  9. Solid polymer electrolyte water electrolysis system development. [to generate oxygen for manned space station applications

    Science.gov (United States)

    1975-01-01

    Solid polymer electrolyte technology used in a water electrolysis system (WES) to generate oxygen and hydrogen for manned space station applications was investigated. A four-man rated, low pressure breadboard water electrolysis system with the necessary instrumentation and controls was fabricated and tested. A six man rated, high pressure, high temperature, advanced preprototype WES was developed. This configuration included the design and development of an advanced water electrolysis module, capable of operation at 400 psig and 200 F, and a dynamic phase separator/pump in place of a passive phase separator design. Evaluation of this system demonstrated the goal of safe, unattended automated operation at high pressure and high temperature with an accumulated gas generation time of over 1000 hours.

  10. Effects of plasticization on ionic conductivity enhancement of crosslinked polymer electrolyte membrane

    Science.gov (United States)

    He, Ruixuan; Kyu, Thein; Kyu's Team, Dr.

    Glass transition temperatures (Tg) of solid polymer electrolyte membranes (PEM), comprised of polyethylene glycol diacrylate (PEGDA) prepolymer, lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt, and succinonitrile (SCN) plasticizer, were systematically examined before and after crosslinking in the isotropic region guided by their ternary phase diagram. With increasing LiTFSI concentration, the Tg of uncured binary PEGDA/LiTFSI mixture increases drastically due to molecular complexation between lithium cation and ether oxygen, but ionic conductivity is very low (conductivity. Upon adding SCN plasticizer, the Tg of PEM has significantly decreased to -60 oC and ionic conductivity also increased to the superionic conductor level of 10-3 S cm-1. The analysis of ionic conductivity vs. Tg behavior by Vogel-Tamman-Fulcher(VTF) equation revealed that this ionic conductivity enhancement is due to SCN plasticization resulting in lowering the network Tg as well as lowering the activation energy. Supported by NSF-DMR 1161070.

  11. Magnetic resonance and conductivity study of a gelatin-based polymer gel electrolyte

    International Nuclear Information System (INIS)

    This work reports results from proton nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR) and complex impedance spectroscopy of gelatin-based polymer gel electrolytes containing chloridric acid, cross-linked with formaldehyde and plasticized with glycerol. Ionic conductivity of 4 × 10−5 S/cm were obtained at room temperature for samples prepared with 0.1 M of HCl. Proton (1H) lineshapes and spin-lattice relaxation times were measured as a function of temperature. Activation energies extracted from the 1H NMR relaxation data are in the range of 23–25 kJ/mol. The EPR spectra, which were carried out in samples doped with copper perchlorate, were interpreted with the aid of an axial spin Hamiltonian and indicate the presence of two different Cu2+ species in axially distorted sites. Copper complexation with both hydrogen and nitrogen was verified by electron spin-echo envelope modulation (ESEEM) techniques.

  12. Improved electrochemical in-situ characterization of polymer electrolyte membrane fuel cell stacks

    Science.gov (United States)

    Hartung, I.; Kirsch, S.; Zihrul, P.; Müller, O.; von Unwerth, T.

    2016-03-01

    In-situ diagnostics for single polymer electrolyte membrane fuel cells are well known and established. Comparable stack level techniques are urgently needed to enhance the understanding of degradation during real system operation, but have not yet reached a similar level of sophistication. We have therefore developed a new method for the quantification of the hydrogen crossover current in stacks, which in combination with a previously published technique now allows a clear quantitative characterization of the individual cells' membranes and electrodes. The limits of the reported methods are theoretically assessed and application is then demonstrated on automotive short stacks. The results prove to be highly reproducible and are validated for individual cells of the respective stacks by direct comparison with cyclic voltammetry results, showing good quantitative agreement for the hydrogen crossover current, the double layer capacitance and the electrochemically active surface area.

  13. The effects of hyperbranched poly(siloxysilane)s on conductive polymer aluminum solid electrolytic capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Nogami, Katsunori [Graduate School of Tokyo Institute Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Nippon Chemi-Con Co., 185-1, Marunouchi, Yabuki-machi, Nishi-Shirakawa-gun, Fukushima 969-0235 (Japan); Sakamoto, Kiyoshi [Nippon Chemi-Con Co., 185-1, Marunouchi, Yabuki-machi, Nishi-Shirakawa-gun, Fukushima 969-0235 (Japan); Hayakawa, Teruaki; Kakimoto, Masa-aki [Graduate School of Tokyo Institute Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2007-04-15

    An aluminum solid electrolytic capacitor, using poly-(3,4-ethylenedioxythiophene) (PEDOT) as a counter electrode, was prepared with hyperbranched poly(siloxysilane)s (HBPSi) that has a large number of vinyl groups to improve the interfacial properties between aluminum oxide and PEDOT. Capacitance and equivalent series resistance (Rs) were significantly improved compared to untreated oxide film and vinyl terminated polydimethylsiloxane coated interfaces. From electrochemical measurement of the withstand voltage, damage to the oxide film from chemical polymerization of PEDOT was less with the HBPSi treatment. Frequency characteristics and electrical conductivity measurements of the polymer indicated that the resistance inside the etched porous layer was greatly reduced. These results show that the HBPSi pre-coating layer inhibited degradation of the oxide film by chemical polymerization of PEDOT and the conductivity of PEDOT in the etched porous oxide layer, and also enlarges the contact area by improving interfacial adhesion. (author)

  14. Improvement of carbon corrosion resistance through heat-treatment in polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Y.J.; Oh, H.S.; Kim, H. [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Chemical and Biomolecular Engineering

    2010-07-01

    Electrochemical corrosion of carbon in the catalyst layer of polymer electrolyte membrane fuel cells (PEMFCs) is a critical factor in limiting their durability. The corrosion rate increases during the iterative abnormal operating conditions known as reverse current phenomenon. The corrosion causes a decrease of the active surface of the platinum (Pt) catalyst. The graphitization of carbon increases corrosion resistance, and the hydrophobicity of the carbon surface can also play an important role in decreasing carbon corrosion. This study investigated the effect of heat-treating carbon nanofibers (CNFs) for use in PEMFC applications. The aim of the study was to determine if heat treatments modified the carbon surface by eliminating the oxygen functional group and increasing hydrophobicity. The electrochemical carbon corrosion of CNFs were compared after heat treatments at various temperatures. Mass spectrometry was used to measure electrochemical carbon corrosion by monitoring the amounts of carbon dioxide (CO{sub 2}) produced during the electrochemical oxidation process. 2 refs.

  15. Experimental Study of Polymer Electrolyte Membrane Fuel Cell Performance Under Low Operating Temperatures

    International Nuclear Information System (INIS)

    In this study, the performance characteristics of a polymer electrolyte membrane fuel cell (PEMFC) were investigated at low operating temperatures under steady-state and dynamic conditions. The performance of the PEMFC was analyzed according to the external humidifying rate and air stoichiometry. The ohmic resistance was also investigated using EIS tests. At the operating temperature of 35 ℃, voltage fluctuation occurred to a greater degree compared to that at 45 ℃. Therefore, it was found that the air stoichiometry should be higher than 2.5 for the stable operation of the fuel cell. In addition, the relative humidity of the reactant gases should be higher than 60 to reduce the ohmic resistance

  16. Solid polymer electrolyte electrochemical storage cell containing a redox shuttle additive for overcharge protection

    Science.gov (United States)

    Richardson, Thomas J.; Ross, Philip N.

    1999-01-01

    A class of organic redox shuttle additives is described, preferably comprising nitrogen-containing aromatics compounds, which can be used in a high temperature (85.degree. C. or higher) electrochemical storage cell comprising a positive electrode, a negative electrode, and a solid polymer electrolyte to provide overcharge protection to the cell. The organic redox additives or shuttles are characterized by a high diffusion coefficient of at least 2.1.times.10.sup.-8 cm.sup.2 /second and a high onset potential of 2.5 volts or higher. Examples of such organic redox shuttle additives include an alkali metal salt of 1,2,4-triazole, an alkali metal salt of imidazole, 2,3,5,6-tetramethylpyrazine, 1,3,5-tricyanobenzene, and a dialkali metal salt of 3-4-dihydroxy-3-cyclobutene-1,2-dione.

  17. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M.S.; Moeller-Holst, S.; Webb, D.M.; Zawodzinski, C.; Gottesfeld, S. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.

    1998-08-01

    The objective is to develop and demonstrate a 4 kW, hydrogen-fueled polymer electrolyte fuel cell (PEFC) stack, based on non-machined stainless steel hardware and on membrane/electrode assemblies (MEAs) of low catalyst loadings. The stack is designed to operate at ambient pressure on the air-side and can accommodate operation at higher fuel pressures, if so required. This is to be accomplished by working jointly with a fuel cell stack manufacturer, based on a CRADA. The performance goals are 57% energy conversion efficiency hydrogen-to-electricity (DC) at a power density of 0.9 kW/liter for a stack operating at ambient inlet pressures. The cost goal is $600/kW, based on present materials costs.

  18. Effects of Silica Nanostructures in Poly(ethylene oxide)-Based Composite Polymer Electrolytes.

    Science.gov (United States)

    Mohanta, Jagdeep; Anwar, Shahid; Si, Satyabrata

    2016-06-01

    The present work describes the synthesis of some poly(ethylene oxide)-based nanocomposite polymer electrolyte films using various silica nanostructures as the inorganic filler by simple solution mixing technique, in which the nature of the silica nanostructures play a vital role in modulating their electrochemical performances at room temperature. The silica nanostructures are prepared by ammonical hydrolysis of tetraethyl orthosilicate following the modified St6ber method. The resulting films are characterized by X-ray diffraction and differential scanning calorimeter to study their crystallinity. Room temperature AC impedance spectroscopy is utilized to determine the Li+ ion conductivity of the resulting films. The observed conductivity values of various NCPE films depend on the nature of silica filling as well as on their surface characteristics and also on the varying PEO-Li+ ratio, which is observed to be in the order of 10(-7)-10(-6) S cm(-1). PMID:27427686

  19. Development status of solid polymer electrolyte water electrolysis for manned spacecraft life support systems

    Science.gov (United States)

    Nuttall, L. J.; Titterington, W. A.

    1974-01-01

    Details of the design and system verification test results are presented for a six-man-rated oxygen generation system. The system configuration incorporates components and instrumentation for computer-controlled operation with automatic start-up/shutdown sequencing, fault detection and isolation, and with self-contained sensors and controls for automatic safe emergency shutdown. All fluid and electrical components, sensors, and electronic controls are designed to be easily maintainable under zero-gravity conditions. On-board component spares are utilized in the system concept to sustain long-term operation (six months minimum) in a manned spacecraft application. The system is centered on a 27-cell solid polymer electrolyte water electrolysis module which, combined with the associated system components and controls, forms a total system envelope 40 in. high, 40 in. wide, and 30 in. deep.

  20. COMPARISON OF CELLULOSE ACETATE POLYMER AND ELECTROLYTIC DETACHABLE COILS FOR TREATMENT OF CANINE ANEURYSMAL MODELS

    Institute of Scientific and Technical Information of China (English)

    杨新健; 吴中学; 李佑祥; 孙异临; 尹可

    2002-01-01

    Objective.Electrolytic detachable coils (EDC) have been the main embolic materials for intracranial aneurysms.Liquid aneurysmal embolic materials represented by cellulose acetate polymer (CAP) are still in controversy.In this research,the embolization results and pathological reactions after embolization of canine aneurysmal models with EDC or CAP were observed and compared. Methods.The canine aneurysmal models constructed by anastomosis of venous pouches were randomly grouped.The aneurysms were respectively occluded with CAP and electrolytic detachable coils that was named by Wu electrolytic detachable coil (WEDC) and made by us.Angiogram follow ups were performed at 24 hour,2 week,and 2 month after embolization.The occluded aneurysms were dissected in each stage for light microscopic,electron microscopic,and histochemical research. Results.The effect of embolization was significantly better with WEDC than that with CAP ( χ 2=5.56,P< 0.05) .Post embolized complications such as aneurysm rupture and stenosis of parent arteries could only be found in CAP group.Pathological research showed that CAP mass could packed the aneurysms more densely than coils.Acute chemical damage of aneurysmal wall and inflammatory cell infiltration was prominently found in early stage after CAP embolization.Organization of thrombus inside aneurysms and formation of endothelial tissue over the orifices of aneurysmal necks could be found in both groups 2 months after embolization.But parts of coils might be exposed outside endothelial layer. Conclusions.EDC are still the most safe,efficient,and reliable instruments to embolize aneurysm.CAP should be improved further to solve the problem of strong chemical corrosion and difficulty in control before it is widely used.

  1. Theoretical studies on membranes and non-platinum catalysts for polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ushiyama, Hiroshi [Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan ushiyama@chemsys.t.u-tokyo.ac.jp (Japan)

    2015-12-31

    Mechanism of proton transfer among high-density acid groups in the interface between organic and inorganic materials for polymer electrolyte fuel cells has been theoretically examined. It has been clearly shown that the interactions between the phosphate groups at the surface of the inorganic material, zirconium phosphate (ZrP), and the adsorbed water molecules are relatively large and a strong hydrogen-bond network is generated locally. Because of the strong interactions, water molecules can be attached to ZrP and the O–O distance becomes shorter than that in bulk water systems. Because of the short O–O distances and the delocalized charge of each atom, the activation energy of proton transfer at the ZrP surface decreases and causes high proton conductivity even under conditions of high temperature and low humidity. Based on the above studies, the origin of the high proton conductivity of hybrid electrolytes is also discussed. We will also discuss the mechanism of oxygen reduction reaction on non-platinum catalysts such as Ta{sub 3}N{sub 5}.

  2. Gas phase recovery of hydrogen sulfide contaminated polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Kakati, Biraj Kumar; Kucernak, Anthony R. J.

    2014-04-01

    The effect of hydrogen sulfide (H2S) on the anode of a polymer electrolyte membrane fuel cell (PEMFC) and the gas phase recovery of the contaminated PEMFC using ozone (O3) were studied. Experiments were performed on fuel cell electrodes both in an aqueous electrolyte and within an operating fuel cell. The ex-situ analyses of a fresh electrode; a H2S contaminated electrode (23 μmolH2S cm-2); and the contaminated electrode cleaned with O3 shows that all sulfide can be removed within 900 s at room temperature. Online gas analysis of the recovery process confirms the recovery time required as around 720 s. Similarly, performance studies of an H2S contaminated PEMFC shows that complete rejuvenation occurs following 600-900 s O3 treatment at room temperature. The cleaning process involves both electrochemical oxidation (facilitated by the high equilibrium potential of the O3 reduction process) and direct chemical oxidation of the contaminant. The O3 cleaning process is more efficient than the external polarization of the single cell at 1.6 V. Application of O3 at room temperature limits the amount of carbon corrosion. Room temperature O3 treatment of poisoned fuel cell stacks may offer an efficient and quick remediation method to recover otherwise inoperable systems.

  3. ZnTe Semiconductor-Polymer Gel Composited Electrolyte for Conversion of Solar Energy

    Directory of Open Access Journals (Sweden)

    Wonchai Promnopas

    2014-01-01

    Full Text Available Nanostructured cubic p-type ZnTe for dye sensitized solar cells (DSSCs was synthesized from 1 : 1 molar ratio of Zn : Te by 600 W and 900 W microwave plasma for 30 min. In this research, their green emissions were detected at the same wavelengths of 563 nm, the energy gap (Eg at 2.24 eV, and three Raman shifts at 205, 410, and 620 cm−1. The nanocomposited electrolyte of quasisolid state ZnO-DSSCs was in correlation with the increase in the JSC, VOC, fill factor (ff, and efficiency (η by increasing the wt% of ZnTe-GPE (gel polymer electrolyte to an optimum value and decreased afterwards. The optimal ZnO-DSSC performance was achieved for 0.20 wt% ZnTe-GPE with the highest photoelectronic energy conversion efficiency at 174.7% with respect to that of the GPE without doping of p-type ZnTe.

  4. Effect of Eutectic Concentration on Conductivity in PEO:LiX Based Solid Polymer Electrolytes

    Science.gov (United States)

    Zhan, Pengfei; Ganapatibhotla, Lalitha; Maranas, Janna

    Polyethylene oxide (PEO) and lithium salt based solid polymer electrolytes (SPEs) have been widely proposed as a substitution for the liquid electrolyte in Li-ion batteries. As salt concentration varies, these systems demonstrate rich phase behavior. Conductivity as a function of salt concentration has been measured for decades and various concentration dependences have been observed. A PEO:LiX mixture can have one or two conductivity maximums, while some mixtures with salt of high ionic strength will have higher conductivity as the salt concentration decrease. The factors that affect the conductivity are specific for each sample. The universal factor that affects conductivity is still not clear. In this work, we measured the conductivity of a series of PEO:LiX mixtures and statistical analysis shows conductivity is affected by the concentration difference from the eutectic concentration (Δc). The correlation with Δc is stronger than the correlation with glass transition temperature. We believe that at the eutectic concentration, during the solidification process, unique structures can form which aid conduction. Currently at Dow Chemical.

