WorldWideScience

Sample records for alkaline membrane cell

  1. Chemical degradation mechanisms of membranes for alkaline membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Yoong-Kee [National Institute of Advanced Industrial Science and Technology, Umezono 1-1-1, Tsukuba (Japan); Henson, Neil J.; Kim, Yu Seung [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2015-12-31

    Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane should enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions.

  2. Alkaline fuel cell with nitride membrane

    Science.gov (United States)

    Sun, Shen-Huei; Pilaski, Moritz; Wartmann, Jens; Letzkus, Florian; Funke, Benedikt; Dura, Georg; Heinzel, Angelika

    2017-06-01

    The aim of this work is to fabricate patterned nitride membranes with Si-MEMS-technology as a platform to build up new membrane-electrode-assemblies (MEA) for alkaline fuel cell applications. Two 6-inch wafer processes based on chemical vapor deposition (CVD) were developed for the fabrication of separated nitride membranes with a nitride thickness up to 1 μm. The mechanical stability of the perforated nitride membrane has been adjusted in both processes either by embedding of subsequent ion implantation step or by optimizing the deposition process parameters. A nearly 100% yield of separated membranes of each deposition process was achieved with layer thickness from 150 nm to 1 μm and micro-channel pattern width of 1μm at a pitch of 3 μm. The process for membrane coating with electrolyte materials could be verified to build up MEA. Uniform membrane coating with channel filling was achieved after the optimization of speed controlled dip-coating method and the selection of dimethylsulfoxide (DMSO) as electrolyte solvent. Finally, silver as conductive material was defined for printing a conductive layer onto the MEA by Ink-Technology. With the established IR-thermography setup, characterizations of MEAs in terms of catalytic conversion were performed successfully. The results of this work show promise for build up a platform on wafer-level for high throughput experiments.

  3. Advanced membranes for alkaline primary and rechargeable alkaline cells with zinc anodes

    Science.gov (United States)

    Lewis, Harlan; Jackson, Patricia; Salkind, Alvin; Danko, Thomas; Bell, Roger

    Several advanced cellulosic and radiation grafted polypropylene membrane materials are currently under evaluation in the laboratories at Navsea Crane and Rutgers University, for application to alkaline primary and rechargeable cell chemistries which employ zinc as the anode material. A portion of these tests involve model cell evaluations of cellulosic membranes for silver migration rates through the membranes as a function of separation layers and changes in the degree of polymerisation (DP), wet tensile strength (WTS) and voltage changes at both electrodes as a function of model rechargeable cell life cycle. Other testing on the actual membranes is generating data for both cellulosic and polypropylene materials on impedance, swelling properties, and silver and zinc penetration rates. The overall goal of these investigations is to obtain candidate separation membranes which will reduce zinc anode shape change and shedding and resist alkaline oxidative degradation to extend the active wet life in primary cells and both wet and life cycle in rechargeable cells.

  4. Alkaline direct alcohol fuel cells using an anion exchange membrane

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Koji; Iriyama, Yasutoshi; Abe, Takeshi; Ogumi, Zempachi [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan); Matsuoka, Masao [Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan)

    2005-10-04

    Alkaline direct alcohol fuel cells using an OH-form anion exchange membrane and polyhydric alcohols were studied. A high open circuit voltage of ca. 800mV was obtained for a cell using Pt-Ru/C (anode) and Pt/C (cathode) at 323K, which was about 100-200mV higher than that for a DMFC using Nafion{sup R}. The maximum power densities were in the order of ethylene glycol>glycerol>methanol>erythritol>xylitol. Silver catalysts were used as a cathode catalyst to fabricate alkaline fuel cells, since silver catalyst is almost inactive in the oxidation of polyhydric alcohols. Alkaline direct ethylene glycol fuel cells using silver as a cathode catalyst gave excellent performance because higher concentrations of fuel could be supplied to the anode. (author)

  5. 2011 Alkaline Membrane Fuel Cell Workshop Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Pivovar, B.

    2012-02-01

    A workshop addressing the current state-of-the-art in alkaline membrane fuel cells (AMFCs) was held May 8-9, 2011, at the Crystal Gateway Marriott in Arlington, Virginia. This workshop was the second of its kind, with the first being held December 11-13, 2006, in Phoenix, Arizona. The 2011 workshop and associated workshop report were created to assess the current state of AMFC technology (taking into account recent advances), investigate the performance potential of AMFC systems across all possible power ranges and applications, and identify the key research needs for commercial competitiveness in a variety of areas.

  6. Block Copolymers for Alkaline Fuel Cell Membrane Materials

    Science.gov (United States)

    2014-07-30

    constitute the ionic conducting channel while the hydrophobic perfluorinated backbone forms the mechanical component of the membrane material. Although...membrane in many aspects and design optimized anion exchange membranes with better alkaline stability, mechanical integrity and ionic conductivity. A...high ionic conductivity through formation of phase separated ionic domains. Using anionic polymerization, a polyethylene based block copolymer was

  7. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Haryadi,, E-mail: haryadi@polban.ac.id; Sugianto, D.; Ristopan, E. [Department of Chemical Engineering, Politeknik Negeri Bandung Jl. Gegerkalong Hilir, Ds. Ciwaruga, Bandung West Java (Indonesia)

    2015-12-29

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm{sup −1} and 3300 cm{sup −1} respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10{sup −2} S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  8. Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids.

    Science.gov (United States)

    Marino, M G; Kreuer, K D

    2015-02-01

    The alkaline stability of 26 different quaternary ammonium groups (QA) is investigated for temperatures up to 160 °C and NaOH concentrations up to 10 mol L(-1) with the aim to provide a basis for the selection of functional groups for hydroxide exchange membranes in alkaline fuel cells and of ionic-liquid cations stable in basic conditions. Most QAs exhibit unexpectedly high alkaline stability with the exception of aromatic cations. β-Protons are found to be far less susceptible to nucleophilic attack than previously suggested, whereas the presence of benzyl groups, nearby hetero-atoms, or other electron-withdrawing species promote degradation reactions significantly. Cyclic QAs proved to be exceptionally stable, with the piperidine-based 6-azonia-spiro[5.5]undecane featuring the highest half-life at the chosen conditions. Absolute and relative stabilities presented herein stand in contrast to literature data, the differences being ascribed to solvent effects on degradation.

  9. Anion exchange membrane based on alkali doped poly(2,5-benzimidazole) for alkaline membrane fuel cell

    CSIR Research Space (South Africa)

    Luo, H

    2010-03-01

    Full Text Available Alkaline membrane fuel cell (AMFC) has been received increasing attention among the different types of fuel cells. Ammonium quaternized polymers such as poly (arylene ether sulfones) are being developed and studied as candidates of ionomeric...

  10. Radiolytic synthesis and characterization of PVA and chitosan based conductive polymer membranes for alkaline fuel cells

    Directory of Open Access Journals (Sweden)

    Stoševski Ivan D.

    2014-01-01

    Full Text Available Poly(vinyl alcohol (PVA and chitosan (CS based polymer membranes for alkaline fuel cells were synthesized by gamma irradiation method. They were swollen with 6 M KOH solution and their ionic conductivity and gas permeance were investigated as a function of temperature. They show high ionic conductivities at room temperature, which wasn't reduced over a period of few months. No gas flow through membranes was detected at any temperature and pressure. These properties show that the membranes could be potentially applied in alkaline fuel cells.

  11. Solid alkaline membrane fuel cell : what are they advantages and drawbacks compared to proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Coutanceau, C.; Baranton, S.; Simoes, M. [Univ. de Poitiers, Poitiers (France). Laboratoire de Catalyse en Chimie Organique, UMR CNRS

    2010-07-01

    Low temperature fuel cells such as proton exchange membrane fuel cells (PEMFCs) and direct alcohol fuel cells (DAFCs) are promising power sources for portable electronics and transportation applications. However, these fuel cells require high amounts of platinum at the anodes to achieve high cell performance. Although alkaline membrane fuel cells (AFCs) may be an alternative to PEMFCs, the technology of low temperature fuel cells is less developed than that of fuel cells working with a solid acid electrolyte. Interest in solid alkaline membrane fuel cells (SAMFCs) has increased in recent years because it is easier to activate the oxidation and reduction reactions in alkaline medium than in acidic medium. Fewer platinum based catalysts are needed due to higher electrode kinetics. The development of hydroxyl conductive membrane makes this technology available, but the fuel to be used in the system must be considered. Pure hydrogen or hydrogen-rich gases offer high electric efficiency, but their production, storage, and distribution are not sufficient for a large-scale development. This paper discussed the relatively good electroreactivity of polyols such as glycerol and ethylene glycol in a SAMFC, as well as sodium borohydride (NaBH{sub 4}) as an alternative. The working principle of SAMFCs was also presented along with considerations regarding the electrochemical reactions occurring at the electrodes, and requirements concerning the catalysts, the triple phase boundary in the electrode and the anionic membrane. Palladium based catalysts were found to be an interesting alternative to platinum in SAMFCs. In situ FTIR measurements and oxidation products analysis was used to determine the electrooxidation pathways of alcohol and NaBH{sub 4}in alkaline medium. The study also included a comparison with oxidation mechanisms in acid medium. 8 refs.

  12. Polybenzimidazole membranes for zero gap alkaline electrolysis cells

    DEFF Research Database (Denmark)

    Kraglund, Mikkel Rykær; Aili, David; Christensen, Erik;

    Membranes of m-PBI doped in KOH (aq), 15-35 wt%, show high ionic conductivity in the temperature range 20-80 ºC. In electrolysis cells with nickel foam electrodes m-PBI membranesprovide low internal resistance. With a 60 µm membraneat 80ºC in 20 wt% KOH,1000 mA/cm2 is achieved at 2.25....

  13. Alkaline Exchange Membrane (AEM) for High-Efficiency Fuel Cells, Electrolyzers and Regenerative Fuel Cell Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an alkaline exchange membrane (AEM)for use as a polymer electrolyte in both fuel cell and electrolyzer systems.  The ultimate goal in AEM development is...

  14. Anionic-exchange membrane development for application in alcohol alkaline fuel cells

    CSIR Research Space (South Africa)

    Nonjola, S

    2010-09-01

    Full Text Available into electrical energy and heat using electrochemical process © CSIR 2010 Slide 4 Fuel Cell Types • Alkaline (AFC) developed for the Apollo program • Polymer membrane (PEMC) leading candidate for transportation • Phosphoric acid (PAFC) 200kW units... Slide 11 Membrane Development • Polymer electrolyte fuel cell (PEFC) – most developed in the past 2 decades. • PEFC – acidic membrane (Nafion) as an electrolyte. • Nafion based FCs several obstacles such as: dependence on Pt catalysts and Me...

  15. Membrane-bound alkaline phosphatase from ectopic mineralization and rat bone marrow cell culture.

    Science.gov (United States)

    Simão, Ana Maria S; Beloti, Márcio M; Cezarino, Rodrigo M; Rosa, Adalberto Luiz; Pizauro, João M; Ciancaglini, Pietro

    2007-04-01

    Cells from rat bone marrow exhibit the proliferation-differentiation sequence of osteoblasts, form mineralized extracellular matrix in vitro and release alkaline phosphatase into the medium. Membrane-bound alkaline phosphatase was obtained by method that is easy to reproduce, simpler and fast when compared with the method used to obtain the enzyme from rat osseous plate. The membrane-bound alkaline phosphatase from cultures of rat bone marrow cells has a MW(r) of about 120 kDa and specific PNPP activity of 1200 U/mg. The ecto-enzyme is anchored to the plasma membrane by the GPI anchor and can be released by PIPLC (selective treatment) or polidocanol (0.2 mg/mL protein and 1% (w/v) detergent). The apparent optimum pH for PNPP hydrolysis by the enzyme was pH 10. This fraction hydrolyzes ATP (240 U/mg), ADP (350 U/mg), glucose 1-phosphate (1100 U/mg), glucose 6-phosphate (340 U/mg), fructose 6-phosphate (460 U/mg), pyrophosphate (330 U/mg) and beta-glycerophosphate (600 U/mg). Cooperative effects were observed for the hydrolysis of PPi and beta-glycerophosphate. PNPPase activity was inhibited by 0.1 mM vanadate (46%), 0.1 mM ZnCl2 (68%), 1 mM levamisole (66%), 1 mM arsenate (44%), 10 mM phosphate (21%) and 1 mM theophylline (72%). We report the biochemical characterization of membrane-bound alkaline phosphatase obtained from rat bone marrow cells cultures, using a method that is simple, rapid and easy to reproduce. Its properties are compared with those of rat osseous plate enzyme and revealed that the alkaline phosphatase obtained has some kinetics and structural behaviors with higher levels of enzymatic activity, facilitating the comprehension of the mineralization process and its function.

  16. Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes

    Science.gov (United States)

    Narayan, Sri R.; Yen, Shiao-Ping S.; Reddy, Prakash V.; Nair, Nanditha

    2012-01-01

    Polymer electrolyte membranes that conduct hydroxide ions have potential use in fuel cells. A variety of polystyrene-based quaternary ammonium hydroxides have been reported as anion exchange fuel cell membranes. However, the hydrolytic stability and conductivity of the commercially available membranes are not adequate to meet the requirements of fuel cell applications. When compared with commercially available membranes, polystyrene-imidazolium alkaline membrane electrolytes are more stable and more highly conducting. At the time of this reporting, this has been the first such usage for imidazolium-based polymeric materials for fuel cells. Imidazolium salts are known to be electrochemically stable over wide potential ranges. By controlling the relative ratio of imidazolium groups in polystyrene-imidazolium salts, their physiochemical properties could be modulated. Alkaline anion exchange membranes based on polystyrene-imidazolium hydroxide materials have been developed. The first step was to synthesize the poly(styrene-co-(1-((4-vinyl)methyl)-3- methylimidazolium) chloride through a free-radical polymerization. Casting of this material followed by in situ treatment of the membranes with sodium hydroxide solutions provided the corresponding hydroxide salts. Various ratios of the monomers 4-chloromoethylvinylbenzine (CMVB) and vinylbenzine (VB) provided various compositions of the polymer. The preferred material, due to the relative ease of casting the film, and its relatively low hygroscopic nature, was a 2:1 ratio of CMVB to VB. Testing confirmed that at room temperature, the new membranes outperformed commercially available membranes by a large margin. With fuel cells now in use at NASA and in transportation, and with defense potential, any improvement to fuel cell efficiency is a significant development.

  17. Alkaline anion exchange membrane fuel cells for cogeneration of electricity and valuable chemicals

    Science.gov (United States)

    Pan, Z. F.; Chen, R.; An, L.; Li, Y. S.

    2017-10-01

    Alkaline anion exchange membrane fuel cells (AAEMFCs) have received ever-increasing attentions due to the enhanced electrochemical kinetics and the absence of precious metal electrocatalysts, and thus great progress has been made in recent years. The alkaline anion exchange membrane based direct alcohol fuel cells, one type of alkaline anion exchange membrane fuel cells utilizing liquid alcohols as fuel that can be obtained from renewable biomass feedstocks, is another attractive point due to its ability to provide electricity with cogeneration of valuable chemicals. Significant development has been made to improve the selectivity towards high added-value chemicals and power output in the past few years. This review article provides a general description of this emerging technology, including fuel-cell setup and potential reaction routes, summarizes the products, performance, and system designs, as well as introduces the application of this concept in the removal of heavy-metal ions from the industrial wastewater. In addition, the remaining challenges and perspectives are also highlighted.

  18. The direct formate fuel cell with an alkaline anion exchange membrane

    Science.gov (United States)

    Bartrom, Amy M.; Haan, John L.

    2012-09-01

    We demonstrate for the first time an operating Direct Formate Fuel Cell employing formate salts as the anode fuel, air or oxygen as the oxidant, a polymer anion exchange membrane, and metal catalysts at the anode and cathode. Operation of the DFFC at 60 °C using 1 M KOOCH and 2 M KOH as the anode fuel and electrolyte and oxygen gas at the cathode produces 144 mW cm-2 of peak power density, 181 mA cm-2 current density at 0.6 V, and an open circuit voltage of 0.931 V. This performance is competitive with alkaline Direct Liquid Fuel Cells (DLFCs) previously reported in the literature and demonstrates that formate fuel is a legitimate contender with alcohol fuels for alkaline DLFCs. A survey of the literature shows that a formate-oxygen fuel cell has a high theoretical potential, and the safe, renewable formate fuel does not poison the anode catalyst.

  19. Alkaline membrane fuel cells with in-situ cross-linked ionomers

    Energy Technology Data Exchange (ETDEWEB)

    Leng, YJ; Wang, LZ; Hickner, MA; Wang, CY

    2015-01-10

    Improving cell performance and durability through both new materials and membrane electrode processing optimization is needed for the commercialization of alkaline membrane fuel cell (AMFC) technologies. In this work, we adopted an in-situ cross-linking strategy of an anion-conducting block copolymer to prepare durable ionomers for use in alkaline membrane fuel cells (AMFCs). Our goal was to use new ionomers and binders with an aim at improving long-term stability of AMFCs, especially at high operation temperatures. At 80 degrees C, AMFCs with in-situ cross-linked ionomers showed promising stability with an operating life time of more than 350 hours at 100 mA/cm(2). We found that the optimized electrode fabrication process and operating conditions can significantly improve the durability performance of AMFCs. For example, a suitable electrode binder in addition to the ion-conducting ionomer can greatly enhance the durability performance of AMFCs. Operating fuel cells under a cathode over-humification condition can also enhance the long-term stability of AMFCs. (C) 2014 Elsevier Ltd. All rights reserved.

  20. High-Efficiency Artificial Photosynthesis Using a Novel Alkaline Membrane Cell

    Science.gov (United States)

    Narayan, Sri; Haines, Brennan; Blosiu, Julian; Marzwell, Neville

    2009-01-01

    A new cell designed to mimic the photosynthetic processes of plants to convert carbon dioxide into carbonaceous products and oxygen at high efficiency, has an improved configuration using a polymer membrane electrolyte and an alkaline medium. This increases efficiency of the artificial photosynthetic process, achieves high conversion rates, permits the use of inexpensive catalysts, and widens the range of products generated by this type of process. The alkaline membrane electrolyte allows for the continuous generation of sodium formate without the need for any additional separation system. The electrolyte type, pH, electrocatalyst type, and cell voltage were found to have a strong effect on the efficiency of conversion of carbon dioxide to formate. Indium electrodes were found to have higher conversion efficiency compared to lead. Bicarbonate electrolyte offers higher conversion efficiency and higher rates than water solutions saturated with carbon dioxide. pH values between 8 and 9 lead to the maximum values of efficiency. The operating cell voltage of 2.5 V, or higher, ensures conversion of the carbon dioxide to formate, although the hydrogen evolution reaction begins to compete strongly with the formate production reaction at higher cell voltages. Formate is produced at indium and lead electrodes at a conversion efficiency of 48 mg of CO2/kilojoule of energy input. This efficiency is about eight times that of natural photosynthesis in green plants. The electrochemical method of artificial photosynthesis is a promising approach for the conversion, separation and sequestration of carbon dioxide for confined environments as in space habitats, and also for carbon dioxide management in the terrestrial context. The heart of the reactor is a membrane cell fabricated from an alkaline polymer electrolyte membrane and catalyst- coated electrodes. This cell is assembled and held in compression in gold-plated hardware. The cathode side of the cell is supplied with carbon

  1. DEVELOPMENT AND SELECTION OF IONIC LIQUID ELECTROLYTES FOR HYDROXIDE CONDUCTING POLYBENZIMIDAZOLE MEMBRANES IN ALKALINE FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, E.

    2012-05-01

    Alkaline fuel cell (AFC) operation is currently limited to specialty applications such as low temperatures and pure HO due to the corrosive nature of the electrolyte and formation of carbonates. AFCs are the cheapest and potentially most efficient (approaching 70%) fuel cells. The fact that non-Pt catalysts can be used, makes them an ideal low cost alternative for power production. The anode and cathode are separated by and solid electrolyte or alkaline porous media saturated with KOH. However, CO from the atmosphere or fuel feed severely poisons the electrolyte by forming insoluble carbonates. The corrosivity of KOH (electrolyte) limits operating temperatures to no more than 80°C. This chapter examines the development of ionic liquids electrolytes that are less corrosive, have higher operating temperatures, do not chemically bond to CO and enable alternative fuels. Work is detailed on the IL selection and characterization as well as casting methods within the polybenzimidazole based solid membrane. This approach is novel as it targets the root of the problem (the electrolyte) unlike other current work in alkaline fuel cells which focus on making the fuel cell components more durable.

  2. Plasma Membranes Modified by Plasma Treatment or Deposition as Solid Electrolytes for Potential Application in Solid Alkaline Fuel Cells

    OpenAIRE

    Christophe Coutanceau; Marc Reinholdt; Jean Durand; Valérie Flaud; Serguei Martemianov; Alina Ilie; Eric Beche; Stéphanie Roualdès; Mauricio Schieda; Jérémy Frugier

    2012-01-01

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, com...

  3. Influence of Hydration Level on Polymer and Water Dynamics in Alkaline Anion Exchange Fuel Cell Membranes

    Science.gov (United States)

    Tarver, Jacob; Kim, Jenny; Tyagi, Madhu; Soles, Christopher; Tsai, Tsung-Han; Coughlin, Bryan

    2015-03-01

    Triblock copolymers based on poly(chloromethylstyrene)-b-poly(ethylene)-b-poly(chloromethylstyrene) can be quaternized to different extents to yield anion exchange membranes for alkaline fuel cells. In the absence of moisture, these membranes demonstrate bilayer lamellar morphology. Upon high levels of hydration, however, in-situ small angle neutron scattering reveals the emergence of higher-order diffraction peaks. This phenomena has previously been observed in analogous diblock copolymer-based membranes and has been attributed to the induction of a multilayer lamellar morphology in which selective striping of water occurs in the center of the ion-rich domain. By conducting humidity-resolved quasielastic neutron scattering (QENS) measurements using deuterated water, we are able to isolate differences in the pico- to nanosecond timescale dynamics of the hydrogenated membrane upon hydration. QENS measurements in the presence of a hydrogenated water source subsequently permit deconvolution and isolation of the translational and rotational dynamics of water as a function of relative humidity, revealing spatial and temporal changes in polymer and water motion at high levels of hydration.

  4. Plasma-grafted alkaline anion-exchange membranes based on polyvinyl chloride for potential application in direct alcohol fuel cell

    Science.gov (United States)

    Hu, Jue; Zhang, Chengxu; Cong, Jie; Toyoda, Hirotaka; Nagatsu, Masaaki; Meng, Yuedong

    2011-05-01

    Plasma grafting is employed to prepare alkaline anion-exchange membranes in this study. The attenuated total reflection Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and thermo gravimetric analysis demonstrate that the benzyltrimethylammonium cationic groups are successfully introduced into the polyvinyl chloride matrix via plasma grafting, quaternization and alkalization. The plasma-grafted alkaline anion-exchange membrane exhibits a satisfactory ionic exchange capacity (1.01 mmol g-1), thermal stability, mechanical property, ionic conductivity (0.0145 S cm-1) and methanol permeability (9.59 × 10-12 m2 s-1), suggesting a great potential for application in direct alcohol fuel cells. The open circuit voltage of air-breathing ADAFC using plasma-grafted alkaline anion-exchange membrane is 0.796 V with 1 M EtOH solution at ambient temperature.

  5. Plasma membranes modified by plasma treatment or deposition as solid electrolytes for potential application in solid alkaline fuel cells.

    Science.gov (United States)

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-07-30

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane.

  6. Plasma Membranes Modified by Plasma Treatment or Deposition as Solid Electrolytes for Potential Application in Solid Alkaline Fuel Cells

    Directory of Open Access Journals (Sweden)

    Christophe Coutanceau

    2012-07-01

    Full Text Available In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane.

  7. Enhanced cell adhesion on bioinert ceramics mediated by the osteogenic cell membrane enzyme alkaline phosphatase.

    Science.gov (United States)

    Aminian, Alieh; Shirzadi, Bahareh; Azizi, Zahra; Maedler, Kathrin; Volkmann, Eike; Hildebrand, Nils; Maas, Michael; Treccani, Laura; Rezwan, Kurosch

    2016-12-01

    Functional bone and dental implant materials are required to guide cell response, offering cues that provide specific instructions to cells at the implant/tissue interface while maintaining full biocompatibility as well as the desired structural requirements and functions. In this work we investigate the influence of covalently immobilized alkaline phosphatase (ALP), an enzyme involved in bone mineralization, on the first contact and initial cell adhesion. To this end, ALP is covalently immobilized by carbodiimide-mediated chemoligation on two highly bioinert ceramics, alpha-alumina (Al2O3) and yttria-stabilized zirconia (Y-TZP) that are well-established for load-bearing applications. The physicochemical surface properties are evaluated by profilometry, zeta potential and water contact angle measurements. The initial cell adhesion of human osteoblasts (HOBs), human osteoblast-like cells (MG-63) and mesenchymal stromal cells (hMSCs) was investigated. Cell adhesion was assessed at serum free condition via quantification of percentage of adherent cells, adhesion area and staining of the focal adhesion protein vinculin. Our findings show that after ALP immobilization, the Al2O3 and Y-TZP surfaces gained a negative charge and their hydrophilicity was increased. In the presence of surface-immobilized ALP, a higher cell adhesion, more pronounced cell spreading and a higher number of focal contact points were found. Thereby, this work gives evidence that surface functionalization with ALP can be utilized to modify inert materials for biological conversion and faster bone regeneration on inert and potentially load-bearing implant materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Synthesis and characterisation of alkaline anionic-exchange membranes for direct alcohol fuel cells

    CSIR Research Space (South Africa)

    Nonjola, P

    2007-12-01

    Full Text Available , but the most important being proton exchange membrane fuel cell (PEMFC), which uses an acidic membrane like Nafion (sulfonated fluorocarbon polymers) as an electrolyte. The use of polymer electrolytes represents an interesting path to pursue...

  9. Characterization of anionic-exchange membranes for direct alcohol alkaline fuel cells

    CSIR Research Space (South Africa)

    Abuin, GC

    2009-06-01

    Full Text Available and Young modulus were evaluated and compared to other membrane materials commonly employed in PEM fuel cells. A quartz crystal microbalance (QMC) was used to measure the water uptake of thin membranes of this material casted over the quartz crystals...

  10. Novel quaternized poly(arylene ether sulfone)/Nano-ZrO₂ composite anion exchange membranes for alkaline fuel cells.

    Science.gov (United States)

    Li, Xiuhua; Yu, Yingfeng; Meng, Yuezhong

    2013-02-01

    A series of composite anion exchange membranes based on novel quaternized poly(arylene ether sulfone)/nanozirconia (QPAES/nano-ZrO₂) composites are prepared using a solution casting method. The QPAES/nano-ZrO₂ composite membranes are characterized by FTIR, X-ray diffraction (XRD), and scanning electron microscopy/energy-dispersive X-ray analysis (SEM/EDX). The ion exchange capacity (IEC), water uptake, swelling ratio, hydroxide ion conductivity, mechanical properties, thermal stability, and chemical stability of the composite membranes are measured to evaluate their applicability in fuel cells. The introduction of nano-ZrO₂ induces the crystallization of the matrix and enhances the IEC of the composite membranes. The modification with nano-ZrO₂ improves water uptake, dimension stability, hydroxide ion conductivity, mechanical properties, and thermal and chemical stabilities of the composite membranes. The QPAES/nano-ZrO₂ composite membranes show hydroxide ion conductivities over 25.7 mS cm⁻¹ at a temperature above 60 °C. Especially, the QPAES/nano-ZrO₂ composite membranes with the nano-ZrO₂ content above 7.5% display hydroxide ion conductivities over 41.4 mS cm⁻¹ at 80 °C. The E(a) values of the QPAES/nano-ZrO₂ composite membranes with the nano-ZrO₂ content above 5% are lower than 11.05 kJ mol⁻¹. The QPAES/7.5% nano-ZrO₂ composite membrane displays the lowest E(a) value and the best comprehensive properties and constitutes a good potential candidate for alkaline fuel cells.

  11. A Stability Study of Alkali Doped PBI Membranes for Alkaline Electrolyzer Cells

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Aili, David; Hansen, Martin Kalmar

    2014-01-01

    conductivity was similar to a commercial Zirfon membrane and suitable for a water electrolyzer. Some chemical degradation was seen during the aging period, but the crosslinked and the cured materials were both integral after 176 days of aging. A simplified electrolyzer test cell was operated successfully....

  12. Development of alkaline fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassovs research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herrings group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  13. A facile synthesis of highly stable multiblock poly(arylene ether)s based alkaline membranes for fuel cells

    Science.gov (United States)

    Jasti, Amaranadh; Shahi, Vinod K.

    2014-12-01

    Herein, we are disclosing simple route for the preparation of alkaline membranes (AMs) based on aminated multiblock poly(arylene ether)s (AMPEs) synthesized by nucleophilic substitution-poly condensation followed by quaternization and alkalization reactions. In this procedure, four quaternary ammonium groups are successfully introduced without use of carcinogenic reagents such as chloromethylmethyl ether (CMME). Hydrophilic/hydrophobic phase separation is responsible for their high hydroxide conductivity (∼150 mS cm-1 at 80 °C) due to development of interconnected ion transport pathway. AMs are exhibiting good alkaline stability due to the presence of two vicinal quaternary ammonium groups and avoid degradation such as Sommelet-Hauser rearrangement and Hofmann elimination. Vicinal quaternary ammonium groups also resist nucleophilic (OH-) attack and suppress the Stevens rearrangement as well as SN2 substitution reaction due to stearic hindrance. Optimized AM (AMPE-M20N15 (55% DCM)) exhibits about 0.95 V open circuit voltage (OCV) and 48.8 mW cm-2 power density at 65 °C in alkaline direct methanol fuel cell (ADMFC) operation. These results suggest promising begin for the preparation of stable and conductive AMs for ADMFC applications and useful for developing hydroxide conductive materials.

  14. Development of a mathematical model for a single alkaline membrane fuel cell (AMFC) with fixed volume and general square section

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Elise Meister; Vargas, Jose Viriato Coelho [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Centro Politecnico. Setor de Tecnologia], Email: jvargas@demec.ufpr.br; Martins, Lauber de Souza; Ordonez, Juan Carlos [Florida State University, Tallahasse, FL (United States). Dept. of Mechanical Engineering and Center for Advanced Power Systems], Emails: martins@caps.fsu.edu, ordonez@eng.fsu.edu

    2010-07-01

    The Alkaline Membrane Fuel Cell (AMFC) is a recently developed fuel cell type, which has shown good experimental results in the laboratory. This paper introduces a mathematical model for the single AMFC with fixed volume and general square section. The main objective is to produce a reliable model (and computationally fast) to predict the response of the single AMFC according to variations of the physical properties of manufacturing materials and operating and design parameters. The model is based on mass, momentum, energy and species conservation, and electrochemical principles, and takes into account pressure drops in the gas channels and temperature gradients with respect to space in the flow direction. The simulation results comprise the AMFC temperature distribution, net power and polarization curves. It is shown that temperature spatial gradients and gas channels pressure drops significantly affect fuel cell performance. Such effects are not usually investigated in the models available in the literature, with most of them assuming uniform pressure and temperature operation. Therefore, the model is expected to be a useful tool for AMFC design and optimization. (author)

  15. 3-Methyltrimethylammonium poly(2,6-dimethyl-1,4-phenylene oxide) based anion exchange membrane for alkaline polymer electrolyte fuel cells

    Indian Academy of Sciences (India)

    K Hari Gopi; S Gouse Peera; S D Bhat; P Sridhar; S Pitchumani

    2014-06-01

    Hydroxyl ion (OH–) conducting anion exchange membranes based on modified poly (phenylene oxide) are fabricated for their application in alkaline polymer electrolyte fuel cells (APEFCs). In the present study, chloromethylation of poly(phenylene oxide) (PPO) is performed by aryl substitution rather than benzyl substitution and homogeneously quaternized to form an anion exchange membrane (AEM). 1H NMR and FT–IR studies reveal successful incorporation of the above groups in the polymer backbone. The membrane is characterized for its ion exchange capacity and water uptake. The membrane formed by these processes show good ionic conductivity and when used in fuel cell exhibited an enhanced performance in comparison with the state-of-the-art commercial AHA membrane. A peak power density of 111 mW/cm2 at a load current density of 250 mA/cm2 is obtained for PPO based membrane in APEFCs at 30 °C.

  16. Polyvinyl alcohol membranes as alkaline battery separators

    Science.gov (United States)

    Sheibley, D. W.; Gonzalez-Sanabria, O.; Manzo, M. A.

    1982-01-01

    Polyvinly alcohol (PVA) cross-linked with aldehyde reagents yields membranes that demonstrate properties that make them suitable for use as alkaline battery separators. Film properties can be controlled by the choice of cross-linker, cross-link density and the method of cross-linking. Three methods of cross-linking and their effects on film properties are discussed. Film properties can also be modified by using a copolymer of vinyl alcohol and acrylic acid as the base for the separator and cross-linking it similarly to the PVA. Fillers can be incorporated into the films to further modify film properties. Results of separator screening tests and cell tests for several variations of PBA films are discussed.

  17. Alkaline electrochemical cells and method of making

    Science.gov (United States)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1970-01-01

    Equilibrated cellulose ether membranes of increased electrolytic conductivity for use as separators in concentrated alkaline electrochemical cells are investigated. The method of making such membranes by equilibration to the degree desired in an aqueous alkali solution mantained at a temperature below about 10 C is described.

  18. A high selectivity quaternized polysulfone membrane for alkaline direct methanol fuel cells

    CSIR Research Space (South Africa)

    Abuin, GC

    2015-04-01

    Full Text Available in the three-phase region with similar characteristics to that of the bulky membrane. Acknowledgments The authors acknowledge MINCyT / NRF Cooperation Program RSA-Argentina (Grant 67370), ANPCyT (PICT 2091), and Consejo Nacional de Investigaciones... Científicas y Técnicas (PIP 0095) for financial support. MM and PN thanks CSIR (MSM) for support. HRC is a member of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). EAF thanks a fellowship by CONICET. References [1] G. Olah, A. A...

  19. Invited: A Stability Study of Alkali Doped PBI Membranes for Alkaline Electrolyzer Cells

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Aili, David; Hansen, Martin Kalmar

    2014-01-01

    lost less that 10 mass %. Viscosity measurement on the linear PBI (the only one soluble) showed a decreasing molecular weight over time of storage. The materials were also examined by IR, NMR and TGA. Finally, electrolysis tests were made including comparison with a commercial diaphragm material...... polarization characteristics. [1] G. Merle, M. Wessling and K. Nijmeijer. J. Membrane Sci. 377 (2011) 1– 35 [2] Q. F. Li, J. O. Jensen, R. F. Savinell and N. J. Bjerrum. Prog. Polym. Sci. 34(2009) 449 [3] B. Xing, O. Savadogo, Electrochemistry Communications 2(2000) 697-702 [4] D. Aili, M. K. Hansen, R...

  20. H{sub 2}/air alkaline membrane fuel cell performance and durability, using novel ionomer and non-platinum group metal cathode catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Piana, Michele; Boccia, Massimiliano; Filpi, Antonio; Flammia, Elisa; Miller, Hamish A.; Orsini, Marco; Salusti, Francesca; Santiccioli, Serena [Acta S.p.A., Fuel cell Technology, via di Lavoria 56/G, I-56042 Crespina (PI) (Italy); Ciardelli, Francesco; Pucci, Andrea [Department of Chemistry and Industrial Chemistry, University of Pisa, Via, Risorgimento 35, I-56126 Pisa (Italy)

    2010-09-15

    The development of H{sub 2}/air alkaline membrane fuel cells (AMFCs) enables the use of non-platinum group metal (PGM) catalysts which are intrinsically stable and have an activity similar to platinum in alkaline media for the oxygen reduction reaction (ORR). As opposed to PEMFCs, the research and development of these types of catalysts for AMFC has had little attention and even less has been given to the development of alkaline membranes and ionomers. Acta S.p.A. has developed recently new non-PGM ORR catalysts with activity higher than Pt in alkaline media. More importantly, a new anionic ionomer derived from cheap starting materials with optimum performance has been produced. In this paper we demonstrate the use of this new ionomer in H{sub 2}/air AMFCs showing the first polarization and durability data, with current densities higher than those recently reported in the literature. Furthermore, we report the effect of CO{sub 2} on AMFC performance, showing the possibility of use of such alkaline devices not only in outer-space applications, but also with atmospheric air for large scale devices. (author)

  1. Alkaline fuel cells applications

    Science.gov (United States)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  2. Transplantation of human limbal cells cultivated on amniotic membrane for reconstruction of rat corneal epithelium after alkaline burn

    Institute of Scientific and Technical Information of China (English)

    SONG E; YANG Wei; CUI Zhi-hua; DONG Yu; SUI Dong-ming; GUAN Xiao-kang; MA Yang-ling

    2005-01-01

    Background The transplantation of limbal epithelial cells cultivated on amniotic membrane is a newly developed treatment for limbal stem cell deficiency. The purpose of our study was to investigate the biological characteristics of limbal epithelial cells and evaluate the effect of transplantation of cultivated human limbal epithelial cells on ocular surface reconstruction in limbal stem cell deficiency rat model. Methods Human limbal cells were isolated and cultivated in vitro. Cytokertins 3, 12, and 19 (K3, K12 and K19) and p63 were detected by immunofluorescent staining or RT-PCR. BrdU labelling test was used to identify the slow cycling cells in the cultures. Limbal stem cell deficiency was established in rat cornea by alkali burn. Two weeks after injury, the rats received transplants of human limbal stem cells cultivated on amniotic membrane carrier. The therapeutic effect was evaluated by slit lamp observation, Hemotoxin and Eosin (HE) staining and immunofluorescent staining.Results On day 7 in primary culture, p63 and K19 were strongly expressed by most cells but only a few cells expressed K3. On days 14 and 21, p63 and K19 were still expressed by a majority of cells, but the expressive intensity of p63 decreased in a number of cells, while the proportion of K3 positive cells increased slightly and some cells coexpressed p63 and K3. RT-PCR showed that gene expression of both p63 and K12 were positive in cultivated limbal cells, but in mature superficial epithelial cells, only K12 was detected. BrdU labelling test showed that most cells were labelled with BrdU after 7 days' labelling and BrdU label retaining cells were observed after chasing for 21 days with BrdU free medium. For in vivo test, slit lamp observation, HE staining and immunofluorescent staining showed that the rats receiving transplant of human limbal stem cells cultivated on amniotic membrane grew reconstructed corneas with intact epithelium, improved transparency and slight or no

  3. The cellular prion protein interacts with the tissue non-specific alkaline phosphatase in membrane microdomains of bioaminergic neuronal cells.

    Directory of Open Access Journals (Sweden)

    Myriam Ermonval

    Full Text Available BACKGROUND: The cellular prion protein, PrP(C, is GPI anchored and abundant in lipid rafts. The absolute requirement of PrP(C in neurodegeneration associated to prion diseases is well established. However, the function of this ubiquitous protein is still puzzling. Our previous work using the 1C11 neuronal model, provided evidence that PrP(C acts as a cell surface receptor. Besides a ubiquitous signaling function of PrP(C, we have described a neuronal specificity pointing to a role of PrP(C in neuronal homeostasis. 1C11 cells, upon appropriate induction, engage into neuronal differentiation programs, giving rise either to serotonergic (1C11(5-HT or noradrenergic (1C11(NE derivatives. METHODOLOGY/PRINCIPAL FINDINGS: The neuronal specificity of PrP(C signaling prompted us to search for PrP(C partners in 1C11-derived bioaminergic neuronal cells. We show here by immunoprecipitation an association of PrP(C with an 80 kDa protein identified by mass spectrometry as the tissue non-specific alkaline phosphatase (TNAP. This interaction occurs in lipid rafts and is restricted to 1C11-derived neuronal progenies. Our data indicate that TNAP is implemented during the differentiation programs of 1C11(5-HT and 1C11(NE cells and is active at their cell surface. Noteworthy, TNAP may contribute to the regulation of serotonin or catecholamine synthesis in 1C11(5-HT and 1C11(NE bioaminergic cells by controlling pyridoxal phosphate levels. Finally, TNAP activity is shown to modulate the phosphorylation status of laminin and thereby its interaction with PrP. CONCLUSION/SIGNIFICANCE: The identification of a novel PrP(C partner in lipid rafts of neuronal cells favors the idea of a role of PrP in multiple functions. Because PrP(C and laminin functionally interact to support neuronal differentiation and memory consolidation, our findings introduce TNAP as a functional protagonist in the PrP(C-laminin interplay. The partnership between TNAP and PrP(C in neuronal cells may

  4. Fumed Silica Nanoparticles Incorporated in Quaternized Poly(Vinyl Alcohol Nanocomposite Membrane for Enhanced Power Densities in Direct Alcohol Alkaline Fuel Cells

    Directory of Open Access Journals (Sweden)

    Selvaraj Rajesh Kumar

    2015-12-01

    Full Text Available A nanocomposite polymer membrane based on quaternized poly(vinyl alcohol/fumed silica (QPVA/FS was prepared via a quaternization process and solution casting method. The physico-chemical properties of the QPVA/FS membrane were investigated. Its high ionic conductivity was found to depend greatly on the concentration of fumed silica in the QPVA matrix. A maximum conductivity of 3.50 × 10−2 S/cm was obtained for QPVA/5%FS at 60 °C when it was doped with 6 M KOH. The permeabilities of methanol and ethanol were reduced with increasing fumed silica content. Cell voltage and peak power density were analyzed as functions of fumed silica concentration, temperature, methanol and ethanol concentrations. A maximum power density of 96.8 mW/cm2 was achieved with QPVA/5%FS electrolyte using 2 M methanol + 6 M KOH as fuel at 80 °C. A peak power density of 79 mW/cm2 was obtained using the QPVA/5%FS electrolyte with 3 M ethanol + 5 M KOH as fuel. The resulting peak power densities are higher than the majority of published reports. The results confirm that QPVA/FS exhibits promise as a future polymeric electrolyte for use in direct alkaline alcoholic fuel cells.

  5. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Jemmerson, R.; Low, M.G.

    1987-09-08

    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either /sup 3/H-fatty acids or (/sup 3/H)ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the /sup 3/H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of (/sup 3/H)ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from /sup 3/H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the /sup 3/H-fatty acid and the (/sup 3/H)ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the (/sup 3/H)ethanolamine label from the purified alkaline phosphatase. The /sup 3/H radioactivity in alkaline phosphatase purified from (/sup 3/H)ethanolamine-labeled cells comigrated with authentic (/sup 3/H)ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the /sup 3/H-fatty acid and (/sup 3/H)ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase.

  6. Novel quaternary ammonium microblock poly (p-phenylene-co-aryl ether ketone)s as anion exchange membranes for alkaline fuel cells

    Science.gov (United States)

    Dong, Xue; Xue, Boxin; Qian, Huidong; Zheng, Jifu; Li, Shenghai; Zhang, Suobo

    2017-02-01

    Using cation compounds as raw materials, three quaternized microblock poly(p-phenylene-co-aryl ether ketone)s (s-, m-, and l-QPP-co-PAEK) were synthesized using a nickel (0)-catalyzed coupling reaction. Hydrophilic and hydrophobic moieties were affixed using cationic quaternary ammonium (QA) groups attached to poly(p-phenylene) by a three-carbon interstitial spacer and nonionic dichloride monomers of various lengths, respectively. The morphology, water uptake, swelling ratio, mechanical properties, thermal stability, hydroxide conductivity and alkaline stability of these new membranes were investigated. Experimental results indicated that the membrane with the longest hydrophobic microblock exhibited high hydroxide conductivity (37.6 mS cm-1 at 80 °C) resulting from the aggregation of ionic clusters observed using TEM. The copolymers with longer hydrophobic nonionic segments exhibited improved alkaline stability, suggesting that the hydrophobic chain shields the QA groups and that the polymer chains pack in a manner that restricts rotation. Controlling the distribution of QA groups in poly(p-phenylene) moieties and tuning the block length of nonionic segments are demonstrated to be effective methods for improving the hydroxide conductivity and alkaline stability of anion exchange membranes.

  7. Ecofriendly and Simplified Synthetic Route for Polysulfone-based Solid-State Alkaline Electrolyte Membrane

    Directory of Open Access Journals (Sweden)

    Nittaya Pantamas

    2012-01-01

    Full Text Available Problem statement: Recently the alkaline system for fuel cell enhance their presence because of possibility of no-precious-metal catalyst and low over potential at cathode reaction. The anion exchange membrane for alkaline membrane fuel cell should be a key technology in order to achieve the practical performance as fuel cells. Alkaline anion exchange membranes of high ionic conductivities are made from polysulfone by adding a chloromethyl pendant group to the polysulfone, follow by reacting the chloromethyl group with amine to form quarternary ammonium pendant groups which act as the counter ion for hydroxide anion. Chloromethyl methyl ether, N,N-dimethylformamide and methanol are commonly used as agent for providing excellent conversions, but they are now considered to be carcinogenic. To avoid the use of such hazardous materials, in our work we used paraformaldehyde, chlorotrimethylsilane, N-methylpyrrolidone and ethanol as agent for providing conversion. Approach: Polysulfone (PS was chloromethylated using chlorotrimethylsilane as a chloromethylation reagent, resulting in the formation of Chloromethylated Polysulfone (CMPS. CMPS was converted to a quaternized form using trimethylamine and precipitated into ethanol. The powder was dissolved in N-methylpyrrolidone, followed by aminated with a 25 wt% trimethylamine. Results: The resulting solution was cast onto a flat glass plate and dried in an oven. The membrane was immersed in KOH solution for 24 h to replace the Cl- anion in the polymer with OH-. Conclusion: The swelling behavior of polysulfone-based solid-state alkaline electrolyte membrane was closely related to the degree of water uptake (25 WU%, 7.5 SD% and the ion-exchange capacity was 1.05 mmol g-1, which is sufficient for electrolyte membranes used in alkaline fuel cells.

  8. Carbonate and Bicarbonate Ion Transport in Alkaline Anion Exchange Membranes

    Science.gov (United States)

    2013-06-25

    Bicarbonate Ion Transport in Alk Block 13: Supplementary Note © 2013 . Published in Journal of the Electrochemical Society , Vol. Ed. 0 160, (9) (2013...for public release; distribution is unlimited. ... 60325.7-CH-II F994 Journal of The Electrochemical Society , 160 (9) F994-F999 (2013) 0013-4651/2013...160(9)/F994/6/$31.00 © The Electrochemical Society Carbonate and Bicarbonate Ion Transport in Alkaline Anion Exchange Membranes Andrew M. Kiss,a

  9. High-performance alkaline polymer electrolyte for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Jing; Lu, Shanfu; Li, Yan; Huang, Aibin; Zhuang, Lin; Lu, Juntao [College of Chemistry and Molecular Sciences, Hubei Key Lab. of Electrochemical Power Sources, Wuhan University (China)

    2010-01-22

    Although the proton exchange membrane fuel cell (PEMFC) has made great progress in recent decades, its commercialization has been hindered by a number of factors, among which is the total dependence on Pt-based catalysts. Alkaline polymer electrolyte fuel cells (APEFCs) have been increasingly recognized as a solution to overcome the dependence on noble metal catalysts. In principle, APEFCs combine the advantages of and alkaline fuel cell (AFC) and a PEMFC: there is no need for noble metal catalysts and they are free of carbonate precipitates that would break the waterproofing in the AFC cathode. However, the performance of most alkaline polyelectrolytes can still not fulfill the requirement of fuel cell operations. In the present work, detailed information about the synthesis and physicochemical properties of the quaternary ammonia polysulfone (QAPS), a high-performance alkaline polymer electrolyte that has been successfully applied in the authors' previous work to demonstrate an APEFC completely free from noble metal catalysts (S. Lu, J. Pan, A. Huang, L. Zhuang, J. Lu, Proc. Natl. Acad. Sci. USA 2008, 105, 20611), is reported. Monitored by NMR analysis, the synthetic process of QAPS is seen to be simple and efficient. The chemical and thermal stability, as well as the mechanical strength of the synthetic QAPS membrane, are outstanding in comparison to commercial anion-exchange membranes. The ionic conductivity of QAPS at room temperature is measured to be on the order of 10{sup -2} S cm{sup -1}. Such good mechanical and conducting performances can be attributed to the superior microstructure of the polyelectrolyte, which features interconnected ionic channels in tens of nanometers diameter, as revealed by HRTEM observations. The electrochemical behavior at the Pt/QAPS interface reveals the strong alkaline nature of this polyelectrolyte, and the preliminary fuel cell test verifies the feasibility of QAPS for fuel cell applications. (Abstract Copyright [2010

  10. Alkali doped poly (2,5-benzimidazole) membrane for alkaline water electrolysis: Characterization and performance

    Science.gov (United States)

    Diaz, Liliana A.; Hnát, Jaromír; Heredia, Nayra; Bruno, Mariano M.; Viva, Federico A.; Paidar, Martin; Corti, Horacio R.; Bouzek, Karel; Abuin, Graciela C.

    2016-04-01

    The properties and performance of linear and cross-linked KOH doped ABPBI membranes as electrolyte/separator for zero gap alkaline water electrolysis cells are evaluated and compared with a commercial Zirfon® diaphragm. Stability in alkaline environment, swelling, thermal properties, water sorption, KOH uptake and conductivity of linear (L-ABPBI) and cross-linked (C-ABPBI) membranes doped with different concentrations of KOH are analyzed. Linear membranes show stability up to 3.0 mol·dm-3 KOH doping, while cross-linked membranes are stable up to 4.2 mol·dm-3 KOH doping. Both kinds of membranes exhibit good thermal stability and reasonable specific ionic conductivity at 22 °C in the range between 7 and 25 mS·cm-1, being slightly higher the conductivity of C-ABPBI membranes than that of L-ABPBI ones. In short-term electrolysis tests both L-ABPBI and C-ABPBI membranes show better performance than Zirfon diaphragm in the range from 50 to 70 °C. A current density of 335 mA·cm-2 at a cell voltage of 2.0 V is attained with C-ABPBI membranes doped in 3 mol·dm-3 KOH at 70 °C, a performance comparable with that of commercial units operating at temperatures ca. 80 °C and 30 wt% KOH (6.7 mol·dm-3) as electrolyte.

  11. Porous poly(perfluorosulfonic acid) membranes for alkaline water electrolysis

    DEFF Research Database (Denmark)

    Aili, David; Hansen, Martin Kalmar; Andreasen, Jens Wenzel;

    2015-01-01

    and washed out and the obtained porous materials allowed for swelling to reach water contents up to λ=85 [H2O] [−SO3K]−1. After equilibration in 22 wt% aqueous KOH, ion conductivity of 0.2 S cm−1 was recorded for this membrane type at room temperature, which is significantly higher than 0.01 S cm−1......Poly(perfluorosulfonic acid) (PFSA) is one of a few polymer types that combine excellent alkali resistance with extreme hydrophilicity. It is therefore of interest as a base material in separators for alkaline water electrolyzers. In the pristine form it, however, shows high cation selectivity....... To increase its ion conductivity in aqueous KOH, a method for the preparation of porous PFSA membranes was developed. It was based on an approach where PFSA was co-cast with poly(vinylpyrrolidone) (PVP) at different ratios to give transparent and colorless blend membranes. The PVP was subsequently dissolved...

  12. Principles and Materials Aspects of Direct Alkaline Alcohol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Eileen Hao Yu

    2010-08-01

    Full Text Available Direct alkaline alcohol fuel cells (DAAFCs have attracted increasing interest over the past decade because of their favourable reaction kinetics in alkaline media, higher energy densities achievable and the easy handling of the liquid fuels. In this review, principles and mechanisms of DAAFCs in alcohol oxidation and oxygen reduction are discussed. Despite the high energy densities available during the oxidation of polycarbon alcohols they are difficult to oxidise. Apart from methanol, the complete oxidation of other polycarbon alcohols to CO2 has not been achieved with current catalysts. Different types of catalysts, from conventional precious metal catalyst of Pt and Pt alloys to other lower cost Pd, Au and Ag metal catalysts are compared. Non precious metal catalysts, and lanthanum, strontium oxides and perovskite-type oxides are also discussed. Membranes like the ones used as polymer electrolytes and developed for DAAFCs are reviewed. Unlike conventional proton exchange membrane fuel cells, anion exchange membranes are used in present DAAFCs. Fuel cell performance with DAAFCs using different alcohols, catalysts and membranes, as well as operating parameters are summarised. In order to improve the power output of the DAAFCs, further developments in catalysts, membrane materials and fuel cell systems are essential.

  13. Alkaline polymer electrolyte fuel cells: Principle, challenges, and recent progress

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Polymer electrolyte membrane fuel cells (PEMFC) have been recognized as a significant power source in future energy systems based on hydrogen. The current PEMFC technology features the employment of acidic polymer electrolytes which, albeit superior to electrolyte solutions, have intrinsically limited the catalysts to noble metals, fundamentally preventing PEMFC from widespread deployment. An effective solution to this problem is to develop fuel cells based on alkaline polymer electrolytes (APEFC), which not only enable the use of non-precious metal catalysts but also avoid the carbonate-precipitate issue which has been troubling the conventional alkaline fuel cells (AFC). This feature article introduces the principle of APEFC, the challenges, and our research progress, and focuses on strategies for developing key materials, including high-performance alkaline polyelectrolytes and stable non-precious metal catalysts. For alkaline polymer electrolytes, high ionic conductivity and satisfactory mechanical property are difficult to be balanced, therefore polymer cross-linking is an ultimate strategy. For non-precious metal catalysts, it is urgent to improve the catalytic activity and stability. New materials, such as transition-metal complexes, nitrogen-doped carbon nanotubes, and metal carbides, would become applicable in APEFC.

  14. Kinetic aspects of human placental alkaline phosphatase enzyme membrane.

    Science.gov (United States)

    Roig, M G; Serrano, M A; Bello, J F; Cachaza, J M; Kennedy, J F

    1991-01-01

    The crosslinking of alkaline phosphatase of human placenta with human serum albumin has been optimized. During the physico-chemical characterization of this immobilized biocatalyst, special attention was paid to attributes such as the irreversibility of the enzyme support bonding, the stability of the catalytic activity, and the effects of pH and temperature on this activity. Regarding stability, patterns of denaturation are proposed, to account for inactivation curves over time and under storage/operation conditions. These patterns, in some cases, indicate the existence of different populations of immobilized enzyme molecules, with a different degree of sensitivity to denaturation. The activity vs pH profiles are clearly modified by the immobilization process. This is because the pH of the free homogeneous solution, measurable with a pH-meter, differs from the real pH of the immediate microenvironment of the immobilized enzyme molecules due to the effects of proton accumulation in the microenvironment (in the reaction catalysed by alkaline phosphatase, protons are produced), to limitations to the free diffusion of H+ and to the possible partition effects of H+ due to polar interactions with residues or molecules of the enzyme membrane. In the experimental working conditions, the apparent optimum temperatures are centered at 40 degrees C, inactivation (thermal denaturation) occurring above this temperature. In the temperature range 10-40 degrees C, the kinetic control over the overall activity of the immobilized enzyme was observed, causing the Arrhenius profiles to be linear.

  15. Elucidating how bamboo salt interacts with supported lipid membranes: influence of alkalinity on membrane fluidity.

    Science.gov (United States)

    Jeong, Jong Hee; Choi, Jae-Hyeok; Kim, Min Chul; Park, Jae Hyeon; Herrin, Jason Scott; Kim, Seung Hyun; Lee, Haiwon; Cho, Nam-Joon

    2015-07-01

    Bamboo salt is a traditional medicine produced from sea salt. It is widely used in Oriental medicine and is an alkalizing agent with reported antiinflammatory, antimicrobial and chemotherapeutic properties. Notwithstanding, linking specific molecular mechanisms with these properties has been challenging to establish in biological systems. In part, this issue may be related to bamboo salt eliciting nonspecific effects on components found within these systems. Herein, we investigated the effects of bamboo salt solution on supported lipid bilayers as a model system to characterize the interaction between lipid membranes and bamboo salt. The atomic composition of unprocessed and processed bamboo salts was first analyzed by mass spectrometry, and we identified several elements that have not been previously reported in other bamboo salt preparations. The alkalinity of hydrated samples was also measured and determined to be between pH 10 and 11 for bamboo salts. The effect of processed bamboo salt solutions on the fluidic properties of a supported lipid bilayer on glass was next investigated by fluorescence recovery after photobleaching (FRAP) analysis. It was demonstrated that, with increasing ionic strength of the bamboo salt solution, the fluidity of a lipid bilayer increased. On the contrary, increasing the ionic strength of near-neutral buffer solutions with sodium chloride salt diminished fluidity. To reconcile these two observations, we identified that solution alkalinity is critical for the effects of bamboo salt on membrane fluidity, as confirmed using three additional commercial bamboo salt preparations. Extended-DLVO model calculations support that the effects of bamboo salt on lipid membranes are due to the alkalinity imparting a stronger hydration force. Collectively, the results of this work demonstrate that processing of bamboo salt strongly affects its atomic composition and that the alkalinity of bamboo salt solutions contributes to its effect on membrane

  16. Stability in alkaline aqueous electrolyte of air electrode protected with fluorinated interpenetrating polymer network membrane

    Science.gov (United States)

    Bertolotti, Bruno; Messaoudi, Houssam; Chikh, Linda; Vancaeyzeele, Cédric; Alfonsi, Séverine; Fichet, Odile

    2015-01-01

    We developed original anion exchange membranes to protect air electrodes operating in aqueous lithium-air battery configuration, i.e. supplied with atmospheric air and in concentrated aqueous lithium hydroxide. These protective membranes have an interpenetrating polymer network (IPN) architecture combining a hydrogenated cationic polyelectrolyte network based on poly(epichlorohydrin) (PECH) and a fluorinated neutral network based on perfluoropolyether (Fluorolink® MD700). Two phases, each one rich in one of the polymer, are co-continuous in the materials. This morphology allows combining their properties according to the weight proportions of each polymer. Thus, PECH/Fluorolink IPNs show ionic conductivity varying from 1 to 2 mS cm-1, water uptake from 30 to 90 wt.% and anionic transport number from 0.65 to 0.80 when the PECH proportion varies from 40 to 90 wt.%. These membranes have been systematically assembled on air electrodes. Air electrode protected with PECH/Fluorolink 70/30 IPN shows outstanding stability higher than 1000 h, i.e. a 20-fold increase in the lifetime of the non-modified electrode. This efficient membrane/air electrode assembly is promising for development of alkaline electrolyte based storage or production energy systems, such as metal air batteries or alkaline fuel cells.

  17. Heterogeneous anion conducting membranes based on linear and crosslinked KOH doped polybenzimidazole for alkaline water electrolysis

    DEFF Research Database (Denmark)

    Aili, David; Hansen, Martin Kalmar; Renzaho, Richard Fulgence

    2013-01-01

    Polybenzimidazole is a highly hygroscopic polymer that can be doped with aqueous KOH to give a material with high ion conductivity in the 10−2Scm−1 range, which in combination with its low gas permeability makes it an interesting electrolyte material for alkaline water electrolysis. In this study...... on their linear counterpart. The technical feasibility of the membranes was evaluated by the preliminary water electrolysis tests showing performance comparable to that of commercially available cell separators with great potential of further improvement....

  18. Zinc ions and alkaline pH alter the phosphorylation state of human erythrocyte membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Fennell, R.L. Jr.

    1988-01-01

    Since the phosphorylation state of the red cell membrane proteins in vitro is likely to be regulated by phosphorylation and dephosphorylation, this research was carried out to investigate the possible role of membrane-bound phosphatase activities. These studies were conducted with red blood cell ghosts and IOVs from normal individuals and from an individual with hereditary spherocytosis. In vitro phosphorylation with ({gamma}-{sup 32}P) ATP was conducted in the presence and the absence of Zn{sup ++}, or erythrocyte ghosts and IOVs were pretreated for 30 minutes at 37{degree}C and pH 7-11 in the presence and the absence of calf intestine alkaline phosphatase. The resulting phosphoproteins were analyzed by SDS-polyacrylamide gel electrophoresis, stained with Coomassie blue, and fluorographed. In the presence of Zn{sup ++}, the red blood ghosts, with or without pretreatment, demonstrated enhanced phosphorylation of membrane proteins, including band 4.2. Preincubation at pH 10 in the presence of absence of exogenous phosphatase further stimulates phosphorylation of these proteins. Under similar conditions, the erythrocyte membranes also demonstrated the ability to hydrolyze p-nitrophenyl phosphate and to remove {sup 32}P from red blood cell phosphoproteins.

  19. Advanced-capability alkaline fuel cell powerplant

    Science.gov (United States)

    Deronck, Henry J.

    The alkaline fuel cell powerplant utilized in the Space Shuttle Orbiter has established an excellent performance and reliability record over the past decade. Recent AFC technology programs have demonstrated significant advances in cell durability and power density. These capabilities provide the basis for substantial improvement of the Orbiter powerplant, enabling new mission applications as well as enhancing performance in the Orbiter. Improved durability would extend the powerplant's time between overhaul fivefold, and permit longer-duration missions. The powerplant would also be a strong candidate for lunar/planetary surface power systems. Higher power capability would enable replacement of the Orbiter's auxiliary power units with electric motors, and benefits mass-critical applications such as the National AeroSpace Plane.

  20. Hydroxide Self-Feeding High-Temperature Alkaline Direct Formate Fuel Cells.

    Science.gov (United States)

    Li, Yinshi; Sun, Xianda; Feng, Ying

    2017-03-11

    Conventionally, both the thermal degradation of the anion-exchange membrane and the requirement of additional hydroxide for fuel oxidation reaction hinder the development of the high-temperature alkaline direct liquid fuel cells. The present work addresses these two issues by reporting a polybenzimidazole-membrane-based direct formate fuel cell (DFFC). Theoretically, the cell voltage of the high-temperature alkaline DFFC can be as high as 1.45 V at 90 °C. It has been demonstrated that a proof-of-concept alkaline DFFC without adding additional hydroxide yields a peak power density of 20.9 mW cm(-2) , an order of magnitude higher than both alkaline direct ethanol fuel cells and alkaline direct methanol fuel cells, mainly because the hydrolysis of formate provides enough OH(-) ions for formate oxidation reaction. It was also found that this hydroxide self-feeding high-temperature alkaline DFFC shows a stable 100 min constant-current discharge at 90 °C, proving the conceptual feasibility.

  1. Evaluation of biodegradation and biocompatibility of collagen/chitosan/alkaline phosphatase biopolymeric membranes

    Indian Academy of Sciences (India)

    E BERTEANU; D IONITA; M SIMOIU; M PARASCHIV; R TATIA; A APATEAN; M SIDOROFF; L TCACENCO

    2016-04-01

    The aim of this study was to develop a new variant of membranes based on collagen (COL), chitosan (CHI) and alkaline phosphatase (ALP) immobilized and cross-linking with glutaraldehyde (GA) at different concentrations. The biodegradation in the presence of collagenase was investigated. Biocompatibility was evaluated by MTT assay using a mouse fibroblast cell culture type NCTC (clone 929). Non-cross-linked samples were biocompatible and membranes cross-linked with low concentrations of GA (0.04, 0.08%) were also iocompatible. However, high concentrations of GA lead to a decreased biocompatibility. The adsorption behaviour of Ca$^{2+}$ ions to all membraneswere evaluated using the Freundlich isotherms. Haemolytic studies were performed in order to consider their applications in biomineralization process. By the addition of collagen and ALP to chitosan, the haemolytic indexdecreases, the COL–CHI–ALP membrane being in the non-haemolytic domain, while the COL–CHI–ALP–GA membrane has a haemolytic index greater than 2, and is slightly haemolytic.

  2. Transport phenomena in alkaline direct ethanol fuel cells for sustainable energy production

    Science.gov (United States)

    An, L.; Zhao, T. S.

    2017-02-01

    Alkaline direct ethanol fuel cells (DEFC), which convert the chemical energy stored in ethanol directly into electricity, are one of the most promising energy-conversion devices for portable, mobile and stationary power applications, primarily because this type of fuel cell runs on a carbon-neutral, sustainable fuel and the electrocatalytic and membrane materials that constitute the cell are relatively inexpensive. As a result, the alkaline DEFC technology has undergone a rapid progress over the last decade. This article provides a comprehensive review of transport phenomena of various species in this fuel cell system. The past investigations into how the design and structural parameters of membrane electrode assemblies and the operating parameters affect the fuel cell performance are discussed. In addition, future perspectives and challenges with regard to transport phenomena in this fuel cell system are also highlighted.

  3. Oxygen electrodes for rechargeable alkaline fuel cells

    Science.gov (United States)

    Swette, L.; Kackley, N.

    1989-12-01

    Electrocatalysts and supports for the positive electrode of moderate temperature single-unit rechargeable alkaline fuel cells are being investigated and developed. Candidate support materials were drawn from transition metal carbides, borides, nitrides and oxides which have high conductivity (greater than 1 ohm/cm). Candidate catalyst materials were selected largely from metal oxides of the form ABO sub x (where A = Pb, Cd, Mn, Ti, Zr, La, Sr, Na, and B = Pt, Pd, Ir, Ru, Ni (Co) which were investigated and/or developed for one function only, O2 reduction or O2 evolution. The electrical conductivity requirement for catalysts may be lower, especially if integrated with a higher conductivity support. All candidate materials of acceptable conductivity are subjected to corrosion testing. Materials that survive chemical testing are examined for electrochemical corrosion activity. For more stringent corrosion testing, and for further evaluation of electrocatalysts (which generally show significant O2 evolution at at 1.4 V), samples are held at 1.6 V or 0.6 V for about 100 hours. The surviving materials are then physically and chemically analyzed for signs of degradation. To evaluate the bifunctional oxygen activity of candidate catalysts, Teflon-bonded electrodes are fabricated and tested in a floating electrode configuration. Many of the experimental materials being studied have required development of a customized electrode fabrication procedure. In advanced development, the goal is to reduce the polarization to about 300 to 350 mV. Approximately six support materials and five catalyst materials were identified to date for further development. The test results will be described.

