WorldWideScience

Sample records for alkaline earth metals

  1. Alkaline and alkaline earth metal phosphate halides and phosphors

    Science.gov (United States)

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  2. Solvent Extraction of Alkaline Earth Metals with Alkylphosphorus Acids

    Institute of Scientific and Technical Information of China (English)

    XUXin; ZHUTun

    2002-01-01

    Solvent extraction equiliria of four main alkaline earth metals (magnesium, calcium, strontium and barium) with di(2-ethylhexyl) phosphoric acid (DEHPA), 2-ethylhexyl phosphonic acid mono-(2-ethylhexyl) ester, di(2,4,4-tri-methylpentyl) phosphinic acid and IR spectra of the extracts have been studied. The selectivity order is dependent of the e/r value and hydration energy of the metal ions. The minor shift of the P→O in IR absorption of the alkaline earth metal extracts indicates that the interaction between the metal ions and P→O is much weaker for alkaline earth metals than for transitional metals. The distribution of the four alkaline earth elements between aqueous solutions and solutions of DEHPA and neutral organophosphorus compunds, tri-n-butyl phosphate (TBP) or tri-octyl phosphine oxide (TOPO) in kerosene have been determined at varying ratio of TBP or TOPO to DEHPA and the positive synergism is observed. The synergic effects is explained by using IR spectra of the loaded organic phase.

  3. Alkaline-earth metal compounds. Oddities and applications

    International Nuclear Information System (INIS)

    This book contains the following six topics: heavy alkaline-earth metal organometallic and metal organic chemistry: synthetic methods and properties (Ana Torvisco, Karin Ruhlandt-Senge); Heavier group 2 Grignard reagents of the type aryl-ae(l)n-x post-Grignard reagents (Matthias Westerhausen, Jens Langer, Sven Krieck, Reinald Fischer, Helmar Goerls, Mathias Koehler); stable molecular magnesium(I) dimers: A fundamentally appealing yet synthetically versatile compound class (Cameron Jones, Andreas Stasch); Modern developments in magnesium reagent chemistry for synthesis (Robert E. Mulvey, Stuart D. Robertson); Alkaline-earth metal complexes in homogeneous polymerization catalysis (Jean-Francois Carpentier, Yann Sarazin); homogeneous catalysis with organometallic complexes of group 2 (Mark R. Crimmin, Michael S. Hill); Chiral Ca, Sr and Ba-catalyzed asymmetric direct-type aldol, Michael, and Mannich and related reactions (Tetsu Tsubogo, Yasuhiro Yamashita, Shu- Kobayashi).

  4. Solubility of fluorides of alkaline earth metals and some rare earths in anhydrous trifluoroacetic acid

    International Nuclear Information System (INIS)

    Solubility of fluorides of alkaline earth and some rare earth metals in anhydrous trifluoroacetic acid is studied. For each type of fluoride solubility depends on the ionic radius of the cation. Solubility of fluorides of alkaline earth metals grows from magnesium to barium. All the fluorides in anhydrous trifluoroacetic acid form solvates. Solvates of strontium and scandium fluorides are shown to decompose at 110 and 150 deg C respectively

  5. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  6. Structural variations in layered alkaline earth metal cyclohexyl phosphonates

    Indian Academy of Sciences (India)

    Ramaswamy Murugavel; Nayanmoni Gogoi

    2009-06-01

    Two series of alkaline earth metal cyclohexyl phosphonates, M(C6H11PO3H)2(H2O) (M = Ca, Sr and Ba) (1–3) and M(C6H11PO3)(H2O) (M = Mg, Ca, Sr, and Ba) (4–7) have been synthesized under mild reaction conditions. All new compounds have been characterized using elemental analysis, IR, TGA and powder X-ray diffraction techniques. The molecular structure of compound 2 determined using single crystal X-ray diffraction technique reveals a layered polymeric structure.

  7. Phisicochemistry of alkaline-earth metals oxides surface

    Science.gov (United States)

    Ekimova, Irina; Minakova, Tamara; Ogneva, Tatyana

    2016-01-01

    The surface state of alkaline-earth metals and magnesium oxides obtained by means of commercial and laboratory ways has been studied in this paper. A complex of methods has been used for identification, determination of a phase composition and morphology of the samples. The high basic character of surface centres has been shown with the help of pH-metry and adsorption of indicators methods. Acid-basic parameters (pHt, pHiis, etc.) can be used for the estimation of a general acid-basic state of metal oxides samples surface and for the supposition about different nature and strength of acid-basic centres as well as for the initial control in the process of acid basic properties of solid oxides surface properties evaluation.

  8. Potassium salts of fatty acids as precipitating agents of alkaline earth metal ions

    International Nuclear Information System (INIS)

    Regularities have been studied of precipitation of ions of alkaline-earth elements with caprilate, pelargonate, caprinate, undecanate, laurate, tridecanate, myristate, pentadecanate, palmitate, and stearate of potassium. It has been shown that completeness of precipitation of metal ions is determined by the nature of alkaline-earth metal and potassium salt as well as by pH value and temperature of the solution. The study of temperature dependence of soaps of alkaline-earth metals makes it possible to calculate the heats of dissolution of laurates of alkaline-earth metals, and a change in entropy and free energy

  9. Conversion of ethanol to propylene over HZSM-5 type zeolites containing alkaline earth metals

    OpenAIRE

    Goto, Daisuke; Harada, Yasumitsu; Furumoto, Yoshiyasu; Takahashi, Atsushi; Fujitani, Tadahiro; Oumi, Yasunori; Sadakane, Masahiro; Sano, Tsuneji

    2010-01-01

    Protonated ZSM-5 type zeolites containing alkaline earth metals (M-HZSM-5, M: alkaline earth metal) were prepared under various synthesis conditions and their catalytic performance in conversion of ethanol to light olefins was investigated in detail. Among M-HZSM-5, Sr-HZSM-5 exhibited an excellent performance.

  10. Triethanolaminelaurylsulfate as a collector for alkaline earth metal ions

    International Nuclear Information System (INIS)

    Basic features of flotation isolation of magnesium, calcium, strontium and barium ions, collected with the help of triethanolaminelaurylsulphate (TEALS) are described. The efficiency of the process depends on the nature of alkaline earth ions, on their concentration, on pH and temperature

  11. THE TRANSFER OF ALKALINE EARTH-METAL ION AT W/NB INTERFACE FACILITATED BY JOSAMYCIN

    Institute of Scientific and Technical Information of China (English)

    范瑞溪; 狄俊伟

    1991-01-01

    This paper describes the invesligation of the transfer behaviour of the alkaline earth-metal cations across the water/nitrobenzene interface facilitated by josamycin in the nitrobenzene phase using semi-differential cyclic voltammetry .The peak height is directly proportional to the concentration of josaycin (nb) and to the potential scan rate.The complexes formed from alkaline earth-metal ions and josamycin at the w/nb interface are ML22+ ion.

  12. Facilitated transport of alkaline and alkaline earth metals through liquid membranes with acidic extractants

    International Nuclear Information System (INIS)

    The removal of radioactive Cs and Sr from the liquid waste of nuclear plants is an important problem for both the defense arid the energy industries. Experiments with bulk liquid membranes and liquid membranes, immobilized on porous support, demonstrated the applicability of these systems for active transport of alkaline cations and Sr from alkaline to acidic solution against the concentration gradient of the metal. The mechanism of transport facilitated by fatty acids for alkali metals, or by di-2-ethylhexyl phosphoric acid for Sr in the presence of Ca and EDTA, corresponds to the open-quotes big carrouselclose quotes model, according to which the carrier is distributed between the membrane and aqueous solutions, where metal/H+- ion exchange takes place. The rate limiting step is the reextraction of Sr from the membrane into the acceptor (acidic) solution and is determined by the diffusion of the protonated carrier from the stripping acidic solution through the corresponding unstirred layer

  13. Vibrational study of isolated 18-crown-6 ether complexes with alkaline-earth metal cations

    NARCIS (Netherlands)

    Gamez, F.; Hurtado, P.; Martinez-Haya, B.; G. Berden,; Oomens, J.

    2011-01-01

    Laser infrared multiple photon dissociation (IRMPD) spectroscopy has been employed to probe the C-O and C-C stretching vibrational modes of 18-crown-6 ether (18c6) complexes with alkaline-earth metals (Mg(2+), Ca(2+). Sr(2+) and Ba(2+)) stored in the cell of a Fourier Transform Ion Cyclotron Resonan

  14. Calculated Structural Phase-Transitions in the Alkaline-Earth Metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt

    1982-01-01

    The local-density approximation and the linear muffin-tin orbital method have been used within the atomic-sphere approximation to calculate structural energy differences for all the alkaline earth metals at zero temperature. At ordinary pressure the calculations predict the crystal structure...

  15. Vibrational study of isolated 18-crown-6 ether complexes with alkaline-earth metal cations

    NARCIS (Netherlands)

    F. Gámez; P. Hurtado; B. Martínez-Haya; G. Berden; J. Oomens

    2011-01-01

    Laser infrared multiple photon dissociation (IRMPD) spectroscopy has been employed to probe the C-O and C-C stretching vibrational modes of 18-crown-6 ether (18c6) complexes with alkaline-earth metals (Mg2+, Ca2+, Sr2+ and Ba2+) stored in the cell of a Fourier Transform Ion Cyclotron Resonance mass

  16. New MOFs based on taurine-N,N-(bismethylphosphonates) of alkalineearth metals

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jan; Melánová, Klára; Zima, Vítězslav; Beneš, L.; Vlček, Milan; Raja, D. S.; Lin, C. H.

    Strasbourg: University of Strasbourg, Francie, 2015. P63. [ISIC18 International Symposium on Intercalation Compounds. 31.05.2015-04.06.2015, Strasbourg] Grant ostatní: AV ČR(CZ) M200501202 Institutional support: RVO:61389013 Keywords : taurine * single crystal diffraction * alkaline earth metal - organic frameworks Subject RIV: CC - Organic Chemistry

  17. Adsorption of Alkali, Alkaline Earth and Transition Metal Atoms on Silicene

    OpenAIRE

    Sahin, Hasan; Peeters, Francois M.

    2013-01-01

    The adsorption characteristics of alkali, alkaline earth and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon, are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, workfuncti...

  18. Tryptophan fluorescence quenching by alkaline earth metal cations in deionized bacteriorhodopsin.

    Science.gov (United States)

    Wang, G; Wang, A J; Hu, K S

    2000-12-01

    Tryptophan quenching by the addition of alkaline earth metal cations to deionized bacteriorhodopsin suspensions was determined. The results show that the addition of cation primarily quenches fluorescence from surface tryptophan residues. The quenched intensity exhibits a 1/R dependence, where R is the ionic radius of the corresponding metal ion. This observation results from a stronger energy transfer coupling between the tryptophan and the retinal. The membrane curvature may be involved as a result of cations motion and correlated conformational changes. PMID:11332888

  19. Characterization of alkali-metal and alkaline-earth nitrates by vibrational spectroscopy

    OpenAIRE

    Martínez, S.; Acción, F.; Puertas, F.

    1992-01-01

    Infrared spectra of sodium and potassium alkaline-metal nitrates and magnesium and calcium alkali-earth nitrates in solid phase had been recorded in order to assign the fundamental bands. The influence of the dispersal médium (alkaline halide), employed in the solid sample preparation have been discussed. The quantitative measurements of the band in ten sities at 1387 cm-1 (present in the I.R. spectra of the four nitrates in KBr médium) allowed us to determine the Lambe...

  20. Uptake of alkaline earth metals in Alcyonarian spicules (Octocorallia)

    Science.gov (United States)

    Taubner, I.; Böhm, F.; Eisenhauer, A.; Garbe-Schönberg, D.; Erez, J.

    2012-05-01

    Alcyonarian corals (Octocorallia) living in shallow tropical seas produce spicules of high-Mg calcite with ˜13 mol% MgCO3. We cultured the tropical alcyonarian coral Rhythisma fulvum in experiments varying temperature (19-32 °C) and pH (8.15-8.44). Alkalinity depletion caused by spicule formation systematically varied in the temperature experiments increasing from 19 to 29 °C. Spicules were investigated for their elemental ratios (Mg/Ca, Sr/Ca) using ICP-OES, δ44/40Ca using TIMS, as well as δ18O and δ13C by IRMS. Mg/Ca increased with temperature from 146 to 164 mmol/mol, in good agreement with the range observed for marine inorganic calcite. Mg/Ca increased by 1.0 ± 0.4 mmol/mol/°C, similar to the sensitivity of Miliolid foraminifera. The pH experiments revealed a linear relationship between Mg/Ca and carbonate ion concentration of +0.03 ± 0.02 mmol/mol/μMol. Sr/Ca ranges from 2.5 to 2.9 mmol/mol being in good agreement with other high-Mg calcites. Temperature and pH experiments showed linear dependencies of Sr/Ca matching inorganic calcite trends and pointing to a decoupling of crystal precipitation rate and calcification rate. Ca isotopes range between 0.7‰ and 0.9‰ in good agreement with aragonitic scleractinian corals and calcitic coccoliths. Presumably Ca isotopes are fractionated by a biological mechanism that may be independent of the skeletal mineralogy. We observe no temperature trend, but a significant decrease of δ44/40Ca with increasing pH. This inverse correlation may characterise biologically controlled intracellular calcification. Oxygen isotope ratios are higher than expected for isotopic equilibrium with a temperature sensitivity of -0.15 ± 0.03‰/°C. Carbon isotope ratios are significantly lower than expected for equilibrium and positively correlated with temperature with a slope of 0.20 ± 0.04‰/°C. Many of our observations on trace element incorporation in R. fulvum may be explained by inorganic processes during crystal

  1. Aluminum/alkaline earth metal composites and method for producing

    Science.gov (United States)

    Russell, Alan M; Anderson, Iver E; Kim, Hyong J; Freichs, Andrew E

    2014-02-11

    A composite is provided having an electrically conducting Al matrix and elongated filaments comprising Ca and/or Sr and/or Ba disposed in the matrix and extending along a longitudinal axis of the composite. The filaments initially comprise Ca and/or Sr and/or Ba metal or allow and then may be reacted with the Al matrix to form a strengthening intermetallic compound comprising Al and Ca and/or Sr and/or Ba. The composite is useful as a long-distance, high voltage power transmission conductor.

  2. Molecular dynamics of liquid alkaline-earth metals near the melting point

    Indian Academy of Sciences (India)

    J K Baria; A R Jani

    2010-10-01

    Results of the studies of the properties like binding energy, the pair distribution function (), the structure factor (), specific heat at constant volume, velocity autocorrelation function (VACF), radial distribution function, self-diffusion coefficient and coordination number of alkaline-earth metals (Be, Mg, Ca, Sr and Ba) near melting point using molecular dynamics (MD) simulation technique using a pseudopotential proposed by us are presented in this article. Good agreement with the experiment is achieved for the binding energy, pair distribution function and structure factor, and these results compare favourably with the results obtained by other such calculations, showing the transferability of the pseudopotential used from solid to liquid environment in the case of alkaline-earth metals.

  3. Calculated Structural Phase-Transitions in the Alkaline-Earth Metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt

    1982-01-01

    The local-density approximation and the linear muffin-tin orbital method have been used within the atomic-sphere approximation to calculate structural energy differences for all the alkaline earth metals at zero temperature. At ordinary pressure the calculations predict the crystal structure sequ...... sequence hcp→fcc→bcc as a function of atomic number. As a function of pressure they predict the structure sequence fcc→bcc→hcp. The structural transitions and the onset of superconductivity under pressure are correlated with the d occupation number.......The local-density approximation and the linear muffin-tin orbital method have been used within the atomic-sphere approximation to calculate structural energy differences for all the alkaline earth metals at zero temperature. At ordinary pressure the calculations predict the crystal structure...

  4. Properties of the triplet metastable states of the alkaline-earth-metal atoms

    International Nuclear Information System (INIS)

    The static and dynamic properties of the alkaline-earth-metal atoms in their metastable state are computed in a configuration interaction approach with a semiempirical model potential for the core. Among the properties determined are the scalar and tensor polarizabilities, the quadrupole moment, some of the oscillator strengths, and the dispersion coefficients of the van der Waals interaction. A simple method for including the effect of the core on the dispersion parameters is described

  5. Thermochemical study of gaseous oxy salts. Communication 7. Alkaline earth metal niobates

    International Nuclear Information System (INIS)

    Existence of gaseous niobates of alkaline-earth metals was ascertained by the method of high-temperature mass-spectrometry. Equilibrium constants involving the molecules and the relevant oxides were calculated, the standard enthalpies of formation and atomization for gaseous BeNbO3, CaNbO3, SrNbO3, BaNbO2, BaNbO3 and BaNb2O6 were determined

  6. Alkaline earth metal doped tin oxide as a novel oxygen storage material

    International Nuclear Information System (INIS)

    Alkaline earth metal doped tin oxide (SnO2) hollow nanospheres with a diameter of 50 nm have been synthesized successfully via a facial solvothermal route in a very simple system composed of only ethanol, acetic acid, SnCl4·5H2O and A(NO3)2·xH2O (A = Mg, Ca, Sr, Ba). The synthesized undoped SnO2 and A-doped SnO2 hollow nanospheres were characterized by the oxygen storage capacity (OSC), X-ray diffraction, transmission electron microscopy and the Brunauer–Emmet–Teller (BET) technique. The OSC values of all samples were measured using thermogravimetric-differential thermal analysis. The incorporation of alkaline earth metal ion into tin oxide greatly enhanced the thermal stability and OSC. Especially, Ba-doped SnO2 hollow nanospheres calcined at 1000 °C for 20 h with a BET surface area of 61 m2 g−1 exhibited the considerably high OSC of 457 μmol-O g−1 and good thermal stability. Alkaline earth metal doped tin oxide has the potential to be a novel oxygen storage material

  7. Alkaline earth metal doped tin oxide as a novel oxygen storage material

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Qiang, E-mail: dong@tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan); Yin, Shu; Yoshida, Mizuki; Wu, Xiaoyong; Liu, Bin [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan); Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro [Department of Research Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Miyamae cho-7, Kofu 400-8511 (Japan); Sato, Tsugio [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan)

    2015-09-15

    Alkaline earth metal doped tin oxide (SnO{sub 2}) hollow nanospheres with a diameter of 50 nm have been synthesized successfully via a facial solvothermal route in a very simple system composed of only ethanol, acetic acid, SnCl{sub 4}·5H{sub 2}O and A(NO{sub 3}){sub 2}·xH{sub 2}O (A = Mg, Ca, Sr, Ba). The synthesized undoped SnO{sub 2} and A-doped SnO{sub 2} hollow nanospheres were characterized by the oxygen storage capacity (OSC), X-ray diffraction, transmission electron microscopy and the Brunauer–Emmet–Teller (BET) technique. The OSC values of all samples were measured using thermogravimetric-differential thermal analysis. The incorporation of alkaline earth metal ion into tin oxide greatly enhanced the thermal stability and OSC. Especially, Ba-doped SnO{sub 2} hollow nanospheres calcined at 1000 °C for 20 h with a BET surface area of 61 m{sup 2} g{sup −1} exhibited the considerably high OSC of 457 μmol-O g{sup −1} and good thermal stability. Alkaline earth metal doped tin oxide has the potential to be a novel oxygen storage material.

  8. Effects of alkaline earth metal ion complexation on amino acid zwitterion stability: Results from infrared action spectroscopy

    NARCIS (Netherlands)

    Bush, M. F.; Oomens, J.; Saykally, R. J.; Williams, E. R.

    2008-01-01

    The structures of isolated alkaline earth metal cationized amino acids are investigated using infrared multiple photon dissociation (IRMPD) spectroscopy and theory. These results indicate that arginine, glutamine, proline, serine, and valine all adopt zwitterionic structures when complexed with diva

  9. An easy access to nanocrystalline alkaline earth metal fluorides - just by shaking

    Science.gov (United States)

    Dreger, M.; Scholz, G.; Kemnitz, E.

    2012-04-01

    High energy ball milling as fast, direct and solvent free method allows an easy access to nanocrystalline alkaline earth metal fluorides MF2 (M: Mg, Ca, Sr, Ba). Comparable metal sources (acetates, carbonates, hydroxides, alkoxides) were used for the reaction with NH4F as fluorinating agent. Even very simple manual shaking experiments between NH4F and the corresponding hydroxides in the stoichiometric ratio (M:F = 1:2, M: Ca, Sr, Ba) give phase pure fluorides. Moreover, comparable classical thermal reactions in closed crucibles at higher temperatures provide phase pure crystalline fluorides in nearly all cases as well.

  10. Apparent molar volumes and compressibilities of alkaline earth metal ions in methanol and dimethylsulfoxide

    Energy Technology Data Exchange (ETDEWEB)

    Warminska, Dorota, E-mail: dorota@chem.pg.gda.p [Department of Physical Chemistry, Chemical Faculty, Gdansk University of Technology, 80-233 Gdansk (Poland); Wawer, Jaroslaw; Grzybkowski, Waclaw [Department of Physical Chemistry, Chemical Faculty, Gdansk University of Technology, 80-233 Gdansk (Poland)

    2010-09-15

    Temperature dependencies of density of magnesium (II), calcium (II), strontium (II), barium (II) perchlorates as well as beryllium (II), and sodium trifluoromethanesulfonates in methanol and dimethylsulfoxide have been determined over the composition range studied. From density data the apparent molar volumes and partial molar volumes of the salts at infinite dilution as well as the expansibilities have been evaluated. The apparent molar isentropic compressibilities of alkaline earth metal perchlorates and beryllium (II) and sodium triflates in methanol and DMSO have been calculated from sound speed data obtained at T = 298.15 K.

  11. Apparent molar volumes and compressibilities of alkaline earth metal ions in methanol and dimethylsulfoxide

    International Nuclear Information System (INIS)

    Temperature dependencies of density of magnesium (II), calcium (II), strontium (II), barium (II) perchlorates as well as beryllium (II), and sodium trifluoromethanesulfonates in methanol and dimethylsulfoxide have been determined over the composition range studied. From density data the apparent molar volumes and partial molar volumes of the salts at infinite dilution as well as the expansibilities have been evaluated. The apparent molar isentropic compressibilities of alkaline earth metal perchlorates and beryllium (II) and sodium triflates in methanol and DMSO have been calculated from sound speed data obtained at T = 298.15 K.

  12. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals.

    Science.gov (United States)

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-08-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: ([3])Li(+), ([3])Na(+), ([4])K(+), ([4])Rb(+), ([6])Cs(+), ([3])Be(2+), ([4])Mg(2+), ([6])Ca(2+), ([6])Sr(2+) and ([6])Ba(2+), but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of ([6])Na(+), the ratio Ueq(Na)/Ueq(bonded anions) is partially correlated with 〈([6])Na(+)-O(2-)〉 (R(2) = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li(+) in

  13. Long-range interacting many-body systems with alkaline-earth-metal atoms

    CERN Document Server

    Olmos, B; Singh, Y; Schreck, F; Bongs, K; Lesanovsky, I

    2012-01-01

    Alkaline-earth-metal atoms exhibit long-range dipolar interactions, which are generated via the coherent exchange of photons on the 3P_0-3D_1-transition of the triplet manifold. In case of bosonic strontium, which we discuss here, this transition has a wavelength of 2.7 \\mu m and a dipole moment of 2.46 Debye, and there exists a magic wavelength permitting the creation of optical lattices that are identical for the states 3P_0 and 3D_1. This interaction enables the realization and study of mixtures of hard-core lattice bosons featuring long-range hopping, with tuneable disorder and anisotropy. We derive the many-body Master equation, investigate the dynamics of excitation transport and analyze spectroscopic signatures stemming from coherent long-range interactions and collective dissipation. Our results show that lattice gases of alkaline-earth-metal atoms permit the creation of long-lived collective atomic states and constitute a simple and versatile platform for the exploration of many-body systems with lon...

  14. Three-photon process for producing a degenerate gas of metastable alkaline-earth-metal atoms

    Science.gov (United States)

    Barker, D. S.; Pisenti, N. C.; Reschovsky, B. J.; Campbell, G. K.

    2016-05-01

    We present a method for creating a quantum degenerate gas of metastable alkaline-earth-metal atoms. This has yet to be achieved due to inelastic collisions that limit evaporative cooling in the metastable states. Quantum degenerate samples prepared in the 1S0 ground state can be rapidly transferred to either the 3P2 or 3P0 state via a coherent three-photon process. Numerical integration of the density-matrix evolution for the fine structure of bosonic alkaline-earth-metal atoms shows that transfer efficiencies of ≃90 % can be achieved with experimentally feasible laser parameters in both Sr and Yb. Importantly, the three-photon process can be set up such that it imparts no net momentum to the degenerate gas during the excitation, which will allow for studies of metastable samples outside the Lamb-Dicke regime. We discuss several experimental challenges to successfully realizing our scheme, including the minimization of differential ac Stark shifts between the four states connected by the three-photon transition.

  15. Ab Initio Calculation of 19F NMR Chemical Shielding for Alkaline-earth-metal Fluorides

    Institute of Scientific and Technical Information of China (English)

    CAI,Shu-Hui(蔡淑惠); CHEN,Zhong,(陈忠); LU,Xin(吕鑫); CHEN,Zhi-Wei(陈志伟); WAN,Hui-Lin(万惠霖)

    2001-01-01

    Gauge-independent atomic orbital (GIAO) method atHartree-Fock (HF) and density functional theory (DFr) lev-els,respectively,was employed to calculate 19F NMR chemi-cal shieldings of solid state alkaline-earth-metal fluorides MF2 (M = Mg,Ca,Sr,Ba).The results show that,although thecalculated19F chemical shieldings tend to be larger than the experinental values,they have a fairly good linear relation-ship with the observed ones.The calculated results based on different combinations of basis sets show that the B3LYP (ahybrid of DFT with HF) predictions are greatly superior tothe I-IF predictions.When a basis set of metal atom with ef- fecfive core potential (ECP) has well representation of valencewavefunction,especially wavefuncfion of d component,andproper definition of core electron nmnher,it can be applied toobtain 19F chemical shielding which is dose to that of all-elec-tron calculation.Tne variation of 19F chemical shielding of al-kaline-earth-metal fluorides correlates well with the latticefactor A/R2.``

  16. Prospects for sympathetic cooling of polar molecules: NH with alkali-metal and alkaline-earth atoms - a new hope

    CERN Document Server

    Soldán, Pavel; Hutson, Jeremy M

    2009-01-01

    We explore the potential energy surfaces for NH molecules interacting with alkali-metal and alkaline-earth atoms using highly correlated ab-initio electronic structure calculations. The surfaces for interaction with alkali-metal atoms have deep wells dominated by covalent forces. The resulting strong anisotropies will produce strongly inelastic collisions. The surfaces for interaction with alkaline-earth atoms have shallower wells that are dominated by induction and dispersion forces. For Be and Mg the anisotropy is small compared to the rotational constant of NH, so that collisions will be relatively weakly inelastic. Be and Mg are thus promising coolants for sympathetic cooling of NH to the ultracold regime.

  17. Electric dipole polarizability of alkaline-Earth-metal atoms from perturbed relativistic coupled-cluster theory with triples

    CERN Document Server

    Chattopadhyay, S; Angom, D

    2014-01-01

    The perturbed relativistic coupled-cluster (PRCC) theory is applied to calculate the electric dipole polarizabilities of alkaline Earth metal atoms. The Dirac-Coulomb-Breit atomic Hamiltonian is used and we include the triple excitations in the relativistic coupled-cluster (RCC) theory. The theoretical issues related to the triple excitation cluster operators are described in detail and we also provide details on the computational implementation. The PRCC theory results are in good agreement with the experimental and previous theoretical results. We, then, highlight the importance of considering the Breit interaction for alkaline Earth metal atoms.

  18. Core-Shell Magneto-Optical Trap for Alkaline-Earth-Metal-Like Atoms

    CERN Document Server

    Lee, Jeongwon; Noh, Jiho; Mun, Jongchul

    2014-01-01

    We propose and demonstrate a new magneto-optical trap (MOT) for alkaline-earth-metal-like (AEML) atoms where the narrow $^{1}S_{0}\\rightarrow$$^{3}P_{1}$ transition and the broad $^{1}S_{0}\\rightarrow$$^{1}P_{1}$ transition are spatially arranged into a core-shell configuration. Our scheme resolves the main limitations of previously adopted MOT schemes, leading to a significant increase in both the loading rate and the steady state atom number. We apply this scheme to $^{174}$Yb MOT, where we show about a hundred-fold improvement in the loading rate and ten-fold improvement in the steady state atom number compared to reported cases that we know of to date. This technique could be readily extended to other AEML atoms to increase the statistical sensitivity of many different types of precision experiments.

  19. Calculation of the lowest electronic excitations of the alkaline earth metals using the relativistic polarization propagator

    Science.gov (United States)

    Brandt, Sven; Pernpointner, Markus

    2015-07-01

    In this work we use the recently implemented four-component polarization propagator for accurate single excitation calculations of alkaline earth metals and compare our results to experimental data. Various approximations to the Dirac-Coulomb Hamiltonian are additionally tested. In Ca spin-orbit coupling already leads to noticeable zero field splitting, which gradually increases for the heavier homologs finally invalidating the singlet and triplet state characterizations. For all systems we observe a very good agreement with experimental transition energies in the considered energy range. For Sr, Ba and Ra non-relativistic approaches already exhibit unacceptable deviations in the reproduction of transition energies and spectral structure. The obtained excited final states are analyzed in terms of atomic donor and acceptor orbital contributions. Our results stress the necessity to use relativistic implementations of the polarization propagator for an accurate description of both electron correlation and relativistic effects contributing to excitation spectra of heavy systems.

  20. Permanent electric dipole moments of alkaline-earth-metal monofluorides: Interplay of relativistic and correlation effects

    Science.gov (United States)

    Prasannaa, V. S.; Sreerekha, S.; Abe, M.; Bannur, V. M.; Das, B. P.

    2016-04-01

    The interplay of the relativistic and correlation effects in the permanent electric dipole moments of the X 2Σ+ electronic ground states of the alkaline-earth-metal monofluorides (BeF, MgF, CaF, SrF, and BaF) has been studied using a relativistic coupled cluster method. The calculations were carried out using double, triple, and quadruple zeta basis sets, and with no core orbitals frozen. The results are compared with those of other calculations available in the literature and with experiments. The correlation trends in the permanent electric dipole moments of these molecules are discussed in detail. This information will be useful in throwing light on the interplay between relativistic and correlation effects of other properties that are relevant to fundamental physics.

  1. Influence of base strength on the catalytic performance of nano-sized alkaline earth metal oxides supported on carbon nanofibers

    NARCIS (Netherlands)

    Frey, A.M.; Yang, J.; Feche, C.; Essayem, N.; Stellwagen, D.R.; Figueras, F.; Jong, de K.P.; Bitter, J.H.

    2013-01-01

    Nano-sized (3 nm) alkaline earth metal oxides supported on carbon nanofibers were prepared by a facile impregnation and heat treatment method of the corresponding nitrates. These supported catalysts showed a significant improved activity for the aldol reaction and transesterification compared to the

  2. Electric dipole polarizabilities at imaginary frequencies for the alkali-metal, alkaline-earth, and inert gas atoms

    CERN Document Server

    Derevianko, Andrei; Babb, James F

    2009-01-01

    The electric dipole polarizabilities evaluated at imaginary frequencies for hydrogen, the alkali-metal atoms, the alkaline earth atoms, and the inert gases are tabulated along with the resulting values of the atomic static polarizabilities, the atom-surface interaction constants, and the dispersion (or van der Waals) constants for the homonuclear and the heteronuclear diatomic combinations of the atoms.

  3. Semiempirical calculation of van der Waals coefficients for alkali-metal and alkaline-earth-metal atoms

    International Nuclear Information System (INIS)

    The van der Waals coefficients, C6, C8, and C10 for the alkali-metal (Li, Na, K, and Rb) and alkaline-earth-metal (Be, Mg, Ca, and Sr) atoms are estimated by a combination of ab initio and semiempirical methods. Polarizabilities and atom-wall coefficients are given as a diagnostic check, and the lowest order nonadiabatic dispersion coefficient, D8 and the three-body coefficient, C9 are also presented. The dispersion coefficients are in agreement with the available relativistic many-body perturbation theory calculations. The contribution from the core was included by using constrained sum rules involving the core polarizability and Hartree-Fock expectation values to estimate the f-value distribution

  4. Dispersion coefficients for H and He interactions with alkali-metal and alkaline-earth-metal atoms

    International Nuclear Information System (INIS)

    The van der Waals coefficients C6, C8, and C10 for H and He interactions with the alkali-metal (Li, Na, K, and Rb) and alkaline-earth-metal (Be, Mg, Ca, and Sr) atoms are determined from oscillator strength sum rules. The oscillator strengths were computed using a combination of ab initio and semiempirical methods. The dispersion parameters generally agree with close to exact variational calculations for Li-H and Li-He at the 0.1% level of accuracy. For larger systems, there is agreement with relativistic many-body perturbation theory estimates of C6 at the 1% level. These validations for selected systems attest to the reliability of the present dispersion parameters. About half the present parameters lie within the recommended bounds of the Standard and Certain compilation [J. Chem. Phys. 83, 3002 (1985)

  5. Alkaline-earth metal phosphonocarboxylates: synthesis, structures, chirality, and luminescence properties

    Czech Academy of Sciences Publication Activity Database

    Zima, Vítězslav; Raja, D. S.; Lee, Y. S.; Chang, T. G.; Wu, Ch. Y.; Hu, Ch. Ch.; Lee, K. R.; Lai, J. Y.; Yeh, J. M.; Lin, Ch. H.

    2013-01-01

    Roč. 42, č. 43 (2013), s. 15332-15342. ISSN 1477-9226 Grant ostatní: AV ČR(CZ) M200501202 Institutional support: RVO:61389013 Keywords : coordination polymers * phosphonates * alkaline-earth Subject RIV: CA - Inorganic Chemistry Impact factor: 4.097, year: 2013

  6. Characterization of alkali-metal and alkaline-earth nitrates by vibrational spectroscopy

    Directory of Open Access Journals (Sweden)

    Martínez, S.

    1992-09-01

    Full Text Available Infrared spectra of sodium and potassium alkaline-metal nitrates and magnesium and calcium alkali-earth nitrates in solid phase had been recorded in order to assign the fundamental bands. The influence of the dispersal médium (alkaline halide, employed in the solid sample preparation have been discussed. The quantitative measurements of the band in ten sities at 1387 cm-1 (present in the I.R. spectra of the four nitrates in KBr médium allowed us to determine the Lambert-Beer law slopes for each compound. These values are differents (bearing in mind experimental random errors, so we have could to affirm the nonexistence of solid solution between the nitrate and the alkaline halide médium. The L-B law obtained by us can be used for the Identification differentiation and quantitative analysis of these nitrates in solid phase, even if they are present in a very low concentration.

    Se ha realizado la asignación de los espectros infrarrojo (IR de los nitratos alcalinos, sódico y potásico, y de los alcalinotérreos, magnésico y cálcico, en estado sólido. Se ha visto la influencia del medio dispersante (haluro alcalino, utilizado en la preparación de la muestra sólida. El estudio cuantitativo de la absorbencia de la banda a 1.387 cm-1 (presente en los espectros IR de los cuatro nitratos en medio KBr permite determinar las pendientes de la Ley de Lambert-Beer Se comprueba que dichas pendientes son diferentes lo que conduce a poder afirmar que no se produce disolución sólida entre el KBr y el nitrato alcalino o alcalinotérreo. La determinación de la ley de Lambert-Beer permite la identificación y el análisis cualitativo y cuantitativo por espectroscopia IR de estos nitratos cuando están presentes en bajas concentraciones en muestras sólidas.

  7. Thermodynamic properties of titanates, zirconates and hafnates of alkaline earth metals

    International Nuclear Information System (INIS)

    The problems are considered arising in critical analysis and choosing recommended values of thermodynamic constants of the series of the most important perovskites-ferroelectrics-titanates, zirconates, and hafnates of alkaline-earth metals finding application in modern radioelectronics. Recommended values of standard thermodynamic values are given: heat capacity Csub(p,298) , enthalpy change H298-H0, entropy S298, heat formation ΔHsub(f,298 ), free energy formation ΔGsub(f,298) , temperatures and heats of phase transitions with indication of errors for the adopted values. The effect of impurities on thermal constants of phase transitions is discussed. The relationships between thermodynamic characteristics of perovskites and crystal structure as well as the effect of orthorhombic distortions of ideal perovskite lattice on entropy of the compounds have been considered. Along with thermodynamic methods of investigation, a great attention is given to other physical methods which have been used for finding temperature regions of phase transitions, Curie points, and temperatures of transition from ferroelectric to paraelectric state. The importance of physical methods is emphasized in those cases when phase transitions are accompanied by small energy changes and are not fixed in measuring heat capacity

  8. Red-emitting alkaline-earth rare-earth pentaoxometallates powders prepared by metal carboxylates solution

    Indian Academy of Sciences (India)

    Kyu-Seog Hwang; Sung-Dae Kim; Seung Hwangbo; Jin-Tae Kim

    2013-06-01

    Moisture-insensitive metal carboxylates that are mostly liquids at room temperature have been first applied to the preparation of strontium europium aluminate (Sr2EuAlO5) powders for red-emitting phosphor under near ultraviolet radiation. Strontium naphthenate, aluminium-2-ethylhexanoate and europium-2-ethylhexanoate were dissolved with toluene to prepare starting solution. Precursor pyrolyzed at 500 °C for 240 min was finally annealed at 900–1200 °C for 240 min in Ar. X-ray diffraction analysis, field emission–scanning electron microscope and fluorescent spectrophotometer were used to evaluate structural and optical properties. For the 1000 °C-annealed powders with regular shape and narrow size distribution confirmed by FE–SEM observation, strong red emission at 615nm under the excitation of 395nm maximum was reached, then the higher annealed samples at above 1100 °C gave the lower emission intensities.

  9. Preparation of decarboxylic-functionalized weak cation exchanger and application for simultaneous separation of alkali, alkaline earth and transition metals.

    Science.gov (United States)

    Peng, Yahui; Gan, Yihui; He, Chengxia; Yang, Bingcheng; Guo, Zhimou; Liang, Xinmiao

    2016-06-01

    A novel weak cation exchanger (WCX) with dicarboxyl groups functionalized has been developed by clicking mercaptosuccinic acid onto silica gel. The simple synthesis starts with modification of silica gel with triethoxyvinylsilane, followed by efficient coupling vinyl-bonded silica with mercaptosuccinic acid via a "thiol-ene" click reaction. The obtained WCX demonstrated good separation and high selectivity towards common metals. Simultaneous separation of 10 alkali, alkaline earth and transition metals was achieved within 12min. Ion exchange and complex mechanism dominates the separation process. Its utility was demonstrated for determination of metals in tap water. PMID:27130093

  10. Preparing poly(aryl ethers) using alkaline earth metal carbonates, organic acid salts, and optionally copper compounds, as catalysts

    International Nuclear Information System (INIS)

    This patent describes an improved process for preparing poly(aryl ethers) and poly(aryl ether ketones) by the reaction of a mixture of at least one bisphenol and at least one dihalobenzenoid compound, and/or a halophenol. The improvement comprises providing to the reaction, a base which is a combination of an alkaline earth metal carbonate and/or bicarbonate and a potassium, rubidium, or cesium salt of an organic acid or combination of organic salts thereof

  11. Preparing poly(aryl ethers) using alkaline earth metal carbonates, organic acid salts, and optionally copper compounds, as catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Winslow, P.A.; Kelsey, D.R.; Matzner, M.

    1988-09-27

    This patent describes an improved process for preparing poly(aryl ethers) and poly(aryl ether ketones) by the reaction of a mixture of at least one bisphenol and at least one dihalobenzenoid compound, and/or a halophenol. The improvement comprises providing to the reaction, a base which is a combination of an alkaline earth metal carbonate and/or bicarbonate and a potassium, rubidium, or cesium salt of an organic acid or combination of organic salts thereof.

  12. Long-range interactions between the alkali-metal atoms and alkaline earth ions

    CERN Document Server

    Kaur, Jasmeet; Arora, Bindiya; Sahoo, B K

    2014-01-01

    Accurate knowledge of interaction potentials among the alkali atoms and alkaline earth ions is very useful in the studies of cold atom physics. Here we carry out theoretical studies of the long-range interactions among the Li, Na, K, and Rb alkali atoms with the Ca$^+$, Ba$^+$, Sr$^+$, and Ra$^+$ alkaline earth ions systematically which are largely motivated by their importance in a number of applications. These interactions are expressed as a power series in the inverse of the internuclear separation $R$. Both the dispersion and induction components of these interactions are determined accurately from the algebraic coefficients corresponding to each power combination in the series. Ultimately, these coefficients are expressed in terms of the electric multipole polarizabilities of the above mentioned systems which are calculated using the matrix elements obtained from a relativistic coupled-cluster method and core contributions to these quantities from the random phase approximation. We also compare our estim...

  13. Accumulation of alkaline earth metals by the green macroalga Bryopsis maxima.

    Science.gov (United States)

    Takahashi, Shigekazu; Aizawa, Kyoko; Nakamura, Saki; Nakayama, Katsumi; Fujisaki, Shingo; Watanabe, Soichiro; Satoh, Hiroyuki

    2015-04-01

    Twenty-five days after the disaster at the Fukushima Daiichi nuclear power plant in 2011, we collected samples of the green macroalga Bryopsis maxima from the Pacific coast of Japan. Bryopsis maxima is a unicellular, multinuclear, siphonous green macroalga. Radiation analysis revealed that B. maxima emitted remarkably high gamma radiation of (131)I, (134)Cs, (137)Cs, and (140)Ba as fission products of (235)U. Interestingly, B. maxima contained naturally occurring radionuclides derived from (226)Ra and (228)Ra. Analysis of element content revealed that B. maxima accumulates many ocean elements, especially high quantities of the alkaline earth metals Sr (15.9 g per dry-kg) and Ba (3.79 g per dry-kg), whereas Ca content (12.5 g per dry-kg) was lower than that of Sr and only 61 % of the mean content of 70 Japanese seaweed species. Time-course analysis determined the rate of radioactive (85)Sr incorporation into thalli to be approximately 0.13 g Sr per dry-kg of thallus per day. Subcellular fractionation of B. maxima cells showed that most of the (85)Sr was localized in the soluble fraction, predominantly in the vacuole or cytosol. Given that (85)Sr radioactivity was permeable through a dialysis membrane, the (85)Sr was considered to be a form of inorganic ion and/or bound with a small molecule. Precipitation analysis with sodium sulfate showed that more than 70% of the Sr did not precipitate as SrSO4, indicating that a proportion of the Sr may bind with small molecules in B. maxima. PMID:25744028

  14. Influence of doping with alkaline earth metals on the optical properties of thermochromic VO2

    Science.gov (United States)

    Dietrich, Marc K.; Kramm, Benedikt G.; Becker, Martin; Meyer, Bruno K.; Polity, Angelika; Klar, Peter J.