  5. All Solid-State Lithium Metal Batteries Using Cross-linked Polymer Electrolytes

    Science.gov (United States)

    Pan, Qiwei; Li, Christopher; Soft Materials Team

    Nowadays, to prepare all solid-state lithium metal batteries with high rate capability and stability using solid polymer electrolytes (SPEs) is still a grand challenge because of the interfaces between the SPE and the electrodes. In this presentation, we report a series of hybrid SPEs with controlled network structures by using POSS as cross-linker. These hybrid network SPEs show promising ionic conductivity, mechanical properties, and lithium dendrite growth resistance. All solid-state LiFePO4/Li batteries were also prepared using these SPEs as the electrolytes to study the effect of conductivity and mechanical properties of the SPEs on the performance of the batteries. At 90 °C, the prepared cells show high rate capability and stability. Capacity up to 160 mAh/g can be obtained at a C/2 rate during the galvanostatic cycling. Capacity retention of the cells is higher than 80% after 250 cycles. Battery performance at 60 °C and decay mechanism of the batteries will also be discussed.

  6. Preparation and investigation of cheap polymer electrolyte membranes for fuel cells

    DEFF Research Database (Denmark)

    Larsen, Mikkel Juul; Ma, Yue; Lund, Peter Brilner;

    The electrolyte of choice for low temperature polymer electrolyte fuel cells (PEFCs) has tra­di­ti­o­nal­ly been DuPontTM Nafion® membranes or similar poly(perfluorosulfonic acid)s. The chemical struc­ture and morphology in the hydrated state of Nafion® is shown in figure 1 from which it is seen ...... crossover, and relatively poor thermal stability constitute seri­ous drawbacks with respect to their fuel cell use.[ii],[iii],[iv] These aspects propel the search for cheaper and better alternatives.           In this study membrane systems consisting of a hydrophobic poly.......; Schuster, M.; Chemical Reviews 104 (2004) 4637-4678 [ii] Skou, E.; Kauranen, P.; Hentschel, J.; Solid State Ionics 97 (1997) 333-337 [iii] Fuel Cell Handbook; Seventh Edition; EG&G Technical Services, Inc.; 2004; p. 3.1-3.25 [iv] Doyle, M.; Rajendran, G. in Handbook of Fuel Cells - Fundamentals, Technology...

  7. Optimization of performances of gelatin/LiBF4-based polymer electrolytes by plasticizing effects

    International Nuclear Information System (INIS)

    Gelatin is a cheap and abundant natural product with very good biodegradation properties and can be used to obtain acetic acid or LiClO4-based gel polymer electrolytes (GPEs) with high ionic conductivity and good stability. This article presents results of GPEs obtained by the plasticization of gelatin and addition of LiBF4, where the optimization of the system was achieved by using a factorial design type 22 with two variables: glycerol and LiBF4. From this analysis it was stated that the effect of glycerol as a plasticizer on the ionic conductivity results is much more important than the effect obtained by varying the lithium salt content or the effect of the interaction of both variables. Also all the samples were characterized by X-ray diffraction measurements, UV-vis-NIR spectroscopy and scanning electron microscopy (SEM) and impedance spectroscopy. The ionic conductivity results of all analyzed samples as a function of temperature obey predominantly an Arrhenius relationship and the samples are stable up to 160 deg. C. Good conductivity results combined with transparency and good adhesion to the electrodes have shown that gelatin-based GPEs are very promising materials to be used as solid electrolytes in electrochromic devices.

  8. Theoretical studies on membranes and non-platinum catalysts for polymer electrolyte fuel cells

    International Nuclear Information System (INIS)

    Mechanism of proton transfer among high-density acid groups in the interface between organic and inorganic materials for polymer electrolyte fuel cells has been theoretically examined. It has been clearly shown that the interactions between the phosphate groups at the surface of the inorganic material, zirconium phosphate (ZrP), and the adsorbed water molecules are relatively large and a strong hydrogen-bond network is generated locally. Because of the strong interactions, water molecules can be attached to ZrP and the O–O distance becomes shorter than that in bulk water systems. Because of the short O–O distances and the delocalized charge of each atom, the activation energy of proton transfer at the ZrP surface decreases and causes high proton conductivity even under conditions of high temperature and low humidity. Based on the above studies, the origin of the high proton conductivity of hybrid electrolytes is also discussed. We will also discuss the mechanism of oxygen reduction reaction on non-platinum catalysts such as Ta3N5

  9. Theoretical voltammetric response of electrodes coated by solid polymer electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Marín, Ana M. [Departamento de Química y Petróleos, Universidad Nacional de Colombia, Sede Medellín, Medellín (Colombia); Hernández-Ortíz, Juan P., E-mail: jphernandezo@unal.edu.co [Departamento de Materiales, Universidad Nacional de Colombia, Sede Medellín, Medellín (Colombia); Biotechnology Center, University of Wisconsin–Madison, Madison, WI (United States)

    2014-09-24

    Highlights: • Discretized model for an interface of covered electrodes. • Two limiting behaviors are capture: double-layer and conductive interfaces. • Additional phenomena are included easily: acid/base equilibrium, ion mobility. • The model provides explanations to observed phenomena that is vaguely explained in the literature. • Implications on electrodes in fuel cells are given and it opens avenues to understand and design such systems. - Abstract: A model for the differential capacitance of metal electrodes coated by solid polymer electrolyte membranes, with acid/base groups attached to the membrane backbone, and in contact with an electrolyte solution is developed. With proper model parameters, the model is able to predict a limit response, given by Mott–Schottky or Gouy–Chapman–Stern theories depending on the dissociation degree and the density of ionizable acid/base groups. The model is also valid for other ionic membranes with proton donor/acceptor molecules as membrane counterions. Results are discussed in light of the electron transfer rate at membrane-coated electrodes for electrochemical reactions that strongly depend on the double layer structure. In this sense, the model provides a tool towards the understanding of the electro-catalytic activity on modified electrodes. It is shown that local maxima and minima in the differential capacitance as a function of the electrode potential may occur as consequence of the dissociation of acid/base molecular species, in absence of specific adsorption of immobile polymer anions on the electrode surface. Although the model extends the conceptual framework for the interpretation of cyclic voltammograms for these systems and the general theory about electrified interfaces, structural features of real systems are more complex and so, presented results only are qualitatively compared with experiments.

  10. Performance of solid state supercapacitors based on polymer electrolytes containing different ionic liquids

    Science.gov (United States)

    Tiruye, Girum Ayalneh; Muñoz-Torrero, David; Palma, Jesus; Anderson, Marc; Marcilla, Rebeca

    2016-09-01

    Four Ionic Liquid based Polymer Electrolytes (IL-b-PE) were prepared by blending a Polymeric Ionic Liquid, Poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PILTFSI), with four different ionic liquids: 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) (IL-b-PE1), 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide (PYR14FSI) (IL-b-PE2), 1-(2-hydroxy ethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HEMimTFSI) (IL-b-PE3), and 1-Butyl-1-methylpyrrolidinium dicyanamide, (PYR14DCA) (IL-b-PE4). Physicochemical properties of IL-b-PE such as ionic conductivity, thermal and electrochemical stability were found to be dependent on the IL properties. For instance, ionic conductivity was significantly higher for IL-b-PE2 and IL-b-PE4 containing IL with small size anions (FSI and DCA) than IL-b-PE1 and IL-b-PE3 bearing IL with bigger anion (TFSI). On the other hand, wider electrochemical stability window (ESW) was found for IL-b-PE1 and IL-b-PE2 having ILs with electrochemically stable pyrrolidinium cation and FSI and TFSI anions. Solid state Supercapacitors (SCs) were assembled with activated carbon electrodes and their electrochemical performance was correlated with the polymer electrolyte properties. Best performance was obtained with SC having IL-b-PE2 that exhibited a good compromise between ionic conductivity and electrochemical window. Specific capacitance (Cam), real energy (Ereal) & real power densities (Preal) as high as 150 F g-1, 36 Wh kg-1 & 1170 W kg-1 were found at operating voltage of 3.5 V.

  11. Comparative Studies on Plasticised and Unplasticized Polyacrylonitrile (PAN) Polymer Electrolytes Containing Lithium and Sodium Salts

    International Nuclear Information System (INIS)

    Polymer electrolytes based on polyacrylonitrile (PAN) containing inorganic salts; lithium triflate (LiCF3SO3) and sodium triflate (NaCF3SO3) and ethylene carbonate (EC) as plasticizer were prepared using solvent casting technique. In this study, five systems of plasticised and unplasticized polymer electrolyte films for example PAN-EC, PAN-LiCF3SO3, PAN-NaCF3SO3 PAN-EC-LiCF3SO3 and PAN-EC-NaCF3SO3 systems have been prepared. The structural and morphological properties of the films were studied using infrared spectroscopy and scanning electron microscopy (SEM) while the conductivity study was done by using impedance spectroscopy. The infrared results revealed that interaction had taken place between the nitrogen atoms of PAN and Li+ and Na+ ions from the salts. SEM micrographs showed that the plasticised film, PAN-EC-NaCF3SO3 has bigger pores than PAN-EC-LiCF3SO3 film resulting in the film containing NaCF3SO3 salt being more conductive. On addition of salts and plasticizer, the conductivity of pure PAN increases to three orders of magnitude. The plasticised film containing NaCF3SO3 salt has a higher conductivity compared to that containing LiCF3SO3 salt. This result showed that the interaction between Li+-ion and the nitrogen atom of PAN was stronger than that of Na+-ion. The conductivity-temperature dependence of the highest conducting film from each system follows Arrhenius equation in the temperature range of 303 to 353 K. The conductivity-pressure study in the range of 0.01 - 0.09 MPa showed that the conductivity decreased when pressure was increased. This can be explained in term of free volume model. (author)

  12. Effect of ZrO2 on conductivity of PVC–PMMA–LiBF4–DBP polymer electrolytes

    Indian Academy of Sciences (India)

    S Rajendran; T Uma

    2000-02-01

    The preparation and characterization of composite polymer electrolytes of PVC–PMMA–LiBF4–DBP for different concentrations of ZrO2 have been investigated. FTIR studies indicate complex formation between the polymers, salt and plasticizer. The electrical conductivity values measured by a.c. impedance spectroscopy is found to depend upon the ZrO2 concentration. The temperature dependence of the conductivity of the polymer films seems to obey the VTF relation. The conductivity values are presented and results discussed.

  13. Evaluation of AA5052 alloy anode in alkaline electrolyte with organic rare-earth complex additives for aluminium-air batteries

    Science.gov (United States)

    Wang, Dapeng; Li, Heshun; Liu, Jie; Zhang, Daquan; Gao, Lixin; Tong, Lin

    2015-10-01

    Behaviours of the AA5052 aluminium alloy anode of the alkaline aluminium-air battery are studied by the hydrogen evolution test, the electrochemical measurements and the surface analysis method. The combination of amino-acid and rare earth as electrolyte additives effectively retards the self-corrosion of AA5052 aluminium alloy in 4 M NaOH solution. It shows that the combination of L-cysteine and cerium nitrate has a synergistic effect owing to the formation of a complex film on AA5052 alloy surface. The organic rare-earth complex can decrease the anodic polarisation, suppress the hydrogen evolution and increase the anodic utilization rate.

  14. Dye-sensitized solar cell with natural gel polymer electrolytes and f-MWCNT as counter-electrode

    Science.gov (United States)

    Nwanya, A. C.; Amaechi, C. I.; Ekwealor, A. B. C.; Osuji, R. U.; Maaza, M.; Ezema, F. I.

    2015-05-01

    Samples of DSSCs were made with gel polymer electrolytes using agar, gelatin and DNA as the polymer hosts. Anthocyanine dye from Hildegardia barteri flower is used to sensitize the TiO2 electrode, and the spectrum of the dye indicates strong absorptions in the blue region of the solar spectrum. The XRD pattern of the TiO2 shows that the adsorption of the dye did not affect the crystallinity of the electrode. The f-MWCNT indicates graphite structure of the MWCNTs were acid oxidized without significant damage. Efficiencies of 3.38 and 0.1% were obtained using gelatin and DNA gel polymer electrolytes, respectively, for the fabricated dye-sensitized solar cells.

  15. Characterization of CH3SO3H-doped PMMA/PVP blend-based proton-conducting polymer electrolytes and its application in primary battery

    Science.gov (United States)

    Ambika, C.; Hirankumar, G.

    2016-02-01

    Various compositions of solid blend polymer electrolytes based on poly(methyl methacrylate) (PMMA)/poly(vinyl pyrrolidone) (PVP) complexed with methanesulfonic acid (MSA) as proton donor were prepared by solution casting technique. The complex nature of polymer blend with MSA was confirmed by Fourier transform infrared spectroscopy. Good thermal stability of PMMA/PVP blend polymer electrolyte was identified by thermogravimetric analysis. The surface morphology of the prepared electrolytes was studied through optical microscopy. Ion transport number was determined in the range of 0.93-0.97 for proton-conducting blend polymer electrolytes. The maximum conductivity value was calculated as 2.51 × 10-5 S/cm at 303 K for 14.04 mol% MSA-doped polymer electrolytes. Dielectric studies were also carried out. The electrochemical stability window of blend polymer electrolyte was found to be 1.82 V. Primary proton battery was fabricated with Zn + ZnSO4·7H2O/solid polymer electrolytes/MnO2. The discharge characteristics were studied at constant current drain of 5, 20 and 50 μA. The energy and power density were calculated as 0.27 W h kg-1 and 269.23 mW kg-1 for 20 μA of discharge, respectively.

  16. Tungsten oxide in polymer electrolyte fuel cell electrodes-A thin-film model electrode study

    Energy Technology Data Exchange (ETDEWEB)

    Wickman, Bjoern, E-mail: bjorn.wickman@chalmers.s [Competence Centre for Catalysis, Department of Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Wesselmark, Maria; Lagergren, Carina; Lindbergh, Goeran [Applied Electrochemistry, School of Chemical Science and Engineering, KTH, SE-100 44 Stockholm (Sweden)

    2011-10-30

    Highlights: > Platinum and tungsten oxide thin-film electrocatalysts. > Single cell fuel cell evaluation. > Hydrogen-tungsten bronze formation. > CO oxidation on platinum on tungsten oxide. - Abstract: Thin films of WO{sub x} and Pt on WO{sub x} were evaporated onto the microporous layer of a gas diffusion layer (GDL) and served as model electrodes in the polymer electrolyte fuel cell (PEFC) as well as in liquid electrolyte measurements. In order to study the effects of introducing WO{sub x} in PEFC electrodes, precise amounts of WO{sub x} (films ranging from 0 to 40 nm) with or without a top layer of Pt (3 nm) were prepared. The structure of the thin-film model electrodes was characterized by scanning electron microscopy and X-ray photoelectron spectroscopy prior to the electrochemical investigations. The electrodes were analyzed by cyclic voltammetry and the electrocatalytic activity for hydrogen oxidation reaction (HOR) and CO oxidation was examined. The impact of Nafion in the electrode structure was examined by comparing samples with and without Nafion solution sprayed onto the electrode. Fuel cell measurements showed an increased amount of hydrogen tungsten bronzes formed for increasing WO{sub x} thicknesses and that Pt affected the intercalation/deintercalation process, but not the total amount of bronzes. The oxidation of pre-adsorbed CO was shifted to lower potentials for WO{sub x} containing electrodes, suggesting that Pt-WO{sub x} is a more CO-tolerant catalyst than Pt. For the HOR, Pt on thicker films of WO{sub x} showed an increased limiting current, most likely originating from the increased electrochemically active surface area due to proton conductivity and hydrogen permeability in the WO{sub x} film. From measurements in liquid electrolyte it was seen that the system behaved very differently compared to the fuel cell measurements. This exemplifies the large differences between the liquid electrolyte and fuel cell systems. The thin-film model

  17. Influence of the Ionic Liquid Type on the Gel Polymer Electrolytes Properties

    Directory of Open Access Journals (Sweden)

    Juan P. Tafur

    2015-11-01

    Full Text Available Gel Polymer Electrolytes (GPEs composed by ZnTf2 salt, poly(vinylidene fluoride-co-hexafluoropropylene (PVdF-HFP, and different ionic liquids are synthesized using n-methyl-2-pyrrolidone (NMP as solvent. Three different imidazolium-based ionic liquids containing diverse cations and anions have been explored. Structural and electrical properties of the GPEs varying the ZnTf2 concentration are analyzed by ATR-FTIR, DSC, TG, and cyclic voltammetry. Free salt IL-GPEs present distinct behavior because they are influenced by the different IL cations and anions composition. However, inclusion of ZnTf2 salt inside the polymers provide GPEs with very similar characteristics, pointing out that ionic transport properties are principally caused by Zn2+ and triflate movement. Whatever the IL used, the presence of NMP solvent inside the polymer’s matrix turns out to be a key factor for improving the Zn2+ transport inside the GPE due to the interaction between Zn2+ cations and carbonyl groups of the NMP. High values of ionic conductivity, low activation energy values, and good voltammetric reversibility obtained regardless of the ionic liquid used enable these GPEs to be applied in Zn batteries. Capacities of 110–120 mAh·g−1 have been obtained for Zn/IL-GPE/MnO2 batteries discharged at −1 mA·cm−2.

  18. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Putri, Zufira, E-mail: zufira.putri@gmail.com, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: zufira.putri@gmail.com, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung (Indonesia)

    2014-03-24

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO{sub 2} are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO{sub 2} compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO{sub 2} blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM)

  19. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Putri, Zufira; Arcana, I. Made

    2014-03-01

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO2 are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO2 compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO2 blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM).

