WorldWideScience

Sample records for alkaline hydrolysis

  1. Enzymatic Hydrolysis of Alkaline Pretreated Coconut Coir

    Directory of Open Access Journals (Sweden)

    Akbarningrum Fatmawati

    2013-06-01

    Full Text Available The purpose of this research is to study the effect of concentration and temperature on the cellulose and lignin content, and the reducing sugars produced in the enzymatic hydrolysis of coconut coir. In this research, the coconut coir is pretreated using 3%, 7%, and 11% NaOH solution at 60oC, 80oC, and 100oC. The pretreated coir were assayed by measuring the amount of cellulose and lignin and then hydrolysed using Celluclast and Novozyme 188 under various temperature (30oC, 40oC, 50oC and pH (3, 4, 5. The hydrolysis results were assayed for the reducing sugar content. The results showed that the alkaline delignification was effective to reduce lignin and to increase the cellulose content of the coir. The best delignification condition was observed at 11% NaOH solution and 100oC which removed 14,53% of lignin and increased the cellulose content up to 50,23%. The best condition of the enzymatic hydrolysis was obtained at 50oC and pH 4 which produced 7,57 gr/L reducing sugar. © 2013 BCREC UNDIP. All rights reservedReceived: 2nd October 2012; Revised: 31st January 2013; Accepted: 6th February 2013[How to Cite: Fatmawati, A., Agustriyanto, R., Liasari, Y. (2013. Enzymatic Hydrolysis of Alkaline Pre-treated Coconut Coir. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 34-39 (doi:10.9767/bcrec.8.1.4048.34-39[Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4048.34-39] | View in  |

  2. Combined wet oxidation and alkaline hydrolysis of polyvinylchloride

    DEFF Research Database (Denmark)

    Sørensen, E.; Bjerre, A.B.

    1992-01-01

    In view of the widespread aversion to burning polyvinylchloride (PVC) together with municipal waste, we have attempted an alternative approach to its decomposition. This paper describes a combined wet oxidation/alkaline hydrolysis yielding water soluble, biodegradable products. Experiments were...... carried out at temperatures from 180-260 degree C and reaction times of 8-24 min. The chloride liberated provides information on the rate constants. Considering the measured Cl- and Chemical Oxygen Demand (COD) values, we find hydrolysis and oxidation processes to be interdependent. The main products are...

  3. Hydrolysis of pyridoxal-5'-phosphate in plasma in conditions with raised alkaline phosphate.

    OpenAIRE

    Anderson, B B; O'Brien, H.; Griffin, G E; Mollin, D. L.

    1980-01-01

    Hydrolysis of pyridoxal phosphate in plasma was demonstrated in patients with liver disease and other conditions with raised alkaline phosphatase, and this usually closely paralleled the alkaline phosphatase level, whether of liver or bone origin. The endogenous plasma pyridoxal phosphate was inversely related to the alkaline phosphatase, and plasma hydrolysis of pyridoxal phosphate may at least in part be responsible. Very large doses of vitamin B6 may be necessary to compensate for this hyd...

  4. Mechanisms of lactone hydrolysis in neutral and alkaline conditions.

    Science.gov (United States)

    Gómez-Bombarelli, Rafael; Calle, Emilio; Casado, Julio

    2013-07-19

    The neutral and base-catalyzed hydrolysis of nine carboxylic acid esters was studied using a hybrid supermolecule-PCM approach including six explicit water molecules. The molecules studied included two linear esters, four β-lactones, two γ-lactones, and one δ-lactone: ethyl acetate and methyl formate, β-propiolactone, β-butyrolactone, β-isovalerolactone, diketene (4-methyleneoxetan-2-one), γ-butyrolactone, 2(5H)-furanone, and δ-valerolactone. DFT and ab initio methods were used to analyze the features of the various possible hydrolysis mechanisms. For all compounds, reasonable to very good qualitative and quantitative agreement with experimental work was found, and evidence is provided to support long-standing hypotheses regarding the role of solvent molecule as a base catalyst. In addition, novel evidence is presented for the existence of an elimination-addition mechanism in the basic hydrolysis of diketene. A parallel work addresses the acid-catalyzed hydrolysis of lactones. PMID:23758295

  5. AN ALKALINE HYDROLYSIS TISSUE DIGESTION SYSTEM FOR A BSL-3-AG CONTAINMENT FACILITY

    Science.gov (United States)

    An alkaline hydrolysis tissue digestion system was installed at the Arthropod-borne Animal Diseases Research Laboratory (ABADRL) Biosafety Level (BSL) 3-AG containment facility in 2000 to replace the antiquated pathologic waste incinerator because of significant costs for upgrading this incinerator ...

  6. Fluor determination by alkaline hydrolysis of the uranium and thorium fluorides

    International Nuclear Information System (INIS)

    The alkaline hydrolysis of the uranium and thorium fluorides is studded and a new method for the determination of the fluoride, on the basis of a indirect volumetric titration with standard soda, is proposed. The compounds that may influence the hydrolysis of the uranium fluoride and that may be occasionally found in it as impurities are also studied. the method can be applied to the uranium fluoride except when there is a great quantity of F2UO2 or UO3 present in the sample. (Author) 20 refs

  7. Total fractionation of green tea residue by microwave-assisted alkaline pretreatment and enzymatic hydrolysis.

    Science.gov (United States)

    Tsubaki, Shuntaro; Azuma, Jun-ichi

    2013-03-01

    Total refinery of constituents of green tea residue was achieved by combination of microwave-assisted alkaline pretreatment and enzymatic hydrolysis. Alkaline pretreatment was effective at separating pectic polysaccharides, protein, phenolic compounds and aliphatic compounds (probably originating from cuticular components), and the solubilization rate was attained 64–74% by heating at 120–200 °C. The higher heating value (HHV) of alkali-soluble fraction attained 20.1 MJ/kg, indicating its usability as black-liquor-like biofuel. Successive cellulolytic enzymatic hydrolysis mainly converted cellulose into glucose and attained the maximum solubilization rate of 89%. Final residue was predominantly composed of aliphatic cuticular components with high proportion in 9,10,18-trihydroxyoctadecanoic acid (30.1–48.6%). These cuticular components are potential alternative feedstock for aliphatic compounds commonly found in oil plants. PMID:23384782

  8. Proposing and evaluating applications for products obtained during chromium chip alkaline hydrolysis produced during leather tanning

    Directory of Open Access Journals (Sweden)

    Andrea Díaz

    2010-04-01

    Full Text Available Some applications for products obtained by chromium chip alkaline hydrolysis produced during leather tanning were evaluated in this work, considering the concept of maximising tanneries’ solid residue reuse for different industrial applications and minimising the environmental impact so produced. When Cr(OH is transformed into Cr (OH(SO it can be used in tanning leather (i.e. as tanning salt. When compared to commercial salts, 2 4 it was determined that it could be applied to mixtures containing this salt, replacing it by up to 40%. Chromium content reduction was evaluated for collagen hydrolyzate by pH control after alkaline hydrolysis of the chips and by applying adsorbent materials such as bentonite, alfalfa and sorghum biomass and activated charcoal, a maximum 55% Cr removal being obtained when the first two adsorbent materials were used.

  9. Kinetic study of alkaline protease 894 for the hydrolysis of the pearl oyster Pinctada martensii

    Institute of Scientific and Technical Information of China (English)

    CHEN Xin; CHEN Hua; CAI Bingna; LIU Qingqin; SUN Huili

    2013-01-01

    A new enzyme (alkaline protease 894) obtained from the marine extremophile Flavobacterium yellowsea (YS-80-122) has exhibited strong substrate-binding and catalytic activity,even at low temperature,but the characteristics of the hydrolysis with this enzyme are still unclear.The pearl oyster Pinctada martensii was used in this study as the raw material to illustrate the kinetic properties ofprotease 894.After investigating the intrinsic relationship between the degree of hydrolysis and several factors,including initial reaction pH,temperature,substrate concentration,enzyme concentration,and hydrolysis time,the kinetics model was established.This study showed that the optimal conditions for the enzymatic hydrolysis were an initial reaction pH of 5.0,temperature of 30℃,substrate concentration of 10% (w/v),enzyme concentration of 2 500 U/g,and hydrolysis time of 160 min.The kinetic characteristics of the protease for the hydrolysis of P.martensii were obtained.The inactivation constant was found to be 15.16/min,and the average relative error between the derived kinetics model and the actual measurement was only 3.04%,which indicated a high degree of fitness.Therefore,this study provides a basis for the investigation of the concrete kinetic characteristics of the new protease,which has potential applications in the food industry.

  10. Alkaline hydrolysis of dimethyl terephthalate in the presence of [LiAl2(OH)6]Cl.2H2O

    International Nuclear Information System (INIS)

    The alkaline hydrolysis of dimethyl terephthalate (DMT) in the presence of [LiAl2(OH)6]Cl has been investigated to demonstrate a possible application of anion exchange facility of layered double hydroxides (LDHs) to control chemical reactions. The results show that (i) in the alkaline hydrolysis of DMT in the presence of [LiAl2(OH)6]Cl, most of the interlayer Cl- of [LiAl2(OH)6]Cl is quickly replaced by OH- in the alkaline solution because the LDH host favors OH- more; (ii) the alkaline hydrolysis of DMT in the presence of [LiAl2(OH)6]Cl is faster than the reaction of DMT and [LiAl2(OH)6]OH; (iii) The hydrolysis of DMT in a buffer solution of pH∼8 takes longer time to reach equilibrium than the alkaline hydrolysis of DMT in the presence of [LiAl2(OH)6]Cl. It is believed that the selective anion exchange chemistry of the LDH plays a key role in storage and controlled release of active reactant, that is, OH-, thus make the hydrolysis proceeds in a controlled way. - Graphical abstract: XRD patterns of the solid products of the alkaline hydrolysis of dimethyl terephthalate (DMT) in the presence of [LiAl2(OH)6]Cl at 70 deg. C halted at different time, which shows that [LiAl2(OH)6]Cl turns out to be [LiAl2(OH)6]OH, and [LiAl2(OH)6]2TP forms gradually. In this reaction, the alkaline hydrolysis of DMT is controlled by replacement of Cl- in [LiAl2(OH)6]Cl by OH-, and subsequent replacement of OH- in [LiAl2(OH)6]OH by terephthalate anion

  11. Epimerization study on [18F]FDG produced by an alkaline hydrolysis on solid support under stringent conditions

    International Nuclear Information System (INIS)

    Since 1998, routine [18F]FDG syntheses are being carried out by alkaline hydrolysis on a solid support, i.e. the labeled intermediate is trapped on a tC18 solid phase extraction cartridge, purified and finally hydrolyzed within the cartridge, at room temperature, using sodium hydroxide. The present study demonstrated that no epimerization of [18F]FDG to [18F]FDM occurs even when 12 N NaOH is used and when the hydrolysis time is extended up to 1 h. The alkaline hydrolysis on solid support appears to be a simple method leading to [18F]FDG with high purity

  12. Epimerization study on [18F]FDG produced by an alkaline hydrolysis on solid support under stringent conditions

    OpenAIRE

    Mosdzianowski, C.; Lemaire, Christian; Simoens, F.; Aerts, Joël; Morelle, J. L.; Luxen, André

    2002-01-01

    Since 1998, routine [18F]FDG syntheses are being carried out by alkaline hydrolysis on a solid support, i.e. the labeled intermediate is trapped on a tC18 solid phase extraction cartridge, purified and finally hydrolyzed within the cartridge, at room temperature, using sodium hydroxide. The present study demonstrated that no epimerization of [18F]FDG to [18F]FDM occurs even when 12 N NaOH is used and when the hydrolysis time is extended up to 1 h. The alkaline hydrolysis on solid support appe...

  13. Intelligent hydrophilic nanoparticles fabricated via alkaline hydrolysis of crosslinked polyacrylonitrile nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y., E-mail: zhyw@dhu.edu.cn; Wu, Q.; Zhang, H.; Zhao, J. [Donghua University, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Chemical Fibers Research Institute (China)

    2013-07-15

    Crosslinked polyacrylonitrile (PAN) nanolatex, with an average hydrodynamic diameter of 84 nm and a polydispersity index of 0.06, was successfully synthesized at a high monomer concentration and low surfactant content via a modified emulsion polymerization. Three measurements were adopted to control the nucleation and growth processes. Taking advantage of the chemical activity of nitrile groups, intelligent hydrophilic polymeric nanoparticles were fabricated via simple alkaline hydrolysis treatment of the crosslinked PAN nanolatex. Dynamic light scattering, electrophoretic light scattering, FT-IR spectroscopy, elemental analysis, and TEM observations were used to monitor the changes in the composition, structure, and morphology of the nanoparticles during the hydrolysis process. The sizes, chemical composition, morphology, and pH-responsive behavior of the intelligent hydrophilic nanoparticles could be adjusted by simply changing the hydrolysis time. As the hydrolysis was prolonged, the following nanoparticles could be obtained, crosslinked PAN nanoparticles with hydrophilic surfaces, amphiphilic nanoparticles with a hydrophobic PAN core and a hydrophilic polymeric shell composed of acrylamide and acrylic acid units, or carboxylic polyacrylamide nanoparticles. These modified nanoparticles all display good hydrophilicity, good biocompatibility, pH-sensitivity, as well as carboxyl functional groups, and thus are ideal candidates for various biomedical applications.

  14. Intelligent hydrophilic nanoparticles fabricated via alkaline hydrolysis of crosslinked polyacrylonitrile nanoparticles

    International Nuclear Information System (INIS)

    Crosslinked polyacrylonitrile (PAN) nanolatex, with an average hydrodynamic diameter of 84 nm and a polydispersity index of 0.06, was successfully synthesized at a high monomer concentration and low surfactant content via a modified emulsion polymerization. Three measurements were adopted to control the nucleation and growth processes. Taking advantage of the chemical activity of nitrile groups, intelligent hydrophilic polymeric nanoparticles were fabricated via simple alkaline hydrolysis treatment of the crosslinked PAN nanolatex. Dynamic light scattering, electrophoretic light scattering, FT-IR spectroscopy, elemental analysis, and TEM observations were used to monitor the changes in the composition, structure, and morphology of the nanoparticles during the hydrolysis process. The sizes, chemical composition, morphology, and pH-responsive behavior of the intelligent hydrophilic nanoparticles could be adjusted by simply changing the hydrolysis time. As the hydrolysis was prolonged, the following nanoparticles could be obtained, crosslinked PAN nanoparticles with hydrophilic surfaces, amphiphilic nanoparticles with a hydrophobic PAN core and a hydrophilic polymeric shell composed of acrylamide and acrylic acid units, or carboxylic polyacrylamide nanoparticles. These modified nanoparticles all display good hydrophilicity, good biocompatibility, pH-sensitivity, as well as carboxyl functional groups, and thus are ideal candidates for various biomedical applications

  15. Alkaline hydrolysis of mouse-adapted scrapie for inactivation and disposal of prion-positive material.

    Science.gov (United States)

    Murphy, R G L; Scanga, J A; Powers, B E; Pilon, J L; Vercauteren, K C; Nash, P B; Smith, G C; Belk, K E

    2009-05-01

    Prion diseases such as bovine spongiform encephalopathy, chronic wasting disease, and scrapie pose serious risks to human and animal health due to a host of disease-specific factors, including the resistance of infectious prions (PrP(Sc)) to natural degradation and to most commercial inactivation procedures. In an attempt to address this concern, a mouse model was used to compare the efficacy of an alkaline hydrolysis process with a simulated continuous-flow rendering treatment for disposal of PrP(Sc)-infected biological material. Female C57/BL6 mice (N = 120) were randomly divided into 4 treatment groups (n = 30), and each mouse was injected intraperitoneally with their designated treatment inoculum. Treatment groups 1 and 2 served as the positive and negative controls, respectively. Group 3 was inoculated with rendered scrapie-positive mouse brain material to investigate the effectiveness of simulated continuous-flow rendering practices to reduce or eliminate PrP(Sc). Group 4 was inoculated with hydrolyzed scrapie-positive mouse brain material to determine the sterilizing effect of alkaline hydrolysis on PrP(Sc). Mice were monitored for overt signs of disease, and those showing clinical signs were killed to prevent undue suffering. Brains were obtained from all mice that died (or were killed) and analyzed with an ELISA for the presence of PrP(Sc). Results indicated that the simulated continuous-flow rendering treatment used for preparing the rendering treatment group inoculum failed to completely eliminate PrP(Sc). Rendering delayed, but did not stop, clinical mouse-adapted scrapie transmission. Compared with positive controls, the rendering treatment group experienced an approximate 45-d average delay in days to death (250 vs. 205 d for positive controls; P loss of 73.9% (P = 0.0094). Positive controls suffered 100% death loss. The results validated the efficacy of the alkaline hydrolysis treatment to inactivate all PrP(Sc) because no alkaline hydrolysis

  16. Effective extraction method through alkaline hydrolysis for the detection of starch maleate in foods

    Directory of Open Access Journals (Sweden)

    Chia-Fen Tsai

    2015-09-01

    Full Text Available A high-performance liquid chromatography (HPLC method was developed for the determination of maleic acid which was released from starch maleate (SM through the alkaline hydrolysis reaction. The proper alkaline hydrolysis conditions and LC separation are reported in this study. The starch samples were treated with 50% methanol for 30 minutes, and then hydrolyzed by 0.5N KOH for 2 hours to release maleic acid. A C18 column and gradient mobile phase consisting of 0.1% phosphoric acid and methanol at a flow rate of 1.0 mL/minute were used for separation. The method showed a good linearity in the range of 0.01–1.0 ìg/mL, with a limit of quantification (LOQ at 10 mg/kg in starch. The recoveries in corn starch, noodle, and fish balls were between 93.9% and 108.4%. The relative standard deviation (RSD of precision was <4.9% (n = 3. This valid method was rapid, sensitive, precise, and suitable for routine monitoring of the illegal adulteration of SM in foods.

  17. Detection of ampicillin, its sodium salt and alkaline hydrolysis products by MALDI-TOF Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Lukáš Hleba

    2016-05-01

    Full Text Available Antibiotic resistance of bacteria is very big problem in clinical and veterinary medicine in recent year. This problem is increasing by the exposure of bacteria against antibiotics. The most spread of resistance is resistance against penicillins antibiotics. Ampicillin is common use antibiotic in the both medicine. Therefore, detection of antibiotics and antibiotic resistance are very important for prevention of spread of antibiotics in the environment and resistant bacteria too. Therefore the aim of this study was detection of ampicillin, its sodium salts and alkaline hydrolysis products by MALDI-TOF Mass Spectrometry. For detection of pure ampicillin, its sodium salts and alkaline hydrolysed products MALDI-TOF MS (Matrix Assisted Light Desorption Ionization – Time of Flight Mass Spectrometry Microflex LT in positive ion mode was used. Determined mass spectra were observed by FlexAnalysis software. The mass spectra and molecular weight of ampicillin, its sodium salts and hydrolysed products were compared with theoretical molecular weight of these compounds. The results showed that its possible to detect ampicillin, its sodium salts and hydrolyzed products by MALDI-TOF MS in positive ion mode with some correction in analytical software. This knowledge is resulting that MALDI-TOF MS detection method can be useful for detection of ampicillin from different kind of environment samples and its possible to detect ampicillin resistance mechanism (enzymatic destruction indirectly, because resistance against penicillins is enzymatic hydrolysis of beta-lactam core. Also the most important issue is that method is very quickly and cheap.

  18. Lignin recovery from alkaline hydrolysis and glycerolysis of oil palm fiber

    Science.gov (United States)

    Hassan, Nur Syakilla; Badri, Khairiah Haji

    2014-09-01

    In the present work, two types of treatment namely alkaline hydrolysis and glycerolysis have been conducted for lignin extraction from oil palm empty fruit bunch (EFB) fiber. Lignin has been retrieved from two sequential methods, which was the klason lignin from residue and lignin from precipitation of the filtrate. Alkaline hydrolysis was performed using 10% NaOH solution at room condition. This has extracted 13.0 % lignin. On the other hand, glycerolysis was carried out using 70% glycerol catalyzed with 5% of 1 M NaOH at 60-70 °C. This has successfully extracted 16.0% lignin. The SEM micrographs exhibited some physical changes on the surface where the impurities and waxes have been removed, exposing the, lumen. Besides that, FTIR analysis was conducted on untreated EFB, treated EFB and extracted lignin. Delignification of EFB fiber was confirmed based on the intensity reduction at 1245 cm-1 that showed lignin was removed from the fiber. The presence of CO, CC and CC aromatic peaks in the FTIR spectra of the dried filtrate gave an evidence on the presence of lignin.

  19. Enhanced alkaline hydrolysis and biodegradability studies of nitrocellulose-bearing missile propellant

    Science.gov (United States)

    Sidhoum, Mohammed; Christodoulatos, Christos; Su, Tsan-Liang; Redis, Mercurios

    1995-01-01

    Large amounts of energetic materials which have been accumulated over the years in various manufacturing and military installations must be disposed of in an environmentally sound manner. Historically, the method of choice for destruction of obsolete or aging energetic materials has been open burning or open detonation (OB/OD). This destruction approach has become undesirable due to air pollution problems. Therefore, there is a need for new technologies which will effectively and economically deal with the disposal of energetic materials. Along those lines, we have investigated a chemical/biological process for the safe destruction and disposal of a double base solid rocket propellant (AHH), which was used in several 8 inch projectile systems. The solid propellant is made of nitrocellulose and nitroglycerin as energetic components, two lead salts which act as ballistic modifiers, triacetin as a plasticizer and 2-Nitrodiphenylamine (2-NDPA) as a stabilizer. A process train is being developed to convert the organic components of the propellant to biodegradable products and remove the lead from the process stream. The solid propellant is first hydrolyzed through an enhanced alkaline hydrolysis process step. Following lead removal and neutralization, the digested liquor rich in nitrates and nitrites is found to be easily biodegradable. The digestion rate of the intact ground propellant as well as the release of nitrite and nitrate groups were substantially increased when ultrasound were supplied to the alkaline reaction medium compared to the conventional alkaline hydrolysis. The effects of reaction time, temperature, sodium hydroxide concentration and other relevant parameters on the digestion efficiency and biodegradability have been studied. The present work indicates that the AHH propellant can be disposed of safely with a combination of physiochemical and biological processes.

  20. Quantum chemical study of conformational preferences of intermediates and transition states in the alkaline hydrolysis of dimethyl phosphate

    International Nuclear Information System (INIS)

    The phosphate diester is a basic structure in DNA and RNA. The mechanism of phosphate diester hydrolysis is important for understanding the decomposition reactions of nucleic acids. In this study, we have explored the reaction pathway of alkaline hydrolysis of dimethyl phosphate, which is the simplest phosphate diester, with a hydroxide ion. Since the conformations of the intermediates and transition states reportedly influence the reaction mechanism of transacylation of methyl acetate with methoxide, we considered the conformational preferences on the alkaline hydrolysis of dimethyl phosphate, by using the most stable conformer as a reactant. Upon the reaction with hydroxide, a concerted reaction pathway was obtained in the gas phase, whereas a stepwise reaction pathway was obtained in water. As compared to the earlier study, our computation shows more stable conformations in the hydrolysis reactions than the previous study

  1. Impact of enzymatic and alkaline hydrolysis on CBD concentration in urine.

    Science.gov (United States)

    Bergamaschi, Mateus M; Barnes, Allan; Queiroz, Regina H C; Hurd, Yasmin L; Huestis, Marilyn A

    2013-05-01

    A sensitive and specific analytical method for cannabidiol (CBD) in urine was needed to define urinary CBD pharmacokinetics after controlled CBD administration, and to confirm compliance with CBD medications including Sativex-a cannabis plant extract containing 1:1 ∆(9)-tetrahydrocannabinol (THC) and CBD. Non-psychoactive CBD has a wide range of therapeutic applications and may also influence psychotropic smoked cannabis effects. Few methods exist for the quantification of CBD excretion in urine, and no data are available for phase II metabolism of CBD to CBD-glucuronide or CBD-sulfate. We optimized the hydrolysis of CBD-glucuronide and/or -sulfate, and developed and validated a GC-MS method for urinary CBD quantification. Solid-phase extraction isolated and concentrated analytes prior to GC-MS. Method validation included overnight hydrolysis (16 h) at 37 °C with 2,500 units β-glucuronidase from Red Abalone. Calibration curves were fit by linear least squares regression with 1/x (2) weighting with linear ranges (r(2) > 0.990) of 2.5-100 ng/mL for non-hydrolyzed CBD and 2.5-500 ng/mL for enzyme-hydrolyzed CBD. Bias was 88.7-105.3 %, imprecision 1.4-6.4 % CV and extraction efficiency 82.5-92.7 % (no hydrolysis) and 34.3-47.0 % (enzyme hydrolysis). Enzyme-hydrolyzed urine specimens exhibited more than a 250-fold CBD concentration increase compared to alkaline and non-hydrolyzed specimens. This method can be applied for urinary CBD quantification and further pharmacokinetics characterization following controlled CBD administration. PMID:23494274

  2. Determination of Lutein from Fruit and Vegetables Through an Alkaline Hydrolysis Extraction Method and HPLC Analysis.

    Science.gov (United States)

    Fratianni, Alessandra; Mignogna, Rossella; Niro, Serena; Panfili, Gianfranco

    2015-12-01

    A simple and rapid analytical method for the determination of lutein content, successfully used for cereal matrices, was evaluated in fruit and vegetables. The method involved the determination of lutein after an alkaline hydrolysis of the sample matrix, followed by extraction with solvents and analysis by normal phase HPLC. The optimized method was simple, precise, and accurate and it was characterized by few steps that could prevent loss of lutein and its degradation. The optimized method was used to evaluate the lutein amounts in several fruit and vegetables. Rich sources of lutein were confirmed to be green vegetables such as parsley, spinach, chicory, chard, broccoli, courgette, and peas, even if in a range of variability. Taking into account the suggested reference values these vegetables can be stated as good sources of lutein. PMID:26540023

  3. Alkaline hydrolysis process for treatment and disposal of Purex solvent waste

    International Nuclear Information System (INIS)

    Treatment of spent Purex solvent (30% TBP-70% n-dodecane mixture) from reprocessing plants by alkaline hydrolysis process was investigated using inactive 30% TBP solvent as well as actual radioactive spent solvent. Complete conversion of TBP to water-soluble reaction products was achieved in 7 hours reaction time at 130 deg C using 50%(w/v) NaOH solution at NaOH to TBP mole ratio of 3:2. Addition of water to the product mixture resulted in the complete separation of diluent containing less than 2 and 8 Bg./ml. of α and β activity respectively. Silica gel and alumina were found effective for purification of the separated diluent. Aqueous phase containing most of the original radioactivity was found compatible with cement matrix for further conditioning and disposal. (author). 17 refs., 10 tabs., 1 fig

  4. Theoretical estimation and validation of radiation field in alkaline hydrolysis plant

    International Nuclear Information System (INIS)

    Spent organic solvent (30% TBP + 70% n-Dodecane) from reprocessing facility is treated at ETP in Alkaline Hydrolysis Plant (AHP) and Organic Waste Incineration (ORWIN) Facility. In AHP-ORWIN, there are three horizontal cylindrical tanks having 2.0 m3 operating capacity used for waste storage and transfer. The three tanks are, Aqueous Waste Tank (AWT), Waste Receiving Tank (WRT) and Dodecane Waste Tank (DWT). These tanks are en-housed in a shielded room in this facility. Monte Carlo N-Particle (MCNP) radiation transport code was used to estimate ambient radiation field levels when the storage tanks are having hold up volumes of desired specific activity levels. In this paper the theoretically estimated values of radiation field is compared with the actual measured dose

  5. Bioethanol Production from Coconut Fiber Using Alkaline Pretreatment and Acid Hydrolysis Method

    Directory of Open Access Journals (Sweden)

    Asyeni Miftahul Jannah

    2015-01-01

    Full Text Available Supporting Indonesia government program to decrease fuel consumption, using renewable energy such of bioethanol is one of the best ways. This research was done in order to utilize agriculture waste (coconut fiber as raw material to produce bioetanol. However, coconut fiber contents lignin that will inhibit conversion process of glucose into ethanol. In this research, pretreatment steps aim to release and breakdown lignin in coconut fiber. Pretreatment was conducted by using alkaline method with 3% Sodium Hydroxide solution. Hydrolysis method was used to produce glucose by using Sulfuric Acid solution with various concentrations (1%, 2%, 3%, and 4 % while in fermentation process used Saccharomyces cerevisiae with various times (5, 7, 9, and 11 days and distillation used to get pure product of bioethanol. The results showed that higher H2SO4 concentration using on hydrolysis process made more glucose converted to bioethanol. The highest bioethanol content produced was 5.9420% from sample of 4% H2SO4 in 7 days of fermentation.

  6. Alkaline Hydrolysis/Polymerization of 2,4,6-Trinitrotoluene: Characterization of Products by 13C and 15N NMR

    Science.gov (United States)

    Thorn, K.A.; Thorne, P.G.; Cox, L.G.

    2004-01-01

    Alkaline hydrolysis has been investigated as a nonbiological procedure for the destruction of 2,4,6-trinitrotoluene (TNT) in explosives contaminated soils and munitions scrap. Nucleophilic substitutions of the nitro and methyl groups of TNT by hydroxide ion are the initial steps in the alkaline degradation of TNT. Potential applications of the technique include both in situ surface liming and ex situ alkaline treatment of contaminated soils. A number of laboratory studies have reported the formation of an uncharacterized polymeric material upon prolonged treatment of TNT in base. As part of an overall assessment of alkaline hydrolysis as a remediation technique, and to gain a better understanding of the chemical reactions underlying the hydrolysis/polymerization process, the soluble and precipitate fractions of polymeric material produced from the calcium hydroxide hydrolysis of unlabeled and 15N-labeled TNT were analyzed by elemental analysis and 13C and 15N nuclear magnetic resonance spectroscopy. Spectra indicated that reactions leading to polymerization included nucleophilic displacement of nitro groups by hydroxide ion, formation of ketone, carboxyl, alcohol, ether, and other aliphatic carbons, conversion of methyl groups to diphenyl methylene carbons, and recondensation of aromatic amines and reduced forms of nitrite, including ammonia and possibly hydroxylamine, into the polymer. Compared to the distribution of carbons in TNT as 14% sp 3- and 86% sp2-hybridized, the precipitate fraction from hydrolysis of unlabeled TNT contained 33% sp3- and 67% sp 2-hybridized carbons. The concentration of nitrogen in the precipitate was 64% of that in TNT. The 15N NMR spectra showed that, in addition to residual nitro groups, forms of nitrogen present in the filtrate and precipitate fractions include aminohydroquinone, primary amide, indole, imine, and azoxy, among others. Unreacted nitrite was recovered in the filtrate fraction. The toxicities and susceptibilities to

  7. Enhanced osteogenic activity of a poly(butylene succinate)/calcium phosphate composite by simple alkaline hydrolysis

    International Nuclear Information System (INIS)

    Bone engineering offers the prospect of alternative therapies for clinically relevant skeletal defects. Poly(butylene succinate) (PBSu) is a biodegradable and biocompatible polyester which may possess some limitations in clinical use due to its hydrophobicity. In order to overcome these limitations and increase the bioactivity, a simple and convenient surface hydrolysis of PBSu, PBSu/hydroxyapatite and PBSu/β-tricalcium phosphate (TCP) films was performed. The resulting surfaces (i.e., HPBSu, HPBSu/HA and HPBSu/TCP) were tested for their physicochemical property, biocompatibility and osteogenic potency. The results showed that surface hydrolysis significantly increased surface roughness and hydrophilicity of the composites, with the HPBSu/TCP possessing the most pronounced results. All the materials appeared to be biocompatible and supported in vitro growth and osteoblast differentiation of hMSCs, and the alkaline hydrolysis significantly enhanced the hMSC cell proliferation and the osteogenic potency of PBSu/TCP compared with the non-hydrolyzed sample. In conclusion, the HPBSu/TCP possessed better hydrophilicity, biocompatibility and osteogenic potency in vitro, suggesting that this simple and convenient alkaline hydrolysis could be used to augment the biological property of PBSu-based composites for bone engineering in vivo. (paper)

  8. Inorganic nanofibers with tailored placement of nanocatalysts for hydrogen production via alkaline hydrolysis of glucose

    Science.gov (United States)

    Hansen, Nathaniel S.; Ferguson, Thomas E.; Panels, Jeanne E.; Alissa Park, Ah-Hyung; Lak Joo, Yong

    2011-08-01

    Monoaxial silica nanofibers containing iron species as well as coaxial nanofibers with a pure silica core and a silica shell containing high concentrations of iron nanocrystals were fabricated via electrospinning precursor solutions, followed by thermal treatment. Tetraethyl-orthosilicate (TEOS) and iron nitrate (Fe(NO3)3) were used as the precursors for the silica and iron phases, respectively. Thermal treatments of as-spun precursor fibers were applied to generate nanocrystals of iron with various oxidation states (pure iron and hematite). Scanning electron microscopy (SEM), x-ray diffraction (XRD), and transmission electron microscopy (TEM) were used to probe the fiber morphology and crystal structures. The results indicated that the size, phase, and placement of iron nanocrystals can be tuned by varying the precursor concentration, thermal treatment conditions, and processing scheme. The resulting nanofiber/metal systems obtained via both monoaxial and coaxial electrospinning were applied as catalysts to the alkaline hydrolysis of glucose for the production of fuel gas. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and bulk weight change in a furnace with residual gas analysis (RGA) were used to evaluate the performance of the catalysts for various ratios of both Fe to Si, and catalyst to glucose, and the oxidation state of the iron nanocrystals. The product gas is composed of mostly H2 (>96 mol%) and CH4 with very low concentrations of CO2 and CO. Due to the clear separation of reaction temperature for H2 and CH4 production, pure hydrogen can be obtained at low reaction temperatures. Our coaxial approach demonstrates that placing the iron species selectively near the fiber surface can lead to two to three fold reduction in catalytic consumption compared to the monoaxial fibers with uniform distribution of catalysts.

  9. Inorganic nanofibers with tailored placement of nanocatalysts for hydrogen production via alkaline hydrolysis of glucose.

    Science.gov (United States)

    Hansen, Nathaniel S; Ferguson, Thomas E; Panels, Jeanne E; Park, Ah-Hyung Alissa; Joo, Yong Lak

    2011-08-12

    Monoaxial silica nanofibers containing iron species as well as coaxial nanofibers with a pure silica core and a silica shell containing high concentrations of iron nanocrystals were fabricated via electrospinning precursor solutions, followed by thermal treatment. Tetraethyl-orthosilicate (TEOS) and iron nitrate (Fe(NO(3))(3)) were used as the precursors for the silica and iron phases, respectively. Thermal treatments of as-spun precursor fibers were applied to generate nanocrystals of iron with various oxidation states (pure iron and hematite). Scanning electron microscopy (SEM), x-ray diffraction (XRD), and transmission electron microscopy (TEM) were used to probe the fiber morphology and crystal structures. The results indicated that the size, phase, and placement of iron nanocrystals can be tuned by varying the precursor concentration, thermal treatment conditions, and processing scheme. The resulting nanofiber/metal systems obtained via both monoaxial and coaxial electrospinning were applied as catalysts to the alkaline hydrolysis of glucose for the production of fuel gas. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and bulk weight change in a furnace with residual gas analysis (RGA) were used to evaluate the performance of the catalysts for various ratios of both Fe to Si, and catalyst to glucose, and the oxidation state of the iron nanocrystals. The product gas is composed of mostly H(2) (>96 mol%) and CH(4) with very low concentrations of CO(2) and CO. Due to the clear separation of reaction temperature for H(2) and CH(4) production, pure hydrogen can be obtained at low reaction temperatures. Our coaxial approach demonstrates that placing the iron species selectively near the fiber surface can lead to two to three fold reduction in catalytic consumption compared to the monoaxial fibers with uniform distribution of catalysts. PMID:21772071

  10. Hydrolysis of tanned leather wastes under alkaline, acidic and oxidative conditions

    Directory of Open Access Journals (Sweden)

    Botić Tatjana

    2006-01-01

    Full Text Available Different wastes in large quantities are the outcome or the by-product of processes in the tanning industry. The largest part of solid wastes is collagen based and obtained in the reprocessing steps of tanned and non-tanned products. The quality collagen substance obtained from wastes of the leather industry used as a supporting material in many reprocessing industries. Hydrolysis is the basic step of collagen processing, namely the shortening of its polypeptide chain. The main goal of this investigation was to examine the influence of the following parameters on the extent of collagen hydrolysis: type and quantity of reagent used for hydrolysis temperature of hydrolysis, pH, duration of hydrolysis as well as the dimensions of the "shavings" samples. The change of molar mass during hydrolysis was monitored by UV-spectroscopy. Special attention was paid to the dechroming process of the collagen hydrolysate.

  11. Alkaline-sulfite pretreatment and use of surfactants during enzymatic hydrolysis to enhance ethanol production from sugarcane bagasse.

    Science.gov (United States)

    Mesquita, Jéssica Faria; Ferraz, André; Aguiar, André

    2016-03-01

    Sugarcane bagasse is a by-product from the sugar and ethanol industry which contains approximately 70 % of its dry mass composed by polysaccharides. To convert these polysaccharides into fuel ethanol it is necessary a pretreatment step to increase the enzymatic digestibility of the recalcitrant raw material. In this work, sugarcane bagasse was pretreated by an alkaline-sulfite chemithermomechanical process for increasing its enzymatic digestibility. Na2SO3 and NaOH ratios were fixed at 2:1, and three increasing chemical loads, varying from 4 to 8 % m/m Na2SO3, were used to prepare the pretreated materials. The increase in the alkaline-sulfite load decreased the lignin content in the pretreated material up to 35.5 % at the highest chemical load. The pretreated samples presented enhanced glucose yields during enzymatic hydrolysis as a function of the pretreatment severity. The maximum glucose yield (64 %) was observed for the samples pretreated with the highest chemical load. The use of 2.5 g l(-1) Tween 20 in the hydrolysis step further increased the glucose yield to 75 %. Semi-simultaneous hydrolysis and fermentation of the pretreated materials indicated that the ethanol yield was also enhanced as a function of the pretreatment severity. The maximum ethanol yield was 56 ± 2 % for the sample pretreated with the highest chemical load. For the sample pretreated with the lowest chemical load (2 % m/m NaOH and 4 % m/m Na2SO3), adding Tween 20 during the hydrolysis process increased the ethanol yield from 25 ± 3 to 39.5 ± 1 %. PMID:26718203

  12. Environmentally friendly chemical recycling of poly(bisphenol-A carbonate) through phase transfer-catalysed alkaline hydrolysis under microwave irradiation

    International Nuclear Information System (INIS)

    Highlights: ► A promising and environmentally friendly chemical recycling route of polycarbonate. ► Implementation of a phase transfer catalyst facilitates the alkaline hydrolysis. ► Microwave irradiation is used to achieve relatively mild experimental conditions. ► Surface erosion seems to be the dominant degradation mechanism. ► The method also seems promising for the treatment of wastes based on PC (e.g., CDs). - Abstract: The various and widespread uses of polycarbonate (PC) polymers require a meaningful and environmentally friendly disposal method. In this study, depolymerisation of polycarbonate with water in a microwave reactor is suggested as a recycling method. Hydrolysis was investigated in an alkaline (NaOH) solution using a phase-transfer catalyst. All of the experiments were carried out in a sealed microwave reactor, in which the reaction pressure, temperature and microwave power were continuously controlled and recorded. In the hydrolysis products, bisphenol-A monomer was obtained and identified by FTIR measurements. PC degradation higher than 80% can be obtained at 160 °C after a microwave irradiation time of either 40 min or 10 min using either a 5 or 10% (w/v) NaOH solution, respectively. GPC, TGA and DSC measurements of the PC residues revealed that surface erosion is the degradation mechanism. First-order reaction kinetics were estimated by implementing a simple kinetic model. Finally, greater than 85% degradation was achieved when waste CDs were treated with the same method. The results confirm the importance of the microwave power technique as a promising recycling method for PC-based waste plastics, resulting in monomer recovery in addition to substantial energy savings.

  13. Investigation of Unexpected Reaction Intermediates in the Alkaline Hydrolysis of Methyl 3,5-Dinitrobenzoate

    Science.gov (United States)

    Silva, Clesia C.; Silva, Ricardo O.; Navarro, Daniela M. A. F.; Navarro, Marcelo

    2009-01-01

    An experimental project aimed at identifying stable reaction intermediates is described. Initially, the studied reaction appears to involve the simple hydrolysis, by aqueous sodium hydroxide, of methyl 3,5-dinitrobenzoate dissolved in dimethyl sulfoxide. On mixing the substrates, however, the reaction mixture unexpectedly turns an intense red in…

  14. Hydrolysis of tanned leather wastes under alkaline, acidic and oxidative conditions

    OpenAIRE

    Botić Tatjana; Ilišković Nadežda

    2006-01-01

    Different wastes in large quantities are the outcome or the by-product of processes in the tanning industry. The largest part of solid wastes is collagen based and obtained in the reprocessing steps of tanned and non-tanned products. The quality collagen substance obtained from wastes of the leather industry used as a supporting material in many reprocessing industries. Hydrolysis is the basic step of collagen processing, namely the shortening of its polypeptide chain. The main goal of this i...

  15. Development of Al2O3 carrier-Ru composite catalyst for hydrogen generation from alkaline NaBH4 hydrolysis

    International Nuclear Information System (INIS)

    A recyclable and reusable Ru/Al2O3 catalyst is prepared for hydrogen generation from the hydrolysis process of alkaline sodium borohydride (NaBH4) solution. The hydrogen generation rate by the hydrolysis and methanolysis of alkaline NaBH4 was explored as a function of NaOH concentration. Meantime, the byproducts derived from the spent alkaline NaBH4 solution were characterized by X-ray diffraction (XRD), scanning electro microscope/energy dispersive spectrometer (SEM/EDS) and NMR (Nuclear Magnetic Resonance). The effect of NaOH concentration on the hydrogen generation from the hydrolysis of NaBH4 significantly depends on the type of catalysts. With increasing NaOH concentration, the hydrogen generation rates decrease when using ruthenium (Ru) composite as a catalyst. The hydrogen generation rate of the methanolysis of NaBH4 is significantly inhibited in the presence of NaOH as compared with the hydrolysis of NaBH4. The durability test of the Ru/Al2O3 catalyst shows that the hydrogen generation rate decreases with recycling and reuse. The XRD and NMR analysis results show that the borate hydrate (NaBO2 H2O) was derived from the hydrolysis of 20 wt% and 30 wt% NaBH4. -- Highlights: ► A recyclable Ru/Al2O3 catalyst was synthesized for hydrogen generation. ► Ru/Al2O3 significantly promotes the hydrogen generation rate from alkaline NaBH4 solution. ► The prepared Ru/Al2O3 catalyst can easily collect from the spent alkaline NaBH4 solution.

  16. Enhancement of enzymatic hydrolysis of wheat straw by gamma irradiation-alkaline pretreatment

    Science.gov (United States)

    Yin, Yanan; Wang, Jianlong

    2016-06-01

    Pretreatment of wheat straw with gamma irradiation and NaOH was performed to enhance the enzymatic hydrolysis of wheat straw for production of reducing sugar. The results showed that the irradiation of wheat straw at 50 kGy decreased the yield of reducing sugar, however, the reducing sugar yield increased with increasing dose from 50 kGy to 400 kGy. The irradiation of wheat straw at 100 kGy can significantly decrease NaOH consumption and treatment time. The reducing sugar yield could reach 72.67% after irradiation at 100 kGy and 2% NaOH treatment for 1 h. The combined pretreatment of wheat straw by gamma radiation and NaOH immersion can increase the solubilization of hemicellulose and lignin as well as the accessible surface area for enzyme molecules.

  17. A new method for the determination of the nitrogen content of nitrocellulose based on the molar ratio of nitrite-to-nitrate ions released after alkaline hydrolysis.

    Science.gov (United States)

    Alinat, Elodie; Delaunay, Nathalie; Archer, Xavier; Mallet, Jean-Maurice; Gareil, Pierre

    2015-04-01

    A new method was proposed to determine the nitrogen content of nitrocelluloses (NCs). It is based on the finding of a linear relationship between the nitrogen content and the molar ratio of nitrite-to-nitrate ions released after alkaline hydrolysis. Capillary electrophoresis was used to monitor the concentration of nitrite and nitrate ions. The influences of hydrolysis time and molar mass of NC on the molar ratio of nitrite-to-nitrate ions were investigated, and new insights into the understanding of the alkaline denitration mechanism of NCs, underlying this analytical strategy is provided. The method was then tested successfully with various explosive and non-explosive NC-containing samples such as various daily products and smokeless gunpowders. Inherently to its principle exploiting a concentration ratio, this method shows very good repeatability in the determination of nitrogen content in real samples with relative standard deviation (n = 3) inferior to 1.5%, and also provides very significant advantages with respect to sample extraction, analysis time (1h for alkaline hydrolysis, 3 min for electrophoretic separation), which was about 5 times shorter than for the classical Devarda's method, currently used in industry, and safety conditions (no need for preliminary drying NC samples, mild hydrolysis conditions with 1M sodium hydroxide for 1h at 60 °C). PMID:25562808

  18. Research Progress of Alkaline Hydrolysis Technology for Disposal of Animal Tissues%动物组织碱水解处理技术的研究进展

    Institute of Scientific and Technical Information of China (English)

    王涛; 吴金辉; 祁建城; 王润泽

    2013-01-01

      碱水解是近年来发展起来的一种动物组织处理技术,通过NaOH或KOH等碱性物质在高温高压条件下催化动物组织水解为无害的固体残渣和废液并实现组织的灭菌和分解,具有彻底灭活病原微生物、不产生有害气体、操作简单、费用低廉等优点。本文从原理、应用及研究进展等方面,综述了碱水解处理技术的发展与现状。比较分析了碱水解相对于传统组织处理方法的优势,介绍了组织处理机的类型、存在的问题和未来发展趋势。%  Alkaline hydrolysis technology is an approach to disposal of animal tissue. Sodium hydroxide or potassium hydroxide, is used under heat and high pressure to catalyze the hydrolysis of biological material into harmless solid residue and effluent. Alkaline hydrolysis technology has advantages of effective extinction of pathogenic,no hazard gas release,convenient operation and low cost. This paper presents an overall review of the technique principles,applications and research progress of alkaline hydrolysis technology. The superiority of alkaline hydrolysis is also discussed compared with traditional methods and various types of tissue digester,the existing problems and development trends are introduced.

  19. Fluor determination by alkaline hydrolysis of the uranium and thorium fluorides; Determinacion de fluor por hidrolisis alcalina en fluoruros de uranio y torio

    Energy Technology Data Exchange (ETDEWEB)

    Barrachina Gomez, L.; Gasco Sanchez, L.

    1961-07-01

    The alkaline hydrolysis of the uranium and thorium fluorides is studded and a new method for the determination of the fluoride, on the basis of a indirect volumetric titration with standard soda, is proposed. The compounds that may influence the hydrolysis of the uranium fluoride and that may be occasionally found in it as impurities are also studied. the method can be applied to the uranium fluoride except when there is a great quantity of F{sub 2}UO{sub 2} or UO{sub 3} present in the sample. (Author) 20 refs.

  20. A new method for the determination of the nitrogen content of nitrocellulose based on the molar ratio of nitrite-to-nitrate ions released after alkaline hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Alinat, Elodie, E-mail: elodie.alinat@chimie-paristech.fr [PSL Research University, Chimie ParisTech, Laboratory of Physicochemistry of Electrolytes, Colloids and Analytical Sciences (PECSA), 11 rue Pierre et Marie Curie, 75005 Paris (France); Central Laboratory of Police Prefecture (LCPP), 39 bis rue de Dantzig, 75015 Paris (France); CNRS, UMR 7195 PECSA, 11 rue Pierre et Marie Curie, 75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, LBM, 4 place Jussieu, F-75005 Paris (France); Delaunay, Nathalie, E-mail: nathalie.delaunay@espci.fr [PSL Research University, Chimie ParisTech, Laboratory of Physicochemistry of Electrolytes, Colloids and Analytical Sciences (PECSA), 11 rue Pierre et Marie Curie, 75005 Paris (France); CNRS, UMR 7195 PECSA, 11 rue Pierre et Marie Curie, 75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, LBM, 4 place Jussieu, F-75005 Paris (France); Archer, Xavier, E-mail: xavier.archer@interieur.gouv.fr [Central Laboratory of Police Prefecture (LCPP), 39 bis rue de Dantzig, 75015 Paris (France); Mallet, Jean-Maurice, E-mail: jean-maurice.mallet@es.fr [École Normale Supérieure-PSL Research University, Département de Chimie, 24 rue Lhomond, 75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, LBM, 4 place Jussieu, F-75005 Paris (France); CNRS, UMR 7203 LBM, F-75005 Paris (France); Gareil, Pierre, E-mail: pierre.gareil@chimie-paristech.fr [PSL Research University, Chimie ParisTech, Laboratory of Physicochemistry of Electrolytes, Colloids and Analytical Sciences (PECSA), 11 rue Pierre et Marie Curie, 75005 Paris (France); CNRS, UMR 7195 PECSA, 11 rue Pierre et Marie Curie, 75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, LBM, 4 place Jussieu, F-75005 Paris (France)

    2015-04-09

    Highlights: • New insights into the nitrocellulose alkaline denitration mechanism. • Linear correlation for molar ratio of nitrite-to-nitrate ions and nitrogen content. • Capillary electrophoresis monitoring of nitrite and nitrate ions. • Applications to explosive and non-explosive nitrocellulose-containing samples. • Improved performances (including safety) over classical methods. - Abstract: A new method was proposed to determine the nitrogen content of nitrocelluloses (NCs). It is based on the finding of a linear relationship between the nitrogen content and the molar ratio of nitrite-to-nitrate ions released after alkaline hydrolysis. Capillary electrophoresis was used to monitor the concentration of nitrite and nitrate ions. The influences of hydrolysis time and molar mass of NC on the molar ratio of nitrite-to-nitrate ions were investigated, and new insights into the understanding of the alkaline denitration mechanism of NCs, underlying this analytical strategy is provided. The method was then tested successfully with various explosive and non-explosive NC-containing samples such as various daily products and smokeless gunpowders. Inherently to its principle exploiting a concentration ratio, this method shows very good repeatability in the determination of nitrogen content in real samples with relative standard deviation (n = 3) inferior to 1.5%, and also provides very significant advantages with respect to sample extraction, analysis time (1 h for alkaline hydrolysis, 3 min for electrophoretic separation), which was about 5 times shorter than for the classical Devarda's method, currently used in industry, and safety conditions (no need for preliminary drying NC samples, mild hydrolysis conditions with 1 M sodium hydroxide for 1 h at 60 °C)

  1. A new method for the determination of the nitrogen content of nitrocellulose based on the molar ratio of nitrite-to-nitrate ions released after alkaline hydrolysis

    International Nuclear Information System (INIS)

    Highlights: • New insights into the nitrocellulose alkaline denitration mechanism. • Linear correlation for molar ratio of nitrite-to-nitrate ions and nitrogen content. • Capillary electrophoresis monitoring of nitrite and nitrate ions. • Applications to explosive and non-explosive nitrocellulose-containing samples. • Improved performances (including safety) over classical methods. - Abstract: A new method was proposed to determine the nitrogen content of nitrocelluloses (NCs). It is based on the finding of a linear relationship between the nitrogen content and the molar ratio of nitrite-to-nitrate ions released after alkaline hydrolysis. Capillary electrophoresis was used to monitor the concentration of nitrite and nitrate ions. The influences of hydrolysis time and molar mass of NC on the molar ratio of nitrite-to-nitrate ions were investigated, and new insights into the understanding of the alkaline denitration mechanism of NCs, underlying this analytical strategy is provided. The method was then tested successfully with various explosive and non-explosive NC-containing samples such as various daily products and smokeless gunpowders. Inherently to its principle exploiting a concentration ratio, this method shows very good repeatability in the determination of nitrogen content in real samples with relative standard deviation (n = 3) inferior to 1.5%, and also provides very significant advantages with respect to sample extraction, analysis time (1 h for alkaline hydrolysis, 3 min for electrophoretic separation), which was about 5 times shorter than for the classical Devarda's method, currently used in industry, and safety conditions (no need for preliminary drying NC samples, mild hydrolysis conditions with 1 M sodium hydroxide for 1 h at 60 °C)

  2. The use of alkaline hydrolysis as a novel strategy for chloroform remediation: the feasibility of using construction wastes and evaluation of carbon isotopic fractionation.

    Science.gov (United States)

    Torrentó, Clara; Audí-Miró, Carme; Bordeleau, Geneviève; Marchesi, Massimo; Rosell, Mònica; Otero, Neus; Soler, Albert

    2014-01-01

    Laboratory and field-scale pilot experiments were performed to evaluate the feasibility of chloroform degradation by alkaline hydrolysis and the potential of δ(13)C values to assess this induced reaction process at contaminated sites. In batch experiments, alkaline conditions were induced by adding crushed concrete (pH 12.33 ± 0.07), a filtered concrete solution (pH 12.27 ± 0.04), a filtered cement solution (pH 12.66 ± 0.02) and a pH 12 buffer solution (pH 11.92 ± 0.11). The resulting chloroform degradation after 28 days was 94, 96, 99, and 72%, respectively. The experimental data were described using a pseudo-first-order kinetic model, resulting in pseudo-first-order rate constant values of 0.10, 0.12, 0.20, and 0.05 d(-1), respectively. Furthermore, the significant chloroform carbon isotopic fractionation associated with alkaline hydrolysis of chloroform (-53 ± 3‰) and its independence from pH in the admittedly limited tested pH range imply a great potential for the use of δ(13)C values for in situ monitoring of the efficacy of remediation approaches based on alkaline hydrolysis. The carbon isotopic fractionation obtained at the lab scale allowed the calculation of the percentage of chloroform degradation in field-scale pilot experiments where alkaline conditions were induced in two recharge water interception trenches filled with concrete-based construction wastes. A maximum of approximately 30-40% of chloroform degradation was achieved during the two studied recharge periods. Although further research is required, the treatment of chloroform in groundwater through the use of concrete-based construction wastes is proposed. This strategy would also imply the recycling of construction and demolition wastes for use in value-added applications to increase economic and environmental benefits. PMID:24410407

  3. Functionalization of poly(ε-caprolactone) surface with lactose-modified chitosan via alkaline hydrolysis: ToF-SIMS characterization.

    Science.gov (United States)

    Tortora, Luca; Concolato, Sofia; Urbini, Marco; Giannitelli, Sara Maria; Basoli, Francesco; Rainer, Alberto; Trombetta, Marcella; Orsini, Monica; Mozetic, Pamela

    2016-06-01

    Functionalization of poly(ε-caprolactone) (PCL) was performed via hydrolysis and subsequent grafting of lactose-modified chitosan (chitlac) at two different degrees of derivatization (9% and 64%). Time of flight secondary ion mass spectrometry (ToF-SIMS) and multivariate analysis (principal component analysis) were successfully applied to the characterization of PCL surface chemistry, evidencing changes in the biopolymer surface following base-catalyzed hydrolysis treatment. ToF-SIMS analysis also confirmed positive EDC/NHS-catalyzed (EDC: N-ethyl-N'-(3-(dimethylamino)propyl)carbodiimide; NHS: N-hydroxysuccinimide) immobilization of chitlac onto activated PCL surface, with formation of amide bonds between PCL surface carboxyl groups and amine residues of chitlac. Yield of grafting reaction was also shown to be dependent upon the lactosilation degree of chitlac. PMID:26905217

  4. Chemical recycling of post-consumer PET: structural characterization of terephthalic acid and the effect of Alkaline Hydrolysis at low temperature

    International Nuclear Information System (INIS)

    Due to the environmental impact caused by PET packaging disposal, this material recycling has been thoroughly discussed and evaluated. In particular, chemical recycling enables achievement of the monomers that are used in PET resin manufacture: ethylene glycol (EG) and terephthalic acid (PTA). Therefore, studies for this process optimization are important from environmental and economic points of view. The present study investigated certain parameters that influence the depolymerization reaction of PET post-consumer via alkaline hydrolysis in order to obtain PTA. Assays were performed at 70 °C by varying the concentration of sodium hydroxide and the reaction time. The best results were obtained at 10.82 mol L-1 NaOH and 9 h reaction time. Consequently, it was possible to prove this process viability, once analyses by infrared and nuclear magnetic resonance confirmed that PTA was obtained in all reactions performed. (author)

  5. Preparation and some functional properties of rice bran protein concentrate at different degree of hydrolysis using bromelain and alkaline extraction.

    Science.gov (United States)

    Apinunjarupong, Suthep; Lapnirun, Surawoot; Theerakulkait, Chockchai

    2009-01-01

    Rice bran protein was extracted by using defatted rice bran and water at 1:6 (w/w) and 6% of bromelain at pH 9.0, 50 degrees C, 500 rpm for 15 and 30 mins. The degree of hydrolysis (DH) of rice bran protein extract (RBPE) was 19 and 36.5%, respectively, and their nitrogen solubility was higher than the controls. Rice bran protein concentrate (RBPC) was prepared by spray drying. Emulsion activity of RBPC produced from 19% DH RBPE was increased while emulsion stability index was not significantly different from the control. Foam capacity and rehydration ability of RBPC were greater than the control. PMID:19291580

  6. Determination of the nitrogen content of nitrocellulose from smokeless gunpowders and collodions by alkaline hydrolysis and ion chromatography.

    Science.gov (United States)

    López-López, María; Alegre, Jose María Ramiro; García-Ruiz, Carmen; Torre, Mercedes

    2011-01-31

    In this work, a method to determine the nitrogen content of nitrocellulose from gunpowders and collodions is proposed. A basic hydrolysis of nitrocellulose with 1.0% (m/v) NaOH at 150°C during 30 min was carried out for nitrocellulose from gunpowders (after its previous isolation by a protocol optimized by our research group) and from collodion samples. The concentration of nitrate and nitrite ions in the hydrolysate was determined by ion chromatography with suppression and conductimetric detection. The nitrogen content of nitrocellulose was calculated from the values of the concentration of both ions. The quantitative method was evaluated in terms of selectivity, sensitivity, robustness, limits of detection and quantification, and precision, measured as repeatability and intermediate precision. These parameters were good enough to demonstrate the validity of the method and its applicability to the determination of the nitrogen content of nitrocellulose contained in different types of gunpowders (single- and double-base gunpowders, manufactured from 1944 to 1997) and in commercial collodion samples. For gunpowders, the nitrogen content determined with the optimized method was compared with the values reported by the official label of the ammunition (obtained by a digestion/titration method) and errors, by defect, ranging from 1% to 15.2% (m/m) were calculated. The highest errors were obtained for the oldest gunpowders and could be attributed to the loss of nitro groups in the nitrocellulose molecule during aging. For collodion samples, errors could not be calculated since the real nitrogen content for these samples was not given in the label. In addition, the analysis time (2h for nitrocellulose isolation, 1.5h for nitrocellulose hydrolysis, and 0.2h for chromatographic separation) was about 10 times lower than in the digestion/titration method nowadays used for gunpowder samples. PMID:21168569

  7. Alkaline Hydrolysis of Y-Substituted Phenyl Phenyl Thionocarbonates: Effect of Changing Electrophilic Center from C=O to C=S on Reactivity and Mechanism

    International Nuclear Information System (INIS)

    Second-order rate constants (kOH-) have been measured spectrophotometrically for reactions of Y-substituted phenyl phenyl thionocarbonates (4a-i) with OH- in 80 mol % H2O/20 mol % DMSO at 25.0 ± 0.1 .deg. C. The kOH- values for the reactions of 4a-i have been compared with those reported previously for the corresponding reactions of Y-substituted phenyl phenyl carbonates (3a-i) to investigate the effect of changing the electrophilic center from C=O to C=S on reactivity and mechanism. Thionocarbonates 4a-i are less reactive than the corresponding carbonates 3a-i although 4a-i are expected to be more reactive than 3a-i. The Bronsted-type plot for reactions of 4a-i is linear with βlg = - 0.33, a typical βlg value for reactions reported to proceed through a stepwise mechanism with formation of an intermediate being the rate-determining step (RDS). Furthermore, the Hammett plot correlated with σ.deg. constants results in much better linearity than that correlated with σ- constants, indicating that expulsion of the leaving group is not advanced in the RDS. Thus, alkaline hydrolysis of 4a-i has been concluded to proceed through a stepwise mechanism with formation of an intermediate being RDS, which is in contrast to the forced concerted mechanism reported for the corresponding reactions of 3a-i. Enhanced stability of the intermediate upon modification of the electrophilic center from C=O to C=S has been concluded to be responsible for the contrasting mechanisms

  8. 碱性蛋白酶水解红曲霉菌体的研究%Study on optimization of process conditions for enzymatic hydrolysis of cell protein of monascus with alkaline protease

    Institute of Scientific and Technical Information of China (English)

    顾宗珠; 李静; 王瑶; 邓毛程; 魏瑞忠

    2012-01-01

    为了使红曲霉菌体滤渣得到高值化利用,对红曲霉菌体的酶解条件进行研究.采用碱性蛋白酶对红曲霉菌体进行酶解,通过单因素试验和正交试验,确定最佳的酶解条件:酶解pH为8.5,酶解温度为55℃,底物浓度为40 g/L,酶量为6×104 U/g·干菌体,酶解时间为20 h.该条件下,酶解率为25.28%.%To achieve more valuable utilization of cell filtered sediment of Monascus. the process conditions for enzymatic hydrolysis of cell protein of Monascus with alkaline protease was studied. Using the single factor and orthogonal design experiment, respectively, the optimum conditions of enzymatic hydrolysis were determined as follows; pH of 8. 5, temperature of 55 V , concentration of substrate of 40 g/L, enzyme dosage of 6X104U/g(cell amount), and enzymatic hydrolysis time of 20 hours. Under above optimum conditions, the enzymatic hydrolysis rate was 25. 28%.