    2015-05-01

    Thin films of doped VO2 were deposited, analyzed, and optimized with regard to their solar energy transmittance (Tsol) and visible/luminous light transmittance (Tlum) which are important parameters in the context of smart window applications in buildings. The doping with alkaline earth metals (AEM) like Mg, Ca, Sr, or Ba increased both Tsol and Tlum due to a bandgap widening and an associated absorption edge blue-shift. Thereby, the brown-yellowish color impression of pure VO2 thin films, which is one major hindrance limiting the usage of VO2 as thermochromic window coating, was overcome. Transparent thin films with excellent switching behavior were prepared by sputtering. Highly doped V1-xMexO2 (Me = Ca, Sr, Ba) kept its excellent thermochromic switching behavior up to x(Me) = Me/(Me + V) = 10 at. % doping level, while the optical bandgap energy was increased from 1.64 eV for undoped VO2 to 2.38 eV for x(Mg) = 7.7 at. %, 1.85 eV for x(Ca) = 7.4 at. %, 1.84 eV for x(Sr) = 6.4 at. % and 1.70 eV for x(Ba) = 6.8 at. %, as well as the absorption edge is blue shifted by increasing AEM contents. Also, the critical temperature ϑc, at which the semiconductor-to-metal transition (SMT) occurs, was decreased by AEM doping, which amounted to about -0.5 K/at. % for all AEM on average. The critical temperature was determined by transmittance-temperature hysteresis measurements. Furthermore, Tsol and Tlum were calculated and were found to be significantly enhanced by AEM doping. Tlum increased from 32.0% in undoped VO2 to 43.4% in VO2 doped with 6.4 at. % Sr. Similar improvements were found for other AEM. The modulation of the solar energy transmittance ΔTsol, which is the difference of the Tsol values in the low and high temperature phase, was almost constant or even slightly increased when the doping level was increased up to about 10 at. % Ca, Sr, or Ba.

  15. Validation of ion chromatography for the determination of transition metal ions along with alkali, alkaline earth metal elements for uranium oxide fuel

    International Nuclear Information System (INIS)

    The present report describes the use of Ion chromatography (IC) methods with spectrophotometric and direct conductivity detection for the determination of transition metal elements and alkali alkaline earth metal ions in UO2 pellets. Transmet analytical column and Metrosep- cation 1-2 column were used for the separation of transition metal elements and alkali and alkaline earth metal elements respectively. Oxalic acid and mixture of pyridine 2,6-dicarboxylic acid (PDCA), Na2SO4 and NaCl were used as mobile phase for the separation of transition metal ions and monitored after post - column reaction with 4,2-pyridylazo resorcinol (PAR) at 520nm spectrophotometrically. In the determination of alkali and alkaline earth metal ions the interference of transition metals are removed by complexing them with PDCA. Mixture of tartaric acid and PDCA employed in the separation of alkali and alkaline earth metal ions and monitored on direct conductivity detector. Mobile phase composition was optimised for the base line separation. Calibration plots of Fe3+, Cu2+, Ni2+, Co2+, Cd2+, Mn2+, Li+, Na+, K+, Mg2+, Ca2+ and Sr2+ were linear over a wide dynamic range with regression coefficient better than 0.999. Detection limit of above ions were between 5-30ppb. To prevent the overloading of the cation exchange column, uranium matrix was removed from UO2 sample by solvent extraction with 30% TBP - TOPO/CCl4. Ten sintered UO2 pellets of same lot were analysed and R.S.D. ±10% was obtained. These methods were validated by analysis of ILCE standards of UO2. (author)

  16. Synthesis of monomeric and polymeric alkali and alkaline earth metal complexes using a phosphinoselenoic amide ligand in metal coordination sphere

    Indian Academy of Sciences (India)

    Jayeeta Bhattacharjee; Ravi K Kottalanka; Harinath Adimulam; Tarun K Panda

    2014-09-01

    We report the monomeric complexes of magnesium and calcium of composition [M(THF){2-Ph2P(Se)N(CMe3)}2] [M= Mg (3), n = 1 andM = Ca (4), n = 2)] and polymeric complexes of potassium and barium of composition [K(THF)2{Ph2P(Se)N(CMe3)}] (2) and [K(THF)Ba{Ph2P(Se)N(CMe3)}3](5) respectively. The potassium complex 2 was readily prepared by the reaction of potassium bis(trimethylsilyl)amide with phosphinoselenoic amide ligand (1) at ambient temperature. The calcium complex 4 was prepared by two synthetic routes: in the first method, commonly known as salt metathesis reaction, the potassium complex 2 was made to react with alkaline earth metal diiodide at room temperature to afford the corresponding calcium complex. The metal bis(trimethylsilyl)amides were made to react with protic ligand 1 in the second method to eliminate the volatile bis(trimethyl)silyl amine. The magnesium complex 3 and barium complex 5 were prepared only through the first method. Solid-state structures of all the new complexes were established by single crystal X-ray diffraction analysis. The smaller ionic radii of Mg2+ (0.72Å) and Ca2+ (0.99Å) ions form the monomeric complex, whereas the larger ions K+ (1.38Å) and Ba2+ (1.35Å) were found to form onedimensional polymeric complexes with monoanionic ligand 1. Compound 2 serves an example of magnesium complex with a Mg-Se direct bond.

  17. Effect of doping TiO2 with alkaline-earth metal ions on its photocatalytic activity

    Directory of Open Access Journals (Sweden)

    YUEXIANG LI

    2007-04-01

    Full Text Available TiO2 photocatalysts doped with alkaline-earth metal ions were prepared by the impregnation and coprecipitation methods. The sample were characterized by XRD, XPS and IR spectroscopy. Their activities were evaluated by the photocatalytic production of hydrogen. The activities of the doped photocatalysts dopended on the size of the dopant ions and the dopingmethod. The optimum molar contents of dopant ions Be2+, Mg2+, Ca2+, Sr2+, Ba2+ were 1.25, 1.25, 2.25, 2.25 and 2.25 at. %, respectively. The optimum calcination temperature and time were 400 °C and 1 h.

  18. State-dependent lattices for quantum computing with alkaline-earth-metal atoms

    CERN Document Server

    Daley, Andrew J; Zoller, Peter

    2011-01-01

    Recent experimental progress with Alkaline-Earth atoms has opened the door to quantum computing schemes in which qubits are encoded in long-lived nuclear spin states, and the metastable electronic states of these species are used for manipulation and readout of the qubits. Here we discuss a variant of these schemes, in which gate operations are performed in nuclear-spin-dependent optical lattices, formed by near-resonant coupling to the metastable excited state. This provides an alternative to a previous scheme [A. J. Daley, M. M. Boyd, J. Ye, and P. Zoller, Phys. Rev. Lett 101, 170504 (2008)], which involved independent lattices for different electronic states. As in the previous case, we show how existing ideas for quantum computing with Alkali atoms such as entanglement via controlled collisions can be freed from important technical restrictions. We also provide additional details on the use of collisional losses from metastable states to perform gate operations via a lossy blockade mechanism.

  19. Frontier Orbital Engineering of Metal-Organic Frameworks with Extended Inorganic Connectivity: Porous Alkaline-Earth Oxides.

    Science.gov (United States)

    Hendon, Christopher H; Walsh, Aron; Dincă, Mircea

    2016-08-01

    The development of conductive metal-organic frameworks is challenging owing to poor electronic communication between metal clusters and the organic ligands that bridge them. One route to overcoming this bottleneck is to extend the inorganic dimensionality, while using the organic components to provide chemical functionality. Using density functional theory methods, we demonstrate how the properties of the alkaline-earth oxides SrO and BaO are transformed upon formation of porous solids with organic oxygen sources (acetate and trifluoroacetate). The electron affinity is significantly enhanced in the hybrid materials, while the ionization potential can be tuned over a large range with the polarity of the organic moiety. Furthermore, because of their high-vacuum fraction, these materials have dielectric properties suitable for low-κ applications. PMID:27267149

  20. Thermochemical study of gaseous oxy salts. Communication 11. Alkaline earth metal titanates

    International Nuclear Information System (INIS)

    Partial pressures of vapor components over systems MO-TiO2 (M = Be, Ca, Sr, Ba) were determined by the method of high-temperature mass spectrometry in the temperature range of ∼ 2180-2470 K and gas-phase equilibrium of reactions involving rare earth metal titanates were studied. For BeTiO3 and SrTiO3 molecules the standard formation and atomization enthalpies were determined, which at 298 K were -763 ± 22 and 2309 ± 23 kJ/mol, -868 ± 27 and 2249 ± 28 kJ/mol respectively

  1. Oxidation behavior of Cr(III) during thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides.

    Science.gov (United States)

    Mao, Linqiang; Gao, Bingying; Deng, Ning; Liu, Lu; Cui, Hao

    2016-02-01

    The oxidation behavior of Cr(III) during the thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides (NaCl, KCl, MgCl2, and CaCl2) was investigated. The amounts of Cr(III) oxidized at various temperatures and heating times were determined, and the Cr-containing species in the residues were characterized. During the transformation of chromium hydroxide to Cr2O3 at 300 °C approximately 5% of the Cr(III) was oxidized to form intermediate compounds containing Cr(VI) (i.e., CrO3), but these intermediates were reduced to Cr2O3 when the temperature was above 400 °C. Alkali and alkaline earth metals significantly promoted the oxidation of Cr(III) during the thermal drying process. Two pathways were involved in the influences the alkali and alkaline earth metals had on the formation of Cr(VI). In pathway I, the alkali and alkaline earth metals were found to act as electron transfer agents and to interfere with the dehydration process, causing more intermediate Cr(VI)-containing compounds (which were identified as being CrO3 and Cr5O12) to be formed. The reduction of intermediate compounds to Cr2O3 was also found to be hindered in pathway I. In pathway II, the alkali and alkaline earth metals were found to contribute to the oxidation of Cr(III) to form chromates. The results showed that the presence of alkali and alkaline earth metals significantly increases the degree to which Cr(III) is oxidized during the thermal drying of chromium-containing sludge. PMID:26650573

  2. Structural diversity in binuclear complexes of alkaline earth metal ions with 4,6-diacetylresorcinol

    Science.gov (United States)

    Shebl, Magdy; Khalil, Saied M. E.; Taha, A.; Mahdi, M. A. N.

    2012-11-01

    A new series of binuclear and mixed-ligand complexes with the general formula: [M 2(LO)yClz]; where M = Mg(II), Ca(II), Sr(II) and Ba(II); H2L = 4,6-diacetylresorcinol, the secondary ligand L' = acetylacetone (acac), 8-hydroxyquinoline (8-HQ) or 2,2'-bipyridyl (Bipy), n = 0-2, m = 1, 2, x = 0, 1, 2, 4, y = 0, 2, 4, 5 and z = 0-2; have been synthesized. They have been characterized by the analytical and spectral methods (IR, 1H NMR and mass) as well as TGA and molar conductivity measurements. The spectroscopic and conductance data suggested that the H2L ligand behaves as a neutral, monobasic or dibasic tetradentate ligand, depending on the basicity of the secondary ligand, through the two phenolic and two carbonyl groups. Binuclear octahedral geometry has been assigned to all of the prepared complexes in various molar ratios 2:2; 2:2:2; 1:2:1 and 1:2:4 (L:M:L'). Molecular orbital calculations were performed for the ligands and their complexes using Hyperchem 7.52 program on the bases of PM3 level and the results were correlated with the experimental data. The ligand and some of its alkaline metal(II) complexes showed antibacterial activity towards some of Gram-positive and Gram-negative bacteria, yeast (Candida albicans) and fungus (Aspergillus fumigatus).

  3. Tuning magnetic properties of CrS{sub 2} monolayer by doping transition metal and alkaline-earth atoms

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianmin; Zheng, Huiling; Han, Ruilin; Du, Xiaobo; Yan, Yu, E-mail: yanyu@jlu.edu.cn

    2015-10-25

    In view of important role of inducing the magnetism in semiconducting transition metal dichalcogenides monolayer, the influences of a series of transition metal and alkaline-earth dopants, including Ca, Sc, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Ga, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd and In, on the electronic and magnetic properties of semiconducting CrS{sub 2} monolayer are systematically investigated using first-principles calculations. The calculations show that Nb, Mo, Ru and Rh dopants cannot induce the magnetism in doped CrS{sub 2} monolayer, whereas ground states of Ca, Sc, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ga, Sr, Y, Zr, Pd, Ag, Cd and In-doped system are magnetic and the stability of magnetic state of V doped system is small. Furthermore the value and the distribution of the magnetic moment induced by dopant not only relate to the number of valence electrons and the occupancy of the d orbitals of dopant, but also depend on the hybridization between dopant and its neighboring S and Cr atoms. Note that it is found that the substitutional doping at the Cr site of CrS{sub 2} monolayer with numerous transition metal and alkaline-earth atoms should be possible under the Cr-poor growth conditions. Overall, the calculated results show high potential for inducing the magnetism in CrS{sub 2} monolayer by doping at the Cr site. - Highlights: • The doping at the Cr site should be possible under the Cr-poor growth conditions. • Ca, Sc, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ga, Sr, Y, Zr, Pd, Ag, Cd and In dopants produce magnetism. • Ca, Sc, Ti, V, Zn, Ga, Sr, Y, Zr, Nb, Cd and In dopants result in p-type doping. • Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd and Ag dopants lead to n-type doping.

  4. Solvent Extraction of Alkaline Earth Metals with Alkylphosphorus Acids%有机磷(膦)酸对碱土金属的萃取

    Institute of Scientific and Technical Information of China (English)

    许新; 朱屯

    2002-01-01

    Solvent extraction equilibria of four main alkaline earth metals (magnesium, calcium, strontium and barium) with di(2-ethylhexyl) phosphoric acid (DEHPA), 2-ethylhexyl phosphonic acid mono-(2-ethylhexyl) ester,di(2,4,4-tri-methylpentyl) phosphinic acid and IR spectra of the extracts have been studied. The selectivity order is dependent on the e/r value and hydration energy of the metal ions. The minor shift of the P-O in IR absorption of the alkaline earth metal extracts indicates that the interaction between the metal ions and P-O is much weaker for alkaline earth metals than for transitional metals. The distribution of the four alkaline earth elements between aqueous solutions and solutions of DEHPA and neutral organophosphorus compounds, tri-n-butyl phosphate (TBP) or tri-octyl phosphine oxide (TOPO) in kerosene have been determined at varying ratio of TBP or TOPO to DEHPA and the positive synergism is observed. The synergic effect is explained by using IR spectra of the loaded organic phase.

  5. Electric dipole polarizabilities of doubly ionized alkaline Earth metal ions from perturbed relativistic coupled-cluster theory

    CERN Document Server

    Chattopadhyay, S; Angom, D

    2013-01-01

    Using perturbed relativistic coupled-cluster (PRCC) theory we compute the ground state electric dipole polarizability, $\\alpha$, of doubly ionized alkaline earth metal ions $\\rm{Mg}^{2+}$, $\\rm{Ca}^{2+}$, $\\rm{Sr}^{2+}$, $\\rm{Ba}^{2+}$ and $\\rm{Ra}^{2+}$. In the present work we use the Dirac-Coulomb-Breit atomic Hamiltonian and we also include the Uehling potential, which is the leading order term in the vacuum polarization corrections. We examine the correction to the orbital energies arising from the Uehling potential in the self-consistent field calculations as well as perturbatively. Our results of $\\alpha$ are in very good agreement with the experimental data, and we observe a change in the nature of the orbital energy corrections arising from the vacuum polarization as we go from $\\rm{Mg}^{2+}$ to Ra$^{2+}$.

  6. Colorimetric and bare-eye detection of alkaline earth metal ions based on the aggregation of silver nanoparticles functionalized with thioglycolic acid

    International Nuclear Information System (INIS)

    We describe a simple and rapid method for colorimetric and bare-eye detection of the alkaline earth metal ions Mg(II), Ca(II), Sr(II) and Ba(II) based on the use of silver nanoparticles (AgNPs) functionalized with thioglycolic acid (TGA). The TGA ligand was self-assembled onto the AgNPs to form a probe that undergoes a color change from yellow to orange or red on exposure to the alkaline earth ions. It is presumed that the color change is a result of the aggregation of the AgNPs caused by the interaction of the bivalent ions with the carboxy groups on the AgNPs. The color change can be used for bare-eye and colorimetric determination of the alkaline earth metal ions, for example to rapidly determine water hardness. (author)

  7. Structural, electronic and mechanical properties of alkaline earth metal oxides MO (M=Be, Mg, Ca, Sr, Ba)

    Science.gov (United States)

    Cinthia, A. Jemmy; Priyanga, G. Sudha; Rajeswarapalanichamy, R.; Iyakutti, K.

    2015-04-01

    The structural, electronic and mechanical properties of alkaline earth metal oxides MO (M=Be, Mg, Ca, Sr, Ba) in the cubic (B1, B2 and B3) phases and in the wurtzite (B4) phase are investigated using density functional theory calculations as implemented in VASP code. The lattice constants, cohesive energy, bulk modulus, band structures and the density of states are computed. The calculated lattice parameters are in good agreement with the experimental and the other available theoretical results. Electronic structure reveals that all the five alkaline earth metal oxides exhibit semiconducting behavior at zero pressure. The estimated band gaps for the stable wurtzite phase of BeO is 7.2 eV and for the stable cubic NaCl phases of MgO, CaO, SrO and BaO are 4.436 eV, 4.166 eV, 4.013 eV, and 2.274 eV respectively. A pressure induced structural phase transition occurs from wurtzite (B4) to NaCl (B1) phase in BeO at 112.1 GPa and from NaCl (B1) to CsCl (B2) phase in MgO at 514.9 GPa, in CaO at 61.3 GPa, in SrO at 42 GPa and in BaO at 14.5 GPa. The elastic constants are computed at zero and elevated pressures for the B4 and B1 phases for BeO and for the B1 and B2 phases in the case of the other oxides in order to investigate their mechanical stability, anisotropy and hardness. The sound velocities and the Debye temperatures are calculated for all the oxides using the computed elastic constants.

  8. Preliminary investigations on picoplankton-related precipitation of alkaline-earth metal carbonates in meso-oligotrophic lake Geneva (Switzerland

    Directory of Open Access Journals (Sweden)

    Jean-Michel Jaquet

    2013-10-01

    Full Text Available In the course of a routine water-quality survey in meso-oligotrophic lake Geneva (Switzerland, suspended matter was collected by filtration on 0.2 μm membranes in July and August 2012 at the depth of maximal chlorophyll a (Chl a concentration (2 mg m–3. Examination by scanning electron microscopy revealed the presence of numerous dark and gelatinous patches occluding the pores of the membranes, containing high numbers of picoplanktonic cells and, in places, clusters of high-reflectance smooth microspheres (1-2 μm in diameter. Their chemical composition, determined by semi-quantitative, energy-dispersive X ray spectroscopy (EDS showed magnesium (Mg, calcium (Ca, strontium (Sr and barium (Ba (alkaline earth metals to be the dominant cations. Among the anions, phosphorus (P and carbon (C were present, but only the latter is considered here (as carbonate. The microspheres were subdivided into four types represented in a Ca-Sr-Ba ternary space. All types are confined within a domain bound by Ca>45, Sr<10 and Ba<50 (in mole %. Type I, the most frequent, displays a broad variability in Ba/Ca, even within a given cluster. Types II and III are devoid of Ba, but may incorporate P. Type IV contains only Ca. The Type I composition resembles that of benstonite, a Group IIA carbonate that was recently found as intracellular granules in a cyanobacterium from alkaline lake Alchichica (Mexico.Lake Geneva microspheres are solid, featureless and embedded in a mucilage-looking substance in the vicinity of, but seemingly not inside, picoplanktonic cells morphologically similar to Chlorella and Synechococcus. In summer 2012, the macroscopic physico-chemical conditions in lake Geneva epilimnion were such as to allow precipitation of Ca but not of Sr and Ba carbonates. Favourable conditions did exist, though, in the micro-environment provided by the combination of active picoplankton and a mucilaginous envelope. Further studies are ongoing to investigate the

  9. Surface effect on the electronic and the magnetic properties of rock-salt alkaline-earth metal silicides

    International Nuclear Information System (INIS)

    An all electron ab-initio method was employed to study the electronic and the magnetic properties of the (001) surface of alkaline-earth metal silicides, CaSi, SrSi, and BaSi, in the rock-salt structure. The three compounds retain their ferromagnetic metallic properties at the surface. Due to the surface effects, the magnetism of the topmost layer is changed as compared with the bulk. This is a short-range effect. In CaSi, the magnetism of the surface layer is noticeably reduced, as compared with the bulk: magnetic moments (MMs) on both Ca and Si atoms are reduced. In SrSi (001), the polarization of electrons in the surface atoms is similar to that in the bulk atoms, and the values of MMs on the component atoms in the topmost layer do not change as much as in CaSi. In BaSi (001), the magnetic properties of Si surface atoms are enhanced slightly, and the magnetism of Ba atoms is not affected considerably by the surface effect. The calculated densities of states confirm the short-range effect of the surface on the electronic properties of the metal silicides.

  10. Enhanced NH3 gas sensing performance based on electrospun alkaline-earth metals composited SnO2 nanofibers

    International Nuclear Information System (INIS)

    Highlights: • The small-sized SnO2 (5–7 nm) were obtained by adding the alkaline-earth. • Sr-composited SnO2 nanofibers showed uniform nanotubes structure (Sr/SnO2). • Sr/SnO2 showed an excellent sensing performance to NH3 at room temperature. - Abstract: One-dimensional alkaline-earth metals composited SnO2 (Ae/SnO2) nanofibres were fabricated via electrospinning technique, followed by thermal treatment at 600 °C for 5 h. Transmission electron microscopy (TEM) studies showed that the nanoparticles size of Ae/SnO2 was 5–7 nm, which was smaller than the pristine SnO2 nanorods attached by 20 nm nanoparticles. Moreover, Sr/SnO2 nanocomposites showed uniform nanotubes structure with the wall thickness of about 30 nm, in which all the nanoparticles were connected to their neighbors by necks. The Sr/SnO2 nanotubes exhibited an excellent sensing response toward NH3 gas at room temperature, lower detection limit (10 ppm), faster response time (6 s towards 2000 ppm∼16 s towards 10 ppm) and better reversibility compared to the pristine SnO2 nanorods. The enhanced sensor performances were attributed to the higher conductivity of the Sr/SnO2. Mott–Schottky plots (M–S) and electrochemical impedance spectroscopy (EIS) measurements indicated that the carrier density of Sr/SnO2 nanotubes was 3 fold of that pristine SnO2

  11. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals

    OpenAIRE

    Liu, Yuanyue; Merinov, Boris V.; Goddard III, William A.

    2016-01-01

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same...

  12. Dispersion coefficients for the interactions of the alkali-metal and alkaline-earth-metal ions and inert-gas atoms with a graphene layer

    Science.gov (United States)

    Kaur, Kiranpreet; Arora, Bindiya; Sahoo, B. K.

    2015-09-01

    Largely motivated by a number of applications, the van der Waals dispersion coefficients C3 of the alkali-metal ions Li+,Na+,K+, and Rb+, the alkaline-earth-metal ions Ca+,Sr+,Ba+, and Ra+, and the inert-gas atoms He, Ne, Ar, and Kr with a graphene layer are determined precisely within the framework of the Dirac model. For these calculations, we evaluate the dynamic polarizabilities of the above atomic systems very accurately by evaluating the transition matrix elements employing relativistic many-body methods and using the experimental values of the excitation energies. The dispersion coefficients are given as functions of the separation distance of an atomic system from the graphene layer and the ambiance temperature during the interactions. For easy extraction of these coefficients, we give a logistic fit to the functional forms of the dispersion coefficients in terms of the separation distances at room temperature.

  13. Effect of metal cation replacement on the electronic structure of metalorganic halide perovskites: Replacement of lead with alkaline-earth metals

    Science.gov (United States)

    Pazoki, Meysam; Jacobsson, T. Jesper; Hagfeldt, Anders; Boschloo, Gerrit; Edvinsson, Tomas

    2016-04-01

    Organic and inorganic lead halogen perovskites, and in particular, C H3N H3Pb I3 , have during the last years emerged as a class of highly efficient solar cell materials. Herein we introduce metalorganic halogen perovskite materials for energy-relevant applications based on alkaline-earth metals. Based on the classical notion of Goldschmidt's rules and quantum mechanical considerations, the three alkaline-earth metals, Ca, Sr, and Ba, are shown to be able to exchange lead in the perovskite structure. The three alkaline-earth perovskites, C H3N H3Ca I3,C H3N H3Sr I3 , and C H3N H3Ba I3 , as well as the reference compound, C H3N H3Pb I3 , are in this paper investigated with density functional theory (DFT) calculations, which predict these compounds to exist as stable perovskite materials, and their electronic properties are explored. A detailed analysis of the projected molecular orbital density of states and electronic band structure from DFT calculations were used for interpretation of the band-gap variations in these materials and for estimation of the effective masses of the electrons and holes. Neglecting spin-orbit effects, the band gap of MACa I3,MASr I3 , and MABa I3 were estimated to be 2.95, 3.6, and 3.3 eV, respectively, showing the relative change expected for metal cation exchange. The shifts in the conduction band (CB) edges for the alkaline-earth perovskites were quantified using scalar relativistic DFT calculations and tight-binding analysis, and were compared to the situation in the more extensively studied lead halide perovskite, C H3N H3Pb I3 , where the change in the work function of the metal is the single most important factor in tuning the CB edge and band gap. The results show that alkaline-earth-based organometallic perovskites will not work as an efficient light absorber in photovoltaic applications but instead could be applicable as charge-selective contact materials. The rather high CB edge and the wide band gap together with the large

  14. Optical probes for the detection of protons, and alkali and alkaline earth metal cations.

    Science.gov (United States)

    Hamilton, Graham R C; Sahoo, Suban K; Kamila, Sukanta; Singh, Narinder; Kaur, Navneet; Hyland, Barry W; Callan, John F

    2015-07-01

    Luminescent sensors and switches continue to play a key role in shaping our understanding of key biochemical processes, assist in the diagnosis of disease and contribute to the design of new drugs and therapies. Similarly, their contribution to the environment cannot be understated as they offer a portable means to undertake field testing for hazardous chemicals and pollutants such as heavy metals. From a physiological perspective, the Group I and II metal ions are among the most important in the periodic table with blood plasma levels of H(+), Na(+) and Ca(2+) being indicators of several possible disease states. In this review, we examine the progress that has been made in the development of luminescent probes for Group I and Group II ions as well as protons. The potential applications of these probes and the mechanism involved in controlling their luminescent response upon analyte binding will also be discussed. PMID:25742963

  15. Ion exchange kinetics of alkaline earth metals on acrylamide zirconium(IV) phosphate cation exchanger

    International Nuclear Information System (INIS)

    The kinetics of Mg(II), Ca(II), Sr(II) and Ba(II) exchange with H(I) on acrylamide zirconium(IV) phosphate has been studied applying the Nernst-Planck equation. The rate of exchange is found to be particle diffusion controlled at a metal ion concentration ≥ 0.01M in aqueous medium. The energy and entropy of activation vary linearly with the ionic radii and mobilities. (author)

  16. Caracterización de nitratos alcalinos y alcalinoterreos por espectroscopia vibracional Characterization of alkali-metal and alkaline-earth nitrates by vibrational spectroscopy

    OpenAIRE

    Martínez, S; Acción, F.; Puertas, F.

    1992-01-01

    [EN] Infrared spectra of sodium and potassium alkaline-metal nitrates and magnesium and calcium alkali-earth nitrates in solid phase had been recorded in order to assign the fundamental bands. The influence of the dispersal médium (alkaline halide), employed in the solid sample preparation have been discussed. The quantitative measurements of the band in ten sities at 1.387 cm~^ (present in the I.R. spectra of the four nitrates in KBr médium) allowed us to determine th...

  17. 1H and 23Na MAS NMR spectroscopy of cationic species in CO2 selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    Science.gov (United States)

    Arévalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernández-Maldonado, Arturo J.

    2012-07-01

    The location of extraframework cations in Sr2+ and Ba2+ ion-exchanged SAPO-34 was estimated by means of 1H and 23Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO2 adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium.

  18. Solubility of alkaline earth metal oxides in CsCl-KCl-NaCl eutectic mixture melt at 600 degC

    International Nuclear Information System (INIS)

    Products of solubility of alkaline-earth metal oxides in the melt of eutectic mixture CsCl-KCl-NaCl at 600 deg C were determined by the method of potentiometric titration. It is found that CaO and SrO under experimental conditions dissociate incompletely, while BaO is utterly dissociated: solubility of the oxides increases in the series MgO-CaO-SrO-BaO

  19. Microcalorimetric study on host-guest complexation of naphtho-15-crown-5 with four ions of alkaline earth metal*

    OpenAIRE

    Song, Ming-Zhi; Zhu, Lan-ying; Gao, Xi-ke; Dou, Jian-Min; Sun, De-zhi

    2004-01-01

    Thermodynamic parameters of complexation of naphto-15-crown-5 with four alkaline earth ions in aqueous media was determined using titration microcalorimetry at 298.15 K. The stability of the complexes, thermal effect and entropy effect of the complexation is discussed on the basis of the guest ions structure and the solvent effect. The stability constants tendency to vary with ion radius was interpreted. Complex of naphtha-15-crown-5 with calcium ion is very stable due to the synergism of sta...

  20. Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS2

    International Nuclear Information System (INIS)

    Single adsorption of different atoms on pristine two-dimensional monolayer MoS2 have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3d-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS2. Additionally, local or long-range magnetic moments of two-dimensional MoS2 sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS2 monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application

  1. Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS2

    Directory of Open Access Journals (Sweden)

    X. D. Li

    2015-05-01

    Full Text Available Single adsorption of different atoms on pristine two-dimensional monolayer MoS2 have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3d-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS2. Additionally, local or long-range magnetic moments of two-dimensional MoS2 sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS2 monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application.

  2. Structures and Spectroscopy Studies of Two M(II-Phosphonate Coordination Polymers Based on Alkaline Earth Metals (M = Ba, Mg

    Directory of Open Access Journals (Sweden)

    Kui-Rong Ma

    2013-01-01

    Full Text Available The two examples of alkaline-earth M(II-phosphonate coordination polymers, [Ba2(L(H2O9]·3H2O (1 and [Mg1.5(H2O9]·(L-H21.5·6H2O (2 (H4L = H2O3PCH2N(C4H8NCH2PO3H2, N,N′-piperazinebis(methylenephosphonic acid, (L-H2 = O3PH2CHN(C4H8NHCH2PO3 have been hydrothermally synthesized and characterized by elemental analysis, FT-IR, PXRD, TG-DSC, and single-crystal X-ray diffraction. Compound 1 possesses a 2D inorganic-organic alternate arrangement layer structure built from 1D inorganic chains through the piperazine bridge, in which the ligand L−4 shows two types of coordination modes reported rarely at the same time. In 1, both crystallographic distinct Ba(1 and Ba(2 ions adopt 8-coordination two caps and 9-coordination three caps triangular prism geometry structures, respectively. Compound 2 possesses a zero-dimensional mononuclear structure with two crystallographic distinct Mg(II ions. Free metal cations   [MgO6]n2+ and uncoordinated anions (L-H2n2- are joined together by static electric force. Results of photoluminescent measurement indicate three main emission bands centered at 300 nm, 378.5 nm, and 433 nm for 1 and 302 nm, 378 nm, and 434.5 nm for 2 (λex=235 nm, respectively. The high energy emissions could be derived from the intraligand π∗-n transition stations of H4L (310 nm and 382 nm, λex=235 nm, while the low energy emission (>400 nm of 1-2 may be due to the coordination effect with metal(II ions.

  3. Microcalorimetric study on host-guest complexation of naphtho-15-crown-5 with four ions of alkaline earth metal

    Institute of Scientific and Technical Information of China (English)

    SONG Ming-zhi; ZHU Lan-ying; GAO Xi-ke; DOU Jian-min; SUN De-zhi

    2005-01-01

    Thermodynamic parameters of complexation of naphto- 15-crown-5 with four alkaline earth ions in aqueous media was determined using titration microcalorimetry at 298.15 K. The stability of the complexes, thermal effect and entropy effect of the complexation is discussed on the basis of the guest ions structure and the solvent effect. The stability constants tendency to vary with ion radius was interpreted. Complex of naphtha-15-crown-5 with calcium ion is very stable due to the synergism of static electric interaction and size selectivity between the host and the guest.

  4. Comparisons between adsorption and diffusion of alkali, alkaline earth metal atoms on silicene and those on silicane: Insight from first-principles calculations

    Science.gov (United States)

    Bo, Xu; Huan-Sheng, Lu; Bo, Liu; Gang, Liu; Mu-Sheng, Wu; Chuying, Ouyang

    2016-06-01

    The adsorption and diffusion behaviors of alkali and alkaline-earth metal atoms on silicane and silicene are both investigated by using a first-principles method within the frame of density functional theory. Silicane is staler against the metal adatoms than silicene. Hydrogenation makes the adsorption energies of various metal atoms considered in our calculations on silicane significantly lower than those on silicene. Similar diffusion energy barriers of alkali metal atoms on silicane and silicene could be observed. However, the diffusion energy barriers of alkali-earth metal atoms on silicane are essentially lower than those on silicene due to the small structural distortion and weak interaction between metal atoms and silicane substrate. Combining the adsorption energy with the diffusion energy barriers, it is found that the clustering would occur when depositing metal atoms on perfect hydrogenated silicene with relative high coverage. In order to avoid forming a metal cluster, we need to remove the hydrogen atoms from the silicane substrate to achieve the defective silicane. Our results are helpful for understanding the interaction between metal atoms and silicene-based two-dimensional materials. Project supported by the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20152ACB21014, 20151BAB202006, and 20142BAB212002) and the Fund from the Jiangxi Provincial Educational Committee, China (Grant No. GJJ14254). Bo Xu is also supported by the Oversea Returned Project from the Ministry of Education, China.

  5. Dipole Polarizability of Alkali-Metal (Na, K, Rb) - Alkaline-Earth-Metal (Ca,Sr) Polar molecules - Prospects of Alignment

    CERN Document Server

    Gopakumar, Geetha; Hada, Masahiko; Kajita, Masatoshi

    2014-01-01

    Electronic open-shell ground-state properties of selected alkali-metal (AM) - alkaline-earth-metal (AEM) polar molecules are investigated. We determine potential energy curves of the 2{\\Sigma}+ ground state at the coupled-cluster singles and doubles with partial triples (CCSD(T)) level of electron correlation. Calculated spectroscopic constants for the isotopes (23Na, 39K, 85Rb) - (40Ca, 88Sr) are compared with available theoretical and experimental results. The variation of the permanent dipole moment (PDM), average dipole polarizability, and polarizability anisotropy with internuclear distance is determined using finite-field perturbation theory at the CCSD(T) level. Owing to moderate PDM (KCa: 1.67 D, RbCa: 1.75 D, KSr: 1.27 D, RbSr: 1.41 D) and large polarizability anisotropy (KCa: 566 a.u., RbCa: 604 a.u., KSr: 574 a.u., RbSr: 615 a.u.), KCa, RbCa, KSr, and RbSr are potential candidates for alignment and orientation in combined intense laser and external static electric fields.

  6. Ab initio properties of the ground-state polar and paramagnetic europium-alkali-metal-atom and europium-alkaline-earth-metal-atom molecules

    CERN Document Server

    Tomza, Michał

    2014-01-01

    The properties of the electronic ground state of the polar and paramagnetic europium-$S$-state-atom molecules have been investigated. Ab initio techniques have been applied to compute the potential energy curves for the europium-alkali-metal-atom, Eu$X$ ($X$=Li, Na, K, Rb, Cs), europium-alkaline-earth-metal-atom, Eu$Y$ ($Y$=Be, Mg, Ca, Sr, Ba), and europium-ytterbium, EuYb, molecules in the Born-Oppenheimer approximation for the high-spin electronic ground state. The spin restricted open-shell coupled cluster method restricted to single, double, and noniterative triple excitations, RCCSD(T), was employed and the scalar relativistic effects within the small-core energy-consistent pseudopotentials were included. The permanent electric dipole moments and static electric dipole polarizabilities were computed. The leading long-range coefficients describing the dispersion interaction between atoms at large internuclear distances $C_6$ are also reported. The EuK, EuRb, and EuCs molecules are examples of species poss...

  7. 2D and 3D alkaline earth metal carboxyphosphonate hybrids: Anti-corrosion coatings for metal surfaces

    International Nuclear Information System (INIS)

    Reactions of Mg2+ (1), Ca2+ (2), Sr2+ (3), or Ba2+ (4) salts with hydroxyphosphonoacetic acid (HPAA) at a 1:1 ratio yield M-HPAA layered coordination polymers. The crystal structures of 3 (two phases) and 4 have been determined by single crystal X-ray crystallography. Both stereoisomers (R and S) of HPAA are incorporated in the metal-HPAA materials. Synergistic combinations of Sr2+ or Ba2+ and HPAA at pH 7.3 are effective corrosion inhibitors for carbon steel, but are ineffective at pH 2.0. - Graphical abstract: Syntheses, characterization and crystal structures of metal-hydroxyphosphonoacetate hybrids are reported (Metal=Sr, Ba). 2D and 3D materials were prepared. Their anti-corrosion effects were studied at pH 2.0 and 7.3. It was found that anti-corrosion efficiency was demonstrated only at pH 7.3

  8. Enhanced Electroresponse of Alkaline Earth Metal-Doped Silica/Titania Spheres by Synergetic Effect of Dispersion Stability and Dielectric Property.

    Science.gov (United States)

    Yoon, Chang-Min; Lee, Seungae; Cheong, Oug Jae; Jang, Jyongsik

    2015-09-01

    A series of alkaline earth metal-doped hollow SiO2/TiO2 spheres (EM-HST) are prepared as electrorheological (ER) materials via sonication-mediated etching method with various alkaline earth metal hydroxides as the etchant. The EM-HST spheres are assessed to determine how their hollow interior and metal-doping affects the ER activity. Both the dispersion stability and the dielectric properties of these materials are greatly enhanced by the proposed one-step etching method, which results in significant enhancement of ER activity. These improvements are attributed to increased particle mobility and interfacial polarization originating from the hollow nature of the EM-HST spheres and the effects of EM metal-doping. In particular, Ca-HST-based ER fluid exhibits ER performance which is 7.1-fold and 3.1-fold higher than those of nonhollow core/shell silica/titania (CS/ST) and undoped hollow silica/titania (HST)-based ER fluids, respectively. This study develops a versatile and simple approach to enhancing ER activity through synergetic effects arising from the combination of dispersion stability and the unique dielectric properties of hollow EM-HST spheres. In addition, the multigram scale production described in this experiment can be an excellent advantage for practical and commercial ER application. PMID:26266695

  9. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals

    Science.gov (United States)

    Liu, Yuanyue; Merinov, Boris V.; Goddard, William A., III

    2016-04-01

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.

  10. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals.

    Science.gov (United States)

    Liu, Yuanyue; Merinov, Boris V; Goddard, William A

    2016-04-01

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems. PMID:27001855

  11. 1H and 23Na MAS NMR spectroscopy of cationic species in CO2 selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    International Nuclear Information System (INIS)

    The location of extraframework cations in Sr2+ and Ba2+ ion-exchanged SAPO-34 was estimated by means of 1H and 23Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO2 adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO2 adsorption performance. Highlights: ► Location of extraframework Sr2+ or Ba2+ cations was estimated by means of 1H and 23Na MAS NMR. ► Level of Sr2+ or Ba2+ ion exchange was limited by the presence of protons and sodium cations. ► Presence of ammonium cations in the supercages facilitated the exchange. ► Sr2+ and Ba2+ ion exchanged SAPOs are outstanding CO2 adsorbents.

  12. Two-band superfluidity and intrinsic Josephson effect in alkaline-earth-metal Fermi gases across an orbital Feshbach resonance

    Science.gov (United States)

    Iskin, M.

    2016-07-01

    We first show that the many-body Hamiltonian governing the physical properties of an alkaline-earth 173Yb Fermi gas across the recently realized orbital Feshbach resonance is exactly analogous to that of two-band s -wave superconductors with contact interactions; i.e., even though the free-particle bands have a tunable energy offset in between and are coupled by a Josephson-type attractive interband pair scattering, the intraband interactions have exactly the same strength. We then introduce two intraband order parameters within the BCS mean-field approximation and investigate the competition between their in-phase and out-of-phase (i.e., the so-called π -phase) solutions in the entire BCS-BEC evolution at zero temperature.

  13. Transient compounds of high alkaline earth metals with custom-made organic ligands as potential precursors for the gas phase separator of high temperature ceramic superconductors

    International Nuclear Information System (INIS)

    The aim of this work was the representation of new transient custom-made metal/organic compounds of the high alkaline earth metals Ca, Sr and Ba as potential precursors for the gas phase separation (chemical vapour deposition, CVD) of high temperature ceramic superconductors. There is a report on the synthesis and comprehensive characterisation of representatives of the class of compounds of substituted metallocenes and the B diketone compounds of these metals. Some selected compounds were examined as regards their suitability for CVD. The main task was the examination of the effect of structural and electronic parameters of ligands on the properties of the compounds, where the volatility was to the fore. (orig./MM)

  14. MB82- (M=Be,Mg,Ca,Sr,and Ba):Planar octacoordinate alkaline earth metal atoms enclosed by boron rings

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Complexes involving planar octacoordinate alkaline earth metal atoms in the centers of eight-membered boron rings have been investigated by two density functional theory (DFT) methods.BeB82-with D8h symmetry is predicted to be stable,both geometrically and electronically,since a good match is achieved between the size of the central beryllium atom and the eight-membered boron ring.By contrast,the other alkaline earth metal atoms cannot be stabilized in the center of a planar eight-membered boron ring because of their large radii.By following the out-of-plane imaginary vibrational frequency,pyramidal C8v MgB82-,CaB82-,SrB82-,and BaB82-structures are obtained.The presence of delocalized π and σ valence molecular orbitals in D8h BeB82-gives rise to aromaticity,which is reflected by the value of the nucleus-independent chemical shift.The D8h BeB82-structure is confirmed to be the global minimum on the potential energy surface.

  15. Mass spectra of alkaline earth salts with a FAB source. Complexation with crown ethers

    International Nuclear Information System (INIS)

    With a liquid desorption FAB source it is possible to obtain alkaline earth metal ions complexed by a crown ether. Conditions for formation of these complexes ions are examined for selection of the complexing agent in function of cation size. Behaviour of alkaline and alkaline earth compounds are compared allowing the differentiation of ion extraction phenomena by liquid desorption ion source and solvent extraction

  16. Production of Synthesis Gas via Methane Reforming with CO2 on Ni/SiO2 Catalysts Promoted by Alkali and Alkaline Earth Metals

    Institute of Scientific and Technical Information of China (English)

    陈平; 侯昭胤; 郑小明

    2005-01-01

    Ni/SiO2 catalysts promoted by alkali metals K and Cs or alkaline earth metals Mg, Ca, Sr and Ba were prepared, characterized by H2-TPR and XRD, and used for the production of synthesis gas via methane reforming with CO2. Though K and Cs promoted Ni catalysts could eliminate coke deposition, the reforming activity of these promoted catalysts was decreased heavily. Mg and Ca promoted Ni/SiO2 catalysts exhibited excellent coke resistance ability with minor loss of the reforming activity of Ni/SiO2. Ba showed poor coke resistance ability and small amount of Sr increased the formation of coke. The possible mechanism of these promoters was discussed.

  17. Additive effects of alkaline-earth metals and nickel on the performance of Co/γ-Al2O3 in methane catalytic partial oxidation

    Institute of Scientific and Technical Information of China (English)

    Changlin Yu; Weizheng Weng; Qing Shu; Xiangjie Meng; Bin Zhang; Xirong Chen; Xiaochun Zhou

    2011-01-01

    Nano-sized γ-alumina(γ-Al2O3)was first prepared by a precipitation method.Then,active component of cobalt and a series of alkalineearth metal promoters or nickel(Ni)with different contents were loaded on the γ-Al2O3 support.The catalysts were characterized by N2 adsorption-desorption,X-ray diffraction(XRD)and thermogravimetry analysis(TGA).The activity and selectivity of the catalysts in catalytic partial oxidation(CPO)of methane have been compared with Co/γ-Al2O3,and it is found that the catalytic activity,selectivity,and stability are enhanced by the addition of alkaline-earth metals and nickel.The optimal loadings of strontium(Sr)and Ni were 6 and 4 wt%,respectively.This finding will be helpful in designing the trimetallic Co-Ni-Sr/γ-Al2O3 catalysts with high performance in CPO of methane.