  20. Enhancement in ionic conductivity on solid polymer electrolytes containing large conducting species

    Science.gov (United States)

    Praveen, D.; Damle, Ramakrishna

    2016-05-01

    Solid Polymer Electrolytes (SPEs) lack better conducting properties at ambient temperatures. Various methods to enhance their ionic conductivity like irradiation with swift heavy ions, γ-rays, swift electrons and quenching at low temperature etc., have been explored in the literature. Among these, one of the oldest methods is incorporation of different conducting species into the polymer matrix and/or addition of nano-sized inert particles into SPEs. Various new salts like LiBr, Mg(ClO4)2, NH4I etc., have already been tried in the past with some success. Also various nanoparticles like Al2O3, TiO2 etc., have been tried in the past. In this article, we have investigated an SPE containing Rubidium as a conducting species. Rubidium has a larger ionic size compared to lithium and sodium ions which have been investigated in the recent past. In the present article, we have investigated the conductivity of large sized conducting species and shown the enhancement in the ionic conductivity by addition of nano-sized inert particles.

  1. Preparation and characterization of plasticized palm-based polyurethane solid polymer electrolyte

    International Nuclear Information System (INIS)

    Palm-based polyurethane solid polymer electrolyte was prepared via prepolymerization method between palm kernel oil based polyols (PKO-p) and 2,4’-diphenylmethane diisocyanate (2,4’-MDI) in acetone at room temperature with the vary amount of lithium trifuoromethanesulfonate (LiCF3SO3) salt and polyethylene glycol (PEG). The film was analyzed using attenuated total reflection infrared (ATR-IR) spectroscopy, electrochemical impedance spectroscopy (EIS) and X-ray diffractometry (XRD). EIS result indicated ionic conductivity obtained with 30 wt% LiCF3SO3 increased to 6.55 × 10−6 S cm−1 when 10 wt.% of plasticizer was added into the system. FTIR analysis showed the interaction between lithium ions and amine (-N-H) at 3600–3100 cm−1, carbonyl (-C=O) at 1750–1650 cm−1 and ether (-C-O-C-) at 1150–1000 cm−1 of the polyurethane forming polymer-salt complexes. The XRD result confirmed that LiCF3SO3 salt completely dissociated within the polyurethane film with the absence of crystalline peaks of LiCF3SO3

  2. Preparation and characterization of plasticized palm-based polyurethane solid polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Daud, Farah Nadia; Ahmad, Azizan; Badri, Khairiah Haji [School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    Palm-based polyurethane solid polymer electrolyte was prepared via prepolymerization method between palm kernel oil based polyols (PKO-p) and 2,4’-diphenylmethane diisocyanate (2,4’-MDI) in acetone at room temperature with the vary amount of lithium trifuoromethanesulfonate (LiCF{sub 3}SO{sub 3}) salt and polyethylene glycol (PEG). The film was analyzed using attenuated total reflection infrared (ATR-IR) spectroscopy, electrochemical impedance spectroscopy (EIS) and X-ray diffractometry (XRD). EIS result indicated ionic conductivity obtained with 30 wt% LiCF3SO3 increased to 6.55 × 10{sup −6} S cm{sup −1} when 10 wt.% of plasticizer was added into the system. FTIR analysis showed the interaction between lithium ions and amine (-N-H) at 3600–3100 cm{sup −1}, carbonyl (-C=O) at 1750–1650 cm{sup −1} and ether (-C-O-C-) at 1150–1000 cm{sup −1} of the polyurethane forming polymer-salt complexes. The XRD result confirmed that LiCF{sub 3}SO{sub 3} salt completely dissociated within the polyurethane film with the absence of crystalline peaks of LiCF{sub 3}SO{sub 3}.

  3. Solid-state electric double layer capacitors fabricated with plastic crystal based flexible gel polymer electrolytes: Effective role of electrolyte anions

    Energy Technology Data Exchange (ETDEWEB)

    Suleman, Mohd; Kumar, Yogesh; Hashmi, S.A., E-mail: sahashmi@physics.du.ac.in

    2015-08-01

    Flexible gel polymer electrolyte (GPE) thick films incorporated with solutions of lithium trifluoromethanesulfonate (Li-triflate or LiTf) and lithium bis trifluoromethane-sulfonimide (LiTFSI) in a plastic crystal succinonitrile (SN), entrapped in poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) have been prepared and characterized. The films have been used as electrolytes in the electrical double layer capacitors (EDLCs). Coconut-shell derived activated carbon with high specific surface area (∼2100 m{sup 2} g{sup −1}) and mixed (micro- and meso-) porosity has been used as EDLC electrodes. The structural, thermal, and electrochemical characterization of the GPEs have been performed using scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), impedance measurements and cyclic voltammetry. The high ionic conductivity (∼10{sup −3} S cm{sup −1} at 25 °C), good electrochemical stability window (>4.0 V) and flexible nature of the free-standing films of GPEs show their competence in the fabrication of EDLCs. The EDLCs have been tested using electrochemical impedance spectroscopy, cyclic voltammetry, and charge–discharge studies. The EDLCs using LiTf based electrolyte have been found to give higher values of specific capacitance, specific energy, power density (240–280 F g{sup −1}, ∼39 Wh kg{sup −1} and ∼19 kW kg{sup −1}, respectively) than the EDLC cell with LiTFSI based gel electrolyte. EDLCs have been found to show stable performance for ∼10{sup 4} charge–discharge cycles. The comparative studies indicate the effective role of electrolyte anions on the capacitive performance of the solid-state EDLCs. - Graphical abstract: Display Omitted - Highlights: • Flexible EDLCs with succinonitrile based gel electrolyte membranes are reported. • Anionic size of salts in gel electrolytes plays important role on capacitive performance. • Li-triflate incorporated gel electrolyte shows better

  4. Solid-state electric double layer capacitors fabricated with plastic crystal based flexible gel polymer electrolytes: Effective role of electrolyte anions

    International Nuclear Information System (INIS)

    Flexible gel polymer electrolyte (GPE) thick films incorporated with solutions of lithium trifluoromethanesulfonate (Li-triflate or LiTf) and lithium bis trifluoromethane-sulfonimide (LiTFSI) in a plastic crystal succinonitrile (SN), entrapped in poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) have been prepared and characterized. The films have been used as electrolytes in the electrical double layer capacitors (EDLCs). Coconut-shell derived activated carbon with high specific surface area (∼2100 m2 g−1) and mixed (micro- and meso-) porosity has been used as EDLC electrodes. The structural, thermal, and electrochemical characterization of the GPEs have been performed using scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), impedance measurements and cyclic voltammetry. The high ionic conductivity (∼10−3 S cm−1 at 25 °C), good electrochemical stability window (>4.0 V) and flexible nature of the free-standing films of GPEs show their competence in the fabrication of EDLCs. The EDLCs have been tested using electrochemical impedance spectroscopy, cyclic voltammetry, and charge–discharge studies. The EDLCs using LiTf based electrolyte have been found to give higher values of specific capacitance, specific energy, power density (240–280 F g−1, ∼39 Wh kg−1 and ∼19 kW kg−1, respectively) than the EDLC cell with LiTFSI based gel electrolyte. EDLCs have been found to show stable performance for ∼104 charge–discharge cycles. The comparative studies indicate the effective role of electrolyte anions on the capacitive performance of the solid-state EDLCs. - Graphical abstract: Display Omitted - Highlights: • Flexible EDLCs with succinonitrile based gel electrolyte membranes are reported. • Anionic size of salts in gel electrolytes plays important role on capacitive performance. • Li-triflate incorporated gel electrolyte shows better performance over LiTFSI-based gel. • Highest

  5. Preparation and characterization of PAN–KI complexed gel polymer electrolytes for solid-state battery applications

    Indian Academy of Sciences (India)

    N KRISHNA JYOTHI; K K VENKATARATNAM; P NARAYANA MURTY; K VIJAYA KUMAR

    2016-08-01

    The free standing and dimensionally stable gel polymer electrolyte films of polyacrylonitrile (PAN): potassium iodide (KI) of different compositions, using ethylene carbonate as a plasticizer and dimethyl formamide as solvent, are prepared by adopting ‘solution casting technique’ and these films are examined for their conductivities. The structural, miscibility and the chemical rapport between PAN and KI are investigated using X-ray diffraction, Fourier transform infrared spectroscopy and differential scanning calorimetry methods. The conductivity is enhanced with the increase in KI concentration and temperature. The maximum conductivity at 30$^{\\circ}$C is found to be $2.089 \\times 10^{−5}$ S cm$^{−1}$ for PAN:KI (70:30) wt%, which is nine orders greater than that of pure PAN (${\\lt}10^{−14}$ S cm$^{−1}$). The conductivity-temperature dependence of these polymer electrolyte films obeys Arrhenius behaviour with activation energy ranging from 0.358 to 0.478 eV. The conducting carriers of charge transport in these polymer electrolyte films are identified by Wagner’s polarization technique and it is found that the charge transport is predominantlydue to ions. The better conducting sample is used to fabricate the battery with configuration K/PAN $+$ KI/I$_2$ $+$ C $+$ electrolyte and good discharge characteristics of battery are observed.

  6. UV-Induced Radical Photo-Polymerization: A Smart Tool for Preparing Polymer Electrolyte Membranes for Energy Storage Devices

    Directory of Open Access Journals (Sweden)

    Claudio Gerbaldi

    2012-10-01

    Full Text Available In the present work, the preparation and characterization of quasi-solid polymer electrolyte membranes based on methacrylic monomers and oligomers, with the addition of organic plasticizers and lithium salt, are described. Noticeable improvements in the mechanical properties by reinforcement with natural cellulose hand-sheets or nanoscale microfibrillated cellulose fibers are also demonstrated. The ionic conductivity of the various prepared membranes is very high, with average values approaching 10-3 S cm-1 at ambient temperature. The electrochemical stability window is wide (anodic breakdown voltages > 4.5 V vs. Li in all the cases along with good cyclability in lithium cells at ambient temperature. The galvanostatic cycling tests are conducted by constructing laboratory-scale lithium cells using LiFePO4 as cathode and lithium metal as anode with the selected polymer electrolyte membrane as the electrolyte separator. The results obtained demonstrate that UV induced radical photo-polymerization is a well suited method for an easy and rapid preparation of easy tunable quasi-solid polymer electrolyte membranes for energy storage devices.

  7. An Electrolyte-Free Conducting Polymer Actuator that Displays Electrothermal Bending and Flapping Wing Motions under a Magnetic Field.

    Science.gov (United States)

    Uh, Kyungchan; Yoon, Bora; Lee, Chan Woo; Kim, Jong-Man

    2016-01-20

    Electroactive materials that change shape in response to electrical stimulation can serve as actuators. Electroactive actuators of this type have great utility in a variety of technologies, including biomimetic artificial muscles, robotics, and sensors. Electroactive actuators developed to date often suffer from problems associated with the need to use electrolytes, slow response times, high driving voltages, and short cycle lifetimes. Herein, we report an electrolyte-free, single component, polymer electroactive actuator, which has a fast response time, high durability, and requires a low driving voltage (1000000 cycles). PMID:26717199

  8. UV-cured Al2O3-laden cellulose reinforced polymer electrolyte membranes for Li-based batteries

    International Nuclear Information System (INIS)

    A methacrylate based plasticised polymer electrolyte membrane is prepared via a rapid and facile UV curing process, the major concerns of mechanical integrity are overcome by simply using appropriately modified cellulose handsheet laden with nano-sized acidic alumina particles as a reinforcement. The use of the cellulose handsheets greatly enhances the flexibility and mechanical properties of the membrane while the addition of alumina particles helps to maintain satisfactory conductivity values. The reinforced composite electrolyte membrane is also tested in a real lithium cell, exhibiting excellent performance which account for its use in futuristic lithium batteries having low cost, environmentally friendly and easily scalable properties

  9. Cyclic voltammetric investigations of microstructured and platinum-covered glassy carbon electrodes in contact with a polymer electrolyte membrane

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, G.G.; Veziridis, Z.; Staub, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Freimuth, H. [Inst. fuer Mikrotechnik Mainz IMM, Mainz (Germany)

    1997-06-01

    Model gas diffusion electrodes were prepared by microstructuring glassy carbon surfaces with high aspect ratios and subsequent deposition of platinum. These electrodes were characterized by hydrogen under-potential deposition (H-upd) in contact with a polymer electrolyte membrane employing cyclic voltametry. H-upd was found on platinum areas not in direct contact to the solid electrolyte, as long as a continuous platinum-path existed. A carbon surface between platinum acts as barrier for H-upd. (author) 4 figs., 5 refs.

  10. Facile preparation of polymer electrolytes based on the polymerized ionic liquid poly((4-vinylbenzyl)trimethylammonium bis(trifluoromethanesulfonylimide)) for lithium secondary batteries

    International Nuclear Information System (INIS)

    Graphical abstract: (A) The main components of PIL electrolytes, (B) A PIL electrolyte sample. - Highlights: • A new polymer electrolyte incorporating a DEME-TFSI liquid is prepared. • The ionic conductivity of the electrolytes reaches 7.58 × 10−4 S cm−1 at 60 °C. • Batteries discharge 130 mAh g−1 at 0.1 C rates with good capacity retention. - Abstract: The polymer electrolytes based on a novel poly((4-vinylbenzyl)trimethylammonium bis(trifluoromethanesulfonylimide)) polymeric ionic liquid (PIL) as polymer host and containing DEME-TFSI ionic liquid, LiTFSI salt and nano silica are prepared. The polymer electrolyte is chemically stable even at a higher temperature of 60 °C in contact with lithium anode. Particularly, the electrolyte exhibits high lithium ion conductivity, wide electrochemical stability window and good lithium stripping/plating performance. When the IL content reaches 60% (the weight ratio of DEME-TFSI/PIL), the PIL electrolyte presents a higher ionic conductivity, and it is 7.58 × 10−4 S cm−1 at 60 °C. Preliminary battery tests show that Li/LiFePO4 cells with the PIL electrolytes are capable to deliver above 130 mAh g−1 at 60 °C with very good capacity retention

  11. A hard-template process to prepare three-dimensionally macroporous polymer electrolyte for lithium-ion batteries

    International Nuclear Information System (INIS)

    Three-dimensionally macroporous (3DM) polymer membranes based on poly(vinylidene fluoride-co-hexafluropropylene) (P(VdF-HFP)) are simply prepared through etching calcium carbonate (CaCO3) hard template, which was filled in the polymer matrix previously. It is observed, from the SEM images, that some macropores within the obtained 3DM polymer membrane interconnect through many little holes, which would leave the continuous channels for ion transportation in the resultant polymer electrolyte. The 3DM polymer membrane made from the casting solution, in which the mass ratio of CaCO3 to P(VdF-HFP) is 2:1, has a porosity of 73.6%. The resultant 3DM polymer electrolyte (3DMPE) possesses high ionic conductivity of 1.38 × 10−3 S cm−1 at room temperature and low activation energy for ion transportation of 6.85 kJ mol−1. The assembled Li/LiMn2O4 cells exhibit good rate and cycling capabilities when using this 3DMPE membrane as a separator. The results suggest the 3DMPE could be promisingly applied in lithium-ion batteries

  12. Fractal forming species and hierarchical growth in polymer electrolyte composites: Raman mapping and role of seed particles

    Science.gov (United States)

    Dawar, Anit; Chandra, Amita

    2013-04-01

    Diffusion limited aggregation (DLA) is being reported in a polymer electrolyte composites PEO:NH4I + Al2O3 (acidic, basic and neutral). The aggregating specie is found to be I3- by using XRD and Raman spectroscopy. The involvement of NH4+ ion in the fractal pattern formation has also been explained via ion pairing with I3- (i.e., M+ + I3- → M+I3-), by making ammonium tri-iodide specie. Raman mapping has been done to analyze the fractal forming species in detail. A qualitative model has been proposed to explain the observations. The aggregates that get frozen in the host polymer matrix by diffusive growth form different patterns and are found to have fractal dimension that varies from 1.6 to 1.8 which is consistent with diffusion limited aggregation. The steady state of ion diffusion in polymer electrolyte is analyzed in the framework of the Nernst-Planck equation. The ion transport mechanism in the polymer electrolyte composite (with and without fractal growth), has been studied with the help of ac conductivity (σ) and ionic/electronic transference number (ti/te).

  13. Dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate

    Science.gov (United States)

    Pal, P.; Ghosh, A.

    2016-07-01

    In this paper, we have studied the dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate. Structural and thermal properties have been examined using X-ray diffraction and differential scanning calorimetry, respectively. We have analyzed the complex conductivity spectra by using power law model coupled with the contribution of electrode polarization at low frequencies and high temperatures. The temperature dependence of the ionic conductivity and crossover frequency exhibits Vogel-Tammann-Fulcher type behavior indicating a strong coupling between the ionic and the polymer chain segmental motions. The scaling of the ac conductivity indicates that relaxation dynamics of charge carriers follows a common mechanism for all temperatures and ethylene carbonate concentrations. The analysis of the ac conductivity also shows the existence of a nearly constant loss in these polymer electrolytes at low temperatures and high frequencies. The fraction of free anions and ion pairs in polymer electrolyte have been obtained from the analysis of Fourier transform infrared spectra. It is observed that these quantities influence the behavior of the composition dependence of the ionic conductivity.