  9. A novel technique for the rapid determination of tributyl phosphate degradation from alkaline hydrolysis in aqueous and organic phases using FTIR-ATR and verification of this technique by gas chromatography

    International Nuclear Information System (INIS)

    This paper details a semi-quantitative method for determining tributyl phosphate (TBP) degradation from alkaline hydrolysis using FTIR-ATR accompanied by GC verification and it provides a method to extract TBP from aqueous media associated with its use in nuclear reprocessing. The amount of TBP determined by GC decreases from 95 to 36 % after approximately 4 1/2 h in the reaction. TBP present in the organic phase predicted by the FTIR-ATR technique shows that TBP decreases from 97 to 42 %. Up to 15 % of TBP and 40 % of DBP were extracted from the precipitate based on the extraction recoveries determined. (author)

  10. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize (Zea mays L.) lines

    OpenAIRE

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D.; Williams, Daniel L.; Magee, Timothy D.; Shawn M Kaeppler; Leon, Natalia de; Hodge, David B

    2015-01-01

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall...

  11. 超声波辅助酶结合碱法提取薯渣纤维素的工艺研究%Study on optimization of ultrasonic-assisted enzymatic extraction combined with alkaline hydrolysis of cellulose from sweet potato residue

    Institute of Scientific and Technical Information of China (English)

    陆红佳; 郑龙辉; 刘雄

    2012-01-01

    Sweet potato residue as raw material,used the ultrasonic-assisted enzymatic alkaline method extracted the cellulose from sweet potato residue.Through the optimization by single factor and orthogonal array design methods,the optimum hydrolysis conditions for the extraction of cellulose from sweet potato residue were determined to be:ultrasonic power 105W,enzyme concentration 0.6%,length of enzyme hydrolysis time 45min,NaOH concentration 7%,alkaline hydrolysis time 90min.Under these optimal conditions,the extraction yield of cellulose reached up to 80.09%,the water holding capacity and swelling capacity were 5.34g/g and 10.53mL/g,respectively.That was better than the enzyme combination alkaline process,and also a feasible and efficient method.%以甘薯渣为原料,采用超声波辅助酶结合碱法从甘薯渣中提取纤维素。通过单因素及正交实验,确定了最佳提取工艺条件。结果表明,在超声波功率为105W辅助下,提取薯渣纤维素的最佳工艺条件为,α-淀粉酶的用量0.6%、酶解时间45min、氢氧化钠浓度7%和碱解时间90min,在此条件下产品纤维素的含量为80.09%,并测定其持水性和溶胀性分别为5.34g/g和10.53mL/g,均优于酶结合碱法,是一种可行,高效的方法。

  12. Enzymatic Hydrolysis of Various Proteins of Wheat in Heterogeneous Conditions

    Directory of Open Access Journals (Sweden)

    Hasan Hasanov

    2010-12-01

    Full Text Available Enzymatic hydrolysis of different proteins isolated from wheat flour by neutral proteinase (neutraza "Novozymes" was studied. It was shown, that hydrolysis of alkaline proteins was 10-11 times higher as compared with albumin from wheat, 3-4 times higher than alcohol soluble proteins and 2-2.5 times higher than globulins. It was found that, hydrothermal treatment of wheat flour decreased the rate of protein hydrolysis. The rate of hydrolysis of native alkaline soluble proteins was 4-6 times higher than denaturized proteins. The rate of hydrolysis of denatured water-soluble proteins is 3-5 times higher as compared with native protein (albumin. It was shown that product of thermal degradation of raw materials also influence on the rate of protein hydrolysis.

  13. Chemical recycling of post-consumer PET: structural characterization of terephthalic acid and the effect of Alkaline Hydrolysis at low temperature; Reciclagem quimica do PET pos-consumo: caracterizacao estrutural do acido tereftalico e efeito da hidrolise alcalina em baixa temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, Talitha Granja; Almeida, Yeda Medeiros Bastos de; Vinhas, Gloria Maria, E-mail: gmvinhas@yahoo.com.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Engenharia Quimica

    2014-09-15

    Due to the environmental impact caused by PET packaging disposal, this material recycling has been thoroughly discussed and evaluated. In particular, chemical recycling enables achievement of the monomers that are used in PET resin manufacture: ethylene glycol (EG) and terephthalic acid (PTA). Therefore, studies for this process optimization are important from environmental and economic points of view. The present study investigated certain parameters that influence the depolymerization reaction of PET post-consumer via alkaline hydrolysis in order to obtain PTA. Assays were performed at 70 °C by varying the concentration of sodium hydroxide and the reaction time. The best results were obtained at 10.82 mol L{sup -1} NaOH and 9 h reaction time. Consequently, it was possible to prove this process viability, once analyses by infrared and nuclear magnetic resonance confirmed that PTA was obtained in all reactions performed. (author)

  14. STUDY OF ENZYMATIC HYDROLYSIS OF MILD PRETREATED LIGNOCELLULOSIC BIOMASSES

    OpenAIRE

    Michael Ioelovich; Ely Morag

    2012-01-01

    The effect of mild acidic and alkaline pretreatments of various plant biomasses on their enzymatic hydrolysis has been studied. The yield of reducing sugars and utilization rate of the biomass were used as reliable characteristics of enzymatic digestibility of the biomasses. The experiments showed that alkaline pretreatment was more efficient than acidic pretreatment. As a result of alkaline pretreatment, a more efficient delignification of the biomasses and considerable improvement of the di...

  15. Hydrolysis of uranium hexafluoride

    International Nuclear Information System (INIS)

    A literature survey is presented of uranium hexafluoride hydrolysis methods as the first step in UF6 conversion to UO2. Reviewed are early methods of hydrolysis, the hydrolysis by dry water vapour, the fluidized-bed method, and the liquid phase hydrolysis of UF6 gas. (J.P.)

  16. The Hydrolysis of Carbonyl Sulfide at Low Temperature: A Review

    Science.gov (United States)

    Zhao, Shunzheng; Yi, Honghong; Tang, Xiaolong; Jiang, Shanxue; Gao, Fengyu; Zhang, Bowen; Zuo, Yanran; Wang, Zhixiang

    2013-01-01

    Catalytic hydrolysis technology of carbonyl sulfide (COS) at low temperature was reviewed, including the development of catalysts, reaction kinetics, and reaction mechanism of COS hydrolysis. It was indicated that the catalysts are mainly involved metal oxide and activated carbon. The active ingredients which can load on COS hydrolysis catalyst include alkali metal, alkaline earth metal, transition metal oxides, rare earth metal oxides, mixed metal oxides, and nanometal oxides. The catalytic hydrolysis of COS is a first-order reaction with respect to carbonyl sulfide, while the reaction order of water changes as the reaction conditions change. The controlling steps are also different because the reaction conditions such as concentration of carbonyl sulfide, reaction temperature, water-air ratio, and reaction atmosphere are different. The hydrolysis of carbonyl sulfide is base-catalyzed reaction, and the force of the base site has an important effect on the hydrolysis of carbonyl sulfide. PMID:23956697

  17. Effect of hydrolysis on identifying prenatal cannabis exposure

    OpenAIRE

    Gray, Teresa R.; Barnes, Allan J.; Huestis, Marilyn A.

    2010-01-01

    Identification of prenatal cannabis exposure is important due to potential cognitive and behavioral consequences. A two-dimensional gas chromatography–mass spectrometry method for cannabinol, Δ9-tetrahydrocannabinol (THC), 11-hydroxy-THC (11-OH-THC), 8β,11-dihydroxy-THC, and 11-nor-9-carboxy-THC (THCCOOH) quantification in human meconium was developed and validated. Alkaline, enzymatic, and enzyme–alkaline tandem hydrolysis conditions were optimized with THC- and THCCOOH-glucuronide reference...

  18. Enzyme loading dependence of cellulose hydrolysis of sugarcane bagasse

    Directory of Open Access Journals (Sweden)

    Carlos Martín

    2012-01-01

    Full Text Available The enzymatic hydrolysis of steam-pretreated sugarcane bagasse, either delignified or non-delignified, was studied as a function of enzyme loading. Hydrolysis experiments were carried out using five enzyme loadings (2.5 to 20 FPU/g cellulose and the concentration of solids was 2% for both materials. Alkaline delignification improved cellulose hydrolysis by increasing surface area. For both materials, glucose concentrations increased with enzyme loading. On the other hand, enzyme loadings higher than 15 FPU/g did not result in any increase in the initial rate, since the excess of enzyme adsorbed onto the substrate restricted the diffusion process through the structure.

  19. Effect of lignin structure on enzymatic hydrolysis of plant residues

    OpenAIRE

    Sipponen, Mika

    2015-01-01

    Biochemical conversion of lignocellulose into high value and energy-intensive products necessitates pretreatments that enhance enzymatic hydrolysis of lignocellulosic carbohydrates. This thesis investigated structural changes in lignin during various analytical and industrially relevant treatments of crop residues. The objective was to elucidate the effect of lignin structure on enzymatic digestibility of cellulose. Fractionation of lignin during sequential alkaline treatments of maize ste...

  20. Comparative hydrolysis and fermentation of sugarcane and agave bagasse.

    Science.gov (United States)

    Hernández-Salas, J M; Villa-Ramírez, M S; Veloz-Rendón, J S; Rivera-Hernández, K N; González-César, R A; Plascencia-Espinosa, M A; Trejo-Estrada, S R

    2009-02-01

    Sugarcane and agave bagasse samples were hydrolyzed with either mineral acids (HCl), commercial glucanases or a combined treatment consisting of alkaline delignification followed by enzymatic hydrolysis. Acid hydrolysis of sugar cane bagasse yielded a higher level of reducing sugars (37.21% for depithed bagasse and 35.37% for pith bagasse), when compared to metzal or metzontete (agave pinecone and leaves, 5.02% and 9.91%, respectively). An optimized enzyme formulation was used to process sugar cane bagasse, which contained Celluclast, Novozyme and Viscozyme L. From alkaline-enzymatic hydrolysis of sugarcane bagasse samples, a reduced level of reducing sugar yield was obtained (11-20%) compared to agave bagasse (12-58%). Selected hydrolyzates were fermented with a non-recombinant strain of Saccharomyces cerevisiae. Maximum alcohol yield by fermentation (32.6%) was obtained from the hydrolyzate of sugarcane depithed bagasse. Hydrolyzed agave waste residues provide an increased glucose decreased xylose product useful for biotechnological conversion. PMID:19000863

  1. The optimization of soybean oil hydrolysis reaction research

    International Nuclear Information System (INIS)

    The hydrolysis reaction of soybean oil was optimized. The concentration effect of ethanolic alkaline solution (KOH and NaOH) to the oil acidity was studied. The alkaline concentrations, reaction time and temperature factors was investigated during the optimization of the hydrolysis or saponification reaction. KOH solution of 1 M showed a good saponification activity which resulted oil acid value of 226.8 mg/ g compared to NaOH solution with acid value of 225.4 mg/ g for the same reaction. The optimum saponification reaction of soybean oil occurred at 60 degree Celsius in 30 minutes by using ethanolic KOH 1 M with acid value of 229.6 mg/ g. Composition of free fatty acid before and after hydrolysis were determined by using gas chromatography. (author)

  2. ENZYMATIC HYDROLYSIS OF AGRICULTURAL LIGNOCELLULOSIC BIOMASS

    Directory of Open Access Journals (Sweden)

    S. STRAVA

    2009-05-01

    Full Text Available The yield, productivity and cost for the enzymatic hydrolysis of cellulose to glucoseare crucial for the production of second generation ethanol. In the first study wehave evaluated the activity of several commercial cellulolytic enzymes and a crudeextract of a local strain of Trichoderma viride. The load used was 15 U ofcellulase/gram cellulose and 90 U of cellobiase/gram cellulose. The hydrolysis wascarried out at 50oC and pH 4,8 for 96 hours. The best cellulose hydrolysis yield of58% was obtained with the cocktail formed of crude cellulases from T. virideCMIT3.5 combined with Novozyme 188. This cocktail was used in the second study,when alkaline-steam pretreated wheat straw and corn stover where hydrolyzed at pH4,8 for 96 hours. The temperature was set at 50oC and 40oC. The hydrolysis at lowertemperature was tested for a future experiment of simultaneous hydrolysis andfermentation. An enzymatic assay using glucose-6-phosphate dehydrogenase wasused to determine exclusively glucose, instead of wide-range sugar DNS assay.Reporting to 100 grams of wet pretreated biomass, the following results wereobtained: 14.4 g% glucose for corn stover at 50oC and 13,0 g% at 40oC; 13,1 g%glucose for wheat straw at 50oC and 10.3 g% at 40oC. Considering that wheat strawcontain 36.6% glucose-based carbohydrates, the hydrolysis yields are between39.3% and 28.1%. Further studies, concerning the optimal parameters for cellulasecocktail will be made.

  3. Nicosulfuron: alcoholysis, chemical hydrolysis, and degradation on various minerals.

    Science.gov (United States)

    Sabadie, Jean

    2002-01-30

    Alcoholysis (methanol or ethanol) and hydrolysis (pH ranging from 4 to 11) of the herbicide nicosulfuron at 30 degrees C principally involves the breakdown of the urea part of the molecule. A high yield of the corresponding carbamate was obtained along with aminopyrimidine during alcoholysis. Hydrolysis led to both aminopyrimidine and pyridylsulfonamide. The latter compound may be easily cyclized (pH > or = 7). First-order kinetics describe the rates of alcoholysis and hydrolysis well. The rate constants (0.44 days(-1) for methanolysis) decreased from 0.50 to 0.002 days(-1) as pH increased from 4 to 8, then remained stable under alkaline conditions. In acidic or neutral solution, the hydrolysis path appeared prevalent (> or =70%), whereas in an alkaline medium it decreased when pH increased. The chemical degradation of nicosulfuron on various dry minerals (calcium bentonite, kaolinite, silica gel, H(+) bentonite, montmorillonite K10, and alumina) was investigated at 30 degrees C. The best conditions for the degradation are obtained on acidic minerals after herbicide deposition using the liquid method. Under these conditions an acceptable correlation with pseudo-first-order kinetics was observed, and the major degradation path is similar to that proposed for chemical hydrolysis. Conversely, alumina seemed to favor other unknown degradation processes. The hydrolysis paths of nicosulfuron and rimsulfuron appeared to be different. PMID:11804524

  4. Direct Promotion of Collagen Calcification by Alkaline Phosphatase

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Alkaline phosphatase promotes hydrolysis of phosphate containing substrates, causes a rise in inorganic phosphate and, therefore, enhances calcification of biological tissues. In this work, the calcification of collagen in a model serum was used as a model of collagenous tissue biomaterials to study the possible calcification promotion mechanism of alkaline phosphatase. In the enzyme concentration range of 0.10.5mg/mL, the enzyme shows a direct calcification promoting effect which is independent of the hydrolysis of its phosphate containing substrates but proportional to the enzyme concentration. Potassium pyrophosphate somewhat inhibits the calcification promotion.

  5. Hydrolysis of Fish Protein by Analkaline Protease

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Cod muscle protein was hydrolyzed by an alkaline protease in our study. The influences of hydrolysis temperature,fish protein concentration,and ratio of protease addition to protein amount on its degree of hy drolysis (DH) of protein were studied in details by applying dual quadratic rotary combinational design. The final results showed that more than 84% cod muscle protein could be hydrolyzed and recovered. Cod protein hydrolysate thus obtained had a balanced amino acid composition and mainly consisted of small peptides with molecule weight less than 6900 dalton.

  6. Spectrophotometric Determination of Paracetamol with Microwave Assisted Alkaline Hydrolysis

    Institute of Scientific and Technical Information of China (English)

    Chunli Xu; Wei Liu; Baoxin Li

    2003-01-01

    @@ Paracetamol (N-acetyl-4-amino-phenol) is a popular analgesic and antipyretic medication that is readily absorbed after administration and has few side effects and little toxicity when used in recommended dose. After ingestion of an overdose quantity of paracetamol, the accumulation of toxic metabolites may cause severe and sometimes fatal hepatotoxicity and nephrotoxicity. So, the accurate determination of paracetamol in pharmaceutical preparations and biological fluids has appeared especially attractive. For its measurement, many me thods have been developed, such as fluorometry, electrochemical method, nuclear magnetic resonance-mass spectrometry,chromatography method, and capillary electrophoresis

  7. Potentiometric assay for acid and alkaline phosphatase

    International Nuclear Information System (INIS)

    Simple potentiometric kinetic assay for evaluation of acid and alkaline phosphatase activity has been developed. Enzymatically catalyzed hydrolysis of monofluorophosphate, the simplest inorganic compound containing P-F bond, has been investigated as the basis of the assays. Fluoride ions formed in the course of the hydrolysis of this specific substrate have been detected using conventional fluoride ion-selective electrode based on membrane made of lanthanum fluoride. The key analytical parameters necessary for sensitive and selective detection of both enzymes have been assessed. Maximal sensitivity of the assays was observed at monofluorophosphate concentration near 10-3 M. Maximal sensitivity of acid phosphatase assay was found at pH 6.0, but pH of 4.8 is recommended to eliminate effects from alkaline phosphatase. Optimal pH for alkaline phosphatase assay is 9.0. The utility of the developed substrate-sensor system for determination of acid and alkaline phosphatase activity in human serum has been demonstrated

  8. Enzymatic activity of the cellulolytic complex produced by trichoderma reesei. Enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reese QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass from Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars productions, have been selected. Previous studies on enzymatic hydrolysis of O. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (author). 10 figs.; 10 refs

  9. Enzymatic activity of the cellulolytic complex produced by Trichoderma reesei. Enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reesei QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars production, have been selected. Previous studies on enzymatic hydrolysis of 0. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (Author) 10 refs

  10. Generation of group B soyasaponins I and III by hydrolysis.

    Science.gov (United States)

    Zhang, Wei; Teng, Su Ping; Popovich, David G

    2009-05-13

    Soyasaponins are a group of oleanane triterpenoids found in soy and other legumes that have been associated with some of the benefits achieved by consuming plant-based diets. However, these groups of compounds are diverse and structurally complicated to chemically characterize, separate from the isoflavones, and isolate in sufficient quantities for bioactive testing. Therefore, the aim of this study was to maximize the extraction of soyasaponins from soy flour, remove isoflavones, separate group B soyasaponins from group A, and produce an extract that contained a majority of non-DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one)-conjugated group B soyasaponins I and III. Room temperature extraction in methanol for 24 or 48 h resulted in the maximum recovery of soyasaponins, and Soxhlet extraction resulted in the least. A solid-phase extraction using methanol (45%) was found to virtually eliminate the interfering isoflavones as compared to butanol-water liquid-liquid extraction and ammonium sulfate precipitation, while maximizing saponin recovery. Alkaline hydrolysis in anhydrous methanol produced the maximum amount of soyasaponins I and III as compared to aqueous methanol and acid hydrolysis in both aqueous and anhydrous methanol. The soyasaponin I amount was increased by 175%, and soyasaponin III was increased by 211% after alkaline hydrolysis. Furthermore, after alkaline hydrolysis, a majority of DDMP-conjugated group B soyasaponins such as betag, betaa, gammag, and gammaa transformed into the non-DDMP-conjugated soyasaponins I and III without affecting the glycosidic bond at position C-3 of the ring structure. Therefore, we have developed a method that maximizes the recovery of DDMP-conjugated saponins and uses alkaline hydrolysis to produce an extract containing mainly soyasaponins I and III. PMID:19338335

  11. Enzymatic Hydrolysis of Lignocelluloses

    DEFF Research Database (Denmark)

    Kolasa, Marta; Ahring, Birgitte Kiær; Lübeck, Peter Stephensen;

    2010-01-01

    bonds. Cellulose can be degraded to simple sugar components by means of enzymatic hydrolysis. However, due to its complex, crystalline structure it is difficult to break it down and the cooperative action of a variety of cellulolytic enzymes is necessary. Fungi are known to have potential in production...... of a variety of cellulolytic enzymes. The aim of this work is to discover new thermostable and robust cellulolytic enzymes for improved enzymatic hydrolysis of biomass. For this purpose two screening methods are applied in different fungal strains with high cellulolytic activities: an expression...

  12. ALP (Alkaline Phosphatase) Test

    Science.gov (United States)

    ... Also known as: ALK PHOS; Alkp Formal name: Alkaline Phosphatase Related tests: AST ; ALT ; GGT ; Bilirubin ; Liver Panel ; Bone Markers ; Alkaline Phosphatase Isoenzymes; Bone Specific ALP All content on ...

  13. Durability and reutilization capabilities of a Ni-Ru catalyst for the hydrolysis of sodium borohydride in batch reactors

    OpenAIRE

    Pinto, A.M.F.R.; M.J.F. Ferreira; Fernandes, V. R.; Rangel, C. M.

    2011-01-01

    The study of catalyst durability and reutilization on catalyzed hydrolysis of sodium borohydride is essential from an application point of view. Few works on this topic are available in the literature. In the present work, a powder nickel-ruthenium based catalyst, unsupported, used in two different schemes of NaBH 4 hydrolysis (alkaline and alkali free hydrolysis), performed in batch reactors with different volumes and bottom geometries (flat and conical), was investigated in terms of durabil...

  14. Synergistic degradation of konjac glucomannan by alkaline and thermal method.

    Science.gov (United States)

    Jin, Weiping; Mei, Ting; Wang, Yuntao; Xu, Wei; Li, Jing; Zhou, Bin; Li, Bin

    2014-01-01

    The application of konjac glucomannan (KGM) in the food industry is always limited by its high viscosity. Hereby, low-viscosity KGM was prepared by alkaline-thermal degradation method. This process was demonstrated by the changes of average molecular weight and a kinetic model was developed. The results revealed that high alkalinity and high temperature had a synergetic effect on degradation. The structure of hydrolysates was evaluated by periodate oxidation and their fluidly properties were researched by rheology measurements. The degradation was divided into two regimes. The rate of the first regime (within 1h) is higher than that of the second one (last 1h). It is found that alkaline hydrolysis and deacetylation have a synergistic effect on the degradation under high alkalinity (pH 9.2) and low temperature condition (25 °C). Finally, rheology parameters showed alkaline-thermal degradation is a promising way that can be applied in practice to degrade KGM. PMID:24274506

  15. 产蛋白酶混合菌系对碱性剩余污泥水解酸化的影响%Effect of mixed microbial consortium capable of protease-producing on hydrolysis and acidification of excess sludge under alkaline condition

    Institute of Scientific and Technical Information of China (English)

    接伟光; 彭永臻

    2014-01-01

    为提高剩余污泥水解酸化过程中挥发性脂肪酸(VFAs)的累积,从剩余污泥中分离产蛋白酶活力较高的耐碱细菌,并构建产蛋白酶混合菌系.将其接种于碱性( pH 10.0)发酵剩余污泥的不同发酵时期,评价其对溶解性有机化合物和VFAs累积的影响,探讨利用剩余污泥生产VFAs的最佳条件.从剩余污泥中分离到2株产蛋白酶活力较高的耐碱细菌,并构建产蛋白酶混合菌系.在发酵初期接种混合菌系效果最显著,且可缩短发酵启动时间2 d.发酵初期接种混合菌系后,溶解性蛋白质和VFAs质量浓度在第8天均达到最高值,分别为未接种混合菌系样品中相应值的1.25和1.41倍,分别占溶解性化学需氧量( SCOD)总量的29.87%和44.54%.乙酸和丙酸为剩余污泥水解酸化过程中VFAs的主要组分,分别占VFAs总量的50.69%和18.19%.%To improve volatile fatty acids ( VFAs ) accumulation from hydrolysis and acidification of excess sludge ( ES) , alkali⁃tolerant bacteria capable of protease⁃producing were isolated from ES. A mixed microbial consortium capable of protease⁃producing was constructed by the isolated bacterial strains. The mixed microbial consortium was inoculated into the different fermentation periods of ES to investigate their effects on soluble organic compounds and VFAs accumulation from ES under alkaline conditions ( pH 10. 0 ) . The optimal condition for VFAs accumulation from ES was investigated. The results showed that two alkali⁃tolerant bacterial strains capable of protease⁃producing were isolated from ES and constructed as a mixed microbial consortium. The soluble organic compounds concentrations and VFAs accumulation were improved significantly after the mixed microbial consortium was inoculated at the initial fermentation, and the start⁃up phase was shortened by 2 days. On the 8th day of fermentation, the concentrations of

  16. EVALUATION OF COMPOSITION, CHARACTERIZATION AND ENZYMATIC HYDROLYSIS OF PRETREATED SUGAR CANE BAGASSE

    Directory of Open Access Journals (Sweden)

    A. A. Guilherme

    2015-03-01

    Full Text Available Abstract Glucose production from sugarcane bagasse was investigated. Sugarcane bagasse was pretreated by four different methods: combined acid and alkaline, combined hydrothermal and alkaline, alkaline, and peroxide pretreatment. The raw material and the solid fraction of the pretreated bagasse were characterized according to the composition, SEM, X-ray and FTIR analysis. Glucose production after enzymatic hydrolysis of the pretreated bagasse was also evaluated. All these results were used to develop relationships between these parameters to understand better and improve this process. The results showed that the alkaline pretreatment, using sodium hydroxide, was able to reduce the amount of lignin in the sugarcane bagasse, leading to a better performance in glucose production after the pretreatment process and enzymatic hydrolysis. A good xylose production was also observed.

  17. The effect of acrylic comonomers on the hydrolytic stability of polyacrylamides at high temperature in alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, R.W.; Ryles, R.G.

    1988-05-01

    A major cause of instability in acrylamide-based polymers used in tertiary oil recovery is hydrolysis of the amide groups, especially at alkaline pH and high temperatures. Changes in polymer composition resulting from hydrolysis can cause precipitation from sea-water solutions. This work has studied the effects of the sodium salts of acrylic acid and acrylamidomethyl propane sulfonic acid (AMPS) on the rate of hydrolysis of acrylamide copolymers in alkaline solutions at high temperatures. Copolymers were prepared containing 0 - 50% of the anionic comonomers and hydrolyzed in aqueous solution at pH 8.5 at 90/sup 0/, 107/sup 0/, and 120/sup 0/C. The extent of hydrolysis was measured by a conductimetric method, analyzing for the total carboxylate content. It was found that the rate of hydrolysis decreased as the mole ratio of either of the anionic comonomers increased and that AMPS was more effective in preventing hydrolysis at all of the temperatures studied.

  18. Hydrolysis of lithium hydride

    International Nuclear Information System (INIS)

    Due to its high hydrogen density and unique nuclear chemistry, lithium hydride, in all its isotopic forms, has an unsurpassed place in modem nuclear weapons. The hydrolysis of the material, and the outgassing of hydrogen from the bulk, are crucial to the performance of the material in service. This thesis describes research conducted at AWE Aldermaston, UK, to examine the hydrolysis and hydrogen outgassing from the bulk material, with the aim of ultimately developing the kinetics 8c mechanisms responsible. The basic chemistry is of great interest, especially the reaction with water. This reaction, whilst being fairly extensively studied in the past, has not been conclusively described with an accepted mechanism and associated kinetics. The last significant UK work on the topic was by Imperial College, London, under contract to AW(R)E in the late 1960s. This thesis describes the development of: (i) a solid state NMR spectroscopy technique to examine semi-quantitatively the surface of bulk lithium hydride for its chemical composition, and (ii) a dedicated lithium hydride inert atmosphere gravimetric analysis glove box to study the hydride/water reaction. Solid State NMR Spectroscopy has been utilised for the first time to probe the hydride/hydroxide ratio of partially hydrolysed lithium hydride. 6Li chemical shifts have been established for species of interest and extremely long, up to 17 hours, T1 relaxation times have been measured for 6Li hydride and hydroxide. A method for semi-quantitatively determining the hydroxide/hydride composition of a partially reacted sample has been developed, based on a 'dual-scan' technique using one short and one long pulse sequence. Gravimetric analysis has been developed for lithium hydride/humidity studies. This facility fully contains gravimetric analysis within an argon glove box, with the ability to control the sample atmosphere from room temperature to 60 deg C and from 0.5 to 40 percent relative humidity. The hydrolysis of

  19. Enzymatic hydrolysis of polyester fabrics

    International Nuclear Information System (INIS)

    Enzymatic hydrolysis of polyester fabrics has been investigated, using different treatment times, temperature and concentration of enzymes. The effects of hydrolysis on samples were evaluated by measurement of weight loss, moisture regain, breaking load of warp yarns, thickness and Ftir spectroscopy. Results show that hydrolysis under mild conditions can improve moisture absorption of the samples. If the applied temperature, treatment time and concentration exceeded some specific range, the moisture regain would be affected negatively. The Ftir spectrums showed an increase in functional groups specially hydroxyl. However the effects of enzymatic hydrolysis on weight loss, tensile strength and thickness of polyester fabrics were negligible

  20. Anodes for alkaline electrolysis

    Science.gov (United States)

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  1. Alkaline "Permanent" Paper.

    Science.gov (United States)

    Pacey, Antony

    1991-01-01

    Discussion of paper manufacturing processes and their effects on library materials focuses on the promotion of alkaline "permanent" paper, with less acid, by Canadian library preservation specialists. Standards for paper acidity are explained; advantages of alkaline paper are described, including decreased manufacturing costs; and recyclability is…

  2. Gelatin hydrolysates from farmed Giant catfish skin using alkaline proteases and its antioxidative function of simulated gastro-intestinal digestion.

    Science.gov (United States)

    Ketnawa, Sunantha; Martínez-Alvarez, Oscar; Benjakul, Soottawat; Rawdkuen, Saroat

    2016-02-01

    This work aims to evaluate the ability of different alkaline proteases to prepare active gelatin hydrolysates. Fish skin gelatin was hydrolysed by visceral alkaline-proteases from Giant catfish, commercial trypsin, and Izyme AL®. All antioxidant activity indices of the hydrolysates increased with increasing degree of hydrolysis (Pskin, could serve as a potential source of functional food ingredients for health promotion. PMID:26304317

  3. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    International Nuclear Information System (INIS)

    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either 3H-fatty acids or [3H]ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the 3H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of [3H]ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from 3H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the 3H-fatty acid and the [3H]ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the [3H]ethanolamine label from the purified alkaline phosphatase. The 3H radioactivity in alkaline phosphatase purified from [3H]ethanolamine-labeled cells comigrated with authentic [3H]ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the 3H-fatty acid and [3H]ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase

  4. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Jemmerson, R.; Low, M.G.

    1987-09-08

    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either /sup 3/H-fatty acids or (/sup 3/H)ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the /sup 3/H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of (/sup 3/H)ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from /sup 3/H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the /sup 3/H-fatty acid and the (/sup 3/H)ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the (/sup 3/H)ethanolamine label from the purified alkaline phosphatase. The /sup 3/H radioactivity in alkaline phosphatase purified from (/sup 3/H)ethanolamine-labeled cells comigrated with authentic (/sup 3/H)ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the /sup 3/H-fatty acid and (/sup 3/H)ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase.

  5. Alkaline battery operational methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  6. Uranium in alkaline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential.

  7. Uranium in alkaline rocks

    International Nuclear Information System (INIS)

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential

  8. Catalytic hydrolysis for the degradation of organophosphorus pesticides in water

    International Nuclear Information System (INIS)

    The kinetic studies of catalytic hydrolysis revealed that the concentration of two kinds of organophosphorus pesticides (omethoate and methidathion) in solution apparently decays according to the second order reaction. It was found that the rate constant value was highest at strong acidic conditions and it continued to decrease as the pH of the solution was increased. At basic conditions the rate constant value decreased to minimum. Manganese dioxide under acidic conditions converted into Mn/sup 2+/ ions and then these ions in water form hexaaquomanganese (II) ion. This hexaaquomanganese (II ion then adsorbed itself on the S or O atom of the organophosphorus compound and thus weakens the bond between P-S. This reaction facilitated the attack of H/sub 2/O or OH/sup -/ ion and thus enhanced the efficiency of hydrolysis. It was studied that methidathion hydrolyzed more efficiently than omethoate The rate constants of catalytic hydrolysis were increased with increasing the amount of MnO/sub 2/. It was found that the pesticides had undergone adsorption on catalyst in the first few minutes and there was the rapid drop of total phosphorus concentration. The decrease of total phosphorus adsorption with increasing pH was also observed. After the addition of alkaline earth metal cations (Ca/sup 2+/ and Mg/sup 2+/) along with magnesium, the enhancement in the efficiency of hydrolysis at near neutral conditions occurred. (author)

  9. X-Ray Structure Reveals a New Class and Provides Insight into Evolution of Alkaline Phosphatases

    OpenAIRE

    Bihani, Subhash C.; Das, Amit; Nilgiriwala, Kayzad S.; Prashar, Vishal; Pirocchi, Michel; Apte, Shree Kumar; Ferrer, Jean-Luc; Hosur, Madhusoodan V.

    2011-01-01

    The alkaline phosphatase (AP) is a bi-metalloenzyme of potential applications in biotechnology and bioremediation, in which phosphate monoesters are nonspecifically hydrolysed under alkaline conditions to yield inorganic phosphate. The hydrolysis occurs through an enzyme intermediate in which the catalytic residue is phosphorylated. The reaction, which also requires a third metal ion, is proposed to proceed through a mechanism of in-line displacement involving a trigonal bipyramidal transitio...

  10. TL and ESR based identification of gamma-irradiated frozen fish using different hydrolysis techniques

    Science.gov (United States)

    Ahn, Jae-Jun; Akram, Kashif; Shahbaz, Hafiz Muhammad; Kwon, Joong-Ho

    2014-12-01

    Frozen fish fillets (walleye Pollack and Japanese Spanish mackerel) were selected as samples for irradiation (0-10 kGy) detection trials using different hydrolysis methods. Photostimulated luminescence (PSL)-based screening analysis for gamma-irradiated frozen fillets showed low sensitivity due to limited silicate mineral contents on the samples. Same limitations were found in the thermoluminescence (TL) analysis on mineral samples isolated by density separation method. However, acid (HCl) and alkali (KOH) hydrolysis methods were effective in getting enough minerals to carry out TL analysis, which was reconfirmed through the normalization step by calculating the TL ratios (TL1/TL2). For improved electron spin resonance (ESR) analysis, alkali and enzyme (alcalase) hydrolysis methods were compared in separating minute-bone fractions. The enzymatic method provided more clear radiation-specific hydroxyapatite radicals than that of the alkaline method. Different hydrolysis methods could extend the application of TL and ESR techniques in identifying the irradiation history of frozen fish fillets.

  11. Comparison of multi-enzyme and thermophilic bacteria on the hydrolysis of mariculture organic waste (MOW).

    Science.gov (United States)

    Guo, Liang; Sun, Mei; Zong, Yan; Zhao, Yangguo; Gao, Mengchun; She, Zonglian

    2016-01-01

    Mariculture organic waste (MOW) is rich in organic matter, which is a potential energy resource for anaerobic digestion. In order to enhance the anaerobic fermentation, the MOW was hydrolyzed by multi-enzyme and thermophilic bacteria. It was advantageous for soluble chemical oxygen demand (SCOD) release at MOW concentrations of 6 and 10 g/L with multi-enzyme and thermophilic bacteria pretreatments. For multi-enzyme, the hydrolysis was not obvious at substrate concentrations of 1 and 3 g/L, and the protein and carbohydrate increased with hydrolysis time at substrate concentrations of 6 and 10 g/L. For thermophilic bacteria, the carbohydrate was first released at 2-4 h and then consumed, and the protein increased with hydrolysis time. The optimal enzyme hydrolysis for MOW was determined by measuring the changes of SCOD, protein, carbohydrate, ammonia and total phosphorus, and comparing with acid and alkaline pretreatments. PMID:27120653

  12. ENZYMATIC HYDROLYSIS OF SWITCHGRASS AND COASTAL BERMUDA GRASS PRETREATED USING DIFFERENT CHEMICAL METHODS

    Directory of Open Access Journals (Sweden)

    Jiele Xu

    2011-06-01

    Full Text Available To investigate the effects of biomass feedstock and pretreatment method on the enzyme requirement during hydrolysis, swichgrass and coastal Bermuda grass pretreated using H2SO4, NaOH, and Ca(OH2 at the optimal conditions were subjected to enzymatic hydrolysis using two enzyme combinations: NS 50013 + NS 50010 and Cellic CTec + Cellic HTec. The enzyme loadings were optimized, and correlations between feedstock property, pretreatment strategy, and enzyme usage were evaluated. The results show that pretreatment methods resulting in greater lignin contents in the pretreated biomass were generally associated with higher enzyme requirements. More sugars could be recovered from alkaline-pretreated biomass during enzymatic hydrolysis due to the better carbohydrate preservation achieved at mild pretreatment temperatures. The cellulase enzyme, Cellic CTec, was more efficient in catalyzing the hydrolysis of coastal Bermuda grass, a feedstock more digestible than the pretreated swichgrass, following pretreatment with NaOH or Ca(OH2.

  13. Enzymatic activity of the cellulolytic complex produced by Trichoderma reesei. Enzymatic hydrolysis of cellulose; Actividad enzimatica del complejo celulolitico producido por Trichoderma reesei. Hidrolisis enzimatica de la celulosa

    Energy Technology Data Exchange (ETDEWEB)

    Alfonsel, M.; Negro, M. J.; Saez, R.; Martin, C.

    1986-07-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reesei QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars production, have been selected. Previous studies on enzymatic hydrolysis of 0. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (Author) 10 refs.

  14. Urea hydrolysis and recovery of nitrogen and phosphorous as MAP from stale human urine

    Institute of Scientific and Technical Information of China (English)

    LIU Zhigang; ZHAO Qingliang; WANG Kun; LEE Duujong; QIU Wei; WANG Jianfang

    2008-01-01

    Laboratory-scale tests for magnesium ammonium phosphate (MAP) precipitation following urea hydrolysis of human urine were conducted using orthogonal experiment design. The effects of initial pH, temperature and the volumetric ratios of stale urine to fresh urine, on urea hydrolysis in urine were studied to determine the final hydrolysis time to recover most nitrogen from separated human urine by MAP. With a volumetric ratio of stale to fresh urine >10% and at temperature of 20℃ and above, urea hydrolysis could be completed in two days. Alkaline pH inhibited urea hydrolysis progress. The final pHs were all around 9.0 following urine hydrolysis, while the suspension pH might act as an indicator to detect the start and extent of urea hydrolysis. Over 95% of ammonium nitrogen and over 85% of phosphorus from hydrolyzed urine as MAP precipitate were obtained using MgCl2·6H2O and Na2HPO4·12H2O as precipitation agents at pH 8.5, molar ratio of Mg2+:NH4+-N:PO43--P at (1.2--1.3):1:1, mixing speed of 120 r/min, and precipitation time and reaction time of 3 h and 15 min, respectively. The precipitate has a structure resembling pure MAP crystal.

  15. Delignification outperforms alkaline extraction for xylan fingerprinting of oil palm empty fruit bunch

    NARCIS (Netherlands)

    Murciano Martínez, Patricia; Kabel, Mirjam A.; Gruppen, Harry

    2016-01-01

    Enzyme hydrolysed (hemi-)celluloses from oil palm empty fruit bunches (EFBs) are a source for production of bio-fuels or chemicals. In this study, after either peracetic acid delignification or alkaline extraction, EFB hemicellulose structures were described, aided by xylanase hydrolysis. Deligni

  16. [Inhibition of alkaline phosphatase I of Pichia guilliermondii yeast in vitro and in vivo].

    Science.gov (United States)

    Sibirnyi, A A; Shavlovskii, G M

    1978-01-01

    The rate of p-nitrophenyl phosphate and flavin mononucleotide (FMN) hydrolysis by the partially purified preparation of alkaline phosphatase I of Pichia guilliermondii flavinogenic yeast was studied as affected by different substrates and inorganic ions. Their Km was established to be 2.0 X 10(-4) m and 2.5 X 10(-4) M, respectively. Dephosphorylation of p-nitrophenylphosphate and FMN was inhibited competitively by beta-glycerophosphate (Ki = 3.1 X 10(-3) M, respectively). The presence of inorganic phosphate ions in the reaction mixture decreases or removes inhibition of these compounds hydrolysis by other substrates of alkaline phosphatase I. The activity of alkaline phosphatase I increases in the presence of Mg2+ and was strongly inhibited in the presence of Be2+, Cu2+, Zn2+, Cd2+ and inorganic phosphate, the mixture of Be2+ and F- being the most effective. This mixture inhibited the phosphatase activity of the partially purified preparation of alkaline phosphatase I of the cell-free extract as well as of intact cells in both the alkaline and acid zones of pH (8.6 and 5.5, respectively). Incubation of the washed iron-deficient P. guilliermondii cells in the presence of Be2+ and F- did not result in accumulation of FMN in the yeast culture. A possible role of nonspecific phosphomonoesterases in hydrolysis of FMN in vivo is discussed. PMID:208203

  17. Alkaline quinone flow battery.

    Science.gov (United States)

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. PMID:26404834

  18. Alkaline broadening in Stars

    CERN Document Server

    De Kertanguy, A

    2015-01-01

    Giving new insight for line broadening theory for atoms with more structure than hydrogen in most stars. Using symbolic software to build precise wave functions corrected for ds;dp quantum defects. The profiles obtained with that approach, have peculiar trends, narrower than hydrogen, all quantum defects used are taken from atomic database topbase. Illustration of stronger effects of ions and electrons on the alkaline profiles, than neutral-neutral collision mechanism. Keywords : Stars: fundamental parameters - Atomic processes - Line: profiles.

  19. Alkaline quinone flow battery

    OpenAIRE

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise Ann; Valle, Alvaro West; Hardee, D.; Gordon, Roy Gerald; Aziz, Michael J.; Marshak, M

    2015-01-01

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe f...

  20. Cellulase hydrolysis of unsorted MSW

    DEFF Research Database (Denmark)

    Jensen, Jacob Wagner; Felby, Claus; Jørgensen, Henning

    A recent development in waste management and engineering has shown that the cellulase can be used for the liquefaction of organic fractions in household waste. The focus of this study was to optimize the enzyme hydrolysis of thermally treated municipal solid waste (MSW) by the addition of...

  1. Temperature dependence of the absorbance of alkaline solutions of 4-nitrophenyl phosphate--a potential source of error in the measurement of alkaline phosphatase activity.

    Science.gov (United States)

    Burtis, C A; Seibert, L E; Baird, M A; Sampson, E J

    1977-09-01

    The absorbance of an alkaline solution of 4-nitrophenyl phosphate is a function of temperature. Quantitative evaluation of this phenomenon indicates that it (a) depends on the concentration of the compound and is independent of source, buffer concentration, and pH above 9.0; (b) is reversible; (c) is not a result of alkaline hydrolysis or 4-nitrophenol contamination; and (d) correlates with a temperature-induced shift of its absorbance spectrum. The phenomenon may represent a potential analytical problem in methods for alkaline phosphatase in which this compound is the substrate. If thermal equilibrium is not reached and maintained during an alkaline phosphatase assay, the thermochromic response will be included in the measured rate. The magnitude of this error depends on the thermal response and control characteristics of each particular instrument and the reaction conditions under which such an analysis is performed. PMID:19164

  2. Enzymatic hydrolysis of potato pulp

    Directory of Open Access Journals (Sweden)

    Mariusz Lesiecki

    2012-03-01

    Full Text Available Background. Potato pulp constitutes a complicated system of four types of polysaccharides: cellulose, hemicellulose, pectin and starch. Its composition makes it a potential and attractive raw material for the production of the second generation bioethanol. The aim of this research project was to assess the usefulness of commercial enzymatic preparations for the hydrolysis of potato pulp and to evaluate the effectiveness of hydrolysates obtained in this way as raw materials for ethanol fermentation. Material  and methods. Sterilised potato pulp was subjected to hydrolysis with commercial enzymatic preparations. The effectiveness of the preparations declared as active towards only one fraction of potato pulp (separate amylase, pectinase and cellulase activity and mixtures of these preparations was analysed. The monomers content in hydrolysates was determined using HPLC method. Results.  The application of amylolytic enzymes for potato pulp hydrolysis resulted in the release of only 18% of raw material with glucose as the dominant (77% constituent of the formed product. In addition, 16% galactose was also determined in it. The hydrolysis of the cellulose fraction yielded up to 35% raw material and the main constituents of the obtained hydrolysate were glucose (46% and arabinose (40%. Simultaneous application of amylolytic, cellulolytic and pectinolytic enzymes turned out to be the most effective way of carrying out the process as its efficiency in this case reached 90%. The obtained hydrolysate contained 63% glucose, 25% arabinose and 12% other simple substances. Conclusion. The application of commercial enzymatic preparations made it possible to perform potato pulp hydrolysis with 90% effectiveness. This was achieved by the application of a complex of amylolytic, cellulolytic and pectinolytic enzymes and the hydrolysate obtained in this way contained, primarily, glucose making it a viable substrate for ethanol fermentation.

  3. Studies of alkaline mediated phosphate migration in synthetic phosphoethanolamine l-glycero-d-manno-heptoside derivatives

    International Nuclear Information System (INIS)

    Synthetic 2-, 3-, 4- and 6-monophosphate derivatives of methyl α-d-mannopyranosides, the 4-, 6- and 7-monophosphate derivatives of methyl l-glycero-α-d-manno-heptopyranosides and the corresponding phosphoethanolamine derivatives and a 6,7-cyclic phosphate analogue of methyl l-glycero-α-d-manno-heptopyranoside were used to study phosphate migration and hydrolysis when subjected to strong alkaline conditions (4 M KOH, 120 C, 18 h). The resulting products were analyzed by 1H NMR spectroscopy and electrospray mass spectrometry. It was found that phosphate substituents were stable under these conditions and neither migration nor hydrolysis was observed except for the heptose 7-phosphate, which gave a substantial amount of phosphate hydrolysis. In phosphoethanolamine-substituted compounds migration to adjacent positions with concomitant loss of ethanolamine was found together with hydrolysis. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. Study of enzymatic hydrolysis of pretreated biomass at increased solids loading

    OpenAIRE

    Michael Ioelovich; Ely Morag

    2012-01-01

    The effect of biomass loading from 50 to 200 g/L on enzymatic hydrolysis was studied using switchgrass samples pretreated by dilute acid and hypochlorite-alkaline methods. It was confirmed that an increase of initial loading of the pretreated biomass leads to a decrease of enzymatic digestibility, probably due to difficulty of mass transfer of cellulolytic enzymes in the high-viscous substrate slurry and also because of an inhibiting effect of the formed sugars. An additional sharp problem co...

  5. Enzymatic hydrolysis of potato pulp

    OpenAIRE

    Mariusz Lesiecki; Wojciech Białas; Grażyna Lewandowicz

    2012-01-01

    Background. Potato pulp constitutes a complicated system of four types of polysaccharides: cellulose, hemicellulose, pectin and starch. Its composition makes it a potential and attractive raw material for the production of the second generation bioethanol. The aim of this research project was to assess the usefulness of commercial enzymatic preparations for the hydrolysis of potato pulp and to evaluate the effectiveness of hydrolysates obtained in this way as raw materials for ethanol ferment...

  6. High solids enzymatic hydrolysis of pretreated lignocellulosic materials with a powerful stirrer concept.

    Science.gov (United States)

    Ludwig, Daniel; Michael, Buchmann; Hirth, Thomas; Rupp, Steffen; Zibek, Susanne

    2014-02-01

    In this study, we present a powerful stirred tank reactor system that can efficiently hydrolyse lignocellulosic material at high solid content to produce hydrolysates with glucose concentration > 100 g/kg. As lignocellulosic substrates alkaline-pretreated wheat straw and organosolv-pretreated beech wood were used. The developed vertical reactor was equipped with a segmented helical stirrer, which was specially designed for high biomass hydrolysis. The stirrer was characterised according to mixing behaviour and power input. To minimise the cellulase dosage, a response surface plan was used. With the empirical relationship between glucose yield, cellulase loading and solid content, the minimal cellulase dosage was calculated to reach at least 70% yield at high glucose and high substrate concentrations within 48 h. The optimisation resulted in a minimal enzyme dosage of 30 FPU/g dry matter (DM) for the hydrolysis of wheat straw and 20 FPU/g DM for the hydrolysis of beech wood. By transferring the hydrolysis reaction from shaking flasks to the stirred tank reactor, the glucose yields could be increased. Using the developed stirred tank reactor system, alkaline-pretreated wheat straw could be converted to 110 g/kg glucose (76%) at a solid content of 20% (w/w) after 48 h. Organosolv-pretreated beech wood could be efficiently hydrolysed even at 30% (w/w) DM, giving 150 g/kg glucose (72%). PMID:24242162

  7. Chemical recycling of poly(ethylene terephthalate) (PET) by hydrolysis and glycolysis.

    Science.gov (United States)

    Carta, Daniela; Cao, Giacomo; D'Angeli, Claudio

    2003-01-01

    In this paper we review an interesting method of PET recycling, i.e. chemical recycling; it is based on the concept of depolymerizing the condensation polymer through solvolytic chain cleavage into low molecular products which can be purified and reused as raw materials for the production of high-quality chemical products. In this work our attention is confined to the hydrolysis (neutral, acid and alkaline) and glycolysis processes of PET chemical recycling; operating conditions and mechanism of each method are reported and described. The neutral hydrolysis has an auto accelerating character; two kinetic models have been proposed: an half-order and a second order kinetic model. The acid hydrolysis could be explained by a modified shrinking core model under chemical reaction control and the alkaline hydrolysis by a first-order model with respect to hydroxide ion concentration. To describe glycolysis, two different kinetic models have been proposed where EG can act or not as internal catalyst. Further experimental and theoretical investigations are required to shed light on the promising processes of PET chemical recycling reviewed in this work. PMID:14699998

  8. Alkaline Phosphatase in Stem Cells

    Directory of Open Access Journals (Sweden)

    Kateřina Štefková

    2015-01-01

    Full Text Available Alkaline phosphatase is an enzyme commonly expressed in almost all living organisms. In humans and other mammals, determinations of the expression and activity of alkaline phosphatase have frequently been used for cell determination in developmental studies and/or within clinical trials. Alkaline phosphatase also seems to be one of the key markers in the identification of pluripotent embryonic stem as well as related cells. However, alkaline phosphatases exist in some isoenzymes and isoforms, which have tissue specific expressions and functions. Here, the role of alkaline phosphatase as a stem cell marker is discussed in detail. First, we briefly summarize contemporary knowledge of mammalian alkaline phosphatases in general. Second, we focus on the known facts of its role in and potential significance for the identification of stem cells.

  9. Alkaline fuel cells applications

    Science.gov (United States)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  10. Effects of ultrasound and ultrasound assisted alkaline pretreatments on the enzymolysis and structural characteristics of rice protein.

    Science.gov (United States)

    Li, Suyun; Yang, Xue; Zhang, Yanyan; Ma, Haile; Liang, Qiufang; Qu, Wenjuan; He, Ronghai; Zhou, Cunshan; Mahunu, Gustav Komla

    2016-07-01

    The objectives of this study were to investigate the effects of multi-frequency energy-gathered ultrasound (MFEGU) and MFEGU assisted alkaline pretreatments on the enzymolysis and the mechanism of two pretreatments accelerating the rice protein (RP) proteolysis process. The results showed that MFEGU and MFEGU assisted alkaline pretreatments improved significantly (Pparticle size of RP. Therefore, MFEGU and MFEGU assisted alkaline pretreatments are beneficial to improving the degree of hydrolysis due to its sonochemistry effect on the molecular conformation as well as on the microstructure of protein. PMID:26964920

  11. Bifunctional alkaline oxygen electrodes

    Science.gov (United States)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The authors describe the identification and testing of electrocatalysts and supports for the positive electrode of moderate-temperature, single-unit, rechargeable alkaline fuel cells. Recent work on Na(x)Pt3O4, a potential bifunctional catalyst, is described, as well as the application of novel approaches to the development of more efficient bifunctional electrode structures. The three dual-character electrodes considered here showed similar superior performance; the Pt/RhO2 and Rh/RhO2 electrodes showed slightly better performance than the Pt/IrO2 electrode. It is concluded that Na(x)Pt3O4 continues to be a promising bifunctional oxygen electrode catalyst but requires further investigation and development.

  12. Silica in alkaline brines

    Science.gov (United States)

    Jones, B.F.; Rettig, S.L.; Eugster, H.P.

    1967-01-01

    Analysis of sodium carbonate-bicarbonate brines from closed basins in volcanic terranes of Oregon and Kenya reveals silica contents of up to 2700 parts per million at pH's higher than 10. These high concentrations of SiO 2 can be attributed to reaction of waters with silicates, and subsequent evaporative concentration accompanied by a rise in pH. Supersaturation with respect to amorphous silica may occur and persist for brines that are out of contact with silicate muds and undersaturated with respect to trona; correlation of SiO2 with concentration of Na and total CO2 support this interpretation. Addition of moredilute waters to alkaline brines may lower the pH and cause inorganic precipitation of substantial amounts of silica.

  13. TL and ESR based identification of gamma-irradiated frozen fish using different hydrolysis techniques

    International Nuclear Information System (INIS)

    Frozen fish fillets (walleye Pollack and Japanese Spanish mackerel) were selected as samples for irradiation (0–10 kGy) detection trials using different hydrolysis methods. Photostimulated luminescence (PSL)-based screening analysis for gamma-irradiated frozen fillets showed low sensitivity due to limited silicate mineral contents on the samples. Same limitations were found in the thermoluminescence (TL) analysis on mineral samples isolated by density separation method. However, acid (HCl) and alkali (KOH) hydrolysis methods were effective in getting enough minerals to carry out TL analysis, which was reconfirmed through the normalization step by calculating the TL ratios (TL1/TL2). For improved electron spin resonance (ESR) analysis, alkali and enzyme (alcalase) hydrolysis methods were compared in separating minute-bone fractions. The enzymatic method provided more clear radiation-specific hydroxyapatite radicals than that of the alkaline method. Different hydrolysis methods could extend the application of TL and ESR techniques in identifying the irradiation history of frozen fish fillets. - Highlights: • Irradiation has potential to improve hygienic quality of raw and processed seafood. • Detection of irradiated food is important to enforce the applied regulations. • Different techniques were compared to separate silicate minerals from frozen fish. • Limitations were observed in TL analysis on minerals isolated by density separation. • Hydrolysis methods provided more clear identification using TL and ESR techniques

  14. Techno-economical evaluation of lignocellulose hydrolysis

    OpenAIRE

    Mirsch, Mikaela

    2014-01-01

    The economic dependency on fossil fuels affects the climate and environment, which drives the fuel research on the largest known renewable carbohydrate source: fermentable sugars from lignocellulose. Several fermentable sugars exist in lignicellulosic materials, but are not accessible for efficient use without pretreatment and hydrolysis. Enzymatic hydrolysis is typically used. Enzymatic hydrolysis has a high selectivity and is performed in mild conditions, but the cost of...

  15. Enzymatic hydrolysis of plant extracts containing inulin

    Energy Technology Data Exchange (ETDEWEB)

    Guiraud, J.P.; Galzy, P.

    1981-10-01

    Inulin-rich extracts of chicory and Jerusalem artichoke are a good potential source of fructose. Total enzymatic hydrolysis of these extracts can be effected by yeast inulinases (EC 3.2.1.7). Chemical prehydrolysis is unfavourable. Enzymatic hydrolysis has advantages over chemical hydrolysis: it does not produce a dark-coloured fraction or secondary substances. It is possible to envisage the preparation of high fructose syrups using this process. (Refs. 42).

  16. Kinetics of enzymatic hydrolysis of methyl ricinoleate

    OpenAIRE

    Neeharika, T. S.V.R.; Lokesh, P.; Prasanna Rani, K. N.; Prathap Kumar, T.; Prasad, R. B.N.

    2015-01-01

    Ricinoleic acid is an unsaturated hydroxy fatty acid that naturally occurs in castor oil in proportions of up to 85–90%. Ricinoleic acid is a potential raw material and finds several applications in coatings, lubricant formulations and pharmaceutical areas. Enzymatic hydrolysis of castor oil is preferred over conventional hydrolysis for the preparation of ricinoleic acid to avoid estolide formation. A kinetics analysis of the enzymatic hydrolysis of Methyl Ricinoleate in the presence of Candi...

  17. Evaluation of microwave-assisted pretreatment of lignocellulosic biomass immersed in alkaline glycerol for fermentable sugars production.

    Science.gov (United States)

    Diaz, Ana Belen; Moretti, Marcia Maria de Souza; Bezerra-Bussoli, Carolina; Carreira Nunes, Christiane da Costa; Blandino, Ana; da Silva, Roberto; Gomes, Eleni

    2015-06-01

    A pretreatment with microwave irradiation was applied to enhance enzyme hydrolysis of corn straw and rice husk immersed in water, aqueous glycerol or alkaline glycerol. Native and pretreated solids underwent enzyme hydrolysis using the extract obtained from the fermentation of Myceliophthora heterothallica, comparing its efficiency with that of the commercial cellulose cocktail Celluclast®. The highest saccharification yields, for both corn straw and rice husk, were attained when biomass was pretreated in alkaline glycerol, method that has not been previously reported in literature. Moreover, FTIR, TG and SEM analysis revealed a more significant modification in the structure of corn straw subjected to this pretreatment. Highest global yields were attained with the crude enzyme extract, which might be the result of its content in a great variety of hydrolytic enzymes, as revealed zymogram analysis. Moreover, its hydrolysis efficiency can be improved by its supplementation with commercial β-glucosidase. PMID:25795445

  18. Modulators of intestinal alkaline phosphatase.

    Science.gov (United States)

    Bobkova, Ekaterina V; Kiffer-Moreira, Tina; Sergienko, Eduard A

    2013-01-01

    Small molecule modulators of phosphatases can lead to clinically useful drugs and serve as invaluable tools to study functional roles of various phosphatases in vivo. Here, we describe lead discovery strategies for identification of inhibitors and activators of intestinal alkaline phosphatases. To identify isozyme-selective inhibitors and activators of the human and mouse intestinal alkaline phosphatases, ultrahigh throughput chemiluminescent assays, utilizing CDP-Star as a substrate, were developed for murine intestinal alkaline phosphatase (mIAP), human intestinal alkaline phosphatase (hIAP), human placental alkaline phosphatase (PLAP), and human tissue-nonspecific alkaline phosphatase (TNAP) isozymes. Using these 1,536-well assays, concurrent HTS screens of the MLSMR library of 323,000 compounds were conducted for human and mouse IAP isozymes monitoring both inhibition and activation. This parallel screening approach led to identification of a novel inhibitory scaffold selective for murine intestinal alkaline phosphatase. SAR efforts based on parallel testing of analogs against different AP isozymes generated a potent inhibitor of the murine IAP with IC50 of 540 nM, at least 65-fold selectivity against human TNAP, and >185 selectivity against human PLAP. PMID:23860652

  19. Kinetics of the methylparathion hydrolysis in aqueous medium; Cinetica de la hidrolisis del metilparation en medio acuoso

    Energy Technology Data Exchange (ETDEWEB)

    Manzanilla, J.; Barcelo, M.; Reyes, O. [Universidad Autonoma de Yucatan. Facultad de Quimica. Merida, Yucatan (Mexico)

    1997-12-31

    The kinetics of alkaline hydrolysis of methylparathion was studied at different temperatures (0-50 Centigrade) in the p H range of 8-12 by ultraviolet-visible absorption spectroscopy. Optimum p H and wavelength conditions were defined to carry out the simultaneous determination of methylparathion and one of its hydrolysis product, paranitrophenol, in buffered aqueous medium. Based on the experimental data and the mathematical equation of the kinetics, a rate constant (k) of first-order and an activation energy (Ea) of 9.2 Kcal/mol, were estimated. (Author) activation energy (Ea) of 9.2 Kcal/mol, were estimated. (Author)

  20. Alkaline battery, separator therefore

    Science.gov (United States)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  1. Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification

    Directory of Open Access Journals (Sweden)

    Chen Ye

    2013-01-01

    Full Text Available Abstract Background Previous research on alkaline pretreatment has mainly focused on optimization of the process parameters to improve substrate digestibility. To achieve satisfactory sugar yield, extremely high chemical loading and enzyme dosages were typically used. Relatively little attention has been paid to reduction of chemical consumption and process waste management, which has proven to be an indispensable component of the bio-refineries. To indicate alkali strength, both alkali concentration in pretreatment solution (g alkali/g pretreatment liquor or g alkali/L pretreatment liquor and alkali loading based on biomass solids (g alkali/g dry biomass have been widely used. The dual approaches make it difficult to compare the chemical consumption in different process scenarios while evaluating the cost effectiveness of this pretreatment technology. The current work addresses these issues through pretreatment of corn stover at various combinations of pretreatment conditions. Enzymatic hydrolysis with different enzyme blends was subsequently performed to identify the effects of pretreatment parameters on substrate digestibility as well as process operational and capital costs. Results The results showed that sodium hydroxide loading is the most dominant variable for enzymatic digestibility. To reach 70% glucan conversion while avoiding extensive degradation of hemicellulose, approximately 0.08 g NaOH/g corn stover was required. It was also concluded that alkali loading based on total solids (g NaOH/g dry biomass governs the pretreatment efficiency. Supplementing cellulase with accessory enzymes such as α-arabinofuranosidase and β-xylosidase significantly improved the conversion of the hemicellulose by 6–17%. Conclusions The current work presents the impact of alkaline pretreatment parameters on the enzymatic hydrolysis of corn stover as well as the process operational and capital investment costs. The high chemical consumption for alkaline

  2. Optimization of Alkaline and Dilute Acid Pretreatment of Agave Bagasse by Response Surface Methodology

    OpenAIRE

    Ávila-Lara, Abimael I.; Camberos-Flores, Jesus N.; Mendoza-Pérez, Jorge A.; Messina-Fernández, Sarah R.; Saldaña-Duran, Claudia E.; Jimenez-Ruiz, Edgar I.; Sánchez-Herrera, Leticia M.; Pérez-Pimienta, Jose A.

    2015-01-01

    Utilization of lignocellulosic materials for the production of value-added chemicals or biofuels generally requires a pretreatment process to overcome the recalcitrance of the plant biomass for further enzymatic hydrolysis and fermentation stages. Two of the most employed pretreatment processes are the ones that used dilute acid (DA) and alkaline (AL) catalyst providing specific effects on the physicochemical structure of the biomass, such as high xylan and lignin removal for DA and AL, respe...

  3. Celluclast and Cellic® CTec2: Saccharification / fermentation of wheat straw, solid-liquid partition and potential of enzyme recycling by alkaline washing

    OpenAIRE

    Rodrigues, Ana Cristina Costa; Haven, Mai Østergaard; Lindedam, Jane; Felby, Claus; Gama, F. M.