  18. Dark-state suppression and optimization of laser cooling and fluorescence in a trapped alkaline-earth-metal single ion

    CERN Document Server

    Lindvall, T; Tittonen, I; Madej, A A; 10.1103/PhysRevA.86.033403

    2012-01-01

    We study the formation and destabilization of dark states in a single trapped 88Sr+ ion caused by the cooling and repumping laser fields required for Doppler cooling and fluorescence detection of the ion. By numerically solving the time-dependent density matrix equations for the eight-level system consisting of the sublevels of the 5s 2S1/2, 5p 2P1/2, and 4d 2D3/2 states, we analyze the different types of dark states and how to prevent them in order to maximize the scattering rate, which is crucial for both the cooling and the detection of the ion. The influence of the laser linewidths and ion motion on the scattering rate and the dark resonances is studied. The calculations are then compared with experimental results obtained with an endcap ion trap system located at the National Research Council of Canada and found to be in good agreement. The results are applicable also to other alkaline earth ions and isotopes without hyperfine structure.

  19. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    Science.gov (United States)

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  20. Long range interactions between alkali and alkaline-earth atoms

    CERN Document Server

    Jiang, Jun; Mitroy, J

    2013-01-01

    Dispersion coefficients between the alkali metal atoms (Li-Rb) and alkaline-earth metal atoms (Be-Sr) are evaluated using matrix elements computed from frozen core configuration interaction calculations. Besides dispersion coefficients with both atoms in their respective ground states, dispersion coefficients are also given for the case where one atom is in its ground state and the other atom is in a low lying excited state.

  1. Enhanced NH{sub 3} gas sensing performance based on electrospun alkaline-earth metals composited SnO{sub 2} nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shuang [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Physical Chemistry, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080 (China); Kan, Kan [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Physical Chemistry, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080 (China); Daqing Branch, Heilongjiang Academy of Sciences, Daqing 163319 (China); Yang, Ying; Jiang, Chao [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Physical Chemistry, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080 (China); Gao, Jun [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Physical Chemistry, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080 (China); Department of Chemistry, Harbin Normal University, Harbin 150025 (China); Jing, Liqiang [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Physical Chemistry, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080 (China); Shen, Peikang [Department of Physics and Engineering Sun Yat-sen University, Guangzhou 510275 (China); Li, Li, E-mail: llwjjhlju@sina.cn [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Physical Chemistry, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080 (China); Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080 (China); and others

    2015-01-05

    Highlights: • The small-sized SnO{sub 2} (5–7 nm) were obtained by adding the alkaline-earth. • Sr-composited SnO{sub 2} nanofibers showed uniform nanotubes structure (Sr/SnO{sub 2}). • Sr/SnO{sub 2} showed an excellent sensing performance to NH{sub 3} at room temperature. - Abstract: One-dimensional alkaline-earth metals composited SnO{sub 2} (Ae/SnO{sub 2}) nanofibres were fabricated via electrospinning technique, followed by thermal treatment at 600 °C for 5 h. Transmission electron microscopy (TEM) studies showed that the nanoparticles size of Ae/SnO{sub 2} was 5–7 nm, which was smaller than the pristine SnO{sub 2} nanorods attached by 20 nm nanoparticles. Moreover, Sr/SnO{sub 2} nanocomposites showed uniform nanotubes structure with the wall thickness of about 30 nm, in which all the nanoparticles were connected to their neighbors by necks. The Sr/SnO{sub 2} nanotubes exhibited an excellent sensing response toward NH{sub 3} gas at room temperature, lower detection limit (10 ppm), faster response time (6 s towards 2000 ppm∼16 s towards 10 ppm) and better reversibility compared to the pristine SnO{sub 2} nanorods. The enhanced sensor performances were attributed to the higher conductivity of the Sr/SnO{sub 2}. Mott–Schottky plots (M–S) and electrochemical impedance spectroscopy (EIS) measurements indicated that the carrier density of Sr/SnO{sub 2} nanotubes was 3 fold of that pristine SnO{sub 2}.

  2. Syntheses and characterization of energetic compounds constructed from alkaline earth metal cations (Sr and Ba) and 1,2-bis(tetrazol-5-yl)ethane

    International Nuclear Information System (INIS)

    Two new energetic compounds, [M(BTE)(H2O)5]n (M=Sr(1), Ba(2)) [H2BTE=1,2-bis(tetrazol-5-yl)ethane], have been hydrothermally synthesized and structurally characterized. Single-crystal X-ray diffraction analyses reveal that they are isomorphous and exhibit 2D (4,4) net framework, generated by 4-connected Sr2(H2O)10/Ba2(H2O)10 SBUs linked up by two independent binding modes of H2BTE, and the resulting 2D structure is interconnected by hydrogen-bond and strong face to face π-π stacking interactions between two tetrazole rings to lead to a 3D supramolecular architecture. DSC measurements show that they have significant catalytic effects on thermal decomposition of ammonium perchlorate. Moreover, the photoluminescence properties, thermogravimetric analyses, and flame colors of the as-prepared compounds are also investigated in this paper. - Graphical abstract: Two novel 2D isomorphous alkaline earth metal complexes were assembled by 4-connected Sr2(H2O)10/Ba2(H2O)10 SBUs and two independent binding modes of H2BTE ligands, and the catalytic performances toward thermal decomposition of ammonium perchlorate and photoluminescent properties of them were investigated. Highlights: → Two novel alkaline earth energetic coordination polymers have been prepared.→ Both structures are layered based on 4-connected Sr2(H2O)10/Ba2(H2O)10 SBUs and two distinct H2BTE coordination modes.→ The dehydrated products of the compounds possess good thermostability and significant catalytic effects on thermal decomposition of AP.

  3. Absorption spectroscopy of heavy alkaline earth metals Ba and Sr in rare gas matrices—CCSD(T) calculations and atomic site occupancies

    International Nuclear Information System (INIS)

    Isolation of the heavier alkaline earth metals Ba and Sr in the solid rare gases (RGs) Ar, Kr, and Xe is analysed with absorption spectroscopy and interpreted partly with the assistance of ab initio calculations of the diatomic M ⋅ RG ground state interaction potentials. The y1P←a1S resonance transitions in the visible spectral region are used to compare the isolation conditions of these two metal atom systems and calcium. Complex absorption bands were recorded in all three metal atom systems even after extensive sample annealing. Coupled cluster calculations conducted on the ground states of the nine M ⋅ RG diatomics (M = Ca, Sr, and Ba; RG = Ar, Kr, and Xe) at the coupled cluster single, double, and non-iterative triple level of theory revealed long bond lengths (>5 Å) and shallow bound regions (<130 cm−1). All of the M ⋅ RG diatomics have bond lengths considerably longer than those of the rare gas dimers, with the consequence that isolation of these metal atoms in a single substitutional site of the solid rare gas is unlikely, with the possible exception of Ca/Xe. The luminescence of metal dimer bands has been recorded for Ba and Sr revealing very different behaviours. Resonance fluorescence with a lifetime of 15 ns is observed for the lowest energy transition of Sr2 while this transition is quenched in Ba2. This behaviour is consistent with the absence of vibrational structure on the dimer absorption band in Ba2 indicating lifetime broadening arising from efficient relaxation to low-lying molecular states. More extensive 2D excitation-emission data recorded for the complex site structures present on the absorption bands of the atomic Ba and Sr systems will be presented in future publications

  4. Absorption spectroscopy of heavy alkaline earth metals Ba and Sr in rare gas matrices—CCSD(T) calculations and atomic site occupancies

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Barry M.; McCaffrey, John G., E-mail: john.mccaffrey@nuim.ie [Department of Chemistry, Maynooth University, National University of Ireland—Maynooth, County Kildare (Ireland)

    2016-01-28

    Isolation of the heavier alkaline earth metals Ba and Sr in the solid rare gases (RGs) Ar, Kr, and Xe is analysed with absorption spectroscopy and interpreted partly with the assistance of ab initio calculations of the diatomic M ⋅ RG ground state interaction potentials. The y{sup 1}P←a{sup 1}S resonance transitions in the visible spectral region are used to compare the isolation conditions of these two metal atom systems and calcium. Complex absorption bands were recorded in all three metal atom systems even after extensive sample annealing. Coupled cluster calculations conducted on the ground states of the nine M ⋅ RG diatomics (M = Ca, Sr, and Ba; RG = Ar, Kr, and Xe) at the coupled cluster single, double, and non-iterative triple level of theory revealed long bond lengths (>5 Å) and shallow bound regions (<130 cm{sup −1}). All of the M ⋅ RG diatomics have bond lengths considerably longer than those of the rare gas dimers, with the consequence that isolation of these metal atoms in a single substitutional site of the solid rare gas is unlikely, with the possible exception of Ca/Xe. The luminescence of metal dimer bands has been recorded for Ba and Sr revealing very different behaviours. Resonance fluorescence with a lifetime of 15 ns is observed for the lowest energy transition of Sr{sub 2} while this transition is quenched in Ba{sub 2}. This behaviour is consistent with the absence of vibrational structure on the dimer absorption band in Ba{sub 2} indicating lifetime broadening arising from efficient relaxation to low-lying molecular states. More extensive 2D excitation-emission data recorded for the complex site structures present on the absorption bands of the atomic Ba and Sr systems will be presented in future publications.

  5. The low temperature radiolysis of cis-syn-cis-dicyclohexano-18-crown-6 complexes with alkaline earth metal nitrates: An evidence for energy transfer to the macrocyclic ligand

    Science.gov (United States)

    Zakurdaeva, O. A.; Nesterov, S. V.; Shmakova, N. A.; Sokolova, N. A.; Feldman, V. I.

    2015-10-01

    Formation of paramagnetic intermediates in macrocyclic complexes of cis-syn-cis-dicyclohexano-18-crown-6 (DCH18C6) with alkaline earth metal nitrates under X-rays irradiation was studied by EPR spectroscopy. NO32- dianions appear to be predominant intermediate species in the samples irradiated at 77 K at low doses (up to 40 kGy). This result was interpreted as an evidence for energy transfer within the complex from crown ether to nitrate anion. Increase in the absorbed dose from 40 kGy to 284 kGy results in built-up of a new EPR signal assigned to macrocyclic -CH2-ĊH-O- radicals produced from crown ether moieties. Thermal annealing of the irradiated macrocyclic complexes at 273 К led to fast decay of NO32- . This process was accompanied by a formation of -CH2-ĊH-O- radicals in secondary reactions. The nature of the metal cations coordinated in the macrocycle cavity had no appreciable effect on the composition of radical products and their post-radiation transformations.

  6. Alkaline Earth Core Level Photoemission Spectroscopy of High-Temperature Superconductors

    Science.gov (United States)

    Vasquez, R.

    1993-01-01

    This paper examines photoemission measurements of the alkaline Earth core levels of high-temperature superconductors and related materials, models that seek to explain the large negative shifts observed relative to the corresponding alkaline Earth metals, and the effect of lattice site disorder on the core level spectra and the presence or absence of intrinsic surface peaks.

  7. Alkaline earth cation extraction from acid solution

    Science.gov (United States)

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  8. Co-mineralization of alkaline-earth carbonates and silica

    OpenAIRE

    Kellermeier, Matthias

    2011-01-01

    This thesis is concerned with the manifold interactions that occur when alkaline-earth metal carbonates are crystallized in the presence of dissolved silica as an additive. The described work subdivides into two main lines of research. On the one hand, an understanding of the potential roles of silica during crystallization was sought on a fundamental level. That is, the mineral - in this case calcium carbonate - was directly precipitated from silica-containing solutions and the effect on gro...

  9. CO{sub 2} Capture Properties of Alkaline-earth Metal Oxides and Hydroxides: A Combined Density Functional Theory and Lattice Phonon Dynamics Study

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yuhua; Sorescu, Dan

    2010-01-01

    By combining density functional theory and lattice phonon dynamics, the thermodynamic properties of CO{sub 2} absorption/desorption reactions with alkaline earth metal oxides MO and hydroxides M(OH){sub 2} (where M = Be,Mg,Ca,Sr,Ba) are analyzed. The heats of reaction and the chemical potential changes of these solids upon CO{sub 2} capture reactions have been calculated and used to evaluate the energy costs. Relative to CaO, a widely used system in practical applications, MgO and Mg(OH){sub 2} systems were found to be better candidates for CO{sub 2} sorbent applications due to their lower operating temperatures (600–700 K). In the presence of H{sub 2}O, MgCO{sub 3} can be regenerated into Mg(OH){sub 2} at low temperatures or into MgO at high temperatures. This transition temperature depends not only on the CO{sub 2} pressure but also on the H{sub 2}O pressure. Based on our calculated results and by comparing with available experimental data, we propose a general computational search methodology which can be used as a general scheme for screening a large number of solids for use as CO{sub 2} sorbents.

  10. CO2 capture properties of alkaline earth metal oxides and hydroxides: A combined density functional theory and lattice phonon dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yuhua [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Sorescu, Dan C. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2010-01-01

    By combining density functional theory and lattice phonon dynamics, the thermodynamic properties of CO2 absorption/desorption reactions with alkaline earth metal oxides MO and hydroxides M(OH)2 (where M = Be, Mg, Ca, Sr, Ba) are analyzed. The heats of reaction and the chemical potential changes of these solids upon CO2 capture reactions have been calculated and used to evaluate the energy costs. Relative to CaO, a widely used system in practical applications, MgO and Mg(OH)2 systems were found to be better candidates for CO2 sorbent applications due to their lower operating temperatures (600-700 K). In the presence of H2O, MgCO3 can be regenerated into Mg(OH)2 at low temperatures or into MgO at high temperatures. This transition temperature depends not only on the CO2 pressure but also on the H2O pressure. Based on our calculated results and by comparing with available experimental data, we propose a general computational search methodology which can be used as a general scheme for screening a large number of solids for use as CO2 sorbents.

  11. CO(2) capture properties of alkaline earth metal oxides and hydroxides: A combined density functional theory and lattice phonon dynamics study.

    Science.gov (United States)

    Duan, Yuhua; Sorescu, Dan C

    2010-08-21

    By combining density functional theory and lattice phonon dynamics, the thermodynamic properties of CO(2) absorption/desorption reactions with alkaline earth metal oxides MO and hydroxides M(OH)(2) (where M=Be,Mg,Ca,Sr,Ba) are analyzed. The heats of reaction and the chemical potential changes of these solids upon CO(2) capture reactions have been calculated and used to evaluate the energy costs. Relative to CaO, a widely used system in practical applications, MgO and Mg(OH)(2) systems were found to be better candidates for CO(2) sorbent applications due to their lower operating temperatures (600-700 K). In the presence of H(2)O, MgCO(3) can be regenerated into Mg(OH)(2) at low temperatures or into MgO at high temperatures. This transition temperature depends not only on the CO(2) pressure but also on the H(2)O pressure. Based on our calculated results and by comparing with available experimental data, we propose a general computational search methodology which can be used as a general scheme for screening a large number of solids for use as CO(2) sorbents. PMID:20726653

  12. Theoretical study for the reduction of N2O with CO Mediated by alkaline-earth metal oxide cations 2MO+(M=Ca, Sr, Ba)

    International Nuclear Information System (INIS)

    The reaction mechanism of the reaction N2O(0Σ+) + CO (1Σ+)→N2 (1Σg+) + CO2 (1Σg+) mediated by alkaline-earth metal oxide cations 2MO+ (m=Ca, Sr, Ba) have been investigated by using the UB3LYP and CCSD (T) levels of theory. The O-atom affinities (OA) testified that only the 2CaO+ can capture O from N2O and transfer O to CO is thermodynamically allowed in three ions. The processes can be expressed as channels l and 2 for the reaction of N2O and CO mediated by 2MO+ (M=Ca, Sr, Ba). For the former, the main reaction processes in a two-step manner to products, the 2MO+, as a catalyzer, transports an oxygen atom from N2O to CO. For the latter, firstly, the N2O interact with the 2MO+ to form IM1, then IM1 interact with the CO to form IM2', along the reaction pathway the intermediate species convert into products 21MO+, N2 and CO2. From above results, the following conclusion was drawn. The channel 2 is kinetically and thermodynamically feasible. Our calculated results show the title reactions are accord with the experiment. (authors)

  13. The Electronic Structures and Optical Properties of Alkaline-Earth Metals Doped Anatase TiO2: A Comparative Study of Screened Hybrid Functional and Generalized Gradient Approximation

    Directory of Open Access Journals (Sweden)

    Jin-Gang Ma

    2015-08-01

    Full Text Available Alkaline-earth metallic dopant can improve the performance of anatase TiO2 in photocatalysis and solar cells. Aiming to understand doping mechanisms, the dopant formation energies, electronic structures, and optical properties for Be, Mg, Ca, Sr, and Ba doped anatase TiO2 are investigated by using density functional theory calculations with the HSE06 and PBE functionals. By combining our results with those of previous studies, the HSE06 functional provides a better description of electronic structures. The calculated formation energies indicate that the substitution of a lattice Ti with an AEM atom is energetically favorable under O-rich growth conditions. The electronic structures suggest that, AEM dopants shift the valence bands (VBs to higher energy, and the dopant-state energies for the cases of Ca, Sr, and Ba are quite higher than Fermi levels, while the Be and Mg dopants result into the spin polarized gap states near the top of VBs. The components of VBs and dopant-states support that the AEM dopants are active in inter-band transitions with lower energy excitations. As to optical properties, Ca/Sr/Ba are more effective than Be/Mg to enhance absorbance in visible region, but the Be/Mg are superior to Ca/Sr/Ba for the absorbance improvement in near-IR region.

  14. Heterometallic Alkaline Earth-Lanthanide Ba(II)-La(III) Microporous Metal-Organic Framework as Bifunctional Luminescent Probes of Al(3+) and MnO4(.).

    Science.gov (United States)

    Ding, Bin; Liu, Shi Xin; Cheng, Yue; Guo, Chao; Wu, Xiang Xia; Guo, Jian Hua; Liu, Yuan Yuan; Li, Yan

    2016-05-01

    In this work a rigid asymmetrical tricarboxylate ligand p-terphenyl-3,4″,5-tricarboxylic acid (H3L) has been employed, and a unique heterometallic alkaline earth-lanthanide microporous luminescent metal-organic framework (MOF) {[Ba3La0.5(μ3-L)2.5(H2O)3(DMF)]·(3DMF)}n (1·3DMF) (DMF = dimethylformamide) has been isolated under solvothermal conditions. Single-crystal X-ray structural analysis demonstrates that 2D inorganic Ba-O-La connectivity can be observed in 1, which are further bridged via rigid terphenyl backbones of L(3-), forming a unique I(2)O(1)-type microporous luminescent framework. A 1D microporous channel with dimensionality of 9.151(3) Å × 10.098(1) Å can be observed along the crystallographic a axis. PXRD patterns have been investigated indicating pure phases of 1. The luminescence explorations demonstrated that 1 exhibits highly selective and sensitive sensing for Al(3+) over other cations with high quenching efficiency Ksv value of 1.445 × 10(4) L·mol(-1) and low detection limit (1.11 μM (S/N = 3)). Meanwhile 1 also exhibits highly selective and sensitive sensing for MnO4(-) over other anions with quenching efficiency Ksv = 7.73 × 10(3) L·mol(-1) and low detection limit (0.28 μM (S/N = 3)). It is noted that, when different concentrations of MnO4(-) solutions (0.5 to 100 μM) were dropped into the suspension of 1, the bright blue luminescence of the suspension observed under UV light can gradually change into pink color, indicating visually luminescent sensing, which makes the detection process of MnO4(-) more convenient in practical. The result also reveals that 1 represents the first example of bifunctional heterometallic alkaline earth-lanthanide MOF-based luminescent probes for selectively detecting Al(3+) and MnO4(-) in the water solutions. PMID:27088966

  15. Surprisingly Different Reaction Behavior of Alkali and Alkaline Earth Metal Bis(trimethylsilyl)amides toward Bulky N-(2-Pyridylethyl)-N'-(2,6-diisopropylphenyl)pivalamidine.

    Science.gov (United States)

    Kalden, Diana; Oberheide, Ansgar; Loh, Claas; Görls, Helmar; Krieck, Sven; Westerhausen, Matthias

    2016-07-25

    N-(2,6-Diisopropylphenyl)-N'-(2-pyridylethyl)pivalamidine (Dipp-N=C(tBu)-N(H)-C2 H4 -Py) (1), reacts with metalation reagents of lithium, magnesium, calcium, and strontium to give the corresponding pivalamidinates [(tmeda)Li{Dipp-N=C(tBu)-N-C2 H4 -Py}] (6), [Mg{Dipp-N=C(tBu)-N-C2 H4 -Py}2 ] (3), and heteroleptic [{(Me3 Si)2 N}Ae{Dipp-N=C(tBu)-N-C2 H4 -Py}], with Ae being Ca (2 a) and Sr (2 b). In contrast to this straightforward deprotonation of the amidine units, the reaction of 1 with the bis(trimethylsilyl)amides of sodium or potassium unexpectedly leads to a β-metalation and an immediate deamidation reaction yielding [(thf)2 Na{Dipp-N=C(tBu)-N(H)}] (4 a) or [(thf)2 K{Dipp-N=C(tBu)-N(H)}] (4 b), respectively, as well as 2-vinylpyridine in both cases. The lithium derivative shows a similar reaction behavior to the alkaline earth metal congeners, underlining the diagonal relationship in the periodic table. Protonation of 4 a or the metathesis reaction of 4 b with CaI2 in tetrahydrofuran yields N-(2,6-diisopropylphenyl)pivalamidine (Dipp-N=C(tBu)-NH2 ) (5), or [(thf)4 Ca{Dipp-N=C(tBu)-N(H)}2 ] (7), respectively. The reaction of AN(SiMe3 )2 (A=Na, K) with less bulky formamidine Dipp-N=C(H)-N(H)-C2 H4 -Py (8) leads to deprotonation of the amidine functionality, and [(thf)Na{Dipp-N=C(H)-N-C2 H4 -Py}]2 (9 a) or [(thf)K{Dipp-N=C(H)-N-C2 H4 -Py}]2 (9 b), respectively, are isolated as dinuclear complexes. From these experiments it is obvious, that β-metalation/deamidation of N-(2-pyridylethyl)amidines requires bases with soft metal ions and also steric pressure. The isomeric forms of all compounds are verified by single-crystal X-ray structure analysis and are maintained in solution. PMID:27355970

  16. Alkaline Earth Metal Zirconate Perovskites MZrO3 (M=Ba(2+), Sr(2+), Ca(2+)) Derived from Molecular Precursors and Doped with Eu(3+) Ions.

    Science.gov (United States)

    Drąg-Jarząbek, Anna; John, Łukasz; Petrus, Rafał; Kosińska-Klähn, Magdalena; Sobota, Piotr

    2016-03-24

    The effect of alkaline earth metal alkoxides on the protonation of zirconocene dichloride was investigated. This approach enabled the design of compounds with preset molecular structures for generating high-purity binary metal oxide perovskites MZrO3 (M=Ba(2+), Sr(2+), Ca(2+)). Single-source molecular precursors [Ba4 Zr2 (μ6 -O)(μ3 ,η(2)-OR)8 (OR)2(η(2) -HOR)2 (HOR)2 Cl4], [Sr4 Zr2 (μ6 -O)(μ3 ,η(2)-OR)8 (OR)2 (HOR)4 Cl4], [Ca4 Zr2 (μ6-O)(μ3 ,η(2)-OR)8 (OR)2 Cl4], and [Ca6 Zr2 (μ2 ,η(2)-OR)12 (μ-Cl)2 (η(2) -HOR)4 Cl6 ]⋅8 CH2 Cl2 were prepared via elimination of the cyclopentadienyl ring from Cp2 ZrCl2 as CpH in the presence of M(OR)2 and alcohol ROH (ROH=CH3OCH2 CH2OH) as a source of protons. The resulting complexes were characterized by elemental analysis, IR and NMR spectroscopy, and single-crystal X-ray diffraction. The compounds were then thermally decomposed to MCl2 /MZrO3 mixtures. Leaching of MCl2 from the raw powder with deionized water produced highly pure perovskite-like oxide particles of 40-80 nm in size. Luminescence studies on Eu(3+)-doped MZrO3 revealed that the perovskites are attractive host lattices for potential applications in display technology. PMID:26891039

  17. Separation of stable isotopes of alkali and alkaline earth metals in chemical exchange systems with crown ethers

    International Nuclear Information System (INIS)

    Chemical isotope exchange in two-phase water - organic systems Men+ (water) - MeLn+ (org), where Me = Li, Ca, K, Mg; L = crown ethers with 5 to 6 oxygen atoms in macrocyclic ring; org = CHCl3, CH2Cl2 has been studied. The process of isotope separation has been realized by extraction chromatography. The chromatographic column contained a fixed aqueous phase. The organic solution of metal complex with crown ether was eluted through the column. On contact with the fixed aqueous phase in the course of chromatography, metal salt reextraction occurred and interphase isotope exchange between aqueous and organic phases resulted. Isotope separation factors in these systems were in the range of: 1.0032 - 1.020 (6Li/7Li), 1.0016 - 1.0038 (40Ca/44Ca), 1.0007 - 1.0011 (39K/41K), 1.0014 - 1.0044 (24Mg/26Mg). The theoretical model has been proposed to interpret the high separation factors in crown ether extraction systems. According to this model, the potential in such systems has a very flat bottom. This type of potential results in weakening the force field and decreasing of β-factor (i.e., (s/s')f) in spite of comparatively high energy of complexation. This model can interpret both high separation factors and their strong dependence on the type of crown ether. (author)

  18. Interaction of alkali and alkaline earth ions with Ochratoxin A

    Energy Technology Data Exchange (ETDEWEB)

    Poor, Miklos [Institute of Laboratory Medicine, University of Pecs, Pecs H-7624 (Hungary); Kunsagi-Mate, Sandor; Matisz, Gergely; Li, Yin; Czibulya, Zsuzsanna [Department of General and Physical Chemistry, University of Pecs, Pecs H-7624 (Hungary); Janos Szentagothai Research Center, Pecs H-7624 (Hungary); Peles-Lemli, Beata [Department of General and Physical Chemistry, University of Pecs, Pecs H-7624 (Hungary); Koszegi, Tamas, E-mail: koszegit@freemail.hu [Institute of Laboratory Medicine, University of Pecs, Pecs H-7624 (Hungary)

    2013-03-15

    The effect of alkali and alkaline earth ions on the chemical equilibrium of mono- and dianionic forms of the mycotoxin Ochratoxin A (OTA) and their bonding onto the surface of Bovine Serum Albumin (BSA) have been investigated by fluorescence spectroscopy and fluorescence polarization techniques. Our results show that alkali metal ions shift the chemical equilibrium towards formation of dianionic form of OTA. Furthermore, the alkaline earth ions can compete with BSA for binding to OTA when these ions are present in millimolar concentrations. Our data also highlight the possibility that the 'free' fraction of OTA (not bound onto the surface of albumin) or at least a part of it is present in cation-bound form in body fluids. These observations are supported by stability constants and quantum-chemical calculations. Among the studied alkaline metal ions magnesium showed the highest affinity towards OTA under physiological conditions. Further research is required to analyze the potential significance of Mg{sup 2+}-OTA complex in cellular uptake and/or elimination of the toxin in the human body. - Highlights: Black-Right-Pointing-Pointer Fluorescence spectroscopy reveals cation-Ochratoxin A (OTA) interactions. Black-Right-Pointing-Pointer Alkali ions shift the equilibrium of OTA to formation of a dianionic structure. Black-Right-Pointing-Pointer Alkaline earth ions directly bind to OTA in the order: Mg{sup 2+}, Ca{sup 2+}, Ba{sup 2+}. Black-Right-Pointing-Pointer Quantum chemical calculations and logK values support our experimental data.

  19. Retention of alkaline earth elements in man

    International Nuclear Information System (INIS)

    The data on human metabolism and long-term retention of alkaline earth elements (133Ba injected into six healthy male volunteers at age 25-81 y and 45Ca and 85Sr received by one healthy male volunteer) are presented. Excreta were collected for 2-3 weeks after injection of the tracer into an antecubital vein. Activity in urine, ashed faeces and early samples of blood plasma was determined by gamma-ray scintillation spectrometry. Whole body retention has been assessed through serial measurements of body radioactivity. The injected 133Ba apparently became mainly skeletal within several days, much earlier than predicted by the ICRP model. The whole-body retention at 32 d ranged from 5 to 14%, the rate of loss correlating with the excretory plasma clearance rate. No age-related trends were identified in the metabolism of Ca and Sr. 2 refs, 2 figs

  20. New Alkaline-Earth Polymeric Frameworks as green materials for sorption and heterogeneous catalysis

    OpenAIRE

    Platero Prats, Ana Eva

    2011-01-01

    Metal-Organic Frameworks (or MOFs) are porous organic-inorganic crystalline materials in which the metallic centers are joined through organic ligands via coordination bonds to give frameworks with different dimensionalities. The work presented in this thesis is focused on the obtaining of new MOFs using alkaline-earth elements as metal centers, which could represent a comparatively cheap, nontoxic and green alternative to conventional MOFs based on transition metals or rare-earth elements.Th...

  1. Proposal for Laser Cooling of Alkaline Earth Monoalkoxide Free Radicals

    Science.gov (United States)

    Baum, Louis; Kozyryev, Ivan; Matsuda, Kyle; Doyle, John M.

    2016-05-01

    Cold samples of polyatomic molecules will open new avenues in physics, chemistry, and quantum science. Non-diagonal Franck-Condon factors, technically challenging wavelengths, and the lack of strong electronic transitions inhibit direct laser cooling of nonlinear molecules. We identify a scheme for optical cycling in certain molecules with six or more atoms. Replacing hydrogen in alcohols with an alkaline earth metal (M) leads to alkaline earth monoalkoxide free radicals (MOR), which have favorable properties for laser cooling. M-O bond is very ionic, so the metal orbitals are slightly affected by the nature of R on the ligand. Diagonal Franck-Condon factors, laser accessible transitions, and a small hyperfine structure make MOR molecules suitable for laser cooling. We explore a scheme for optical cycling on the A - X transition of SrOCH3 . Molecules lost to dark vibrational states will be repumped on the B - X transition. Extension to larger species is possible through expansion of the R group since transitions involve the promotion of the metal-centered nonbonding valence electron. We will detail our estimations of the Franck-Condon factors, simulations of the cooling process and describe progress towards the Doppler cooling of MOR polyatomics.

  2. Characterization and activity of alkaline earth metals loaded CeO{sub 2}–MO{sub x} (M = Mn, Fe) mixed oxides in catalytic reduction of NO

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, Seyed Mahdi [Department of Applied Chemistry and Chemical Engineering, Faculty of Chemistry, University of Tabriz, 5166616471 Tabriz (Iran, Islamic Republic of); Niaei, Aligholi, E-mail: niaei@yahoo.com [Department of Applied Chemistry and Chemical Engineering, Faculty of Chemistry, University of Tabriz, 5166616471 Tabriz (Iran, Islamic Republic of); Illán Gómez, María José [Carbon Materials and Environment Research Group, Department of Inorganic Chemistry, Faculty of Science, Universidad de Alicante, Alicante (Spain); Salari, Dariush; Nakhostin Panahi, Parvaneh [Department of Applied Chemistry and Chemical Engineering, Faculty of Chemistry, University of Tabriz, 5166616471 Tabriz (Iran, Islamic Republic of); Abaladejo-Fuentes, Vicente [Carbon Materials and Environment Research Group, Department of Inorganic Chemistry, Faculty of Science, Universidad de Alicante, Alicante (Spain)

    2014-02-14

    Nanocrystalline CeO{sub 2}–MO{sub x} mixed oxides (M = Mn, Fe) with different M/(M + Ce) molar ratio are prepared by sol–gel combustion method. X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Temperature Programmed Reduction with H{sub 2} (H{sub 2}-TPR) and N{sub 2}-adsorption (BET) analyses are conducted to characterize the physical–chemical properties of the catalysts. The activity of catalysts for reduction of NOx with ammonia has been evaluated. The CeO{sub 2}–MnO{sub x} catalysts showed better low temperature activity than CeO{sub 2}–FeO{sub x}. The superior activity of CeO{sub 2}–MnO{sub x} with Mn/(Mn + Ce) molar ratio of 0.25 respect to other catalysts (with 83% NO conversion and 68% N{sub 2} yield at 200 °C) is associated to nanocrystalline structure, reducibility at low temperature and synergistic effect between Ce and Mn that are observed by XRD, TEM and H{sub 2}-TPR. The CeO{sub 2}–FeO{sub x} catalysts were found to be active at high temperature, being Ce–Fe the best catalyst yielded 82% NO conversion at 300 °C. The effect of alkaline earth metals (Ca, Mg, Sr and Ba) loading on the structure and catalytic activity of cerium mixed oxides are also investigated. Loading of Ba enhanced the NO reduction activity of mixed oxides due to the increase of number of basic sites. Highest performance with 91% NO conversion and 80% N{sub 2} yield attained over CeO{sub 2}–MnO{sub x} (0.25)-Ba (7%) catalyst at 200 °C. - Highlights: • CeO{sub 2}–MO{sub x} mixed oxides (M = Mn, Fe) were synthesized by sol–gel combustion method. • The activity of mixed oxides is evaluated in catalytic reduction of NO with NH{sub 3}. • The CeO{sub 2}–MnO{sub x} showed better activity than CeO{sub 2}–FeO{sub x} due to better redox properties. • Ba loading enhanced the activity due to the increase of number of basic sites. • 91% NO conversion and 80% N{sub 2} yield attained over 7%Ba–Ce{sub 0.75}Mn{sub 0.25}O{sub 2} at 200 °C.

  3. Study of sorption regularities of alkaline and alkali-earth metals cations by sorbents on the basis of zirconium amorphous phosphate

    International Nuclear Information System (INIS)

    In order to obtain the samples of zirconium phosphates in the form of spherical granulation the hydrogel granules of zirconium dioxides were treatment by aqueous solutions of orthophosphoric acid and dihydrophosphate of alkaline metals. Their ion exchange properties were studied by means of potentiometric titration method. The influence of thermal treatment on structural-sorption properties of ion exchangers was studied. It was defined that with temperature increasing of samples treatment their specific surface area decreases, the volume of sorption pores and sorption capacity decreases as well.

  4. {sup 1}H and {sup 23}Na MAS NMR spectroscopy of cationic species in CO{sub 2} selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Arevalo-Hidalgo, Ana G. [Department of Chemical Engineering, University of Puerto Rico-Mayagueez Campus, Mayagueez, PR 00681-9000 (Puerto Rico); Dugar, Sneha; Fu, Riqiang [National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 (United States); Hernandez-Maldonado, Arturo J., E-mail: arturoj.hernandez@upr.edu [Department of Chemical Engineering, University of Puerto Rico-Mayagueez Campus, Mayagueez, PR 00681-9000 (Puerto Rico)

    2012-07-15

    The location of extraframework cations in Sr{sup 2+} and Ba{sup 2+} ion-exchanged SAPO-34 was estimated by means of {sup 1}H and {sup 23}Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO{sub 2} adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO{sub 2} adsorption performance. Highlights: Black-Right-Pointing-Pointer Location of extraframework Sr{sup 2+} or Ba{sup 2+} cations was estimated by means of {sup 1}H and {sup 23}Na MAS NMR. Black-Right-Pointing-Pointer Level of Sr{sup 2+} or Ba{sup 2+} ion exchange was limited by the presence of protons and sodium cations. Black-Right-Pointing-Pointer Presence of ammonium cations in the supercages facilitated the exchange. Black-Right-Pointing-Pointer Sr{sup 2+} and Ba{sup 2+} ion exchanged SAPOs are outstanding CO{sub 2} adsorbents.

  5. Magic wavelengths in the alkaline earth ions

    CERN Document Server

    Kaur, Jasmeet; Arora, Bindiya; Sahoo, B K

    2015-01-01

    We present magic wavelengths for the $nS$ - $nP_{1/2,3/2}$ and $nS$ - $mD_{3/2,5/2}$ transitions, with the respective ground and first excited $D$ states principal quantum numbers $n$ and $m$, in the Mg$^+$, Ca$^+$, Sr$^+$ and Ba$^+$ alkaline earth ions for linearly polarized lights by plotting dynamic polarizatbilities of the $nS$, $nP_{1/2,3/2}$ and $mD_{3/2,5/2}$ states of the ions. These dynamic polarizabilities are evaluated by employing a relativistic all-order perturbative method and their accuracies are ratified by comparing their static values with the available high precision experimental or other theoretical results. Moreover, some of the magic wavelengths identified by us in Ca$^+$ concurs with the recent measurements reported in [{\\bf Phys. Rev. Lett. 114, 223001 (2015)}]. Knowledge of these magic wavelengths are propitious to carry out many proposed high precision measurements trapping the above ions in the electric fields with the corresponding frequencies.

  6. Mixed ligand complexes of alkaline earth metals: Part XII. Mg(II, Ca(II, Sr(II and Ba(II complexes with 5-chlorosalicylaldehyde and salicylaldehyde or hydroxyaromatic ketones

    Directory of Open Access Journals (Sweden)

    MITHLESH AGRAWAL

    2002-04-01

    Full Text Available The reactions of alkaline earth metal chlorides with 5-chlorosalicylaldehyde and salicylaldehyde, 2-hydroxyacetophenone or 2-hydroxypropiophenone have been carried out in 1 : 1 : 1 mole ratio and the mixed ligand complexes of the type MLL’(H2O2 (where M = Mg(II, Ca(II, Sr(II and Ba(II, HL = 5-chlorosalicylaldehyde and HL’ = salicylaldehyde, 2-hydroxyacetophenone or 2-hydroxypropiophenone have been isolated. These complexes were characterized by TLC, conductance measurements, IR and 1H-NMR spectra.

  7. Alkaline earths as main group reagents in molecular catalysis.

    Science.gov (United States)

    Hill, Michael S; Liptrot, David J; Weetman, Catherine

    2016-02-21

    The past decade has witnessed some remarkable advances in our appreciation of the structural and reaction chemistry of the heavier alkaline earth (Ae = Mg, Ca, Sr, Ba) elements. Derived from complexes of these metals in their immutable +2 oxidation state, a broad and widely applicable catalytic chemistry has also emerged, driven by considerations of cost and inherent low toxicity. The considerable adjustments incurred to ionic radius and resultant cation charge density also provide reactivity with significant mechanistic and kinetic variability as group 2 is descended. In an attempt to place these advances in the broader context of contemporary main group element chemistry, this review focusses on the developing state of the art in both multiple bond heterofunctionalisation and cross coupling catalysis. We review specific advances in alkene and alkyne hydroamination and hydrophosphination catalysis and related extensions of this reactivity that allow the synthesis of a wide variety of acyclic and heterocyclic small molecules. The use of heavier alkaline earth hydride derivatives as pre-catalysts and intermediates in multiple bond hydrogenation, hydrosilylation and hydroboration is also described along with the emergence of these and related reagents in a variety of dehydrocoupling processes that allow that facile catalytic construction of Si-C, Si-N and B-N bonds. PMID:26797470

  8. Synthesis and infrared spectra of alkaline earth metal carbonates formed by the reaction of metal salts with urea at high temperature

    Indian Academy of Sciences (India)

    S M Teleb; D El-Sayed Nassr; E M Nour

    2004-12-01

    The metal carbonate, MCO3 (M = Ca, Sr and Ba), was synthesized by a novel method of reacting aqueous solution of each of Ca2+, Sr2+ and Ba2+ salts with urea at high temperature, ∼ 80°C. The reaction products were characterized through elemental analysis and infrared spectra. The infrared spectra of the products are the same as those of the corresponding commercially obtained carbonates. A general reaction describing the formation of MCO3 is proposed.

  9. Determination of alkaline earth metal ions in solar salt by ion chromatography after solvent extraction with 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone

    International Nuclear Information System (INIS)

    Ion chromatography was effectively applied to the determination of alkaline earth elements (Mg, Ca, Sr and Ba) in solar salt after extraction with 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (HPMBP) into MIBK. The recommended procedure was as follows : the samples (20 ∼ 50 g) were dissolved in about 150 ml of water and the solution was filtered through filter paper into a 200-ml volumetric flask. Ten ml of the sample was pipetted into a centrifuge tube, 5 ml of NH3-NH4Cl buffer solution (pH 9.5), and 15 ml 0.05 M HPMBP-MIBK solution were added. The mixture was shaken vigorously for 30 min. After the phases were separated, an 8-ml portion of the organic phase was transferred into another tube and the alkaline earth elements were back-extracted with 8 ml of the 0.1 M hydrochloric acid. The aqueous phase (6 ml) was heated on a hot plate at 100 deg C in order to remove the dissolved MIBK in the phase. After cooling to room temperature, the solution was diluted to 25 ml with water. A 100 μl aliquot of the sample was analyzed by use of an ion chromatograph (Yokogawa Hokushin Electric Works, model IC 100) equipped with a precolumn (PCX 1, 50 mm x 4.6 mm i.d.) and a separation column (SCX 1, 250 mm x 4.6 mm i.d.) by using 2 mM ethylene diamine-4 mM tartaric acid as a mobile phase (2 ml/min). The detection limits (S/N = 2) were 1.5 ppb for Mg2+, 3.4 ppb for Ca2+, 20 ppb for Sr2+ and 50 ppb for Ba2+, respectively. Relative standard deviation (n = 7) was less than 6.3 % for the simultaneous determination of four elements. The recoveries of Mg2+, Ca2+, Sr2+ and Ba2+ by the proposed method were 100 ∼ 105, 95 ∼ 105, 97 ∼ 101 and 95 ∼ 101 %, respectively. (author)

  10. Multi-phase glass-ceramics as a waste form for combined fission products: alkalis, alkaline earths, lanthanides, and transition metals

    International Nuclear Information System (INIS)

    In this study, multi-phase silicate-based glass-ceramics were investigated as an alternate waste form for immobilizing non-fissionable products from used nuclear fuel. Currently, borosilicate glass is the waste form selected for immobilization of this waste stream, however, the low thermal stability and solubility of MoO3 in borosilicate glass translates into a maximum waste loading in the range of 15-20 mass%. Glass-ceramics provide the opportunity to target durable crystalline phases, e.g., powellite, oxyapatite, celsian, and pollucite, that will incorporate MoO3 as well as other waste components such as lanthanides, alkalis, and alkaline earths at levels 2X the solubility limits of a single-phase glass. In addition a glass-ceramic could provide higher thermal stability, depending upon the properties of the crystalline and amorphous phases. Glass-ceramics were successfully synthesized at waste loadings of 42, 45, and 50 mass% with the following glass additives: B2O3, Al2O3, CaO and SiO2 by slow cooling form from a glass melt. Glass-ceramics were characterized in terms of phase assemblage, morphology, and thermal stability. The targeted phases: powellite and oxyapatite were observed in all of the compositions along with a lanthanide borosilicate, and cerianite. Results of this initial investigation of glass-ceramics show promise as a potential waste form to replace single-phase borosilicate glass.