  14. Oral salt supplements to compensate for jejunostomy losses: comparison of sodium chloride capsules, glucose electrolyte solution, and glucose polymer electrolyte solution.

    OpenAIRE

    Nightingale, J M; Lennard-Jones, J E; Walker, E. R.; Farthing, M J

    1992-01-01

    Six patients with jejunostomies and residual jejunal lengths of 105 to 250 cm took the same food and water each day for eight study days. In random order, three methods of salt replacement were tested, each over 48 hours, against a period without added salt. During the three test periods the patients took 120 mmol of sodium chloride daily, as salt in gelatine capsules, as an isotonic glucose electrolyte (280 mOsmol/kg; 30 kcal) solution, and as a glucose polymer (Maxijul) solution (280 mOsmol...

  15. The development of a state-of-the-art experimental setup demonstrated by the investigation of fuel cell reactions in alkaline electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Wiberg, Gustav Karl Henrik

    2010-10-04

    The objectives of this work can be separated into three different topics: the design and development of a state-of-the art electrochemical experiment setup, which is then followed by two separate experimental studies in alkaline electrolyte. These studies demonstrate the capabilities of the experimental setup, and each focus on separate model catalysts. The first study investigated the influence of Pt oxide formation on the measured catalytic activity of FC relevant reactions on polycrystalline Pt in alkaline electrolyte. The second study focused on the characterisation of the ORR for a non-platinum catalyst, in this case Ag, by adapting the established thin-film RDE methodology employed for characterising Pt based electrocatalysts. A state-of-the-art electrochemical experimental setup comprises of a largely automated setup that allows meticulous control over experimental parameters such as potential, temperature, purging gas and solution convection. In order to realise such a setup, both experimental hardware and software were developed. In particular, a custom built analogue potentiostat optimised for single working electrode measurements was constructed. The potentiostat features R{sub sol}-compensation which can be monitored online due to its fully analogue design, allowing the precise current and potential relationship to be measured. In addition, the experimental throughput was enhanced by fabricating a modular add-on device, the MWE, which allows simultaneous electrochemical measurement on up to 8 parallel working electrodes. The MWE device is compatible with any single channel potentiostat, enhancing existing instrumentation. Several Teflon cells were designed for electrochemical investigations in acid and alkaline electrolytes, and were adapted to work using either the RDE or MWE. A gas changer was also assembled, which enabled computer controlled switching of electrolyte purge gas. Furthermore, in order to control the potentiostat and the accessory

  16. Hydroxypropyl Cellulose Based Non-Volatile Gel Polymer Electrolytes for Dye-Sensitized Solar Cell Applications using 1-methyl-3-propylimidazolium iodide ionic liquid

    Science.gov (United States)

    Khanmirzaei, Mohammad Hassan; Ramesh, S.; Ramesh, K.

    2015-12-01

    Gel polymer electrolytes using imidazolium based ionic liquids have attracted much attention in dye-sensitized solar cell applications. Hydroxypropyl cellulose (HPC), sodium iodide (NaI), 1-methyl-3-propylimidazolium iodide (MPII) as ionic liquid (IL), ethylene carbonate (EC) and propylene carbonate (PC) are used for preparation of non-volatile gel polymer electrolyte (GPE) system (HPC:EC:PC:NaI:MPII) for dye-sensitized solar cell (DSSC) applications. The highest ionic conductivity of 7.37 × 10-3 S cm-1 is achieved after introducing 100% of MPII with respect to the weight of HPC. Temperature-dependent ionic conductivity of gel polymer electrolytes is studied in this work. XRD patterns of gel polymer electrolytes are studied to confirm complexation between HPC polymer, NaI and MPII. Thermal behavior of the GPEs is studied using simultaneous thermal analyzer (STA) and differential scanning calorimetry (DSC). DSSCs are fabricated using gel polymer electrolytes and J-V centeracteristics of fabricated dye sensitized solar cells were analyzed. The gel polymer electrolyte with 100 wt.% of MPII ionic liquid shows the best performance and energy conversion efficiency of 5.79%, with short-circuit current density, open-circuit voltage and fill factor of 13.73 mA cm-2, 610 mV and 69.1%, respectively.

  17. Density functional theory calculations of H/D isotope effects on polymer electrolyte membrane fuel cell operations

    International Nuclear Information System (INIS)

    To elucidate hydrogen isotope effects observed between fuel and exhaust hydrogen gases during polymer electrolyte membrane fuel cell operations, H-to-D reduced partition function ratios (RPFRs) for the hydrogen species in the Pt catalyst phase of the anode and the electrolyte membrane phase of the fuel cell were evaluated by density functional theory calculations on model species of the two phases. The evaluation yielded 3.2365 as the value of the equilibrium constant of the hydrogen isotope exchange reaction between the two phases at 39 C, which was close to the experimentally estimated value of 3.46-3.99 at the same temperature. It was indicated that H+ ions on the Pt catalyst surface of the anode and H species in the electrolyte membrane phase were isotopically in equilibrium with one another during fuel cell operations.

  18. Polymer Electrolyte-Based Ambient Temperature Oxygen Microsensors for Environmental Monitoring

    Science.gov (United States)

    Hunter, Gary W.; Xu, Jennifer C.; Liu, Chung-Chiun

    2011-01-01

    An ambient temperature oxygen microsensor, based on a Nafion polymer electrolyte, has been developed and was microfabricated using thin-film technologies. A challenge in the operation of Nafion-based sensor systems is that the conductivity of Nafion film depends on the humidity in the film. Nafion film loses conductivity when the moisture content in the film is too low, which can affect sensor operation. The advancement here is the identification of a method to retain the operation of the Nafion films in lower humidity environments. Certain salts can hold water molecules in the Nafion film structure at room temperature. By mixing salts with the Nafion solution, water molecules can be homogeneously distributed in the Nafion film increasing the film s hydration to prevent Nafion film from being dried out in low-humidity environment. The presence of organics provides extra sites in the Nafion film to promote proton (H+) mobility and thus improving Nafion film conductivity and sensor performance. The fabrication of ambient temperature oxygen microsensors includes depositing basic electrodes using noble metals, and metal oxides layer on one of the electrode as a reference electrode. The use of noble metals for electrodes is due to their strong catalytic properties for oxygen reduction. A conducting polymer Nafion, doped with water-retaining components and extra sites facilitating proton movement, was used as the electrolyte material, making the design adequate for low humidity environment applications. The Nafion solution was coated on the electrodes and air-dried. The sensor operates at room temperature in potentiometric mode, which measures voltage differences between working and reference electrodes in different gases. Repeat able responses to 21-percent oxygen in nitrogen were achieved using nitrogen as a baseline gas. Detection of oxygen from 7 to 21 percent has also been demonstrated. The room-temperature oxygen micro sensor developed has extremely low power

  19. Materials, design, and modeling for bipolar/end plates in polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Kumar, Atul

    New vehicle technologies are required to improve upon conventional internal combustion engine technologies. In this regard, the development of fuel cell (polymer electrolyte membrane type) vehicles with improved efficiency and reliability seems promising. However, some technical issues exist that hinder the commercialization of this technology. One such issue is the high cost, volume, and mass of the bipolar/end plates in the polymer electrolyte membrane fuel cell (PEMFC) stack. This research, therefore, focuses on materials, design, and modeling for bipolar/end plates in PEMFC stack. Alternative materials were tested that can replace the conventionally used graphite in the PEMFC stack. With regards to these, a two-cell PEMFC stack was fabricated with SS-316 multi-parallel flow-field (MPFF) designed bipolar/end plates. The stack was run for over 1000 hours and showed no appreciable drop in performance. To enhance the understanding and for determining the effect of operating parameters in PEMFC, a single cell model was developed. The model results agree well with the experimental data. The gas flow-field in bipolar/end plates of the PEMFC was optimized with respect to channel dimensions, channel shape, flow-field design, and flow-field permeability. It was seen that lower the flow-field permeability better is the fuel cell performance. Based on this, the concept of use of metal foams in the gas flow-field was proposed. Experiments were carried out to test the feasibility of metal foams in the gas flow-field of bipolar/end plates in PEMFC stack. Three different porous materials, viz. Ni-Cr metal foam (50 P PI, pores per inch), S S-316 metal foam (20 PPI), and carbon cloth were tested, and the results were compared to the conventional MPFF channel design concept. It was seen that the performance with Ni-Cr metal foam was highest, and decreased in the order of SS-316 metal foam, conventional MPFF design, and carbon cloth. This trend was explained based on the effective

  20. Modified carbon-free silver electrodes for the use as cathodes in lithium-air batteries with an aqueous alkaline electrolyte

    Science.gov (United States)

    Wittmaier, Dennis; Wagner, Norbert; Friedrich, K. Andreas; Amin, Hatem M. A.; Baltruschat, Helmut

    2014-11-01

    Gas diffusion electrodes with silver catalysts show a high activity towards oxygen reduction reaction in alkaline media but a rather poor activity towards oxygen evolution reaction. For the use in future lithium-air batteries with an aqueous alkaline electrolyte the activity of such electrodes must be improved significantly. As Co3O4 is a promising metal oxide catalyst for oxygen evolution in alkaline media, silver electrodes were modified with Co3O4. For comparison silver electrodes were also modified with IrO2. Due to the poor stability of carbon materials at high anodic potentials these gas diffusion electrodes were prepared without carbon support to improve especially the long-term stability. Gas diffusion electrodes were electrochemically investigated in an electrochemical half-cell arrangement. In addition to cyclic voltammograms electrochemical impedance spectroscopy (EIS) was carried out. SEM and XRD were used for the physical and morphological investigations. Investigations showed that silver electrodes containing 20 wt.% Co3O4 exhibited the highest performance and highest long-term stability. For comparison, rotating - ring - disc - electrode experiments have been performed using model electrodes with thin catalyst layers, showing that the amount of hydrogen peroxide evolved is negligible.

  1. LITHIUM ION CONDUCTING POLYMER ELECTROLYTES BASED ON ALTERNATING MALEIC ANHYDRIDE COPOLYMER WITH OLIGO-OXYETHYLENE SIDE CHAINS

    Institute of Scientific and Technical Information of China (English)

    DING Liming

    1996-01-01

    A comb polymer with oligo-oxyethylene side chains of the type -(CH2CH2O)12CH3 was prepared from methyl vinyl ether/maleic anhydride copolymer and poly (ethylene glycol) methyl ether. The polymer can dissolve LiClO4 salt to form homogeneous amorphous polymer electrolyte. The ac ion conduction was measured using the complex impedance method, and conductivities were investigated as functions of temperatures and salt concentration. The complexes were first found to have two classes of glass transition which increase with increasing salt content. The optimum conductivity attained at 25℃ is in the order of 5.50 × 10-6Scm-1. IR spectroscopy was used to study the cation-polymer interaction.

  2. Conductivity study and fourier transform infrared (FTIR) characterization of methyl cellulose solid polymer electrolyte with sodium iodide conducting ion

    International Nuclear Information System (INIS)

    Sodium ion (Na+) based solid polymer electrolyte (SPE) has been prepared using solution cast technique with distilled water as solvent and Methylcellulose (MC) as a polymer host. Methylcellulose polymer was chosen as the polymer host due to the abundance of lone pair electrons in the carbonyl and C-O-C constituents, which in turn provide multiple hopping sites for the Na+ conducting ions. Variable compositions of sodium iodide (NaI) salt were prepared to investigate the optimum MC-NaI weight ratio. Results from Electrical Impedance Spectroscopy (EIS) technique show that pure methylcellulose has a low conductivity of 3.61 × 10−11 S/cm.The conductivity increases as NaI content increases up to optimum NaIcomposition of 40 wt%, which yields an average conductivity of 2.70 × 10−5 S/cm

  3. A composite membrane based on a biocompatible cellulose as a host of gel polymer electrolyte for lithium ion batteries

    Science.gov (United States)

    Xiao, S. Y.; Yang, Y. Q.; Li, M. X.; Wang, F. X.; Chang, Z.; Wu, Y. P.; Liu, X.

    2014-12-01

    A composite polymer membrane is prepared by coating poly(vinylidene fluoride) (PVDF) on the surface of a membrane based on methyl cellulose (MC) which is environmentally friendly and cheap. Its characteristics are investigated by scanning electron microscopy, FT-IR, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The outer PVDF layers are porous which results in high electrolyte uptake and the lithium ion transference number is much larger than that of the pure MC. Moreover, the cell based on Li//LiFePO4 delivers high discharge capacity and good rate behavior in the range of 4.2-2.5 V when the composite membrane is used as the separator and the host of a gel polymer electrolyte, lithium as the counter and reference electrode, and LiFePO4 as cathode. The obtained results suggest that this unique composite membrane shows great attraction in the lithium ion batteries with high safety and low cost.

  4. SYNTHESIS, CHARACTERIZATION AND ION TRANSPORT PROPERTIES OF HOT-PRESSED SOLID POLYMER ELECTROLYTES (1-x) PEO:x KI

    Institute of Scientific and Technical Information of China (English)

    Angesh Chandra; Archana Chandra; K.Thakur

    2013-01-01

    Synthesis and ion transport properties of hot-pressed solid polymer electrolytes (SPEs),(1-x) PEO:x KI,where x is the content of KI in wt%,are reported.A hot-press technique has been used for the formation of the polymeric membranes in place of the usual solution cast method.The composition (80 PEO:20 KI) was identified as the highest conducting polymer electrolyte on the basis of compositional dependent conductivity studies of PEO:KI films.A conductivity enhancement of more than two orders of magnitude from that of the pure PEO was achieved.Materials characterization and ion transport mechanism were explained by using various experimental techniques.

  5. Prevention of the water flooding by micronizing the pore structure of gas diffusion layer for polymer electrolyte fuel cell

    Science.gov (United States)

    Hiramitsu, Yusuke; Sato, Hitoshi; Hori, Michio

    In polymer electrolyte fuel cells, high humidity must be established to maintain high proton conductivity in the polymer electrolyte. However, the water that is produced electrochemically at the cathode catalyst layer can condense in the cell and cause an obstruction to the diffusion of reaction gas in the gas diffusion layer and the gas channel. This leads to a sudden decrease of the cell voltage. To combat this, strict water management techniques are required, which usually focus on the gas diffusion layer. In this study, the use of specially treated carbon paper as a flood-proof gas diffusion layer under extremely high humidity conditions was investigated experimentally. The results indicated that flooding originates at the interface between the gas diffusion layer and the catalyst layer, and that such flooding could be eliminated by control of the pore size in the gas diffusion layer at this interface.

  6. Electroanalytical measurements without electrolytes: conducting polymers as probes for redox titration in non-conductive organic media.

    Science.gov (United States)

    Lange, Ulrich; Mirsky, Vladimir M

    2012-09-26

    Electroanalytical methods have been applied only in conducting media. An application of conducting polymers allows to overcome this limitation. If such material is in electrochemical equilibrium with dissolved redox active species, its electrical conductivity depends on the redox potential of these species. Therefore, conductometric measurements with conducting polymers can provide about the same information as classical redox electrodes. The approach was applied for redox titration. Equivalent points obtained by this titration in aqueous and organic electrolytes were identical. Then the approach was applied for determination of bromine number by redox titration in non-conducting organic phase.

  7. A Novel Micro-porous Polymer Electrolyte Comprising SnO_2 Nanorods and P(MMA-AN)

    Institute of Scientific and Technical Information of China (English)

    P.Zhang; H.P.Zhang; Z.H.Li; Y.P.Wu

    2007-01-01

    1 Results Micro-porous polymer electrolytes(MPEs), which almost obtained by the conventional methods of phase inversion process or immersion precipitation method, have significant advantages such as high ionic conductivity and excellent mechanical properties[1].In our work, micro-porous structure is obtained by adding SnO2 nanorods usually used as gas senor materials into the polymer matrix, which proves a new way to prepare MPEs.SnO2 nanorods were synthesized by microemulsion hydrothermal method[2]. Th...

  8. Novel configuration of poly(vinylidenedifluoride)-based gel polymer electrolyte for application in lithium-ion batteries

    Science.gov (United States)

    Fasciani, Chiara; Panero, Stefania; Hassoun, Jusef; Scrosati, Bruno

    2015-10-01

    Herein we propose a novel poly(vinylidene difluoride) (PVdF)-based gel polymer electrolyte (GPE) for application in lithium-ion batteries, LIBs. The GPE is prepared under air as a dry, flexible film and directly gelled during LIB assembly with a conventional liquid organic electrolyte. The dry-gel here originally reported maintains its structural integrity due to the presence of crystallized EC-solvent within its matrix that avoids structural collapse, as demonstrated by TGA analysis. By avoiding the use of controlled atmosphere, the GPE is easy to handle and suitable for roll-to-roll scaling-up, i.e. characteristics missed by the common gel membranes. Scanning Electron Microscopy (SEM) evidences a micrometric polymer network of the dry membrane precursor acting as the support matrix for the gelation. Electrochemical impedance spectroscopy (EIS) measurements and galvanostatic tests suggest a good stability of the lithium electrode/gel electrolyte interface and a satisfactory lithium transference number. Cycling tests of gel-electrolyte-based lithium half-cells using lithium iron phosphate (LiFePO4, LFP) and graphite (C), respectively, as counter electrodes, as well as of a full C/LFP lithium-ion battery confirm the suitability of the GPE developed in this work for application in stable, low cost and environmentally friendly energy storage systems.