    2015-01-01

    The hydrolysis/fermentation of wheat straw and the adsorption/desorption/deactivation of cellulases were studied using Cellic® CTec2 (Cellic) and Celluclast mixed with Novozyme 188. The distribution of enzymes cellobiohydrolase I (Cel7A), endoglucanase I (Cel7B) and -glucosidase of the two formulations between the residual substrate and supernatant during the course of enzymatic hydrolysis and fermentation was investigated. The potential of recyclability using alkaline wash was also studied...

  4. Rate of Hydrolysis of Tertiary Halogeno Alkanes

    Science.gov (United States)

    Pritchard, D. R.

    1978-01-01

    Describes an experiment to measure the relative rate of hydrolysis of the 2-x-2 methylpropanes, where x is bromo, chloro or iodo. The results are plotted on a graph from which the relative rate of hydrolysis can be deduced. (Author/GA)

  5. The Hydrolysis of Diclofenac Esters: Synthetic Prodrug Building Blocks for Biodegradable Drug-Polymer Conjugates.

    Science.gov (United States)

    Wang, Feng; Finnin, Joshua; Tait, Cassandra; Quirk, Stephen; Chekhtman, Igor; Donohue, Andrew C; Ng, Sarah; D'Souza, Asha; Tait, Russell; Prankerd, Richard

    2016-02-01

    Degradation reactions on diclofenac-monoglycerides (3a,b), diclofenac-(p-hydroxybenzoate)-2-monoglyceride (3c), diclofenac (1), and diclofenac lactam (4) were performed at 37 °C in isotonic buffer solutions (apparent pH range 1-8) containing varying concentrations of acetonitrile (ACN). The concentration remaining of each analyte was measured versus time. Diclofenac-monoglycerides and diclofenac-(p-hydroxybenzoate)-2-monoglyceride (3c) were both found to undergo facile and complete hydrolysis in pH 7.4 isotonic phosphate buffer/10% ACN. Under mildly acidic, neutral or alkaline conditions, diclofenac-(p-hydroxybenzoate)-2-monoglyceride (3c) had the fastest hydrolysis rate (t1/2 = 3.23 h at pH 7.4), with simultaneous formation of diclofenac lactam (4) and diclofenac (1). Diclofenac-monoglycerides (3a,b) hydrolyzed more slowly under the same conditions, to again yield both diclofenac (1) and diclofenac lactam (4). There was also transesterification of diclofenac-2-monoglyceride (3b) to its regioisomer, diclofenac-1-monoglyceride (3a) across the pH range. Diclofenac was shown to be stable in neutral or alkaline conditions but cyclized to form the lactam (4) in acidic conditions. Conversely, the lactam (4) was stable under acidic conditions but was converted to an unknown species under alkaline or neutral conditions. PMID:26540508

  6. The alkaline and alkaline-carbonatite magmatism from Southern Brazil

    Science.gov (United States)

    Ruberti, E.; Gomes, C. D. B.; Comin-Chiaramonti, P.

    2015-12-01

    Early to Late Cretaceous lasting to Paleocene alkaline magmatism from southern Brazil is found associated with major extensional structural features in and around the Paraná Basin and grouped into various provinces on the basis of several data. Magmatism is variable in size, mode of occurrence and composition. The alkaline rocks are dominantly potassic, a few occurrences showing sodic affinity. The more abundant silicate rocks are evolved undersaturated to saturated in silica syenites, displaying large variation in igneous forms. Less evolved types are restricted to subvolcanic environments and outcrops of effusive suites occur rarely. Cumulatic mafic and ultramafic rock types are very common, particularly in the alkali-carbonatitic complexes. Carbonatite bodies are represented by Ca-carbonatites and Mg-carbonatites and more scarcely by Fe-carbonatites. Available radiometric ages for the alkaline rocks fit on three main chronological groups: around 130 Ma, subcoveal with the Early Cretaceous flood tholeiites of the Paraná Basin, 100-110 Ma and 80-90 Ma (Late Cretaceous). The alkaline magmatism also extends into Paleocene times, as indicated by ages from some volcanic lavas. Geochemically, alkaline potassic and sodic rock types are distinguished by their negative and positive Nb-Ta anomalies, respectively. Negative spikes in Nb-Ta are also a feature common to the associated tholeiitic rocks. Sr-Nd-Pb systematics confirm the contribution of both HIMU and EMI mantle components in the formation of the alkaline rocks. Notably, Early and Late Cretaceous carbonatites have the same isotopic Sr-Nd initial ratios of the associated alkaline rocks. C-O isotopic Sr-Nd isotopic ratios indicate typical mantle signature for some carbonatites and the influence of post-magmatic processes in others. Immiscibility of liquids of phonolitic composition, derived from mafic alkaline parental magmas, has been responsible for the origin of the carbonatites. Close association of alkaline

  7. Hydrolysis of hafnium nitrides and carbides

    International Nuclear Information System (INIS)

    Hydrolysis of Hafnium Nitrides and Carbides. The hydrolytic behavior of Hafnium mononitride and monocarbide has been studied and compared with that of Titanium and Zirconium nitrides and carbides. In the case of hydrolysis of HfN the gaseous products were H2, N2 and a small amount of NO, and the liquid product was NH3, as in the case of TiN and ZrN. In isothermal hydrolysis the principal product was NH3 at temperatures lower than 8000C, which was replaced by N2 at temperatures higher than 9000C. In this respect HfN was similar to ZrN, but not to TiN which produced mainly N2 even by hydrolysis at 8000C. The products of hydrolysis of HfC were found to be CO, CO2, H2 and a small amount of CH4 also as in the case of TiC and ZrC. In the isothermal hydrolysis of HfC it was observed that a large amount of H2 evolved at the early stage of the hydrolysis while CO2 continued to evolve with some amount of H2 even after the ceasing of CO evolution. From analysis of the hydrolytic behavior the solid residue after the hydrolysis of HfC was considered to contain some waxes (Csub(n)Hsub(m)). It was suggested that the carbide of the element of smaller atomic number (Ti) would tend to form oxygen compounds (CO, CO2) while the carbide of the element of larger atomic number (Zr, Hf) hydrogen compounds(Csub(n)Hsub(m)), since ThC and UC formed only hydrocarbons and H2 by hydrolysis. This suggestion was also valid to nitride. (auth.)

  8. Solid / solution interaction: The effect of carbonate alkalinity on adsorbed thorium

    Science.gov (United States)

    LaFlamme, Brian D.; Murray, James W.

    1987-02-01

    Elevated activities of dissolved Th have been found in Soap Lake, an alkaline lake in Eastern Washington. Dissolved 232Th ranges from less than 0.001 to 4.9 dpm/L compared to about 1.3 × 10 -5 dpm/ L in sea water. The enhanced activity in the lake coincides with an increase in carbonate alkalinity. Experiments were conducted to evaluate the effect of pH, ionic strength and carbonate alkalinity on Th adsorption on goethite. Thorium (10 -13 M total) in the presence of 5.22 mg/L α-FeOOH and 0.1 M NaNO 3 has an adsorption edge from pH 2-5. At pH 9.0 ± 0.6 the percent Th absorbed on the solid began to decrease from 100% at 100 meq/L carbonate alkalinity and exhibited no adsorption above 300 meq/L. The experimental data were modeled to obtain the intrinsic adsorption equilibrium constants for Th hydrolysis species. These adsorption constants were incorporated in the model to interpret the observed effect of carbonate alkalinity on Th adsorption. There are two main effects of the alkalinity. To a significant degree the decrease in Th adsorption is due to competition of HCO -3 and CO 2-3 ions for surface sites. Dissolved Th carbonate complexes also contribute to the increase of Th in solution.

  9. Alkaline hydrolysis of Keggin heteropolyacids in the presence of carbonates of metals

    International Nuclear Information System (INIS)

    Interaction of H3PM12O40 and H4SiM12O40 (M=Mo, W) heteropolyacids with carbonates of Ni(2), Mg(2), Co(2), Cu(2), Zn(2), Mn(2), Ca(2), Cd(2), La(3), Ce(3) (Me) ions in aqueous solutions is studied by the methods of IR and 31P NMR spectroscopy. Complexes of [(PM11O39)2Me]11- and [(SiM11O39)2Me]12- are the main products of interaction for Me(3)=La, Ce or [PM11MeO39]5- and [SiM11MeO39]6- for other Me in which Me ions exist and as salt-forming cations

  10. Alkaline hydrolysis to remove potentially infectious viral RNA contaminants from DNA

    OpenAIRE

    Lemire, Karissa A.; Rodriguez, Yelitza Y.; McIntosh, Michael T.

    2016-01-01

    Background Diagnostics and research of high-consequence animal disease agents is often limited to laboratories with a high level of biosecurity that restrict the transport of biological material. Often, sharing of DNA with external partners is needed to support diagnostics, forensics, or research. Even in the absence of virus, RNA from positive-sense single stranded RNA (+ssRNA) viruses that may contaminate otherwise purified DNA preparations continues to pose a threat due to its potential to...

  11. Entrappment of alkaline protease and β-galactosidase in radiation stitched together poly-N-vinylcaprolactam

    International Nuclear Information System (INIS)

    The gel formations by poly-N-vinylcaprolactam upon its γ-irradiation by the 20-25 kGy dose as a results of partial polymer stitching together is shown, which is confirmed by the CD-and thermogravimetric data. By the alkaline protease and β-galactosidase entrapment in poly-N- vinylcaprolactam stitched together by γ-irradiation, the active preparations are obtained with 90-98 % and 30-35 % activity retained for alkaline protease and β-galactosidase, respectively. The increased stability of alkaline protease at acidic pH values and higher temperature was noted, and for β-galactosidase - the possibility of repeated use of the obtained preparation for lactose hydrolysis

  12. Production of xylooligosaccharides from forest waste by membrane separation and Paenibacillus xylanase hydrolysis

    Directory of Open Access Journals (Sweden)

    Chun-Han Ko

    2013-02-01

    Full Text Available Xylooligosaccharides (XO, derived from the alkaline (NaOH extractant of Mikania micrantha, were produced using multiple staged membrane separation and enzymatic xylanolysis. Staged nanofiltration (NMX, ultrafiltration (EUMX, and centrifugation (EMX processes for the ethanol precipitates were conducted. NMX recovered 97.26% of total xylose and removed 73.18% of sodium ions. Concentrations of total xylose were raised from 10.98 to 51.85 mg/mL by the NMX process. Recovered xylan-containing solids were hydrolyzed by the recombinant Paenibacillus xylanase. 68% XO conversions from total xylose of NMX was achieved in 24 hours. Xylopentaose (DP 5 was the major product from NMX and EMX hydrolysis. Xylohexaose (DP 6 was the major product from EUMX hydrolysis. Results of the present study suggest the applicability for XO production by nanofiltration, as NMX gave higher XO yields compared to those from a conventional ethanol-related lignocellulosic waste conversion process.

  13. Astaxanthin preparation by lipase-catalyzed hydrolysis of its esters from Haematococcus pluvialis algal extracts.

    Science.gov (United States)

    Zhao, Yingying; Guan, Feifei; Wang, Guili; Miao, Lili; Ding, Jing; Guan, Guohua; Li, Ying; Hui, Bodi

    2011-05-01

    Five of 8 fungal lipases screened were found to effectively hydrolyze astaxanthin esters from Haematococcus pluvialis algal cell extracts. Among these, an alkaline lipase from Penicillium cyclopium, expressed in Pichia pastoris, had the highest enzymolysis efficiency. Tween80 was shown to be an effective emulsifier in this lipase hydrolysis system for the 1st time. A series of experiments were performed to find optimal conditions for hydrolysis (pH, temperature, reaction time, lipase dosage). In the optimal reaction system, Tween80 and H. pluvialis extracts (mass ratio 1:1) were emulsified and added to the above lipase at a dosage of 4.6 U/μg (relative to total carotenoids), in phosphate buffer (0.1 M, pH 7.0), and incubated at 28 °C for 7 h, with agitation at 180 rpm. The free astaxanthin recovery ratio under these conditions was 63.2%. PMID:22417348

  14. Comparative study on chemical pretreatments to accelerate enzymatic hydrolysis of aquatic macrophyte biomass used in water purification processes.

    Science.gov (United States)

    Mishima, D; Tateda, M; Ike, M; Fujita, M

    2006-11-01

    In this study, enzymatic hydrolysis of two floating aquatic plants which are suitable for water purification, water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.), was performed to produce sugars. Twenty chemical pretreatments were comparatively examined in order to improve the efficiency of enzymatic hydrolysis. As a result, the alkaline/oxidative (A/O) pretreatment, in which sodium hydroxide and hydrogen peroxide were used, was the most effective pretreatment in terms of improving enzymatic hydrolysis of the leaves of water hyacinth and water lettuce. The amount of reducing sugars in enzymatic hydrolysate of water lettuce leaves was 1.8 times higher than that of water hyacinth leaves, therefore water lettuce seems to be more attractive as a biomass resource than water hyacinth. Although roots of these plants contained large amounts of polysaccharides such as cellulose and hemicellulose, they generated less monosaccharides than from leaves, no matter which chemical pretreatment was tested. PMID:16309902

  15. Effect of lime pre-treatment on the synergistic hydrolysis of sugarcane bagasse by hemicellulases.

    Science.gov (United States)

    Beukes, Natasha; Pletschke, Brett I

    2010-06-01

    Agricultural crop wastes are typically lignocellulosic in composition and thus partially recalcitrant to enzymatic degradation. The recalcitrant nature of plant biomass and the inability to obtain complete enzymatic hydrolysis has led to the establishment of various pre-treatment strategies. Alkaline pre-treatments increase the accessibility of the exposed surface to enzymatic hydrolysis through the removal of acetyl and uronic acid substituents on hemicelluloses. Unlike the use of steam and acid pre-treatments, alkaline pre-treatments (e.g. lime) solubilise lignin and a small percentage of the hemicelluloses. The most common alkaline pre-treatments that are employed make use of sodium hydroxide and lime. This study compared the synergistic degradation of un-treated and lime pre-treated sugarcane bagasse using cellulosomal and non-cellulosomal hemicellulases as free enzymes. The enzyme combination of 37.5% ArfA and 62.5% ManA produced the highest amount of reducing sugar of 91.834 micromol/min for the degradation of un-treated bagasse. This enzyme combination produced a degree of synergy of 1.87. The free enzymes displayed an approximately 6-fold increase in the enzyme activity, i.e. the total amount of reducing sugar released (593.65 micromol/min) with the enzyme combination of 37.5% ArfA, 25% ManA and 37.5% XynA for the lime pre-treated substrate and a degree of synergy of 2.14. To conclude, this study indicated that pre-treating the sugarcane bagasse is essential, in order to increase the efficiency of lignocellulose enzymatic hydrolysis by disruption of the lignin sheath, that the lime pre-treatment did not have any dramatic effect on the synergistic relationship between the free enzymes, and that time may play an important role in the establishment of synergistic relationships between enzymes. PMID:20156678

  16. Thioglycoside hydrolysis catalyzed by β-glucosidase

    International Nuclear Information System (INIS)

    Sweet almond β-glucosidase (EC 3.2.1.21) has been shown to have significant thioglycohydrolase activity. While the Km values for the S- and O-glycosides are similar, the kcat values are about 1000-times lower for the S-glycosides. Remarkably, the pH-profile for kcat/Km for hydrolysis of p-nitrophenyl thioglucoside (pNPSG) shows the identical dependence on a deprotonated carboxylate (pKa 4.5) and a protonated group (pKa 6.7) as does the pH-profile for hydrolysis of the corresponding O-glycoside. Not surprisingly, in spite of the requirement for the presence of this protonated group in catalytically active β-glucosidase, thioglucoside hydrolysis does not involve general acid catalysis. There is no solvent kinetic isotope effect on the enzyme-catalyzed hydrolysis of pNPSG

  17. Hemicellulose hydrolysis catalysed by solid acids

    NARCIS (Netherlands)

    P.D.. Carà; M. Pagliaro; A. Elmekawy; D.R. Brown; P. Verschuren; N.R. Shiju; G. Rothenberg

    2013-01-01

    Depolymerising hemicellulose into platform sugar molecules is a key step in developing the concept of an integrated biorefinery. This reaction is traditionally catalysed by either enzymes or homogeneous mineral acids. We compared various solid catalysts for hemicellulose hydrolysis, running reaction

  18. Modification of potato peel waste with base hydrolysis and subsequent cationization.

    Science.gov (United States)

    Lappalainen, Katja; Kärkkäinen, Johanna; Joensuu, Päivi; Lajunen, Marja

    2015-11-01

    Potato peel waste (PW) is a starch containing biomaterial produced in large amounts by food processing industry. In this work, the treatment of PW by alkaline hydrolysis and cationization in the water phase is reported. In order to improve the cationization of starch, PW was hydrolyzed by heating with alkaline (NaOH) ethanol solution (80%) in a water bath. The impact of variable molar ratios of anhydroglucose unit (AGU):NaOH, heating temperatures and times was studied on the degradation of starch and the molecular size distribution of the product. The hydrolyzed PW was cationized subsequently in water by using glycidyltrimethylammonium chloride and catalyzed by NaOH under microwave irradiation or in an oil bath. The impact of the various reaction conditions on the cationization and degree of substitution of starch was studied. The degree of substitution of the cationized starch varied in the range of 0-0.35. PMID:26256329

  19. Hydrolysis of isocyanic acid on SCR catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Elsener, M.; Kleemann, M.; Koebel, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Standard SCR catalysts possess high activity for the hydrolysis of HNCO and thus explain the suitability of urea as a selective reducing agent for NO{sub x}. At high space velocities HNCO-slip can get perceptible over the entire temperature range. This can be attributed to the fact that the temperature dependence is strong for the SCR reaction, but weak for the hydrolysis reaction. (author) 3 figs., 5 refs.

  20. HYDROLYSIS OF CHEESEWHEY PROTEINSWITH TRYPSIN, CHYMOTRYPSINAND CARBOXYPEPTIDASEA

    OpenAIRE

    M. F. CUSTÓDIO; A. J. GOULART; D. P. MARQUES; R.C. Giordano; R. L. C. Giordano; R. MONTI

    2009-01-01

    This work presents a method for adding value to cheese whey residues by whey proteins hydrolysis, using trypsin, chymotrypsin and carboxypeptidase A as catalysts. Sweet cheese whey was dialyzed and filtered in kaolin. Lactose and protein contents were analyzed after each step. The activities of bovine pancreas trypsin and chymotrypsin were measured at different pHs and temperatures. The optimal pH for the hydrolysis of whey proteins was 9.0 for both enzymes. Optima te...

  1. 2nd Generation Alkaline Electrolysis

    DEFF Research Database (Denmark)

    Yde, Lars; Kjartansdóttir, Cecilia Kristin; Allebrod, Frank; Mogensen, Mogens Bjerg; Møller, Per; Hilbert, Lisbeth R.; Nielsen, Peter Tommy; Mathiesen, Troels; Jensen, Jørgen; Andersen, Lars; Dierking, Alexander

    This report provides the results of the 2nd Generation Alkaline Electrolysis project which was initiated in 2008. The project has been conducted from 2009-2012 by a consortium comprising Århus University Business and Social Science – Centre for Energy Technologies (CET (former HIRC)), Technical...

  2. Isolation and characterization of a mucosal triacylglycerol pool undergoing hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Tipton AD IV; Frase, S.; Mansbach, C.M. II (Univ. of Tennessee, Memphis (USA))

    1989-12-01

    Absorbed and processed mucosal neutral lipid has been shown to be composed of at least two pools of triacylglycerol. One is likely to subserve chylomicron formation, and the other appears to be transported from the intestine via a nonlymphatic route. In the present study, 50 +/- 5% of the mucosal lipid pellets was centrifuged at 75,000 g.min (low-speed pellet (LSP)). Discontinuous sucrose density gradient centrifugation of LSP showed that 61 +/- 7% of the lipid banded at the 0.25-0.86 M sucrose interface. Neutral lipid analysis showed that this subfraction was only 58% triacylglycerol, suggesting it was undergoing hydrolysis. Active lipolytic activity in vitro was found on incubation. The lipase had an alkaline pH optimum (pH 8.5) and persisted despite pancreatic ductular diversion. Lipolysis in vivo in a LSP fraction was shown by infusing (14C)glyceryltrioleate for 3.5 h followed by (3H)glyceryltrioleate for 30 min. Discontinuous sucrose density centrifugation of the LSP followed by an analysis of the lipids at the 0.25-0.86 M sucrose interface showed that 14C-neutral lipids were only 70 +/- 6% triacylglycerol, whereas 3H-neutral lipids were 88 +/- 2% triacylglycerol. 3H entered LSP slowly compared with the floating lipid in the same centrifuge tube. These studies suggest both in vivo and in vitro mucosal lipolysis by a specific, alkaline-active lipase. The turnover rate of LSP is likely to be slow by comparison with neutral lipid floating to the top of the centrifuge tube.

  3. Isolation and characterization of a mucosal triacylglycerol pool undergoing hydrolysis

    International Nuclear Information System (INIS)

    Absorbed and processed mucosal neutral lipid has been shown to be composed of at least two pools of triacylglycerol. One is likely to subserve chylomicron formation, and the other appears to be transported from the intestine via a nonlymphatic route. In the present study, 50 +/- 5% of the mucosal lipid pellets was centrifuged at 75,000 g.min [low-speed pellet (LSP)]. Discontinuous sucrose density gradient centrifugation of LSP showed that 61 +/- 7% of the lipid banded at the 0.25-0.86 M sucrose interface. Neutral lipid analysis showed that this subfraction was only 58% triacylglycerol, suggesting it was undergoing hydrolysis. Active lipolytic activity in vitro was found on incubation. The lipase had an alkaline pH optimum (pH 8.5) and persisted despite pancreatic ductular diversion. Lipolysis in vivo in a LSP fraction was shown by infusing [14C]glyceryltrioleate for 3.5 h followed by [3H]glyceryltrioleate for 30 min. Discontinuous sucrose density centrifugation of the LSP followed by an analysis of the lipids at the 0.25-0.86 M sucrose interface showed that 14C-neutral lipids were only 70 +/- 6% triacylglycerol, whereas 3H-neutral lipids were 88 +/- 2% triacylglycerol. 3H entered LSP slowly compared with the floating lipid in the same centrifuge tube. These studies suggest both in vivo and in vitro mucosal lipolysis by a specific, alkaline-active lipase. The turnover rate of LSP is likely to be slow by comparison with neutral lipid floating to the top of the centrifuge tube

  4. Optimization and evaluation of alkaline potassium permanganate pretreatment of corncob.

    Science.gov (United States)

    Ma, Lijuan; Cui, Youzhi; Cai, Rui; Liu, Xueqiang; Zhang, Cuiying; Xiao, Dongguang

    2015-03-01

    Alkaline potassium permanganate solution (APP) was applied to the pretreatment of corncob with a simple and effective optimization of APP concentration, reaction time, temperature and solid to liquid ratio (SLR). The optimized pretreatment conditions were at 2% (w/v) potassium permanganate with SLR of 1:10 treating for 6h at 50°C. This simple one-step treatment resulted in significant 94.56% of the cellulose and 81.47% of the hemicellulose recoveries and 46.79% of the lignin removal of corncob. The reducing sugar in the hydrolysate from APP-pretreated corncob was 8.39g/L after 12h enzymatic hydrolysis, which was 1.44 and 1.29 folds higher than those from raw and acid pretreated corncobs. Physical characteristics, crystallinity and structure of the pretreated corncob were analyzed and assessed by SEM, XRD and FTIR. The APP pretreatment process was novel and enhanced enzymatic hydrolysis of lignocellulose by affecting composition and structural features. PMID:25585256

  5. Actinides in alkaline media: dissolution, mineral associations, and speciation in hanford waste tank sludge simulants

    International Nuclear Information System (INIS)

    We have investigated the leaching behavior of actinides from simulants of tank waste sludges derived from the BiPO4, Redox, and PUREX processes, the principal chemical separations processes that operated at the Hanford site during 40+years of plutonium production. Fundamental investigations of the speciation of uranium and neptunium in solutions representative of proposed alkaline sludge washing liquors have also been completed. Correlation of the results from sludge leaching indicate that, while Am and Pu are generally not appreciably dissolved from the sludges into alkaline solutions in the absence of oxidants, Np and U can be mobilized during alkaline sludge washing. Leaching of sludges with acidic solutions and strong complexing agents indicate considerable association of all actinide ions with Cr, Fe, and Mn oxides in the sludge simulants. Electrochemical experiments conducted in strongly alkaline solutions have defined the formal potentials of Np in strong base and reveal that mononuclear hydrolysis products dominate the speciation of neptunium (and by analogy U and Pu) in concentrated alkali. The results of these observations are discussed in the context of alkaline sludge washing procedures associated with waste tank remediation. This work supported by the Assistant Secretary for Environmental Management under U.S. Department of Energy Contract Numbers W-31-109ENG-38 at Argonne National Laboratory and DE-AC03-76SF0098 at Lawrence Berkeley National Laboratory. (author)

  6. Enzymatic hydrolysis of pretreated soybean straw

    International Nuclear Information System (INIS)

    In order to produce lactic acid, from agricultural residues such as soybean straw, which is a raw material for biodegradable plastic production, it is necessary to decompose the soybean straw into soluble sugars. Enzymatic hydrolysis is one of the methods in common use, while pretreatment is the effective way to increase the hydrolysis rate. The optimal conditions of pretreatment using ammonia and enzymatic hydrolysis of soybean straw were determined. Compared with the untreated straw, cellulose in straw pretreated by ammonia liquor (10%) soaking for 24 h at room temperature increased 70.27%, whereas hemicellulose and lignin in pretreated straw decreased to 41.45% and 30.16%, respectively. The results of infrared spectra (IR), scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis also showed that the structure and the surface of the straw were changed through pretreatment that is in favor of the following enzymatic hydrolysis. maximum enzymatic hydrolysis rate of 51.22% was achieved at a substrate concentration of 5% (w/v) at 50 deg. C and pH 4.8 using cellulase (50 fpu/g of substrate) for 36 h

  7. Digestibility Improvement of Sorted Waste with Alkaline Hydrothermai Pretreatment

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; WANG Hongtao; LU Wenjing; ZHAO Yan

    2009-01-01

    The digestibility of sorted municipal solid waste (MSW) is often limited by the high content of structured green waste. The objectives of this study are to investigate the effect of alkaline hydrothermal pretreatment on the anaerobic digestion of sorted waste and to analyze the biogas production of different parts of the waste. The waste was hydrothermally pretreated in a dilute alkali solution. The hydrolysis product was then incubated in a 500 mL saline bottle to determine the biochemical methane potential (BMP) under mesophilic anaerobic conditions. The optimum hydrothermal condition was 170℃ at 4 g NaOH/100 g solid for one hour. The concentration of chemical oxygen demand (COD) was 13 936 mg/L and the methane yield was 164 mL/g volatile solid (VS) for 6 days incubation at the optimum conditions. The biogas production was increased more than 50% over the control, with the methane conversion ratio on a carbon basis enhanced to 30.6%. The organic part of the sorted waste was mainly kitchen garbage and leaves. Model kitchen garbage completely liquified at 130℃ for one hour had a methane yield of 276 mL/g VS. The alkali addition slightly enhanced the hydrolyzation rate and methane yield. The biogas potential of leaves was improved by pre-treatment at above 150℃ under alkaline conditions.

  8. Evaluation of high solids alkaline pretreatment of rice straw.

    Science.gov (United States)

    Cheng, Yu-Shen; Zheng, Yi; Yu, Chao Wei; Dooley, Todd M; Jenkins, Bryan M; VanderGheynst, Jean S

    2010-11-01

    Fresh-harvested, air-dried rice straw was pretreated at a water content of 5 g H(2)O/g straw using sodium hydroxide (NaOH) and compared to pretreatment at 10 g H(2)O/g straw by hydrated lime (Ca(OH)(2)). Full factorial experiments including parallel wash-only treatments were completed with both sources of alkali. The experiments were designed to measure the effects of alkaline loading and pretreatment time on delignification and sugar yield upon enzymatic hydrolysis. Reaction temperature was held constant at 95 degrees C for lime pretreatment and 55 degrees C for NaOH pretreatment. The range of delignification was 13.1% to 27.0% for lime pretreatments and was 8.6% to 23.1% for NaOH pretreatments. Both alkaline loading and reaction time had significant positive effects (p lime-pretreated and unwashed biomass and were 142.3 mg/g dried biomass (39.2% conversion efficiency of total glucose) in NaOH-pretreated and unwashed biomass. PMID:20440580

  9. Development of alkaline fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari [Colorado School of Mines, Golden, CO; Horan, James L. [Colorado School of Mines, Golden, CO; Caire, Benjamin R. [Colorado School of Mines, Golden, CO; Ziegler, Zachary C. [Colorado School of Mines, Golden, CO; Herring, Andrew M. [Colorado School of Mines, Golden, CO; Yang, Yuan [Colorado School of Mines, Golden, CO; Zuo, Xiaobing [Argonne National Laboratory, Argonne, IL; Robson, Michael H. [University of New Mexico, Albuquerque, NM; Artyushkova, Kateryna [University of New Mexico, Albuquerque, NM; Patterson, Wendy [University of New Mexico, Albuquerque, NM; Atanassov, Plamen Borissov [University of New Mexico, Albuquerque, NM

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassov's research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herring's group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  10. ENZYME-BASED HYDROLYSIS PROCESSES FOR ETHANOL

    Directory of Open Access Journals (Sweden)

    Keikhosro Karimi

    2007-11-01

    Full Text Available This article reviews developments in the technology for ethanol produc-tion from lignocellulosic materials by “enzymatic” processes. Several methods of pretreatment of lignocelluloses are discussed, where the crystalline structure of lignocelluloses is opened up, making them more accessible to the cellulase enzymes. The characteristics of these enzymes and important factors in enzymatic hydrolysis of the cellulose and hemicellulose to cellobiose, glucose, and other sugars are discussed. Different strategies are then described for enzymatic hydrolysis and fermentation, including separate enzymatic hydrolysis and fermentation (SHF, simultaneous saccharification and fermentation (SSF, non-isothermal simultaneous saccharification and fermentation (NSSF, simultaneous saccharification and co-fermentation (SSCF, and consolidated bioprocessing (CBP. Furthermore, the by-products in ethanol from lignocellulosic materials, wastewater treatment, commercial status, and energy production and integration are reviewed.

  11. Delignification outperforms alkaline extraction for xylan fingerprinting of oil palm empty fruit bunch.

    Science.gov (United States)

    Murciano Martínez, Patricia; Kabel, Mirjam A; Gruppen, Harry

    2016-11-20

    Enzyme hydrolysed (hemi-)celluloses from oil palm empty fruit bunches (EFBs) are a source for production of bio-fuels or chemicals. In this study, after either peracetic acid delignification or alkaline extraction, EFB hemicellulose structures were described, aided by xylanase hydrolysis. Delignification of EFB facilitated the hydrolysis of EFB-xylan by a pure endo-β-1,4-xylanase. Up to 91% (w/w) of the non-extracted xylan in the delignified EFB was hydrolysed compared to less than 4% (w/w) of that in untreated EFB. Alkaline extraction of EFB, without prior delignification, yielded only 50% of the xylan. The xylan obtained was hydrolysed only for 40% by the endo-xylanase used. Hence, delignification alone outperformed alkaline extraction as pretreatment for enzymatic fingerprinting of EFB xylans. From the analysis of the oligosaccharide-fingerprint of the delignified endo-xylanase hydrolysed EFB xylan, the structure was proposed as acetylated 4-O-methylglucuronoarabinoxylan. PMID:27561506

  12. Purification and characterization of alkaline proteases from aspergillus terreus

    International Nuclear Information System (INIS)

    Proteases belong to an important class of enzymes known as hydrolases and catalyze hydrolysis of proteins. They act primarily to degrade proteins that are used for energy production and as biosynthetic precursors. In the following study, protease produced from Aspergillus terreus was found to be thermo stable and included in the category of alkaline serine and metallo protease. During partial purification, presence of enzyme in 60% (NH/sub 4/)/sub 2/SO/sub 4/ indicated small molecular weight polypeptide; later purification with Sephadex G-75 fractionation yielded a single proteolytic active molecule. At final purification step, the increase in specific activity of the enzyme was 7.5 fold with 23% yield. SDS-PAGE analysis revealed that alkaline protease of Aspergillus terreus is a monomer with approximate molecular weight of 35 kDa. Optimum pH for protease activity was found in the range of 7.5-11.0 (maximum at pH 8.5), thus apparently classified as an alkaline protease. The enzyme was thermo stable towards high temperature (60 deg. C), however it denatured irreversibly at 70 deg. C showing 80% loss of activity. The maximum proteolytic activity was found at 40 deg. C. The enzyme was effectively inhibited by PMSF, EDTA and urea whereas iodoacetamide and thiourea did not result in any loss in activity while cysteine was found to be activator molecule. The study with metal ions Mg/sup +2/, Mn/sup +2/ and Fe/sup +3/ (1 mM each) showed minute stimulatory effects on enzyme activity. Co/sup +2/ and Ca/sup +2/ (1 mM) had neither excitatory nor inhibitory effect while Hg/sup +2/ and Cu/sup +2/ (1 mM) slightly reduced the enzyme activity. (author)

  13. PRODUCTION AND PARTIAL CHARACTERIZATION OF ALKALINE PROTEASE FROM BACILLUS TEQUILENSIS STRAINS CSGAB0139 ISOLATED FROM SPOILT COTTAGE CHEESE

    OpenAIRE

    Aruna.K; Jill Shah; Radhika Birmole

    2014-01-01

    An alkaline protease producing strain was isolated from spoilt cottage cheese sample which was identified as Bacillus tequilensis strain SCSGAB0139 on the basis of morphological, cultural, biochemical characteristics and 16S rRNA sequence analysis. Primary screening for protease production was carried out by observing for zone of hydrolysis on skim milk agar, GYEA milk agar and gelatin agar plates. Physicochemical parameters like pH of the medium, incubation time and temperature, aeration and...

  14. Enzymatic Hydrolysis Conditions for Egg White Proteins

    OpenAIRE

    Chi, Yujie; Tian, Bo; Sun, Bo; Guo, Mingruo

    2006-01-01

    The enzymatic hydrolysis of proteins in egg white by Alcalase was systematically studied through dual quadratic rotary, orthogonal and regressive design. The optimum conditions of hydrolysis were determined. The results showed that the optimum temperature was 68.5℃, pH 8.21 at the substrate concentration of 5.5%. The regression equation, Y=42.6994+0.3344X1+7.53X2-0.0086X1X2-0.001X21-0.4726X22 (Y-nitrogen recovery rate, NR; X1-enzyme concentration /substrate concentration, E/S; X2-hydrolytic t...

  15. Towards zero discharge of chromium-containing leather waste through improved alkali hydrolysis.

    Science.gov (United States)

    Mu, Changdao; Lin, Wei; Zhang, Mingrang; Zhu, Qingshi

    2003-01-01

    The treatment of chromium-containing leather waste (CCLW), the major solid waste generated at the post-tanning operations of leather processing, has the potential to generate value-added leather chemicals. Various alkali and enzymatic hydrolysis were compared, and calcium oxide was found to be important for effective (but still incomplete) hydrolysis. Three possible reasons are given for the incomplete hydrolysis under alkaline conditions. Data for 19 amino acids are presented for four different treatment products. On the basis of the results, a novel three-step CCLW treatment process is proposed. The gelatin extracted in the first step is chemically modified to produce leather finishing agents. The collagen hydrolysates isolated in the second step are used as proteinic retanning agents by chemical modification. The remaining chrome cake is further hydrolyzed with acids in the third step, and the obtained chromium-containing protein hydrolysates could be used for the preparation of chromium-containing retanning agents for leather industry. The proposed three-step process provides a feasible zero discharge process for the treatment of CCLW. PMID:14583246

  16. Hydrogen generation from hydrolysis of sodium borohydride using Ru(0) nanoclusters as catalyst

    International Nuclear Information System (INIS)

    Sodium borohydride is stable in aqueous alkaline solution, however, it hydrolyses in water to hydrogen gas in the presence of suitable catalyst. By this way hydrogen can be generated safely for the fuel cells. Generating H2 catalytically from NaBH4 solutions has many advantages: NaBH4 solutions are nonflammable, reaction products are environmentally benign, rate of H2 generation is easily controlled, the reaction product NaBO2 can be recycled, H2 can be generated even at low temperatures. All of the catalysts that has been used in hydrolysis of sodium borohydride are bulk metals and they act as heterogeneous catalysts. The limited surface area of the heterogeneous catalysts causes lower catalytic activity as the activity of catalyst is directly related to its surface area. Thus, the use of metal nanoparticles with large surface area provides potential route to increase the catalytic activity. Here, we report, for the first time, the use of ruthenium(0) nanoclusters as catalyst in the hydrolysis of sodium borohydride liberating hydrogen gas. The ruthenium nanoparticles are generated from the reduction of ruthenium(III) chloride by sodium borohydride in water and stabilized by specific ligand. The ruthenium(0) nanoclusters are found to be highly active catalyst for the hydrolysis of sodium borohydride

  17. HYDROLYSIS OF CHEESEWHEY PROTEINSWITH TRYPSIN, CHYMOTRYPSINAND CARBOXYPEPTIDASEA

    Directory of Open Access Journals (Sweden)

    M. F. CUSTÓDIO

    2009-01-01

    Full Text Available

    This work presents a method for adding value to cheese whey residues by whey proteins hydrolysis, using trypsin, chymotrypsin and carboxypeptidase A as catalysts. Sweet cheese whey was dialyzed and filtered in kaolin. Lactose and protein contents were analyzed after each step. The activities of bovine pancreas trypsin and chymotrypsin were measured at different pHs and temperatures. The optimal pH for the hydrolysis of whey proteins was 9.0 for both enzymes. Optima temperatures were 60ºC for trypsin, and 50ºC for chymotrypsin. Trypsin exhibited typical Michaelis-Menten behavior, but chymotrypsin did not. Electrophoretic analysis showed that neither trypsin nor chymotrypsin alone hydrolyzed whey proteins in less than three hours. Hydrolysis rates of -lactalbumin by trypsin, and of bovine serum albumin by chymotrypsin were low. When these enzymes were combined, however, all protein fractions were attacked and rates of hydrolysis were enhanced by one order of magnitude. The addition of carboxypeptidase A to the others enzymes did not improve the process yield.

  18. Monitoring enzymatic ATP hydrolysis by EPR spectroscopy

    OpenAIRE

    Hacker, Stephan M.; Hintze, Christian; Marx, Andreas; Drescher, Malte

    2014-01-01

    An adenosine triphosphate (ATP) analogue modified with two nitroxide radicals is developed and employed to study its enzymatic hydrolysis by electron paramagnetic resonance spectroscopy. For this application, we demonstrate that EPR holds the potential to complement fluorogenic substrate analogues in monitoring enzymatic activity.

  19. Mechanisms of lactone hydrolysis in acidic conditions.

    Science.gov (United States)

    Gómez-Bombarelli, Rafael; Calle, Emilio; Casado, Julio

    2013-07-19

    The acid-catalyzed hydrolysis of linear esters and lactones was studied using a hybrid supermolecule-polarizable continuum model (PCM) approach including up to six water molecules. The compounds studied included two linear esters, four β-lactones, two γ-lactones, and one δ-lactone: ethyl acetate, methyl formate, β-propiolactone, β-butyrolactone, β-isovalerolactone, diketene (4-methyleneoxetan-2-one), γ-butyrolactone, 2(5H)-furanone, and δ-valerolactone. The theoretical results are in good quantitative agreement with the experimental measurements reported in the literature and also in excellent qualitative agreement with long-held views regarding the nature of the hydrolysis mechanisms at molecular level. The present results help to understand the balance between the unimolecular (A(AC)1) and bimolecular (A(AC)2) reaction pathways. In contrast to the experimental setting, where one of the two branches is often occluded by the requirement of rather extreme experimental conditions, we have been able to estimate both contributions for all the compounds studied and found that a transition from A(AC)2 to A(AC)1 hydrolysis takes place as acidity increases. A parallel work addresses the neutral and base-catalyzed hydrolysis of lactones. PMID:23731203

  20. Microwave-assisted Weak Acid Hydrolysis of Proteins

    Directory of Open Access Journals (Sweden)

    Miyeong Seo

    2012-06-01

    Full Text Available Myoglobin was hydrolyzed by microwave-assisted weak acid hydrolysis with 2% formic acid at 37 oC, 50 oC, and100 oC for 1 h. The most effective hydrolysis was observed at 100 oC. Hydrolysis products were investigated using matrixassistedlaser desorption/ionization time-of-flight mass spectrometry. Most cleavages predominantly occurred at the C-termini ofaspartyl residues. For comparison, weak acid hydrolysis was also performed in boiling water for 20, 40, 60, and 120 min. A 60-min weak acid hydrolysis in boiling water yielded similar results as a 60-min microwave-assisted weak acid hydrolysis at100 oC. These results strongly suggest that microwave irradiation has no notable enhancement effect on acid hydrolysis of proteinsand that temperature is the major factor that determines the effectiveness of weak acid hydrolysis.

  1. Alkaline fuel cell performance investigation

    Science.gov (United States)

    Martin, R. E.; Manzo, M. A.

    1988-01-01

    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more that two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.

  2. Corn Gluten Hydrolysis By Alcalase: Effects of Process Parameters on Hydrolysis, Solubilization and Enzyme Inactivation

    OpenAIRE

    Kilic-Apar, D.; Ozbek, B.

    2008-01-01

    The aim of this study was to investigate the influences of substrate concentration, enzyme concentration, temperature and pH on hydrolysis and solubilization of corn gluten as well as enzyme stability. The corn gluten was hydrolyzed by Alcalase enzyme (a bacterial protease produced by a selected strain of Bacillus Licheniformis) that was chosen among five commercial enzymes examined. The optimum process conditions for hydrolysis and solubilization were obtained as 30 g L-1 substrate mass conc...

  3. Modeling and analysis of the enzymatic hydrolysis of lignocellulosic substrates

    OpenAIRE

    Sola Saura, Alaia

    2010-01-01

    Simultaneous saccharification and fermentation (SSF) and simultaneous saccharification and cofermentation (SSCF) are two process options for production of ethanol from lignocellulosic substrates that are superior to separate hydrolysis and fermentation (SHF). The principal benefits of performing the enzymatic hydrolysis together with the fermentation, instead of in a separate step after the hydrolysis as SHF does, are the reduced end-product inhibition of the enzymatic hydrolysis, and t...

  4. Hydrodynamic cavitation-assisted alkaline pretreatment as a new approach for sugarcane bagasse biorefineries.

    Science.gov (United States)

    Terán Hilares, Ruly; Dos Santos, Júlio César; Ahmed, Muhammad Ajaz; Jeon, Seok Hwan; da Silva, Silvio Silvério; Han, Jong-In

    2016-08-01

    Hydrodynamic cavitation (HC) was employed in order to improve the efficiency of alkaline pretreatment of sugarcane bagasse (SCB). Response surface methodology (RSM) was used to optimize pretreatment parameters: NaOH concentration (0.1-0.5M), solid/liquid ratio (S/L, 3-10%) and HC time (15-45min), in terms of glucan content, lignin removal and enzymatic digestibility. Under an optimal HC condition (0.48M of NaOH, 4.27% of S/L ratio and 44.48min), 52.1% of glucan content, 60.4% of lignin removal and 97.2% of enzymatic digestibility were achieved. Moreover, enzymatic hydrolysis of the pretreated SCB resulted in a yield 82% and 30% higher than the untreated and alkaline-treated controls, respectively. HC was found to be a potent and promising approach to pretreat lignocellulosic biomass. PMID:27183237

  5. Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions: biogas production, metagenome and metatranscriptome

    Directory of Open Access Journals (Sweden)

    Vimac Nolla-Ardevol

    2015-06-01

    Full Text Available A haloalkaline anaerobic microbial community obtained from soda lake sediments was used to inoculate anaerobic reactors for the production of methane rich biogas. The microalga Spirulina was successfully digested by the haloalkaline microbial consortium at alkaline conditions (pH 10, 2.0 M Na+. Continuous biogas production was observed and the obtained biogas was rich in methane, up to 96 %. Alkaline medium acted as a CO2 scrubber which resulted in low amounts of CO2 and no traces of H2S in the produced biogas. A hydraulic retention time of 15 days and 0.25 g Spirulina L-1 day-1 organic loading rate were identified as the optimal operational parameters. Metagenomics and metatranscriptomics analysis showed that the hydrolysis of the supplied substrate was mainly carried out by Bacteroidetes of the ML635J-40 aquatic group while the hydrogenotrophic pathway was the main producer of methane in a methanogenic community dominated by Methanocalculus.

  6. Effects of acid/alkaline pretreatment and gamma-ray irradiation on extracellular polymeric substances from sewage sludge

    International Nuclear Information System (INIS)

    In order to investigate the mechanism of extracellular polymeric substances (EPS) influencing sludge characteristics, variations of extractable EPS from municipal sewage sludge by acid/alkaline pretreatment and gamma-ray irradiation were studied. The changes in constituents of EPS were analyzed by UV–vis spectra and SEM images. The effects of alkaline pretreatment and gamma-ray irradiation on the functional groups in EPS were investigated by Fourier transform infrared (FTIR) spectrometer. Results showed that the extractable EPS increased clearly with increasing irradiation dose from 0 to 15 kGy. UV–vis spectra indicated that a new absorption band from 240 nm to 300 nm existed in all irradiated samples, apart from acid condition. The results of FTIR spectroscopic analysis indicated that, irradiation influenced major functional groups in EPS, such as protein and polysaccharide, and these effects were clearer under alkaline condition. SEM images provided that after alkaline hydrolysis, gamma-ray irradiation was more effective in resulting in the sludge flocs and cells broken, compared with acid pretreatment (pH 2.50). - Highlights: • Effects of acid/alkaline pretreatment and gamma irradiation on EPS were examined. • Gamma irradiation and alkaline treatment generated remarkable synergistic effects. • The combined application could promote sludge disintegration and solubilization

  7. Grace DAKASEP alkaline battery separator

    Science.gov (United States)

    Giovannoni, R. T.; Lundquist, J. T.; Choi, W. M.

    1987-01-01

    The Grace DAKASEP separator was originally developed as a wicking layer for nickel-zinc alkaline batteries. The DAKASEP is a filled non-woven separator which is flexible and heat sealable. Through modification of formulation and processing variables, products with a variety of properties can be produced. Variations of DAKASEP were tested in Ni-H2, Ni-Zn, Ni-Cd, and primary alkaline batteries with good results. The properties of DAKASEP which are optimized for Hg-Zn primary batteries are shown in tabular form. This separator has high tensile strength, 12 micron average pore size, relatively low porosity at 46-48 percent, and consequently moderately high resistivity. Versions were produced with greater than 70 percent porosity and resistivities in 33 wt percent KOH as low as 3 ohm cm. Performance data for Hg-Zn E-1 size cells containing DAKASEP with the properties shown in tabular form, are more reproducible than data obtained with a competitive polypropylene non-woven separator. In addition, utilization of active material is in general considerably improved.

  8. Hollow Mesoporous Silica Supported Ruthenium Nanoparticles: A Highly Active and Reusable Catalyst for H2 Generation from the Hydrolysis of NaBH4

    OpenAIRE

    Shuge Peng; Bingli Pan; Haijiao Hao; Jun Zhang

    2015-01-01

    Ru nanoparticles supported on hollow mesoporous silica (HMS), which are prepared via in situ wet chemical reduction, have been investigated as the highly efficient heterogeneous catalyst for H2 generation from the hydrolysis of an alkaline NaBH4 solution. Many techniques, including X-ray diffraction (XRD), transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS), are used to characterize the as-prepared nanocatalyst (Ru/HMS). Factors, such as Ru loadings in HMS, cata...

  9. Alkaline and alkaline earth metal phosphate halides and phosphors

    Science.gov (United States)

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  10. Progress of research on the influence of alkaline cation and alkaline solution on bentonite properties

    International Nuclear Information System (INIS)

    Based on the previous laboratory studies and numerical simulation on bentonite in alkaline environments, the effects of alkaline cation and alkaline solution on mineral composition, microstructure, swelling capacity and hydraulic properties of bentonite are emphasized in this paper, temperature, pH values and concentration are discussed as main affecting factors. When bentonite is exposed to alkaline cation or alkaline solution, microstructure of bentonite will be changed due to the dissolution of montmorillonite and the formation of secondary minerals, which results in the decrease of swelling pressure. The amount of the reduction of swelling pressure depends on the concentration of alkaline solution. Temperature, polyvalent cation, salinity and concentration are the main factors affecting hydraulic properties of bentonite under alkaline conditions. Therefore, future research should focus on the mechanism of coupling effects of weak alkaline solutions on the mineral composition, microstructure, swelling capacity and hydraulic properties of bentonite under different temperatures and different pH values. (authors)

  11. Effect of gelatinization and hydrolysis conditions on the selectivity of starch hydrolysis with alpha-amylase from Bacillus licheniformis

    NARCIS (Netherlands)

    Baks, T.; Bruins, M.E.; Matser, A.M.; Janssen, A.E.M.; Boom, R.M.

    2008-01-01

    Enzymatic hydrolysis of starch can be used to obtain various valuable hydrolyzates with different compositions. The effects of starch pretreatment, enzyme addition point, and hydrolysis conditions on the hydrolyzate composition and reaction rate during wheat starch hydrolysis with ¿-amylase from Bac

  12. Enzymatic hydrolysis of corn bran arabinoxylan

    DEFF Research Database (Denmark)

    Agger, Jane

    This thesis concerns enzymatic hydrolysis of corn bran arabinoxylan. The work has focused on understanding the composition and structure of corn bran with specific interest in arabinoxylan with the main purpose of targeting enzymatic hydrolysis for increased yields. Corn bran has been used as a...... model substrate because it represents a readily available agroindustrial side product with upgrading potentials. Corn bran originates from the wet-milling process in corn starch processing, is the outmost layers of the corn kernel and is particularly rich in pentose monosaccharides comprising the major...... components of arabinoxylan. Corn bran is one of the most recalcitrant cereal byproducts with arabinoxylans of particular heterogeneous nature. It is also rich in feruloyl derived substitutions, which are responsible for extensive cross-linking between arabinoxylan molecules and thereby participate in a...

  13. Modeling and analysis of calcium bromide hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Lottes, Steven A.; Lyczkowski, Robert W.; Panchal, Chandrakant B.; Doctor, Richard D. [Energy Systems Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2009-05-15

    The main focus of this paper is the modeling, simulation, and analysis of the calcium bromide hydrolysis reactor stage in the calcium-bromine thermochemical water-splitting cycle for nuclear hydrogen production. One reactor concept is to use a spray of calcium bromide into steam, in which the heat of fusion supplies the heat of reaction. Droplet models were built up in a series of steps incorporating various physical phenomena, including droplet flow, heat transfer, phase change, and reaction, separately. Given the large heat reservoir contained in a pool of molten calcium bromide that allows bubbles to rise easily, using a bubble column reactor for the hydrolysis appears to be a feasible and promising alternative to the spray reactor concept. The two limiting cases of bubble geometry, spherical and spherical-cap, are considered in the modeling. Results for both droplet and bubble modeling with COMSOL MULTIPHYSICS trademark are presented, with recommendations for the path forward. (author)

  14. KINETICS OF HYDROLYSIS OF TRIBUTYRIN BY LIPASE

    Directory of Open Access Journals (Sweden)

    SULAIMAN AL-ZUHAIR

    2006-06-01

    Full Text Available Kinetics of the enzymatic hydrolysis of tributyrin using lipase has been investigated. The initial rate of reaction was determined experimentally at different substrate concentration by measuring the rate of butyric acid produced. Michaels-Menten kinetic model has been proposed to predict the initial rate of hydrolysis of tributyrin in micro-emulsion system. The kinetic parameters were estimated by fitting the data to the model using three methods, namely, the Lineweaver-Burk, Edie-Hofstee and Hanes methods. The Michaels-Menten model with the constant predicted by Edie-Hofstee and Hanes methods predicted the initial rate of reaction at various substrate concentrations better than the model with the constant predicted Lineweaver-Burk method, especially at high substrate concentrations.

  15. ACID HYDROLYSIS OF HEMICELLULOSE FROM SUGARCANE BAGASSE

    Directory of Open Access Journals (Sweden)

    A. PESSOA JR.

    1997-09-01

    Full Text Available Hydrolysis of the hemicellulosic fraction of sugarcane bagasse by sulphuric acid was performed in laboratory (25 mL and semi-pilot (25 L reactors under different conditions of temperature, time and acid concentration. On the laboratory scale, the three highest recovery yields were obtained at: 140ºC for 10 min with 100 mgacid/gdm (yield=73.4%; 140ºC for 20 min with 100 mgacid/gdm (yield=73.9% and 150ºC for 20 min with 70 mgacid/gdm (yield=71.8%. These conditions were also used for hydrolysis in a semi-pilot reactor, and the highest xylose recovery yield (83.3% was obtained at 140ºC for 20 min with 100 mgacid/gdm

  16. Hemicellulose hydrolysis catalysed by solid acids

    OpenAIRE

    Carà, P.D..; Pagliaro, M.; Elmekawy, A.; Brown, D R; Verschuren, P.; Shiju, N.R.; Rothenberg, G.

    2013-01-01

    Depolymerising hemicellulose into platform sugar molecules is a key step in developing the concept of an integrated biorefinery. This reaction is traditionally catalysed by either enzymes or homogeneous mineral acids. We compared various solid catalysts for hemicellulose hydrolysis, running reactions in water, under neutral pH and relatively mild temperature and pressure (120 degrees C and 10 bar) conditions. Sulphonated resins are highly active, but they leach out sulphonic groups. Sulphonat...

  17. Enzymatic hydrolysis of PTT polymers and oligomers

    OpenAIRE

    Eberl, A.; Heumann, Sonja; Kotek, R.; Kaufmann, F; Mitscher, S.; Paulo, Artur Cavaco; Gübitz, Georg M.

    2008-01-01

    Oligomers and polymers (film, fabrics) of the linear aromatic polyester poly(trimethylene terephthalate) (PTT) were treated with polyesterases from Thermomyces lanuginosus, Penicillium citrinum, Thermobifida fusca and Fusarium solani pisi. The cutinase from T. fusca was found to release the highest amounts of hydrolysis products from PTT materials and was able to open and hydrolyse a cyclic PTT dimer according to RP-HPLC–UV detection. In contrast, the lipase from T. lanuginosus also showed ac...

  18. Phytate hydrolysis by germfree and conventional rats.

    OpenAIRE

    Wise, A; Gilburt, D J

    1982-01-01

    Phytic acid is naturally occurring compound that reduces intestinal absorption of many metals. Early work suggests that some dietary phytate may be hydrolyzed in the large intestines by bacteria, but more recently nutritionists have suggested that a mucosal enzyme is responsible. This paper reports a study intended to resolve this controversy. The hydrolysis of dietary phytic acid was measured in germfree and conventional rats fed either of two diets that differed in their calcium content. Ne...

  19. PLA recycling by hydrolysis at high temperature

    Science.gov (United States)

    Cristina, Annesini Maria; Rosaria, Augelletti; Sara, Frattari; Fausto, Gironi

    2016-05-01

    In this work the process of PLA hydrolysis at high temperature was studied, in order to evaluate the possibility of chemical recycling of this polymer bio-based. In particular, the possibility to obtain the monomer of lactic acid from PLA degradation was investigated. The results of some preliminary tests, performed in a laboratory batch reactor at high temperature, are presented: the experimental results show that the complete degradation of PLA can be obtained in relatively low reaction times.

  20. Hydrolysis of ferric chloride in solution

    International Nuclear Information System (INIS)

    The Detox trademark process uses concentrated ferric chloride and small amounts of catalysts to oxidize organic compounds. It is under consideration for oxidizing transuranic organic wastes. Although the solution is reused extensively, at some point it will reach the acceptable limit of radioactivity or maximum solubility of the radioisotopes. This solution could be cemented, but the volume would be increased substantially because of the poor compatibility of chlorides and cement. A process has been developed that recovers the chloride ions as HCl and either minimizes the volume of radioactive waste or permits recycling of the radioactive chlorides. The process involves a two-step hydrolysis at atmospheric pressure, or preferably under a slight vacuum, and relatively low temperature, about 200 degrees C. During the first step of the process, hydrolysis occurs according to the reaction below: FeCl3liquid + H2O → FeOClsolid + 2 HClgas During the second step, the hot, solid, iron oxychloride is sprayed with water or placed in contact with steam, and hydrolysis proceeds to the iron oxide according to the following reaction: 2 FeOClsolid + H2O → Fe2O3solid + 2 HClgas. The iron oxide, which contains radioisotopes, can then be disposed of by cementation or encapsulation. Alternately, these chlorides can be washed off of the solids and can then either be recycled or disposed of in some other way

  1. Sugarcane bagasse hydrolysis using yeast cellulolytic enzymes.

    Science.gov (United States)

    Souza, Angelica Cristina de; Carvalho, Fernanda Paula; Silva e Batista, Cristina Ferreira; Schwan, Rosane Freitas; Dias, Disney Ribeiro

    2013-10-28

    Ethanol fuel production from lignocellulosic biomass is emerging as one of the most important technologies for sustainable development. To use this biomass, it is necessary to circumvent the physical and chemical barriers presented by the cohesive combination of the main biomass components, which hinders the hydrolysis of cellulose and hemicellulose into fermentable sugars. This study evaluated the hydrolytic capacity of enzymes produced by yeasts, isolated from the soils of the Brazilian Cerrado biome (savannah) and the Amazon region, on sugarcane bagasse pre-treated with H2SO4. Among the 103 and 214 yeast isolates from the Minas Gerais Cerrado and the Amazon regions, 18 (17.47%) and 11 (5.14%) isolates, respectively, were cellulase-producing. Cryptococcus laurentii was prevalent and produced significant β- glucosidase levels, which were higher than the endo- and exoglucanase activities. In natura sugarcane bagasse was pre-treated with 2% H2SO4 for 30 min at 150oC. Subsequently, the obtained fibrous residue was subjected to hydrolysis using the Cryptococcus laurentii yeast enzyme extract for 72 h. This enzyme extract promoted the conversion of approximately 32% of the cellulose, of which 2.4% was glucose, after the enzymatic hydrolysis reaction, suggesting that C. laurentii is a good β-glucosidase producer. The results presented in this study highlight the importance of isolating microbial strains that produce enzymes of biotechnological interest, given their extensive application in biofuel production. PMID:23851270

  2. Palm Date Fibers: Analysis and Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    Mohammad J. Taherzadeh

    2010-11-01

    Full Text Available Waste palm dates were subjected to analysis for composition and enzymatic hydrolysis of their flesh fibers. The fruit contained 32% glucose and 30% fructose, while the water-insoluble fibers of its flesh consisted of 49.9% lignin and 20.9% polysaccharides. Water-insoluble fibers were settled to 55% of its initial volume in 12 h. The presence of skin and flesh colloidal fibers results in high viscosity and clogging problems during industrial processes. The settling velocity of the fibers was improved by enzymatic hydrolysis. Hydrolysis resulted in 84.3% conversion of the cellulosic part of the fibers as well as reducing the settling time to 10 minutes and the final settled volume to 4% of the initial volume. It implies easier separation of the fibers and facilitates fermentation processes in the corresponding industries. Two kinds of high- and low-lignin fibers were identified from the water-insoluble fibers. The high-lignin fibers (75% lignin settled easily, while the low-lignin fibers (41.4% lignin formed a slurry suspension which settled very slowly. The hydrophilicity of these low-lignin fibers is the major challenge of the industrial processes.

  3. Optimization of preparation of soybean antihypertensive peptides by enzymatic hydrolysis%大豆降压肽酶解制备工艺的优化研究

    Institute of Scientific and Technical Information of China (English)

    蔡高峰; 黄纪念; 孙强; 潘治利; 艾志录; 张燕红

    2013-01-01

    Soy protein isolate(SPI) as the raw material, with alkaline protease trypsin and flavourzyme for hydrolysis, the degree of hydrolysis and ACE inhibition were determined. The results showed that the alkaline protease was better. Using response surface methodology to optimize the process parameters of enzymatic hydrolysis, on the basis,by two kinds of or three kinds of enzymes combined enzymatic hydrolysis, and by ultrafiltration separation of hydrolyzate and vacuum freeze-drying,the enzyme activity was determined using FA - Phe - Gly - Gly(FAPGG) as substrate on soybean peptide fractions were step-down buck activity detection. The results showed that three kinds of enzyme combined enzymatic hydrolysis were better, the hydrolysis degree(DH) and ACE inhibition rate were up to 32.24% and 84. 44% respectively.%以大豆分离蛋白(SPI)为原料,分别采用碱性蛋白酶、胰蛋白酶、风味蛋白酶对SPI进行酶解,测定水解度及ACE抑制率,结果表明碱性蛋白酶酶解液效果较好.采用响应曲面法对碱性蛋白酶酶解工艺参数进行优化,在此基础上采用双酶协同酶解和三酶联合酶解,然后对酶解液进行超滤分离和真空冷冻干燥,采用FA-Phe-Gly-Gly为底物的酶活力检测法对不同大豆降压肽组分进行活性检测.结果表明三酶联合酶解效果最好,水解度(DH)及ACE抑制率高达32.24%和84.44%.

  4. Alkaline azide mutagenicity in cowpea

    International Nuclear Information System (INIS)

    Sodium azide is known as a potent mutagen in cereals and legumes. It is very effective in acidic medium in barley. Here an attempt is made to measure the effectiveness of sodium azide in alkaline medium (pH 7.4) on cowpea (Vigna unguiculata (L.) Walp., variety FS-68). Seeds pre-soaked in distilled water for 5 hours were treated with different concentrations (10-6, 10-5, 10-4 and 10-3M) of sodium azide (NaN3) for 4 hours at 28± 2 deg. C. Bottles were intermittently shaken, then the seeds were thoroughly washed in running tap water and subsequently planted in pots. The treatment caused significant biological damage such as reduction in seed germination, length of root and shoot, number of nodules and pods per plant and morphological leaf variations. Morphological, as well as chlorophyll mutants, were detected in M2

  5. Effects of the addition of an organic polymer on the hydrolysis of sodium tetrahydroborate in batch reactors

    OpenAIRE

    M. J. F. Ferreira; Fernandes, V. R.; Gales, L.; Rangel, C. M.; Pinto, A. M. F. R.

    2010-01-01

    An experimental study is presented both on the generation and storage of molecular hydrogen (H2) by small additions of an organic polymer - carboxymethyl cellulose (CMC) - to sodium borohydride (NaBH4) through the alkaline hydrolysis, in the presence of a powdered nickel-ruthenium based catalyst reused from 274 to 282 times. The experiments were performed at 45 °C in two batch reactors with internal volumes of 0.229 L and 0.369 L, made of stainless-steel with bottom conical shape, positioned ...