  11. Multi-phase glass-ceramics as a waste form for combined fission products: alkalis, alkaline earths, lanthanides, and transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna

    2012-04-01

    In this study, multi-phase silicate-based glass-ceramics were investigated as an alternate waste form for immobilizing non-fissionable products from used nuclear fuel. Currently, borosilicate glass is the waste form selected for immobilization of this waste stream, however, the low thermal stability and solubility of MoO{sub 3} in borosilicate glass translates into a maximum waste loading in the range of 15-20 mass%. Glass-ceramics provide the opportunity to target durable crystalline phases, e.g., powellite, oxyapatite, celsian, and pollucite, that will incorporate MoO{sub 3} as well as other waste components such as lanthanides, alkalis, and alkaline earths at levels 2X the solubility limits of a single-phase glass. In addition a glass-ceramic could provide higher thermal stability, depending upon the properties of the crystalline and amorphous phases. Glass-ceramics were successfully synthesized at waste loadings of 42, 45, and 50 mass% with the following glass additives: B{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, CaO and SiO{sub 2} by slow cooling form from a glass melt. Glass-ceramics were characterized in terms of phase assemblage, morphology, and thermal stability. The targeted phases: powellite and oxyapatite were observed in all of the compositions along with a lanthanide borosilicate, and cerianite. Results of this initial investigation of glass-ceramics show promise as a potential waste form to replace single-phase borosilicate glass.

  12. Distribution of alkaline earth elements between aqueous solutions and polymer sorbents impregnated by 8-hydroxyquinoline

    International Nuclear Information System (INIS)

    Interphase distribution of alkaline-earth element (AEE) microimpurities between solutions of alkali metal chlorides and macroporous copolymer of styrene with divinylbenzene impregnated by 8-hydroxyquinoline is investigated. The effect of phase composition on AEE and 8-hydroxyquinoline distribution coefficient is considered. Advantages of the mixture sorption with impregnated sorbent as compared with liquid extraction for thorough purification of salt solution are shown

  13. An Unprecedented 1D Zigzag Chain Alkaline Earth Metal Derivative {[Ba(DMF)3(H2O)2][Ba(DMF)4]2(P2W18O62)}n Containing Dawson Heteropolyanion

    Institute of Scientific and Technical Information of China (English)

    Jing Ping WANG; Jian Ru MA; Jing Yang NIU

    2006-01-01

    An unprecedented 1D zigzag chain alkaline earth metal derivative, {[Ba(DMF)3(H2O)2][Ba(DMF)4]2(P2W18O62)}n, (DMF=N, N-dimethyl formamide) containing Dawson heteropolyanion has been successfully synthesized and characterized by X-ray crystallography. Two barium cations bridged by three DMF ligands in parallel combination with the Dawson-type heteropolyanion [P2W18O62]6- and then the resulting subunits {[Ba(DMF)4]2(P2W18O62)}2+ are alternately linked together via another [Ba(DMF)3(H2O)2]2+ ions, constructing a 1D zigzag chain architecture.

  14. Surface-treatment of Alkaline Earth Sulfides Based Phosphor

    Institute of Scientific and Technical Information of China (English)

    GUO Chong-feng; CHU Ben-li; XU Jian; SU Qiang

    2004-01-01

    A series of alkaline earth sulfides based phosphors Ca0.8Sr0.2S∶Eu2+, Tm3+ were covered with a layer of protective coating with alkaline earth fluorides by heating the mixture of phosphor and NH4HF2 at elevated temperatures. The coatings were characterized by means of XRD and SEM. The optical properties of the coated phosphors and the influences of the coating on their properties have been discussed extensively. The stabilities of the coated and uncoated phosphors have been compared.

  15. Long-range interactions between alkali and alkaline-earth atoms

    International Nuclear Information System (INIS)

    Dispersion coefficients between the alkali metal atoms (Li–Rb) and alkaline-earth metal atoms (Be–Sr) are evaluated using matrix elements computed from frozen core configuration interaction calculations. Besides dispersion coefficients with both atoms in their respective ground states, dispersion coefficients are also given for the case where one atom is in its ground state and the other atom is in a low-lying excited state. (paper)

  16. Mixed alkaline earth effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.;

    2013-01-01

    While the mixed alkali effect has received significant attention in the glass literature, the mixed alkaline earth effect has not been thoroughly studied. Here, we investigate the latter effect by partial substitution of magnesium for calcium in sodium aluminosilicate glasses. We use Raman and NMR...

  17. Modelling the crystallisation of alkaline earth boroaluminosilicate glass ceramics

    DEFF Research Database (Denmark)

    Svenson, Mouritz Nolsøe; Agersted, Karsten; Holm, Paul Martin

    2014-01-01

    To investigate the potential use of a thermochemical software package (FactSage 6.2), in the design of alkaline earth boroaluminosilicate glass ceramics, experimental and modelled results on four glass ceramics were compared. Initially large discrepancies were found. These are described and related...

  18. Lyoluminescence of luminol in aqueous alkaline metal hydroxides

    International Nuclear Information System (INIS)

    The lyoluminescence emission spectra of luminol, induced by γ-irradiated NaCl in aqueous alkaline earth metal hydroxides, are recorded. Continuous emission bands are observed in the visible region from 390 to 535 nm. These emission bands on resolution showed two peaks at 430 and 460 nm, respectively in all hydroxides. An additional band of 490 appears in the case of calcium hydroxide. The colour centres released during disintegration of irradiated NaCl crystals in aqueous solution react with luminol to produce various excited molecular species, which are responsible for observed lyoluminescence of luminol. (author) 26 refs.; 7 figs.; 1 tab

  19. Li2Sr4B12O23: A new alkali and alkaline-earth metal mixed borate with [B10O18]6− network and isolated [B2O5]4− unit

    International Nuclear Information System (INIS)

    A novel ternary lithium strontium borate Li2Sr4B12O23 crystal with size up to 20 mm×10 mm×4 mm has been grown via the top-seeded solution growth method below 730 °C. Single-crystal XRD analyses showed that Li2Sr4B12O23 crystallizes in the monoclinic space group P21/c with a=6.4664(4) Å, b=8.4878(4) Å, c=15.3337(8) Å, β=102.02(3)°, Z=2. The crystal structure is composed of [B10O18]6− network and isolated [B2O5]4− unit. The IR spectrum further confirmed the presence of both BO3 and BO4 groups. TG-DSC and Transmission spectrum were reported. Band structures and density of states were calculated. - Graphical abstract: A new phase, Li2Sr4B12O23, has been discovered in the ternary M2O–M′O–B2O3 (M=alkali-metal, M′=alkalineearth metal) system. The crystal structure consists of [B10O18]6− network and isolated [B2O5]4− unit. Highlights: ► Li2Sr4B12O23 is a a novel borate discovered in the M2O–M′O–B2O3 (M=alkali-metal, M′=alkaline-earth metal) system. ► Li2Sr4B12O23 crystal structure has a three-dimensional crystal structure with [B10O18]6− network and isolated [B2O5]4− unit. ► Sr1 and Sr2 are located in two different channels constructed by 3∞[B10O18] network.

  20. Bose-Einstein condensation of alkaline earth atoms: ;{40}Ca.

    Science.gov (United States)

    Kraft, Sebastian; Vogt, Felix; Appel, Oliver; Riehle, Fritz; Sterr, Uwe

    2009-09-25

    We have achieved Bose-Einstein condensation of ;{40}Ca, the first for an alkaline earth element. The influence of elastic and inelastic collisions associated with the large ground-state s-wave scattering length of ;{40}Ca was measured. From these findings, an optimized loading and cooling scheme was developed that allowed us to condense about 2 x 10;{4} atoms after laser cooling in a two-stage magneto-optical trap and subsequent forced evaporation in a crossed dipole trap within less than 3 s. The condensation of an alkaline earth element opens novel opportunities for precision measurements on the narrow intercombination lines as well as investigations of molecular states at the ;{1}S-;{3}P asymptotes. PMID:19905493

  1. Radiation damage and photochromism in the alkaline earth fluorides

    International Nuclear Information System (INIS)

    Detailed mechanisms are proposed for the defect reactions occurring in irradiated alkaline earth fluorides. Both pure and doped crystals are considered. For the former, the models rationalise much of the experimental data, particularly the studies of Hayes and Lambourn. The discussion of doped crystals explains the origin of the pronounced effects of trivalent impurities. The mechanism of formation of photochromic centres is discussed and the observed temperature dependence of the stability of these defects is explained successfully. (author)

  2. Distribution of alkaline earth elements between aqueous solutions and polymeric sorbent impregnated with 8-hydroxyquinoline

    International Nuclear Information System (INIS)

    The interphase distribution of microimpurities of alkaline earth elements (AEE) between solutions of alkali metal chlorides and a macroporous styrene-divinyl-benzene copolymer impregnated with 8-hydroxyquinoline was studied. The influence of the phase composition on the distribution coefficients of AEE and 8-hydroxyquinoline was examined. The advantages of sorption of the impurities by an impregnated sorbent over liquid extraction for thorough purification of salt solutions were shown

  3. Design and Synthesis of Redox-Switched Lariat Ethers and Their Application for Transport of Alkali and Alkaline-Earth Metal Cations Across Supported Liquid Membrane

    Directory of Open Access Journals (Sweden)

    Uma Sharma

    2006-08-01

    Full Text Available A new class of redox-switched anthraquinone derived lariat ethers 1-(1-anthraquinonyloxy 3, 6, 9 trioxaundecane 11-ol (M1, 1-(1-anthraquinonyloxy 3, 6 dioxaoctane 9-ol (M2, 1-(1-anthraquinonyloxy 3 oxapentane 5-ol (M3, 1-(1-anthraquinonyloxy 3 oxapentane 5-butane (M4, 1-(1-anthraquinonyloxy 3, 6 dioxaoctane 9-methane (M5 and 1-(1-anthraquinonyloxy 3 oxapentane 5-methane (M6 have been synthesized and characterized by spectral analysis. These ionophores were used in liquid membrane carrier facilitated transport of main group metal cations across supported liquid membrane (SLM. Cellulose nitrate membrane was used as membrane support. Effect of various parameters such as variation in concentration of metal as well as ionophore, effect of chain length and end group of ionophore have been studied. The sequence of metal ions transported by ionophore M1 is Na+ > Li+ > K+ > Ca2+ > Mg2+ and the order of metal ions transported by ionophores (M2–M6 is Li+ > Na+ > K+ > Ca2+ > Mg2+. Ionophore M1 is selective for Na+, Li+, and K+ and ionophores (M2–M6 are selective for Li+ and Na+.

  4. Theoretical survey on M@C80 (M = Ca, Sr, and Ba): Behavior of different alkaline earth metal impacting the chemical stability and electronic properties

    Science.gov (United States)

    Cui, Jin-Bo; Guo, Yi-Jun; Li, Qiao-Zhi; Zhao, Pei; Zhao, Xiang

    2016-08-01

    Structures of mono-metallofullerenes M@C80 (M = Ca, Sr, and Ba) that separated in early experiment are determined owning the C2v(31920)-C80 cage. The change rule of properties for M@C80 (M = Ca, Sr, and Ba) influenced by different inner metal are discussed. As the trapped metal changes from calcium to barium, performance of thermodynamic stabilities for M@C2v(31920)-C80, M@C2v(31922)-C80, and M@D5h(31923)-C80 are significantly different. Orbital analysis suggests that the lowest unoccupied molecular orbitals (LUMOs) of Ca@C2v(31920)-C80 and Ca@D5h(31923)-C80 are mostly located on the trapped metal, whereas reduction reactions of Ca@C2v(31920)-C80 and Ca@D5h(31923)-C80 occur on the fullerene cage. Natural electron configuration analyses demonstrates that the decentralized electron back-donation of Ba@C2v(31920)-C80 would take responsible for the instability of itself. Electronic properties such as electron affinities and ionization potentials are significantly affected by encapsulated metal are also found. Computational UV-visible-NIR spectra for M@C2v(31920)-C80 (M = Ca, Sr, Ba) are in perfect accord with the spectra obtained experimentally.

  5. Correlation-induced metal-insulator transitions in d0 magnetic superlattices based on alkaline-earth monoxides: Insights from ab initio calculations

    Science.gov (United States)

    Lu, Yi-Lin; Dong, Shengjie; Zhou, Baozeng; Zhao, Hui; Wu, Ping

    2015-06-01

    Using first-principles density functional theory calculations, we have investigated the electronic structure and magnetic properties of four superlattices (MO)1/(MX)1 (001) (M=Ca and Sr; X=N and C). Our results show that compared with standard GGA approach, the GGA plus effective Ueff scheme can correct electronic structure and magnetic properties in some extent. With enhancing electronic correlation, for (CaO)1/(CaN)1, (SrO)1/(SrN)1, and (SrO)1/(SrC)1, the bands across Fermi level are divided into two parts and the shape of isotropic spherical spin atmosphere becomes anisotropic dumbbell-like with specific orientation, accompanying metal-insulator transitions. For (CaO)1/(CaC)1, the states just smearing with the Fermi level shift to lower energy region below Fermi level, indicating the transformation from a nearly half metal to an actual half metal occurs. The different behavior of (CaO)1/(CaC)1 compared with three other compounds may be caused by the larger ionization energy of calcium than that of strontium and the smaller electronegativity of carbon than that of nitrogen.

  6. Mechanism of the transfer of alkali- and alkaline-earth-metal ions across the nitrobenzene-water interface facilitated by hexa- and octaethylene glycol dodecyl ethers

    International Nuclear Information System (INIS)

    Transfer of Li+, Na+ , K+, Rb+, Ca2+, Sr2+, and Ba2+ ions facilitated by hexa- and octaethylene glycol monododecyl ethers (C12E6 and C12E8) has been studied at the nitrobenzene (NB)- water (W) interface using cyclic voltammetry. When the concentration of C12En (n = 6 or 8) in NB is higher than 1 mM, cyclic voltammograms for all these ions show reversible transfer of ions facilitated by C12En. The current is mainly carried by 1:1 (metal:ligand) complex and is limited by the diffusion of C12En in NB. When the concentration of C12En in NB is lowered to the submillimolar range, the contribution of the adsorption of C12En to the current becomes significant. In the transfer of hydrophilic ions, e.g., Li + and Ca2+, the contribution of the complex with 1:2 (metal:ligand) stoichiometry to the measured current becomes nonnegligible. This 1:2 complex formation becomes pronounced with increasing ligand concentration

  7. A study on equilibrium and kinetics of ion exchange of alkaline earth metals using an inorganic cation exchanger - zirconium titanium phosphate

    Indian Academy of Sciences (India)

    Amin Jignasa; Thakkar Rakesh; Chudasama Uma

    2006-03-01

    An advanced inorganic cation exchange material of the class of tetravalent metal acid (TMA) salt, zirconium titanium phosphate (ZTP), has been synthesized by a modified sol-gel technique. ZTP has been characterized by elemental analysis (ICP-AES), thermal analysis (TGA), FTIR and X-ray diffraction studies. The Nernst-Planck equation has been used to study the forward and reverse ion exchange kinetics of Mg (II), Ca (II), Sr (II) and Ba (II) with H (I) at four different temperatures. The mechanism of exchange is particle diffusion, as confirmed by the linear (dimensionless time parameter) vs (time) plots. The exchange process is thus controlled by the diffusion within the exchanger particles for the systems studied herein. Further, various kinetic parameters like self-diffusion coefficient (0), energy of activation () and entropy of activation (*) have been evaluated under conditions favouring a particle diffusion-controlled mechanism.

  8. Density functional study on the ferromagnetism of alkaline earth doped InN

    International Nuclear Information System (INIS)

    Highlights: • The magnetic properties of alkaline earth doped InN were systematically investigated. • The doped system transits from nonmagnetic state to half-metallic state. • Strong ferromagnetism can be expected in Sr- or Ba-doped InN. • Under nitrogen-rich condition, the defect is more stable. - Abstract: Recently, p-type conduction of InN doped by alkaline earth was reported in experiments. However, the magnetic property of the doped systems has not been studied. We systematically investigate the magnetic property of alkaline-earth doped InN by density-functional theory. Our results reveal that the ground state of the doped system transits from nonmagnetic state to spin-polarized state, and the holes introduced into the valence band become more localized as the defect ranges from Be to Ba. As a result, strong half-metallic ferromagnetism emerges for Sr- or Ba-doped InN. Our calculations reveal that the formation energy of defect is much lower for nitrogen-rich condition, under which the doped system can be favorably synthesized

  9. Density functional study on the ferromagnetism of alkaline earth doped InN

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai-Cheng, E-mail: kczhang@yeah.net [College of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); Li, Yong-Feng [Key laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); School of Mathematics, Physics and Biological Engineering, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Liu, Yong [State Key Laboratory of Metastable Materials Science and Technology and College of Science, Yanshan University, Qinhuangdao, Hebei 066004 (China); Zhu, Yan [Department of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2015-03-15

    Highlights: • The magnetic properties of alkaline earth doped InN were systematically investigated. • The doped system transits from nonmagnetic state to half-metallic state. • Strong ferromagnetism can be expected in Sr- or Ba-doped InN. • Under nitrogen-rich condition, the defect is more stable. - Abstract: Recently, p-type conduction of InN doped by alkaline earth was reported in experiments. However, the magnetic property of the doped systems has not been studied. We systematically investigate the magnetic property of alkaline-earth doped InN by density-functional theory. Our results reveal that the ground state of the doped system transits from nonmagnetic state to spin-polarized state, and the holes introduced into the valence band become more localized as the defect ranges from Be to Ba. As a result, strong half-metallic ferromagnetism emerges for Sr- or Ba-doped InN. Our calculations reveal that the formation energy of defect is much lower for nitrogen-rich condition, under which the doped system can be favorably synthesized.

  10. Helical ternary complexes of alkaline earth picrates with open-chain crown ether

    Institute of Scientific and Technical Information of China (English)

    刘伟生; 温永红; 刘雪原; 谭民裕

    2003-01-01

    Four solid complexes of alkaline earth picrates with N,N,N′,N′-tetraphenyl-3,6,9-tri- oxaundecanediamide (TTD), M (Pic)2TTD (1, M = Mg; 2, M = Ca; 3, M = Sr; 4, M = Ba), have been prepared and characterized by elemental analysis, conductivity measurement, IR spectra, 1H NMR spectra and TG-DTA techniques. Crystal structure of complex 3 shows that the Sr(Ⅱ) ion is 9-coordinated by five oxygen atoms from TTD and four oxygen atoms from two bidentate picrates, and the coordination polyhedron is distorted tricapped trigonal prism. TTD as a pentadentate ligand forms a right-handed helical coordination structure. The chelating helical chain has a relative fixed radius and then shows a high coordination selectivity to metal ion. The high selectivity of TTD to alkaline earth ions is explained elementarily from the special coordination structures.

  11. Bose-Einstein condensation of alkaline earth atoms: $^{40}${Ca}

    OpenAIRE

    Kraft, Sebastian; Vogt, Felix; Appel, Oliver; Riehle, Fritz; Sterr, Uwe

    2009-01-01

    We have achieved Bose-Einstein condensation of $^{40}$Ca, the first for an alkaline earth element. The influence of elastic and inelastic collisions associated with the large ground state s-wave scattering length of $^{40}$Ca was measured. From these findings, an optimized loading and cooling scheme was developed that allowed us to condense about $2 \\cdot 10^4$ atoms after laser cooling in a two-stage magneto-optical trap and subsequent forced evaporation in a crossed dipole trap within less ...

  12. Study on rare earth/alkaline earth oxide-doped CeO2 solid electrolyte

    Institute of Scientific and Technical Information of China (English)

    YAN Kai; ZHEN Qiang; Song Xiwen

    2007-01-01

    Five types of rare earth/alkaline earth oxide-doped CeO2 superfine-powders were synthesized by a low-temperature combustion technique. The relevant solid electrolyte materials were also sintered by pressureless sintering at different temperatures. The results of X-ray diffraction and transmission electron microscopy showed that the grain size of the powders was approximately 20-30 nm, and rare earth/alkaline earth oxides were completely dissolved into ceria-based solid solution with fluorite structure. The electrical conductivities of the Sm2O3-CeO2 system were measured by the ac impedance technique in air at temperatures ranging from 513-900℃. The results indicated that the ionic conductivities of Sm0.20Ce0.8O1.875 solid electrolyte increase with increasing sintering temperature, and the relationship between the conductivities and measuring temperature obeys the Arrhenius equation. Then the Sm2O3-CeO2 material was further doped with other rare earth/alkaline earth oxide, and the conductivities improve with the effective index.

  13. Recent advances in Rydberg physics using alkaline-earth atoms

    Science.gov (United States)

    Dunning, F. B.; Killian, T. C.; Yoshida, S.; Burgdörfer, J.

    2016-06-01

    In this brief review, the opportunities that the alkaline-earth elements offer for studying new aspects of Rydberg physics are discussed. For example, the bosonic alkaline-earth isotopes have zero nuclear spin which eliminates many of the complexities present in alkali Rydberg atoms, permitting simpler and more direct comparison between theory and experiment. The presence of two valence electrons allows the production of singlet and triplet Rydberg states that can exhibit a variety of attractive or repulsive interactions. The availability of weak intercombination lines is advantageous for laser cooling and for applications such as Rydberg dressing. Excitation of one electron to a Rydberg state leaves behind an optically active core ion allowing, for high-L states, the optical imaging of Rydberg atoms and their (spatial) manipulation using light scattering. The second valence electron offers the possibility of engineering long-lived doubly excited states such as planetary atoms. Recent advances in both theory and experiment are highlighted together with a number of possible directions for the future.

  14. Attaching an alkali metal atom to an alkaline earth metal oxide (BeO, MgO, or CaO) yields a triatomic metal oxide with reduced ionization potential and redirected polarity.

    Science.gov (United States)

    Nowiak, Grzegorz; Skurski, Piotr; Anusiewicz, Iwona

    2016-04-01

    The existence of a series of neutral triatomic metal oxides MON and their corresponding cations MON (+) (M = Be, Mg, Ca; N = Li, Na, K) was postulated and verified theoretically using ab initio methods at the CCSD(T)/6-311+G(3df)//MP2/6-311+G(3df) level of theory. The calculations revealed that the vertical ionization potentials (IPs) of the MON radicals (calculated using the outer-valence Green's function technique (OVGF) with the 6-311+G(3df) basis set) were ca. 2-3 eV smaller than the IPs of the corresponding MO and NO systems or that of the isolated M atom. Population analysis of the neutral triatomic MON molecules and their corresponding MO counterparts indicated that the attachment of an alkali metal atom to any oxide MO (BeO, MgO, CaO) reverses its polarity, which manifests itself as the redirection of the dipole moment vector. PMID:26994021

  15. Effect of rare earth oxides on the properties of bio-soluble alkaline earth silicate fibers

    Institute of Scientific and Technical Information of China (English)

    王玺堂; 刘浩; 王周福; 马妍

    2016-01-01

    Using natural mineral wollastonite, talc and quartz sands as raw materials, rare earth oxides (La2O3, Nd2O3 and Y2O3) as additives, the bio-soluble alkaline earth silicate fibers were prepared by melting and blowing process. The viscosity of the molten ma-terials, bio-solubility and crystallization behavior of the fiber were investigated. The results indicated that the fiber drawing tempera-ture range could be broadened since the slope of the temperature-viscosity curve decreased with adding rare earth oxide. The addition of rare earth oxide was beneficial to the increase of crystallization temperature by strengthening the network structure of the fiber. The existence of rare earth oxide in the fibers would reduce the solubility of the fibers, which still belonged to bio-soluble fibers.

  16. Tune-out wavelengths for the alkaline earth atoms

    CERN Document Server

    Cheng, Yongjun; Mitroy, Jim

    2013-01-01

    The lowest 3 tune-out wavelengths of the four alkaline-earth atoms, Be, Mg, Ca and Sr are determined from tabulations of matrix elements produced from large first principles calculations. The tune-out wavelengths are located near the wavelengths for $^3P^o_1$ and $^1P^o_1$ excitations. The measurement of the tune-out wavelengths could be used to establish a quantitative relationship between the oscillator strength of the transition leading to existence of the tune-out wavelength and the dynamic polarizability of the atom at the tune-out frequency. The longest tune-out wavelengths for Be, Mg, Ca, Sr, Ba and Yb are 454.9813 nm, 457.2372 nm, 657.446 nm, 689.200 nm, 788.875 nm and 553.00 nm respectively.

  17. Deep optical trap for cold alkaline-Earth atoms.

    Science.gov (United States)

    Cruz, Luciano S; Sereno, Milena; Cruz, Flavio C

    2008-03-01

    We describe a setup for a deep optical dipole trap or lattice designed for holding atoms at temperatures of a few mK, such as alkaline-Earth atoms which have undergone only regular Doppler cooling. We use an external optical cavity to amplify 3.2 W from a commercial single-frequency laser at 532 nm to 523 W. Powers of a few kW, attainable with low-loss optics or higher input powers, allow larger trap volumes for improved atom transfer from magneto-optical traps. We analyze possibilities for cooling inside the deep trap, the induced Stark shifts for calcium, and a cancellation scheme for the intercombination clock transition using an auxiliary laser. PMID:18542375

  18. Optical tuning of the scattering length of cold alkaline earth atoms

    OpenAIRE

    Ciurylo, R.; Tiesinga, E.; P.S. Julienne

    2004-01-01

    It is possible to tune the scattering length for the collision of ultra-cold 1S0 ground state alkaline-earth atoms using an optical Feshbach resonance. This is achieved with a laser far detuned from an excited molecular level near the frequency of the atomic intercombination 1S0--3P1 transition. Simple resonant scattering theory, illustrated by the example of 40Ca, allows an estimate of the magnitude of the effect. Unlike alkali metal species, large changes of the scattering length are possib...

  19. Porphyrin-Alkaline Earth MOFs with the Highest Adsorption Capacity for Methylene Blue.

    Science.gov (United States)

    Hou, Yuxia; Sun, Junshan; Zhang, Daopeng; Qi, Dongdong; Jiang, Jianzhuang

    2016-04-25

    A series of four porphyrin-alkaline earth metal- organic frameworks [Mg(HDCPP)2 (DMF)2 ]n ⋅(H2 O)7 n (1), [Ca(HDCPP)2 (H2 O)2 ]n (DMF)1.5 n (2), [Sr(DCPP)(H2 O)(DMA)]n (3), and [Ba(DCPP)(H2 O)(DMA)]n (4) was isolated for the first time from solvothermal reaction between metal-free 5,15-di(4- carboxyphenyl)porphyrin (H2 DCPP) and alkaline earth ions. Single-crystal X-ray diffraction analysis reveals the 2D and 3D supramolecular network with periodic nanosized porosity for 1/2 and 3/4, respectively. The whole series of MOFs, in particular, compounds 1 and 2 with intrinsic low molecular formula weight, exhibit superior adsorption performance for methylene blue (MB) with excellent capture capacity as represented by the thus far highest adsorption amount of 952 mg g(-1) for 2 and good selectivity, opening a new way for the potential application of the main group metal-based MOFs. PMID:27002679

  20. Thermochemical properties of two mixed alkali-alkaline earth metal borates as non-linear optical materials: NaSrBO3 and KSr4B3O9

    International Nuclear Information System (INIS)

    Highlights: • NaSrBO3 and KSr4B3O9 have been synthesized and characterized. • The enthalpies of solution of title two borates in 1 mol · dm−3 HCl(aq) were measured. • The enthalpies of solution of NaCl(s) in [HCl + H3BO3 + Sr(OH)2 · 8H2O](aq) were measured. • ΔfHmo for title borates were obtained from measured enthalpies of solution. -- Abstract: Two mixed alkali-alkaline earth metal borates of NaSrBO3 and KSr4B3O9 have been synthesized by high-temperature solid state reaction, which were further characterized by XRD, FT-IR, DTA-TG techniques and chemical analysis. The molar enthalpies of solution of NaSrBO3(s) and KSr4B3O9(s) in 2.00 cm3 of 1 mol · dm−3 HCl(aq), at T = 298.15 K were measured to be −(206.84 ± 0.43) kJ · mol−1 and −(494.59 ± 0.53) kJ · mol−1, respectively. The molar enthalpy of solution of NaCl(s) in 2.00 cm3 of {1 mol · dm−3 HCl + H3BO3 + Sr(OH)2 · 8H2O}(aq) mixed solvent at T = 298.15 K was measured to be (5.17 ± 0.02) kJ · mol−1. From these data and with the incorporation of the previously determined enthalpies of solution of H3BO3(s) in HCl(aq) of Sr(OH)2 · 8H2O(s) in (HCl + H3BO3)(aq), and of KCl(s) in {HCl + H3BO3 + Sr(OH)2 · 8H2O}(aq), together with the use of the molar enthalpies of formation for NaCl(s)/KCl(s), Sr(OH)2 · 8H2O(s), H3BO3(s), HCl(aq) and H2O(l), the standard molar enthalpies of formation of NaSrBO3(s) and KSr4B3O9 were calculated to be −(1653.1 ± 1.4) kJ · mol−1 and −(5071.1 ± 3.4) kJ · mol−1 on the basis of the designed thermochemical cycles, respectively

  1. Heavy metals quantification on alkaline batteries incineration emissions

    OpenAIRE

    Xará, Susana; Almeida, Manuel Fonseca; Costa, Carlos; Silva, Margarida

    2000-01-01

    Heavy metals emissions associated with municipal solid waste (MSW) incineration is a point of discussion and care due to the known harmful effects of these metals on humans and environment. Batteries are appointed as one of the main contributors for those emissions, particularly for mercury, cadmium, zinc and lead. In this paper, results for heavy metals emissions from alkaline batteries obtained in a laboratorial incinerator are presented. The incineration process took place in a tubular ove...

  2. Synthesis, structure peculiarities and electric conductivity of alkali metal-rare earth silicates (germanates)

    International Nuclear Information System (INIS)

    The process of obtaining of rare earth-alkali metal silicates (germanates) is studied. The analysis of possibilities of structural disordering of alkaline cations in these structures is given. The interaction of the structure of different by the composition alkali alkali metal - rare earth silicates with electric conductivity values is shown

  3. IUPAC-NIST Solubility Data Series. 95. Alkaline Earth Carbonates in Aqueous Systems. Part 1. Introduction, Be and Mg

    Science.gov (United States)

    De Visscher, Alex; Vanderdeelen, Jan; Königsberger, Erich; Churagulov, Bulat R.; Ichikuni, Masami; Tsurumi, Makoto

    2012-03-01

    The alkaline earth carbonates are an important class of minerals. This volume compiles and critically evaluates solubility data of the alkaline earth carbonates in water and in simple aqueous electrolyte solutions. Part 1, the present paper, outlines the procedure adopted in this volume in detail, and presents the beryllium and magnesium carbonates. For the minerals magnesite (MgCO3), nesquehonite (MgCO3.3H2O), and lansfordite (MgCO3.5H2O), a critical evaluation is presented based on curve fits to empirical and/or thermodynamic models. Useful side products of the compilation and evaluation of the data outlined in the introduction are new relationships for the Henry constant of CO2 with Sechenov parameters, and for various equilibria in the aqueous phase including the dissociation constants of CO2(aq) and the stability constant of the ion pair MCO30(aq) (M = alkaline earth metal). Thermodynamic data of the alkaline earth carbonates consistent with two thermodynamic model variants are proposed. The model variant that describes the Mg2+-HCO3- ion interaction with Pitzer parameters was more consistent with the solubility data and with other thermodynamic data than the model variant that described the interaction with a stability constant.

  4. Electromigration in molten salts and application to isotopic separation of alkaline and alkaline-earth elements

    International Nuclear Information System (INIS)

    The separation of the isotopes of the alkaline-earth elements has been studied using counter-current electromigration in molten bromides. The conditions under which the cathode operates as a bromine electrode for the highest possible currents have been examined. For the separation of calcium, it has been necessary to use a stable CaBr2 - (CaBr2 + KBr) 'chain'. In the case of barium and strontium, it was possible to employ the pure bromides. Enrichment factors of the order of 10 for 48Ca and of the order of 1.5 for the rare isotopes of barium and strontium have been obtained. In the case of magnesium the method is slightly more difficult to apply because of material loss due to the relatively high vapour pressure of the salt requiring the use of electrolyte chains, MgBr2 - CeBr3. A study has been made that has led to a larger-scale application of the method. These are essentially the inhibition of reversible operation of the cathode by traces of water, limiting the intensity which can be tolerated; evacuation of the heat produced by the Joule effect, in the absence of which the separation efficiency is reduced by thermal gradients; corrosion of the materials by molten salts at high temperature. Several cells capable of treating a few kilograms of substance have been put into operation; none of these has lasted long enough to produce a satisfactory enrichment. The method is thus limited actually to yields of the order of a few grams. (author)

  5. Theoretical study of the dipole moments of selected alkaline-earth halides

    Science.gov (United States)

    Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.; Ahlrichs, R.

    1986-01-01

    Ab initio calculations at the self-consistent-field (SCF), singles-plus-doubles configuration-interaction (SDCI), and coupled-pair functional (CPF) level, are reported for the dipole moments and dipole derivatives of the X2Sigma(+) ground states of BeF, BeCl, MgF, MgCl, CaF, CaCl, and SrF. For comparison, analogous calculations are performed for the X1Sigma(+) state of KCl. The CPF results are found to be in remarkably better agreement with experiment than are the SCF and SDCI results. Apparently higher excitations are required to properly describe the radial extent along the bond axis of the remaining valence electron on the alkaline-earth metal.

  6. Optical tuning of the scattering length of cold alkaline earth atoms

    CERN Document Server

    Ciurylo, R; Julienne, P S

    2004-01-01

    It is possible to tune the scattering length for the collision of ultra-cold 1S0 ground state alkaline-earth atoms using an optical Feshbach resonance. This is achieved with a laser far detuned from an excited molecular level near the frequency of the atomic intercombination 1S0--3P1 transition. Simple resonant scattering theory, illustrated by the example of 40Ca, allows an estimate of the magnitude of the effect. Unlike alkali metal species, large changes of the scattering length are possible while atom loss remains small, because of the very narrow line width of the molecular photoassociation transition. This raises prospects for control of atomic interactions for a system without magnetically tunable Feshbach resonance levels.

  7. Effect of Composition and Impurities on the Phosphorescence of Green-Emitting Alkaline Earth Aluminate Phosphor.

    Science.gov (United States)

    Kim, Doory; Kim, Han-Eol; Kim, Chang-Hong

    2016-01-01

    Recent improvements to SrAl2O4:Eu2+, Dy3+ phosphors have enabled the use of luminescent hosts with a stable crystal structure and high physical and chemical stability, thus overcoming the bottleneck in the applicability of ZnS:Cu phosphors. However, enhancement of afterglow lifetime and brightness in SrAl2O4:Eu2+, Dy3+ phosphors remains a challenging task. Here, we have improved the afterglow characteristics in terms of persistence time and brightness by a systematic investigation of the composition of Eu-doped alkaline earth aluminate SrAl2O4:Eu2+, Dy3+ crystals. We found that a Dy3+/Eu2+ ratio of ~2.4 and ~0.935 mol Eu2+ (per mol of SrAl2O4) gave the brightest and longest emissions (11% and 9% increase for each). Doping with Si4+ also resulted in a slight increase in brightness up to ~15%. Doping with alkali metal or alkaline earth metal significantly enhanced the phosphorescence intensity. In particular, doping with 0.005 mol Li+ (per mol of SrAl2O4) alone boosted the phosphorescence intensity to 239% of the initial value, as compared to that observed for the non-doped crystal, while doping with 0.01 mol Mg2+ and 0.005 mol Li+ (per 1 mol SrAl2O4) boosted the phosphorescence intensity up to 313% of the initial value. The results of this investigation are expected to act as a guideline for the synthesis of bright and long persistent phosphors, and facilitate the development of persistent phosphors with afterglow characteristics superior to those of conventional phosphors. PMID:26731086

  8. Effect of Composition and Impurities on the Phosphorescence of Green-Emitting Alkaline Earth Aluminate Phosphor.

    Directory of Open Access Journals (Sweden)

    Doory Kim

    Full Text Available Recent improvements to SrAl2O4:Eu2+, Dy3+ phosphors have enabled the use of luminescent hosts with a stable crystal structure and high physical and chemical stability, thus overcoming the bottleneck in the applicability of ZnS:Cu phosphors. However, enhancement of afterglow lifetime and brightness in SrAl2O4:Eu2+, Dy3+ phosphors remains a challenging task. Here, we have improved the afterglow characteristics in terms of persistence time and brightness by a systematic investigation of the composition of Eu-doped alkaline earth aluminate SrAl2O4:Eu2+, Dy3+ crystals. We found that a Dy3+/Eu2+ ratio of ~2.4 and ~0.935 mol Eu2+ (per mol of SrAl2O4 gave the brightest and longest emissions (11% and 9% increase for each. Doping with Si4+ also resulted in a slight increase in brightness up to ~15%. Doping with alkali metal or alkaline earth metal significantly enhanced the phosphorescence intensity. In particular, doping with 0.005 mol Li+ (per mol of SrAl2O4 alone boosted the phosphorescence intensity to 239% of the initial value, as compared to that observed for the non-doped crystal, while doping with 0.01 mol Mg2+ and 0.005 mol Li+ (per 1 mol SrAl2O4 boosted the phosphorescence intensity up to 313% of the initial value. The results of this investigation are expected to act as a guideline for the synthesis of bright and long persistent phosphors, and facilitate the development of persistent phosphors with afterglow characteristics superior to those of conventional phosphors.

  9. Effect of Composition and Impurities on the Phosphorescence of Green-Emitting Alkaline Earth Aluminate Phosphor

    Science.gov (United States)

    Kim, Doory; Kim, Han-Eol; Kim, Chang-Hong

    2016-01-01

    Recent improvements to SrAl2O4:Eu2+, Dy3+ phosphors have enabled the use of luminescent hosts with a stable crystal structure and high physical and chemical stability, thus overcoming the bottleneck in the applicability of ZnS:Cu phosphors. However, enhancement of afterglow lifetime and brightness in SrAl2O4:Eu2+, Dy3+ phosphors remains a challenging task. Here, we have improved the afterglow characteristics in terms of persistence time and brightness by a systematic investigation of the composition of Eu-doped alkaline earth aluminate SrAl2O4:Eu2+, Dy3+ crystals. We found that a Dy3+/Eu2+ ratio of ~2.4 and ~0.935 mol Eu2+ (per mol of SrAl2O4) gave the brightest and longest emissions (11% and 9% increase for each). Doping with Si4+ also resulted in a slight increase in brightness up to ~15%. Doping with alkali metal or alkaline earth metal significantly enhanced the phosphorescence intensity. In particular, doping with 0.005 mol Li+ (per mol of SrAl2O4) alone boosted the phosphorescence intensity to 239% of the initial value, as compared to that observed for the non-doped crystal, while doping with 0.01 mol Mg2+ and 0.005 mol Li+ (per 1 mol SrAl2O4) boosted the phosphorescence intensity up to 313% of the initial value. The results of this investigation are expected to act as a guideline for the synthesis of bright and long persistent phosphors, and facilitate the development of persistent phosphors with afterglow characteristics superior to those of conventional phosphors. PMID:26731086

  10. Spectroscopic characterization of manganese-doped alkaline earth lead zinc phosphate glasses

    Indian Academy of Sciences (India)

    S Sreehari Sastry; B Rupa Venkateswara Rao

    2015-04-01

    Alkaline earth lead zinc phosphate glasses doped with Mn(II) are characterized by spectroscopic techniques like X-ray diffraction (XRD), UV–visible, differential scanning calorimetry (DSC), electron paramagnetic resonance (EPR), Fourier transform infrared (FTIR) and Raman. Optical absorption spectrum exhibits four bands which are characteristic of Mn(II) in distorted octahedral site symmetry. The crystal field parameter Dq and Racah interelectronic-repulsion parameters and have been evaluated. All investigated samples exhibit EPR signals which are characteristic to the Mn2+ ions. The shapes of spectra are also changed with varying alkaline earth ions content. FTIR spectra show specific vibrations of phosphate units. The characteristic Raman bands of these glasses due to stretching and bending vibrations were identified and analysed by varying alkaline earth content. The intensity and frequency variations for the characteristic phosphate group vibrations have been correlated with the changes of the structural units present in these glasses. Depolymerization of the phosphate chains in all the glasses is observed with replacement of alkaline earth content by spectroscopic studies. This leads to a strong decrease of the average chain length and a small decrease of the average P–O–P bridging angle with replacement of alkaline earth content.

  11. Carbon nitride nanotube as a sensor for alkali and alkaline earth cations

    International Nuclear Information System (INIS)

    Highlights: ► Adsorption of alkali and alkaline earth cations on a CN nanotube studied by DFT. ► The alkaline cation adsorption may raise potential barrier of the electron emission. ► The tube may act as a sensor in the presence of alkali and alkaline cations. - Abstract: Adsorption of several alkali (Li+, Na+, and K+) and alkaline earth (Be2+, Mg2+, and Ca2+) cations on the surface of a zigzag (9, 0) carbon nitride nanotube has been investigated using density functional theory. It has been found that almost all of the cations prefer to be strongly chemisorbed at the center of porous site of the tube surface. The adsorption of alkaline cations much more influences the electronic properties of the tube, in comparison with the alkali ones, so that it is transformed from an intrinsic semiconductor with HOMO/LUMO energy gap of 4.02 eV to extrinsic p-type one with the gap of 0.54–1.94 eV. The alkaline cation adsorption may significantly raise potential barrier of the electron emission from the tube surface, hence impeding the field emission. It has been also concluded that the electrical sensitivity of the tube toward the cations may be in the order: Be2+ ≫ Mg2+ ≫ Ca2+ ≫ Li+ ∼ Na+ ∼ K+.

  12. Depolarizing collisions with hydrogen: neutral and singly ionized alkaline earths

    CERN Document Server

    Sainz, Rafael Manso; Sanz-Sanz, Cristina; Aguado, Alfredo; Ramos, Andres Asensio; Bueno, Javier Trujillo

    2014-01-01

    Depolarizing collisions are elastic or quasielastic collisions that equalize the populations and destroy the coherence between the magnetic sublevels of atomic levels. In astrophysical plasmas, the main depolarizing collider is neutral hydrogen. We consider depolarizing rates on the lowest levels of neutral and singly ionized alkaly-earths Mg I, Sr I, Ba I, Mg II, Ca II, and Ba II, due to collisions with H. We compute ab initio potential curves of the atom-H system and solve the quantum mechanical dynamics. From the scattering amplitudes we calculate the depolarizing rates for Maxwellian distributions of colliders at temperatures T <10000 K. A comparative analysis of our results and previous calculations in the literature is done. We discuss the effect of these rates on the formation of scattering polarization patterns of resonant lines of alkali-earths in the solar atmosphere, and their effect on Hanle effect diagnostics of solar magnetic fields.

  13. Non-covalent (iso)guanosine-based ionophores for alkali(ne earth) cations

    NARCIS (Netherlands)

    Leeuwen, van Fijs W.B.; Davis, Jeffery T.; Verboom, Willem; Reinhoudt, David N.

    2006-01-01

    Different (iso)guanosine-based self-assembled ionophores give distinctly different results in extraction experiments with alkali(ne earth) cations. A lipophilic guanosine derivative gives good extraction results for K+, Rb+, Ca2+, Sr2+, and Ba2+ and in competition experiments it clearly favors the d

  14. Conformation Switching in Gas-Phase Complexes of Histidine with Alkaline Earth Ions

    NARCIS (Netherlands)

    Dunbar, R. C.; Hopkinson, A. C.; Oomens, J.; Siu, C. K.; Siu, K. W. M.; Steill, J. D.; Verkerk, U. H.; Zhao, J. F.