  9. On-site production of electrolytic hydrogen for generator cooling

    Science.gov (United States)

    Mehta, B. R.

    Hydrogen produced by water electrolysis could be cost effective over the merchant hydrogen used for generator cooling. Advanced water electrolyzers are being developed specifically for this utility application. These designs are based on solid-polymer-electrolyte and alkaline water electrolysis technologies. This paper describes the status of electrolyzer development and demonstration projects.

  10. Zirconium dioxide nanofilled poly(vinylidene fluoride-hexafluoropropylene) complexed with lithium trifluoromethanesulfonate as composite polymer electrolyte for electrochromic devices

    Energy Technology Data Exchange (ETDEWEB)

    Puguan, John Marc C.; Chinnappan, Amutha [Department of Energy and Biotechnology, Energy and Environment Fusion Technology Center, Myongji University, Yongin, Gyeonggi-do 449-728 (Korea, Republic of); Kostjuk, Sergei V. [Research Institute for Physical Chemical Problems, Belarusian State University, Minsk 220030 (Belarus); Kim, Hern, E-mail: hernkim@mju.ac.kr [Department of Energy and Biotechnology, Energy and Environment Fusion Technology Center, Myongji University, Yongin, Gyeonggi-do 449-728 (Korea, Republic of)

    2015-09-15

    Highlights: • Successful synthesis of electrolyte by blending PVdF-HFP, ZrO{sub 2} and LiCF{sub 3}SO{sub 3}. • ZrO{sub 2} increased electrolyte conductivity by two orders of magnitude. • ZrO{sub 2} doubled bulk mechanical strength of electrolyte in terms of Young’s modulus. • Electrolytes gave a optimum optical transmittance of 52.6%. - Abstract: Poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) polymer electrolyte containing zirconium dioxide nanocrystals (ZrO{sub 2}-NC) and lithium trifluoromethanesulfonate (LiCF{sub 3}SO{sub 3}) has been synthesized using the conventional solution casting method. The addition of ZrO2-NC into the polymeric substrate gave remarkable properties in terms of the electrolyte’s ionic conductivity as well as its bulk mechanical strength. The enhanced amorphicity of the polymeric substrate due to ZrO{sub 2} and the nanofiller’s high dielectric constant make an excellent combination to increase the ionic conductivity (above 10{sup −4} S cm{sup −1}). Increasing the nanofiller content raises the ionic conductivity of the electrolyte by two orders of magnitude of which the optimum is 2.65 × 10{sup −4} S cm{sup −1} at 13.04 wt% ZrO{sub 2}-NC loading. Also, the Young’s modulus, an indicator of electrolyte’s mechanical stability, dramatically increased to 207 MPa upon loading 13.04 wt% ZrO{sub 2}-NC. Using UV–vis spectroscopy, the electrolytes with 13.04% ZrO{sub 2}-NC scanned from 200–800 nm wavelengths exhibited a maximum optical transmittance of 52.6% at 10 μm film thickness. The enhanced conductivity, high mechanical strength and reasonable optical transmittance shown by our composite polymer electrolyte make an excellent electrolyte for future energy saving smart windows such as electrochromic devices.

  11. Exceptional durability enhancement of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C

    DEFF Research Database (Denmark)

    Aili, David; Zhang, Jin; Jakobsen, Mark Tonny Dalsgaard;

    2016-01-01

    The incorporation of phosphotungstic acid functionalized mesoporous silica in phosphoric acid doped polybenzimidazole (PA/PBI) substantially enhances the durability of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C.......The incorporation of phosphotungstic acid functionalized mesoporous silica in phosphoric acid doped polybenzimidazole (PA/PBI) substantially enhances the durability of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C....

  12. Multilayer graphene for long-term corrosion protection of stainless steel bipolar plates for polymer electrolyte membrane fuel cell

    DEFF Research Database (Denmark)

    Stoot, Adam Carsten; Camilli, Luca; Spiegelhauer, Susie Ann;

    2015-01-01

    Abstract Motivated by similar investigations recently published (Pu et al., 2015), we report a comparative corrosion study of three sets of samples relevant as bipolar plates for polymer electrolyte fuel cells: stainless steel, stainless steel with a nickel seed layer (Ni/SS) and stainless steel...... graphene film is still intact with unchanged defect density. Our results show that even non-perfect multilayer graphene films can considerably increase the lifetime of future-generation bipolar plates for fuel cells....

  13. Interface-designed Membranes with Shape-controlled Patterns for High-performance Polymer Electrolyte Membrane Fuel Cells

    OpenAIRE

    Yukwon Jeon; Dong Jun Kim; Jong Kwan Koh; Yunseong Ji; Jong Hak Kim; Yong-Gun Shul

    2015-01-01

    Polymer electrolyte membrane fuel cell is a promising zero-emission power generator for stationary/automotive applications. However, key issues, such as performance and costs, are still remained for an economical commercialization. Here, we fabricated a high-performance membrane electrode assembly (MEA) using an interfacial design based on well-arrayed micro-patterned membranes including circles, squares and hexagons with different sizes, which are produced by a facile elastomeric mold method...

  14. Ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-02-01

    Full Text Available We have studied ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate. Differential scanning calorimetry and X-ray diffraction studies confirm minimum volume fraction of crystalline phase for the polymer electrolyte with 40 wt. % propylene carbonate. The ionic conductivity exhibits a maximum for the same composition. The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. Ion-ion interactions in the polymer electrolytes have been studied using Raman spectra and the concentrations of free ions, ion-pairs and ion-aggregates have been determined. The ionic conductivity increases due to the increase of free ions with the increase of propylene carbonate content. But for higher content of propylene carbonate, the ionic conductivity decreases due to the increase of concentrations of ion-pairs and ion-aggregates. To get further insights into the ion dynamics, the experimental data for the complex dielectric permittivity have been studied using Havriliak–Negami function. The variation of relaxation time with temperature obtained from this formalism follows Vogel-Tamman-Fulcher equation similar to the ionic conductivity.

  15. An Electrochemical NO₂ Sensor Based on Ionic Liquid: Influence of the Morphology of the Polymer Electrolyte on Sensor Sensitivity.

    Science.gov (United States)

    Kuberský, Petr; Altšmíd, Jakub; Hamáček, Aleš; Nešpůrek, Stanislav; Zmeškal, Oldřich

    2015-11-11

    A systematic study was carried out to investigate the effect of ionic liquid in solid polymer electrolyte (SPE) and its layer morphology on the characteristics of an electrochemical amperometric nitrogen dioxide sensor. Five different ionic liquids were immobilized into a solid polymer electrolyte and key sensor parameters (sensitivity, response/recovery times, hysteresis and limit of detection) were characterized. The study revealed that the sensor based on 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][N(Tf)2]) showed the best sensitivity, fast response/recovery times, and low sensor response hysteresis. The working electrode, deposited from water-based carbon nanotube ink, was prepared by aerosol-jet printing technology. It was observed that the thermal treatment and crystallinity of poly(vinylidene fluoride) (PVDF) in the solid polymer electrolyte influenced the sensitivity. Picture analysis of the morphology of the SPE layer based on [EMIM][N(Tf)2] ionic liquid treated under different conditions suggests that the sensor sensitivity strongly depends on the fractal dimension of PVDF spherical objects in SPE. Their deformation, e.g., due to crowding, leads to a decrease in sensor sensitivity.

  16. Control and experimental characterization of a methanol reformer for a 350 W high temperature polymer electrolyte membrane fuel cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Sahlin, Simon Lennart

    2013-01-01

    This work presents a control strategy for controlling the methanol reformer temperature of a 350 W high temperature polymer electrolyte membrane fuel cell system, by using a cascade control structure for reliable system operation. The primary states affecting the methanol catalyst bed temperature......% at the nominal reformer operating temperatures. As expected increasing temperatures also increase the dry gas CO content of the reformate gas and decreases the methanol slip. The hydrogen content of the gas was measured at around 73% with 25% CO2.......This work presents a control strategy for controlling the methanol reformer temperature of a 350 W high temperature polymer electrolyte membrane fuel cell system, by using a cascade control structure for reliable system operation. The primary states affecting the methanol catalyst bed temperature...... is the water and methanol mixture fuel flow and the burner fuel/air ratio and combined flow. An experimental setup is presented capable of testing the methanol reformer used in the Serenergy H3 350 Mobile Battery Charger; a high temperature polymer electrolyte membrane (HTPEM) fuel cell system...

  17. Electrochemical Performance of PEO10LiX-Li2TiO3 Composite Polymer Electrolytes

    Institute of Scientific and Technical Information of China (English)

    LU,Mi(路密); SHI,Peng-Fei(史鹏飞)

    2004-01-01

    The conductivities of polyethylene oxide (PEO)-based polymer electrolytes (PE) can be improved by the addition of inorganic inert powder. The composite polymer electrolytes (CPE) PEO10LiX (X= or )-Li2TiO3 were prepared by solution casting with inorganic solid electrolyte Li2TiO3 powder as a filler. Results showed that the conductivities of PEO10LiClO4-3wt% Li2TiO3 and PEO10LiN(CF3SO2)2-10wt% Li2TiO3 at 30 ℃ were 8.6×10-6 and 5.6×10-5 S·cm-1, respectively. The conductivities of CPE increased with the decrease of filler's particle size. The ionic conduction mechanism analysis showed that there may be three conduction routes in the CPE, i.e., PEO bulk, polymer-filler interface and Li2TiO3 crystal.

  18. Ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate

    International Nuclear Information System (INIS)

    We have studied ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate. Differential scanning calorimetry and X-ray diffraction studies confirm minimum volume fraction of crystalline phase for the polymer electrolyte with 40 wt. % propylene carbonate. The ionic conductivity exhibits a maximum for the same composition. The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. Ion-ion interactions in the polymer electrolytes have been studied using Raman spectra and the concentrations of free ions, ion-pairs and ion-aggregates have been determined. The ionic conductivity increases due to the increase of free ions with the increase of propylene carbonate content. But for higher content of propylene carbonate, the ionic conductivity decreases due to the increase of concentrations of ion-pairs and ion-aggregates. To get further insights into the ion dynamics, the experimental data for the complex dielectric permittivity have been studied using Havriliak–Negami function. The variation of relaxation time with temperature obtained from this formalism follows Vogel-Tamman-Fulcher equation similar to the ionic conductivity

  19. Composite PEOn:NaTFSI polymer electrolyte: Preparation, thermal and electrochemical characterization

    Science.gov (United States)

    Serra Moreno, J.; Armand, M.; Berman, M. B.; Greenbaum, S. G.; Scrosati, B.; Panero, S.

    2014-02-01

    Membranes of sodium bis(trifluoromethanesulfonate) imide (NaTFSI) complexed with poly(ethylene oxide) (PEO) salt have been prepared by a solvent-free hot-pressing technique with different EO:Na molar ratio. All membranes show good ionic conductivities in the range of 10-3 S cm-1 above 70 °C. However, the more NaTFSI-concentrated samples are sticky gums due to the plasticizing nature of the anion. The PEO20:NaTFSI sample exhibits the compromise of conductivity, thermal and mechanical properties. The addition of nanometric SiO2 to the PEO20:NaTFSI membranes further enhances their mechanical properties. Moreover, the PEO20:NaTFSI + 5 wt.% SiO2 membranes show similar ionic conductivity and similar anodic electrochemical stability in comparison to the ceramic free PEO20:NaTFSI sample. In a Na(s)/polymer electrolyte/Na(s) symmetrical cell followed up to 30 days, the presence of the ceramic filler slightly increased the interface resistance in comparison to the ceramic-free membrane. Nuclear magnetic resonance determinations of anion diffusion coefficients and Na+ mobility suggest that presence of filler may have a positive affect on the cation transference number that is in accordance with the tNa+ transference number measurement.

  20. Poly(1,2,3-triazolium)s: a new class of functional polymer electrolytes.

    Science.gov (United States)

    Obadia, Mona M; Drockenmuller, Eric

    2016-02-11

    Poly(ionic liquid)s (PILs) are a unique class of polyelectrolytes having properties suited for modern technological applications such as electrochemical devices (batteries, supercapacitors, light-emitting electrochemical cells), ion-gated field effect transistors, electrochromic devices, fuel cells, dye sensitized solar cells, catalysis, or soft robotics. Their structure and properties can be finely tuned by unlimited combinations issued from extended pools of cationic and anionic building blocks. In a constant quest for the development of solid polymer electrolytes with enhanced physical, mechanical and (electro)chemical properties, a new class of PILs based on 1,2,3-triazolium cations has been recently developed. Their preparation takes advantage of the beneficial features of the multiple combinations between the Click chemistry philosophy with macromolecular engineering techniques to afford tunable and highly functional ion conducting materials thus stretching out the actual boundaries of PILs macromolecular design. This feature article summarizes the different strategies developed so far for the synthesis of 1,2,3-triazolium-based PILs (TPILs) since their first introduction in 2013. PMID:26732341

  1. Ion pair formation and its effect in PEO:Mg solid polymer electrolyte system

    Science.gov (United States)

    Jaipal Reddy, M.; Chu, Peter P.

    In poly(ethylene oxide) (PEO) based solid polymer electrolytes, the interaction between cations and the ether oxygen plays a major role in ion conductivity. Measurements with differential scanning calorimetry (DSC) illustrated clearly the modification of the PEO crystalline structure with increasing content of magnesium salt. FTIR spectral studies suggest interaction of Mg 2+ cations with the ether oxygen of PEO, where a 1100 cm -1 broad band corresponds to COC stretching and severe deformation occurs. A spectral band at ˜623 cm -1 corresponds to the ClO 4- anion and shows the growth of a shoulder at a higher wave number with increasing salt content. The apparent new envelope at ˜634.5 cm -1 clearly indicates ClO 4--Mg 2+ ion pairing. Ionic conductivity increases with salt content, and is optimized at 15 wt.% Mg salt (O:Mg ratio 28:1). The decrease in ion conductivity at higher salt contents is due to ion-ion association, which leads to ion pair formation (i.e. aggregation of ionic salt) and retards the motion of ions.

  2. PVDF-Based Micro Inorganic Fillers-Containing Polymer Electrolyte Membranes

    Institute of Scientific and Technical Information of China (English)

    BAI Ying; WU Feng; WU Chuan

    2006-01-01

    Polymer electrolyte membranes based on poly (vinylidene fluoride-co-hexafluoropropylene) (PVDFHFP) with and without different types of micro inorganic fillers were prepared by phase-inversion process.Morphologies, porosities and electrochemical properties of the as-prepared membranes were investigated by means of scanning electronic microscopy (SEM), PC (propylene carbonate) uptake and alternating current(AC) impedance technique. Compared with other membranes, the membrane with micro SiO2 filler shows a dense morphology so that its PC uptake is the highest, namely, 339%. The membrane filled with micro TiO2exhibits good electrochemical performances: the ion conductivity is as high as 1.1 × 10-3 S/cm at 18 ℃,which can meet the demand of lithium ion batteries. Moreover, its initial charge-discharge efficiency exceeds89 %. The composite membranes with micro SiO2, TiO2 and A12O3 are more suitable for the utilization in lithium ion batteries due to better cycleability, whereas the battery assembled with the blank membrane containing no inorganic fillers encounters a short circuit after the 5th cycle.

  3. Heat and water transport in a polymer electrolyte fuel cell electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Partha P [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Borup, Rod L [Los Alamos National Laboratory; Ranjan, Devesh [TEXAS A& M UNIV

    2010-01-01

    In the present scenario of a global initiative toward a sustainable energy future, the polymer electrolyte fuel cell (PEFC) has emerged as one of the most promising alternative energy conversion devices for various applications. Despite tremendous progress in recent years, a pivotal performance limitation in the PEFC comes from liquid water transport and the resulting flooding phenomena. Liquid water blocks the open pore space in the electrode and the fibrous diffusion layer leading to hindered oxygen transport. The electrode is also the only component in the entire PEFC sandwich which produces waste heat from the electrochemical reaction. The cathode electrode, being the host to several competing transport mechanisms, plays a crucial role in the overall PEFC performance limitation. In this work, an electrode model is presented in order to elucidate the coupled heat and water transport mechanisms. Two scenarios are specifically considered: (1) conventional, Nafion{reg_sign} impregnated, three-phase electrode with the hydrated polymeric membrane phase as the conveyer of protons where local electro-neutrality prevails; and (2) ultra-thin, two-phase, nano-structured electrode without the presence of ionomeric phase where charge accumulation due to electro-statics in the vicinity of the membrane-CL interface becomes important. The electrode model includes a physical description of heat and water balance along with electrochemical performance analysis in order to study the influence of electro-statics/electro-migration and phase change on the PEFC electrode performance.