  6. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH?

    Science.gov (United States)

    Ma, Huijun; Chen, Xingchun; Liu, He; Liu, Hongbo; Fu, Bo

    2016-02-01

    In this study, the anaerobic fermentation was carried out for volatile fatty acids (VFAs) production at different pH (between 7.0 and 10.0) conditions with untreated sludge and heat-alkaline pretreated waste activated sludge. In the fermentation with untreated sludge, the extent of hydrolysis of organic matters and extent of acidification at alkaline pH are 54.37% and 30.37%, respectively, resulting in the highest VFAs yield at 235.46mg COD/gVS of three pH conditions. In the fermentation with heat-alkaline pretreated sludge, the acidification rate and VFAs yield at neutral pH are 30.98% and 240.14mg COD/gVS, respectively, which are higher than that at other pH conditions. With the glucose or bovine serum albumin as substrate for VFAs production, the neutral pH showed a higher VFAs concentration than the alkaline pH condition. The results of terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that the alkaline pH caused low microbial richness. Based on the results in this study, we demonstrated that the alkaline pH is favor of hydrolysis of organic matter in sludge while neutral pH improved the acidogenesis for the VFAs production from sludge. Our finding is obvious different to the previous research and helpful for the understanding of how heat-alkaline pretreatment and alkaline fermentation influence the VFAs production, and beneficial to the development of VFAs production process. PMID:26652215

  7. Effects of microtubule mechanics on hydrolysis and catastrophes

    International Nuclear Information System (INIS)

    We introduce a model for microtubule (MT) mechanics containing lateral bonds between dimers in neighboring protofilaments, bending rigidity of dimers, and repulsive interactions between protofilaments modeling steric constraints to investigate the influence of mechanical forces on hydrolysis and catastrophes. We use the allosteric dimer model, where tubulin dimers are characterized by an equilibrium bending angle, which changes from 0∘ to 22∘ by hydrolysis of a dimer. This also affects the lateral interaction and bending energies and, thus, the mechanical equilibrium state of the MT. As hydrolysis gives rise to conformational changes in dimers, mechanical forces also influence the hydrolysis rates by mechanical energy changes modulating the hydrolysis rate. The interaction via the MT mechanics then gives rise to correlation effects in the hydrolysis dynamics, which have not been taken into account before. Assuming a dominant influence of mechanical energies on hydrolysis rates, we investigate the most probable hydrolysis pathways both for vectorial and random hydrolysis. Investigating the stability with respect to lateral bond rupture, we identify initiation configurations for catastrophes along the hydrolysis pathways and values for a lateral bond rupture force. If we allow for rupturing of lateral bonds between dimers in neighboring protofilaments above this threshold force, our model exhibits avalanche-like catastrophe events. (papers)

  8. Study on Enzymatic Hydrolysis of Gadus morrhua Skin Collagen and Molecular Weight Distribution of Hydrolysates

    Institute of Scientific and Technical Information of China (English)

    HUO Jian-xin; ZHAO Zheng

    2009-01-01

    Process parameters on enzymatic hydrolysis and molecular weight (MW) distribution of collagen hydrolysates from Gadus morrhua skin were investigated.The optimal process parameters were obtained by the single-factor and orthogonal experiments.The molecular weight distribution of hydrolysates was determined using both Sephadex G25 partition and high speed liquid chromatography electricity spray mass spectrum (HPLC-ESI-MS).Collagen hydrolysates were first gained by an alkaline protease "alcalase" for 3 h at temperature (50℃),pH (10.0),substrate concentration (75 g L-1),and E/S (3%).The molecular weight distribution of collagen hydrolysates ranged from 300 to 1 500 Da,and most of peptides were under 1 200 Da.Sephadex G25 partition and HPLC-ESI-MS should be successfully employed to determine the molecular weight distribution of collagen hydrolysates.

  9. Hydrolysis of ferric chloride in solution

    Energy Technology Data Exchange (ETDEWEB)

    Lussiez, G.; Beckstead, L.

    1996-11-01

    The Detox{trademark} process uses concentrated ferric chloride and small amounts of catalysts to oxidize organic compounds. It is under consideration for oxidizing transuranic organic wastes. Although the solution is reused extensively, at some point it will reach the acceptable limit of radioactivity or maximum solubility of the radioisotopes. This solution could be cemented, but the volume would be increased substantially because of the poor compatibility of chlorides and cement. A process has been developed that recovers the chloride ions as HCl and either minimizes the volume of radioactive waste or permits recycling of the radioactive chlorides. The process involves a two-step hydrolysis at atmospheric pressure, or preferably under a slight vacuum, and relatively low temperature, about 200{degrees}C. During the first step of the process, hydrolysis occurs according to the reaction below: FeCl{sub 3 liquid} + H{sub 2}O {r_arrow} FeOCl{sub solid} + 2 HCl{sub gas} During the second step, the hot, solid, iron oxychloride is sprayed with water or placed in contact with steam, and hydrolysis proceeds to the iron oxide according to the following reaction: 2 FeOCl{sub solid} + H{sub 2}O {r_arrow} Fe{sub 2}O{sub 3 solid} + 2 HCl{sub gas}. The iron oxide, which contains radioisotopes, can then be disposed of by cementation or encapsulation. Alternately, these chlorides can be washed off of the solids and can then either be recycled or disposed of in some other way.

  10. The stability of 2-[{sup 18}F]fluoro-deoxy-D-glucose towards epimerisation under alkaline conditions

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, G.-J.; Matzke, K.H. [Klinik fuer Nuklearmedizin der Medizinischen Hochschule Hannover, Hannover (Germany); Hamacher, K. [Institut fuer Nuklearchemie des Forschungszentrums Juelich, Juelich (Germany); Fuechtner, F.; Steinbach, J. [Institut fuer Bioanorganische und Radiopharmazeutische Chemie des Forschungszentrums Rossendorf, Dresden (Germany); Notohamiprodjo, G.; Zijlstra, S. [Institut fuer Molekulare Biophysik, Radiopharmazie und Nuklearmedizin des Herz-und Diabetes-Zentrums Nordrhein-Westfalen, Bad Oeynhausen (Germany)

    1999-07-01

    Alkaline hydrolysis of 1,3,4,6-tetraacetyl-2-[{sup 18}F]fluoro-deoxy-D-glucose in the course of 2-[{sup 18}F]fluoro-deoxy-D-glucose ({sup 18}FDG) synthesis offers special advantages over acidic hydrolytic procedures, because the reaction time is short and thermal requirements are very mild. In view of the possible epimerization of 2-[{sup 18}F]fluoro-deoxy-D-glucose a multi-centre study has been performed to check the safety of this method for routine production of {sup 18}FDG in view of the quality standards set by the European Pharmacopoeia. The study revealed that in using 0.33 M NaOH for the hydrolysis, a limitation of the reaction temperature to 40 deg. C and a restriction of the reaction time to 5 min represent reaction conditions, which reliably limit the epimerization of {sup 18}FDG to {sup 18}FDM to 0.5%. Regarding the quality requirements on FDG as set forth by pharmacopoeial standards, alkaline hydrolysis of the intermediate in routine {sup 18}FDG production is a safe and efficient reaction pathway, which furthermore obviates the requirement to check for other 2-substituted deoxy-D-glucose derivatives.

  11. Pretreatment and enzymatic hydrolysis of lignocellulosic biomass

    Science.gov (United States)

    Corredor, Deisy Y.

    The performance of soybean hulls and forage sorghum as feedstocks for ethanol production was studied. The main goal of this research was to increase fermentable sugars' yield through high-efficiency pretreatment technology. Soybean hulls are a potential feedstock for production of bio-ethanol due to their high carbohydrate content (≈50%) of nearly 37% cellulose. Soybean hulls could be the ideal feedstock for fuel ethanol production, because they are abundant and require no special harvesting and additional transportation costs as they are already in the plant. Dilute acid and modified steam-explosion were used as pretreatment technologies to increase fermentable sugars yields. Effects of reaction time, temperature, acid concentration and type of acid on hydrolysis of hemicellulose in soybean hulls and total sugar yields were studied. Optimum pretreatment parameters and enzymatic hydrolysis conditions for converting soybean hulls into fermentable sugars were identified. The combination of acid (H2SO4, 2% w/v) and steam (140°C, 30 min) efficiently solubilized the hemicellulose, giving a pentose yield of 96%. Sorghum is a tropical grass grown primarily in semiarid and dry parts of the world, especially in areas too dry for corn. The production of sorghum results in about 30 million tons of byproducts mainly composed of cellulose, hemicellulose, and lignin. Forage sorghum such as brown midrib (BMR) sorghum for ethanol production has generated much interest since this trait is characterized genetically by lower lignin concentrations in the plant compared with conventional types. Three varieties of forage sorghum and one variety of regular sorghum were characterized and evaluated as feedstock for fermentable sugar production. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and X-Ray diffraction were used to determine changes in structure and chemical composition of forage sorghum before and after pretreatment and enzymatic hydrolysis

  12. Palm Date Fibers: Analysis and Enzymatic Hydrolysis

    OpenAIRE

    Taherzadeh, Mohammad J.; Keikhosro Karimi; Marzieh Shafiei

    2010-01-01

    Waste palm dates were subjected to analysis for composition and enzymatic hydrolysis of their flesh fibers. The fruit contained 32% glucose and 30% fructose, while the water-insoluble fibers of its flesh consisted of 49.9% lignin and 20.9% polysaccharides. Water-insoluble fibers were settled to 55% of its initial volume in 12 h. The presence of skin and flesh colloidal fibers results in high viscosity and clogging problems during industrial processes. The settling velocity of the fibers was i...

  13. Improvement of radio frequency (RF) heating-assisted alkaline pretreatment on four categories of lignocellulosic biomass.

    Science.gov (United States)

    Wang, Xiaofei; Taylor, Steven; Wang, Yifen

    2016-10-01

    Pretreatment plays an important role in making the cellulose accessible for enzyme hydrolysis and subsequent conversion because it destroys more or less resistance and recalcitrance of biomass. Radio frequency (RF)-assisted dielectric heating was utilized in the alkaline pretreatment on agricultural residues (corn stover), herbaceous crops (switchgrass), hardwood (sweetgum) and softwood (loblolly pine). Pretreatment was performed at 90 °C with either RF or traditional water bath (WB) heating for 1 h after overnight soaking in NaOH solution (0.2 g NaOH/g Biomass). Pretreated materials were characterized by chemical compositional analysis, enzyme hydrolysis, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The glucan yields of RF-heated four categories of hydrolysates were 89.6, 72.6, 21.7, and 9.9 %. Interestingly, RF heating raised glucan yield on switchgrass and sweetgum but not on corn stover or loblolly pine. The SEM images and FTIR spectra agreed with results of composition analysis and hydrolysis. GC-MS detected some compounds only from RF-heated switchgrass. These compounds were found by other researchers only in high-temperature (150-600 °C) and high-pressure pyrolysis processes. PMID:27262715

  14. Influence of Initial Alkalinity of Lignocellulosic Waste on Their Enzymatic Degradation

    Directory of Open Access Journals (Sweden)

    Wołczyński Marcin

    2014-07-01

    Full Text Available The presented results of research on the effectiveness of enzymatic hydrolysis of lignocellulosic waste, depending on their initial depolymerisation in alkaline medium were considered in the context of the possibility of their further use in the fermentation media focused on the recovery of energy in the form of molecular hydrogen. The aim of this study was to determine the appropriate dose and concentration of a chemical reagent, whose efficiency would be high enough to cause decomposition of the complex, but without an excessive production of by-products which could adversely affect the progress and effectiveness of the enzymatic hydrolysis and fermentation. The effect of treatment on physical-chemical changes of homogenates’ properties such as pH, COD, the concentration of monosaccharide and total sugars and the concentration of total suspended solids and volatile suspended solids was determined. The enzymatic decomposition of lignocellulosic complex was repeatedly more efficient if the sample homogenates were subjected to an initial exposure to NaOH. The degree of conversion of complex sugars into simple sugars during enzymatic hydrolysis of homogenates pre-alkalized to pH 11.5 and 12.0 was 83.3 and 84.2% respectively, which should be sufficient for efficient hydrogen fermentation process.

  15. Alkaline sorbent injection for mercury control

    Science.gov (United States)

    Madden, Deborah A.; Holmes, Michael J.

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  16. Alkaline rocks and the occurrence of uranium

    International Nuclear Information System (INIS)

    Many alkaline complexes contain uranium and other minerals in low concentrations and are regarded as constituting valuable potential reserves. Certain complex metallurgical problems, however, remain to be solved. Alkaline rocks occur in a number of forms and environments and it is noted that they are generated during periods of geological quiescence emplaced mainly in stable aseismic areas. Many occur along the extensions of oceanic transform faults beneath the continental crust and the application of this concept to areas not currently known to host alkaline complexes may prove useful in identifying potential target areas for prospecting operations

  17. Water Availability as a Measure of Cellulose Hydrolysis Efficiency

    DEFF Research Database (Denmark)

    Hsieh, Chia-Wen

    Enzymatic hydrolysis involves the use of cellulases to break down cellulose in the presence of water. Therefore, not only are enzyme and substrate properties important for efficient hydrolysis, but also the hydrolysis medium, i.e. the liquid phase. The LF-NMR technique is used in this work to...... measure properties of the liquid phase, where water protons are characterized based on their mobility in the system as measured by their relaxation time. Studies of cellulose hydrolysis at low dry matter show that the contents of the liquid phase influence the final hydrolysis yield, as the presence of...... sugars, salts, and surfactants impact the water relaxation time. Systems with high concentrations of sugars and salts tend to have low water availability, as these form strong interactions with water to keep their solubility, leaving less water available for hydrolysis. Thus, cellulase performance...

  18. Mechanisms and kinetics of the hydrolysis and condensation of alkoxides

    OpenAIRE

    Schmidt, Helmut K.; Scholze, Horst

    1985-01-01

    Hydrolysis and condensation of alkoxides involve different reaction steps. Generally the first step is the dissolution of monomers in organic solvents like alcohols. The second step is hydrolysis, where in most cases condensation may not be separated. Dissolution may incorporate solvatation, coordination, complexation of polymerization. The addition of water leads to hydrolysis of Si-O-C bonds and subsequently condensation of silanoles takes place. Another possibility of reaction is the hydro...

  19. Hydrolysis of sunflower proto pectin in static and dynamic mode

    International Nuclear Information System (INIS)

    The article describes a hydrolysis process of sunflower head residue by using state and dynamics regime of hydrolysis. It's shown that application of dynamics method positively influences on the pectin yields and its main parameters. The results of comparative study of acid concentration effect on pectin parameters in two different hydrolysis mode allows to develop a more effective process in the pectin production. (author)

  20. Hydrolysis-extraction of apple proto pectins in dynamic mode

    International Nuclear Information System (INIS)

    The article describes a hydrolysis process of apple husks by using dynamics regime of hydrolysis. It's shown that application of dynamics method positively influences on the pectin yields and its main parameters. It was defined that by dynamics regime of hydrolysis-extraction of apple husks it is possible to obtain qualitative products with high yield at a mild ph value of medium of hydrolysing agent.

  1. Cationic gemini surfactants with cleavable spacer: chemical hydrolysis, biodegradation, and toxicity.

    Science.gov (United States)

    Tehrani-Bagha, A R; Holmberg, K; van Ginkel, C G; Kean, M

    2015-07-01

    The paper describes synthesis and characterization of a new type of cationic gemini surfactant, which has dodecyl tails and a spacer that contains an ester bond. The nomenclature used to describe the structure is 12Q2OCO1Q12, with Q being a quaternary ammonium group and the numbers indicating the number of methylene or methyl groups. Due to the close proximity to the two quaternary ammonium groups, the ester bond is very stable on the acid side and very labile already at slightly alkaline conditions. The hydrolysis products are two single chain surfactants (i.e. 12Q2OH and 12Q1COOH) which are less surface active than the intact gemini surfactant. 12Q2OCO1Q12 was found to be readily biodegradable, i.e. it gave more than 60% biodegradation after 28 days. This is interesting because similar gemini surfactants but with ester bonds in the tails instead of the spacer, have previously been found not to be readily biodegradable. The gemini surfactant was found to be toxic to aquatic organisms (ErC50 value of 0.27 mg/l), although less toxic than the two hydrolysis products. PMID:25446957

  2. A Factorial Analysis Study on Enzymatic Hydrolysis of Fiber Pressed Oil Palm Frond for Bioethanol Production

    Science.gov (United States)

    Hashim, F. S.; Yussof, H. W.; Zahari, M. A. K. M.; Illias, R. M.; Rahman, R. A.

    2016-03-01

    Different technologies have been developed to for the conversion of lignocellulosic biomass to suitable fermentation substrates for bioethanol production. The enzymatic conversion of cellulose seems to be the most promising technology as it is highly specific and does not produce substantial amounts of unwanted byproducts. The effects of agitation speed, enzyme loading, temperature, pH and reaction time on the conversion of glucose from fiber pressed oil palm frond (FPOPF) for bioethanol production were screened by statistical analysis using response surface methodology (RSM). A half fraction two-level factorial analysis with five factors was selected for the experimental design to determine the best enzymatic conditions that produce maximum amount of glucose. FPOPF was pre-treated with alkaline prior to enzymatic hydrolysis. The enzymatic hydrolysis was performed using a commercial enzyme Cellic CTec2. From this study, the highest yield of glucose concentration was 9.736 g/L at 72 hours reaction time at 35 °C, pH 5.6, and 1.5% (w/v) of enzyme loading. The model obtained was significant with p-value <0.0001. It is suggested that this model had a maximum point which is likely to be the optimum point and possible for the optimization process.

  3. Muscarinic receptor activation of phosphatidylcholine hydrolysis. Relationship to phosphoinositide hydrolysis and diacylglycerol metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, E.A.; Goldstein, D.; Brown, J.H. (Univ. of California, San Diego, La Jolla (USA))

    1989-09-05

    We examined the relationship between phosphatidylcholine (PC) hydrolysis, phosphoinositide hydrolysis, and diacylglycerol (DAG) formation in response to muscarinic acetylcholine receptor (mAChR) stimulation in 1321N1 astrocytoma cells. Carbachol increases the release of (3H)choline and (3H)phosphorylcholine ((3H)Pchol) from cells containing (3H)choline-labeled PC. The production of Pchol is rapid and transient, while choline production continues for at least 30 min. mAChR-stimulated release of Pchol is reduced in cells that have been depleted of intracellular Ca2+ stores by ionomycin pretreatment, whereas choline release is unaffected by this pretreatment. Phorbol 12-myristate 13-acetate (PMA) increases the release of choline, but not Pchol, from 1321N1 cells, and down-regulation of protein kinase C blocks the ability of carbachol to stimulate choline production. Taken together, these results suggest that Ca2+ mobilization is involved in mAChR-mediated hydrolysis of PC by a phospholipase C, whereas protein kinase C activation is required for mAChR-stimulated hydrolysis of PC by a phospholipase D. Both carbachol and PMA rapidly increase the formation of (3H)phosphatidic acid ((3H)PA) in cells containing (3H)myristate-labeled PC. (3H)Diacylglycerol ((3H)DAG) levels increase more slowly, suggesting that the predominant pathway for PC hydrolysis is via phospholipase D. When cells are labeled with (3H)myristate and (14C)arachidonate such that there is a much greater 3H/14C ratio in PC compared with the phosphoinositides, the 3H/14C ratio in DAG and PA increases with PMA treatment but decreases in response to carbachol.

  4. High-throughput microplate technique for enzymatic hydrolysis of lignocellulosic biomass.

    Science.gov (United States)

    Chundawat, Shishir P S; Balan, Venkatesh; Dale, Bruce E

    2008-04-15

    Several factors will influence the viability of a biochemical platform for manufacturing lignocellulosic based fuels and chemicals, for example, genetically engineering energy crops, reducing pre-treatment severity, and minimizing enzyme loading. Past research on biomass conversion has focused largely on acid based pre-treatment technologies that fractionate lignin and hemicellulose from cellulose. However, for alkaline based (e.g., AFEX) and other lower severity pre-treatments it becomes critical to co-hydrolyze cellulose and hemicellulose using an optimized enzyme cocktail. Lignocellulosics are appropriate substrates to assess hydrolytic activity of enzyme mixtures compared to conventional unrealistic substrates (e.g., filter paper, chromogenic, and fluorigenic compounds) for studying synergistic hydrolysis. However, there are few, if any, high-throughput lignocellulosic digestibility analytical platforms for optimizing biomass conversion. The 96-well Biomass Conversion Research Lab (BCRL) microplate method is a high-throughput assay to study digestibility of lignocellulosic biomass as a function of biomass composition, pre-treatment severity, and enzyme composition. The most suitable method for delivering milled biomass to the microplate was through multi-pipetting slurry suspensions. A rapid bio-enzymatic, spectrophotometric assay was used to determine fermentable sugars. The entire procedure was automated using a robotic pipetting workstation. Several parameters that affect hydrolysis in the microplate were studied and optimized (i.e., particle size reduction, slurry solids concentration, glucan loading, mass transfer issues, and time period for hydrolysis). The microplate method was optimized for crystalline cellulose (Avicel) and ammonia fiber expansion (AFEX) pre-treated corn stover. PMID:18306256

  5. Dynamic modeling and validation of a lignocellulosic enzymatic hydrolysis process

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Sin, Gürkan

    2013-01-01

    The enzymatic hydrolysis process is one of the key steps in second generation biofuel production. After being thermally pretreated, the lignocellulosic material is liquefied by enzymes prior to fermentation. The scope of this paper is to evaluate a dynamic model of the hydrolysis process on a...... demonstration scale reactor. The following novel features are included: the application of the Convection–Diffusion–Reaction equation to a hydrolysis reactor to assess transport and mixing effects; the extension of a competitive kinetic model with enzymatic pH dependency and hemicellulose hydrolysis; a...

  6. Alkalinity in oil field waters - what alkalinity is and how it is measured

    International Nuclear Information System (INIS)

    The alkalinity is an important parameter in the description of pH-behaviour, buffer capacity and scaling potentials in oil field waters. Although the alkalinity is widely used, it seems to be considerable confusion in connection with the concept. It is often used incorrectly and different authors define the concept in different ways. Several different methods for the determination of alkalinity can be found in the literature. This paper discusses the definition of alkalinity and how to use alkalinity in oil field waters to obtain data of importance for scale and pH predictions. There is also shown how a simple titration of oil field waters can give both the alkalinity and the content of organic acids in these waters. It is obvious from these findings that most of the methods used to day may give considerable errors when applied to oil field waters with high contents of organic acids. 8 refs., 8 figs., 5 tabs

  7. Immobilization of Yarrowia lipolytica Lipase on Macroporous Resin Using Different Methods: Characterization of the Biocatalysts in Hydrolysis Reaction

    Directory of Open Access Journals (Sweden)

    Jingjing Sun

    2015-01-01

    Full Text Available To improve the reusability and organic solvent tolerance of microbial lipase and expand the application of lipase (hydrolysis, esterification, and transesterification, we immobilized marine microbial lipase using different methods and determined the properties of immobilized lipases. Considering the activity and cost of immobilized lipase, the concentration of lipase was fixed at 2 mg/mL. The optimal temperature of immobilized lipases was 40°C and 5°C higher than free lipase. The activities of immobilized lipases were much higher than free lipase at alkaline pH (more than 50% at pH 12. The free lipase lost most activity (35.3% and immobilized lipases retained more than 46.4% of their initial activity after 3 h heat treatment at 70°C. At alkaline pH, immobilized lipases were more stable than free lipase (more than 60% residue activity at pH 11 for 3 h. Immobilized lipases retained 80% of their activity after 5 cycles and increased enzyme activity (more than 108.7% after 3 h treatment in tert-butanol. Immobilization of lipase which improved reusability of lipase and provided a chance to expand the application of marine microbial lipase in organic system expanded the application range of lipase to catalyze hydrolysis and esterification in harsh condition.

  8. Technetium recovery from high alkaline solution

    Science.gov (United States)

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  9. Alkaline tolerant dextranase from streptomyces anulatus

    Science.gov (United States)

    Decker, Stephen R.; Adney, William S.; Vinzant, Todd B.; Himmel, Michael E.

    2003-01-01

    A process for production of an alkaline tolerant dextranase enzyme comprises culturing a dextran-producing microorganism Streptomyces anulatus having accession no. ATCC PTA-3866 to produce an alkaline tolerant dextranase, Dex 1 wherein the protein in said enzyme is characterized by a MW of 63.3 kDa and Dex 2 wherein its protein is characterized by a MW of 81.8 kDa.

  10. Immobilized protease on the magnetic nanoparticles used for the hydrolysis of rapeseed meals

    International Nuclear Information System (INIS)

    (3-aminopropl) triethoxysilaneand modified magnetic nanoparticles with the average diameter of 25.4 nm were synthesized in water-phase co-precipitation method. And then these nanoparticles were covalently coupled with alkaline protease as enzyme carrier by using 1,4-phenylene diisothlocyanate as coupling agent. Experiments showed that the immobilized protease can keep the catalytic bioactivity, which can reach to 47.8% when casein was served as substrate. Results showed that the catalytic activity of immobilized protease on these magnetic nanoparticles could retain 98.63±2.37% after 60 days. And it is more stable than the free protease during the shelf-life test. The enzyme reaction conditions such as optimum reaction temperature and pH are the same as free protease. Furthermore, mix-and-separate experiments showed that the immobilized protease could be recycled through the magnetic nanoparticles after the biocatalysis process. When the rapeseed meals were used as substrate, the degree of hydrolysis of immobilized alkaline protease achieved 9.86%, while it was 10.41% for the free protease. The macromolecular proteins of rapeseed meals were hydrolyzed by immobilized protease into small molecules such as polypeptides or amino acids. Thus, a novel efficient and economic way for the recycling of enzymes in the application of continuous production of active peptides was provided based on these magnetic nanoparticles.

  11. Enhanced enzymatic hydrolysis of pretreated almond-tree prunings for sugar production.

    Science.gov (United States)

    Cuevas, Manuel; García, Juan Francisco; Sánchez, Sebastián

    2014-01-01

    Almond-tree prunings (ATP), an agricultural residue largely available in Mediterranean countries, were pretreated with either hot water or dilute sulphuric acid at 180-230 °C. Solids derived from hot water pretreatments were further submitted to alkaline peroxide delignification. In addition, all solids obtained from the three mentioned processes were hydrolysed by cellulases and β-glucosidases to investigate their enzymatic digestibilities. Hot water pretreatment led to high oligosaccharide yields (18.2 g/100 g ATP at 190 °C) while dilute acid pretreatment provided the highest monosaccharide yields (24.0 g/100 g ATP at 190 °C) along with low concentrations of fermentation inhibitors. Glucose yields from enzymatic hydrolysis were strongly affected by both pretreatment type and pretreatment temperature. The highest temperature assayed for both hydrothermal and dilute sulphuric acid pretreatment maximized the glucose recovery (49.2% and 72.8%, respectively) while solids derived from alkaline peroxide treatment achieved maximal glucose concentrations (41.9 g/L, 58.4% of potential yield). PMID:24274571

  12. Alkaline Water and Longevity: A Murine Study

    Science.gov (United States)

    Magro, Massimiliano; Corain, Livio; Ferro, Silvia; Baratella, Davide; Bonaiuto, Emanuela; Terzo, Milo; Corraducci, Vittorino; Salmaso, Luigi; Vianello, Fabio

    2016-01-01

    The biological effect of alkaline water consumption is object of controversy. The present paper presents a 3-year survival study on a population of 150 mice, and the data were analyzed with accelerated failure time (AFT) model. Starting from the second year of life, nonparametric survival plots suggest that mice watered with alkaline water showed a better survival than control mice. Interestingly, statistical analysis revealed that alkaline water provides higher longevity in terms of “deceleration aging factor” as it increases the survival functions when compared with control group; namely, animals belonging to the population treated with alkaline water resulted in a longer lifespan. Histological examination of mice kidneys, intestine, heart, liver, and brain revealed that no significant differences emerged among the three groups indicating that no specific pathology resulted correlated with the consumption of alkaline water. These results provide an informative and quantitative summary of survival data as a function of watering with alkaline water of long-lived mouse models. PMID:27340414

  13. Acid-functionalized nanoparticles for biomass hydrolysis

    Science.gov (United States)

    Pena Duque, Leidy Eugenia

    Cellulosic ethanol is a renewable source of energy. Lignocellulosic biomass is a complex material composed mainly of cellulose, hemicellulose, and lignin. Biomass pretreatment is a required step to make sugar polymers liable to hydrolysis. Mineral acids are commonly used for biomass pretreatment. Using acid catalysts that can be recovered and reused could make the process economically more attractive. The overall goal of this dissertation is the development of a recyclable nanocatalyst for the hydrolysis of biomass sugars. Cobalt iron oxide nanoparticles (CoFe2O4) were synthesized to provide a magnetic core that could be separated from reaction using a magnetic field and modified to carry acid functional groups. X-ray diffraction (XRD) confirmed the crystal structure was that of cobalt spinel ferrite. CoFe2O4 were covered with silica which served as linker for the acid functions. Silica-coated nanoparticles were functionalized with three different acid functions: perfluoropropyl-sulfonic acid, carboxylic acid, and propyl-sulfonic acid. Transmission electron microscope (TEM) images were analyzed to obtain particle size distributions of the nanoparticles. Total carbon, nitrogen, and sulfur were quantified using an elemental analyzer. Fourier transform infra-red spectra confirmed the presence of sulfonic and carboxylic acid functions and ion-exchange titrations accounted for the total amount of catalytic acid sites per nanoparticle mass. These nanoparticles were evaluated for their performance to hydrolyze the beta-1,4 glycosidic bond of the cellobiose molecule. Propyl-sulfonic (PS) and perfluoropropyl-sulfonic (PFS) acid functionalized nanoparticles catalyzed the hydrolysis of cellobiose significantly better than the control. PS and PFS were also evaluated for their capacity to solubilize wheat straw hemicelluloses and performed better than the control. Although PFS nanoparticles were stronger acid catalysts, the acid functions leached out of the nanoparticle during

  14. Purification and characterization of an alkaline phosphatase induced by phosphorus starvation in common bean (Phaseolus vulgaris L.) roots

    Energy Technology Data Exchange (ETDEWEB)

    Morales, L.; Gutierrez, N.; Maya, V.; Parra, C.; Martinez B, E.; Coello, P., E-mail: pcoello@servidor.unam.mx [UNAM, Facultad de Quimica, Departamento de Bioquimica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2012-07-01

    Two phosphatase isoforms from roots of the common bean (Phaseolus vulgaris L.) showed an increase in activity in response to phosphate deficiency. One of them (APIII) was chosen for further purification through ionic exchange chromatography and preparative electrophoresis. The estimated molecular mass of APIII was 35 kDa by both SDS-Page and gel filtration analyses, suggesting a monomeric form of the active enzyme. The phosphatase was classified as an alkaline phosphatase based on the requirement of ph 8 for optimum catalysis. It not only exhibited broad substrate specificity, with the most activity against pyrophosphate, but also effectively catalyzed the hydrolysis of polyphosphate, glucose-1-phosphate and phospho enol-pyruvate. Activity was completely inhibited by molybdate, vanadate and phosphate but was only partially inhibited by fluoride. Although divalent cations were not essential for the pyro phosphatase activity of this enzyme, the hydrolysis of pyro phosphatase increased substantially in the presence of Mg{sup 2+}.

  15. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Leukocyte alkaline phosphatase test. 864.7660... Leukocyte alkaline phosphatase test. (a) Identification. A leukocyte alkaline phosphatase test is a device used to identify the enzyme leukocyte alkaline phosphatase in neutrophilic granulocytes...

  16. pH-stat vs. free-fall pH techniques in the enzymatic hydrolysis of whey proteins.

    Science.gov (United States)

    Fernández, Ayoa; Kelly, Phil

    2016-05-15

    Enzymatic hydrolysis of a commercial whey protein isolate (WPI) using either trypsin or Protamex® was compared using controlled (pH-stat) and uncontrolled (free-fall) pH conditions. pH-stat control at the enzyme's optimum value led to a more rapid rate of WPI hydrolysis by trypsin, while the opposite was the case when Protamex® was used. Furthermore, the choice of alkaline solution used to maintain constant pH during pH-stat experiments appeared to affect the reaction rate, being higher when KOH is added to the reaction mixture instead of NaOH. It would appear that potassium may play a role as co-factor or activator for the activity of this particular protease preparation. Although pH-stat techniques are usually considered to yield better hydrolysis kinetics, these findings suggest that the response of proteolytic enzyme preparations to static or free-fall pH control should be checked in advance, particularly when undertaking large scale production of WPI hydrolysates. PMID:26775989

  17. Characterization of nucleoside triphosphate diphosphohydrolase activity in Trichomonas gallinae and the influence of penicillin and streptomycin in extracellular nucleotide hydrolysis.

    Science.gov (United States)

    Borges, Fernanda Pires; de Brum Vieira, Patrícia; Wiltuschnig, Renata C M; Tasca, Tiana; De Carli, Geraldo Attilio; Bonan, Carla Denise

    2008-06-01

    Here we described an nucleoside triphosphate diphosphohydrolase (NTPDase) activity in living trophozoites of Trichomonas gallinae. The enzyme hydrolyzes a variety of purine and pyrimidine nucleoside di- and triphosphates in an optimum pH range of 6.0-8.0. This enzyme activity was activated by high concentrations of divalent cations, such as calcium and magnesium. Contaminant activities were ruled out because the enzyme was not inhibited by classical inhibitors of ATPases (ouabain, 5.0 mM sodium azide, oligomycin) and alkaline phosphatases (levamisole). A significant inhibition of ATP hydrolysis (38%) was observed in the presence of 20 mM sodium azide. Sodium orthovanadate inhibited ATP and ADP hydrolysis (24% and 78%), respectively. The apparent K(M) (Michaelis constant) values were 667.62+/-13 microM for ATP and 125+/-5.3 microM for ADP. V(max) (maximum velocity) values were 0.44+/-0.007 nmol Pi min(-1) per 10(6) trichomonads and 0.91+/-0.12 nmol Pi min(-1) per 10(6) trichomonads for ATP and ADP, respectively. Moreover, we showed a marked decrease in ATP, ADP and AMP hydrolysis when the parasites were grown in the presence of penicillin and streptomycin. The existence of an NTPDase activity in T. gallinae may be involved in pathogenicity, protecting the parasite from the cytolytic effects of the extracellular nucleotides. PMID:18422631

  18. Hydrolysis and formation constants at 250C

    International Nuclear Information System (INIS)

    A database consisting of hydrolysis and formation constants for about 20 metals associated with the disposal of nuclear waste is given. Complexing ligands for the various ionic species of these metals include OH, F, Cl, SO4, PO4 and CO3. Table 1 consists of tabulated calculated and experimental values of log K/sub xy/, mainly at 250C and various ionic strengths together with references to the origin of the data. Table 2 consists of a column of recommended stability constants at 250C and zero ionic strength tabulated in the column headed log K/sub xy/(0); other columns contain coefficients for an extended Debye-Huckel equation to permit calculations of stability constants up to 3 ionic strength, and up to 0.7 ionic strength using the Davies equation. Selected stability constants calculated with these coefficients for various ionic strengths agree to an average of +- 2% when compared with published experimental and calculated values

  19. Pretreatment and enzymatic hydrolysis of corn fiber

    Energy Technology Data Exchange (ETDEWEB)

    Grohmann, K. [USDA Citrus and Subtropical Products Research Labs., Winter Haven, CT (United States); Bothast, R.J. [National Center for Agricultural Utilization Research, Peoria, IL (United States)

    1996-10-01

    Corn fiber is a co-product of the corn wet milling industry which is usually marketed as a low value animal feed ingredient. Approximately 1.2 x 10{sup 6} dry tons of this material are produced annually in the United States. The fiber is composed of kernel cell wall fractions and a residual starch which can all be potentially hydrolyzed to a mixture of glucose, xylose, arabinose and galactose. We have investigated a sequential saccharification of polysaccharides in corn fiber by a treatment with dilute sulfuric acid at 100 to 160{degrees}C followed by partial neutralization and enzymatic hydrolysis with mixed cellulose and amyloglucosidase enzymes at 45{degrees}C. The sequential treatment achieved a high (approximately 85%) conversion of all polysaccharides in the corn fiber to monomeric sugars, which were in most cases fermentable to ethanol by the recombinant bacterium Escherichia coli KOll.

  20. Enzymatic hydrolysis of PTT polymers and oligomers.

    Science.gov (United States)

    Eberl, A; Heumann, S; Kotek, R; Kaufmann, F; Mitsche, S; Cavaco-Paulo, A; Gübitz, G M

    2008-05-20

    Oligomers and polymers (film, fabrics) of the linear aromatic polyester poly(trimethylene terephthalate) (PTT) were treated with polyesterases from Thermomyces lanuginosus, Penicillium citrinum, Thermobifida fusca and Fusarium solani pisi. The cutinase from T. fusca was found to release the highest amounts of hydrolysis products from PTT materials and was able to open and hydrolyse a cyclic PTT dimer according to RP-HPLC-UV detection. In contrast, the lipase from T. lanuginosus also showed activity on the PTT fibres and on bis(3-hydroxypropyl) terephthalate (BHPT) but was not able to hydrolyse the polymer film, mono(3-hydroxypropyl) terephthalate (MHPT) nor the cyclic dimer of PTT. As control enzymes inhibited with mercury chloride were used. Surface hydrophilicity changes were investigated with contact angle measurements and the degree of crystallinity changes were determined with DSC. PMID:18405994

  1. Microtubule dynamics: Caps, catastrophes, and coupled hydrolysis

    DEFF Research Database (Denmark)

    Flyvbjerg, H.; Holy, T.E.; Leibler, S.

    1996-01-01

    probability distributions relating to available experimental data are derived. Caps are found to be short and the total rate of hydrolysis at a microtubule end is found to be dynamically coupled to growth. The so-called catastrophe rate is a simple function of the microtubule growth rare and fits experimental...... data. A constant nonzero catastrophe rare, identical for both microtubule ends, is predicted at large growth rates. The delay time for dilution-induced catastrophes is stochastic with a simple distribution that fits the experimental one and, like the experimental one, does not depend on the rate of...... unified description of several apparently contradictory experimental data. Experimental results for the catastrophe rate at different concentrations of magnesium ions and of microtubule associated proteins are discussed in terms of the model. Feasible experiments are suggested that can provide decisive...

  2. Bioabatement with hemicellulase supplementation to reduce enzymatic hydrolysis inhibitors

    Science.gov (United States)

    Removal of inhibitory compounds by bioabatement, combined with xylan hydrolysis, enables effective cellulose hydrolysis of pretreated corn stover, for fermentation of the sugars to fuel ethanol or other products. The fungus Coniochaeta ligniaria NRRL30616 eliminates most enzyme and fermentation inhi...

  3. Bioethanol from lignocellulose - pretreatment, enzyme immobilization and hydrolysis kinetics

    DEFF Research Database (Denmark)

    Tsai, Chien Tai

    Pretreatment and enzymatic hydrolysis are two of the processes involved in the production of cellulosic ethanol. Several pretreatment methods were proposed, however new pretreatment strategies to increase enzymetic hydrolysis efficiency are still under investigation. For enzymatic hydrolysis, the...... economic considerations, barley straw can be pretreated under 150°C for 50 min with dry matter of 20% (w/w). Glucose yield can be up to 70% after enzymatic hydrolysis. (2) Immobilization of ß-glucosidase (BG), which was done during 2010. One of the major bottlenecks in production of ethanol from...... different product inhibitors such as glucose, cellobiose and xylose) to test the hydrolysis and product inhibition mechanism of the model. Nonlinear least squares methodwas used to identify the model and estimate kinetic parameters based on the experimental data. The analysis showed that transglycosylation...

  4. Prophylactic treatment with alkaline phosphatase in cardiac surgery induces endogenous alkaline phosphatase release

    NARCIS (Netherlands)

    Kats, Suzanne; Brands, Ruud; Hamad, Mohamed A. Soliman; Seinen, Willem; Schamhorst, Volkher; Wulkan, Raymond W.; Schoenberger, Jacques P.; van Oeveren, Wim

    2012-01-01

    Introduction: Laboratory and clinical data have implicated endotoxin as an important factor in the inflammatory response to cardiopulmonary bypass. We assessed the effects of the administration of bovine intestinal alkaline phosphatase (bIAP), an endotoxin detoxifier, on alkaline phosphatase levels

  5. Alkaline sodium borohydride gel as a hydrogen source for PEMFC or an energy carrier for NaBH 4-air battery

    Science.gov (United States)

    Liu, B. H.; Li, Z. P.; Chen, L. L.

    In this preliminary study, we tried to use sodium polyacrylate as the super absorbent polymer to form alkaline NaBH 4 gel and explored its possibilities for borohydride hydrolysis and borohydride electro-oxidation. It was found that the absorption capacity of sodium polyacrylate decreased with increasing NaBH 4 concentration. The formed gel was rather stable in the sealed vessel but tended to slowly decompose in open air. Hydrogen generation from the gel was carried out using CoCl 2 catalyst precursor solutions. Hydrogen generation rate from the alkaline NaBH 4 gel was found to be higher and impurities in hydrogen were less than that from the alkaline NaBH 4 solution. The NaBH 4 gel also successfully powered a NaBH 4-air battery.

  6. Alkaline sodium borohydride gel as a hydrogen source for PEMFC or an energy carrier for NaBH{sub 4}-air battery

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B.H. [Department of Materials and Engineering, Zhejiang University (China); Li, Z.P.; Chen, L.L. [Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027 (China)

    2008-05-15

    In this preliminary study, we tried to use sodium polyacrylate as the super absorbent polymer to form alkaline NaBH{sub 4} gel and explored its possibilities for borohydride hydrolysis and borohydride electro-oxidation. It was found that the absorption capacity of sodium polyacrylate decreased with increasing NaBH{sub 4} concentration. The formed gel was rather stable in the sealed vessel but tended to slowly decompose in open air. Hydrogen generation from the gel was carried out using CoCl{sub 2} catalyst precursor solutions. Hydrogen generation rate from the alkaline NaBH{sub 4} gel was found to be higher and impurities in hydrogen were less than that from the alkaline NaBH{sub 4} solution. The NaBH{sub 4} gel also successfully powered a NaBH{sub 4}-air battery. (author)

  7. Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose

    DEFF Research Database (Denmark)

    Bjerre, A.B.; Bjerring Olesen, A.; Fernqvist, T.; Plöger, A.; Schmidt, A.S.

    1996-01-01

    10 min) gave about 85% w/w yield of converting cellulose to glucose. The process water, containing dissolved hemicellulose and carboxylic acids, has proven to be a direct nutrient source for the fungus Aspergillus niger producing exo-beta-xylosidase. Furfural and hydroxymethyl-furfural, known...

  8. Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose

    DEFF Research Database (Denmark)

    Bjerre, A.B.; Bjerring Olesen, A.; Fernqvist, T.;

    1996-01-01

    The wet oxidation process of wheat straw has been studied as a pretreatment method to attain our main goal: To break down cellulose to glucose enzymatic, and secondly, to dissolve hemicellulose (e.g., for fermentation) without producing microbial inhibitors. Wet oxidation combined with base addit...

  9. Development of nano indium tin oxide (ITO) grains by alkaline hydrolysis of In(III) and Sn(IV) salts

    Indian Academy of Sciences (India)

    Nimai Chand Pramanik; Prasanta Kumar Biswas

    2002-11-01

    Indium tin oxide (ITO) nano powders of different compositions (In : Sn = 90 : 10, 70 : 30 and 50 : 50) were prepared by heat treatment (300–450°C) of mixed hydroxides of In(III) and Sn(IV). The hydroxides were obtained by the reaction of aq. NH3 with mixed aq. solutions of In(NO3)3 and SnCl4. FTIR and TG/DTA studies revealed that powders existed as In(OH)3 H2O−SnO3H2 H2O in the solid state and then they transformed to In2O3–SnO2 via some metastable intermediates after 300°C. Cubic phase of In2O3 was identified by XRD for the oxides up to 30% of Sn. Particle size measurements of the solid dispersed in acetone and SEM study for microstructure showed that the oxides were in the nano range (55–75 nm) whereas the size range determined from Debye–Scherrer equation were 11–24 nm.

  10. Combined pretreatment using alkaline hydrothermal and ball milling to enhance enzymatic hydrolysis of oil palm mesocarp fiber.

    Science.gov (United States)

    Zakaria, Mohd Rafein; Hirata, Satoshi; Hassan, Mohd Ali

    2014-10-01

    Hydrothermal pretreatment of oil palm mesocarp fiber was conducted in tube reactor at treatment severity ranges of log Ro = 3.66-4.83 and partial removal of hemicellulose with migration of lignin was obtained. Concerning maximal recovery of glucose and xylose, 1.5% NaOH was impregnated in the system and subsequent ball milling treatment was employed to improve the conversion yield. The effects of combined hydrothermal and ball milling pretreatments were evaluated by chemical composition changes by using FT-IR, WAXD and morphological alterations by SEM. The successful of pretreatments were assessed by the degree of enzymatic digestibility of treated samples. The highest xylose and glucose yields obtained were 63.2% and 97.3% respectively at cellulase loadings of 10 FPU/g-substrate which is the highest conversion from OPMF ever reported. PMID:25058299

  11. Effects of acid/alkaline pretreatment and gamma-ray irradiation on extracellular polymeric substances from sewage sludge

    Science.gov (United States)

    Xie, Shuibo; Wu, Yuqi; Wang, Wentao; Wang, Jingsong; Luo, Zhiping; Li, Shiyou

    2014-04-01

    In order to investigate the mechanism of extracellular polymeric substances (EPS) influencing sludge characteristics, variations of extractable EPS from municipal sewage sludge by acid/alkaline pretreatment and gamma-ray irradiation were studied. The changes in constituents of EPS were analyzed by UV-vis spectra and SEM images. The effects of alkaline pretreatment and gamma-ray irradiation on the functional groups in EPS were investigated by Fourier transform infrared (FTIR) spectrometer. Results showed that the extractable EPS increased clearly with increasing irradiation dose from 0 to 15 kGy. UV-vis spectra indicated that a new absorption band from 240 nm to 300 nm existed in all irradiated samples, apart from acid condition. The results of FTIR spectroscopic analysis indicated that, irradiation influenced major functional groups in EPS, such as protein and polysaccharide, and these effects were clearer under alkaline condition. SEM images provided that after alkaline hydrolysis, gamma-ray irradiation was more effective in resulting in the sludge flocs and cells broken, compared with acid pretreatment (pH 2.50).

  12. Kinetics of enzymatic hydrolysis of methyl ricinoleate

    Directory of Open Access Journals (Sweden)

    Neeharika, T. S.V.R.

    2015-12-01

    Full Text Available Ricinoleic acid is an unsaturated hydroxy fatty acid that naturally occurs in castor oil in proportions of up to 85–90%. Ricinoleic acid is a potential raw material and finds several applications in coatings, lubricant formulations and pharmaceutical areas. Enzymatic hydrolysis of castor oil is preferred over conventional hydrolysis for the preparation of ricinoleic acid to avoid estolide formation. A kinetics analysis of the enzymatic hydrolysis of Methyl Ricinoleate in the presence of Candida antarctica Lipase B was carried out in this study by varying reaction temperature (40–60 °C and enzyme concentration (2–5%. The optimal conditions were found to be 6 h reaction time, temperature 60°C, buffer to methyl ricinoleate ratio 2:1(v/w and 4% enzyme concentration to achieve a maximum conversion of 98.5%. A first order reversible reaction kinetic model was proposed to describe this reaction and a good agreement was observed between the experimental data and the model values. The effect of temperature on the forward reaction rate constant was determined by fitting data to the Arrhenius equation. The activation energy for forward reaction was found to be 14.69 KJ·mol−1.El ácido ricinoleico es un hidroxiácido insaturado que se produce naturalmente en el aceite de ricino en proporciones de hasta el 85–90%. El ácido ricinoleico es una materia prima con gran potencial y tiene aplicaciones en revestimientos, formulaciones lubricantes y en áreas farmacéuticas. Para la preparación del ácido ricinoleico se prefiere la hidrólisis enzimática del aceite de ricino a la hidrólisis convencional, para evitar la formación de estólidos. En este estudio se llevó a cabo la cinética de la hidrólisis enzimática del ricinoleato de metilo en presencia de lipasa de Candida antarctica B mediante la variación de la temperatura de reacción (40–60 °C y la concentración de la enzima (2–5%. Las condiciones óptimas de la reacción para

  13. Catalytic hydrolysis of ammonia borane for hydrogen generation using cobalt nanocluster catalyst supported on polydopamine functionalized multiwalled carbon nanotube

    International Nuclear Information System (INIS)

    Hydrogen was generated from ammonia borane complex by hydrolysis using cobalt nanocluster catalyst supported on polydopamine functionalized MWCNTs (multi-walled carbon nanotubes). The impregnation-chemical reduction method was used for the preparation of the supported catalyst. The nanocluster catalyst support was formed by in-situ oxidative polymerization of dopamine on the MWCNTs in alkaline solution at room temperature. The structural and physical–chemical properties of the nanocluster catalyst were characterized by FT-IR (Fourier transform infrared spectroscopy), EDX (energy-dispersive X-ray spectroscopy), SEM (scanning electron microscope), XRD (X-ray diffraction) and TEM (transmission electron microscopy). The nanocluster catalyst showed good catalytic activity for the hydrogen generation from aqueous ammonia borane complex. A reusability test to determine the practical usage of the catalyst was also investigated. The result revealed that the catalyst maintained an appreciable catalytic performance and stability in terms of its reusability after three cycle of reuse for the hydrolysis reaction. Also, the activation energy for the hydrolysis of ammonia borane complex was estimated to be 50.41 kJmol−1, which is lower than the values of some of the reported catalyst. The catalyst can be considered as a promising candidate in developing highly efficient portable hydrogen generation systems such as PEMFC (proton exchange membrane fuel cells). - Highlights: • Co/Pdop-o-MWCNT (Pdop functionalized MWCNT supported cobalt nanocluster) catalyst was synthesized for hydrogen generation. • It is an active catalyst for hydrogen generation via hydrolysis of ammonia borane. • It showed good stability in terms of reusability for the hydrogen generation

  14. Specific Examples of Hybrid Alkaline Cement

    OpenAIRE

    Fernández-Jiménez Ana; García-Lodeiro Inés; Donatello Shane; Maltseva Olga; Palomo Ángel

    2014-01-01

    Hybrid alkaline cements are obtained by alkali-activating cementitious blends in the Na2O-CaO-SiO2-Al2O3-H2O system. The present paper discusses the results of activating different cementitious blends containing a low OPC clinker content ( 15MPa a 2 days) different alkaline activators were used (liquid and solid). The reaction products obtained were also characterised by XRD, SEM/EDX and 27Al and 29Si NMRMAS. The results showed that the main reaction product was a mix of cementitious gels C-A...

  15. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    Science.gov (United States)

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  16. Alkaline Capacitors Based on Nitride Nanoparticles

    Science.gov (United States)

    Aldissi, Matt

    2003-01-01

    High-energy-density alkaline electrochemical capacitors based on electrodes made of transition-metal nitride nanoparticles are undergoing development. Transition- metal nitrides (in particular, Fe3N and TiN) offer a desirable combination of high electrical conductivity and electrochemical stability in aqueous alkaline electrolytes like KOH. The high energy densities of these capacitors are attributable mainly to their high capacitance densities, which, in turn, are attributable mainly to the large specific surface areas of the electrode nanoparticles. Capacitors of this type could be useful as energy-storage components in such diverse equipment as digital communication systems, implanted medical devices, computers, portable consumer electronic devices, and electric vehicles.

  17. Electrochemical behaviour of alkaline copper complexes

    Indian Academy of Sciences (India)

    C L Aravinda; S M Mayanna; V R Muralidharan

    2000-10-01

    A search for non-cyanide plating baths for copper resulted in the development of alkaline copper complex baths containing trisodium citrate [TSC] and triethanolamine [TEA]. Voltammetric studies were carried out on platinum to understand the electrochemical behaviour of these complexes. In TSC solutions, the deposition of copper involves the slow formation of a monovalent species. Adsorption of this species obeys Langmuir isotherm. In TEA solutions the deposition involves the formation of monovalent ions obeying the non-activated Temkin isotherm. Conversion of divalent to monovalent copper is also slow. In TEA and TSC alkaline copper solutions, the predominant species that undergo stepwise reduction contain only TEA ligands

  18. Furfural production from fruit shells by acid-catalyzed hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, A. [Selcuk Univ., Konya (Turkey). Dept. of Chemical Engineering

    2006-01-21

    Pentosans are hydrolyzed to pentoses by dilute mineral acid hydrolysis. The main source of pentosans is hemicelluloses. Furfural can be produced by the acid hydrolysis of pentosan from fruit shells such as hazelnut, sunflower, walnut, and almond of agricultural wastes. Further dehydration reactions of the pentoses yield furfural. The hydrolysis of each shell sample was carried out in dilute sulfuric acid (0.05 to 0.200 mol/l), at high temperature (450-525 K), and short reaction times (from 30 to 600 s). (author)

  19. Hydrolysis of xenon difluoride in acetonitride-water mixtures

    International Nuclear Information System (INIS)

    Hydrolysis of xenon difluoride in acetonitride-water mixture and at XeF2 concentrations 0.03-0.100 mol/l has been studied. It is sown, that the hydrolysis is catalyzed by hydrogen fluoride, formed as a result of interaction between water and XeF2. It is ascertained, that half-life of xenon difluoride decreases with the temperature increase from 30 to 50 deg C and water concentration from 0.5 to 22.2 mol/l. Hydrolysis mechanism is discussed

  20. HYDROLYSIS OF PAPER-DISHWARE WASTES BY CELLULASE

    Institute of Scientific and Technical Information of China (English)

    Jie Lu; Shulan Shi; Runan Yang; Fuzheng Liang

    2004-01-01

    The optimum conditions of hydrolysis of cellulosic wastes by cellulase were studied. The results show that the optimum conditions of sulfuric acid pretreatment were sulfuric acid consistency 0.3M,pretreatment temperature 100℃, pretreatment time 4hours. After sulfuric acid pretreatment, the optimum conditions of hydrolysis by cellulase were enzymatic temperature 50℃ ,enzymatic time 48hours,pH4.8,the charge of cellulase 100IU/g and the substraste consistency 60g/l. Meanwhile this paper studies that the structural change of cellulose during sulfuric acid pretreatment and cellulase hydrolysis by analyzing the infrared spectra.

  1. HYDROLYSIS OF PAPER-DISHWARE WASTES BY CELLULASE

    Institute of Scientific and Technical Information of China (English)

    JieLu; ShulanShi; RunanYang; FuzhengLiang

    2004-01-01

    The optimum conditions of hydrolysis of cellulosic wastes by cellulase were studied. The results show that the optimum conditions of sulfuric acid pretreatment were sulfuric acid consistency 0.3M, pretreatment temperature 100℃, pretreatment time 4hours. After sulfuric acid pretreatment, the optimum conditions of hydrolysis by cellulase were enzymatic temperature 50℃, enzymatic time 48hours,pH4.8,the charge of cellulase 100IU/g and the substraste consistency 60g/l. Meanwhile this paper studies that the structural change of cellulose during sulfuric acid pretreatment and cellulase hydrolysis by analyzing the infrared spectra.

  2. Improvement of fat enzymatic hydrolysis technology

    OpenAIRE

    Некрасов, Павло Олександрович; Плахотна, Юлія Миколаївна; Некрасов, Олександр Павлович

    2011-01-01

    Дана робота присвячена дослідженню гідролізу олії під дією ферментних препаратів вітчизняного та закордонного виробництва. Створені математичні моделі процесів та оптимізовано їх параметри. This article covers the investigation of hydrolysis of oil by domestic and foreign produced enzymes. The mathematical models of the processes were designed and process conditions were optimized....

  3. Enzymatic hydrolysis of biomass from wood.

    Science.gov (United States)

    Álvarez, Consolación; Reyes-Sosa, Francisco Manuel; Díez, Bruno

    2016-03-01

    Current research and development in cellulosic ethanol production has been focused mainly on agricultural residues and dedicated energy crops such as corn stover and switchgrass; however, woody biomass remains a very important feedstock for ethanol production. The precise composition of hemicellulose in the wood is strongly dependent on the plant species, therefore different types of enzymes are needed based on hemicellulose complexity and type of pretreatment. In general, hardwood species have much lower recalcitrance to enzymes than softwood. For hardwood, xylanases, beta-xylosidases and xyloglucanases are the main hemicellulases involved in degradation of the hemicellulose backbone, while for softwood the effect of mannanases and beta-mannosidases is more relevant. Furthermore, there are different key accessory enzymes involved in removing the hemicellulosic fraction and increasing accessibility of cellulases to the cellulose fibres improving the hydrolysis process. A diversity of enzymatic cocktails has been tested using from low to high densities of biomass (2-20% total solids) and a broad range of results has been obtained. The performance of recently developed commercial cocktails on hardwoods and softwoods will enable a further step for the commercialization of fuel ethanol from wood. PMID:26833542

  4. Full scale enzymatic hydrolysis; Enzymhydrolyse i fuldskala

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    An investigation of the feasibility of adding enzymes during the process of anaerobic biomass conversion in order to increase the production of methane is described. The experiment was carried out at a biomass conversion plant at Lintrup (Denmark) in order to compare field results with a laboratory experiment of the same nature. During the continuous fermentation, direct doses of a relatively large amount of enzymes (ca. 6 ml enzyme concentrate mixture per kg dry matter) were added. The idea was that in this way an increase in the amount of hydrolyzed material during a short period could be achieved and thus the conversion of matter that is otherwise difficult to decompose (in this case slurried manures and organic wastes from the food and medicinal industries) could be optimized. This would result in an increased growth of the microorganisms, especially the hydrolytic fermentative. The increase in the growth of the bacteria results in an increase in the amount of extracellular enzymes produced by the hydrolytic fermentative bacteria, and this should promote the hydrolysis of the polymeric material. It was found that the use of enzymes as additives did not increase the production of methane in the anaerobic biomass conversion plant. (AB)

  5. QSAR for cholinesterase inhibition by organophosphorus esters and CNDO/2 calculations for organophosphorus ester hydrolysis. [quantitative structure-activity relationship, complete neglect of differential overlap

    Science.gov (United States)

    Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.

    1985-01-01

    Quantitative structure-activity relationships were derived for acetyl- and butyrylcholinesterase inhibition by various organophosphorus esters. Bimolecular inhibition rate constants correlate well with hydrophobic substituent constants, and with the presence or absence of cationic groups on the inhibitor, but not with steric substituent constants. CNDO/2 calculations were performed on a separate set of organophosphorus esters, RR-primeP(O)X, where R and R-prime are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. For each subset with the same X, the CNDO-derived net atomic charge at the central phosphorus atom in the ester correlates well with the alkaline hydrolysis rate constant. For the whole set of esters with different X, two equations were derived that relate either charge and leaving group steric bulk, or orbital energy and bond order to the hydrolysis rate constant.

  6. Cellulose Degradation at Alkaline Conditions: Long-Term Experiments at Elevated Temperatures

    International Nuclear Information System (INIS)

    The degradation of pure cellulose (Aldrich cellulose) and cotton cellulose at the conditions of an artificial cement pore water (pH 13.3) has been measured at 60o and 90oC for reaction times between 1 and 2 years. The purpose of the experiments is to establish a reliable relationship between the reaction rate constant for the alkaline hydrolysis of cellulose (mid-chain scission), which is a slow reaction, and temperature. The reaction products formed in solution are analysed for the presence of the two diastereomers of isosaccharinic acid using high performance anion exchange chromatography combined with pulsed amperometric detection (HPAEC-PAD), other low-molecular weight aliphatic carboxylic acids using high performance ion exclusion chromatography (HPIEC) and for total organic carbon. The remaining cellulose solids are analysed for dry weight and degree of polymerisation. The degree of cellulose degradation as a function of reaction time is calculated based on total organic carbon and on the dry weight of the cellulose remaining. The degradation of cellulose observed as a function of time can be divided in three reaction phases observed in the experiments: (i) an initial fast reaction phase taking a couple of days, (ii) a slow further reaction taking - 100 days and (iii) a complete stopping of cellulose degradation levelling-off at -60 % of cellulose degraded. The experimental findings are unexpected in several respects: (i) The degree of cellulose degradation as a function of reaction time is almost identical for the experiments carried out at 60 oC and 90 oC, and (ii) the degree of cellulose degradation as a function of reaction time is almost identical for both pure cellulose and cotton cellulose. It can be concluded that the reaction behaviour of the materials tested cannot be explained within the classical frame of a combination of the fast endwise clipping of monomeric glucose units (peeling-off process) and the slow alkaline hydrolysis at the temperatures

  7. Cellulose Degradation at Alkaline Conditions: Long-Term Experiments at Elevated Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Glaus, M.A.; Van Loon, L.R

    2004-04-01

    The degradation of pure cellulose (Aldrich cellulose) and cotton cellulose at the conditions of an artificial cement pore water (pH 13.3) has been measured at 60{sup o} and 90{sup o}C for reaction times between 1 and 2 years. The purpose of the experiments is to establish a reliable relationship between the reaction rate constant for the alkaline hydrolysis of cellulose (mid-chain scission), which is a slow reaction, and temperature. The reaction products formed in solution are analysed for the presence of the two diastereomers of isosaccharinic acid using high performance anion exchange chromatography combined with pulsed amperometric detection (HPAEC-PAD), other low-molecular weight aliphatic carboxylic acids using high performance ion exclusion chromatography (HPIEC) and for total organic carbon. The remaining cellulose solids are analysed for dry weight and degree of polymerisation. The degree of cellulose degradation as a function of reaction time is calculated based on total organic carbon and on the dry weight of the cellulose remaining. The degradation of cellulose observed as a function of time can be divided in three reaction phases observed in the experiments: (i) an initial fast reaction phase taking a couple of days, (ii) a slow further reaction taking - 100 days and (iii) a complete stopping of cellulose degradation levelling-off at -60 % of cellulose degraded. The experimental findings are unexpected in several respects: (i) The degree of cellulose degradation as a function of reaction time is almost identical for the experiments carried out at 60 {sup o}C and 90 {sup o}C, and (ii) the degree of cellulose degradation as a function of reaction time is almost identical for both pure cellulose and cotton cellulose. It can be concluded that the reaction behaviour of the materials tested cannot be explained within the classical frame of a combination of the fast endwise clipping of monomeric glucose units (peeling-off process) and the slow alkaline

  8. The Alkaline Diet: Is There Evidence That an Alkaline pH Diet Benefits Health?

    Directory of Open Access Journals (Sweden)

    Gerry K. Schwalfenberg

    2012-01-01

    Full Text Available This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine.