    2009-01-01

    Infrared multiple photon dissociation spectroscopy of gas-phase doubly charged alkaline earth complexes of histidine reveals a transition from dominance of the zwitterion (salt bridge, SB) conformation with Ba2+ to substantial presence of the canonical (charge-solvated, CS) conformation with Ca2+. T

  15. A study of new rare-earth metal group-13 chalcohalides. Structures, chemistry, and optical properties

    International Nuclear Information System (INIS)

    Full text: Several new quaternary compounds from the rare-earth metal group-13 chalcohalide family have been prepared from alkaline earth halide flux reactions of binary and elemental starting materials. One compound, for example, Ca2La6Ga2S14 , crystallizes as needles in an hexagonal cell while another, more disordered structure, La11Ga19Cl6S42 , crystallizes as monoclinic plates. The former is a condensed structure with channels that contain the alkaline earth element while the latter forms a layered structure containing rare-earth halide clusters within interlayer galleries. These compounds are new members of a family of rare-earth metal main-group chalcogenides which show promise as electroluminescent materials. Structural and spectroscopic studies of these and related compounds will be discussed

  16. Superconducting critical fields of alkali and alkaline-earth intercalates of MoS2

    Science.gov (United States)

    Woollam, J. A.; Somoano, R. B.

    1976-01-01

    Results are reported for measurements of the critical-field anisotropy and temperature dependence of group-VIB semiconductor MoS2 intercalated with the alkali and alkaline-earth metals Na, K, Rb, Cs, and Sr. The temperature dependences are compared with present theories on the relation between critical field and transition temperature in the clean and dirty limits over the reduced-temperature range from 1 to 0.1. The critical-field anisotropy data are compared with predictions based on coupled-layers and thin-film ('independent-layers') models. It is found that the critical-field boundaries are steep in all cases, that the fields are greater than theoretical predictions at low temperatures, and that an unusual positive curvature in the temperature dependence appears which may be related to the high anisotropy of the layer structure. The results show that materials with the largest ionic intercalate atom diameters and hexagonal structures (K, Rb, and Cs compounds) have the highest critical temperatures, critical fields, and critical-boundary slopes; the critical fields of these materials are observed to exceed the paramagnetic limiting fields.

  17. Carbonatite and alkaline intrusion-related rare earth element deposits–A deposit model

    Science.gov (United States)

    Verplanck, Philip L.; Van Gosen, Bradley S.

    2011-01-01

    The rare earth elements are not as rare in nature as their name implies, but economic deposits with these elements are not common and few deposits have been large producers. In the past 25 years, demand for rare earth elements has increased dramatically because of their wide and diverse use in high-technology applications. Yet, presently the global production and supply of rare earth elements come from only a few sources. China produces more than 95 percent of the world's supply of rare earth elements. Because of China's decision to restrict exports of these elements, the price of rare earth elements has increased and industrial countries are concerned about supply shortages. As a result, understanding the distribution and origin of rare earth elements deposits, and identifying and quantifying our nation's rare earth elements resources have become priorities. Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. The general mineral deposit model summarized here is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. Carbonatite and alkaline intrusion-related REE deposits are discussed together because of their spatial association, common enrichment in incompatible elements, and similarities in genesis. A wide variety of commodities have been exploited from carbonatites and alkaline igneous rocks, such as rare earth elements, niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other enrichments include manganese, strontium, tantalum, thorium, vanadium, and uranium.

  18. Carbon nitride nanotube as a sensor for alkali and alkaline earth cations

    Energy Technology Data Exchange (ETDEWEB)

    Beheshtian, Javad [Department of Chemistry, Shahid Rajaee Teacher Training University, P.O. Box: 16875-163, Tehran (Iran, Islamic Republic of); Baei, Mohammad T. [Department of Chemistry, Azadshahr Branch, Islamic Azad University, Azadshahr, Golestan (Iran, Islamic Republic of); Bagheri, Zargham [Physics Group, Science Department, Islamic Azad University, Islamshahr Branch, P.O. Box: 33135-369, Islamshahr, Tehran (Iran, Islamic Republic of); Peyghan, Ali Ahmadi, E-mail: ahmadi.iau@gmail.com [Young Researchers Club, Islamic Azad University, Islamshahr Branch, Tehran (Iran, Islamic Republic of)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Adsorption of alkali and alkaline earth cations on a CN nanotube studied by DFT. Black-Right-Pointing-Pointer The alkaline cation adsorption may raise potential barrier of the electron emission. Black-Right-Pointing-Pointer The tube may act as a sensor in the presence of alkali and alkaline cations. - Abstract: Adsorption of several alkali (Li{sup +}, Na{sup +}, and K{sup +}) and alkaline earth (Be{sup 2+}, Mg{sup 2+}, and Ca{sup 2+}) cations on the surface of a zigzag (9, 0) carbon nitride nanotube has been investigated using density functional theory. It has been found that almost all of the cations prefer to be strongly chemisorbed at the center of porous site of the tube surface. The adsorption of alkaline cations much more influences the electronic properties of the tube, in comparison with the alkali ones, so that it is transformed from an intrinsic semiconductor with HOMO/LUMO energy gap of 4.02 eV to extrinsic p-type one with the gap of 0.54-1.94 eV. The alkaline cation adsorption may significantly raise potential barrier of the electron emission from the tube surface, hence impeding the field emission. It has been also concluded that the electrical sensitivity of the tube toward the cations may be in the order: Be{sup 2+} Much-Greater-Than Mg{sup 2+} Much-Greater-Than Ca{sup 2+} Much-Greater-Than Li{sup +} {approx} Na{sup +} {approx} K{sup +}.

  19. Glass-ceramics of alkaline earth chloroaptites as matrices for nuclear waste immobilization

    International Nuclear Information System (INIS)

    Pyrochemical reprocessing is the best suited process for irradiated metallic fuel. Molten salt electro-refining is the most important step to remove U and Pu from the spent metallic fuel by this process. After the electro-refining process the radioactive waste (chloride salts) need to be disposed of in suitable matrices. The current process to treat the chloride waste is to incorporate it in glass-bonded sodalites. In the present study, attempts are made to develop a suitable matrix to immobilize chloride wastes with simple and relatively low temperature processes. Apatites are naturally occurring minerals with a general formula of M10(PO4)6X2, (M= Ca, Sr, Ba; X= OH,CI,F) with a hexagonal crystal structure (S.G : P63/m). Apatites can accommodate alkaline earth and various other aliovalent cations (rare earth etc.) into its crystal structure along with Cl. Apatites are also known to have high resistance to leaching of the constituent elements under geological conditions. It may not be possible to immobilize the whole spectrum of the pyrochemical waste in a single phase M10(PO4)6Cl2, M=Ca, Sr, Ba. However, M-chloroapatite encapsulated in borosilicate glass (BSG) can immobilize most of the radwaste elements in the composite matrix (glass bonded chloroapatite), thus utilizing the immobilizing efficiency of both the ceramic phase and BSG. The apatite glass-ceramics were prepared by mixing and heat-treating stoichiometric concentrations of apatite forming reagents, 20 wt. % borosilicate glass (BSG), and known concentrations (10-15 wt %) of simulated chloride wastes. The mixture of reactants was heated in a platinum crucible at 1023 K for 5h in air. The powders were characterized by XRD to confirm the formation of M10(PO4)6Cl2 (abbreviated to MApCI, M=Ca,Sr,Ba) and glass bonded chloroapatite composites. The surface morphology and qualitative chemical composition of the powders were examined by SEM and EDX. Thermal expansion and glass transition temperature of the matrices

  20. Properties of the triplet metastable states of the alkaline-earth atoms

    CERN Document Server

    Mitroy, J

    2004-01-01

    The static and dynamic properties of the alkaline-earth atoms in their metastable state are computed in a configuration interaction approach with a semi-empirical model potential for the core. Among the properties determined are the scalar and tensor polarizabilities, the quadrupole moment, some of the oscillator strengths and the dispersion coefficients of the van der Waals interaction. A simple method for including the effect of the core on the dispersion parameters is described.

  1. Removal of phosphorous through roasting of oolitic iron ore with alkaline earth additives

    OpenAIRE

    Ionkov, Krassimir; GAYDARDZHIEV, Stoyan; Bastin, David; de Araujo, Armando Correa; Lacoste, Marine

    2012-01-01

    The present study is devoted to improvement of the leaching efficiency during phosphorous removal from high phosphorous gravity-magnetic concentrate. Before leaching the concentrate has been subjected to roasting with the addition of either Ca(OH)2 or CaO. The oolitic iron ore is roasted at 900°C for one hour. This reflects in reaction between alkaline earth additive and quartz, aluminosilicates, phosphorus, and some other minor components of the gangue minerals. The application of leaching, ...

  2. TL and XRD correlation studies of RE3+ doped alkaline earth sulphate phosphors

    International Nuclear Information System (INIS)

    Alkaline earth sulphate phosphors activated with ambient weight percentage composition of rare earth (RE) ions were prepared from Indian mineral gypsum and from synthesized sulphate compounds. The results of TL studies have been interpreted in terms of defect levels and the results of X-ray diffraction (XRD) studies are considered in terms of possible sites and population of activator ions in the host lattice. The correlation studies reveal some interesting results and they lead to suggest some suitable model. (author). 5 refs., 3 figs

  3. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    International Nuclear Information System (INIS)

    In this paper spectroscopic investigation of Cu2+ doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR – X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu2+ state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu2+ is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P–O–P bonds and creating more number of new P–O–Cu bonds

  4. Alkali metal and alkali earth metal gadolinium halide scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  5. Alkaline-Earth-Catalysed Cross-Dehydrocoupling of Amines and Hydrosilanes: Reactivity Trends, Scope and Mechanism.

    Science.gov (United States)

    Bellini, Clément; Dorcet, Vincent; Carpentier, Jean-François; Tobisch, Sven; Sarazin, Yann

    2016-03-18

    Alkaline-earth (Ae=Ca, Sr, Ba) complexes are shown to catalyse the chemoselective cross-dehydrocoupling (CDC) of amines and hydrosilanes. Key trends were delineated in the benchmark couplings of Ph3 SiH with pyrrolidine or tBuNH2 . Ae{E(SiMe3 )2 }2 ⋅(THF)x (E=N, CH; x=2-3) are more efficient than {N^N}Ae{E(SiMe3 )2 }⋅(THF)n (E=N, CH; n=1-2) complexes (where {N^N}(-) ={ArN(o-C6 H4 )C(H)=NAr}(-) with Ar=2,6-iPr2 -C6 H3 ) bearing an iminoanilide ligand, and alkyl precatalysts are better than amido analogues. Turnover frequencies (TOFs) increase in the order Ca30 products) includes diamines and di(hydrosilane)s. Kinetic analysis of the Ba-promoted CDC of pyrrolidine and Ph3 SiH shows that 1) the kinetic law is rate=k[Ba](1) [amine](0) [hydrosilane](1) , 2) electron-withdrawing p-substituents on the arylhydrosilane improve the reaction rate and 3) a maximal kinetic isotopic effect (kSiH /kSiD =4.7) is seen for Ph3 SiX (X=H, D). DFT calculations identified the prevailing mechanism; instead of an inaccessible σ-bond-breaking metathesis pathway, the CDC appears to follow a stepwise reaction path with N-Si bond-forming nucleophilic attack of the catalytically competent Ba pyrrolide onto the incoming silane, followed by rate limiting hydrogen-atom transfer to barium. The participation of a Ba silyl species is prevented energetically. The reactivity trend Cametal centre and decreasing Ae-Namide bond strength upon descending Group 2. PMID:26864122

  6. Fabrication and characterization of characteristic luminescent alkali/alkaline earth fluoro boro phosphate glass ceramic materials with some transition metal ions as nucleating agents for the applications in radiation dosimetry

    International Nuclear Information System (INIS)

    The objective of the project is to synthesize CaF2/LiF-B2O3-P2O5 glass materials doped with some transition metal oxides and to study their thermoluminescence (TL) characteristics over a broad range of dose after the characterization of the samples by conventional XRD, SEM techniques and structural analysis of the samples by spectroscopic (IR, optical absorption and ESR) studies. The objectives are further extended to analyze the results of TL in the light of different oxidation states of dopant ions, the dose of ionizing radiation and the topology of the glass network and to comment on suitability of the materials for TL dosimetry

  7. The significance of secondary interactions during alkaline earth-promoted dehydrogenation of dialkylamine-boranes.

    Science.gov (United States)

    Bellham, Peter; Anker, Mathew D; Hill, Michael S; Kociok-Köhn, Gabriele; Mahon, Mary F

    2016-09-21

    a modified mechanism for group 2-mediated dimethylamine borane dehydrocoupling that is dependent on the intermediacy of key derivatives of the [NMe2·BH3](-) and [NMe2BH2NMe2BH3](-) anions but does not require the formation of high energy alkaline earth hydride intermediates. Although these results are specifically focussed on the applications of alkaline earth species, this mechanistic insight may also be relevant to other redox-inactive main group element-based systems and to our understanding of hydrogen evolution from saline derivatives of ammonia borane. PMID:27529536

  8. Creation of trapped electrons and holes in alkaline-earth fluoride crystals doped by rare-earth ions

    International Nuclear Information System (INIS)

    Defects in Ce3+- and Eu2+-doped alkaline-earth fluorides, created by vacuum ultraviolet (VUV) photons with energy lower than that of the band gap, were investigated by various methods: thermostimulated luminescence, photostimulated luminescence and optical absorption. The CaF2:Eu2+ thermoluminescence curves in the range of 60-330 K due to various types of trapped holes were the same after VUV illumination as after X-ray irradiation. Thermoluminescence curves of Ce3+-doped alkaline-earth fluorides created by VUV illumination or X-ray irradiation were generally similar. However, Vk thermoluminescence peaks were absent in VUV-illuminated CaF2:Ce3+ and SrF2:Ce3+ crystals. Creation of Ce2+ characteristic bands was observed in photostimulated luminescence spectra as well as in optical absorption spectra of vacuum ultraviolet-illuminated or X-ray-irradiated Ce3+-doped crystals. The proposed mechanism of creation of trapped hole and trapped electron defects by vacuum ultraviolet illumination involves charge transfer-type transitions, in which the electron transfers from valence band to an impurity level, lying in the band gap. Comparison of all involved energies of transitions in the crystals investigated shows that the sum of all transition energies is less than that of the band gap by 1-3 eV. This energy difference can be considered as the energy of lattice relaxation around created Ce2+ or Eu+ ions

  9. Valence of 'divalent' rare earth metals

    International Nuclear Information System (INIS)

    It is generally recognized that light rare earths change their valence from 2 to 3 when forming a bulk metal while remaining divalent at the surface. However, performed DFT calculations ultimately indicate that the higher-binding-energy peaks in photoemission spectra (like the -5.3 eV peak for Sm), characteristic of the trivalent 4fn-15d1 configuration, correspond not to the ground state, but to excited states induced by radiation. This means that the trivalent state is not inherent for the bulk of divalent rare earths, and therefore they do not become trivalent.

  10. Optical Algal Biosensor using Alkaline Phosphatase for Determination of Heavy Metals

    OpenAIRE

    Durrieu, Claude; Tran-Minh, Canh

    2002-01-01

    International audience A biosensor is constructed to detect heavy metals from inhibition of alkaline phosphatase (AP) present on the external membrane of Chlorella vulgaris microalgae. The microalgal cells are immobilized on removable membranes placed in front of the tip of an optical fiber bundle inside a homemade microcell. C. vulgaris was cultivated in the laboratory and its alkaline phosphatase activity is strongly inhibited in the presence of heavy metals. This property has been used ...

  11. Electronic structures, mechanical and thermodynamic properties of cubic alkaline-earth hexaborides from first principles calculations

    International Nuclear Information System (INIS)

    Highlights: • The band gaps for CaB6, SrB6 and BaB6 depend sensitively on the values of lattice constant a and positional parameter z. • The order in elastic anisotropy is CaB6 > SrB6 > BaB6. • There are LO/TO splitting lines in the range of 5–10 THz at G point. - Abstract: The electronic structures, mechanical and thermodynamic properties of alkaline-earth hexaborides MB6 (M = Ca, Sr or Ba) are calculated from first principles using density functional theory combined with the quasi-harmonic approximation. These three alkaline-earth hexaborides are semiconductors with a slightly increased trend for their band gaps as M orders from Ca to Ba. Their band gaps depend sensitively on the values of lattice constant a and internal parameter z. The polycrystalline values of the elastic constants and bulk, shear and Young’s moduli are consistent with those determined experimentally. All alkaline-earth hexaborides have strongly anisotropic elastic properties in the order of CaB6 > SrB6 > BaB6. By using the phonon calculations, the thermodynamic properties are investigated. The obtained phonon dispersion relations for CaB6, SrB6, and BaB6 show similar features and there are LO/TO splitting lines in the range of 5–10 THz. Finally, the thermal conductivities of CaB6, SrB6 and BaB6 are evaluated via Clarke’s model and Cahill’s model

  12. Comparison of Ce$^{3+}$ and Pr$^{3+}$ activators in alkaline-earth fluoride crystals

    OpenAIRE

    Radzhabov, E.; Nepomnyaschikh, A.

    2012-01-01

    The emission spectra of Ce$^{3+}$ or Pr$^{3+}$ doped CaF$_2$, SrF$_2$, BaF$_2$ excited by vacuum ultraviolet photons or by x-ray as well as excitation and absorption spectra in vacuum ultraviolet region (6-13 eV) were studied. The transfer of exciton energy is the main channel for Ce$^{3+}$ excitation in alkaline-earth fluorides. Three different stages of energy transfer were observed. Pr$^{3+}$ excited by two processes, slow f-f luminescence excited by excitons, fast d-f luminescence excited...

  13. High-Tc thin films on low microwave loss alkaline-rare-earth-aluminate crystals

    International Nuclear Information System (INIS)

    This paper reports on the alkaline-rare-earth aluminates (K2NiF4-type perovskites) which are an excellent choice as the substrate material for the growth of high-Tc thin films suitable for microwave and far-infrared applications. The CaNdAlO4, and SrLaAlO4 single crystals have been grown by Czochralski pulling and fabricated into the form of (001) oriented wafers. The Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O films deposited on these substrates by a single-target magnetron sputtering exhibited very good superconducting and structural properties

  14. STARK STRUCTURE OF THE RYDBERG STATES OF ALKALINE-EARTH ATOMS

    Institute of Scientific and Technical Information of China (English)

    郅妙婵; 戴长建; 李士本

    2001-01-01

    The Stark effects of the Rydberg states in the alkaline-earth atoms are studied theoretically. Using a method similar to the treatment of alkali atoms, the properties of the Stark states of Mg, Ca, Sr and Ba atoms in the regions far away from the perturbers are investigated. The Stark maps for Mg (n=16, M=0), Ca (n=10, M=0), Sr (n=12,M=0) and Ba (n=13, |M|=0,1) are presented. Topics such as the general methods of calculation, the treatment of fine structure, and the structure of level anti-crossings are discussed. The comparison between the theoretical and experimental Stark maps is satisfactory.

  15. Solvent extraction of alkaline earth elements by di-2-ethylhexylphosphoric acid and 8-hydroxyquinoline mixtures

    International Nuclear Information System (INIS)

    Solvent extraction of alkaline earth elements including Sr by mixtures of di-2-ethylhexylphosphoric acid and 8-hydroxyquinoline (8-O) in chloroform is investigated. pH constant value was kept using acetate buffer mixtures; content of the extracted element in the initial solution constituted 1·10-3mol/l. Investigation into dependence of distribution coefficients on (8-O) concentration demonstrated presence of synergism which is explained by formation of mixed complexes in the organic phase. It is shown, that increase of pH value of aqueous solution uncreases extraction of elements by organic phase

  16. Environmental effects on fatigue of alkaline earth aluminosilicate glass with varying fictive temperature

    DEFF Research Database (Denmark)

    Striepe, Simon; Deubener, Joachim; Smedskjær, Morten Mattrup; Potuzak, Marcel

    2013-01-01

    The influence of relative humidity on microhardness, stress intensity, crack resistance, and sub-critical crack growth of an alkaline earth aluminosilicate glass has been studied by Vickers indentation. Quenched and annealed glasses with a wide range of fictive temperatures (ΔTf ≈ 130 K) are....... The glasses with lower fictive temperature exhibit a larger change in the micromechanical properties when comparing wet and dry conditions. Finally, it is found that sub-critical crack growth is larger in the low fictive temperature glasses, indicating a diminished resistance against fatigue and...

  17. Health Effects of Alkaline Diet and Water, Reduction of Digestive-tract Bacterial Load, and Earthing.

    Science.gov (United States)

    Mousa, Haider Abdul-Lateef

    2016-04-01

    In the article, the author discusses the issue of chronic, low-grade acidosis that is thought to be brought about primarily by 2 factors: (1) advancing age, with a consequent decline in renal function; and (2) diet. An acid-forming diet can induce low-grade metabolic acidosis, which causes very small decreases in blood pH and plasma bicarbonate (HCO3-) that remain within the range considered to be normal. However, if the duration of the acidosis is prolonged or chronically present, even a low degree of acidosis can become significant. This article reviews supporting evidence in the literature that has shown that consumption of abundant alkaline-forming foods can result in improvement in bone mineral density (BMD) and muscle mass, protection from chronic illnesses, reduced tumor-cell invasion and metastasis, and effective excretion of toxins from the body. In addition, a large number of studies showing the benefits of alkaline water (mineral water) have revealed that people consuming water with a high level of total dissolved solids (TDS) (ie, with a high mineral content) have shown a lower incidence of coronary heart disease (CHD), cardiovascular disease (CVD), and cancer and lower total mortality rates. Consumption of alkaline water also may prevent osteoporosis and protect pancreatic beta cells with its antioxidant effects. In addition, this article discusses the literature that shows that reducing digestive-tract bacterial load can play an important role in increasing blood alkalinity toward the normal upper limit. That change occurs through good oral hygiene, flossing of teeth, perfect chewing of food, and bowel evacuation as soon as possible. Finally, the author reviews the literature that shows that earthing (ie, the direct contact of the human body with the earth) can supply a current of plentiful electrons. Earthing has been shown to reduce acute and chronic inflammation, blood glucose in patients with diabetes, red blood cell (RBC) aggregation, and blood

  18. Synthesis of complex plutonium oxides with alkaline-earth metals

    International Nuclear Information System (INIS)

    Complex plutonium(IV) oxides with strontium and barium, SuPuO3 and BaPuO3, were synthesized and their crystal structure was analyzed. Compacted mixture of plutonium dioxide powder and the carbonate of strontium or barium was heated in a stream of argon gas using a cell with a small orifice. The products obtained were found to be composed of a nearly single phase showing the structure of orthorhombic slightly distorted from cubic. (author)

  19. Thermodynamic models of alkaline-earth metal ion flotation

    International Nuclear Information System (INIS)

    Two thermodynamic models for predicting selectivity coefficients for the pairs Be2+/Cu2+, Mg2+/Cu2+, Ca2+/Cu2+, Sr2+/Cu2+, and Ba2+/Cu2+ in ion flotation with the dodecyl sulfate ion as a collector are compared. The dehydration model largely gives exaggerated results, and the cavity model gives both exaggerated and underestimated values compared with the experimental selectivity coefficients. The cavity model was found to better describe molecules and ions of different sizes

  20. Infrared absorption spectra of alkaline earth metal metaphosphates

    International Nuclear Information System (INIS)

    Infrared absorption spectra of Ba, Sr, Ca, Mg, Be metaphosphates in crystal and glass-like states are studied. Reference of absorption bands to the oscillations of the P=O, P-O- bonds and P-O-P bridges in complex anions is made. It is shown that α-Sr(PO3)2, β-Ca(PO3)0 and Be(PO3)2 are built of the [(POOsup(-)Osub(2/2))sub(4)] sub(infinity) chains of the C1 symmetry. According to spectral data calculated are the main characteristics of the P=o and P-O- bonds (force constants, bond order, interatomic distances). The main structural elements of glass-like metaphosphates are distorted (POO-Osub(2/2)) sub(infinity) chains connected in three-dimentional net

  1. Modelling three-dimensional-quench cooling for alkaline-earth atoms

    CERN Document Server

    Mehlstaeubler, T E; Douillet, A; Rehbein, N; Rasel, E M; Ertmer, W

    2003-01-01

    Quench cooling is a promising technique to reach ultra-cold temperatures in alkaline-earth atoms by Doppler cooling on ultra-narrow transitions. The principles of quench cooling are derived from an effective two-level system with a linewidth adjustable by the quenching laser. A tunable linewidth reconciles the contradictory requirements of a fast cooling rate and a high velocity selectivity at high and low temperatures, respectively. In this paper, we investigate the efficiency of quench cooling in alkaline-earth systems. We present a one-dimensional analytical description of the quenching process. Cooling and trapping in three dimensions is studied with semi-classical Monte Carlo simulations. Our results for magnesium indicate a loading efficiency of up to 40% of pre-cooled atoms at 2 mK into a QuenchMOT. Final temperatures of 9 mu K and an increase in phase-space density by almost five orders of magnitude are observed in the simulations.

  2. A 3-photon process for producing degenerate gases of metastable alkaline-earth atoms

    Science.gov (United States)

    Barker, Daniel S.; Pisenti, Neal C.; Reschovsky, Benjamin J.; Campbell, Gretchen K.

    2016-05-01

    We present a method for creating quantum degenerate gases of metastable alkaline-earth atoms. A degenerate gas in any of the 3 P metastable states has not previously been obtained due to large inelastic collision rates, which are unfavorable for evaporative cooling. Samples prepared in the 1S0 ground state can be rapidly transferred to either the 3P2 or 3P0 state via a coherent 3-photon process. Numerical integration of the density matrix evolution for the fine structure of bosonic alkaline-earth atoms shows that transfer efficiencies of ~= 90 % can be achieved with experimentally feasible laser parameters in both Sr and Yb. Importantly, the 3-photon process does not impart momentum to the degenerate gas during excitation, which allows studies of these metastable samples outside the Lamb-Dicke regime. We discuss several experimental challenges to the successful realization of our scheme, including the minimization of differential AC Stark shifts between the four states connected by the 3-photon transition.

  3. Creation of trapped electrons and holes in alkaline-earth fluoride crystals doped by rare-earth ions

    International Nuclear Information System (INIS)

    Defects in Ce3+- and Eu2+-doped alkaline-earth fluorides, created by vacuum ultraviolet (UV) photons at energies lower than at the bandgap, were investigated by various methods: thermostimulated luminescence, photostimulated luminescence and optical absorption. The CaF2:Eu2+ thermoluminescence curves in the range of 60-330 K due to various types of trapped holes were the same after vacuum UV illumination as after x-irradiation. Thermoluminescence curves of Ce3+-doped alkaline-earth fluorides created by vacuum UV illumination or x-irradiation were generally similar. However, Vk thermoluminescence peaks were absent in vacuum UV illuminated CaF2:Ce3+ and SrF2:Ce3+ crystals. This fact is obviously associated with the presence of charge-compensating fluorine interstitials in Ce3+-doped crystals. The creation of Ce2+ characteristic bands was observed in photostimulated luminescence spectra as well as in optical absorption spectra of vacuum UV illuminated or x-irradiated Ce3+-doped crystals. The suppression of hole thermoluminescence peaks in CaF2:aF2:Eu2+ crystals by blue light is due to the photoionization of Eu+ ions. The proposed mechanism for the creation of trapped hole and trapped-electron defects by vacuum UV illumination involves charge-transfer-type transitions, in which the electron transfers from the valence band to an impurity level lying in the bandgap. Comparison of all energies involved of transitions in the crystals investigated shows that the sum of all the transition energies is less than that of the bandgap by 1.5-3.5 eV. This energy difference can be considered to be the energy of lattice relaxation around the created Ce2+ or Eu+ ions. (author)

  4. Influence of radionuclide residence time in soil and of competing alkaline earth elements on radium uptake by edible plants

    International Nuclear Information System (INIS)

    The uptake of Ra by plants and its dependence on the residence time as well as on the concentration of other alkaline earth elements was studied with soil contaminated several decades ago. Only the use of a well weathered Ra containing soil provides a realistic model for transfer factor determinations since the bioavailability of radium bound to soil particles is lower than in freshly prepared mixtures. The plants investigated are: tomatoes, cress, dandelions, radishes and mangold; they were chosen for their different behaviour towards alkaline earth elements, such as calcium. The contents of some elements taken up by the plants, especially the alkaline earths, were determined in their ashes by atomic absorption spectrometry. (orig./HP)

  5. Relations between structure and material properties in earth alkaline silicate basing phosphors; Struktureigenschaftsbeziehungen in Erdalkalisilikat basierenden Leuchtstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Wolfgang

    2008-03-19

    This work is basing on the relation between structure and luminescence of Eu{sup 2+} doped Earth-Alkaline-Silicates. After an overview of Earth-Alkaline-Silicates silicates with an additional cation (Li{sup +}, Al{sup 3+}) and an additional anion (Cl{sup -}, N{sup 3-}) are examined in chapter 4 and 5. Basing on this data an relation between structural influence - like ion-radii, anion and coordination polyeder - and phosphor luminescence is set up. The ability of using as an industrial phosphor is made in the final chapter. (orig.)

  6. Structure elucidation of alkaline earth impregnated MCM-41 type mesoporous materials obtained by direct synthesis: An experimental and theoretical study

    Science.gov (United States)

    Paz, Gizeuda L.; Silva, Francisco das Chagas M.; Araújo, Maciel M.; Lima, Francisco das Chagas A.; Luz, Geraldo E.

    2014-06-01

    In this work, MCM-41 were synthesized hydrothermally and functionalized with calcium and strontium salts by direct method, using the Si/M = 50 molar ratio, in order to elucidate the way as the alkaline earth is incorporated on MCM-41 molecular sieve. The materials were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, nitrogen adsorption-desorption and theoretical calculations by DFT method. Experimental results and computer simulations showed that the alkaline earths were incorporated on MCM-41 through a complex structure, which negatively influences on basic sites formation.

  7. Assessing the Effectiveness and Side-Effects of Ocean Alkalinity Enhancement in an Earth System Model

    Science.gov (United States)

    Jones, S. E.; Ridgwell, A. J.

    2013-12-01

    At present, the potential to decrease atmospheric carbon dioxide concentrations by manipulating the carbon cycle (carbon geoengineering) is being considered as a fourth possible option for addressing anthropogenic climate change, alongside emissions reductions, adaptation and solar geoengineering. This study sets out to assess the effectiveness and potential side-effects of ocean alkalinity enhancement, or ';liming the ocean', as a means to slow the current increase in atmospheric CO2. In order to achieve this, an Earth system model (cGENIE) was used to run both individual simulations as well as a number of 934-member ensembles, to assess each surface ocean grid cell individually, for effectiveness and side-effects of ocean alkalinity enhancement. Effectiveness and side-effects were considered both temporally and spatially and under both steady-state scenarios (of 1x, 2x and 4x pre-industrial pCO2), and using RCP scenarios 4.5 and 8.5. Some consideration of the amount of lime potentially required to have a useful impact on atmospheric CO2 concentration and ocean acidification has also been carried out and compared to current mining capabilities, as an initial step towards considering the feasibility of such an intervention. This research aims to inform the emerging debate around geoengineering by providing an initial insight into where, when and how frequently lime could be used to most efficiently contribute to efforts to slow the rate of increasing atmospheric CO2 concentrations, as well as insights into the caveats and side-effects that may accompany ocean alkalinity enhancement interventions.

  8. Impacts of artificial ocean alkalinization on the carbon cycle and climate in Earth system simulations

    Science.gov (United States)

    González, Miriam Ferrer; Ilyina, Tatiana

    2016-06-01

    Using the state-of-the-art emissions-driven Max Planck Institute Earth system model, we explore the impacts of artificial ocean alkalinization (AOA) with a scenario based on the Representative Concentration Pathway (RCP) framework. Addition of 114 Pmol of alkalinity to the surface ocean stabilizes atmospheric CO2 concentration to RCP4.5 levels under RCP8.5 emissions. This scenario removes 940 GtC from the atmosphere and mitigates 1.5 K of global warming within this century. The climate adjusts to the lower CO2 concentration preventing the loss of sea ice and high sea level rise. Seawater pH and the carbonate saturation state (Ω) rise substantially above levels of the current decade. Pronounced differences in regional sensitivities to AOA are projected, with the Arctic Ocean and tropical oceans emerging as hot spots for biogeochemical changes induced by AOA. Thus, the CO2 mitigation potential of AOA comes at a price of an unprecedented ocean biogeochemistry perturbation with unknown ecological consequences.

  9. High resolution spectroscopy of alkaline earth monohalides: perturbation analysis, hyperfine structure and stark effect

    International Nuclear Information System (INIS)

    This paper applies a number of laser spectroscopic methods, some of which have been newly developed, to the group of alkaline earth monohalide radicals. The effects of weak hyperfine interaction were studied by using laser-mw double resonance techniques and the Stark effect was investigated at high resolution in molecular beam experiments. Doppler-free polarization spectroscopy provided the sensitivity and resolution needed for the analysis of optical spectra. In the particulary congested parts of the spectra mw labeling was helpful for the identification of lines. It is to be expected that these methods will be applied to other groups of free radicals in the near future and help to cast some light on the structure of new interesting molecular species

  10. Parity violating radiative emission of neutrino pair in heavy alkaline earth atoms of even isotopes

    CERN Document Server

    Yoshimura, M; Uetake, S

    2014-01-01

    Metastable excited states ${}^3P_2, {}^3P_0$ of heavy alkaline earth atoms of even isotopes are studied for parity violating (PV) effects in radiative emission of neutrino pair (RENP). PV terms arise from interference between two diagrams containing neutrino pair emission of valence spin current and nuclear electroweak charge density proportional to the number of neutrons in nucleus. This mechanism gives large PV effects, since it does not suffer from the suppression of 1/(electron mass) usually present for non-relativistic atomic electrons. A controllable magnetic field is crucial to identify RENP process by measuring PV observables. Results of PV asymmetries under the magnetic field reversal and the photon circular polarization reversal are presented for an example of Yb atom.

  11. Role of elastic deformation in determining the mixed alkaline earth effect of hardness in silicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Potuzak, M.;

    2015-01-01

    show that the mixed alkaline earth effect manifests itself as deviations from linearity in shear modulus, Poisson’s ratio, glass transition temperature, liquid fragility index, hardness, volume of densification, and volume of plastic flow. We find no correlation between the elastic part of the......Glasses deform permanently as a result of indentation and the total resistance to deformation consists of three individual resistances, i.e., those to elastic deformation, densification, and plastic flow. The link between Vickers hardness and the resistances to densification and plastic flow has...... been investigated previously, but the link between the resistance to elastic deformation and hardness has not yet been studied. In this work, we investigate the link between elastic deformation during indentation and Vickers hardness in a series of mixed magnesium-barium boroaluminosilicate glasses. We...

  12. An {\\it ab initio} relativistic coupled-cluster theory of dipole and quadrupole polarizabilities: Applications to a few alkali atoms and alkaline earth ions

    CERN Document Server

    Sahoo, B K

    2006-01-01

    We present a general approach within the relativistic coupled-cluster theory framework to calculate exactly the first order wave functions due to any rank perturbation operators. Using this method, we calculate the static dipole and quadrupole polarizabilities in some alkali atoms and alkaline earth-metal ions. This may be a good test of the present theory for different rank and parity interaction operators. This shows a wide range of applications including precise calculations of both parity and CP violating amplitudes due to rank zero and rank one weak interaction Hamiltonians. We also give contributions from correlation effects and discuss them in terms of lower order many-body perturbation theory.

  13. Raman and Rietveld structural characterization of sintered alkaline earth doped ceria

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira Junior, Jose Marcio; Brum Malta, Luiz Fernando; Garrido, Francisco M.S. [Departamento de Quimica Inorganica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Centro de Tecnologia, Bloco A, room 632, CEP 68563, 21941-909 Rio de Janeiro, RJ (Brazil); Ogasawara, Tsuneharu [Programa de Engenharia Metalurgica e de Materiais, Coordenacao dos Programas de Pos - Graduacao de Engenharia, Centro de Tecnologia, Universidade Federal do Rio de Janeiro, Ilha do Fundao, CEP 68505, 21941-972 Rio de Janeiro, RJ (Brazil); Medeiros, Marta Eloisa, E-mail: chico@iq.ufrj.br [Departamento de Quimica Inorganica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Centro de Tecnologia, Bloco A, room 632, CEP 68563, 21941-909 Rio de Janeiro, RJ (Brazil)

    2012-08-15

    Nanocrystalline calcium and strontium singly doped ceria and co-doped ceria materials for solid electrolytes were prepared via a hydrothermal route. The effect of the hydrothermal treatment time on the solid solution composition was evaluated. Sr doped ceria was the most difficult to form, due to the Sr{sup 2+} large ionic radius. The small crystal size (12-16 nm) of powders allowed sintering into dense ceramic pellets at 1350 Degree-Sign C for 5 h. Raman spectroscopy evidenced a great lattice distortion for Sr doped and co-doped ceria materials, explaining the deterioration of the electrical properties for these ceramics. Besides that, a second phase was detected for Sr doped ceria pellet by using X-ray powder diffraction and Rietveld refinement of XRD data. Impedance measurements showed that Ca-doped ceria behaves as the best ionic conductor ({sigma}{sub g} 390 Degree-Sign C = 1.0 Multiplication-Sign 10{sup -3} S cm{sup -1}) since the nominal composition was achieved; on the other hand, Sr doped ceria performed as resistive materials since Sr incorporation into ceria lattice was critical. These results enhance the close interlace between electrical performance and chemical composition of alkaline earth doped ceria. -- Highlights: Black-Right-Pointing-Pointer Hydrothermally synthesized calcium doped ceria nanoparticles. Black-Right-Pointing-Pointer Incorporation of alkaline earth dopant into ceria lattice. Black-Right-Pointing-Pointer Raman and Rietveld structural characterization. Black-Right-Pointing-Pointer Calcium doped ceria ceramic pellets with high ionic conductivity. Black-Right-Pointing-Pointer Problems associated with the Sr{sup 2+} incorporation into ceria lattice.

  14. Long-range interactions of excited He atoms with the alkaline earth atoms Mg, Ca, and Sr

    KAUST Repository

    Zhang, J.-Y.

    2013-04-05

    Dispersion coefficients for the long-range interactions of the first four excited states of He, i.e., He(2 1, 3 S) and He(2 1, 3 P), with the low-lying states of the alkaline earth atoms Mg, Ca, and Sr are calculated by summing over the reduced matrix elements of multipole transition operators.

  15. Studies on the determination of trace amounts of nitrogen along with alkali and alkaline earth elements in uranium based samples by ion-chromatography (IC)

    International Nuclear Information System (INIS)

    Present report describes an ion chromatography (IC) method with suppressed conductivity detection for the determination of traces of nitrogen along with alkali and alkaline earth elements in uranium based nuclear fuels. Method was developed to determine nitrogen as NH4+ along with alkali and alkaline earth cations by IC using a cation exchange column. (author)

  16. Alkaline phosphatase activity in the subtropical ocean: insights from nutrient, dust and trace metal addition experiments

    Directory of Open Access Journals (Sweden)

    Claire eMahaffey

    2014-12-01

    Full Text Available Phosphorus is an essential nutrient for all life on earth. In the ocean, the most bioavailable form of phosphorus is inorganic phosphate, but in the extensive subtropical gyres, phosphate concentrations can be chronically low and limit primary productivity and nitrogen fixation. In these regions, organisms produce hydrolytic enzymes, such as alkaline phosphatase (AP, that enable them to utilize the more replete dissolved organic phosphorus (DOP pool to meet their cellular phosphorus demands. In this study, we synthesized data from 14 published studies and present our own findings from two research cruises (D326 and D361 in the eastern subtropical Atlantic to explore the relationship between AP activity (APA and nutrients, Saharan dust and trace metals. We found that below a threshold phosphate concentration of ~ 30 nM, APA increased with an inverse hyperbolic relationship with phosphate concentration. Meanwhile, DOP concentrations decreased with enhanced APA, indicating utilization of the DOP pool. We found APA rates were significantly higher in the subtropical Atlantic compared to the subtropical Pacific Ocean, even over the same low phosphate concentration range (0 to 50 nM. While the phosphate concentration may have a first order control on the APA rates, we speculate that other factors influence this basin scale contrast. Using bioassay experiments, we show that the addition of Saharan dust and zinc significantly increased the rate of APA. To our knowledge, our results are the first direct field-based evidence that APA is limited by zinc in the subtropical ocean. Further work is required to explore the relationship between trace metals such as iron and zinc, which are co-factors of phosphohydrolytic enzymes, specifically PhoX and PhoA, respectively, and APA in the ocean.

  17. A Density Functional Theory Study of Codoping Characteristics of Sulfur with Alkaline Earth in Delafossite CuAlO2

    Science.gov (United States)

    Qi-Jun, Liu; Han, Qin; Zheng-Tang, Liu

    2016-04-01

    The structural, electronic properties and formation energies of sulfur and alkaline earth codoped delafossite CuAlO2 have been investigated using the first-principles density functional theory calculations. Our results reveal that the volume of codoping systems increases with the increasing atomic radius of metal atoms. The formation energies under different growth conditions have been calculated, showing that the codoping systems are formed easily under O-rich growth conditions. Electronic band structures and density of states have been obtained. The decreased bandgaps, enhanced covalence and appearance of electron acceptors after codoping are all good for p-type conductivity. Supported by the National Natural Science Foundation of China under Grant Nos. 11347199, 51402244, and 11547311, the Specialized Research Fund for Doctoral Program of Higher Education of China under Grant No. 20130184120028, the Fundamental Research Fund for the Central Universities, China under Grant Nos. 2682014CX084, 2682014ZT30, and 2682014ZT31, and the fund of the State Key Laboratory of Solidification Processing in NWPU under Grant No. SKLSP201511

  18. Study of the effect hydrogen binding in the solvation of alkaline earth cations with MeOH in nitromethane using 1 H NMR technique and determination of ionic solvation number

    CERN Document Server

    Alizadeh, N

    2001-01-01

    A proton NMR method for the study of the effect hydrogen binding and determination of solvation numbers of alkaline earth cations with methanol (MeOH) in in tromethane (NM) as diluent is described. The method is based on monitoring the resonance frequency of MeOH protons as a function of MeOH to metal ion mole ratio at constant metal ion concentration. the average solvation number of cation, n, at any MeOH/ metal ion mole ration was calculated from the NMR chemical shift-mole ration data and was plotted against the mole ration values. The solvation numbers of alkaline earth cations were obtained from the limiting values of the corresponding n, vs. mole ratio plots.

  19. SIMULATION AND OPTIMIZATION OF TIMBER ALKALINE PULPING PROCESS IN PRESENCE OF SALTS OF SOME METALS HAVING MIXED VALENCE

    OpenAIRE

    I. Karpunin

    2012-01-01

    Process of alkaline pulping in the presence of salts of some metals having mixed valence has been simulated on the basis of the executed investigations. The paper reveals that optimization of alkaline (sulphate) pulping depends on chemical nature and metal and its amount which is introduced in the form of salt.

  20. SIMULATION AND OPTIMIZATION OF TIMBER ALKALINE PULPING PROCESS IN PRESENCE OF SALTS OF SOME METALS HAVING MIXED VALENCE

    Directory of Open Access Journals (Sweden)

    I. Karpunin

    2012-01-01

    Full Text Available Process of alkaline pulping in the presence of salts of some metals having mixed valence has been simulated on the basis of the executed investigations. The paper reveals that optimization of alkaline (sulphate pulping depends on chemical nature and metal and its amount which is introduced in the form of salt.

  1. Differential enthalpy of cation exchange of alkaline metals on amorphous zirconium phosphate

    International Nuclear Information System (INIS)

    Work presents the results of calorimetric research of sorption process of alkaline metals cations on hydrogen form of amorphous zirconium phosphates. It is defined that the general regularities of passing of ion exchange reaction are the same for the samples of zirconium phosphate with different content of phosphor.