  4. CoPd x oxygen reduction electrocatalysts for polymer electrolyte membrane and direct methanol fuel cells

    International Nuclear Information System (INIS)

    The electrochemical activity of carbon-supported cobalt-palladium alloy electrocatalysts of various compositions have been investigated for the oxygen reduction reaction in a 5 cm2 single cell polymer electrolyte membrane fuel cell. The polarization experiments have been conducted at various temperatures between 30 and 60 deg. C and the reduction performance compared with data from a commercial Pt catalyst under identical conditions. Investigation of the catalytic activity of the CoPd x PEMFC system with varying composition reveals that a nominal cobalt-palladium atomic ratio of 1:3, CoPd3, exhibits the best performance of all studied catalysts, exhibiting a catalytic activity comparable to the commercial Pt catalyst. The ORR on CoPd3 has a low activation energy, 52 kJ/mol, and a Tafel slope of approximately 60 mV/decade, indicating that the rate-determining step is a chemical step following the first electron transfer step and may involve the breaking of the oxygen bond. The CoPd3 catalyst also exhibits excellent chemical stability, with the open circuit cell voltage decreasing by only 3% and the observed current decreasing by only 10% at 0.8 V over 25 h. The CoPd3 catalyst also exhibits superior tolerance to methanol crossover poisoning than Pt

  5. Rapid self-start of polymer electrolyte fuel cell stacks from subfreezing temperatures

    Science.gov (United States)

    Ahluwalia, R. K.; Wang, X.

    Polymer electrolyte fuel cell (PEFC) systems for light-duty vehicles must be able to start unassisted and rapidly from temperatures below -20 °C. Managing buildup of ice within the porous cathode catalyst and electrode structure is the key to self-starting a PEFC stack from subfreezing temperatures. The stack temperature must be raised above the melting point of ice before the ice completely covers the cathode catalyst and shuts down the electrochemical reaction. For rapid and robust self-start it is desirable to operate the stack near the short-circuit conditions. This mode of operation maximizes hydrogen utilization, favors production of waste heat that is absorbed by the stack, and delays complete loss of effective electrochemical surface area by causing a large fraction of the ice to form in the gas diffusion layer rather than in the cathode catalyst layer. Preheating the feed gases, using the power generated to electrically heat the stack, and operating pressures have only small effect on the ability to self-start or the startup time. In subfreezing weather, the stack shut-down protocol should include flowing ambient air through the hot cathode passages to vaporize liquid water remaining in the cathode catalyst. Self-start is faster and more robust if the bipolar plates are made from metal rather than graphite.

  6. Enhanced stability of multilayer graphene-supported catalysts for polymer electrolyte membrane fuel cell cathodes

    Science.gov (United States)

    Marinkas, A.; Hempelmann, R.; Heinzel, A.; Peinecke, V.; Radev, I.; Natter, H.

    2015-11-01

    One of the biggest challenges in the field of polymer electrolyte membrane fuel cells (PEMFC) is to enhance the lifetime and the long-term stability of PEMFC electrodes, especially of cathodes, furthermore, to reduce their platinum loading, which could lead to a cost reduction for efficient PEMFCs. These demands could be achieved with a new catalyst support architecture consisting of a composite of carbon structures with significant different morphologies. A highly porous cathode catalyst support layer is prepared by addition of various carbon types (carbon black particles, multi-walled carbon nanotubes (MWCNT)) to multilayer graphene (MLG). The reported optimized cathodes shows extremely high durability and similar performance to commercial standard cathodes but with 89% lower Pt loading. The accelerated aging protocol (AAP) on the membrane electrode assemblies (MEA) shows that the presence of MLG increases drastically the durability and the Pt-extended electrochemical surface area (ECSA). In fact, after the AAP slightly enhanced performance can be observed for the MLG-containing cathodes instead of a performance loss, which is typical for the commercial carbon-based cathodes. Furthermore, the presence of MLG drastically decreases the ECSA loss rate. The MLG-containing cathodes show up to 6.8 times higher mass-normalized Pt-extended ECSA compared to the commercial standard systems.

  7. Effect of catalyst layer defects on local membrane degradation in polymer electrolyte fuel cells

    Science.gov (United States)

    Tavassoli, Arash; Lim, Chan; Kolodziej, Joanna; Lauritzen, Michael; Knights, Shanna; Wang, G. Gary; Kjeang, Erik

    2016-08-01

    Aiming at durability issues of fuel cells, this research is dedicated to a novel experimental approach in the analysis of local membrane degradation phenomena in polymer electrolyte fuel cells, shedding light on the potential effects of manufacturing imperfections on this process. With a comprehensive review on historical failure analysis data from field operated fuel cells, local sources of iron oxide contaminants, catalyst layer cracks, and catalyst layer delamination are considered as potential candidates for initiating or accelerating the local membrane degradation phenomena. Customized membrane electrode assemblies with artificial defects are designed, fabricated, and subjected to membrane accelerated stress tests followed by extensive post-mortem analysis. The results reveal a significant accelerating effect of iron oxide contamination on the global chemical degradation of the membrane, but dismiss local traces of iron oxide as a potential stressor for local membrane degradation. Anode and cathode catalyst layer cracks are observed to have negligible impact on the membrane degradation phenomena. Notably however, distinct evidence is found that anode catalyst layer delamination can accelerate local membrane thinning, while cathode delamination has no apparent effect. Moreover, a substantial mitigating effect for platinum residuals on the site of delamination is observed.

  8. A New, Scalable and Low Cost Multi-Channel Monitoring System for Polymer Electrolyte Fuel Cells.

    Science.gov (United States)

    Calderón, Antonio José; González, Isaías; Calderón, Manuel; Segura, Francisca; Andújar, José Manuel

    2016-01-01

    In this work a new, scalable and low cost multi-channel monitoring system for Polymer Electrolyte Fuel Cells (PEFCs) has been designed, constructed and experimentally validated. This developed monitoring system performs non-intrusive voltage measurement of each individual cell of a PEFC stack and it is scalable, in the sense that it is capable to carry out measurements in stacks from 1 to 120 cells (from watts to kilowatts). The developed system comprises two main subsystems: hardware devoted to data acquisition (DAQ) and software devoted to real-time monitoring. The DAQ subsystem is based on the low-cost open-source platform Arduino and the real-time monitoring subsystem has been developed using the high-level graphical language NI LabVIEW. Such integration can be considered a novelty in scientific literature for PEFC monitoring systems. An original amplifying and multiplexing board has been designed to increase the Arduino input port availability. Data storage and real-time monitoring have been performed with an easy-to-use interface. Graphical and numerical visualization allows a continuous tracking of cell voltage. Scalability, flexibility, easy-to-use, versatility and low cost are the main features of the proposed approach. The system is described and experimental results are presented. These results demonstrate its suitability to monitor the voltage in a PEFC at cell level. PMID:27005630

  9. Development of electrically conductive DLC coated stainless steel separators for polymer electrolyte membrane fuel cell

    International Nuclear Information System (INIS)

    Polymer electrolyte fuel cell (PEFC) as one of generation devices of electrical power is rapidly expanding the market as clean energy instead of petroleum and atomic energy. Residential fuel cell goes into quantity production and introduction of fuel cell for use in automobiles starts in the year 2015 in Japan. Critical subject for making fuel cell expand is how to reduce cost of fuel cell. In this paper we describe about separator plate which domains large ratio of cost in fuel cell stack. In present time, carbon is used in material of residential fuel cell separator. Metal separators are developed in fuel cell for use in automobiles because of need of mechanical strength at first. In order to make fuel cell expand in market, further cost reduction is required. But the metal separator has problem that by using metal separator contact resistance occurred by metal corrosion increases and catalyst layer and membrane degrade. In recent time we found out to protect from corrosion and dissolution of metals by coating the film of porous free conductive DLC with plasma ion implantation and deposition technology that we have developed. Film of electrically conductive DLC was formed with high speed of 13 μm/hr by ICP plasma, and coating cost breakout was performed.

  10. Development of a polymer electrolyte membrane fuel cell stack for an underwater vehicle

    Science.gov (United States)

    Han, In-Su; Kho, Back-Kyun; Cho, Sungbaek

    2016-02-01

    This paper presents a polymer electrolyte membrane (PEM) fuel cell stack that is specifically designed for the propulsion of an underwater vehicle (UV). The stack for a UV must be continuously operated in a closed space using hydrogen and pure oxygen; it should meet various performance requirements such as high hydrogen and oxygen utilizations, low hydrogen and oxygen consumptions, a high ramp-up rate, and a long lifetime. To this end, a cascade-type stack design is employed and the cell components, including the membrane electrode assembly and bipolar plate, are evaluated using long-term performance tests. The feasibility of a fabricated 4-kW-class stack was confirmed through various performance evaluations. The proposed cascade-type stack exhibited a high efficiency of 65% and high hydrogen and oxygen utilizations of 99.89% and 99.68%, respectively, resulting in significantly lesser purge-gas emissions to the outside of the stack. The load-following test was successfully performed at a high ramp-up rate. The lifetime of the stack was confirmed by a 3500-h performance test, from which the degradation rate of the cell voltage was obtained. The advantages of the cascade-type stack were also confirmed by comparing its performance with that of a single-stage stack operating in dead-end mode.

  11. Cross-linking of Ordered Pluronic/Ionic Liquid Blends for Solid Polymer Electrolytes

    Science.gov (United States)

    Miranda, Daniel; Versek, Craig; Tuominen, Mark; Watkins, James; Russell, Thomas

    2012-02-01

    Ion gels were fabricated by cross-linking PPO-PEO-PPO triblock copolymers swollen in a room temperature ionic liquid (IL). The copolymers are modified by esterification to replace the terminal hydroxyl endgroups with methacrylate endgroups. This allows the copolymer/IL blends to be cross-linked by a UV cure, forming a gel. The strong interaction of the IL with the PEO block suppresses PEO crystallization which is necessary for good ion conduction. In addition, the interaction between the IL and PEO is strongly selective for PEO, strengthening microphase separation. Despite this, the low molecular weight copolymers remain disordered in the melt even when blended with the IL. However, high molecular weight copolymers are capable of microphase separating into highly ordered block copolymer morphologies. This difference allows the effect of microphase separation on ion transport to be studied. The effect of block copolymer composition is also studied, by varying the PEO fraction of the copolymer. The resultant gels show high ionic conductivity and solid-like behavior, indicating that these materials may be effective as solid polymer electrolytes.

  12. Adsorption behavior of low concentration carbon monoxide on polymer electrolyte fuel cell anodes for automotive applications

    Science.gov (United States)

    Matsuda, Yoshiyuki; Shimizu, Takahiro; Mitsushima, Shigenori

    2016-06-01

    The adsorption behavior of CO on the anode around the concentration of 0.2 ppm allowed by ISO 14687-2 is investigated in polymer electrolyte fuel cells (PEFCs). CO and CO2 concentrations in the anode exhaust are measured during the operation of a JARI standard single cell at 60 °C cell temperature and 1000 mA cm-2 current density. CO coverage is estimated from the gas analysis and CO stripping voltammetry. The cell voltage decrease as a result of 0.2 ppm CO is 29 mV and the CO coverage is 0.6 at the steady state with 0.11 mg cm-2 of anode platinum loading. The CO coverage as a function of CO concentration approximately follows a Temkin-type isotherm. Oxygen permeated to the anode through a membrane is also measured during fuel cell operation. The exhaust velocity of oxygen from the anode was shown to be much higher than the CO supply velocity. Permeated oxygen should play an important role in CO oxidation under low CO concentration conditions.

  13. Making the hydrogen evolution reaction in polymer electrolyte membrane electrolysers even faster

    Science.gov (United States)

    Tymoczko, Jakub; Calle-Vallejo, Federico; Schuhmann, Wolfgang; Bandarenka, Aliaksandr S.

    2016-03-01

    Although the hydrogen evolution reaction (HER) is one of the fastest electrocatalytic reactions, modern polymer electrolyte membrane (PEM) electrolysers require larger platinum loadings (~0.5-1.0 mg cm-2) than those in PEM fuel cell anodes and cathodes altogether (~0.5 mg cm-2). Thus, catalyst optimization would help in substantially reducing the costs for hydrogen production using this technology. Here we show that the activity of platinum(111) electrodes towards HER is significantly enhanced with just monolayer amounts of copper. Positioning copper atoms into the subsurface layer of platinum weakens the surface binding of adsorbed H-intermediates and provides a twofold activity increase, surpassing the highest specific HER activities reported for acidic media under similar conditions, to the best of our knowledge. These improvements are rationalized using a simple model based on structure-sensitive hydrogen adsorption at platinum and copper-modified platinum surfaces. This model also solves a long-lasting puzzle in electrocatalysis, namely why polycrystalline platinum electrodes are more active than platinum(111) for the HER.

  14. Determination of the interaction using FTIR within the composite gel polymer electrolyte

    Science.gov (United States)

    Huang, Yun; Ma, Xiaoyan; Wang, Xu; Liang, Xiao

    2013-01-01

    In the previous research, the gel polymer electrolyte (GPE) which consisted of poly(methyl methacrylate) (PMMA) matrix, propylene carbonate (PC), LiClO4 and OREC (Rectorite modified with dodecyl benzyl dimethyl ammonium chloride), achieved satisfactory properties. In the paper, the interaction between components was quantitatively determined. Characterization of interaction of Cdbnd O in PC and PMMA with Li+ and OH group on OREC surface has been thoroughly examined using FTIR, respectively. The quantitative analysis of FTIR shows that the absorptivity coefficient a of PMMA/LiClO4, PC/LiClO4, PC/OREC and PMMA/OREC is 0.902, 0.113, 0.430 and 0.753, respectively, which means that the Li+ or OH bonded Cdbnd O is more sensitive than the free Cdbnd O in FTIR spectra. The limit value of bonded Cdbnd O equivalent fraction of PMMA/LiClO4, PC/LiClO4, PC/OREC and PMMA/OREC is 17%, 94%, 57% and 20%, respectively, which implies that all the interaction within the components is reversible and the intensity of interaction is ordered as PC/LiClO4, PC/OREC, PMMA/OREC and PMMA/LiClO4.

  15. Robust DC/DC converter control for polymer electrolyte membrane fuel cell application

    Science.gov (United States)

    Wang, Ya-Xiong; Yu, Duck-Hyun; Chen, Shi-An; Kim, Young-Bae

    2014-09-01

    This study investigates a robust controller in regulating the pulse width modulation (PWM) of a DC/DC converter for a polymer electrolyte membrane fuel cell (PEMFC) application. A significant variation in the output voltage of a PEMFC depends on the power requirement and prevents a PEMFC from directly connecting to a subsequent power bus. DC/DC converters are utilized to step-up or step-down voltage to match the subsequent power bus voltage. In this study, a full dynamic model, which includes a PEMFC and boost and buck DC/DC converters, is developed under MATLAB/Simulink environment for control. A robust PWM duty ratio control for the converters is designed using time delay control (TDC). This control enables state variables to accurately follow the dynamics of a reference model using time-delayed information of plant input and output information within a few sampling periods. To prove the superiority of the TDC performance, traditional proportional-integral control (PIC) and model predictive control (MPC) are designed and implemented, and the simulation results are compared. The efficacies of TDC for the PEMFC-fed PWM DC/DC converters are validated through experimental test results using a 100 W PEMFC as well as boost and buck DC/DC converters.

  16. Numerical evaluation of crack growth in polymer electrolyte fuel cell membranes based on plastically dissipated energy

    Science.gov (United States)

    Ding, Guoliang; Santare, Michael H.; Karlsson, Anette M.; Kusoglu, Ahmet

    2016-06-01

    Understanding the mechanisms of growth of defects in polymer electrolyte membrane (PEM) fuel cells is essential for improving cell longevity. Characterizing the crack growth in PEM fuel cell membrane under relative humidity (RH) cycling is an important step towards establishing strategies essential for developing more durable membrane electrode assemblies (MEA). In this study, a crack propagation criterion based on plastically dissipated energy is investigated numerically. The accumulation of plastically dissipated energy under cyclical RH loading ahead of the crack tip is calculated and compared to a critical value, presumed to be a material parameter. Once the accumulation reaches the critical value, the crack propagates via a node release algorithm. From the literature, it is well established experimentally that membranes reinforced with expanded polytetrafluoroethylene (ePTFE) reinforced perfluorosulfonic acid (PFSA) have better durability than unreinforced membranes, and through-thickness cracks are generally found under the flow channel regions but not land regions in unreinforced PFSA membranes. We show that the proposed plastically dissipated energy criterion captures these experimental observations and provides a framework for investigating failure mechanisms in ionomer membranes subjected to similar environmental loads.