  9. The Alkaline Diet: Is There Evidence That an Alkaline ph Diet Benefits Health?

    International Nuclear Information System (INIS)

    This review looks at the role of an alkaline diet in health. Pub med was searched looking for articles on ph, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine

  10. Persistently increased intestinal fraction of alkaline phosphatase

    DEFF Research Database (Denmark)

    Nathan, E; Baatrup, G; Berg, H;

    1984-01-01

    Persistent elevation of the intestinal fraction of the alkaline phosphatase (API) as an isolated finding has to our knowledge not been reported previously. It was found in a boy followed during a period of 5.5 years. The only symptom was transient periodic fatigue observed at home, but not apparent...

  11. Evaluation of hydrolysis-esterification biodiesel production from wet microalgae.

    Science.gov (United States)

    Song, Chunfeng; Liu, Qingling; Ji, Na; Deng, Shuai; Zhao, Jun; Li, Shuhong; Kitamura, Yutaka

    2016-08-01

    Wet microalgae hydrolysis-esterification route has the advantage to avoid the energy-intensive units (e.g. drying and lipid extraction) in the biodiesel production process. In this study, techno-economic evaluation of hydrolysis-esterification biodiesel production process was carried out and compared with conventional (usually including drying, lipid extraction, esterification and transesterification) biodiesel production process. Energy and material balance of the conventional and hydrolysis-esterification processes was evaluated by Aspen Plus. The simulation results indicated that drying (2.36MJ/L biodiesel) and triolein transesterification (1.89MJ/L biodiesel) are the dominant energy-intensive stages in the conventional route (5.42MJ/L biodiesel). By contrast, the total energy consumption of hydrolysis-esterification route can be reduced to 1.81MJ/L biodiesel, and approximately 3.61MJ can be saved to produce per liter biodiesel. PMID:27209457

  12. Total decomposition of organophosphate pesticides by microwave-assisted hydrolysis

    Czech Academy of Sciences Publication Activity Database

    Čechová, Lucie; Jansa, Petr; Dračínský, Martin; Janeba, Zlatko

    Lanzarote: -, 2012. s. 69-69. [Zing Conferences: Microwave and Flow Conference. 28.02.2012-02.03.2012, Lanzarote] Institutional research plan: CEZ:AV0Z40550506 Keywords : microwave * hydrolysis * organophosphates * pesticides Subject RIV: CC - Organic Chemistry

  13. Improved Method for Isolation of Bacterial Inhibitors from Oleuropein Hydrolysis

    OpenAIRE

    Federici, Federico; Bongi, Guido

    1983-01-01

    A new high-pressure liquid chromatography multidetection quantitative method for the isolation of the products of oleuropein hydrolysis is described. A single analysis yields sufficient amounts of the compounds to test their inhibitory effect on bacterial growth.

  14. Enzymatic hydrolysis of steryl glycosides for their analysis in foods.

    Science.gov (United States)

    Münger, Linda H; Nyström, Laura

    2014-11-15

    Steryl glycosides (SG) contribute significantly to the total intake of phytosterols. The standard analytical procedure involving acid hydrolysis fails to reflect the correct sterol profile of SG due to isomerization of some of the labile sterols. Therefore, various glycosylases were evaluated for their ability to hydrolyse SG under milder conditions. Using a pure SG mixture in aqueous solution, the highest glycolytic activity, as demonstrated by the decrease in SG and increase in free sterols was achieved using inulinase preparations (decrease of >95%). High glycolytic activity was also demonstrated using hemicellulase (63%). The applicability of enzymatic hydrolysis using inulinase preparations was further verified on SG extracted from foods. For example in potato peel Δ(5)-avenasteryl glucoside, a labile SG, was well preserved and contributed 26.9% of the total SG. Therefore, enzymatic hydrolysis is suitable for replacing acid hydrolysis of SG in food lipid extracts to accurately determine the sterol profile of SG. PMID:24912717

  15. Mechanism of cellobiose inhibition in cellulose hydrolysis by cellobiohydrolase

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Yue; WU; Bin; YAN; Baixu; GAO; Peiji

    2004-01-01

    An experimental study of cellobiose inhibition in cellulose hydrolysis by synergism of cellobiohydrolyse I and endoglucanase I is presented. Cellobiose is the structural unit of cellulose molecules and also the main product in enzymatic hydrolysis of cellulose. It has been identified that cellobiose can strongly inhibit hydrolysis reaction of cellulase, whereas it has no effect on the adsorption of cellulase on cellulose surface. The experimental data of FT-IR spectra, fluorescence spectrum and circular dichroism suggested that cellobiose can be combined with tryptophan residue located near the active site of cellobiohydrolase and then form steric hindrance, which prevents cellulose molecule chains from diffusing into active site of cellulase. In addition, the molecular conformation of cellobiohydrolase changes after cellobiose binding, which also causes most of the non-productive adsorption. Under these conditions, microfibrils cannot be separated from cellulose chains, thus further hydrolysis of cellulose can hardly proceed.

  16. Enzymatic hydrolysis of pretreated barley and wheat straw

    DEFF Research Database (Denmark)

    Rosgaard, Lisa

    2007-01-01

    work involved evaluation of 1) possible ways to increase the glucose release from the commercial cellulase product Celluclast by boosting with other enzyme activities to increase the enzymatic hydrolysis, 2) comparing differently pretreated feedstock substrates and 3) evaluating a fed-batch substrate...... feeding strategy to increase the substrate loading in the hydrolysis reaction. The substrate for the enzymatic hydrolysis was primarily steam pretreated wheat and barley straw since these substrates were the primary feedstocks for the Babilafuente Bioethanol process. The initial work showed that there was...... different pretreatment conditions; hot water extraction and acid- or water impregnation followed by steam explosion showed there were slight differences between the effect of pretreatment conditions in relation to the overall yield from enzymatic hydrolysis. The highest glucose concentration was found for...

  17. Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood

    DEFF Research Database (Denmark)

    Palonen, H.; Thomsen, A.B.; Tenkanen, M.;

    2004-01-01

    The wet oxidation pretreatment (water, oxygen, elevated temperature, and pressure) of softwood (Picea abies) was investigated for enhancing enzymatic hydrolysis. The pretreatment was preliminarily optimized. Six different combinations of reaction time, temperature, and pH were applied, and the...... compositions of solid and liquid fractions were analyzed. The solid fraction after wet oxidation contained 58-64% cellulose, 2-16% hemicellulose, and 24-30% lignin. The pretreatment series gave information about the roles of lignin and hemicellulose in the enzymatic hydrolysis. The temperature of the...... pretreatment, the residual hemicellulose content of the substrate, and the type of the commercial cellulase preparation used were the most important factors affecting the enzymatic hydrolysis. The highest sugar yield in a 72-h hydrolysis, 79% of theoretical, was obtained using a pretreatment of 200degreesC for...

  18. Analysis of myo-inositol hexakisphosphate hydrolysis by Bacillus phytase

    DEFF Research Database (Denmark)

    Kerovuo, J.; Rouvinen, J.; Hatzack, Frank-Andreas

    2000-01-01

    Phytic acid (myo-inositol hexakisphosphate, InsP(6)) hydrolysis by Bacillus phytase (PhyC) was studied. The enzyme hydrolyses only three phosphates from phytic acid. Moreover, the enzyme seems to prefer the hydrolysis of every second phosphate over that of adjacent ones. Furthermore, it is very...... likely that the enzyme has two alternative pathways for the hydrolysis of phytic acid, resulting in two different myo-inositol trisphosphate end products: Ins(2,4,6)P-8 and Ins(1,3,5)P-3. These results, together with inhibition studies with fluoride, vanadate, substrate and a substrate analogue, indicate......) computer-modelling analyses of enzyme-substrate complexes, a novel mode of phytic acid hydrolysis is proposed....

  19. Characterization of casein hydrolysates derived from enzymatic hydrolysis

    OpenAIRE

    Wang, Jinshui; Su, Yinjie; Jia, Feng; Jin, Huali

    2013-01-01

    Background Casein is the main proteinaceous component of milk and has made us interest due to its wide applications in the food, drug, and cosmetic industries as well as to its importance as an investigation material for elucidating essential questions regarding the protein chemistry. Enzymatic hydrolysis is an important method commonly used in the modification of protein structure in order to enhance the functional properties of proteins. The relationship between enzymatic hydrolysis and str...

  20. Hydrolysis of starch by sorghum malt for maltodextrin production [abstract

    OpenAIRE

    Thonart, P.; Destain, J.; Ba, K.

    2010-01-01

    Maltodextrin is a mixture of saccharides with a molecular weight between polysaccharides and oligosaccharides with DE lower than 20. Maltodextrin is more soluble in water than native starches, also is cheaper in comparison with other major edible hydrocolloids. Maltodextrin is obtained by moderate enzymatic or acidic hydrolysis of starch. The hydrolysis of starch, catalyzed by amylases, is the most important commercial enzyme process. The hydrolyzed products are widely applied in food, paper ...

  1. Hydrolysis of starch by sorghum malt for maltodextrin production

    OpenAIRE

    Ba, K.; Destain, Jacqueline; Thonart, Philippe

    2010-01-01

    Maltodextrin is a mixture of saccharides with a molecular weight between polysaccharides and oligosaccharides with DE lower than 20. Maltodextrin is more soluble in water than native starches, also is cheaper in comparison with other major edible hydrocolloids. Maltodextrin is obtained by moderate enzymatic or acidic hydrolysis of starch. The hydrolysis of starch, catalyzed by amylases, is the most important commercial enzyme process. The hydrolyzed products are widely applied in food, paper ...

  2. DNA-Catalyzed Hydrolysis of Esters and Aromatic Amides

    OpenAIRE

    Brandsen, Benjamin M.; Hesser, Anthony R.; Castner, Marissa A.; Chandra, Madhavaiah; Silverman, Scott K.

    2013-01-01

    We previously reported that DNA catalysts (deoxyribozymes) can hydrolyze DNA phosphodiester linkages, but DNA-catalyzed amide bond hydrolysis has been elusive. Here we used in vitro selection to identify DNA catalysts that hydrolyze ester linkages as well as DNA catalysts that hydrolyze aromatic amides, for which the leaving group is an aniline moiety. The aromatic amide-hydrolyzing deoxyribozymes were examined using linear free energy relationship analysis. The hydrolysis reaction is unaffec...

  3. Hydrolysis of Polysaccharides with 77% Sulfuric Acid for Quantitative Saccharification

    OpenAIRE

    UÇAR, Güneş; Balaban, Mualla

    2003-01-01

    Classical standard hydrolysis of polysaccharides with 72% sulfuric acid was modified in 2 manners. In order to avoid treatment in an autoclave at 120 °C under pressure, wood or pulp material was first swollen in cold 77% acid followed by hydrolysis steps in diluted acid solutions. Further, the neutralization of the hydrolyzate with dilute barium hydroxide was carried out in heated mother liquor ensuring a crystalline precipitate of barium sulfate. Digestion enables the separation of clear ali...

  4. Optimization of enzymatic hydrolysis of fibre sludge from pulp mill

    OpenAIRE

    Zinchenko, Ganna

    2012-01-01

    This thesis is a part of a project which aims at utilizing fibre sludge from pulp mill as a source of biofuel production. The study concentrates on optimizing one of the processing steps, enzymatic hydrolysis, in converting fibre sludge to bioalcohol. The aim of the thesis was to find optimum process parameters that enable maximum yield of glucose after performing the enzymatic hydrolysis. For this purpose, a series of experiments with changed process parameters was conducted. Also, enzym...

  5. The Mechanisms of Plant Cell Wall Deconstruction during Enzymatic Hydrolysis

    OpenAIRE

    Thygesen, Lisbeth G; Thybring, Emil E.; Johansen, Katja S.; Claus Felby

    2014-01-01

    Mechanical agitation during enzymatic hydrolysis of insoluble plant biomass at high dry matter contents is indispensable for the initial liquefaction step in biorefining. It is known that particle size reduction is an important part of liquefaction, but the mechanisms involved are poorly understood. Here we put forward a simple model based on mechanical principles capable of capturing the result of the interaction between mechanical forces and cell wall weakening via hydrolysis of glucosidic ...

  6. Alkali pretreated of wheat straw and its enzymatic hydrolysis

    OpenAIRE

    Lirong Han; Juntao Feng; Shuangxi Zhang; Zhiqing Ma; Yonghong Wang; Xing Zhang

    2012-01-01

    The efficiency of enzymatic hydrolysis of cellulose can be improved by various pretreatments of the substrate. In order to increase the efficiency of enzymatic saccharification of the wheat straw, we determined the effect of different pretreatments on the physical structure, chemical components and enzymatic saccharification of wheat straw. Our results showed that combination of grinding and sodium hydroxide (NaOH) treatment had high effect on the enzymatic hydrolysis of wheat straws. The opt...

  7. Improved electrodes and gas impurity investigations on alkaline electrolysers

    DEFF Research Database (Denmark)

    Reissner, R.; Schiller, G.; Knoeri, T.;

    Alkaline water electrolysis for hydrogenproduction is a well-established techniquebut some technological issues regarding thecoupling of alkaline water electrolysis andRenewable Energy Sources (RES) remain tobe improved....

  8. Alkaline magmatism in the eastern of Paraguay.Generals characteristics

    International Nuclear Information System (INIS)

    This paper deals with the distribution of alkaline occurrences in Paraguayan territory and their assemblage into different provinces. Also draws the attention to the petrographic and geochemical characteristics showed by the alkaline rock-types. (author)

  9. Direct injection of superheated steam for continuous hydrolysis reaction

    KAUST Repository

    Wang, Weicheng

    2012-09-01

    The primary intent for previous continuous hydrolysis studies was to minimize the reaction temperature and reaction time. In this work, hydrolysis is the first step of a proprietary chemical process to convert lipids to sustainable, drop-in replacements for petroleum based fuels. To improve the economics of the process, attention is now focused on optimizing the energy efficiency of the process, maximizing the reaction rate, and improving the recovery of the glycerol by-product. A laboratory-scale reactor system has been designed and built with this goal in mind.Sweet water (water with glycerol from the hydrolysis reaction) is routed to a distillation column and heated above the boiling point of water at the reaction pressure. The steam pressure allows the steam to return to the reactor without pumping. Direct injection of steam into the hydrolysis reactor is shown to provide favorable equilibrium conditions resulting in a high quality of FFA product and rapid reaction rate, even without preheating the inlet water and oil and with lower reactor temperatures and lower fresh water demand. The high enthalpy of the steam provides energy for the hydrolysis reaction. Steam injection offers enhanced conditions for continuous hydrolysis of triglycerides to high-purity streams of FFA and glycerol. © 2012 Elsevier B.V.

  10. Site- and species-specific hydrolysis rates of heroin.

    Science.gov (United States)

    Szöcs, Levente; Orgován, Gábor; Tóth, Gergő; Kraszni, Márta; Gergó, Lajos; Hosztafi, Sándor; Noszál, Béla

    2016-06-30

    The hydroxide-catalyzed non-enzymatic, simultaneous and consecutive hydrolyses of diacetylmorphine (DAM, heroin) are quantified in terms of 10 site- and species-specific rate constants in connection with also 10 site- and species-specific acid-base equilibrium constants, comprising all the 12 coexisting species in solution. This characterization involves the major and minor decomposition pathways via 6-acetylmorphine and 3-acetylmorphine, respectively, and morphine, the final product. Hydrolysis has been found to be 18-120 times faster at site 3 than at site 6, depending on the status of the amino group and the rest of the molecule. Nitrogen protonation accelerates the hydrolysis 5-6 times at site 3 and slightly less at site 6. Hydrolysis rate constants are interpreted in terms of intramolecular inductive effects and the concomitant local electron densities. Hydrolysis fraction, a new physico-chemical parameter is introduced and determined to quantify the contribution of the individual microspecies to the overall hydrolysis. Hydrolysis fractions are depicted as a function of pH. PMID:27130543

  11. Development of complete hydrolysis of pectins from apple pomace.

    Science.gov (United States)

    Wikiera, Agnieszka; Mika, Magdalena; Starzyńska-Janiszewska, Anna; Stodolak, Bożena

    2015-04-01

    Enzymatically extracted pectins have a more complex structure than those obtained by conventional methods. As a result, they are less susceptible to hydrolysis, which makes the precise determination of their composition difficult. The aim of the study was to develop a method of complete hydrolysis of enzymatically extracted apple pectins. Substrates were pectins isolated from apple pomace by the use of xylanase and multicatalytic preparation Celluclast and apple pomace. Hydrolysis was performed by a chemical method with 2M TFA at 100 °C and 120 °C and a combined acidic/enzymatic method. After hydrolysis, the contents of galacturonic acid and neutral sugars were measured by HPLC. Complete hydrolysis of polygalacturonic acid occurred after 2.5h incubation with 2M TFA at 120 °C. The efficient hydrolysis of neutral sugars in pectins was performed with 2M TFA at 100 °C for 2.5h. Monomers most susceptible to concentrated acid were rhamnose, mannose and arabinose. PMID:25442606

  12. Optimization of alkaline and dilute acid pretreatment of agave bagasse by response surface methodology

    Directory of Open Access Journals (Sweden)

    Abimael I. Ávila-Lara

    2015-09-01

    Full Text Available Utilization of lignocellulosic materials for the production of value-added chemicals or biofuels generally requires a pretreatment process to overcome the recalcitrance of the plant biomass for further enzymatic hydrolysis and fermentation stages. Two of the most employed pretreatment processes are the ones that used dilute acid (DA and alkaline (AL catalyst providing specific effects on the physicochemical structure of the biomass such as high xylan and lignin removal for DA and AL, respectively. Another important effect that need to be studied is the use of a high solids pretreatment (≥15% since offers many advantaged over lower solids loadings, including increased sugar and ethanol concentrations (in combination with a high solids saccharification which will be reflected in lower capital costs, however this data is currently limited. In this study, several variables such as catalyst loading, retention time and solids loading, were studied using Response Surface Methodology (RSM based on a factorial Central Composite Design (CCD of DA and AL pretreatment on agave bagasse using a range of solids from 3 to 30% (w/w to obtain optimal process conditions for each pretreatment. Subsequently enzymatic hydrolysis was performed using Novozymes Cellic CTec2 and HTec2 presented as total reducing sugar (TRS yield. Pretreated biomass

  13. Effect of reactive and non-reactive counterion micelles upon the alkaline degradation of indomethacin

    Directory of Open Access Journals (Sweden)

    Abdullah S. Al-Ayed

    2014-01-01

    Full Text Available In the present paper, kinetics of alkaline degradation of well known drug, indomethacin (2-[1-(4-chlorobenzoyl-5-methoxy-2-methylindol-3-yl]acetic acid, was studied in presence of excess [NaOH]. The rate of hydrolysis of substrate was independent of the [indomethacin] though it increased linearly with increasing the hydroxide ion concentration with a positive slope, suggesting the following rate law: kobs = k1[OH−]. Cationic surfactants having non-reactive ions (cetyltrimethylammonium bromide, CTAB and cetyltrimethylammonium sulfate (CTA2SO4 first increased the rate constants at lower concentrations and then decreased it at higher concentrations while in case of the surfactant with reactive counterions (cetyltrimethylammonium hydroxide, CTAOH the rate increases sharply at lower concentrations of surfactant until it reaches to a plateau in contrast to the appearance of maxima in case of CTAB and (CTA2SO4. Anionic surfactant, sodium dodecyl sulfate (SDS, inhibited the reaction rate at all concentrations used in the study. Pseudophase ion-exchange model was used for analyzing the effect of cationic micelles while the inhibition by SDS micelles was fitted using the Menger–Portnoy model. The effect of salts (NaCl, NaBr and (CH34NBr was also seen on the hydrolysis of indomethacin and it was found that all salts inhibited the rate of reaction. The inhibition followed the trend NaCl < NaBr < (CH34NBr.

  14. Production of an extensive sunflower protein hydrolysate by sequential hydrolysis with endo- and exo-proteases.

    Directory of Open Access Journals (Sweden)

    Villanueva, Alvaro

    1999-12-01

    Full Text Available A high quality protein isolate has been obtained from defatted sunflower meal by alkaline extraction and isoelectric precipitation. Protein content was increased from 31.2 % in the defatted flour to 97 % in the protein isolate. The percentages of fiber, soluble sugars, polyphenols and residual lipids in the protein isolate were reduced to more than 90 % with respect to the defatted meal. The protein isolate was used as starting material for the generation of an extensive enzymatic protein hydrolysate. The hydrolysis was carried out in a pH stat using sequentially an endo-protease (Alcalase and an exo-protease (Flavourzyme. The protein hydrolysate, with a degree of hydrolysis of 50.7 %, was white and non bitter.

    Se ha obtenido un aislado proteico de alta calidad a partir de harina desengrasada de girasol, mediante extracción alcalina y precipitación isoeléctrica. Se incrementó el contenido proteico desde un 31.2 % en la harina desengrasada hasta un 97 % en el aislado proteico. Los porcentajes de fibra, azúcares solubles, polifenoles y lípidos residuales se redujeron en más del 90 % en el aislado proteico respecto a la harina desengrasada. Se usó el aislado proteico como material de partida para la producción de un hidrolizado enzimático proteico extenso. La hidrólisis se realizó en un reactor usando secuencialmente una endo-proteasa (Alcalasa y una exo-proteasa (Flavorzima. El hidrolizado proteico, con un grado de hidrólisis del 50.7 %, era blanco y no presentaba amargor.

  15. Enzymatic Hydrolysis of Pretreated Sugarcane Straw: Kinetic Study and Semi-Mechanistic Modeling.

    Science.gov (United States)

    Pratto, Bruna; de Souza, Renata Beraldo Alencar; Sousa, Ruy; da Cruz, Antonio Jose Gonçalves

    2016-04-01

    Although there are already commercial-scale productions of second generation (2G) ethanol, focusing efforts on process optimization can be of key importance to make the production cost-effective in large scale. In this scenario, mathematical models may be useful in design, scale-up, optimization, and control of bioreactors. For this reason, the aim of this work was to study the kinetics of the enzymatic hydrolysis of cellulose from sugarcane straw. Experiments using hydrothermally pretreated sugarcane (HPS) straw (195 °C, 10 min, 200 rpm) with and without alkaline delignification (4 % NaOH m/v, 30 min, 121 °C) were carried out in shake flasks (50 °C, pH 5.0, 200 rpm). Solid load was varied in a range of 0.8 to 10 % (m/v), in initial velocity and long-term assays. Enzyme concentration (Cellic®CTec2) was varied from 5 to 80 filter paper unit (FPU) gcellulose (-1). It was possible to fit Michaelis-Menten (MM), modified MM, with and without competitive inhibition by glucose, and Chrastil models. Chrastil model and modified MM with inhibition (both suitable for heterogeneous system, with high resistance to internal diffusion) showed more appropriate than pseudo-homogeneous MM model. The fitted models were able to identify key features of the hydrolysis process and can be very useful within the perspective of bioreactors engineering. PMID:26701144

  16. Effects of low temperature on aluminum(Ⅲ) hydrolysis: theoretical and experimental studies

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; ZHANG Baojie; LEE Chery

    2008-01-01

    In this study, the effects of low temperature on aluminum(III) (Al) hydrolysis were examined both theoretically and experimentally by constructing a solubility diagram for amorphous aluminum hydroxide (Al(OH)3(am)) and a distribution diagram of hydrolyzed Al species. Firstly, thermodynamic data of Al species at 4℃ were calculated from that at 25℃. A well confirmed polymeric Al species, AlO4Al12(OH)247+(Al13), was involved in building the diagrams and, correspondingly, the non-linear simultaneous equations with 13 degrees were resolved. Secondly, polarized Zeeman atomic absorption spectrophotometry (AAS), 27Al nuclear magnetic resonance (NMR) spectroscopy, and ferron-based spectrophotometry were applied for constructing the practical diagrams. The results show that a decrease of temperature from 25 to 4℃ caused the Al(OH)3(am) boundary on the solubility diagram to shift toward the alkaline side by about 1.0 pH unit and the minimum solubility of Al(OH)3(am) to reduce by 1.0 log unit. The distribution diagram indicates that the monomeric Al, Al13, and solid-phase Al(OH)3 were alternately the predominant species with the increase of pH value during Al hydrolysis. At 25℃, Al13 was the dominant species in a pH range of 4.0 to 4.5, whereas at 4℃, Al13 was the leading species in a pH range spaced from 4.5 to 6.3. The predominant species changed from the monomeric Al to the solid-phase Al(OH)3 over the range of 1.8 pH units at 4℃ in comparison with the range of 0.5 pH unit at 25℃.

  17. Milk Lactose Hydrolysis In A Batch Reactor: Optimisation Of Process Parameters, Kinetics Of Hydrolysis And Enzyme Inactivation

    OpenAIRE

    Sener, N.; Kilic-Apar, D.; DEMIRHAN, E.; Ozbek, B.

    2008-01-01

    The present investigation describes the effects of the process quantities on enzymatic hydrolysis of milk lactose and enzyme stability. The lactose hydrolysis reactions were carried out in 250 mL of milk by using a commercial β-galactosidase produced from Kluyveromyces marxianus lactis. The residual lactose mass concentration (g L-1) and residual enzyme activity (%) against time were investigated vs. process variables such as temperature, impeller speed and enzyme concentration. Optimum condi...

  18. Impacts of microalgae pre-treatments for improved anaerobic digestion: Thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis

    OpenAIRE

    Ometto, Francesco; Quiroga, Gerardo; Psenǐckǎ, Pavel; Whitton, Rachel; Jefferson, Bruce; Villa, Raffaella

    2014-01-01

    Anaerobic digestion (AD) of microalgae is primarily inhibited by the chemical composition of their cell walls containing biopolymers able to resist bacterial degradation. Adoption of pre-treatments such as thermal, thermal hydrolysis, ultrasound and enzymatic hydrolysis have the potential to remove these inhibitory compounds and enhance biogas yields by degrading the cell wall, and releasing the intracellular algogenic organic matter (AOM). This work investigated the effect of four pre-treatm...

  19. Electrochemical biosensor for detection of DNA hydroxymethylation based on glycosylation and alkaline phosphatase catalytic signal amplification

    International Nuclear Information System (INIS)

    Highlights: • DNA Hydroxymethylation was detected by electrochemical method. • 5-Hydroxymethylation cytosine in target DNA was chemically modified with glucose group. • Alkaline phosphatase catalytic signal amplification strategy was used. • The developed method also showed excellent reproducibility and stability. - Abstract: DNA hydroxymethylation (5-hydroxymethylcytosine, 5hmC) is a kind of new epigenetic modification, which plays key roles in nuclear reprogramming, regulates the gene activity, and initiates the DNA demethylation in mammals. For further understanding the functions of 5hmC and the correlation with tumour, it is essential to develop sensitive and selective methods for detecting and sequencing 5hmC. Herein, a kind of electrochemical biosensor was fabricated for 5hmC detection based on the glycosylation modification of 5hmC and enzymatic signal amplification. Under the catalytic effect of T4 β-glucosyltransferase, the 5hmC in target DNA was chemically modified with glucose. Then with the bridge connection of 1,4-phenyldiboronic acid, alkaline phosphatase was further captured on the electrode surface to catalyze the hydrolysis of p-nitrophenyl phosphate disodium salt to produce p-nitrophenol. Based on the relationship between the electrochemical oxidation signal of p-nitrophenol and the concentration of target DNA, the 5hmC level can be detected with high sensitivity and selectivity. The developed method also showed excellent reproducibility and stability

  20. Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions: biogas production, metagenome, and metatranscriptome

    Science.gov (United States)

    Nolla-Ardèvol, Vímac; Strous, Marc; Tegetmeyer, Halina E.

    2015-01-01

    A haloalkaline anaerobic microbial community obtained from soda lake sediments was used to inoculate anaerobic reactors for the production of methane rich biogas. The microalga Spirulina was successfully digested by the haloalkaline microbial consortium at alkaline conditions (pH 10, 2.0 M Na+). Continuous biogas production was observed and the obtained biogas was rich in methane, up to 96%. Alkaline medium acted as a CO2 scrubber which resulted in low amounts of CO2 and no traces of H2S in the produced biogas. A hydraulic retention time (HRT) of 15 days and 0.25 g Spirulina L−1 day−1 organic loading rate (OLR) were identified as the optimal operational parameters. Metagenomic and metatranscriptomic analysis showed that the hydrolysis of the supplied substrate was mainly carried out by Bacteroidetes of the “ML635J-40 aquatic group” while the hydrogenotrophic pathway was the main producer of methane in a methanogenic community dominated by Methanocalculus. PMID:26157422

  1. A Comparison between Lime and Alkaline Hydrogen Peroxide Pretreatments of Sugarcane Bagasse for Ethanol Production

    Science.gov (United States)

    Rabelo, Sarita C.; Filho, Rubens Maciel; Costa, Aline C.

    Pretreatment procedures of sugarcane bagasse with lime (calcium hydroxide) or alkaline hydrogen peroxide were evaluated and compared. Analyses were performed using 2 × 2 × 2 factorial designs, with pretreatment time, temperature, and lime loading and hydrogen peroxide concentration as factors. The responses evaluated were the yield of total reducing sugars (TRS) and glucose released from pretreated bagasse after enzymatic hydrolysis. Experiments were performed using the bagasse as it comes from an alcohol/ sugar factory and bagasse in the size range of 0.248 to 1.397 mm (12-60 mesh). The results show that when hexoses and pentoses are of interest, lime should be the pretreatment agent chosen, as high TRS yields are obtained for nonscreened bagasse using 0.40 g lime/g dry biomass at 70 °C for 36 h. When the product of interest is glucose, the best results were obtained with lime pretreatment of screened bagasse. However, the results for alkaline peroxide and lime pretreatments of nonscreened bagasse are not very different.

  2. Electrocatalytic Oxidation of Cellulose to Gluconate on Carbon Aerogel Supported Gold Nanoparticles Anode in Alkaline Medium

    Directory of Open Access Journals (Sweden)

    Hanshuang Xiao

    2015-12-01

    Full Text Available The development of high efficient and low energy consumption approaches for the transformation of cellulose is of high significance for a sustainable production of high value-added feedstocks. Herein, electrocatalytic oxidation technique was employed for the selective conversion of cellulose to gluconate in alkaline medium by using concentrated HNO3 pretreated carbon aerogel (CA supported Au nanoparticles as anode. Results show that a high gluconate yield of 67.8% and sum salts yield of 88.9% can be obtained after 18 h of electrolysis. The high conversion of cellulose and high selectivity to gluconate could be attributed to the good dissolution of cellulose in NaOH solution which promotes its hydrolysis, the surface oxidized CA support and Au nanoparticles catalyst which possesses high amount of active sites. Moreover, the bubbled air also plays important role in the enhancement of cellulose electrocatalytic conversion efficiency. Lastly, a probable mechanism for electrocatalytic oxidation of cellulose to gluconate in alkaline medium was also proposed.

  3. Specific Examples of Hybrid Alkaline Cement

    Directory of Open Access Journals (Sweden)

    Fernández-Jiménez Ana

    2014-04-01

    Full Text Available Hybrid alkaline cements are obtained by alkali-activating cementitious blends in the Na2O-CaO-SiO2-Al2O3-H2O system. The present paper discusses the results of activating different cementitious blends containing a low OPC clinker content ( 15MPa a 2 days different alkaline activators were used (liquid and solid. The reaction products obtained were also characterised by XRD, SEM/EDX and 27Al and 29Si NMRMAS. The results showed that the main reaction product was a mix of cementitious gels C-A-S-H and (N,C-A-S-H, and that their relative proportions were strongly influenced by the calcium content in the initial binder

  4. Study of niobium corrosion in alkaline medium

    International Nuclear Information System (INIS)

    A comparative study of niobium electrochemical behaviour in NaOH and KOH solution, with concentrations between 0,5 and 6,1M is presented. The studies were done through electrochemicals assays, consisting in the corrosion potential and anodic and cathodic polarization curves, complemented by loss of mass experiments. The niobium anodic behaviour in alkaline medium is characterized by passivation occurrence, with a stable film formation. The Na oH solution in alkaline medium are more corrosible to niobium than the KOH solution. The loss of mass assays showed that the corrosion velocit is more dependente of hydroxide concentration in KOH medium than the NaOH medium. (C.G.C.)

  5. High temperature and pressure alkaline electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2013-01-01

    Alkaline electrolyzers have proven to operate reliable for decades on a large scale, but in order to become commercially attractive and compete against conventional technologies for hydrogen production, the production and investment costs have to be reduced. This may occur by increasing the...... operational temperature and pressure to produce pressurized hydrogen at high rate (m3 H2·h-1·m-2 cell area) and high electrical efficiency. This work describes an exploratory technical study of the possibility to produce hydrogen and oxygen with a new type of alkaline electrolysis cell at high temperatures...... SrTiO3 was used for immobilization of aqueous KOH solutions. Electrolysis cells with this electrolyte and metal foam based gas diffusion electrodes were successfully demonstrated at temperatures up to 250 °C at 40 bar. Different electro-catalysts were tested in order to reduce the oxygen and hydrogen...

  6. High Temperature and Pressure Alkaline Electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank

    radiation raises the necessity to store the produced energy. Hydrogen production by water electrolysis is one of the most promising ways to do so. Alkaline electrolyzers have proven to operate reliable for decades on a large scale (up to 160 MW), but in order to become commercially attractive and compete...... and oxygen with a new type of alkaline electrolysis cell at high temperatures and pressures. To perform measurements under high pressure and at elevated temperatures it was necessary to build a measurement system around an autoclave which could stand high temperatures up to 250 °C and pressures up to...... 200 bar as well as extremely caustic environments. Based on a literature study to identify resistant materials for these conditions, Inconel 600 was selected among the metals which are available for autoclave construction. An initial single atmosphere high temperature and pressure measurement setup...

  7. Stochastic molecular model of enzymatic hydrolysis of cellulose for ethanol production

    OpenAIRE

    Kumar, Deepak; Murthy, Ganti S.

    2013-01-01

    Background During cellulosic ethanol production, cellulose hydrolysis is achieved by synergistic action of cellulase enzyme complex consisting of multiple enzymes with different mode of actions. Enzymatic hydrolysis of cellulose is one of the bottlenecks in the commercialization of the process due to low hydrolysis rates and high cost of enzymes. A robust hydrolysis model that can predict hydrolysis profile under various scenarios can act as an important forecasting tool to improve the hydrol...

  8. Enteral Tube Feeding Nutritional Protein Hydrolysate Production Under Different Factors By Enzymatic Hydrolysis

    OpenAIRE

    Nguyen ThiQuynhHoa; Nguyen Ngoc Phuong Diem; Nguyen Phuoc Minh; Dong ThiAnh Dao

    2015-01-01

    Abstract Hydrolysis of proteins involves the cleavage of peptide bonds to give peptides of varying sizes and amino acid composition. There are a number of types of hydrolysis enzymatic acid or alkali hydrolysis. Chemical hydrolysis is difficult to control and reduces the nutritional quality of products destroying L-form amino acids and producing toxic substances such as lysino-alanine. Enzymatic hydrolysis works without destructing amino acids and by avoiding the extreme temperatures and pH l...

  9. 酶法水解蟹壳蛋白%Study on Enzymatic Hydrolysis of Protein in Decalcified Crab Shell

    Institute of Scientific and Technical Information of China (English)

    张立彦; 刘启莲

    2011-01-01

    Alcalase2.4 L was selected for the hydrolysis of protein in decalcified crab shell. The optimum conditions for hydrolysis, microstrueture of chitin deproteinized and the amino acid composition in hydrolysate were investigated. The degree of hydrolysis was up to about 14% when the hydrolysis was carried out at the optimal conditions (60 ℃,pH8.0, solid to solution ratio 1:3 and enzyme to substrate ratio 3000U/g). The surface of chitin deproteinized by Alcalase2.4 L was glabrous and it was different from the microstructure of chitin deproteinized by alkaline so- lution. The amino acid composition in hydrolysate obtained by alealase2.4 L hydrolysis corresponded with the ideal demand mode of human that is recommended by FAO and WHO. The content of umami amino acids was high in the hydrolysate.%对水解脱钙蟹壳中蛋白质的蛋白酶进行了选择,并探讨了蛋白酶水解的条件,通过扫描电镜(SEM)观察了采用不同脱除蛋白方法处理后的甲壳素表面状态,分析了蛋白水解液中的氨基酸组成及营养价值。结果表明,Alcalase2.4L酶比较适于水解蟹壳中的蛋白质,水解度较其他蛋白酶高。Alcalase2.4L水解蟹壳蛋白的最适条件为:温度60℃,pH8.0,料液比1:3,酶底物比为3000U/g,水解5h后水解度可达到14%左右。酶法与碱法脱蛋白对甲壳素表面微观状态影响不同,酶法脱蛋白后甲壳素表面较光洁。水解液中的氨基酸组成与FAO/WHO建议的理想模式基本一致,鲜味氨基酸含量较高。

  10. CARINA alkalinity data in the Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    A. Velo

    2009-08-01

    Full Text Available Data on carbon and carbon-relevant hydrographic and hydrochemical parameters from previously non-publicly available cruise data sets in the Arctic, Atlantic and Southern Ocean have been retrieved and merged to a new database: CARINA (CARbon IN the Atlantic.

    These data have gone through rigorous quality control (QC procedures to assure the highest possible quality and consistency. The data for most of the measured parameters in the CARINA data base were objectively examined in order to quantify systematic differences in the reported values, i.e. secondary quality control. Systematic biases found in the data have been corrected in the data products, i.e. three merged data files with measured, calculated and interpolated data for each of the three CARINA regions; Arctic, Atlantic and Southern Ocean. Out of a total of 188 cruise entries in the CARINA database, 98 were conducted in the Atlantic Ocean and of these, 75 cruises report alkalinity values.

    Here we present details of the secondary QC on alkalinity for the Atlantic Ocean part of CARINA. Procedures of quality control, including crossover analysis between cruises and inversion analysis of all crossover data are briefly described. Adjustments were applied to the alkalinity values for 16 of the cruises in the Atlantic Ocean region. With these adjustments the CARINA database is consistent both internally as well as with GLODAP data, an oceanographic data set based on the World Hydrographic Program in the 1990s. Based on our analysis we estimate the internal accuracy of the CARINA-ATL alkalinity data to be 3.3 μmol kg−1. The CARINA data are now suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation.

  11. Alkaline leaching of iron and steelmaking dust

    OpenAIRE

    Stafanova, Anna; Aromaa, Jari

    2012-01-01

    Steel production generates significant quantities of dust and sludge in blast furnaces (BF),basic oxygen furnaces (BOF), and electric arc furnaces (EAF). These dusts contain toxicelements, such as heavy metals, and are thus classified as harmful waste making the disposalof them expensive. In addition, direct recycling of dust back to steel production is hindered dueto the presence of zinc. In this literature survey the alkaline leaching of zinc from iron and steelmaking dusts isreviewed. T...

  12. Alkaline earth cation extraction from acid solution

    Science.gov (United States)

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  13. Bifunctional Catalysts for Alkaline Fuel Cells

    Czech Academy of Sciences Publication Activity Database

    Klápště, Břetislav; Vondrák, Jiří; Velická, Jana

    Vol. 1. Brno : Akademické nakladatelství CERM, 2000 - (Vondrák, J.; Sedlaříková, M.), s. 24.1-24.4 ISBN 80-214-1614-9. [Advanced Batteries and Accumulators /1./. Brno (CZ), 28.08.2000-01.09.2000] R&D Projects: GA MŠk ME 216 Institutional research plan: CEZ:AV0Z4032918; CEZ:MSM 262200010 Keywords : alkaline * catalysts * electrochemistry Subject RIV: CG - Electrochemistry

  14. Combined electrical-alkali pretreatment to increase the anaerobic hydrolysis rate of waste activated sludge during anaerobic digestion

    International Nuclear Information System (INIS)

    Highlights: • Combined electrical-alkali pretreatment for improving sludge anaerobic digestion was proposed. • Combined process enhanced the cell lysis, biopolymers releases, and thus sludge disintegration. • Increased solubilization of sludge increased the anaerobic hydrolysis rate. • Increased solubilization does not always induce an improved anaerobic digestion efficiency. - Abstract: Pretreatment can be used prior to anaerobic digestion to improve the efficiency of waste activated sludge (WAS) digestion. In this study, electrolysis and a commonly used pretreatment method of alkaline (NaOH) solubilization were integrated as a pretreatment method for promoting WAS anaerobic digestion. Pretreatment effectiveness of combined process were investigated in terms of disintegration degree (DDSCOD), suspended solids (TSS and VSS) removals, the releases of protein (PN) and polysaccharide (PS), and subsequent anaerobic digestion as well as dewaterability after digestion. Electrolysis was able to crack the microbial cells trapped in sludge gels and release the biopolymers (PN and PS) due to the cooperation of alkaline solubilization, enhancing the sludge floc disintegration/solubilization, which was confirmed by scanning electron microscopy (SEM) analysis. Biochemical methane potential (BMP) assays showed the highest methane yield was achieved with 5 V plus pH 9.2 pretreatment with up to 20.3% improvement over the non-pretreated sludge after 42 days of mesophilic operation. In contrast, no discernible improvements on anaerobic degradability were observed for the rest of pretreated sludges, probably due to the overmuch leakage of refractory soluble organics, partial chemical mineralization of solubilized compounds and sodium inhibition. The statistical analysis further indicated that increased solubilization induced by electrical-alkali pretreatment increased the first-order anaerobic hydrolysis rate (khyd), but had no, or very slight enhancement on WAS ultimate

  15. Characterization of a novel low-temperature-active, alkaline and sucrose-tolerant invertase

    Science.gov (United States)

    Zhou, Junpei; He, Limei; Gao, Yajie; Han, Nanyu; Zhang, Rui; Wu, Qian; Li, Junjun; Tang, Xianghua; Xu, Bo; Ding, Junmei; Huang, Zunxi

    2016-01-01

    A glycoside hydrolase family 32 invertase from Bacillus sp. HJ14 was expressed in Escherichia coli. The purified recombinant enzyme (rInvHJ14) showed typical biochemical properties of low-temperature-active and alkaline enzymes: (i) rInvHJ14 was active and stable in the range of pH 7.0–9.5 with an apparent pH optimum of 8.0; (ii) rInvHJ14 was most active but not stable at 30–32.5 °C, with 19.7, 48.2 and 82.1% of its maximum activity when assayed at 0, 10 and 20 °C, respectively, and the Ea, ΔG* (30 °C), Km (30 °C) and kcat (30 °C) values for hydrolysis of sucrose by rInvHJ14 was 47.6 kJ mol−1, 57.6 kJ mol−1, 62.9 mM and 746.2 s−1, respectively. The enzyme also showed strong sucrose tolerance. rInvHJ14 preserved approximately 50% of its highest activity in the presence of 2045.0 mM sucrose. Furthermore, potential factors for low-temperature-active and alkaline adaptations of rInvHJ14 were presumed. Compared with more thermostable homologs, rInvHJ14 has a higher frequency of glycine residues and a longer loop but a lower frequency of proline residues (especially in a loop) in the catalytic domain. The catalytic pockets of acid invertases were almost negatively charged while that of alkaline rInvHJ14 was mostly positively charged. PMID:27553125

  16. X-ray structure reveals a new class and provides insight into evolution of alkaline phosphatases.

    Directory of Open Access Journals (Sweden)

    Subhash C Bihani

    Full Text Available The alkaline phosphatase (AP is a bi-metalloenzyme of potential applications in biotechnology and bioremediation, in which phosphate monoesters are nonspecifically hydrolysed under alkaline conditions to yield inorganic phosphate. The hydrolysis occurs through an enzyme intermediate in which the catalytic residue is phosphorylated. The reaction, which also requires a third metal ion, is proposed to proceed through a mechanism of in-line displacement involving a trigonal bipyramidal transition state. Stabilizing the transition state by bidentate hydrogen bonding has been suggested to be the reason for conservation of an arginine residue in the active site. We report here the first crystal structure of alkaline phosphatase purified from the bacterium Sphingomonas. sp. Strain BSAR-1 (SPAP. The crystal structure reveals many differences from other APs: 1 the catalytic residue is a threonine instead of serine, 2 there is no third metal ion binding pocket, and 3 the arginine residue forming bidentate hydrogen bonding is deleted in SPAP. A lysine and an aspargine residue, recruited together for the first time into the active site, bind the substrate phosphoryl group in a manner not observed before in any other AP. These and other structural features suggest that SPAP represents a new class of APs. Because of its direct contact with the substrate phosphoryl group, the lysine residue is proposed to play a significant role in catalysis. The structure is consistent with a mechanism of in-line displacement via a trigonal bipyramidal transition state. The structure provides important insights into evolutionary relationships between members of AP superfamily.

  17. 18O isotope effect in 13C nuclear magnetic resonance spectroscopy. Part 9. Hydrolysis of benzyl phosphate by phosphatase enzymes and in acidic aqueous solutions

    International Nuclear Information System (INIS)

    The 18O isotope-induced shifts in 13C and 31P nuclear magnetic resonance (NMR) spectroscopy were used to establish the position of bond cleavage in the phosphatase-catalyzed and acid-catalyzed hydrolysis reactions of benzyl phosphate. The application of the 18O-isotope effect in NMR spectroscopy affords a continuous, nondestructive assay method for following the kinetics and position of bond cleavage in the hydrolytic process. The technique provides advantages over most discontinuous methods in which the reaction components must be isolated and converted to volatile derivatives prior to analysis. In the present study, [α-13C,ester-18O]benzyl phosphate and [ester-18O]benzyl phosphate were synthesized for use in enzymatic and nonenzymatic studies. Hydrolysis reactions catalyzed by the alkaline phosphatase from E. coli and by the acid phosphatases isolated from human prostate and human liver were all accompanied by cleavage of the substrate phosphorus-oxygen bond consistent with previously postulated mechanisms involving covalent phosphoenzyme intermediates. An extensive study of the acid-catalyzed hydrolysis of benzyl phosphate at 750C revealed that the site of bond cleavage is dependent on pH. At pH less than or equal to 1.3, the hydrolysis proceeds with C-O bond cleavage; at 1.3 2H]Benzyl phosphate was also synthesized. Hydrolysis of this chiral benzyl derivative demonstrated that the acid-catalyzed C-O bond scission of benzyl phosphate proceeds by an A-1 (S/sub N/1) mechanism with 70% racemization and 30% inversion at carbon. 37 references, 4 figures, 2 tables

  18. Heavy water production by alkaline water electrolysis

    International Nuclear Information System (INIS)

    Several heavy water isotope production processes are reported in literature. Water electrolysis in combination with catalytic exchange CECE process is considered as a futuristic process to increase the throughput and reduce the cryogenic distillation load but the application is limited due to the high cost of electricity. Any improvement in the efficiency of electrolyzers would make this process more attractive. The efficiency of alkaline water electrolysis is governed by various phenomena such as activation polarization, ohmic polarization and concentration polarization in the cell. A systematic study on the effect of these factors can lead to methods for improving the efficiency of the electrolyzer. A bipolar and compact type arrangement of the alkaline water electrolyzer leads to increased efficiency and reduced inventory in comparison to uni-polar tank type electrolyzers. The bipolar type arrangement is formed when a number of single cells are stacked together. Although a few experimental studies have been reported in the open literature, CFD simulation of a bipolar compact alkaline water electrolyzer with porous electrodes is not readily available.The principal aim of this study is to simulate the characteristics of a single cell compact electrolyzer unit. The simulation can be used to predict the Voltage-Current Density (V-I) characteristics, which is a measure of the efficiency of the process.The model equations were solved using COMSOL multi-physics software. The simulated V-I characteristic is compared with the experimental data

  19. The fate of added alkalinity in model scenarios of ocean alkalinization

    Science.gov (United States)

    Ferrer González, Miriam; Ilyina, Tatiana

    2014-05-01

    The deliberate large-scale manipulation of the Earth's climate (geo-engineering) has been proposed to mitigate climate change and ocean acidification. Whilst the mitigation potential of these technologies could sound promising, they may also pose many environmental risks. Our research aims at exploring the ocean-based carbon dioxide removal method of alkalinity enhancement. Its mitigation potential to reduce atmospheric CO2 and counteract the consequences of ocean acidification, risks and unintended consequences are studied. In order to tackle these questions, different scenarios are implemented in the state-of-the-art Earth system model of the Max Planck Institute for Meteorology. The model configuration is based on the 5th phase of the coupled model intercomparison project following a high CO2 future climate change scenario RCP8.5 (in which radiative forcing rises to 8.5 W/m² in 2100). Two different scenarios are performed where the alkalinity is artificially added globally uniformly in the upper ocean. In the first scenario, alkalinity is increased as a pulse by doubling natural values of the first 12 meters. In the second scenario we add alkalinity into the same ocean layer such that the atmospheric CO2 concentration is reduced from RCP8.5 to RCP4.5 levels (with the radiative forcing of 4.5 W/m² in 2100). We investigate the fate of the added alkalinity in these two scenarios and compare the differences in alkalinity budgets. In order to increase oceanic CO2 uptake from the atmosphere, enhanced alkalinity has to stay in the upper ocean. Once the alkalinity is added, it will become part of the biogeochemical cycles and it will be distributed with the ocean currents. Therefore, we are particularly interested in the residence time of the added alkalinity at the surface. Variations in CO2 partial pressure, seawater pH and saturation state of carbonate minerals produced in the implemented scenarios will be presented. Collateral changes in ocean biogeochemistry and

  20. Enzymatic Hydrolysis of Hydrotropic Pulps at Different Substrate Loadings.

    Science.gov (United States)

    Denisova, Marina N; Makarova, Ekaterina I; Pavlov, Igor N; Budaeva, Vera V; Sakovich, Gennady V

    2016-03-01

    Enzymatic hydrolysis of cellulosic raw materials to produce nutrient broths for microbiological synthesis of ethanol and other valuable products is an important field of modern biotechnology. Biotechnological processing implies the selection of an effective pretreatment technique for raw materials. In this study, the hydrotropic treatment increased the reactivity of the obtained substrates toward enzymatic hydrolysis by 7.1 times for Miscanthus and by 7.3 times for oat hulls. The hydrotropic pulp from oat hulls was more reactive toward enzymatic hydrolysis compared to that from Miscanthus, despite that the substrates had similar compositions. As the initial substrate loadings were raised during enzymatic hydrolysis of the hydrotropic Miscanthus and oat hull pulps, the concentration of reducing sugars increased by 34 g/dm(3) and the yield of reducing sugars decreased by 31 %. The findings allow us to predict the efficiency of enzymatic hydrolysis of hydrotropic pulps from Miscanthus and oat hulls when scaling up the process by volume. PMID:26634840

  1. Enzymatic hydrolysis of fructans in the tequila production process.

    Science.gov (United States)

    Avila-Fernández, Angela; Rendón-Poujol, Xóchitl; Olvera, Clarita; González, Fernando; Capella, Santiago; Peña-Alvarez, Araceli; López-Munguía, Agustín

    2009-06-24

    In contrast to the hydrolysis of reserve carbohydrates in most plant-derived alcoholic beverage processes carried out with enzymes, agave fructans in tequila production have traditionally been transformed to fermentable sugars through acid thermal hydrolysis. Experiments at the bench scale demonstrated that the extraction and hydrolysis of agave fructans can be carried out continuously using commercial inulinases in a countercurrent extraction process with shredded agave fibers. Difficulties in the temperature control of large extraction diffusers did not allow the scaling up of this procedure. Nevertheless, batch enzymatic hydrolysis of agave extracts obtained in diffusers operating at 60 and 90 degrees C was studied at the laboratory and industrial levels. The effects of the enzymatic process on some tequila congeners were studied, demonstrating that although a short thermal treatment is essential for the development of tequila's organoleptic characteristics, the fructan hydrolysis can be performed with enzymes without major modifications in the flavor or aroma, as determined by a plant sensory panel and corroborated by the analysis of tequila congeners. PMID:19473003

  2. Effects of structural features of cotton cellulose on enzymatic hydrolysis

    International Nuclear Information System (INIS)

    Textile cotton wastes were treated with γ rays and 18% NaOH and 70% ZnCl2 solutions and were subjected to enzymatic hydrolysis. The untreated and treated samples were characterized both before and after hydrolysis by means of parameters concerning molecular structure (degree of polymerization), supermolecular structure (x-ray diffraction), accessibility, and reactivity (moisture regain, enzyme adsorption, and solubility in FeTNa). These parameters were correlated to kinetic parameters of the hydrolysis reaction. The V/sub max/ and K/sub m/ values were evaluated from Lineweaver-Burk plots at different temperatures. The V/sub max//K/sub m/ ratio, analogous to the specificity constant, proved to be less sensitive to experimental errors and more suitable for a comparison of the kinetic behavior of the samples. The modifications of both supermolecular structure and morphology of cellulose were of primary importance to attain high yields and rates of hydrolysis. Furthermore, the structural and morphologic parameters chosen to characterize the samples can be correlated to the kinetic parameters of enzymatic hydrolysis, in particular to K/sub m/ values

  3. Linking hydrolysis performance to Trichoderma reesei cellulolytic enzyme profile.

    Science.gov (United States)

    Lehmann, Linda; Rønnest, Nanna P; Jørgensen, Christian I; Olsson, Lisbeth; Stocks, Stuart M; Jørgensen, Henrik S; Hobley, Timothy

    2016-05-01

    Trichoderma reesei expresses a large number of enzymes involved in lignocellulose hydrolysis and the mechanism of how these enzymes work together is too complex to study by traditional methods, for example, by spiking with single enzymes and monitoring hydrolysis performance. In this study, a multivariate approach, partial least squares regression, was used to see whether it could help explain the correlation between enzyme profile and hydrolysis performance. Diverse enzyme mixtures were produced by T. reesei Rut-C30 by exploiting various fermentation conditions and used for hydrolysis of washed pretreated corn stover as a measure of enzyme performance. In addition, the enzyme mixtures were analyzed by liquid chromatography-tandem mass spectrometry to identify and quantify the different proteins. A multivariate model was applied for the prediction of enzyme performance based on the combination of different proteins present in an enzyme mixture. The multivariate model was used for identification of candidate proteins that are correlated to enzyme performance on pretreated corn stover. A very large variation in hydrolysis performance was observed and this was clearly caused by the difference in fermentation conditions. Besides β-glucosidase, the multivariate model identified several xylanases, Cip1 and Cip2, as relevant proteins to study further. Biotechnol. Bioeng. 2016;113: 1001-1010. © 2015 Wiley Periodicals, Inc. PMID:26524197

  4. Granular starch hydrolysis for fuel ethanol production

    Science.gov (United States)

    Wang, Ping

    addition were evaluated in the dry grind process using GSHE (GSH process). Addition of proteases resulted in higher ethanol concentrations (15.2 to 18.0% v/v) and lower (DDGS) yields (32.9 to 45.8% db) compared to the control (no protease addition). As level of proteases and GSHE increased, ethanol concentrations increased and DDGS yields decreased. Proteases addition reduced required GSHE dose. Ethanol concentrations with protease addition alone were higher than with urea or with addition of both protease and urea. Corn endosperm consists of soft and hard endosperm. More exposed starch granules and rough surfaces produced from soft endosperm compared to hard endosperm will create more surface area which will benefit the solid phase hydrolysis as used in GSH process. In this study, the effects of protease, urea, endosperm hardness and GSHE levels on the GSH process were evaluated. Soft and hard endosperm materials were obtained by grinding and sifting flaking grits from dry milling pilot plant. Soft endosperm resulted in higher ethanol concentrations (at 72 hr) compared to ground corn or hard endosperm. Addition of urea increased ethanol concentrations (at 72 hr) for soft and hard endosperm. The effect of protease addition on increasing ethanol concentrations and fermentation rates was more predominant for soft endosperm, less for hard endosperm and least for ground corn. The GSH process with protease resulted in higher ethanol concentration than that with urea. For fermentation of soft endosperm, GSHE dose can be reduced. Ground corn fermented faster at the beginning than hard and soft endosperm due to the presence of inherent nutrients which enhanced yeast growth.

  5. Cobalt-Nickel-Boron Supported over Polypyrrole-Derived Activated Carbon for Hydrolysis of Ammonia Borane

    Directory of Open Access Journals (Sweden)

    Yongjin Zou

    2016-07-01

    Full Text Available In this study, polypyrrole (PPy nanofibers were used to synthesize a super-activated carbon material. A highly-dispersed Co-Ni-B catalyst was supported on PPy nanofiber-derived activated carbon (PAC by chemical reduction. The Co-Ni-B/PAC hybrid catalyst exhibited excellent catalytic performance for the decomposition of ammonia borane (AB in an aqueous alkaline solution at room temperature. The size of the metal particles, morphology of Co-Ni-B/PAC, and catalytic activity of the supported catalyst were investigated. Ni-B, Co-B, and Co-Ni-B catalysts were also synthesized in the absence of PAC under similar conditions for comparison. The maximum hydrogen generation rate (1451.2 mL−1·min−1·g−1 at 25 °C was obtained with Co-Ni-B/PAC. Kinetic studies indicated that the hydrolysis reaction of AB was first order with respect to Co-Ni-B/PAC, and the activation energy was 30.2 kJ·mol−1. Even after ten recycling experiments, the catalyst showed good stability owing to the synergistic effect of Co-Ni-B and PAC.

  6. Reaction efficiency of organic alkalis with various classes of lipids during thermally assisted hydrolysis and methylation.

    Science.gov (United States)

    Ishida, Yasuyuki; Katagiri, Mizuho; Ohtani, Hajime

    2009-04-10

    Reaction efficiencies of two organic alkalis, tetramethylammonium hydroxide (TMAH) and trimethylsulfonium hydroxide (TMSH), with lipids during thermally assisted hydrolysis and methylation (THM) were examined focusing on (1) the types of lipids and (2) degree of unsaturation of fatty acid moieties. Different types of lipids such as triglycerides, phospholipids, free fatty acids and cholesteryl esters containing saturated, monounsaturated or polyunsaturated fatty acid (PUFA) residues were subjected to THM-gas chromatography (GC) in the presence of TMAH or TMSH. The obtained results revealed that the THM reaction using TMAH allowed almost quantitative methylation of saturated and monounsaturated fatty acid components independently of the classes of lipids. However, strong alkalinity of TMAH brought about isomerization and/or degradation of PUFA components. In contrast, the use of TMSH was effective to highly sensitive detection of PUFA as well as saturated and monounsaturated fatty acid components contained in triglycerides, phospholipids (phosphatidylcholines) and free fatty acids. On the other hand, TMSH was proved to react hardly with any kind of fatty acid residues in cholesteryl esters due to their steric hindrance. PMID:19223033

  7. Hf-Nd isotopic and trace element constraints on the genesis of alkaline and calc-alkaline lamprophyres

    International Nuclear Information System (INIS)

    Major and trace element, Nd and for the first time Hf isotopic compositions of Central European Hercynian and Alpine alkaline (nephelinites) and calc-alkaline (minettes) lamprophyres are reported. The alkaline dikes have significantly higher initial εNd values (+3.9 to +5.2) than the calc-alkaline dikes (-1 to -7). Their initial εHf values range between +1.9 and +6.0. Both groups show the typical high level of incompatible-element enrichment. In addition the calc-alkaline lamprophyres are characterized by an overabundance of Cs relative to Rb, high Ba/La and Ba/Sr ratios as well as depletion in Nb, Ti and Ta. Covariations between initial εHf-εNd and trace elements suggest that crust-mantle mixing processes were involved in the formation of the calc-alkaline mafic magmas. These data give way to a general, refined model of lamprophyre genesis and provide information about enrichment processes in the subcontinental lithospheric mantle. It is suggested that alkaline and calc-alkaline lamprophyres originate from similar mantle segments. Alkaline lamprophyres can be generated by 10% partial melting of a metasomatically enriched garnet peridotite. Calc-alkaline lamprophyres, however, can be generated in subduction related environments by mixing of 5-15% sedimentary melts, strongly enriched in K, Rb, Zr, Hf, Y and REE, produced by partial melting of subducted oceanic sediments, with a metasomatically enriched mantle source similar to that suggested for the ultramafic alkaline dikes. (orig.)