  2. Metal mobilization under alkaline conditions in ash-covered tailings.

    Science.gov (United States)

    Lu, Jinmei; Alakangas, Lena; Wanhainen, Christina

    2014-06-15

    The aim of this study was to determine element mobilization and accumulation in mill tailings under alkaline conditions. The tailings were covered with 50 cm of fly ash, and above a sludge layer. The tailings were geochemically and mineralogically investigated. Sulfides, such as pyrrhotite, sphalerite and galena along with gangue minerals such as dolomite, calcite, micas, chlorite, epidote, Mn-pyroxene and rhodonite were identified in the unoxidized tailings. The dissolution of the fly ash layer resulted in a high pH (close to 12) in the underlying tailings. This, together with the presence of organic matter, increased the weathering of the tailings and mobilization of elements in the uppermost 47 cm of the tailings. All primary minerals were depleted, except quartz and feldspar which were covered by blurry secondary carbonates. Sulfide-associated elements such as Cd, Fe, Pb, S and Zn and silicate-associated elements such as Fe, Mg and Mn were released from the depletion zone and accumulated deeper down in the tailings where the pH decreased to circum-neutral. Sequential extraction suggests that Cd, Cu, Fe, Pb, S and Zn were retained deeper down in the tailings and were mainly associated with the sulfide phase. Calcium, Cr, K and Ni released from the ash layer were accumulated in the uppermost depletion zone of the tailings. PMID:24681363

  3. Moessbauer effect of the alkaline and alkaline earth metal nitroprusside powders

    CERN Document Server

    Yang, T H; Kim, H S; Hong, C Y; Kim, H B; Cho, H Y; Kim, D Y; Moon, Y S

    2000-01-01

    We observe Moessbauer spectra of Fe atoms centered in nitroprusside anions of sodium nitroprusside (Na sub 2 [Fe(CN) sub 5 NO] 2H sub 2 O). potassium-nitroprusside (K sub 2 [Fe(CN)] sub 5 NO centre dot 2.5H sub 2 O), rubidium nitroprusside (Rb sub 2 [Fe(CN) sub 5 NO centre dot H sub 2 O), magnesium nitroprusside (Mg[Fe(CN) sub 5 NO], calcium nitroprusside (Ca[Fe(CN) sub 5 NO]centre dot 4H sub 2 O), and barium nitroprusside (Ba[Fe(CN) sub 5 NO]centre dot 3H sub 2 O) samples which have photochromic properties. We compare the Moessbauer parameters, the values of the isomer shifts and the quadrupole splittings of the samples with those of a sodium nitroprusside single crystal which is a standard material. The values of the isomer shifts and the quadrupole splittings of the various compounds are close to each other. The values of the line broadening of all samples are between 2.1 GAMMA sub N and 2.5 GAMMA sub N. The Moessbauer Lamb factors (f) are between 0.252(1) and 0.340(2). These values are obtained from the s...

  4. Molten metal reactor and method of forming hydrogen, carbon monoxide and carbon dioxide using the molten alkaline metal reactor

    Science.gov (United States)

    Bingham, Dennis N.; Klingler, Kerry M.; Turner, Terry D.; Wilding, Bruce M.

    2012-11-13

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  5. CP(N - 1) quantum field theories with alkaline-earth atoms in optical lattices

    Science.gov (United States)

    Laflamme, C.; Evans, W.; Dalmonte, M.; Gerber, U.; Mejía-Díaz, H.; Bietenholz, W.; Wiese, U.-J.; Zoller, P.

    2016-07-01

    We propose a cold atom implementation to attain the continuum limit of (1 + 1) -d CP(N - 1) quantum field theories. These theories share important features with (3 + 1) -d QCD, such as asymptotic freedom and θ-vacua. Moreover, their continuum limit can be accessed via the mechanism of dimensional reduction. In our scheme, the CP(N - 1) degrees of freedom emerge at low energies from a ladder system of SU(N) quantum spins, where the N spin states are embodied by the nuclear Zeeman states of alkaline-earth atoms, trapped in an optical lattice. Based on Monte Carlo results, we establish that the continuum limit can be demonstrated by an atomic quantum simulation by employing the feature of asymptotic freedom. We discuss a protocol for the adiabatic preparation of the ground state of the system, the real-time evolution of a false θ-vacuum state after a quench, and we propose experiments to unravel the phase diagram at non-zero density.

  6. CP(N-1) Quantum Field Theories with Alkaline-Earth Atoms in Optical Lattices

    CERN Document Server

    Laflamme, C; Dalmonte, M; Gerber, U; Mejía-Díaz, H; Bietenholz, W; Wiese, U -J; Zoller, P

    2015-01-01

    We propose a cold atom implementation to attain the continuum limit of (1+1)-d CP(N-1) quantum field theories. These theories share important features with (3+1)-d QCD, such as asymptotic freedom and $\\theta$ vacua. Moreover, their continuum limit can be accessed via the mechanism of dimensional reduction. In our scheme, the CP(N-1) degrees of freedom emerge at low energies from a ladder system of SU(N) quantum spins, where the N spin states are embodied by the nuclear Zeeman states of alkaline-earth atoms, trapped in an optical lattice. Based on Monte Carlo results, we establish that the continuum limit can be demonstrated by an atomic quantum simulation by employing the feature of asymptotic freedom. We discuss a protocol for the adiabatic state preparation of the ground state of the system, the real-time evolution of a false $\\theta$-vacuum state after a quench, and we propose experiments to unravel the phase diagram at non-zero density.

  7. Surface fractal dimensions and textural properties of mesoporous alkaline-earth hydroxyapatites

    Energy Technology Data Exchange (ETDEWEB)

    Vilchis-Granados, J. [Instituto Nacional de Investigaciones Nucleares, Departamento de Química, A.P. 18-1027, Col. Escandón, Delegación Miguel Hidalgo, C.P. 11801, México, DF (Mexico); Universidad Autónoma del Estado de México, Facultad de Química, Av. Paseo Colón esquina con Paseo Tollocan s/n Toluca, México (Mexico); Granados-Correa, F., E-mail: francisco.granados@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Departamento de Química, A.P. 18-1027, Col. Escandón, Delegación Miguel Hidalgo, C.P. 11801, México, DF (Mexico); Barrera-Díaz, C.E. [Universidad Autónoma del Estado de México, Facultad de Química, Av. Paseo Colón esquina con Paseo Tollocan s/n Toluca, México (Mexico)

    2013-08-15

    This work examines the surface fractal dimensions (D{sub f}) and textural properties of three different alkaline-earth hydroxyapatites. Calcium, strontium and barium hydroxyapatite compounds were successfully synthesized via chemical precipitation method and characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry, Fourier transform infrared spectroscopy, and N{sub 2}-physisorption measurements. Surface fractal dimensions were determined using single N{sub 2}-adsorption/desorption isotherms method to quantify the irregular surface of as-prepared compounds. The obtained materials were also characterized through their surface hydroxyl group content, determined by the mass titration method. It was found that the D{sub f} values for the three materials covered the range of 0.77 ± 0.04–2.33 ± 0.11; these results indicated that the materials tend to have smooth surfaces, except the irregular surface of barium hydroxyapatite. Moreover, regarding the synthesized calcium hydroxyapatite exhibited better textural properties compared with the synthesized strontium and barium hydroxyapatites for adsorbent purposes. However, barium hydroxyapatite shows irregular surface, indicating a high population of active sites across the surface, in comparison with the others studied hydroxyapatites. Finally, the results showed a linear correlation between the surface hydroxyl group content at the external surface of materials and their surface fractal dimensions.

  8. Structure of alkaline-earth pentafluoroantimonates(III), MSbF5(M=Sr, Ba)

    International Nuclear Information System (INIS)

    Strontium pentafluoroantimonate(III), SrSbF5, Mr=304.36, orthorhombic, Pbcm, a=4.378 (1), b=8.853 (3), c=11.233 (4) A, V=435.4 (3) A3, Z=4, Dm=4.60, Dx=4.64 Mg m-3, Mo Kα, λ=0.71069 A, μ=18.9 mm-1, F(000)=536, T=298 K, R=0.028 for 596 independent reflections with I>3α(I). Barium pentafluoroantimonate(III), BaSbF5, Mr=354.08, orthorhombic, Pbcm, a=4.676 (1), b=9.313 (2), c=11.213 (3) A, V=488.3 (2) A3, Z=4, Dm=4.77, Dx=4.82 Mg m-3, Mo Kα, λ=0.71069 A, μ=13.6 mm-1, F(000)=608, T=298 K, R=0.015 for 914 independent reflections with I>3σ(I). SrSbF5 and BaSbF5 are isostructural compounds. The three-dimensional network consists of isolated SbF52- units which are connected by ten-coordinated alkaline-earth ions Sr2+ or Ba2+. The geometry of these pentafluoroantimonate ions is approximately square pyramidal with the Sb atom outside the pyramid, below the four F atoms constituting the basal plane. (orig.)D

  9. IR and Raman spectroscopic studies of sol–gel derived alkaline-earth silicate glasses

    Indian Academy of Sciences (India)

    Angelos G Kalampounias

    2011-04-01

    IR and Raman spectroscopies have been utilized to study the structure and vibrational modes of sol–gel-derived binary silicate glasses. The present study is motivated by the immense geological significance and focuses on the MO–SiO2 (M = Ca, Mg) binary systems in an effort to unveil the role of the CaO and MgO modifiers when incorporated to the 3D silica structure. Glasses in the composition range = 0, 0.1, 0.2, 0.3 and 0.4 prepared by the sol–gel method were compared with the corresponding glasses formed by appropriate mixing of SiO2 and MO powders through melting and fast cooling. The vibrational spectra of the sol–gel-derived glasses have revealed considerable changes in relative intensities as a function of the MO mole fraction. These changes signify structural modifications on the silica network. The population of the 3 species was found to increase for both modified silicate systems. The rate of increase is more pronounced in the CaO–SiO2 glasses. The extent of network depolymerization in the porous glass is higher at the same content of alkaline earth oxide compared to the bulk glass. The results are indicative of a more `defective’ nature of the sol–gel glasses compared to the corresponding melt-quenched ones.

  10. Mixed alkali effect on the spectroscopic properties of alkali-alkaline earth oxide borate glasses

    Science.gov (United States)

    Srinivas, G.; Ramesh, B.; Shareefuddin, Md.; Chary, M. N.; Sayanna, R.

    2016-05-01

    The mixed alkali and alkaline earth oxide borate glass with the composition xK2O - (25-x) Li2O-12.5BaO-12.5MgO-50B2O3 (x = 0, 5, 10, 15, 20 and 25mol %) and doped with 1mol% CuO were prepared by the melt quenching technique. From the optical absorption spectra the optical band gap, electronic polarizability(α02-), interaction parameter (A), theoretical and experimental optical basicity (Λ) values were evaluated. From the Electron Paramagnetic Resonance (EPR) spectral data the number of spins (N) and susceptibility (χ) were evaluated. The values of (α02-), and (Λ) increases with increasing of K2O content and electronic polarizability and interaction parameter show opposite behaviuor which may be due to the creation of non-bridging oxygens and expansion of borate network. The reciprocal of susceptibility (1/χ) and spin concentration (N) as a function of K2O content, varied nonlinearly which may be due to creation of non-bridging oxygens in the present glass system. This may be attributed to mixed alkali effect (MAE).

  11. Maternal exposure to alkali, alkali earth, transition and other metals: Concentrations and predictors of exposure

    International Nuclear Information System (INIS)

    Most studies of metals exposure focus on the heavy metals. There are many other metals (the transition, alkali and alkaline earth metals in particular) in common use in electronics, defense industries, emitted via combustion and which are naturally present in the environment, that have received limited attention in terms of human exposure. We analysed samples of whole blood (172), urine (173) and drinking water (172) for antimony, beryllium, bismuth, cesium, gallium, rubidium, silver, strontium, thallium, thorium and vanadium using ICPMS. In general most metals concentrations were low and below the analytical limit of detection with some high concentrations observed. Few factors examined in regression models were shown to influence biological metals concentrations and explained little of the variation. Further study is required to establish the source of metals exposures at the high end of the ranges of concentrations measured and the potential for any adverse health impacts in children. - This study has demonstrated exposure to alkali, alkali earth and transition metals in pregnant women with factors such as breastfeeding, fish oil use and diet affecting exposures

  12. Optimizing the performance of bandpass photon detectors for inverse photoemission: Transmission of alkaline earth fluoride window crystals

    International Nuclear Information System (INIS)

    Bandpass photon detectors are widely used in inverse photoemission in the isochromat mode at energies in the vacuum-ultraviolet spectral range. The energy bandpass of gas-filled counters is usually formed by the ionization threshold of the counting gas as high-pass filter and the transmission cutoff of an alkaline earth fluoride window as low-pass filter. The transmission characteristics of the window have, therefore, a crucial impact on the detector performance. We present transmission measurements in the vacuum-ultraviolet spectral range for alkaline earth fluoride window crystals in the vicinity of the transmission cutoff as a function of crystal purity, surface finish, surface contamination, temperature, and thickness. Our findings reveal that the transmission characteristics of the window crystal and, thus, the detector performance depend critically on these window parameters

  13. Analysis of the electronic dipole polarizability of ions in cubic oxides, fluorides, and sulfides of alkaline earth elements

    International Nuclear Information System (INIS)

    A new approach to calculating the electronic dipole polarizability of ions in crystals which is based on an analysis of the relationship between the electronic dipole polarizability of ion and its effective charge has been proposed. It is shown that applying this method to simple cubic oxides, fluorides, and sulfides of alkaline earth elements yields makes the calculation results consistent with the well-known data on the structure and type of bonds in these compounds.

  14. Alkaline earth lead and tin compounds Ae2Pb, Ae2Sn, Ae = Ca, Sr, Ba, as thermoelectric materials

    OpenAIRE

    David Parker and David J Singh

    2013-01-01

    We present a detailed theoretical study of three alkaline earth compounds Ca2Pb, Sr2Pb and Ba2Pb, which have undergone little previous study, calculating electronic band structures and Boltzmann transport and bulk moduli using density functional theory. We also study the corresponding tin compounds Ca2Sn, Sr2Sn and Ba2Sn. We find that these are all narrow band gap semiconductors with an electronic structure favorable for thermoelectric performance, with substantial thermopowers for the lead c...

  15. The etching process of boron nitride by alkali and alkaline earth fluorides under high pressure and high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Guo, W., E-mail: guowei1982cry@163.com [College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China); Ma, H.A.; Jia, X. [National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China)

    2014-03-01

    Graphical abstract: - Highlights: • Appropriate etch processes of hBN and cBN under HPHT are proposed. • The degree of the crystallization of hBN was decreased. • A special cBN growth mechanism with a triangular unit is proposed. • Plate-shape cBN crystals with large ratio of length to thickness were obtained. • A strategy provides useful guidance for controlling the cBN morphology. - Abstract: Some new etching processes of hexagonal boron nitride (hBN) and cubic boron nitride (cBN) under high pressure and high temperature in the presence of alkali and alkaline earth fluorides have been discussed. It is found that hBN is etched distinctly by alkali and alkaline earth fluorides and the morphology of hBN is significantly changed from plate-shape to spherical-shape. Based on the “graphitization index” values of hBN, the degree of the crystallization of hBN under high pressure and high temperature decreases in the sequence of LiF > CaF{sub 2} > MgF{sub 2}. This facilitates the formation of high-quality cBN single crystals. Different etch steps, pits, and islands are observed on cBN surface, showing the strong etching by alkali and alkaline earth fluorides and the tendency of layer-by-layer growth. A special layer growth mechanism of cBN with a triangular unit has been found. Furthermore, the morphologies of cBN crystals are apparently affected by a preferential surface etching of LiF, CaF{sub 2} and MgF{sub 2}. Respectively, the plate-shape and tetrahedral cBN crystals can be obtained in the presence of different alkali and alkaline earth fluorides.

  16. The etching process of boron nitride by alkali and alkaline earth fluorides under high pressure and high temperature

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Appropriate etch processes of hBN and cBN under HPHT are proposed. • The degree of the crystallization of hBN was decreased. • A special cBN growth mechanism with a triangular unit is proposed. • Plate-shape cBN crystals with large ratio of length to thickness were obtained. • A strategy provides useful guidance for controlling the cBN morphology. - Abstract: Some new etching processes of hexagonal boron nitride (hBN) and cubic boron nitride (cBN) under high pressure and high temperature in the presence of alkali and alkaline earth fluorides have been discussed. It is found that hBN is etched distinctly by alkali and alkaline earth fluorides and the morphology of hBN is significantly changed from plate-shape to spherical-shape. Based on the “graphitization index” values of hBN, the degree of the crystallization of hBN under high pressure and high temperature decreases in the sequence of LiF > CaF2 > MgF2. This facilitates the formation of high-quality cBN single crystals. Different etch steps, pits, and islands are observed on cBN surface, showing the strong etching by alkali and alkaline earth fluorides and the tendency of layer-by-layer growth. A special layer growth mechanism of cBN with a triangular unit has been found. Furthermore, the morphologies of cBN crystals are apparently affected by a preferential surface etching of LiF, CaF2 and MgF2. Respectively, the plate-shape and tetrahedral cBN crystals can be obtained in the presence of different alkali and alkaline earth fluorides

  17. pH coupled co-precipitation of alkaline-earth carbonates and silica - complex materials from simple chemistry

    OpenAIRE

    Eiblmeier, Josef

    2013-01-01

    The present work deals with the mineralization of alkaline-earth carbonates (mainly barium carbonate) from dilute silica solutions at high pH. It has for long been known that the concerted interaction between these purely inorganic components leads to amazing architectures with intricately curved and helical shapes, which were termed silica-carbonate biomorphs. Recently a general concept was proposed by García-Ruiz and co-workers that explains the spontaneous formation of these biomimetic agg...

  18. The rare-metal ore potential of the Proterozoic alkaline ultramafic massifs from eastern part of the Baltic Shield in the Kola alkaline province.

    Science.gov (United States)

    Sorokhtina, Natalia; Kogarko, Lia

    2014-05-01

    The Kola Alkaline Province consists of intrusions of two main stages of the intraplate alkaline magmatism. The early stage of igneous activity occurred in Proterozoic 1.9 billion years ago, the next in Paleozoic at 380 million years. The Proterozoic alkaline magmatism produced Gremyakha-Vyrmes and Elet'ozero large alkaline-ultrabasic massifs, Tiksheozero carbonatite massif and numerous small syenite complexes. Paleozoic magmatism on Baltic Shield exhibited more widely, than Proterozoic. The world largest Khibiny and Lovozero alkaline intrusions, numerous alkaline-ultrabasic massifs with carbonanites, alkaline dike swarms and diatremes were formed. It is well known that carbonatites of Paleozoic alkaline-ultrabasic massifs contain large-scale deposits of rare-metal ores (Afanasiev et al., 1998). The metasomatic rocks on foidolites and carbonatites of Gremyakha-Vyrmes are final products of differentiation of Proterozoic alkaline-ultrabasic magma enriched in incompatible elements, including Nb and Zr similar to Paleozoic carbonatites. The massif Gremyakha-Vyrmes is one of the largest titanomagnetite-ilmenite deposits in Russia associated with ultrabasites. Our investigation showed that albite-microcline and aegirine-albite metasomatites formed rich rare-metal ores consisting of 3.2 wt. % Nb2O5 and 0.7 ZrO2. Zircon and pyrochlore-group minerals represent the main minerals of rare-metal ores. The following evolutionary sequences of pyrochlore group minerals has been observed: betafite or U pyrochlore - Na-Ca pyrochlore - Ba-Sr pyrochlore - "silicified" pyrochlore - Fe-Nb, Al-Nb silicates. Such evolution from primary Nb oxides to secondary silicates under low temperature hydrothermal conditions is similar to the evolution of rare metal phases in Paleozoic alkaline massifs analogous to Lovozero syenites and in carbonatites. The rare metal minerals of Gremyakha-Vyrmes crystallized in high alkaline hydrothermal environment at increased activity of Nb, Ta, Zr, U, Th and at

  19. Ocean-Based Alkalinity Enhancement: Mitigation Potential, Side Effects and the Fate of Added Alkalinity Assessed in an Earth System Model

    Science.gov (United States)

    Gonzalez, M. F.; Ilyina, T.

    2014-12-01

    Artificial ocean alkalinization (AOA) has been proposed as a mean to mitigate climate change and ocean acidification. Whilst the mitigation potential of this geo-engineering technology may sound promising, it poses environmental risks. Within the Priority Program "Climate Engineering" of the German Science Foundation (DFG), we investigate the mitigation potential of AOA to reduce atmospheric CO2 and counteract the consequences of ocean acidification. We are particularly interested in the residence time of the added alkalinity at the ocean surface because it must stay in the upper ocean in order to increase the oceanic CO2 uptake. The mitigation potential, risks and the unintended consequences of this geo-engineering method are also exhaustively studied. These questions are tackled through the analysis of different alkalinity enhancement scenarios in the state-of-the-art Earth system model of the Max Planck Institute for Meteorology (MPI-ESM) in a configuration based on the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Model scenarios are designed so that AOA is performed to keep the atmospheric CO2 concentrations similar to values of the stabilization scenario RCP4.5, while fossil fuel CO2 emissions follow the pathway of the high-CO2 scenario RCP8.5. Alkalinity is added globally into the upper 12 meters of the ocean in different seasons and years. We found that on the time scale of relevance (i.e. from years to decades), season and location are key aspects to take into account in the implementation of AOA. This is because of inhomogeneous vertical mixing of added alkalinity due to the mixed layer depth which is established by the season. We also show that the rate of addition greatly determines impact and outcome of this geo-engineering method. Changes driven by the implementation of this method in the ocean biogeochemistry are also discussed. For instance, the associated changes in the carbon cycle, marine oxygen levels, saturation state of

  20. Electrowinning of high purity individual rare earth metals - a review

    International Nuclear Information System (INIS)

    Rare earth metals are finding applications in various fields. The demand for purer individual metals is increasing. The two important methods of preparation of the pure metals are Metallothermic Reduction and Electrowinning. In Electrowinning, the rare earth fluoride, chloride or oxide is elctrolysed using direct current. Fused salt electrolysis is the commonly used method. The important developments in the area of electrometallurgy is summarised in this paper. In general, the paper deals with the important findings and developments in the process development of electrowinning of rare earth elements. (author) 49 refs., 1 fig., 1 tab

  1. Many-body forces and stability of the alkaline-earth tetramers

    International Nuclear Information System (INIS)

    Graphical abstract: Many-body forces effect. In a three-particle system, the two-body interaction energies depend upon coordinates of all three particles. The comparative study of the interaction energy and its many-body decomposition for alkaline-earths tetramers Be4, Mg4, and Ca4 at the all-electron CCSD(T)/aug-cc-pVQZ level is performed. For study of dependence of the binding energy and the orbital population on the cluster size the corresponding dimers and trimers were also calculated at the same level of theory. In comparison with weakly bound dimers, the binding energy in trimers and, especially, in tetramers drastically increases; e.g., Eb/N in Be3 is 7 times larger and in Be4 is 18.4 times larger than in Be2. This sharp increase is explained as a manifestation of many-body forces. The trimers and tetramers are stabilized by the three-body forces, whereas the two- and four-body forces are repulsive. The attractive contribution to the three-body forces has a three-atom electron exchange origin. The natural bond orbital (NBO) population analysis reveals a relatively large np-population in trimers and tetramers. The population of the valence np-orbitals leads to the sp-hybridization providing the covalent bonding. Research highlights: → The alkaline-earths trimers and tetramers are stabilized by the three-body forces. → Two- and four-body forces are repulsive for trimers and tetramers. → The attractive contribution to the three-body forces has a three-atom electron exchange origin. → The population of the np-orbitals leads to the sp-hybridization providing the covalent bonding. - Abstract: The comparative study of the interaction energy and its many-body decomposition for Be4, Mg4, and Ca4 at the all-electron CCSD(T)/aug-cc-pVQZ level is performed. For study of dependence of the binding energy and the orbital population on the cluster size the corresponding dimers and trimers were also calculated at the same level of theory. In comparison with weakly

  2. Many-body forces and stability of the alkaline-earth tetramers

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Torrejon, C.C. [Centro Nacional de Supercomputo, IPICyT, A.C., Camino a la Presa San Jose 2055, 78216 San Luis Potosi, SLP (Mexico); Centro de Investigacion en Materiales Avanzados, S.C., Av. Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Kaplan, Ilya G., E-mail: kaplan@iim.unam.mx [Instituto de Investigaciones en Materiales, UNAM, Apdo. Postal 70-360, 04510 Mexico D.F. (Mexico)

    2011-03-18

    Graphical abstract: Many-body forces effect. In a three-particle system, the two-body interaction energies depend upon coordinates of all three particles. The comparative study of the interaction energy and its many-body decomposition for alkaline-earths tetramers Be{sub 4}, Mg{sub 4}, and Ca{sub 4} at the all-electron CCSD(T)/aug-cc-pVQZ level is performed. For study of dependence of the binding energy and the orbital population on the cluster size the corresponding dimers and trimers were also calculated at the same level of theory. In comparison with weakly bound dimers, the binding energy in trimers and, especially, in tetramers drastically increases; e.g., E{sub b}/N in Be{sub 3} is 7 times larger and in Be{sub 4} is 18.4 times larger than in Be{sub 2}. This sharp increase is explained as a manifestation of many-body forces. The trimers and tetramers are stabilized by the three-body forces, whereas the two- and four-body forces are repulsive. The attractive contribution to the three-body forces has a three-atom electron exchange origin. The natural bond orbital (NBO) population analysis reveals a relatively large np-population in trimers and tetramers. The population of the valence np-orbitals leads to the sp-hybridization providing the covalent bonding. Research highlights: {yields} The alkaline-earths trimers and tetramers are stabilized by the three-body forces. {yields} Two- and four-body forces are repulsive for trimers and tetramers. {yields} The attractive contribution to the three-body forces has a three-atom electron exchange origin. {yields} The population of the np-orbitals leads to the sp-hybridization providing the covalent bonding. - Abstract: The comparative study of the interaction energy and its many-body decomposition for Be{sub 4}, Mg{sub 4}, and Ca{sub 4} at the all-electron CCSD(T)/aug-cc-pVQZ level is performed. For study of dependence of the binding energy and the orbital population on the cluster size the corresponding dimers and

  3. Elaboration and test of the method of separation of alkaline metals ions with tin phosphate

    International Nuclear Information System (INIS)

    Present work is devoted to elaboration and test of the method of separation of alkaline metals ions with tin phosphate. Thus, the isotherms of sorption of lithium, sodium, potassium, rubidium and cesium ions with amorphous tin phosphate depending on their concentration, ph of solution, sorbent quantity are obtained. The parameters of extraction of potassium microquantities from sodium salts are defined. Ultra pure sodium chloride, sodium iodide, sodium sulphate, sodium nitrate, sodium nitrite, sodium phosphate are synthesized.

  4. Treatment of Alkaline Cr(VI)-Contaminated Leachate with an Alkaliphilic Metal-Reducing Bacterium.

    Science.gov (United States)

    Watts, Mathew P; Khijniak, Tatiana V; Boothman, Christopher; Lloyd, Jonathan R

    2015-08-15

    Chromium in its toxic Cr(VI) valence state is a common contaminant particularly associated with alkaline environments. A well-publicized case of this occurred in Glasgow, United Kingdom, where poorly controlled disposal of a cementitious industrial by-product, chromite ore processing residue (COPR), has resulted in extensive contamination by Cr(VI)-contaminated alkaline leachates. In the search for viable bioremediation treatments for Cr(VI), a variety of bacteria that are capable of reduction of the toxic and highly soluble Cr(VI) to the relatively nontoxic and less mobile Cr(III) oxidation state, predominantly under circumneutral pH conditions, have been isolated. Recently, however, alkaliphilic bacteria that have the potential to reduce Cr(VI) under alkaline conditions have been identified. This study focuses on the application of a metal-reducing bacterium to the remediation of alkaline Cr(VI)-contaminated leachates from COPR. This bacterium, belonging to the Halomonas genus, was found to exhibit growth concomitant to Cr(VI) reduction under alkaline conditions (pH 10). Bacterial cells were able to rapidly remove high concentrations of aqueous Cr(VI) (2.5 mM) under anaerobic conditions, up to a starting pH of 11. Cr(VI) reduction rates were controlled by pH, with slower removal observed at pH 11, compared to pH 10, while no removal was observed at pH 12. The reduction of aqueous Cr(VI) resulted in the precipitation of Cr(III) biominerals, which were characterized using transmission electron microscopy and energy-dispersive X-ray analysis (TEM-EDX) and X-ray photoelectron spectroscopy (XPS). The effectiveness of this haloalkaliphilic bacterium for Cr(VI) reduction at high pH suggests potential for its use as an in situ treatment of COPR and other alkaline Cr(VI)-contaminated environments. PMID:26048926

  5. Refining of light rare, rare earth and radioactive metals

    International Nuclear Information System (INIS)

    Overview of technologies for the production of high-purity light rare, rare earth, radioactive metals and their compounds: electrolytic refining, vacuum distillation, electron-beam and zone melting, directed crystallization, electrotransfer, extraction, ion exchange

  6. Synthesis and crystal structures of novel LaOAgS-type alkaline earth – Zinc, manganese, and cadmium fluoride pnictides

    Energy Technology Data Exchange (ETDEWEB)

    Charkin, Dmitri O., E-mail: charkin@inorg.chem.msu.ru; Urmanov, Arthur V.; Plokhikh, Igor V.; Korshunov, Alexander D.; Kuznetsov, Alexey N.; Kazakov, Sergey M.

    2014-02-05

    Highlights: • Sight new alkaline earth – Mn, Zn, Cd fluoride pnictides were prepared. • All new compounds adopt the LaOAgS structure type. • Bond distances in their structures are transferable within 2–3%. • Very close similarities are observed in structural chemistry of LaOAgS- and HfCuSi{sub 2}-type compounds of Mn, Cu, Zn, Ag, and Cd. -- Abstract: Systematic studies of the LaOAgS-type compounds among alkaline earth – Zn/Cd/Mn fluoride pnictides revealed the existence of new representatives SrFMnP, SrFMnAs, SrFMnSb, SrFZnAs, SrFZnSb, BaFZnAs, BaFCdP, and BaFCdAs. Similar to rare-earth oxide compounds and contrary to isolobal chalcogenides of Cu/Ag, not all possible compositions could be realized. No compound of the structure type is formed for calcium; strontium forms fluoride pnictides only with zinc and manganese, while for barium, new representatives are also formed with cadmium. This trend, which possibly has a geometrical origin, is corroborated by quantum chemical calculations. Formation of NdOZnP-type compounds also was not observed suggesting the structure to be characteristic only for rare earth – zinc oxide phosphides.

  7. Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhiguo; Gao Fei; Kerisit, Sebastien [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Xie Yulong [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Campbell, Luke W. [National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2012-07-01

    A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF{sub 2} and BaF{sub 2}. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF{sub 2}, BaF{sub 2}, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident {gamma}-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs{sup +} relative to Na{sup +}, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.

  8. Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhiguo; Xie, YuLong; Campbell, Luke W.; Gao, Fei; Kerisit, Sebastien N.

    2012-07-01

    A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF2 and BaF2. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 {per_thousand}nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF2, BaF2, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident {gamma}-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs+ relative to Na+, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.

  9. Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators

    International Nuclear Information System (INIS)

    A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF2 and BaF2. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF2, BaF2, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident γ-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs+ relative to Na+, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.

  10. Influence of Rare Earth on Carbide in Weld Metal

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yuan-Bin; REN Deng-Yi

    2003-01-01

    The influence of rare earths (RE) on carbides in high carbon steel weld metal was studied by transmission electron microscope (TEM) and energy dispersive X-ray microanalysis (EDX). It is found that rare earth markedly affects the quantity, morphology and distribution of carbides. The precipitating mechanism of carbides was proposed in which rare earth compounds with high surface energy serve as the nucleation sites for carbides in superheated liquid metal and the induced carbides are precipitated extensively and distributed evenly. The preferential precipitation of carbides decreases the carbon content in matrix, which is transformed into low carbon lath martensite after welds are chilled to room temperature.

  11. High Temperature Alkaline Electrolysis Cells with Metal Foam Based Gas Diffusion Electrodes

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Allebrod, Frank; Mogensen, Mogens Bjerg

    2016-01-01

    Alkaline electrolysis cells operating at 250°C and 40 bar are able to convert electrical energy into hydrogen at very high efficiencies and power densities. In the present work we demonstrate the application of a PTFE hydrophobic network and Ag nanowires as oxygen evolution electrocatalyst in the...... metal foam based gas diffusion electrodes. A novel cell production method, based on tape casting and hot pressing, was developed which allows to increase the cell size from lab scale (1 cm2) to areas of 25 cm2 or larger. The thickness of the electrolyte matrix could be adjusted to only 200 μm, achieving...... novel cell concept promises more than a 10-fold improvement in power density, compared to conventional alkaline electrolysis cells, and thereby equivalent reduction in stack size and cost....

  12. Effect of mixed-ligand complex formation on the volatility of alkaline-earth element β-diketonates

    International Nuclear Information System (INIS)

    Some aspects of effect of heteroligand complexing on structure, thermal stability and volatility of β-diketonates of alkaline earth elements are considered using own and literature data. Radius of M2+ ion increases from 0.99 up to 1.34 A in the Ca-Sr-Ba row and strength and coordination numbers of forming associates increase. The strength of molecular associates decreases and volatility increases when degree of branching and degree of fluorination of alkyl radicals in β-diketonate ligands increase

  13. Optical Feshbach resonances of Alkaline-Earth atoms in a 1D or 2D optical lattice

    OpenAIRE

    Naidon, Pascal; Julienne, Paul S.

    2006-01-01

    Motivated by a recent experiment by Zelevinsky et al. [Phys. Rev. Lett. 96, 203201], we present the theory for photoassociation and optical Feshbach resonances of atoms confined in a tight one-dimensional (1D) or two-dimensional (2D) optical lattice. In the case of an alkaline-earth intercombination resonance, the narrow natural width of the line makes it possible to observe clear manifestations of the dimensionality, as well as some sensitivity to the scattering length of the atoms. Among po...

  14. Gibbs free energies of coordination number change for a number of cations of rare-earth metals and yttrium

    International Nuclear Information System (INIS)

    Changes of Gibbs energies (ΔG) were calculated at variation of coordination number of rare earth and yttrium cations during formation of high-temperature superconductors from ordinary oxides. It is established that ΔG data are positive at changing coordination of ions in the range from samarium to lutetium and yttrium, the enthalpy contribution in ΔG prevails as compared with the entropy contribution, heavy alkaline earth metal ions are thermodynamic stabilizers for high-temperature superconductors. Suggested approach admits of evaluation of outlook for selective methods for synthesis of complicated coordination compounds at deficit of thermodynamic information

  15. Progress in alkaline peroxide dissolution of low-enriched uranium metal and silicide targets

    International Nuclear Information System (INIS)

    This paper reports recent progress on two alkaline peroxide dissolution processes: the dissolution of low-enriched uranium metal and silicide (U3Si2) targets. These processes are being developed to substitute low-enriched for high-enriched uranium in targets used for production of fission-product 9'9Mo. Issues that are addressed include (1) dissolution kinetics of silicide targets, (2) 99Mo lost during aluminum dissolution, (3) modeling of hydrogen peroxide consumption, (4) optimization of the uranium foil dissolution process, and (5) selection of uranium foil barrier materials. Future work associated with these two processes is also briefly discussed. (author)

  16. Superconductivity at 31 K in Alkaline Metal-Doped Cobalt Oxides

    Institute of Scientific and Technical Information of China (English)

    闻海虎; 杨海朋; 鲁希锋; 闫静

    2003-01-01

    By using a simple solid reaction method, we have fabricated alkaline metal doped cobalt oxides Anx CoO2+δ(An = Na, K). The magnetic measurement shows a superconducting-like diamagnetic signal at 31 K based on a strong superparamagnetic signal. Below 31 K, the magnetization hysteresis loops contain a strong rough linear superparamagnetic background and a superconducting hysteresis. The typical magnetization hysteresis loops for a type-Ⅱ superconductor are found. Preliminary resistive data also show a fast dropping of resistance below Tc.These give indication of superconductivity below 31 K in Anx CoO2+δ (An = Na, K).

  17. Novel alkaline earth copper germanates with ferro and antiferromagnetic S=1/2 chains

    International Nuclear Information System (INIS)

    Two new alkaline earth copper(II) germanates were hydrothermally synthesized: CaCuGeO4·H2O (1) and BaCu2Ge3O9·H2O (2), and their structures determined by single crystal X-ray diffraction. Compound (1) crystallizes in space group P21/c with a=5.1320(2) Å, b=16.1637(5) Å, c=5.4818(2) Å, β=102.609(2)°, V=443.76(3) Å3 and Z=4. This copper germanate contains layers of composition [CuGeO4]∞2− comprising CuO4 square planes and GeO4 tetrahedra with calcium and water molecules in the inter-layer space. Compound (2) crystallizes in the Cmcm space group with a=5.5593(3) Å, b=10.8606(9) Å, c=13.5409(8) Å, V=817.56(9) Å3 and Z=4. This structure contains GeO6 and CuO6 octahedra as well as GeO4 tetrahedra, forming a three-dimensional network of interconnecting six-membered ring channels. The magnetic susceptibility for both samples can be interpreted as S=1/2 chains, in agreement with the copper topology observed in the crystal structure. The susceptibility of (1) exhibits a Bonner–Fisher type behavior, resulting from antiferromagnetic intra-chain interactions without three-dimensional ordering down to 5 K—the lowest measured temperature. This observation, together with the absence of super-exchange paths between the copper chains, make this system particularly promising for the study of low dimensional magnetism. The magnetic properties of (2) show a very weak ferromagnetic near-neighbor interaction along the chain. In this compound a peak the χT plot seems to indicate the onset of interchain antiferromagentic correlations. However, no ordering temperature is detected in the susceptibility data. - Graphical abstract: Copper chains present in CaCuGeO4·H2O and BaCu2Ge3O9·H2O, two novel copper germanates synthesized hydrothermally, showing antiferromagnetic and ferromagnetic intra-chain interactions respectively. Highlights: ► The structure of two new chain containing copper germinates is reported. ► The calcium compound CaCuGeO4·H2O contains

  18. Method for treating rare earth-transition metal scrap

    Science.gov (United States)

    Schmidt, Frederick A.; Peterson, David T.; Wheelock, John T.; Jones, Lawrence L.

    1992-12-29

    Rare earth-transition metal (e.g., iron) scrap (e.g., Nd-Fe-B scrap) is flux (slag) remelted to reduce tramp non-metallic impurities, such as oxygen and nitrogen, and metallic impurities, such as Li, Na, Al, etc., picked up by the scrap from previous fabrication operations. The tramp impurities are reduced to concentrations acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. The scrap is electroslag or inductoslag melted using a prefused, rare earth fluoride-bearing flux of CaF.sub.2, CaCl.sub.2 or mixtures thereof or the slag resulting from practice of the thermite reduction process to make a rare earth-iron alloy.

  19. Three interesting coordination compounds based on metalloligand and alkaline-earth ions: Syntheses, structures, thermal behaviors and magnetic property

    Science.gov (United States)

    Zhou, Qiang; Qian, Jun; Zhang, Chi

    2016-09-01

    Based on metalloligand LCu ([Cu(2,4-pydca)2]2-, 2,4-pydca2- = pyridine-2,4-dicarboxylate) and alkaline-earth ions (Ca2+, Sr2+, and Ba2+), three interesting coordination compounds, [Ca(H2O)7][LCu·H2O]·H2O (1), {Sr[LCu·H2O]·4H2O}n (2), and {Ba[LCu·H2O]·8H2O}n (3), have been synthesized and well-characterized by elemental analysis, infrared spectroscopy, thermogravimetric and single-crystal X-ray diffraction analysis. X-ray crystallographic studies reveal that 1 features a discrete 0D coordination compound, while 2 and 3 exhibit the 2D network and 1D chain structures, respectively. Compound 2 is constructed from {LCu}2 dimers connected with {Sr2} units, which is fabricated by two Sr2+ ions bridged via two μ2-O bridges, while compound 3 is formed by 1D {Ba}n chain linked with metalloligands LCu and exhibits an interesting sandwich like chain structure. It is noted that the coordination numbers of alkaline-earth ions are in positive correlation with their radiuses. Moreover, the magnetic property of compound 2 has been studied.

  20. Study of conformational and acid-base properties of norbadione A and pulvinic derivatives: Consequences on their complexation properties of alkaline and alkaline earth cations

    International Nuclear Information System (INIS)

    This work deals with the study of norbadione A, a pigment extracted from mushrooms and known to complex cesium cations. The study of the acid-base properties of norbadione A has allowed to determine the relative acidity of the seven protonable functions of the molecule and to reveal a reversible isomerization of the double exocyclic bond of the pulvinic moieties. The observed change of configuration is induced by a hydrogen bond of the H-O-H type and by electrostatic interactions. Moreover, the microscopic protonation mechanism of the norbadione A has been analyzed, considering three different study media where the acid-base properties of the norbadione A are compared. In the presence of 0.15 mol.l-1 of NaCl, it has been observed a remarkable cooperativity in the protonation of the enol groups. At last, the use of different analytical methods (NMR, potentiometry and calorimetry) has allowed to study the complexing properties of the norbadione A towards cesium and other alkaline and rare earth cations. (O.M.)

  1. Tolerance of Chemoorganotrophic Bioleaching Microorganisms to Heavy Metal and Alkaline Stresses

    Science.gov (United States)

    Monballiu, Annick; Cardon, Nele; Tri Nguyen, Minh; Cornelly, Christel; Meesschaert, Boudewijn; Chiang, Yi Wai

    2015-01-01

    The bioleaching potential of the bacterium Bacillus mucilaginosus and the fungus Aspergillus niger towards industrial residues was investigated by assessing their response towards various heavy metals (including arsenic, cadmium, cobalt, chromium, nickel, lead, and zinc) and elevated pH. The plate diffusion method was performed for each metal to determine the toxicity effect. Liquid batch cultures were set up for more quantitative evaluation as well as for studying the influence of basicity. Growth curves were prepared using bacterial/fungal growth counting techniques such as plate counting, optical density measurement, and dry biomass determination. Cadmium, nickel, and arsenite had a negative influence on the growth of B. mucilaginosus, whereas A. niger was sensitive to cadmium and arsenate. However, it was shown that growth recovered when microorganisms cultured in the presence of these metals were inoculated onto metal-free medium. Based on the findings of the bacteriostatic/fungistatic effect of the metals and the adaptability of the microorganisms to fairly elevated pH values, it is concluded that both strains have potential applicability for further research concerning bioleaching of alkaline waste materials. PMID:26236176

  2. Tolerance of Chemoorganotrophic Bioleaching Microorganisms to Heavy Metal and Alkaline Stresses

    Directory of Open Access Journals (Sweden)

    Annick Monballiu

    2015-01-01

    Full Text Available The bioleaching potential of the bacterium Bacillus mucilaginosus and the fungus Aspergillus niger towards industrial residues was investigated by assessing their response towards various heavy metals (including arsenic, cadmium, cobalt, chromium, nickel, lead, and zinc and elevated pH. The plate diffusion method was performed for each metal to determine the toxicity effect. Liquid batch cultures were set up for more quantitative evaluation as well as for studying the influence of basicity. Growth curves were prepared using bacterial/fungal growth counting techniques such as plate counting, optical density measurement, and dry biomass determination. Cadmium, nickel, and arsenite had a negative influence on the growth of B. mucilaginosus, whereas A. niger was sensitive to cadmium and arsenate. However, it was shown that growth recovered when microorganisms cultured in the presence of these metals were inoculated onto metal-free medium. Based on the findings of the bacteriostatic/fungistatic effect of the metals and the adaptability of the microorganisms to fairly elevated pH values, it is concluded that both strains have potential applicability for further research concerning bioleaching of alkaline waste materials.