  17. Radiation-Grafted Polymer Electrolyte Membranes for Water Electrolysis Cells: Evaluation of Key Membrane Properties.

    Science.gov (United States)

    Albert, Albert; Barnett, Alejandro O; Thomassen, Magnus S; Schmidt, Thomas J; Gubler, Lorenz

    2015-10-14

    Radiation-grafted membranes can be considered an alternative to perfluorosulfonic acid (PFSA) membranes, such as Nafion, in a solid polymer electrolyte electrolyzer. Styrene, acrylonitrile, and 1,3-diisopropenylbenzene monomers are cografted into preirradiated 50 μm ethylene tetrafluoroethylene (ETFE) base film, followed by sulfonation to introduce proton exchange sites to the obtained grafted films. The incorporation of grafts throughout the thickness is demonstrated by scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analysis of the membrane cross-sections. The membranes are analyzed in terms of grafting kinetics, ion-exchange capacity (IEC), and water uptake. The key properties of radiation-grafted membranes and Nafion, such as gas crossover, area resistance, and mechanical properties, are evaluated and compared. The plot of hydrogen crossover versus area resistance of the membranes results in a property map that indicates the target areas for membrane development for electrolyzer applications. Tensile tests are performed to assess the mechanical properties of the membranes. Finally, these three properties are combined to establish a figure of merit, which indicates that radiation-grafted membranes obtained in the present study are promising candidates with properties superior to those of Nafion membranes. A water electrolysis cell test is performed as proof of principle, including a comparison to a commercial membrane electrode assembly (MEA). PMID:26393461

  18. Effects of operating conditions on performance of high-temperature polymer electrolyte water electrolyzer

    Science.gov (United States)

    Li, Hua; Inada, Akiko; Fujigaya, Tsuyohiko; Nakajima, Hironori; Sasaki, Kazunari; Ito, Kohei

    2016-06-01

    Effects of operating conditions of a high-temperature polymer electrolyte water electrolyzer (HT-PEWE) on the electrolysis voltage are evaluated, and the optimal conditions for a high performance are revealed. A HT-PEWE unit cell with a 4-cm2 electrode consisting of Nafion117-based catalyst-coated membrane with IrO2 and Pt/C as the oxygen and hydrogen evolution catalysts is fabricated, and its electrolysis voltage and high-frequency resistance are assessed. The cell temperature and pressure are controlled at 80-130 °C and 0.1-0.5 MPa, respectively. It is observed that increasing the temperature at a constant pressure of 0.1 MPa does not increase the ohmic overvoltage of the cell; however, it does increase the concentration overvoltage. It is also found that the increase in the overvoltage resulting from the rise in the temperature can be suppressed by elevating the pressure. When operating the cell at a temperature of 100 °C, pressure greater than 0.1 MPa suppresses the overvoltage, and so does pressures greater than 0.3 MPa at 130 °C. This behavior suggests that keeping the water in a liquid water phase by increasing the pressure is critical for operating PEWEs at high temperatures.

  19. Electrochemical performance and stability of thin film electrodes with metal oxides in polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wesselmark, M., E-mail: maria.wesselmark@ket.kth.s [Applied Electrochemistry, School of Chemistry and Chemical Engineering, KTH, SE-100 44 Stockholm (Sweden); Wickman, B. [Competence Centre for Catalysis, Department of Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Lagergren, C.; Lindbergh, G. [Applied Electrochemistry, School of Chemistry and Chemical Engineering, KTH, SE-100 44 Stockholm (Sweden)

    2010-11-01

    Thin film electrodes are prepared by thermal evaporation of nanometer thick layers of metal oxide and platinum on a gas diffusion layer (GDL), in order to evaluate different metal oxides' impact on the activity and stability of the platinum cathode catalyst in the polymer electrolyte fuel cell. Platinum deposited on tin, tantalum, titanium, tungsten and zirconium oxide is investigated and the morphology and chemistry of the catalysts are examined with scanning electron microscopy and X-ray photoelectron spectroscopy. Cyclic sweeps in oxygen and nitrogen are performed prior and after potential cycling degradation tests. Platinum seems to disperse better on the metal oxides than on the GDL and increased electrochemically active surface area (ECSA) of platinum is observed on tin, titanium and tungsten oxide. A thicker layer metal oxide results in a higher ECSA. Platinum deposited on tungsten performs better than sole platinum in the polarisation curves and displays higher Tafel slopes at higher current densities than all other samples. The stability does also seem to be improved by the addition of tungsten oxide, electrodes with 3 nm platinum on 3, 10 and 20 nm tungsten oxide, performs better than all other electrodes after the accelerated degradation tests.

  20. ANALYSIS OF EXCESSIVE HEATING ON THE THERMAL AND ELECTRICAL RESISTANCE OF A POLYMER ELECTROLYTE

    Directory of Open Access Journals (Sweden)

    R. Atan

    2012-06-01

    Full Text Available The performance on a polymer electrolyte membrane (PEM fuel cell is evaluated based on the relationship of thermal and electrical resistances to its electrical and thermal power output. An analytical method by which the electrical resistance is evaluated based on the polarisation curve and the thermal resistance from the mass balance, was applied to a 72-cell PEM fuel cell assembly. In order to evaluate the effect of resistances at elevated stack temperatures, the cooling system was operated at half of its maximum cooling effectiveness. The increase in current and resistance due to a unit change in temperature at a particular density was evaluated and it was found that the stack has a ratio of thermal resistance rise to current rise of 1.7, or equal to 0.00584 A/W of current increase per stack heat increase. These values suggest that the internal resistance of the stack components, most probably the electrode assemblies, are very high, which should be addressed in order to obtain lower resistances to current flow.

  1. Investigation of degradation effects in polymer electrolyte fuel cells under automotive-related operating conditions

    Science.gov (United States)

    Enz, S.; Dao, T. A.; Messerschmidt, M.; Scholta, J.

    2015-01-01

    The influence of artificial starvation effects during automotive-related operating conditions is investigated within a polymer electrolyte fuel cell (PEFC) using non-dispersive infrared sensors and a current scan shunt. Driving cycles (DC) and single load change experiments are performed with specific fuel and oxidant starvation conditions. Within the DC experiments, a maximal CO2 amount of 4.67 μmol per cycle is detected in the cathode and 0.97 μmol per cycle in the anode exhaust without reaching fuel starvation conditions during the DC. Massive cell reversal conditions occur within the single load change experiments as a result of anodic fuel starvation. As soon as a fuel starvation appears, the emitted CO2 increases exponentially in the anode and cathode exhaust. A maximal CO2 amount of 143.8 μmol CO2 on the anode side and 5.8 μmol CO2 on the cathode side is detected in the exhaust gases. The critical cell reversal conditions only occur by using hydrogen reformate as anode reactant. The influence of the starvation effects on the PEFC performance is investigated via polarization curves, cyclic and linear sweep voltammetry as well as electrochemical impedance spectroscopy. The PEFC performance is reduced by 47% as a consequence of the dynamic operation.

  2. Effect of fuel utilization on the carbon monoxide poisoning dynamics of Polymer Electrolyte Membrane Fuel Cells

    Science.gov (United States)

    Pérez, Luis C.; Koski, Pauli; Ihonen, Jari; Sousa, José M.; Mendes, Adélio

    2014-07-01

    The effect of fuel utilization on the poisoning dynamics by carbon monoxide (CO) is studied for future automotive conditions of Polymer Electrolyte Membrane Fuel Cells (PEMFC). Three fuel utilizations are used, 70%, 40% and 25%. CO is fed in a constant concentration mode of 1 ppm and in a constant molar flow rate mode (CO concentrations between 0.18 and 0.57 ppm). The concentrations are estimated on a dry gas basis. The CO concentration of the anode exhaust gas is analyzed using gas chromatography. CO is detected in the anode exhaust gas almost immediately after it is added to the inlet gas. Moreover, the CO concentration of the anode exhaust gas increases with the fuel utilization for both CO feed modes. It is demonstrated that the lower the fuel utilization, the higher the molar flow rate of CO at the anode outlet at early stages of the CO poisoning. These results suggest that the effect of CO in PEMFC systems with anode gas recirculation is determined by the dynamics of its accumulation in the recirculation loop. Consequently, accurate quantification of impurities limits in current fuel specification (ISO 14687-2:2012) should be determined using anode gas recirculation.

  3. An analysis of degradation phenomena in polymer electrolyte membrane water electrolysis

    Science.gov (United States)

    Rakousky, Christoph; Reimer, Uwe; Wippermann, Klaus; Carmo, Marcelo; Lueke, Wiebke; Stolten, Detlef

    2016-09-01

    The durability of a polymer electrolyte membrane (PEM) water electrolysis single cell, assembled with regular porous transport layers (PTLs) is investigated for just over 1000 h. We observe a significant degradation rate of 194 μV h-1 and conclude that 78% of the detectable degradation can be explained by an increase in ohmic resistance, arising from the anodic Ti-PTL. Analysis of the polarization curves also indicates a decrease in the anodic exchange current density, j0, that results from the over-time contamination of the anode with Ti species. Furthermore, the average Pt-cathode particle size increases during the test, but we do not believe this phenomenon makes a significant contribution to increased cell voltages. To validate the anode Ti-PTL as a crucial source of increasing resistance, a second cell is assembled using Pt-coated Ti-PTLs. This yields a substantially reduced degradation rate of only 12 μV h-1, indicating that a non-corroding anode PTL is vital for PEM electrolyzers. It is our hope that forthcoming tailored PTLs will not only contribute to fast progress on cost-efficient stacks, but also to its long-term application of PEM electrolyzers involved in industrial processes.

  4. Effect of PVC on ionic conductivity, crystallographic structural, morphological and thermal characterizations in PMMA-PVC blend-based polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, S., E-mail: rameshtsubra@gmail.com [Centre for Ionics University Malaya, Department of Physics, Faculty of Science, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Liew, Chiam-Wen; Morris, Ezra; Durairaj, R. [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Setapak, 53300 Kuala Lumpur (Malaysia)

    2010-11-20

    In this paper, temperature dependence of ionic conductivity, crystallographic structural, morphological and thermal characteristics of polymer blends of PMMA and PVC with lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) as a dopant salt are investigated. The study on the temperature dependence of ionic conductivity shows that these polymer blends exhibit Arrhenius behavior. The highest ionic conductivity was achieved when 70 wt% of PMMA was blended with 30 wt% of PVC. X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal the amorphous nature and surface morphology of polymer electrolytes, respectively. In DSC analysis it was found that the glass transition temperature (T{sub g}) and melting temperature (T{sub m}) decreased, whereas the decomposition temperature (T{sub d}) increased. In contrast, the shift towards higher decomposition temperature and decrease in weight loss of polymer electrolytes, in TGA studies, indicates that the thermal stability of polymer electrolytes improved.

  5. Conducting polymer-based counter electrode for a quantum-dot-sensitized solar cell (QDSSC) with a polysulfide electrolyte

    International Nuclear Information System (INIS)

    Highlights: ► This is the first report on the use of conducting polymers as counter electrode catalysts for quantum-dot-sensitized solar cells (QDSSCs). ► Conducting polymer materials, i.e., polythiophene (PT), polypyrrole (PPy), and poly(3,4-ethylenedioxythiophene) (PEDOT) were used to prepare counter electrodes for QDSSCs. ► The influences of morphology of the PEDOT-based counter electrode (CE) on the performance of its QDSSC were studied. ► PEDOT electrode exhibits well electrocatalytic activity and stability in the polysulfide electrolyte. ► The efficiency for the QDSSC with PEDOT-CE (1.35%) is comparable to that of the cell with sputtered-Au CE (1.33%). - Abstract: Conducting polymer materials, i.e., polythiophene (PT), polypyrrole (PPy), and poly(3,4-ethylenedioxythiophene) (PEDOT) were used to prepare counter electrodes (CEs) for quantum-dot-sensitized solar cells (QDSSCs). The QDSSC with PEDOT-CE exhibited the highest solar-to-electricity conversion efficiency (η) of 1.35%, which is remarkably higher than those of the cells with PT-CE (0.09%) and PPy-CE (0.41%) and very slightly higher than that of the cell with sputtered-gold-CE (1.33%). Electrochemical impedance spectra (EIS) show that this highest conversion efficiency of the PEDOT-based cell is due to higher electrocatalytic activity and reduced charge transfer resistance at the interface of the CE and the electrolyte, compared to those in the case of the cells with other conducting polymers and bare Au. Furthermore, the influences of morphology of the PEDOT film and the charge passed for its electropolymerization on the performance of its QDSSC were also studied. The higher porosity and surface roughness of the PEDOT matrix, with reference to those of other polymers are understood to be the reason for PEDOT to possess higher electrocatalytic activity at its interface with electrolyte.

  6. Dye-sensitized solar cell with poly(acrylic acid-co-acrylonitrile)-based gel polymer electrolyte

    International Nuclear Information System (INIS)

    Highlights: ► A nontoxic, easily synthesized poly(acrylic acid-co-acrylonitrile) showed suitable transmittance for dye-sensitized solar cell. ► A cell with relatively large active area fabricated with this polymer material showed acceptable efficiency. ► The gel polymer matrix affected the charge recombination, I3− diffusion, double layer capacitance, and electron lifetime in the cell. - Abstract: A non-conducting, nontoxic poly(acrylic acid-co-acrylonitrile) (PAA) was prepared and used as a supporting matrix for the electrolyte of dye-sensitized solar cells (DSSCs). DSSCs of active area 0.80 cm × 1.10 cm fabricated with PAA, 0.5 M LiI, 0.05 M I2, 0.5 M 3-tert-butylpyridine, and 0.1 M 1-methyl-3-propylimidazolium iodide in 3-methoxypropionitrile solvent showed an average solar energy conversion efficiency of 1.61% under simulated sunlight illumination of 100 mW cm−2, AM 1.5. The effects of the gel polymer matrix on the electrochemical properties of DSSCs were studied using the electrochemical impedance spectroscopy. Relative to the non-gel reference cells, the results showed a decrease in charge recombination, ionic diffusion, and double layer capacitance and an increase in electron lifetime. These results could play an important role in determining the future direction for the development of high-performance gel polymer electrolytes.

  7. High performance of transferring lithium ion for polyacrylonitrile-interpenetrating crosslinked polyoxyethylene network as gel polymer electrolyte.

    Science.gov (United States)

    Kuo, Ping-Lin; Wu, Ching-An; Lu, Chung-Yu; Tsao, Chin-Hao; Hsu, Chun-Han; Hou, Sheng-Shu

    2014-03-12

    A polyacrylonitrile (PAN)-interpenetrating cross-linked polyoxyethylene (PEO) network (named XANE) was synthesized acting as separator and as gel polymer electrolytes simultaneously. SEM images show that the surface of the XANE membrane is nonporous, comparing to the surface of the commercial separator to be porous. This property results in excellent electrolyte uptake amount (425 wt %), and electrolyte retention for XANE membrane, significantly higher than that of commercial separator (200 wt %). The DSC result indicates that the PEO crystallinity is deteriorated by the cross-linked process and was further degraded by the interpenetration of the PAN. The XANE membrane shows significantly higher ionic conductivity (1.06-8.21 mS cm(-1)) than that of the commercial Celgard M824 separator (0.45-0.90 mS cm(-1)) ascribed to the high electrolyte retention ability of XANE (from TGA), the deteriorated PEO crystallinity (from DSC) and the good compatibility between XANE and electrode (from measuring the interfacial-resistance). For battery application, under all charge/discharge rates (from 0.1 to 3 C), the specific half-cell capacities of the cell composed of the XANE membrane are all higher than those of the aforementioned commercial separator. More specifically, the cell composed of the XANE membrane has excellent cycling stability, that is, the half-cell composed of the XANE membrane still exhibited more than 97% columbic efficiency after 100 cycles at 1 C. The above-mentioned advantageous properties and performances of the XANE membrane allow it to act as both an ionic conductor as well as a separator, so as to work as separator-free gel polymer electrolytes. PMID:24521309

  8. Preparation and characterization of novel solid polymer blend electrolytes based on poly (vinyl pyrrolidone) with various concentrations of lithium perchlorate

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • The maximum ionic conductivity value was found to be 0.2307 × 10−5 S cm−1 for PEO(90 wt%)/PVP(10 wt%)/LiClO4(8 wt%) based electrolyte at room temperature. • The structural and functional groups were studied by XRD and FTIR. • Both direct and indirect optical band gap values were evaluated from UV–vis analysis. • The change in viscosity of the polymer electrolytes was studied by photoluminescence spectra. - Abstract: A series of conducting novel solid polymer blend electrolytes (SPE) based on the fixed ratio of poly (ethylene oxide)/poly (vinyl pyrrolidone) (PEO/PVP) and various concentrations of salt lithium perchlorate (LiClO4) were prepared by solvent casting technique. Structural and complex formation of the prepared electrolytes was confirmed by X-ray diffraction and FTIR analyses. The maximum ionic conductivity value was found to be 0.2307 × 10−5 S cm−1 for 8 wt% of LiClO4 based system at ambient temperature. Thermal stability of the present system was studied by thermo gravimetric/differential thermal analysis (TG/DTA). Surface morphology of the sample having maximum ionic conductivity was studied by atomic force microscope (AFM). Optical properties like direct and indirect band gaps were investigated by UV–vis analysis. The change in viscosity of the polymer complexes were also identified using photoluminescence emission spectra. PEO(90)/PVP(10)/LiClO4(8) has the highest conductivity which is supported by the lowest optical band gap and lowest intensity in photoluminescence spectroscopy near 400–450 nm

  9. Performance of polymer electrolyte based on chitosan blended with poly(ethylene oxide) for plasmonic dye-sensitized solar cell

    Science.gov (United States)

    Buraidah, M. H.; Teo, L. P.; Au Yong, C. M.; Shah, Shahan; Arof, A. K.

    2016-07-01

    Chitosan and poly(ethylene oxide) powders have been mixed in different weight ratios. To each mixture, a fixed amount of ammonium iodide has been added. All mixtures have been dissolved in 1% acetic acid solution to form polymer blend electrolyte films by the solution cast technique. X-ray diffraction indicates that the polymer blend electrolytes are amorphous. Fourier transform infrared spectroscopy shows shifting of the amine, carboxamide and Csbnd Osbnd C bands to lower wavenumbers indicating the occurrence of complexation. Electrochemical impedance spectroscopy has been used to study the electrical properties of the samples. The ionic conductivity for 55 wt.% chitosan-45 wt.% NH4I electrolyte system is 3.73 × 10-7 S cm-1 at room temperature and is increased to 3.66 × 10-6 S cm-1 for the blended film (16.5 wt.% chitosan-38.5 wt.% PEO)-45 wt.% NH4I film. Dye-sensitized solar cells (DSSCs) have been fabricated by sandwiching the polymer electrolyte between the TiO2/dye photoelectrode and Pt counter electrode. DSSCs fabricated exhibits short-circuit current density (Jsc) of 2.71 mA cm-2, open circuit voltage (Voc) of 0.58 V and efficiency of 0.78% with configuration ITO/TiO2/N3 dye/(16.5 wt.% chitosan-38.5 wt.% PEO)-45 wt.% NH4I(+I2)/Pt/ITO and Jsc of 2.84 mA cm-2, Voc of 0.58 V and efficiency of 1.13% with configuration ITO/TiO2 + Ag nanoparticles/N3 dye/(16.5 wt.% chitosan-38.5 wt.% PEO)-45 wt.% NH4I(+I2)/Pt/ITO.