  8. Base hydrolysis and hydrothermal processing of PBX-9404

    International Nuclear Information System (INIS)

    Base hydrolysis in combination with hydrothermal processing has been proposed as an environmentally acceptable alternative to open burning/open detonation for degradation and destruction of high explosives. In this report, the authors examine gaseous and aqueous products of base hydrolysis of the HMX-based plastic bonded explosive, PBX-9404. They also examined products from the subsequent hydrothermal treatment of the base hydrolysate. The gases produced from hydrolysis of PBX-9404 are ammonia, nitrous oxide, and nitrogen. Major aqueous products are sodium formate, acetate, nitrate, and nitrite, but not all carbon products have been identified. Hydrothermal processing of base hydrolysate destroyed up to 98% of the organic carbon in solution, and higher destruction efficiencies are possible. Major gas products detected from hydrothermal processing were nitrogen and nitrous oxide

  9. Monoolein production by triglycerides hydrolysis using immobilized Rhizopus oryzae lipase.

    Science.gov (United States)

    Ghattas, Nesrine; Abidi, Ferid; Galai, Said; Marzouki, M Nejib; Salah, Abderraouf Ben

    2014-07-01

    Lipase extracted from Rhizopus oryzae was immobilized in alginate gel beads. The effects of the immobilization conditions, such as, alginate concentration, CaCl2 concentration and amount of initial enzyme on retained activity (specific activity ratio of entrapped active lipase to free lipase) were investigated. The optimal conditions for lipase entrapment were determined: 2% (w/v) alginate concentration, 100mM CaCl2 and enzyme ratio of 2000IU/mL.In such conditions, immobilized lipase by inclusion in alginate showed a highest stability and activity, on olive oil hydrolysis reaction where it could be reused for 10 cycles. After 15min of hydrolysis reaction, the mass composition of monoolein, diolein and triolein were about 78%, 10% and 12%. Hydrolysis' products purification by column chromatography lead to a successful separation of reaction compounds and provide a pure fraction of monoolein which is considered as the widest used emulsifier in food and pharmaceutical industries. PMID:24755261

  10. Kinetic study of sphingomyelin hydrolysis for ceramide production

    DEFF Research Database (Denmark)

    Zhang, Long; Hellgren, Lars; Xu, Xuebing

    2008-01-01

    reaction at 65 °C. The reactions for both the soluble and immobilized enzymes followed Michaelis–Menten kinetics. Km's for the soluble and immobilized enzymes were 1.07 ± 0.32 and 1.26 ± 0.19 mM, respectively. The value of Vmax was markedly decreased by the immobilization without much change in Km, as if...... cosmetic and pharmaceutical industries such as in hair and skin care products. The enzymatic hydrolysis of sphingomyelin has been proved to be a feasible method to produce ceramide. The kinetic performance of sphingomyelin hydrolysis in the optimal two-phase (water:organic solvent) reaction system was...... investigated to elucidate the possible reaction mechanism and also to further improve the hydrolysis performance. Enzyme in solution had less thermal stability than the enzyme powder and the immobilized enzyme. The thermal inactivation of phospholipase C in all the three forms did not follow the first order...

  11. Determining the hydrolysis of cations: A short overview

    International Nuclear Information System (INIS)

    Full text: The hydrolysis of metal ions is the most fundamental aqueous chemistry. As soon as the metal is introduced to water, dissolution may take place and if the water is pure only hydrolysis reactions will take place. There are several methods used in the literature to determine the stability constants of these reactions, e.g. solvent extraction, potentiometric titrations, ion exchange and solubility measurements. Which one to select is not straight forward. All of them have pros and cons and different regions of applicability with respect to whether they are good for determining the initial hydrolysis or the later stages. Once the constants are determined it is important to assess the uncertainty in the determination. We point out tools to make this straight forward and traceable which is most important in scientific studies. (authors)

  12. Acid hydrolysis of Biomass lignocellulose Onopordum nervosum Boiss

    International Nuclear Information System (INIS)

    Hydrolysis of resistant cellulose of Onopordum nervosum Boiss (thistle) to reducing sugars in dilute sulfuric acid in glass ampoules and long residence times has been studied and kinetic parameters determined. The rate of hydrolysis is similar to that of the cellulose of Douglas fir, but comparatively the effect of the acid is more pronounced than temperature. From kinetic data it can be pre ducted the yield and since it can be obtained at least 45% of the potential glucose (48% as reducing sugars) at 190 degree centigree, 1,6% acid and 6,1 min. residence time, it indicates that the continuous acid hydrolysis of thistle may be a process of commercial interest. (Author) 18 refs

  13. EFFECT OF LIGNIN CONTENT ON ENZYMATIC HYDROLYSIS OF FURFURAL RESIDUES

    Directory of Open Access Journals (Sweden)

    Jianxin Jiang

    2011-02-01

    Full Text Available The enzymatic saccharification of pretreated furfural residues with different lignin content was studied to verify the effect of lignin removal in the hydrolysis process. The results showed that the glucose yield was improved by increasing the lignin removal. A maximum glucose yield of 96.8% was obtained when the residue with a lignin removal of 51.4% was hydrolyzed for 108 h at an enzyme loading of 25 FPU/g cellulose. However, further lignin removal did not increase the hydrolysis. The effect of enzyme loading on the enzymatic hydrolysis was also explored in this work. It was concluded that a high glucose yield of 90% was achieved when the enzyme dosage was reduced from 25 to 15 FPU/g cellulose, which was cost-effective for the sugar and ethanol production. The structures of raw material and delignified samples were further characterized by XRD and scanning electron microscopy (SEM.

  14. Complex enzyme hydrolysis releases antioxidative phenolics from rice bran.

    Science.gov (United States)

    Liu, Lei; Wen, Wei; Zhang, Ruifen; Wei, Zhencheng; Deng, Yuanyuan; Xiao, Juan; Zhang, Mingwei

    2017-01-01

    In this study, phenolic profiles and antioxidant activity of rice bran were analyzed following successive treatment by gelatinization, liquefaction and complex enzyme hydrolysis. Compared with gelatinization alone, liquefaction slightly increased the total amount of phenolics and antioxidant activity as measured by ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) assays. Complex enzyme hydrolysis significantly increased the total phenolics, flavonoids, FRAP and ORAC by 46.24%, 79.13%, 159.14% and 41.98%, respectively, compared to gelatinization alone. Furthermore, ten individual phenolics present in free or soluble conjugate forms were also analyzed following enzymatic processing. Ferulic acid experienced the largest release, followed by protocatechuic acid and then quercetin. Interestingly, a major proportion of phenolics existed as soluble conjugates, rather than free form. Overall, complex enzyme hydrolysis releases phenolics, thus increasing the antioxidant activity of rice bran extract. This study provides useful information for processing rice bran into functional beverage rich in phenolics. PMID:27507440

  15. Hydrolysis of starch by sorghum malt for maltodextrin production [abstract

    Directory of Open Access Journals (Sweden)

    Thonart, P.

    2010-01-01

    Full Text Available Maltodextrin is a mixture of saccharides with a molecular weight between polysaccharides and oligosaccharides with DE lower than 20. Maltodextrin is more soluble in water than native starches, also is cheaper in comparison with other major edible hydrocolloids. Maltodextrin is obtained by moderate enzymatic or acidic hydrolysis of starch. The hydrolysis of starch, catalyzed by amylases, is the most important commercial enzyme process. The hydrolyzed products are widely applied in food, paper and textile industries. Because of the increasing demand for these enzymes in various industries, there is enormous interest in developing enzymes with better properties, such as raw starch-degrading amylases suitable for industrial applications and their cost-effective production techniques. Sorghum (Sorghum bicolor is a widely grown crop in Africa. Obtaining enzymes from sorghum requires a transformation. The objective of this study was application of sorghum amylase for maltodextrin. Sorghum seeds were supplied by the ISRA (Bambey, Senegal. Seeds were germinated in the laboratory at 30°C for 72 h and the sorghum malt was dried at 40°C for 48 h. Corn starch (from Roquette, France hydrolysis was assayed in a bioreactor of 2 l at a temperature of 65°C gently stirred. Raw starch was slurried in water (30% w/v and sorghum malt was introduced, chloride calcium was added, pH was adjusted to 6. Maltodextrin was characterized in term of the dextrose equivalent (DE during the hydrolysis. The yield of hydrolysis was evaluated by soluble solids (° BRIX at different hydrolysis time. The glucose concentration released was measured by DNS method (Miller method.

  16. Visualizing phosphodiester-bond hydrolysis by an endonuclease

    DEFF Research Database (Denmark)

    Molina, Rafael; Stella, Stefano; Redondo, Pilar;

    2015-01-01

    The enzymatic hydrolysis of DNA phosphodiester bonds has been widely studied, but the chemical reaction has not yet been observed. Here we follow the generation of a DNA double-strand break (DSB) by the Desulfurococcus mobilis homing endonuclease I-DmoI, trapping sequential stages of a two...... third metal ion has a crucial role, triggering the consecutive hydrolysis of the targeted phosphodiester bonds in the DNA strands and leaving its position once the DSB is generated. The multiple structures show the orchestrated conformational changes in the protein residues, nucleotides and metals...

  17. The hydrolysis of aluminium, a mass spectrometric study

    OpenAIRE

    Sarpola, A.

    2007-01-01

    Abstract This thesis is focused on the hydrolysis of aluminium, the polymerisation of the hydrolysis products, and how these can be monitored by mass spectrometric methods. The main aim of this research is to figure out how the aqueous speciation of aluminium changes as a function of pH (3.2–10), concentration (1–100 mM), reaction time (1s–14d), and counter anion (Cl-, SO42-, HCOO-). The method used was electrospray mass spectrometry. The results showed more variable speciation than those ...

  18. Enzymatic hydrolysis of potato starch and ethanol production

    OpenAIRE

    Lazić Miodrag L.; Rašković Suzana; Stanković Mihajlo Z.; Veljković Vlada B.

    2004-01-01

    The hydrolysis of potato starch using one (Termamyl or Fungamyl) and two combined (Termamyl and Supersan) commercial enzyme preparations and ethanol production from the hydrolysates obtained using the yeast Saccharomyces cerevisiae were studied. Potato tubers were previously prepared as mash or flour. The study dealt with the effects of the hydromodulus (1:1 and 1:0.5), particle size (0.1, 0.2 and 0.4 mm) as well as the type and concentration of enzyme on the enzymatic hydrolysis of potato st...

  19. Kinetics and mechanism of hydrolysis of scandium sulfate

    International Nuclear Information System (INIS)

    The Sc2(SO4)3-H2SO4-H2O system is studied through the methods of pH-potentiometry, conductometry and turbidimetry at 298 and 318 K and ion force 0.01, 0.1 and 1.0. The hydrolysis mechanism including the processes in the system homogenous and heterogeneous constituents. The hydrolysis rates of scandium salts and their dependences on OH-ions concentration, solution ions force and temperature are found; the constants of the processes rate with participation of OH- and SO42- ions and constants of the solid phase formation rate are calculated

  20. Benzene/nitrous oxide flammability in the precipitate hydrolysis process

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, R A [Du Pont de Nemours (E.I.) and Co., Aiken, SC (USA). Savannah River Lab.

    1989-09-18

    The HAN (hydroxylamine nitrate) process for destruction of nitrite in precipitate hydrolysis produces nitrous oxide (N2O) gas as one of the products. N2O can form flammable mixtures with benzene which is also present due to radiolysis and hydrolysis of tetraphenylborate. Extensive flame modeling and explosion testing was undertaken to define the minimum oxidant for combustion of N2O/benzene using both nitrogen and carbon dioxide as diluents. The attached memorandum interprets and documents the results of the studies.

  1. The Mechanisms of Plant Cell Wall Deconstruction during Enzymatic Hydrolysis

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; E. Thybring, Emil; Johansen, Katja Salomon;

    2014-01-01

    Mechanical agitation during enzymatic hydrolysis of insoluble plant biomass at high dry matter contents is indispensable for the initial liquefaction step in biorefining. It is known that particle size reduction is an important part of liquefaction, but the mechanisms involved are poorly understood....... Here we put forward a simple model based on mechanical principles capable of capturing the result of the interaction between mechanical forces and cell wall weakening via hydrolysis of glucosidic bonds. This study illustrates that basic material science insights are relevant also within biochemistry...

  2. Enzymatic hydrolysis of fish frames using pilot plant scale systems

    OpenAIRE

    Himonides, Aristotelis T.; Taylor, Anthony K. D.; Morris, Anne J.

    2011-01-01

    Papain was used to hydrolyse fish frames under controlled conditions at a batch-pilot plant scale-process, for the pro-duction of fish protein hydrolysates (FPH). Mass balance calculations were carried out so that the rate of hydrolysis, rate of protein solubilisation and yields could be estimated. Almost complete hydrolysis could be achieved in 1 hour, at 40°C, with no pH adjustment, at 0.5% (5 g·kg−1) enzyme to substrate ratio (E/S, were S is Kjeldahl protein) using whole fish frames (inclu...

  3. RES Hydrogen: efficient pressurised alkaline electrolysers

    DEFF Research Database (Denmark)

    Bowen, Jacob R.; Bentzen, Janet Jonna; Jørgensen, Peter Stanley;

    The RESelyser project addresses issues associated with coupling alkaline electrolysis to renewable energy sources such as electrode stability and gas purity by implementing improved electrodes and a new separator membrane concept. The project aims to improve performance, operation pressure and...... reduce system cost. The project supports DTU Energy's activities on electrodes within the larger FCH-JU project. The overall project demonstrated: improved electrode efficiency also during cyclic operation, safe gas purity at a system pressure of 30 bar, 10 kW stack operation and estimated system costs...

  4. Alkaline carbonates in blast furnace process

    Directory of Open Access Journals (Sweden)

    P. Besta

    2014-10-01

    Full Text Available The production of iron in blast furnaces is a complex of physical, chemical and mechanical processes. The input raw materials contain not only metallic components, but also a number of negative elements. The most important negative elements include alkaline carbonates. They can significantly affect the course of the blast furnace process and thus the overall performance of the furnace. As a result of that, it is essential to accurately monitor the alkali content in the blast furnace raw materials. The article analyzes the alkali content in input and output raw materials and their impact on the blast furnace process.

  5. Reaction pathways and free energy profiles for spontaneous hydrolysis of urea and tetramethylurea: Unexpected substituent effects

    OpenAIRE

    Yao, Min; Tu, Wenlong; Chen, Xi; Zhan, Chang-Guo

    2013-01-01

    It has been difficult to directly measure the spontaneous hydrolysis rate of urea and, thus, 1,1,3,3-tetramethylurea (Me4U) was used as a model to determine the “experimental” rate constant for urea hydrolysis. The use of Me4U was based on an assumption that the rate of urea hydrolysis should be 2.8 times that of Me4U hydrolysis because the rate of acetamide hydrolysis is 2.8 times that of N,N-dimethyl-acetamide hydrolysis. The present first-principles electronic-structure calculations on the...

  6. Depolymerization of coal by O2 oxidation followed by acid hydrolysis; Sanso sanka-kasui bunkai ni yoru sekitan no teionkai jugo

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, S.; Hayashi, J.; Kumagai, H.; Chiba, T. [Hokkaido University, Sapporo (Japan). Center for Advanced Research of Energy Technology; Morooka, S. [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1996-10-28

    With an objective to elucidate characteristics of oxygen addition to coal, and characteristics of solvent extraction by means of depolymerization, experiments were performed on oxygen oxidation and acid hydrolysis of brown coals. Coals used for the experiments are Morwell (MW), Yallourn (YL) , South Banko (SB) and Wyoming (WY) coals. Test samples were suspended in weak alkaline aqueous solution, and then oxygen was blown into them with pressure kept at atmospheric pressure. After a lapse of a predetermined time, the samples were cooled, and made as acidic as pH 1.3 in hydrochloric acid, followed by acid hydrolysis. Oxygen consumption increased with the reaction time, and with the MW coal, one mol oxygen reacted to 11 mols of coal. Spectral analysis on the YL and WY coal experiments revealed that aliphatic carbon combined with aromatic carbon or ether group has turned to peroxide, whose C-C or C-O bond was broken down as a result of acid hydrolysis of the peroxide, producing oxygen containing compounds. As a result of the depolymerization, the rate of extraction by using DMF, DMSO and methanol/THF mixed solvent increased to 90% or higher. Proportion of bond and cutting-off affects largely collapse of the cross-link structure. The carbon conversion to volatiles was at most 4%. 1 ref., 10 figs.

  7. Alkaline chemistry of transuranium elements and technetium and the treatment of alkaline radioactive wastes

    International Nuclear Information System (INIS)

    Goal of this survey is to generalize the known data on fundamental physical-chemical properties of TRUs and Tc, methods for their isolation, and to provide recommendations that will be useful for partitioning them from alkaline high-level wastes

  8. Alkaline chemistry of transuranium elements and technetium and the treatment of alkaline radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, C.H. [Westinghouse Hanford Co., Richland, WA (United States); Peretrukhin, V.F.; Shilov, V.P.; Pikaev, A.K. [Russian Academy of Sciences (Russian Federation). Inst. of Physical Chemistry

    1995-05-01

    Goal of this survey is to generalize the known data on fundamental physical-chemical properties of TRUs and Tc, methods for their isolation, and to provide recommendations that will be useful for partitioning them from alkaline high-level wastes.

  9. Mild alkaline pre-treatments loosen fibre structure enhancing methane production from biomass crops and residues

    International Nuclear Information System (INIS)

    Three ligno-cellulosic substrates representing varying levels of biodegradability (giant reed, GR; fibre sorghum, FS; barley straw, BS) were combined with mild alkaline pre-treatments (NaOH 0.05, 0.10 and 0.15 N at 25 °C for 24 h) plus untreated controls, to study pre-treatment effects on physical-chemical structure, anaerobic digestibility and methane output of the three substrates. In a batch anaerobic digestion (AD) assay (58 days; 35 °C; 4 g VS l−1), the most recalcitrant substrate (GR) staged the highest increase in cumulative methane yield: +30% with NaOH 0.15 N over 190 ml CH4 g−1 VS in untreated GR. Conversely, the least recalcitrant substrate (FS) exhibited the lowest gain (+10% over 248 ml CH4 g−1 VS), while an intermediate behaviour was shown by BS (+15% over 232 ml CH4 g−1 VS). Pre-treatments speeded AD kinetics and reduced technical digestion time (i.e., the time needed to achieve 80% methane potential), which are the premises for increased production capacity of full scale AD plants. Fibre components (cellulose, hemicellulose and acid insoluble lignin determined after acid hydrolysis) and substrate structure (Fourier transform infra-red spectroscopy and scanning electron microscopy) outlined reductions of the three fibre components after pre-treatments, supporting claims of loosened binding of lignin with cellulose and hemicellulose. Hence, mild alkaline pre-treatments were shown to improve the biodegradability of ligno-cellulosic substrates to an extent proportional to their recalcitrance. In turn, this contributes to mitigate the food vs. fuel controversy raised by the use of whole plant cereals (namely, maize) as feedstocks for biogas production. - Highlights: • Three ligno-cellulosic substrates were pre-treated with mild alkaline methods. • Giant reed pre-treated with NaOH 0.15 N showed highest increase in CH4 yield (30%). • Alkaline pre-treatments speeded process kinetics, cutting technical digestion time. • Changes

  10. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  11. Dissolution kinetics of smectite under alkaline conditions

    International Nuclear Information System (INIS)

    Extensive use of cement for encapsulation, backfilling, and grouting purposes is envisaged in radioactive waste disposal. Degradation of cement materials through contact with groundwater can produce a high pH pore fluid initially ranging from pH 13.0 to 13.5. The pore fluid pH eventually decreases to moderately alkaline ranges due to formation and evolution of subsequent materials. The high pH pore fluids can migrate outwards where it will chemically react with the host rock, and the bentonite utilized to enhance the repository's integrity. These chemical reactions degrade the host rocks' and bentonite ability to absorb radionuclides. Smectites comprising the bulk of bentonite can lose some of their desirable properties during the early stages of bentonite-cement-pore fluid interaction. This has been a key research issue in the performance assessment of radioactive waste disposal system. Elucidating the effects of high pH pore fluid on the physical and chemical properties of smectites (i.e. especially dissolution behavior and rates) is of utmost importance. Stirred-flow-through dissolution experiments were utilized to derive reliable dissolution rates for smectites under neutral to highly alkaline conditions. The effects of pH and temperature on smectite dissolution rates were also investigated. (author)

  12. Biological alkalinity generation in acid mine drainage

    International Nuclear Information System (INIS)

    Ecological Engineering and Biological Polishing technologies are a decommissioning approach to inactive coal, uranium and base metal mining operations. To improve acid mine drainage water, some fundamental aspects of wetland ecology and sediment microbiology are combined. The combination provides conditions which allow biomineralization of the contaminants. The authors report here the first records of microbial alkalinity generation in acid mine drainage, through the utilization of the ARUM (Acid Reduction Using Microbiology) process. Increases in pH are brought about by alkalinity-generating microbes such as sulfate reducers, iron reducers, methanogens, or denitrifiers. The ARUM process has been successful in increasing pH from 2.5 to 7.0 in laboratory-scale flow-through reactors operated continuously for more than 120 days. Ni was also reduced from 13 mg/l to < 0.01 mg/l. Batch ARUMators in the field have also performed well. Design parameters are being developed for low flow rates of 5 l/min in a pilot-scale system receiving seepage from mine tailings

  13. Intramolecular Amide Hydrolysis in N-Methylmaleamic Acid Revisited

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The intramolecular amide hydrolysis of N-methylmaleamic acid have been revisited by use of density functional theory and inclusion of solvent effects. The results indicate that concerted reaction mechanism is favored over stepwise reaction mechanism. This is in agreement with the previous theoretical study. Sovlent effects have significant influence on the reaction barrier.

  14. Theoretical Aspects of Hydrolysis of Peptide Bonds by Zinc Metalloenzymes

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Václav; Klusák, Vojtěch; Rulíšek, Lubomír

    2013-01-01

    Roč. 19, č. 49 (2013), s. 16634-16645. ISSN 0947-6539 Institutional support: RVO:61388963 Keywords : ab initio calculations * hydrolysis * metalloenzymes * peptides * transition states Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.696, year: 2013

  15. Hydrolysis of aluminum nitride powders in moist air

    International Nuclear Information System (INIS)

    High thermal conductivity is required for successful application of aluminum nitride (AlN) as a substrate material in electronic devices. AlN powders of low oxygen content are needed since oxygen contamination greatly reduces the thermal conductivity of AlN ceramics. High-purity AlN powders are commercially available, but can be contaminated by oxygen when contacting water/oxygen in powder processing after manufacturing. The present study investigates the hydrolysis properties of AlN powders in moist air at room temperature, so as to understand the degradation phenomena during powder handling in the normal atmospheric environment. The powders investigated were produced via three major commercial processes, namely, chemical vapor deposition from triethyl aluminum, carbothermal reduction and nitridation of alumina, and direct nitridation of aluminum. At the beginning of hydrolysis, an induction period is observed for each powder, which is attributed to slow hydrolysis of the surface oxide/oxyhydroxide layer. The length of this period is thus dependent on the composition and thickness of the surface layer, which is in turn affected by the manufacturing method. The AlN powder produced by the carbothermal process shows the longest induction period. The hydrolysis reaction produces initially amorphous AlOOH, which is further hydrolyzed to mixtures of bayerite, nordstrandite, and gibbsite, forming agglomerates around the unreacted AlN. Copyright (2003) AD-TECH - International Foundation for the Advancement of Technology Ltd

  16. Penicillin Hydrolysis: A Kinetic Study of a Multistep, Multiproduct Reaction.

    Science.gov (United States)

    McCarrick, Thomas A.; McLafferty, Fred W.

    1984-01-01

    Background, procedures used, and typical results are provided for an experiment in which students carry out the necessary measurements on the acid-catalysis of penicillin in two hours. By applying kinetic theory to the data obtained, the reaction pathways for the hydrolysis of potassium benzyl penicillin are elucidated. (JN)

  17. Efficiency of hydrolysis of whey protein serine proteases

    OpenAIRE

    Г.П. Петюх; Романова, Н.А.; К.М. Гаркава

    2009-01-01

     Research of relative enzymatic whey protein isolate (WPI) hydrolysis efficiency was conducted. Seven enzymes in three concentrations by pH 7.0 t=50°C were used. The most efficient showed to be Protease R in concentration 0,0002 g/ml.

  18. Starch hydrolysis under low water conditions: a conceptual process design

    NARCIS (Netherlands)

    Veen, van der M.E.; Veelaert, S.; Goot, van der A.J.; Boom, R.M.

    2006-01-01

    A process concept is presented for the hydrolysis of starch to glucose in highly concentrated systems. Depending on the moisture content, the process consists of two or three stages. The two-stage process comprises combined thermal and enzymatic liquefaction, followed by enzymatic saccharification.

  19. Influence of water availability on the enzymatic hydrolysis of proteins

    NARCIS (Netherlands)

    Butré, C.I.; Wierenga, P.A.; Gruppen, H.

    2014-01-01

    The overall rate of enzymatic protein hydrolysis decreases with increasing protein concentration (0.1–30% (w/v)) at constant enzyme/substrate ratio. To understand the role of water, the amount of available water was expressed as the ratio between free and bound water and experimentally determined fr

  20. Wet explosion pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis

    DEFF Research Database (Denmark)

    Biswas, Rajib; Uellendahl, Hinrich; Ahring, Birgitte Kiær

    2014-01-01

    Wet explosion pretreatment of sugarcane bagasse was investigated in pilot-scale with the aim of obtaining the highest possible sugar yield after pretreatment. The temperatures used were 155, 170, 185 and 200 C with or without addition of oxygen (0.6 MPa pressure). Enzymatic hydrolysis of washed...

  1. Heteropoly acid catalyzed hydrolysis of glycogen to glucose

    International Nuclear Information System (INIS)

    Complete conversion of glycogen to glucose is achieved by using H3PW12O40·nH2O (HPW) and H4SiW12O40·nH2O (HSiW) as catalysts for the hydrolysis under optimized hydrothermal conditions (mass fraction of catalyst 2.4%, 373 K and 2 h reaction time). The reusability of the catalyst (HPW) was demonstrated. In addition to carrying out the glycogen hydrolysis in an autoclave, other novel methods such as microwave irradiation and sonication have also been investigated. At higher mass fraction of the heteropoly acids (10.5%), glycogen could be completely converted to glucose under microwave irradiation. Sonication of an aqueous solution of glycogen in the presence of HPW and HSiW also yielded glucose. Thus, heteropoly acids are efficient, environmentally friendly and reusable catalysts for the conversion of glycogen to glucose. - Highlights: • Hydrothermal, microwave and sonication based methods of hydrolysis. • Heteropoly acids are green catalysts for glycogen hydrolysis. • Glycogen from cyanobacteria is demonstrated as a potential feedstock for glucose

  2. Single Molecule Study of Cellulase Hydrolysis of Crystalline Cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.-S.; Luo, Y.; Baker, J. O.; Zeng, Y.; Himmel, M. E.; Smith, S.; Ding, S.-Y.

    2009-12-01

    This report seeks to elucidate the role of cellobiohydrolase-I (CBH I) in the hydrolysis of crystalline cellulose. A single-molecule approach uses various imaging techniques to investigate the surface structure of crystalline cellulose and changes made in the structure by CBH I.

  3. Hydrolysis of toxic natural glucosides catalyzed by cyclodextrin dicyanohydrins

    DEFF Research Database (Denmark)

    Bjerre, J.; Nielsen, Erik Holm Toustrup; Bols, M.

    2008-01-01

    The hydrolysis of toxic 7-hydroxycoumarin glucosides and other aryl and alkyl glucosides, catalyzed by modified a- and ß-cyclodextrin dicyanohydrins, was investigated using different UV, redox, or HPAEC detection assays. The catalyzed reactions all followed Michaelis-Menten kinetics, and an...

  4. Effects of hydrolysis and carbonization reactions on hydrochar production.

    Science.gov (United States)

    Fakkaew, K; Koottatep, T; Polprasert, C

    2015-09-01

    Hydrothermal carbonization (HTC) is a thermal conversion process which converts wet biomass into hydrochar. In this study, a low-energy HTC process named "Two-stage HTC" comprising of hydrolysis and carbonization stages using faecal sludge as feedstock was developed and optimized. The experimental results indicated the optimum conditions of the two-stage HTC to be; hydrolysis temperature of 170 °C, hydrolysis reaction time of 155 min, carbonization temperature of 215 °C, and carbonization reaction time of 100 min. The hydrolysis reaction time and carbonization temperature had a statistically significant effect on energy content of the produced hydrochar. Energy input of the two-stage HTC was about 25% less than conventional HTC. Energy efficiency of the two-stage HTC for treating faecal sludge was higher than that of conventional HTC and other thermal conversion processes such as pyrolysis and gasification. The two-stage HTC could be considered as a potential technology for treating FS and producing hydrochar. PMID:26051497

  5. Chemical and enzymatic hydrolysis of anthraquinone glycosides from Madder roots

    NARCIS (Netherlands)

    Derksen, G.C.H.; Naayer, M.; Beek, T.A. van; Capelle, A.; Haaksman, I.K.; Doren, H.A. van; Groot, Æ. de

    2003-01-01

    For the production of a commercially useful dye extract from madder, the glycoside ruberythric acid has to be hydrolysed to the aglycone alizarin which is the main dye component. An intrinsic problem is the simultaneous hydrolysis of the glycoside lucidin pritneveroside to the unwanted mutagenic agl

  6. Chemical and enzymatic hydrolysis fo anthraquinone glycosides from madder roots

    NARCIS (Netherlands)

    Derksen, G.C.H.; Naayer, M.; Beek, van T.A.; Capelle, A.; Haaksman, I.K.; Doren, H.A.; Groot, de Æ.

    2003-01-01

    For the production of a commercially useful dye extract from madder, the glycoside ruberythric acid has to be hydrolysed to the aglycone alizarin which is the main dye component. An intrinsic problem is the simultaneous hydrolysis of the glycoside lucidin primeveroside to the unwanted mutagenic agly

  7. DFT STUDY OF THE HYDROLYSIS OF SOME S-TRIAZINES

    Science.gov (United States)

    The acid-catalyzed hydrolysis of atrazine and related 2-chloro-s-triazines to the corresponding 2-hydroxy-s-triazines was investigated using the B3LYP hybrid density functional theory method. Gas-phase calculations were performed at the B3LYP/6-311++G(d,p)//B3LYP/6-31G* level of ...

  8. OPTIMIZATION STUDY OF CITRUS WASTES SACCHARIFICATION BY DILUTE ACID HYDROLYSIS

    Directory of Open Access Journals (Sweden)

    Farid Talebnia

    2008-02-01

    Full Text Available The effect of time, acid concentration, temperature and solid concentration on dilute-acid hydrolysis of orange peels was investigated. A central composite rotatable experimental design (CCRD was applied to study the individual effects of these hydrolysis factors and also their interdependence effects. The enzymatic hydrolysis of the peels by cellulase, β-glucosidase, and pectinase enzyme resulted in 72% dissolution of the peels, including 18.7% galacturonic acid and 53.3% of a total of glucose, fructose, galactose, and arabinose. Dilute-acid hydrolysis up to 210°C was not able to hydrolyze pectin to galacturonic acid. However, the sugar polymers were hydrolyzed at relatively low temperature. The optimum results were obtained at 116°C, 0.5% sulfuric acid concentration, 6% solid fraction, and 12.9 min retention time. Under these conditions, the total sugars obtained at 41.8 g/g dry peels and 2.6% of total hexose sugars were further degraded to hydroxymethylfurfural (HMF. No furfural was detected through these experiments from decomposition of pentoses.

  9. Small peptides hydrolysis in dry-cured meats.

    Science.gov (United States)

    Mora, Leticia; Gallego, Marta; Escudero, Elizabeth; Reig, Milagro; Aristoy, M-Concepción; Toldrá, Fidel

    2015-11-01

    Large amounts of different peptides are naturally generated in dry-cured meats as a consequence of the intense proteolysis mechanisms which take place during their processing. In fact, meat proteins are extensively hydrolysed by muscle endo-peptidases (mainly calpains and cathepsins) followed by exo-peptidases (mainly, tri- and di-peptidyl peptidases, dipeptidases, aminopeptidases and carboxypeptidases). The result is a large amount of released free amino acids and a pool of numerous peptides with different sequences and lengths, some of them with interesting sequences for bioactivity. This manuscript is presenting the proteomic identification of small peptides resulting from the hydrolysis of four target proteins (glyceraldehyde-3-phosphate dehydrogenase, beta-enolase, myozenin-1 and troponin T) and discusses the enzymatic routes for their generation during the dry-curing process. The results indicate that the hydrolysis of peptides follows similar exo-peptidase mechanisms. In the case of dry-fermented sausages, most of the observed hydrolysis is the result of the combined action of muscle and microbial exo-peptidases except for the hydrolysis of di- and tri-peptides, mostly due to microbial di- and tri-peptidases, and the release of amino acids at the C-terminal that appears to be mostly due to muscle carboxypeptidases. PMID:25944374

  10. Lactam hydrolysis catalyzed by mononuclear metallo-ß-bactamases

    DEFF Research Database (Denmark)

    Olsen, Lars; Antony, J; Ryde, U;

    2003-01-01

    Two central steps in the hydrolysis of lactam antibiotics catalyzed by mononuclear metallo-beta-lactamases, formation of the tetrahedral intermediate and its breakdown by proton transfer, are studied for model systems using the density functional B3LYP method. Metallo-beta-lactamases have two met...

  11. Radioactive demonstration of the ''late wash'' Precipitate Hydrolysis Process

    International Nuclear Information System (INIS)

    This report presents results of the radioactive demonstration of the DWPF Precipitate Hydrolysis Process as it would occur in the ''late wash'' flowsheet in the absence of hydroxylamine nitrate. Radioactive precipitate containing Cs-137 from the April, 1983, in-tank precipitation demonstration in Tank 48 was used for these tests

  12. Influence of kaolinite on chiral hydrolysis of methyl dichlorprop enantiomers

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The effect of kaolinite on the enzymatic chiral hydrolysis of methyl dichlorprop enantiomers ((R,S)-methyl-2-(2,4-dichlorophenoxy) propanoic acid, 2,4-DPM) was investigated using chiral gas chromatography. Compared with the control without kaolinite, the enantiomeric ratio (ER) increased from 1.35 to 8.33 and the residual ratio of 2,4-DPM decreased from 60.89% to 41.55% in the presence of kaolinite. Kaolinite likely had emotion influence on lipase activity and its enantioselectivity.Moreover, the amount of kaolinite added was also found to be a sensitive factor affecting the enantioselective hydrolysis of 2,4-DPM. Fourier transform infrared (FTIR) spectroscopy studies of the interaction of lipase with kaolinite provided insight into the molecular structure of the complex and offered explanation of the effects of kaolinite on enzymatic hydrolysis of 2,4-DPM.Spectra showed that the effect of kaolinite on the hydrolysis of 2,4-DPM was affected by adsorption of lipase on kaolinite and changes of adsorbed lipase conformation, which led to the modified enantioselectivity.

  13. Enzymatic hydrolysis of protein:mechanism and kinetic model

    Institute of Scientific and Technical Information of China (English)

    Qi Wei; He Zhimin

    2006-01-01

    The bioreaction mechanism and kinetic behavior of protein enzymatic hydrolysis for preparing active peptides were investigated to model and characterize the enzymatic hydrolysis curves.Taking into account single-substrate hydrolysis,enzyme inactivation and substrate or product inhibition,the reaction mechanism could be deduced from a series of experimental results carried out in a stirred tank reactor at different substrate concentrations,enzyme concentrations and temperatures based on M-M equation.An exponential equation dh/dt = aexp(-bh) was also established,where parameters a and b have different expressions according to different reaction mechanisms,and different values for different reaction systems.For BSA-trypsin model system,the regressive results agree with the experimental data,i.e.the average relative error was only 4.73%,and the reaction constants were determined as Km = 0.0748 g/L,Ks = 7.961 g/L,kd = 9.358/min,k2 =38.439/min,Ea= 64.826 kJ/mol,Ed= 80.031 kJ/mol in accordance with the proposed kinetic mode.The whole set of exponential kinetic equations can be used to model the bioreaction process of protein enzymatic hydrolysis,to calculate the thermodynamic and kinetic constants,and to optimize the operating parameters for bioreactor design.

  14. Optimization of enzymatic hydrolysis of cassava to obtain fermentable sugars

    Institute of Scientific and Technical Information of China (English)

    Renata M. COLLARES; Luiza V. S. MIKLASEVICIUS; Mariana M. BASSACO; Nina P. G. SALAU; Marcio A. MAZUTTI; Dilson A. BISOGNIN; Lisiane M. TERRA

    2012-01-01

    This work evaluates the enzymatic hydrolysis of starch from cassava using pectinase,α-amylase,and amyloglucosidase.A central composite rotational design (CCRD) was carried out to evaluate the effects of amyloglucosidase,pectinase,reaction time,and solid to liquid ratio.All the experiments were carried out in a bioreactor with working volume of 2 L.Approximately 98% efficiency hydrolysis was obtained,resulting in a concentration of total reducing sugar released of 160 g/L.It was concluded that pectinase improved the hydrolysis of starch from cassava.Reaction time was found to be significant until 7 h of reaction.A solid to liquid ratio of 1.0 was considered suitable for hydrolysis of starch from cassava.Amyloglucosidase was a significant variable in the process:after its addition to the reaction media,a 30%-50% increase in the amount of total reducing sugar released was observed.At optimal conditions the maximum productivity obtained was 22.9 g/(L·h).

  15. Effect of particle size on enzymatic hydrolysis of pretreated Miscanthus

    Science.gov (United States)

    Particle size reduction is a crucial factor in transportation logistics as well as cellulosic conversion. The effect of particle size on enzymatic hydrolysis of pretreated Miscanthus x giganteus was determined. Miscanthus was ground using a hammer mill equipped with screens having 0.08, 2.0 or 6.0...

  16. The Preparation and Enzymatic Hydrolysis of a Library of Esters

    Science.gov (United States)

    Sanford, Elizabeth M.; Smith, Traci L.

    2008-01-01

    An investigative case study involving the preparation of a library of esters using Fischer esterification and alcoholysis of acid chlorides and their subsequent enzymatic hydrolysis by pig liver esterase and orange peel esterase is described. Students work collaboratively to prepare and characterize the library of esters and complete and evaluate…

  17. Lipase-catalyzed hydrolysis of methyl-3-phenylglycidate

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The enzymatic resolution of racemic methyl 3-phenylglycidate was investigated. It was found that the hydrolysis rate of (2S, 3R)-enantiomer was faster than that of (2R, 3S)-enantiomer by a new lipase. At optimal condition 96% of (2R, 3S)-methyl phenylglycidate with ee of 100% was recovered from the racemic mixture.

  18. Bioabatement with xylanase supplementation to reduce enzymatic hydrolysis inhibitors

    Science.gov (United States)

    Bioabatement, using the fungus Coniochaeta ligniaria NRRL30616 can effectively eliminate enzyme inhibitors from pretreated biomass hydrolysis. However, our recent research suggested that bioabatement had no beneficial effect on removing xylo-oligomers which were identified as strong inhibitors to ce...

  19. Hydrolysis reactions of Am(III) and Am(V)

    International Nuclear Information System (INIS)

    Hydrolysis reactions of Am(III) have been investigated in non-complexing solution as well as saline solutions under CO2-free conditions. The solubility experiment in combination with radiometric pH-titration is carried out for the pH range from 6 to 13, at different ionic strengths. In non-complexing solution, the solubility product is found to be increasing along with an increase of the specific α-activity in a given experimental solution. In concentrated NaCl solutions (I ≥ 3M, pH>7) with high specific α-activities (>1 Ci/L), the α-radiolysis starts generating substantial amounts of oxidized chlorine species, e.g. ClO-, which results in the oxidation of Am(III) to Am(V). The hydrolysis reaction of Am(V) in 3M NaCl is also investigated by radiometric pH-titration. Solubility products (Ksp) of Am(OH)3(s) and AmO2(OH)(s) and hydrolysis constants of Am(III) and Am(V) are calculated from the solubility data. The speciation of different hydrolysis products, undertaken by laser-induced photacoustic spectroscopy (LPAS), has verified probable species assessed theoretically on the basis of solubility experiments. (orig.)

  20. Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite

    OpenAIRE

    Vandamme, Dries; Pohl, Philip I.; Beuckels, Annelies; Foubert, Imogen; Brady, Patrick V.; Hewson, John C.; Muylaert, Koenraad

    2015-01-01

    Alkaline flocculation holds great potential as a low-cost harvesting method for marine microalgae biomass production. Alkaline flocculation is induced by an increase in pH and is related to precipitation of calcium and magnesium salts. In this study, we used the diatom Phaeodactylum tricornutum as model organism to study alkaline flocculation of marine microalgae cultured in seawater medium. Flocculation started when pH was increased to 10 and flocculation efficiency reached 90% when pH was 1...

  1. The effect of alkaline agents on retention of EOR chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, P.B.

    1991-07-01

    This report summarizes a literature survey on how alkaline agents reduce losses of surfactants and polymers in oil recovery by chemical injection. Data are reviewed for crude sulfonates, clean anionic surfactants, nonionic surfactants, and anionic and nonionic polymers. The role of mineral chemistry is briefly described. Specific effects of various alkaline anions are discussed. Investigations needed to improve the design of alkaline-surfactant-polymer floods are suggested. 62 refs., 28 figs., 6 tabs.

  2. Extraction of uranium from alkaline medium by certain amines

    International Nuclear Information System (INIS)

    A possible route for treatment of irradiated uranium from alkaline solution was recently addressed. This may have some advantages related to the isolation of many troublesome fission products upon alkaline dissolution of uranium oxides. In this work, the solubility of uranium oxides in alkaline medium of sodium carbonate and sodium hydroxide mixture was investigated. The different factors affecting the solubility were studied. From alkaline solutions, the extraction of uranium by different amines was carried out. The equilibrium encountered in this extraction systems was elaborated. Possible use of these systems for treatment of irradiated uranium was discussed

  3. Effect of nitrogen oxide pretreatments on enzymatic hydrolysis of cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Borrevik, R.K.; Wilke, C.R.; Brink, D.L.

    1978-09-01

    This work considers the effect of nitrogen oxide pretreatments on the subsequent enzymatic hydrolysis by Trichoderma viride cellulase of the cellulose occurring in wheat straw; Triticum Aestivum-L, em. Thell. In the pretreatment scheme the straw is first reacted with nitric oxide and air, and then extracted in aqueous solution. In this way, overall sugar yields increased from 17% for the case of no pretreatment to 70%. The glucose yield increased from 20 to 60%. The yield of glucose during enzymatic hydrolysis is dependent on the reaction time of the gas phase reaction. For a 24 hour reaction the yield is 60%, but drops to 45% for a reaction time of 2 hours. Xylose, a potentially valuable side product of the pretreatment, is obtained by dilute acid hydrolysis during the extraction stage in yields of 90 to 96%. In acidic media, the kinetics of both the rate of formation and destruction of xylose were found to follow the first-order rate laws reported in the literature. These were determined to be 4.5 (liter/gmole)(hr./sup -1/) and 0.03 hr./sup -1/, respectively. However, the rate of formation is much greater (20.4 (liter/gmole) (hr./sup -1/)) when the extraction liquor is recycled. The most likely explanation for this is that the increased total acidity of the recycled liquor compensates for diffusional limitations. A preliminary design and cost analysis of the pretreatment-hydrolysis scheme indicates that glucose can be produced at 10.86 cents per pound, exclusive of straw cost. The corresponding cost per pound of total sugars produced is 5.0 cents. Sensitivity analyses indicate that 42% of the pretreatment cost (excluding hydrolysis) can be attributed to nitric oxide production, and the high yield of sugar obtained is advantageous when considering the cost of straw.

  4. Hydrolysis of thorium(iv) at variable temperatures.

    Science.gov (United States)

    Zanonato, P L; Di Bernardo, P; Zhang, Z; Gong, Y; Tian, G; Gibson, J K; Rao, L

    2016-08-01

    Hydrolysis of Th(iv) was studied in tetraethylammonium perchlorate (0.10 mol kg(-1)) at variable temperatures (283-358 K) by potentiometry and microcalorimetry. Three hydrolysis reactions, mTh(4+) + nH2O = Thm(OH)n((4m-n)+) + nH(+), in which (n,m) = (2,2), (8,4), and (15,6), were invoked to describe the potentiometric and calorimetric data for solutions with the [hydroxide]/[Th(iv)] ratio ≤ 2. At higher ratios, the formation of (16,5) cannot be excluded. The hydrolysis constants, *β2,2, *β8,4, and *β15,6, increased by 3, 7, and 11 orders of magnitude, respectively, as the temperature was increased from 283 to 358 K. The enhancement is mainly due to the significant increase of the degree of ionization of water as the temperature rises. All three hydrolysis reactions are endothermic at 298 K, with enthalpies of (118 ± 4) kJ mol(-1), (236 ± 7) kJ mol(-1), and (554 ± 4) kJ mol(-1) for ΔH2,2, ΔH8,4, and ΔH15,6 respectively. The hydrolysis constants at infinite dilution have been obtained with the specific ion interaction approach. The applicability of three approaches for estimating the equilibrium constants at different temperatures, including the constant enthalpy approach, the constant heat capacity approach and the DQUANT equation was evaluated with the data from this work. PMID:27460458

  5. Bioethanol production: Pretreatment and enzymatic hydrolysis of softwood

    Energy Technology Data Exchange (ETDEWEB)

    Tengborg, Charlotte

    2000-05-01

    The enzymatic hydrolysis process can be used to produce bioethanol from softwood, which are the dominating raw material in the Northern hemisphere. This thesis deals with the development of the process focusing on the pretreatment and the enzymatic hydrolysis stages. The influence of pretreatment conditions on sugar yield, and the effect of inhibitors on the ethanol yield, were investigated for spruce and pine. The maximum yields of hemicellulose sugars and glucose were obtained under different pretreatment conditions. This indicates that two-stage pretreatment may be preferable. The added catalysts, H{sub 2}SO{sub 4} and SO{sub 2}, resulted in similar total sugar yields about 40 g/100 g dry raw material. However, the fermentability of SO{sub 2}-impregnated material was better. This pretreatment resulted in the formation of inhibitors to the subsequent process steps, e.g. sugar and lignin degradation products. The glucose yield in the enzymatic hydrolysis stage was affected by various parameters such as enzyme loading, temperature, pH, residence time, substrate concentration, and agitation. To decrease the amount of fresh water used and thereby waste water produced, the sugar-rich prehydrolysate from the pretreatment step was included in the enzymatic hydrolysis of the solid fraction, resulting in a reduction in the cellulose conversion of up to 36%. Different prehydrolysate detoxification methods, such as treatment with Ca(OH){sub 2}, laccase, and fermentation using yeast, were investigated. The latter was shown to be very efficient. The amount of fresh water used can be further reduced by recycling various process streams. This was simulated experimentally in a bench-scale process. A reduction in fresh water demand of 50% was obtained without any further negative effects on either hydrolysis or fermentation.

  6. Hydrolysis of soy isoflavone conjugates using enzyme may underestimate isoflavone concentrations in tissue

    Institute of Scientific and Technical Information of China (English)

    Hebron C. Chang; Myriam Laly; Melody Harrison; Thomas M. Badger

    2005-01-01

    Objective: To investigate the differences of using enzymatic hydrolysis and acid hydrolysis for identification and quantification of isoflavone aglycones from biomatrices. Methods: β-glucuronidase/sulfatase isolated from Helix pomatia for routine enzymatic hydrolysis or 6N HCl was used to release glucuronide and sulfate conjugates in the serum, urine and tissue samples. Profiles of soy isoflavones after enzymatic hydrolysis or acid hydrolysis in several tissues of rat fed with diets containing soy protein isolate were also compared using LC/MS and HPLC-ECD. Results: Acid hydrolysis released more aglycone than enzymatic digestion ( P <0.05) in liver tissue. The total genistein, daidzein and other metabolites were 20% to 60% lower in samples from enzymatic hydrolysis than in acid hydrolysis. Conclusion: These results indicated that unknown factors in tissues reduced the enzymatic hydrolytic efficiency for releasing isoflavone aglycones even in optimized condition. This would underestimate isoflavone tissue concentrations up to 60%.

  7. Modelling ethanol production from cellulose: separate hydrolysis and fermentation versus simultaneous saccharification and fermentation

    NARCIS (Netherlands)

    Drissen, R.E.T.; Maas, R.H.W.; Tramper, J.; Beeftink, H.H.

    2009-01-01

    In ethanol production from cellulose, enzymatic hydrolysis, and fermentative conversion may be performed sequentially (separate hydrolysis and fermentation, SHF) or in a single reaction vessel (simultaneous saccharification and fermentation, SSF). Opting for either is essentially a trade-off between

  8. Accelerated hydrolysis of substituted cellulose for potential biofuel production: kinetic study and modeling.

    Science.gov (United States)

    Mu, Bingnan; Xu, Helan; Yang, Yiqi

    2015-11-01

    In this work, kinetics of substitution accelerated cellulose hydrolysis with multiple reaction stages was investigated to lay foundation for mechanism study and molecular design of substituting compounds. High-efficiency hydrolysis of cellulose is critical for cellulose-based bioethanol production. It is known that, substitution could substantially decrease activation energy and increase reaction rate of acidic hydrolysis of glycosidic bonds in cellulose. However, reaction kinetics and mechanism of the accelerated hydrolysis were not fully revealed. In this research, it was proved that substitution therefore accelerated hydrolysis only occurred in amorphous regions of cellulose fibers, and was a process with multiple reaction stages. With molar ratio of substitution less than 1%, the overall hydrolysis rate could be increased for around 10 times. We also quantified the relationship between the hydrolysis rate of individual reaction stage and its major influences, including molar ratio of substitution, activation energy of acidic hydrolysis, pH and temperature. PMID:26253917

  9. Study on Optimal Conditions of Alcalase Enzymatic Hydrolysis of Soybean Protein Isolate

    OpenAIRE

    Yongsheng Ma; Xianhui Sun; Lintong Wang

    2015-01-01

    Soybean protein isolate was hydrolyzed to obtain soybean polypeptide solution using Alcalase as hydrolase. Degree of hydrolysis and the recovery rate of protein were used to characterize the soybean protein hydrolysis reaction result. Influence factors of soybean protein hydrolysis reaction including the substrate concentration, temperature, pH, enzyme concentration characterized by E/S (ratio of Enzyme and Substrate) and hydrolysis time were systematically studied with single factor and mult...

  10. Study on Hydrolysis Conditions of Flavourzyme in Soybean Polypeptide Alcalase Hydrolysate and Soybean Polypeptide Refining Process

    OpenAIRE

    Yongsheng Ma; Lintong Wang; Xianhui Sun; Jianqiang Zhang; Junfeng Wang; Yue Li

    2014-01-01

    Soybean protein Alcalase hydrolysate was further hydrolyzed by adopting Flavourzyme as hydrolytic enzyme. The optimal hydrolysis conditions of Flavourzyme was that pH was 7.0 at temperature 50°C and E/S(ratio of enzyme and substrate) was 20LAPU/g. Bitterness value was reduced to 2 after Flavourzyme hydrolysis reaction in optimal hydrolysis conditions. The change of molecular weight distribution range from Alcalase hydrolysate to Flavourzyme hydrolysate was not obvious. DH (Degree of hydrolysi...

  11. Enzymatic hydrolysis of corn stalk in a hollow fiber ultrafiltration membrane reactor

    International Nuclear Information System (INIS)

    A hollow fiber ultrafiltration (UF) membrane reactor was set up to investigate the enzymatic hydrolysis of steam-exploded corn stalk. It was found that the hydrolysis rate, as well as the reducing sugar (RS) yield, could be markedly enhanced in the UF membrane reactor due to the continuous removal of inhibitory products. Compared with traditional batch hydrolysis, the hydrolysis rate and RS yield could increase 200% and 206%, respectively

  12. Influence of Incubation Conditions on Hydrolysis Efficiency and Iodine Enrichment in Baker’s Yeast

    OpenAIRE

    Dolińska, Barbara; Zieliński, Michał; Dobrzański, Zbigniew; Chojnacka, Katarzyna; Opaliński, Sebastian; Ryszka, Florian

    2012-01-01

    The influence of incubation conditions, enzyme type, hydrolysis time, and potassium iodide concentration on hydrolysis and iodine enrichment were studied in supernatant and pellets of Saccharomyces cervisiae hydrolysates. The type of enzyme used and incubation time significantly influence hydrolysis efficiency and protein concentration in supernatant and pellet. The highest protein hydrolysis efficiency was obtained by 24-h incubation with papain. Significantly lower values were observed for ...

  13. Impact of the supramolecular structure of cellulose on the efficiency of enzymatic hydrolysis

    OpenAIRE

    Peciulyte, Ausra; Karlström, Katarina; Larsson, Per Tomas; Olsson, Lisbeth

    2015-01-01

    Background The efficiency of enzymatic hydrolysis is reduced by the structural properties of cellulose. Although efforts have been made to explain the mechanism of enzymatic hydrolysis of cellulose by considering the interaction of cellulolytic enzymes with cellulose or the changes in the structure of cellulose during enzymatic hydrolysis, the process of cellulose hydrolysis is not yet fully understood. We have analysed the characteristics of the complex supramolecular structure of cellulose ...

  14. Dolomite Dissolution in Alkaline Cementious Media

    Science.gov (United States)

    Mittermayr, Florian; Klammer, Dietmar; Köhler, Stephan; Dietzel, Martin

    2010-05-01

    Chemical alteration of concrete has gained much attention over the past years as many cases of deterioration due to sulphate attack, thaumasite formation (TSA) or alkali silica reactions (ASR) have been reported in various constructions (Schmidt et al, 2009). Much less is known about the so called alkali carbonate reaction (ACR). It is believed that dolomite aggregates can react with the alkalis from the cement, dissolve and form calcite and brucite (Katayama, 2004). Due to very low solubility of dolomite in alkaline solutions this reaction seems doubtful. In this study we are trying to gain new insides about the conditions that can lead to the dissolution of dolomite in concrete. Therefore we investigated concrete samples from Austrian tunnels that show partially dissolved dolomite aggregates. Petrological analysis such as microprobe, SEM and Raman spectroscopy as well as a hydrochemical analysis of interstitial solutions and ground water and modelling with PhreeqC (Parkhurst and Appelo, 1999) are carried out. In addition a series of batch experiments is set up. Modelling approaches by PhreeqC show a thermodynamically possibility in the alkaline range when additional Ca2+ in solution causes dolomite to become more and more undersaturated as calcite gets supersaturated. Interacting ground water is enriched in Ca2+and saturated with respect to gypsum as marine evaporites are found in situ rocks. Furthermore it is more likely that Portlandite (Ca(OH)2) plays a more important role than Na and K in the cement. Portlandite acts as an additional Ca2+ source and is much more abundant than the alkalies. Some interstitial solutions are dominated mainly by Na+ and SO42- and reach concentrations up to 30 g/l TDS. It is believed that solutions can even reach thenardite saturation as efflorescences are found on the tunnel walls. In consequence dolomite solubility increases with increasing ionic strength. pH > 11 further accelerate the process of dedolomitization by the removal

  15. Comparison of Enzymatic Hydrolysis and Acid Hydrolysis of Sterol Glycosides from Foods Rich in Δ(7)-Sterols.

    Science.gov (United States)

    Münger, Linda H; Jutzi, Sabrina; Lampi, Anna-Maija; Nyström, Laura

    2015-08-01

    In this study, we present the difference in sterol composition of extracted steryl glycosides (SG) hydrolyzed by either enzymatic or acid hydrolysis. SG were analyzed from foods belonging to the plant families Cucurbitaceae (melon and pumpkin seeds) and Amaranthaceae (amaranth and beetroot), both of which are dominated by Δ(7)-sterols. Released sterols were quantified by gas chromatography with a flame ionization detector (GC-FID) and identified using gas chromatography/mass spectrometry (GC-MS). All Δ(7)-sterols identified (Δ(7)-stigmastenyl, spinasteryl, Δ(7)-campesteryl, Δ(7)-avenasteryl, poriferasta-7,25-dienyl and poriferasta-7,22,25-trienyl glucoside) underwent isomerization under acidic conditions and high temperature. Sterols with an ethylidene or methylidene side chain were found to form multiple artifacts. The artifact sterols coeluted with residues of incompletely isomerized Δ(7)-sterols, or Δ(5)-sterols if present, and could be identified as Δ(8(14))-sterols on the basis of relative retention time, and their MS spectra as trimethylsilyl (TMS) and acetate derivatives. For instance, SG from melon were composed of 66% Δ(7)-stigmastenol when enzymatic hydrolysis was performed, whereas with acid hydrolysis only 8% of Δ(7)-stigmastenol was determined. The artifact of Δ(7)-stigmastenol coeluted with residual non-isomerized spinasterol, demonstrating the high risk of misinterpretation of compositional data obtained after acid hydrolysis. Therefore, the accurate composition of SG from foods containing sterols with a double bond at C-7 can only be obtained by enzymatic hydrolysis or by direct analysis of the intact SG. PMID:25757602

  16. Optimization of Alkaline and Dilute Acid Pretreatment of Agave Bagasse by Response Surface Methodology.

    Science.gov (United States)

    Ávila-Lara, Abimael I; Camberos-Flores, Jesus N; Mendoza-Pérez, Jorge A; Messina-Fernández, Sarah R; Saldaña-Duran, Claudia E; Jimenez-Ruiz, Edgar I; Sánchez-Herrera, Leticia M; Pérez-Pimienta, Jose A

    2015-01-01

    Utilization of lignocellulosic materials for the production of value-added chemicals or biofuels generally requires a pretreatment process to overcome the recalcitrance of the plant biomass for further enzymatic hydrolysis and fermentation stages. Two of the most employed pretreatment processes are the ones that used dilute acid (DA) and alkaline (AL) catalyst providing specific effects on the physicochemical structure of the biomass, such as high xylan and lignin removal for DA and AL, respectively. Another important effect that need to be studied is the use of a high solids pretreatment (≥15%) since offers many advantaged over lower solids loadings, including increased sugar and ethanol concentrations (in combination with a high solids saccharification), which will be reflected in lower capital costs; however, this data is currently limited. In this study, several variables, such as catalyst loading, retention time, and solids loading, were studied using response surface methodology (RSM) based on a factorial central composite design of DA and AL pretreatment on agave bagasse using a range of solids from 3 to 30% (w/w) to obtain optimal process conditions for each pretreatment. Subsequently enzymatic hydrolysis was performed using Novozymes Cellic CTec2 and HTec2 presented as total reducing sugar (TRS) yield. Pretreated biomass was characterized by wet-chemistry techniques and selected samples were analyzed by calorimetric techniques, and scanning electron/confocal fluorescent microscopy. RSM was also used to optimize the pretreatment conditions for maximum TRS yield. The optimum conditions were determined for AL pretreatment: 1.87% NaOH concentration, 50.3 min and 13.1% solids loading, whereas DA pretreatment: 2.1% acid concentration, 33.8 min and 8.5% solids loading. PMID:26442260

  17. MATHEMATICAL MODELING OF ENZYMATIC HYDROLYSIS OF STARCH: APPLICATION TO FUEL ETHANOL PRODUCTION

    Science.gov (United States)

    Enzymatic hydrolysis of starch in corn is an important step that determines fermentation efficiency. Corn genetics, post harvest handling and process conditions are factors that affect starch hydrolysis. There is a lack of mathematical models for starch hydrolysis in the dry grind corn process tha...

  18. Analysis of Hydrolysis Reaction of N-Phosphorylphenylalanine by HPLC-ESI-MS/MS

    Institute of Scientific and Technical Information of China (English)

    CAO Shu-Xia; ZHANG Jian-Chen; LIAO Xin-Cheng; ZHAO Yu-Fen

    2003-01-01

    @@ Hydrolysis procedure of N-diisopropyloxyphosphoryl phenylalanine (DIPP-Phe) has been studied by HPLCESI-MS. The hydrolysis products and intermediate were identified by HPLC-ESI-MS/MS. The results showed that (HO)(i-PrO)P(O)Phe was intermediate in the hydrolysis process.

  19. Alkaline pulping of some eucalypts from Sudan.

    Science.gov (United States)

    Khristova, P; Kordsachia, O; Patt, R; Dafaalla, S

    2006-03-01

    Four eucalypts (Eucalyptus camaldulensis, Eucalyptus microtheca, Eucalyptus tereticornis and Eucalyptus citriodora) grown in Sudan were examined for their suitability for pulping and papermaking with different alkaline methods. Their physical, morphological and chemical characteristics are reported. The pulping trials with E. citriodora and E. tereticornis were carried out using the kraft-AQ, soda-AQ, modified AS/AQ (ASA), ASAM and kraft methods. For the other two species, only the ASAM and the kraft process were applied. ASAM pulping gave the best results in terms of yield, degree of delignification, mechanical and optical pulp properties. The best pulps, obtained in kraft and ASAM cooking of E. citriodora, were bleached to 88% ISO brightness in a totally chlorine free bleaching sequence (OQ1O/PQ2P). The bleached pulps, especially the ASAM pulp, showed good papermaking properties and would be suitable for manufacture of writing and printing grades of paper. PMID:15935655

  20. Corrosion of copper in alkaline chloride environments

    International Nuclear Information System (INIS)

    The available literature information on the corrosion and electrochemical behaviour of copper in alkaline environments has been reviewed. The purpose of the review was to assess the impact of an alkaline plume from cementitious material on the corrosion behaviour of a copper canister in an SKB-3 type repository. The effect of the evolution of the environmental conditions within the repository have been considered, including the effects of temperature, redox conditions, pore-water salinity and pH. If the pore-water pH increases prior to the establishment of anoxic conditions, the canister surface will passivate as the pore-water pH exceeds a value of ∼ pH 9. Passivation will result from the formation of a duplex Cu2O/Cu(OH)2 film. The corrosion potential will be determined by the equilibrium potential for the Cu2O/Cu(OH)2 couple under oxic conditions, or by the Cu/Cu2O redox couple under anoxic conditions (in the absence of sulphide). Pitting corrosion is only likely to occur early in the evolution of the repository environment, whilst the canister is still relatively cool (2 available to support localised corrosion, and prior to the increase in pore-water pH and salinity. The subsequent increase in canister surface temperature, pore-water pH and salinity, and decrease in O2 will make pit initiation less likely, although the canister will remain passive provided the pore-water pH is maintained above pH 9. The higher the pore-water pH, the more strongly the canister is passivated and the less likely the surface is to undergo localised attack. If the pore-water salinity increases prior to the increase in pH, there could be a period of active canister corrosion before passivation occurs.Under these circumstances, the corrosion potential will be a true mixed potential, determine by the relative kinetics of Cu dissolution as CuCl2 - and of the reduction of O2. The development of anoxic conditions and an increase in pore-water sulphide concentration will result in

  1. Hydrogen in aluminum during alkaline corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Adhikari, Saikat; Ai, Jiahe [Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011 (United States); Hebert, Kurt R., E-mail: krhebert@iastate.ed [Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011 (United States); Ho, K.M.; Wang, C.Z. [US DOE, Ames Laboratory, Ames, IA 50011 (United States)] [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States)

    2010-07-30

    The thermodynamic state of hydrogen in aluminum during alkaline corrosion was investigated, using a two-compartment hydrogen permeation cell with an Al/Pd bilayer membrane. The open-circuit potential of the Pd layer in a pH 7.0 buffer solution was monitored to sense the hydrogen chemical potential, {mu}{sub H}. At pH 12.5-13.5, the measurements established a minimum {mu}{sub H} of 0.55 eV relative to the ideal gas reference, equivalent to a H{sub 2} gas pressure of 5.7 GPa. Statistical mechanics calculations show that vacancy-hydrogen defects are stable in Al at this condition. A dissolution mechanism was proposed in which H at very high {mu}{sub H} is produced by oxidation of interfacial aluminum hydride. The mechanism explains the observed rapid accumulation of H in the metal by extensive formation of vacancy-hydrogen defects.