  3. Isolation of radioactive strontium from natural samples. Separation of strontium from alkaline and alkaline earth elements by means of mixed solvent anion exchange

    International Nuclear Information System (INIS)

    This paper presents the results of studies which led to the procedures for the chromatographic separation of radioactive strontium from alkaline, earth-alkaline and other elements in natural samples, on columns filled with strong base anion exchangers using alcoholic solutions of nitric acid as eluents. It has been shown that potassium, caesium, calcium, barium, yttrium and strontium can be adsorbed on strong base anion exchangers of the Dowex and Amberlite type, which contain the quaternary ammonium group with nitrate as counter-ion, from solutions of nitric acid in alcohol. Adsorption strength increases in the order methanol 3 in methanol, while they are adsorbed from ethanol and propanol. The adsorption strength is influenced by the polarity of alcohol, by the concentration of nitrate and by pH. The strength with which strontium adsorbs on the exchangers increases in the interval from 0 to 0.25M NH4NO3 in methanol, after which it starts to decrease. Strontium adsorbs to the exchangers from the alcoholic solution of ammonium nitrate twice as strongly as from the alcoholic solution of nitric acid, while a fraction of water in pure alcohol exceeding 10% prevents adsorption. In the mixture of alcohol and nitric acid, the adsorption strength for calcium and strontium increases with the increase of the volume fraction of alcohol with a lower dielectric constant. The rate and strength of adsorption of ions on the exchanger also increase in the series 0.25M HNO3 in methanol 3 in ethanol 3 in 1-propanol for each individual ion, as well as in the Ca3 in methanol, 0.25M HNO3 in ethanol and 0.25M HNO3 in propanol. Separation is also possible from alcohol mixtures. Strontium separation is most difficult from calcium, while the efficiency of separation increases with a decrease of the polarity of the used alcohol or alcohol mixture. The first group elements of the periodic table are not separated from each other in this way, while the elements of the second group are

  4. Electrocatalytic oxidation of ethanol on various metal ad-layer modified Au(111) electrodes in alkaline solution

    OpenAIRE

    DURSUN, Zekerya; KARABİBEROĞLU, Şükriye ULUBAY; GELMEZ, Buket

    2011-01-01

    Ethanol oxidation was studied on single-crystal Au(111) electrodes that were modified by platinum, palladium, and cadmium metal ad-layers. The metal ad-layer modification was carried out by the underpotential deposition process, in which controlled amounts of Pt, Pd, and Cd were electrodeposited onto the substrate as submonolayer or monolayer coverage. The activity of the metal ad-layer modified Au(111) electrodes toward ethanol oxidation was studied in alkaline media, and recorded v...

  5. Dispersion coefficients for the interaction of inert gas atoms with alkali and alkaline earth ions and alkali atoms with their singly ionized ions

    CERN Document Server

    Singh, Sukhjit; Sahoo, B K; Arora, Bindiya

    2016-01-01

    We report the dispersion coefficients for the interacting inert gas atoms with the alkali ions, alkaline earth ions and alkali atoms with their singly charged ions. We use our relativistic coupled-cluster method to determine dynamic dipole and quadrupole polarizabilities of the alkali atoms and singly ionized alkaline earth atoms, whereas a relativistic random phase approximation approach has been adopted to evaluate these quantities for the closed-shell configured inert gas atoms and the singly and doubly ionized alkali and alkaline earth atoms, respectively. Accuracies of these results are adjudged from the comparison of their static polarizability values with their respective experimental results. These polarizabilities are further compared with the other theoretical results. Reason for the improvement in the accuracies of our estimated dispersion coefficients than the data listed in [At. Data and Nucl. Data Tables 101, 58 (2015)] are discussed. Results for some of the atom-ion interacting systems were not...

  6. Model for trace metal exposure in filter-feeding flamingos at alkaline Rift Valley Lake, Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Y.M.; DiSante, C.J.; Lion, L.W. [Cornell Univ., Ithaca, NY (United States). School of Civil and Environmental Engineering; Thampy, R.J.; Raini, J.A. [Worldwide Fund for Nature, Nakuru (Kenya). Lake Nakuru Conservation and Development Project; Motelin, G.K. [Egerton Univ., Njoro (Kenya). Dept. of Animal Health

    1998-11-01

    Toxic trace metals have been implicated as a potential cause of recent flamingo kills at Lake Nakuru, Kenya. Chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) have accumulated in the lake sediments as a result of unregulated discharges and because this alkaline lake has no natural outlet. Lesser flamingos (Phoeniconaias minor) at Lake Nakuru feed predominantly on the cyanobacterium Spirulina platensis, and because of their filter-feeding mechanism, they are susceptible to exposure to particle-bound metals. Trace metal adsorption isotherms to lake sediments and S. platensis were obtained under simulated lake conditions, and a mathematical model was developed to predict metal exposure via filter feeding based on predicted trace metal phase distribution. Metal adsorption to suspended solids followed the trend Pb {much_gt} Zn > Cr > Cu, and isotherms were linear up to 60 {micro}g/L. Adsorption to S. platensis cells followed the trend Pb {much_gt} Zn > Cu > Cr and fit Langmuir isotherms for Cr, Cu and Zn and a linear isotherm for Pb. Predicted phase distributions indicated that Cr and Pb in Lake Nakuru are predominantly associated with suspended solids, whereas Cu and Zn are distributed more evenly between the dissolved phase and particulate phases of both S. platensis and suspended solids. Based on established flamingo feeding rates and particle size selection, predicted Cr and Pb exposure occurs predominantly through ingestion of suspended solids, whereas Cu and Zn exposure occurs through ingestion of both suspended solids and S. platensis. For the lake conditions at the time of sampling, predicted ingestion rates based on measured metal concentrations in lake suspended solids were 0.71, 6.2, 0.81, and 13 mg/kg-d for Cr, Cu, Pb, and Zn, respectively.

  7. Modifying the size and uniformity of upconversion Yb/Er:NaGdF4 nanocrystals through alkaline-earth doping.

    Science.gov (United States)

    Lei, Lei; Chen, Daqin; Huang, Ping; Xu, Ju; Zhang, Rui; Wang, Yuansheng

    2013-11-21

    NaGdF4 is regarded as an ideal upconversion (UC) host material for lanthanide (Ln(3+)) activators because of its unique crystal structure, high Ln(3+) solubility, low phonon energy and high photochemical stability, and Ln(3+)-doped NaGdF4 UC nanocrystals (NCs) have been widely investigated as bio-imaging and magnetic resonance imaging agents recently. To realize their practical applications, controlling the size and uniformity of the monodisperse Ln(3+)-doped NaGdF4 UC NCs is highly desired. Unlike the routine routes by finely adjusting the multiple experimental parameters, herein we provide a facile and straightforward strategy to modify the size and uniformity of NaGdF4 NCs via alkaline-earth doping for the first time. With the increase of alkaline-earth doping content, the size of NaGdF4 NCs increases gradually, while the size-uniformity is still retained. We attribute this "focusing" of size distribution to the diffusion controlled growth of NaGdF4 NCs induced by alkaline-earth doping. Importantly, adopting the Ca(2+)-doped Yb/Er:NaGdF4 NCs as cores, the complete Ca/Yb/Er:NaGdF4@NaYF4 core-shell particles with excellent size-uniformity can be easily achieved. However, when taking the Yb/Er:NaGdF4 NCs without Ca(2+) doping as cores, they could not be perfectly covered by NaYF4 shells, and the obtained products are non-uniform in size. As a result, the UC emission intensity of the complete core-shell NCs increases by about 30 times in comparison with that of the cores, owing to the effective surface passivation of the Ca(2+)-doped cores and therefore protection of Er(3+) in the cores from the non-radiative decay caused by surface defects, whereas the UC intensity of the incomplete core-shell NCs is enhanced by only 3 times. PMID:24096887

  8. Relativistic energy levels and oscillator strengths for the ns(n-1)d 1D-ns21S transitions of the alkaline earth atoms

    International Nuclear Information System (INIS)

    A fully relativistic Dirac-Fock method with Breit and QED corrections has been employed to study energy levels and oscillator strengths for the ns(n-1)d 1D-ns21S transitions of the alkaline earth atoms. In calculation, the authors consider significant Breit and QED corrections, the results are in good agreements with recent experimental data and other theoretical values. The results show that it is feasible to obtain the highly Rybderg states of the alkaline earth atoms, especially the autoionization states, by use of quadrupole transitions as an intermediate resonance

  9. Main group chemistry of 9-hydroxophenalenone: Syntheses and structural characterization of the alkaline earth and zinc complexes

    Indian Academy of Sciences (India)

    Arup Mukherjee; Prinson P Samuel; Carola Schulzke; Swadhin K Mandal

    2014-09-01

    Herein, we report the synthesis and characterization of 9-hydroxophenalenone based alkaline earth and zinc complexes.The reaction of 9-hydroxophenalenone (HO,O-PLY (1)) with one equivalent of KN(SiMe3)2 and MI2 in THF yields heteroleptic complexes [(O,O-PLY)M(THF)]I [M= Mg (2), Ca (3), Sr (4), Ba (5); n = 1-4], while use of two equivalents of KN(SiMe3)2 in THF (with respect to PLY) produces homoleptic complex (O,O-PLY)2Mg(THF)2 (6). Moreover, reaction between two equivalents of 1 with one equivalent of ZnMe2 in THF produces complex (O,O-PLY)2Zn(THF)2 (7). All these complexes were characterized by NMR spectroscopy and elemental analyses. The solid state structures of complexes 2, 6 and 7 were established by single crystal X-ray diffraction analysis.

  10. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite for methanol synthesis

    Science.gov (United States)

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1993-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  11. Quantum mechanical study of molecular collisions at ultra-low energy: applications to alkali and alkaline-earth systems

    International Nuclear Information System (INIS)

    In order to investigate the collisional processes which occur during the formation of molecular Bose-Einstein condensates, a time-independent quantum mechanical formalism, based on hyperspherical coordinates, has been applied to the study of atom-diatom dynamics at ultra-low energies. We present theoretical results for three alkali systems, each composed of lithium, sodium or potassium atoms, and for an alkaline-earth system composed of calcium atoms. We also study dynamics at large and positive atom-atom scattering length. Evidence for the suppression of inelastic processes in a fermionic system is given, as well as a linear relation between the atom-diatom scattering length and the atom-atom scattering length. (author)

  12. Alkaline earth lead and tin compounds Ae2Pb, Ae2Sn, Ae = Ca, Sr, Ba, as thermoelectric materials

    Directory of Open Access Journals (Sweden)

    David Parker and David J Singh

    2013-01-01

    Full Text Available We present a detailed theoretical study of three alkaline earth compounds Ca2Pb, Sr2Pb and Ba2Pb, which have undergone little previous study, calculating electronic band structures and Boltzmann transport and bulk moduli using density functional theory. We also study the corresponding tin compounds Ca2Sn, Sr2Sn and Ba2Sn. We find that these are all narrow band gap semiconductors with an electronic structure favorable for thermoelectric performance, with substantial thermopowers for the lead compounds at temperature ranges from 300 to 800 K. For the lead compounds, we further find very low calculated bulk moduli—roughly half of the values for the lead chalcogenides, suggestive of soft phonons and hence low lattice thermal conductivity. All these facts indicate that these materials merit experimental investigation as potential high performance thermoelectrics. We find good potential for thermoelectric performance in the environmentally friendly stannide materials, particularly at high temperature.

  13. Rare earth elements and titanium in plants, soils and groundwaters in the alkaline-ultramafic complex of Salitre, MG Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ceccantini, G. [Instituto de Biociencias, Sao Paulo, (Brazil). Dept. de Botanica; Figueiredo, A.M.G. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Div. de Radioquimica; Sondag, F.; Soubies, F. [ORSTOM, 93 - Bondy (France); Soubies, F. [Universite Paul Sabatier, 31 - Toulouse (France)

    1997-12-31

    The contents of rare earth elements (REE) and titanium in various plant species, in groundwaters and in soils from the alkaline-ultramafic complex of Salitre, have been determined. Due to the the particular mineralogy of the bedrock, REE and Ti exhibit high concentrations in the soils. Despite this, plants generally present REE concentrations within the ranges usually found in plants, and the transfer factor from soil to plant is at least ten times below the range reported in the literature, confirming that the concentrations of REE in the plants are widely independent of the soil content. All species present normalized patterns similar to those of the soils, characterized by an enrichment in light REE. Several plants show Ti concentrations about three times higher than the reference values. It is suggested that in the studied ecosystem, the plant metabolism affect the REE distribution in the groundwaters, leading to an enrichment of the superficial waters in heavy REE

  14. Optical Feshbach resonances of Alkaline-Earth atoms in a 1D or 2D optical lattice

    CERN Document Server

    Naidon, P; Julienne, Paul S.; Naidon, Pascal

    2006-01-01

    Motivated by a recent experiment by Zelevinsky et al. [Phys. Rev. Lett. 96, 203201], we present the theory for photoassociation and optical Feshbach resonances of atoms confined in a tight one-dimensional (1D) or two-dimensional (2D) optical lattice. In the case of an alkaline-earth intercombination resonance, the narrow natural width of the line makes it possible to observe clear manifestations of the dimensionality, as well as some sensitivity to the scattering length of the atoms. Among possible applications, a 2D lattice may be used to increase the spectroscopic resolution by about one order of magnitude. Furthermore, a 1D lattice induces a shift which provides a new way of determining the strength of a resonance by spectroscopic measurements.

  15. Decomposition kinetics of alkaline earth carbonates by integral approximation method Cinética de decomposição de carbonatos de terra alcalina pelo método de aproximação integral

    OpenAIRE

    S Maitra; Chakrabarty, N.; Pramanik, J.

    2008-01-01

    The decomposition kinetics of four synthetic alkaline earth metal carbonates (MgCO3, CaCO3, SrCO3 and BaCO3) was studied under non-isothermal conditions from thermo-gravimetric measurements as compared to. The integral approximation method of Coats and Redfern was used to determine the kinetic parameters for the decomposition processes. The decomposition reactions followed mostly first order kinetics and the activation energy of the decomposition reactions increased with the increase in the m...

  16. Characterization of alkaline-earth oxide additions to the MnO2 cathode in an aqueous secondary battery

    International Nuclear Information System (INIS)

    Highlights: → Adding MgO in MnO2 cathode enhances the battery discharge capacity. → Mechanism appears to be different with those of our previously published results. → Capacity fade with subsequent cycling is reduced only for MgO but not for BaO. → Transferred the primary battery into a secondary while using LiOH as electrolyte. - Abstract: The effect of alkaline-earth oxide additions on aqueous rechargeable battery is investigated using microscopic and spectroscopic techniques. The alkaline-earth oxide additions such as magnesium oxide (MgO) and barium oxide (BaO) were physically mixed to the manganese dioxide (MnO2) cathode of a cell comprising zinc as an anode and aqueous lithium hydroxide as the electrolyte. The results showed that such additions greatly improved the discharge capacity of the battery (from 145 to 195 for MgO and 265 mAh/g for BaO). Capacity fade with subsequent cycling is reduced only for MgO but not for BaO. With an aim to understand the role of these additives and its improvement in cell performance, we have used microscopy, spectroscopy, ion beam analysis and diffraction based techniques to study the process. Transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy analysis (EDS) results showed evidence of crystalline MnO2 particles for MgO as additive, whereas, MnO2 particles with diffused structure leading to mixture of phases is observed for BaO additives which is in agreement with X-ray diffraction (XRD) data. This work relates to improvement in the electrochemical behaviour of the Zn-MnO2 battery while the MgO additive helps to reduce the formation of manganese and zinc such as hetaerolite that hinders the lithium intercalation.

  17. Sm3+-doped alkaline earth borate glasses as UV→visible photon conversion layer for solar cells

    International Nuclear Information System (INIS)

    Intense multi-peak red fluorescence emissions of Sm3+ are exhibited in alkaline-earth borate (LKZBSB) glasses under UV radiation. The spontaneous emission probabilities Arad corresponding to the 4G5/2→6HJ (J=5/2, 7/2, 9/2 and 11/2) transitions are derived to be 24.74, 129.72, 117.03 and 32.23 s−1, respectively, and the relevant stimulated emission cross-sections σem are 0.77×10−22, 4.46×10−22, 5.05×10−22 and 1.38×10−22 cm2, confirming the effectiveness of red luminescence in Sm3+-doped LKZBSB glasses. Quantitative characterization through the evaluation of absolute spectral parameters reveals that the quantum yield of Sm3+-doped LKZBSB glasses is as high as 13.29%. Furthermore, with the introduction of Ce3+, the effective excitation wavelength range and the emission intensity of Sm3+ in LKZBSB glasses are remarkably expanded and improved by a maximum sensitization factor of 9.02 in the UVB region. These results demonstrate that the present glass system has promising potential as an efficient UV→visible photon conversion layer for the enhancement of solar cell efficiency, including appealing applications in outer space. - Highlights: • Intense multi-peak red fluorescence emissions of Sm3+ are exhibited under UV radiation. • Effectiveness of red luminescence is confirmed by stimulated emission cross-sections. • Quantum yield of Sm3+-doped LKZBSB glasses is 13.29% by quantitative characterization. • Effective excitation wavelength range and emission intensity are improved with Ce3+ doping. • Alkaline-earth borate glass has potential as solar cell UV→Vis photon conversion layer

  18. Influence of alkali and alkaline earth elements on the uptake of radionuclides by Pleurototus eryngii fruit bodies

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, J., E-mail: fguillen@unex.es [LARUEX, Dpt. Applied Physics, Faculty of Veterinary Science, University of Extremadura, Avda. Universidad, s/n, 10071 Caceres (Spain); Baeza, A.; Salas, A. [LARUEX, Dpt. Applied Physics, Faculty of Veterinary Science, University of Extremadura, Avda. Universidad, s/n, 10071 Caceres (Spain)

    2012-04-15

    In the literature, there are many data available on radionuclide contents and their transfer to different species of mushrooms. There are some variables, however, which affect the transfer but are very difficult to observe in collected wild mushrooms. An example is the effect of different concentrations of alkali and alkaline earth elements in the soil. Modification of these concentrations in the soil solution has traditionally been used as a countermeasure to deal with radioactively contaminated areas. In the present work, fruiting bodies of Pleurotus eryngii, a saprophytic mushroom, were grown under controlled laboratory conditions, varying the content of alkali (potassium and caesium) and alkaline earth (calcium and strontium) elements. The transfer of {sup 134}Cs, {sup 85}Sr, and {sup 60}Co (added to the cultures) and of natural {sup 210}Pb was analysed by increasing the content of each stable element considered. A significant, but nonlinear, enhancement of stable caesium and {sup 134}Cs was observed with increasing content of stable caesium in the substrate/mycelium. The transfer of {sup 85}Sr decreased with the addition of each stable cation, whereas the {sup 60}Co and {sup 210}Pb transfers were unaffected. - Highlights: Black-Right-Pointing-Pointer The addition of stable potassium did not affect the uptake of radiocaesium. Black-Right-Pointing-Pointer The addition of stable caesium increased the stable caesium and {sup 134}Cs content in the fruiting bodies of Pleurotus eryngii. Black-Right-Pointing-Pointer The addition of calcium reduced the content of calcium and {sup 85}Sr in the fruiting bodies. Black-Right-Pointing-Pointer These countermeasures did not work properly in the case of {sup 60}Co and {sup 210}Pb, no effect was observed.

  19. Rare Earth Metal/semiconductor Interfaces and Compounds

    Science.gov (United States)

    Nogami, Jun

    Interfaces formed at room temperature by incremental deposition of rare earth metals onto semiconductor substrates have been studied with surface sensitive soft X-ray photoelectron spectroscopy. The trends in core level lineshape and intensity with increasing metal coverage have been used to deduce an outline of the evolution and the final morphology of the interfacial region on a microscopic scale. Measurements were taken for Ytterbium (Yb) on Silicon (Si), Germanium, and Gallium Arsenide, and for Gadolinium (Gd) and Europium (Eu) on Silicon. The Yb/Si interface work was supported by comparable measurements of bulk Yb silicide samples of known composition and crystal structure. In a general sense, the behavior of all the systems studied is similar. At very low metal coverages, the metal atoms chemisorb and are weakly bonded to the substrate. The 4f core levels indicate that the metal-metal atom coordination is relatively low at this stage. The interaction with the substrate strengthens with increasing coverage, culminating in the formation of a strongly reacted phase at between 1 and 3 monolayers (ML). The strong reaction is limited to a narrow region at room temperature. At less than 10 ML coverage, the surface of the sample is almost indistinguishable from the pure metal. Details of the behavior such as the reactivity at low coverage, the compounds formed at the interface, the morphology at the surface at intermediate coverages, the final interfacial width, and the amount of substrate atom outdiffusion and surface segregation can all vary from system to system. It is in explaining the causes of some of these differences that insight about what governs the behavior of all of these rare earth metal/semiconductor systems has been obtained. The divalent metals (Yb, Eu) are significantly less reactive than trivalent Gd at sub-monolayer coverages. For the divalent metals the formation of a metal-rich phase is strongly favored in the reaction at the interface, whereas

  20. Rare earth metal oxides as BH4-tolerance cathode electrocatalysts for direct borohydride fuel cells

    Institute of Scientific and Technical Information of China (English)

    NI Xuemin; WANG Yadong; GUO Feng; YAO Pei; PAN Mu

    2012-01-01

    Rare earth metal oxides (REMO) as cathode electrocatalysts in direct borohydride fuel cell (DBFC) were investigated.The REMO electrocatalysts tested showed favorable activity to the oxygen electro-reduction reaction and strong tolerance to the attack of BH4- in alkaline electrolytes.The simple membraneless DBFCs using REMO as cathode electrocatalyst and using hydrogen storage alloy as anodic electrocatalyst exhibited an open circuit of about 1 V and peak power of above 60 mW/cm2.The DBFC using Sm2O3 as cathode electrocatalyst showed a relatively better performance.The maximal power density of 76.2 mW/cm2 was obtained at the cell voltage of 0.52 V.

  1. Suitable alkaline for graphene peeling grown on metallic catalysts using chemical vapor deposition

    Science.gov (United States)

    Karamat, S.; Sonuşen, S.; Çelik, Ü.; Uysallı, Y.; Oral, A.

    2016-04-01

    In chemical vapor deposition, the higher growth temperature roughens the surface of the metal catalyst and a delicate method is necessary for the transfer of graphene from metal catalyst to the desired substrates. In this work, we grow graphene on Pt and Cu foil via ambient pressure chemical vapor deposition (AP-CVD) method and further alkaline water electrolysis was used to peel off graphene from the metallic catalyst. We used different electrolytes i.e., sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH) and barium hydroxide Ba(OH)2 for electrolysis, hydrogen bubbles evolved at the Pt cathode (graphene/Pt/PMMA stack) and as a result graphene layer peeled off from the substrate without damage. The peeling time for KOH and LiOH was ∼6 min and for NaOH and Ba(OH)2 it was ∼15 min. KOH and LiOH peeled off graphene very efficiently as compared to NaOH and Ba(OH)2 from the Pt electrode. In case of copper, the peeling time is ∼3-5 min. Different characterizations like optical microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy were done to analyze the as grown and transferred graphene samples.

  2. Catalysis using hydrous metal oxide ion exchangers

    Science.gov (United States)

    Dosch, R.G.; Stephens, H.P.; Stohl, F.V.

    1983-07-21

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  3. Catalysis using hydrous metal oxide ion exchanges

    Science.gov (United States)

    Dosch, Robert G.; Stephens, Howard P.; Stohl, Frances V.

    1985-01-01

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  4. Recovery of rare earth metals through biosorption:An overview

    Institute of Scientific and Technical Information of China (English)

    Nilanjana Das; Devlina Das

    2013-01-01

    Rare earth metals (REMs) are a series of 17 elements that have widespread and unique applications in high technology, power generation, communications, and defense industries. These resources are also pivotal to emergent sustainable energy and car-bon alternative technologies. Recovery of REMs is interesting due to its high market prices along with various industrial applications. Conventional technologies, viz. precipitation, filtration, liquid-liquid extraction, solid-liquid extraction, ion exchange, super critical extraction, electrowinning, electrorefining, electroslag refining, etc., which have been developed for the recovery of REMs, are not economically attractive. Biosorption represents a biotechnological innovation as well as a cost effective excellent tool for the recovery of rare earth metals from aqueous solutions. A variety of biomaterials such as algae, fungi, bacteria, resin, activated carbon, etc., have been reported to serve as potential adsorbents for the recovery of REMs. The metal binding mechanisms, as well as the parameters in-fluencing the uptake of rare earth metals and isotherm modeling are presented here. This article provides an overview of past achievements and current scenario of the biosorption studies carried out using some promising biosorbents which could serve as an economical means for recovering REMs. The experimental findings reported by different workers will provide insights into this re-search frontier.

  5. Effects of alternating current imposition and alkaline earth elements on modification of primary Mg_2Si crystals in hypereutectic Mg-Si alloy

    Institute of Scientific and Technical Information of China (English)

    DU Jun; K. IWAI; LI Wen-fang; PENG Ji-hua

    2009-01-01

    The effects of alternating current imposition and/or alkaline earth elements on modification of the primary Mg_2Si crystals in the hypereutectic Mg-Si alloy were investigated. An alternating current of 60 A with frequency of 1 kHz was applied into the hypereutectic Mg-Si melt which was alloyed with alkaline earth elements or not in the fixed temperature range from 700 to 630 ℃. The results show that the primary Mg_2Si crystals could be refined by imposing alternating current or adding alkaline elements. Compared with the samples treated by adding 0.4% Ca or 0.4% Sr, higher modification efficiency could be obtained for the samples treated by imposing alternating current. No further modification efficiency could be obtained for the samples treated by imposing alternating current combined with 0.4% Ca or 0.4% Sr addition.

  6. Comparative distributions of alkalies, alkaline earths and lead among major tissues of the tuna Thunnus alalunga

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, C.; Settle, D.

    1977-01-01

    The occurrences of K, Rb, Cs, Ca, Sr, Ba and Pb have been determined in various tissues of the tuna fish Thunnus alalunga. K, Rb, and Cs are distributed uniformly throughout the organs of the fish; 95 percent of the Ca and Sr, and 70 percent of the Ba and Pb are contained in the skeleton. It is found that there are smaller amounts of Cs, Ba and Pb associated with the nutrient metals K and Ca in a marine animal compared to a terrestrial animal. This difference is a result of the purity of K and Ca in seawater and the smaller amounts of trace metals associated with them compared to the impurity of K and Ca in terrestrial rocks. Food-chain enhancement and depletion of metals can be evaluated by comparing ratios of trace metals to abundant nutrient metals in seawater and tuna. Cs in enriched relative to K in going from seawater to tuna by a factor of 13. Sr and Ba are both depleted by factors of 5 relative to Ca in going from seawater to tuna, while Pb is enriched relative to Ca by a factor of 14. Special clean laboratory procedures were used to prepare samples for accurate analysis by stable isotope dilution mass spectrometric techniques.

  7. An Alkaline-Stable, Metal Hydroxide Mimicking Metal-Organic Framework for Efficient Electrocatalytic Oxygen Evolution.

    Science.gov (United States)

    Lu, Xue-Feng; Liao, Pei-Qin; Wang, Jia-Wei; Wu, Jun-Xi; Chen, Xun-Wei; He, Chun-Ting; Zhang, Jie-Peng; Li, Gao-Ren; Chen, Xiao-Ming

    2016-07-13

    Postsynthetic ion exchange of [Co2(μ-Cl)2(btta)] (MAF-X27-Cl, H2bbta =1H,5H-benzo(1,2-d:4,5-d')bistriazole) possessing open metal sites on its pore surface yields a material [Co2(μ-OH)2(bbta)] (MAF-X27-OH) functionalized by both open metal sites and hydroxide ligands, giving drastically improved electrocatalytic activities for the oxygen evolution reaction (an overpotential of 292 mV at 10.0 mA cm(-2) in 1.0 M KOH solution). Isotope tracing experiments further confirm that the hydroxide ligands are involved in the OER process to provide a low-energy intraframework coupling pathway. PMID:27356078

  8. Electronic Structure of Rare-Earth Metals. II. Positron Annihilation

    DEFF Research Database (Denmark)

    Williams, R. W.; Mackintosh, Allan

    1968-01-01

    The angular correlation of the photons emitted when positrons annihilate with electrons has been studied in single crystals of the rare-earth metals Y, Gd, Tb, Dy, Ho, and Er, and in a single crystal of an equiatomic alloy of Ho and Er. A comparison of the results for Y with the calculations...... of Loucks shows that the independent-particle model gives a good first approximation to the angular distribution, although correlation effects probably smear out some of the structure. The angular distributions from the heavy rare-earth metals are very similar to that from Y and can be understood...... qualitatively in terms of the relativistic augmented-plane-wave calculations by Keeton and Loucks. The angular distributions in the c direction in the paramagnetic phases are characterized by a rapid drop at low angles followed by a hump, and these features are associated with rather flat regions of Fermi...

  9. Microstructural characterisation of epitaxial rare earth metal based films

    International Nuclear Information System (INIS)

    Epitaxial rare earth films and superlattices grown by molecular beam epitaxy, MBE, can be designed to investigate theoretical predictions of the magnetic and electronic properties of the metals. These investigations ideally require smooth epitaxial layers with atomically flat interfaces and therefore the microstructure of selected epitaxial rare earth systems has been characterised by a combination of techniques. These systems were grown on a (110) niobium parallel (112-bar0) sapphire substrate. Because the crystallographic quality of the subsequent layers is influenced by the quality of the substrate, the niobium-sapphire interface was studied with transmission electron microscopy, TEM, and high resolution electron microscopy, HREM, to identify uniquely the misfit dislocation network. Conventional TEM specimen preparation techniques were inappropriate for the preparation of metallic foils, and so appropriate specimen preparation techniques were developed. HREM was used to characterise the strain relief mechanisms within a partially relaxed holmium/yttrium superlattice

  10. Synthesis of a new family of ionophores based on aluminum-dipyrrin complexes (ALDIPYs) and their strong recognition of alkaline earth ions.

    Science.gov (United States)

    Saikawa, Makoto; Daicho, Manami; Nakamura, Takashi; Uchida, Junji; Yamamura, Masaki; Nabeshima, Tatsuya

    2016-03-14

    Mononuclear and dinuclear aluminum-dipyrrin complexes (ALDIPYs) were synthesized as a new family of ionophores. They exhibited colorimetric and fluorometric responses to alkaline earth ions in an aqueous mixed solvent. The strong recognition was achieved via multipoint interactions with the oxygen atoms appropriately incorporated into the ligand framework. PMID:26935409

  11. Theoretical Studies of the Spin Hamiltonian Parameters and Local Distortions for Cu2+ in Alkaline Earth Lead Zinc Phosphate Glasses

    Science.gov (United States)

    Wang, Bo-Kun; Wu, Shao-Yi; Yuan, Zi-Yi; Liu, Zi-Xuan; Jiang, Shi-Xin; Liu, Zheng; Yao, Zi-Jian; Teng, Bao-Hua; Wu, Ming-He

    2016-08-01

    The spin Hamiltonian parameters and local structures are theoretically studied for Cu2+-doped alkaline earth lead zinc phosphate (RPPZ, R=Mg, Ca, Sr, and Ba) glasses based on the high-order perturbation calculations for a tetragonally elongated octahedral 3d9 cluster. The relative elongation ratios are found to be ρ≈3.2%, 4.4%, 4.6%, and 3.3% for R=Mg, Ca, Sr, and Ba, respectively, because of the Jahn-Teller effect. The whole decreasing crystal-field strength Dq and orbital reduction factor k from Mg to Sr are ascribed to the weakening electrostatic coulombic interactions and the increasing probability of productivity of nonbridge oxygen (and hence increasing Cu2+-O2- electron cloud admixtures) under PbO addition, respectively, with increasing alkali earth ionic radius. The anomalies (the largest Dq and the next highest k among the systems) for R=Ba are attributed to the cross linkage of this large cation in the network. The overall increasing order (Mg≤Ba

  12. Theoretical Studies of the Spin Hamiltonian Parameters and Local Distortions for Cu2+ in Alkaline Earth Lead Zinc Phosphate Glasses

    Science.gov (United States)

    Wang, Bo-Kun; Wu, Shao-Yi; Yuan, Zi-Yi; Liu, Zi-Xuan; Jiang, Shi-Xin; Liu, Zheng; Yao, Zi-Jian; Teng, Bao-Hua; Wu, Ming-He

    2016-08-01

    The spin Hamiltonian parameters and local structures are theoretically studied for Cu2+-doped alkaline earth lead zinc phosphate (RPPZ, R=Mg, Ca, Sr, and Ba) glasses based on the high-order perturbation calculations for a tetragonally elongated octahedral 3d9 cluster. The relative elongation ratios are found to be ρ≈3.2%, 4.4%, 4.6%, and 3.3% for R=Mg, Ca, Sr, and Ba, respectively, because of the Jahn-Teller effect. The whole decreasing crystal-field strength Dq and orbital reduction factor k from Mg to Sr are ascribed to the weakening electrostatic coulombic interactions and the increasing probability of productivity of nonbridge oxygen (and hence increasing Cu2+-O2- electron cloud admixtures) under PbO addition, respectively, with increasing alkali earth ionic radius. The anomalies (the largest Dq and the next highest k among the systems) for R=Ba are attributed to the cross linkage of this large cation in the network. The overall increasing order (Mg≤Bacontaining copper dopants.

  13. Design of a novel optically stimulated luminescent dosimeter using alkaline earth sulfides doped with SrS:Eu,Sm materials

    Institute of Scientific and Technical Information of China (English)

    Yanping Liu; Zhaoyang Chen; Yanwei Fan; Weizhen Ba; Wu Lu; Qi Guo; Shilie Pan; Aimin Chang; Xinqiang Tang

    2008-01-01

    Optically stimulated luminescence (OSL) is the luminescence emitted from an irradiated insulator or semiconductor during exposure to light.The OSL intensity is a function of the dose of radiation absorbed by the sample and thus can be used as the basis of a radiation dosimetry method.Alkaline earth sulfides doped with rare-earth elements such as Ce,Sm and Eu are OSL dosimeters having very high sensitivity,and the OSL with a short time constant is separated from the stimulated light.In this paper,a novel OSL dosimeter designed with SrS:Eu,Sm materials is described.The dosimeter takes advantage of the characteristics of charge trapping materials SrS:Eu,Sm that exhibit OSL.The measuring range of the dosimeter is from 0.01 to 100Gy.The equipment,which is relatively simple and small in size,is promising for applications in space exploration and high dose radiation dosimetry.

  14. Metal sulfide and rare-earth phosphate nanostructures and methods of making same

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Stanislaus; Zhang, Fen

    2016-06-28

    The present invention provides a method of producing a crystalline rare earth phosphate nanostructure. The method comprising: providing a rare earth metal precursor solution and providing a phosphate precursor solution; placing a porous membrane between the metal precursor solution and the phosphate precursor solution, wherein metal cations of the metal precursor solution and phosphate ions of the phosphate precursor solution react, thereby producing a crystalline rare earth metal phosphate nanostructure.

  15. Investigation of the Alkaline Electrochemical Interface and Development of Composite Metal/Metal-Oxides for Hydrogen and Oxygen Electrodes

    Science.gov (United States)

    Bates, Michael

    Understanding the fundamentals of electrochemical interfaces will undoubtedly reveal a path forward towards a society based on clean and renewable energy. In particular, it has been proposed that hydrogen can play a major role as an energy carrier of the future. To fully utilize the clean energy potential of a hydrogen economy, it is vital to produce hydrogen via water electrolysis, thus avoiding co-production of CO2 inherent to reformate hydrogen. While significant research efforts elsewhere are focused on photo-chemical hydrogen production from water, the inherent low efficiency of this method would require a massive land-use footprint to achieve sufficient hydrogen production rates to integrate hydrogen into energy markets. Thus, this research has primarily focused on the water splitting reactions on base-metal catalysts in the alkaline environment. Development of high-performance base-metal catalysts will help move alkaline water electrolysis to the forefront of hydrogen production methods, and when paired with solar and wind energy production, represents a clean and renewable energy economy. In addition to the water electrolysis reactions, research was conducted to understand the de-activation of reversible hydrogen electrodes in the corrosive environment of the hydrogen-bromine redox flow battery. Redox flow batteries represent a promising energy storage option to overcome the intermittency challenge of wind and solar energy production methods. Optimization of modular and scalable energy storage technology will allow higher penetration of renewable wind and solar energy into the grid. In Chapter 1, an overview of renewable energy production methods and energy storage options is presented. In addition, the fundamentals of electrochemical analysis and physical characterization of the catalysts are discussed. Chapter 2 reports the development of a Ni-Cr/C electrocatalyst with unprecedented mass-activity for the hydrogen evolution reaction (HER) in alkaline

  16. Alkaline sorbent injection for mercury control

    Science.gov (United States)

    Madden, Deborah A.; Holmes, Michael J.

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  17. Sm{sup 3+}-doped alkaline earth borate glasses as UV→visible photon conversion layer for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Shen, L.F. [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Chen, B.J.; Pun, E.Y.B. [Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Lin, H., E-mail: lhai8686@yahoo.com [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-04-15

    Intense multi-peak red fluorescence emissions of Sm{sup 3+} are exhibited in alkaline-earth borate (LKZBSB) glasses under UV radiation. The spontaneous emission probabilities A{sub rad} corresponding to the {sup 4}G{sub 5/2}→{sup 6}H{sub J} (J=5/2, 7/2, 9/2 and 11/2) transitions are derived to be 24.74, 129.72, 117.03 and 32.23 s{sup −1}, respectively, and the relevant stimulated emission cross-sections σ{sub em} are 0.77×10{sup −22}, 4.46×10{sup −22}, 5.05×10{sup −22} and 1.38×10{sup −22} cm{sup 2}, confirming the effectiveness of red luminescence in Sm{sup 3+}-doped LKZBSB glasses. Quantitative characterization through the evaluation of absolute spectral parameters reveals that the quantum yield of Sm{sup 3+}-doped LKZBSB glasses is as high as 13.29%. Furthermore, with the introduction of Ce{sup 3+}, the effective excitation wavelength range and the emission intensity of Sm{sup 3+} in LKZBSB glasses are remarkably expanded and improved by a maximum sensitization factor of 9.02 in the UVB region. These results demonstrate that the present glass system has promising potential as an efficient UV→visible photon conversion layer for the enhancement of solar cell efficiency, including appealing applications in outer space. - Highlights: • Intense multi-peak red fluorescence emissions of Sm{sup 3+} are exhibited under UV radiation. • Effectiveness of red luminescence is confirmed by stimulated emission cross-sections. • Quantum yield of Sm{sup 3+}-doped LKZBSB glasses is 13.29% by quantitative characterization. • Effective excitation wavelength range and emission intensity are improved with Ce{sup 3+} doping. • Alkaline-earth borate glass has potential as solar cell UV→Vis photon conversion layer.

  18. The effects of alkaline earth metal ions and halogen ions on the chromium oxide activities in alkaline earth metal oxide-halide-Cr2O3 system fluxes

    Science.gov (United States)

    Li, Lian-Fu; Jiang, Mao-Fa; Wang, Wen-Zhong; Chen, Zhao-Ping

    2000-06-01

    The solid electrolyte cell — Mo|Cr + Cr2O3‖ZrO2(MgO)‖{Cu-Cr}alloy + (Cr2O3)fluxes|Mo+ is used at 1673 K to determine Cr2O3 activities in MO-MX 2-Cr2O3 (M = Ca2+, Ba2-, X = F- or Cl-) ternary fluxes, which are in equilibrium with the copper-chromium binary alloy. The ternary isothermal phase diagrams of CaO-CaF2-Cr2O3 and BaO-BaCl2-Cr2O3 system fluxes are inferred on the basis of the experimental results and binary phase diagrams. The results indicate that Cr2O3 activities in all fluxes always decrease with the increase of the X MO /X MX2 ratio. Partial replacement of BaO in BaO-BaF2-Cr2O3 fluxes by CaO is acceptable for economy and efficiency considerations. At the same time, partial substitution of BaO for CaO in CaO-CaF2-Cr2O3 fluxes is advantageous for phosphorus removal and chromium retention as a result of the increased Cr2O3 activities, increased basicities, and widening of the liquid zones. Compared to those in BaO-BaF2-Cr2O3 fluxes, Cr2O3 activities in CaO-CaF2-Cr2O3 fluxes approximately follow the same curve as the former, although the position and the width of the liquid zones are considerably different, and activities in BaO-BaCl2-Cr2O3 fluxes are higher at the lower Cr2O3 content, or vice versa. The activity coefficients of Cr2O3 in the fluxes decrease with the increase of the X MO /X MX 2 ratios.

  19. Electrons and Spin Waves in Heavy Rare Earth Metals

    DEFF Research Database (Denmark)

    Mackintosh, A. R.

    1972-01-01

    Although the main principles governing the magnetic interactions and magnetic ordering in rare earth metals have been qualitatively understood for some time, it is only relatively recently that a sufficiently detailed study has been made of their electronic and magnetic excitations to place this...... understanding on a more quantitative basis. The experimental evidence on the electronic structure of the rare earths is still rather meager but, so far as it goes, is in accord with the detailed description provided by band structure calculations. On the other hand, the experimental study of the magnon...... dispersion relations by inelastic neutron scattering has provided a wealth of information about the interactions between the local moments, associated with the incompletely filled 4f subshell, and the rest of the crystal. The main emphasis in these notes will be on the interrelation between the electronic...

  20. Transfer of alkaline earth elements in mothers' milk and doses from 45Ca, 90Sr and 226Ra

    International Nuclear Information System (INIS)

    An international programme of work is currently under way to develop methods for calculating doses to infants from ingestion of radionuclides present in mothers' milk. This paper considers the special case of the alkaline earth elements. Models have been developed for 45Ca, 90Sr and 226Ra and the sensitivity of results to various changes in parameter values is discussed. A complication when calculating doses from intakes of radium is that the International Commission on Radiological Protection has previously recommended that doses from decay products of radium should be calculated using element-specific biokinetic models (so-called independent biokinetics). An extension of this method to the models for breastfeeding is proposed. Preliminary estimates of the doses received by the infant for a number of maternal intake scenarios show that doses to the infant can exceed the corresponding adult dose, such as for 45Ca (ratio = 3.1) while, in other cases such as 90Sr, the infant dose can be a significant fraction of the adult dose. (author)

  1. Behavior and Distribution of Heavy Metals Including Rare Earth Elements, Thorium, and Uranium in Sludge from Industry Water Treatment Plant and Recovery Method of Metals by Biosurfactants Application

    Directory of Open Access Journals (Sweden)

    Lidi Gao

    2012-01-01

    Full Text Available In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs, thorium (Th, and uranium (U in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil. In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni from the polluted sludge was studied with biosurfactant (saponin and sophorolipid elution by batch and column experiments to evaluate the efficiency of biosurfactant for the removal of heavy metals. Consequently, the following matters have been largely clarified. (1 Heavy metallic elements in sludge have generally larger concentrations and exist as more unstable fraction than those in natural soil. (2 Nonionic saponin including carboxyl group is more efficient than sophorolipid for the removal of heavy metals in polluted sludge. Saponin has selectivity for the mobilization of heavy metals and mainly reacts with heavy metals in F3 (the fraction bound to carbonates and F5 (the fraction bound to Fe-Mn oxides. (3 The recovery efficiency of heavy metals (Pb, Ni, and Cr reached about 90–100% using a precipitation method with alkaline solution.