  10. Ionic relaxation in PEO/PVDF-HFP-LiClO4 blend polymer electrolytes: dependence on salt concentration

    Science.gov (United States)

    Das, S.; Ghosh, A.

    2016-06-01

    In this paper, we have studied the effect of LiClO4 salt concentration on the ionic conduction and relaxation in poly ethylene oxide (PEO) and poly (vinylidene fluoride hexafluoropropylene) (PVDF-HFP) blend polymer electrolytes, in which the molar ratio of ethylene oxide segments to lithium ions (R  =  EO: Li) has been varied between 3 and 35. We have observed two phases in the samples containing low salt concentrations (R  >  9) and single phase in the samples containing high salt concentrations (R  ⩽  9). The scanning electron microscopic images indicate that there exists no phase separation in the blend polymer electrolytes. The temperature dependence of the ionic conductivity shows two slopes corresponding to high and low temperatures and follows Arrhenius relation for the samples containing low salt concentrations (R  >  9). The conductivity relaxation as well as the structural relaxation has been clearly observed at around 104 Hz and 106 Hz for these concentrations of the blended electrolytes. However, a single conductivity relaxation peak has been observed for the compositions with R  ⩽  9. The scaling of the conductivity spectra shows that the relaxation mechanism is independent of temperature, but depends on salt concentration.

  11. The influence of Ferric ion contamination on the solid polymer electrolyte water electrolysis performance

    International Nuclear Information System (INIS)

    Highlights: • The cathode possesses higher tolerance for the Fe3+ contamination than the anode. • Fe3+ are mostly reduced to Fe2+ rather than occur underpotential deposition. • Increased electrolysis voltage was mainly attributed to ohmic overpotential. • Voltage lags behind current for minutes in the multi-current-step test. • Poisoned electrolyser is mostly recovered by 0.5 M H2SO4 solution treatment for 13 h. - Abstract: Fe3+ is a sort of common metal ion contaminant for the solid polymer electrolyte (SPE) water electrolyser. In this paper, the effect of Fe3+ on the performance of SPE water electrolyser has been investigated by both in-situ and ex-situ characterizations. The electron probe microanalysis and ultraviolet test results showed that Fe3+ could migrate from the anode to the cathode and mostly be reduced to Fe2+ in the cathode rather than occurred underpotential deposition as described in the previous report. The in-situ dynamic contamination test showed that the anode voltage increased sharply as soon as the Fe3+ was fed into the anode, while the cathode voltage kept constant until the contamination time was over 30 minutes, indicating the higher tolerance of the cathode than the anode for the Fe3+ contamination. The calculation results based on the electrochemistry impedance spectroscopy test results revealed that the striking increase of the electrolysis voltage was mainly attributed to the ohmic overpotential, which was due to the replacement of H+ by Fe3+ in the Nafion resin. Interestingly, the voltage lagged behind the current for several minutes in the multi-current-step test for the contaminated electrolyser, which phenomenon may be used for judging whether the SPE water electrolyser performance degradation is due to the metal ions contamination. Furthermore, recovery strategy has been developed, and it was found that the contaminated electrolyser could be mostly recovered by 0.5 M H2SO4 solution treatment for 13 h

  12. Water transport during startup and shutdown of polymer electrolyte fuel cell stacks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Tajiri, K.; Ahluwalia, R.K. [Argonne National Laboratory, 9700 S Cass Avenue, Argonne, IL 60439 (United States)

    2010-10-01

    A dynamic three-phase transport model is developed to analyze water uptake and transport in the membrane and catalyst layers of polymer electrolyte fuel cells during startup from subfreezing temperatures and subsequent shutdown. The initial membrane water content ({lambda}, the number of water molecules per sulfonic acid site) is found to be an important parameter that determines whether a successful unassisted self-start is possible. For a given initial subfreezing temperature at startup, there is a critical {lambda} ({lambda}{sub h}), above which self-start is not possible because the product water completely engulfs the catalyst layers with ice before the stack can warm-up to 0 C. There is a second value of {lambda} ({lambda}{sub l}), below which the stack can be self-started without forming ice. Between {lambda}{sub l} and {lambda}{sub h}, the stack can be self-started, but with intermediate formation of ice that melts as the stack warms up to 0 C. Both {lambda}{sub l} and {lambda}{sub h} are functions of the initial stack temperature, cell voltage at startup, membrane thickness, catalyst loading, and stack heat capacity. If the stack is purged during the previous shutdown by flowing air in the cathode passages, then depending on the initial amount of water in the membrane and gas diffusion layers and the initial stack temperature, it may not be possible to dry the membrane to the critical {lambda} for a subsequent successful startup. There is an optimum {lambda} for robust and rapid startup and shutdown. Startup and shutdown time and energy may be unacceptable if the {lambda} is much less than the optimum. Conversely, a robust startup from subfreezing temperatures cannot be assured if the {lambda} is much higher than this optimum. (author)

  13. Water transport during startup and shutdown of polymer electrolyte fuel cell stacks.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Tajiri, K.; Ahluwalia, R.; Nuclear Engineering Division

    2010-10-01

    A dynamic three-phase transport model is developed to analyze water uptake and transport in the membrane and catalyst layers of polymer electrolyte fuel cells during startup from subfreezing temperatures and subsequent shutdown. The initial membrane water content (?, the number of water molecules per sulfonic acid site) is found to be an important parameter that determines whether a successful unassisted self-start is possible. For a given initial subfreezing temperature at startup, there is a critical ? (?h), above which self-start is not possible because the product water completely engulfs the catalyst layers with ice before the stack can warm-up to 0 C. There is a second value of ? (?l), below which the stack can be self-started without forming ice. Between ?l and ?h, the stack can be self-started, but with intermediate formation of ice that melts as the stack warms up to 0 C. Both ?l and ?h are functions of the initial stack temperature, cell voltage at startup, membrane thickness, catalyst loading, and stack heat capacity. If the stack is purged during the previous shutdown by flowing air in the cathode passages, then depending on the initial amount of water in the membrane and gas diffusion layers and the initial stack temperature, it may not be possible to dry the membrane to the critical ? for a subsequent successful startup. There is an optimum ? for robust and rapid startup and shutdown. Startup and shutdown time and energy may be unacceptable if the ? is much less than the optimum. Conversely, a robust startup from subfreezing temperatures cannot be assured if the ? is much higher than this optimum.

  14. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gottesfeld, S. [Los Alamos National Lab., NM (United States)

    1995-09-01

    The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. The low temperature, polymer electrolyte membrane fuel cell (PEMFC) has recently been identified as an attractive option for stationary power generation, based on the relatively simple and benign materials employed, the zero-emission character of the device, and the expected high power density, high reliability and low cost. However, a PEMFC stack fueled by hydrogen with the combined properties of low cost, high performance and high reliability has not yet been demonstrated. Demonstration of such a stack will remove a significant barrier to implementation of this advanced technology for electric power generation from hydrogen. Work done in the past at LANL on the development of components and materials, particularly on advanced membrane/electrode assemblies (MEAs), has contributed significantly to the capability to demonstrate in the foreseeable future a PEMFC stack with the combined characteristics described above. A joint effort between LANL and an industrial stack manufacturer will result in the demonstration of such a fuel cell stack for stationary power generation. The stack could operate on hydrogen fuel derived from either natural gas or from renewable sources. The technical plan includes collaboration with a stack manufacturer (CRADA). It stresses the special requirements from a PEMFC in stationary power generation, particularly maximization of the energy conversion efficiency, extension of useful life to the 10 hours time scale and tolerance to impurities from the reforming of natural gas.

  15. Water transport during startup and shutdown of polymer electrolyte fuel cell stacks

    Science.gov (United States)

    Wang, X.; Tajiri, K.; Ahluwalia, R. K.

    A dynamic three-phase transport model is developed to analyze water uptake and transport in the membrane and catalyst layers of polymer electrolyte fuel cells during startup from subfreezing temperatures and subsequent shutdown. The initial membrane water content (λ, the number of water molecules per sulfonic acid site) is found to be an important parameter that determines whether a successful unassisted self-start is possible. For a given initial subfreezing temperature at startup, there is a critical λ (λ h), above which self-start is not possible because the product water completely engulfs the catalyst layers with ice before the stack can warm-up to 0 °C. There is a second value of λ (λ l), below which the stack can be self-started without forming ice. Between λ l and λ h, the stack can be self-started, but with intermediate formation of ice that melts as the stack warms up to 0 °C. Both λ l and λ h are functions of the initial stack temperature, cell voltage at startup, membrane thickness, catalyst loading, and stack heat capacity. If the stack is purged during the previous shutdown by flowing air in the cathode passages, then depending on the initial amount of water in the membrane and gas diffusion layers and the initial stack temperature, it may not be possible to dry the membrane to the critical λ for a subsequent successful startup. There is an optimum λ for robust and rapid startup and shutdown. Startup and shutdown time and energy may be unacceptable if the λ is much less than the optimum. Conversely, a robust startup from subfreezing temperatures cannot be assured if the λ is much higher than this optimum.

  16. A Review of Water Management in Polymer Electrolyte Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Zidong Wei

    2009-11-01

    Full Text Available At present, despite the great advances in polymer electrolyte membrane fuel cell (PEMFC technology over the past two decades through intensive research and development activities, their large-scale commercialization is still hampered by their higher materials cost and lower reliability and durability. In this review, water management is given special consideration. Water management is of vital importance to achieve maximum performance and durability from PEMFCs. On the one hand, to maintain good proton conductivity, the relative humidity of inlet gases is typically held at a large value to ensure that the membrane remains fully hydrated. On the other hand, the pores of the catalyst layer (CL and the gas diffusion layer (GDL are frequently flooded by excessive liquid water, resulting in a higher mass transport resistance. Thus, a subtle equilibrium has to be maintained between membrane drying and liquid water flooding to prevent fuel cell degradation and guarantee a high performance level, which is the essential problem of water management. This paper presents a comprehensive review of the state-of-the-art studies of water management, including the experimental methods and modeling and simulation for the characterization of water management and the water management strategies. As one important aspect of water management, water flooding has been extensively studied during the last two decades. Herein, the causes, detection, effects on cell performance and mitigation strategies of water flooding are overviewed in detail. In the end of the paper the emphasis is given to: (i the delicate equilibrium of membrane drying vs. water flooding in water management; (ii determining which phenomenon is principally responsible for the deterioration of the PEMFC performance, the flooding of the porous electrode or the gas channels in the bipolar plate, and (iii what measures should be taken to prevent water flooding from happening in PEMFCs.

  17. Morphology and conductivity studies of a new solid polymer electrolyte: (PEG)LiClO4

    Indian Academy of Sciences (India)

    Th Joykumar Singh; S V Bhat

    2003-12-01

    A new solid polymer electrolyte, (PEG)LiClO4, consisting of poly(ethylene)glycol of molecular weight 2000 and LiClO4 was prepared and characterized using XRD, IR, SEM, DSC, NMR and impedance spectroscopy techniques. XRD and IR results show the formation of the polymer–salt complex. The samples with higher salt concentration are softer, less opaque and less smooth compared to the low salt concentration samples. DSC studies show an increase in the glass transition temperature and a decrease in the degree of crystallinity with increase in the salt concentration. Melting temperature of SPEs is lower than the pure PEG 2000. Room temperature 1H and 7Li NMR studies were also carried out for the (PEG)iClO4 system. The 1H linewidth decreases as salt concentration increases in a similar way to the decrease in the crystalline fraction and reaches a minimum at around = 46 and then increases. 7Li linewidth was found to decrease first and then to slightly increase after reaching a minimum at = 46 signifying the highest mobility of Li ions for this composition. Room temperature conductivity first increases with salt concentration and reaches a maximum value ( = 7.3 × 10-7 S/cm) at = 46 and subsequently decreases. The temperature dependence of the conductivity can be fitted to the Arrhenius and the VTF equations in different temperature ranges. The ionic conductivity reaches a high value of ∼ 10-4 S/cm close to the melting temperature.

  18. Scale-up of a high temperature polymer electrolyte membrane fuel cell based on polybenzimidazole

    Science.gov (United States)

    Pinar, F. Javier; Cañizares, Pablo; Rodrigo, Manuel A.; Úbeda, Diego; Lobato, Justo

    A high temperature PEM fuel cell stack with a total active area 150 cm 2 has been studied. The PEM technology is based on a polybenzimidazole (PBI) membrane. Cast from a PBI polymer synthesised in our lab, the performance of a three-cell stack was analysed in static and dynamic modes. In static mode, operating at high constant oxygen flow rate (QO2 > 1105 ml O2 / min) produces a small decrease on the stack performance. High constant oxygen stoichiometry (λO2 > 3) does not produce a decrease on the performance of the stack. There are not differences between operating at constant flow rate of oxygen and constant stoichiometry of oxygen in the stack performance. The effect of operating at high temperature with a pressurization system and operating at higher temperatures are beneficial since the performance of the fuel cell is enhanced. A large shut-down stage produces important performance losses due to the loss of catalyst activity and the loss of membrane conductivity. After 150 h of operation at 0.2 A cm -2, it is observed a very high voltage drop. The phosphoric acid leached from the stack was also evaluated and did not exceed 2% (w/w). This fact suggests that the main degradation mechanism of a fuel cell stack based on polybenzimidazole is not the electrolyte loss. In dynamic test mode, it was observed a rapid response of power and current output even at the lower step-time (10 s). In the static mode at 125 °C and 1 atm, the stack reached a power density peak of 0.29 W cm -2 (43.5 W) at 1 V.

  19. Study of ageing effects in polymer-in-salt electrolytes based on poly(acrylonitrile-co-butyl acrylate) and lithium salts

    International Nuclear Information System (INIS)

    Highlights: • Properties of freshly cast and aged poly(AN-co-BuA) – LiTFSI electrolytes are studied. • For fresh electrolytes, conductivity increases and Tg decreases with increasing salt content. • Ageing of polymer-in-salt electrolytes results in a drop of conductivity and a rise of Tg. • Ageing effects can be explained by changes of properties of amorphous salt domains. • Precipitation of salt is observed in electrolytes containing over 84 wt.% of LiTFSI. • Electrolytes with mixture of LiI and LiTFSI are more stable than those with LiTFSI only. -- Abstract: Polymer electrolytes composed of an acrylonitrile and butyl acrylate copolymer poly(AN-co-BuA) with addition of LiN(CF3SO2)2 (LiTFSI) or LiI and LiTFSI salt mixture are studied by impedance spectroscopy, DSC, Raman spectroscopy, X-ray diffraction, SEM and TEM. Impedance study shows that the ionic conductivity of the electrolytes containing LiTFSI is strongly dependent on the salt content and transition from “salt-in-polymer” to “polymer-in-salt” regime is observed at high salt content. Gradual changes of physical properties of the studied polymer electrolytes are observed in the course of their prolonged storage under argon atmosphere. These include the increase of glass transition temperature and decrease of ionic conductivity. In order to study the effects of this ageing process, measurements on samples of electrolyte films were repeated after several months. Precipitation of salt, which occurred at the nanometer length scale is observed with the aid of electron microscopy in electrolytes containing more than 84 wt.% of salt. Crystalline salt is not observed in electrolytes with lower amount of salt – however, the results indicate the structural changes of salt aggregates, which strongly influence transport of ions through the electrolyte. For preparation of electrolytes with mixed LiTFSI and LiI salts, a mixture of salts (16 wt.% LiI, 84 wt.% LiTFSI) is used, which exhibits the

  20. Study of effect of composition, irradiation and quenching on ionic conductivity in (PEG) : NH4NO3 solid polymer electrolyte

    Indian Academy of Sciences (India)

    R Damle; P N Kulkarni; S V Bhat

    2008-11-01

    We have prepared, characterized and investigated a new PEG-2000 based solid polymer electrolyte (PEG): NH4NO3. Ionic conductivity measurements have been made as a function of salt concentration as well as temperature in the range 265–330 K. Selected compositions of the electrolyte are exposed to a beam of 8 MeV electrons and 60Co -rays to an accumulated dose of 10 kGy to study the effect on ionic conductivity. The electrolyte samples are also quenched at liquid nitrogen temperature and conductivity measurements are carried out. The ionic conductivity at room temperature exhibits a characteristic peak for the composition, = 46. Electron beam irradiation results in an increase in conductivity for all compositions by a factor of 2–3. Exposure to -rays enhances the conductivity by one order of magnitude. Quenching at low temperature has resulted in an increase in conductivity by 1–2 orders of magnitude. The enhancement of conductivity upon irradiation and quenching is interpreted as due to an increase in amorphous region and decrease in crystallinity of the electrolyte. DSC and NMR measurements also support this conclusion.