  4. Polyvinyl alcohol (PVA) and sulfonated polyetheretherketone (SPEEK) anion exchange membrane for fuel cell

    CSIR Research Space (South Africa)

    Luo, H

    2010-08-31

    Full Text Available problems for PEFC (using proton exchange membrane) concerning the increasing cost of platinum catalysts and decreasing amount of platinum resources2. Alkaline membrane fuel cells (AMFC) have recently been receiving a lot of attention among the different...

  5. Membrane Cells for Brine Electrolysis.

    Science.gov (United States)

    Tingle, M.

    1982-01-01

    Membrane cells were developed as alternatives to mercury and diaphragm cells for the electrolysis of brine. Compares the three types of cells, focusing on the advantages and disadvantages of membrane cells. (JN)

  6. Membrane Cells for Brine Electrolysis.

    Science.gov (United States)

    Tingle, M.

    1982-01-01

    Membrane cells were developed as alternatives to mercury and diaphragm cells for the electrolysis of brine. Compares the three types of cells, focusing on the advantages and disadvantages of membrane cells. (JN)

  7. ADVANCES IN THE MODEL OF CYLINDRICAL ALKALINE CELLS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The advancement of a systematic investigation on the modeling of cylindrical alkaline cells is presented.Initial analysis utilizes thermodynamic and kinetic information to predict alkaline cell performance under low discharge rates.Subsequent modling has taken into consideration detailed information on the chemistry of electrode reactions,mass tranport of dissolved species,physical and chemical properties of the electrolyte and solid phases,and internal geonetry of cell systems.The model is capable of predicting alkaline cell performance under a variety of dicharge conditions.The model also provides information regarding internal cell changes during discharge.The model is the basis of a rational approach for the optimal design of cells.

  8. Preparation of anion exchange membrane using polyvinyl chloride (PVC) for alkaline water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gab-Jin; Bong, Soo-Yeon; Ryu, Cheol-Hwi [Hoseo University, Asan (Korea, Republic of); Lim, Soo-Gon [Energy and Machinery Korea Co., Ltd., Changwon (Korea, Republic of); Choi, Ho-Sang [Kyungil University, Gyeongsan (Korea, Republic of)

    2015-09-15

    An anion exchange membrane was prepared by the chloromethylation and the amination of polyvinyl chloride (PVC), as the base polymer. The membrane properties of the prepared anion exchange membrane, including ionic conductivity, ion exchange capacity, and water content were measured. The ionic conductivity of the prepared anion exchange membrane was in the range of 0.098x10{sup -2} -7.0x10{sup -2}S cm{sup -1}. The ranges of ion exchange capacity and water content were 1.9-3.7meq./g-dry-membrane and 35.1-63.1%, respectively. The chemical stability of the prepared anion exchange membrane was tested by soaking in 30 wt% KOH solution to determine its availability as a separator in the alkaline water electrolysis. The ionic conductivity during the chemical stability test largely did not change.

  9. Exploring Alkaline Stable Organic Cations for Polymer Hydroxide Exchange Membranes

    Science.gov (United States)

    2015-04-29

    2012, 219, 272- 279. [82] C. Chen, A. R. Hess , A. R. Jones, X. Liu, G. D. Barber, T. E. Mallouk, H. R. Allcock, Macromolecules 2012, 45, 1182-1189... Herman , J. R. Varcoe, Energy & Environmental Science 2012, 5, 8584-8597. [176] M. A. Hossain, Y. Lim, S. Lee, H. Jang, S. Choi, Y. Jeon, S. Lee, H. Ju, W...Catalysis a-Chemical 2007, 270, 123-126. [241] H. Herman , R. C. T. Slade, J. R. Varcoe, Journal of Membrane Science 2003, 218, 147-163. [242] G. G

  10. Extracellular Alkalinization as a Defense Response in Potato Cells

    OpenAIRE

    Moroz, Natalia; Fritch, Karen R.; Marcec, Matthew J.; Tripathi, Diwaker; Smertenko, Andrei; Tanaka, Kiwamu

    2017-01-01

    A quantitative and robust bioassay to assess plant defense response is important for studies of disease resistance and also for the early identification of disease during pre- or non-symptomatic phases. An increase in extracellular pH is known to be an early defense response in plants. In this study, we demonstrate extracellular alkalinization as a defense response in potatoes. Using potato suspension cell cultures, we observed an alkalinization response against various pathogen- and plant-de...

  11. Effect of hydroxide and carbonate alkaline media on anion exchange membranes

    Energy Technology Data Exchange (ETDEWEB)

    Vega, Jose A.; Chartier, Casey; Mustain, William E. [Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, 191 Auditorium Rd., Unit 3222, Storrs, CT 06269 (United States)

    2010-11-01

    The effect of hydroxide and carbonate alkaline environments on the chemical stability and ionic conductivity of five commercially available anion exchange membranes was investigated. Exposure of the membranes to concentrated hydroxide environments (1 M) had a detrimental effect on ionic conductivity with time. Over a 30-day period, decreases in conductivity ranged from 27% to 6%, depending on the membrane. The decrease in ionic conductivity is attributed to the loss of stationary cationic sites due to the Hofmann elimination and nucleophilic displacement mechanisms. Exposure of the membranes to low concentration hydroxide (10{sup -4} M) or carbonate/bicarbonate (0.5 M Na{sub 2}CO{sub 3}/0.5 M NaHCO{sub 3}) environments had no measurable effect on the ionic conductivity over a 30-day period. ATR-FTIR spectroscopy confirmed degradation of membranes soaked in 1 M KOH. Apparition of a doublet peak in the region between 1600 cm{sup -1} and 1675 cm{sup -1} confirms formation of carbon-carbon double bonds due to Hofmann elimination. Membranes soaked in mild alkaline environments did not show formation of carbon-carbon double bonds. (author)

  12. Alkaline Comet Assay for Assessing DNA Damage in Individual Cells.

    Science.gov (United States)

    Pu, Xinzhu; Wang, Zemin; Klaunig, James E

    2015-08-06

    Single-cell gel electrophoresis, commonly called a comet assay, is a simple and sensitive method for assessing DNA damage at the single-cell level. It is an important technique in genetic toxicological studies. The comet assay performed under alkaline conditions (pH >13) is considered the optimal version for identifying agents with genotoxic activity. The alkaline comet assay is capable of detecting DNA double-strand breaks, single-strand breaks, alkali-labile sites, DNA-DNA/DNA-protein cross-linking, and incomplete excision repair sites. The inclusion of digestion of lesion-specific DNA repair enzymes in the procedure allows the detection of various DNA base alterations, such as oxidative base damage. This unit describes alkaline comet assay procedures for assessing DNA strand breaks and oxidative base alterations. These methods can be applied in a variety of cells from in vitro and in vivo experiments, as well as human studies.

  13. The choice of low-temperature hydrogen fuel cells: Acidic - or alkaline

    Science.gov (United States)

    Kordesch, K.

    A comparison of the major types of hydrogen-oxygen (air) fuel cells is given. The criteria for the selection is the fuel availability, system performance, optimal cost and life expectancy in most suitable application areas. Special recommendations are given for designs of bipolar alkaline batteries for intermittent use in electric vehicles on the road, combining high conversion efficiency with long stand-by periods. Such batteries with liquid alkaline electrolytes will have to compete with matrix-type cells using improved acidic- or membrane-type cells. Hybrid systems will be discussed and their advantages from the economic point of view will be considered. In electric vehicles the combination with an advanced rechargeable battery system, like zinc-bromine, could be decisive for success. Unfortunately, there are not enough cost data available to compare the systems now.

  14. Hydraulic Performance Modifications of a Zeolite Membrane after an Alkaline Treatment: Contribution of Polar and Apolar Surface Tension Components

    OpenAIRE

    2015-01-01

    Hydraulic permeability measurements are performed on low cut-off Na-mordenite (MOR-type zeolites) membranes after a mild alkaline treatment. A decrease of the hydraulic permeability is systematically observed. Contact angle measurements are carried out (with three polar liquids) on Na-mordenite films seeded onto alumina plates (flat membranes). A decrease of the contact angles is observed after the alkaline treatment for the three liquids. According to the theory of Lifshitz-van der Waals in...

  15. Biological Fuel Cells and Membranes.

    Science.gov (United States)

    Ghassemi, Zahra; Slaughter, Gymama

    2017-01-17

    Biofuel cells have been widely used to generate bioelectricity. Early biofuel cells employ a semi-permeable membrane to separate the anodic and cathodic compartments. The impact of different membrane materials and compositions has also been explored. Some membrane materials are employed strictly as membrane separators, while some have gained significant attention in the immobilization of enzymes or microorganisms within or behind the membrane at the electrode surface. The membrane material affects the transfer rate of the chemical species (e.g., fuel, oxygen molecules, and products) involved in the chemical reaction, which in turn has an impact on the performance of the biofuel cell. For enzymatic biofuel cells, Nafion, modified Nafion, and chitosan membranes have been used widely and continue to hold great promise in the long-term stability of enzymes and microorganisms encapsulated within them. This article provides a review of the most widely used membrane materials in the development of enzymatic and microbial biofuel cells.

  16. Proton exchange membrane fuel cells

    CERN Document Server

    Qi, Zhigang

    2013-01-01

    Preface Proton Exchange Membrane Fuel CellsFuel CellsTypes of Fuel CellsAdvantages of Fuel CellsProton Exchange Membrane Fuel CellsMembraneCatalystCatalyst LayerGas Diffusion MediumMicroporous LayerMembrane Electrode AssemblyPlateSingle CellStackSystemCell Voltage Monitoring Module (CVM)Fuel Supply Module (FSM)Air Supply Module (ASM)Exhaust Management Module (EMM)Heat Management Module (HMM)Water Management Module (WMM)Internal Power Supply Module (IPM)Power Conditioning Module (PCM)Communications Module (COM)Controls Module (CM)SummaryThermodynamics and KineticsTheoretical EfficiencyVoltagePo

  17. Cell Membrane Softening in Cancer Cells

    Science.gov (United States)

    Schmidt, Sebastian; Händel, Chris; Käs, Josef

    Biomechanical properties are useful characteristics and regulators of the cell's state. Current research connects mechanical properties of the cytoskeleton to many cellular processes but does not investigate the biomechanics of the plasma membrane. We evaluated thermal fluctuations of giant plasma membrane vesicles, directly derived from the plasma membranes of primary breast and cervical cells and observed a lowered rigidity in the plasma membrane of malignant cells compared to non-malignant cells. To investigate the specific role of membrane rigidity changes, we treated two cell lines with the Acetyl-CoA carboxylase inhibitor Soraphen A. It changed the lipidome of cells and drastically increased membrane stiffness by up regulating short chained membrane lipids. These altered cells had a decreased motility in Boyden chamber assays. Our results indicate that the thermal fluctuations of the membrane, which are much smaller than the fluctuations driven by the cytoskeleton, can be modulated by the cell and have an impact on adhesion and motility.

  18. A hydrogen-oxygen fuel cell using an ion-exchange membrane as an electrolyte

    NARCIS (Netherlands)

    Duin, P.J. van; Kruissink, C.A.

    1966-01-01

    Using an acidic type of water leached ion exchange membrane, cell current outputs of the order of 100 mA▪cm-2 at 0,6 V cell voltage have been obtained; the removal of produced water largely limits the cell performance. Cells using the alkaline type of membrane exhibit much smaller current densities,

  19. Model cell membranes

    DEFF Research Database (Denmark)

    Günther-Pomorski, Thomas; Nylander, Tommy; Cardenas Gomez, Marite

    2014-01-01

    The high complexity of biological membranes has motivated the development and application of a wide range of model membrane systems to study biochemical and biophysical aspects of membranes in situ under well defined conditions. The aim is to provide fundamental understanding of processes...... controlled by membrane structure, permeability and curvature as well as membrane proteins by using a wide range of biochemical, biophysical and microscopic techniques. This review gives an overview of some currently used model biomembrane systems. We will also discuss some key membrane protein properties...... that are relevant for protein-membrane interactions in terms of protein structure and how it is affected by membrane composition, phase behavior and curvature....

  20. Electrochemical kinetic and mass transfer model for direct ethanol alkaline fuel cell (DEAFC)

    Science.gov (United States)

    Abdullah, S.; Kamarudin, S. K.; Hasran, U. A.; Masdar, M. S.; Daud, W. R. W.

    2016-07-01

    A mathematical model is developed for a liquid-feed DEAFC incorporating an alkaline anion-exchange membrane. The one-dimensional mass transport of chemical species is modelled using isothermal, single-phase and steady-state assumptions. The anode and cathode electrochemical reactions use the Tafel kinetics approach, with two limiting cases, for the reaction order. The model fully accounts for the mixed potential effects of ethanol oxidation at the cathode due to ethanol crossover via an alkaline anion-exchange membrane. In contrast to a polymer electrolyte membrane model, the current model considers the flux of ethanol at the membrane as the difference between diffusive and electroosmotic effects. The model is used to investigate the effects of the ethanol and alkali inlet feed concentrations at the anode. The model predicts that the cell performance is almost identical for different ethanol concentrations at a low current density. Moreover, the model results show that feeding the DEAFC with 5 M NaOH and 3 M ethanol at specific operating conditions yields a better performance at a higher current density. Furthermore, the model indicates that crossover effects on the DEAFC performance are significant. The cell performance decrease from its theoretical value when a parasitic current is enabled in the model.

  1. Extracellular Alkalinization as a Defense Response in Potato Cells

    Science.gov (United States)

    Moroz, Natalia; Fritch, Karen R.; Marcec, Matthew J.; Tripathi, Diwaker; Smertenko, Andrei; Tanaka, Kiwamu

    2017-01-01

    A quantitative and robust bioassay to assess plant defense response is important for studies of disease resistance and also for the early identification of disease during pre- or non-symptomatic phases. An increase in extracellular pH is known to be an early defense response in plants. In this study, we demonstrate extracellular alkalinization as a defense response in potatoes. Using potato suspension cell cultures, we observed an alkalinization response against various pathogen- and plant-derived elicitors in a dose- and time-dependent manner. We also assessed the defense response against a variety of potato pathogens, such as protists (Phytophthora infestans and Spongospora subterranea) and fungi (Verticillium dahliae and Colletotrichum coccodes). Our results show that extracellular pH increases within 30 min in proportion to the number of pathogen spores added. Consistently with the alkalinization effect, the higher transcription level of several defense-related genes and production of reactive oxygen species was observed. Our results demonstrate that the alkalinization response is an effective marker to study early stages of defense response in potatoes. PMID:28174578

  2. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various thermopl......A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes...... electrolyte membrane by hot-press. The fuel cell can operate at temperatures up to at least 200 °C with hydrogen-rich fuel containing high ratios of carbon monoxide such as 3 vol% carbon monoxide or more, compared to the carbon monoxide tolerance of 10-20 ppm level for Nafion$m(3)-based polymer electrolyte...

  3. Osteoblast response (initial adhesion and alkaline phosphatase activity following exposure to a barrier membrane/enamel matrix derivative combination

    Directory of Open Access Journals (Sweden)

    Thangakumaran S

    2009-01-01

    Full Text Available Background and Objective: The enamel matrix derivative (EMD has been used in combination with barrier membranes to optimize regeneration in vertical osseous defects. However, the osteoblast response when exposed to the EMD/barrier membrane combination has not yet been evaluated. The osteoblast behavior when exposed to a combination of regenerative materials must be evaluated to fully understand their effect on bone regeneration. Therefore, the present study was undertaken to estimate the initial adhesion and alkaline phosphatase (ALP activity of an osteoblast cell line (SaOS-2 when exposed to four commercially available resorbable membranes and determine if the addition of EMD had any modulatory effect on osteoblast behavior. Materials and Methods: 5 x 104 SaOS-2 cells between passages 7-10 were cultured in two 24-well culture plates. Plate A was used for the adhesion assay and Plate B was used for the ALP assay. A MTT (3-[4, 5-dimethylthiazolyl-2]-2, 5-diphenyltetrazolium bromide assay was done after 24 hours to determine the adhesion of the osteoblastic cells to four barrier membranes: 1 a non cross-linked porcine Type I and III collagen membrane (BG, 2 a weakly cross-linked Type I collagen membrane (HG, 3 a glutaraldehyde cross-linked bovine Type I collagen (BM, and 4 a resorbable polymer membrane (CP. Osteoblast differentiation was studied using an ALP assay with p-nitro phenyl phosphate as the substrate at 24 hours, 72 hours, and 1 week. A total of 50 µg/ml of EMD dissolved in 10 mM acetic acid was added into each well and the entire experimental protocol outlined above was repeated. Results: The osteoblast adhesion to collagen barriers showed a statistically insignificant reduction following the addition of EMD. Adhesion to the polymer barrier, although significantly lower when compared with collagen barriers, was unaffected by the addition of EMD. ALP activity after 1 week among the various groups was as follows: EMD alone (75.59±2

  4. Foam Based Gas Diffusion Electrodes for Reversible Alkaline Electrolysis Cells

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2014-01-01

    Alkaline electrolysis cells operated at 250 °C and 40 bar have shown to be able to convert electrical energy into chemical energy in the form of hydrogen at very high efficiencies and power densities. Foam based gas diffusion electrodes and a liquid immobilized electrolyte allow the operation...... of the newly designed electrolysis cell as a fuel cell, but condensation of steam may lead to blocked pores, thereby inhibiting gas diffusion and decreasing the performance of the cell. In the here presented work we present the application of a hydrophobic, porous, and electro-catalytically active layer...... the electrochemical characteristics of the cell. The thickness of the electrolyte matrix was reduced to 200 µm, thereby achieving a serial resistance and area specific resistance as low as 60 mΩ cm2 and 150 mΩ cm2, respectively, at a temperature of 200 °C and 20 bar pressure. A new production method was developed...

  5. Towards Extrusion of Ionomers to Process Fuel Cell Membranes

    Directory of Open Access Journals (Sweden)

    Jean-Yves Sanchez

    2011-07-01

    Full Text Available While Proton Exchange Membrane Fuel Cell (PEMFC membranes are currently prepared by film casting, this paper demonstrates the feasibility of extrusion, a solvent-free alternative process. Thanks to water-soluble process-aid plasticizers, duly selected, it was possible to extrude acidic and alkaline polysulfone ionomers. Additionally, the feasibility to extrude composites was demonstrated. The impact of the plasticizers on the melt viscosity was investigated. Following the extrusion, the plasticizers were fully removed in water. The extrusion was found to impact neither on the ionomer chains, nor on the performances of the membrane. This environmentally friendly process was successfully validated for a variety of high performance ionomers.

  6. Disorders of red cell membrane

    National Research Council Canada - National Science Library

    An, Xiuli; Mohandas, Narla

    2008-01-01

    Summary Studies during the last three decades have enabled the development of detailed molecular insights into the structural basis of altered function in various inherited red cell membrane disorders...

  7. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes....... With the thermally resistant polymer, e.g., polybenzimidazole or a mixture of polybenzimidazole and other thermoplastics as binder, the carbon-supported noble metal catalyst is tape-cast onto a hydrophobic supporting substrate. When doped with an acid mixture, electrodes are assembled with an acid doped solid...

  8. Corrosion testing of candidates for the alkaline fuel cell cathode

    Science.gov (United States)

    Singer, Joseph; Fielder, William L.

    1989-01-01

    Current/voltage data was obtained for specially made corrosion electrodes of some oxides and of gold materials for the purpose of developing a screening test of catalysts and supports for use at the cathode of the alkaline fuel cell. The data consists of measurements of current at fixed potentials and cyclic voltammograms. These data will have to be correlated with longtime performance data in order to fully evaluate this approach to corrosion screening. Corrosion test screening of candidates for the oxygen reduction electrode of the alkaline fuel cell was applied to two substances, the pyrochlore Pb2Ru2O6.5 and the spinel NiCo2O4. The substrate gold screen and a sample of the IFC Orbiter Pt-Au performance electrode were included as blanks. The pyrochlore data indicate relative stability, although nothing yet can be said about long term stability. The spinel was plainly unstable. For this type of testing to be validated, comparisons will have to be made with long term performance tests.

  9. Degradation modes of alkaline fuel cells and their components

    Science.gov (United States)

    Tomantschger, Klaus; Findlay, Robert; Hanson, Michael; Kordesch, Karl; Srinivasan, Supramaniam

    The performance and life-limiting parameters of multilayer polytetrafluoroethylene (PTFE) bonded carbon air cathodes and hydrogen anodes, developed at the Institute for Hydrogen Systems (IHS) for use in low temperature alkaline electrolyte fuel cells (AFC) and batteries, were investigated. Scanning electron microscopy (SEM), X-ray energy spectroscopy (XES), electron spectroscopy for chemical analysis (ESCA), microcalorimetry and intrusion porosimetry techniques in conjunction with electrochemical testing methods were used to characterize electrode components, electrodes and alkaline fuel cells. The lifetime of air cathodes is mainly limited by carbon corrosion and structural degradation, while that of hydrogen anodes is frequently limited by electrocatalyst problems and structural degradation. The PTFE binder was also found to degrade in both the cathodes and the anodes. The internal resistance, which was found to generally increase in AFCs in particular between the cathode and the current collector, can be minimized by the proper choice of materials. Temperature cycling of AFCs may result in mechanical problems; however, these problems can be overcome by using AFC components with compatible thermal expansion coefficients.

  10. The Molecules of the Cell Membrane.

    Science.gov (United States)

    Bretscher, Mark S.

    1985-01-01

    Cell membrane molecules form a simple, two-dimensional liquid controlling what enters and leaves the cell. Discusses cell membrane molecular architecture, plasma membranes, epithelial cells, cycles of endocytosis and exocytosis, and other topics. Indicates that some cells internalize, then recycle, membrane area equivalent to their entire surface…

  11. Improvement in the solid-state alkaline fuel cell performance through efficient water management strategies

    Science.gov (United States)

    Oshiba, Yuhei; Hiura, Junya; Suzuki, Yuto; Yamaguchi, Takeo

    2017-03-01

    In solid-state alkaline fuel cells (SAFCs), water is generated at the anode and is reacted at the cathode; as such, flooding occurs much more easily at the anode than it does in proton-exchange membrane fuel cells (PEMFCs). Anode flooding is a reason for the low performance of SAFCs, and so it is important that this flooding phenomenon is mitigated. In this study, we control water transport to suppress anode flooding. We do this through two approaches: changing the thickness of the anion exchange membrane (AEM) and changing the anode flow rate. Among two AEMs with two different thicknesses (27 μm and 6 μm) prepared, thinner AEM shows improved fuel cell performance. Increasing the anode flow rate also improved the performance of SAFCs. To find out what caused this, the water transport inside the membrane electrode assembly (MEA) was analyzed. The flooding region was estimated using calculated relative humidity at anode outlet. On the basis of our experimental and calculation approaches, flooding can be suppressed by using thin AEMs and increasing the anode flow rate.

  12. A membraneless microscale fuel cell using non-noble catalysts in alkaline solution

    Science.gov (United States)

    Sung, Woosuk; Choi, Jin-Woo

    This paper presents the development of a novel liquid-based microscale fuel cell using non-noble catalysts in an alkaline solution. The developed fuel cell is based on a membraneless structure. The operational complications of a proton exchange membrane lead the development of a fuel cell with the membraneless structure. Non-noble metals with relatively mild catalytic activity, nickel hydroxide and silver oxide, were employed as anode and cathode catalysts to minimize the effect of cross-reactions with the membraneless structure. Along with nickel hydroxide and silver oxide, methanol and hydrogen peroxide were used as a fuel at anode and an oxidant at cathode. With a fuel mixture flow rate of 200 μl min -1, a maximum output power density of 28.73 μW cm -2 was achieved. The developed fuel cell features no proton exchange membrane, inexpensive catalysts, and simple planar structure, which enables high design flexibility and easy integration of the microscale fuel cell into actual microfluidic systems and portable applications.

  13. Dielectric breakdown of cell membranes.

    Science.gov (United States)

    Zimmermann, U; Pilwat, G; Riemann, F

    1974-11-01

    With human and bovine red blood cells and Escherichia coli B, dielectric breakdown of cell membranes could be demonstrated using a Coulter Counter (AEG-Telefunken, Ulm, West Germany) with a hydrodynamic focusing orifice. In making measurements of the size distributions of red blood cells and bacteria versus increasing electric field strength and plotting the pulse heights versus the electric field strength, a sharp bend in the otherwise linear curve is observed due to the dielectric breakdown of the membranes. Solution of Laplace's equation for the electric field generated yields a value of about 1.6 V for the membrane potential at which dielectric breakdown occurs with modal volumes of red blood cells and bacteria. The same value is also calculated for red blood cells by applying the capacitor spring model of Crowley (1973. Biophys. J. 13:711). The corresponding electric field strength generated in the membrane at breakdown is of the order of 4 . 10(6) V/cm and, therefore, comparable with the breakdown voltages for bilayers of most oils. The critical detector voltage for breakdown depends on the volume of the cells. The volume-dependence predicted by Laplace theory with the assumption that the potential generated across the membrane is independent of volume, could be verified experimentally. Due to dielectric breakdown the red blood cells lose hemoglobin completely. This phenomenon was used to study dielectric breakdown of red blood cells in a homogeneous electric field between two flat platinum electrodes. The electric field was applied by discharging a high voltage storage capacitor via a spark gap. The calculated value of the membrane potential generated to produce dielectric breakdown in the homogeneous field is of the same order as found by means of the Coulter Counter. This indicates that mechanical rupture of the red blood cells by the hydrodynamic forces in the orifice of the Coulter Counter could also be excluded as a hemolysing mechanism. The detector

  14. Corrugated Membrane Fuel Cell Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grot, Stephen [President, Ion Power Inc.

    2013-09-30

    One of the most challenging aspects of traditional PEM fuel cell stacks is the difficulty achieving the platinum catalyst utilization target of 0.2 gPt/kWe set forth by the DOE. Good catalyst utilization can be achieved with state-of-the-art catalyst coated membranes (CCM) when low catalyst loadings (<0.3 mg/cm2) are used at a low current. However, when low platinum loadings are used, the peak power density is lower than conventional loadings, requiring a larger total active area and a larger bipolar plate. This results in a lower overall stack power density not meeting the DOE target. By corrugating the fuel cell membrane electrode structure, Ion Power?s goal is to realize both the Pt utilization targets as well as the power density targets of the DOE. This will be achieved by demonstrating a fuel cell single cell (50 cm2) with a twofold increase in the membrane active area over the geometric area of the cell by corrugating the MEA structure. The corrugating structure must be able to demonstrate the target properties of < 10 mOhm-cm2 electrical resistance at > 20 psi compressive strength over the active area, in combination with offering at least 80% of power density that can be achieved by using the same MEA in a flat plate structure. Corrugated membrane fuel cell structures also have the potential to meet DOE power density targets by essentially packaging more membrane area into the same fuel cell volume as compared to conventional stack constructions.

  15. Gallium nitrate inhibits alkaline phosphatase activity in a differentiating mesenchymal cell culture.

    Science.gov (United States)

    Boskey, A L; Ziecheck, W; Guidon, P; Doty, S B

    1993-02-01

    The effect of gallium nitrate on alkaline phosphatase activity in a differentiating chick limb-bud mesenchymal cell culture was monitored in order to gain insight into the observation that rachitic rats treated with gallium nitrate failed to show the expected increase in serum alkaline phosphatase activity. Cultures maintained in media containing 15 microM gallium nitrate showed drastically decreased alkaline phosphatase activities in the absence of significant alterations in total protein synthesis and DNA content. However, addition of 15 microM gallium nitrate to cultures 18 h before assay for alkaline phosphatase activity had little effect. At the light microscopic and electron microscopic level, gallium-treated cultures differed morphologically from gallium-free cultures: with gallium present, there were fewer hypertrophic chondrocytes and cartilage nodules were flatter and further apart. Because of altered morphology, staining with an antibody against chick cartilage alkaline phosphatase appeared less extensive; however, all nodules stained equivalently relative to gallium-free controls. Histochemical staining for alkaline phosphatase activity was negative in gallium-treated cultures, demonstrating that the alkaline phosphatase protein present was not active. The defective alkaline phosphatase activity in cultures maintained in the presence of gallium was also evidenced when cultures were supplemented with the alkaline phosphatase substrate, beta-glycerophosphate (beta GP). The data presented suggest that gallium inhibits alkaline phosphatase activity in this culture system and that gallium causes alterations in the differentiation of mesenchymal cells into hypertrophic chondrocytes.

  16. Hydraulic Performance Modifications of a Zeolite Membrane after an Alkaline Treatment: Contribution of Polar and Apolar Surface Tension Components

    Directory of Open Access Journals (Sweden)

    Patrick Dutournié

    2015-01-01

    Full Text Available Hydraulic permeability measurements are performed on low cut-off Na-mordenite (MOR-type zeolites membranes after a mild alkaline treatment. A decrease of the hydraulic permeability is systematically observed. Contact angle measurements are carried out (with three polar liquids on Na-mordenite films seeded onto alumina plates (flat membranes. A decrease of the contact angles is observed after the alkaline treatment for the three liquids. According to the theory of Lifshitz-van der Waals interactions in condensated state, surface modifications are investigated and a variation of the polar component of the material surface tension is observed. After the alkaline treatment, the electron-donor contribution (mainly due to the two remaining lone electron pairs of the oxygen atoms present in the zeolite extra frameworks decreases and an increase of the electron-receptor contribution is observed and quantified. The contribution of the polar component to the surface tension is attributed to the presence of surface defaults, which increase the surface hydrophilicity. The estimated modifications of the surface interaction energy between the solvent (water and the Na-mordenite active layer are in good agreement with the decrease of the hydraulic permeability observed after a mild alkaline treatment.

  17. Molecular machines open cell membranes

    Science.gov (United States)

    García-López, Víctor; Chen, Fang; Nilewski, Lizanne G.; Duret, Guillaume; Aliyan, Amir; Kolomeisky, Anatoly B.; Robinson, Jacob T.; Wang, Gufeng; Pal, Robert; Tour, James M.

    2017-08-01

    Beyond the more common chemical delivery strategies, several physical techniques are used to open the lipid bilayers of cellular membranes. These include using electric and magnetic fields, temperature, ultrasound or light to introduce compounds into cells, to release molecular species from cells or to selectively induce programmed cell death (apoptosis) or uncontrolled cell death (necrosis). More recently, molecular motors and switches that can change their conformation in a controlled manner in response to external stimuli have been used to produce mechanical actions on tissue for biomedical applications. Here we show that molecular machines can drill through cellular bilayers using their molecular-scale actuation, specifically nanomechanical action. Upon physical adsorption of the molecular motors onto lipid bilayers and subsequent activation of the motors using ultraviolet light, holes are drilled in the cell membranes. We designed molecular motors and complementary experimental protocols that use nanomechanical action to induce the diffusion of chemical species out of synthetic vesicles, to enhance the diffusion of traceable molecular machines into and within live cells, to induce necrosis and to introduce chemical species into live cells. We also show that, by using molecular machines that bear short peptide addends, nanomechanical action can selectively target specific cell-surface recognition sites. Beyond the in vitro applications demonstrated here, we expect that molecular machines could also be used in vivo, especially as their design progresses to allow two-photon, near-infrared and radio-frequency activation.

  18. Alkaline fuel cells for the regenerative fuel cell energy storage system

    Science.gov (United States)

    Martin, R. E.

    1983-01-01

    The development of the alkaline Regenerative Fuel Cell System, whose fuel cell module would be a derivative of the 12-kW fuel cell power plant currently being produced for the Space Shuttle Orbiter, is reviewed. Long-term endurance testing of full-size fuel cell modules has demonstrated: (1) the extended endurance capability of potassium titanate matrix cells, (2) the long-term performance stability of the anode catalyst, and (3) the suitability of a lightweight graphite structure for use at the anode. These approaches, developed in the NASA-sponsored fuel cell technology advancement program, would also reduce cell weight by nearly one half.

  19. A Tenebrio molitor GPI-anchored alkaline phosphatase is involved in binding of Bacillus thuringiensis Cry3Aa to brush border membrane vesicles.

    Science.gov (United States)

    Zúñiga-Navarrete, Fernando; Gómez, Isabel; Peña, Guadalupe; Bravo, Alejandra; Soberón, Mario

    2013-03-01

    Bacillus thuringiensis Cry toxins recognizes their target cells in part by the binding to glycosyl-phosphatidyl-inositol (GPI) anchored proteins such as aminopeptidase-N (APN) or alkaline phosphatases (ALP). Treatment of Tenebrio molitor brush border membrane vesicles (BBMV) with phospholipase C that cleaves out GPI-anchored proteins from the membranes, showed that GPI-anchored proteins are involved in binding of Cry3Aa toxin to BBMV. A 68 kDa GPI-anchored ALP was shown to bind Cry3Aa by toxin overlay assays. The 68 kDa GPI-anchored ALP was preferentially expressed in early instar larvae in comparison to late instar larvae. Our work shows for the first time that GPI-anchored ALP is important for Cry3Aa binding to T. molitor BBMV suggesting that the mode of action of Cry toxins is conserved in different insect orders.

  20. Effect of amniotic membrane transplantation on corneal limbus cells of alkaline burned rat%新鲜羊膜移植对碱烧伤大鼠角膜缘干细胞增殖效应的影响

    Institute of Scientific and Technical Information of China (English)

    刘治容; 张悦; 王光进; 陈辉

    2012-01-01

    目的:观察新鲜羊膜移植对碱烧伤大鼠模型角膜缘干细胞增殖细胞核抗原(proliferating cell nuclear antigen,PCNA)表达的影响.方法:SD大鼠40只40眼制作眼碱烧伤模型;随机选取20只20眼行新鲜羊膜移植为实验组,对照组为不处理的烧伤模型眼.于术后1,2,3,4wk取角膜缘组织,采用免疫组化技术观察PCNA在角膜缘干细胞的表达情况.结果:PCNA在实验组和对照组的角膜缘干细胞中均有表达,位于角膜缘上皮细胞基底层的细胞核内,但羊膜移植组显著高于对照组,两者比较有统计学意义(P<0.05);羊膜移植术后1,2,3,4wk时PCNA蛋白在角膜缘干细胞的表达不一致,呈线性趋势,1wk达到高峰,以后逐渐降低.结论:眼碱烧伤后行羊膜移植术可促进角膜缘干细胞的增殖表达,利于角膜上皮的修复.

  1. Increased performance of hydrogen production in microbial electrolysis cells under alkaline conditions.

    Science.gov (United States)

    Rago, Laura; Baeza, Juan A; Guisasola, Albert

    2016-06-01

    This work reports the first successful enrichment and operation of alkaline bioelectrochemical systems (microbial fuel cells, MFC, and microbial electrolysis cells, MEC). Alkaline (pH=9.3) bioelectrochemical hydrogen production presented better performance (+117%) compared to conventional neutral conditions (2.6 vs 1.2 litres of hydrogen gas per litre of reactor per day, LH2·L(-1)REACTOR·d(-1)). Pyrosequencing results of the anodic biofilm showed that while Geobacter was mainly detected under conventional neutral conditions, Geoalkalibacter sp. was highly detected in the alkaline MFC (21%) and MEC (48%). This is the first report of a high enrichment of Geoalkalibacter from an anaerobic mixed culture using alkaline conditions in an MEC. Moreover, Alkalibacter sp. was highly present in the anodic biofilm of the alkaline MFC (37%), which would indicate its potentiality as a new exoelectrogen.

  2. Zero-Gap Alkaline Water Electrolysis Using Ion-Solvating Polymer Electrolyte Membranes at Reduced KOH Concentrations

    DEFF Research Database (Denmark)

    Kraglund, Mikkel Rykær; Aili, David; Jankova Atanasova, Katja;

    2016-01-01

    Membranes based on poly(2,2'-(m-phenylene)-5,5-bibenzimidazole) (m-PBI) can dissolve large amounts of aqueous KOH to give electrolyte systems with ion conductivity in a practically useful range. The conductivity of the membrane strongly depends on the concentration of the aqueous KOH phase......, reaching about 10-1 S cm-1 or higher in 15-25 wt% KOH. Herein, m-PBI membranes are systematically characterized with respect to performance and short-term stability as electrolyte in a zero-gap alkaline water electrolyzer at different KOH concentrations. Using plain uncatalyzed nickel foam electrodes...... exclusion chromatography and spectroscopy reveal evidence of oxidative degradation of the base polymer at KOH concentrations of 15 wt% and higher....

  3. Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation-π interactions.

    Science.gov (United States)

    Sun, Pengzhan; Zheng, Feng; Zhu, Miao; Song, Zhigong; Wang, Kunlin; Zhong, Minlin; Wu, Dehai; Little, Reginald B; Xu, Zhiping; Zhu, Hongwei

    2014-01-28

    Graphene and graphene oxide (G-O) have been demonstrated to be excellent filters for various gases and liquids, showing potential applications in areas such as molecular sieving and water desalination. In this paper, the selective trans-membrane transport properties of alkali and alkaline earth cations through a membrane composed of stacked and overlapped G-O sheets ("G-O membrane") are investigated. The thermodynamics of the ion transport process reveal that the competition between the generated thermal motions and the interactions of cations with the G-O sheets results in the different penetration behaviors to temperature variations for the considered cations (K(+), Mg(2+), Ca(2+), and Ba(2+)). The interactions between the studied metal atoms and graphene are quantified by first-principles calculations based on the plane-wave-basis-set density functional theory (DFT) approach. The mechanism of the selective ion trans-membrane transportation is discussed further and found to be consistent with the concept of cation-π interactions involved in biological systems. The balance between cation-π interactions of the cations considered with the sp(2) clusters of G-O membranes and the desolvation effect of the ions is responsible for the selectivity of G-O membranes toward the penetration of different ions. These results help us better understand the ion transport process through G-O membranes, from which the possibility of modeling the ion transport behavior of cellular membrane using G-O can be discussed further. The selectivity toward different ions also makes G-O membrane a promising candidate in areas of membrane separations.

  4. Recent progress in alkaline direct ethylene glycol fuel cells for sustainable energy production

    Science.gov (United States)

    An, L.; Chen, R.

    2016-10-01

    Alkaline direct ethylene glycol fuel cells are one of the most promising power sources for portable, mobile and stationary power applications, primarily because this type of fuel cell runs on a sustainable fuel and the key materials that constitute the fuel cell are relatively inexpensive. This review article summarizes and discusses the past investigations on the development of alkaline direct ethylene glycol fuel cells, including the physical and chemical processes through the fuel cell structure, the electrocatalytic oxidation and electrocatalysts of ethylene glycol, the singe-cell performance, and innovative system designs.

  5. In-membrane micro fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Omosebi, Ayokunle; Besser, Ronald

    2016-09-06

    An in-membrane micro fuel cell comprises an electrically-insulating membrane that is permissive to the flow of cations, such as protons, and a pair of electrodes deposited on channels formed in the membrane. The channels are arranged as conduits for fluids, and define a membrane ridge between the channels. The electrodes are porous and include catalysts for promoting the liberation of a proton and an electron from a chemical species and/or or the recombination of a proton and an electron with a chemical specie. The fuel cell may be provided a biosensor, an electrochemical sensor, a microfluidic device, or other microscale devices fabricated in the fuel cell membrane.

  6. Glucose metabolism and glutamate analog acutely alkalinize pH of insulin secretory vesicles of pancreatic beta-cells.

    Science.gov (United States)

    Eto, Kazuhiro; Yamashita, Tokuyuki; Hirose, Kenzo; Tsubamoto, Yoshiharu; Ainscow, Edward K; Rutter, Guy A; Kimura, Satoshi; Noda, Mitsuhiko; Iino, Masamitsu; Kadowaki, Takashi

    2003-08-01

    We studied acute changes of secretory vesicle pH in pancreatic beta-cells with a fluorescent pH indicator, lysosensor green DND-189. Fluorescence was decreased by 0.66 +/- 0.10% at 149 +/- 16 s with 22.2 mM glucose stimulation, indicating that vesicular pH was alkalinized by approximately 0.016 unit. Glucose-responsive pH increase was observed when cytosolic Ca2+ influx was blocked but disappeared when an inhibitor of glycolysis or mitochondrial ATP synthase was present. Glutamate dimethyl ester (GME), a plasma membrane-permeable analog of glutamate, potentiated glucose-stimulated insulin secretion at 5 mM without changing cellular ATP content or cytosolic Ca2+ concentration ([Ca2+]). Application of GME at basal glucose concentration decreased DND-189 fluorescence by 0.83 +/- 0.19% at 38 +/- 2 s. These results indicated that the acutely alkalinizing effect of glucose on beta-cell secretory vesicle pH was dependent on glucose metabolism but independent of modulations of cytosolic [Ca2+]. Moreover, glutamate derived from glucose may be one of the mediators of this alkalinizing effect of glucose, which may have potential relevance to the alteration of secretory function by glutamate.

  7. USING CERAMIC MEMBRANES TO RECYCLE TWO NONIONIC ALKALINE METAL-CLEANING SOLUTIONS

    Science.gov (United States)

    One ZrO2 ultrafilter (0.05 um pore size) and two a-Al2O3 microfilters (0.2 and 0.8 um) were used to remove one synthetic ester oil and two polyalphaolefin-based and two petroleum hydrocarbon-based oils and greases from two nonionic alkaline cleaning solutions (e.g., Turco 4215-NC...

  8. Use of solid polymer electrolyte in alkaline fuel cells; Utilisation d'electrolyte solide polymere dans les piles a combustibles alcalines

    Energy Technology Data Exchange (ETDEWEB)

    Agel, E.; Bouet, J.; Fauvarque, J.F. [Conservatoire National des Arts et Metiers, CNAM, Lab. d' Electrochimie Industrielle, 75 - Paris (France); Yassir, H. [Lab. de Physico-Chimie et de Mise en Oeuvre de Materiaux Macromoleculaires, 75 - Paris (France)

    2000-07-01

    The aim of this work is to develop a new cheap type of anion exchange membranes to be applied as basic fuel cell. The anionic membrane, of polyelectrolyte type is prepared by the grafting of the quaternary amines (DABCO: diazabicycloctane, TEA: triethylamine) on an epichlorhydrine polymer following by a reticulation step. The ionic conductivities are above 10{sup -2} S.cm{sup -1}, with a rate of positive ionic sites of about the milli-equivalent per gram of material. The measured anionic transport numbers are superior to 0.90. The membranes which can absorb 30 to 50% of water are quasi-impermeable to the H{sub 2} and O{sub 2} gases and can run in temperature until 120 degrees Celsius. Thus, alkaline fuel cells containing these two types of membranes have shown good performance data. A particular attention is given to the membrane-electrode interface. (O.M.)

  9. Anion exchange membranes for fuel cells and flow batteries : transport and stability of model systems

    OpenAIRE

    Marino, Michael G

    2015-01-01

    Polymeric anion exchange materials in membrane form can be key components in emerging energy storage and conversions systems such as the alkaline fuel cell and the RedOx flow battery. For these applications the membrane properties need to include good ionic conductivity and sufficient chemical stability, two aspects, that are not sufficiently understood in terms of materials science. Materials fulfilling both criteria are currently not available. The transport of ions and water in a model...

  10. Polymer electrolyte membrane assembly for fuel cells

    Science.gov (United States)

    Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)

    2002-01-01

    An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.

  11. [Germ cell membrane lipids in spermatogenesis].

    Science.gov (United States)

    Wang, Ting; Shi, Xiao; Quan, Song

    2016-05-01

    Spermatogenesis is a complex developmental process in which a diploid progenitor germ cell transforms into highly specialized spermatozoa. During spermatogenesis, membrane remodeling takes place, and cell membrane permeability and liquidity undergo phase-specific changes, which are all associated with the alteration of membrane lipids. Lipids are important components of the germ cell membrane, whose volume and ratio fluctuate in different phases of spermatogenesis. Abnormal lipid metabolism can cause spermatogenic dysfunction and consequently male infertility. Germ cell membrane lipids are mainly composed of cholesterol, phospholipids and glycolipids, which play critical roles in cell adhesion and signal transduction during spermatogenesis. An insight into the correlation of membrane lipids with spermatogenesis helps us to better understand the mechanisms of spermatogenesis and provide new approaches to the diagnosis and treatment of male infertility.

  12. Advanced composite polymer electrolyte fuel cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M.S.; Zawodzinski, T.A.; Gottesfeld, S.; Kolde, J.A.; Bahar, B.

    1995-09-01

    A new type of reinforced composite perfluorinated polymer electrolyte membrane, GORE-SELECT{trademark} (W.L. Gore & Assoc.), is characterized and tested for fuel cell applications. Very thin membranes (5-20 {mu}m thick) are available. The combination of reinforcement and thinness provides high membrane, conductances (80 S/cm{sup 2} for a 12 {mu}m thick membrane at 25{degrees}C) and improved water distribution in the operating fuel cell without sacrificing longevity or durability. In contrast to nonreinforced perfluorinated membranes, the x-y dimensions of the GORE-SELECT membranes are relatively unaffected by the hydration state. This feature may be important from the viewpoints of membrane/electrode interface stability and fuel cell manufacturability.

  13. Fuel cell and membrane therefore

    Energy Technology Data Exchange (ETDEWEB)

    Aindow, Tai-Tsui

    2016-08-09

    A fuel cell includes first and second flow field plates, and an anode electrode and a cathode electrode between the flow field plates. A polymer electrolyte membrane (PEM) is arranged between the electrodes. At least one of the flow field plates influences, at least in part, an in-plane anisotropic physical condition of the PEM that varies in magnitude between a high value direction and a low value direction. The PEM has an in-plane physical property that varies in magnitude between a high value direction and a low value direction. The PEM is oriented with its high value direction substantially aligned with the high value direction of the flow field plate.

  14. Nitrogen-Doped Nanoporous Carbon Membranes with Co/CoP Janus-Type Nanocrystals as Hydrogen Evolution Electrode in Both Acidic and Alkaline Environments

    KAUST Repository

    Wang, Hong

    2017-03-31

    Self-supported electrocatalysts being generated and employed directly as electrodes for energy conversion has been intensively pursued in the fields of materials chemistry and energy. Herein, we report a synthetic strategy to prepare freestanding hierarchically structured, nitrogen-doped nanoporous graphitic carbon membranes functionalized with Janus-type Co/CoP nanocrystals (termed as HNDCM-Co/CoP), which were successfully applied as a highly efficient, binder-free electrode in the hydrogen evolution reaction (HER). Benefited from multiple structural merits, such as a high degree of graphitization, three-dimensionally interconnected micro/meso/macropores, uniform nitrogen doping, well-dispersed Co/CoP nanocrystals, as well as the confinement effect of the thin carbon layer on the nanocrystals, HNDCM-Co/CoP exhibited superior electrocatalytic activity and long-term operation stability for HER under both acidic and alkaline conditions. As a proof-of-concept of practical usage, a 5.6 cm × 4 cm × 60 μm macroscopic piece of HNDCM-Co/CoP was prepared in our laboratory. Driven by a solar cell, electroreduction of water in alkaline conditions (pH 14) was performed, and H was produced at a rate of 16 mL/min, demonstrating its potential as real-life energy conversion systems.

  15. A membraneless alkaline direct liquid fuel cell (DLFC) platform developed with a catalyst-selective strategy

    Science.gov (United States)

    Yu, Xingwen; Pascual, Emilio J.; Wauson, Joshua C.; Manthiram, Arumugam

    2016-11-01

    With a logical management of the catalyst selectivity, we present a scalable, membraneless alkaline direct liquid fuel cell (DLFC) platform. The uniqueness of this innovation is that the inexpensive (non-platinum) cathode catalysts, based on strongly coupled transition-metal-oxide nanocrystals and nano-structured carbon materials (e. g., NiCo2O4 nano-particles on a nitrogen-doped graphene and MnNiCoO4 nano-particles on a nitrogen-doped multi-wall carbon nanotube), exhibit high activity for the oxygen reduction reaction (ORR) but without activity for the anode fuel oxidation reaction (FOR). Therefore, operation of the DLFCs allows the anode fuel to freely enter the cathode. This strategy avoids the reliance on expensive or difficult-to-develop cation- or anion-exchange membranes and circumvents the scalability concerns of the conventional membraneless DLFCs that are operated under a laminar-flow principle. With proper catalyst selectivity, a variety of organic liquids can be used as anode fuels. The high power density delivered by the membraneless DLFCs with inexpensive components and safe fuels can enable the development of not only small-scale portable power sources but also large-scale energy generation systems for transportation and stationary storage.

  16. Interaction of Defensins with Model Cell Membranes

    Science.gov (United States)

    Sanders, Lori K.; Schmidt, Nathan W.; Yang, Lihua; Mishra, Abhijit; Gordon, Vernita D.; Selsted, Michael E.; Wong, Gerard C. L.

    2009-03-01

    Antimicrobial peptides (AMPs) comprise a key component of innate immunity for a wide range of multicellular organisms. For many AMPs, activity comes from their ability to selectively disrupt and lyse bacterial cell membranes. There are a number of proposed models for this action, but the detailed molecular mechanism of selective membrane permeation remains unclear. Theta defensins are circularized peptides with a high degree of selectivity. We investigate the interaction of model bacterial and eukaryotic cell membranes with theta defensins RTD-1, BTD-7, and compare them to protegrin PG-1, a prototypical AMP, using synchrotron small angle x-ray scattering (SAXS). The relationship between membrane composition and peptide induced changes in membrane curvature and topology is examined. By comparing the membrane phase behavior induced by these different peptides we will discuss the importance of amino acid composition and placement on membrane rearrangement.

  17. Anion permselective membrane. [For redox fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, S.S.; Hodgdon, R.B.

    1978-01-01

    Experimental anion permeselective membranes were improved and characterized for use as separators in a chemical redox, power storage cell being developed at the NASA Lewis Research Center. The goal of minimal Fe/sup +3/ ion transfer was achieved for each candidate membrane system. Minimal membrane resistivity was demonstrated by reduction of film thickness using synthetic backing materials but usefulness of thin membranes was limited by the scarcity of compatible fabrics. The most durable and useful backing fabrics were modacrylics. One membrane, a copolymer of 4 vinylpyridine and vinyl benzylchloride was outstanding in overall electrochemical and physical properties. Long term (1000 hrs) membrane chemical and thermal durability in redox environment was shown by three candidate polymers and two membranes. The remainder had good durability at ambient temperature. Manufacturing capability was demonstrated for large scale production of membrane sheets 5.5 ft/sup 2/ in area for two candidate systems.

  18. Red cell membrane: past, present, and future

    National Research Council Canada - National Science Library

    Mohandas, Narla; Gallagher, Patrick G

    2008-01-01

    .... The non-nucleated red cell is unique among human cell type in that the plasma membrane, its only structural component, accounts for all of its diverse antigenic, transport, and mechanical characteristics...

  19. Membrane alterations in irreversibly sickled cells: hemoglobin--membrane interaction.

    Science.gov (United States)

    Lessin, L S; Kurantsin-Mills, J; Wallas, C; Weems, H

    1978-01-01

    Irreversibly sickled cells (ISCs) are sickle erythrocytes which retain bipolar elongated shapes despite reoxygenation and owe their biophysical abnormalities to acquired membrane alterations. Freeze-etched membranes both of ISCs produced in vitro and ISCs isolated in vivo reveal microbodies fixed to the internal (PS) surface which obscure spectrin filaments. Intramembranous particles (IMPs) on the intramembrane (PF) surface aggregate over regions of subsurface microbodies. Electron microscopy of diaminobenzidine-treated of ISC ghosts show the microbodies to contain hemoglobin and/or hemoglobin derivatives. Scanning electron microscopy and freeze-etching demonstrate that membrane--hemoglobin S interaction in ISCs enhances the membrane loss by microspherulation. Membrane-bound hemoglobin is five times greater in in vivo ISCs than non-ISCs, and increases during ISC production, parallelling depletion of adenosine triphosphate. Polyacrylamide gel electrophoresis of ISC membranes shows the presence of high-molecular-weight heteropolymers in the pre--band 1 region, a decrease in band 4.1 and an increase in bands 7, 8, and globin. The role of cross-linked membrane protein polymers in the generation of ISCs is discussed and is synthesized in terms of a unified concept for the determinants of the genesis of ISCs.

  20. Reduced levels of membrane-bound alkaline phosphatase are common to lepidopteran strains resistant to Cry toxins from Bacillus thuringiensis.

    Directory of Open Access Journals (Sweden)

    Juan Luis Jurat-Fuentes

    Full Text Available Development of insect resistance is one of the main concerns with the use of transgenic crops expressing Cry toxins from the bacterium Bacillus thuringiensis. Identification of biomarkers would assist in the development of sensitive DNA-based methods to monitor evolution of resistance to Bt toxins in natural populations. We report on the proteomic and genomic detection of reduced levels of midgut membrane-bound alkaline phosphatase (mALP as a common feature in strains of Cry-resistant Heliothis virescens, Helicoverpa armigera and Spodoptera frugiperda when compared to susceptible larvae. Reduced levels of H. virescens mALP protein (HvmALP were detected by two dimensional differential in-gel electrophoresis (2D-DIGE analysis in Cry-resistant compared to susceptible larvae, further supported by alkaline phosphatase activity assays and Western blotting. Through quantitative real-time polymerase chain reaction (qRT-PCR we demonstrate that the reduction in HvmALP protein levels in resistant larvae are the result of reduced transcript amounts. Similar reductions in ALP activity and mALP transcript levels were also detected for a Cry1Ac-resistant strain of H. armigera and field-derived strains of S. frugiperda resistant to Cry1Fa. Considering the unique resistance and cross-resistance phenotypes of the insect strains used in this work, our data suggest that reduced mALP expression should be targeted for development of effective biomarkers for resistance to Cry toxins in lepidopteran pests.

  1. Perturbation of red blood cell membrane rigidity by extracellular ligands.

    Science.gov (United States)

    Paulitschke, M; Nash, G B; Anstee, D J; Tanner, M J; Gratzer, W B

    1995-07-01

    It is known that binding of extracellular antibodies against the major sialoglycoprotein, glycophorin A, reduced the deformability of the red blood cell membrane. This has been taken to result from new or altered interactions between the glycophorin A and the membrane skeleton. We have shown by means of the micropipette aspiration technique that antibodies against the preponderant transmembrane protein, band 3, induce similar effects. A definite but much smaller reduction in elasticity of the membrane is engendered by univalent Fab fragments of the anti-band 3 antibodies. By examining cells genetically devoid of glycophorin A or containing a variant of this constituent, truncated at the inner membrane surface, we have shown that the anti-band 3 antibodies do not act through the band 3-associated glycophorin A. We examined the effect of anti-glycophorin A antibodies on homozygous Wr(a+b-) cells, in which an amino acid replacement in band 3 annihilates the Wright b (Wrb) epitope (comprising sequence elements of glycophorin A and band 3) and thus, by implication disrupts or perturbs the band 3-glycophorin A interaction; these cells show a much smaller response to an anti-glycophorin A antibody than do normal controls. We infer that in this case anti-glycophorin A antibodies exert their rigidifying effect through the associated band 3. Another anti-glycophorin A antibody, directed against an epitope remote from the membrane surface, however, increases the rigidity of both Wr(a+b-) and normal cells. This implies that not all antibodies act in the same manner in modifying the membrane mechanical properties. The effect exerted by anti-band 3 antibodies appears not to be transmitted through the band 3-ankyrin-spectrin pathway because the rigidifying effect of the intact antibody persists at alkaline pH, at which there is evidence that the ankyrin-band 3 link is largely dissociated. The large difference between the effects of saturating concentrations of the divalent and

  2. Cellular reactions of osteoblast-like cells to a novel nanocomposite membrane for guided bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Meng Yao [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Department of Orthodontics, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Liu Man [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Stomatology Health Care Center, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518048 (China); Wang Shaoan [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Mo Anchun [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China)], E-mail: moanchun@163.com; Huang, Cui [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Zuo Yi; Li Jidong [Research Center for Nano-biomaterials, Sichuan University, Chengdu 610041 (China)

    2008-11-15

    This study investigated the bioactivity and biocompatibility of hydroxyapatite nanoparticles (n-HA)/Polyamide-66 (PA66) nanocomposite membrane and expanded-polytetrafluoroethylene (e-PTFE) membrane (as control) to MG63 osteoblast-like cells. The attachment and proliferation of the cells on the porous surface of nHA/PA66 membrane and the surface of e-PTFE membrane were evaluated by scanning electron microscope (SEM) observation and the MTT assay. The bioactivity of the cells on the surface of the two membranes was evaluated by testing cell viability and alkaline phosphatase (ALP) activities. The results suggested that the bioresponse of MG63 osteoblast-like cells on the porous surface of nHA/PA66 membrane was better than the bioresponse on the opposite surface of e-PTFE membrane. Because of a better cell attachment manner, there is a potential utilization of the guided bone regeneration (GBR) membrane to substitute nHA/PA66 membrane for e-PTFE membra0008.

  3. High Temperature Alkaline Electrolysis Cells with Metal Foam Based Gas Diffusion Electrodes

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Allebrod, Frank; Mogensen, Mogens Bjerg

    2016-01-01

    Alkaline electrolysis cells operating at 250°C and 40 bar are able to convert electrical energy into hydrogen at very high efficiencies and power densities. In the present work we demonstrate the application of a PTFE hydrophobic network and Ag nanowires as oxygen evolution electrocatalyst...

  4. Copper nitride nanocubes: size-controlled synthesis and application as cathode catalyst in alkaline fuel cells.

    Science.gov (United States)

    Wu, Haibin; Chen, Wei

    2011-10-05

    Copper nitride nanocubes are synthesized in a facile one-phase process. The crystal size could be tuned easily by using different primary amines as capping agents. Such Pt-free nanocrystals exhibit electrocatalytic activity toward oxygen reduction and appear to be promising cathodic electrocatalysts in alkaline fuel cells.

  5. Oxygen evolution reaction characteristics of synthetic nickel-cobalt-oxide electrodes for alkaline anion-exchange membrane water electrolysis

    Science.gov (United States)

    Koo, Tae Woo; Park, ChanSu; Kim, Yang Do; Lee, Dooyong; Park, Sungkyun; Lee, Jae Ho; Choi, Sung Mook; Choi, Chul Young

    2015-11-01

    A polymer electrolyte membrane water electrolysis system can produce high-purity hydrogen gases in a highly efficient manner. However, the level of hydrogen gas production is still small. In addition, noble-metal catalysts for the reaction in acidic environments, as well as an additional drying step to remove water contained in the hydrogen, are required. Therefore, water electrolysis system with high efficiency and lower cost, an alkaline anion-exchange membrane system that can produce high-purity hydrogen without a noble-metal catalyst, is needed. Nano-size NiCo2O4 powders were prepared by using a sol-gel method to achieve an efficient and economical water electrolysis system. When the powder was calcined at 450 °C, the crystallinity and the cyclic voltammogram measurement showed the best values. In addition, the 15-wt.% polytetrafluoroethylene mixed NiCo2O4 powders exhibited the largest cyclic voltammetry active area and the highest oxygen evolution reaction activity with the appropriate stability.

  6. Membrane elastic properties and cell function.

    Directory of Open Access Journals (Sweden)

    Bruno Pontes

    Full Text Available Recent studies indicate that the cell membrane, interacting with its attached cytoskeleton, is an important regulator of cell function, exerting and responding to forces. We investigate this relationship by looking for connections between cell membrane elastic properties, especially surface tension and bending modulus, and cell function. Those properties are measured by pulling tethers from the cell membrane with optical tweezers. Their values are determined for all major cell types of the central nervous system, as well as for macrophage. Astrocytes and glioblastoma cells, which are considerably more dynamic than neurons, have substantially larger surface tensions. Resting microglia, which continually scan their environment through motility and protrusions, have the highest elastic constants, with values similar to those for resting macrophage. For both microglia and macrophage, we find a sharp softening of bending modulus between their resting and activated forms, which is very advantageous for their acquisition of phagocytic functions upon activation. We also determine the elastic constants of pure cell membrane, with no attached cytoskeleton. For all cell types, the presence of F-actin within tethers, contrary to conventional wisdom, is confirmed. Our findings suggest the existence of a close connection between membrane elastic constants and cell function.

  7. Advanced membrane electrode assemblies for fuel cells

    Science.gov (United States)

    Kim, Yu Seung; Pivovar, Bryan S

    2014-02-25

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  8. Alternative membranes for polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, A.K.; Pitchumani, S.; Sridhar, P.; Shukla, A.K. [Central Electrochemical Research Inst., Karaikudi (India)

    2009-07-01

    Nafion, a perfluoro-sulfonated membrane, is utilized as a membrane electrolyte in polymer electrolyte fuel cells (PEFCs). However, to realize optimum PEFC performance, the Nafion membrane needs to be fully humidified, making the system quite costly. Therefore, in order to solve this problem, alternative membrane electrolytes that could operate under low humidity conditions are needed. This paper reported on composite Nafion membranes with ceramic/inorganic fillers such as silica and mesoporous zirconium phosphate (MZP). Silica was impregnated to the Nafion matrix by a unique water hydrolysis sol-gel route and casted as a composite membrane while MZP, a solid-super-acid-proton-conducting medium as well as water absorbing material was synthesized by a co-assembly technique and impregnated to the Nafion matrix to form a composite membrane. The performance of the PEFCs with Nafion membrane and composite membranes was tested with hydrogen/oxygen gas and hydrogen/air feeds at varying relative humidity (RH) values under ambient conditions. It was concluded that under RH value as low as 18 per cent, the PEFC with Nafion membrane delivers a peak-power density of only 130 mW/square centimeter.

  9. A novel bioactive membrane by cell electrospinning.

    Science.gov (United States)

    Chen, Haiping; Liu, Yuanyuan; Hu, Qingxi

    2015-11-01

    Electrospinning permits fabrication of biodegradable matrices that can resemble the both scale and mechanical behavior of the native extracellular matrix. However, achieving high-cellular density and infiltration of cells within matrices with traditional technique remain challenging and time consuming. The cell electrospinning technique presented in this paper can mitigate the problems associated with these limitations. Cells encapsulated by the material in the cell electrospinning technique survived well and distributed homogenously within the nanofibrous membrane, and their vitality was improved to 133% after being cultured for 28 days. The electrospun nanofibrous membrane has a certain degradation property and favorable cell-membrane interaction that supports the active biocompatibility of the membrane. Its properties are helpful for supporting cell attachment and growth, maintaining phenotypic shape, and secreting an ample amount of extracellular matrix (ECM). This novel membrane may be a potential application within the field of tissue engineering. The ability of cell electrospinning to microintegrate cells into a biodegradable fibrous matrix embodies a novel tissue engineering approach that could be applied to fabricate a high cell density elastic tissue mimetic.

  10. Alkaline regenerative fuel cell energy storage system for manned orbital satellites

    Science.gov (United States)

    Martin, R. E.; Gitlow, B.; Sheibley, D. W.

    1982-01-01

    It is pointed out that the alkaline regenerative fuel cell system represents a highly efficient, lightweight, reliable approach for providing energy storage in an orbiting satellite. In addition to its energy storage function, the system can supply hydrogen and oxygen for attitude control of the satellite and for life support. A summary is presented of the results to date obtained in connection with the NASA-sponsored fuel cell technology advancement program, giving particular attention to the requirements of the alkaline regenerative fuel cell and the low-earth mission. Attention is given to system design guidelines, weight considerations, gold-platinum cathode cell performance, matrix development, the electrolyte reservoir plate, and the cyclical load profile tests.

  11. Artificial cell membranes for diagnostics and therapeutics

    Energy Technology Data Exchange (ETDEWEB)

    Charych, D.; Nagy, J.O. [Lawrence Berkeley National Lab., CA (United States)

    1996-09-01

    Receptors on the membrane can recognize and bind extracellular molecules and convert that event into signals that elicit molecular changes within the cell. These two properties alone--molecular recognition and signal transduction--make the cell membrane an attractive model for designing novel biosensors or therapeutics. Natural cell membranes, however, are highly complex; mimicking the intricate choreography of the cell`s daily activities would be a daunting task. Instead, the authors turn to simpler, synthetic versions of the cell, where they can build in the components that give rise to specific activities and functions, one at a time. The process of forming artificial membranes is identical to that of forming natural membranes and is sometimes referred to as molecular self-assembly. From a practical point of view, the process is simple, because no external intervention is required--the molecules organize themselves into useful structures. The molecules that constitute the membranes are amphiphilic and therefore will spontaneously form lipid aggregates when mixed with water.

  12. Sterion membranes in Direct Methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Linares, J. J.; Lobato, J.; Canizares, P.; Rodrigo, M. A.; Fernandez, A.