  2. Alkaline lixiviation of uranium in granitic pegmatite

    International Nuclear Information System (INIS)

    The work described herein concerns the determination of the experimental optimum conditions for the alkaline lixiviation of uranium based on the following parameters: time, pH, temperature, density and grane size. The samples were obtained from the Supamo complex, near the Currupia river in the Piar District of the Bolivar State in Venezuela. They have a granitic composition and graphitic texture. The uranium was found in them as a secondary oxidized mineral of green-yellow colour localized in fractures fissures, intergranular spaces and also in the mica as. Secondary uranitite. The lixiviation process was carried out using Na2CO3/NaHCO3 buffer solution and for 100 gr. samples the best values for an efficient process were found by using 170 mesh grane size and 500 ml of pH buffer at 700C for a 24 hour time period. (author)

  3. Polyvinyl alcohol membranes as alkaline battery separators

    Science.gov (United States)

    Sheibley, D. W.; Gonzalez-Sanabria, O.; Manzo, M. A.

    1982-01-01

    Polyvinly alcohol (PVA) cross-linked with aldehyde reagents yields membranes that demonstrate properties that make them suitable for use as alkaline battery separators. Film properties can be controlled by the choice of cross-linker, cross-link density and the method of cross-linking. Three methods of cross-linking and their effects on film properties are discussed. Film properties can also be modified by using a copolymer of vinyl alcohol and acrylic acid as the base for the separator and cross-linking it similarly to the PVA. Fillers can be incorporated into the films to further modify film properties. Results of separator screening tests and cell tests for several variations of PBA films are discussed.

  4. Retention of alkaline earth elements in man

    International Nuclear Information System (INIS)

    The data on human metabolism and long-term retention of alkaline earth elements (133Ba injected into six healthy male volunteers at age 25-81 y and 45Ca and 85Sr received by one healthy male volunteer) are presented. Excreta were collected for 2-3 weeks after injection of the tracer into an antecubital vein. Activity in urine, ashed faeces and early samples of blood plasma was determined by gamma-ray scintillation spectrometry. Whole body retention has been assessed through serial measurements of body radioactivity. The injected 133Ba apparently became mainly skeletal within several days, much earlier than predicted by the ICRP model. The whole-body retention at 32 d ranged from 5 to 14%, the rate of loss correlating with the excretory plasma clearance rate. No age-related trends were identified in the metabolism of Ca and Sr. 2 refs, 2 figs

  5. Structural characterization of alkaline hydrogen peroxide pretreated grasses exhibiting diverse lignin phenotypes

    Directory of Open Access Journals (Sweden)

    Li Muyang

    2012-06-01

    Full Text Available Abstract Background For cellulosic biofuels processes, suitable characterization of the lignin remaining within the cell wall and correlation of quantified properties of lignin to cell wall polysaccharide enzymatic deconstruction is underrepresented in the literature. This is particularly true for grasses which represent a number of promising bioenergy feedstocks where quantification of grass lignins is particularly problematic due to the high fraction of p-hydroxycinnamates. The main focus of this work is to use grasses with a diverse range of lignin properties, and applying multiple lignin characterization platforms, attempt to correlate the differences in these lignin properties to the susceptibility to alkaline hydrogen peroxide (AHP pretreatment and subsequent enzymatic deconstruction. Results We were able to determine that the enzymatic hydrolysis of cellulose to to glucose (i.e. digestibility of four grasses with relatively diverse lignin phenotypes could be correlated to total lignin content and the content of p-hydroxycinnamates, while S/G ratios did not appear to contribute to the enzymatic digestibility or delignification. The lignins of the brown midrib corn stovers tested were significantly more condensed than a typical commercial corn stover and a significant finding was that pretreatment with alkaline hydrogen peroxide increases the fraction of lignins involved in condensed linkages from 88–95% to ~99% for all the corn stovers tested, which is much more than has been reported in the literature for other pretreatments. This indicates significant scission of β-O-4 bonds by pretreatment and/or induction of lignin condensation reactions. The S/G ratios in grasses determined by analytical pyrolysis are significantly lower than values obtained using either thioacidolysis or 2DHSQC NMR due to presumed interference by ferulates. Conclusions It was found that grass cell wall polysaccharide hydrolysis by cellulolytic enzymes for grasses

  6. Partial purification and properties of cellulase-free alkaline xylanase produced by Rhizopus stolonifer in solid-state fermentation

    OpenAIRE

    Antonio José Goulart; Eleonora Cano Carmona; Rubens Monti

    2005-01-01

    Rhizopus stolonifer was cultivated in wheat bran to produce a cellulase-free alkaline xylanase. The purified enzyme obtained after molecular exclusion chromatography in Sephacryl S-200 HR showed optimum temperature as 45º C and hydrolysis pHs optima as pH 6.0 and 9.0. Xylanase presented higher Vmax at pH 9.0 (0.87 µmol/mg protein) than at pH 6.0 and minor Km at pH 6.0 (7.42 mg/mL) than at pH 9.0.Rhizopus stolonifer foi cultivado em meio de farelo de trigo para produzir uma xilanase alcalina c...

  7. Switching Catalysis from Hydrolysis to Perhydrolysis in Pseudomonas fluorescens Esterase

    Energy Technology Data Exchange (ETDEWEB)

    Yin, D.; Bernhardt, P; Morley, K; Jiang, Y; Cheeseman, J; Purpero, V; Schrag, J; Kazlauskas, R

    2010-01-01

    Many serine hydrolases catalyze perhydrolysis, the reversible formation of peracids from carboxylic acids and hydrogen peroxide. Recently, we showed that a single amino acid substitution in the alcohol binding pocket, L29P, in Pseudomonas fluorescens (SIK WI) aryl esterase (PFE) increased the specificity constant of PFE for peracetic acid formation >100-fold [Bernhardt et al. (2005) Angew. Chem., Int. Ed. 44, 2742]. In this paper, we extend this work to address the three following questions. First, what is the molecular basis of the increase in perhydrolysis activity? We previously proposed that the L29P substitution creates a hydrogen bond between the enzyme and hydrogen peroxide in the transition state. Here we report two X-ray structures of L29P PFE that support this proposal. Both structures show a main chain carbonyl oxygen closer to the active site serine as expected. One structure further shows acetate in the active site in an orientation consistent with reaction by an acyl-enzyme mechanism. We also detected an acyl-enzyme intermediate in the hydrolysis of {var_epsilon}-caprolactone by mass spectrometry. Second, can we further increase perhydrolysis activity? We discovered that the reverse reaction, hydrolysis of peracetic acid to acetic acid and hydrogen peroxide, occurs at nearly the diffusion limited rate. Since the reverse reaction cannot increase further, neither can the forward reaction. Consistent with this prediction, two variants with additional amino acid substitutions showed 2-fold higher k{sub cat}, but K{sub m} also increased so the specificity constant, k{sub cat}/K{sub m}, remained similar. Third, how does the L29P substitution change the esterase activity? Ester hydrolysis decreased for most esters (75-fold for ethyl acetate) but not for methyl esters. In contrast, L29P PFE catalyzed hydrolysis of {var_epsilon}-caprolactone five times more efficiently than wild-type PFE. Molecular modeling suggests that moving the carbonyl group closer to the

  8. The influence of solid/liquid separation techniques on the sugar yield in two-step dilute acid hydrolysis of softwood followed by enzymatic hydrolysis

    OpenAIRE

    Galbe Mats; Monavari Sanam; Zacchi Guido

    2009-01-01

    Abstract Background Two-step dilute acid hydrolysis of softwood, either as a stand-alone process or as pretreatment before enzymatic hydrolysis, is considered to result in higher sugar yields than one-step acid hydrolysis. However, this requires removal of the liquid between the two steps. In an industrial process, filtration and washing of the material between the two steps is difficult, as it should be performed at high pressure to reduce energy demand. Moreover, the application of pressure...

  9. Facilitated transport of alkaline and alkaline earth metals through liquid membranes with acidic extractants

    International Nuclear Information System (INIS)

    The removal of radioactive Cs and Sr from the liquid waste of nuclear plants is an important problem for both the defense arid the energy industries. Experiments with bulk liquid membranes and liquid membranes, immobilized on porous support, demonstrated the applicability of these systems for active transport of alkaline cations and Sr from alkaline to acidic solution against the concentration gradient of the metal. The mechanism of transport facilitated by fatty acids for alkali metals, or by di-2-ethylhexyl phosphoric acid for Sr in the presence of Ca and EDTA, corresponds to the open-quotes big carrouselclose quotes model, according to which the carrier is distributed between the membrane and aqueous solutions, where metal/H+- ion exchange takes place. The rate limiting step is the reextraction of Sr from the membrane into the acceptor (acidic) solution and is determined by the diffusion of the protonated carrier from the stripping acidic solution through the corresponding unstirred layer

  10. Nucleotide and amino acid sequences of human intestinal alkaline phosphatase: close homology to placental alkaline phosphatase

    International Nuclear Information System (INIS)

    A cDNA clone for human adult intestinal alkaline phosphatase (ALP) [orthophosphoric-monoester phosphohydrolase (alkaline optimum); EC 3.1.3.1] was isolated from a λgt11 expression library. The cDNA insert of this clone is 2513 base pairs in length and contains an open reading frame that encodes a 528-amino acid polypeptide. This deduced polypeptide contains the first 40 amino acids of human intestinal ALP, as determined by direct protein sequencing. Intestinal ALP shows 86.5% amino acid identity to placental (type 1) ALP and 56.6% amino acid identity to liver/bone/kidney ALP. In the 3'-untranslated regions, intestinal and placental ALP cDNAs are 73.5% identical (excluding gaps). The evolution of this multigene enzyme family is discussed

  11. Human placental alkaline phosphatase in liver and intestine

    International Nuclear Information System (INIS)

    Three distinct forms of human alkaline phosphatase, presumably isozymes, are known, each apparently associated with a specific tissue. These are placental, intestinal, and liver (kidney and bone). The authors have used a specific immunoassay and HPLC to show that placental alkaline phosphatase is also present in extracts of liver and intestine in appreciable amounts

  12. Space-time variability of alkalinity in the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    G. Cossarini

    2014-09-01

    Full Text Available The paper provides a basin assessment of the spatial distribution of ocean alkalinity in the Mediterranean Sea. The assessment is made using a 3-D transport-biogeochemical-carbonate model to integrate the available experimental findings, which also constrains model output. The results indicate that the Mediterranean Sea shows alkalinity values that are much higher than those observed in the Atlantic Ocean on a basin-wide scale. A marked west-to-east surface gradient of alkalinity is reproduced as a response to the terrestrial discharges, the mixing effect with the Atlantic water entering from the Gibraltar Strait and the Black Sea water from Dardanelles, and the surface flux of evaporation minus precipitation. Dense water production in marginal seas (Adriatic and Aegean Seas, where alkaline inputs are relevant, and the Mediterranean thermohaline circulation sustains the west-to-east gradient along the entire water column. In the surface layers, alkalinity has a relevant seasonal cycle (up to 40 μmol kg−1 that is driven both by physical and biological processes. A comparison of alkalinity vs. salinity indicates that different regions present different relationships. In regions of freshwater influence, the two measures are negatively correlated due to riverine alkalinity input, whereas they are positively correlated in open seas. Alkalinity always is much higher than in the Atlantic waters, which might indicate a higher than usual buffering capacity towards ocean acidification, even at high concentrations of dissolved inorganic carbon.

  13. Comparative Detection of Alkaline Protease Production in Exiguobacterium acetylicum

    International Nuclear Information System (INIS)

    Alkaline protease is one of the most important enzymes in industry, medicine, and research. In the present work, a comparative detection for alkaline protease activity was established for instant detection of enzyme activity. Eight different alkalophilic bacterial isolates were compared based on the clear zone they produced on skim milk agar. One strain gave an absolute clear zone in 16 hours and was used for alkaline protease detection. The result of Phenotypic identification using Biology Microlog 3 identified the isolate as Exiguobacterium acetylicum. The isolate under study showed slightly different characteristics from a known Exiguobacterium acetylicum strain. The isolate tolerated alkaline conditions up to ph 11, while good growth was evident at ph 7, the maximum alkaline protease activity was observed at ph 9 which reached up to 109.01 U/ml. The alkaline activity assay using alkaline protease enzyme assay were coordinating with those obtained by conductivity; there was a relevant decrease in conductivity at the maximum increase in enzyme activity, which proved the cell membrane conductivity has a close relation to alkaline protease production. This isolate has tolerated gamma radiation, the increase in dose (up to 4 Gy) gave wider clear zones in terms of diameter and this was relevant to the conductivity measurements

  14. Improvement of protein extraction from sunflower meal by hydrolysis with alcalase

    Directory of Open Access Journals (Sweden)

    Vioque, J.

    2003-12-01

    Full Text Available Extraction of proteins from defatted sunflower meal has been improved by addition of the protease alcalase during alkaline extraction. This method offers several additional advantages as compared to the traditional alkaline extraction without alcalase, which is usually carried out after a sedimentation/flotation step to remove the lignocellulosic fraction. As compared to extraction without alcalase, addition of 0.1% (v/v alcalase improved the yield of protein extraction from 57.5% to 87.4%, providing an extract that is 22% hydrolyzed. In addition, an increment of up to 4.5 times in protein solubility at low pH values is achieved, which correlates with the degree of hydrolysis. The extracts that were obtained in the presence of alcalase had a higher proline and glycine content, suggesting that the protease improves extraction of proline-rich and glycine-rich cell wall proteins that are part of the lignocellulosic fraction. These protein extracts can be directly dried without generation of wastewater, and the resulting fiber-rich material could be used for animal feeding.Se ha mejorado la extracción proteica de la harina desengrasa de girasol mediante la adición de la proteasa alcalasa durante la extracción alcalina. Este método ofrece varias ventajas adicionales en comparación con la extracción alcalina tradicional sin alcalasa, que se desarrolla normalmente mediante un proceso de flotación/sedimentación para retirar la fracción lignocelulósica. En comparación a la extracción sin alcalasa, la adicción de 0.1% (v/v de alcalasa mejora los rendimientos de extracción proteica desde un 57.5% a un 87.4%, dando un extracto con un 22% de grado de hidrólisis. Además se obtiene un incremento de hasta 4.5 veces de la solubilidad proteica a bajos pHs, que se correlaciona con el grado de hidrólisis. Los extractos obtenidos con alcalasa tenían un mayor contenido de prolina y glicina, sugiriendo que la proteasa mejora la extracción de las

  15. Conversion of rice straw to sugars by dilute-acid hydrolysis

    International Nuclear Information System (INIS)

    Hydrolysis of rice straw by dilute sulfuric acid at high temperature and pressure was investigated in one and two stages. The hydrolyses were carried out in a 10-l reactor, where the hydrolysis retention time (3-10 min), pressure (10-35 bar) and acid concentration (0-1%) were examined. Optimization of first stage hydrolysis is desirable to achieve the highest yield of the sugars from hemicellulose and also as a pretreatment for enzymatic hydrolysis. The results show the ability of first stage hydrolysis to depolymerize xylan to xylose with a maximum yield of 80.8% at hydrolysis pressure of 15 bar, 10 min retention time and 0.5% acid concentration. However, the yield of glucose from glucan was relatively low in first stage hydrolysis at a maximum of 25.8%. The solid residuals were subjected to further dilute-acid hydrolysis in this study. This second-stage hydrolysis without addition of the acid could not increase the yield of glucose from glucan beyond 26.6%. On the other hand, the best results of the hydrolysis were achieved, when 0.5% sulfuric acid was added prior to each stage in two-stage hydrolysis. The best results of the second stage of the hydrolysis were achieved at the hydrolysis pressure and the retention time of 30 bar and 3 min in the second stage hydrolysis, where a total of 78.9% of xylan and 46.6% of glucan were converted to xylose and glucose, respectively in the two stages. Formation of furfural and HMF were functions of the hydrolysis pressure, acid concentration, and retention time, whereas the concentration of acetic acid was almost constant at pressure of higher than 10 bar and a total retention time of 10 min

  16. Optimal extraction and hydrolysis of Chlorella pyrenoidosa proteins.

    Science.gov (United States)

    Wang, Xiaoqin; Zhang, Xuewu

    2012-12-01

    In this study, for the first time, the applications of two new methods, ionic liquid and low-temperature high-pressure cell breakage methods, to the extraction of whole proteins in Chlorella pyrenoidosa cells were explored. Meanwhile, the comparison with three traditional methods was also made. The results indicated that the extraction rate for ionic liquid is only at moderate level, but the new low-temperature high-pressure cell breakage method can obviously increase the protein extraction rate up to 2- to 15-fold. Subsequently, the hydrolysis of the extracted proteins was conducted with three enzymes (papain, trypsin and alcalase). The data presented that the degree of hydrolysis for each enzyme under the optimal conditions is in the order of: alcalase (18.31%)>papain (14.33%)>trypsin (8.47%), demonstrating the potential of C. pyrenoidosa protein hydrolysates obtained here in nutritional supplement and medical foods. PMID:23117187

  17. Hydrolysis of Adiponitrile in Near-critical Water

    Institute of Scientific and Technical Information of China (English)

    DUAN Pei-Gao; NIU Yan-Lei; WANG Yuan-Yuan; DAI Li-Yi

    2008-01-01

    Hydrolysis of adiponitrile (ADN) in near-critical water was successfully conducted in a batch reactor.Influences of m(AND)/m(water) ratio,temperature,time,m(AND)/m(additive) ratio,kind of additive and pressure on the yield of each product were investigated.Five compounds resulting from the hydrolysis of ADN,including 5-cyanovaleramide,adipamide,adipamic acid,adipic acid and trace of 5-cyanovaleric acid,were detected by high performance liquid chromatography.The results showed that change of ADN concentration and temperature had significant influences on the yields of adipamide,adipamic acid and adipic acid;time was the significant factor for the yield of 5-cyanovaleric acid;and the yield of 5-cyanovaleramide was more dependent on the ADN concentration.

  18. Comprehensive screening study of pesticide degradation via oxidation and hydrolysis.

    Science.gov (United States)

    Chamberlain, Evelyn; Shi, Honglan; Wang, Tongwen; Ma, Yinfa; Fulmer, Alice; Adams, Craig

    2012-01-11

    This comprehensive study focused on the reactivity of a set of 62 pesticides via oxidization by free chlorine, monochloramine, chlorine dioxide, hydrogen peroxide, ozone, and permanganate; photodegradation with UV(254); and hydrolysis at pH 2, 7, and 12. Samples were analyzed using direct injection liquid chromatography-mass spectrometry detection or gas chromatography-electron capture detection after liquid-liquid extraction. Many pesticides were reactive via hydrolysis and/or chlorination and ozonation mechanisms under typical drinking water treatment conditions, with less reactivity exhibited on average for chlorine dioxide, monochloramine, hydrogen peroxide, and UV(254). The pyrazole and organophosphorous pesticides were most reactive in general, whereas carbamates and others were less reactive. The screening study provides guidance for the pesticide/oxidation systems that are most likely to lead to degradates in water treatment and the environment. PMID:22141915

  19. Effect of Limited Hydrolysis on Traditional Soy Protein Concentrate

    Directory of Open Access Journals (Sweden)

    Mirjana B. Pesic

    2006-09-01

    Full Text Available The influence of limited proteolysis of soy protein concentrate on proteinextractability, the composition of the extractable proteins, their emulsifying properties andsome nutritional properties were investigated. Traditional concentrate (alcohol leachedconcentrate was hydrolyzed using trypsin and pepsin as hydrolytic agents. Significantdifferences in extractable protein composition between traditional concentrate and theirhydrolysates were observed by polyacrylamide gel electrophoresis (PAGE and by SDSPAGE.All hydrolysates showed better extractability than the original protein concentrate,whereas significantly better emulsifying properties were noticed at modified concentratesobtained by trypsin induced hydrolysis. These improved properties are the result of twosimultaneous processes, dissociation and degradation of insoluble alcohol-induced proteinaggregates. Enzyme induced hydrolysis had no influence on trypsin-inibitor activity, andsignificantly reduced phytic acid content.

  20. Cholinesterase catalyzed hydrolysis of O-acyl derivatives of serotonin

    International Nuclear Information System (INIS)

    Hydrolysis of O acyl serotonin derivatives containing the residues of monocarbon dicarbon and amino acids under the effect of horse serum butyryl cholinesterase and bull erythrocytic acetylcholinesterase has been studied. It has been established, that acetylcholinesterase hydrolizes O acetylserotonin only; butyrylcholinesterase hydrolizes all the compounds investigated, except for 5,5'-terephthaloildioxytriptamine. The kinetic parameters of hydrolysis were determined. O acyl serotonin derivatives turned out good substrates of butylrylcholinesterase; serotonin and 5.5'-terephtaloildioxytriptamine are effective competitine inhibitors of the enzyme. Estimating of resistance of O acyl serotonin derivatines to blood cholinesterase effect under physiological conditions shows that the compounds investigated with the exception of 5,5'-terephthaloildioxytriptamine must be quickly hydrolyzed under butyrylcholinesterase action. 5,5'-terephthaloildioxytriptamine is suggested as a radioprotective preparation with the prolonged effect, which agrees with the biological test results

  1. Simultaneous hydrolysis-esterification of wet microalgal lipid using acid.

    Science.gov (United States)

    Takisawa, Kenji; Kanemoto, Kazuyo; Kartikawati, Muliasari; Kitamura, Yutaka

    2013-12-01

    This research demonstrated hydrolysis of wet microalgal lipid and esterification of free fatty acid (FFA) using acid in one-step process. The investigation of simultaneous hydrolysis-esterification (SHE) of wet microalgal lipid was conducted by using L27 orthogonal design and the effects of water content, volume of sulphuric acid, volume of methanol, temperature and time on SHE were examined. As a result, water content was found to be the most effective factor. The effects of various parameters on fatty acid methyl ester (FAME) content and equilibrium relation between FAME and FFA were also examined under water content 80%. Equimolar amounts of sulphuric acid and hydrochloric acid showed similar results. This method has great potential in terms of biodiesel production from microalgae since no organic solvents are used. PMID:24080318

  2. Simultaneous pretreatment and enzymatic hydrolysis of forage biomass

    Energy Technology Data Exchange (ETDEWEB)

    Henk, L.; Linden, J.C. [Colorado State Univ., Fort Collins, CO (United States)

    1993-12-31

    Sweet sorghum is an attractive fermentation feedstock because as much as 40% of the dry weight consists of readily femented sugars such as sucrose, glucose and frutose. Cellulose and hemicellulose comprise another 50%. However, if this material is to be used a year-round feedstock for ethanol production, a stable method of storage must be developed to maintain the sugar content. A modified version of the traditional ensiling process is made effective by the addition of cellulolytic/hemicellulolytic enzymes and lactic acid bacteria to freshly chopped sweet sorghum prior to the production of silage. In situ hydrolysis of cellulose and hemicellulose occurs concurrently with the acidic ensiling fementation. By hydolyzing the acetyl groups using acetyl xylan esterase and 3-0-methyl glucuronyl side chains using pectinase from hemicellulose, cellulose becomes accessible to hydrolysis by cellulase, both during in situ ensiling with enzymes and in the simultaneous saccharification and fermentation (SSF) to ethanol.

  3. Catalysis of a Flavoenzyme-Mediated Amide Hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Tathagata; Zhang, Yang; Abdelwahed, Sameh; Ealick, Steven E.; Begley, Tadhg P. (Cornell); (TAM)

    2010-09-13

    A new pyrimidine catabolic pathway (the Rut pathway) was recently discovered in Escherichia coli K12. In this pathway, uracil is converted to 3-hydroxypropionate, ammonia, and carbon dioxide. The seven-gene Rut operon is required for this conversion. Here we demonstrate that the flavoenzyme RutA catalyzes the initial uracil ring-opening reaction to give 3-ureidoacrylate. This reaction, while formally a hydrolysis reaction, proceeds by an oxidative mechanism initiated by the addition of a flavin hydroperoxide to the C4 carbonyl. While peroxide-catalyzed amide hydrolysis has chemical precedent, we are not aware of a prior example of analogous chemistry catalyzed by flavin hydroperoxides. This study further illustrates the extraordinary catalytic versatility of the flavin cofactor.

  4. Saliva-catalyzed hydrolysis of a ketobemidone ester prodrug

    DEFF Research Database (Denmark)

    Hansen, L.B.; Christrup, Lona Louring; Bundgaard, H.

    Saliva enzyme-catalysed hydrolysis of ester prodrugs or drugs containing sensitive ester groups may be a limiting factor for the buccal absorption of such compounds. Using the isopropyl carbonate ester of ketobemidone as a model substance of a hydrolysis-sensitive prodrug the esterase activity of...... human saliva has been characterized as a function of various factors. The esterase activity was found to decrease rapidly upon storage of the saliva at 37°C. The activity increased with increasing pH in the range 4.5-7.4 and with increasing salivation flow rate up to a rate of 0.9 ml min. Under resting...... conditions, the flow rate was about 0.2 ml min which implied a greatly decreased esterase activity. The activity was highest after fasting and decreased after intake of a meal. The intraindividual variation in the saliva esterase activity was small whereas a larger interindividual variation was found....

  5. A DFT investigation of methanolysis and hydrolysis of triacetin

    CERN Document Server

    Limpanuparb, Taweetham; Tantirungrotechai, Yuthana; 10.1016/j.theochem.2010.05.022

    2012-01-01

    The thermodynamic and kinetic aspects of the methanolysis and hydrolysis reactions of glycerol triacetate or triacetin, a model triacylglycerol compound, were investigated by using Density Functional Theory (DFT) at the B3LYP/6-31++G(d,p) level of calculation. Twelve elementary steps of triacetin methanolysis were studied under acid-catalyzed and base-catalyzed conditions. The mechanism of acid-catalyzed methanolysis reaction which has not been reported yet for any esters was proposed. The effects of substitution, methanolysis/hydrolysis position, solvent and face of nucleophilic attack on the free energy of reaction and activation energy were examined. The prediction confirmed the facile position at the middle position of glycerol observed by NMR techniques. The calculated activation energy and the trends of those factors agree with existing experimental observations in biodiesel production.

  6. LIPASE IMMOBILIZED MEMBRANE REACTOR APPLIED TO BABASSU OIL HYDROLYSIS

    Directory of Open Access Journals (Sweden)

    Merçon F.

    1997-01-01

    Full Text Available This work deals with enzymatic hydrolysis of babassu oil by immobilized lipase in membrane reactors of two types: a flat plate nylon membrane and a hollow fiber polyetherimide membrane on which surface commercial lipases were immobilized by adsorption. Experiments conducted in the hollow fiber reactor showed that during the immobilization step enzyme adsorption followed a sigmoid model, with a maximum adsorption equilibrium time of 30 minutes. Concerning the hydrodynamics of the liquid phases, the results indicate that main diffusional limitations occurred in the organic phase. The amount of protein immobilized and the maximum productivity were, respectively, 1.97 g/m2 and 44 m molH+/m2.s for the hollow fiber and 1.2 g/m2 and 56 m molH+/m2.s for the flat and plate membrane. Both reactors were able to perform the hydrolysis reaction, while maintaining absolute separation of the two phases by the membrane

  7. Optimization of cellulose materials radiolysis and enzyme hydrolysis in combination

    International Nuclear Information System (INIS)

    The influence of dose rate (0.71 kGy/h to 5.43 kGy/h) on the degree of cellulose polymerization irradiated with a dose of 300 kGy was followed. It was inexpressive. The study of the post effect manifesting itself as a reduction in the degree of cellulose polymerization irradiated with 100 kGy was conducted. In dried cellulose after 56 days as much as 30% decline in polymerization was found, in cellulose not dried after 112 days 11% decline in polymerization was found. The optimum mass ratio substrate - enzyme solution for wheat straw hydrolysis (1:5) was found. Hydrolysis of wheat straw irradiated with a dose of 1 MGy yielded these results: the capacity of resulted sugars in substrate 35.6%; sugars concentration in reactive mixture 60 mg/ml. (author)

  8. Effects of substrate loading on enzymatic hydrolysis and viscosity of pretreated barley straw

    DEFF Research Database (Denmark)

    Rosgaard, L.; Andric, Pavle; Dam-Johansen, Kim;

    2007-01-01

    In this study, the applicability of a "fed-batch" strategy, that is, sequential loading of substrate or substrate plus enzymes during enzymatic hydrolysis was evaluated for hydrolysis of steam-pretreated barley straw. The specific aims were to achieve hydrolysis of high substrate levels, low...... viscosity during hydrolysis, and high glucose concentrations. An enzyme system comprising Celluclast and Novozyme 188, a commercial cellulase product derived from Trichoderma reesei and a beta-glucosidase derived from Aspergillus niger, respectively, was used for the enzymatic hydrolysis. The highest final...

  9. Brownian ratchets driven by asymmetric nucleation of hydrolysis waves

    OpenAIRE

    Lakhanpal, Amit; Chou, Tom

    2007-01-01

    We propose a stochastic process wherein molecular transport is mediated by asymmetric nucleation of domains on a one-dimensional substrate. Track-driven mechanisms of molecular transport arise in biophysical applications such as Holliday junction positioning and collagenase processivity. In contrast to molecular motors that hydrolyze nucleotide triphosphates and undergo a local molecular conformational change, we show that asymmetric nucleation of hydrolysis waves on a track can also result i...

  10. Kinetic study of enzymatic hydrolysis of potato starch

    OpenAIRE

    Óscar Fernando Castellanos Domínguez; Pardo, M; P. Rivera; G. González

    2010-01-01

    This article describes the kinetic study of potato starch enzymatic hydrolysis using soluble enzymes (Novo Nordisk). Different assays divided into four groups were used: reaction time (with which it was possible to reduce the 48-72 hour duration reported in the literature to 16 hours with comparable productivity levels); selecting the set of enzymes to be used (different types were evaluated - BAN and Termamyl as alfa-amylases during dextrinisation stage, and AMG, Promozyme and Fungamyl for s...

  11. Proto pectin degradation of raw material by the acid hydrolysis

    International Nuclear Information System (INIS)

    The article presents results of hydrolysis proto pectin apples, an orange and a basket of sunflower depending on ph a solution. The reaction products are divided into three fractions conditionally named as micro gel, pectin substances and oligosaccharide. It was shown that the high-quality pectin extracted from orange, but high percentage of carboxylic group in the sunflower pectin allow it to by used as a drug delivery materials

  12. Allergenicity of Peanut Proteins is Retained Following Enzymatic Hydrolysis

    Science.gov (United States)

    Rationale: Hydrolysis of peanut proteins by food-grade enzymes may reduce allergenicity and could lead to safer forms of immunotherapy. Methods: Light roasted peanut flour extracts were digested with pepsin (37°C, pH 2), Alcalase (60°C pH 8), or Flavourzyme (50°C, pH 7) up to 1 hr, or sequentially w...

  13. Enzyme Recovery from Enzymatic Hydrolysis Reaction of Natural Cellulosic Materials

    Directory of Open Access Journals (Sweden)

    A. Raz

    2010-01-01

    Full Text Available In this paper a simple enzyme recovery method was investigated. Enzymatic hydrolysis of natural celluletic material was evaluated. Experiments were conducted using rise husk as a raw celluletic material. Addition of fresh raw material in to a solution contained free enzyme may enhance the enzymatic reaction. Comparing the experimental result with shrinking core model showed suitable compatibility of theoretical model with the existing experimental data

  14. Efficient Phagocytosis Requires Triacylglycerol Hydrolysis by Adipose Triglyceride Lipase*

    OpenAIRE

    Chandak, Prakash G.; Radović, Branislav; Aflaki, Elma; Kolb, Dagmar; Buchebner, Marlene; Fröhlich, Eleonore; Magnes, Christoph; Sinner, Frank; Haemmerle, Guenter; Zechner, Rudolf; Tabas, Ira; Levak-Frank, Sanja; Kratky, Dagmar

    2010-01-01

    Macrophage phagocytosis is an essential biological process in host defense and requires large amounts of energy. To date, glucose is believed to represent the prime substrate for ATP production in macrophages. To investigate the relative contribution of free fatty acids (FFAs) in this process, we determined the phagocytosis rates in normal mouse macrophages and macrophages of adipose triglyceride lipase (ATGL)-deficient mice. ATGL was shown to be the rate-limiting enzyme for the hydrolysis of...

  15. Synthesis of zirconia colloidal dispersions by forced hydrolysis

    Directory of Open Access Journals (Sweden)

    JELENA P. MARKOVIC

    2006-06-01

    Full Text Available Different zirconia colloidal dispersions (sols were prepared from zirconyl oxynitrate and zirconyl oxychloride solutions by forced hydrolysis. Vigorously stirred acidic solutions of these salts were refluxed at 102 oC for 24 h. Characterization of the obtained sols (pH, solid phase content, crystal structure was performed by potentiometric, XRD, TGA/DTA and SEM measurements. The prepared sols contained almost spherical monoclinic hydrated zirconia particles 7–10 nm in diameter.

  16. Redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis

    OpenAIRE

    Khare, Sagar D.; Kipnis, Yakov; Greisen, Per; Takeuchi, Ryo; Ashani, Yacov; Goldsmith, Moshe; SONG, YIFAN; Gallaher, Jasmine L.; Silman, Israel; Leader, Haim; Sussman, Joel L.; Stoddard, Barry L.; Tawfik, Dan S.; Baker, David

    2012-01-01

    The ability to redesign enzymes to catalyze non-cognate chemical transformations would have wide-ranging applications. We developed a computational method for repurposing the reactivity of active site functional groups of metalloenzymes to catalyze new reactions. Using this method, we engineered a zinc-containing murine adenosine deaminase to catalyze the hydrolysis of a model organophosphate with a catalytic efficiency kcat/Km ~104 M−1s−1 after directed evolution. In the high-resolution crys...

  17. Conditions for enzymatic hydrolysis of egg white proteins

    Institute of Scientific and Technical Information of China (English)

    迟玉杰; 田波; 郭明若

    2003-01-01

    The study on condition for enzymic hydrolysis of in egg white proteins using a dual quadratic rotary,orthogonal and regressive design shows that the optimum temperature was 68.5 ℃, and the optimum pH is 8.21at the substrate concentration of 5.5%. Mathematic model has been established to reveal the relationship be-tween enzyme concentration and hydrolytic time with respect to the same NR.

  18. Derivatization-free gel permeation chromatography elucidates enzymatic cellulose hydrolysis

    OpenAIRE

    Engel Philip; Hein Lea; Spiess Antje C

    2012-01-01

    Abstract Background The analysis of cellulose molecular weight distributions by gel permeation chromatography (GPC) is a powerful tool to obtain detailed information on enzymatic cellulose hydrolysis, supporting the development of economically viable biorefinery processes. Unfortunately, due to work and time consuming sample preparation, the measurement of cellulose molecular weight distributions has a limited applicability until now. Results In this work we present a new method to analyze ce...

  19. A thermomechanical pretreatment to improve enzymatic hydrolysis of wheat straw

    OpenAIRE

    Maache-Rezzoug, Zoulikha; Maugard, Thierry; Nouviaire, Armelle; Goude, Romain; Geoffroy, Stanley; Rezzoug, Sid-Ahmed

    2009-01-01

    International audience Wheat straw was pretreated with a thermomechanical process developed in our laboratory to increase the enzymatic hydrolysis extent of potentially fermentable sugars. This process involves subjecting the lignocellulosic biomass for a short time to saturated steam pressure, followed by an instantaneous decompression to vacuum at 50 mbar. Increasing of the heat induced by the saturated steam result in intensive vapour formation in the capillary porous structure of the p...

  20. Ultrasound-enhanced enzymatic hydrolysis of poly(ethylene terephthalate).

    Science.gov (United States)

    Pellis, Alessandro; Gamerith, Caroline; Ghazaryan, Gagik; Ortner, Andreas; Herrero Acero, Enrique; Guebitz, Georg M

    2016-10-01

    The application of ultrasound was found to enhance enzymatic hydrolysis of poly(ethylene terephthalate) (PET). After a short activation phase up to 6.6times increase in the amount of released products was found. PET powder with lower crystallinity of 8% was hydrolyzed faster when compared to PET with 28% crystallinity. Ultrasound activation was found to be around three times more effective on powders vs. films most likely due to a larger surface area accessible to the enzyme. PMID:27481467

  1. Enzyme Recovery from Enzymatic Hydrolysis Reaction of Natural Cellulosic Materials

    OpenAIRE

    Raz, A; K. Movagharnejad

    2010-01-01

    In this paper a simple enzyme recovery method was investigated. Enzymatic hydrolysis of natural celluletic material was evaluated. Experiments were conducted using rise husk as a raw celluletic material. Addition of fresh raw material in to a solution contained free enzyme may enhance the enzymatic reaction. Comparing the experimental result with shrinking core model showed suitable compatibility of theoretical model with the existing experimental data

  2. β-cyclodextrin assistant flavonoid glycosides enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Xin Jin

    2013-01-01

    Full Text Available Background: The content of icaritin and genistein in herba is very low, preparation with relatively large quantities is an important issue for extensive pharmacological studies. Objective: This study focuses on preparing and enzymic hydrolysis of flavonoid glycosides /β-cyclodextrin inclusion complex to increase the hydrolysis rate. Materials and Methods: The physical property of newly prepared inclusion complex was tested by differential scanning calorimetry (DSC. The conditions of enzymatic hydrolysis were optimized for the bioconversion of flavonoid glycosides /β-cyclodextrin inclusion complex by mono-factor experimental design. The experiments are using the icariin and genistein as the model drugs. Results: The solubility of icariin and genistein were increased almost 17 times from 29.2 μg/ml to 513.5 μg/ml at 60˚ C and 28 times from 7.78 μg/ml to 221.46 μg/ml at 50˚ C, respectively, demonstrating that the inclusion complex could significantly increase the solubility of flavonoid glycosides. Under the optimal conditions, the reaction time of icariin and genistin decreased by 68% and 145%, when compared with that without β-CD inclusion. By using this enzymatic condition, 473 mg icaritin (with the purity of 99.34% and 567 mg genistein(with the purity of 99.46%, which was finally determined by melt point, ESI-MS, UV, IR, 1 H NMR and 13 C NMR, was obtained eventually by transforming the inclusion complex(contains 1.0 g substrates. Conclusion: This study can clearly indicate a new attempt to improve the speed of enzyme-hydrolysis of poorly water-soluble flavonoid glycosides and find a more superior condition which is used to prepare icaritin and genistein.

  3. Plutonium disproportionation. Hydrolysis and local oxidation-state maxima

    International Nuclear Information System (INIS)

    Local maxima in the fractions of the trivalent and hexavalent oxidation states are inherent in the algebra of Pu disproportionation reactions. A new method predicts the pH and the oxidation-state fractions at maximum. Tabulated results illustrate the effects of the Pu oxidation number and Pu(IV) hydrolysis on the maxima. This method suggests a new laboratory approach for discovering Pu oxidation-state maxima. (author)

  4. Increased Anaerobic Digestion Efficiency via the Use of Thermal Hydrolysis

    OpenAIRE

    Fraser, Kino Dwayne

    2010-01-01

    Waste sludge is frequently treated by anaerobic digestion to kill pathogens, generate methane gas and reduce odors so the sludge can be safely land applied. In an attempt to reduce sludge volumes and improve sludge dewatering properties, the use of thermal hydrolysis (TH), a sludge pretreatment method, has been adopted by numerous wastewater treatment plants, among them being the District of Columbia Water and Sewage Authority (DC WASA). The use of anaerobic digestion in collaboration wi...

  5. An Unexpected Hydrolysis Product from Strobilurin Fungicide: Azoxystrobin

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-Gong; RUAN Lu-Lu; ZHAO Jin-Hao; ZHU Guo-Nian

    2011-01-01

    The hydrolysis reaction of azoxystrobin in a methanol solution was studied, obtaining a novel compound 3,3-dimethoxy-2-(2-(6-methoxy pyrimidin-4-yloxy)phenyl) propanoic acid. The hydrolysis reaction may be helpful to explaining the degradation mechanism of azoxystrobin in soil or plant, which is also a method for further study on metabolism in vitro. The crystal structure was confirmed by 1H NMR and MS and determined by single-crystal X-ray diffraction. The crystal belongs to the triclinic system, space group P1 with a = 8.5662(2), b = 10.5074(6), c = 10.9849(7), α = 62.8370(10), β = 73.2170(10), γ = 73.3100(2)o, C16H18N2O6, Mr = 334.32, V = 828.09(9)3, Z = 2, Dc = 1.341 g/cm3, F(000) = 352, μ = 0.104 mm-1, S = 1.075, the final R = 0.0665 and wR = 0.1593 for 2083 observed reflections with I 2σ(I) and 220 variable parameters. The crystal analysis shows that the hydrolysis product contains two rings, and a one- dimensional chain structure is formed via the intermolecular hydrogen bond O(1)–H(101)···N(2).

  6. Dilute Acid Hydrolysis of Cowpea Hulls: A Kinetic Study

    Directory of Open Access Journals (Sweden)

    Chioma M. Onyelucheya

    2016-08-01

    Full Text Available In this study, dilute acid hydrolysis of cowpea hulls was carried out in two stages under the following conditions: pre-hydrolysis (4%v/v H2SO4, 121˚C, 30 minutes and hydrolysis ( at 10% and 15% v/v H2SO4,varied at different temperatures 150 oC, 160 oC, 170 oC and 180 oC for 2.5 hrs.. The substrate was characterized using both Fourier transform infrared spectroscopy and proximate analysis. The percentage lignocellulosic composition of the substrate was obtained for cellulose, hemicellulose and lignin as 34%, 14% and 4.7% respectively. Maximum glucose concentration of 8.09g was obtained using 10%v/v acid concentration at 170˚C after a reaction time of 90min. Saeman’s model gave a good fit for the experimental data. Activation energy for glucose formation using 10%v/v and 15%v/v H2SO4 was obtained as 38.28KJ and 82.204KJ respectively. From the results obtained it can be concluded that cowpea hulls can be converted to a useful product.

  7. Enzymatic Hydrolysis of Defatted Mackerel Protein with Low Bitter Taste

    Institute of Scientific and Technical Information of China (English)

    HOU Hu; LI Bafang; ZHAO Xue

    2011-01-01

    Ultrasound-assisted solvent extraction was confirmed as a novel, effective method for separating lipid from mackerel protein, resulting in a degreasing rate (DR) of 95% and a nitrogen recovery (NR) of 88.6%. To obtain protein hydrolysates with high nitrogen recovery and low bitter taste, enzymatic hydrolysis was performed using eight commercially available proteases. It turned out that the optimum enzyme was the 'Mixed enzymes for animal proteolysis'. An enzyme dosage of 4%, a temperature of 50℃, and a hydrolysis time of 300 min were found to be the optimum conditions to obtain high NR (84.28%) and degree of hydrolysis (DH,16.18%) by orthogonal experiments. Glutamic acid was the most abundant amino acid of MDP (defatted mackerel protein) and MDPH (defatted mackerel protein hydrolysates). Compared with the FAO/WHO reference protein, the essential amino acid chemical scores (CS) were greater than 1.0(1.0-1.7) in MDPH, which is reflective of high nutritional value. This, coupled with the light color and slight fishy odor, indicates that MDPH would potentially have a wide range of applications such as nutritional additives, functional ingredients, and so on.

  8. A single molecule study of cellulase hydrolysis of crystalline cellulose

    Science.gov (United States)

    Liu, Yu-San; Luo, Yonghua; Baker, John O.; Zeng, Yining; Himmel, Michael E.; Smith, Steve; Ding, Shi-You

    2010-02-01

    Cellobiohydrolase-I (CBH I), a processive exoglucanase secreted by Trichoderma reesei, is one of the key enzyme components in a commercial cellulase mixture currently used for processing biomass to biofuels. CBH I contains a family 7 glycoside hydrolase catalytic module, a family 1 carbohydrate-binding module (CBM), and a highlyglycosylated linker peptide. It has been proposed that the CBH I cellulase initiates the hydrolysis from the reducing end of one cellulose chain and successively cleaves alternate β-1,4-glycosidic bonds to release cellobiose as its principal end product. The role each module of CBH I plays in the processive hydrolysis of crystalline cellulose has yet to be convincingly elucidated. In this report, we use a single-molecule approach that combines optical (Total Internal Reflection Fluorescence microscopy, or TIRF-M) and non-optical (Atomic Force Microscopy, or AFM) imaging techniques to analyze the molecular motion of CBM tagged with green fluorescence protein (GFP), and to investigate the surface structure of crystalline cellulose and changes made in the structure by CBM and CBH I. The preliminary results have revealed a confined nanometer-scale movement of the TrCBM1-GFP bound to cellulose, and decreases in cellulose crystal size as well as increases in surface roughness during CBH I hydrolysis of crystalline cellulose.

  9. Gastric protein hydrolysis of raw and roasted almonds in the growing pig.

    Science.gov (United States)

    Bornhorst, Gail M; Drechsler, Krista C; Montoya, Carlos A; Rutherfurd, Shane M; Moughan, Paul J; Singh, R Paul

    2016-11-15

    Gastric protein hydrolysis may influence gastric emptying rate and subsequent protein digestibility in the small intestine. This study examined the gastric hydrolysis of dietary protein from raw and roasted almonds in the growing pig as a model for the adult human. The gastric hydrolysis of almond proteins was quantified by performing tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subsequent image analysis. There was an interaction between digestion time, stomach region, and almond type for gastric protein hydrolysis (pGastric emptying rate of protein was a significant (pgastric protein hydrolysis. In general, greater gastric protein hydrolysis was observed in raw almonds (compared to roasted almonds), hypothesized to be related to structural changes in almond proteins during roasting. Greater gastric protein hydrolysis was observed in the distal stomach (compared to the proximal stomach), likely related to the lower pH in the distal stomach. PMID:27283660

  10. 小龙虾虾壳蛋白酶解条件的研究%Enzymatic Hydrolysis Conditions of Shrimp Shell Protein

    Institute of Scientific and Technical Information of China (English)

    胡川; 陈瑶; 刘洋; 王伟平

    2016-01-01

    Mainly introduce the single enzyme, bi-enzyme collaborative step-by-step enzymatic hydrolysis of shrimp,shrimp heads,the protein removal rate (PR,%)is as the test index,the pH value,enzymolysis temperature,enzymolysis time,enzyme amount are investigated.The results show that the optimal enzymatic hydrolysis conditions are as follows:pH value is 3,temperature is 40 ℃,enzyme dosage is 0.2%,water extracting time is 4 h,protein content in enzymatic hydrolysate is 4.243 mg/mL,protein removal rate is up to 53.9%.The optimal enzymatic hydrolysis conditions of alkaline protease are as follows:pH value is 7.5,temperature is 55 ℃,enzyme dosage is 0.3%, hydrolysis time is 4 h,protein content in enzymatic hydrolysate is 4.855 mg/mL,protein removal rate is up to 61.9%.The optimal conditions of bi-enzyme collaborative step-by-step hydrolysis are as follows:alkaline protease hydrolysis time is 3 h (pH of 7.5,temperature of 40 ℃,enzyme dosage of 0.3%),pepsin hydrolysis time is 1 h (pH of 3.0,temperature of 40 ℃,enzyme dosage of 0.2%), protein removal rate is 86.1%,protein content in enzymatic hydrolysate is 6.715 mg/mL.%文章主要介绍了以单酶、双酶协同分步酶解虾壳、虾头,以脱蛋白率(PR,%)为试验的衡量指标,对 pH 值、酶解温度、酶解时间、酶加量等试验条件进行考察。结果表明:胃蛋白酶的最优水解条件为pH 值3.0,温度40℃,酶加量0.2%,水解时间4 h,酶解液中蛋白质含量为4.243 mg/mL,脱蛋白率最高达53.9%;碱性蛋白酶的最优水解条件为 pH 值7.5,温度55℃,酶加量0.3%,水解时间4 h,酶解液中蛋白质含量为4.855 mg/mL,脱蛋白率最高达61.9%;双酶协同分步酶解最优条件为碱性蛋白酶酶解3 h (pH 7.5、温度40℃、酶加量0.3%),胃蛋白酶酶解1 h (pH 3.0、温度40℃、酶加量0.2%),脱蛋白率为86.1%,酶解液中蛋白质含量为6.715 mg/mL。

  11. A Dynamic Model for Cellulosic Biomass Hydrolysis: a Comprehensive Analysis and Validation of Hydrolysis and Product Inhibition Mechanisms

    DEFF Research Database (Denmark)

    Tsai, Chien Tai; Morales Rodriguez, Ricardo; Sin, Gürkan;

    2014-01-01

    The objective of this study is to perform a comprehensive enzyme kinetics analysis in view of validating and consolidating a semimechanistic kinetic model consisting of homogeneous and heterogeneous reactions for enzymatic hydrolysis of lignocellulosic biomass proposed by the U.S. National...... product inhibitors such as glucose, cellobiose and xylose) to test the hydrolysis and product inhibition mechanisms of the model. A nonlinear least squares method was used to identify the model and estimate kinetic parameters based on the experimental data. The suitable mathematical model for industrial...... application was selected among the proposed models based on statistical information (weighted sum of square errors). The analysis showed that transglycosylation plays a key role at high glucose levels. It also showed that the values of parameters depend on the selected experimental data used for parameter...

  12. Molecular level mechanisms of quartz dissolution at neutral and alkaline conditions with the presence of electrolytes

    Science.gov (United States)

    Liu, Y.; Zhang, S.

    2012-12-01

    The mechanisms of quartz dissolution are intricately affected by pH and electrolyte types. While most of previous studies have focused on mechanisms of quartz dissolution under a single specific condition (e.g., temperature, pH, saturation, or electrolyte type), this study investigates the molecular level mechanisms at combinations of electrolyte and pH conditions, which are more complicated but closer to the reality. Under neutral and alkaline pH conditions, with one of the Ca2+, Mg2+ or Na+ electrolytes in the solution, the dissolution of Q1(Si) and Q2(Si) sites on quartz surface, which represents the most important part of the quartz dissolution story, were investigated by first-principles quantum chemistry calculation methods. Also, large cluster models were used to represent the surface structures of quartz. The M05-2X/6-311+G** level DFT (Density Functional Theory) calculations and the STQN (Synchronous Transit-Guided Quasi-Newton) method (i.e., the QST3 method in Gaussian 03) were used to search transition-state structures and calculate energy barriers of the elementary Si-O bond breaking steps. Our results confirm that the dissolution of quartz can be significantly enhanced with the presence of electrolytes under neutral pH conditions, while under alkaline pH conditions, the behaviors of electrolytes are complicated, depending on where and how the electrolytes bond to quartz surfaces. Under neutral conditions, almost all types of electrolytes can directly bond to the bridging oxygen (BO) sites, leading to a weakened Si-Obr bonding and an increase of quartz dissolution. At alkaline conditions, however, electrolytes can no longer link to BO sites but rather link to terminal oxygen sites, leading to different dissolution mechanisms of quartz. The behaviors of specific electrolytes Na+, Ca2+, and Mg2+ on Q1(Si) and Q2 (Si) sites are also different, leading to more complicated dissolution mechanisms. Finally, the calculated energy barriers of possible hydrolysis

  13. Titratable Acidity and Alkalinity of Red Soil Surfaces

    Institute of Scientific and Technical Information of China (English)

    SHAOZONG-CHEN; HEQUN; 等

    1993-01-01

    The surfaces of red soils have an apparent amphoteric character,carrying titratable acidity and titratable alkalinity simultaneously.The titratable acidity arises from deprotonation of hydroxyl groups of hydrous oxide-type surfaces and dissociation of weak-acid functional groups of soil organic matter,while the titratable alkalinity is derived from release of hydroxyl groups of hydrous oxide-type surfaces.The titratable acidity and titratable alkalinity mainly depended on the composition and content of iron and aluminum oxides in the soils.The results showed that the titratable acidity and titratable alkalinity were in significantly positive correlation not only with the content of amorphous aluminum oxide(Alo) and iron oxide(Feo) extracted with acid ammonium oxalate solution,free iron oxide(Fed) extracted with sodium dithionite-citrate-bicarbonate(DCB) and clays,but also with the zero point of charge (ZPC) of the samples.Organic matter made an important contribution to the titratable acidity.the titratable alkalinity was closely correlated with the amount of fluoride ions adsorbed.The titratable acidity and titratable alkalinity of red soils were influenced by parent materials,being in the order of red soil derived from basalt> that from tuff> that from granite.The titratable acidity and titratable alkalinity ware closely related with origination of the variable charges of red soils,and to a certain extent were responsible for variable negative and positive charges of the soils.

  14. Short-chain fatty acids production and microbial community in sludge alkaline fermentation: Long-term effect of temperature.

    Science.gov (United States)

    Yuan, Yue; Liu, Ye; Li, Baikun; Wang, Bo; Wang, Shuying; Peng, Yongzhen

    2016-07-01

    Sludge alkaline fermentation has been reported to achieve efficient short-chain fatty acids (SCFAs) production. Temperature played important role in further improved SCFAs production. Long-term SCFAs production from sludge alkaline fermentation was compared between mesotherm (30±2°C) and microtherm (15±2°C). The study of 90days showed that mesotherm led to 2.2-folds production of SCFAs as microtherm and enhanced the production of acetic acid as major component of SCFAs. Soluble protein and carbohydrate at mesotherm was 2.63-folds as that at microtherm due to higher activities of protease and α-glucosidase, guaranteeing efficient substrates to produce SCFAs. Illumina MiSeq sequencing revealed that microtherm increased the abundance of Corynebacterium, Alkaliflexus, Pseudomonas and Guggenheimella, capable of enhancing hydrolysis. Hydrolytic bacteria, i.e. Alcaligenes, Anaerolinea and Ottowia, were enriched at mesotherm. Meanwhile, acidogenic bacteria showed higher abundance at mesotherm than microtherm. Therefore, enrichment of functional bacteria and higher microbial activities resulted in the improved SCFAs at mesotherm. PMID:27060243

  15. Preparation by alkaline treatment and detailed characterisation of empty hepatitis B virus core particles for vaccine and gene therapy applications

    Science.gov (United States)

    Strods, Arnis; Ose, Velta; Bogans, Janis; Cielens, Indulis; Kalnins, Gints; Radovica, Ilze; Kazaks, Andris; Pumpens, Paul; Renhofa, Regina

    2015-06-01

    Hepatitis B virus (HBV) core (HBc) virus-like particles (VLPs) are one of the most powerful protein engineering tools utilised to expose immunological epitopes and/or cell-targeting signals and for the packaging of genetic material and immune stimulatory sequences. Although HBc VLPs and their numerous derivatives are produced in highly efficient bacterial and yeast expression systems, the existing purification and packaging protocols are not sufficiently optimised and standardised. Here, a simple alkaline treatment method was employed for the complete removal of internal RNA from bacteria- and yeast-produced HBc VLPs and for the conversion of these VLPs into empty particles, without any damage to the VLP structure. The empty HBc VLPs were able to effectively package the added DNA and RNA sequences. Furthermore, the alkaline hydrolysis technology appeared efficient for the purification and packaging of four different HBc variants carrying lysine residues on the HBc VLP spikes. Utilising the introduced lysine residues and the intrinsic aspartic and glutamic acid residues exposed on the tips of the HBc spikes for chemical coupling of the chosen peptide and/or nucleic acid sequences ensured a standard and easy protocol for the further development of versatile HBc VLP-based vaccine and gene therapy applications.

  16. 2nd Generation alkaline electrolysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yde, L. [Aarhus Univ. Business and Social Science - Centre for Energy Technologies (CET), Aarhus (Denmark); Kjartansdottir, C.K. [Technical Univ. of Denmark. DTU Mechanical Engineering, Kgs. Lyngby (Denmark); Allebrod, F. [Technical Univ. of Denmark. DTU Energy Conversion, DTU Risoe Campus, Roskilde (Denmark)] [and others

    2013-03-15

    The overall purpose of this project has been to contribute to this load management by developing a 2{sup nd} generation of alkaline electrolysis system characterized by being compact, reliable, inexpensive and energy efficient. The specific targets for the project have been to: 1) Increase cell efficiency to more than 88% (according to the higher heating value (HHV)) at a current density of 200 mA /cm{sup 2}; 2) Increase operation temperature to more than 100 degree Celsius to make the cooling energy more valuable; 3) Obtain an operation pressure more than 30 bar hereby minimizing the need for further compression of hydrogen for storage; 4) Improve stack architecture decreasing the price of the stack with at least 50%; 5) Develop a modular design making it easy to customize plants in the size from 20 to 200 kW; 6) Demonstrating a 20 kW 2{sup nd} generation stack in H2College at the campus of Arhus University in Herning. The project has included research and development on three different technology tracks of electrodes; an electrochemical plating, an atmospheric plasma spray (APS) and finally a high temperature and pressure (HTP) track with operating temperature around 250 deg. C and pressure around 40 bar. The results show that all three electrode tracks have reached high energy efficiencies. In the electrochemical plating track a stack efficiency of 86.5% at a current density of 177mA/cm{sup 2} and a temperature of 74.4 deg. C has been shown. The APS track showed cell efficiencies of 97%, however, coatings for the anode side still need to be developed. The HTP cell has reached 100 % electric efficiency operating at 1.5 V (the thermoneutral voltage) with a current density of 1. 1 A/cm{sup 2}. This track only tested small cells in an externally heated laboratory set-up, and thus the thermal loss to surroundings cannot be given. The goal set for the 2{sup nd} generation electrolyser system, has been to generate 30 bar pressure in the cell stack. An obstacle to be

  17. Anodic stripping voltammetry of technetium alkaline media

    International Nuclear Information System (INIS)

    A method of direct determination of technetium in 0.1 M NaOH by anodic stripping voltametry at glassy carbon electrode has been elaborated. The peak height of anodic TcO2(OH)2 dissolution was found to be linearly dependent on preconcentration time, and the concentration of technetium in the range 5.0 * 10-8 -6 M. The detection limit for the Tc determination by ASV technique under study was found to be 5.0 * 10-8 M with standard deviation 5-7% (p2(OH)2 anodic dissolution peak current. Addition of 1.0* 10-6 M U(UI) to the sample solution was found to shift the peak of the TcO2(OH)2 100 mV towards negative direction and disturb the linearity of the calibration curve. Therefore; for a successful application of the developed ASV technique for Tc determination in the alkaline media, uranium should be removed from the analyte before determination

  18. Response of Desulfovibrio vulgaris to Alkaline Stress

    Energy Technology Data Exchange (ETDEWEB)

    Stolyar, S.; He, Q.; He, Z.; Yang, Z.; Borglin, S.E.; Joyner, D.; Huang, K.; Alm, E.; Hazen, T.C.; Zhou, J.; Wall, J.D.; Arkin, A.P.; Stahl, D.A.

    2007-11-30

    The response of exponentially growing Desulfovibrio vulgarisHildenborough to pH 10 stress was studied using oligonucleotidemicroarrays and a study set of mutants with genes suggested by microarraydata to be involved in the alkaline stress response deleted. The datashowed that the response of D. vulgaris to increased pH is generallysimilar to that of Escherichia coli but is apparently controlled byunique regulatory circuits since the alternative sigma factors (sigma Sand sigma E) contributing to this stress response in E. coli appear to beabsent in D. vulgaris. Genes previously reported to be up-regulated in E.coli were up-regulated in D. vulgaris; these genes included three ATPasegenes and a tryptophan synthase gene. Transcription of chaperone andprotease genes (encoding ATP-dependent Clp and La proteases and DnaK) wasalso elevated in D. vulgaris. As in E. coli, genes involved in flagellumsynthesis were down-regulated. The transcriptional data also identifiedregulators, distinct from sigma S and sigma E, that are likely part of aD. vulgaris Hildenborough-specific stress response system.Characterization of a study set of mutants with genes implicated inalkaline stress response deleted confirmed that there was protectiveinvolvement of the sodium/proton antiporter NhaC-2, tryptophanase A, andtwo putative regulators/histidine kinases (DVU0331 andDVU2580).

  19. Magic wavelengths in the alkaline earth ions

    CERN Document Server

    Kaur, Jasmeet; Arora, Bindiya; Sahoo, B K

    2015-01-01

    We present magic wavelengths for the $nS$ - $nP_{1/2,3/2}$ and $nS$ - $mD_{3/2,5/2}$ transitions, with the respective ground and first excited $D$ states principal quantum numbers $n$ and $m$, in the Mg$^+$, Ca$^+$, Sr$^+$ and Ba$^+$ alkaline earth ions for linearly polarized lights by plotting dynamic polarizatbilities of the $nS$, $nP_{1/2,3/2}$ and $mD_{3/2,5/2}$ states of the ions. These dynamic polarizabilities are evaluated by employing a relativistic all-order perturbative method and their accuracies are ratified by comparing their static values with the available high precision experimental or other theoretical results. Moreover, some of the magic wavelengths identified by us in Ca$^+$ concurs with the recent measurements reported in [{\\bf Phys. Rev. Lett. 114, 223001 (2015)}]. Knowledge of these magic wavelengths are propitious to carry out many proposed high precision measurements trapping the above ions in the electric fields with the corresponding frequencies.