    2005-07-01

    Direct Methanol Fuel Cells (DMFCs) has been postulated as an alternative to traditional hydrogen fed Polymer Electrolyte Membrane Fuel Cells (H2-PEMFCs). Among their advantages, it can be pointed out the low cost of the fuel, simplicity of design, large availability, easy handling and distribution. However, there are still some challenges in this field, such as the development of electrocatalysts which can enhance the electrokinetics of methanol oxidation, the discovery of an electrolyte membrane with high conductivity and low methanol crossover at the same time and the production of methanol-tolerant electrocatalysts with high activity for oxygen reduction. So far, Nafion 117 has been the polymer membrane most widely used in DMFCs. Yet, it is well known that Nafion (Du Pont Inc.) membranes are not good barrier for methanol, so that the coulombic efficiency of Nafion-based DMFCs is significantly reduced by the chemical oxidation of methanol in the cathode. Recently, a new perfluorinated polymer with sulphonic acid groups (PFSA) has been developed, under the commercial name of Sterion (David Fuel Cell Components). As a difference as opposed to Nafion, this membrane is cast by the solution casting method, which provides a different sulphonic cluster configuration as compared to the extrusion cast Nafion membranes, which may give rise to different methanol crossover behaviour. In this work, it has been studied and analysed the suitability of Sterion in the DMFCs field. For that, it has been measured the methanol permeability of this membrane at different solute concentration and temperature, and its performance in an actual fuel cell at different operational conditions, such as methanol concentration, temperature and back pressure. Tests have been made using both oxygen and air in the cathode and half-cell potentials have been evaluated in some measurements in order to discriminate the contribution of both semi-reactions to the overall cell overvoltage. A lifetime

  13. Foam Based Gas Diffusion Electrodes for Reversible Alkaline Electrolysis Cells

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2014-01-01

    cell. In the present work we demonstrate the application of hydrophobic, porous, and electro-catalytically active gas diffusion electrodes. PTFE particles and silver nanowires as electro-catalysts were used in the gas diffusion electrodes. Impedance spectroscopy and cyclic voltammetry were performed...

  14. Pyramidal texturing of silicon surface via inorganic-organic hybrid alkaline liquor for heterojunction solar cells

    Science.gov (United States)

    Wang, Fengyou; Zhang, Xiaodan; Wang, Liguo; Jiang, Yuanjian; Wei, Changchun; Zhao, Ying

    2015-10-01

    We demonstrate a new class of silicon texturing approach based on inorganic (sodium hydroxide, NaOH) and organic (tetramethylammonium hydroxide, TMAH) alkaline liquor etching processes for photovoltaic applications. The first stage of inorganic alkaline etching textures the silicon surface rapidly with large pyramids and reduces the cost. The subsequent organic alkaline second-etching improves the coverage of small pyramids on the silicon surface and strip off the metallic contaminants produced by the first etching step. In addition, it could smoothen the surface of the pyramids to yield good morphology. In this study, the texturing duration of both etching steps was controlled to optimize the optical and electrical properties as well as the surface morphology and passivation characteristics of the silicon substrates. Compared with traditional inorganic NaOH texturing, this hybrid process yields smoother (111) facets of the pyramids, fewer residual Na+ ions on the silicon surface, and a shorter processing period. It also offers the advantage of lower cost compared with the organic texturing method based on the use of only TMAH. We applied this hybrid texturing process to fabricate silicon heterojunction solar cells, which showed a remarkable improvement compared with the cells based on traditional alkaline texturing processes.

  15. Stretching micropatterned cells on a PDMS membrane.

    Science.gov (United States)

    Carpi, Nicolas; Piel, Matthieu

    2014-01-22

    Mechanical forces exerted on cells and/or tissues play a major role in numerous processes. We have developed a device to stretch cells plated on a PolyDiMethylSiloxane (PDMS) membrane, compatible with imaging. This technique is reproducible and versatile. The PDMS membrane can be micropatterned in order to confine cells or tissues to a specific geometry. The first step is to print micropatterns onto the PDMS membrane with a deep UV technique. The PDMS membrane is then mounted on a mechanical stretcher. A chamber is bound on top of the membrane with biocompatible grease to allow gliding during the stretch. The cells are seeded and allowed to spread for several hours on the micropatterns. The sample can be stretched and unstretched multiple times with the use of a micrometric screw. It takes less than a minute to apply the stretch to its full extent (around 30%). The technique presented here does not include a motorized device, which is necessary for applying repeated stretch cycles quickly and/or computer controlled stretching, but this can be implemented. Stretching of cells or tissue can be of interest for questions related to cell forces, cell response to mechanical stress or tissue morphogenesis. This video presentation will show how to avoid typical problems that might arise when doing this type of seemingly simple experiment.

  16. Porous matrix structures for alkaline electrolyte fuel cells

    Science.gov (United States)

    Vine, R. W.; Narsavage, S. T.

    1975-01-01

    A number of advancements have been realized by a continuing research program to develop higher chemically stable porous matrix structures with high bubble pressure (crossover resistance) for use as separators in potassium hydroxide electrolyte fuel cells. More uniform, higher-bubble-pressure asbestos matrices were produced by reconstituting Johns-Manville asbestos paper; Fybex potassium titanate which was found compatible with 42% KOH at 250 F for up to 3000 hr; good agreement was found between bubble pressures predicted by an analytical study and those measured with filtered structures; Teflon-bonded Fybex matrices with bubble pressures greater than 30 psi were obtained by filtering a water slurry of the mixture directly onto fuel cell electrodes; and PBI fibers have satisfactory compatibility with 42% KOH at 250 F.

  17. Electricity generation from macroalgae Enteromorpha prolifera hydrolysates using an alkaline fuel cell.

    Science.gov (United States)

    Liu, Susu; Liu, Xianhua; Wang, Ying; Zhang, Pingping

    2016-12-01

    The goal of this work was to develop a method for the direct power generation using macroalgae Enteromorpha prolifera. The process conditions for the saccharification of macroalgae were optimized and a type of alkaline fuel cell contained no precious metal catalysts was developed. Under optimum conditions (170°C and 2% hydrochloric acid for 45min), dilute acid hydrolysis of the homogenized plants yielded 272.25g reducing sugar/kg dry algal biomass. The maximum power density reached 3.81W/m(2) under the condition of 3M KOH and 18.15g/L reducing sugar in hydrolysate, higher than any other reported algae-fed fuel cells. This study represents the first report on direct electricity generation from macroalgae using alkaline fuel cells, suggesting that there is great potential for the production of renewable energy using marine biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The role of alkaline phosphatase in intracellular lipid accumulation in the human hepatocarcinoma cell line, HepG2.

    Science.gov (United States)

    Chirambo, George M; van Niekerk, Chantal; Crowther, Nigel J

    2017-04-01

    Inhibition of tissue non-specific alkaline phosphatase (TNALP) decreases intracellular lipid accumulation in human preadipocytes and the murine preadipocyte cell line, 3T3-L1. Therefore, the current study was performed to determine if TNALP is required for intracellular lipid deposition in the human hepatocyte cell line, HepG2. Intracellular lipid accumulation, TNALP activity and peroxisome proliferator activated receptor (PPAR) γ gene expression were measured in HepG2 and 3T3-L1 cells in the presence and absence of the TNALP inhibitors levamisole and histidine. Sub-cellular TNALP activity was localized using cytochemical analysis. Both PPARγ gene expression and TNALP activity increased during intracellular lipid accumulation in HepG2 and 3T3-L1 cells. Inhibition of TNALP blocked intracellular lipid accumulation but did not alter expression of the PPARγ gene. In HepG2 cells, TNALP co-localized with adipophilin on the lipid droplet membrane. These data suggest a role for TNALP in lipid droplet formation, possibly downstream from PPARγ, within HepG2 and 3T3-L1 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Geometry and Topology of Cell Membranes

    Science.gov (United States)

    Bouligand, Y.

    Cells are limited by a membrane which is a fluid bilayer of phospholipids to which are associated numerous components, such as cholesterol, polysaccharides, proteins and, among them, many enzymes. organelles within cells are made for a large part of similar bilayers including phospholipids and various molecules. The cell membrane forms architectures closely related to those observed in liquid crystalline phases given by water-lipid systems (purified amphiphilic molecules in presence of water and oily components). The cell is divided into a series of compartments with definite topological relations, which are rehandled more or less profoundly in diverse circumstances as endocytosis, exocytosis, mitosis etc. There are several geometric arrangements of membrane sets : parallel membranes, hexagonal packing of tubes, cubic systems made of tubes joining either three by three, or four by four, or six by six. There are other arrangements less directly related to liquid crysyalline structures (annulate lamellae, tubes and lamellae with nematic symmetries, randomly joining tubes). Comparisons of structures in cellular membranes and in water-lipid systems reveal important differences. If geometries are often similar, water percentage and scales are distinct and bilayers observed in vitro present a symmetry which is broken in cell membrane bilayers. The curvature effects observed in water-lipid systems mainly come from a density difference between polar heads and corresponding paraffinic chains within a monolayer, whereas, in biological membranes, the asymmetry lies between the two monolayers and their associated molecules. Both systems produce saddle-shaped bilayers arranging into cubic lattices separating two aqueous compartments. In water-lipid systems, the coupling at an interface of two different areas seems to predominate, whereas in biological membranes, mechanisms are different and probably originate from geometric properties of proteins included within bilayers.

  20. Effects of hydroxyl alkaline compounds on dermatophytic cells

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Objective:To determine the effect of hydroxide compounds on the viability of dermatophytic cells. Methods:Two strains (Trichophyton mentagrophytes andEpidermophytonfloccosum) of dermatophytes were clinical isolated from an old male patient with tinea corporis at AL-Hussein General Hospital of Karbala Province. Skin scales of fungal lesion were cultured on Sabouraud dextrose agar containing 0.05 g chloramphenicol. The hydroxide compounds were dissolved in melted fungal media to obtain different percentages (0.625%, 1.25%, 2.5%, 5%). Then the fungal growth on solid media containing tested compounds was determined by using colony diameter method and different concentrations ofKOH,NaOH,Mg(OH)2 andCa(OH)2 were tested against two species of dermatophytes. Experiments were repeated triplicate for statistical analysis and the data were analyzed for SE of each experiment. Results:KOH andNaOH (down to 1.25%) showed the ability to completely inhibit the growth of both strains of dermatophytes (Trichophyton mentagrophytes andEpidermophyton floccosum). Other two hydroxide compounds revealed variable effects on dermatophytes cells. Conclusions: The strong hydroxide compounds showed a harmful effect on fungal structures and functions. In addition to diagnosis, pathogenic fungi like dermatophytes were killed after treating with these hydroxide agents.

  1. Fabric-based alkaline direct formate microfluidic fuel cells.

    Science.gov (United States)

    Domalaon, Kryls; Tang, Catherine; Mendez, Alex; Bernal, Franky; Purohit, Krutarth; Pham, Linda; Haan, John; Gomez, Frank A

    2017-01-12

    Fabric-based microfluidic fuel cells (MFCs) serve as a novel, cost-efficient alternative to traditional FCs and batteries, since fluids naturally travel across fabric via capillary action, eliminating the need for an external pump and lowering production and operation costs. Building on previous research with Y-shaped paper-based MFCs, fabric-based MFCs mitigate fragility and durability issues caused by long periods of fuel immersion. In this study, we describe a microfluidic fabric-based direct formate fuel cell, with 5 M potassium formate and 30% hydrogen peroxide as the anode fuel and cathode oxidant, respectively. Using a two-strip, stacked design, the optimized parameters include the type of encasement, the barrier, and the fabric type. Surface contact of the fabric and laminate sheet expedited flow and respective chemical reactions. The maximum current (22.83 mA/cm(2) ) and power (4.40 mW/cm(2) ) densities achieved with a 65% cotton/35% polyester blend material are a respective 8.7% and 32% higher than previous studies with Y-shaped paper-based MFCs. In series configuration, the MFCs generate sufficient energy to power a handheld calculator, a thermometer, and a spectrum of light-emitting diodes.

  2. Somatic cell count and alkaline phosphatase activity in milk for evaluation of mastitis in buffalo.

    Science.gov (United States)

    Patil, M P; Nagvekar, A S; Ingole, S D; Bharucha, S V; Palve, V T

    2015-03-01

    Mastitis is a serious disease of dairy animals causing great economic losses due to a reduction in milk yield as well as lowering its nutritive value. The application of somatic cell count (SCC) and alkaline phosphatase activity in the milk for diagnosis of mastitis in buffalo is not well documented. Therefore, the present study was conducted to observe the SCC and alkaline phosphatase activity for evaluation of mastitis in buffalo. Milk samples of forty apparently healthy lactating buffaloes were selected and categorized into five different groups viz. normal buffaloes, buffaloes with subclinical mastitis with CMT positive milk samples (+1 Grade), (+2 Grade), (+3 Grade), and buffaloes with clinical mastitis with 8 animals in each group. The milk samples were analyzed for SCC and alkaline phosphatase activity. The levels of SCC (×10(5) cells/ml) and alkaline phosphatase (U/L) in different groups were viz. normal (3.21±0.179, 16.48±1.432), subclinical mastitis with CMT positive milk samples with +1 Grade (4.21±0.138, 28.11±1.013), with +2 Grade (6.34±0.183, 34.50±1.034), with +3 Grade (7.96±0.213, 37.73±0.737) and buffaloes with clinical mastitis (10.21±0.220, 42.37±0.907) respectively, indicating an increasing trend in the values and the difference observed among various group was statistically significant. In conclusion, the results of the present study indicate that the concentration of milk SCC and alkaline phosphatase activity was higher in the milk of buffaloes with mastitis than in the milk of normal buffaloes.

  3. Cell membrane softening in human breast and cervical cancer cells

    Science.gov (United States)

    Händel, Chris; Schmidt, B. U. Sebastian; Schiller, Jürgen; Dietrich, Undine; Möhn, Till; Kießling, Tobias R.; Pawlizak, Steve; Fritsch, Anatol W.; Horn, Lars-Christian; Briest, Susanne; Höckel, Michael; Zink, Mareike; Käs, Josef A.

    2015-08-01

    Biomechanical properties are key to many cellular functions such as cell division and cell motility and thus are crucial in the development and understanding of several diseases, for instance cancer. The mechanics of the cellular cytoskeleton have been extensively characterized in cells and artificial systems. The rigidity of the plasma membrane, with the exception of red blood cells, is unknown and membrane rigidity measurements only exist for vesicles composed of a few synthetic lipids. In this study, thermal fluctuations of giant plasma membrane vesicles (GPMVs) directly derived from the plasma membranes of primary breast and cervical cells, as well as breast cell lines, are analyzed. Cell blebs or GPMVs were studied via thermal membrane fluctuations and mass spectrometry. It will be shown that cancer cell membranes are significantly softer than their non-malignant counterparts. This can be attributed to a loss of fluid raft forming lipids in malignant cells. These results indicate that the reduction of membrane rigidity promotes aggressive blebbing motion in invasive cancer cells.

  4. Shedding of cell membrane-bound proteoglycans.

    Science.gov (United States)

    Nam, Eon Jeong; Park, Pyong Woo

    2012-01-01

    Membrane-bound proteoglycans function primarily as coreceptors for many glycosaminoglycan (GAG)-binding ligands at the cell surface. The majority of membrane-bound proteoglycans can also function as soluble autocrine or paracrine effectors as their extracellular domains, replete with all GAG chains, are enzymatically cleaved and released from the cell surface by ectodomain shedding. In particular, the ectodomain shedding of syndecans, a major family of cell surface heparan sulfate proteoglycans, is an important posttranslational mechanism that modulates diverse pathophysiological processes. Syndecan shedding is a tightly controlled process that regulates the onset, progression, and resolution of various infectious and noninfectious inflammatory diseases. This review describes methods to induce and measure the shedding of cell membrane-bound proteoglycans, focusing on syndecan shedding as a prototypic example.

  5. Metric dynamics for membrane transformation through regulated cell proliferation

    OpenAIRE

    Ito, Hiroshi C.

    2016-01-01

    This study develops an equation for describing three-dimensional membrane transformation through proliferation of its component cells regulated by morphogen density distributions on the membrane. The equation is developed in a two-dimensional coordinate system mapped on the membrane, referred to as the membrane coordinates. When the membrane expands, the membrane coordinates expand in the same manner so that the membrane is invariant in the coordinates. In the membrane coordinate system, the ...

  6. An improved alkaline direct formate paper microfluidic fuel cell.

    Science.gov (United States)

    Galvan, Vicente; Domalaon, Kryls; Tang, Catherine; Sotez, Samantha; Mendez, Alex; Jalali-Heravi, Mehdi; Purohit, Krutarth; Pham, Linda; Haan, John; Gomez, Frank A

    2016-02-01

    Paper-based microfluidic fuel cells (MFCs) are a potential replacement for traditional FCs and batteries due to their low cost, portability, and simplicity to operate. In MFCs, separate solutions of fuel and oxidant migrate through paper due to capillary action and laminar flow and, upon contact with each other and catalyst, produce electricity. In the present work, we describe an improved microfluidic paper-based direct formate FC (DFFC) employing formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. The dimensions of the lateral column, current collectors, and cathode were optimized. A maximum power density of 2.53 mW/cm(2) was achieved with a DFFC of surface area 3.0 cm(2) , steel mesh as current collector, 5% carbon to paint mass ratio for cathode electrode and, 30% hydrogen peroxide. The longevity of the MFC's detailed herein is greater than eight hours with continuous flow of streams. In a series configuration, the MFCs generate sufficient energy to power light-emitting diodes and a handheld calculator.

  7. Focus on Membrane Differentiation and Membrane Domains in the Prokaryotic Cell

    OpenAIRE

    Boekema, Egbert J.; Scheffers, Dirk-Jan; van Bezouwen, Laura S.; Bolhuis, Henk; Folea, I. Mihaela

    2013-01-01

    A summary is presented of membrane differentiation in the prokaryotic cell, with an emphasis on the organization of proteins in the plasma/cell membrane. Many species belonging to the Eubacteria and Archaea have special membrane domains and/or membrane proliferation, which are vital for different cellular processes. Typical membrane domains are found in bacteria where a specific membrane protein is abundantly expressed. Lipid rafts form another example. Despite the rareness of conventional or...

  8. Nanostructured platinum-free electrocatalysts in alkaline direct alcohol fuel cells: catalyst design, principles and applications

    CSIR Research Space (South Africa)

    Ozoemena, Kenneth I

    2016-01-01

    Full Text Available to their several advantages over conventional proton-exchange membrane fuel cells (PEMFC); these include the emergence of anion-exchange membranes (AEM), easy handling of liquid alcohol fuels compared to hydrogen, higher volumetric energy densities of alcohols...

  9. Alkaline water electrolysis technology for Space Station regenerative fuel cell energy storage

    Science.gov (United States)

    Schubert, F. H.; Hoberecht, M. A.; Le, M.

    1986-01-01

    The regenerative fuel cell system (RFCS), designed for application to the Space Station energy storage system, is based on state-of-the-art alkaline electrolyte technology and incorporates a dedicated fuel cell system (FCS) and water electrolysis subsystem (WES). In the present study, emphasis is placed on the WES portion of the RFCS. To ensure RFCS availability for the Space Station, the RFCS Space Station Prototype design was undertaken which included a 46-cell 0.93 cu m static feed water electrolysis module and three integrated mechanical components.

  10. Electrically Conductive, Hydrophilic Porous Membrane for Fuel Cell Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I effort seeks to produce a conductive polyethersulfone (PES) microporous membrane for fuel cell water management applications. This membrane will...

  11. Focus on Membrane Differentiation and Membrane Domains in the Prokaryotic Cell

    NARCIS (Netherlands)

    Boekema, E.J.; Scheffers, D.-J.; van Bezouwen, L.S.; Bolhuis, H.; Folea, I.M.

    2013-01-01

    A summary is presented of membrane differentiation in the prokaryotic cell, with an emphasis on the organization of proteins in the plasma/cell membrane. Many species belonging to the Eubacteria and Archaea have special membrane domains and/or membrane proliferation, which are vital for different

  12. Alternate Fuel Cell Membranes for Energy Independence

    Energy Technology Data Exchange (ETDEWEB)

    Storey, Robson, F.; Mauritz, Kenneth, A.; Patton, Derek, L.; Savin, Daniel, A.

    2012-12-18

    The overall objective of this project was the development and evaluation of novel hydrocarbon fuel cell (FC) membranes that possess high temperature performance and long term chemical/mechanical durability in proton exchange membrane (PEM) fuel cells (FC). The major research theme was synthesis of aromatic hydrocarbon polymers of the poly(arylene ether sulfone) (PAES) type containing sulfonic acid groups tethered to the backbone via perfluorinated alkylene linkages and in some cases also directly attached to the phenylene groups along the backbone. Other research themes were the use of nitrogen-based heterocyclics instead of acid groups for proton conduction, which provides high temperature, low relative humidity membranes with high mechanical/thermal/chemical stability and pendant moieties that exhibit high proton conductivities in the absence of water, and synthesis of block copolymers consisting of a proton conducting block coupled to poly(perfluorinated propylene oxide) (PFPO) blocks. Accomplishments of the project were as follows: 1) establishment of a vertically integrated program of synthesis, characterization, and evaluation of FC membranes, 2) establishment of benchmark membrane performance data based on Nafion for comparison to experimental membrane performance, 3) development of a new perfluoroalkyl sulfonate monomer, N,N-diisopropylethylammonium 2,2-bis(p-hydroxyphenyl) pentafluoropropanesulfonate (HPPS), 4) synthesis of random and block copolymer membranes from HPPS, 5) synthesis of block copolymer membranes containing high-acid-concentration hydrophilic blocks consisting of HPPS and 3,3'-disulfonate-4,4'-dichlorodiphenylsulfone (sDCDPS), 6) development of synthetic routes to aromatic polymer backbones containing pendent 1H-1,2,3-triazole moieties, 7) development of coupling strategies to create phase-separated block copolymers between hydrophilic sulfonated prepolymers and commodity polymers such as PFPO, 8) establishment of basic

  13. Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders.

    Science.gov (United States)

    Da Costa, Lydie; Galimand, Julie; Fenneteau, Odile; Mohandas, Narla

    2013-07-01

    Hereditary spherocytosis and elliptocytosis are the two most common inherited red cell membrane disorders resulting from mutations in genes encoding various red cell membrane and skeletal proteins. Red cell membrane, a composite structure composed of lipid bilayer linked to spectrin-based membrane skeleton is responsible for the unique features of flexibility and mechanical stability of the cell. Defects in various proteins involved in linking the lipid bilayer to membrane skeleton result in loss in membrane cohesion leading to surface area loss and hereditary spherocytosis while defects in proteins involved in lateral interactions of the spectrin-based skeleton lead to decreased mechanical stability, membrane fragmentation and hereditary elliptocytosis. The disease severity is primarily dependent on the extent of membrane surface area loss. Both these diseases can be readily diagnosed by various laboratory approaches that include red blood cell cytology, flow cytometry, ektacytometry, electrophoresis of the red cell membrane proteins, and mutational analysis of gene encoding red cell membrane proteins.

  14. Cell or Cell Membrane-Based Drug Delivery Systems

    Science.gov (United States)

    Tan, Songwei; Wu, Tingting; Zhang, Dan; Zhang, Zhiping

    2015-01-01

    Natural cells have been explored as drug carriers for a long period. They have received growing interest as a promising drug delivery system (DDS) until recently along with the development of biology and medical science. The synthetic materials, either organic or inorganic, are found to be with more or less immunogenicity and/or toxicity. The cells and extracellular vesicles (EVs), are endogenous and thought to be much safer and friendlier. Furthermore, in view of their host attributes, they may achieve different biological effects and/or targeting specificity, which can meet the needs of personalized medicine as the next generation of DDS. In this review, we summarized the recent progress in cell or cell membrane-based DDS and their fabrication processes, unique properties and applications, including the whole cells, EVs and cell membrane coated nanoparticles. We expect the continuing development of this cell or cell membrane-based DDS will promote their clinic applications. PMID:26000058

  15. [Recovery of the sensitivity of J-41 cells to Coxsackie B3 virus by treatment with exogenous alkaline phosphatase].

    Science.gov (United States)

    Voronina, F V; Gulevich, N E; Khesin, Ia E

    1980-12-01

    It has been shown that injection of G-41 cell cultures, deficient as regards alkaline phosphatase and resistant to Coxsackie B3 virus, in conjunction with exposure to an alkaline phosphatase preparation from the calf intestine results in virus reproduction. Depending on the dose administered and multiplicity of infection there occur either complete destruction of the monolayer or death of some cells with the development of cytopathic changes specific for Coxackie virus.

  16. High temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters...... of the book describe rationalization and illustration of approaches to high temperature PEM systems. Chapters 6 - 13 are devoted to fabrication, optimization and characterization of phosphoric acid-doped polybenzimidazole membranes, the very first electrolyte system that has demonstrated the concept...... of and motivated extensive research activity in the field. The last 11 chapters summarize the state-of-the-art of technological development of high temperature-PEMFCs based on acid doped PBI membranes including catalysts, electrodes, MEAs, bipolar plates, modelling, stacking, diagnostics and applications....

  17. Membrane lipidome of an epithelial cell line

    DEFF Research Database (Denmark)

    Sampaio, Julio L; Gerl, Mathias J; Klose, Christian

    2011-01-01

    Tissue differentiation is an important process that involves major cellular membrane remodeling. We used Madin-Darby canine kidney cells as a model for epithelium formation and investigated the remodeling of the total cell membrane lipidome during the transition from a nonpolarized morphology...... to an epithelial morphology and vice versa. To achieve this, we developed a shotgun-based lipidomics workflow that enabled the absolute quantification of mammalian membrane lipidomes with minimal sample processing from low sample amounts. Epithelial morphogenesis was accompanied by a major shift from sphingomyelin...... to glycosphingolipid, together with an increase in plasmalogen, phosphatidylethanolamine, and cholesterol content, whereas the opposite changes took place during an epithelial-to-mesenchymal transition. Moreover, during polarization, the sphingolipids became longer, more saturated, and more hydroxylated as required...

  18. Effects of an antibacterial membrane on osteoblast-like cells in vitro

    Directory of Open Access Journals (Sweden)

    Ye J

    2011-09-01

    Full Text Available Jun Ye1, Qianqian Yao1, Anchun Mo2, Jing Nie2, Wenwen Liu1, Cui Ye1, Xianji Chen11State Key Laboratory of Oral Diseases, 2Department of Oral Implant, West China College of Stomatology, Sichuan University, Chengdu, People's Republic of ChinaAbstract: Infection around membranes is often found in guided bone regeneration (GBR. The excellent antibacterial properties of Ag-nHA-nTiO2/polyamide-66 (PA66 nanocomposite membranes have been demonstrated previously. The aim of this study was to observe the microstructure of an Ag-nHA-nTiO2/PA66 membrane and its effects on osteoblast-like cells in vitro. An Ag-nHA-nTiO2/PA66 membrane was used in the experimental group, and both nHA/PA66 and expanded poly tetrafluroethylene (e-PTFE membranes were set as control. MG63 osteoblast-like cells were cultured on the three kinds of membrane and tissue culture polystyrene (TCP. The microstructure of the above membranes and the cells adhered on them were detected by scanning electronic microscope (SEM. Cell proliferation was determined by 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay, cell viability with a cell viability analyzer, and alkaline phosphatase (ALP activity and Ca2+ concentration of osteoblast-like cell matrix by enzyme-linked immunosorbent assay. SEM showed that both Ag-nHA-nTiO2/PA66 membranes and nHA/PA66 membranes were composed of porous obverse face and smooth opposite face. The e-PTFE membranes showed elliptic surface structure with many tiny lined cracks. The MG63 cells adhered and proliferated well on all three kinds of membranes. Though cell viability on Ag-nHA-nTiO2/PA66 membranes was significantly lower than that of the control groups (P < 0.05, MTT values, ALP activity, and Ca2+ concentration did not differ significantly among the three kinds of membranes (P > 0.05. From these findings, it can be concluded that Ag-nHA-nTiO2/PA66 membranes are as biocompatible as nHA/PA66 membranes and TCP, thus may be applied safely in

  19. Hydroponics gel as a new electrolyte gelling agent for alkaline zinc-air cells

    Science.gov (United States)

    Othman, R.; Basirun, W. J.; Yahaya, A. H.; Arof, A. K.

    The viability of hydroponics gel as a new alkaline electrolyte gelling agent is investigated. Zinc-air cells are fabricated employing 12 wt.% KOH electrolyte immobilised with hydroponics gel. The cells are discharged at constant currents of 5, 50 and 100 mA. XRD and SEM analysis of the anode plates after discharge show that the failure mode is due to the formation of zinc oxide insulating layers and not due to any side reactions between the gel and the plate or the electrolyte.

  20. Alkaline electrolysis cell at high temperature and pressure of 250 °C and 42 bar

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2013-01-01

    A new type of alkaline electrolysis cells with nickel foam based gas diffusion electrodes and KOH (aq) immobilized in mesoporous SrTiO3 has been developed and tested at temperatures and pressures up to 250 °C and 42 bar, respectively. Current densities of 1.0 A cm−2 have been measured at a cell...... voltage of 1.5 V without the use of expensive noble metal catalysts. High electrical efficiency and current density combined with relatively small production costs may lead to both reduced investment and operating costs for hydrogen and oxygen production....

  1. Lithium. Effects on excitable cell membranes

    NARCIS (Netherlands)

    Ploeger, Egbert Johan

    1974-01-01

    LITHIUM: Effects on excitable cell membranes. Lithium salts have been used in the treatment of manic-depressive psychosis for many years but their mechanism of action is not well understood. Many workers assume that the action of lithium on catecholamine metabolism and/or on electrolyte distribution

  2. Membrane electrode assembly for a fuel cell

    Science.gov (United States)

    Prakash, Surya (Inventor); Narayanan, Sekharipuram R. (Inventor); Atti, Anthony (Inventor); Olah, George (Inventor); Smart, Marshall C. (Inventor)

    2006-01-01

    A catalyst ink for a fuel cell including a catalytic material and poly(vinylidene fluoride). The ink may be applied to a substrate to form an electrode, or bonded with other electrode layers to form a membrane electrode assembly (MEA).

  3. High power density alkaline fuel cell technology for MMW space burst power

    Science.gov (United States)

    Preston, J. Lawrence, Jr.; Trocciola, John C.; Wertheim, Ronald J.

    The use of advanced alkaline regenerative fuel cell energy storage systems to provide 10's to 100's of MWe of sprint (burst) power for 100's of seconds per orbit of SDI weapons platform was studied. Recharge power is supplied by a multimegawatt space based nuclear power system. Regenerative fuel cell energy storage systems offer the potential for significant platform mass reduction by reducing the size and mass of the nuclear power source required. This is because the reactor can be sized for the smaller average power level for the energy storage system, rather than the sprint power level. The regenerative fuel cell is a particularly attractive energy storage device because the fuel cell is essentially a static power conversion device, which results in excellent platform stability for weapon pointing and tracking. Based upon the detailed point design and conceptual layout, the alkaline regenerative fuel cell energy storage system is an attractive choice for integration with a nuclear thermionic system for providing multimegawatt burst power and multi orbit capability.

  4. High-rate capability of zinc anodes in alkaline primary cells

    Science.gov (United States)

    Huot, Jean-Yves; Malservisi, Martin

    This work is devoted to the electrochemical aspects of high-power testing of primary alkaline LR6 ("AA") cells and to the factors influencing cell performance, namely the corresponding zinc anode behaviour under such high-rate conditions. The influence of the high-rate testing regime, such as the discharge mode and the end-potential, on zinc utilisation in alkaline cells has been monitored and its behaviour has been isolated by means of a pseudo-reference electrode. As anticipated, anode formulation, including zinc alloy composition and size distribution, is found to affect the cell's discharge curve and the corresponding zinc electrode potential and utilisation. The effects of these parameters on the discharge curve are discussed in terms of three stages of discharge. Finally, the high-rate capability of commercial LR6 cells is analysed in terms of zinc anode formulation. It was concluded that zinc electrode polarisation is very small and is relatively independent of manufacturer, of zinc anode formulation and of zinc alloying. On the other hand, metallic zinc utilisation remains very low under high-rate conditions.

  5. Selectivity of Direct Methanol Fuel Cell Membranes

    Directory of Open Access Journals (Sweden)

    Antonino S. Aricò

    2015-11-01

    Full Text Available Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion® were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK, new generation perfluorosulfonic acid (PFSA systems, and composite zirconium phosphate–PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC. The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA was higher than the benchmark Nafion® 115-based MEA (77 mW·cm−2 vs. 64 mW·cm−2. This result was due to a lower methanol crossover (47 mA·cm−2 equivalent current density for s-PEEK vs. 120 mA·cm−2 for Nafion® 115 at 60 °C as recorded at OCV with 2 M methanol and a suitable area specific resistance (0.15 Ohm cm2 for s-PEEK vs. 0.22 Ohm cm2 for Nafion® 115.

  6. Selectivity of Direct Methanol Fuel Cell Membranes

    Science.gov (United States)

    Aricò, Antonino S.; Sebastian, David; Schuster, Michael; Bauer, Bernd; D’Urso, Claudia; Lufrano, Francesco; Baglio, Vincenzo

    2015-01-01

    Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion® were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK), new generation perfluorosulfonic acid (PFSA) systems, and composite zirconium phosphate–PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA) was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC). The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA) was higher than the benchmark Nafion® 115-based MEA (77 mW·cm−2 vs. 64 mW·cm−2). This result was due to a lower methanol crossover (47 mA·cm−2 equivalent current density for s-PEEK vs. 120 mA·cm−2 for Nafion® 115 at 60 °C as recorded at OCV with 2 M methanol) and a suitable area specific resistance (0.15 Ohm cm2 for s-PEEK vs. 0.22 Ohm cm2 for Nafion® 115). PMID:26610582

  7. Aging of cell membranes: facts and theories.

    Science.gov (United States)

    Zs-Nagy, Imre

    2014-01-01

    This chapter is intended to outline the main results of a research trend realized by the author during the last 45 years, focused on the main role played by the cell membrane in the aging process. It is a very wide field; therefore, the reader cannot expect in this limited space a detailed description, but will be given a wide, interdisciplinary insight into the main facts and theories regarding cellular aging. The central idea described here is the concept called the membrane hypothesis of aging (MHA). The history, the chemical roots, physicochemical facts, biophysical processes, as well as the obligatory biochemical consequences are all touched in by indicating the most important sources of detailed knowledge for those who are more interested in the basic biology of the aging process. This chapter covers also the available anti-aging interventions on the cell membrane by means of the centrophenoxine treatment based on the MHA. It also briefly interprets the possibilities of a just developing anti-aging method by using the recombinant human growth hormone, essential basis of which is the species specificity, and the general presence of receptors of this hormone in the plasma membrane of all types of cells.

  8. Microfluidic microbial fuel cells: from membrane to membrane free

    Science.gov (United States)

    Yang, Yang; Ye, Dingding; Li, Jun; Zhu, Xun; Liao, Qiang; Zhang, Biao

    2016-08-01

    Microfluidic microbial fuel cells (MMFCs) are small carbon-neutral devices that use self-organized bacteria to degrade organic substrates and harness energy from the waste water. Conventional MMFCs have made great strides in the past decade and have overcome some limitations, such as high capital costs and low energy output. A co-laminar flow MFC has been first proposed in 2011 with the potential to be an attractively power source to niche applications. Co-laminar MFCs typically operate without any physical membranes separating the reactants, and bacterial ecosystems can be easily manipulated by regulating the inlet conditions. This paper highlights recent accomplishments in the development of co-laminar MFCs, emphasizing basic principles, mass transport and fluid dynamics including boundary layer theory, entrance conditions and mixing zone issues. Furthermore, the development of current techniques, major challenges and the potential research directions are discussed.

  9. Modeling Bubble Flow and Current Density Distribution in an Alkaline Electrolysis Cell

    Directory of Open Access Journals (Sweden)

    Ravichandra S. Jupudi

    2009-12-01

    Full Text Available The effect of bubbles on the current density distribution over the electrodes of an alkaline electrolyzer cell is studied using a two-dimensional computational fluid dynamics model. Model includes Eulerian-Eulerian two-phase flow methodology to model the multiphase flow of Hydrogen and Oxygen with water and the behavior of each phase is accounted for using first principle. Hydrogen/Oxygen evolution, flow field and current density distribution are incorporated in the model to account for the complicated physics involved in the process. Fluent 6.2 is used to solve two-phase flow and electrochemistry is incorporated using UDF (User Defined Function feature of Fluent. Model is validated with mesh refinement study and by comparison with experimental measurements. Model is found to replicate the effect of cell voltage and inter-electrode gap (distance between the electrodes on current density accurately. Further, model is found to capture the existence of optimum cell height. The validated model is expected to be a very useful tool in the design and optimization of alkaline electrolyzer cells.

  10. Fabrication of hydrogels with elasticity changed by alkaline phosphatase for stem cell culture.

    Science.gov (United States)

    Toda, Hiroyuki; Yamamoto, Masaya; Uyama, Hiroshi; Tabata, Yasuhiko

    2016-01-01

    The objective of this study is to design hydrogels whose elasticity can be changed by alkaline phosphatase (ALP) in cell culture and evaluate the effect of hydrogel elasticity on an osteogenic gene expression of cells. Hydrogels were prepared by the radical polymerization of acrylamide (AAm), N,N'-methylenebisacrylamide (BIS), and Phosmer™M containing phosphate groups (PE-PAAm hydrogels). The storage modulus of PE-PAAm hydrogels prepared was changed by the preparation conditions. When human mesenchymal stem cells (hMSC) were cultured on the ALP-responsive PE-PAAm hydrogels in the presence or absence of ALP, the morphology of hMSC was observed and one of the osteogenic differentiation markers, Runx2, was evaluated. By ALP addition into the culture medium, the morphology of hMSC was changed into an elongated shape without cell damage. ALP addition modified the level of Runx2 gene expression, which was influenced by the modulus of PE-PAAm hydrogels. It is concluded that the elasticity change of hydrogel substrates in cell culture had an influence on the Runx2 gene expression of hMSC. Stem cells sense the surface elasticity of culture substrates, and their differentiation fate is biologically modified by substrate properties. Most of experiments have been performed in static conditions during cell culture, while the in vivo microenvironment is dynamically changed. In this study, we established to design an enzyme-responsive hydrogel whose elasticity can be changed by alkaline phosphatase (ALP) in cell culture to mimic in vivo conditions. As a result, the cells were deformed and the gene expression level of an osteogenic maker, Runx2, was modified by ALP treatment. This is the novel report describing to demonstrate that the dynamic alteration of hydrogel substrate elasticity could modulate the osteoblastic gene expression of human MSC in vitro. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Blend Concepts for Fuel Cell Membranes

    Institute of Scientific and Technical Information of China (English)

    J. Kerres

    2005-01-01

    @@ 1Introduction Direct methanol fuel cells (DMFC) are an alternative to lithium ion batteries as energy supply for mobile applications such as laptops, PDA's and cellphones. It would be advantageous if pure or highly concentrated methanol could be used as the fuel in these DMFC, due to the high energy density of meOH. However, most of the ionomer membranes used up to now as proton conductor in DMFC can not withstand pure or highly concentrated methanol due to extreme swelling or even dissolution under these conditions. Therefore it is required to prepare H+ -conducting membranes which remain dimensionally stable in pure or highly concentrated methanol. One way to approach this goal is to cross-link the ionomer membranes so that the swelling under the desired methanol-rich conditions is limited.

  12. Proton exchange membrane fuel cells modeling

    CERN Document Server

    Gao, Fengge; Miraoui, Abdellatif

    2013-01-01

    The fuel cell is a potential candidate for energy storage and conversion in our future energy mix. It is able to directly convert the chemical energy stored in fuel (e.g. hydrogen) into electricity, without undergoing different intermediary conversion steps. In the field of mobile and stationary applications, it is considered to be one of the future energy solutions.Among the different fuel cell types, the proton exchange membrane (PEM) fuel cell has shown great potential in mobile applications, due to its low operating temperature, solid-state electrolyte and compactness.This book pre

  13. Production of alkaline protease with immobilized cells of bacillus subtilis PE-11 in various matrices by entrapment technique

    OpenAIRE

    Adinarayana, Kunamneni; Jyothi, Bezawada; Ellaiah, Poluri

    2005-01-01

    The purpose of this investigation was to study the effect ofBacillus subtilis PE-11 cells immobilized in various matrices, such as calcium alginate, k-Carrageenan, ployacrylamide, agar-agar, and gelatin, for the production of alkaline protease. Calcium alginate was found to be an effective and suitable matrix for higher alkaline protease productivity compared to the other matrices studied. All the matrices were selected for repeated batch fermentation. The average specific volumetric producti...

  14. Attachment, proliferation and differentiation of periodontal ligament cells on various guided tissue regeneration membranes.

    Science.gov (United States)

    Takata, T; Wang, H L; Miyauchi, M

    2001-10-01

    The purpose of this study was to evaluate the biological effects of guided tissue regeneration (GTR) membrane materials, per se, on the periodontal tissue regeneration. Rat periodontal ligament (PDL)-derived cells were used to study the attachment, proliferation and differentiation, in vitro, on various GTR membranes. Five commercially available membranes bovine type I collagen (BioMend; BM), bovine type I atelocollagen (Tissue Guide; TG), polylactic acid (Epi-Guide; EG), co-polymer of polylactic acid and polyglycolic acid (Resolute; RL) and expanded polytetrafluoroethylene: e-PTFE (Gore Tex; GT)-were examined. A 3 x 3 mm section of the membrane was fixed to the bottom of a 35 x 10 mm style culture dish and plated with 2 ml of cell suspension at an initial density of 5 x 10(4) cells/ml in culture medium with 10% fetal bovine serum. For cell growth analysis, the specimens were fixed with 10% buffered formalin and stained with hematoxylin at 1.5 hours and 1, 3 and 5 days after cell seeding. The number of cells included in a unit area of 0.25 mm2 were counted under light microscopy. As a comparative scaffold of cell proliferation, a plastic cover for cell culture slip (Celldesk; CD) was used. For analysis of cell differentiation, activity of alkaline phosphatase (ALP) and calcification were histochemically revealed after 2-week cultivation. The initial number of PDL cells attached to the membrane at 1.5 hours after cell seeding was different among membranes. RL, TG and EG had the same level of attached cell numbers as that on CD, while the cell numbers on GT and BM were significantly lower than that on CD (p membranes examined. RL and BM demonstrated a significantly higher number of cells at 5 days than at 1.5 hours (p 0.1). EG had a similar number of cell attachments to that at 1.5 hours throughout the experimental period. There was almost no cell proliferation on GT. Cell clusters of ALP positive cells and foci of calcification were seen on all membranes except for

  15. Binary and ternary palladium based electrocatalysts for alkaline direct glycerol fuel cell

    Science.gov (United States)

    Geraldes, Adriana Napoleão; da Silva, Dionisio Furtunato; e Silva, Leonardo Gondim de Andrade; Spinacé, Estevam Vitório; Neto, Almir Oliveira; dos Santos, Mauro Coelho

    2015-10-01

    Pd/C, PdAu/C 50:50, PdSn/C 50:50, PdAuSn/C 50:40:10 and PdAuSn/C 50:10:40 electrocatalysts are prepared using an electron beam irradiation reduction method and tested for glycerol electro-oxidation in alkaline medium. X-Ray diffraction (XRD), Energy dispersive X-ray analysis (EDX), Transmission electron Microscopy (TEM) and Cyclic Voltammetry (CV) are used to characterize the resulting materials. The activity for glycerol electro-oxidation is tested in alkaline medium at room temperature using Cyclic Voltammetry and Chronoamperometry (CA) and in a single alkaline direct glycerol fuel cell (ADGFC) at temperature range of 60-90 °C. EDX analysis demonstrate that Pd:Au:Sn atomic ratios are very similar to the nominal ones. X-ray diffractograms of PdAuSn/C electrocatalysts evidence the presence of Pd (fcc), Au (fcc) and SnO2 phases. TEM analysis demonstrates a good dispersion of the nanoparticles on the carbon support with some agglomerates. Cyclic Voltammetry experiments suggest that PdAuSn/C electrocatalysts demonstrate better results. In single fuel cell tests, at 85 °C, using 2.0 mol L-1 glycerol in 2.0 mol L-1 KOH solutions, the electrocatalyst PdAuSn/C 50:40:10 demonstrate highest power density (51 mW cm-2) and the 120 h durability tests demonstrate a 210 μV h-1 degradation rate.

  16. Fuel cell membranes and crossover prevention

    Science.gov (United States)

    Masel, Richard I.; York, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2009-08-04

    A membrane electrode assembly for use with a direct organic fuel cell containing a formic acid fuel includes a solid polymer electrolyte having first and second surfaces, an anode on the first surface and a cathode on the second surface and electrically linked to the anode. The solid polymer electrolyte has a thickness t:.gtoreq..times..times..times..times. ##EQU00001## where C.sub.f is the formic acid fuel concentration over the anode, D.sub.f is the effective diffusivity of the fuel in the solid polymer electrolyte, K.sub.f is the equilibrium constant for partition coefficient for the fuel into the solid polymer electrolyte membrane, I is Faraday's constant n.sub.f is the number of electrons released when 1 molecule of the fuel is oxidized, and j.sub.f.sup.c is an empirically determined crossover rate of fuel above which the fuel cell does not operate.

  17. Design and Test of a Carbon-Tolerant Alkaline Fuel Cell

    CERN Document Server

    Urquidi-Macdonald, M; Grimes, P; Tewari, A; Sambhy, V; Urquidi-Macdonald, Mirna; Sen, Ayusman; Grimes, Patrick; Tewari, Ashutosh; Sambhy, Varun

    2005-01-01

    This paper presents new results which may constitute a breakthrough in the effort to develop fuel cells truly suitable for use in cars and trucks. For decades, researchers have known that the alkaline fuel cell (AFC) is much cheaper to make, more efficient and more durable than the more popular PEM fuel cell; however, "carbon poisoning" (either from CO2 in air or from contaminants in reformed methanol) causes big problems in the kind of oxygen-hydrogen AFC commonly used in space. This paper reports successful tests of a technique for coating the electrodes with polystyrene which, in conjunction with older common-sense techniques, appears to solve the problem. This kind of design is applicable to cars run on hydrogen fuel, on reformed methanol or even direct methanol. Developing a test methodology was a major part of the work. A foreword by one of the sponsors at NSF discusses the larger importance of this work for energy security and the environment.

  18. Polyarylenethioethersulfone Membranes for Fuel Cells (Postprint)

    Science.gov (United States)

    2010-01-01

    release; distribution unlimited. See additional restrictions described on inside pages STINFO COPY © 2007 The Electrochemical Society AIR...PAO Case Number: 88ABW-2007-1713; Clearance Date: 24 July 2007. © 2007 The Electrochemical Society . The U.S. Government is joint author of the work...it to be a potential candidate for membranes in fuel cells. © 2007 The Electrochemical Society . DOI: 10.1149/1.2755881 All rights reserved

  19. Epithelial cell-cell junctions and plasma membrane domains

    NARCIS (Netherlands)

    Giepmans, Ben N. G.; van Ijzendoorn, Sven C. D.

    Epithelial cells form a barrier against the environment, but are also required for the regulated exchange of molecules between an organism and its surroundings. Epithelial cells are characterised by a remarkable polarization of their plasma membrane, evidenced by the appearance of structurally,

  20. Epithelial cell-cell junctions and plasma membrane domains

    NARCIS (Netherlands)

    Giepmans, Ben N. G.; van Ijzendoorn, Sven C. D.

    2009-01-01

    Epithelial cells form a barrier against the environment, but are also required for the regulated exchange of molecules between an organism and its surroundings. Epithelial cells are characterised by a remarkable polarization of their plasma membrane, evidenced by the appearance of structurally, comp

  1. Joint influence of temperature and ions of metals on level of activity alkaline phosphatase the mucous membrane of intestines beluga, the starlet and their hybrid

    Directory of Open Access Journals (Sweden)

    D. A. Bednyakov

    2010-01-01

    Full Text Available In work joint influence of ions of bivalent metals (Mn, Fe, Co, Ni, Cu and Zn and temperatures on level of activity alkaline phosphatase mucous membrane beluga, starlet and their hybrid is shown. Dependence of response of enzyme on action of ions of metals according to their position in a periodic table of chemical elements is shown. The given dependence remains and at temperature change incubation, only at low temperatures the activating effect of metals being in the period beginning is maximum, and at high, is maximum inhibiting effect of metals being in the period end.

  2. Epigallocatechin gallate incorporation into lignin enhances the alkaline delignification and enzymatic saccharification of cell walls

    Directory of Open Access Journals (Sweden)

    Elumalai Sasikumar

    2012-08-01

    Full Text Available Abstract Background Lignin is an integral component of the plant cell wall matrix but impedes the conversion of biomass into biofuels. The plasticity of lignin biosynthesis should permit the inclusion of new compatible phenolic monomers such as flavonoids into cell wall lignins that are consequently less recalcitrant to biomass processing. In the present study, epigallocatechin gallate (EGCG was evaluated as a potential lignin bioengineering target for rendering biomass more amenable to processing for biofuel production. Results In vitro peroxidase-catalyzed polymerization experiments revealed that both gallate and pyrogallyl (B-ring moieties in EGCG underwent radical cross-coupling with monolignols mainly by β–O–4-type cross-coupling, producing benzodioxane units following rearomatization reactions. Biomimetic lignification of maize cell walls with a 3:1 molar ratio of monolignols and EGCG permitted extensive alkaline delignification of cell walls (72 to 92% that far exceeded that for lignified controls (44 to 62%. Alkali-insoluble residues from EGCG-lignified walls yielded up to 34% more glucose and total sugars following enzymatic saccharification than lignified controls. Conclusions It was found that EGCG readily copolymerized with monolignols to become integrally cross-coupled into cell wall lignins, where it greatly enhanced alkaline delignification and subsequent enzymatic saccharification. Improved delignification may be attributed to internal trapping of quinone-methide intermediates to prevent benzyl ether cross-linking of lignin to structural polysaccharides during lignification, and to the cleavage of ester intra-unit linkages within EGCG during pretreatment. Overall, our results suggest that apoplastic deposition of EGCG for incorporation into lignin would be a promising plant genetic engineering target for improving the delignification and saccharification of biomass crops.

  3. Phlorhizin protects against erythrocyte cell membrane scrambling.

    Science.gov (United States)

    Gatidis, Sergios; Meier, Anja; Jilani, Kashif; Lang, Elisabeth; Zelenak, Christine; Qadri, Syed M; Lang, Florian

    2011-08-10

    Phlorhizin interferes with glucose transport. Glucose depletion triggers suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling. Eryptosis is further triggered by oxidative stress. The present study explored whether phlorhizin influences eryptosis following glucose depletion or oxidative stress. Cell membrane scrambling was estimated from annexin binding, cell volume from forward scatter (FSC), and cytosolic Ca(2+) concentration from Fluo-3 fluorescence. Phlorhizin (10-100 μM) added alone did not modify scrambling, FSC, or Fluo-3 fluorescence. Glucose depletion (48 h) significantly increased Fluo-3 fluorescence, decreased FSC, and increased annexin binding, effects in part significantly blunted by phlorhizin (annexin binding ≥ 10 μM, FSC ≥ 50 μM). Oxidative stress (30 min 0.3 mM tert-butylhydroperoxide) again significantly increased Fluo-3 fluorescence and triggered annexin binding, effects again in part significantly blunted by phlorhizin (Fluo-3 fluorescence ≥ 50 μM, annexin-binding ≥ 10 μM). Phlorhizin did not blunt the cell shrinkage induced by oxidative stress. The present observations disclose a novel effect of phlorhizin, that is, an influence on suicidal erythrocyte death following energy depletion and oxidative stress.

  4. Sodium selectivity of Reissner's membrane epithelial cells

    Directory of Open Access Journals (Sweden)

    Kim Kyunghee X

    2011-02-01

    Full Text Available Abstract Background Sodium absorption by Reissner's membrane is thought to contribute to the homeostasis of the volume of cochlear endolymph. It was previously shown that the absorptive transepithelial current was blocked by amiloride and benzamil. The most commonly-observed target of these drugs is the epithelial sodium channel (ENaC, which is composed of the three subunits α-,β- and γ-ENaC. However, other less-selective cation channels have also been observed to be sensitive to benzamil and amiloride. The aim of this study was to determine whether Reissner's membrane epithelial cells could support parasensory K+ absorption via amiloride- and benzamil-sensitive electrogenic pathways. Results We determined the molecular and functional expression of candidate cation channels with gene array (GEO GSE6196, RT-PCR, and whole-cell patch clamp. Transcript expression analysis of Reissner's membrane detected no amiloride-sensitive acid-sensing ion channels (ASIC1a, ASIC2a, ASIC2b nor amiloride-sensitive cyclic-nucleotide gated channels (CNGA1, CNGA2, CNGA4, CNGB3. By contrast, α-,β- and γ-ENaC were all previously reported as present in Reissner's membrane. The selectivity of the benzamil-sensitive cation currents was observed in whole-cell patch clamp recordings under Cl--free conditions where cations were the only permeant species. The currents were carried by Na+ but not K+, and the permeability of Li+ was greater than that of Na+ in Reissner's membrane. Complete replacement of bath Na+ with the inpermeable cation NMDG+ led to the same inward current as with benzamil in a Na+ bath. Conclusions These results are consistent with the amiloride/benzamil-sensitive absorptive flux of Reissner's membrane mediated by a highly Na+-selective channel that has several key characteristics in common with αβγ-ENaC. The amiloride-sensitive pathway therefore absorbs only Na+ in this epithelium and does not provide a parasensory K+ efflux route from scala

  5. Membrane Purification Cell for Aluminum Recycling

    Energy Technology Data Exchange (ETDEWEB)

    David DeYoung; James Wiswall; Cong Wang

    2011-11-29

    Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2

  6. Intermittent use of a low-cost alkaline fuel cell-hybrid system for electric vehicles

    Science.gov (United States)

    Kordesch, Karl; Gsellmann, Josef; Cifrain, Martin; Voss, Susanne; Hacker, Victor; Aronson, Robert R.; Fabjan, Christoph; Hejze, Thomas; Daniel-Ivad, Josef

    Alkaline fuel cell (AFC) hybrids with the capability to shut down completely between uses (by draining the circulating KOH electrolyte) can expect an operating life of about 4000 h, which is equivalent to 200,000 km of driving, They should be able to compete on cost with heat engines (US50 to US100 per kW). An early model is the hydrogen/air fuel cell lead-acid hybrid car, built by K. Kordesch in the 1970s. Improved air electrodes plus new variations of the bipolar stack assembly developed in Graz, make success probable. In cooperation with Electric Auto (EAC), an ammonia cracker is also in development. A RAM™ battery-AFC hybrid combination has been optimized.

  7. High temperature polymer electrolyte membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    K.Scott; M. Mamlouk

    2006-01-01

    One of the major issues limiting the introduction of polymer electrolyte membrane fuel cells (PEMFCs) is the low temperature of operation which makes platinum-based anode catalysts susceptible to poisoning by the trace amount of CO, inevitably present in reformed fuel. In order to alleviate the problem of CO poisoning and improve the power density of the cell, operating at temperature above 100 ℃ is preferred. Nafion(R) -type perfluorosulfonated polymers have been typically used for PEMFC. However, the conductivity of Nafion(R) -type polymers is not high enough to be used for fuel cell operations at higher temperature ( > 90 ℃) and atmospheric pressure because they dehydrate under these condition.An additional problem which faces the introduction of PEMFC technology is that of supplying or storing hydrogen for cell operation,especially for vehicular applications. Consequently the use of alternative fuels such as methanol and ethanol is of interest, especially if this can be used directly in the fuel cell, without reformation to hydrogen. A limitation of the direct use of alcohol is the lower activity of oxidation in comparison to hydrogen, which means that power densities are considerably lower. Hence to improve activity and power output higher temperatures of operation are preferable. To achieve this goal, requires a new polymer electrolyte membrane which exhibits stability and high conductivity in the absence of liquid water.Experimental data on a polybenzimidazole based PEMFC were presented. A simple steady-state isothermal model of the fuel cell is also used to aid in fuel cell performance optimisation. The governing equations involve the coupling of kinetic, ohmic and mass transport. This paper also considers the advances made in the performance of direct methanol and solid polymer electrolyte fuel cells and considers their limitations in relation to the source and type of fuels to be used.

  8. Cell membrane-camouflaged nanoparticles for drug delivery.

    Science.gov (United States)

    Luk, Brian T; Zhang, Liangfang

    2015-12-28

    Nanoparticles can preferentially accumulate at sites of action and hold great promise to improve the therapeutic index of many drugs. While conventional methods of nanocarrier-mediated drug delivery have focused on primarily synthetic approaches, engineering strategies that combine synthetic nanoparticles with natural biomaterials have recently gained much attention. In particular, cell membrane-camouflaged nanoparticles are a new class of biomimetic nanoparticles that combine the unique functionalities of cellular membranes and engineering versatility of synthetic nanomaterials for effective delivery of therapeutic agents. Herein, we report on the recent progress on cell membrane-coated nanoparticles for drug delivery. In particular, we highlight three areas: (i) prolonging systemic circulation via cell membrane coating, (ii) cell-specific targeting via cell membrane coating, and (iii) applications of cell membrane coating for drug delivery. The cell membrane-camouflaged nanoparticle platform has emerged as a novel delivery strategy with the potential to improve the therapeutic efficacy for the treatment of a variety of diseases.

  9. Mathematical model of water transport in Bacon and alkaline matrix-type hydrogen-oxygen fuel cells

    Science.gov (United States)

    Prokopius, P. R.; Easter, R. W.

    1972-01-01

    Based on general mass continuity and diffusive transport equations, a mathematical model was developed that simulates the transport of water in Bacon and alkaline-matrix fuel cells. The derived model was validated by using it to analytically reproduce various Bacon and matrix-cell experimental water transport transients.

  10. Electrochemical Detection of Alkaline Phosphatase in BALB/c Mouse Fetal Liver Stromal Cells with Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    Xue Mei SUN; Dong LI; Zeng Liang BAI; Wen Rui JIN

    2004-01-01

    A method for determination of alkaline phosphatase (ALP) in BALB/c mouse fetal liver stromal cells has been described based on the catalytic reaction. After the cell extract is incubated with the substrate disodium phenyl phosphate, the reaction product phenol generated by ALP is determined by capillary electrophoresis with electrochemical detection.

  11. Dendronized Polymer Architectures for Fuel Cell Membranes

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller; Dimitrov, Ivaylo; Takamuku, S.

    2013-01-01

    Multi‐step synthetic pathways to low‐ion exchange capacity (IEC) polysulfone (PSU) with sulfonic acid functionalized aliphatic dendrons and sulfonated comb‐type PSU structures are developed and investigated in a comparative study as non‐fluorinated proton exchange membrane (PEM) candidates. In each...... case the side chains are synthesized and introduced in their sulfonated form onto an azide‐functionalized PSU via click chemistry. Three degrees of substitution of each architecture were prepared in order to evaluate the dependence on number of sulfonated side chains. Solution cast membranes were...... evaluated as PEMs for use in fuel cells by proton conductivity measurements, and in the case of dendronized architectures: thermal stability. The proposed synthetic strategy facilitates exploration of a non‐fluorous system with various flexible side chains where IEC is tunable by the degree of substitution....

  12. Wnt5a attenuates Wnt3a-induced alkaline phosphatase expression in dental follicle cells

    Energy Technology Data Exchange (ETDEWEB)

    Sakisaka, Yukihiko [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tsuchiya, Masahiro [Department of Oral Diagnosis, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tohoku Fukushi University, Sendai 989-3201 (Japan); Nakamura, Takashi [Department of Pediatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Liason Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tamura, Masato [Department of Biochemistry and Molecular Biology, Hokkaido University Graduate School of Dentistry, Sapporo 060-8586 (Japan); Shimauchi, Hidetoshi [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Nemoto, Eiji, E-mail: e-nemoto@dent.tohoku.ac.jp [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan)

    2015-08-01

    Wnt signaling regulates multiple cellular events such as cell proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathways. Canonical Wnt/β-catenin signaling can promote the differentiation of dental follicle cells, putative progenitor cells for cementoblasts, osteoblasts, and periodontal ligament cells, toward a cementoblast/osteoblast phenotype during root formation, but little is known about the biological significance of noncanonical Wnt signaling in this process. We identified the expression of Wnt5a, a representative noncanonical Wnt ligand, in tooth root lining cells (i.e. precementoblasts/cementoblasts) and dental follicle cells during mouse tooth root development, as assessed by immunohistochemistry. Silencing expression of the Wnt5a gene in a dental follicle cell line resulted in enhancement of the Wnt3a (a representative canonical Wnt ligand)-mediated increase in alkaline phosphatase (ALP) expression. Conversely, treatment with recombinant Wnt5a inhibited the increase in ALP expression, suggesting that Wnt5a signaling functions as a negative regulator of canonical Wnt-mediated ALP expression of dental follicle cells. Wnt5a did not affect the nuclear translocation of β-catenin as well as β-catenin-mediated transcriptional activation of T-cell factor (Tcf) triggered by Wnt3a, suggesting that Wnt5a inhibits the downstream part of the β-catenin-Tcf pathway. These findings suggest the existence of a feedback mechanism between canonical and noncanonical Wnt signaling during the differentiation of dental follicle cells. - Highlights: • Dental follicle cells express Wnt5a during tooth root development. • Silencing of Wnt5a enhances Wnt3a-mediated ALP expression of dental follicle cells. • Conversely, treatment with rWnt5a inhibited the increase in ALP expression. • Wnt5a functions as a negative regulator of Wnt3a-mediated ALP expression.

  13. Membrane Proteins : The Key Players of a Cancer Cell

    NARCIS (Netherlands)

    Kampen, Kim R.

    2011-01-01

    Membrane proteins are involved in the prognosis of the most common forms of cancer. Membrane proteins are the hallmark of a cancer cell. The overexpressed membrane receptors are becoming increasingly important in cancer cell therapy. Current renewing therapy approaches based on receptor overexpressi

  14. Membrane Proteins : The Key Players of a Cancer Cell

    NARCIS (Netherlands)

    Kampen, Kim R.

    Membrane proteins are involved in the prognosis of the most common forms of cancer. Membrane proteins are the hallmark of a cancer cell. The overexpressed membrane receptors are becoming increasingly important in cancer cell therapy. Current renewing therapy approaches based on receptor

  15. Membrane fluidity adjustments in ethanol-stressed Oenococcus oeni cells

    NARCIS (Netherlands)

    Silveira, da M.G.; Golovina, E.A.; Hoekstra, F.A.; Rombouts, F.M.; Abee, T.

    2003-01-01

    The effect of ethanol on the cytoplasmic membrane of Oenococcus oeni cells and the role of membrane changes in the acquired tolerance to ethanol were investigated. Membrane tolerance to ethanol was defined as the resistance to ethanol-induced leakage of preloaded carboxyfluorescein (cF) from cells.

  16. Anodes for alkaline electrolysis

    Science.gov (United States)

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  17. A mathematical model of the maximum power density attainable in an alkaline hydrogen/oxygen fuel cell

    Science.gov (United States)

    Kimble, Michael C.; White, Ralph E.

    1991-01-01

    A mathematical model of a hydrogen/oxygen alkaline fuel cell is presented that can be used to predict the polarization behavior under various power loads. The major limitations to achieving high power densities are indicated and methods to increase the maximum attainable power density are suggested. The alkaline fuel cell model describes the phenomena occurring in the solid, liquid, and gaseous phases of the anode, separator, and cathode regions based on porous electrode theory applied to three phases. Fundamental equations of chemical engineering that describe conservation of mass and charge, species transport, and kinetic phenomena are used to develop the model by treating all phases as a homogeneous continuum.

  18. Membrane tension feedback on shape and motility of eukaryotic cells

    Science.gov (United States)

    Winkler, Benjamin; Aranson, Igor S.; Ziebert, Falko

    2016-04-01

    In the framework of a phase field model of a single cell crawling on a substrate, we investigate how the properties of the cell membrane affect the shape and motility of the cell. Since the membrane influences the cell dynamics on multiple levels and provides a nontrivial feedback, we consider the following fundamental interactions: (i) the reduction of the actin polymerization rate by membrane tension; (ii) area conservation of the cell's two-dimensional cross-section vs. conservation of the circumference (i.e. membrane inextensibility); and (iii) the contribution from the membrane's bending energy to the shape and integrity of the cell. As in experiments, we investigate two pertinent observables - the cell's velocity and its aspect ratio. We find that the most important effect is the feedback of membrane tension on the actin polymerization. Bending rigidity has only minor effects, visible mostly in dynamic reshaping events, as exemplified by collisions of the cell with an obstacle.

  19. Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Aili, David; Allward, Todd; Alfaro, Silvia Martinez

    2014-01-01

    Composite membranes based on poly(2,2′(m-phenylene)-5,5́bibenzimidazole) (PBI) and sulfonated polyhedral oligosilsesquioxane (S-POSS) with S-POSS contents of 5 and 10wt.% were prepared by solution casting as base materials for high temperature polymer electrolyte membrane fuel cells. With membranes...

  20. Membrane Tether Formation on a Cell Surface with Reservoir

    Institute of Scientific and Technical Information of China (English)

    JIANG Yu-Qiang; GUO Hong-Lian; LIU Chun-Xiang; LI Zhao-Lin; CHENG Bing-Ying; ZHANG Dao-Zhong; JIA Suo-Tang

    2004-01-01

    @@ We propose a mathematical model to analyse the membrane tether formation process on a cell surface with reservoir. Based on the experimental results, the membrane reservoir density of breast cancer cell was obtained,p = 8.02. The membrane surface viscosity between membrane and environment η is 0.021(pN.s/μm3), and the static force F0 = 5.71 pN.

  1. Differential expression of alkaline phosphatase gene in proliferating primary lymphocytes and malignant lymphoid cell lines.

    Science.gov (United States)

    Latheef, S A A; Devanabanda, Mallaiah; Sankati, Swetha; Madduri, Ramanadham

    2016-02-01

    Alkaline Phosphatase (APase) activity has been shown to be enhanced specifically in mitogen stimulated B lymphocytes committed to proliferation, but not in T lymphocytes. APase gene expression was analyzed in proliferating murine and human primary lymphocytes and human malignant cell lines using reverse transcriptase and real time PCR. In mitogen stimulated murine splenic lymphocytes, enhancement of APase activity correlated well with an increase in APase gene expression. However, in mitogen stimulated murine T lymphocytes and human PBL despite a vigorous proliferative response, no increase in APase enzyme activity or gene expression was observed. A constitutive expression of APase activity concomitant with APase gene expression was observed inhuman myeloma cell line, U266 B1. However, neither enzyme activity nor gene expression of APase were observed in human T cell lymphoma, SUPT-1. The results suggest a differential expression of APase activity and its gene in proliferating primary lymphocytes of mice and humans. The specific expression of APase activity and its gene only in human myeloma cells, but not in proliferating primary B cells can be exploited as a sensitive disease marker.

  2. Nanocomposite Membranes based on Perlfuorosulfonic Acid/Ceramic for Proton Exchange Membrane Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    LI Qiong; WANG Guangjin; YE Hong; YAN Shilin

    2015-01-01

    Perlfuorosulfonic acid/ceramic nanocomposite membranes were investigated as electrolytes for polymer electrolyte membrane fuel cell applications under low relative humidity. Different nanosized ceramics (SiO2, ZrO2, TiO2) with diameters in the range of 2-6 nm were synthesized in situ in Nafion solution through a sol-gel process and the formed nanosized ceramics were well-dispersed in the solution. The nanocomposite membranes were formed through a casting process. The nanocomposite membrane showes enhanced water retention ability and improved proton conductivity compared to those of pure Naifon membrane. The mechanical strength of the formed nanocomposite membranes is slightly less than that of pure Naifon membrane. The experimental results demonstrate that the polymer ceramic nanocompsite membranes are potential electrolyte for fuel cells operating at elevated temperature.

  3. Plasma membranes from insect midgut cells

    Directory of Open Access Journals (Sweden)

    Walter R. Terra

    2006-06-01

    Full Text Available Plasma membranes from insect midgut cells are separated into apical and basolateral domains. The apical domain is usually modified into microvilli with a molecular structure similar to other animals. Nevertheless, the microvillar structure should differ in some insects to permit the traffic inside them of secretory vesicles that may budd laterally or pinch-off from the tips of microvilli. Other microvillar modifications are associated with proton-pumping or with the interplay with an ensheathing lipid membrane (the perimicrovilllar membrane observed in the midgut cells of hemipterans (aphids and bugs. The perimicrovillar membranes are thought to be involved in amino acid absorption from diluted diets. The microvillar and perimicrovillar membranes have densities (and protein content that depend on the insect taxon. The role played by the microvillar and perimicrovillar proteins in insect midgut physiology is reviewed here trying to provide a coherent picture of data and highlighting further research areas.As membranas plasmáticas das células intestinais dos insetos apresentam um domínio apical e outro basal. O domínio apical é geralmente modificado em microvilosidades com organização molecular similar a de outros animais, embora possam diferir naqueles insetos que apresentam vesículas secretoras em trânsito que brotam lateralmente ou destacam-se das extremidades das microvilosidades. Outras modificações microvilares estão associadas a bombeamento de prótons ou a interrelações com uma membrana lipídica (a membrana perimicrovilar que reveste as microvilosidades de células intestinais de hemípteros (pulgões e percevejos. Admite-se que as membranas perimicrovilares estejam envolvidas na absorção de aminoácidos a partir de dietas diluídas. As membranas microvilares e perimicrovilares tem densidades distintas (e conteúdo protéico que dependem do táxon do inseto. O papel desempenhado pelas proteínas microvilares e

  4. A Quaternary Polybenzimidazole Membrane for Intermediate Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Xu, C.; Scott, K.; Li, Qingfeng

    2013-01-01

    A quaternary ammonium polybenzimidazole (QPBI) membrane was synthesized for applications in intermediate temperature (100–200 °C) hydrogen fuel cells. The QPBI membrane was imbibed with phosphoric acid to provide suitable proton conductivity. The proton conductivity of the membrane was 0.051 S cm–1...... at 150 °C with the PA acid loading level of 3.5 PRU (amount of H3PO4 per repeat unit of polymer QPBI). The QPBI membrane was characterized in terms of composition, structure and morphology by NMR, FTIR, SEM, and EDX. The fuel cell performance with the membrane gave peak power densities of 440 and 240 m...

  5. Focus on membrane differentiation and membrane domains in the prokaryotic cell.

    Science.gov (United States)

    Boekema, Egbert J; Scheffers, Dirk-Jan; van Bezouwen, Laura S; Bolhuis, Henk; Folea, I Mihaela

    2013-01-01

    A summary is presented of membrane differentiation in the prokaryotic cell, with an emphasis on the organization of proteins in the plasma/cell membrane. Many species belonging to the Eubacteria and Archaea have special membrane domains and/or membrane proliferation, which are vital for different cellular processes. Typical membrane domains are found in bacteria where a specific membrane protein is abundantly expressed. Lipid rafts form another example. Despite the rareness of conventional organelles as found in eukaryotes, some bacteria are known to have an intricate internal cell membrane organization. Membrane proliferation can be divided into curvature and invaginations which can lead to internal compartmentalization. This study discusses some of the clearest examples of bacteria with such domains and internal membranes. The need for membrane specialization is highest among the heterogeneous group of bacteria which harvest light energy, such as photosynthetic bacteria and halophilic archaea. Most of the highly specialized membranes and domains, such as the purple membrane, chromatophore and chlorosome, are found in these autotrophic organisms. Otherwise the need for membrane differentiation is lower and variable, except for those structures involved in cell division. Microscopy techniques have given essential insight into bacterial membrane morphology. As microscopy will further contribute to the unraveling of membrane organization in the years to come, past and present technology in electron microscopy and light microscopy is discussed. Electron microscopy was the first to unravel bacterial morphology because it can directly visualize membranes with inserted proteins, which no other technique can do. Electron microscopy techniques developed in the 1950s and perfected in the following decades involve the thin sectioning and freeze fractioning of cells. Several studies from the golden age of these techniques show amazing examples of cell membrane morphology

  6. EXPRESSION OF ALKALINE PHOSPHATASE DURING OSTEOGENIC DIFFERENTIATION OF RAT BONE MARROW STROMAL CELLS

    Directory of Open Access Journals (Sweden)

    AKBARI M

    2001-01-01

    Full Text Available Introduction: Bone marrow contains a population of stem cells capable of differentiating to osteoblast and forming the bone nodule by dexamethasone. Material and Methods: The stromal cells of bone marrow obtained from 4 to 6 weeks old Spruge-Dawely male rats were grown in primary culture for 7 days and subcultured for 18 days. The cells were cultured in either DMEM medium containing 15% fetal calf serum and antibiotics as the controls or the above medium supplemented with osteogenic supplements (OS: include 10 mM Na-beta glycerophosphate (Na-betaGp, 10 nM dexamethasone (Dex and 50 g/ml ascordic acid (AsA as the examined cultures. After 6, 12 and 18 days of grow up in subculture, the cultures were examined for mineralization and alkaline phosphatase (Apase expression. Results: Mesenchymal stem cells (MSCs in examined cultures underwent a dramatic change in cellular morphology and a significat increase in Apase activity by day 12. The deposition of a calcified matrix on the surface of the culture flasks became evident between days 12 and 18. Conclusion: The addition of osteogenic supplements (OS to MSCs cultures induced Apase expression that contributes to cellular differentiation and mineralization of extracellular matrix.

  7. Nanoporous Aluminium Oxide Membranes as Cell Interfaces

    Directory of Open Access Journals (Sweden)

    Dorothea Brüggemann

    2013-01-01

    Full Text Available Nanoporous anodic aluminium oxide (AAO has become increasingly important in biomedical applications over the past years due to its biocompatibility, increased surface area, and the possibility to tailor this nanomaterial with a wide range of surface modifications. AAO nanopores are formed in an inexpensive anodisation process of pure aluminium, which results in the self-assembly of highly ordered, vertical nanochannels with well-controllable pore diameters, depths, and interpore distances. Because of these outstanding properties AAO nanopores have become excellent candidates as nanostructured substrates for cell-interface studies. In this comprehensive review previous surveys on cell adhesion and proliferation on different AAO nanopore geometries and surface modifications are highlighted and summarised tabularly. Future applications of nanoporous alumina membranes in biotechnology and medicine are also outlined, for instance, the use of nanoporous AAO as implant modifications, coculture substrates, or immunoisolation devices.

  8. Cytocompatibility of Three Corneal Cell Types with Amniotic Membrane

    Institute of Scientific and Technical Information of China (English)

    CHENJian-su; CHENRui; XUJin-tang; DINGYong; ZHAOSong-bin; LISui-lian

    2004-01-01

    Rabbit limbal corneal epithelial cells, corneal endothelial cells and keratocytes were cultured on amniotic membrane. Phase contrast microscope examination was performed daily. Histological and scan electron microscopic examinations were carried out to observe the growth, arrangement and adhesion of cultivated cells. Results showed that three corneal cell types seeded on amniotic membrane grew well and had normal cell morphology. Cultured cells attached firmly on the surface of amniotic membrane. Corneal epithelial cells showed singular layer or stratification. Cell boundaries were formed and tightly opposed. Corneal endothelial cells showed cobblestone or polygonal morphologic characteristics that appeared uniform in size. The cellular arrangement was compact. Keratocytes elongated and showed triangle or dendritic morphology with many intercellular joints which could form networks. In conclusion, amniotic membrane has good scaffold property, diffusion effect and compatibility with corneal cells. The basement membrane side of amniotic membrane facilitated the growth of corneal epithelial cells and endothelial cells and cell junctions were tightly developed. The spongy layer of amniotic membrane facilitated the growth of keratocytes and intercellular joints were rich. Amniotic membrane is an ideal biomaterial for layering tissue engineered cornea.

  9. Exocytosis and endocytosis in neurodocrine cells: inseparable membranes !

    Directory of Open Access Journals (Sweden)

    Sébastien eHouy

    2013-10-01

    Full Text Available Although much has been learned concerning the mechanisms of secretory vesicle formation and fusion at donor and acceptor membrane compartments, relatively little attention has been paid towards understanding how cells maintain a homeostatic membrane balance through vesicular trafficking. In neurons and neuroendocrine cells, release of neurotransmitters, neuropeptides and hormones occurs through calcium-regulated exocytosis at the plasma membrane. To allow recycling of secretory vesicle components and to preserve organelles integrity, cells must initiate and regulate compensatory membrane uptake. This review relates the fate of secretory granule membranes after full fusion exocytosis in neuroendocrine cells. In particular, we focus on the potential role of lipids in preserving and sorting secretory granule membranes after exocytosis and we discuss the potential mechanisms of membrane retrieval.

  10. Preparation, characterisation and application of Pd/C nanocatalyst in passive alkaline direct ethanol fuel cells (ADEFC)

    CSIR Research Space (South Africa)

    Modibedi, RM

    2015-10-01

    Full Text Available This work describes the use of Pd nanocatalyst on Vulcan XC-72 (at a very low loading, 8 wt % Pd) in passive alkaline direct ethanol fuel cell (ADEFC). The average Pd particle size obtained with TEM was 3.5 ± 0.5 nm. The XRD results of the prepared...

  11. Impedance study of membrane dehydration and compression in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Le Canut, Jean-Marc; Latham, Ruth; Merida, Walter; Harrington, David A. [Institute for Integrated Energy Systems, University of Victoria, Victoria, British Columbia (Canada)

    2009-07-15

    Electrochemical impedance spectroscopy (EIS) is used to measure drying and rehydration in proton exchange membrane fuel cells running under load. The hysteresis between forward and backward acquisition of polarization curves is shown to be largely due to changes in the membrane resistance. Drying tests are carried out with hydrogen and simulated reformate (hydrogen and carbon dioxide), and quasi-periodic drying and rehydration conditions are studied. The membrane hydration state is clearly linked to the high-frequency arc in the impedance spectrum, which increases in size for dry conditions indicating an increase in membrane resistance. Changes in impedance spectra as external compression is applied to the cell assembly show that EIS can separate membrane and interfacial effects, and that changes in membrane resistance dominate. Reasons for the presence of a capacitance in parallel with the membrane resistance are discussed. (author)

  12. Low-cost non-fluorinated membranes for fuel cells

    CSIR Research Space (South Africa)

    Luo, H

    2010-08-31

    Full Text Available the driver of the next growth wave of the world’s economy. A proton conductive membrane is the core of the polymer electrolyte membrane fuel cell (PEMFC). Presently, Nafion® membranes are widely used in PEMFC. However, the high cost, low operation temperature...

  13. Tissue non-specific alkaline phosphatase production by human dental pulp stromal cells is enhanced by high density cell culture.

    Science.gov (United States)

    Tomlinson, Matthew J; Dennis, Caitriona; Yang, Xuebin B; Kirkham, Jennifer

    2015-08-01

    The cell surface hydrolase tissue non-specific alkaline phosphatase (TNAP) (also known as MSCA-1) is used to identify a sub-population of bone marrow stromal cells (BMSCs) with high mineralising potential and is found on subsets of cells within the dental pulp. We aim to determine whether TNAP is co-expressed by human dental pulp stromal cells (hDPSCs) alongside a range of BMSC markers, whether this is an active form of the enzyme and the effects of culture duration and cell density on its expression. Cells from primary dental pulp and culture expanded hDPSCs expressed TNAP. Subsequent analyses revealed persistent TNAP expression and co-expression with BMSC markers such as CD73 and CD90. Flow cytometry and biochemical assays showed that increased culture durations and cell densities enhanced TNAP expression by hDPSCs. Arresting the hDPSC cell cycle also increased TNAP expression. These data confirm that TNAP is co-expressed by hDPSCs together with other BMSC markers and show that cell density affects TNAP expression levels. We conclude that TNAP is a potentially useful marker for hDPSC selection especially for uses in mineralised tissue regenerative therapies.

  14. Extracellular alkaline pH leads to increased metastatic potential of estrogen receptor silenced endocrine resistant breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Maitham A Khajah

    Full Text Available INTRODUCTION: Endocrine resistance in breast cancer is associated with enhanced metastatic potential and poor clinical outcome, presenting a significant therapeutic challenge. We have established several endocrine insensitive breast cancer lines by shRNA induced depletion of estrogen receptor (ER by transfection of MCF-7 cells which all exhibit enhanced expression profile of mesenchymal markers with reduction of epithelial markers, indicating an epithelial to mesenchymal transition. In this study we describe their behaviour in response to change in extracellular pH, an important factor controlling cell motility and metastasis. METHODS: Morphological changes associated with cell exposure to extracellular alkaline pH were assessed by live cell microscopy and the effect of various ion pumps on this behavior was investigated by pretreatment with chemical inhibitors. The activity and expression profile of key signaling molecules was assessed by western blotting. Cell motility and invasion were examined by scratch and under-agarose assays respectively. Total matrix metalloproteinase (MMP activity and specifically of MMP2/9 was assessed in conditioned medium in response to brief alkaline pH exposure. RESULTS: Exposure of ER -ve but not ER +ve breast cancer cells to extracellular alkaline pH resulted in cell shrinkage and spherical appearance (termed contractolation; this was reversed by returning the pH back to 7.4. Contractolation was blocked by targeting the Na(+/K(+ and Na(+/H(+ pumps with specific chemical inhibitors. The activity and expression profile of key signaling molecules critical for cell adhesion were modulated by the exposure to alkaline pH. Brief exposure to alkaline pH enhanced MMP2/9 activity and the invasive potential of ER -ve cells in response to serum components and epithelial growth factor stimulation without affecting unhindered motility. CONCLUSIONS: Endocrine resistant breast cancer cells behave very differently to estrogen

  15. Physical principles of membrane remodelling during cell mechanoadaptation.

    Science.gov (United States)

    Kosmalska, Anita Joanna; Casares, Laura; Elosegui-Artola, Alberto; Thottacherry, Joseph Jose; Moreno-Vicente, Roberto; González-Tarragó, Víctor; del Pozo, Miguel Ángel; Mayor, Satyajit; Arroyo, Marino; Navajas, Daniel; Trepat, Xavier; Gauthier, Nils C; Roca-Cusachs, Pere

    2015-06-15

    Biological processes in any physiological environment involve changes in cell shape, which must be accommodated by their physical envelope--the bilayer membrane. However, the fundamental biophysical principles by which the cell membrane allows for and responds to shape changes remain unclear. Here we show that the 3D remodelling of the membrane in response to a broad diversity of physiological perturbations can be explained by a purely mechanical process. This process is passive, local, almost instantaneous, before any active remodelling and generates different types of membrane invaginations that can repeatedly store and release large fractions of the cell membrane. We further demonstrate that the shape of those invaginations is determined by the minimum elastic and adhesive energy required to store both membrane area and liquid volume at the cell-substrate interface. Once formed, cells reabsorb the invaginations through an active process with duration of the order of minutes.

  16. Selective effect of cell membrane on synaptic neurotransmission

    DEFF Research Database (Denmark)

    Postila, Pekka A.; Vattulainen, Ilpo; Róg, Tomasz

    2016-01-01

    Atomistic molecular dynamics simulations were performed with 13 non-peptidic neurotransmitters (NTs) in three different membrane environments. The results provide compelling evidence that NTs are divided into membrane-binding and membrane-nonbinding molecules. NTs adhere to the postsynaptic membr...... the importance of cell membrane and specific lipids for neurotransmission, should to be of interest to neuroscientists, drug industry and the general public alike.......Atomistic molecular dynamics simulations were performed with 13 non-peptidic neurotransmitters (NTs) in three different membrane environments. The results provide compelling evidence that NTs are divided into membrane-binding and membrane-nonbinding molecules. NTs adhere to the postsynaptic...... membrane surface whenever the ligand-binding sites of their synaptic receptors are buried in the lipid bilayer. In contrast, NTs that have extracellular ligand-binding sites do not have a similar tendency to adhere to the membrane surface. This finding is a seemingly simple yet important addition...

  17. Chemical modification of polysulfone: composite anionic exchange membrane with TiO2 nano-particles

    CSIR Research Space (South Africa)

    Nonjola, PT

    2013-04-01

    Full Text Available Synthesis of quaternary polysulfone/Titanium dioxide (QPSf/TiO2) nanocomposite membranes by the recasting procedure as suitable electrolyte in alkaline fuel cells is described. The composite membranes were characterized by ionic conductivity...

  18. Membrane fouling in microfiltration used for cell harvesting

    Science.gov (United States)

    Kaghazchi, Tahereh; Zokaee, Farzin; Zare, Abbas

    2001-03-01

    In the present study the membrane fouling in microfiltration used for cell harvesting in a deadend system has been investigated. Experimental results were analysed in terms of existing membrane filtration models and membrane resistances. The cake filtration model (CFM) and standard blocking model (SBM) have been considered in this study. Various membrane resistances were determined at different processing time, feed concentration and stirring speed. Resistances to permeation in this system include filter medium, pore blocking, adsorption, cake layer and concentration polarization.

  19. Membrane Fouling in Microfiltration used for Cell Harvesting

    Institute of Scientific and Technical Information of China (English)

    Tahereh Kaghazchi; Farzin Zokaee; Abbas Zare

    2001-01-01

    In the present study the membrane fouling in microfiltration used for cell harvesting in a deadend system has been investigated. Experimental results were analysed in terms of existing membrane filtration models and membrane resistances. The cake filtration model (CFM) and standard blocking model (SBM) have been considered in this study.Various membrane resistances were determined at different processing time, feed concentration and stirring speed. Resistances to permeation in this system include filter medium, pore blocking, adsorption, cake layer and concentration polarization.

  20. Poly (vinyl alcohol) hydrogel membrane as electrolyte for direct borohydride fuel cells

    Indian Academy of Sciences (India)

    N A Choudhury; S K Prashant; S Pitchumani; P Sridhar; A K Shukla

    2009-09-01

    A direct borohydride fuel cell (DBFC) employing a poly (vinyl alcohol) hydrogel membrane electrolyte (PHME) is reported. The DBFC employs an AB5 Misch metal alloy as anode and a goldplated stainless steel mesh as cathode in conjunction with aqueous alkaline solution of sodium borohydride as fuel and aqueous acidified solution of hydrogen peroxide as oxidant. Room temperature performances of the PHME-based DBFC in respect of peak power outputs; ex-situ cross-over of oxidant, fuel, anolyte and catholyte across the membrane electrolytes; utilization efficiencies of fuel and oxidant, as also cell performance durability are compared with a similar DBFC employing a Nafion®-117 membrane electrolyte (NME). Peak power densities of ∼30 and ∼40 mW cm-2 are observed for the DBFCs with PHME and NME, respectively. The crossover of NaBH4 across both the membranes has been found to be very low. The utilization efficiencies of NaBH4 and H2O2 are found to be ∼24 and ∼59%, respectively for the PHME-based DBFC; ∼18 and ∼62%, respectively for the NME-based DBFC. The PHME and NME-based DBFCs exhibit operational cell potentials of ∼ 1.2 and ∼ 1.4 V, respectively at a load current density of 10 mA cm-2 for ∼100 h.

  1. Conductivity Measurements of Synthesized Heteropoly Acid Membranes for Proton Exchange Membrane Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Record, K.A.; Haley, B.T.; Turner, J.

    2006-01-01

    Fuel cell technology is receiving attention due to its potential to be a pollution free method of electricity production when using renewably produced hydrogen as fuel. In a Proton Exchange Membrane (PEM) fuel cell H2 and O2 react at separate electrodes, producing electricity, thermal energy, and water. A key component of the PEM fuel cell is the membrane that separates the electrodes. DuPont’s Nafion® is the most commonly used membrane in PEM fuel cells; however, fuel cell dehydration at temperatures near 100°C, resulting in poor conductivity, is a major hindrance to fuel cell performance. Recent studies incorporating heteropoly acids (HPAs) into membranes have shown an increase in conductivity and thus improvement in performance. HPAs are inorganic materials with known high proton conductivities. The primary objective of this work is to measure the conductivity of Nafion, X-Ionomer membranes, and National Renewable Energy Laboratory (NREL) Developed Membranes that are doped with different HPAs at different concentrations. Four-point conductivity measurements using a third generation BekkTech conductivity test cell are used to determine membrane conductivity. The effect of multiple temperature and humidification levels is also examined. While the classic commercial membrane, Nafion, has a conductivity of approximately 0.10 S/cm, measurements for membranes in this study range from 0.0030 – 0.58 S/cm, depending on membrane type, structure of the HPA, and the relative humidity. In general, the X-ionomer with H6P2W21O71 HPA gave the highest conductivity and the Nafion with the 12-phosphotungstic (PW12) HPA gave the lowest. The NREL composite membranes had conductivities on the order of 0.0013 – 0.025 S/cm.

  2. Durability of Membrane Electrode Assemblies (MEAs) in PEM Fuel Cells Operated on Pure Hydrogen and Oxygen

    Science.gov (United States)

    Stanic, Vesna; Braun, James; Hoberecht, Mark

    2003-01-01

    Proton exchange membrane (PEM) fuel cells are energy sources that have the potential to replace alkaline fuel cells for space programs. Broad power ranges, high peak-to-nominal power capabilities, low maintenance costs, and the promise of increased life are the major advantages of PEM technology in comparison to alkaline technology. The probability of PEM fuel cells replacing alkaline fuel cells for space applications will increase if the promise of increased life is verified by achieving a minimum of 10,000 hours of operating life. Durability plays an important role in the process of evaluation and selection of MEAs for Teledyne s Phase I contract with the NASA Glenn Research Center entitled Proton Exchange Membrane Fuel cell (PEMFC) Power Plant Technology Development for 2nd Generation Reusable Launch Vehicles (RLVs). For this contract, MEAs that are typically used for H2/air operation were selected as potential candidates for H2/O2 PEM fuel cells because their catalysts have properties suitable for O2 operation. They were purchased from several well-established MEA manufacturers who are world leaders in the manufacturing of diverse products and have committed extensive resources in an attempt to develop and fully commercialize MEA technology. A total of twelve MEAs used in H2/air operation were initially identified from these manufacturers. Based on the manufacturers specifications, nine of these were selected for evaluation. Since 10,000 hours is almost equivalent to 14 months, it was not possible to perform continuous testing with each MEA selected during Phase I of the contract. Because of the lack of time, a screening test on each MEA was performed for 400 hours under accelerated test conditions. The major criterion for an MEA pass or fail of the screening test was the gas crossover rate. If the gas crossover rate was higher than the membrane intrinsic permeability after 400 hours of testing, it was considered that the MEA had failed the test. Three types of

  3. Membrane tension and cytoskeleton organization in cell motility

    Science.gov (United States)

    Sens, Pierre; Plastino, Julie

    2015-07-01

    Cell membrane shape changes are important for many aspects of normal biological function, such as tissue development, wound healing and cell division and motility. Various disease states are associated with deregulation of how cells move and change shape, including notably tumor initiation and cancer cell metastasis. Cell motility is powered, in large part, by the controlled assembly and disassembly of the actin cytoskeleton. Much of this dynamic happens in close proximity to the plasma membrane due to the fact that actin assembly factors are membrane-bound, and thus actin filaments are generally oriented such that their growth occurs against or near the membrane. For a long time, the membrane was viewed as a relatively passive scaffold for signaling. However, results from the last five years show that this is not the whole picture, and that the dynamics of the actin cytoskeleton are intimately linked to the mechanics of the cell membrane. In this review, we summarize recent findings concerning the role of plasma membrane mechanics in cell cytoskeleton dynamics and architecture, showing that the cell membrane is not just an envelope or a barrier for actin assembly, but is a master regulator controlling cytoskeleton dynamics and cell polarity.

  4. Thin Robust Anion Exchange Membranes for Fuel Cell Applications

    Science.gov (United States)

    2014-01-01

    provide inexpensive compact power from a wider variety of fuels than is possible with a proton exchange membrane (PEM) fuel cell, has continued to...in aqueous solution. Interestingly though, while the proton transfer events in the anion exchange membrane are more frequent as would be ECS...release; distribution is unlimited. (Invited) Thin Robust Anion Exchange Membranes for Fuel Cell Applications The views, opinions and/or findings

  5. Cell volume and membrane stretch independently control K+ channel activity

    DEFF Research Database (Denmark)

    Bomholtz, Sofia Hammami; Willumsen, Niels J; Olsen, Hervør L

    2009-01-01

    A number of potassium channels including members of the KCNQ family and the Ca(2+) activated IK and SK, but not BK, are strongly and reversibly regulated by small changes in cell volume. It has been argued that this general regulation is mediated through sensitivity to changes in membrane stretch...... was not affected by membrane stretch. The results indicate that (1) activation of BK channels by local membrane stretch is not mimicked by membrane stress induced by cell swelling, and (2) activation of KCNQ1 channels by cell volume increase is not mediated by local tension in the cell membrane. We conclude....... To test this hypothesis we have studied the regulation of KCNQ1 and BK channels after expression in Xenopus oocytes. Results from cell-attached patch clamp studies (approximately 50 microm(2) macropatches) in oocytes expressing BK channels demonstrate that the macroscopic volume-insensitive BK current...

  6. Functional motor microdomains of the outer hair cell lateral membrane.

    Science.gov (United States)

    Santos-Sacchi, Joseph

    2002-12-01

    The outer hair cell (OHC) of the mammalian inner ear is a highly partitioned neuroepithelial cell whose lateral membrane is devoted to electromotility, a fast mechanical length change owing to the motor protein, prestin. Spatially restricted measures of prestin-derived nonlinear capacitance or gating charge, using either electrical amputation or discrete membrane mechanical deformation, were used to determine that functional variation exists within the extensive lateral membrane of the cell. This was evidenced by variation in the motor's operating voltage range and sensitivity among microdomains within the lateral membrane. That is, localized regions of the membrane evidenced Boltzmann distributions of motor charge whose midpoint voltage and slope differed from those obtained for the whole cell. These data highlight the functional independence of microdomains and imply that measured whole cell characteristics may differ from the microscopic characteristics of elementary motors.

  7. Cytotoxicity of bovine and porcine collagen membranes in mononuclear cells.

    Science.gov (United States)

    Moura, Camilla Christian Gomes; Soares, Priscilla Barbosa Ferreira; Carneiro, Karine Fernandes; Souza, Maria Aparecida de; Magalhães, Denildo

    2012-01-01

    This study compared the cytotoxicity and the release of nitric oxide induced by collagen membranes in human mononuclear cells. Peripheral blood was collected from each patient and the separation of mononuclear cells was performed by Ficoll. Then, 2x10(5) cells were plated in 48-well culture plates under the membranes in triplicate. The polystyrene surface was used as negative control. Cell viability was assessed by measuring mitochondrial activity (MTT) at 4, 12 and 24 h, with dosage levels of nitrite by the Griess method for the same periods. Data had non-normal distribution and were analyzed by the Kruskal-Wallis test (pporcine membrane induced a higher release of nitrite compared with the control and bovine membrane, respectively (pporcine collagen membrane induces an increased production of proinflammatory mediators by mononuclear cells in the first hours of contact, decreasing with time.

  8. Evaluation of electricity production from alkaline pretreated sludge using two-chamber microbial fuel cell.

    Science.gov (United States)

    Xiao, Benyi; Yang, Fang; Liu, Junxin

    2013-06-15

    Electricity production from alkaline pretreated sludge was evaluated using a two-chamber microbial fuel cell (MFC). The electricity production was found to be stable over a long period of time (approximately 17 d) with voltage outputs and power densities of 0.47-0.52 V and 46.80-55.88 mW/m(2), respectively. The anode resistance was the main internal resistance (73.2%) of MFC in the stable stage. Most soluble organic matters (proteins and carbohydrates) in the anode chamber were first degraded and converted into volatile fatty acids (0-15 d), which were then degraded and converted into electricity and methane (15-29 d). The insoluble organics were solubilized thereby decreasing the sludge concentration and reducing the sludge mass. Methane was produced in the anode chamber owing to the growth of methanogens, which did not obviously affect the electricity production. The change in humic-like substances displayed a positive correlation with the electricity production of the MFC. Microbial analysis showed that methanogens and electricity-producing bacteria co-existed mostly on the surface as well as inside the anode. Decreasing the anode resistance and increasing the anode utilization could enhance the electricity production. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  9. Membrane transport of anandamide through resealed human red blood cell membranes

    DEFF Research Database (Denmark)

    Bojesen, I.N.; Hansen, Harald S.

    2005-01-01

    The use of resealed red blood cell membranes (ghosts) allows the study of the transport of a compound in a nonmetabolizing system with a biological membrane. Transmembrane movements of anandamide (N-arachidonoylethanolamine, arachidonoylethanolamide) have been studied by exchange efflux experiments...... at 0°C and pH 7.3 with albumin-free and albumin-filled human red blood cell ghosts. The efflux kinetics is biexponential and is analyzed in terms of compartment models. The distribution of anandamide on the membrane inner to outer leaflet pools is determined to be 0.275 ± 0.023, and the rate constant...... of unidirectional flux from inside to outside is 0.361 ± 0.023 s. The rate constant of unidirectional flux from the membrane to BSA in the medium ([BSA]) increases with the square root of [BSA] in accordance with the theory of an unstirred layer around ghosts. Anandamide passed through the red blood cell membrane...

  10. Durability of symmetrically and asymmetrically porous polybenzimidazole membranes for high temperature proton exchange membrane fuel cells

    Science.gov (United States)

    Jheng, Li-Cheng; Chang, Wesley Jen-Yang; Hsu, Steve Lien-Chung; Cheng, Po-Yang

    2016-08-01

    Two types of porous polybenzimidazole (PBI) membranes with symmetric and asymmetric morphologies were fabricated by the template-leaching method and characterized by scanning electron microscope (SEM). Their physicochemical properties were compared in terms of acid-doping level, proton conductivity, mechanical strength, and oxidative stability. The durability of fuel cell operation is one of the most challenging for the PBI based membrane electrode assembly (MEA) used in high-temperature proton exchange membrane fuel cells (HT-PEMFCs). In the present work, we carried out a long-term steady-state fuel cell test to compare the effect of membrane structure on the cell voltage degradation. It has also been demonstrated that the asymmetrically porous PBI could bring some notable improvements on the durability of fuel cell operation, the fuel crossover problem, and the phosphoric acid leakage.

  11. Correlation between membrane fluidity cellular development and stem cell differentiation

    KAUST Repository

    Noutsi, Pakiza

    2016-12-01

    Cell membranes are made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as neuronal differentiation, cell membranes undergo dramatic structural changes induced by proteins such as ARC and Cofilin among others in the case of synaptic modification. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. As expected, NIH3T3 cells have more rigid membrane at earlier stages of their development. On the other hand neurons tend to have the highest membrane fluidity early in their development emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  12. Studying the Nucleated Mammalian Cell Membrane by Single Molecule Approaches

    Science.gov (United States)

    Wang, Feng; Wu, Jiazhen; Gao, Jing; Liu, Shuheng; Jiang, Junguang; Jiang, Shibo; Wang, Hongda

    2014-01-01

    The cell membrane plays a key role in compartmentalization, nutrient transportation and signal transduction, while the pattern of protein distribution at both cytoplasmic and ectoplasmic sides of the cell membrane remains elusive. Using a combination of single-molecule techniques, including atomic force microscopy (AFM), single molecule force spectroscopy (SMFS) and stochastic optical reconstruction microscopy (STORM), to study the structure of nucleated cell membranes, we found that (1) proteins at the ectoplasmic side of the cell membrane form a dense protein layer (4 nm) on top of a lipid bilayer; (2) proteins aggregate to form islands evenly dispersed at the cytoplasmic side of the cell membrane with a height of about 10–12 nm; (3) cholesterol-enriched domains exist within the cell membrane; (4) carbohydrates stay in microdomains at the ectoplasmic side; and (5) exposed amino groups are asymmetrically distributed on both sides. Based on these observations, we proposed a Protein Layer-Lipid-Protein Island (PLLPI) model, to provide a better understanding of cell membrane structure, membrane trafficking and viral fusion mechanisms. PMID:24806512

  13. Eugenol alters the integrity of cell membrane and acts against the nosocomial pathogen Proteus mirabilis.

    Science.gov (United States)

    Devi, K Pandima; Sakthivel, R; Nisha, S Arif; Suganthy, N; Pandian, S Karutha

    2013-03-01

    Eugenol, a member of the phenylpropanoids class of chemical compounds, is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, and bay leaf. The antibacterial activity of eugenol and its mechanism of bactericidal action against Proteus mirabilis were evaluated. Treatment with eugenol at their minimum inhibitory concentration [0.125 % (v/v)] and minimum bactericidal concentration [0.25 % (v/v)] reduced the viability and resulted in complete inhibition of P. mirabilis. A strong bactericidal effect on P. mirabilis was also evident, as eugenol inactivated the bacterial population within 30 min exposure. Chemo-attractant property and the observance of highest antibacterial activity at alkaline pH suggest that eugenol can work more effectively when given in vivo. Eugenol inhibits the virulence factors produced by P. mirabilis as observed by swimming motility, swarming behavior and urease activity. It interacts with cellular membrane of P. mirabilis and makes it highly permeable, forming nonspecific pores on plasma membrane, which in turn directs the release of 260 nm absorbing materials and uptake of more crystal violet from the medium into the cells. SDS-polyacrylamide gel, scanning electron microscopy and Fourier transform infrared analysis further proves the disruptive action of eugenol on the plasma membrane of P. mirabilis. The findings reveal that eugenol shows an excellent bactericidal activity against P. mirabilis by altering the integrity of cell membrane.

  14. Nano thermo-hydrodynamics method for investigating cell membrane fluidity

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    As a barrier to compartmentalize cells,mem-branes form the interface between a cell and its surround-ings.The essential function of a membrane is to maintain a relatively stable environment in the cell,exchange sub-stances selectively and transfer energy and information continually from the outside.It is intriguing that above the phase transition temperature,the membrane lipid molecule will have three modes-lateral diffusion,rotational movement and flip-flop activity.These thermodynamic processes are vital to cell existence,growth,division,differentiation and are also responsible for hundreds of thousands of phenomena in life.Previously,species transport across the membrane was interpreted mainly from a phenomenological view using a lumped system model.Therefore,detailed flow processes occurred in the membrane domain and clues related to life mechanism were not sufficiently tackled.Such important issues can be clarifled by modeling nano scale thermal hydrodynamics over the gap space of a cell membrane.Previously observed complex membrane behaviors will be shown in this paper and explained by the thermally induced fluidic convections inside the membrane.A correlation between nano scale hydrodynamics,non-equilibrium thermodynamics and eell membrane activities is set up.The disclosed mechanisms are expected to provide a new viewpoint on the interaction between intracellular and extracellular processes through the membrane.

  15. Phosphoric acid doped imidazolium polysulfone membranes for high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Li, Qingfeng; Jensen, Jens Oluf

    2012-01-01

    A novel acid–base polymer membrane is prepared by doping of imidazolium polysulfone with phosphoric acid for high temperature proton exchange membrane fuel cells. Polysulfone is first chloromethylated, followed by functionalization of the chloromethylated polysulfone with alkyl imidazoles i.e. me...

  16. Oncostatin M regulates membrane traffic and stimulates bile canalicular membrane biogenesis in HepG2 cells

    NARCIS (Netherlands)

    Van der Wouden, Johanna M.; Van IJzendoorn, Sven C.D.; Hoekstra, Dick

    2002-01-01

    Hepatocytes are the major epithelial cells of the liver and they display membrane polarity: the sinusoidal membrane representing the basolateral surface, while the bile canalicular membrane is typical of the apical membrane. In polarized HepG2 cells an endosomal organelle, SAC, fulfills a prominent

  17. Facile Alkaline Lysis of Escherichia coli Cells in High-Throughput Mode for Screening Enzyme Mutants: Arylsulfatase as an Example.

    Science.gov (United States)

    Yuan, Mei; Yang, Xiaolan; Li, Yuwei; Liu, Hongbo; Pu, Jun; Zhan, Chang-Guo; Liao, Fei

    2016-06-01

    Facile alkaline lysis of Escherichia coli cells in high-throughput (HTP) mode for screening enzyme mutants was tested with Pseudomonas aeruginosa arylsulfatase (PAAS). The alkaline lysis buffer was 1.0 M Tris-HCl at pH 9.0 plus 0.1 % Tween-20 and 2.0 mM 4-aminobenzamidine, mixed with cell suspension at 8:1 to 12:1 ratio for continuous agitation of mixtures in 96-well plates under room temperature; enzymatic activity in lysates was measured with 96-well microplate. PAAS activity tolerated final 0.1 % Tween-20. Individual clones were amplified for 12 h in 0.50 mL TB medium with 48-well plates to enhance the repeatability of induced expression. During continuous agitation of the mixture of cells and the lysis buffer, PAAS activities in lysates were steady from 3 to 9 h and comparable to sonication treatment but better than freezing-thawing. Coefficients of variation of activities of PAAS/mutants in lysates after treatment for 7 h reached ∼22 %. The mutant M72Q had specific activity 2-fold of G138S. By HTP lysis of cells, M72Q was recognized as a positive mutant over G138S with the area under the curve of 0.873. Therefore, for enzymes tolerating concentrated alkaline buffers, the proposed alkaline lysis approach may be generally applicable for HTP lysis of host cells during directed evolution.

  18. Preparation and Characterization of an Alkaline Anion Exchange Membrane from Chlorinated Poly(propylene) Aminated with Branched Poly(ethyleneimine)

    Science.gov (United States)

    2013-01-01

    delivery, Mini Reviews in Medicinal Chemistry 6 (2006) 1285–1298. [13] B. Gao, X. Zhang, Y. Zhu, Studies on the preparation and antibacterial properties of...for direct use of methanol or more complex fuels, and the potential use of non-precious metal catalysts [2]. Commercial AEMs are available from...USA. Tel.: +1 303 384 2082. E-mail address: aherring@mines.edu (A.M. Herring). 1 ISE member. membranes with acceptable mechanical properties , long-term

  19. Electron Spin Resonance Study of Fuel Cell Polymer Membrane Degradation

    Institute of Scientific and Technical Information of China (English)

    Alexander Panchenko; Elena Aleksandrova; Emil Roduner

    2005-01-01

    @@ 1Introduction The long term stability of the membrane is an important factor limiting the fuel cell lifetime. During extended use the membrane degrades, probably via reaction with hydroxyl and superoxide radicals which are regular intermediates of the oxygen reduction at the cathode. Only extremely stable membranes can withstand the aggressive chemical and physical environment in an operating fuel cell. Within a given set of operating conditions, intrinsic chemical and mechanical properties of the membrane as well as its water content impact its durability dramatically.

  20. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells

    Science.gov (United States)

    Stingaciu, Laura-Roxana; O'Neill, Hugh; Liberton, Michelle; Urban, Volker S.; Pakrasi, Himadri B.; Ohl, Michael

    2016-01-01

    Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membranes in terms of their flexibility and motion during the photosynthetic process. We present a direct observation of thylakoid membrane undulatory motion in vivo and show a connection between membrane mobility and photosynthetic activity. High-resolution inelastic neutron scattering experiments on the cyanobacterium Synechocystis sp. PCC 6803 assessed the flexibility of cyanobacterial thylakoid membrane sheets and the dependence of the membranes on illumination conditions. We observed softer thylakoid membranes in the dark that have three-to four fold excess mobility compared to membranes under high light conditions. Our analysis indicates that electron transfer between photosynthetic reaction centers and the associated electrochemical proton gradient across the thylakoid membrane result in a significant driving force for excess membrane dynamics. These observations provide a deeper understanding of the relationship between photosynthesis and cellular architecture.

  1. Cell membrane fluid-mosaic structure and cancer metastasis.

    Science.gov (United States)

    Nicolson, Garth L

    2015-04-01

    Cancer cells are surrounded by a fluid-mosaic membrane that provides a highly dynamic structural barrier with the microenvironment, communication filter and transport, receptor and enzyme platform. This structure forms because of the physical properties of its constituents, which can move laterally and selectively within the membrane plane and associate with similar or different constituents, forming specific, functional domains. Over the years, data have accumulated on the amounts, structures, and mobilities of membrane constituents after transformation and during progression and metastasis. More recent information has shown the importance of specialized membrane domains, such as lipid rafts, protein-lipid complexes, receptor complexes, invadopodia, and other cellular structures in the malignant process. In describing the macrostructure and dynamics of plasma membranes, membrane-associated cytoskeletal structures and extracellular matrix are also important, constraining the motion of membrane components and acting as traction points for cell motility. These associations may be altered in malignant cells, and probably also in surrounding normal cells, promoting invasion and metastatic colonization. In addition, components can be released from cells as secretory molecules, enzymes, receptors, large macromolecular complexes, membrane vesicles, and exosomes that can modify the microenvironment, provide specific cross-talk, and facilitate invasion, survival, and growth of malignant cells.

  2. Detecting Nanodomains in Living Cell Membrane by Fluorescence Correlation Spectroscopy

    Science.gov (United States)

    He, Hai-Tao; Marguet, Didier

    2011-05-01

    Cell membranes actively participate in numerous cellular functions. Inasmuch as bioactivities of cell membranes are known to depend crucially on their lateral organization, much effort has been focused on deciphering this organization on different length scales. Within this context, the concept of lipid rafts has been intensively discussed over recent years. In line with its ability to measure diffusion parameters with great precision, fluorescence correlation spectroscopy (FCS) measurements have been made in association with innovative experimental strategies to monitor modes of molecular lateral diffusion within the plasma membrane of living cells. These investigations have allowed significant progress in the characterization of the cell membrane lateral organization at the suboptical level and have provided compelling evidence for the in vivo existence of raft nanodomains. We review these FCS-based studies and the characteristic structural features of raft nanodomains. We also discuss the findings in regards to the current view of lipid rafts as a general membrane-organizing principle.

  3. How the antimicrobial peptides destroy bacteria cell membrane: Translocations vs. membrane buckling

    Science.gov (United States)

    Golubovic, Leonardo; Gao, Lianghui; Chen, Licui; Fang, Weihai

    2012-02-01

    In this study, coarse grained Dissipative Particle Dynamics simulation with implementation of electrostatic interactions is developed in constant pressure and surface tension ensemble to elucidate how the antimicrobial peptide molecules affect bilayer cell membrane structure and kill bacteria. We find that peptides with different chemical-physical properties exhibit different membrane obstructing mechanisms. Peptide molecules can destroy vital functions of the affected bacteria by translocating across their membranes via worm-holes, or by associating with membrane lipids to form hydrophilic cores trapped inside the hydrophobic domain of the membranes. In the latter scenario, the affected membranes are strongly corrugated (buckled) in accord with very recent experimental observations [G. E. Fantner et al., Nat. Nanotech., 5 (2010), pp. 280-285].

  4. Stability of polydopamine and poly(DOPA) melanin-like films on the surface of polymer membranes under strongly acidic and alkaline conditions.

    Science.gov (United States)

    Wei, Houliang; Ren, Jun; Han, Bo; Xu, Li; Han, Lulu; Jia, Lingyun

    2013-10-01

    This study investigated the stability of polydopamine and poly(3,4-dihydroxyphenylalanine) (poly(DOPA)) melanin-like films on the surface of polymer substrates. Three polymer membranes, polypropylene (PP), poly(vinylidenefluoride) (PVDF) and nylon, were modified with polydopamine or poly(DOPA), and then immersed in 0.1M HCl or NaOH, followed by UV-vis spectrometry analysis to detect the presence of film detachment. The results showed that the outer parts of both polydopamine and poly(DOPA) films were detached, probably due to electrostatic repulsion between the polymers within the film, when the modified membranes were washed in HCl or NaOH solution. These two films were more stable in strongly acidic solution, but the stability of poly(DOPA) film was better than that of polydopamine film. Compared to the films on the surface of PVDF or nylon membrane, films on PP surface showed the lowest stability, possibly because of the hydrophobic property of PP. The process of film detachment was analyzed by GPC, which showed that unreacted dopamine or DOPA monomers were still present in the freshly formed films. The unreacted monomers, as well as polydopamine or poly(DOPA) that were incorporated in the film via noncovalent interactions, became detached when the film was exposed to strongly acidic or alkaline solution. Oxidation of freshly formed films could significantly enhance their stability. The results therefore provide us with a better understanding of the stability of melanin-like films, and allow us to develop an effective strategy for constructing stable films.

  5. Activity of alkaline and acidic phosphatase in glandular cells of uterine endometrium of puerperal ewes after exposure to polychlorinated biphenyls

    OpenAIRE

    Valocky I.; Krajničakova Maria; Legath J.; Lenhardt L.; Ostro A.; Danko J.; Tkačikova L`udmila; Mojžišova Jana; Fialkovičova Maria; Mardzinova Silvia

    2005-01-01

    The study is focused on the observation of alkaline and acidic phosphatase activity in the glandular cells of uterine endometrium in puerperal ewes after exposure to polychlorinated biphenyls. Ewes of Slovak merino breed (n=25) divided into 2 groups were included in the experiment. The animals in the experimental group (n=14) and control group (n=11) were euthanised on day 17, 25 and 34 postpartum. The ewes in the experimental group were given per os capsules of the chemical preparation Delor...

  6. Polymer Electrolyte Membrane Fuel Cell Performance of a Sulfonated Poly(Arylene Ether Benzimidazole Copolymer Membrane

    Directory of Open Access Journals (Sweden)

    Hasan Ferdi Gerçel

    2016-01-01

    Full Text Available Disodium-3,3′-disulfonate-4,4′-dichlorodiphenylsulfone (SDCDPS and 5,5′-bis[2-(4-hydroxyphenylbenzimidazole] (HPBI monomers were synthesized. Binding these monomers via nucleophilic aromatic polycondensation reaction, a sulfonated poly(arylene ether benzimidazole copolymer was synthesized. Structures of monomers and copolymer were confirmed by proton nuclear magnetic resonance spectroscopy (1H NMR and Fourier transform infrared (FTIR spectroscopy analyses. Proton exchange membrane was prepared by dissolving copolymer in dimethylacetamide (DMAc and casting onto a glass plate. Copolymer membrane was doped with sulfuric acid to ensure proton exchange character. Single cell performance of the copolymer membrane was tested in a polymer electrolyte membrane fuel cell test station. The highest power density of the membrane was measured as 23.7 mW cm−2 at 80°C. Thermogravimetric analysis (TGA showed that as the degree of disulfonation is increased thermal stability of the copolymer is increased.

  7. The Flocculating Cationic Polypetide from Moringa oleifera Seeds Damages Bacterial Cell Membranes by Causing Membrane Fusion.

    Science.gov (United States)

    Shebek, Kevin; Schantz, Allen B; Sines, Ian; Lauser, Kathleen; Velegol, Stephanie; Kumar, Manish

    2015-04-21

    A cationic protein isolated from the seeds of the Moringa oleifera tree has been extensively studied for use in water treatment in developing countries and has been proposed for use in antimicrobial and therapeutic applications. However, the molecular basis for the antimicrobial action of this peptide, Moringa oleifera cationic protein (MOCP), has not been previously elucidated. We demonstrate here that a dominant mechanism of MOCP antimicrobial activity is membrane fusion. We used a combination of cryogenic electron microscopy (cryo-EM) and fluorescence assays to observe and study the kinetics of fusion of membranes in liposomes representing model microbial cells. We also conducted cryo-EM experiments on E. coli cells where MOCP was seen to fuse the inner and outer membranes. Coarse-grained molecular dynamics simulations of membrane vesicles with MOCP molecules were used to elucidate steps in peptide adsorption, stalk formation, and fusion between membranes.

  8. Exploring the inhibitory effect of membrane tension on cell polarization.

    Science.gov (United States)

    Wang, Weikang; Tao, Kuan; Wang, Jing; Yang, Gen; Ouyang, Qi; Wang, Yugang; Zhang, Lei; Liu, Feng

    2017-01-01

    Cell polarization toward an attractant is influenced by both physical and chemical factors. Most existing mathematical models are based on reaction-diffusion systems and only focus on the chemical process occurring during cell polarization. However, membrane tension has been shown to act as a long-range inhibitor of cell polarization. Here, we present a cell polarization model incorporating the interplay between Rac GTPase, filamentous actin (F-actin), and cell membrane tension. We further test the predictions of this model by performing single cell measurements of the spontaneous polarization of cancer stem cells (CSCs) and non-stem cancer cells (NSCCs), as the former have lower cell membrane tension. Based on both our model and the experimental results, cell polarization is more sensitive to stimuli under low membrane tension, and high membrane tension improves the robustness and stability of cell polarization such that polarization persists under random perturbations. Furthermore, our simulations are the first to recapitulate the experimental results described by Houk et al., revealing that aspiration (elevation of tension) and release (reduction of tension) result in a decrease in and recovery of the activity of Rac-GTP, respectively, and that the relaxation of tension induces new polarity of the cell body when a cell with the pseudopod-neck-body morphology is severed.

  9. Membrane curvature in cell biology: An integration of molecular mechanisms.

    Science.gov (United States)

    Jarsch, Iris K; Daste, Frederic; Gallop, Jennifer L

    2016-08-15

    Curving biological membranes establishes the complex architecture of the cell and mediates membrane traffic to control flux through subcellular compartments. Common molecular mechanisms for bending membranes are evident in different cell biological contexts across eukaryotic phyla. These mechanisms can be intrinsic to the membrane bilayer (either the lipid or protein components) or can be brought about by extrinsic factors, including the cytoskeleton. Here, we review examples of membrane curvature generation in animals, fungi, and plants. We showcase the molecular mechanisms involved and how they collaborate and go on to highlight contexts of curvature that are exciting areas of future research. Lessons from how membranes are bent in yeast and mammals give hints as to the molecular mechanisms we expect to see used by plants and protists.

  10. Coating nanoparticles with cell membranes for targeted drug delivery.

    Science.gov (United States)

    Gao, Weiwei; Zhang, Liangfang

    2015-01-01

    Targeted delivery allows drug molecules to preferentially accumulate at the sites of action and thus holds great promise to improve therapeutic index. Among various drug-targeting approaches, nanoparticle-based delivery systems offer some unique strengths and have achieved exciting preclinical and clinical results. Herein, we aim to provide a review on the recent development of cell membrane-coated nanoparticle system, a new class of biomimetic nanoparticles that combine both the functionalities of cellular membranes and the engineering flexibility of synthetic nanomaterials for effective drug delivery and novel therapeutics. This review is particularly focused on novel designs of cell membrane-coated nanoparticles as well as their underlying principles that facilitate the purpose of drug targeting. Three specific areas are highlighted, including: (i) cell membrane coating to prolong nanoparticle circulation, (ii) cell membrane coating to achieve cell-specific targeting and (iii) cell membrane coating for immune system targeting. Overall, cell membrane-coated nanoparticles have emerged as a novel class of targeted nanotherapeutics with strong potentials to improve on drug delivery and therapeutic efficacy for treatment of various diseases.

  11. Improved Membrane Materials for PEM Fuel Cell Application

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth A. Mauritz; Robert B. Moore

    2008-06-30

    The overall goal of this project is to collect and integrate critical structure/property information in order to develop methods that lead to significant improvements in the durability and performance of polymer electrolyte membrane fuel cell (PEMFC) materials. This project is focused on the fundamental improvement of PEMFC membrane materials with respect to chemical, mechanical and morphological durability as well as the development of new inorganically-modified membranes.

  12. Nanoscale cell membrane organization : a near-field optical view

    NARCIS (Netherlands)

    Koopman, Marjolein

    2006-01-01

    The cell plasma membrane of eukaryotic cells is a lipid bi-layer that separates the cell cytosol from the extracellular environment. The composition and organization of proteins and lipids within this bi-layer have a direct impact on many cellular processes, since they form the senses of the cell. T

  13. Development of electrolysis-cell separator for 125/sup 0/C operation. Advanced alkaline electrolysis cell development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Murray, J N

    1983-03-01

    This report contains the findings of a seven-month contracted effort. The major technical task involved a 125/sup 0/C operating temperature test of the 20 v/o polybenzimidazole (PBI) - 80 v/o potassium titanate (K/sub 2/TiO/sub 3/) separator in combination with the nickel-molybdenum cathode electrocatalyst system dubbed the C-AN cathode using the ARIES test system which was developed previously. The test of the PBI-K/sub 2/TiO/sub 3/ separator was only partially successful. The anticipated 1.85 (75/sup 0/C) and 1.75 volt per cell (100/sup 0/C) input requirement at 550 ma/cm/sup 2/ were surpassed slightly. The test module operated stably for about 550 hr. Although there were some mechanical difficulties with the ARIES test unit, testing at 125/sup 0/C proceeded from 745 hr on test until the test was terminated at 2318 operating hours to allow diagnostic disassembly. The input voltage degraded to a value of 1.82 volt per cell at 125/sup 0/C which is unacceptable. Diagnostic disassembly showed the PBI portion of the separator was no longer present. PBI had been shown to be stable in 123/sup 0/C, 45 w/o KOH solutions in a 1000-hr test. The attack is suggested to be attributable to a peroxide or perchlorate type oxidizer which would be unique to the electrolysis mode and probably not present in alkaline fuel cell applications. Recommendations for further testing include an evaluation of the chemical compatibility of PBI with alkaline/oxidizer solutions and endurance testing the C-AN cathode with new improved anode structures at 125/sup 0/C using asbestos separators in combination with a silicate saturated KOH electrolyte. Demonstration of the stability of this 1.65 volt per cell (90% voltage efficiency) technology at 500 ma/cm/sup 2/ will document an inexpensive and intelligent hydrogen production process which will satisfy the needs of the United States in the 1990s.

  14. Homotypic fusion of endoplasmic reticulum membranes in plant cells

    Directory of Open Access Journals (Sweden)

    Junjie eHu

    2013-12-01

    Full Text Available The endoplasmic reticulum (ER is a membrane-bounded organelle whose membrane comprises a network of tubules and sheets. The formation of these characteristic shapes and maintenance of their continuity through homotypic membrane fusion appears to be critical for the proper functioning of the ER. The atlastins (ATLs, a family of ER-localized dynamin-like GTPases, have been identified as fusogens of the ER membranes in metazoans. Mutations of the ATL proteins in mammalian cells cause morphological defects in the ER, and purified Drosophila ATL mediates membrane fusion in vitro. Plant cells do not possess ATL, but a family of similar GTPases, named root hair defective 3 (RHD3, are likely the functional orthologs of ATLs. In this review, we summarize recent advances in our understanding of how RHD3 proteins play a role in homotypic ER fusion. We also discuss the possible physiological significance of forming a tubular ER network in plant cells.

  15. Enhanced performance of anion exchange membranes via crosslinking of ion cluster regions for fuel cells

    Science.gov (United States)

    Lai, Ao Nan; Guo, Dong; Lin, Chen Xiao; Zhang, Qiu Gen; Zhu, Ai Mei; Ye, Mei Ling; Liu, Qing Lin

    2016-09-01

    Development of anion exchange membranes (AEMs) with high hydroxide conductivity, good dimensional and alkaline stabilities is still a challenge for the practical application of AEM fuel cells. In this study, we report a new strategy to prepare high-performance AEMs with crosslinked ionic regions. A series of phenolphthalein-containing poly(arylene ether sulfone)s crosslinked AEMs was synthesized by grafting ion groups selectively and densely on the phenolphthalein units to form ion clusters that are further crosslinked to generate the hydrophilic ionic regions. The crosslinking reaction not only improved the dimensional stability of the AEMs, but also increased the aggregation of the ion clusters leading to the formation of hydrophilic/hydrophobic phase-separated morphology and ion-conducting channels. As a result, enhancements in both ion conductivity and dimensional stability can be achieved. The crosslinked AEMs showed high hydroxide conductivities in the range of 52.2-143.4 mS cm-1 from 30 to 80 °C and a superb ratio of relative conductivity to relative swelling at 80 °C. Furthermore, the crosslinked AEMs also exhibited good mechanical properties, thermal and alkaline stabilities and desirable single cell performance. This work presents a promising strategy for the synthesis of high-performance AEMs for fuel cells.

  16. Durability Issues of High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes

    DEFF Research Database (Denmark)

    To achieve high temperature operation of proton exchange membrane fuel cells (PEMFC), preferably under ambient pressure, phosphoric acid doped polybenzimidazole (PBI) membrane represents an effective approach, which in recent years has motivated extensive research activities with great progress....... As a critical concern, issues of long term durability of PBI based fuel cells are addressed in this talk, including oxidative degradation of the polymer, mechanical failures of the membrane, acid leaching out, corrosion of carbon support and sintering of catalysts particles. Excellent polymer durability has...... observed under continuous operation with hydrogen and air at 150-160oC, with a fuel cell performance degradation rate of 5-10 µV/h. Improvement of the membrane performance such as mechanical strength, swelling and oxidative stability has achieved by exploring the polymer chemistry, i.e. covalently...

  17. BLEND MEMBRANES FOR DIRECT METHANOL AND PROTON EXCHANGE MEMBRANE FUEL CELLS

    Institute of Scientific and Technical Information of China (English)

    Perurnal Bhavani; Dharmalingam Sangeetha

    2012-01-01

    Sulphonated polystyrene ethylene butylene polystyrene (SPSEBS) prepared with 35% sulphonation was found to be highly elastic and enlarged up to 300%-400% of its initial length.It absorbed over 110% of water by weight.A major drawback of this membrane is its poor mechanical properties which are not adequate for use as polymer electrolytes in fuel cells.To overcome this,SPSEBS was blended with poly(vinylidene fluoride) (PVDF),a hydrophobic polymer.The blend membranes showed better mechanical properties than the base polymer.The effect of PVDF content on water uptake,ion exchange capacity and proton conductivity of the blend membranes was investigated.This paper presents the results of recent studies applied to develop an optimized in-house membrane electrode assembly (MEA) preparation technique combining catalyst ink spraying and assembly hot pressing.Easy steps were chosen in this preparation technique in order to simplify the method,aiming at cost reduction.The open circuit voltage for the cell with SPSEBS is 0.980 V which is higher compared to that of the cell with Nafion 117 (0.790 V).From this study,it is concluded that a polymer electrolyte membrane suitable for proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) application can be obtained by blending SPSEBS and PVDF in appropriate proportions.The methanol permeability and selectivity showed a strong influence on DMFC performance.

  18. Toughness of membranes applied in polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, J.; Brack, H.P.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Since several years we apply the radiation-grafting technique to prepare polymeric membranes for application in polymer electrolyte fuel cells (PEFCs). Our investigations presented here focus on changes in toughness of these materials after the various synthesis steps and the importance of membrane toughness for their application in PEFCs. (author) 2 figs., 4 refs.

  19. Expression of basement membrane antigens in spindle cell melanoma.

    Science.gov (United States)

    Prieto, V G; Woodruff, J M

    1998-07-01

    Spindle cell melanoma (SCM) is an uncommon form of melanoma that may be confused histologically with other tumors, including malignant peripheral nerve sheath tumors (MPNST). Tumors with neural differentiation and melanocytic nevi may both show basement membrane immunohistochemically and at the ultrastructural level. However, most ultrastructural studies of melanoma have failed to demonstrate well formed basement membrane around tumor cells. The presence of basement membrane has been used by some authors as evidence favoring MPNST, as opposed to SCM. To evaluate this distinction immunohistochemically, 22 primary and metastatic cutaneous melanomas having a spindle cell component (SCM) were studied using monoclonal antibodies against laminin and Type IV collagen. S100 protein and HMB45 antigen expression were also studied. All but one of the SCM were reactive for S100 protein in at least 25% of the cells. Thirteen of 20 tumors (65%) were focally reactive with HMB45. Laminin was expressed in 42% of the tumors (only membranous pattern in 3; cytoplasmic and membranous in 5). Seventeen tumors (77%) expressed type IV collagen (only membranous pattern in 7; cytoplasmic and membranous pattern in 10). Laminin and type IV collagen, known components of basement membrane, are often found in SCM. Therefore, their detection cannot be used to distinguish SCM from MPNST.

  20. Design of efficient methanol impermeable membranes for fuel cell applications.

    Science.gov (United States)

    Lufrano, F; Baglio, V; Di Blasi, O; Staiti, P; Antonucci, V; Aricò, A S

    2012-02-28

    In this paper, the design of efficient composite membranes based on sulfonated polysulfone and acidic silica material with characteristics and properties such as methanol barrier, high proton conductivity and suitable fuel cells performance is presented. A positive influence of nanosized acidic silica powders, used as an additive filler in the preparation of composite membranes, due to an efficient hydrophilic inter-distribution inside the membrane when compared to pure silica, is found. A series of different techniques such as XRF, FT-IR, TGA, DSC, IEC and conductivity measurements are used to highlight the properties of acidic silica material and composite membranes. The composite membrane based on acidic silica (SPSf-SiO(2)-S) shows the lowest crossover current (only 8 mA cm(-2)), which is 43% lower than that of a pure SPSf membrane and 33% lower compared to a composite membrane based on bare silica (SPSf-SiO(2)). These significant differences are attributed to the increasing diffusion path length of MeOH/H(2)O clusters in the composite membranes. The maximum DMFC performance at 30 °C is achieved with the SPSf-SiO(2)-S membrane (23 mW cm(-2)), whereas the MEAs based on SPSf-SiO(2) and pure SPSf membranes reached 21 and 16 mW cm(-2), respectively. These significant results of the composite SPSf-SiO(2)-S membrane are ascribed at a good compromise among high proton conductivity, low swelling and low methanol crossover compared to pure SPSf and (unmodified silica)-SPSf membranes. A preliminary short durability test of 100 h performed in a cell with the composite SPSf-SiO(2)-S membrane shows remarkable performance stability during chrono-voltammetric measurements (60 mA cm(-2)) at 30 °C.

  1. Measuring dynamic membrane fluctuations in cell membrane using quantitative phase imaging (Conference Presentation)

    Science.gov (United States)

    Lee, SangYun; Kim, Kyoohyun; Park, YongKeun

    2017-02-01

    There is a strong correlation between the dynamic membrane fluctuations and the biomechanical properties of living cells. The dynamic membrane fluctuation consists of submicron displacements, and can be altered by changing the cells' pathophysiological conditions. These results have significant relevance to the understanding of RBC biophysics and pathology, as follows. RBCs must withstand large mechanical deformations during repeated passages through the microvasculature and the fenestrated walls of the splenic sinusoids. This essential ability is diminished with senescence, resulting in physiological destruction of the aging RBCs. Pathological destruction of the red cells, however, occurs in cells affected by a host of diseases such as spherocytosis, malaria, and Sickle cell disease, as RBCs depart from their normal discoid shape and lose their deformability. Therefore, quantifying the RBC deformability insight into a variety of problems regarding the interplay of cell structure, dynamics, and function. Furthermore, the ability to monitor mechanical properties of RBCs is of vital interest in monitoring disease progression or response to treatment as molecular and pharmaceutical approaches for treatment of chronic diseases. Here, we present the measurements of dynamic membrane fluctuations in live cells using quantitative phase imaging techniques. Measuring both the 3-D refractive index maps and the dynamic phase images of live cells are simultaneously measured, from which dynamic membrane fluctuation and deformability of cells are precisely calculated. We also present its applications to various diseases ranging from sickle cell diseases, babesiosis, and to diabetes.