  20. Solubility of pllutonium in alkaline salt solutions

    International Nuclear Information System (INIS)

    Plutonium solubility data from several studies have been evaluated. For each data set, a predictive model has been developed where appropriate. In addition, a statistical model and corresponding prediction intervals for plutonium solubility as a quadratic function of the hydroxide concentration have been developed. Because of the wide range of solution compositions, the solubility of plutonium can vary by as much as three orders of magnitude for any given hydroxide concentration and still remain within the prediction interval. Any nuclear safety assessments that depend on the maximum amount of plutonium dissolved in alkaline salt solutions should use concentrations at least as great as the upper prediction limits developed in this study. To increase the confidence in the prediction model, it is recommended that additional solubility tests be conducted at low hydroxide concentrations and with all of the other solution components involved. To validate the model for application to actual waste solutions, it is recommended that the plutonium solubilities in actual waste solutions be determined and compared to the values predicted by the quadratic model

  1. Radioimmunoassay of human intestinal alkaline phosphatase

    International Nuclear Information System (INIS)

    A new method of radioimmunoassay using the double antibody method for human intestinal alkaline phosphatase (ALP) was first elaborated. The following results were obtained: 1) In this system, the optimal antibody concentration is 10,000 times the dilution of the original anti-serum, and the optimal assay range is 0.5 to 25 ng. Enzymatic activity of 1 ng intestinal ALP is 4.1 King-Armstrong units. 2) In this system, the sera including intestinal ALP are divided to two groups. One group shows a dose response curve similar to that of purified intestinal ALP, and the other shows a lesser one. This reason is not clear. Hepatic ALP, osseous ALP and placental ALP in the sera show no response in this system. 3) In this system, the B/T value of 50 μg of purified human placental ALP is almost equal to 1 ng of purified human intestinal ALP. Similarly, the B/T value of 50 μg of purified human intestinal ALP is equal to almost 5 ng of purified human placental ALP. This shows that cross-reaction exists between intestinal and placental ALPs at high concentrations. (J.P.N.)

  2. Revisiting zinc passivation in alkaline solutions

    International Nuclear Information System (INIS)

    Highlights: • Zinc passive films were characterised by electrochemical tests coupled with cross sectional FIB-SEM. • Passive layers at pH > 12 comprised of an outer precipitated layer and inner compact oxide. • The electrolyte pH influences the nature/stability of the outer precipitated layer and this impacts the passive state on zinc. • The precipitated layers on zinc at pH 12 support cathode reactions and catalyse oxide growth. -- Abstract: Passive films nominally consist of an inner compact oxide and the outer precipitated layer. In the case of zinc (Zn), the outer layer is mainly precipitated ZnO/Zn(OH)2. Electrolyte pH controls the stability of the outer precipitated layer. In a pH 13 solution, formation of soluble Zn(OH)3− and Zn(OH)42− phases render the precipitated layer unstable increasing zinc corrosion, whereas at pH 12, the precipitated layer (ZnO/Zn(OH)2) is more stable making it an effective anodic barrier upon zinc. These precipitated oxides formed at pH 12 support cathodic reactions on their surface which in turn catalyse further oxide growth by a cathodically driven process. Focused ion beam-scanning electron microscopy (FIB-SEM) was used to support some of the electrochemical assertions, revealing the form and morphology of the passive layers that grow upon zinc exposed to alkaline solutions

  3. Alkaline lipase of glyoxysomes is a glycoprotein

    International Nuclear Information System (INIS)

    In castor bean endosperm, the glyoxysomal alkaline lipase is an intrinsic membrane protein. At four days post-germination, the enzyme is also present in the endoplasmic reticulum where it accounts for approximately 15% of total activity. The active enzyme was purified by Maeshima and Beevers from isolated glyoxysomes. Specific antibodies to the 62 kD subunit were raised in rabbits. The anti-lipase has been used in preliminary experiments to determine the relationship between the lipase of the glyoxysomal membrane and the ER. Results indicate the presence of 3 cross-reacting antigens in carbonate-washed ER and glyoxysomal membranes. The 62 kD subunit, found predominantly in glyoxysomes, was eluted form Con-A Sepharose by 0.5 M α-methylglucoside. An 86kD form present in 2-d ER (but not in 4-d ER) and glyoxysomes did not bind Con-A Sepharose. This form appears to be an unglycosylated precursor or the 62 kD subunit. A 67 kD form was the only species seen in 4-d ER. In a time course experiment, the 67 kD form appeared on the glyoxysomal membrane

  4. Thermodynamics of Np(IV) complexes with gluconic acid under alkaline conditions. Sorption studies

    Energy Technology Data Exchange (ETDEWEB)

    Rojo, H.; Garcia-Gutierrez, M.; Missana, T. [CIEMAT, Madrid (Spain). Sorption, Migration and Colloids Lab.; Tits, J.; Wieland, E. [Paul Scherrer Institut, Villigen (Switzerland). Lab. for Waste Management; Gaona, X. [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. fuer Nukleare Entsorgung

    2013-05-01

    The complexation of Np(IV) with gluconic acid (GLU) under alkaline conditions was investigated in the absence of Ca by carrying out a series of sorption experiments. The decrease of Np(IV) sorption on the sorbing material at increasing concentrations of GLU was interpreted as the formation of Np(IV)-GLU aqueous complexes. The modelling of experimental data according to the Schubert method [1] confirmed the formation of a complex with a Np:GLU ratio 1: 1. The stoichiometry of the complex Np(OH){sub 4}GLU{sup -} was proposed based on the experimental observation that no proton exchange occurred during the course of the complexation reaction and that Np(OH){sub 4}(aq) was the predominant hydrolysis product in the absence of GLU. A log *{beta}{sup 0}{sub 1,4,1} = -2.92 {+-} 0.30 for the formation reaction Np{sup 4+} + 4H{sub 2}O + GLU{sup -} <=> Np(OH){sub 4}GLU{sup -} + 4H{sup +} was calculated based on the conditional stability constants determined from sorption experiments and using the Np(IV) thermodynamic data selected in the NEA reviews [2]. Linear free energy relationships (LFER) confirmed that the stoichiometry and stability of the Np(IV)-GLU complex characterized in this work are consistent with data available for Th(IV)-, U(IV)- and Pu(IV)-GLU complexes. (orig.)

  5. Development and operation of a hybrid acid-alkaline advanced water electrolysis cell

    Science.gov (United States)

    Teschke, O.; Zwanziger, M.

    A hybrid acid-alkaline water electrolysis cell has been developed for hydrogen production. The cell is based on the use of an acidic solution at the cathode and a basic solution at the anode to reduce the minimum theoretical voltage for water decomposition from the thermoneutral potential of 1.47 V to close to 1.4 V at 25 C and 1 atm. The pH differential is maintained by the removal of OH ions from the cathode section and water removal from the anode section, which can be driven by heat energy. A practical cell has been built using a solid polymer electrolyte in which, however, the cathodic compartment is not acidic but neutral. Tests with a platinum black cathode catalyst and a platinum-iridium anode catalyst have resulted in steady-state water hydrolysis at an applied voltage of 0.9 V, and a V-I diagram with a considerably lower slope than that of a conventional cell has been obtained at 90 C.

  6. ALKALINE PRETREATMENT OF SPRUCE AND BIRCH TO IMPROVE BIOETHANOL AND BIOGAS PRODUCTION

    Directory of Open Access Journals (Sweden)

    Azam Jeihanipour

    2010-05-01

    Full Text Available Alkaline pretreatment with NaOH under mild operating conditions was used to improve ethanol and biogas production from softwood spruce and hardwood birch. The pretreatments were carried out at different temperatures between minus 15 and 100ºC with 7.0% w/w NaOH solution for 2 h. The pretreated materials were then enzymatically hydrolyzed and subsequently fermented to ethanol or anaerobically digested to biogas. In general, the pretreatment was more successful for both ethanol and biogas production from the hardwood birch than the softwood spruce. The pretreatment resulted in significant reduction of hemicellulose and the crystallinity of cellulose, which might be responsible for improved enzymatic hydrolyses of birch from 6.9% to 82.3% and spruce from 14.1% to 35.7%. These results were obtained with pretreatment at 100°C for birch and 5°C for spruce. Subsequently, the best ethanol yield obtained was 0.08 g/g of the spruce while pretreated at 100°C, and 0.17 g/g of the birch treated at 100°C. On the other hand, digestion of untreated birch and spruce resulted in methane yields of 250 and 30 l/kg VS of the wood species, respectively. The pretreatment of the wood species at the best conditions for enzymatic hydrolysis resulted in 83% and 74% improvement in methane production from birch and spruce.

  7. The effect of salinity on waste activated sludge alkaline fermentation and kinetic analysis.

    Science.gov (United States)

    Jin, Baodan; Wang, Shuying; Xing, Liqun; Li, Baikun; Peng, Yongzhen

    2016-05-01

    The effect of salinity on sludge alkaline fermentation at low temperature (20°C) was investigated, and a kinetic analysis was performed. Different doses of sodium chloride (NaCl, 0-25g/L) were added into the fermentation system. The batch-mode results showed that the soluble chemical oxygen demand (SCOD) increased with salinity. The hydrolysate (soluble protein, polysaccharide) and the acidification products (short chain fatty acids (SCFAs), NH4(+)-N, and PO4(3-)-P) increased with salinity initially, but slightly declined respectively at higher level salinity (20g/L or 20-25g/L). However, the hydrolytic acidification performance increased in the presence of salt compared to that without salt. Furthermore, the results of Haldane inhibition kinetics analysis showed that the salt enhanced the hydrolysis rate of particulate organic matter from sludge particulate and the specific utilization of hydrolysate, and decreased the specific utilization of SCFAs. Pearson correlation coefficient analysis indicated that the importance of polysaccharide on the accumulation of SCFAs was reduced with salt addition, but the importance of protein and NH4(+)-N on SCFA accumulation was increased. PMID:27155412

  8. Biodegradation of the alkaline cellulose degradation products generated during radioactive waste disposal.

    Directory of Open Access Journals (Sweden)

    Simon P Rout

    Full Text Available The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP including α and β forms of isosaccharinic acid (ISA and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118 in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2 hr(-1 (SE ± 2.9 × 10(-3. These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility.

  9. Digestive alkaline proteases from thornback ray (Raja clavata): Characteristics and applications.

    Science.gov (United States)

    Lassoued, Imen; Hajji, Sawssen; Mhamdi, Samiha; Jridi, Mourad; Bayoudh, Ahmed; Barkia, Ahmed; Nasri, Moncef

    2015-09-01

    This study describes the characterization of a crude protease extract from thornback ray (Raja clavata) and its evaluation in liquid detergent and in deproteinizattion of shrimp waste. At least five clear caseinolytic proteases bands were observed in a zymogram. The crude protease showed optimum activity at pH 8.0 and 50 °C, and it was highly stable over pH range from 8.0 to 11.0. Proteolytic enzymes were very stable in non-ionic surfactants and in the presence of oxidizing agents, maintaining 70% of their activity after incubation for 1 h at 30 °C in the presence of 1% sodium perborate. In addition, they showed high stability and compatibility with various liquid laundry-detergents available in the Tunisian market. The crude extract retained 100% of its activity after preincubation for 60 min at 30 °C in the presence of Nadhif Perfect, Textil and Carrefour laundry detergents. Further, proteases from R. clavata viscera were used for shrimp waste deproteinization in the process of chitin preparation. The percent of protein removal after 3 h hydrolysis at 45 °C with an enzyme/substrate ratio of 30 U/mg of proteins was 74%. These results suggest that enzymatic deproteinization of shrimp wastes by fish endogenous alkaline proteases could be applicable to the chitin production process. PMID:26208858

  10. Fluorescent assay for alkaline phosphatase activity based on graphene oxide integrating with λ exonuclease.

    Science.gov (United States)

    Liu, Xue-Guo; Xing, Xiao-Jing; Li, Bo; Guo, Yong-Ming; Zhang, Ye-Zhen; Yang, Yan; Zhang, Lian-Feng

    2016-07-15

    A novel fluorescence turn-on strategy for the alkaline phosphatase (ALP) assay is developed based on the preferential binding of graphene oxide (GO) to single-stranded DNA (ssDNA) over double-stranded DNA (dsDNA) coupled with λ exonuclease (λ exo) cleavage. Specifically, in the absence of ALP, the substrate-dsDNA constructed by one oligonucleotide with a fluorophore at the 3'-end (F-DNA) and its complementary sequence modified with a 5'-phosphoryl termini (p-DNA), is promptly cleaved by λ exo, and the resulting F-DNA is adsorbed on GO surface, allowing fluorescence quenching. Whereas the introduction of ALP leads to the hydrolysis of the P-DNA, and the yielding 5'-hydroxyl end product hampers the λ exo cleavage, inducing significant fluorescence enhancement due to the weak binding of dsDNA with GO. Under the optimized conditions, the approach exhibits high sensitivity and specificity to ALP with a detection limit of 0.19 U/L, and the determination of ALP in spiked human serum samples has also been realized. Notably, this new approach not only provides a novel and sensitive platform for the ALP activity detection but also promotes the exploitation of the GO-based biosensing for the detection of the protein with no specific binding element, and thus extending the GO-based sensing applications into a new field. PMID:27015149

  11. The aluminum chemistry and corrosion in alkaline solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jinsuo [International Nuclear System Engineering, MS-K 575, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)], E-mail: jszhang@lanl.gov; Klasky, Marc; Letellier, Bruce C. [International Nuclear System Engineering, MS-K 575, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2009-02-15

    Aluminum-alkaline solution systems are very common in engineering applications including nuclear engineering. Consequently, a thorough knowledge of the chemistry of aluminum and susceptibility to corrosion in alkaline solutions is reviewed. The aluminum corrosion mechanism and corrosion rate are examined based on current experimental data. A review of the phase transitions with aging time and change of environment is also performed. Particular attention is given to effect of organic and inorganic ions. As an example, the effect of boron is examined in detail because of the application in nuclear reactor power systems. Methods on how to reduce the corrosion rate of aluminum in alkaline solutions are also highlighted.

  12. Nordic Seas total alkalinity data in CARINA

    Directory of Open Access Journals (Sweden)

    A. Olsen

    2009-08-01

    Full Text Available Water column data of carbon and carbon relevant hydrographic and hydrochemical parameters from 188 previously non-publicly available cruises in the Arctic, Atlantic, and Southern Ocean have been retrieved and merged into a new database: CARINA (CARbon IN the Atlantic. The data have been subject to rigorous quality control (QC in order to ensure highest possible quality and consistency. The data for most of the parameters included were examined in order to quantify systematic biases in the reported values, i.e. secondary quality control. Significant biases have been corrected for in the data products, i.e. the three merged files with measured, calculated and interpolated values for each of the three CARINA regions; the Arctic Mediterranean Seas (AMS, the Atlantic (ATL and the Southern Ocean (SO. With the adjustments the CARINA database is consistent both internally as well as with GLODAP (Key et al., 2004 and is suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation. The Arctic Mediterranean Seas includes the Arctic Ocean and the Nordic Seas, and the quality control was carried out separately in these two areas. This contribution presents an account of the quality control of the total alkalinity (ALK data from the Nordic Seas in CARINA. Out of the 35 cruises from the Nordic Seas included in CARINA, 21 had ALK data. The data from 6 of these were found to be of low quality and should not be used. Of the others, 3 were found to be biased low and were subject to adjustment. Thus the final CARINA data product contains ALK data from 15 cruises from the Nordic Seas, and these data appear consistent to ±3 μmol kg−1.

  13. Chlorine solubility in evolved alkaline magmas

    Directory of Open Access Journals (Sweden)

    M. R. Carroll

    2005-06-01

    Full Text Available Experimental studies of Cl solubility in trachytic to phonolitic melts provide insights into the capacity of alkaline magmas to transport Cl from depth to the earth?s surface and atmosphere, and information on Cl solubility variations with pressure, temperature and melt or fluid composition is crucial for understanding the reasons for variations in Cl emissions at active volcanoes. This paper provides a brief review of Cl solubility experiments conducted on a range of trachytic to phonolitic melt compositions. Depending on the experimental conditions the melts studied were in equilibrium with either a Cl-bearing aqueous fluid or a subcritical assemblage of low- Cl aqueous fluid + Cl-rich brine. The nature of the fluid phase(s was identified by examination of fluid inclusions present in run product glasses and the fluid bulk composition was calculated by mass balance. Chlorine concentrations in the glass increase with increasing Cl molality in the fluid phase until a plateau in Cl concentration is reached when melt coexists with aqueous fluid + brine. With fluids of similar Cl molality, higher Cl concentrations are observed in peralkaline phonolitic melts compared with peraluminous phonolitic melts; overall the Cl concentrations observed in phonolitic and trachytic melts are approximately twice those found in calcalkaline rhyolitic melts under similar conditions. The observed negative pressure dependence of Cl solubility implies that Cl contents of melts may actually increase during magma decompression if the magma coexists with aqueous fluid and Cl-rich brine (assuming melt-vapor equilibrium is maintained. The high Cl contents (approaching 1 wt% Cl observed in some melts/glasses from the Vesuvius and Campi Flegrei areas suggest saturation with a Cl-rich brine prior to eruption.

  14. The Martian ocean: First acid, then alkaline

    Science.gov (United States)

    Schaefer, M. W.

    1992-01-01

    In Mars' distant past, carbon dioxide and water may have been plentiful. Values of total outgassed CO2 from several to about 10 bar are consistent with present knowledge, and this amount of CO2 implies an amount of water outgassed equal to an equivalent depth of 500 to 1000 m. It is quite reasonable, therefore, to envision an early Mars in which there was a body or bodies of liquid water, perhaps in the northern plains, and a dense carbon dioxide atmosphere. Under such conditions, the pH of the water will be low, due to the dissolution of carbon dioxide in the water to form carbonic acid. This acidic water is capable of weathering the available rock quite intensely, particularly because this rock is likely to be heavily fractured (from meteorite bombardment) or even consist of fine particles (such as pyroclastic deposits). As time goes on, however, the carbon dioxide atmosphere will rapidly pass through the ocean to form carbonate deposits. As the density of the atmosphere decreases, so will the flux of carbonic acid into the ocean. Without this input of carbonic acid, the effect of the dissolved weathering products will be to increase the pH of the water. The ocean will then become alkaline. To study this process, I have developed a geochemical cycle model for the atmosphere-hydrosphere-regolith system of Mars. The treatment of geochemical cycles as complex kinetic chemical reactions has been undertaken for terrestrial systems in recent years with much success. This method is capable of elegantly handling the interactions between the simultaneous chemical reactions needed to understand such a system.

  15. Sulfate—Exchange Alkalinity of Ferralsol Colloid

    Institute of Scientific and Technical Information of China (English)

    ZHANGGANGYA; ZHANGXIAONIAN

    1999-01-01

    The amount of OH- replaced by sulfate,i.e.,sulfate-exchange alkalinity,from the electric double layer of ferralsol colloid was measured quantitatively in different conditions with an automatic titration equipment.The amount of OH- release increased with the amount of Na2SO4 added and decreased with raising pH in the suspension of ferralsol colloid.The exchange acidity was displayed as pH was higher than 5.6,If the negative effect of sodium ions was offset,the amount of OH- replaced by sulfate was larger than the original amount of OH- released in the pH range of lower than 5.8.The amount of OH- released decreased rapidly as pH was higher than 6.0 and dropped to zero when pH reached 6.5.In the solution of 2.0molL-1 NaClO4,the amount of OH- repleaced by sulfate from the surface of ferralsol colloid could be considered as the amount of OH- adsorbed by ligand exchange reaction.The amount of OH- released in the solution of NaClO4 concentration below 2.0mol L-1 from which the amount of OH- adsorbed by ligand exchange reaction was subtracted could be conidered as the OH- adsorbed by electrostatic force,The OH- adsorbed by electrostatic force decreased with increases in the concentration of NaClO4 and pH and increased almost linearly with the increasing amount of Na2SON4 added.The percentages of OH- adsorbed by electrostatic force in water and in the electrolyte solutions of 0.05 and 0.5mol L-1 NaClO4 in the total OH- released were calculated,respectively.

  16. Hydrolysis behavior of zirconium diboride during attrition milling

    International Nuclear Information System (INIS)

    Highlights: ► The surface was mainly covered of Zr–O, B–O and B–OH bonds after hydrolysis. ► ZrB2 powder tended to behave like a B2O3-modified surface by milling treatment. ► The surface B/Zr atomic ratio decreased from water to ethanol medium. ► The nano-sized oxide layer (∼5 nm) was observed and helped to improve the dispersion of ZrB2 particles in dilute aqueous media. - Abstract: The hydrolysis behavior of ZrB2 powder during attrition milling was studied in de-ionized water and ethanol. Surface characterization, thermal analysis, chemical analysis and electron microscopy were utilized to analyze the surface properties of as-milled powders. The results proved that the surface of ZrB2 powder was mainly composed of Zr–O, B–O and B–OH bonds as hydrolysis proceeded, and the amount of surface B–O bond was found to increase rapidly in water, suggesting a more B2O3-like surface behavior were developed. Results also showed when milled at 300 rpm for 4 h in water, 64.45 at% of B was in the form of B2O3 at a thickness of ∼3 nm from the surface. The nano-sized surface Zr–B–O oxide layer (∼5 nm in thickness) could help to improve the dispersion of powder in aqueous media.

  17. Study on enzymatic hydrolysis process conditions of black bone chicken-blood%乌鸡血酶解工艺条件的研究

    Institute of Scientific and Technical Information of China (English)

    黄龙鸟; 董文宾

    2013-01-01

    以新鲜乌鸡血为主要原料,研究了乌鸡血的酶解工艺条件,结果表明对乌鸡血进行间歇式超声破碎处理,其效果比机械破碎效果更好;通过比较AS1.398中性蛋白酶、胃蛋白酶、木瓜蛋白酶、碱性蛋白酶对乌鸡血酶解作用能力大小,选取AS1.398中性蛋白酶作为酶解用酶;同时在单因素和正交实验基础上,确定了AS1.398中性蛋白酶的酶解最佳工艺条件为:酶解液初始pH7.5,酶加量为8000U/g,酶解温度为45℃,底物浓度为8%,酶解时间6h.此条件下的水解度达到22.22%,血红素含量为0.62mg/mL.%Fresh black-bone chicken blood as the main raw material to study the enzymatic hydrolysis process conditions,the study showed that intermittent ultrasonic broken processing under the conditions had a better haemolytic effect than mechanical crushing.By comparing the hydrolysis ability of AS1.398 neutral protease, pepsin, papain, alkaline protease on black-bone chicken blood, AS1.398 neutral protease was selected for enzymatic hydrolysis; then on the basis of single factor and orthogonal experiments to determine the optimal enzymatic conditions for AS1.398 neutral protease were: the enzymolysis liquid initial pH7.5, enzyme dosage 8000U/g,the hydrolysis temperature 45℃, substrate concentration 8% , the enzyme solution time 6h. which the degree of hydrolysis reached 22.22%,hemoglobin content was 0.62 mg/mL.

  18. Concentration and separation of vanadium from alkaline media by strong alkaline anion-exchange resin 717

    Institute of Scientific and Technical Information of China (English)

    HUANG Jinwen; SU Peng; WU Wenwei; LIAO Sen; QIN Huiquan; WU Xuehang; HE Xiaohu; TAO Liujia; FAN Yanjin

    2010-01-01

    With strong alkaline anion-exchange resin 717 as the sorbent and NaOH solution as the eluent, a study on the sorption from alkaline solution and elution of vanadium(Ⅴ), silicon(Ⅳ), and aluminium(Ⅲ) was carried out. Different parameters affecting the sorption and elution process,including temperature, pH values as well as the ratio of resin to solution, were investigated. The results show that sorption degree of vanadium(Ⅴ) increases with a decrease of pH values, and V(Ⅴ) ions are easier sorbed than Si(Ⅳ) and Al(Ⅲ) ions under the same conditions. The sorption degree of V(Ⅴ), Si(Ⅳ), and Al(Ⅲ) at pH 9.14 for 15 min are 90.6%, 33.5%, and 21.6%, respectively. Si(Ⅳ), Al(Ⅲ), and V(Ⅴ) ions sorbed on 717 resin were eluted by use of 2 mol.L-1 NaOH solution; the desorption degree of V(Ⅴ), Si(Ⅳ), and Al(Ⅲ) for 5 min are 81.7 %,99.1%, and 99.3%, respectively.

  19. Use of a Mixture of Thermophilic Enzymes Produced by the Fungus Thermoascus aurantiacus to Enhance the Enzymatic Hydrolysis of the Sugarcane Bagasse Cellulose

    Directory of Open Access Journals (Sweden)

    J. R. Monte

    2010-01-01

    Full Text Available Problem statement: The production of hydrolytic enzymes by T. aurantiacus has been performed under solid-state fermentations using lignocellulosic materials. The influences of the inoculum size and of the fermentation medium on the production of hemicellulases and cellulases were studied. Filtrates from the cultures were used to hydrolyze a pulp of sugarcane bagasse and the produced enzymes were shown to be candidates for use as co-adjuvants in plant saccharification. Aproach: The present study focuses on the effect of different culture conditions on production of cellulases and hemicellulases by T. aurantiacus. It is also provides a possible application of T. aurantiacus enzymes in the degradation of sugarcane bagasse pulp, considering that this thermophilic fungus is a potential source of thermostable enzymes. Results: T. aurantiacus was cultivated on four different agricultural residues: sugarcane bagasse, sugarcane straw, wheat straw and corn cob. Xylanase was produced with much more expressive activity than cellulases. The highest titre of xylanase was obtained on sugarcane straw at 9 days (1679.8 IU g−1; the same was observed for β- glucosidase (29.9 IU g−1 at 6 days. With an inoculum load of 108 spores g−1, the amount of exoglucanase produced by the fungus considerably exceeds that produced with 104 spores g−1. Xylanases and cellulases purified from filtrates of the cultures were investigated to hydrolyze a bagasse pulp prepared with alkaline peroxide. Xylanase or sulphuric acid were used as pretreatments for xylan removal, increasing the cellulase performance on pulp bagasse. However, results revealed that the removal of hemicellulose is not the only main factor limiting the cellulose hydrolysis. Conclusion: Results indicate that the xylanase action on alkaline-pretreated sugar cane bagasse enhances the cellulolytic effect promoted by a commercial cellulase. This study thus presents an evaluation of the

  20. Acid hydrolysis of kallar grass (leptochloa fusca) for the production

    International Nuclear Information System (INIS)

    Acid hydrolysis of kallar grass (leptochloa fusca) was carried of with various concentrations of sulphuric acid, ortho phosphoric acid and hydrochloric acid to produce furfural. The study revealed that activity of various hydrolysing acids to produce furfural from kallar grass was of the following order H/sub 2/SO/sub 4/ > H/sub 3/PO/sub 4/ > HCl. Optimum yield (4.78%) of the produce was obtained when the material was digested with 19% H/sub 2/SO/sub 4/ for a period of 20 minutes. (author)

  1. Enzymatic hydrolysis of whey protein concentrates : peptide HPLC profiles

    OpenAIRE

    Mota, M. V. T.; Ferreira, I. M. P. L. V. O.; Oliveira, M. B. P.; Rocha, Cristina M. R.; J. A. Teixeira; Torres, D; M. P. Gonçalves

    2004-01-01

    Hydrolysis of whey protein concentrates (WPCs) at different temperatures and pHs, using three enzymes: pepsin, trypsin, and Alcalase®, was monitored during more than 5 hr by reversed phase HPLC/UV, using a column containing a polystyrene-divinylbenzene copolymer-based packing, and an elution gradient from 8% to 80% acetonitrile containing 0.1% TFA. Peptides were separated according to their polarity and size, and degradation of α-lactalbumin (α-la) and β-lactoglobulin (β-lg) ...

  2. Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis

    DEFF Research Database (Denmark)

    Khare, Sagar D.; Kipnis, Yakov; Greisen, Per Junior; Takeuchi, Ryo; Ashani, Yacov; Goldsmith, Moshe; Song, Yifan; Gallaher, Jasmine L; Silman, Israel; Leader, Haim; Sussman, Joel L; Stoddard, Barry L.; Tawfik, Dan S.; Baker, David

    2012-01-01

    The ability to redesign enzymes to catalyze noncognate chemical transformations would have wide-ranging applications. We developed a computational method for repurposing the reactivity of metalloenzyme active site functional groups to catalyze new reactions. Using this method, we engineered a zinc...... designed enzyme efficiently catalyzes the hydrolysis of the R(P) isomer of a coumarinyl analog of the nerve agent cyclosarin, and it shows marked substrate selectivity for coumarinyl leaving groups. Computational redesign of native enzyme active sites complements directed evolution methods and offers a...

  3. Ester Prodrugs of Ketoprofen: Synthesis, Hydrolysis Kinetics and Pharmacological Evaluation.

    Science.gov (United States)

    Dhokchawle, B V; Tauro, S J; Bhandari, A B

    2016-01-01

    The ester prodrugs of ketoprofen with various naturally available antioxidants; menthol, thymol, eugenol, guiacol, vanillin and sesamol have been synthesized by the dicyclohexyl carbodiimide (DCC) coupling method, purified and characterized by spectral data. Further, their, partition coefficients have been determined as well as, hydrolytic studies performed. The synthesized compounds are more lipophilic compared to the parent moieties and are stable in acidic environment, which is a prerequisite for their oral absorption. Under gastric as well as intestinal pH conditions these prodrugs showed variable susceptibility towards hydrolysis. The title compounds when evaluated for anti-inflammatory, analgesic activities and ulcerogenicity, showed improvement over the parent drug. PMID:25894087

  4. A comparative study of the hydrolysis of gamma irradiated lignocelluloses

    Directory of Open Access Journals (Sweden)

    E. Betiku

    2009-06-01

    Full Text Available The effect of high-dose irradiation as a pretreatment method on two common lignocellulosic materials; hardwood (Khaya senegalensis and softwood (Triplochiton scleroxylon were investigated by assessing the potential of cellulase enzyme derived from Aspergillus flavus Linn isolate NSPR 101 to hydrolyse the materials. The irradiation strongly affected the materials, causing the enzymatic hydrolysis to increase by more than 3 fold. Maximum digestibility occurred in softwood at 40kGy dosage of irradiation, while in hardwood it was at 90kGy dosage. The results also showed that, at the same dosage levels (p < 0.05, hardwood was hydrolysed significantly better compared to the softwood.

  5. Enhanced Thermostability of a Fungal Alkaline Protease by Different Additives

    OpenAIRE

    Nilesh P. Nirmal; R. Seeta Laxman

    2014-01-01

    A fungal strain (Conidiobolus brefeldianus MTCC 5184) isolated from plant detritus secreted a high activity alkaline protease. Thermostability studies of the fungal alkaline protease (FAP) revealed that the protease is stable up to 50°C with 40% residual activity after one hour. Effect of various additives such as sugars, sugar alcohols, polyols, and salts, on the thermostability of FAP was evaluated. Among the additives tested, glycerol, mannitol, xylitol, sorbitol, and trehalose were found ...

  6. A study of extracting uranium by intensified alkaline heap leaching

    International Nuclear Information System (INIS)

    A new technique of extracting uranium by intensified alkaline heap leaching was presented to treat a uranium ore of high carbonate content. A lixiviant, high concentration of alkaline solution, reacts with the ore prior to heap making for some time at a certain temperature,reducing the leaching time remarkably. With this technique, the leaching rate of uranium increased from 50% to 90% or above and the leaching time decreased from 64 days to 12 days. (authors)

  7. Advances on Characteristic and Application of Alkaline Phosphatase%碱性磷酸酶特性及其应用的研究进展

    Institute of Scientific and Technical Information of China (English)

    王秋颖

    2011-01-01

    Alkaline phosphatase(AP) is a kind of hydrolase,which catalyzes the nonspecific hydrolysis of phosphate monoester to produce phosphate or transfer phosphate. AP exists widely in microbial and animal kingdom. AP plays a vital important role in phosphate cycle of world creatures, and has been used widely in the fields of diagnostics, biochemistry and molecular biology. In this paper,the history, the reaction mechanism and application of alkaline phosphatase was reviewed.%碱性磷酸酶(alkaline pllosplaatase,AP)是一种非特异性磷酸单酯酶,能催化磷酸单酯的水解反应,产生无机磷酸和相应的醇、酚或糖,也能催化磷酸基团的转移反应.AP广泛存在于微生物和动物体内,在磷生物地球化学循环过程中有重要作用,并广泛应用于诊断学、生物化学及分子生物学等领域.作者对碱性磷酸酶的研究历史、催化作用机制及其应用进行了综述.

  8. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    Science.gov (United States)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  9. A fungal pathogen secretes plant alkalinizing peptides to increase infection.

    Science.gov (United States)

    Masachis, Sara; Segorbe, David; Turrà, David; Leon-Ruiz, Mercedes; Fürst, Ursula; El Ghalid, Mennat; Leonard, Guy; López-Berges, Manuel S; Richards, Thomas A; Felix, Georg; Di Pietro, Antonio

    2016-01-01

    Plant infections caused by fungi are often associated with an increase in the pH of the surrounding host tissue(1). Extracellular alkalinization is thought to contribute to fungal pathogenesis, but the underlying mechanisms are poorly understood. Here, we show that the root-infecting fungus Fusarium oxysporum uses a functional homologue of the plant regulatory peptide RALF (rapid alkalinization factor)(2,3) to induce alkalinization and cause disease in plants. An upshift in extracellular pH promotes infectious growth of Fusarium by stimulating phosphorylation of a conserved mitogen-activated protein kinase essential for pathogenicity(4,5). Fungal mutants lacking a functional Fusarium (F)-RALF peptide failed to induce host alkalinization and showed markedly reduced virulence in tomato plants, while eliciting a strong host immune response. Arabidopsis plants lacking the receptor-like kinase FERONIA, which mediates the RALF-triggered alkalinization response(6), displayed enhanced resistance against Fusarium. RALF homologues are found across a number of phylogenetically distant groups of fungi, many of which infect plants. We propose that fungal pathogens use functional homologues of alkalinizing peptides found in their host plants to increase their infectious potential and suppress host immunity. PMID:27572834

  10. Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass.

    Science.gov (United States)

    Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S

    2016-06-01

    A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis. PMID:26915095

  11. Study of Enzymatic Hydrolysis of Fructans from Agave salmiana Characterization and Kinetic Assessment

    Directory of Open Access Journals (Sweden)

    Christian Michel-Cuello

    2012-01-01

    Full Text Available Fructans were extracted from Agave salmiana juice, characterized and subjected to hydrolysis process using a commercial inulinase preparation acting freely. To compare the performance of the enzymatic preparation, a batch of experiments were also conducted with chicory inulin (reference. Hydrolysis was performed for 6 h at two temperatures (50, 60∘C and two substrate concentrations (40, 60 mg/ml. Hydrolysis process was monitored by measuring the sugars released and residual substrate by HPLC. A mathematical model which describes the kinetics of substrate degradation as well as fructose production was proposed to analyze the hydrolysis assessment. It was found that kinetics were significantly influenced by temperature, substrate concentration, and type of substrate (P<0.01. The extent of substrate hydrolysis varied from 82 to 99%. Hydrolysis product was mainly constituted of fructose, obtaining from 77 to 96.4% of total reducing sugars.

  12. Periodic peristalsis releasing constrained water in high solids enzymatic hydrolysis of steam exploded corn stover.

    Science.gov (United States)

    Liu, Zhi-Hua; Chen, Hong-Zhang

    2016-04-01

    Periodic peristalsis was used to release water constraint and increase high solids enzymatic hydrolysis efficiency. Glucan and xylan conversion in periodic peristalsis enzymatic hydrolysis (PPEH) at 21% solid loading increased by 5.2-6.4% and 6.8-8.8% compared with that in incubator shaker enzymatic hydrolysis (ISEH), respectively. Hydrolysis kinetics suggested that sugars conversion significantly increased within 24h in PPEH compared with ISEH. The peak height of main water pool increased by 7.7-43.1% within 24h in PPEH compared with ISEH. The increases in peak height of main water pool were consistent with the increases in glucan conversion. Submicroscopic particulates and macro granule residues contributed greatly to water constraint compared with glucose, xylose, ethanol, and Tween 80. Smaller particle size and longer residence time resulted in lower water constraint and facilitated the enzymatic hydrolysis performance. Periodic peristalsis was an effective method to reduce water constraint and increase high solids enzymatic hydrolysis efficiency. PMID:26826953

  13. Study of enzymatic hydrolysis of fructans from Agave salmiana characterization and kinetic assessment.

    Science.gov (United States)

    Michel-Cuello, Christian; Ortiz-Cerda, Imelda; Moreno-Vilet, Lorena; Grajales-Lagunes, Alicia; Moscosa-Santillán, Mario; Bonnin, Johanne; González-Chávez, Marco Martín; Ruiz-Cabrera, Miguel

    2012-01-01

    Fructans were extracted from Agave salmiana juice, characterized and subjected to hydrolysis process using a commercial inulinase preparation acting freely. To compare the performance of the enzymatic preparation, a batch of experiments were also conducted with chicory inulin (reference). Hydrolysis was performed for 6 h at two temperatures (50, 60 °C) and two substrate concentrations (40, 60 mg/ml). Hydrolysis process was monitored by measuring the sugars released and residual substrate by HPLC. A mathematical model which describes the kinetics of substrate degradation as well as fructose production was proposed to analyze the hydrolysis assessment. It was found that kinetics were significantly influenced by temperature, substrate concentration, and type of substrate (P hydrolysis varied from 82 to 99%. Hydrolysis product was mainly constituted of fructose, obtaining from 77 to 96.4% of total reducing sugars. PMID:22629216

  14. Mechanistic investigation in ultrasound induced enhancement of enzymatic hydrolysis of invasive biomass species.

    Science.gov (United States)

    Borah, Arup Jyoti; Agarwal, Mayank; Poudyal, Manisha; Goyal, Arun; Moholkar, Vijayanand S

    2016-08-01

    This study has assessed four invasive weeds, viz. Saccharum spontaneum (SS), Mikania micrantha (MM), Lantana camara (LC) and Eichhornia crassipes (EC) for enzymatic hydrolysis prior to bioalcohol fermentation. Enzymatic hydrolysis of pretreated biomasses of weeds has been conducted with mechanical agitation and sonication under constant (non-optimum) conditions. Profiles of total reducible sugar release have been fitted to HCH-1 model of enzymatic hydrolysis using Genetic Algorithm. Trends in parameters of this model reveal physical mechanism of ultrasound-induced enhancement of enzymatic hydrolysis. Sonication accelerates hydrolysis kinetics by ∼10-fold. This effect is contributed by several causes, attributed to intense micro-convection generated during sonication: (1) increase in reaction velocity, (2) increase in enzyme-substrate affinity, (3) reduction in product inhibition, and (4) enhancement of enzyme activity due to conformational changes in its secondary structure. Enhancement effect of sonication is revealed to be independent of conditions of enzymatic hydrolysis - whether optimum or non-optimum. PMID:26898160

  15. Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM]Cl

    Institute of Scientific and Technical Information of China (English)

    LIU Liying; CHEN Hongzhang

    2006-01-01

    A new cellulose solvent ionic liquid 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) was used to treat wheat straw and steam-exploded wheat straw (SEWS) in order to improve the enzymatic hydrolysis rates, while the water was used as the control. The enzymatic hydrolysis results showed that the hydrolysis rates of materials treated with [BMIM]Cl were improved. The hydrolysis rate of treated wheat straw could reach 70.37% and the SEWS could be completely hydrolyzed, while hydrolysis rates of the wheat straw and SEWS treated with water were 42.78% and 68.78% under the same conditions, respectively. The FTIR analysis and polymerization degree measurement indicated that the hydrolysis rates improvement was attributed to the decrease of the polymerization degrees of cellulose and hemicellulose, the absolute crystallinity degree of cellulose and the increase of its reaction accessibility.

  16. Kinetics of Sawdust Hydrolysis with Dilute Hydrochloric Acid and Ferrous Chloride

    Institute of Scientific and Technical Information of China (English)

    袁传敏; 颜涌捷; 任铮伟; 李庭琛; 曹建勤

    2004-01-01

    With dilute hydrochloric acid as catalyst and promoted by ferrous chloride, hydrolysis of waste sawdust to produce monosaccharides was conducted by using an one-step method in a batch-wise operation reactor. Based on the model of first order consecutive irreversible reactions, the kinetics equation incorporating the term of catalyst concentration was obtained that is suitable for describing the hydrolysis of sawdust. Activation energies were calculated for hydrolysis of sawdust and decomposition of monosaccharides.

  17. A study of the enzymatic hydrolysis of fish frames using model systems

    OpenAIRE

    Himonides, Aristotelis T.; Taylor, Anthony K. D.; Morris, Anne J.

    2011-01-01

    A model system was employed to study the operating conditions and primary parameters of enzymic hydrolysis of cod proteins. Pancreatin, papain, and bromelain were used to hydrolyse minced cod fillets under controlled conditions and with the rate of hydrolysis being continually monitored via both the pH-stat and TNBS method. The two methods were compared and evaluated. The rate of protein solubilisation was plotted against the degree of hydrolysis (DH). Dry fish protein hydrolysate (FPH) powde...

  18. Hydrolysis of green tea residue protein using proteolytic enzyme derived from Aspergillus oryzae

    OpenAIRE

    Xu, Yong-Quan; Zhong, Xiao-Yu; Chen, Su-Qin; Yin, Jun-Feng

    2011-01-01

    Free amino acids are important chemical components which impact the taste of green tea infusion. The hydrolysis of water-insoluble protein in the green tea residue helps to increase the contents of free amino acids components except theanine. Studies indicate that the hydrolysis of the tea protein could be restricted due to interaction of polyphenols with protein. The experiment indicates that the hydrolysis of tea protein by protease is the main trend when the polyphenols concentration is lo...

  19. Study of Enzymatic Hydrolysis of Fructans from Agave salmiana Characterization and Kinetic Assessment

    OpenAIRE

    Christian Michel-Cuello; Imelda Ortiz-Cerda; Lorena Moreno-Vilet; Alicia Grajales-Lagunes; Mario Moscosa-Santillán; Johanne Bonnin; Marco Martín González-Chávez; Miguel Ruiz-Cabrera

    2012-01-01

    Fructans were extracted from Agave salmiana juice, characterized and subjected to hydrolysis process using a commercial inulinase preparation acting freely. To compare the performance of the enzymatic preparation, a batch of experiments were also conducted with chicory inulin (reference). Hydrolysis was performed for 6 h at two temperatures (50, 60°C) and two substrate concentrations (40, 60 mg/ml). Hydrolysis process was monitored by measuring the sugars released and residual substrate by HP...

  20. Glucose obtained from rice bran by ultrasound-assisted enzymatic hydrolysis

    OpenAIRE

    Raquel Cristine Kuhn; Marcio Antonio Mazutti; Edson Luiz Foletto; Valéria Dal Prá; Eduardo Zimmermann; Matheus Souza; Vitória Segabinazzi Foletto; Tanisa Paula Silveira Maleski; Felipe Cavalheiro Lunelli; Pâmela Sfalcin

    2015-01-01

    In this work ultrasound-assisted solid-state enzymatic hydrolysis of rice bran to obtain fermentable sugars was investigated. For this purpose, process variables such as temperature, enzyme concentration and moisture content were evaluated during the enzymatic hydrolysis with and without ultrasound irradiation. The enzyme used is a blend of amylases derived from genetically modified strains of Trichoderma reesei. Kinetic of the enzymatic hydrolysis of rice bran at the constant-reaction rate p...

  1. Continuous monitoring of enzymatic whey protein hydrolysis. Correlation of base consumption with soluble nitrogen content.

    OpenAIRE

    Margot, A; Flaschel, E.; Renken, A.

    1994-01-01

    The optimization of enzymatic protein hydrolysis often represents a tedious task due to complicated analytical methods. The simplest system of continuous analysis consists of monitoring the base consumption during a pH-controlled reactor operation. However, there are other criteria commonly used for characterizing the extent of protein hydrolysis, comprising the degree of hydrolysis (DH) and the SN-TCA index, that is the fraction of nitrogen soluble in trichloroacetic acid under well-defined ...

  2. Regulation of CFTR Cl− channel gating by ATP binding and hydrolysis

    OpenAIRE

    Ikuma, Mutsuhiro; Welsh, Michael J.

    2000-01-01

    Opening and closing of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel is regulated by the interaction of ATP with its two cytoplasmic nucleotide-binding domains (NBD). Although ATP hydrolysis by the NBDs is required for normal gating, the influence of ATP binding versus hydrolysis on specific steps in the gating cycle remains uncertain. Earlier work showed that the absence of Mg2+ prevents hydrolysis. We found that even in the absence of Mg2+, ATP could support cha...

  3. The kinetics of cellulose enzymatic hydrolysis : Implications of the synergism between enzymes

    OpenAIRE

    Väljamäe, Priit

    2002-01-01

    The hydrolysis kinetics of bacterial cellulose and its derivatives by Trichoderma reesei cellulases was studied. The cellulose surface erosion model was introduced to explain the gradual and strong retardation of the rate of enzymatic hydrolysis of cellulose. This model identifies the decrease in apparent processivity of cellobiohydrolases during the hydrolysis as a major contributor to the decreased rates. Both enzyme-related (non-productive binding) and substrate-related (erosion of cellulo...

  4. Production of reducing sugar from oil palm empty fruit bunch (EFB) cellulose fibres via acid hydrolysis

    OpenAIRE

    Siew Xian Chin; Chin Hua Chia; Sarani Zakaria

    2013-01-01

    Cellulosic fibre of oil palm empty fruit bunches (EFB) were used as a raw material for acid hydrolysis using mineral acids (H2SO4 and HCl) to produce reducing sugar at moderate temperature and atmospheric pressure. Experiments were carried out to investigate the effect of the hydrolysis parameters, including acid concentration, temperature, and reaction time, on the total reducing sugar (TRS) yield with the aid of response surface methodology (RSM). The preliminary hydrolysis studies of the E...

  5. Validation of Inhibition Effect in the Cellulose Hydrolysis: a Dynamic Modelling Approach

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Tsai, Chien-Tai; Meyer, Anne S.;

    2011-01-01

    Enzymatic hydrolysis is one of the main steps in the processing of bioethanol from lignocellulosic raw materials. However, complete understanding of the underlying phenomena is still under development. Hence, this study has focused on validation of the inhibition effects in the cellulosic biomass...... hydrolysis employing a dynamic mathematical model. A systematic framework for parameter estimation is used for model validation, which helps overcome the problem of parameter correlation. Data sets obtained from carefully designed enzymatic cellulose and cellobiose hydrolysis experiments, were used for...

  6. Phospholipase C-catalyzed sphingomyelin hydrolysis in a membrane reactor for ceramide production

    DEFF Research Database (Denmark)

    Zhang, Long; Liang, Shanshan; Hellgren, Lars; Jonsson, Gunnar Eigil; Xu, Xuebing

    2008-01-01

    A membrane reactor for the production of ceramide through sphingomyelin hydrolysis with phospholipase C from Clostridium perfringens was studied for the first time. Ceramide has raised a large interest as an active component in both pharmaceutical and cosmetic industry. The enzymatic hydrolysis o...... study demonstrated the improved enzyme reusability, the fast immobilization process, the straightforward up-scaling and the combination of the hydrolysis with the product separation in the membrane reactor developed....

  7. Analysis of sucrose acetates in a crude 6-O-acetyl sucrose product by on-line hydrolysis-high-performance liquid chromatography with pulsed amperometric detection.

    Science.gov (United States)

    Yan, Wenwu; Wang, Nani; Zhang, Peimin; Zhang, Jiajie; Wu, Shuchao; Zhu, Yan

    2016-06-01

    A standard-free and sensitive method was developed for analysis of sucrose acetates in a crude 6-O-acetyl sucrose (S-6-a) product by on-line hydrolysis-high-performance liquid chromatography with pulsed amperometric detection (PAD). Sucrose, three regio-isomers of acetyl sucrose and five regio-isomers of diacetyl sucrose were separated on a C18 column using 3% (v/v) acetonitrile in water as eluent within 25min. After purification with LC followed by semi-preparative HPLC, their chemical structures were identified by 1D, 2D NMR and LC-MS. Moreover, quantification of those regio-isomers was achieved by on-line alkaline hydrolysis to liberate sucrose using a post-column delivery system, and then detected by PAD for indirect estimation of the sucrose acetate content. Under optimal conditions, the linear ranges were from 0.03 to 150μmolL(-1) for sucrose corresponding to sucrose acetates with coefficient of determination as 0.9997 and detection limit as 0.01μmolL(-1) (S/N=3). Good repeatability was obtained (RSDpurification and structure elucidation studies. The recoveries were from 94.89% to 102.31% for sucrose and sucrose acetates. PMID:27139218

  8. A Constructed Alkaline Consortium and Its Dynamics in Treating Alkaline Black Liquor with Very High Pollution Load

    OpenAIRE

    Yang, Chunyu; Cao, Guangchun; Li, Yang; Zhang, Xiaojun; Ren, Hongyan; Wang, Xia; Feng, Jinhui; Zhao, Liping; Xu, Ping

    2008-01-01

    Background Paper pulp wastewater resulting from alkaline extraction of wheat straw, known as black liquor, is very difficult to be treated and causes serious environmental problems due to its high pH value and chemical oxygen demand (COD) pollution load. Lignin, semicellulose and cellulose are the main contributors to the high COD values in black liquor. Very few microorganisms can survive in such harsh environments of the alkaline wheat straw black liquor. A naturally developed microbial com...

  9. 21 CFR 862.1050 - Alkaline phosphatase or isoenzymes test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alkaline phosphatase or isoenzymes test system... Test Systems § 862.1050 Alkaline phosphatase or isoenzymes test system. (a) Identification. An alkaline phosphatase or isoenzymes test system is a device intended to measure alkaline phosphatase or its...

  10. 40 CFR 420.110 - Applicability; description of the alkaline cleaning subcategory.

    Science.gov (United States)

    2010-07-01

    ... alkaline cleaning subcategory. 420.110 Section 420.110 Protection of Environment ENVIRONMENTAL PROTECTION... Alkaline Cleaning Subcategory § 420.110 Applicability; description of the alkaline cleaning subcategory... alkaline cleaning baths to remove mineral and animal fats or oils from the steel, and those...

  11. Review: Continuous hydrolysis and fermentation for cellulosic ethanol production.

    Science.gov (United States)

    Brethauer, Simone; Wyman, Charles E

    2010-07-01

    Ethanol made biologically from a variety of cellulosic biomass sources such as agricultural and forestry residues, grasses, and fast growing wood is widely recognized as a unique sustainable liquid transportation fuel with powerful economic, environmental, and strategic attributes, but production costs must be competitive for these benefits to be realized. Continuous hydrolysis and fermentation processes offer important potential advantages in reducing costs, but little has been done on continuous processing of cellulosic biomass to ethanol. As shown in this review, some continuous fermentations are now employed for commercial ethanol production from cane sugar and corn to take advantage of higher volumetric productivity, reduced labor costs, and reduced vessel down time for cleaning and filling. On the other hand, these systems are more susceptible to microbial contamination and require more sophisticated operations. Despite the latter challenges, continuous processes could be even more important to reducing the costs of overcoming the recalcitrance of cellulosic biomass, the primary obstacle to low cost fuels, through improving the effectiveness of utilizing expensive enzymes. In addition, continuous processing could be very beneficial in adapting fermentative organisms to the wide range of inhibitors generated during biomass pretreatment or its acid catalyzed hydrolysis. If sugar generation rates can be increased, the high cell densities in a continuous system could enable higher productivities and yields than in batch fermentations. PMID:20006926

  12. Hydrolysis kinetics of tulip tree xylan in hot compressed water.

    Science.gov (United States)

    Yoon, Junho; Lee, Hun Wook; Sim, Seungjae; Myint, Aye Aye; Park, Hee Jeong; Lee, Youn-Woo

    2016-08-01

    Lignocellulosic biomass, a promising renewable resource, can be converted into numerous valuable chemicals post enzymatic saccharification. However, the efficacy of enzymatic saccharification of lignocellulosic biomass is low; therefore, pretreatment is necessary to improve the efficiency. Here, a kinetic analysis was carried out on xylan hydrolysis, after hot compressed water pretreatment of the lignocellulosic biomass conducted at 180-220°C for 5-30min, and on subsequent xylooligosaccharide hydrolysis. The weight ratio of fast-reacting xylan to slow-reacting xylan was 5.25 in tulip tree. Our kinetic results were applied to three different reaction systems to improve the pretreatment efficiency. We found that semi-continuous reactor is promising. Lower reaction temperatures and shorter space times in semi-continuous reactor are recommended for improving xylan conversion and xylooligosaccharide yield. In the theoretical calculation, 95% of xylooligosaccharide yield and xylan conversion were achieved simultaneously with high selectivity (desired product/undesired product) of 100 or more. PMID:27208738

  13. Investigation of a Submerged Membrane Reactor for Continuous Biomass Hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Malmali, Mohammadmahdi [Univ. of Arkansas, Fayetteville, AR (United States); Stickel, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wickramasinghe, S. Ranil [Univ. of Arkansas, Fayetteville, AR (United States)

    2015-07-10

    Enzymatic hydrolysis of cellulose is one of the most costly steps in the bioconversion of lignocellulosic biomass. Use of a submerged membrane reactor has been investigated for continuous enzymatic hydrolysis of cellulose thus allowing for greater use of the enzyme compared to a batch process. Moreover, the submerged 0.65 μm polyethersulfone microfiltration membrane avoids the need to pump a cellulose slurry through an external loop. Permeate containing glucose is withdrawn at pressures slightly below atmospheric pressure. The membrane rejects cellulose particles and cellulase enzyme bound to cellulose. Our proof-of-concept experiments have been conducted using a modified, commercially available membrane filtration cell under low fluxes around 75 L/(m2 h). The operating flux is determined by the rate of glucose production. Maximizing the rate of glucose production involves optimizing mixing, reactor holding time, and the time the feed is held in the reactor prior to commencement of membrane filtration and continuous operation. When we maximize glucose production rates it will require that we operate it at low glucose concentration in order to minimize the adverse effects of product inhibition. Consequently practical submerged membrane systems will require a combined sugar concentration step in order to concentrate the product sugar stream prior to fermentation.

  14. Conductimetric study of lanthanide ions hydrolysis in water

    Energy Technology Data Exchange (ETDEWEB)

    M' Halla, J.; Chemla, M.; Bury, R.; David, F.

    1988-01-01

    A careful study of lanthanide salts conductance data show considerable departure between experimental value ad the results expected from the Robinson and Stokes law giving the variation of conductibility against concentration. As a consequence the lambda extrapolated values seem to be not reliable. We propose to introduce in the treatment of conductance data an extra contribution arising from the partial hydrolysis of lanthanides trivalents ions leading to species such as LnOH/sup ++/. High precision measurements of the conductibility of aqueous solutions in the series: LaCl/sub 3/, EuCl/sub 3/, GdCl/sub 3/, LuCl/sub 3/, have been undertaken including a careful control of solutions pH. For each salt two series of determinations were made using either conductibility water or solution of HCl. Results could be computed with a generalized Onsager-Kim relation specialized in the treatment of multicomponent ionic solutions. Our experimental and theoretical procedure leads to a consistent set of data which permits to derive together new lambda extrapolated values and also to reliable values of hydrolysis constants for the studied lanthanides ions.

  15. Conductimetric study of lanthanide ions hydrolysis in water

    International Nuclear Information System (INIS)

    A careful study of lanthanide salts conductance data show considerable departure between experimental value ad the results expected from the Robinson and Stokes law giving the variation of conductibility against concentration. As a consequence the λ extrapolated values seem to be not reliable. We propose to introduce in the treatment of conductance data an extra contribution arising from the partial hydrolysis of lanthanides trivalents ions leading to species such as LnOH++. High precision measurements of the conductibility of aqueous solutions in the series: LaCl3, EuCl3, GdCl3, LuCl3, have been undertaken including a careful control of solutions pH. For each salt two series of determinations were made using either conductibility water or solution of HCl. Results could be computed with a generalized Onsager-Kim relation specialized in the treatment of multicomponent ionic solutions. Our experimental and theoretical procedure leads to a consistent set of data which permits to derive together new λ extrapolated values and also to reliable values of hydrolysis constants for the studied lanthanides ions

  16. Carbon-based strong solid acid for cornstarch hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Nata, Iryanti Fatyasari, E-mail: yanti_tkunlam@yahoo.com [Chemical Engineering Study Program, Faculty of Engineering, Lambung Mangkurat University, Jl. A. Yani Km. 36 Banjarbaru, South Kalimantan 70714 (Indonesia); Irawan, Chairul; Mardina, Primata [Chemical Engineering Study Program, Faculty of Engineering, Lambung Mangkurat University, Jl. A. Yani Km. 36 Banjarbaru, South Kalimantan 70714 (Indonesia); Lee, Cheng-Kang, E-mail: cklee@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Rd. Sec.4, Taipei 106, Taiwan (China)

    2015-10-15

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO{sub 3}H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO{sub 3}H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use.

  17. Enhancement of hydrolysis of Chlorella vulgaris by hydrochloric acid.

    Science.gov (United States)

    Park, Charnho; Lee, Ja Hyun; Yang, Xiaoguang; Yoo, Hah Young; Lee, Ju Hun; Lee, Soo Kweon; Kim, Seung Wook

    2016-06-01

    Chlorella vulgaris is considered as one of the potential sources of biomass for bio-based products because it consists of large amounts of carbohydrates. In this study, hydrothermal acid hydrolysis with five different acids (hydrochloric acid, nitric acid, peracetic acid, phosphoric acid, and sulfuric acid) was carried out to produce fermentable sugars (glucose, galactose). The hydrothermal acid hydrolysis by hydrochloric acid showed the highest sugar production. C. vulgaris was hydrolyzed with various concentrations of hydrochloric acid [0.5-10 % (w/w)] and microalgal biomass [20-140 g/L (w/v)] at 121 °C for 20 min. Among the concentrations examined, 2 % hydrochloric acid with 100 g/L biomass yielded the highest conversion of carbohydrates (92.5 %) into reducing sugars. The hydrolysate thus produced from C. vulgaris was fermented using the yeast Brettanomyces custersii H1-603 and obtained bioethanol yield of 0.37 g/g of algal sugars. PMID:26899601

  18. Efficient phagocytosis requires triacylglycerol hydrolysis by adipose triglyceride lipase.

    Science.gov (United States)

    Chandak, Prakash G; Radovic, Branislav; Aflaki, Elma; Kolb, Dagmar; Buchebner, Marlene; Fröhlich, Eleonore; Magnes, Christoph; Sinner, Frank; Haemmerle, Guenter; Zechner, Rudolf; Tabas, Ira; Levak-Frank, Sanja; Kratky, Dagmar

    2010-06-25

    Macrophage phagocytosis is an essential biological process in host defense and requires large amounts of energy. To date, glucose is believed to represent the prime substrate for ATP production in macrophages. To investigate the relative contribution of free fatty acids (FFAs) in this process, we determined the phagocytosis rates in normal mouse macrophages and macrophages of adipose triglyceride lipase (ATGL)-deficient mice. ATGL was shown to be the rate-limiting enzyme for the hydrolysis of lipid droplet-associated triacylglycerol (TG) in many tissues. Here, we demonstrate that Atgl(-/-) macrophages fail to efficiently hydrolyze cellular TG stores leading to decreased cellular FFA concentrations and concomitant accumulation of lipid droplets, even in the absence of exogenous lipid loading. The reduced availability of FFAs results in decreased cellular ATP concentrations and impaired phagocytosis suggesting that fatty acids must first go through a cycle of esterification and re-hydrolysis before they are available as energy substrate. Exogenously added glucose cannot fully compensate for the phagocytotic defect in Atgl(-/-) macrophages. Hence, phagocytosis was also decreased in vivo when Atgl(-/-) mice were challenged with bacterial particles. These findings imply that phagocytosis in macrophages depends on the availability of FFAs and that ATGL is required for their hydrolytic release from cellular TG stores. This novel mechanism links ATGL-mediated lipolysis to macrophage function in host defense and opens the way to explore possible roles of ATGL in immune response, inflammation, and atherosclerosis. PMID:20424161

  19. Evaluation of hydrolysis and fermentation rates in microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez-Orta, Sharon B.; Yu, Eileen; Katuri, Krishna P.; Scott, Keith [Newcastle Univ., Newcastle upon Tyne (United Kingdom). School of Chemical Engineering and Advanced Materials; Head, Ian M.; Curtis, Tom P. [Newcastle Univ., Newcastle upon Tyne (United Kingdom). School of Civil Engineering and Geosciences

    2011-04-15

    This study determined the influence of substrate degradation on power generation in microbial fuel cells (MFCs) and microbial community selection on the anode. Air cathode MFCs were fed synthetic medium containing different substrates (acetate, glucose and starch) using primary clarifier sewage as source of electroactive bacteria. The complexity of the substrate affected the MFC performance both for power generation and COD removal. Power output decreased with an increase in substrate complexity from 99 {+-} 2 mW m{sup -2} for acetate to 4 {+-} 2 mW m{sup -2} for starch. The organic matter removal and coulombic efficiency (CE) of MFCs with acetate and glucose (82% of COD removal and 26% CE) were greater than MFCs using starch (60% of COD removal and 19% of CE). The combined hydrolysis-fermentation rate obtained (0.0024 h{sup -1}) was considerably lower than the fermentation rate (0.018 h{sup -1}), indicating that hydrolysis of complex compounds limits current output over fermentation. Statistical analysis of microbial community fingerprints, developed on the anode, showed that microbial communities were enriched according to the type of substrate used. Microbial communities producing high power outputs (fed acetate) clustered separately from bacterial communities producing low power outputs (fed complex compounds). (orig.)

  20. Evaluation of hydrolysis and fermentation rates in microbial fuel cells.

    Science.gov (United States)

    Velasquez-Orta, Sharon B; Yu, Eileen; Katuri, Krishna P; Head, Ian M; Curtis, Tom P; Scott, Keith

    2011-04-01

    This study determined the influence of substrate degradation on power generation in microbial fuel cells (MFCs) and microbial community selection on the anode. Air cathode MFCs were fed synthetic medium containing different substrates (acetate, glucose and starch) using primary clarifier sewage as source of electroactive bacteria. The complexity of the substrate affected the MFC performance both for power generation and COD removal. Power output decreased with an increase in substrate complexity from 99±2 mWm(-2) for acetate to 4±2 mWm(-2) for starch. The organic matter removal and coulombic efficiency (CE) of MFCs with acetate and glucose (82% of COD removal and 26% CE) were greater than MFCs using starch (60% of COD removal and 19% of CE). The combined hydrolysis-fermentation rate obtained (0.0024 h(-1)) was considerably lower than the fermentation rate (0.018 h(-1)), indicating that hydrolysis of complex compounds limits current output over fermentation. Statistical analysis of microbial community fingerprints, developed on the anode, showed that microbial communities were enriched according to the type of substrate used. Microbial communities producing high power outputs (fed acetate) clustered separately from bacterial communities producing low power outputs (fed complex compounds). PMID:21347728