  2. Innovative membrane development for fuel cells

    CSIR Research Space (South Africa)

    Vaivars, G

    2011-10-01

    Full Text Available The innovative membranes for alternative energy devices will be presented. An electrical car is long waited solution to environmental and fuel supply problems in transport. Most probably, the shift from a combustion engine to an electrical car...

  3. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    Science.gov (United States)

    Laible, Philip D; Hanson, Deborah K

    2013-06-04

    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  4. Membrane Protein Mobility and Orientation Preserved in Supported Bilayers Created Directly from Cell Plasma Membrane Blebs.

    Science.gov (United States)

    Richards, Mark J; Hsia, Chih-Yun; Singh, Rohit R; Haider, Huma; Kumpf, Julia; Kawate, Toshimitsu; Daniel, Susan

    2016-03-29

    Membrane protein interactions with lipids are crucial for their native biological behavior, yet traditional characterization methods are often carried out on purified protein in the absence of lipids. We present a simple method to transfer membrane proteins expressed in mammalian cells to an assay-friendly, cushioned, supported lipid bilayer platform using cell blebs as an intermediate. Cell blebs, expressing either GPI-linked yellow fluorescent proteins or neon-green fused transmembrane P2X2 receptors, were induced to rupture on glass surfaces using PEGylated lipid vesicles, which resulted in planar supported membranes with over 50% mobility for multipass transmembrane proteins and over 90% for GPI-linked proteins. Fluorescent proteins were tracked, and their diffusion in supported bilayers characterized, using single molecule tracking and moment scaling spectrum (MSS) analysis. Diffusion was characterized for individual proteins as either free or confined, revealing details of the local lipid membrane heterogeneity surrounding the protein. A particularly useful result of our bilayer formation process is the protein orientation in the supported planar bilayer. For both the GPI-linked and transmembrane proteins used here, an enzymatic assay revealed that protein orientation in the planar bilayer results in the extracellular domains facing toward the bulk, and that the dominant mode of bleb rupture is via the "parachute" mechanism. Mobility, orientation, and preservation of the native lipid environment of the proteins using cell blebs offers advantages over proteoliposome reconstitution or disrupted cell membrane preparations, which necessarily result in significant scrambling of protein orientation and typically immobilized membrane proteins in SLBs. The bleb-based bilayer platform presented here is an important step toward integrating membrane proteomic studies on chip, especially for future studies aimed at understanding fundamental effects of lipid interactions

  5. Novel Membrane for Highly Efficient Fuel Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Proton Exchange Membrane (PEM) fuel cells and electrolyzers are key technologies for NASA space systems utilizing hydrogen, oxygen, or water as reactants. In order...

  6. Novel High Temperature Membrane for PEM Fuel Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed in this STTR program is a high temperature membrane to increase the efficiency and power density of PEM fuel cells. The NASA application is...

  7. Intravacuolar Membranes Regulate CD8 T Cell Recognition of Membrane-Bound Toxoplasma gondii Protective Antigen

    Directory of Open Access Journals (Sweden)

    Jodie Lopez

    2015-12-01

    Full Text Available Apicomplexa parasites such as Toxoplasma gondii target effectors to and across the boundary of their parasitophorous vacuole (PV, resulting in host cell subversion and potential presentation by MHC class I molecules for CD8 T cell recognition. The host-parasite interface comprises the PV limiting membrane and a highly curved, membranous intravacuolar network (IVN of uncertain function. Here, using a cell-free minimal system, we dissect how membrane tubules are shaped by the parasite effectors GRA2 and GRA6. We show that membrane association regulates access of the GRA6 protective antigen to the MHC I pathway in infected cells. Although insertion of GRA6 in the PV membrane is key for immunogenicity, association of GRA6 with the IVN limits presentation and curtails GRA6-specific CD8 responses in mice. Thus, membrane deformations of the PV regulate access of antigens to the MHC class I pathway, and the IVN may play a role in immune modulation.

  8. Hybrid proton-conducting membranes for polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Romero, Pedro [Institut de Ciencia de Materials de Barcelona (CSIC), Campus UAB, E-08193 Bellaterra (Barcelona) (Spain)]. E-mail: pedro.gomez@icmab.es; Asensio, Juan Antonio [Institut de Ciencia de Materials de Barcelona (CSIC), Campus UAB, E-08193 Bellaterra (Barcelona) (Spain); Institut Quimic de Sarria, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona (Spain); Borros, Salvador [Institut Quimic de Sarria, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona (Spain)

    2005-08-30

    The synthesis and characterization of a novel hybrid organic-inorganic material formed by phosphomolybdic acid H{sub 3}PMo{sub 12}O{sub 40} (PMo{sub 12}) and poly(2,5-benzimidazole) (ABPBI) is reported. This material, composed of two proton-conducting components, can be cast in the form of membranes from methanesulfonic acid (MSA) solutions. Upon impregnation with phosphoric acid, the hybrid membranes present higher conductivity than the best ABPBI polymer membranes impregnated in the same conditions. These electrolyte membranes are stable up to 200 deg. C, and have a proton conductivity of 3 x 10{sup -2} S cm{sup -1} at 185 deg. C without humidification. These properties make them very good candidates as membranes for polymer electrolyte membrane fuel cells (PEMFC) at temperatures of 100-200 deg. C.

  9. Anion exchange membrane

    Science.gov (United States)

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  10. Modeling of interactions between nanoparticles and cell membranes

    Science.gov (United States)

    Ban, Young-Min

    containing the nanoparticles exhibit localized perturbation around the nanoparticle. The nanoparticles are not likely to affect membrane protein function by the weak perturbation of the internal stress in the membrane. Due to the short-ranged interactions between the nanoparticles, the nanoparticles would not form aggregates inside membranes. The effect of lipid peroxidation on cell membrane deformation is assessed. The peroxidized lipids introduce a perturbation to the internal structure of the membrane leading to higher amplitude of the membrane fluctuations. Higher concentration of the peroxidized lipids induces more significant perturbation. Cumulative effects of lipid peroxidation caused by nanoparticles are examined for the first time. The considered amphiphilic particle appears to reduce the perturbation of the membrane structure at its equilibrium position inside the peroxidized membrane. This suggests a possibility of antioxidant effect of the nanoparticle.

  11. A method for making an electrode for an alkaline storage cell

    Energy Technology Data Exchange (ETDEWEB)

    Yanagikhara, N.; Isitobi, M.; Ivaki, T.; Matsumoto, I.

    1983-07-21

    A paste forming active mass is applied to a foam metallic base, which is then etched into the surface of the base filling the pores. The etching is performed in a specific mode. The alkaline storage battery electrode produced in this way has high electrical characteristics. Its manufacturing is mechanized.

  12. Elastic thickness compressibilty of the red cell membrane.

    OpenAIRE

    Heinrich, V; Ritchie, K; Mohandas, N; Evans, E.

    2001-01-01

    We have used an ultrasensitive force probe and optical interferometry to examine the thickness compressibility of the red cell membrane in situ. Pushed into the centers of washed-white red cell ghosts lying on a coverglass, the height of the microsphere-probe tip relative to its closest approach on the adjacent glass surface revealed the apparent material thickness, which began at approximately 90 nm per membrane upon detection of contact (force approximately 1-2 pN). With further impingement...

  13. Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes

    DEFF Research Database (Denmark)

    Cleemann, Lars Nilausen; Buazar, F.; Li, Qingfeng;

    2013-01-01

    Degradation of carbon supported platinum catalysts is a major failure mode for the long term durability of high temperature proton exchange membrane fuel cells based on phosphoric acid doped polybenzimidazole membranes. With Vulcan carbon black as a reference, thermally treated carbon black...... and multi‐walled carbon nanotubes were used as supports for electrode catalysts and evaluated in accelerated durability tests under potential cycling at 150 °C. Measurements of open circuit voltage, area specific resistance and hydrogen permeation through the membrane were carried out, indicating little...... contribution of the membrane degradation to the performance losses during the potential cycling tests. As the major mechanism of the fuel cell performance degradation, the electrochemical active area of the cathodic catalysts showed a steady decrease in the cyclic voltammetric measurements, which was also...

  14. Stability and rupture of archaebacterial cell membrane: a model study.

    Science.gov (United States)

    Li, Shuangyang; Zheng, Fengxian; Zhang, Xianren; Wang, Wenchuan

    2009-01-29

    It is known that the thermoacidophilic archaebacterium Sulfolobus acidocaldarius can grow in hot springs at 65-80 degrees C and live in acidic environments (pH 2-3); however, the origin of its unusual thermal stability remains unclear. In this work, using a vesicle as a model, we study the thermal stability and rupture of archaebacterial cell membrane. We perform a simulation investigation of the structure-property relationship of monolayer membrane formed by bolaform lipids and compare it with that of bilayer membrane formed by monopolar lipids. The origin of the unusually thermal stability of archaebacterial cell and the mechanism for its rupture are presented in molecular details.

  15. Surface-enhanced Raman spectroscopy of the endothelial cell membrane.

    Directory of Open Access Journals (Sweden)

    Simon W Fogarty

    Full Text Available We applied surface-enhanced Raman spectroscopy (SERS to cationic gold-labeled endothelial cells to derive SERS-enhanced spectra of the bimolecular makeup of the plasma membrane. A two-step protocol with cationic charged gold nanoparticles followed by silver-intensification to generate silver nanoparticles on the cell surface was employed. This protocol of post-labelling silver-intensification facilitates the collection of SERS-enhanced spectra from the cell membrane without contribution from conjugated antibodies or other molecules. This approach generated a 100-fold SERS-enhancement of the spectral signal. The SERS spectra exhibited many vibrational peaks that can be assigned to components of the cell membrane. We were able to carry out spectral mapping using some of the enhanced wavenumbers. Significantly, the spectral maps suggest the distribution of some membrane components are was not evenly distributed over the cells plasma membrane. These results provide some possible evidence for the existence of lipid rafts in the plasma membrane and show that SERS has great potential for the study and characterization of cell surfaces.

  16. Spray deposition of Nafion membranes: Electrode-supported fuel cells

    Science.gov (United States)

    Bayer, Thomas; Pham, Hung Cuong; Sasaki, Kazunari; Lyth, Stephen Matthew

    2016-09-01

    Fuel cells are a key technology for the successful transition towards a hydrogen society. In order to accelerate fuel cell commercialization, improvements in performance are required. Generally, polymer electrolyte membrane fuel cells (PEFCs) are membrane-supported; the electrocatalyst layer is sprayed onto both sides of the membrane, and sandwiched between carbon-based gas diffusion layers (GDLs). In this work we redesign the membrane electrode assembly (MEA) and fabricate an electrode-supported PEFC. First the electrocatalyst layer is sprayed onto the GDL, and then Nafion dispersion is sprayed over the top of this to form a thin membrane. This method has the advantage of simplifying the fabrication process, allowing the fabrication of extremely thin electrolyte layers (down to ∼10 μm in this case), and reducing the amount of ionomer required in the cell. Electrode-supported PEFCs operate at significantly increased power density compared to conventional membrane-supported PEFCs, with a maximum of 581 mW/cm2 at 80 °C (atmospheric pressure, air at the cathode). Impedance spectroscopy confirmed that the origin of the improved performance was an 80% reduction in the membrane resistance due the thinner Nafion layer. This novel fabrication method is a step towards cheaper, thinner, fully printable PEFCs with high power density and efficiency.

  17. A life-like virtual cell membrane using discrete automata.

    Science.gov (United States)

    Broderick, Gordon; Ru'aini, Melania; Chan, Eugene; Ellison, Michael J

    2005-01-01

    A framework is presented that captures the discrete and probabilistic nature of molecular transport and reaction kinetics found in a living cell as well as formally representing the spatial distribution of these phenomena. This particle or agent-based approach is computationally robust and complements established methods. Namely it provides a higher level of spatial resolution than formulations based on ordinary differential equations (ODE) while offering significant advantages in computational efficiency over molecular dynamics (MD). Using this framework, a model cell membrane has been constructed with discrete particle agents that respond to local component interactions that resemble flocking or herding behavioural cues in animals. Results from simulation experiments are presented where this model cell exhibits many of the characteristic behaviours associated with its biological counterpart such as lateral diffusion, response to osmotic pressure gradients, membrane growth and cell division. Lateral diffusion rates and estimates for the membrane modulus of elasticity derived from these simple experiments fall well within a biologically relevant range of values. More importantly, these estimates were obtained by applying a simple qualitative tuning of the model membrane. Membrane growth was simulated by injecting precursor molecules into the proto-cell at different rates and produced a variety of morphologies ranging from a single large cell to a cluster of cells. The computational scalability of this methodology has been tested and results from benchmarking experiments indicate that real-time simulation of a complete bacterial cell will be possible within 10 years.

  18. A two-dimensional mathematical model of a Zn-MnO2 alkaline cell(1)%A two-dimensional mathematical model of a Zn-MnO2 alkaline cell (1)

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yue-min; CHEH Huk-yuk

    2007-01-01

    A two-dimensional mathematical model based on the macrohomogeneous theory of porous electrodes was developed for a cylindrical Zn-MnO2 alkaline cell. The model was applied to understand the effect of the length of the anode current collector on the cell performance. Results are presented for the continuous discharge at a high rate of lA and a moderate rate of 0.2A for a AA - sized cell.With a typical length of an anode current collector at about 70% of the cell height, the analysis showed that an increase in the length of the anode current collector would benefit the lower rate of discharge more than the higher rate of discharge.

  19. Effect of gas diffusion layer and membrane properties in an annular proton exchange membrane fuel cell

    Science.gov (United States)

    Khazaee, I.; Ghazikhani, M.; Esfahani, M. Nasr

    2012-01-01

    A complete three-dimensional and single phase computational dynamics model for annular proton exchange membrane (PEM) fuel cell is used to investigate the effect of changing gas diffusion layer and membrane properties on the performances, current density and gas concentration. The proposed model is a full cell model, which includes all the parts of the PEM fuel cell, flow channels, gas diffusion electrodes, catalyst layers and the membrane. Coupled transport and electrochemical kinetics equations are solved in a single domain; therefore no interfacial boundary condition is required at the internal boundaries between cell components. This computational fluid dynamics code is used as the direct problem solver, which is used to simulate the two-dimensional mass, momentum and species transport phenomena as well as the electron- and proton-transfer process taking place in a PEMFC that cannot be investigated experimentally. The results show that by increasing the thickness and decreasing the porosity of GDL the performance of the cell enhances that it is different with planner PEM fuel cell. Also the results show that by decreasing the thickness of the membrane the performance of the cell increases.

  20. Graphene-Induced Pore Formation on Cell Membranes

    Science.gov (United States)

    Duan, Guangxin; Zhang, Yuanzhao; Luan, Binquan; Weber, Jeffrey K.; Zhou, Royce W.; Yang, Zaixing; Zhao, Lin; Xu, Jiaying; Luo, Judong; Zhou, Ruhong

    2017-01-01

    Examining interactions between nanomaterials and cell membranes can expose underlying mechanisms of nanomaterial cytotoxicity and guide the design of safer nanomedical technologies. Recently, graphene has been shown to exhibit potential toxicity to cells; however, the molecular processes driving its lethal properties have yet to be fully characterized. We here demonstrate that graphene nanosheets (both pristine and oxidized) can produce holes (pores) in the membranes of A549 and Raw264.7 cells, substantially reducing cell viability. Electron micrographs offer clear evidence of pores created on cell membranes. Our molecular dynamics simulations reveal that multiple graphene nanosheets can cooperate to extract large numbers of phospholipids from the membrane bilayer. Strong dispersion interactions between graphene and lipid-tail carbons result in greatly depleted lipid density within confined regions of the membrane, ultimately leading to the formation of water-permeable pores. This cooperative lipid extraction mechanism for membrane perforation represents another distinct process that contributes to the molecular basis of graphene cytotoxicity. PMID:28218295

  1. The lipid organisation of the cell membrane

    Directory of Open Access Journals (Sweden)

    Ladha, S.

    2000-04-01

    Full Text Available Lipids and proteins in biological membranes are arranged in a mosaic of domains in the membrane. These domains represent small-scale heterogeneities in composition, shape and fluidity within the plane of the membrane, over the range of hundreds of nanometers to a few micrometers. They arise from the complex interactions of the heterogeneous mixtures of phospholipids, sterols, and proteins that make up all biological membranes.Los lípidos y las proteínas en las membranas biológicas están dispuestos en un mosaico de campos en la membrana. Estos campos representan heterogeneidades a pequeña escala en la composición, forma y fluidez dentro del plano de la membrana, en un rango que va de los cientos de nanómetros a los pocos micrómetros. Estos campos se originan de las complejas interacciones de las mezclas heterogéneas de fosfolípidos, esteroles y proteínas de las que están hechas todas y cada una de las membranas biológicas.

  2. Low cost, high temperature membranes for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-08-15

    This report details the results of a project to develop novel, low-cost high temperature membranes specifically for automotive fuel cell use. The specific aim of the project was to determine whether a polyaromatic hydrocarbon membrane could be developed that would give a performance (0.68V at 500 mAcm{sub -2}) competitive with an established perfluoronated sulfonic acid (PSA) membrane in a fuel cell at 120{sup o}C and relative humidity of less than 50%. The novel approach used in this project was to increase the concentration of sulphonic groups to a useful level without dissolution by controlling the molecular structure of the membrane through the design of the monomer repeat unit. The physicochemical properties of 70 polymers synthesised in order to determine the effects of controlled sequence distribution were identified using an array of analytical techniques. Appropriate membranes were selected for fuel cell testing and fabricated into membrane electrode assemblies. Most of the homopolymers tested were able to withstand low humidity environments without immediate catastrophic failure and some showed promise from accelerated durability results. The properties of a simple starting polymer structure were found to be enhanced by doping with sulphonated copper phthalocyanine, resulting in high temperature capacity from a potential cheap, simple and scaleable process. The accelerated and long-term durability of such a doped polymer membrane showed that polyaromatics could easily outperform fluoropolymers under high temperature (120{sup o}C) operating conditions.

  3. Polybenzimidazole Membranes Containing Benzimidazole Side Groups for High Temprature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Li, Xueyuan; Xu, Yizin

    2013-01-01

    Polybenzimidazole (PBI) with a high molecular weight of 69,000 was first synthesized. It was afterwards grafted with benzimidazole pendant groups on the backbones. The acid doped benzimidaozle grafted PBI membranes were investigated and characterized including fuel cell tests at elevated temperat......Polybenzimidazole (PBI) with a high molecular weight of 69,000 was first synthesized. It was afterwards grafted with benzimidazole pendant groups on the backbones. The acid doped benzimidaozle grafted PBI membranes were investigated and characterized including fuel cell tests at elevated...... temperatures without humidification. At an acid doping level of 13.1 mol H3PO4 per average molar repeat unit, the PBI membranes with a benzimidazole grafting degree of 10.6% demonstrated a conductivity of 0.15 S cm-1 and a H2-air fuel cell peak power density of 378 mW cm-2 at 180 oC at ambient pressure without...

  4. Imidazolium-based Block Copolymers as Solid-State Separators for Alkaline Fuel Cells and Lithium Ion Batteries

    Science.gov (United States)

    Nykaza, Jacob Richard

    In this study, polymerized ionic liquid (PIL) diblock copolymers were explored as solid-state polymer separators as an anion exchange membrane (AEM) for alkaline fuel cells AFCs and as a solid polymer electrolyte (SPE) for lithium-ion batteries. Polymerized ionic liquid (PIL) block copolymers are a distinct set of block copolymers that combine the properties of both ionic liquids (e.g., high conductivity, high electrochemical stability) and block copolymers (e.g., self-assembly into various nanostructures), which provides the opportunity to design highly conductive robust solid-state electrolytes that can be tuned for various applications including AFCs and lithium-ion batteries via simple anion exchange. A series of bromide conducting PIL diblock copolymers with an undecyl alkyl side chain between the polymer backbone and the imidazolium moiety were first synthesized at various compositions comprising of a PIL component and a non-ionic component. Synthesis was achieved by post-functionalization from its non-ionic precursor PIL diblock copolymer, which was synthesized via the reverse addition fragmentation chain transfer (RAFT) technique. This PIL diblock copolymer with long alkyl side chains resulted in flexible, transparent films with high mechanical strength and high bromide ion conductivity. The conductivity of the PIL diblock copolymer was three times higher than its analogous PIL homopolymer and an order of magnitude higher than a similar PIL diblock copolymer with shorter alkyl side chain length, which was due to the microphase separated morphology, more specifically, water/ion clusters within the PIL microdomains in the hydrated state. Due to the high conductivity and mechanical robustness of this novel PIL block copolymer, its application as both the ionomer and AEM in an AFC was investigated via anion exchange to hydroxide (OH-), where a maximum power density of 29.3 mW cm-1 (60 °C with H2/O2 at 25 psig (172 kPa) backpressure) was achieved. Rotating disk

  5. Prebiotic cell membranes that survive extreme environmental pressure conditions.

    Science.gov (United States)

    Kapoor, Shobhna; Berghaus, Melanie; Suladze, Saba; Prumbaum, Daniel; Grobelny, Sebastian; Degen, Patrick; Raunser, Stefan; Winter, Roland

    2014-08-04

    Attractive candidates for compartmentalizing prebiotic cells are membranes comprised of single-chain fatty acids. It is generally believed that life may have originated in the depth of the protoocean, that is, under high hydrostatic pressure conditions, but the structure and physical-chemical properties of prebiotic membranes under such conditions have not yet been explored. We report the temperature- and pressure-dependent properties of membranes composed of prebiotically highly-plausible lipids and demonstrate that prebiotic membranes could not only withstand extreme temperatures, but also serve as robust models of protocells operating in extreme pressure environments. We show that pressure not only increases the stability of vesicular systems but also limits their flexibility and permeability to solutes, while still keeping the membrane in an overall fluid-like and thus functional state. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synaptic and Golgi membrane recycling in cochlear hair cells.

    Science.gov (United States)

    Siegel, J H; Brownell, W E

    1986-06-01

    Membrane recycling in the mechanoreceptive sensory cells of the mammalian cochlea was studied by observing membrane-bound horseradish peroxidase (HRP) reaction product following brief in vivo exposure to the enzyme. In the inner hair cell (IHC), peroxidase was taken up into coated vesicles and became incorporated into synaptic vesicles surrounding presynaptic bodies, but much HRP was also transported to the apical zone where reaction product appeared in all components of the Golgi complex. Neither the subsurface cisternae nor a tubular network associated with clusters of mitochondria were labelled. Outer hair cells (OHCs) showed considerably less membrane-bound reaction product than IHCs, indicating less rapid plasmalemmal recycling. Most membrane-bound reaction product was contained in coated vesicles and small vacuoles in the synaptic zone, but was occasionally seen in multivesicular bodies in the most apical zone. No labelled organelles were detected in the large central region of the OHC. A diffuse staining of the cytoplasm, particularly pronounced in OHCs, often interfered with the evaluation of membrane-bound reaction product in OHCs. This staining pattern could be qualitatively reproduced in both IHCs and OHCs by incubating fixed segments of the organ of Corti in oxidized diaminobenzidine. The presence of labelled synaptic vesicles associated with presynaptic bodies of IHCs and OHCs suggests that they are formed from membrane retrieved from the plasmalemma. We found no evidence that the subsurface cisternae of IHCs or the laminated cisternae of OHCs are derived from the cell surface as they never contained reaction product.

  7. 3D visualization of membrane failures in fuel cells

    Science.gov (United States)

    Singh, Yadvinder; Orfino, Francesco P.; Dutta, Monica; Kjeang, Erik

    2017-03-01

    Durability issues in fuel cells, due to chemical and mechanical degradation, are potential impediments in their commercialization. Hydrogen leak development across degraded fuel cell membranes is deemed a lifetime-limiting failure mode and potential safety issue that requires thorough characterization for devising effective mitigation strategies. The scope and depth of failure analysis has, however, been limited by the 2D nature of conventional imaging. In the present work, X-ray computed tomography is introduced as a novel, non-destructive technique for 3D failure analysis. Its capability to acquire true 3D images of membrane damage is demonstrated for the very first time. This approach has enabled unique and in-depth analysis resulting in novel findings regarding the membrane degradation mechanism; these are: significant, exclusive membrane fracture development independent of catalyst layers, localized thinning at crack sites, and demonstration of the critical impact of cracks on fuel cell durability. Evidence of crack initiation within the membrane is demonstrated, and a possible new failure mode different from typical mechanical crack development is identified. X-ray computed tomography is hereby established as a breakthrough approach for comprehensive 3D characterization and reliable failure analysis of fuel cell membranes, and could readily be extended to electrolyzers and flow batteries having similar structure.

  8. Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Liao, J.H.; Li, Qingfeng; Rudbeck, H.C.

    2011-01-01

    the oxidative degradation of the polymer membrane was studied under the Fenton test conditions by the weight loss, intrinsic viscosity, size exclusion chromatography, scanning electron microscopy and Fourier transform infrared spectroscopy. During the Fenton test, significant weight losses depending......Polybenzimidazole membranes imbibed with acid are emerging as a suitable electrolyte material for high-temperature polymer electrolyte fuel cells. The oxidative stability of polybenzimidazole has been identified as an important issue for the long-term durability of such cells. In this paper...

  9. MICROBIAL FUEL CELL BASED POLYSTYRENE SULFONATED MEMBRANE AS PROTON EXCHANGE MEMBRANE

    Directory of Open Access Journals (Sweden)

    S. Mulijani

    2016-09-01

    Full Text Available Microbial fuel cell (MFC represents a major bioelectrochemical system that converts biomass spontaneously into electricity through the activity of microorganisms. The MFC consists of anode and cathode compartments. Microorganisms in MFC liberate electrons while the electron donor is consumed. The produced electron is transmitted to the anode surface, but the generated protons must pass through the proton exchange membrane (PEM to reach the cathode compartment. PEM, as a key factor, affects electricity generation in MFCs. The study attempted to investigate if the sulfonated polystyrene (SPS membrane can be used as a PEM in the application on MFC. SPS membrane has been characterized using Fourier transform infrared spectrophotometer (FTIR, scanning electron microscope (SEM and conductivity. The result of the conductivity (σ revealed that the membrane has a promising application for MFC.

  10. Anion selective membrane. [ion exchange resins and ion exchange membrane electrolytes for electrolytic cells

    Science.gov (United States)

    Alexander, S. S.; Geoffroy, R. R.; Hodgdon, R. B.

    1975-01-01

    Experimental anion permselective membranes were prepared and tested for their suitability as cell separators in a chemical redox power storage system being developed at NASA-Lewis Research Center. The goals of long-term (1000 hr) oxidative and thermal stability at 80 C in FeCl3 and CrCl3 electrolytes were met by most of the weak base and strong base amino exchange groups considered in the program. Good stability is exhibited by several of the membrane substrate resins. These are 'styrene' divinylbenzene copolymer and PVC film. At least four membrane systems produce strong flexible films with electrochemical properties (resistivity, cation transfer) superior to those of the 103QZL, the most promising commercial membrane. The physical and chemical properties of the resins are listed.

  11. Cell Membrane-Cloaked Nanoparticles for Targeted Therapeutics

    Science.gov (United States)

    Luk, Brian Tsengchi

    The advent of nanoparticle-based delivery systems has made a significant impact on clinical patient outcomes. In recent decades, myriad nanoparticle-based therapeutic agents have been developed for the treatment and management of ailments such as cancer, diabetes, pain, bacterial infections, and asthma, among many others. Nanotherapeutics offer many distinct advantages over conventional free drug formulations. For example, nanoparticles are able to accumulate at tumor sites by extravasation through leaky vasculature at tumor sites via the enhanced permeability and retention (EPR) effect; nanoparticles can also be tailored to have desirable characteristics, such as prolonged circulation in the blood stream, improved drug encapsulation, and sustained or triggered drug release. Currently, a growing number of nanoformulations with favorable pharmacological profiles and promising efficacy are being used in clinical trials for the treatment of various cancers. Building on the success of these encouraging clinical results, new engineering strategies have emerged that combine synthetic nanoparticles with natural biomaterials to create nature-inspired biomimetic delivery systems. The work presented in this dissertation focuses on the biointerfacing between synthetic and natural materials, namely in the manifestation of cell membrane-coated nanoparticles. By exploiting the natural functionalities of source cell membranes, cell membrane-cloaked nanoparticles have huge potential in the delivery of therapeutic agents for a variety of applications. The first portion of this thesis will focus on understanding the fundamentals underlying cell membrane coating on synthetic nanoparticles. First introduced in 2011, cell membrane-cloaked nanoparticles showed immediate promise in drug delivery applications, but further understanding was necessary to be able to harness the full potential of the membrane coating platform. The first section provides further insight into the interfacial

  12. Development of nano-composite membranes to improve alkaline fuel cell performance

    CSIR Research Space (South Africa)

    Nonjola, P

    2011-09-01

    Full Text Available composed of Nafion?, a perfluorosulfonic acid macromolecule developed by DuPont in the 1960s [1]. However, high methanol crossover and expensive cost are the critical limitations of Nafion? for DMFC applications [4]. In recent years, significant progress... polymer (insert spectra) Figure 2. ? As the quaternized polymer was not soluble in CDCl3, no NMR spectra is presented. ? FT-IR spectra displayed additional absorbance at 1665 cm-1 for quaternized polymers, indicated that the reaction proceeded...

  13. Characterization of an anionic-exchange membranes for direct methanol alkaline fuel cells

    CSIR Research Space (South Africa)

    Abuin, GC

    2010-06-01

    Full Text Available T (PICT 35403), and Consejo Nacional de Investigaciones Cientı´ficas y Te´cn- icas (PID 5977) for financial support. MM and PN thanks CSIR (MSM) for support. HRC is a member of Consejo Nacional de Investigaciones Cientı´ficas y Te´cnicas (CONICET). EF...

  14. Nanofiber Composite Membranes for Alkaline Fuel Cells: Generation of Compositional, Morphological, and Functional Property Relationships

    Science.gov (United States)

    2015-12-01

    this report are those of the author(s) and should not contrued as an official Department of the Army position , policy or decision, unless so...the contracting officer? (5e) Foreign Countries of application ( 5g -2): 5b: Y Y Germany, France, Japan, Korea, China, U.K. Peter Pintauro Vanderbilt...where an interconnected network of submicron diameter fibers of anion exchange polymer (crosslinked polysulfone with either benzyl

  15. Acute effect of tea, wine, beer, and polyphenols on ecto-alkaline phosphatase activity in human vascular smooth muscle cells.

    Science.gov (United States)

    Negrão, Maria R; Keating, Elisa; Faria, Ana; Azevedo, Isabel; Martins, Maria J

    2006-07-12

    Alkaline phosphatase (ALP) is an ecto-enzyme widely distributed across species. It modulates a series of transmembranar transport systems, has an important role in bone mineralization, and can also be involved in vascular calcification. Polyphenol-rich diets seem to have protective effects on human health, namely, in the prevention of cardiovascular diseases. We aimed to investigate the effects of polyphenols and polyphenol-rich beverages upon membranar alkaline phosphatase (ecto-ALP) activity in intact human vascular smooth muscle cells (AALTR). The ecto-ALP activity was determined at pH 7.8, with p-nitrophenyl phosphate as the substrate, by absorbance spectrophotometry at 410 nm. Cell viability was assessed by the lactate dehydrogenase (LDH) method, and the polyphenol content of beverages was assessed using the Folin-Ciocalteu reagent. All polyphenols tested inhibited ecto-ALP activity, in a concentration-dependent way. Teas, wines, and beers also inhibited ecto-ALP activity, largely according to their polyphenol content. All tested compounds and beverages improved or did not change AALTR cell viability. Stout beer was an exception to the described behavior. Although more studies must be done, the inhibition of AALTR ecto-ALP activity by polyphenolic compounds and polyphenol-containing beverages may contribute to their cardiovascular protective effects.

  16. Membrane Mechanics of Endocytosis in Cells with Turgor

    CERN Document Server

    Dmitrieff, Serge

    2015-01-01

    Endocytosis is an essential process by which cells internalize a piece of plasma membrane and material from the outside. In cells with turgor, pressure opposes membrane defor- mations, and increases the amount of force that has to be generated by the endocytic machinery. To determine this force, and calculate the shape of the membrane, we used physical theory to model an elastic surface under pressure. Accurate fits of experimental profiles are obtained assuming that the coated membrane is highly rigid and preferentially curved at the endocytic site. The forces required from the actin machinery peaks at the onset of deformation, indicating that once invagination has been initiated, endocytosis is unlikely to stall before completion. Coat proteins do not lower the initiation force but may affect the process by the curvature they induce. In the presence of isotropic curvature inducers, pulling the tip of the invagination can trigger the formation of a neck at the base of the invagination. Hence direct neck cons...

  17. Direct Cytoskeleton Forces Cause Membrane Softening in Red Blood Cells

    Science.gov (United States)

    Rodríguez-García, Ruddi; López-Montero, Iván; Mell, Michael; Egea, Gustavo; Gov, Nir S.; Monroy, Francisco

    2015-01-01

    Erythrocytes are flexible cells specialized in the systemic transport of oxygen in vertebrates. This physiological function is connected to their outstanding ability to deform in passing through narrow capillaries. In recent years, there has been an influx of experimental evidence of enhanced cell-shape fluctuations related to metabolically driven activity of the erythroid membrane skeleton. However, no direct observation of the active cytoskeleton forces has yet been reported to our knowledge. Here, we show experimental evidence of the presence of temporally correlated forces superposed over the thermal fluctuations of the erythrocyte membrane. These forces are ATP-dependent and drive enhanced flickering motions in human erythrocytes. Theoretical analyses provide support for a direct force exerted on the membrane by the cytoskeleton nodes as pulses of well-defined average duration. In addition, such metabolically regulated active forces cause global membrane softening, a mechanical attribute related to the functional erythroid deformability. PMID:26083919

  18. Nonlinear electro-mechanobiological behavior of cell membrane during electroporation

    KAUST Repository

    Deng, Peigang

    2012-01-01

    A nonlinear electroporation (EP) model is proposed to study the electro-mechanobiological behavior of cell membrane during EP, by taking the nonlinear large deformation of the membrane into account. The proposed model predicts the critical transmembrane potential and the activation energy for EP, the equilibrium pore size, and the resealing process of the pore. Single-cell EP experiments using a micro EP chip were conducted on chicken red blood cells at different temperatures to determine the activation energy and the critical transmembrane potential for EP. The experimental results are in good agreement with the theoretical predictions. © 2012 American Institute of Physics.

  19. Cell-penetrating peptides for drug delivery across membrane barriers

    DEFF Research Database (Denmark)

    Foged, Camilla; Nielsen, Hanne Moerck

    2008-01-01

    During the last decade, cell-penetrating peptides have been investigated for their ability to overcome the plasma membrane barrier of mammalian cells for the intracellular or transcellular delivery of cargoes as diverse as low molecular weight drugs, imaging agents, oligonucleotides, peptides......-penetrating peptides as transmembrane drug delivery agents, according to the recent literature, and discusses critical issues and future challenges in relation to fully understanding the fundamental principles of the cell-penetrating peptide-mediated membrane translocation of cargoes and the exploitation......, proteins and colloidal carriers such as liposomes and polymeric nanoparticles. Their ability to cross biological membranes in a non-disruptive way without apparent toxicity is highly desired for increasing drug bioavailability. This review provides an overview of the application of cell...

  20. A boron phosphate-phosphoric acid composite membrane for medium temperature proton exchange membrane fuel cells

    Science.gov (United States)

    Mamlouk, M.; Scott, K.

    2015-07-01

    A composite membrane based on a non-stoichiometric composition of BPO4 with excess of PO4 (BPOx) was synthesised and characterised for medium temperature fuel cell use (120-180 °C). The electrolyte was characterised by FTIR, SS-NMR, TGA and XRD and showed that the B-O is tetrahedral, in agreement with reports in the literature that boron phosphorus oxide compounds at B:P < 1 are exclusively built of borate and phosphate tetrahedra. Platinum micro electrodes were used to study the electrolyte compatibility and stability towards oxygen reduction at 150 °C and to obtain kinetic and mass transport parameters. The conductivities of the pure BPOx membrane electrolyte and a Polybenzimidazole (PBI)-4BPOx composite membrane were 7.9 × 10-2 S cm-1 and 4.5 × 10-2 S cm-1 respectively at 150 °C, 5%RH. Fuel cell tests showed a significant enhancement in performance of BPOx over that of typical 5.6H3PO4-PBI membrane electrolyte. The enhancement is due to the improved ionic conductivity (3×), a higher exchange current density of the oxygen reduction (30×) and a lower membrane gas permeability (10×). Fuel cell current densities at 0.6 V were 706 and 425 mA cm-2 for BPOx and 5.6H3PO4-PBI, respectively, at 150 °C with O2 (atm).

  1. Membrane progesterone receptors: evidence for neuroprotective, neurosteroid signaling and neuroendocrine functions in neuronal cells.

    Science.gov (United States)

    Thomas, Peter; Pang, Yefei

    2012-01-01

    Membrane progesterone receptors (mPRs) are novel G protein-coupled receptors belonging to the progestin and adipoQ receptor family (PAQR) that mediate a variety of rapid cell surface-initiated progesterone actions in the reproductive system involving activation of intracellular signaling pathways (i.e. nonclassical actions). The mPRs are highly expressed in the brain, but research on their neural functions has only been conducted in a single neuronal cell line, GT1-7 cells, which have negligible nuclear progesterone receptor (PR) expression. GT1-7 cells express mPRα and mPRβ on their plasma membranes which is associated with the presence of high-affinity, specific [(3)H]-progesterone receptor binding. The neurosteroid, allopregnanolone, is an effective ligand for recombinant mPRα with a relative binding affinity of 7.6% that of progesterone. Allopregnanolone acts as a potent mPR agonist on GT1-7 cells, mimicking the progesterone-induced decrease in cAMP accumulation and its antiapoptotic actions at low nanomolar concentrations. The decrease in cAMP levels is associated with rapid progesterone-induced downregulation of GnRH pulsatile secretion from perifused GT1-7 cells. The recent suggestion that mPRs are alkaline ceramidases and mediate sphingolipid signaling is not supported by empirical evidence that TNFα does not bind to mPRs overexpressed in human cells and that exogenous sphingomyelinase is ineffective in mimicking progestin actions through mPRs to induce meiotic maturation of fish oocytes. Taken together, these recent studies indicate that mPRs mediate neuroprotective effects of progesterone and allopregnanolone and are also the likely intermediaries in progesterone-induced inhibition of pulsatile GnRH secretion in GT1-7 cells. Copyright © 2012 S. Karger AG, Basel.

  2. Development of new membrane materials for direct methanol fuel cells

    NARCIS (Netherlands)

    Yildirim, Mustafa Hakan

    2009-01-01

    Development of new membrane materials for direct methanol fuel cells Direct methanol fuel cells (DMFCs) can convert the chemical energy of a fuel directly into electrical energy with high efficiency and low emission of pollutants. DMFCs can be used as the power sources to portable electronic devices

  3. Modeling Of Proton Exchange Membrane Fuel Cell Systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh

    The objective of this doctoral thesis was to develop reliable steady-state and transient component models suitable to asses-, develop- and optimize proton exchange membrane (PEM) fuel cell systems. Several components in PEM fuel cell systems were characterized and modeled. The developed component...

  4. Development of new membrane materials for direct methanol fuel cells

    NARCIS (Netherlands)

    Yildirim, M.H.

    2009-01-01

    Development of new membrane materials for direct methanol fuel cells Direct methanol fuel cells (DMFCs) can convert the chemical energy of a fuel directly into electrical energy with high efficiency and low emission of pollutants. DMFCs can be used as the power sources to portable electronic devices

  5. Theory on Plasmon Modes of the Cell Membranes

    CERN Document Server

    Nhan, T T; Ngo, V Thanh; Viet, N A

    2007-01-01

    Considering the plasmon oscillation of each layer of the cell membranes as a quasi-particle, we introduce a simple model for the membrane collective charge excitations, take into account the surface effective potential of the plasmon-plasmon interaction between two layers. By using the useful Bogoliubov transformation method, we easily obtained the expressions of the frequencies of plasmon oscillations as a function of wave-number $k$ and membrane thickness $d$, magnitude of these frequencies is in the order of $\\sqrt{kd}$. Our results are in good agreement with ones obtained by E. Manousakis.

  6. FCCP depolarizes plasma membrane potential by activating proton and Na+ currents in bovine aortic endothelial cells.

    Science.gov (United States)

    Park, Kyu-Sang; Jo, Inho; Pak, Kim; Bae, Sung-Won; Rhim, Hyewhon; Suh, Suk-Hyo; Park, Jin; Zhu, Hong; So, Insuk; Kim, Ki Whan

    2002-01-01

    We investigated the effects of carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP), a protonophore and uncoupler of mitochondrial oxidative phosphorylation in mitochondria, on plasma membrane potential and ionic currents in bovine aortic endothelial cells (BAECs). The membrane potential and ionic currents of BAECs were recorded using the patch-clamp technique in current-clamp and voltage-clamp modes, respectively. FCCP activated ionic currents and depolarized the plasma membrane potential in a dose-dependent manner. Neither the removal of extracellular Ca2+ nor pretreatment with BAPTA/AM affected the FCCP-induced currents, implying that the currents are not associated with the FCCP-induced intracellular [Ca2+]i increase. FCCP-induced currents were significantly influenced by the changes in extracellular or intracellular pH; the increased proton gradient produced by lowering the extracellular pH or intracellular alkalinization augmented the changes in membrane potential and ionic currents caused by FCCP. FCCP-induced currents were significantly reduced under extracellular Na+-free conditions. The reversal potentials of FCCP-induced currents under Na+-free conditions were well fitted to the calculated equilibrium potential for protons. Interestingly, FCCP-induced Na+ transport (subtracted currents, I(control)- I(Na+-free) was closely dependent on extracellular pH, whereas FCCP-induced H+transport was not significantly affected by the absence of Na+. These results suggest that the FCCP-induced ionic currents and depolarization, which are strongly dependent on the plasmalemmal proton gradient, are likely to be mediated by both H+ and Na+ currents across the plasma membrane. The relationship between H+ and Na+ transport still needs to be determined.

  7. Nanodomain stabilization dynamics in plasma membranes of biological cells

    Science.gov (United States)

    Das, Tamal; Maiti, Tapas K.; Chakraborty, Suman

    2011-02-01

    We discover that a synergistically amplifying role of stabilizing membrane proteins and continuous lipid recycling can explain the physics governing the stability, polydispersity, and dynamics of lipid raft domains in plasma membranes of biological cells. We establish the conjecture using a generalized order parameter based on theoretical formalism, endorsed by detailed scaling arguments and domain mapping. Quantitative agreements with morphological distributions of raft complexes, as obtained from Förster resonance energy transfer based visualization, support the present theoretical conjecture.

  8. Chronic high glucose inhibits albumin reabsorption by lysosomal alkalinization in cultured porcine proximal tubular epithelial cells (LLC-PK1).

    Science.gov (United States)

    Ishibashi, Fukashi

    2006-06-01

    Lysosomal acidification is a key step of albumin reabsorption in proximal tubular epithelial cells (PTECs). This study was performed to examine the influence of chronic high glucose on lysosomal acidification in cultured PTECs. Porcine PTECs (LLC-PK(1) cells) were cultured in 16.7 mM (300 mg/dl) glucose (HG) alone or with 0.5 mM phlorizin for 24 weeks and subsequently for 12 weeks in 5.5 mM (100 mg/dl) glucose (NG). Chronic HG inhibited the fluorescein isothiocyanate (FITC)-albumin (A) uptake progressively, while phlorizin reversed the inhibition. NG for 12 weeks after HG normalized the uptake. The time-dependent uptake of FITC-A was inhibited by HG and bafilomycin A(1) (BafA(1)) after 15 min and by 4,4'-diisothiocyanato-2,2'-disulfonic acid (DIDS) and N-ethyl-N-isopropyl-amiloride (EIPA) after 3 min. Cellular ATP was depleted by HG and restored by NG. Lysosomal pH, assessed by an acidotropic fluorescent probe, was alkalinized (pH 4.5-7.8) with 5.5-27.8 mM glucose and normalized by subsequent NG. BafA(1) alkalinized lysosomes, and the concentration required to 50% change for the pH and 50% inhibition of FITC-A uptake was similar. EIPA inhibited FITC-A uptake, but did not influence lysosomal pH. DIDS inhibited FITC-A uptake, and unexpectedly lowered lysosomal pH. Real time PCR showed that HG reduced the mRNA level for vacuolar H(+)-ATPase, but did not alter those of chloride channel-5 and Na(+)-H(+)-exchanger-3. In conclusion, the chronic HG inhibits albumin reabsorption by lysosomal alkalinization in PTECs, probably due to ATP depletion and down-regulation of vacuolar H(+)-ATPase.

  9. Cell volume and membrane stretch independently control K+ channel activity.

    Science.gov (United States)

    Hammami, Sofia; Willumsen, Niels J; Olsen, Hervør L; Morera, Francisco J; Latorre, Ramón; Klaerke, Dan A

    2009-05-15

    A number of potassium channels including members of the KCNQ family and the Ca(2+) activated IK and SK, but not BK, are strongly and reversibly regulated by small changes in cell volume. It has been argued that this general regulation is mediated through sensitivity to changes in membrane stretch. To test this hypothesis we have studied the regulation of KCNQ1 and BK channels after expression in Xenopus oocytes. Results from cell-attached patch clamp studies (approximately 50 microm(2) macropatches) in oocytes expressing BK channels demonstrate that the macroscopic volume-insensitive BK current increases with increasing negative hydrostatic pressure (suction) applied to the pipette. Thus, at a pipette pressure of -5.0 +/- 0.1 mmHg the increase amounted to 381 +/- 146% (mean +/- S.E.M., n = 6, P < 0.025). In contrast, in oocytes expressing the strongly volume-sensitive KCNQ1 channel, the current was not affected by membrane stretch. The results indicate that (1) activation of BK channels by local membrane stretch is not mimicked by membrane stress induced by cell swelling, and (2) activation of KCNQ1 channels by cell volume increase is not mediated by local tension in the cell membrane. We conclude that stretch and volume sensitivity can be considered two independent regulatory mechanisms.

  10. Cell-cell adhesion interface: rise of the lateral membrane [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Vivian Tang

    2017-03-01

    Full Text Available The lateral membrane plays an important role in the mechanical stability of epithelial cell sheet in steady state. In addition, the lateral membrane is continuously remodeled during dynamic processes such as cell extrusion, cytokinesis, and intercellular cell movement. In wound healing, the lateral membrane must be built from flat and spread cells that had crawled into the area of the wound. Thus, forming the lateral membrane is a phenomenon that occurs not only in development but also during homeostatic maintenance and regeneration of differentiated epithelial tissues.

  11. Scalable nanostructured membranes for solid-oxide fuel cells.

    Science.gov (United States)

    Tsuchiya, Masaru; Lai, Bo-Kuai; Ramanathan, Shriram

    2011-05-01

    The use of oxide fuel cells and other solid-state ionic devices in energy applications is limited by their requirement for elevated operating temperatures, typically above 800°C (ref. 1). Thin-film membranes allow low-temperature operation by reducing the ohmic resistance of the electrolytes. However, although proof-of-concept thin-film devices have been demonstrated, scaling up remains a significant challenge because large-area membranes less than ~ 100 nm thick are susceptible to mechanical failure. Here, we report that nanoscale yttria-stabilized zirconia membranes with lateral dimensions on the scale of millimetres or centimetres can be made thermomechanically stable by depositing metallic grids on them to function as mechanical supports. We combine such a membrane with a nanostructured dense oxide cathode to make a thin-film solid-oxide fuel cell that can achieve a power density of 155 mW cm⁻² at 510 °C. We also report a total power output of more than 20 mW from a single fuel-cell chip. Our large-area membranes could also be relevant to electrochemical energy applications such as gas separation, hydrogen production and permeation membranes.

  12. Cell membrane damage by iron nanoparticles: an invitro study

    Directory of Open Access Journals (Sweden)

    Gelare Hajsalimi

    2016-12-01

    Full Text Available Application of nanotechnology in medicinal and biological fields has attracted a great interest in the recent yeras. In this paper the cell membrane leakage induced by iron nanoparticles (Fe-NP against PC12 cell line which is known as a model of nervous system cell line was investigated by the lactate dehydrogenase (LDH test. Therefore, PC12 cells were incubated with different concentration of Fe-NP and test was performed after 48h of incubation of the cells with Fe-NP. The resulting data showed that the Fe-NP induced the damage of PC12 cell membrane in a concentration dependent manner. Hence, it may be concluded that the different cytotoxicty effect of NPs may be referred to the concentration of NPs, type of the NPs and the cells. Indeed, the kind of cytotoxic impacts of NPs on the cells can be reduced by the considering of above-mentioned parameters. The resulting data showed that the Fe-NP induced the damage of PC12 cell membrane in a concentration dependent manner. Hence, it may be concluded that the different cytotoxicty effect of NPs may be referred to the concentration of NPs, type of the NPs and the cells. Indeed, the kind of cytotoxic impacts of NPs on the cells can be reduced by the considering of above-mentioned parameters.

  13. Measuring cell viability with membrane impermeable zinc fluorescent indicator.

    Science.gov (United States)

    Stork, Christian J; Li, Yang V

    2006-09-15

    Recent findings suggest that the accumulation of cytoplasmic zinc [Zn2+]i is a ubiquitous component in the cell death cascade. Zn2+ can be liberated from intracellular stores following oxidative stress and contribute to cell death processes. Here we show that the membrane/cell impermeable Zn2+ fluorescent indicator Newport Green (NG), which is non-toxic and impermeable to the membranes of healthy cells, can label unhealthy cells in tissue slices in a manner comparable to the traditional viability indicator propidium iodide (PI). Using confocal microscopy, we detected PI labeled nuclei colocalized with NG fluorescence. Our results indicate that cells which absorbed PI into their nuclei also allowed cell-impermeable Zn2+ dye to penetrate their plasma membranes, subsequently exhibiting cytosolic and nuclear fluorescence. As in PI staining, we observed marked increases in NG fluorescence in damaged/dead cells of tissue slices. Two other cell impermeable fluorescent Zn2+ dyes, Fluozin-3 and Zinpyr-4, also stained cytosolic Zn2+ in PI labeled cells. Our data indicates that the application of a Zn2+ fluorescent indicator is a fast, simple, non-toxic and reliable method for visualizing cell viability within in vitro tissue preparations. Accordingly, we demonstrate that intracellular accumulation of Zn2+ correlates with neuronal death.

  14. Understanding the transport processes in polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Cheah, May Jean

    Polymer electrolyte membrane (PEM) fuel cells are energy conversion devices suitable for automotive, stationary and portable applications. An engineering challenge that is hindering the widespread use of PEM fuel cells is the water management issue, where either a lack of water (resulting in membrane dehydration) or an excess accumulation of liquid water (resulting in fuel cell flooding) critically reduces the PEM fuel cell performance. The water management issue is addressed by this dissertation through the study of three transport processes occurring in PEM fuel cells. Water transport within the membrane is a combination of water diffusion down the water activity gradient and the dragging of water molecules by protons when there is a proton current, in a phenomenon termed electro-osmotic drag, EOD. The impact of water diffusion and EOD on the water flux across the membrane is reduced due to water transport resistance at the vapor/membrane interface. The redistribution of water inside the membrane by EOD causes an overall increase in the membrane resistance that regulates the current and thus EOD, thereby preventing membrane dehydration. Liquid water transport in the PEM fuel cell flow channel was examined at different gas flow regimes. At low gas Reynolds numbers, drops transitioned into slugs that are subsequently pushed out of the flow channel by the gas flow. The slug volume is dependent on the geometric shape, the surface wettability and the orientation (with respect to gravity) of the flow channel. The differential pressure required for slug motion primarily depends on the interfacial forces acting along the contact lines at the front and the back of the slug. At high gas Reynolds number, water is removed as a film or as drops depending on the flow channel surface wettability. The shape of growing drops at low and high Reynolds number can be described by a simple interfacial energy minimization model. Under flooding conditions, the fuel cell local current

  15. Estimation of membrane hydration status for standby proton exchange membrane fuel cell systems by impedance measurement

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Rugholt, Mark; Nielsen, Morten Busk;

    2014-01-01

    Fuel cells are getting growing interest in both backup systems and electric vehicles. Although these systems are characterized by long periods of inactivity, they must be able to start at any instant in the shortest time. However, the membrane of which PEMFCs are made tends to dry out when...

  16. Difference in membrane repair capacity between cancer cell lines and a normal cell line

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; McNeil, Anna K.; Novak, Ivana

    2016-01-01

    Electroporation-based treatments and other therapies that permeabilize the plasma membrane have been shown to be more devastating to malignant cells than to normal cells. In this study, we asked if a difference in repair capacity could explain this observed difference in sensitivity. Membrane...... repair was investigated by disrupting the plasma membrane using laser followed by monitoring fluorescent dye entry over time in seven cancer cell lines, an immortalized cell line, and a normal primary cell line. The kinetics of repair in living cells can be directly recorded using this technique...... cancer cell lines (p cell line (p membrane permeabilization by electroporation. Viability in the primary normal cell line (98 % viable cells) was higher...

  17. Estimation of membrane hydration status for active proton exchange membrane fuel cell systems by impedance measurement

    DEFF Research Database (Denmark)

    Török, Lajos; Sahlin, Simon Lennart; Kær, Søren Knudsen

    2016-01-01

    , the membrane of which PEMFCs are made of tends to dry out when not in use. This increases the time interval required to start the system up and could lead to the destruction of the fuel cell. In this article a start-up time measurement setup is presented, which is part of a larger project, the membrane......Fuel cells are getting growing interest in industrial areas like backup systems for telecom applications or power source for electric vehicles. Although these systems are characterized by long periods of inactivity, they must be able to start at any instant in the shortest time. However...... hydration status estimator for monitoring the humidity of a fuel cell stack during standby. The fuel cell has been placed in a climatic chamber, connected to hydrogen and the start-up time has been measured with different environmental conditions. Based on the previous results and the ones presented...

  18. Preliminary study of genotoxicity evaluation of orthodontic miniscrews on mucosa oral cells by the alkaline comet assay.

    Science.gov (United States)

    Martín-Cameán, Ana; Puerto, María; Jos, Ángeles; Azqueta, Amaya; Iglesias-Linares, Alejandro; Solano, Enrique; Cameán, Ana M

    2015-01-01

    Miniscrew implants are widely used nowadays in orthodontic treatments due to their good results in clinical practice. However, data regarding the biocompatibility of commercially available orthodontic miniscrews and temporary devices are very scarce, and their role as genotoxicity inducers has been not previously evaluated with the alkaline comet assay. The aim of this study was to investigate the DNA damage in buccal cells of patients subjected to orthodontic treatments. The alkaline comet assay has been applied in oral mucosa cells from patients treated with conventional orthodontic treatment in comparison to patients treated additionally with miniscrews, non-treated volunteers (control) and smoking volunteers (positive control). The application of orthodontic appliances and miniscrews induced significant and similar (2-fold) increases of %DNA in tail in comparison to control group. Females experienced a significant increase in %DNA in all the treatments in comparison to the control group, whereas males showed significant damage only with the combined orthodontic and miniscrew treatment. In conclusion, conventional orthodontic appliances induced genotoxicity, and the incorporation of miniscrews assayed did not imply any additional increase of DNA damage.

  19. Palladium and palladium-tin supported on multi wall carbon nanotubes or carbon for alkaline direct ethanol fuel cell

    Science.gov (United States)

    Geraldes, Adriana Napoleão; Furtunato da Silva, Dionisio; Martins da Silva, Júlio César; Antonio de Sá, Osvaldo; Spinacé, Estevam Vitório; Neto, Almir Oliveira; Coelho dos Santos, Mauro

    2015-02-01

    Pd and PdSn (Pd:Sn atomic ratios of 90:10), supported on Multi Wall Carbon Nanotubes (MWCNT) or Carbon (C), are prepared by an electron beam irradiation reduction method. The obtained materials are characterized by X-Ray diffraction (XRD), Energy dispersive X-ray analysis (EDX), Transmission electron Microscopy (TEM) and Cyclic Voltammetry (CV). The activity for ethanol electro-oxidation is tested in alkaline medium, at room temperature, using Cyclic Voltammetry and Chronoamperometry (CA) and in a single alkaline direct ethanol fuel cell (ADEFC), in the temperature range of 60-90 °C. CV analysis finds that Pd/MWCNT and PdSn/MWCNT presents onset potentials changing to negative values and high current values, compared to Pd/C and PdSn/C electrocatalysts. ATR-FTIR analysis, performed during the CV, identifies acetate and acetaldehyde as principal products formed during the ethanol electro-oxidation, with low conversion to CO2. In single fuel cell tests, at 85 °C, using 2.0 mol L-1 ethanol in 2.0 mol L-1 KOH solutions, the electrocatalysts supported on MWCNT, also, show higher power densities, compared to the materials supported on carbon: PdSn/MWCNT, presents the best result (36 mW cm-2). The results show that the use of MWCNT, instead of carbon, as support, plus the addition of small amounts of Sn to Pd, improves the electrocatalytic activity for Ethanol Oxidation Reaction (EOR).

  20. Kinetics of plasma membrane and mitochondrial alterations in cells undergoing apoptosis

    National Research Council Canada - National Science Library

    Lizard, G; Fournel, S; Genestier, L; Dhedin, N; Chaput, C; Flacher, M; Mutin, M; Panaye, G; Revillard, J P

    1995-01-01

    ... of the nucleus, whereas integrity of the plasma membrane and organelles is preserved. Conversely cells undergoing necrosis display an early desintegration of cytoplasmic membrane and swelling of mitochondria...

  1. Nafion®/ODF-silica composite membranes for medium temperature proton exchange membrane fuel cells

    KAUST Repository

    Treekamol, Yaowapa

    2014-01-01

    A series of composite membranes were prepared by dispersing fluorinated polyoxadiazole oligomer (ODF)-functionalized silica nanoparticles in a Nafion matrix. Both melt-extrusion and solvent casting processes were explored. Ion exchange capacity, conductivity, water uptake and dimensional stability, thermal stability and morphology were characterized. The inclusion of functionalized nanoparticles proved advantageous, mainly due to a physical crosslinking effect and better water retention, with functionalized nanoparticles performing better than the pristine silica particles. For the same filler loading, better nanoparticle dispersion was achieved for solvent-cast membranes, resulting in higher proton conductivity. Filler agglomeration, however,was more severe for solvent-castmembranes at loadings beyond 5wt.%. The composite membranes showed excellent thermal stability, allowing for operation in medium temperature PEM fuel cells. Fuel cell performance of the compositemembranesdecreaseswithdecreasing relativehumidity, but goodperformance values are still obtained at 34% RHand 90 °C,with the best results obtained for solvent castmembranes loaded with 10 wt.% ODF-functionalized silica. Hydrogen crossover of the composite membranes is higher than that forpureNafion membranes,possiblydue toporosityresulting fromsuboptimalparticle- matrixcompatibility. © 2013 Crown Copyright and Elsevier BV. All rights reserved.

  2. Application of Proton Exchange Membrane Fuel Cell for Lift Trucks

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Rokni, Masoud

    2011-01-01

    In this study a general PEMFC (Proton Exchange Membrane Fuel Cell) model has been developed to take into account the effect of pressure losses, water crossovers, humidity aspects and voltage over potentials in the cells. The model is zero dimensional and it is assumed to be steady state. The effect...... in order to account for water back diffusion. Further Membrane water content is assumed to be a linear function of thickness. PEM fuel cell is working at rather low operating conditions which makes it suitable for the automotive systems. In this paper motive power part of a lift truck has been investigated...... of concentration loss is neglected while the effect of activation and ohmic losses is investigated in the system. Some semi-empirical equations are required to predict the amount of exchange current density for calculation of ohmic loss and water diffusion coefficient through membrane. These equations are applied...

  3. Indole prevents Escherichia coli cell division by modulating membrane potential.

    Science.gov (United States)

    Chimerel, Catalin; Field, Christopher M; Piñero-Fernandez, Silvia; Keyser, Ulrich F; Summers, David K

    2012-07-01

    Indole is a bacterial signalling molecule that blocks E. coli cell division at concentrations of 3-5 mM. We have shown that indole is a proton ionophore and that this activity is key to the inhibition of division. By reducing the electrochemical potential across the cytoplasmic membrane of E. coli, indole deactivates MinCD oscillation and prevents formation of the FtsZ ring that is a prerequisite for division. This is the first example of a natural ionophore regulating a key biological process. Our findings have implications for our understanding of membrane biology, bacterial cell cycle control and potentially for the design of antibiotics that target the cell membrane.

  4. Effects of chronic kidney disease on blood cells membrane properties.

    Science.gov (United States)

    Kaderjakova, Z; Lajdova, I; Horvathova, M; Morvova, M; Sikurova, L

    2012-10-01

    Chronic kidney disease (CKD) is progressive loss of renal function associated among others with increased intracellular calcium concentration. The purpose of this study was to identify the effects of CKD on cell membrane properties such as human red blood cell Ca(2+) ATPase activity, lymphocyte plasma membrane P2X(7) receptor expression and function. This could help us in elucidating the origin of increased calcium concentration in blood cells. We found out Ca(2+) ATPase activity is decreased in early stage CKD patients resulting in altered calcium removal from cytoplasm. By means of flow cytometry we assessed that P2X(7) receptor expression on lymphocyte membrane is 1.5 fold increased for CKD patients. Moreover, we detected an increased uptake of ethidium bromide through this receptor in CKD at basal conditions. It means CKD lymphocyte membranes contain more receptors which are more permeable thus allowing increased calcium influx from extracellular milieu. Finally, we can state alterations in blood cell membranes are closely linked to CKD and may be responsible for intracellular calcium accumulation.

  5. TNAP, an Essential Player in Membrane Lipid Rafts of Neuronal Cells.

    Science.gov (United States)

    Ermonval, Myriam; Baychelier, Florence; Fonta, Caroline

    2015-01-01

    The tissue non-specific alkaline phosphatase (TNAP) is a glycosyl-phosphatidylinositol (GPI) anchored glycoprotein which exists under different forms and is expressed in different tissues. As the other members of the ecto-phosphatase family, TNAP is targeted to membrane lipid rafts. Such micro domains enriched in particular lipids, are involved in cell sorting, are in close contact with the cellular cytoskeleton and play the role of signaling platform. In addition to its location in functional domains, the extracellular orientation of TNAP and the fact this glycoprotein can be shed from plasma membranes, contribute to its different phosphatase activities by acting as a phosphomonoesterase on various soluble substrates (inorganic pyrophosphate -PPi-, pyridoxal phosphate -PLP-, phosphoethanolamine -PEA-), as an ectonucleotidase on nucleotide-phosphate and presumably as a phosphatase able to dephosphorylate phosphoproteins and phospholipids associated to cells or to extra cellular matrix. More and more data accumulate on an involvement of the brain TNAP both in physiological and pathological situations. This review will summarize what is known and expected from the TNAP localization in lipid rafts with a particular emphasis on the role of a neuronal microenvironment on its potential function in the central nervous system.

  6. Mast cell synapses and exosomes: membrane contacts for information exchange

    Directory of Open Access Journals (Sweden)

    Amanda eCarroll-Portillo

    2012-03-01

    Full Text Available In addition to their central role in allergy, mast cells are involved in a wide variety of cellular interactions during homeostasis and disease. In this review, we discuss the ability of mast cells to extend their mechanisms for intercellular communication beyond the release of soluble mediators. These include formation of mast cell synapses on antigen presenting surfaces, as well as cell-cell contacts with dendritic cells and T cells. Release of membrane-bound exosomes also provide for the transfer of antigen, mast cell proteins and RNA to other leukocytes. With the recognition of the extended role mast cells have during immune modulation, further investigation of the processes in which mast cells are involved is necessary. This reopens mast cell research to exciting possibilities, demonstrating it to be an immunological frontier.

  7. Proton Exchange Membrane Fuel Cells Applied for Transport Sector

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Rokni, Masoud

    2010-01-01

    A thermodynamic analysis of a PEMFC (proton exchange membrane fuel cell) is investigated. PEMFC may be the most promising technology for fuel cell automotive systems, which is operating at quite low temperatures, (between 60 to 80℃). In this study the fuel cell motive power part of a lift truck has...... investigated. In addition, different stack design schemes have been proposed and their effect on system efficiency has been investigated....

  8. Superresolution measurement on the minute fluctuation of cell membrane

    Institute of Scientific and Technical Information of China (English)

    LI Jing; HUANG Yaoxiong; ZHAO Haiyan; TU Mei; CHEN Wenxin

    2006-01-01

    A novel method for measuring the minute fluctuation of cell membrane is developed by modifying the super-resolution theory, increasing dimension in Fourier space, enhancing brightness gradient and utilizing maximum adaptive weighted averaging filter (MAWA) in obstructing noise. The application of the method in studying aspergillus flavus cell (AFC) and red blood cell and the new findings from the study show that it is a useful tool.

  9. Escherichia coli YqjA, a Member of the Conserved DedA/Tvp38 Membrane Protein Family, Is a Putative Osmosensing Transporter Required for Growth at Alkaline pH.

    Science.gov (United States)

    Kumar, Sujeet; Doerrler, William T

    2015-07-01

    The ability to persist and grow under alkaline conditions is an important characteristic of many bacteria. In order to survive at alkaline pH, Escherichia coli must maintain a stable cytoplasmic pH of about 7.6. Membrane cation/proton antiporters play a major role in alkaline pH homeostasis by catalyzing active inward proton transport. The DedA/Tvp38 family is a highly conserved membrane protein family of unknown function present in most sequenced genomes. YqjA and YghB are members of the E. coli DedA family with 62% amino acid identity and partially redundant functions. We have shown that E. coli with ΔyqjA and ΔyghB mutations cannot properly maintain the proton motive force (PMF) and is compromised in PMF-dependent drug efflux and other PMF-dependent functions. Furthermore, the functions of YqjA and YghB are dependent upon membrane-embedded acidic amino acids, a hallmark of several families of proton-dependent transporters. Here, we show that the ΔyqjA mutant (but not ΔyghB) cannot grow under alkaline conditions (ranging from pH 8.5 to 9.5), unlike the parent E. coli. Overexpression of yqjA restores growth at alkaline pH, but only when more than ∼100 mM sodium or potassium is present in the growth medium. Increasing the osmotic pressure by the addition of sucrose enhances the ability of YqjA to support growth under alkaline conditions in the presence of low salt concentrations, consistent with YqjA functioning as an osmosensor. We suggest that YqjA possesses proton-dependent transport activity that is stimulated by osmolarity and that it plays a significant role in the survival of E. coli at alkaline pH. The ability to survive under alkaline conditions is important for many species of bacteria. Escherichia coli can grow at pH 5.5 to 9.5 while maintaining a constant cytoplasmic pH of about 7.6. Under alkaline conditions, bacteria rely upon proton-dependent transporters to maintain a constant cytoplasmic pH. The DedA/Tvp38 protein family is a highly conserved

  10. Effect of short-term alkaline intervention on the performance of buffer-free single-chamber microbial fuel cell.

    Science.gov (United States)

    Yang, Na; Ren, Yueping; Li, Xiufen; Wang, Xinhua

    2017-06-01

    Anolyte acidification is a drawback restricting the electricity generation performance of the buffer-free microbial fuel cells (MFC). In this paper, a small amount of alkali-treated anion exchange resin (AER) was placed in front of the anode in the KCl mediated single-chamber MFC to slowly release hydroxyl ions (OH(-)) and neutralize the H(+) ions that are generated by the anodic reaction in two running cycles. This short-term alkaline intervention to the KCl anolyte has promoted the proliferation of electroactive Geobacter sp. and enhanced the self-buffering capacity of the KCl-AER-MFC. The pH of the KCl anolyte in the KCl-AER-MFC increased and became more stable in each running cycle compared with that of the KCl-MFC after the short-term alkaline intervention. The maximum power density (Pmax) of the KCl-AER-MFC increased from 307.5mW·m(-2) to 542.8mW·m(-2), slightly lower than that of the PBS-MFC (640.7mW·m(-2)). The coulombic efficiency (CE) of the KCl-AER-MFC increased from 54.1% to 61.2% which is already very close to that of the PBS-MFC (61.9%). The results in this paper indicate that short-term alkaline intervention to the anolyte is an effective strategy to further promote the performance of buffer-free MFCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Flavivirus cell entry and membrane fusion

    NARCIS (Netherlands)

    Smit, Jolanda M.; Moesker, Bastiaan; Rodenhuis-Zybert, Izabela; Wilschut, Jan

    2011-01-01

    Flaviviruses, such as dengue virus and West Nile virus, are enveloped viruses that infect cells through receptor-mediated endocytosis and fusion from within acidic endosomes. The cell entry process of flaviviruses is mediated by the viral E glycoprotein. This short review will address recent advance

  12. Flavivirus cell entry and membrane fusion

    NARCIS (Netherlands)

    Smit, Jolanda M.; Moesker, Bastiaan; Rodenhuis-Zybert, Izabela; Wilschut, Jan

    2011-01-01

    Flaviviruses, such as dengue virus and West Nile virus, are enveloped viruses that infect cells through receptor-mediated endocytosis and fusion from within acidic endosomes. The cell entry process of flaviviruses is mediated by the viral E glycoprotein. This short review will address recent advance

  13. Microstructured Electrolyte Membranes to Improve Fuel Cell Performance

    Science.gov (United States)

    Wei, Xue

    Fuel cells, with the advantages of high efficiency, low greenhouse gas emission, and long lifetime are a promising technology for both portable power and stationary power sources. The development of efficient electrolyte membranes with high ionic conductivity, good mechanical durability and dense structure at low cost remains a challenge to the commercialization of fuel cells. This thesis focuses on exploring novel composite polymer membranes and ceramic electrolytes with the microstructure engineered to improve performance in direct methanol fuel cells (DMFCs) and solid oxide fuel cells (SOFCs), respectively. Polymer/particle composite membranes hold promise to meet the demands of DMFCs at lower cost. The structure of composite membranes was controlled by aligning proton conducting particles across the membrane thickness under an applied electric field. The field-induced structural changes caused the membranes to display an enhanced water uptake, proton conductivity, and methanol permeability in comparison to membranes prepared without an applied field. Although both methanol permeability and proton conductivity are enhanced by the applied field, the permeability increase is relatively lower than the proton conductivity improvement, which results in enhanced proton/methanol selectivity and improved DMFC performance. Apatite ceramics are a new class of fast ion conductors being studied as alternative SOFC electrolytes in the intermediate temperature range. An electrochemical/hydrothermal deposition method was developed to grow fully dense apatite membranes containing well-developed crystals with c-axis alignment to promote ion conductivity. Hydroxyapatite seed crystals were first deposited onto a metal substrate electrochemically. Subsequent ion substitution during the hydrothermal growth process promoted the formation of dense, fully crystalline films with microstructure optimal for ion transport. The deposition parameters were systematically investigated, such as

  14. FABRICATION AND BIOCOMPATIBILITY OF CELL OUTER MEMBRANE MIMETIC SURFACES

    Institute of Scientific and Technical Information of China (English)

    Ming-ming Zong; Yong-kuan Gong

    2011-01-01

    The surface design used for improving biocompatibility is one of the most important issues for the fabrication of medical devices. For mimicking the ideal surface structure of cell outer membrane, a large number of polymers bearing phosphorylcholine (PC) groups have been employed to modify the surfaces of biomaterials and medical devices. It has been demonstrated that the biocompatibility of the modified materials whose surface is required to interact with a living organism has been obviously improved by introducing PC groups. In this review, the fabrication strategies of cell outer membrane mimetic surfaces and their resulted biocompatibilities were summarized.

  15. Role of membranes and membrane reactors in the hydrogen supply of fuel cells for transports

    Energy Technology Data Exchange (ETDEWEB)

    Julbe, A.; Guizard, Ch. [Institut Europeen des Membranes, UMII, Lab. des Materiaux et des Procedes Membranaires, CNRS UMR 5635, 34 - Montpellier (France)

    2000-07-01

    Production, storage and supply of high-purity hydrogen as a clean and efficient fuel is central to fuel cells technology, in particular in vehicle traction. Actually, technologies for handling liquefied or gaseous hydrogen in transports are not available so that a number of alternative fuels are considered with the aim of in-situ generation of hydrogen through catalytic processes. The integrated concept of membrane reactors (MRs) can greatly benefit to these technologies. Particular emphasis is put on inorganic membranes and their role in MRs performance for H{sub 2} production.

  16. Neutron diffraction of cell membranes (myelin).

    Science.gov (United States)

    Parsons, D F; Akers, C K

    1969-09-05

    Small-angle neutron diffraction (wavelength 4.05 angstroms) of human and rabbit sciatic nerve has been carried out by means of the Brookhaven high flux beam reactor with an automated slit camera. Most of the free water of the nerves was substituted in order to minimize incoherent scatter of hydrogen atoms. The differences in amplitude and phase shifts between neutrons and x-rays resulted in a neutron diffraction pattern that was completely different from the x-ray pattern. The neutron pattern consisted of a single peak of about 89-angstrom spacing in the region examined (up to 6-angstrom spacing). The strong third, fourth, and fifth order reflections (about 60, 45, and 36 angstroms) seen in the x-ray pattern were suppressed. The neutron data indicated a strong scattering from one portion of the membrane.

  17. Proton Exchange Membranes for Fuel Cells Challenges and Recent Developments

    Institute of Scientific and Technical Information of China (English)

    Qingfeng Li; Jens Oluf Jensen; Pernille P. Noyé; Chao Pan; Niels J. Bjerrum

    2005-01-01

    @@ 1Introduction The current technology of proton exchange membrane fuel cells (PEMFC) is based on perfluorosulfonic acid (PFSA) membranes (e. g. Nafion(R)) as electrolyte. It operates on pure hydrogen and oxygen/air at typically 80℃ with high power density and long-term durability. For the membranes to be conductive, a minimum threshold of absorbed water molecules is about 6 to 7 mole per sulfonic site. The highest conductivity is only obtained under fully hydrated conductions, i.e. 21 - 22 mole water per sulfonic acid site. In other words, the proton conductivity is achieved by the locally liquid-like hydrophilic domain of the nanostructure.This strong dependence of conductivity on the water content in membranes limits the operational temperatureof PEMFC below 100℃.

  18. Differentiation-dependent activation of the human intestinal alkaline phosphatase promoter by HNF-4 in intestinal cells

    DEFF Research Database (Denmark)

    Olsen, Line; Bressendorff, Simon; Troelsen, Jesper T

    2005-01-01

    of the enterocytes, we have conducted a computer-assisted cis-element search of the proximal human ALPI promoter sequence. A putative recognition site for the transcription factor hepatocyte nuclear factor (HNF)-4 was predicted at the positions from -94 to -82 in relation to the translational start site. The ability......The intestinal alkaline phosphatase gene (ALPI) encodes a digestive brush-border enzyme, which is highly upregulated during small intestinal epithelial cell differentiation. To identify new putative promoter motifs responsible for the regulation of ALPI expression during differentiation...... of HNF-4alpha to stimulate the expression from the ALPI promoter was investigated in the nonintestinal Hela cell line. Cotransfection with an HNF-4alpha expression vector demonstrated a direct activation of the ALPI promoter through this -94 to -82 element. EMSA showed that HNF-4alpha from nuclear...

  19. Enhancement of cell viability and alkaline polygalacturonate lyase production by sorbitol co-feeding with methanol in Pichia pastoris fermentation.

    Science.gov (United States)

    Wang, Zhihao; Wang, Yun; Zhang, Dongxu; Li, Jianghua; Hua, Zhaozhe; Du, Guocheng; Chen, Jian

    2010-02-01

    Alkaline polygalacturonate lyase (PGL) production by Pichia pastoris GS115 was used as a model to study the mechanism and strategy for enhancing heterologous protein production. In order to enhance cell viability and volumetric recombinant protein productivity, sorbitol, which had been confirmed to be a non-repressive carbon source, was added together with methanol during the induction phase. The resultant PGL activity was up to 1593 U mL(-1), which was enhanced 1.85-fold compared to the control (863 U mL(-1)) cultured with sorbitol added at a constant rate of 3.6 g h(-1)L(-1) after an induction period of 100 h. Further results revealed that an appropriate sorbitol co-feeding strategy not only decreased the cell mortality to 8.8% (the control is about 23.1%) in the end of fermentation, but also reduced the proteolytic degradation of PGL.

  20. Anion conductive aromatic block copolymers containing diphenyl ether or sulfide groups for application to alkaline fuel cells.

    Science.gov (United States)

    Yokota, Naoki; Ono, Hideaki; Miyake, Junpei; Nishino, Eriko; Asazawa, Koichiro; Watanabe, Masahiro; Miyatake, Kenji

    2014-10-08

    A novel series of aromatic block copolymers composed of fluorinated phenylene and biphenylene groups and diphenyl ether (QPE-bl-5) or diphenyl sulfide (QPE-bl-6) groups as a scaffold for quaternized ammonium groups is reported. The block copolymers were synthesized via aromatic nucleophilic substitution polycondensation, chloromethylation, quaternization, and ion exchange reactions. The block copolymers were soluble in organic solvents and provided thin and bendable membranes by solution casting. The membranes exhibited well-developed phase-separated morphology based on the hydrophilic/hydrophobic block copolymer structure. The membranes exhibited mechanical stability as confirmed by DMA (dynamic mechanical analyses) and low gas and hydrazine permeability. The QPE-bl-5 membrane with the highest ion exchange capacity (IEC = 2.1 mequiv g(-1)) exhibited high hydroxide ion conductivity (62 mS cm(-1)) in water at 80 °C. A noble metal-free fuel cell was fabricated with the QPE-bl-5 as the membrane and electrode binder. The fuel cell operated with hydrazine as a fuel exhibited a maximum power density of 176 mW cm(-2) at a current density of 451 mA cm(-2).

  1. Electrospun fiber membranes enable proliferation of genetically modified cells

    Directory of Open Access Journals (Sweden)

    Borjigin M

    2013-02-01

    Full Text Available Mandula Borjigin*, Chris Eskridge*, Rohina Niamat, Bryan Strouse, Pawel Bialk, Eric B KmiecDepartment of Chemistry, Delaware State University, Dover, DE, USA *These authors contributed equally to this work Abstract: Polycaprolactone (PCL and its blended composites (chitosan, gelatin, and lecithin are well-established biomaterials that can enrich cell growth and enable tissue engineering. However, their application in the recovery and proliferation of genetically modified cells has not been studied. In the study reported here, we fabricated PCL-biomaterial blended fiber membranes, characterized them using physicochemical techniques, and used them as templates for the growth of genetically modified HCT116-19 colon cancer cells. Our data show that the blended polymers are highly miscible and form homogenous electrospun fiber membranes of uniform texture. The aligned PCL nanofibers support robust cell growth, yielding a 2.5-fold higher proliferation rate than cells plated on standard plastic plate surfaces. PCL-lecithin fiber membranes yielded a 2.7-fold higher rate of proliferation, while PCL-chitosan supported a more modest growth rate (1.5-fold higher. Surprisingly, PCL-gelatin did not enhance cell proliferation when compared to the rate of cell growth on plastic surfaces. Keywords: nanofibers, PCL-biomaterial blends, miscibility, gene editing, cell proliferation

  2. PIG7 promotes leukemia cell chemosensitivity via lysosomal membrane permeabilization.

    Science.gov (United States)

    Liu, Jiazhuo; Peng, Leiwen; Niu, Ting; Wu, Yu; Li, Jianjun; Wang, Fangfang; Zheng, Yuhuan; Liu, Ting

    2016-01-26

    PIG7 localizes to lysosomal membrane in leukemia cells. Our previous work has shown that transduction of pig7 into a series of leukemia cell lines did not result in either apoptosis or differentiation of most tested cell lines. Interestingly, it did significantly sensitize these cell lines to chemotherapeutic drugs. Here, we further investigated the mechanism underlying pig7-induced improved sensitivity of acute leukemia cells to chemotherapy. Our results demonstrated that the sensitization effect driven by exogenous pig7 was more effective in drug-resistant leukemia cell lines which had lower endogenous pig7 expression. Overexpression of pig7 did not directly activate the caspase apoptotic pathway, but decreased the lysosomal stability. The expression of pig7 resulted in lysosomal membrane permeabilization (LMP) and lysosomal protease (e.g. cathepsin B, D, L) release. Moreover, we also observed increased reactive oxygen species (ROS) and decreased mitochondrial membrane potential (ΔΨm) induced by pig7. Some autophagy markers such as LC3I/II, ATG5 and Beclin-1, and necroptosis maker MLKL were also stimulated. However, intrinsic antagonism such as serine/cysteine protease inhibitors Spi2A and Cystatin C prevented downstream effectors from triggering leukemia cells, which were only on the "verge of apoptosis". When combined with chemotherapy, LMP increased and more proteases were released. Once this process was beyond the limit of intrinsic antagonism, it induced programmed cell death cooperatively via caspase-independent and caspase-dependent pathways.

  3. Optical Trapping Techniques Applied to the Study of Cell Membranes

    Science.gov (United States)

    Morss, Andrew J.

    Optical tweezers allow for manipulating micron-sized objects using pN level optical forces. In this work, we use an optical trapping setup to aid in three separate experiments, all related to the physics of the cellular membrane. In the first experiment, in conjunction with Brian Henslee, we use optical tweezers to allow for precise positioning and control of cells in suspension to evaluate the cell size dependence of electroporation. Theory predicts that all cells porate at a transmembrane potential VTMof roughly 1 V. The Schwann equation predicts that the transmembrane potential depends linearly on the cell radius r, thus predicting that cells should porate at threshold electric fields that go as 1/r. The threshold field required to induce poration is determined by applying a low voltage pulse to the cell and then applying additional pulses of greater and greater magnitude, checking for poration at each step using propidium iodide dye. We find that, contrary to expectations, cells do not porate at a constant value of the transmembrane potential but at a constant value of the electric field which we find to be 692 V/cm for K562 cells. Delivering precise dosages of nanoparticles into cells is of importance for assessing toxicity of nanoparticles or for genetic research. In the second experiment, we conduct nano-electroporation—a novel method of applying precise doses of transfection agents to cells—by using optical tweezers in conjunction with a confocal microscope to manipulate cells into contact with 100 nm wide nanochannels. This work was done in collaboration with Pouyan Boukany of Dr. Lee's group. The small cross sectional area of these nano channels means that the electric field within them is extremely large, 60 MV/m, which allows them to electrophoretically drive transfection agents into the cell. We find that nano electroporation results in excellent dose control (to within 10% in our experiments) compared to bulk electroporation. We also find that

  4. High performance nano-Ni/Graphite electrode for electro-oxidation in direct alkaline ethanol fuel cells

    Science.gov (United States)

    Soliman, Ahmed B.; Abdel-Samad, Hesham S.; Abdel Rehim, Sayed S.; Ahmed, Mohamed A.; Hassan, Hamdy H.

    2016-09-01

    Ni/Graphite electrocatalysts (Ni/G) are successfully prepared through electrodeposition of Ni from acidic (pH = 0.8) and feebly acidic (pH = 5.5) aqueous Ni (II) baths. The efficiencies of such electrodes are investigated as anodes for direct alkaline ethanol fuel cells through their ethanol electrooxidation cyclic voltammetric (CV) response in alkaline medium. A direct proportionality between the amount of the electrodeposited Ni and its CV response is found. The amounts of the deposited Ni from the two baths are recorded using the Electrochemical Quartz Crystal Microbalance (eQCM). The Ni/G electrodes prepared from the feebly acidic bath show a higher electrocatalytic response than those prepared from the acidic bath. Surface morphology of the Ni particles electrodeposited from feebly acidic bath appears in a nano-scale dimension. Various electrochemical experiments are conducted to confirm that the Ni/G ethanol electrooxidation CV response greatly depends on the pH rather than nickel ion concentration of the deposition bath. The eQCM technique is used to detect the crystalline phases of nickel as α-Ni(OH)2/γ-NiOOH and β-Ni(OH)2/β-NiOOH and their in-situ inter-transformations during the potentiodynamic polarization.

  5. Extracellular heme uptake and the challenges of bacterial cell membranes.

    Science.gov (United States)

    Smith, Aaron D; Wilks, Angela

    2012-01-01

    In bacteria, the fine balance of maintaining adequate iron levels while preventing the deleterious effects of excess iron has led to the evolution of sophisticated cellular mechanisms to obtain, store, and regulate iron. Iron uptake provides a significant challenge given its limited bioavailability and need to be transported across the bacterial cell wall and membranes. Pathogenic bacteria have circumvented the iron-availability issue by utilizing the hosts' heme-containing proteins as a source of iron. Once internalized, iron is liberated from the porphyrin enzymatically for cellular processes within the bacterial cell. Heme, a lipophilic and toxic molecule, poses a significant challenge in terms of transport given its chemical reactivity. As such, pathogenic bacteria have evolved sophisticated membrane transporters to coordinate, sequester, and transport heme. Recent advances in the biochemical and structural characterization of the membrane-bound heme transport proteins are discussed in the context of ligand coordination, protein-protein interaction, and heme transfer.

  6. Reactivity of the cement-bentonite interface with alkaline solutions using transport cells

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Raul [Dpto. Quimica Agricola, Geologia y Geoquimica, Facultad de Ciencias, Universidad Autonoma de Madrid, Campus Cantoblanco, 28049 Madrid (Spain); Cuevas, Jaime [Dpto. Quimica Agricola, Geologia y Geoquimica, Facultad de Ciencias, Universidad Autonoma de Madrid, Campus Cantoblanco, 28049 Madrid (Spain)]. E-mail: jaime.cuevas@uam.es; Sanchez, Laura [Dpto. Quimica Agricola, Geologia y Geoquimica, Facultad de Ciencias, Universidad Autonoma de Madrid, Campus Cantoblanco, 28049 Madrid (Spain); Villa, Raquel Vigil de la [Dpto. Quimica Agricola, Geologia y Geoquimica, Facultad de Ciencias, Universidad Autonoma de Madrid, Campus Cantoblanco, 28049 Madrid (Spain); Leguey, Santiago [Dpto. Quimica Agricola, Geologia y Geoquimica, Facultad de Ciencias, Universidad Autonoma de Madrid, Campus Cantoblanco, 28049 Madrid (Spain)

    2006-06-15

    Clayey formations are considered as suitable host rocks to develop a Deep Geological Repository (DGR) for nuclear wastes. A concrete ring, located between the clayey formation and the bentonite barrier, is needed as structural support for the galleries. This material will act as a source of alkaline fluids when the formation's pore water saturates the system. This investigation evaluates the performance of the concrete-bentonite system by means of both geochemical codes and experimental results. A column made of compacted bentonite from La Serrata (Almeria, Spain) (1.4 g/cm{sup 3}, dry density) was held in contact with an ordinary Portland cement (OPC) mortar. Two alkaline solutions (Ca(OH){sub 2} saturated and NaOH 0.25 M) were injected from the mortar's side at 25, 60 and 120 deg. C. The permeability of the system and the effluent fluid composition were determined periodically. Finally, the solid phase was sampled and analyzed after 1 year of treatment. Ca(OH){sub 2} saturated fluids does not alter the mineralogy over the experiment time scale. NaOH fluids produced minor changes at 60-25 deg. C but at 120 deg. C a thin tobermorite layer of 1.5 mm precipitates in the clay aggregate surfaces at the interface. After this layer, analcime nucleates in heterogeneous patches affecting the whole compacted bentonite probe (2 cm thickness). The use of the PHREEQC code thermodynamic approach predicts the mineralogical transformations. However, it is necessary to introduce kinetic laws and to consider the existence of stagnant zones in the model in order to simulate the heterogeneous spatial alteration observed.

  7. Durable, Low-cost, Improved Fuel Cell Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Chris Roger; David Mountz; Wensheng He; Tao Zhang

    2011-03-17

    The development of low cost, durable membranes and membranes electrode assemblies (MEAs) that operate under reduced relative humidity (RH) conditions remain a critical challenge for the successful introduction of fuel cells into mass markets. It was the goal of the team lead by Arkema, Inc. to address these shortages. Thus, this project addresses the following technical barriers from the fuel cells section of the Hydrogen Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan: (A) Durability (B) Cost Arkema’s approach consisted of using blends of polyvinylidenefluoride (PVDF) and proprietary sulfonated polyelectrolytes. In the traditional approach to polyelectrolytes for proton exchange membranes (PEM), all the required properties are “packaged” in one macromolecule. The properties of interest include proton conductivity, mechanical properties, durability, and water/gas transport. This is the case, for example, for perfluorosulfonic acid-containing (PFSA) membranes. However, the cost of these materials is high, largely due to the complexity and the number of steps involved in their synthesis. In addition, they suffer other shortcomings such as mediocre mechanical properties and insufficient durability for some applications. The strength and originality of Arkema’s approach lies in the decoupling of ion conductivity from the other requirements. Kynar® PVDF provides an exceptional combination of properties that make it ideally suited for a membrane matrix (Kynar® is a registered trademark of Arkema Inc.). It exhibits outstanding chemical resistance in highly oxidative and acidic environments. In work with a prior grant, a membrane known as M41 was developed by Arkema. M41 had many of the properties needed for a high performance PEM, but had a significant deficiency in conductivity at low RH. In the first phase of this work, the processing parameters of M41 were explored as a means to increase its proton

  8. Difference in Membrane Repair Capacity Between Cancer Cell Lines and a Normal Cell Line.

    Science.gov (United States)

    Frandsen, Stine Krog; McNeil, Anna K; Novak, Ivana; McNeil, Paul L; Gehl, Julie

    2016-08-01

    Electroporation-based treatments and other therapies that permeabilize the plasma membrane have been shown to be more devastating to malignant cells than to normal cells. In this study, we asked if a difference in repair capacity could explain this observed difference in sensitivity. Membrane repair was investigated by disrupting the plasma membrane using laser followed by monitoring fluorescent dye entry over time in seven cancer cell lines, an immortalized cell line, and a normal primary cell line. The kinetics of repair in living cells can be directly recorded using this technique, providing a sensitive index of repair capacity. The normal primary cell line of all tested cell lines exhibited the slowest rate of dye entry after laser disruption and lowest level of dye uptake. Significantly, more rapid dye uptake and a higher total level of dye uptake occurred in six of the seven tested cancer cell lines (p normal cell line (98 % viable cells) was higher than in the three tested cancer cell lines (81-88 % viable cells). These data suggest more effective membrane repair in normal, primary cells and supplement previous explanations why electroporation-based therapies and other therapies permeabilizing the plasma membrane are more effective on malignant cells compared to normal cells in cancer treatment.

  9. Enhanced production of alkaline thermostable keratinolytic protease from calcium alginate immobilized cells of thermoalkalophilic Bacillus halodurans JB 99 exhibiting dehairing activity.

    Science.gov (United States)

    Shrinivas, Dengeti; Kumar, Raghwendra; Naik, G R

    2012-01-01

    The thermoalkalophilic Bacillus halodurans JB 99 cells known for production of novel thermostable alkaline keratinolytic protease were immobilized in calcium alginate matrix. Batch and repeated batch cultivation using calcium alginate immobilized cells were studied for alkaline protease production in submerged fermentation. Immobilized cells with 2.5% alginate and 350 beads/flask of initial cell loading showed enhanced production of alkaline protease by 23.2% (5,275 ± 39.4 U/ml) as compared to free cells (4,280 ± 35.4 U/ml) after 24 h. In the semicontinuous mode of cultivation, immobilized cells under optimized conditions produced an appreciable level of alkaline protease in up to nine cycles and reached a maximal value of 5,975 U/ml after the seventh cycle. The enzyme produced from immobilized cells efficiently degraded chicken feathers in the presence of a reducing agent which can help the poultry industry in the management of keratin-rich waste and obtaining value-added products.

  10. Polymers application in proton exchange membranes for fuel cells (PEMFCs)

    Science.gov (United States)

    Walkowiak-Kulikowska, Justyna; Wolska, Joanna; Koroniak, Henryk

    2017-07-01

    This review presents the most important research on alternative polymer membranes with ionic groups attached, provides examples of materials with a well-defined chemical structure that are described in the literature. Furthermore, it elaborates on the synthetic methods used for preparing PEMs, the current status of fuel cell technology and its application. It also briefly discusses the development of the PEMFC market.

  11. Membrane dynamics and the regulation of epithelial cell polarity

    NARCIS (Netherlands)

    van der Wouden, JM; Maier, O; van IJzendoorn, SCD; Hoekstra, D

    2003-01-01

    Plasma membranes of epithelial cells consist of two domains, an apical and a basolateral domain, the surfaces of which differ in composition. The separation of these domains by a tight junction and the fact that specific transport pathways exist for intracellular communication between these domains

  12. Denaturation of membrane proteins and hyperthermic cell killing

    NARCIS (Netherlands)

    Burgman, Paulus Wilhelmus Johannes Jozef

    1993-01-01

    Summarizing: heat induced denaturation of membrane proteins is probably related to hyperthermic cell killing. Induced resistance of heat sensitive proteins seems to be involved in the development of thermotolerance. Although many questions remain still to be answered, it appears that HSP72, when

  13. Cell biology symposium: Membrane trafficking and signal transduction

    Science.gov (United States)

    In general, membrane trafficking is a broad group of processes where proteins and other large molecules are distributed throughout the cell as well as adjacent extracellular spaces. Whereas signal transduction is a process where signals are transmitted through a series of chemical or molecular event...

  14. Lipid signalling dynamics at the β-cell plasma membrane.

    Science.gov (United States)

    Wuttke, Anne

    2015-04-01

    Pancreatic β-cells are clustered in islets of Langerhans and secrete insulin in response to increased concentrations of circulating glucose. Insulin in turn acts on liver, muscle and fat tissue to store energy and normalize the blood glucose level. Inappropriate insulin release may lead to impaired glucose tolerance and diabetes. In addition to glucose, other nutrients, neural stimuli and hormonal stimuli control insulin secretion. Many of these signals are perceived at the plasma membrane, which is also the site where insulin granules undergo exocytosis. Therefore, it is not surprising that membrane lipids play an important role in the regulation of insulin secretion. β-cells release insulin in a pulsatile fashion. Signalling lipids integrate the nutrient and neurohormonal inputs to fine-tune, shape and co-ordinate the pulsatility. An important group of signalling lipids are phosphoinositides and their downstream messengers. This MiniReview will discuss new insights into lipid signalling dynamics in β-cells obtained from live-cell imaging experiments with fluorescent translocation biosensors. The plasma membrane concentration of several phosphoinositides and of their downstream messengers changes rapidly upon nutrient or neurohormonal stimulation. Glucose induces the most complex spatio-temporal patterns, typically involving oscillations of messenger concentrations, which sometimes are locally restricted. The tightly controlled levels of lipid messengers can mediate specific binding of downstream effectors to the plasma membrane, contributing to the appropriate regulation of insulin secretion.

  15. Characterisation of cell-wall polysaccharides from mandarin segment membranes

    NARCIS (Netherlands)

    Coll-Almela, L.; Saura-Lopez, D.; Laencina-Sanchez, J.; Schols, H.A.; Voragen, A.G.J.; Ros-García, J.M.

    2015-01-01

    In an attempt to develop a process of enzymatic peeling of mandarin segments suitable for use on an industrial scale, the cell wall fraction of the segment membrane of Satsuma mandarin fruits was extracted to obtain a chelating agent-soluble pectin fraction (ChSS), a dilute sodium hydroxide-soluble

  16. Hereditary red cell membrane disorders and laboratory diagnostic testing.

    Science.gov (United States)

    King, M-J; Zanella, A

    2013-06-01

    This overview describes two groups of nonimmune hereditary hemolytic anemias caused by defects in membrane proteins located in distinct layers of the red cell membrane. Hereditary spherocytosis (HS), hereditary elliptocytosis (HE), and hereditary pyropoikilocytosis (HPP) represent disorders of the red cell cytoskeleton. Hereditary stomatocytoses represents disorders of cation permeability in the red cell membrane. The current laboratory screening tests for HS are the osmotic fragility test, acid glycerol lysis time test (AGLT), cryohemolysis test, and eosin-5'-maleimide (EMA)-binding test. For atypical HS, SDS-polyacrylamide gel electrophoresis of erythrocyte membrane proteins is carried out to confirm the diagnosis. The diagnosis of HE/HPP is based on abnormal red cell morphology and the detection of protein 4.1R deficiency or spectrin variants using gel electrophoresis. None of screening tests can detect all HS cases. Some testing centers (a survey of 25 laboratories) use a combination of tests (e.g., AGLT and EMA). No specific screening test for hereditary stomatocytoses is available. The preliminary diagnosis is based on presenting a compensated hemolytic anemia, macrocytosis, and a temperature or time dependent pseudohyperkalemia in some patients. Both the EMA-binding test and the osmotic fragility test may help in differential diagnosis of HS and hereditary stomatocytosis.

  17. Stimulated-healing of proton exchange membrane fuel cell catalyst

    NARCIS (Netherlands)

    Latsuzbaia, R.; Negro, E.; Koper, G.J.M.

    2013-01-01

    Platinum nanoparticles, which are used as catalysts in Proton Exchange Membrane Fuel Cells (PEMFC), tend to degrade after long-term operation. We discriminate the following mechanisms of the degradation: poisoning, migration and coalescence, dissolution, and electrochemical Ostwald ripening. There a

  18. Binding of white spot syndrome virus to Artemia sp. cell membranes.

    Science.gov (United States)

    Feng, Shuying; Li, Guangda; Feng, Wenpo; Huang, Jie

    2013-10-01

    Using differential velocity centrifugation, cell membranes of Artemia sp. were prepared, and their binding to white spot syndrome virus (WSSV) was analyzed in vitro. The results indicated that WSSV can specifically bind to Artemia cell membranes, and that WSSV receptor very likely existed in this membrane, which suggested that Artemia sp. may be a reservoir of WSSV. This study investigated the specific WSSV binding site by performing competitive inhibition experiments using shrimp gill cell membranes to bind WSSV to Artemia cell membranes. The results showed that shrimp gill cell membranes had a distinct inhibition effect on the specific binding of Artemia cell membranes to WSSV. Thus, potentially similar WSSV receptors or binding sites existed on Artemia sp. cell membranes and shrimp gill cell membranes. Taken together, these findings may provide experimental basis for the development of an effective approach to controlling WSSV, and theoretical basis for the study of WSSV receptors.

  19. Alkaline RFC Space Station prototype - 'Next step Space Station'. [Regenerative Fuel Cells

    Science.gov (United States)

    Hackler, I. M.

    1986-01-01

    The regenerative fuel cell, a candidate technology for the Space Station's energy storage system, is described. An advanced development program was initiated to design, manufacture, and integrate a regenerative fuel cell Space Station prototype (RFC SSP). The RFC SSP incorporates long-life fuel cell technology, increased cell area for the fuel cells, and high voltage cell stacks for both units. The RFC SSP's potential for integration with the Space Station's life support and propulsion systems is discussed.

  20. How to Evaluate the Electric Noise in a Cell Membrane?

    Science.gov (United States)

    Bier, M.

    2006-05-01

    There has been considerable public anxiety about possible health effects of electromagnetic radiation emitted by high voltage power lines. Power frequencies (60 Hz in the US, 50 Hz in many other countries) are sufficiently slow for the associated electric fields to distribute themselves across the highly resistive cell membranes. To assess the ambient power frequency fields, researchers have compared the voltage that these fields induce across cell membranes to the strength of the electric noise that the membranes generate themselves through Brownian motion. However, there has been disagreement among researchers on how to evaluate this equilibrium membrane electric noise. I will review the different approaches and present an {ITALIC ab initio} modeling of membrane electric fields. I will show that different manifestations of Brownian noise lead to an electric noise intensity that is many times larger than what conventional estimates have yielded. Next, the legitimacy of gauging a nonequilibrium external signal against internal equilibrium noise is questioned and a more meaningful criterion is proposed. Finally, an estimate will be derived of the nonequilibrium noise intensity due to the driven ion traffic through randomly opening and closing ion channels.

  1. Porous silicon membrane for micro fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Torres, N.; Duch, M.; Santander, J.; Sabate, N.; Esquivel, J.P.; Tarancon, A.; Cane, C. [Consejo Superior de Investigaciones Cientificas, Barcelona (Spain). Centro National de Microelectronica

    2009-04-15

    Significant advances have been made in the field of microsystems to offer a wide variety of applications for these devices. However, improvements in powering these devices are needed in order to obtain an autonomous power supply without increasing either the size or the cost of the devices. A promising solution involves the use of micro fuel cells instead of standard batteries, due to their easy portability, high autonomy and fast and inexpensive fuel refilling. Research in this area is based mainly on hybrid approaches consisting of microfabricated silicon parts assembled together with a Nafion thin film as a proton exchange membrane. However, higher functionality of these devices would be achieved by integrating these power sources within the microsystems to be powered. The development of specific technologies based on standard fabrication processes has to be approached and the electrode and the electrolyte will have to be developed with fabrication techniques compatible with microelectronic technologies. Porous silicon has proved to be a promising material to replace traditional Nafion-based proton exchange membranes, as this material provides a porous matrix that can be functionalized for further proton exchange behaviour. This paper presented a study that used different anodization conditions and types of silicon material to characterize the anodization process in bulk silicon. The obtained results were used to fabricate porous membranes suitable for applicability as electrolyte-frame in proton exchange membrane micro fuel cells. It was concluded that further work is needed involving pore filling with a 5 per cent Nafion solution to provide the membrane with a proton exchange capability. Moreover, a proton conductivity characterization of the membrane will be carried out as well as a complete implementation of this membrane in a final device. 10 refs., 1 tab., 6 figs.

  2. Design & development of innovative proton exchange membrane fuel cells

    OpenAIRE

    Carton, James

    2011-01-01

    The research undertaken in this thesis is concerned with the design and development of Proton Exchange Membrane (PEM) fuel cells and provides a body of information for continued PEM fuel cell development, which will ideally aid in the future commercialisation of these electrochemical devices. Through a combination of numerical analysis, computational fluid dynamic modelling and experimental work, effective flow plate designs, flow field configurations and materials are analysed and new inn...

  3. Modeling Of Proton Exchange Membrane Fuel Cell Systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh

    The objective of this doctoral thesis was to develop reliable steady-state and transient component models suitable to asses-, develop- and optimize proton exchange membrane (PEM) fuel cell systems. Several components in PEM fuel cell systems were characterized and modeled. The developed component...... cell systems. Consequences of indirectly fueling PEM stacks with hydrocarbons using reforming technology were investigated using a PEM stack model including CO poisoning kinetics and a transient Simulink steam reforming system model. Aspects regarding the optimization of PEM fuel cell systems...

  4. Alkaline pH induces IRR-mediated phosphorylation of IRS-1 and actin cytoskeleton remodeling in a pancreatic beta cell line.

    Science.gov (United States)

    Deyev, Igor E; Popova, Nadezhda V; Serova, Oxana V; Zhenilo, Svetlana V; Regoli, Marì; Bertelli, Eugenio; Petrenko, Alexander G

    2017-07-01

    Secretion of mildly alkaline (pH 8.0-8.5) juice to intestines is one of the key functions of the pancreas. Recent reports indicate that the pancreatic duct system containing the alkaline juice may adjoin the endocrine cells of pancreatic islets. We have previously identified the insulin receptor-related receptor (IRR) that is expressed in islets as a sensor of mildly alkaline extracellular media. In this study, we show that those islet cells that are in contact with the excretory ducts are also IRR-expressing cells. We further analyzed the effects of alkaline media on pancreatic beta cell line MIN6. Activation of endogenous IRR but not of the insulin receptor was detected that could be inhibited with linsitinib. The IRR autophosphorylation correlated with pH-dependent linsitinib-sensitive activation of insulin receptor substrate 1 (IRS-1), the primary adaptor in the insulin signaling pathway. However, in contrast with insulin stimulation, no protein kinase B (Akt/PKB) phosphorylation was detected as a result of alkali treatment. We observed overexpression of several early response genes (EGR2, IER2, FOSB, EGR1 and NPAS4) upon alkali treatment of MIN6 cells but those were IRR-independent. The alkaline medium but not insulin also triggered actin cytoskeleton remodeling that was blocked by pre-incubation with linsitinib. We propose that the activation of IRR by alkali might be part of a local loop of signaling between the exocrine and endocrine parts of the pancreas where alkalinization of the juice facilitate insulin release that increases the volume of secreted juice to control its pH and bicabonate content. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  5. The alkaline comet assay as a method to investigate the DNA strand breaking effect of phenylpropanoids in mammalian cells

    Directory of Open Access Journals (Sweden)

    Sabrina Haupenthal

    2015-05-01

    Therefore, a modified alkaline comet assay to investigate DNA strand breaking effects of the asarone isomers in hamster lung fibroblasts (V79 cells and with human cytochrome P450 1A2 and human sulfotransferase 1C2 transfected V79 cells was used. Furthermore, the DNA repair enzyme formamidopyrimidine DNA glycosylase (FPG as a marker for oxidative DNA damage was also included in our test system. aA, bA as well as gA significantly induce DNA damage in V79 cells at concentrations > 10 µM. However, no enhanced DNA damage was observed after FPG-incubation of V79 cells. In contrast, in metabolic competent transfected V79 cells both propenylic asarone derivatives aA and bA significantly increase the amount of FPG-sensitive sites, whereas the allylic compound gA was not effective. This study assumes that an impact on the cellular redox status of the propenylic asarone isomers and their respective metabolites might contribute to their genotoxic properties. In conclusion, further in vitro studies on DNA damage and repair to elucidate the mechanism of genotoxicity and mutagenicity of these carcinogenic plant constituents are still under investigation.

  6. Enhancement of growth and osteogenic differentiation of MC3T3-E1 cells via facile surface functionalization of polylactide membrane with chitooligosaccharide based on polydopamine adhesive coating

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huihua [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Luo, Chuang [Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Luo, Binghong, E-mail: tluobh@jnu.edu.cn [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Wen, Wei [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Wang, Xiaoying [Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632 (China); Ding, Shan [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Zhou, Changren, E-mail: tcrz9@jnu.edu.cn [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China)

    2016-01-01

    Graphical abstract: - Highlights: • COS was conveniently immobilized on PDLLA membrane based on PDOPA adhesive layer. • The hydrophilicity of PDLLA membrane was improved by modified with PDOPA and COS. • COS-functionalized PDLLA membrane is favorable to cell adhesion and proliferation. • COS-coated PDLLA membrane notably promote osteogenic differentiation of MC3T3-E1. - Abstract: To develop a chitooligosaccharide(COS)-functionalized poly(D,L-lactide) (PDLLA) membrane to enhance growth and osteogenic differentiation of MC3T3-E1 cells, firstly a thin polydopamine (PDOPA) layer was adhered to the PDLLA membrane via the self-polymerization and strong adhesion behavior of dopamine. Subsequently, COS was immobilized covalently on the resultant PDLLA/PDOPA composite membrane by coupling with PDOPA active coating. The successful immobilization of the PDOPA and COS was confirmed by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). Scanning electronic microscopy (SEM) and atomic force microscopy (AFM) results indicated that the surface topography and roughness of the membranes were changed, and the root mean square increased from 0.613 nm to 6.96 and 7.12 nm, respectively after coating PDOPA and COS. Water contact angle and surface energy measurements revealed that the membrane hydrophilicity was remarkably improved by surface modification. In vitro cells culture results revealed that the PDOPA- and COS-functionalized surfaces showed a significant increase in MC3T3-E1 cells adhesion, proliferation, osteogenic differentiation and alkaline phosphate activity compared to the pristine PDLLA substrate. Furthermore the COS-functionalized PDLLA membrane was more effectively at enhancing osteoblast activity than the PDOPA-functionalized PDLLA membrane.

  7. The mode of action of some antibiotics on red blood cell membranes.

    Science.gov (United States)

    Blaskó, K; Shagina, L V; Györgyi, S; Lev, A A

    1986-12-01

    Data are presented on the interaction of gramicidin, primycin and valinomycin with red blood cell membranes and compared with those obtained for artificial lipid bilayer membranes. The channel forming antibiotics gramicidin and primycin show specific kinetic behaviour in living cell membranes. It could be shown that the penetration of these antibiotics into the red blood cell membrane is a cooperative process resulting in the occurrence of aggregates in the lipid lattice of the membrane.

  8. Dual action of BPC194 : a membrane active peptide killing bacterial cells

    NARCIS (Netherlands)

    Moiset, Gemma; Cirac, Anna D; Stuart, Marc C A; Marrink, Siewert-Jan; Sengupta, Durba; Poolman, Bert

    2013-01-01

    Membrane active peptides can perturb the lipid bilayer in several ways, such as poration and fusion of the target cell membrane, and thereby efficiently kill bacterial cells. We probe here the mechanistic basis of membrane poration and fusion caused by membrane-active, antimicrobial peptides. We

  9. Time-dependent cell membrane damage under mechanical tension: Experiments and modeling

    OpenAIRE

    Lu, Bo; Chang, Jay Han-Chieh; Tai, Yu-Chong

    2011-01-01

    This paper reports a study of cancer cell membrane damage during filtration caused by cell membrane tension. The membrane tension was induced when cells were captured on a microfabricated parylene-C filter during the constant-pressure-driven filtration. This work includes both experiments and modeling to explore the underlying biomechanics of the cell membrane damage. The developed model not only agrees with our time-dependent cell damage data, but also fits well with previous results on red ...

  10. Chemical Imaging of the Cell Membrane by NanoSIMS

    Energy Technology Data Exchange (ETDEWEB)

    Weber, P K; Kraft, M L; Frisz, J F; Carpenter, K J; Hutcheon, I D

    2010-02-23

    The existence of lipid microdomains and their role in cell membrane organization are currently topics of great interest and controversy. The cell membrane is composed of a lipid bilayer with embedded proteins that can flow along the two-dimensional surface defined by the membrane. Microdomains, known as lipid rafts, are believed to play a central role in organizing this fluid system, enabling the cell membrane to carry out essential cellular processes, including protein recruitment and signal transduction. Lipid rafts are also implicated in cell invasion by pathogens, as in the case of the HIV. Therefore, understanding the role of lipid rafts in cell membrane organization not only has broad scientific implications, but also has practical implications for medical therapies. One of the major limitations on lipid organization research has been the inability to directly analyze lipid composition without introducing artifacts and at the relevant length-scales of tens to hundreds of nanometers. Fluorescence microscopy is widely used due to its sensitivity and specificity to the labeled species, but only the labeled components can be observed, fluorophores can alter the behavior of the lipids they label, and the length scales relevant to imaging cell membrane domains are between that probed by fluorescence resonance energy transfer (FRET) imaging (<10 nm) and the diffraction limit of light. Topographical features can be imaged on this length scale by atomic force microscopy (AFM), but the chemical composition of the observed structures cannot be determined. Immuno-labeling can be used to study the distribution of membrane proteins at high resolution, but not lipid composition. We are using imaging mass spectrometry by secondary ion mass spectrometry (SIMS) in concert with other high resolution imaging methods to overcome these limitations. The experimental approach of this project is to combine molecule-specific stable isotope labeling with high-resolution SIMS using a

  11. Durability aspects of polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Sethuraman, Vijay Anand

    In order for the successful adoption of proton exchange membrane (PEM) fuel cell technology, it is imperative that durability is understood, quantified and improved. A number of mechanisms are known to contribute to PEMFC membrane electrode assembly (MEA) performance degradation. In this dissertation, we show, via experiments, some of the various processes that degrade the proton exchange membrane in a PEM fuel cell; and catalyst poisoning due to hydrogen sulfide (H2S) and siloxane. The effect of humidity on the chemical stability of two types of membranes, [i.e., perfluorosulfonic acid type (PFSA, NafionRTM 112) and biphenyl sulfone hydrocarbon type, (BPSH-35)] was studied by subjecting the MEAs to open-circuit voltage (OCV) decay and potential cycling tests at elevated temperatures and low inlet gas relative humidities. The BPSH-35 membranes showed poor chemical stability in ex situ Fenton tests compared to that of NafionRTM membranes. However, under fuel cell conditions, BPSH-35 MEAs outperformed NafionRTM 112 MEAs in both the OCV decay and potential cycling tests. For both membranes, (i) at a given temperature, membrane degradation was more pronounced at lower humidities and (ii) at a given relative humidity operation, increasing the cell temperature accelerated membrane degradation. Mechanical stability of these two types of membranes was also studied using relative humidity (RH) cycling. Hydrogen peroxide (H2O2) formation rates in a proton exchange membrane (PEM) fuel cell were estimated by studying the oxygen reduction reaction (ORR) on a rotating ring disc electrode (RRDE). Fuel cell conditions were replicated by depositing a film of Pt/Vulcan XC-72 catalyst onto the disk and by varying the temperature, dissolved O2 concentration and the acidity levels in HClO4. The HClO4 acidity was correlated to ionomer water activity and hence fuel cell humidity. H 2O2 formation rates showed a linear dependence on oxygen concentration and square dependence on water

  12. Membrane protein synthesis in cell-free systems: from bio-mimetic systems to bio-membranes.

    Science.gov (United States)

    Sachse, Rita; Dondapati, Srujan K; Fenz, Susanne F; Schmidt, Thomas; Kubick, Stefan

    2014-08-25

    When taking up the gauntlet of studying membrane protein functionality, scientists are provided with a plethora of advantages, which can be exploited for the synthesis of these difficult-to-express proteins by utilizing cell-free protein synthesis systems. Due to their hydrophobicity, membrane proteins have exceptional demands regarding their environment to ensure correct functionality. Thus, the challenge is to find the appropriate hydrophobic support that facilitates proper membrane protein folding. So far, various modes of membrane protein synthesis have been presented. Here, we summarize current state-of-the-art methodologies of membrane protein synthesis in biomimetic-supported systems. The correct folding and functionality of membrane proteins depend in many cases on their integration into a lipid bilayer and subsequent posttranslational modification. We highlight cell-free systems utilizing the advantages of biological membranes.

  13. MEMBRANE LEc EXPRESSION IN BREAST CANCER CELLS

    Directory of Open Access Journals (Sweden)

    Ya. A. Udalova

    2009-01-01

    Full Text Available Affine chromatography was used to isolate Lec antibodies from the sera of a healthy female donor with the high titers of these anti- bodies, which were labeled with biotin. The study enrolled 51 patients with primary breast cancer (BC. Antigen expression was found by immunohistochemistry and flow cytometry. With these two techniques being used, the detection rate of Lec expression in BC cells was 65% (33/51; the antigen was most frequently found by flow cytometry as compared with immunohistochemistry: 72 and 58% of cases, respectively.

  14. Human T Cell Crosstalk Is Induced by Tumor Membrane Transfer

    Science.gov (United States)

    Uzana, Ronny; Eisenberg, Galit; Merims, Sharon; Frankenburg, Shoshana; Pato, Aviad; Yefenof, Eitan; Engelstein, Roni; Peretz, Tamar

    2015-01-01

    Trogocytosis is a contact-dependent unidirectional transfer of membrane fragments between immune effector cells and their targets, initially detected in T cells following interaction with professional antigen presenting cells (APC). Previously, we have demonstrated that trogocytosis also takes place between melanoma-specific cytotoxic T lymphocytes (CTLs) and their cognate tumors. In the present study, we took this finding a step further, focusing on the ability of melanoma membrane-imprinted CD8+ T cells to act as APCs (CD8+T-APCs). We demonstrate that, following trogocytosis, CD8+T-APCs directly present a variety of melanoma derived peptides to fraternal T cells with the same TCR specificity or to T cells with different TCRs. The resulting T cell-T cell immune synapse leads to (1) Activation of effector CTLs, as determined by proliferation, cytokine secretion and degranulation; (2) Fratricide (killing) of CD8+T-APCs by the activated CTLs. Thus, trogocytosis enables cross-reactivity among CD8+ T cells with interchanging roles of effectors and APCs. This dual function of tumor-reactive CTLs may hint at their ability to amplify or restrict reactivity against the tumor and participate in modulation of the anti-cancer immune response. PMID:25671577

  15. Human T cell crosstalk is induced by tumor membrane transfer.

    Directory of Open Access Journals (Sweden)

    Ronny Uzana

    Full Text Available Trogocytosis is a contact-dependent unidirectional transfer of membrane fragments between immune effector cells and their targets, initially detected in T cells following interaction with professional antigen presenting cells (APC. Previously, we have demonstrated that trogocytosis also takes place between melanoma-specific cytotoxic T lymphocytes (CTLs and their cognate tumors. In the present study, we took this finding a step further, focusing on the ability of melanoma membrane-imprinted CD8+ T cells to act as APCs (CD8+ T-APCs. We demonstrate that, following trogocytosis, CD8+ T-APCs directly present a variety of melanoma derived peptides to fraternal T cells with the same TCR specificity or to T cells with different TCRs. The resulting T cell-T cell immune synapse leads to (1 Activation of effector CTLs, as determined by proliferation, cytokine secretion and degranulation; (2 Fratricide (killing of CD8+ T-APCs by the activated CTLs. Thus, trogocytosis enables cross-reactivity among CD8+ T cells with interchanging roles of effectors and APCs. This dual function of tumor-reactive CTLs may hint at their ability to amplify or restrict reactivity against the tumor and participate in modulation of the anti-cancer immune response.

  16. Enhancement of growth and osteogenic differentiation of MC3T3-E1 cells via facile surface functionalization of polylactide membrane with chitooligosaccharide based on polydopamine adhesive coating

    Science.gov (United States)

    Li, Huihua; Luo, Chuang; Luo, Binghong; Wen, Wei; Wang, Xiaoying; Ding, Shan; Zhou, Changren

    2016-01-01

    To develop a chitooligosaccharide(COS)-functionalized poly(D,L-lactide) (PDLLA) membrane to enhance growth and osteogenic differentiation of MC3T3-E1 cells, firstly a thin polydopamine (PDOPA) layer was adhered to the PDLLA membrane via the self-polymerization and strong adhesion behavior of dopamine. Subsequently, COS was immobilized covalently on the resultant PDLLA/PDOPA composite membrane by coupling with PDOPA active coating. The successful immobilization of the PDOPA and COS was confirmed by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). Scanning electronic microscopy (SEM) and atomic force microscopy (AFM) results indicated that the surface topography and roughness of the membranes were changed, and the root mean square increased from 0.613 nm to 6.96 and 7.12 nm, respectively after coating PDOPA and COS. Water contact angle and surface energy measurements revealed that the membrane hydrophilicity was remarkably improved by surface modification. In vitro cells culture results revealed that the PDOPA- and COS-functionalized surfaces showed a significant increase in MC3T3-E1 cells adhesion, proliferation, osteogenic differentiation and alkaline phosphate activity compared to the pristine PDLLA substrate. Furthermore the COS-functionalized PDLLA membrane was more effectively at enhancing osteoblast activity than the PDOPA-functionalized PDLLA membrane.

  17. A polybenzimidazole/ionic-liquid-graphite-oxide composite membrane for high temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Xu, Chenxi; Liu, Xiaoteng; Cheng, Jigui; Scott, Keith

    2015-01-01

    Graphite oxide is successfully functionalised by 3-aminopropyltriethoxysilane ionic liquid and used as a filler material in a polybenzimidazole (PBI) membrane for high temperature proton exchange membrane fuel cells. The ionic-liquid-graphite-oxide/polybenzimidazole (ILGO/PBI) composite membrane exhibits an appropriate level of proton conductivity when imbibed with phosphoric acid at low phosphoric acid loading, which promotes its use in fuel cells by avoiding acid leakage and materials corrosion. The ionic conductivities of the ILGO/PBI membranes at 175 °C are 0.035 S cm-1 and 0.025 S cm-1 at per repeat units of 3.5 and 2.0, respectively. The fuel cell performance of ILGO/PBI membranes exhibits a maximum power density of 320 mW cm-2 at 175 °C, which is higher than that of a pristine PBI membrane.

  18. Durable Catalysts for High Temperature Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Durability of proton exchange membrane fuel cells (PEMFCs) is recognized as one of the most important issues to be addressed before the commercialization. The failure mechanisms are not well understood, however, degradation of carbon supported noble metal catalysts is identified as a major failure...... corrosion, in turn, triggers the agglomeration of platinum particles resulting in reduction of the active surface area and catalytic activity. This is a major mechanism of the catalyst degradation and a key challenge to the PEMFC long-term durability. High temperature PEMFC, on the other hand, has attached...... the selectivity for platinum loading. Fuel cell durability tests in term of performance degradation were performed with acid doped polybenzimidazole membrane fuel cells at temperatures of up to 160°C. The tests were focused on catalyst degradation by means of a potential cycling protocol. The electrochemical...

  19. Analysis of Water Management in Proton Exchange Membrane Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A two-dimensional, steady-state, isothermal water-management model for a complete proton exchange membrane fuel cell (PEMFC) was developed. The model includes the transport in the diffusion layer and the proton exchange membrane (PEM) with a pseudo-homogeneous model for the cathode catalyst layer. The predicted fuel cell performance with variable cathode porosities compares well with experimental results. The model is then used to investigate the effects of some structural parameters, such as the rib size, the interdigitated flow field, and various operating conditions including the gas flow rate, the cell temperature and pressure, humidification, and the relative humidity at the inlet. Water management is best achieved by tuning the anode operating conditions.

  20. Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells

    Science.gov (United States)

    Ostroverkh, Anna; Fiala, Roman; Rednyk, Andrii; Matolín, Vladimír

    2016-01-01

    The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis) mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side) downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc.) on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein) polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed) subjected to a wide range of conditions. PMID:28042492

  1. Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Viktor Johánek

    2016-01-01

    Full Text Available The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc. on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed subjected to a wide range of conditions.

  2. Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells.

    Science.gov (United States)

    Johánek, Viktor; Ostroverkh, Anna; Fiala, Roman; Rednyk, Andrii; Matolín, Vladimír

    2016-01-01

    The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis) mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side) downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc.) on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein) polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed) subjected to a wide range of conditions.

  3. Gold Nanoparticles-Enhanced Proton Exchange Membrane (PEM) Fuel Cell

    Science.gov (United States)

    Li, Hongfei; Pan, Cheng; Liu, Ping; Zhu, Yimei; Adzic, Radoslav; Rafailovich, Miriam

    Proton exchange membrane fuel cells have drawn great attention and been taken as a promising alternated energy source. One of the reasons hamper the wider application of PEM fuel cell is the catalytic poison effect from the impurity of the gas flow. Haruta has predicted that gold nanoparticles that are platelet shaped and have direct contact with the metal oxide substrate to be the perfect catalysts of the CO oxidization, yet the synthesis method is difficult to apply in the Fuel Cell. In our approach, thiol-functionalized gold nanoparticles were synthesized through two-phase method developed by Brust et al. We deposit these Au particles with stepped surface directly onto the Nafion membrane in the PEM fuel cell by Langmuir-Blodgett method, resulting in over 50% enhancement of the efficiency of the fuel cell. DFT calculations were conducted to understand the theory of this kind of enhancement. The results indicated that only when the particles were in direct surface contact with the membrane, where AuNPs attached at the end of the Nafion side chains, it could reduce the energy barrier for the CO oxidation that could happen at T<300K.

  4. In vitro induction of alkaline phosphatase levels predicts in vivo bone forming capacity of human bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Henk-Jan Prins

    2014-03-01

    Full Text Available One of the applications of bone marrow stromal cells (BMSCs that are produced by ex vivo expansion is for use in in vivo bone tissue engineering. Cultured stromal cells are a mixture of cells at different stages of commitment and expansion capability, leading to a heterogeneous cell population that each time can differ in the potential to form in vivo bone. A parameter that predicts for in vivo bone forming capacity is thus far lacking. We employed single colony-derived BMSC cultures to identify such predictive parameters. Using limiting dilution, we have produced sixteen single CFU-F derived BMSC cultures from human bone marrow and found that only five of these formed bone in vivo. The single colony-derived BMSC strains were tested for proliferation, osteogenic-, adipogenic- and chondrogenic differentiation capacity and the expression of a variety of associated markers. The only robust predictors of in vivo bone forming capacity were the induction of alkaline phosphatase, (ALP mRNA levels and ALP activity during in vitro osteogenic differentiation. The predictive value of in vitro ALP induction was confirmed by analyzing “bulk-cultured” BMSCs from various bone marrow biopsies. Our findings show that in BMSCs, the additional increase in ALP levels over basal levels during in vitro osteogenic differentiation is predictive of in vivo performance.

  5. Proton Exchange Membrane Fuel Cell Engineering Model Powerplant. Test Report: Benchmark Tests in Three Spatial Orientations

    Science.gov (United States)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    Proton exchange membrane (PEM) fuel cell technology is the leading candidate to replace the aging alkaline fuel cell technology, currently used on the Shuttle, for future space missions. This test effort marks the final phase of a 5-yr development program that began under the Second Generation Reusable Launch Vehicle (RLV) Program, transitioned into the Next Generation Launch Technologies (NGLT) Program, and continued under Constellation Systems in the Exploration Technology Development Program. Initially, the engineering model (EM) powerplant was evaluated with respect to its performance as compared to acceptance tests carried out at the manufacturer. This was to determine the sensitivity of the powerplant performance to changes in test environment. In addition, a series of tests were performed with the powerplant in the original standard orientation. This report details the continuing EM benchmark test results in three spatial orientations as well as extended duration testing in the mission profile test. The results from these tests verify the applicability of PEM fuel cells for future NASA missions. The specifics of these different tests are described in the following sections.

  6. Inorganic-organic Composite Membranes with Novel Microstructure for High Temperature Proton Exchange Membrane Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    Zhigang Ma; Jiandong Gao; Jing Guo; Zhenghua Deng; Jishuan Suo

    2007-01-01

    Nowadays,more and more fossil fuels are consumed and air pollurion has become a threat to the survival of people.Therefore,we need some other power sources to provide energy without damaging the environment.Proton exchange membrane fuel cells(PEMFCs)have received wide attention due to their advantages Such as high energy density and zero emission[1].Particularly, direct methanol fuel cells (DMFCs)were considered as the most suitable energy sources for electric vehicles(EVs)and portable electronics.

  7. Inferring maps of forces inside cell membrane microdomains

    CERN Document Server

    Masson, J -B; Tuerkcan, S; Voisinne, G; Popoff, M R; Vergassola, M; Alexandrou, A

    2015-01-01

    Mapping of the forces on biomolecules in cell membranes has spurred the development of effective labels, e.g. organic fluorophores and nanoparticles, to track trajectories of single biomolecules. Standard methods use particular statistics, namely the mean square displacement, to analyze the underlying dynamics. Here, we introduce general inference methods to fully exploit information in the experimental trajectories, providing sharp estimates of the forces and the diffusion coefficients in membrane microdomains. Rapid and reliable convergence of the inference scheme is demonstrated on trajectories generated numerically. The method is then applied to infer forces and potentials acting on the receptor of the $\\epsilon$-toxin labeled by lanthanide-ion nanoparticles. Our scheme is applicable to any labeled biomolecule and results show show its general relevance for membrane compartmentation.

  8. Development of structured polymer electrolyte membranes for fuel cell applications

    Science.gov (United States)

    Gasa, Jeffrey

    The objective of this research was to explore structure-property relationships to develop the understanding needed for introduction of superior PEM materials. Polymer electrolyte membranes based on sulfonated poly(ether ketone ketone) (SPEKK) were fabricated using N-methyl pyrrolidone as casting solvent. The membranes were characterized in terms of properties that were relevant to fuel cell applications, such as proton conductivity, methanol permeability, and swelling properties, among others. It was found in this study that the proton conductivity of neat SPEKK membranes could reach the conductivity of commercial membranes such as NafionRTM. However, when the conductivity of SPEKK was comparable to NafionRTM, the swelling of SPEKK in water was quite excessive. The swelling problem was remedied by modifying the microstructure of SPEKK using different techniques. One of them involved blending of lightly sulfonated PEKK with highly acidic particles (sulfonated crosslinked polystyrene-SXLPS). Low sulfonation level of SPEKK was used to reduce the swelling of the membrane in water and the role of the highly acidic particles was to enhance the proton conductivity of the membrane. Because of the residual crystallinity in SPEKK with low sulfonation levels (IEC sulfone)) to act as mechanical reinforcement. It was found that miscibility behavior of the blends had a significant impact on the transport and swelling properties of these blends, which could be explained by the blend microstructure. The miscibility behavior was found to be strongly dependent on the sulfonation level of SPEKK. The conductivities of the blends were enhanced by as much as two orders of magnitude when the morphology was modified by electric field. The last approach was ionic crosslinking of the sulfonate groups in SPEKK using divalent cations, specifically barium ions. The crosslinking treatment has greatly improved the thermal stability of the membranes in both dry and wet conditions.

  9. Creating transient cell membrane pores using a standard inkjet printer.

    Science.gov (United States)

    Owczarczak, Alexander B; Shuford, Stephen O; Wood, Scott T; Deitch, Sandra; Dean, Delphine

    2012-03-16

    Bioprinting has a wide range of applications and significance, including tissue engineering, direct cell application therapies, and biosensor microfabrication. Recently, thermal inkjet printing has also been used for gene transfection. The thermal inkjet printing process was shown to temporarily disrupt the cell membranes without affecting cell viability. The transient pores in the membrane can be used to introduce molecules, which would otherwise be too large to pass through the membrane, into the cell cytoplasm. The application being demonstrated here is the use of thermal inkjet printing for the incorporation of fluorescently labeled g-actin monomers into cells. The advantage of using thermal ink-jet printing to inject molecules into cells is that the technique is relatively benign to cells. Cell viability after printing has been shown to be similar to standard cell plating methods. In addition, inkjet printing can process thousands of cells in minutes, which is much faster than manual microinjection. The pores created by printing have been shown to close within about two hours. However, there is a limit to the size of the pore created (~10 nm) with this printing technique, which limits the technique to injecting cells with small proteins and/or particles. A standard HP DeskJet 500 printer was modified to allow for cell printing. The cover of the printer was removed and the paper feed mechanism was bypassed using a mechanical lever. A stage was created to allow for placement of microscope slides and coverslips directly under the print head. Ink cartridges were opened, the ink was removed and they were cleaned prior to use with cells. The printing pattern was created using standard drawing software, which then controlled the printer through a simple print command. 3T3 fibroblasts were grown to confluence, trypsinized, and then resuspended into phosphate buffered saline with soluble fluorescently labeled g-actin monomers. The cell suspension was pipetted into the

  10. Deoxygenation affects tyrosine phosphoproteome of red cell membrane from patients with sickle cell disease.

    Science.gov (United States)

    Siciliano, Angela; Turrini, Franco; Bertoldi, Mariarita; Matte, Alessandro; Pantaleo, Antonella; Olivieri, Oliviero; De Franceschi, Lucia

    2010-04-15

    Sickle cell disease (SCD) is a worldwide distributed hereditary red cell disorder related to the production of a defective form of hemoglobin, hemoglobin S (HbS). One of the hallmarks of SCD is the presence of dense, dehydrate highly adhesive sickle red blood cells (RBCs) that result from persistent membrane damage associated with HbS polymerization, abnormal activation of membrane cation transports and generation of distorted and rigid red cells with membrane perturbation and cytoskeleton dysfunction. Although modulation of phosphorylation state of the proteins from membrane and cytoskeleton networks has been proposed to participate in red cell homeostasis, much still remains to be investigated in normal and diseased red cells. Here, we report that tyrosine (Tyr-) phosphoproteome of sickle red cells was different from normal controls and was affected by deoxygenation. We found proteins, p55 and band 4.1, from the junctional complex, differently Tyr-phosphorylated in SCD RBCs compared to normal RBCs under normoxia and modulated by deoxygenation, while band 4.2 was similarly Tyr-phosphorylated in both conditions. In SCD RBCs we identified the phosphopeptides for protein 4.1R located in the protein FERM domain (Tyr-13) and for alpha-spectrin located near or in a linker region (Tyr-422 and Tyr-1498) involving protein areas crucial for their functions in the context of red cell membrane properties, suggesting that Tyr-phosphorylation may be part of the events involved in maintaining membrane mechanical stability in SCD red cells.

  11. Nature of the elements transporting long-chain fatty acids through the red cell membrane

    DEFF Research Database (Denmark)

    Bojesen, Inge Norby; Bojesen, Eigil

    1998-01-01

    Docosahexaenoic acid, linoleic acid, red cell membrane, transporting elements, transport kinetics, fatty acid transport......Docosahexaenoic acid, linoleic acid, red cell membrane, transporting elements, transport kinetics, fatty acid transport...

  12. Modified SPEEK membranes for direct ethanol fuel cell

    KAUST Repository

    Maab, Husnul

    2010-07-01

    Membranes with low ethanol crossover were prepared aiming their application for direct ethanol fuel cell (DEFC). They were based on (1) sulfonated poly(ether ether ketone) (SPEEK) coated with carbon molecular sieves (CMS) and (2) on SPEEK/PI homogeneous blends. The membranes were characterized concerning their water and ethanol solution uptake, water and ethanol permeability in pervaporation experiments and their performance in DEFC tests. The ethanol permeabilities for the CMS-coated (180 nm and 400 nm thick layers) SPEEK were 8.5 and 3.1 x 10(-10) kg m s(-1) m(-2) and for the homogeneous SPEEK/PI blends membranes with 10, 20 and 30 wt.% of PI were 4.4, 1.0 and 0.4 x 10(-10) kg m s(-1) m(-2) respectively, which is 2- to 50-fold lower than that for plain SPEEK (19 x 10(-10) kg m s(-1) m(-2)). Particularly the SPEEK/PI membranes had substantially better performance than Nafion 117 membranes in DEFC tests at 60 degrees C and 90 degrees C. (C) 2010 Elsevier B.V. All rights reserved.

  13. Modified SPEEK membranes for direct ethanol fuel cell

    Science.gov (United States)

    Maab, Husnul; Nunes, Suzana Pereira

    Membranes with low ethanol crossover were prepared aiming their application for direct ethanol fuel cell (DEFC). They were based on (1) sulfonated poly(ether ether ketone) (SPEEK) coated with carbon molecular sieves (CMS) and (2) on SPEEK/PI homogeneous blends. The membranes were characterized concerning their water and ethanol solution uptake, water and ethanol permeability in pervaporation experiments and their performance in DEFC tests. The ethanol permeabilities for the CMS-coated (180 nm and 400 nm thick layers) SPEEK were 8.5 and 3.1 × 10 -10 kg m s -1 m -2 and for the homogeneous SPEEK/PI blends membranes with 10, 20 and 30 wt.% of PI were 4.4, 1.0 and 0.4 × 10 -10 kg m s -1 m -2 respectively, which is 2- to 50-fold lower than that for plain SPEEK (19 × 10 -10 kg m s -1 m -2). Particularly the SPEEK/PI membranes had substantially better performance than Nafion 117 ® membranes in DEFC tests at 60 °C and 90 °C.

  14. Modeling and Simulation for Fuel Cell Polymer Electrolyte Membrane

    Directory of Open Access Journals (Sweden)

    Takahiro Hayashi

    2013-01-01

    Full Text Available We have established methods to evaluate key properties that are needed to commercialize polyelectrolyte membranes for fuel cell electric vehicles such as water diffusion, gas permeability, and mechanical strength. These methods are based on coarse-graining models. For calculating water diffusion and gas permeability through the membranes, the dissipative particle dynamics–Monte Carlo approach was applied, while mechanical strength of the hydrated membrane was simulated by coarse-grained molecular dynamics. As a result of our systematic search and analysis, we can now grasp the direction necessary to improve water diffusion, gas permeability, and mechanical strength. For water diffusion, a map that reveals the relationship between many kinds of molecular structures and diffusion constants was obtained, in which the direction to enhance the diffusivity by improving membrane structure can be clearly seen. In order to achieve high mechanical strength, the molecular structure should be such that the hydrated membrane contains narrow water channels, but these might decrease the proton conductivity. Therefore, an optimal design of the polymer structure is needed, and the developed models reviewed here make it possible to optimize these molecular structures.

  15. Lowering the platinum loading of high temperature polymer electrolyte membrane fuel cells with acid doped polybenzimidazole membranes

    DEFF Research Database (Denmark)

    Fernandez, Santiago Martin; Li, Qingfeng; Jensen, Jens Oluf

    2015-01-01

    Membrane electrode assemblies (MEAs) with ultra-low Pt loading electrodes were prepared for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) based on acid doped polybenzimidazole. With no electrode binders or ionomers, the triple phase boundary of the catalyst layer was establ......Membrane electrode assemblies (MEAs) with ultra-low Pt loading electrodes were prepared for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) based on acid doped polybenzimidazole. With no electrode binders or ionomers, the triple phase boundary of the catalyst layer...

  16. Rigid proteins and softening of biological membranes-with application to HIV-induced cell membrane softening.

    Science.gov (United States)

    Agrawal, Himani; Zelisko, Matthew; Liu, Liping; Sharma, Pradeep

    2016-05-06

    A key step in the HIV-infection process is the fusion of the virion membrane with the target cell membrane and the concomitant transfer of the viral RNA. Experimental evidence suggests that the fusion is preceded by considerable elastic softening of the cell membranes due to the insertion of fusion peptide in the membrane. What are the mechanisms underpinning the elastic softening of the membrane upon peptide insertion? A broader question may be posed: insertion of rigid proteins in soft membranes ought to stiffen the membranes not soften them. However, experimental observations perplexingly appear to show that rigid proteins may either soften or harden membranes even though conventional wisdom only suggests stiffening. In this work, we argue that regarding proteins as merely non-specific rigid inclusions is flawed, and each protein has a unique mechanical signature dictated by its specific interfacial coupling to the surrounding membrane. Predicated on this hypothesis, we have carried out atomistic simulations to investigate peptide-membrane interactions. Together with a continuum model, we reconcile contrasting experimental data in the literature including the case of HIV-fusion peptide induced softening. We conclude that the structural rearrangements of the lipids around the inclusions cause the softening or stiffening of the biological membranes.

  17. Highly charged proton-exchange membrane. Sulfonated poly(ether sulfone)-silica polyelectrolyte composite membranes for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Shahi, Vinod K. [Electro-Membrane Processes Division, Central Salt and Marine Chemicals Research Institute, Bhavnagar-364002, Gujarat (India)

    2007-01-15

    Sulfonation of poly(ether sulfone) was carried out with chlorosulphonic acid in chloroform and its composite proton-exchange membrane was prepared using aminopropyltriethoxysilane as inorganic precursor by sol-gel in acidic medium. These membranes were further subjected to phosphorylation with phosphorous acid for introducing phosphonic acid functionality at inorganic segment. Extent of sulphonation was estimated by {sup 1}H-NMR spectroscopy while introduction of phosphonic acid groups was confirmed by FTIR spectroscopy and ion-exchange capacity studies. Different membranes, with varied silica content without and with phosphorylation, were characterized for their thermal and mechanical stabilities, physicochemical and electrochemical properties using thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), aq. methanol uptake studies, proton conductivity and methanol permeability measurements. The silica content in the membrane matrix and effect of phosphorylation was optimized as a function of membrane properties. Activation energy required for the proton transport across the membrane was also estimated and found to be comparable with Nafion 117 membrane. From the frictional interpretation and estimation of selectivity parameter it was observed that SPS-Si composite phosphorylated membrane with 20% silica content (SPS-Si(P)/20) resulted in the best proton-exchange membrane, which exhibited quite higher selectivity parameter in comparison to Nafion 117 for direct methanol fuel cell applications. Also, current-voltage polarization characteristics of SPS-Si(P)/20 membrane measured in direct methanol fuel cell, were found to be comparable to the Nafion 117 membrane. (author)

  18. Membraner

    DEFF Research Database (Denmark)

    Bach, Finn

    2009-01-01

    Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner......Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner...

  19. Estimation of membrane hydration status for standby proton exchange membrane fuel cell systems by impedance measurement

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Rugholt, Mark; Nielsen, Morten Busk

    2014-01-01

    Fuel cells are getting growing interest in both backup systems and electric vehicles. Although these systems are characterized by long periods of inactivity, they must be able to start at any instant in the shortest time. However, the membrane of which PEMFCs are made tends to dry out when...... not in use. This increases the time required to start the system and could lead to the destruction of the fuel cell. In this article an impedance measurement circuit is presented, which is part of a humidity status estimator for monitoring the humidity status of a fuel cell stack during standby....... The impedance measurement circuit has been connected to a fuel cell stack and the operation of estimating the relative humidity has been demonstrated....

  20. Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liao, J.H. [The State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022 (China); Energy and Materials Science Group, Department of Chemistry, Kemitorvet 207, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Li, Q.F.; Jensen, J.O.; Bjerrum, N.J. [Energy and Materials Science Group, Department of Chemistry, Kemitorvet 207, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Rudbeck, H.C. [Danish Power Systems ApS, Raadhusvej 59, DK 2920 Charlottenlund (Denmark); Chromik, A.; Kerres, J. [Institute for Chemical Process Engineering, University of Stuttgart, D-70199 Stuttgart (Germany); Xing, W. [The State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022 (China)

    2011-12-15

    Polybenzimidazole membranes imbibed with acid are emerging as a suitable electrolyte material for high-temperature polymer electrolyte fuel cells. The oxidative stability of polybenzimidazole has been identified as an important issue for the long-term durability of such cells. In this paper the oxidative degradation of the polymer membrane was studied under the Fenton test conditions by the weight loss, intrinsic viscosity, size exclusion chromatography, scanning electron microscopy and Fourier transform infrared spectroscopy. During the Fenton test, significant weight losses depending on the initial molecular weight of the polymer were observed. At the same time, viscosity and SEC measurements revealed a steady decrease in molecular weight. The degradation of acid doped PBI membranes under Fenton test conditions is proposed to start by the attack of hydroxyl radicals at the carbon atom linking imidazole ring and benzenoid ring, which may eventually lead to the imidazole ring opening and formation of small molecules and terminal groups for further oxidation by an endpoint oxidation. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. The organochlorine herbicide chloridazon interacts with cell membranes.

    Science.gov (United States)

    Suwalsky, M; Benites, M; Villena, F; Norris, B; Quevedo, L

    1998-07-01

    Chloridazon is a widely used organochlorine herbicide. In order to evaluate its perturbing effect on cell membranes it was made to interact with human erythrocytes, frog adrenergic neuroepithelial synapse and molecular models. These consisted in multilayers of dimyristoylphosphatidylethanolamine (DMPE) and of dimyristoylphosphatidyltidylcholine (DMPC), representative of phospholipid classes located in the inner and outer monolayers of the erythrocyte membrane, respectively. X-ray diffraction showed that chloridazon interacted preferentially with DMPC multilayers. Scanning electron microscopy revealed that 0.1 mM chloridazon induced erythrocyte crenation. According to the bilayer couple hypothesis, this is due to the preferential insertion of chloridazon in the phosphatidylcholine-rich external moiety of the red cell membrane. Electrophysiological measurements showed that nerve stimulation was followed immediately by a transient increase in short-circuit current (SCC) and in the potential difference (PD) of the neuroepithelial synapse. Increasing concentrations of chloridazon caused a dose-dependent and reversible decrease of the responses of both parameters to 76% of their control values. The pesticide induced a similar (28%) significant time-dependent decrease in the basal values of the SCC and of PD. These results are in accordance with a perturbing effect of chloridazon on the phospholipid moiety of the nerve fibre membrane leading to interference with total ion transport across the nerve skin junction.

  2. Cell Surface and Membrane Engineering: Emerging Technologies and Applications.

    Science.gov (United States)

    Saeui, Christopher T; Mathew, Mohit P; Liu, Lingshui; Urias, Esteban; Yarema, Kevin J

    2015-06-18

    Membranes constitute the interface between the basic unit of life-a single cell-and the outside environment and thus in many ways comprise the ultimate "functional biomaterial". To perform the many and often conflicting functions required in this role, for example to partition intracellular contents from the outside environment while maintaining rapid intake of nutrients and efflux of waste products, biological membranes have evolved tremendous complexity and versatility. This article describes how membranes, mainly in the context of living cells, are increasingly being manipulated for practical purposes with drug discovery, biofuels, and biosensors providing specific, illustrative examples. Attention is also given to biology-inspired, but completely synthetic, membrane-based technologies that are being enabled by emerging methods such as bio-3D printers. The diverse set of applications covered in this article are intended to illustrate how these versatile technologies-as they rapidly mature-hold tremendous promise to benefit human health in numerous ways ranging from the development of new medicines to sensitive and cost-effective environmental monitoring for pathogens and pollutants to replacing hydrocarbon-based fossil fuels.

  3. Multi-layer graphene membrane based memory cell

    Science.gov (United States)

    Siahlo, Andrei I.; Popov, Andrey M.; Poklonski, Nikolai A.; Lozovik, Yurii E.; Vyrko, Sergey A.; Ratkevich, Sergey V.

    2016-10-01

    The scheme and operational principles of the nanoelectromechanical memory cell based on the bending of a multi-layer graphene membrane by the electrostatic force are proposed. An analysis of the memory cell total energy as a function of the memory cell sizes is used to determine the sizes corresponding to a bistable memory cell with the conducting ON and non-conducting OFF states and to calculate the switching voltage between the OFF and ON states. It is shown that a potential barrier between the OFF and ON states is huge for practically all sizes of a bistable memory cell which excludes spontaneous switching and allows the proposed memory cell to be used for long-term archival storage.

  4. Changes in morphology of actin filaments and expression of alkaline phosphatase at 3D cultivation of MG-63 osteoblast-like cells on mineralized fibroin scaffolds.

    Science.gov (United States)

    Goncharenko, A V; Malyuchenko, N V; Moisenovich, A M; Kotlyarova, M S; Arkhipova, A Yu; Kon'kov, A S; Agapov, I I; Molochkov, A V; Moisenovich, M M; Kirpichnikov, M P

    2016-09-01

    3D cultivation of MG-63 osteoblast-like cells on mineralized fibroin scaffolds leads to an increase in the expression of alkaline phosphatase, an early marker of bone formation. Increased expression is associated with the actin cytoskeleton reorganization under the influence of 3D cultivation and osteogenic calcium phosphate component of the microcarrier.

  5. Near-critical fluctuations and cytoskeleton-assisted phase separation lead to subdiffusion in cell membranes

    CERN Document Server

    Ehrig, Jens; Schwille, Petra

    2010-01-01

    We address the relationship between membrane microheterogeneity and anomalous subdiffusion in cell membranes by carrying out Monte Carlo simulations of two-component lipid membranes. We find that near-critical fluctuations in the membrane lead to transient subdiffusion, while membrane-cytoskeleton interaction strongly affects phase separation, enhances subdiffusion, and eventually leads to hop diffusion of lipids. Thus, we present a minimum realistic model for membrane rafts showing the features of both microscopic phase separation and subdiffusion.

  6. Efficiency of non-optimized direct carbon fuel cell with molten alkaline electrolyte fueled by carbonized biomass

    Science.gov (United States)

    Kacprzak, A.; Kobyłecki, R.; Włodarczyk, R.; Bis, Z.

    2016-07-01

    The direct carbon fuel cells (DCFCs) belong to new generation of energy conversion devices that are characterized by much higher efficiencies and lower emission of pollutants than conventional coal-fired power plants. In this paper the DCFC with molten hydroxide electrolyte is considered as the most promising type of the direct carbon fuel cells. Binary alkali hydroxide mixture (NaOH-LiOH, 90-10 mol%) is used as electrolyte and the biochar of apple tree origin carbonized at 873 K is applied as fuel. The performance of a lab-scale DCFC with molten alkaline electrolyte is investigated and theoretical, practical, voltage, and fuel utilization efficiencies of the cell are calculated and discussed. The practical efficiency is assessed on the basis of fuel HHV and LHV and the values are estimated at 40% and 41%, respectively. The average voltage efficiency is calculated as roughly 59% (at 0.65 V) and it is in a relatively good agreement with the values obtained by other researchers. The calculated efficiency of fuel utilization exceeds 95% thus indicating a high degree of carbon conversion into the electric power.

  7. Sterol-Rich Membrane Domains Define Fission Yeast Cell Polarity.

    Science.gov (United States)

    Makushok, Tatyana; Alves, Paulo; Huisman, Stephen Michiel; Kijowski, Adam Rafal; Brunner, Damian

    2016-05-19

    Cell polarization is crucial for the functioning of all organisms. The cytoskeleton is central to the process but its role in symmetry breaking is poorly understood. We study cell polarization when fission yeast cells exit starvation. We show that the basis of polarity generation is de novo sterol biosynthesis, cell surface delivery of sterols, and their recruitment to the cell poles. This involves four phases occurring independent of the polarity factor cdc42p. Initially, multiple, randomly distributed sterol-rich membrane (SRM) domains form at the plasma membrane, independent of the cytoskeleton and cell growth. These domains provide platforms on which the growth and polarity machinery assembles. SRM domains are then polarized by the microtubule-dependent polarity factor tea1p, which prepares for monopolar growth initiation and later switching to bipolar growth. SRM polarization requires F-actin but not the F-actin organizing polarity factors for3p and bud6p. We conclude that SRMs are key to cell polarization.

  8. Solid Polymer Fuel Cells. Electrode and membrane performance studies

    Energy Technology Data Exchange (ETDEWEB)

    Moeller-Holst, S.

    1996-12-31

    This doctoral thesis studies aspects of fuel cell preparation and performance. The emphasis is placed on preparation and analysis of low platinum-loading solid polymer fuel cell (SPEC) electrodes. A test station was built and used to test cells within a wide range of real operating conditions, 40-150{sup o}C and 1-10 bar. Preparation and assembling equipment for single SPFCs was designed and built, and a new technique of spraying the catalyst layer directly onto the membrane was successfully demonstrated. Low Pt-loading electrodes (0.1 mg Pt/cm{sup 2}) prepared by the new technique exhibited high degree of catalyst utilization. The performance of single cells holding these electrodes is comparable to state-of-the-art SPFCs. Potential losses in single cell performance are ascribed to irreversibilities by analysing the efficiency of the Solid Oxide Fuel Cell by means of the second law of thermodynamics. The water management in membranes is discussed for a model system and the results are relevant to fuel cell preparation and performance. The new spray deposition technique should be commercially interesting as it involves few steps as well as techniques that are adequate for larger scale production. 115 refs., 43 figs., 18 tabs.

  9. Proton exchange membrane fuel cell technology for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Swathirajan, S. [General Motors R& D Center, Warren, MI (United States)

    1996-04-01

    Proton Exchange Membrane (PEM) fuel cells are extremely promising as future power plants in the transportation sector to achieve an increase in energy efficiency and eliminate environmental pollution due to vehicles. GM is currently involved in a multiphase program with the US Department of Energy for developing a proof-of-concept hybrid vehicle based on a PEM fuel cell power plant and a methanol fuel processor. Other participants in the program are Los Alamos National Labs, Dow Chemical Co., Ballard Power Systems and DuPont Co., In the just completed phase 1 of the program, a 10 kW PEM fuel cell power plant was built and tested to demonstrate the feasibility of integrating a methanol fuel processor with a PEM fuel cell stack. However, the fuel cell power plant must overcome stiff technical and economic challenges before it can be commercialized for light duty vehicle applications. Progress achieved in phase I on the use of monolithic catalyst reactors in the fuel processor, managing CO impurity in the fuel cell stack, low-cost electrode-membrane assembles, and on the integration of the fuel processor with a Ballard PEM fuel cell stack will be presented.

  10. Solid Polymer Fuel Cells. Electrode and membrane performance studies

    Energy Technology Data Exchange (ETDEWEB)

    Moeller-Holst, S.

    1996-12-31

    This doctoral thesis studies aspects of fuel cell preparation and performance. The emphasis is placed on preparation and analysis of low platinum-loading solid polymer fuel cell (SPEC) electrodes. A test station was built and used to test cells within a wide range of real operating conditions, 40-150{sup o}C and 1-10 bar. Preparation and assembling equipment for single SPFCs was designed and built, and a new technique of spraying the catalyst layer directly onto the membrane was successfully demonstrated. Low Pt-loading electrodes (0.1 mg Pt/cm{sup 2}) prepared by the new technique exhibited high degree of catalyst utilization. The performance of single cells holding these electrodes is comparable to state-of-the-art SPFCs. Potential losses in single cell performance are ascribed to irreversibilities by analysing the efficiency of the Solid Oxide Fuel Cell by means of the second law of thermodynamics. The water management in membranes is discussed for a model system and the results are relevant to fuel cell preparation and performance. The new spray deposition technique should be commercially interesting as it involves few steps as well as techniques that are adequate for larger scale production. 115 refs., 43 figs., 18 tabs.

  11. Imidazolium-Functionalized Poly(arylene ether sulfone) Anion-Exchange Membranes Densely Grafted with Flexible Side Chains for Fuel Cells.

    Science.gov (United States)

    Guo, Dong; Lai, Ao Nan; Lin, Chen Xiao; Zhang, Qiu Gen; Zhu, Ai Mei; Liu, Qing Lin

    2016-09-28

    With the intention of optimizing the performance of anion-exchange membranes (AEMs), a set of imidazolium-functionalized poly(arylene ether sulfone)s with densely distributed long flexible aliphatic side chains were synthesized. The membranes made from the as-synthesized polymers are robust, transparent, and endowed with microphase segregation capability. The ionic exchange capacity (IEC), hydroxide conductivity, water uptake, thermal stability, and alkaline resistance of the AEMs were evaluated in detail for fuel cell applications. Morphological observation with the use of atomic force microscopy and small-angle X-ray scattering reveals that the combination of high-local-density-type and side-chain-type architectures induces distinguished nanophase separation in the AEMs. The as-prepared membranes have advantages in effective water management and ionic conductivity over traditional main-chain polymers. Typically, the conductivity and IEC were in the ranges of 57.3-112.5 mS cm(-1) and 1.35-1.84 mequiv g(-1) at 80 °C, respectively. Furthermore, the membranes exhibit good thermal and alkaline stability and achieve a peak power density of 114.5 mW cm(-2) at a current density of 250.1 mA cm(-2). Therefore, the present polymers containing clustered flexible pendent aliphatic imidazolium promise to be attractive AEM materials for fuel cells.

  12. Plasmonic Light Trapping in Ultrathin Single Crystal Silicon Membrane for Solar Cells Application

    Science.gov (United States)

    2015-06-14

    for solar cell applications. Sub-ten micrometer free standing silicon membranes were produced by the chemical etching of silicon wafers. The produced...membranes were observed to be mechanically flexible, yet sufficiently sturdy to tolerate the different processing steps during solar cell fabrication...Approved for public release; distribution is unlimited. Plasmonic Light Trapping in Ultrathin Single Crystal Silicon Membrane for Solar Cells

  13. Modeling a Membrane: Using Engineering Design to Simulate Cell Transport Processes

    Science.gov (United States)

    Mason, Kevin; Evans, Brian

    The "plasma membrane," which controls what comes in and goes out of a cell, is integral to maintaining homeostasis. Cell transport of small molecules across the cell membrane happens in several different ways. Some small, nonpolar molecules cross the plasma membrane along the concentration gradient directly through the "phospholipid…

  14. Assembly of a Cost-Effective Anode Using Palladium Nanoparticles for Alkaline Fuel Cell Applications

    Science.gov (United States)

    Feliciano-Ramos, Ileana; Casan~as-Montes, Barbara; García-Maldonado, María M.; Menendez, Christian L.; Mayol, Ana R.; Díaz-Vazquez, Liz M.; Cabrera, Carlos R.

    2015-01-01

    Nanotechnology allows the synthesis of nanoscale catalysts, which offer an efficient alternative for fuel cell applications. In this laboratory experiment, the student selects a cost-effective anode for fuel cells by comparing three different working electrodes. These are commercially available palladium (Pd) and glassy carbon (GC) electrodes, and…

  15. Collaboration between primitive cell membranes and soluble catalysts.

    Science.gov (United States)

    Adamala, Katarzyna P; Engelhart, Aaron E; Szostak, Jack W

    2016-03-21

    One widely held model of early life suggests primitive cells consisted of simple RNA-based catalysts within lipid compartments. One possible selective advantage conferred by an encapsulated catalyst is stabilization of the compartment, resulting from catalyst-promoted synthesis of key membrane components. Here we show model protocell vesicles containing an encapsulated enzyme that promotes the synthesis of simple fatty acid derivatives become stabilized to Mg(2+), which is required for ribozyme activity and RNA synthesis. Thus, protocells capable of such catalytic transformations would have enjoyed a selective advantage over other protocells in high Mg(2+) environments. The synthetic transformation requires both the catalyst and vesicles that solubilize the water-insoluble precursor lipid. We suggest that similar modified lipids could have played a key role in early life, and that primitive lipid membranes and encapsulated catalysts, such as ribozymes, may have acted in conjunction with each other, enabling otherwise-impossible chemical transformations within primordial cells.

  16. Plasma membrane repair: the adaptable cell life-insurance.

    Science.gov (United States)

    Jimenez, Ana Joaquina; Perez, Franck

    2017-08-01

    The plasma membrane is the most basic element necessary for the cell to exist and be distinguishable from its environment. Regulated mechanisms allow tightly controlled communication between intacellular and extracellular medium allowing the maintenance of a specific biochemical environment, optimized for cellular functions. The anarchic and uncontrolled opening of a hole in the PM induces a change in the concentration of ions and oxidizing agents perturbing homeostasis. Fortunately, the cell possesses mechanisms that are capable of reacting to sudden extracellular medium entry and to block the leakage locally. Here we summarize the known mechanisms of membrane repair and how the size of the wound and the resulting calcium entry activates preferentially one or another mechanism adapted to the magnitude of the injury. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Evaluation of stem cell components in retrocorneal membranes.

    Science.gov (United States)

    Lee, Seok Hyun; Kim, Kyoung Woo; Kim, Mi Kyung; Chun, Yeoun Sook; Kim, Jae Chan

    2014-06-01

    The purpose of this study was to elucidate the origin and cellular composition of retrocorneal membranes (RCMs) associated with chemical burns using immunohistochemical staining for primitive cell markers. Six cases of RCMs were collected during penetrating keratoplasty. We examined RCMs with hematoxylin and eosin (H&E), periodic acid-Schiff (PAS) staining and immunohistochemical analysis using monoclonal antibodies against hematopoietic stem cells (CD34, CD133, c-kit), mesenchymal stem cells (beta-1-integrin, TGF-β, vimentin, hSTRO-1), fibroblasts (FGF-β, α-smooth muscle actin), and corneal endothelial cells (type IV collagen, CD133, VEGF, VEGFR1). Histologic analysis of RCMs revealed an organized assembly of spindle-shaped cells, pigment-laden cells, and thin collagenous matrix structures. RCMs were positive for markers of mesenchymal stem cells including beta-1-integrin, TGF-β, vimentin, and hSTRO-1. Fibroblast markers were also positive, including FGF-β and α-smooth muscle actin (SMA). In contrast, immunohistochemical staining was negative for hematopoietic stem cell markers including CD34, CD133 and c-kit as well as corneal endothelial cell markers such as type IV collagen, CD133 except VEGF and VEGFR1. Pigment-laden cells did not stain with any antibodies. The results of this study suggest that RCMs consist of a thin collagen matrix and fibroblast-like cells and may be a possible neogenetic structure produced from a lineage of bone marrow-derived mesenchymal stem cells.

  18. Study of the effect of membrane thickness on microcapsule strength, permeability, and cell proliferation.

    Science.gov (United States)

    Ma, Ying; Zhang, Ying; Wang, Yu; Wang, Qiuyan; Tan, Mingqian; Liu, Yang; Chen, Li; Li, Na; Yu, Weiting; Ma, Xiaojun

    2013-04-01

    Cell microencapsulation is one of the promising strategies for in vitro production of proteins or in vivo delivery of therapeutic products. Membrane thickness controls microcapsule strength and permeability, which may in return affect cell growth and metabolism. In this study, the strength, permeability, and encapsulated Chinese hamster ovary cell proliferation and metabolism of four groups of microcapsules with different membrane thicknesses were investigated. It was found that increasing membrane thickness increases microcapsule strength, whereas decreases membrane permeability. During the first 6 days, cells within microcapsules with 10 μm thickness membrane proliferated fast and could reach a cell density of 1.9 × 10(7) cells/mL microcapsule with 92% cell density. A cell density of 5.5 × 10(7) cells/mL microcapsule with >85% cell density was achieved within microcapsules with 15 μm membrane thickness and these microcapsules kept over 88% integrity ratio after 11 days, which was much higher than that of microcapsules with 10 μm membrane thickness. Membrane with more than 20 μm thickness was not suited for encapsulated cell culture owing to low-protein diffusion rate. These results indicated that cells survived shortly within the thinnest membrane thickness. There was a specific membrane thickness more suitable for cell growth for a long-time culture. These findings will be useful for preparing microcapsules with the desired membrane thickness for microencapsulated cell culture dependent on various purposes.

  19. Membrane associated qualitative differences in cell ultrastructure of chemically and high pressure cryofixed plant cells.

    Science.gov (United States)

    Zechmann, Bernd; Müller, Maria; Zellnig, Günther

    2007-06-01

    Membrane contrast can sometimes be poor in biological samples after high pressure freezing (HPF) and freeze substitution (FS). The addition of water to the FS-medium has been shown to improve membrane contrast in animal tissue and yeast. In the present study we tested the effects of 1% and 5% water added to the FS-medium (2% osmium with 0.2% uranyl acetate in anhydrous acetone) on the quality and visibility of membranes in high pressure frozen leaf samples of Cucurbita pepo L. plants and compared them to chemically fixed cells (3% glutaraldehyde post-fixed with 1% osmium tetroxide). The addition of water to the FS-medium drastically decreased the amounts of well preserved cells and did not significantly improve the quality nor visibility of membranes. In samples that were freeze substituted in FS-media containing 1% and 5% water the width of thylakoid membranes was found to be significantly increased of about 20% and the perinuclear space was up to 76% wider in comparison to what was found in samples which were freeze substituted without water. No differences were found in the thickness of membranes between chemically and cryofixed cells that were freeze substituted in the FS-medium without water. Nevertheless, in chemically fixed cells the intrathylakoidal space was about 120% wider than in cryofixed cells that were freeze substituted with or without water. The present results demonstrate that the addition of water to the FS-medium does not improve membrane contrast but changes the width of thylakoid membranes and the perinuclear space in the present plant material. The addition of water to the FS-medium is therefore not as essential for improved membrane contrast in the investigated plant samples as it was observed in cells of animal tissues and yeast cells.

  20. The insecticide DDT decreases membrane potential and cell input resistance of cultured human liver cells.

    Science.gov (United States)

    Schefczik, K; Buff, K

    1984-10-03

    The resting membrane potential, Em, and the cell input resistance, Rinp, of cultured human Chang liver cells were measured using the single electrode 'double-pulse' current clamp technique, following exposure of the cells to the insecticide DDT (20 microM). In control (unexposed) cells, the mean Em was -24 mV, and the mean Rinp was 30 M omega. Neither parameter was significantly impaired after 1 h of cell exposure to DDT. But after 7 and 48 h, the Em was depolarized by 15 and 25 mV, respectively, in parallel with a decrease of the cell input resistance. The strongly time-delayed effect of DDT on Chang liver cell membranes may indicate a mode of interaction different from excitable membranes.

  1. Polymer Electrolyte Membrane (PEM) Fuel Cells Modeling and Optimization

    Science.gov (United States)

    Zhang, Zhuqian; Wang, Xia; Shi, Zhongying; Zhang, Xinxin; Yu, Fan

    2006-11-01

    Performance of polymer electrolyte membrane (PEM) fuel cells is dependent on operating parameters and designing parameters. Operating parameters mainly include temperature, pressure, humidity and the flow rate of the inlet reactants. Designing parameters include reactants distributor patterns and dimensions, electrodes dimensions, and electrodes properties such as porosity, permeability and so on. This work aims to investigate the effects of various designing parameters on the performance of PEM fuel cells, and the optimum values will be determined under a given operating condition.A three-dimensional steady-state electrochemical mathematical model was established where the mass, fluid and thermal transport processes are considered as well as the electrochemical reaction. A Powell multivariable optimization algorithm will be applied to investigate the optimum values of designing parameters. The objective function is defined as the maximum potential of the electrolyte fluid phase at the membrane/cathode interface at a typical value of the cell voltage. The robustness of the optimum design of the fuel cell under different cell potentials will be investigated using a statistical sensitivity analysis. By comparing with the reference case, the results obtained here provide useful tools for a better design of fuel cells.

  2. Water Soluble Polymers as Proton Exchange Membranes for Fuel Cells

    Directory of Open Access Journals (Sweden)

    Bing-Joe Hwang

    2012-03-01

    Full Text Available The relentless increase in the demand for useable power from energy-hungry economies continues to drive energy-material related research. Fuel cells, as a future potential power source that provide clean-at-the-point-of-use power offer many advantages such as high efficiency, high energy density, quiet operation, and environmental friendliness. Critical to the operation of the fuel cell is the proton exchange membrane (polymer electrolyte membrane responsible for internal proton transport from the anode to the cathode. PEMs have the following requirements: high protonic conductivity, low electronic conductivity, impermeability to fuel gas or liquid, good mechanical toughness in both the dry and hydrated states, and high oxidative and hydrolytic stability in the actual fuel cell environment. Water soluble polymers represent an immensely diverse class of polymers. In this comprehensive review the initial focus is on those members of this group that have attracted publication interest, principally: chitosan, poly (ethylene glycol, poly (vinyl alcohol, poly (vinylpyrrolidone, poly (2-acrylamido-2-methyl-1-propanesulfonic acid and poly (styrene sulfonic acid. The paper then considers in detail the relationship of structure to functionality in the context of polymer blends and polymer based networks together with the effects of membrane crosslinking on IPN and semi IPN architectures. This is followed by a review of pore-filling and other impregnation approaches. Throughout the paper detailed numerical results are given for comparison to today’s state-of-the-art Nafion® based materials.

  3. Binding of /sup 18/F by cell membranes and cell walls of Streptococcus mutans

    Energy Technology Data Exchange (ETDEWEB)

    Yotis, W.W.; Zeb, M.; McNulty, J.; Kirchner, F.; Reilly, C.; Glendenin, L.

    1983-07-01

    The binding of /sup 18/F to isolated cell membranes and cell walls of Streptococcus mutans GS-5 or other bacteria was assayed. The attachment of /sup 18/F to these cell envelopes proceeded slowly and reached equilibrium within 60 min. /sup 18/F binding was stimulated by Ca/sup 2 +/ (1 mM). The binding of /sup 18/F to cellular components was dependent upon the pH, as well as the amount of /sup 18/F and dose of the binder employed. The binding of /sup 18/F by cell walls prepared from fluoride-sensitive and fluoride-resistant cells of S. salivarius and S. mutans did not differ significantly. The pretreatment of cell walls or cell membranes for 60 min at 30 degrees C with 1 mg of RNase, DNase, or trypsin per ml did not influence the binding of /sup 18/F by the walls and membranes of S. mutans GS-5. However, prior exposure of cell membranes to sodium dodecyl sulfate caused a significant reduction in the number of /sup 18/F atoms bound by the membranes. In saturated assay systems, cell membranes of S. mutans GS-5 bound 10(15) to 10(16) atoms of /sup 18/F per mg (dry weight), whereas cell walls from S. mutans GS-5, FA-1, and HS-6 or Actinomyces viscosus T14V and T14AV bound 10(12) to 10(13) atoms of /sup 18/F per mg (dry weight). /sup 18/F in this quantity (10(12) to 10(13) atoms) cannot be detected with the fluoride electrode. The data provide, for the first time, a demonstration of /sup 18/F binding by cell membranes and walls of oral flora.

  4. Graphene-doped electrospun nanofiber membrane electrodes and proton exchange membrane fuel cell performance

    Science.gov (United States)

    Wei, Meng; Jiang, Min; Liu, Xiaobo; Wang, Min; Mu, Shichun

    2016-09-01

    A rational electrode structure can allow proton exchange membrane (PEM) fuel cells own high performance with a low noble metal loading and an optimal transport pathway for reaction species. In this study, we develop a graphene doped polyacrylonitile (PAN)/polyvinylident fluoride (PVDF) (GPP) electrospun nanofiber electrode with improved electrical conductivity and high porosity, which could enhance the triple reaction boundary and promote gas and water transport throughout the porous electrode. Thus the increased electrochemical active surface area (ECSA) of Pt catalysts and fuel cell performance can be expected. As results, the ECSA of hot-pressed electrospun electrodes with 2 wt% graphene oxide (GO) is up to 84.3 m2/g, which is greatly larger than that of the conventional electrode (59.5 m2/g). Significantly, the GPP nanofiber electrospun electrode with Pt loading of 0.2 mg/cm2 exhibits higher fuel cell voltage output and stability than the conventional electrode.

  5. Voltage-dependent changes in specific membrane capacitance caused by prestin, the outer hair cell lateral membrane motor.

    Science.gov (United States)

    Santos-Sacchi, Joseph; Navarrete, Enrique

    2002-05-01

    In the outer hair cell (OHC), membrane capacitance principally derives from two components - that associated with lateral membrane sensor/motor charge movement, and that proportional to the membrane surface area (C(sa)). We used measures of membrane capacitance to test a model hypothesis that OHC lateral membrane molecular motors, recently identified as the protein prestin, fluctuate between two area states. By measuring membrane capacitance in native OHCs or prestin-transfected HEK cells at extreme voltages (+/-200 mV) where motor-derived charge movement is small or absent, we observed that C(sa) depends on the state of the motors, or correspondingly on membrane voltage. Deiters cells or control HEK cells, which lack motors, do not show this dependence. We modeled the voltage-dependent change in C(sa) as a Boltzmann process with the same parameters that describe the charge movement of the motors' voltage sensors. C(sa) is 3.28+/-0.75 pF (mean +/-SD; n=23) larger during extreme hyperpolarization, and the number of motors in OHCs and prestin-transfected HEK cells correlates with the magnitude of Delta C(sa)( r=0.78). Although these data are consistent with the area motor model, the corresponding area change, assuming 0.5 microF/cm(2) under constant membrane thickness, is unphysiologically large, and indicates that the capacitance change must result from changes not only in lateral membrane area but also specific capacitance. Thus, we conclude that a conformational change in the lateral membrane motor, prestin, additionally alters the dielectric constant and/or thickness of the lateral plasma membrane.

  6. Quantitative analysis of cell surface membrane proteins using membrane-impermeable chemical probe coupled with 18O labeling.

    Science.gov (United States)

    Zhang, Haizhen; Brown, Roslyn N; Qian, Wei-Jun; Monroe, Matthew E; Purvine, Samuel O; Moore, Ronald J; Gritsenko, Marina A; Shi, Liang; Romine, Margaret F; Fredrickson, James K; Pasa-Tolić, Ljiljana; Smith, Richard D; Lipton, Mary S

    2010-05-07

    We report a mass spectrometry-based strategy for quantitative analysis of cell surface membrane proteome changes. The strategy includes enrichment of surface membrane proteins using a membrane-impermeable chemical probe followed by stable isotope (18)O labeling and LC-MS analysis. We applied this strategy for enriching membrane proteins expressed by Shewanella oneidensis MR-1, a Gram-negative bacterium with known metal-reduction capability via extracellular electron transfer between outer membrane proteins and extracellular electron receptors. LC/MS/MS analysis resulted in the identification of about 400 proteins with 79% of them being predicted to be membrane localized. Quantitative aspects of the membrane enrichment were shown by peptide level (16)O and (18)O labeling of proteins from wild-type and mutant cells (generated from deletion of a type II secretion protein, GspD) prior to LC-MS analysis. Using a chemical probe labeled pure protein as an internal standard for normalization, the quantitative data revealed reduced abundances in Delta gspD mutant cells of many outer membrane proteins including the outer membrane c-type cytochromes OmcA and MtrC, in agreement with a previous report that these proteins are substrates of the type II secretion system.

  7. Quantitative analysis of cell surface membrane proteins using membrane-impermeable chemical probe coupled with 18O labeling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haizhen; Brown, Roslyn N.; Qian, Weijun; Monroe, Matthew E.; Purvine, Samuel O.; Moore, Ronald J.; Gritsenko, Marina A.; Shi, Liang; Romine, Margaret F.; Fredrickson, Jim K.; Pasa-Tolic, Ljiljana; Smith, Richard D.; Lipton, Mary S.

    2010-05-03

    We report a mass spectrometry-based strategy for quantitative analysis of cell surface membrane proteome changes. The strategy includes enrichment of surface membrane proteins using a membrane-impermeable chemical probe followed by stable isotope 18O labeling and LC-MS analysis. We applied this strategy for enriching membrane proteins expressed by Shewanella oneidensis MR-1, a gram-negative bacterium with known metal-reduction capability via extracellular electron transfer between outer membrane proteins and environmental electron receptors. LC/MS/MS analysis resulted in the identification of about 79% membrane proteins among all proteins identified from the enriched sample. To illustrate the quantification of membrane proteome changes, enriched membrane protein samples from wild-type and mutant cells (generated from deletion of a type II secretion protein, GspD) were further labeled with 16O and 18O at the peptide level prior to LC-MS analysis. A chemical-probe-labeled pure protein has also been used as an internal standard for normalization purpose. The quantitative data revealed reduced abundances of many outer membrane proteins such as OmcA and MtrC in ΔgspD mutant cells, which agreed well with previously published studies.

  8. Quantitative analysis of cell surface membrane proteins using membrane-impermeable chemical probe coupled with 18O labeling

    Science.gov (United States)

    Zhang, Haizhen; Brown, Roslyn N.; Qian, Wei-Jun; Monroe, Matthew E.; Purvine, Samuel O.; Moore, Ronald J.; Gritsenko, Marina A.; Shi, Liang; Romine, Margaret F; Fredrickson, James K.; Paša-Tolić, Ljiljana; Smith, Richard D.; Lipton, Mary S.

    2010-01-01

    We report a mass spectrometry-based strategy for quantitative analysis of cell surface membrane proteome changes. The strategy includes enrichment of surface membrane proteins using a membrane-impermeable chemical probe followed by stable isotope 18O labeling and LC-MS analysis. We applied this strategy for enriching membrane proteins expressed by Shewanella oneidensis MR-1, a gram-negative bacterium with known metal-reduction capability via extracellular electron transfer between outer membrane proteins and extracellular electron receptors. LC/MS/MS analysis resulted in the identification of about 400 proteins with 79% of them being predicted to be membrane localized. Quantitative aspects of the membrane enrichment were shown by peptide level 16O and 18O labeling of proteins from wild-type and mutant cells (generated from deletion of a type II secretion protein, GspD) prior to LC-MS analysis. Using a chemical probe labeled pure protein as an internal standard for normalization, the quantitative data revealed reduced abundances in ΔgspD mutant cells of many outer membrane proteins including the outer membrane c-cype cytochromes OmcA and MtrC, in agreement with previously investigation demonstrating that these proteins are substrates of the type II secretion system. PMID:20380418

  9. Alkaline phosphatase of Physarum polycephalum is insoluble.

    Science.gov (United States)

    Furuhashi, Kiyoshi

    2008-02-01

    The plasmodia of Physarum polycephalum grow as multinucleated cells in the presence of sufficient humidity and nutriment. Under non-illuminating conditions, stresses such as low temperature or high concentrations of salts transform the plasmodia into spherules whereas dehydration induces sclerotization. Some phosphatases including protein phosphatase and acid phosphatase have been purified from the plasmodia, but alkaline phosphatase remains to be elucidated. Phosphatase of the plasmodia, spherules and sclerotia was visualized by electrophoresis gel-staining assay using 5-bromo-4-chloro-3-indolyl phosphate. Insoluble fractions of the sclerotia were abundant in phosphatase activity. The phosphatase which was extracted by nonionic detergent was subjected to column chromatography and preparative electrophoresis. Purified phosphatase showed the highest activity at pH 8.8, indicating that this enzyme belongs to alkaline phosphatase. The apparent molecular mass from sodium dodecyl sulfate-polyacrylamide gel electrophoresis under non-reducing condition was estimated to be 100 kDa whereas that under reducing was 105 kDa. An amount of 1% sodium dodecyl sulfate or 0.5 M NaCl had no effects on the activity although the phosphatase showed heat instability, Mg(2+)-dependency and sensitivity to 2-glycerophosphate or NaF. The extracting conditions and enzymatic properties suggest that this alkaline phosphatase which is in a membrane-bound form plays important roles in phosphate metabolism.

  10. Two 3D structured Co-Ni bimetallic oxides as cathode catalysts for high-performance alkaline direct methanol fuel cells

    Science.gov (United States)

    Liu, Yan; Shu, Chengyong; Fang, Yuan; Chen, Yuanzhen; Liu, Yongning

    2017-09-01

    Two NiCo2O4 bimetallic oxides were synthesized via a facile hydrothermal method. SEM and TEM observations show that these materials have three-dimensional (3D) dandelion-like (DL) and flower-like (FL) morphologies. Their large specific surface areas (90.68 and 19.8 m2·g-1) and porous structures provide many active sites and effective transport pathways for the oxygen reduction reaction (ORR). Electrochemical measurements with a rotating ring-disc electrode (RRDE) indicate that the electron transfer numbers of the NiCo2O4-DL and NiCo2O4-FL catalysts for ORR in an alkaline solution are 3.97 and 3.91, respectively. Fuel cells were assembled with the bimetallic oxides, PtRu/C and a polymer fiber membrane (PFM) as cathode catalysts, anode catalyst and electrolyte film, respectively. For NiCo2O4-DL, the peak power density reaches up to 73.5 mW·cm-2 at 26 °C, which is the highest room-temperature value reported to date. The high catalytic activity of NiCo2O4 is mainly attributed to the presence of many Co3+ cations that directly donate electrons to O2 to reduce it via a more efficient and effective route. Furthermore, the catalytic performance of NiCo2O4-DL is superior to that of NiCo2O4-FL because it has a higher specific surface area and is less crystalline.

  11. The Performance of Electron-Mediator Modified Activated Carbon as Anode for Direct Glucose Alkaline Fuel Cell

    Directory of Open Access Journals (Sweden)

    Zi Li

    2016-06-01

    Full Text Available Six different electron mediators were immobilized on the activated carbon (AC anode and their effects on performance of a direct glucose alkaline fuel cell were explored. 2-hydroxy-1, 4-naphthoquinone (NQ, methyl viologen (MV, neutral red (NR, methylene blue (MB, 1, 5-dichloroanthraquinone (DA and anthraquinone (AQ were doped in activated carbon (AC, respectively, and pressed on nickel foam to fabricate the anodes. NQ shows comparable performance with MV, but with much lower cost and environmental impact. With NQ-AC anode, the fuel cell attained a peak power density of 16.10 Wm−2, peak current density of 48.09 Am−2, and open circuit voltage of 0.76 V under the condition of 1 M glucose, 3 M KOH, and ambient temperature. Polarization curve, EIS and Tafel measurements were also conducted to explore the mechanism of performance enhancement. The high performance is likely due to the enhanced charge transfer and more reactive sites provided on the anode.

  12. THE COMPARISON OF STRENGTH PROPERTY BETWWEEN KRAFT PULP AND ALKALINE SULFITE-ANTHRAQUINONE PULP FOR THICKER CELL WALL FIBER MATERIALS

    Institute of Scientific and Technical Information of China (English)

    Li Li; Feifei Wang; Yunzhan Zhang

    2004-01-01

    The comparison of strength property between kraft pulp ( KP ) and Alkaline Sulfite-Anthraquinone (AS-AQ) pulp for thicker cell wall fiber materials Larch and Quercus as examples was studied. The average coefficient of flexibility of Larch and Quercus are 0.6-0.7 and 0.45-0.50, respectively. The results showed that the strength property of thicker cell wall pulp is some what different from those reported earlier. The strengths of AS-AQ are all higher than those of KP for Larch and Quercus. For Larch, under same beating degree the breaking length of AS-AQ is 8-16% higher than that of KP, burst index 3-14% higher, folding endurance 30% higher,tear index slightly higher. For Quercus, the breaking length of AS-AQ is 5-10% higher then that of KP,burst index 10-15% higher, folding endurance 30-50% higher, tear index 5-15% higher. Under the same breaking length the tear index of AS-AQ pulp is significantly higher than that of KP for both Larch and Quercus.

  13. Dynamic analysis of magnetic nanoparticles crossing cell membrane

    Science.gov (United States)

    Pedram, Maysam Z.; Shamloo, Amir; Ghafar-Zadeh, Ebrahim; Alasty, Aria

    2017-01-01

    Nowadays, nanoparticles (NPs) are used in a variety of biomedical applications including brain disease diagnostics and subsequent treatments. Among the various types of NPs, magnetic nanoparticles (MNPs) have been implemented by many research groups for an array of life science applications. In this paper, we studied MNPs controlled delivery into the endothelial cells using a magnetic field. Dynamics equations of MNPs were defined in the continuous domain using control theory methods and were applied to crossing the cell membrane. This study, dedicated to clinical and biomedical research applications, offers a guideline for the generation of a magnetic field required for the delivery of MNPs.

  14. A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment

    KAUST Repository

    Malaeb, Lilian

    2013-10-15

    A new hybrid, air-biocathode microbial fuel cell-membrane bioreactor (MFC-MBR) system was developed to achieve simultaneous wastewater treatment and ultrafiltration to produce water for direct reclamation. The combined advantages of this system were achieved by using an electrically conductive ultrafiltration membrane as both the cathode and the membrane for wastewater filtration. The MFC-MBR used an air-biocathode, and it was shown to have good performance relative to an otherwise identical cathode containing a platinum catalyst. With 0.1 mm prefiltered domestic wastewater as the feed, the maximum power density was 0.38 W/m2 (6.8 W/m3) with the biocathode, compared to 0.82 W/m2 (14.5 W/m3) using the platinum cathode. The permeate quality from the biocathode reactor was comparable to that of a conventional MBR, with removals of 97% of the soluble chemical oxygen demand, 97% NH3-N, and 91% of total bacteria (based on flow cytometry). The permeate turbidity was <0.1 nephelometric turbidity units. These results show that a biocathode MFC-MBR system can achieve high levels of wastewater treatment with a low energy input due to the lack of a need for wastewater aeration. © 2013 American Chemical Society.

  15. Fault tolerance control for proton exchange membrane fuel cell systems

    Science.gov (United States)

    Wu, Xiaojuan; Zhou, Boyang

    2016-08-01

    Fault diagnosis and controller design are two important aspects to improve proton exchange membrane fuel cell (PEMFC) system durability. However, the two tasks are often separately performed. For example, many pressure and voltage controllers have been successfully built. However, these controllers are designed based on the normal operation of PEMFC. When PEMFC faces problems such as flooding or membrane drying, a controller with a specific design must be used. This paper proposes a unique scheme that simultaneously performs fault diagnosis and tolerance control for the PEMFC system. The proposed control strategy consists of a fault diagnosis, a reconfiguration mechanism and adjustable controllers. Using a back-propagation neural network, a model-based fault detection method is employed to detect the PEMFC current fault type (flooding, membrane drying or normal). According to the diagnosis results, the reconfiguration mechanism determines which backup controllers to be selected. Three nonlinear controllers based on feedback linearization approaches are respectively built to adjust the voltage and pressure difference in the case of normal, membrane drying and flooding conditions. The simulation results illustrate that the proposed fault tolerance control strategy can track the voltage and keep the pressure difference at desired levels in faulty conditions.

  16. Cell Surface and Membrane Engineering: Emerging Technologies and Applications

    Directory of Open Access Journals (Sweden)

    Christopher T. Saeui

    2015-06-01

    Full Text Available Membranes constitute the interface between the basic unit of life—a single cell—and the outside environment and thus in many ways comprise the ultimate “functional biomaterial”. To perform the many and often conflicting functions required in this role, for example to partition intracellular contents from the outside environment while maintaining rapid intake of nutrients and efflux of waste products, biological membranes have evolved tremendous complexity and versatility. This article describes how membranes, mainly in the context of living cells, are increasingly being manipulated for practical purposes with drug discovery, biofuels, and biosensors providing specific, illustrative examples. Attention is also given to biology-inspired, but completely synthetic, membrane-based technologies that are being enabled by emerging methods such as bio-3D printers. The diverse set of applications covered in this article are intended to illustrate how these versatile technologies—as they rapidly mature—hold tremendous promise to benefit human health in numerous ways ranging from the development of new medicines to sensitive and cost-effective environmental monitoring for pathogens and pollutants to replacing hydrocarbon-based fossil fuels.

  17. Better Proton-Conducting Polymers for Fuel-Cell Membranes

    Science.gov (United States)

    Narayan, Sri; Reddy, Prakash

    2012-01-01

    Polyoxyphenylene triazole sulfonic acid has been proposed as a basis for development of improved proton-conducting polymeric materials for solid-electrolyte membranes in hydrogen/air fuel cells. Heretofore, the proton-conducting membrane materials of choice have been exemplified by a family of perfluorosulfonic acid-based polymers (Nafion7 or equivalent). These materials are suitable for operation in the temperature of 75 to 85 C, but in order to reduce the sizes and/or increase the energy-conversion efficiencies of fuel-cell systems, it would be desirable to increase temperatures to as high as 120 C for transportation applications, and to as high as 180 C for stationary applications. However, at 120 C and at relative humidity values below 50 percent, the loss of water from perfluorosulfonic acid-based polymer membranes results in fuel-cell power densities too low to be of practical value. Therefore, membrane electrolyte materials that have usefully high proton conductivity in the temperature range of 180 C at low relative humidity and that do not rely on water for proton conduction at 180 C would be desirable. The proposed polyoxyphenylene triazole sulfonic acid-based materials have been conjectured to have these desirable properties. These materials would be free of volatile or mobile acid constituents. The generic molecular structure of these materials is intended to exploit the fact, demonstrated in previous research, that materials that contain ionizable acid and base groups covalently attached to thermally stable polymer backbones exhibit proton conduction even in the anhydrous state.

  18. Membrane currents of spiking cells isolated from turtle retina.

    Science.gov (United States)

    Lasater, E M; Witkovsky, P

    1990-05-01

    We examined the membrane properties of spiking neurons isolated from the turtle (Pseudemys scripta) retina. The cells were maintained in culture for 1-7 days and were studied with the whole cell patch clamp technique. We utilized cells whose perikaryal diameters were greater than 15 microns since Kolb (1982) reported that ganglion cell perikarya in Pseudemys retina are 13-25 microns, whereas amacrine perikarya are less than 14 microns in diameter. We identified 5 currents in the studied cells: (1) a transient sodium current (INa) blocked by TTX, (2) a sustained calcium current (ICa) blocked by cobalt and enhanced by Bay-K 8644, (3) a calcium-dependent potassium current (IK(Ca)), (4) an A-type transient potassium current (IA) somewhat more sensitive to 4-AP than TEA, (5) a sustained potassium current (IK) more sensitive to TEA than 4-AP. The estimated average input resistance of the cells at -70 mV was 720 +/- 440 M omega. When all active currents were blocked, the membrane resistance between -130 and +20 mV was 2.5 G omega. When examined under current clamp, some cells produced multiple spikes to depolarizing steps of 0.1-0.3 nA, whereas other cells produced only a single spike irrespective of the strength of the current pulse. Most single spikers had an outward current that rose to a peak relatively slowly, whereas multiple spikers tend to have a more rapidly activating outward current. Under current clamp, 4-AP slowed the repolarization phase of the spike thus broadening it, but did not always abolish the ability to produce multiple spikes. TEA induced a depolarized plateau following the initial spike which precluded further spikes. It thus appears that the spiking patterns of the retinal cells are shaped primarily by the kinetics of INa, IK and IA and to a lesser extent by IK(Ca).

  19. Mathematical and Computational Modeling of Polymer Exchange Membrane Fuel Cells

    Science.gov (United States)

    Ulusoy, Sehribani

    In this thesis a comprehensive review of fuel cell modeling has been given and based on the review, a general mathematical fuel cell model has been developed in order to understand the physical phenomena governing the fuel cell behavior and in order to contribute to the efforts investigating the optimum performance at different operating conditions as well as with different physical parameters. The steady state, isothermal model presented here accounts for the combined effects of mass and species transfer, momentum conservation, electrical current distribution through the gas channels, the electrodes and the membrane, and the electrochemical kinetics of the reactions in the anode and cathode catalyst layers. One of the important features of the model is that it proposes a simpler modified pseudo-homogeneous/agglomerate catalyst layer model which takes the advantage of the simplicity of pseudo-homogenous modeling while taking into account the effects of the agglomerates in the catalyst layer by using experimental geometric parameters published. The computation of the general mathematical model can be accomplished in 3D, 2D and 1D with the proper assumptions. Mainly, there are two computational domains considered in this thesis. The first modeling domain is a 2D Membrane Electrode Assembly (MEA) model including the modified agglomerate/pseudo-homogeneous catalyst layer modeling with consistent treatment of water transport in the MEA while the second domain presents a 3D model with different flow filed designs: straight, stepped and tapered. COMSOL Multiphysics along with Batteries and Fuel Cell Module have been used for 2D & 3D model computations while ANSYS FLUENT PEMFC Module has been used for only 3D two-phase computation. Both models have been validated with experimental data. With 2D MEA model, the effects of temperature and water content of the membrane as well as the equivalent weight of the membrane on the performance have been addressed. 3D COMSOL simulation

  20. New proton conducting membranes for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar, P.R.

    2006-07-01

    In order to synthesize proton-conducting materials which retain acids in the membrane during fuel cell operating conditions, the synthesis of poly(vinylphosphonic acid) grafted polybenzimidazole (PVPA grafted PBI) and the fabrication of multilayer membranes are mainly focussed in this dissertation. Synthesis of PVPA grafted PBI membrane can be done according to ''grafting through'' method. In ''grafting through'' method (or macromonomer method), monomer (e.g., vinylphosphonic acid) is radically copolymerized with olefin group attached macromonomer (e.g., allyl grafted PBI and vinylbenzyl grafted PBI). This approach is inherently limited to synthesize graft-copolymer with well-defined architectural and structural parameters. The incorporation of poly(vinylphosphonic acid) into PBI lead to improvements in proton conductivity up to 10-2 S/cm. Regarding multilayer membranes, the proton conducting layer-by-layer (LBL) assembly of polymers by various strong acids such as poly(vinylphosphonic acid), poly(vinylsulfonic acid) and poly(styrenesulfonic acid) paired with basic polymers such as poly(4-vinylimidazole) and poly(benzimidazole), which are appropriate for Proton Exchange Membrane Fuel Cell applications have been described. Proton conductivity increases with increasing smoothness of the film and the maximum measured conductivity was 10-4 S/cm at 25A C. Recently, anhydrous proton-conducting membranes with flexible structural backbones, which show proton-conducting properties comparable to Nafion have been focus of current research. The flexible backbone of polymer chains allow for a high segmental mobility and thus, a sufficiently low glass transition temperature (Tg), which is an essential factor to reach highly conductive systems. Among the polymers with a flexible chain backbone, poly(vinylphosphonic acid), poly(vinylbenzylphosphonic acid), poly(2-vinylbenzimidazole), poly(4-styrenesulfonic acid), poly(4-vinylimidazole), poly

  1. Polymer Materials for Fuel Cell Membranes :Sulfonated Poly(ether sulfone) for Universal Fuel Cell Operations

    Institute of Scientific and Technical Information of China (English)

    Hyoung-Juhn Kim

    2005-01-01

    @@ 1Introduction Polymer electrolyte fuel cells (PEFCs) have been spotlighted because they are clean and highly efficient power generation system. Proton exchange membrane fuel cells (PEMFCs), which use reformate gases or pure H2 for a fuel, have been employed for automotives and residential usages. Also, liquid-feed fuel cells such as direct methanol fuel cell (DMFC) and direct formic acid fuel cell (DFAFC) were studied for portable power generation.

  2. The mechanism of the NH4 ion oscillatory transport across the excitable cell membrane

    Directory of Open Access Journals (Sweden)

    Radenović Čedomir N.

    2005-01-01

    Full Text Available This paper presents results on typical oscillations of the membrane potential induced by the excitation of the cell membrane by different concentrations of the NH4Cl solution. The existence of four classes of oscillations of the membrane potential and several different single and local impulses rhythmically occurring were determined. It is known that the oscillatory processes of the membrane potential are in direct dependence on oscillatory transport processes of NH4 and Cl ions across the excitable cell membrane. A hypothesis on a possible mechanism of oscillatory transport processes of NH4 and Cl ions across the excitable cell membrane is also presented.

  3. Protonic conductors for proton exchange membrane fuel cells: An overview

    Directory of Open Access Journals (Sweden)

    Jurado Ramon Jose

    2002-01-01

    Full Text Available At present, Nation, which is a perfluorinated polymer, is one of the few materials that deliver the set of chemical and mechanical properties required to perform as a good electrolyte in proton exchange membrane fuel cells (PEMFCs. However, Nation presents some disadvantages, such as limiting the operational temperature of the fuel system (So°C, because of its inability to retain water at higher temperatures and also suffers chemical crossover. In addition to these restrictions, Nation membranes are very expensive. Reducing costs and using environmentally friendly materials are good reasons to make a research effort in this field in order to achieve similar or even better fuel-cell performances. Glass materials of the ternary system SiO2-ZrO2-P2O5, hybrid materials based on Nation, and nanopore ceramic membranes based on SiO2 TiO2, Al2O3, etc. are considered at present, as promising candidates to replace Nation as the electrolyte in PEMFCs. These types of materials are generally prepared by sol-gel processes in order to tailor their channel-porous structure and pore size. In this communication, the possible candidates in the near future as electrolytes (including other polymers different than Nation in PEMFCs are briefly reviewed. Their preparation methods, their electrical transport properties and conduction mechanisms are considered. The advantages and disadvantages of these materials with respect to Nation are also discussed.

  4. Dual Split Protein (DSP) Assay to Monitor Cell-Cell Membrane Fusion.

    Science.gov (United States)

    Nakane, Shuhei; Matsuda, Zene

    2015-01-01

    Fusion between viral and cellular membranes is the essential first step in infection of enveloped viruses. This step is mediated by viral envelope glycoproteins (Env) that recognize cellular receptors. The membrane fusion between the effector cells expressing viral Env and the target cells expressing its receptors can be monitored by several methods. We have recently developed a pair of chimeric reporter protein composed of split Renilla luciferase (RL) and split GFP. We named this reporter dual split protein (DSP), since it recovers both RL and GFP activities upon self reassociation. By using DSP, pore formation and content mixing between the effector and target cells can be monitored upon the recovery of RL and GFP activities after the membrane fusion. This quick assay provides quantitative as well as spatial information about membrane fusion mediated by viral Env.

  5. DNA-membrane complex damages in mammalian cells after gamma irradiation and chemical agent action and role of the complex in DNA replication

    Energy Technology Data Exchange (ETDEWEB)

    Saenko, A.S.; Kiseleva, V.I.; Synzynys, B.I. (Akademiya Meditsinskikh Nauk SSSR, Obninsk. Nauchno-Issledovatel' skij Inst. Meditsinskoj Radiologii)

    1982-06-22

    The sedimentation behavior of the DNA-membrane complex (DMC) from Ehrlich ascites tumor (EAT) cells after gamma irradiation and carminomycin (CM) treatment was studied. The DNA and membrane containing material released by alkaline lysis from EAT cells had an anomalous sedimentation relative to denatured DNA. The DMC sediments with a great sedimentation constant (255 S). Both the chemical and physical agents induced DNA single-strand breaks and damage of the DMC. It was shown that 0.01 g/ml CM did not affect the incorporation of exogenic thymidine into DNA but the DMC was completely disrupted by this CM dose. There was no correlation between postirradiation repair kinetics of the DMC and the kinetics of /sup 3/H-thymidine incorporation into DNA of ETA cells.

  6. Determine equilibrium dissociation constant of drug-membrane receptor affinity using the cell membrane chromatography relative standard method.

    Science.gov (United States)

    Ma, Weina; Yang, Liu; Lv, Yanni; Fu, Jia; Zhang, Yanmin; He, Langchong

    2017-06-23

    The equilibrium dissociation constant (KD) of drug-membrane receptor affinity is the basic parameter that reflects the strength of interaction. The cell membrane chromatography (CMC) method is an effective technique to study the characteristics of drug-membrane receptor affinity. In this study, the KD value of CMC relative standard method for the determination of drug-membrane receptor affinity was established to analyze the relative KD values of drugs binding to the membrane receptors (Epidermal growth factor receptor and angiotensin II receptor). The KD values obtained by the CMC relative standard method had a strong correlation with those obtained by the frontal analysis method. Additionally, the KD values obtained by CMC relative standard method correlated with pharmacological activity of the drug being evaluated. The CMC relative standard method is a convenient and effective method to evaluate drug-membrane receptor affinity. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The Mechanism of Budding of Retroviruses from Cell Membranes

    Directory of Open Access Journals (Sweden)

    Andrew Pincetic

    2009-01-01

    Full Text Available Retroviruses have evolved a mechanism for the release of particles from the cell membrane that appropriates cellular protein complexes, referred to as ESCRT-I, -II, -III, normally involved in the biogenesis of multivesicular bodies. Three different classes of late assembly (L domains encoded in Gag, with core sequences of PPXY, PTAP, and YPXL, recruit different components of the ESCRT machinery to form a budding complex for virus release. Here, we highlight recent progress in identifying the role of different ESCRT complexes in facilitating budding, ubiquitination, and membrane targeting of avian sarcoma and leukosis virus (ASLV and human immunodeficiency virus, type 1 (HIV-1. These findings show that retroviruses may adopt parallel budding pathways by recruiting different host factors from common cellular machinery for particle release.

  8. Nanocomposite membranes based on polybenzimidazole and ZrO2 for high-temperature proton exchange membrane fuel cells.

    Science.gov (United States)

    Nawn, Graeme; Pace, Giuseppe; Lavina, Sandra; Vezzù, Keti; Negro, Enrico; Bertasi, Federico; Polizzi, Stefano; Di Noto, Vito

    2015-04-24

    Owing to the numerous benefits obtained when operating proton exchange membrane fuel cells at elevated temperature (>100 °C), the development of thermally stable proton exchange membranes that demonstrate conductivity under anhydrous conditions remains a significant goal for fuel cell technology. This paper presents composite membranes consisting of poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI4N) impregnated with a ZrO2 nanofiller of varying content (ranging from 0 to 22 wt %). The structure-property relationships of the acid-doped and undoped composite membranes have been studied using thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, wide-angle X-ray scattering, infrared spectroscopy, and broadband electrical spectroscopy. Results indicate that the level of nanofiller has a significant effect on the membrane properties. From 0 to 8 wt %, the acid uptake as well as the thermal and mechanical properties of the membrane increase. As the nanofiller level is increased from 8 to 22 wt % the opposite effect is observed. At 185 °C, the ionic conductivity of [PBI4N(ZrO2 )0.231 ](H3 PO4 )13 is found to be 1.04×10(-1)  S cm(-1) . This renders membranes of this type promising candidates for use in high-temperature proton exchange membrane fuel cells.

  9. Distribution of T-cell receptor-bearing lymphocytes in the synovial membrane from patients with rheumatoid arthritis.

    Science.gov (United States)

    Chaouni, I; Radal, M; Simony-Lafontaine, J; Combe, B; Sany, J; Rème, T

    1990-12-01

    Using immunohistology and monoclonal antibodies directed to the T-cell receptor (TCR) chains, we have analysed the distribution of TCR-bearing lymphocytes within the membrane of rheumatoid arthritis (RA) patients. Alkaline phosphatase staining for TCR alpha beta-bearing lymphocytes showed a distribution paralleling that of the total T cells. Staining for the TCR gamma delta chains revealed a moderate and rather homogeneous distribution of T gamma delta lymphocytes within the RA synovium. As evidenced by simultaneous staining for alpha beta and gamma delta receptors, the relative count of T gamma delta to alpha beta-expressing cells is close to the peripheral count (e.g.5%), and lower than that previously observed in the synovial fluid. Interestingly, the peripheral type V gamma 9-J gamma P rearrangement using the T gamma delta cell subset was relatively decreased in the synovial membrane, as compared to synovial fluid and peripheral blood, suggesting that the T gamma delta distribution in the rheumatoid synovium resembles a thymic-like situation.

  10. 160 C PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL SYSTEM DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    L.G. Marianowski

    2001-12-21

    The objectives of this program were: (a) to develop and demonstrate a new polymer electrolyte membrane fuel cell (PEMFC) system that operates up to 160 C temperatures and at ambient pressures for stationary power applications, and (b) to determine if the GTI-molded composite graphite bipolar separator plate could provide long term operational stability at 160 C or higher. There are many reasons that fuel cell research has been receiving much attention. Fuel cells represent environmentally friendly and efficient sources of electrical power generation that could use a variety of fuel sources. The Gas Technology Institute (GTI), formerly Institute of Gas Technology (IGT), is focused on distributed energy stationary power generation systems. Currently the preferred method for hydrogen production for stationary power systems is conversion of natural gas, which has a vast distribution system in place. However, in the conversion of natural gas into a hydrogen-rich fuel, traces of carbon monoxide are produced. Carbon monoxide present in the fuel gas will in time cumulatively poison, or passivate the active platinum catalysts used in the anodes of PEMFC's operating at temperatures of 60 to 80 C. Various fuel processors have incorporated systems to reduce the carbon monoxide to levels below 10 ppm, but these require additional catalytic section(s) with sensors and controls for effective carbon monoxide control. These CO cleanup systems must also function especially well during transient load operation where CO can spike 300% or more. One way to circumvent the carbon monoxide problem is to operate the fuel cell at a higher temperature where carbon monoxide cannot easily adsorb onto the catalyst and poison it. Commercially available polymer membranes such as Nafion{trademark} are not capable of operation at temperatures sufficiently high to prevent this. Hence this project investigated a new polymer membrane alternative to Nafion{trademark} that is capable of operation at

  11. Heat sources in proton exchange membrane (PEM) fuel cells

    Science.gov (United States)

    Ramousse, Julien; Lottin, Olivier; Didierjean, Sophie; Maillet, Denis

    In order to model accurately heat transfer in PEM fuel cell, a particular attention had to be paid to the assessment of heat sources in the cell. Although the total amount of heat released is easily computed from its voltage, local heat sources quantification and localization are not simple. This paper is thus a discussion about heat sources/sinks distribution in a single cell, for which many bold assumptions are encountered in the literature. The heat sources or sinks under consideration are: (1) half-reactions entropy, (2) electrochemical activation, (3) water sorption/desorption at the GDL/membrane interfaces, (4) Joule effect in the membrane and (5) water phase change in the GDL. A detailed thermodynamic study leads to the conclusion that the anodic half-reaction is exothermic (Δ Sr ev a = - 226 J mo l-1 K-1) , instead of being athermic as supposed in most of the thermal studies. As a consequence, the cathodic half-reaction is endothermic (Δ Sr ev c = + 62.8 J mo l-1 K-1) , which results in a heat sink at the cathode side, proportional to the current. In the same way, depending on the water flux through the membrane, sorption can create a large heat sink at one electrode and an equivalent heat source at the other. Water phase change in the GDL - condensation/evaporation - results in heat sources/sinks that should also be taken into account. All these issues are addressed in order to properly set the basis of heat transfer modeling in the cell.

  12. Effects of cholesterol depletion on membrane nanostructure in MCF-7 cells by atomic force microscopy

    Science.gov (United States)

    Wang, Yuhua; Jiang, Ningcheng; Shi, Aisi; Zheng, Liqin; Yang, Hongqin; Xie, Shusen

    2017-02-01

    The cell membrane is composed of phospholipids, glycolipids, cholesterol and proteins that are dynamic and heterogeneous distributed in the bilayer structure and many researches have showed that the plasma membrane in eukaryotic cells contains microdomains termed "lipid raft" in which cholesterol, sphingolipids and specific membrane proteins are enriched. Cholesterol extraction induced lipid raft disruption is one of the most widely used methods for lipid raft research and MβCD is a type of solvent to extract the cholesterol from cell membranes. In this study, the effect of MβCD treatment on the membrane nanostructure in MCF-7 living cells was investigated by atomic force microscopy. Different concentrations of MβCD were selected to deplete cholesterol for 30 min and the viability of cells was tested by MTT assay to obtain the optimal concentration. Then the nanostructure of the cell membrane was detected. The results show that an appropriate concentration of MβCD can induce the alteration of cell membranes nanostructure and the roughness of membrane surface decreases significantly. This may indicate that microdomains of the cell membrane disappear and the cell membrane appears more smoothly. Cholesterol can affect nanostructure and inhomogeneity of the plasma membrane in living cells.

  13. Water free proton conducting membranes based on poly-4-vinylpyridinebisulfate for fuel cells

    Science.gov (United States)

    Narayanan, Sekharipuram R. (Inventor); Yen, Shiao-Pin S. (Inventor)

    2007-01-01

    Disclosed are methods for forming a water-free electrolyte membrane useful in fuel cells. Also provided is a water-free electrolyte membrane comprising a quaternized amine salt including poly-4-vinylpyridinebisulfate, a poly-4-vinylpyridinebisulfate silica composite, and a combination thereof and a fuel cell comprising the membrane.

  14. Triggering of erythrocyte cell membrane scrambling by salinomycin.

    Science.gov (United States)

    Bissinger, Rosi; Malik, Abaid; Jilani, Kashif; Lang, Florian

    2014-11-01

    Salinomycin, a polyether ionophore antibiotic effective against a variety of pathogens, has been shown to trigger apoptosis of cancer cells and cancer stem cells. The substance is thus considered for the treatment of malignancy. Salinomycin compromises tumour cell survival at least in part by interference with mitochondrial function. Erythrocytes lack mitochondria but may undergo apoptosis-like suicidal cell death or eryptosis, which is characterized by scrambling of the cell membrane with phosphatidylserine exposure at the erythrocyte surface. Signalling involved in the triggering of eryptosis includes activation of oxidant-sensitive Ca(2+) permeable cation channels with subsequent increase in cytosolic Ca(2+) activity ([Ca(2+)]i). This study explored whether salinomycin stimulates eryptosis. Phosphatidylserine-exposing erythrocytes were identified by measurement of annexin-V binding, cell volume was estimated from forward scatter, haemolysis determined from haemoglobin release, [Ca(2+)]i quantified utilizing Fluo3-fluorescence and oxidative stress from 2',7' dichlorodihydrofluorescein diacetate (DCFDA) fluorescence in flow cytometry. A 48-hr exposure to salinomycin (5-100 nM) was followed by a significant increase in Fluo3-fluorescence, DCFDA fluorescence and annexin-V binding, as well as a significant decrease in forward scatter (at 5-10 nM, but not at 50 and 100 nM). The annexin-V binding after salinomycin treatment was significantly blunted but not abrogated in the nominal absence of extracellular Ca(2+) or in the presence of antioxidant n-acetyl cysteine (1 mM). Salinomycin triggers cell membrane scrambling, an effect at least partially due to oxidative stress and entry of extracellular Ca(2+).

  15. Triggering of Erythrocyte Cell Membrane Scrambling by Emodin

    Directory of Open Access Journals (Sweden)

    Morena Mischitelli

    2016-11-01

    Full Text Available Background/Aims: The natural anthraquinone derivative emodin (1,3,8-trihydroxy-6-methylanthraquinone is a component of several Chinese medicinal herbal preparations utilized for more than 2000 years. The substance has been used against diverse disorders including malignancy, inflammation and microbial infection. The substance is effective in part by triggering suicidal death or apoptosis. Similar to apoptosis of nucleated cells erythrocytes may enter suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling involved in the triggering of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i, oxidative stress and ceramide. The present study aimed to test, whether emodin induces eryptosis and, if so, to elucidate underlying cellular mechanisms. Methods: Phosphatidylserine abundance at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Results: Exposure of human erythrocytes for 48 hours to emodin (≥ 10 µM significantly increased the percentage of annexin-V-binding cells, and at higher concentrations (≥ 50 µM significantly increased forward scatter. Emodin significantly increased Fluo3-fluorescence (≥ 10 µM, DCFDA fluorescence (75 µM and ceramide abundance (75 µM. The effect of emodin on annexin-V-binding was significantly blunted but not abolished by removal of extracellular Ca2+. Conclusions: Emodin triggers phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to stimulation of Ca2+ entry and paralleled by oxidative stress and ceramide appearance at the erythroctye surface.

  16. Effects of synthetic retinoids and retinoic acid isomers on the expression of alkaline phosphatase in F9 teratocarcinoma cells.

    Science.gov (United States)

    Gianni, M; Zanotta, S; Terao, M; Garattini, S; Garattini, E

    1993-10-15

    Expression of ALP in F9 teratocarcinoma cells is induced by all-trans retinoic acid (ATRA) (Gianni' et al., Biochem. J. 274: 673-678, 1991). The specific ligand for retinoic acid related receptors (RXRs), 9-cis retinoic acid (9-cis RA), and three synthetic analogs binding to the alpha, beta and gamma forms of the retinoic acid receptors (RARs), AM580, CD2019, and CD437, were used to study their effects on alkaline phosphatase (ALP) enzymatic activity and mRNA levels. At concentrations close to the Kd for their respective receptors, 9-cis RA, AM580 (the RAR alpha agonist) and CD437 (the RAR gamma agonist) clearly upregulate the expression of the ALP gene, whereas the effect of CD2019 (the RAR beta agonist) is very modest. A specific inhibitor of the RAR alpha, Ro 41-5253, completely blocks the induction of ALP triggered by AM580, while it has minor effects on the upregulation caused by ATRA, 9-cis RA, CD437 and CD2019. The induction of ALP observed with the various retinoids is inhibited by the contemporaneous treatment with dibutyryl cAMP. The levels of the RAR alpha and gamma transcripts are unaltered, while RAR beta mRNAs are induced by ATRA, AM580, CD437 and to a lower extent by 9-cis RA and CD2019.

  17. Global optimization and oxygen dissociation on polyicosahedral Ag32Cu6 core-shell cluster for alkaline fuel cells.

    Science.gov (United States)

    Zhang, N; Chen, F Y; Wu, X Q

    2015-07-07

    The structure of 38 atoms Ag-Cu cluster is studied by using a combination of a genetic algorithm global optimization technique and density functional theory (DFT) calculations. It is demonstrated that the truncated octahedral (TO) Ag32Cu6 core-shell cluster is less stable than the polyicosahedral (pIh) Ag32Cu6 core-shell cluster from the atomistic models and the DFT calculation shows an agreeable result, so the newfound pIh Ag32Cu6 core-shell cluster is further investigated for potential application for O2 dissociation in oxygen reduction reaction (ORR). The activation energy barrier for the O2 dissociation on pIh Ag32Cu6 core-shell cluster is 0.715 eV, where the d-band center is -3.395 eV and the density of states at the Fermi energy level is maximal for the favorable absorption site, indicating that the catalytic activity is attributed to a maximal charge transfer between an oxygen molecule and the pIh Ag32Cu6 core-shell cluster. This work revises the earlier idea that Ag32Cu6 core-shell nanoparticles are not suitable as ORR catalysts and confirms that Ag-Cu nanoalloy is a potential candidate to substitute noble Pt-based catalyst in alkaline fuel cells.

  18. THE COMPARISON OF STRENGTH PROPERTY BETWWEEN KRAFT PULP AND ALKALINE SULFITE-ANTHRAQUINONE PULP FOR THICKER CELL WALL FIBER MATERIALS

    Institute of Scientific and Technical Information of China (English)

    LiLi; FeifeiWang; YunzhanZhang

    2004-01-01

    The comparison of strength property between kraftpulp ( KP ) and Alkaline Sulfite-Anthraquinone(AS-AQ) pulp for thicker cell wall fiber materialsLarch and Quercus as examples was studied. Theaverage coefficient of flexibility of Larch andQuercus are 0.6-0.7 and 0.45-0.50, respectively. Theresults showed that the strength property of thickercell wall pulp is some what different from thosereported earlier. The strengths of AS-AQ are allhigher than those of KP for Larch and Quercus. ForLarch, under same beating degree the breaking lengthof AS-AQ is 8-16% higher than that of KP, burstindex 3-14% higher, folding endurance 30% higher,tear index slightly higher. For Quercus, the breakinglength of AS-AQ is 5-10% higher then that of KP,burst index 10-15% higher, folding endurance30-50% higher, tear index 5-15% higher. Under thesame breaking length the tear index of AS-AQ pulpis significantly higher than that of KP for both Larchand Quercus.

  19. Valproic Acid Induces Hair Regeneration in Murine Model and Activates Alkaline Phosphatase Activity in Human Dermal Papilla Cells

    Science.gov (United States)

    Lee, Soung-Hoon; Yoon, Juyong; Shin, Seung Ho; Zahoor, Muhamad; Kim, Hyoung Jun; Park, Phil June; Park, Won-Seok; Min, Do Sik; Kim, Hyun-Yi; Choi, Kang-Yell

    2012-01-01

    Background Alopecia is the common hair loss problem that can affect many people. However, current therapies for treatment of alopecia are limited by low efficacy and potentially undesirable side effects. We have identified a new function for valproic acid (VPA), a GSK3β inhibitor that activates the Wnt/β-catenin pathway, to promote hair re-growth in vitro and in vivo. Methodology/ Principal Findings Topical application of VPA to male C3H mice critically stimulated hair re-growth and induced terminally differentiated epidermal markers such as filaggrin and loricrin, and the dermal papilla marker alkaline phosphatase (ALP). VPA induced ALP in human dermal papilla cells by up-regulating the Wnt/β-catenin pathway, whereas minoxidil (MNX), a drug commonly used to treat alopecia, did not significantly affect the Wnt/β-catenin pathway. VPA analogs and other GSK3β inhibitors that activate the Wnt/β-catenin pathway such as 4-phenyl butyric acid, LiCl, and BeCl2 also exhibited hair growth-promoting activities in vivo. Importantly, VPA, but not MNX, successfully stimulate hair growth in the wounds of C3H mice. Conclusions/ Significance Our findings indicate that small molecules that activate the Wnt/β-catenin pathway, such as VPA, can potentially be developed as drugs to stimulate hair re-growth. PMID:22506014

  20. Valproic acid induces hair regeneration in murine model and activates alkaline phosphatase activity in human dermal papilla cells.

    Directory of Open Access Journals (Sweden)

    Soung-Hoon Lee

    Full Text Available BACKGROUND: Alopecia is the common hair loss problem that can affect many people. However, current therapies for treatment of alopecia are limited by low efficacy and potentially undesirable side effects. We have identified a new function for valproic acid (VPA, a GSK3β inhibitor that activates the Wnt/β-catenin pathway, to promote hair re-growth in vitro and in vivo. METHODOLOGY/ PRINCIPAL FINDINGS: Topical application of VPA to male C3H mice critically stimulated hair re-growth and induced terminally differentiated epidermal markers such as filaggrin and loricrin, and the dermal papilla marker alkaline phosphatase (ALP. VPA induced ALP in human dermal papilla cells by up-regulating the Wnt/β-catenin pathway, whereas minoxidil (MNX, a drug commonly used to treat alopecia, did not significantly affect the Wnt/β-catenin pathway. VPA analogs and other GSK3β inhibitors that activate the Wnt/β-catenin pathway such as 4-phenyl butyric acid, LiCl, and BeCl(2 also exhibited hair growth-promoting activities in vivo. Importantly, VPA, but not MNX, successfully stimulate hair growth in the wounds of C3H mice. CONCLUSIONS/ SIGNIFICANCE: Our findings indicate that small molecules that activate the Wnt/β-catenin pathway, such as VPA, can potentially be developed as drugs to stimulate hair re-growth.

  1. ACME: automated cell morphology extractor for comprehensive reconstruction of cell membranes.

    Directory of Open Access Journals (Sweden)

    Kishore R Mosaliganti

    Full Text Available The quantification of cell shape, cell migration, and cell rearrangements is important for addressing classical questions in developmental biology such as patterning and tissue morphogenesis. Time-lapse microscopic imaging of transgenic embryos expressing fluorescent reporters is the method of choice for tracking morphogenetic changes and establishing cell lineages and fate maps in vivo. However, the manual steps involved in curating thousands of putative cell segmentations have been a major bottleneck in the application of these technologies especially for cell membranes. Segmentation of cell membranes while more difficult than nuclear segmentation is necessary for quantifying the relations between changes in cell morphology and morphogenesis. We present a novel and fully automated method to first reconstruct membrane signals and then segment out cells from 3D membrane images even in dense tissues. The approach has three stages: 1 detection of local membrane planes, 2 voting to fill structural gaps, and 3 region segmentation. We demonstrate the superior performance of the algorithms quantitatively on time-lapse confocal and two-photon images of zebrafish neuroectoderm and paraxial mesoderm by comparing its results with those derived from human inspection. We also compared with synthetic microscopic images generated by simulating the process of imaging with fluorescent reporters under varying conditions of noise. Both the over-segmentation and under-segmentation percentages of our method are around 5%. The volume overlap of individual cells, compared to expert manual segmentation, is consistently over 84%. By using our software (ACME to study somite formation, we were able to segment touching cells with high accuracy and reliably quantify changes in morphogenetic parameters such as cell shape and size, and the arrangement of epithelial and mesenchymal cells. Our software has been developed and tested on Windows, Mac, and Linux platforms and is

  2. Process for recycling components of a PEM fuel cell membrane electrode assembly

    Science.gov (United States)

    Shore, Lawrence [Edison, NJ

    2012-02-28

    The membrane electrode assembly (MEA) of a PEM fuel cell can be recycled by contacting the MEA with a lower alkyl alcohol solvent which separates the membrane from the anode and cathode layers of the assembly. The resulting solution containing both the polymer membrane and supported noble metal catalysts can be heated under mild conditions to disperse the polymer membrane as particles and the supported noble metal catalysts and polymer membrane particles separated by known filtration means.

  3. The use of fuel cell ion exchange membranes in electrolytic cells les membranes echangeuses d'ions des piles a combustibles

    Energy Technology Data Exchange (ETDEWEB)

    Damien, A.; Sohm, J.C.

    1977-06-01

    Ion exchange membranes, previously used in fuel cells, were studied in order to examine their application to water electrolysis. State-of-the-art is reviewed from the bibliography, comparing this process with a classic one. Results show that only the cationic membranes are adequate for electrolytic cell use, being sufficiently resistant to heat and oxidation.

  4. Effects of Saline and Alkaline Stresses on Growth and Physiological Changes in Oat (Avena sativa L. Seedlings

    Directory of Open Access Journals (Sweden)

    Zhanwu GAO

    2014-12-01

    Full Text Available Two neutral salts (NaCl and Na2SO4 and alkaline salts (NaHCO3 and Na2CO3 were both mixed in 2:1 ratio, and the effects of saline and alkaline stresses on growth and physiological changes in oat seedlings were explored. Result showed that biomass, water content and chlorophyll content decreased while cell membrane permeability significantly increased under alkaline stress. Saline stress did not have obvious effect on pH value in tissue fluids of shoot and root, but alkaline stress increased pH value in root tissue fluid. The contents of Na+, Na+/K+, SO42- increased more, and K+, NO3-,H2PO4- decreased more under alkaline stress, the Cl- content increased obviously under saline stress but had little change under alkaline stress. The increments of proline and organic acid were both greater under alkaline stress, but organic acid content kept the same level under saline stress. Alkaline stress caused more harmful effects on growth and physiological changes in oat seedlings especially broke the pH stability in root tissue fluid. Physiological adaptive mechanisms of oat seedlings under saline stress and alkaline stress were different, which mainly took the way of accumulating organic acid under alkali stress but accumulating Cl- under saline stress.

  5. Investigation of interaction between the drug and cell membrane by capillary electrophoresis

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    By introducing cell membrane into electrophoretic buffer as pseudo-stationary phase,a novel capillary electrophoresis method was established to explore the interaction between drugs and cell membrane,where the interaction between citalopram and rabbit red blood cell membrane was used as an example. A series of concentrations of cell membrane were suspended into the running buffer by peak-shift method. The binding constant of citalopram to rabbit red blood cell membrane of 0.977 g-1·L was obtained after treatment of Scatchard plot. This method could provide not only a new way for the investigation on the interactions between drugs and cell membrane,but also a new approach for high throughput screening of the drug membrane permeability,biological activity,and evaluating drugs in vivo.

  6. Cell dualism: presence of cells with alternative membrane potentials in growing populations of bacteria and yeasts.

    Science.gov (United States)

    Ivanov, Volodymyr; Rezaeinejad, Saeid; Chu, Jian

    2013-10-01

    It is considered that all growing cells, for exception of acidophilic bacteria, have negatively charged inside cytoplasmic membrane (Δψ⁻-cells). Here we show that growing populations of microbial cells contain a small portion of cells with positively charged inside cytoplasmic membrane (Δψ⁺-cells). These cells were detected after simultaneous application of the fluorescent probes for positive membrane potential (anionic dye DIBAC⁻) and membrane integrity (propidium iodide, PI). We found in exponentially growing cell populations of Escherichia coli and Saccharomyces cerevisiae that the content of live Δψ⁻-cells was 93.6 ± 1.8 % for bacteria and 90.4 ± 4.0 % for yeasts and the content of live Δψ⁺-cells was 0.9 ± 0.3 % for bacteria and 2.4 ± 0.7 % for yeasts. Hypothetically, existence of Δψ⁺-cells could be due to short-term, about 1 min for bacteria and 5 min for yeasts, change of membrane potential from negative to positive value during the cell cycle. This change has been shown by the reversions of K⁺, Na⁺, and Ca²⁺ ions fluxes across the cell membrane during synchronous yeast culture. The transformation of Δψ(⁻-cells to Δψ⁺-cells can be explained by slow influx of K⁺ ions into Δψ⁻-cell to the trigger level of K⁺ concentration ("compression of potassium spring"), which is forming "alternative" Δψ⁺-cell for a short period, following with fast efflux of K⁺ ions out of Δψ⁺-cell ("release of potassium spring") returning cell to normal Δψ⁻ state. We anticipate our results to be a starting point to reveal the biological role of cell dualism in form of Δψ⁻- and Δψ⁺- cells.

  7. Ionic Liquids and New Proton Exchange Membranes for Fuel Cells

    Science.gov (United States)

    Belieres, Jean-Philippe

    2004-01-01

    There is currently a great surge of activity in fuel cell research as laboratories across the world seek to take advantage of the high energy capacity provided by &el cells relative to those of other portable electrochemical power systems. Much of this activity is aimed at high temperature fie1 cells, and a vital component of such &el cells must be the availability of a high temperature stable proton-permeable membrane. NASA Glenn Research Center is greatly involved in developing this technology. Other approaches to the high temperature fuel cell involve the use of single- component or almost-single-component electrolytes that provide a path for protons through the cell. A heavily researched case is the phosphoric acid fuel cell, in which the electrolyte is almost pure phosphoric acid and the cathode reaction produces water directly. The phosphoric acid fie1 cell delivers an open circuit voltage of 0.9 V falling to about 0.7 V under operating conditions at 170 C. The proton transport mechanism is mainly vehicular in character according to the viscosity/conductance relation. Here we describe some Proton Transfer Ionic Liquids (PTILs) with low vapor pressure and high temperature stability that have conductivities of unprecedented magnitude for non-aqueous systems. The first requirement of an ionic liquid is that, contrary to experience with most liquids consisting of ions, it must have a melting point that is not much above room temperature. The limit commonly suggested is 100 C. PTILs constitute an interesting class of non-corrosive proton-exchange electrolyte, which can serve well in high temperature (T = 100 - 250 C) fuel cell applications. We will present cell performance data showing that the open circuit voltage output, and the performance of a simple H2(g)Pt/PTIL/Pt/O2(g) fuel cell may be superior to those of the equivalent phosphoric acid electrolyte fuel cell both at ambient temperature and temperatures up to and above 200 C. My work at NASA Glenn Research

  8. A theory for the membrane potential of cells

    CERN Document Server

    Endresen, L P; Endresen, Lars Petter; Hall, Kevin

    1997-01-01

    We give an explicit formula for the membrane potential of cells in terms of the intracellular and extracellular ionic concentrations, and derive equations for the ionic currents that flow through channels, exchangers and electrogenic pumps based on simple energy considerations and conservation laws. We demonstrate that the work done by the pump is equal to the potential energy of the cell plus the energy loss due to the downhill ionic fluxes through the channels and the exchanger. Our equations predict osmotic pressure variations. The theory is illustrated in a simple model of spontaneously active cells in the cardiac pacemaker. The simulated action potential and the five currents in the model are in excellent agreement with experiments. The model predicts the experimental observed intracellular ionic concentration of potassium, calcium and sodium. We do not see any drift of the values for the concentrations in a long time simulation, instead we can obtain the same asymptotic values starting with equal intrac...

  9. Physical Chemistry Research Toward Proton Exchange Membrane Fuel Cell Advancement.

    Science.gov (United States)

    Swider-Lyons, Karen E; Campbell, Stephen A

    2013-02-07

    Hydrogen fuel cells, the most common type of which are proton exchange membrane fuel cells (PEMFCs), are on a rapid path to commercialization. We credit physical chemistry research in oxygen reduction electrocatalysis and theory with significant breakthroughs, enabling more cost-effective fuel cells. However, most of the physical chemistry has been restricted to studies of platinum and related alloys. More work is needed to better understand electrocatalysts generally in terms of properties and characterization. While the advent of such highly active catalysts will enable smaller, less expensive, and more powerful stacks, they will require better understanding and a complete restructuring of the diffusion media in PEMFCs to facilitate faster transport of the reactants (O2) and products (H2O). Even Ohmic losses between materials become more important at high power. Such lessons from PEMFC research are relevant to other electrochemical conversion systems, including Li-air batteries and flow batteries.

  10. Alpha -tocopherol supplementation on chromium toxicity : a study on rat liver and kidney cell membrane

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Membrane damage is one of the important consequence of chromium, an environmental toxicant, to produce cytotoxicity. α-tocopherol, a membrane protectant can be used to reduce the chromium-induced membrane damage. In the present study, the impact of chromium in presence and absence of α-tocopherol was studied on plasma membrane of liver and kidney in male Wistar rats (80 - 100g body weight). Significant increase in membrane cholesterol level as well as significant decrease in membrane phospholipid level in chromium exposed ( 0.8 mg /100g body weight/d, i.p., for 4 weeks) animals suggest structural alteration of both liver and kidney plasma memebrane. The alkaline phosphatase, total ATPase and Na+-K+-ATPase activities of plasma membrane were significantly decreased in both liver and kidney after chromium treatment. However, α-tocopherol (30 mg / 100g diet) supplementation can restrict the changes in these membrane-bound enzyme activities. Thus, the usefulness of dietary supplementation of α-tocopherol to restrain the chromium-induced membrane damage is suggested.

  11. Electrodeposited gold nanoparticles on carbon nanotube-textile: Anode material for glucose alkaline fuel cells

    KAUST Repository

    Pasta, Mauro

    2012-06-01

    In the present paper we propose a new anode material for glucose-gluconate direct oxidation fuel cells prepared by electrodepositing gold nanoparticles onto a conductive textile made by conformally coating single walled carbon nanotubes (SWNT) on a polyester textile substrate. The electrodeposition conditions were optimized in order to achieve a uniform distribution of gold nanoparticles in the 3D porous structure of the textile. On the basis of previously reported studies, the reaction conditions (pH, electrolyte composition and glucose concentration) were tuned in order to achieve the highest oxidation rate, selectively oxidizing glucose to gluconate. The electrochemical characterization was carried out by means of cyclic voltammetry. © 2012 Elsevier B.V. All rights reserved.

  12. Membrane techniques in the periphery of fuel cell powered vehicles; Membrantechnik im Peripheriebereich von Brennstoffzellenfahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Matthias, Carsten Herbert

    2009-07-01

    The publication intends to make a contribution to the advancement of mobile fuel cell systems and to outline the potential applications of membrane techniques. There are three different approaches: 1. Characterisation of membranes and design of membrane moisturizers for water management in low-temperature PEFC. 2. Use of metal membranes in a shift membrane reactor or a membrane/reformer unit for on-board hydrogen production in APU systems. 3. System modelling for assessing the potential of components involving membrane techniques as compared to alternative techniques. (orig.)

  13. Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications [PEM fuel cells

    DEFF Research Database (Denmark)

    Qingfeng, Li; Hjuler, Hans Aage; Bjerrum, Niels

    2001-01-01

    A polymer electrolyte membrane fuel cell operational at temperatures around 150-200 degrees C is desirable for fast electrode kinetics and high tolerance to fuel impurities. For this purpose polybenzimidazole (PBI) membranes have been prepared and H/sub 3/PO/sub 4/-doped in a doping range from 300...... doping level. At 160 degrees C a conductivity as high as 0.13 S cm/sup -1/ is obtained for membranes of high doping levels. Mechanical strength measurements show, however, that a high acid doping level results in poor mechanical properties. At operational temperatures up to 190 degrees C, fuel cells...... based on this polymer membrane have been tested with both hydrogen and hydrogen containing carbon monoxide....

  14. Rechargeability and economic aspects of alkaline zinc-manganese dioxide cells for electrical storage and load leveling

    Energy Technology Data Exchange (ETDEWEB)

    Ingale, ND; Gallaway, JW; Nyce, M; Couzis, A; Banerjee, S

    2015-02-15

    Batteries based on manganese dioxide (MnO2) cathodes are good candidates for grid-scale electrical energy storage, as MnO2 is low-cost, relatively energy dense, safe, water-compatible, and non-toxic. Alkaline Zn-MnO2 cells, if cycled at reduced depth of discharge (DOD), have been found to achieve substantial cycle life with battery costs projected to be in the range of $100 to 150 per kWh (delivered). Commercialization of rechargeable Zn-MnO2 batteries has in the past been hampered due to poor cycle life. In view of this, the work reported here focuses on the long-term rechargeability of prismatic MnO2 cathodes at reduced DOD when exposed to the effects of Zn anodes and with no additives or specialty materials. Over 3000 cycles is shown to be obtainable at 10% DOD with energy efficiency >80%. The causes of capacity fade during long-term cycling are also investigated and appear to be mainly due to the formation of irreversible manganese oxides in the cathode. Analysis of the data indicates that capacity loss is rapid in the first 250 cycles, followed by a regime of stability that can last for thousands of cycles. A model has been developed that captures the behavior of the cells investigated using measured state of charge (SOC) data as input. An approximate economic analysis is also presented to evaluate the economic viability of Zn-MnO2 batteries based on the experiments reported here. (C) 2014 Elsevier B.V. All rights reserved.

  15. Tandem cathode for proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Siahrostami, Samira; Björketun, Mårten E.; Strasser, Peter

    2013-01-01

    The efficiency of proton exchange membrane fuel cells is limited mainly by the oxygen reduction reaction at the cathode. The large cathodic overpotential is caused by correlations between binding energies of reaction intermediates in the reduction of oxygen to water. This work introduces a novel...... reaction intermediate each, and they occur on different catalyst surfaces. As a result they can be optimized independently and the fundamental problem associated with the four-electron catalysis is avoided. A combination of density functional theory calculations and published experimental data is used...

  16. Indole prevents Escherichia coli cell division by modulating membrane potential

    OpenAIRE

    Chimerel, Catalin; Field, Christopher M.; Piñero-Fernandez, Silvia; Keyser, Ulrich F.; Summers, David K.

    2012-01-01

    Indole is a bacterial signalling molecule that blocks E. coli cell division at concentrations of 3–5 mM. We have shown that indole is a proton ionophore and that this activity is key to the inhibition of division. By reducing the electrochemical potential across the cytoplasmic membrane of E. coli, indole deactivates MinCD oscillation and prevents formation of the FtsZ ring that is a prerequisite for division. This is the first example of a natural ionophore regulating a key biological proces...

  17. Ultrasonic Bonding of Membrane-Electrode-Assemblies of Fuel Cells

    Directory of Open Access Journals (Sweden)

    Dung-An Wang

    2016-05-01

    Full Text Available Ultrasonic bonding has a great potential for manufacturing of membrane electrode assemblies (MEAs of fuel cells (FCs due to its short process cycle time and low energy consumption.  Before introduction of the bonding process into the industry, a detailed and elaborate investigation of the effects of the processing parameters on the bonding quality is necessary.  We develop a finite element model of the ultrasonic bonding for MEAs of FCs.  The model can be used as a computational framework for initial evaluation of the effectiveness of ultrasonic boding for MEAs of FCs.

  18. Nafion and modified-Nafion membranes for polymer electrolyte fuel cells: An overview

    Indian Academy of Sciences (India)

    A K Sahu; S Pitchumani; P Sridhar; A K Shukla

    2009-06-01

    Polymer electrolyte fuel cells (PEFCs) employ membrane electrolytes for proton transport during the cell reaction. The membrane forms a key component of the PEFC and its performance is controlled by several physical parameters, viz. water up-take, ion-exchange capacity, proton conductivity and humidity. The article presents an overview on Nafion membranes highlighting their merits and demerits with efforts on modified-Nafion membranes.

  19. The Molecular Structure of Human Red Blood Cell Membranes from Highly Oriented, Solid Supported Multi-Lamellar Membranes

    Science.gov (United States)

    Himbert, Sebastian; Alsop, Richard J.; Rose, Markus; Hertz, Laura; Dhaliwal, Alexander; Moran-Mirabal, Jose M.; Verschoor, Chris P.; Bowdish, Dawn M. E.; Kaestner, Lars; Wagner, Christian; Rheinstädter, Maikel C.

    2017-01-01

    We prepared highly oriented, multi-lamellar stacks of human red blood cell (RBC) membranes applied on silicon wafers. RBC ghosts were prepared by hemolysis and applied onto functionalized silicon chips and annealed into multi-lamellar RBC membranes. High resolution X-ray diffraction was used to determine the molecular structure of the stacked membranes. We present direct experimental evidence that these RBC membranes consist of nanometer sized domains of integral coiled-coil peptides, as well as liquid ordered (lo) and liquid disordered (ld) lipids. Lamellar spacings, membrane and hydration water layer thicknesses, areas per lipid tail and domain sizes were determined. The common drug aspirin was added to the RBC membranes and found to interact with RBC membranes and preferably partition in the head group region of the lo domain leading to a fluidification of the membranes, i.e., a thinning of the bilayers and an increase in lipid tail spacing. Our results further support current models of RBC membranes as patchy structures and provide unprecedented structural details of the molecular organization in the different domains.

  20. Optimizing operating conditions and electrochemical characterization of glucose-gluconate alkaline fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Pasta, M. [Universita degli Studi di Milano, Dipartimento di Chimica Inorganica, Metallorganica e Analitica ' ' Lamberto Malatesta' ' , Via Venezian 21, 20133 Milano (Italy); Department of Material Science and Engineering, Stanford University, Stanford, CA 94305 (United States); La Mantia, F. [Department of Material Science and Engineering, Stanford University, Stanford, CA 94305 (United States); Ruffo, R.; Mari, C.M. [Universita degli Studi di Milano-Bicocca, Dipartmento di Scienza dei Materiali, Via Cozzi 53, 20125 Milano (Italy); Peri, F. [Universita degli Studi di Milano-Bicocca, Dipartimento di Biotecnologia e Bioscienze, P.zza della Scienza 2, 20126 Milano (Italy); Pina, C. Della [Universita degli Studi di Milano, Dipartimento di Chimica Inorganica, Metallorganica e Analitica ' ' Lamberto Malatesta' ' , Via Venezian 21, 20133 Milano (Italy)

    2011-02-01

    The direct oxidation of glucose to produce electrical energy has been widely investigated because of renewability, abundance, high energy density and easy handling of the carbohydrate. Most of the previous studies have been conducted in extreme conditions in order to achieve complete glucose oxidation to CO{sub 2}, neglecting the carbohydrate chemical instability that generally leads to useless by-products mixtures. The partial oxidation to gluconate, originally studied for implantable fuel cells, has the advantage of generating a commercially valuable chemical. In the present paper we optimized fuel composition and operating conditions in order to selectively oxidize glucose to gluconate, maximizing the power density output of a standard commercial platinum based anode material. A deep electrochemical characterization concerning reversible potential, cyclic voltammetry and overpotential measurements have been carried out at 25 C in the D-(+)-glucose concentration range 1.0 x 10{sup -2} to 1.0 M. NMR and EIS investigation clarify the role of the buffer in enhancing the electrochemical performance. (author)

  1. Enhanced oxygen reduction reaction activity of iron-containing nitrogen-doped carbon nanotubes for alkaline direct methanol fuel cell application

    Science.gov (United States)

    Ratso, Sander; Kruusenberg, Ivar; Sarapuu, Ave; Rauwel, Protima; Saar, Rando; Joost, Urmas; Aruväli, Jaan; Kanninen, Petri; Kallio, Tanja; Tammeveski, Kaido

    2016-11-01

    Non-precious metal catalysts for electrochemical oxygen reduction reaction are synthesised by pyrolysis of multi-walled carbon nanotubes in the presence of nitrogen and iron precursors. For the physico-chemical characterisation of the catalysts transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction are used. The electrocatalytic activity of the catalysts for oxygen reduction is studied in 0.1 M KOH solution using the rotating disk electrode method. The Fe-containing nitrogen-doped carbon nanotubes exhibit an enhanced electrocatalytic performance as compared to metal-free counterparts and their electrocatalytic activity is comparable to that of commercial Pt/C catalyst. Alkaline direct methanol fuel cell tests also show performance close to Pt/C. Thus, these materials can be considered as promising cathode catalysts for application in alkaline fuel cells.

  2. Characteristics and performance of membrane electrode assemblies with operating conditions in polymer electrolyte membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong-Hun [School of Advanced Materials Engineering, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul 136-702 (Korea, Republic of); Yoo, Sung Jong [Fuel Cell Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Park, In-Su; Jeon, Tae-Yeol; Cho, Yoon-Hwan; Lim, Ju Wan [World Class University (WCU) program of Chemical Convergence for Energy and Environment, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul (Korea, Republic of); Kwon, Oh Joong [Department of Energy and Chemical Engineering, University of Incheon, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406-772 (Korea, Republic of); Yoon, Won-Sub [School of Advanced Materials Engineering, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul 136-702 (Korea, Republic of); Sung, Yung-Eun, E-mail: ysung@snu.ac.k [World Class University (WCU) program of Chemical Convergence for Energy and Environment, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul (Korea, Republic of)

    2010-12-30

    The degradation behavior of a membrane-electrode assembly (MEA) was investigated in accelerated degradation tests under constant voltage (0.8 V and 0.7 V) and load cycling (from open circuit voltage to 0.35 V) conditions. Changes in the structural and electrochemical characteristics of MEA after the durability tests give information as to the degradation mechanism of MEAs. The results of cyclic voltammogram and postmortem analysis by X-ray diffraction and high resolution-transmission electron microscopy indicate that the cathode catalyst layers of the MEAs showed no extreme degradation under constant voltage mode, whereas MEAs under repetition of load cycling mode showed very severe degradation after 280 h. However, the single cell performance of the MEA under repetition of load cycling mode was higher than under constant voltage mode. In addition, although the Pt band in the membrane of the MEA under repetition of load cycling mode was observed by field emission scanning electron microscopy, it did not affect the ohmic resistance.

  3. Study of the effect of membrane thickness on microcapsule strength, permeability, and cell proliferation

    DEFF Research Database (Denmark)

    Ma, Ying; Zhang, Ying; Wang, Yu;

    2013-01-01

    Cell microencapsulation is one of the promising strategies for in vitro production of proteins or in vivo delivery of therapeutic products. Membrane thickness controls microcapsule strength and permeability, which may in return affect cell growth and metabolism. In this study, the strength......, permeability, and encapsulated Chinese hamster ovary cell proliferation and metabolism of four groups of microcapsules with different membrane thicknesses were investigated. It was found that increasing membrane thickness increases microcapsule strength, whereas decreases membrane permeability. During...... the first 6 days, cells within microcapsules with 10 μm thickness membrane proliferated fast and could reach a cell density of 1.9 × 10(7) cells/mL microcapsule with 92% cell density. A cell density of 5.5 × 10(7) cells/mL microcapsule with >85% cell density was achieved within microcapsules with 15 μm...

  4. Morphological alteration, lysosomal membrane fragility and apoptosis of the cells of Indian freshwater sponge exposed to washing soda (sodium carbonate).

    Science.gov (United States)

    Mukherjee, Soumalya; Ray, Mitali; Dutta, Manab Kumar; Acharya, Avanti; Mukhopadhyay, Sandip Kumar; Ray, Sajal

    2015-12-01

    Washing soda is chemically known as sodium carbonate and is a component of laundry detergent. Domestic effluent, drain water and various anthropogenic activities have been identified as major routes of sodium carbonate contamination of the freshwater ecosystem. The freshwater sponge, Eunapius carteri, bears ecological and evolutionary significance and is considered as a bioresource in aquatic ecosystems. The present study involves estimation of morphological damage, lysosomal membrane integrity, activity of phosphatases and apoptosis in the cells of E. carteri under the environmentally realistic concentrations of washing soda. Exposure to washing soda resulted in severe morphological alterations and damages in cells of E. carteri. Fragility and destabilization of lysosomal membranes of E. carteri under the sublethal exposure was indicative to toxin induced physiological stress in sponge. Prolonged exposure to sodium carbonate resulted a reduction in the activity of acid and alkaline phosphatases in the cells of E. carteri. Experimental concentration of 8 mg/l of washing soda for 192 h yielded an increase in the physiological level of cellular apoptosis among the semigranulocytes and granulocytes of E. carteri, which was suggestive to possible shift in apoptosis mediated immunoprotection. The results were indicative of an undesirable shift in the immune status of sponge. Contamination of the freshwater aquifers by washing soda thus poses an alarming ecotoxicological threat to sponges.

  5. Elisidepsin Interacts Directly with Glycosylceramides in the Plasma Membrane of Tumor Cells to Induce Necrotic Cell Death

    Science.gov (United States)

    Molina-Guijarro, José Manuel; García, Carolina; Macías, Álvaro; García-Fernández, Luis Francisco; Moreno, Cristina; Reyes, Fernando; Martínez-Leal, Juan Fernando; Fernández, Rogelio; Martínez, Valentín; Valenzuela, Carmen; Lillo, M. Pilar; Galmarini, Carlos M.

    2015-01-01

    Plasma membrane integrity is essential for cell life. Any major break on it immediately induces the death of the affected cell. Different molecules were described as disrupting this cell structure and thus showing antitumor activity. We have previously defined that elisidepsin (Irvalec®, PM02734) inserts and self-organizes in the plasma membrane of tumor cells, inducing a rapid loss of membrane integrity, cell permeabilization and necrotic death. Here we show that, in sensitive HCT-116 colorectal cells, all these effects are consequence of the interaction of elisidepsin with glycosylceramides in the cell membrane. Of note, an elisidepsin-resistant subline (HCT-116-Irv) presented reduced levels of glycosylceramides and no accumulation of elisidepsin in the plasma membrane. Consequently, drug treatment did not induce the characteristic necrotic cell death. Furthermore, GM95, a mutant derivative from B16 mouse melanoma cells lacking ceramide glucosyltransferase (UGCG) activity and thus the synthesis of glycosylceramides, was also resistant to elisidepsin. Over-expression of UGCG gene in these deficient cells restored glycosylceramides synthesis, rendering them sensitive to elisidepsin, at a similar level than parental B16 cells. These results indicate that glycosylceramides act as membrane targets of elisidepsin, facilitating its insertion in the plasma membrane and the subsequent membrane permeabilization that leads to drug-induced cell death. They also indicate that cell membrane lipids are a plausible target for antineoplastic therapy. PMID:26474061

  6. Elisidepsin Interacts Directly with Glycosylceramides in the Plasma Membrane of Tumor Cells to Induce Necrotic Cell Death.

    Directory of Open Access Journals (Sweden)

    José Manuel Molina-Guijarro

    Full Text Available Plasma membrane integrity is essential for cell life. Any major break on it immediately induces the death of the affected cell. Different molecules were described as disrupting this cell structure and thus showing antitumor activity. We have previously defined that elisidepsin (Irvalec®, PM02734 inserts and self-organizes in the plasma membrane of tumor cells, inducing a rapid loss of membrane integrity, cell permeabilization and necrotic death. Here we show that, in sensitive HCT-116 colorectal cells, all these effects are consequence of the interaction of elisidepsin with glycosylceramides in the cell membrane. Of note, an elisidepsin-resistant subline (HCT-116-Irv presented reduced levels of glycosylceramides and no accumulation of elisidepsin in the plasma membrane. Consequently, drug treatment did not induce the characteristic necrotic cell death. Furthermore, GM95, a mutant derivative from B16 mouse melanoma cells lacking ceramide glucosyltransferase (UGCG activity and thus the synthesis of glycosylceramides, was also resistant to elisidepsin. Over-expression of UGCG gene in these deficient cells restored glycosylceramides synthesis, rendering them sensitive to elisidepsin, at a similar level than parental B16 cells. These results indicate that glycosylceramides act as membrane targets of elisidepsin, facilitating its insertion in the plasma membrane and the subsequent membrane permeabilization that leads to drug-induced cell death. They also indicate that cell membrane lipids are a plausible target for antineoplastic therapy.

  7. Evidence for Transfer of Membranes from Mesenchymal Stem Cells to HL-1 Cardiac Cells.

    Science.gov (United States)

    Boomsma, Robert A; Geenen, David L

    2014-01-01

    This study examined the interaction of mouse bone marrow mesenchymal stem cells (MSC) with cardiac HL-1 cells during coculture by fluorescent dye labeling and then flow cytometry. MSC were layered onto confluent HL-1 cell cultures in a 1 : 4 ratio. MSC gained gap junction permeant calcein from HL-1 cells after 4 hours which was partially reduced by oleamide. After 20 hours, 99% MSC gained calcein, unaffected by oleamide. Double-labeling HL-1 cells with calcein and the membrane dye DiO resulted in transfer of both calcein and DiO to MSC. When HL-1 cells were labeled with calcein and MSC with DiO, MSC gained calcein while HL-1 cells gained DiO. Very little fusion was observed since more than 90% Sca-1 positive MSC gained DiO from HL-1 cells while less than 9% gained gap junction impermeant CMFDA after 20 hours with no Sca-1 transfer to HL-1 cells. Time dependent transfer of membrane DiD was observed from HL-1 cells to MSC (100%) and vice versa (50%) after 20 hours with more limited transfer of CMFDA. These results demonstrate that MSC and HL-1 cells exchange membrane components which may account for some of the beneficial effect of MSC in the heart after myocardial infarction.

  8. On electrochemical devices using alkaline polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, L. [Wuhan Univ., Wuhan (China). Dept. of Chemistry

    2010-07-01

    Solid polymer electrolytes (SPEs) enable a compact assembly of fuel cells and electrolyzers, thereby increasing the space-specific conversion efficiency and avoiding electrolyte leakage. The most widely used SPE in proton exchange membrane fuel cells (PEMFC) and chloro-alkali electrolyzers is Nafion. However, this strongly acidic polyelectrolyte allows only noble metals to be used as the catalysts in the electrochemical devices, which poses a problem in terms of price and resource limits. In principle, alkaline polymer electrolytes (APEs) should be used to eliminate the dependence on noble metal catalysts. The general structure of alkaline polymer electrolytes is a positively charged polymer, notably, a polymer chain attached with fixed cations such as quaternary ammonia group, and dissociated anion, OH-, to act as the charge carrier. This presentation described the challenges of developing APEs in terms of the chemical stability of quaternary ammonia group, the mobility of OH-, and high ionic concentration. The authors have been working on developing high-performance APEs since 2001. The most recent APEs were quaternary ammonia polysulfone (QAPS), which were found to be suitable for fuel cell and electrolyzer applications. The ionic conductivity was high and the crosslinked membrane had excellent mechanical strength, enabling operation at 90 degrees C. Non-precious metal catalysts were used in the APEs. For APE-based fuel cells (APEFC), chromium decorated nickel was used as the anode catalyst for hydrogen oxidation, and silver was used as the cathode catalyst for oxygen reduction. The preliminary performance of such an APEFC with non-Pt catalysts was found to be much better than that of traditional water electrolyzers using KOH solutions. 2 refs.

  9. MMP and TIMP in cornea alkaline burn after amniotic membrane transplantation in mice%碱烧伤小鼠行羊膜移植后MMP及TIMP表达的变化

    Institute of Scientific and Technical Information of China (English)

    朱晶; 程旭康

    2011-01-01

    目的:通过检测羊膜移植对小鼠角膜碱烧伤后不同时间点基质金属蛋白酶(metalloproteinases,MMP-2,8,9)及金属蛋白酶组织抑制剂(tissue inhibitor of metalloproteinases,TIMP-1,2)的表达,探讨羊膜移植在碱烧伤病程中所起的作用.方法:将40只Balb/c小鼠随机分为实验组和对照组,采用1mol/L氢氧化钠溶液烧伤小鼠角膜;实验组小鼠右眼行羊膜移植加睑裂缝合术,对照组仅行睑裂缝合术.分别在羊膜移植后的第0,2,7,14d处死小鼠,应用Western blot检测不同时间点MMP-2,8,9及TIMP-1,2的表达,增强化学发光法(enhanced chemiluminescent,ECL)对结果进行分析.结果:对照组角膜中MMP-2,8,9在第2d出现表达,第14d达到峰值,且表达主要位于基质层及上皮下的炎性细胞中.碱烧伤后第2d TIMP-1仅微弱表达,第7d可见表达增加,第14d到达峰值.TIMP-2第2d即可见表达增加,后持续增强.实验组各时间点MMP-2,8,9表达均低于对照组(P<0.01),TIMP-1,2的表达均高于对照组(P<0.01).结论:行羊膜移植可通过抑制MMP的表达,促进TIMP表达,从而抑制和延迟碱烧伤后角膜炎性浸润及溃疡的发生和发展,对碱烧伤后角膜的重塑起着重要作用.%AIM: To study metalloproteinases(MMP) and tissue inhibitors of metalloproteinases(TIMP) expresion in cornea of mice with alkaline burns treated with amniotic membrane transplantation (AMT), and to evaluate the effect of AMT in treatment of alkaline burns.METHODS: Forty Balb/c mice were divided into two groups (experimental group and control group) and their right eye corneas were burned with alkali(NaOH). The cornea was treated with AMT and secured with a tarsorrhaphy in experimental group, while the control group underwent tarsorrhaphy alone. At different time points(0, 2, 7, 14 days) after AMT, mice were killed and the expressions of MMP and TIMP in cornea were measured by the Western blot technique, and the results were analyzed by enhanced

  10. A Mathematical Model for Predicting the Life of PEM Fuel Cell Membranes Subjected to Hydration Cycling

    CERN Document Server

    Burlatsky, S F; O'Neill, J; Atrazhev, V V; Varyukhin, A N; Dmitriev, D V; Erikhman, N S

    2013-01-01

    Under typical PEM fuel cell operating conditions, part of membrane electrode assembly is subjected to humidity cycling due to variation of inlet gas RH and/or flow rate. Cyclic membrane hydration/dehydration would cause cyclic swelling/shrinking of the unconstrained membrane. In a constrained membrane, it causes cyclic stress resulting in mechanical failure in the area adjacent to the gas inlet. A mathematical modeling framework for prediction of the lifetime of a PEM FC membrane subjected to hydration cycling is developed in this paper. The model predicts membrane lifetime as a function of RH cycling amplitude and membrane mechanical properties. The modeling framework consists of three model components: a fuel cell RH distribution model, a hydration/dehydration induced stress model that predicts stress distribution in the membrane, and a damage accrual model that predicts membrane life-time. Short descriptions of the model components along with overall framework are presented in the paper. The model was used...

  11. Force balance and membrane shedding at the Red Blood Cell surface

    OpenAIRE

    Sens, Pierre; Gov, Nir

    2006-01-01

    During the aging of the red-blood cell, or under conditions of extreme echinocytosis, membrane is shed from the cell plasma membrane in the form of nano-vesicles. We propose that this process is the result of the self-adaptation of the membrane surface area to the elastic stress imposed by the spectrin cytoskeleton, via the local buckling of membrane under increasing cytoskeleton stiffness. This model introduces the concept of force balance as a regulatory process at the cell membrane, and qu...

  12. Rapid Preparation of a Plasma Membrane Fraction: Western Blot Detection of Translocated Glucose Transporter 4 from Plasma Membrane of Muscle and Adipose Cells and Tissues.

    Science.gov (United States)

    Yamamoto, Norio; Yamashita, Yoko; Yoshioka, Yasukiyo; Nishiumi, Shin; Ashida, Hitoshi

    2016-08-01

    Membrane proteins account for 70% to 80% of all pharmaceutical targets, indicating their clinical relevance and underscoring the importance of identifying differentially expressed membrane proteins that reflect distinct disease properties. The translocation of proteins from the bulk of the cytosol to the plasma membrane is a critical step in the transfer of information from membrane-embedded receptors or transporters to the cell interior. To understand how membrane proteins work, it is important to separate the membrane fraction of cells. This unit provides a protocol for rapidly obtaining plasma membrane fractions for western blot analysis. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  13. The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells.

    Science.gov (United States)

    Bodner, Merit; Cermenek, Bernd; Rami, Mija; Hacker, Viktor

    2015-12-08

    Membrane degradation is a severe factor limiting the lifetime of polymer electrolyte fuel cells. Therefore, obtaining a deeper knowledge is fundamental in order to establish fuel cells as competitive product. A segmented single cell was operated under open circuit voltage with alternating relative humidity. The influence of the catalyst layer on membrane degradation was evaluated by measuring a membrane without electrodes and a membrane-electrode-assembly under identical conditions. After 100 h of accelerated stress testing the proton conductivity of membrane samples near the anode and cathode was investigated by means of ex situ electrochemical impedance spectroscopy. The membrane sample near the cathode inlet exhibited twofold lower membrane resistance and a resulting twofold higher proton conductivity than the membrane sample near the anode inlet. The results from the fluoride ion analysis have shown that the presence of platinum reduces the fluoride emission rate; which supports conclusions drawn from the literature.

  14. Chloride-inducible transient apoplastic alkalinizations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt-stressed Vicia faba.

    Science.gov (United States)

    Geilfus, Christoph-Martin; Mithöfer, Axel; Ludwig-Müller, Jutta; Zörb, Christian; Muehling, Karl H

    2015-11-01

    Chloride stress causes the leaf apoplast transiently to alkalize, an event that is presumed to contribute to the ability of plants to adapt to saline conditions. However, the initiation of coordinated processes downstream of the alkalinization is unknown. We hypothesize that chloride-inducible pH dynamics are a key chemical feature modulating the compartmental distribution of abscisic acid (ABA) and, as a consequence, affecting stomata aperture. Apoplastic pH and stomata aperture dynamics in intact Vicia faba leaves were monitored by microscopy-based ratio imaging and porometric measurements of stomatal conductance. ABA concentrations in leaf apoplast and guard cells were compared with pH dynamics by gas-chromatography-mass-spectrometry (GC-MS) and liquid-chromatography-tandem-mass spectrometry (LC-MS/MS). Results demonstrate that, upon chloride addition to roots, an alkalizing factor that initiates the pH dynamic propagates from root to leaf in a way similar to xylem-distributed water. In leaves, it induces a systemic transient apoplastic alkalinization that causes apoplastic ABA concentration to increase, followed by an elevation of endogenous guard cell ABA. We conclude that the transient alkalinization, which is a remote effect of chloride stress, modulates the compartmental distribution of ABA between the leaf apoplast and the guard cells and, in this way, is instrumental in inducing stomata closure during the beginning of salinity.

  15. Membrane Progesterone Receptors (mPRs): Evidence for Neuroprotective, Neurosteroid Signaling and Neuroendocrine Functions in Neuronal Cells

    Science.gov (United States)

    Thomas, Peter; Pang, Yefei

    2012-01-01

    Membrane progesterone receptors (mPRs) are novel G protein-coupled receptors belonging to the progestin and adipoQ receptor family (PAQR) that mediate a variety of rapid, cell surface-initiated progesterone actions in the reproductive system involving activation of intracellular signaling pathways (i.e. nonclassical actions). The mPRs are highly expressed in the brain but research on their neural functions has only been conducted in a single neuronal cell line, GT1-7 cells, which have negligible nuclear progesterone receptor (PR) expression. GT1-7 cells express mPRα and mPRβ on their plasma membranes which is associated with the presence of high affinity, specific [3H]-progesterone receptor binding. The neurosteroid, allopregnanolone, is an effective ligand for recombinant mPRα with a relative binding affinity of 7.6% that of progesterone. Allopregnanolone acts as a potent mPR agonist on GT1-7 cells, mimicking the progesterone-induced decrease in cAMP accumulation and its antiapoptotic actions at low nanomolar concentrations.. The decrease in cAMP levels is associated with rapid progesterone-induced down-regulation of GnRH pulsatile secretion from perifused GT1-7 cells. The recent suggestion that mPRs are alkaline ceramidases and mediate sphingolipid signaling is not supported by empirical evidence that TNFα does not bind to mPRs over expressed in human cells and that exogenous sphingomyelinase is ineffective in mimicking progestin actions through mPRs to induce meiotic maturation of fish oocytes. Taken together, these recent studies indicate that mPRs mediate neuroprotective effects of progesterone and allopregnanolone and are also the likely intermediaries in progesterone-induced inhibition of pulsatile GnRH secretion in GT1-7 cells. PMID:22687885

  16. Intravital multiphoton photoconversion with a cell membrane dye.

    Science.gov (United States)

    Turcotte, Raphaël; Wu, Juwell W; Lin, Charles P

    2017-02-01

    Photoconversion, an irreversible shift in a fluorophore emission spectrum after light exposure, is a powerful tool for marking cellular and subcellular compartments and tracking their dynamics in vivo. This paper reports on the photoconversion properties of Di-8-ANEPPS, a commercially available membrane dye. When illuminated with near-infrared femtosecond laser pulses, Di-8-ANEPPS undergoes multiphoton photoconversion as indicated by the supralinear dependence of the conversion rate ρpc on the incident power (ρpc∝Iexc2.27), and by the ability to photoconvert a thin optical section in a three-dimensional matrix. The characteristic emission spectrum changed from red to blue, and ratiometric analysis on single cells in vitro revealed a 65-fold increase in the blue to red wavelength ratio after photoconversion. The spectral shift is preserved in vivo for hours, making Di-8-ANEPPS a useful dye for intravital cell marking and tracking applications.

  17. Penetration of living cell membranes with fortified carbon nanotube tips.

    Science.gov (United States)

    Vakarelski, Ivan U; Brown, Scott C; Higashitani, Ko; Moudgil, Brij M

    2007-10-23

    We have fabricated robust nanosurgical needles suitable for single cell operations by modifying multiwalled carbon nanotube (MCNT)-terminated atomic force microscopy (AFM) tips. Extra-long MCNT AFM tips were prepared and fortified with molecular layers of carbon to overcome mechanical instabilities and then coated with an outer shell of gold to promote chemical versatility. The terminal diameters of the final fabricated tips were approximately 30-40 nm, and the MCNT probes were several micrometers in length. We illustrate the capability of these modified MCNT tips to carry nanoparticulate payloads and to penetrate the plasma membrane of living pleural mesothelial cells at the smallest indentation depths (100-200 nm) and lowest penetration forces (100-200 pN) currently reported for these procedures.

  18. Composite materials for polymer electrolyte membrane microbial fuel cells.

    Science.gov (United States)

    Antolini, Ermete

    2015-07-15

    Recently, the feasibility of using composite metal-carbon, metal-polymer, polymer-carbon, polymer-polymer and carbon-carbon materials in microbial fuel cells (MFCs) has been investigated. These materials have been tested as MFC anode catalyst (microorganism) supports, cathode catalysts and membranes. These hybrid materials, possessing the properties of each component, or even with a synergistic effect, would present improved characteristics with respect to the bare components. In this paper we present an overview of the use of these composite materials in microbial fuel cells. The characteristics of the composite materials as well as their effect on MFC performance were compared with those of the individual component and/or the conventionally used materials.

  19. Cell-Culture Reactor Having a Porous Organic Polymer Membrane

    Science.gov (United States)

    Koontz, Steven L. (Inventor)

    2000-01-01

    A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclosed. The substrate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphory1choline groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge, wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic regions, and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.

  20. New hybrid model of proton exchange membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    WANG Rui-min; CAO Guang-yi; ZHU Xin-jian

    2007-01-01

    Model and simulation are good tools for design optimization of fuel cell systems. This paper proposes a new hybrid model of proton exchange membrane fuel cell (PEMFC). The hybrid model includes physical component and black-box component. The physical component represents the well-known part of PEMFC, while artificial neural network (ANN) component estimates the poorly known part of PEMFC. The ANN model can compensate the performance of the physical model. This hybrid model is implemented on Matlab/Simulink software. The hybrid model shows better accuracy than that of the physical model and ANN model. Simulation results suggest that the hybrid model can be used as a suitable and accurate model for PEMFC.