  2. Behavior and Distribution of Heavy Metals Including Rare Earth Elements, Thorium, and Uranium in Sludge from Industry Water Treatment Plant and Recovery Method of Metals by Biosurfactants Application

    Science.gov (United States)

    Gao, Lidi; Kano, Naoki; Sato, Yuichi; Li, Chong; Zhang, Shuang; Imaizumi, Hiroshi

    2012-01-01

    In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs), thorium (Th), and uranium (U) in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil. In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni) from the polluted sludge was studied with biosurfactant (saponin and sophorolipid) elution by batch and column experiments to evaluate the efficiency of biosurfactant for the removal of heavy metals. Consequently, the following matters have been largely clarified. (1) Heavy metallic elements in sludge have generally larger concentrations and exist as more unstable fraction than those in natural soil. (2) Nonionic saponin including carboxyl group is more efficient than sophorolipid for the removal of heavy metals in polluted sludge. Saponin has selectivity for the mobilization of heavy metals and mainly reacts with heavy metals in F3 (the fraction bound to carbonates) and F5 (the fraction bound to Fe-Mn oxides). (3) The recovery efficiency of heavy metals (Pb, Ni, and Cr) reached about 90–100% using a precipitation method with alkaline solution. PMID:22693485

  3. Mass Spectrometric Observation of Doubly Charged Alkaline-Earth Argon Ions.

    Science.gov (United States)

    Hattendorf, Bodo; Gusmini, Bianca; Dorta, Ladina; Houk, Robert S; Günther, Detlef

    2016-09-01

    Doubly charged diatomic ions MAr(2+) where M=Mg, Ca, Sr or Ba have been observed by mass spectrometry with an inductively coupled plasma ion source. Abundance ratios are quite high, 0.1 % for MgAr(2+) , 0.4 % for CaAr(2+) , 0.2 % for SrAr(2+) and 0.1 % for BaAr(2+) relative to the corresponding doubly charged atomic ions M(2+) . It is assumed that these molecular ions are formed through reactions of the doubly charged metal ions with neutral argon atoms within the ion source. Bond dissociation energies (D0 ) were calculated and agree well with previously published values. The abundance ratios MAr(+) /M(+) and MAr(2+) /M(2+) generally follow the predicted bond dissociation energies with the exception of MgAr(2+) . Mg(2+) should form the strongest bond with Ar [D0 (MgAr(2+) )=124 to 130 kJ mol(-1) ] but its relative abundance is similar to that of the weakest bound BaAr(2+) (D0 =34 to 42 kJ mol(-1) ). The relative abundances of the various MAr(2+) ions are higher than those expected from an argon plasma at T=6000 K, indicating that collisions during ion extraction reduce the abundance of the MAr(2+) ions relative to the composition in the source. The corresponding singly charged MAr(+) ions are also observed but occur at about three orders of magnitude lower intensity than MAr(2+) . PMID:27252087

  4. Metal Reduction and Mineral Formation by an Alkaliphilic Fe(III)-Reducing Bacterium Isolated from an Alkaline Leachate Pond

    Science.gov (United States)

    Ye, Q.; Roh, Y.; Zhang, C.; Phelps, T. J.; Zhou, J.; Fields, M. M.

    2002-12-01

    Microbial metal reduction plays an important role in biogeochemical cycling of carbon and has the potential for immobilizing metals and radionuclides in diverse environments. The objective of this study was to examine metal reduction and mineral formation using an alkaliphilic bacterium, Alkaliphilus (QYMF), isolated from a leachate-pond containing high levels of salt (Na concentration = 440 - 12,100 ppm) and boron (2,000 - 3,000 ppm) at pH 9.0-10.0. The bacterium was able to use lactate, acetate and hydrogen as alternative electron donors and Fe(III)-citrate, Fe(III)-EDTA, selenate, Cr(VI), Co(III)-EDTA, and iron oxyhydroxide (FeOOH) as electron acceptors. The reduction of Fe(III)-citrate and Fe(III)-EDTA in the presence of H2PO4 and boron resulted in the precipitation of vivianite [Fe3(PO4)2ú8H{2}O]. Formation of sparingly soluble precipitatates, mediated by the alkaliphilic Fe(III)-reducing bacterium, may sequester iron, phosphate, and other metals into more stable and less toxic forms. These results suggest that bioremediation of metal-contaminated alkaline environments may be feasible, and that the process of metal-reduction may occur in alkaline habitats.

  5. Synthesis, characterization and solubility of alkaline earth uranyl carbonates M2[UO2(CO3)3].xH20; M: Mg, Ca, Sr, Ba

    International Nuclear Information System (INIS)

    The release and dispersion of uranium from closed uranium mining sites and the resulting uranium contamination of the natural environment of such sites is a major problem examined in this dissertation. Knowledge of the pollution pathways and processes is indispensable for an assessment of the radiological implications for the human population, to be taken into account in the planning of site rehabilitation work. The formation of secondary uranium minerals may contribute to an immobilization of the uranium, but it is possible as well that such secondary uranium minerals will release uranium. A major task of this dissertation therefore was to examine the conditions of formation of alkaline earth uranyl carbonates in the context of their natural occurrence as observed at some sites, and to answer the question of whether hitherto unknown alkaline earth uranyl carbonates may form in the natural environment, and ought to be taken into account as new source terms. (orig./CB)

  6. THEORETICAL-ANALYSIS OF THE O(1S) BINDING-ENERGY SHIFTS IN ALKALINE-EARTH OXIDES - CHEMICAL OR ELECTROSTATIC CONTRIBUTIONS

    NARCIS (Netherlands)

    PACCHIONI, G; BAGUS, PS

    1994-01-01

    We report results from ab initio cluster-model calculations on the O(1s) binding energy (BE) in the alkaline-earth oxides, MgO, CaO, SrO, and BaO; all these oxides have a cubic lattice structure. We have obtained values for both the initial- and final-state BE's. A simple point-charge model, where a

  7. 40 CFR 421.270 - Applicability: Description of the primary rare earth metals subcategory.

    Science.gov (United States)

    2010-07-01

    ... primary rare earth metals subcategory. 421.270 Section 421.270 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth Metals Subcategory § 421.270 Applicability: Description of the primary...

  8. Band structure and electrical properties of MBE grown HfO{sub 2} - based alkaline earth Perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Peter, Dudek; Grzegorz, Lupina; Grzegorz, Kozlowski; Jarek, Dabrowski; Gunther, Lippert; Hans-Joachim, Muessig; Thomas, Schroeder [IHP-Microelectronics, Frankfurt, Oder (Germany); Dieter, Schmeisser [BTU, Cottbus (Germany)

    2010-07-01

    Ultra thin dielectric films (<20 nm) deposited on TiN electrodes are interesting for MIM capacitor application. High capacitance density and dielectric permittivity must be accompanied by extremely low leakage currents (10{sup -8} A/cm{sup 2}) at bias 0.5 V. To achieve such low leakage currents, high band gap and proper band alignment is required. Occupied electronic states can be probed with standard laboratory photoemission methods. Probing of unoccupied states is more challenging. Synchrotron based PES in combination with XAS forms a powerful method to study the band alignment. ASAM end station located at the U 49/2 PGM 2 beamline of BESSY II (Berlin) offers excellent conditions for performing such measurements. We investigated HfO{sub 2} - based alkaline earth perovskite - BaHfO{sub 3} with subsequent admixture of TiO{sub 2}, resulting in formation of BaHf{sub 0.5}Ti{sub 0.5}O{sub 3} compound. The analysis of data indicates that band gap for HfO{sub 2} is similar to BaHfO{sub 3} and amounts 5.8 eV; for BaHf{sub 0.5}Ti{sub 0.5}O{sub 3} it decreases to 3.8 eV. We conclude that the addition of TiO{sub 2} to BaHfO{sub 3} increases significantly the dielectric permittivity but also impacts the band gap alignment. The conduction band offset shrinks, influencing the leakage current behavior.

  9. Photoelectron Experiments and Studies of X-Ray Absorption Near Edge Structure in Alkaline-Earth and Rare - Fluorides.

    Science.gov (United States)

    Gao, Yuan

    Alkaline-earth fluorides and rare-earth trifluorides possess technological importance for applications in multi -layer electronic device structures and opto-electronic devices. Interfaces between thin films of YbF _3 and Si(111) substrates were studied by photoelectron spectroscopy and x-ray absorption spectroscopy using synchrotron radiation. Results of YbF_3 /Si(111) were compared with those of TmF _3/Si(111). While electrons in the Si valence band are prevented from occupying the empty 4f levels in TmF_3 at the interface by the on -site Coulomb repulsion energy, the charge transfer from Si to YbF_3 is possible because the totally filled 4f states in Yb still lie below the Si valence band maximum. The theory of x-ray absorption near edge structure (XANES) is incomplete except for a few particularly simple special cases. A Bragg reflection model was developed to qualitatively explain the oscillations in XANES, in terms of the scattering of the photoelectron wave between families of lattice planes as set out by the Bragg condition for backscattering. The model was found to represent the data for systems with nearly free electron like conduction bands reasonably well. High resolution CaF_2 fluorine K edge XANES was used as a prototype to understand XANES in more depth on systems with strong core hole effects. Unlike previous work which involved multiple scattering cluster calculations that include only short range order effects, both the long range order and the symmetry breaking core holes are included in a new bandstructure approach in which the core hole is treated with a supercell technique. A first principles calculation with the use of pseudopotentials successfully reproduced all the main features of the first 15 eV of the fluorine K edge in CaF_2 which had not been explained with the cluster calculations. A comparison of the theoretical and experimental fluorine K edges in CaF_2 and BaF _2 was used to identify the structure related features. The possibility

  10. Genesis of rare-metal pegmatites and alkaline apatite-fluorite rocks of Burpala massi, Northern Baikal folded zone

    Science.gov (United States)

    Sotnikova, Irina; Vladykin, Nikolai

    2015-04-01

    Burpalinsky rare metal alkaline massif in the Northern Baikal folded zone in southern margin of Siberian Platform, is a of intrusion central type, created 287 Ma covering area of about 250 km2. It is composed of nepheline syenites and pulaskites grading to quartz syenites in the contacts. Veines and dykes are represented by shonkinites, sodalite syenite, leucocratic granophyres, alkali granites and numerous rare metal alkaline syenite pegmatites and two dykes of carbonatites. All rocks except for granites are cut by a large apatite-fluorite dyke rocks with mica and magnetite, which in turn is cut by alaskite granites dyke. The massif has been studied by A.M. Portnov, A.A. Ganzeev et al. (1992) Burpalinsky massif is highly enriched with trace elements, which are concentrated in pegmatite dykes. About 70 rare-metal minerals we found in massif. Zr-silicates: zircon, eudialyte, lovenite, Ti-lovenite, velerite, burpalite, seidozerite, Ca- seidozerite, Rosenbuschite, vlasovite, katapleite, Ca-katapleite, elpidite. Ti- minerals:- sphene, astrophyllite, ramsaite, Mn-neptunite bafertisite, chevkinite, Mn-ilmenite, pirofanite, Sr-perrerit, landauite, rutile, anatase, brookite; TR- minerals - loparite, metaloparite, britolite, rinkolite, melanocerite, bastnesite, parisite, ankilite, monazite, fluocerite, TR-apatite; Nb- minerals - pyrochlore, loparite. Other rare minerals leucophanite, hambergite, pyrochlore, betafite, torite, thorianite, tayniolite, brewsterite, cryolite and others. We have proposed a new scheme massif: shonkinites - nepheline syenites - alkaline syenite - quartz syenites - veined rocks: mariupolites, rare-metal pegmatites, apatite, fluorite rock alyaskite and alkaline granites and carbonatites (Sotnikova, 2009). Apatite-fluorite rocks are found in the central part of massif. This is a large vein body of 2 km length and a 20 m width cutting prevailing pulaskites. Previously, these rocks were regarded as hydrothermal low-temperature phase. New geological and

  11. Supramolecular structures constructed from three novel rare earth metal complexes

    Indian Academy of Sciences (India)

    Huaze Dong; Xiaojun Feng; Xia Liu; BiN Zheng; Jianhong Bi; Yan Xue; Shaohua Gou; Yanping Wang

    2015-05-01

    Three rare earth metal supramolecular complexes, {[Tb(2)4](ClO4)3·2H2O(1), [Eu(2)2(H2O)5] (ClO4)3(2) and [Gd(NO3)3(2)2]·2CH3CH2OH(3) ( 2 = 3-Dimethylamino-1-pyridin-2-yl-propenone), have been synthesized and characterized by elemental analysis, IR and single crystal X-ray diffraction. The crystal structure analysis reveals that the coordination numbers of three complexes (1–3) are 8, 9 and 10, respectively. Three complexes assembled into 3D frameworks based on C-H⋯O, O-H⋯O hydrogen bond linkages.

  12. The Magnetic Ordering of Heavy Rare Earth Metals

    Science.gov (United States)

    Nordström, Lars

    1998-03-01

    The electronic and magnetic structures of the rare earth metals with hcp structure (Gd--Tm) are calculated by a full-potential LAPW method, which allows for non-collinear magnetism within the local approximation to spin-density functional theory. The 4f electrons are taken as localized, but their spin moment constrained as to fulfil Russel-Saunders coupling, polarizes the itinerant valence electrons. It is found that there are two competing magnetic structures; the ferromagnetic state, which dominates for the left-most elements (Gd and Tb), and a planar helical wave, which is found to have lowest energy for the last elements Er and Tm. In Ho the competition between the two leads to a compromise --- a helical cone. This trend is in accordance with the experimental situation. The mechanism behind the stabilization of the helical wave is confirmed to be an opening of a partial gap at the so-called ``webbing'' of the Fermi surface. This feature is found to exhibit nesting, a fact which is known both from earlier non-spin-polarized calculations and de Haas-van Alphen measurements. In contrast to prevailing models and earlier more primitive calculations, this nesting is found to exist for all elements, i.e. even for gadolinium. Instead, the magnitude of the spin splitting of the valence electrons due to the magnetic 4f states, is found to be an important quantity which has been missed out in the standard models for the magnetic structure of the rare earths.

  13. Electrochemical behaviour of metal hexacyanoferrate converted to metal hydroxide films immobilized on indium tin oxide electrodes-Catalytic ability towards alcohol oxidation in alkaline medium

    International Nuclear Information System (INIS)

    Graphical abstract: - Abstract: In this work, we demonstrate a simple method to modify indium tin oxide (ITO) electrodes in order to perform electro-catalytic oxidation of alcohols in alkaline medium. Metal hexacyanoferrate (MHCF) films such as nickel hexacyanoferrate (NiHCF) and copper hexacyanoferrate (CuHCF) were successfully immobilized on ITO electrodes using an electrochemical method. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were employed to characterize the structural and morphological aspects of MHCF films. Cyclic voltammetry (CV) was used to study the redox properties and to determine the surface coverage of these films on ITO electrodes. Electrochemical potential cycling was carried out in alkaline medium in order to alter the chemical structure of these films and convert to their corresponding metal hydroxide films. SEM and XPS were performed to analyze the structure and morphology of metal hydroxide modified electrodes. Electro-catalytic oxidation ability of these films towards methanol and ethanol in alkaline medium was investigated using CV. From these studies we found that metal hydroxide modified electrodes show a better catalytic performance and good stability for methanol oxidation along with the alleviation of CO poisoning effect. We have obtained an anodic oxidation current density of ∼82 mA cm-2 for methanol oxidation, which is at least 10 fold higher than that of any metal hydroxide modified electrodes reported till date. The onset potential for methanol oxidation is lowered by ∼200 mV compared to other chemically modified electrodes reported. A plausible mechanism was proposed for the alcohol oxidation based on the redox properties of these modified electrodes. The methodology adapted in this work does not contain costlier noble metals like platinum and ruthenium and is economically viable.

  14. Oligomeric rare-earth metal cluster complexes with endohedral transition metal atoms

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Simon; Zimmermann, Sina; Brühmann, Matthias; Meyer, Eva; Rustige, Christian; Wolberg, Marike; Daub, Kathrin; Bell, Thomas; Meyer, Gerd, E-mail: gerd.meyer@uni-koeln.de

    2014-11-15

    Comproportionation reactions of rare-earth metal trihalides (RX{sub 3}) with the respective rare-earth metals (R) and transition metals (T) led to the formation of 22 oligomeric R cluster halides encapsulating T, in 19 cases for the first time. The structures of these compounds were determined by single-crystal X-ray diffraction and are composed of trimers ((T{sub 3}R{sub 11})X{sub 15}-type, P6{sub 3}/m), tetramers ((T{sub 4}R{sub 16})X{sub 28}(R{sub 4}) (P-43m), (T{sub 4}R{sub 16})X{sub 20} (P4{sub 2}/nnm), (T{sub 4}R{sub 16})X{sub 24}(RX{sub 3}){sub 4} (I4{sub 1}/a) and (T{sub 4}R{sub 16})X{sub 23} (C2/m) types of structure) and pentamers ((Ru{sub 5}La{sub 14}){sub 2}Br{sub 39}, Cc) of (TR{sub r}){sub n} (n=2–5) clusters. These oligomers are further enveloped by inner (X{sup i}) as well as outer (X{sup a}) halido ligands, which possess diverse functionalities and interconnect like oligomers through i–i, i–a and/or a–i bridges. The general features of the crystal structures for these new compounds are discussed and compared to literature entries as well as different structure types with oligomeric T centered R clusters. Dimers and tetramers originating from the aggregation of (TR{sub 6}) octahedra via common edges are more frequent than trimers and pentamers, in which the (TR{sub r}) clusters share common faces. - Graphical abstract: Rare earth-metal cluster complexes with endohedral transition metal atoms (TR{sub 6}) may connect via common edges or faces to form dimers, trimers, tetramers and pentamers of which the tetramers are the most prolific. Packing effects and electron counts play an important role. - Highlights: • Rare-earth metal cluster complexes encapsulate transition metal atoms. • Oligomers are built via connection of octahedral clusters via common edges or faces. • Dimers through pentamers with closed structures are known. • Tetramers including a tetrahedron of endohedral atoms are the most prolific.

  15. Interaction of Pu(IV,VI) hydroxides/oxides with metal hydroxides/oxides in alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Fedoseev, A.M.; Krot, N.N.; Budantseva, N.A.; Bessonov, A.A.; Nikonov, M.V.; Grigoriev, M.S.; Garnov, A.Y.; Perminov, V.P.; Astafurova, L.N. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Physical Chemistry

    1998-08-01

    The primary goal of this investigation was to obtain data on the possibility, extent, and characteristics of interaction of Pu(IV) and (VI) with hydroxides and oxides of d-elements and other metals [Al(III), LA(III), and U(VI)] in alkaline media. Such information is important in fundamental understanding of plutonium disposition and behavior in Hanford Site radioactive tank waste sludge. These results supply essential data for determining criticality safety and in understanding transuranic waste behavior in storage, retrieval, and treatment of Hanford Site tank waste.

  16. Influence of alkali and alkaline earth ions on the -alkylation of the lower rim phenolic-OH groups of -tert-butyl-calix[4]arene to result in amide-pendants: Template action of K+ and the structure of K+ bound tetra-amide derivative crystallized with a -tert-butylcalix[4]arene anion

    Indian Academy of Sciences (India)

    Amjad Ali; Chebrolu P Rao; Philippe Guionneau

    2008-03-01

    Role of alkali and alkaline earth ions on the formation of calix[4]arene-amide derivatives through -alkylation of the lower rim phenolic-OH groups in general and template action of K+ in particular have been explored. Na+ and K+ ions among alkali, and Ca2+ and Sr2+ ions among alkaline earth have shown tetra-amide derivatives bound to metal ion species. Among all these, potassium salts act as template and yields a K+ bound tetra-amide derivative where the charge is counter balanced by a calix[4] arene-monoanion and the product is crystallographically characterized. Change in the amide precursor used in these -alkylation reactions has no effect on the type of the amide derivative formed. Also demonstrated is a direct one-step reaction for the preparation of 1,3-di-amide derivative in high yield and low reaction period using CsHCO3.

  17. Electron-phonon coupling in the rare-earth metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Mertig, I.

    1990-01-01

    We have estimated the strength of the mass enhancement of the conduction electrons due to electron-phonon interaction in the rare metals Sc, Y, and La–Lu. The underlying self-consistent energy bands were obtained by means of the scalar relativistic linear-muffin-tin-orbital method, and the electron......-phonon parameters were calculated within the Gaspari-Gyorffy formulation. For the heavier rare earths Gd–Tm spin polarization was included both in the band-structure calculations and in the treatment of the electron-phonon coupling to take into account the spin splitting of the conduction electrons induced by the 4......f states. The calculated electron-phonon mass enhancement λ exhibits a pronounced variation through the series with a maximum value of 1.07 in Pr and a minimum of 0.3 in Ho. We analyze the experimental data from specific heat and de Haas–van Alphen measurements in light of the calculated electron...

  18. Kinetics of dissolution of uranium metal foil by alkaline hydrogen peroxide

    International Nuclear Information System (INIS)

    To develop a new process for the production of 99Mo using low-enriched uranium targets, uranium dissolution in alkaline hydrogen peroxide was studied. Molybdenum-99 is a parent of the widely used medical isotope 99mTc. The rates of uranium dissolution in alkaline hydrogen peroxide solution were measured in an open, batch-type reactor and were found to be a 0.25th order reaction with respect to equilibrium hydrogen peroxide concentration. In general, uranium dissolution can be classified as a low-base (0.2 M hydroxide) process. In the low-base process, both the equilibrium hydrogen peroxide and the hydroxide concentrations affect the rate of uranium dissolution. In the high-base process, uranium dissolution is independent of alkali concentration; the presence of base affects only the equilibrium concentration of hydrogen peroxide. An empirical kinetics model is proposed and discussed

  19. Bacterial Degradation of Cyanide and Its Metal Complexes under Alkaline Conditions

    OpenAIRE

    Luque-Almagro, Víctor M.; Huertas, María-J.; Martínez-Luque, Manuel; Moreno-Vivián, Conrado; Roldán, M. Dolores; García-Gil, L. Jesús; Castillo, Francisco; Blasco, Rafael

    2005-01-01

    A bacterial strain able to use cyanide as the sole nitrogen source under alkaline conditions has been isolated. The bacterium was classified as Pseudomonas pseudoalcaligenes by comparison of its 16S RNA gene sequence to those of existing strains and deposited in the Colección Española de Cultivos Tipo (Spanish Type Culture Collection) as strain CECT5344. Cyanide consumption is an assimilative process, since (i) bacterial growth was concomitant and proportional to cyanide degradation and (ii) ...

  20. EXAFS investigations of earth-alkaline metal uranyl tri-carbonate complexes

    International Nuclear Information System (INIS)

    Carbonate and bicarbonate are the common anions found in significant concentrations in many natural waters, and are exceptionally strong complexation agents for actinide ions. Seepage, flooding and mining waters from the uranium mining area in the south-east of Germany (Saxony and Thuringia) contain relatively high amounts of magnesium, calcium, carbonate and sulphate ions. In these waters the pH values range from 7.0 to 8.0 and the uranium content is about 0.02 mmol/L where magnesium, calcium and carbonate concentrations are 11.6 mmol/L, 6.9 mmol/L and 3.9 mmol/L, respectively. The existence of the natural complexes Ca2UO2(CO3)3(aq) and Mg2UO2(CO3)3(aq) were recently able to be confirmed by spectroscopic measurements. We performed extended X-ray absorption fine structure (EXAFS) measurements at the uranium LIII-edge to study the structures of these complexes. The results obtained from these complex solutions are compared with those from the corresponding EXAFS and XRD data related to the secondary minerals of uranium, liebigite, Ca2[UO2(CO3)3] . 10 H2O and bayleyite, Mg2[UO2(CO3)3]-10 H2O and they are in good agreement. (authors)

  1. Dansyl - Substituted Aza Crown Ethers: Complexation with Alkali, Alkaline Earth Metal Ions and Ammonium

    OpenAIRE

    Nelly Mateeva; Shihab Deiab; Edikan Archibong; Donka Tasheva; Bereket Mochona; Madhavi Gangapuram; Kinfe Redda

    2011-01-01

  1. Comparative investigation on the effect of alkaline earth oxides on the intensity of absorption bands due to Cu2+, Mn3+ and Cr3+ ions in ternary silicate glasses

    Indian Academy of Sciences (India)

    S P Singh; Aman; Anal Tarafder

    2004-06-01

    Absorption characteristics of Cu2+, Mn3+ and Cr3+ ions in ternary silicate (20Na2O.10RO.70SiO2, where R=Ca, Sr, Ba) glasses were investigated. The intensities of absorption bands due to Cu2+ ion was found to increase with increasing ionic radii of the alkaline earth ions whereas it was found to decrease in case of Mn3+ and Cr3+ ions with increasing ionic radii of the alkaline earth ions. The results were discussed in the light of relation between linear extinction coefficients of these ions and coulombic force of alkaline earth ions. The change in intensities of Cu2+, Mn3+ and Cr3+ ion is attributed due to change in silicate glass compositions.

  2. Evolution of soil properties and metals in acid and alkaline mine tailing ponds after amendments and microorganisms application

    Science.gov (United States)

    Acosta, Jose A.; Faz, Ángel; Zornoza, Raúl; Martínez-Martínez, Silvia; Bech, Jaume

    2015-04-01

    Intense mining activities in the past were carried out in Cartagena-La Unión mining district, SE Spain, and caused excessive accumulation of toxic metals in tailing ponds which poses a high environmental and ecological risk. One of the remediation options gaining considerable interest in recent years is the in situ immobilization of metals. A corresponding reduction in the plant-available metal fraction allows re-vegetation and ecosystem restoration of the heavily contaminated sites. In addition, the use of microorganisms to improve the soil condition is a new tool used to increase spontaneous plant colonization. The aim of this research was to assess the effect of amendments (pig manure, sewage sludge, and lime) and microorganisms on the evolution of soil properties and metals in acid and alkaline tailing ponds and to evaluate the content of metals in Zygophylum fabago one year after amendments application. The study was carried out in two mine ponds (acid and alkaline). Twenty seven square field plots, each one consisting of 4 m2, were located in each pond. Four different doses of microorganism (EM) (0 ml, 20 ml, 100 ml and 200 ml of microorganism solution in each plot) and one dose of pig manure (5 kg per plot), sewage sludge (4 kg per plot) and lime (22 kg per plot) were used. Organic amendment doses were calculated according to European nitrogen legislations, and lime dose was calculated according with the potential acid production through total sulphur oxidation. Three replicates of each treatment (organic amendment + lime + microorganism dose 0, 1, 2, or 3) and control soil (with no amendments) were carried out. Plots were left to the semi-arid climate conditions after the addition of amendments to simulate real potential applications of the results. Soil samples was collected every 4 month from each plot during one year, after this time Zygophylum fabago plants were sampled from each plots. Soil properties including: pH, salinity, total, inorganic and

  3. Optimization of low-temperature alkaline smelting process of crushed metal enrichment originated from waste printed circuit boards

    Institute of Scientific and Technical Information of China (English)

    GUO Xue-yi; LIU Jing-xin

    2015-01-01

    A novel low-temperature alkaline smelting process is proposed to convert and separate amphoteric metals in crushed metal enrichment originated from waste printed circuit boards. The central composite design was used to optimize the operating parameters, in which mass ratio of NaOH-to-CME, smelting temperature and smelting time were chosen as the variables, and the conversions of amphoteric metals tin, lead, aluminum and zinc were response parameters. Second-order polynomial models of high significance and 3D response surface plots were constructed to show the relationship between the responses and the variables. Optimum area of 80%-85% Pb conversion and over 95% Sn conversion was obtained by the overlaid contours at mass ratio of NaOH-to-CME of 4.5-5.0, smelting temperature of 653-723 K, smelting time of 90-120 min. The models were validated experimentally in the optimum area, and the results demonstrate that these models are reliable and accurate in predicting the smelting process.

  4. Thermal Low-Temperature Properties of Rare Earth Transition Metal Borocarbides

    OpenAIRE

    Lipp, Dieter

    2002-01-01

    The present work reports on thermal low-temperature properties of rare earth transition metal borocarbides such as specific heat, thermal conductivity and thermopower. The influence of structural disorder, caused by stoichiometric variations and substitutions of the rare earth element or the transition metal, on the thermal and superconducting low-temperature properties is investigated. The structural disorder results in the reduction of the superconducting transition temperature Tc, of the S...

  5. Magnetic Behavior of Some Rare-Earth Transition-Metal Perovskite Oxide Systems

    Institute of Scientific and Technical Information of China (English)

    Kenji Yoshii; Akio Nakamura; Masaichiro Mizumaki; Naoshi Ikeda; Jun'ichiro Mizuki

    2004-01-01

    Magnetic properties were investigated for the rare-earth 3d-transition metal oxides with the perovskite structure. Intriguing magnetic phenomena were reviewed for a few systems:magnetization peak effect in the titanates, magnetization reversal in the chromites and metallic ferromagnetism in the cobaltites. The results suggest an important role of the rare-earth ions for the magnetic properties of such complex oxides.

  6. Reduction Chemistry of Rare-Earth Metal Complexes: Toward New Reactivity and Properties

    OpenAIRE

    Huang, Wenliang

    2013-01-01

    Rare-earths are a group of metals with fascinating physical properties and intriguing chemical reactivity. Organometallic rare-earth chemistry is of particular interest because of the increasing number of their applications in industry and consumer goods as well as the importance of understanding their physical and chemical properties. Despite the dominance of the trivalent oxidation state, recently, low-valent organometallic rare-earth compounds were characterized and showed interesting reac...

  7. The origin of increase of damping in transition metals with rare earth impurities

    OpenAIRE

    Hohlfeld, A. Rebei J.

    2006-01-01

    The damping due to rare earth impurities in transition metals is discussed in the low concentration limit. It is shown that the increase in damping is mainly due to the coupling of the orbital moments of the rare earth impurities and the conduction $p$-electrons. It is shown that an itinerant picture for the host transition ions is needed to reproduce the observed dependence of the damping on the total angular moment of the rare earths.

  8. Tolerance of Chemoorganotrophic Bioleaching Microorganisms to Heavy Metal and Alkaline Stresses

    OpenAIRE

    Annick Monballiu; Nele Cardon; Minh Tri Nguyen; Christel Cornelly; Boudewijn Meesschaert; Yi Wai Chiang

    2015-01-01

    The bioleaching potential of the bacterium Bacillus mucilaginosus and the fungus Aspergillus niger towards industrial residues was investigated by assessing their response towards various heavy metals (including arsenic, cadmium, cobalt, chromium, nickel, lead, and zinc) and elevated pH. The plate diffusion method was performed for each metal to determine the toxicity effect. Liquid batch cultures were set up for more quantitative evaluation as well as for studying the influence of basicity. ...

  9. Calculation of binary phase diagrams between the actinide elements, rare earth elements, and transition metal elements

    International Nuclear Information System (INIS)

    Attempts were made to apply the Kaufman method of calculating binary phase diagrams to the calculation of binary phase diagrams between the rare earths, actinides, and the refractory transition metals. Difficulties were encountered in applying the method to the rare earths and actinides, and modifications were necessary to provide accurate representation of known diagrams. To calculate the interaction parameters for rare earth-rare earth diagrams, it was necessary to use the atomic volumes for each of the phases: liquid, body-centered cubic, hexagonal close-packed, and face-centered cubic. Determination of the atomic volumes of each of these phases for each element is discussed in detail. In some cases, empirical means were necessary. Results are presented on the calculation of rare earth-rare earth, rare earth-actinide, and actinide-actinide diagrams. For rare earth-refractory transition metal diagrams and actinide-refractory transition metal diagrams, empirical means were required to develop values for the enthalpy of vaporization for rare earth elements and values for the constant (C) required when intermediate phases are present. Results of using the values determined for each element are presented

  10. Rare Earth Application in Sealing Anodized Al-Based Metal Matrix Composites

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new method for corrosion protection of Al-based metal matrixcomposites (MMC) was developed using two-step process, which involves anodizing in H2SO4 solution and sealing in rare earth solution. Corrosion resistance of the treated surface was evaluated with polarization curves.The results showed that the effect of the protection using rare earth sealing is equivalent to that using chromate sealing for Al6061/SiCp. The rare earth metal salt can be an alternative to the toxic chromate for sealing anodized Al MMC.

  11. Determination of rare earth elements, uranium and thorium in geological samples by ICP-MS, using an automatic fusion machine as an alkaline digestion tool.

    Science.gov (United States)

    Granda, Luis; Rivera, Maria; Velasquez, Colon; Barona, Diego; Carpintero, Natalia

    2014-05-01

    At the present time, rare earth elements deposits have became in strategic resources for extraction of raw materials in order to manufacture high tech devices (computers, LCD, cell phones, batteries for hybrid vehicles, fiber optics and wind turbines) (1).The appropriate analytical determination of the REE ( rare earth elements) in sediment and rock samples , is important to find potential deposits and to recognize geological environments for identifying possible alterations and mineral occurrences. The alkaline fusion, which aim is to move the entire sample from solid to liquid state by forming water soluble complexes of boron and lithium, as a previous procedure for the determination of these elements, usually takes a lot of time due to the complexity of the analysis phase and by the addition of other reagents (Tm and HF ) (2) to compensate the lack of strict temperature control. The objective of this work is to develop an efficient alternative to alkaline digestion using an electrical fusion machine, which allows to create temperature programs with advanced process control and supports up to 5 samples simultaneously, which generates a reproducibility of the method and results during the melting step. Additionally, this new method permits the processing of a larger number of samples in a shorter time. The samples analyzed in this method were weighed into porcelain crucibles and subjected to calcination for 4 hours at 950 ° C in order to determine the Lost on Ignition (LOI ) , that serves to adjust the analytical results and to preserve the shelf life of the platinum ware. Subsequently, a fraction of the calcined sample was weighed into platinum crucibles and mixed with ultra-pure lithium metaborate ( flux ) 1:4 . The crucible was then placed in the fusion machine, which was programmed to take the sample from room temperature to 950 ° C in five minutes, make a small ramp to 970 ° C maintain that temperature for five minutes and download the melt in a 10 % v / v

  12. Dispersion coefficients for the interactions of the alkali and alkaline-earth ions and inert gas atoms with a graphene layer

    CERN Document Server

    Kaur, Kiranpreet; Sahoo, B K

    2015-01-01

    Largely motivated by a number of applications, the van der Waals dispersion coefficients ($C_3$s) of the alkali ions (Li$^+$, Na$^+$, K$^+$ and Rb$^+$), the alkaline-earth ions (Ca$^+$, Sr$^+$, Ba$^+$ and Ra$^+$) and the inert gas atoms (He, Ne, Ar and Kr) with a graphene layer are determined precisely within the framework of Dirac model. For these calculations, we have evaluated the dynamic polarizabilities of the above atomic systems very accurately by evaluating the transition matrix elements employing relativistic many-body methods and using the experimental values of the excitation energies. The dispersion coefficients are, finally, given as functions of the separation distance of an atomic system from the graphene layer and the ambiance temperature during the interactions. For easy extraction of these coefficients, we give a logistic fit to the functional forms of the dispersion coefficients in terms of the separation distances at the room temperature.

  13. The addition effects of alkaline earth ions in the chemical synthesis of ɛ-Fe2O3 nanocrystals that exhibit a huge coercive field

    Science.gov (United States)

    Ohkoshi, Shin-ichi; Sakurai, Shunsuke; Jin, Jian; Hashimoto, Kazuhito

    2005-05-01

    An iron oxide/silica composite material, which was prepared by combining reverse-micelle and sol-gel techniques, exhibited a huge coercive field Hc of 20kOe (1.6×105Am-1) in our previous work. The key of this synthetic procedure was the added Ba2+ ions that created a single phase of ɛ-Fe2O3. In the present work, the addition effect of Ca2+ ions to this procedure was investigated. Consequently, rod-shape ɛ-Fe2O3 nanocrystals (40-120nm ×15-20nm) were obtained and a Hc value of 20kOe was observed. Thermodynamical analysis that considered the surface energy of nanoparticle suggested that a single ɛ-Fe2O3 phase was generated by retarding the crystal growth of Fe2O3 particles under the presence of alkaline earth ions.

  14. Alkaline leaching of metal melting industry wastes dseparation of zinc and lead in the leach solution

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this work, a thorough examinations on the extractability of zinc and lead present in the steelmaking dusts using alkaline leaching process and the effectiveness of the zinc and lead separation in the resultant leaching solutions using sulfide precipitation method were made. It was found that only about 53% of zinc and over 70% of the lead could be leached out of the dusts, while the other 47% of zinc and 306 of lead were left in the leaching residues. The zinc and lead in the resultant leaching solution can be effectively and selectively separated. When the weight ratio of sodium sulfide (M. W. = 222-240) to Pb was kept at 1.8, the lead in the solution could be precipitated out quantitatively while all the zinc was remained in the solution. The zinc left in the solution can be further recovered by the addition of extra sodium sulfide with a weight ratio of sodium sulfide to the zinc over 2.6. The resultant filtrate can be recycled to the leaching of dust in the next leaching process.

  15. A modelling exercise on the importance of ternary alkaline earth carbonate species of uranium(VI) in the inorganic speciation of natural waters

    International Nuclear Information System (INIS)

    Highlights: • The U(VI) speciation in natural waters has been modelled through a modelling exercise. • The results evidence the importance of alkaline earth U(VI) carbonate complexes. • Possible solubility-controlling phases were reported and discussed. • The differences were related to the choice and reliability of thermodynamic data. • Databases need to be improved for reliable U(VI) speciation calculations. - Abstract: Predictive modelling of uranium speciation in natural waters can be achieved using equilibrium thermodynamic data and adequate speciation software. The reliability of such calculations is highly dependent on the equilibrium reactions that are considered as entry data, and the values chosen for the equilibrium constants. The working group “Speciation” of the CETAMA (Analytical methods establishment committee of the French Atomic Energy commission, CEA) has organized a modelling exercise, including four participants, in order to compare modellers’ selections of data and test thermodynamic data bases regarding the calculation of U(VI) inorganic speciation. Six different compositions of model waters were chosen so that to check the importance of ternary alkaline earth carbonate species of U(VI) on the aqueous speciation, and the possible uranium solid phases as solubility-limiting phases. The comparison of the results from the participants suggests (i) that it would be highly valuable for end-users to review thermodynamic constants of ternary carbonate species of U(VI) in a consistent way and implement them in available speciation data bases, and (ii) stresses the necessary care when using data bases to avoid biases and possible erroneous calculations

  16. Progress of Study on Application of Rare Earth Metals in Steels

    Institute of Scientific and Technical Information of China (English)

    Wang Longmei; Lin Qin; Ji Jingwen; Lan Denian

    2004-01-01

    With the improvement of the clean steel by degrees, the functions of rare earth metals in steel are more focused on modification of inclusions and micro alloying.The new study concerning the application of RE metals in clean steels were investigated by ICP, metallographic examination, SEM, EDS, EPMA, TEM and IMMA.The mechanism of corrosion resistance in the weather resistance steel was clarified.The mechanism of abrasion resistance and the life of fatigue enhanced in the RE - heavy rails steel were discussed.Progress in study of application of rare earth metals in steels (including weather resistance steel, low alloy steel, and heavy rails steel) was covered in this paper.

  17. Synthesis, structures, and properties of alkali and alkaline earth coordination polymers based on V-shaped ligand

    Czech Academy of Sciences Publication Activity Database

    Cheng, P. C.; Tseng, F. S.; Yeh, C. T.; Chang, T. G.; Kao, C. C.; Lin, C. H.; Liu, W. R.; Chen, J. S.; Zima, Vítězslav

    2012-01-01

    Roč. 14, č. 20 (2012), s. 6812-6822. ISSN 1466-8033 Institutional support: RVO:61389013 Keywords : metal organic frameworks * structure * carboxylates Subject RIV: CA - Inorganic Chemistry Impact factor: 3.879, year: 2012

  18. Crystalline and amorphous rare-earth metallic compounds

    International Nuclear Information System (INIS)

    During the last years the study of magnetic behaviour of rare-earth (or yttrium) compounds with cobalt and iron has growth of interest. This interest of justified by a large area of experimental and theoretical problems coming into being in the study of some rare-earth materials as well as in their technical applications. In the last three years a great number of new rare earth materials were studied and also new models explaining the magnetic behaviour of these systems have been used. In this paper we refer especially to some typical systems in order to analyse the magnetic behaviour of iron and cobalt and also the part played by the magnetic interactions in the values of the cobalt or iron moments. The model used will be generally the molecular field model. In the second chapter we present comparatively the structure of crystalline and amorphous compounds for further correlation with the magnetic properties. In chapter III we analyse the magnetic interactions in some crystalline and amorphous rare-earth alloys. Finally, we exemplify the ways in which we ensure better requried characteristics by the technical utilizations of these materials. These have in view the modifications of the magnetic interactions and are closely related with the analysis made in chapter III

  19. Local magnetism in rare-earth metals encapsulated in fullerenes

    NARCIS (Netherlands)

    De Nadai, C; Mirone, A; Dhesi, SS; Bencok, P; Brookes, NB; Marenne, [No Value; Rudolf, P; Tagmatarchis, N; Shinohara, H; Dennis, TJS; Marenne, I.; Nadaï, C. De

    2004-01-01

    Local magnetic properties of rare-earth (RE) atoms encapsulated in fullerenes have been characterized using x-ray magnetic circular dichroism and x-ray absorption spectroscopy (XAS). The orbital and spin contributions of the magnetic moment have been determined through sum rules and theoretical mode

  20. Development of electrolytic process in molten salt media for light rare-earth metals production. The metallic cerium electrodeposition

    International Nuclear Information System (INIS)

    The development of molten salt process and the respective equipment aiming rare-earth metals recovery was described. In the present case, the liquid cerium metal electrodeposition in a molten electrolytes of cerium chloride and an equimolar mixture of sodium and potassium chlorides in temperatures near 800C was studied. Due the high chemical reactivity of the rare-earth metals in the liquid state and their molten halides, an electrolytic cell was constructed with controlled atmosphere, graphite crucibles and anodes and a tungsten cathode. The electrolytic process variables and characteristics were evaluated upon the current efficiency and metallic product purity. Based on this evaluations, were suggested some alterations on the electrolytic reactor design and upon the process parameters. (author). 90 refs, 37 figs, 20 tabs

  1. Effect of the nature of alkali and alkaline-earth oxides on the structure and crystallization of an alumino-borosilicate glass developed to immobilize highly concentrated nuclear waste solutions

    International Nuclear Information System (INIS)

    A complex rare-earth rich alumino-borosilicate glass has been proved to be a good candidate for the immobilization of new high level radioactive wastes. A simplified seven-oxides composition of this glass was selected for this study. In this system, sodium and calcium cations were supposed in other works to simulate respectively all the other alkali (R+ = Li+, Rb+, Cs+) and alkaline-earth (R2+ = Sr2+, Ba2+) cations present in the complex glass composition. Moreover, neodymium or lanthanum are used here to simulate all the rare-earths and actinides occurring in waste solutions. In order to study the impact of the nature of R+ and R2+ cations on both glass structure and melt crystallization tendency during cooling, two glass series were prepared by replacing either Na+ or Ca2+ cations in the simplified glass by respectively (Li+, K+, Rb+, Cs+) or (Mg2+, Sr2+, Ba2+) cations. From these substitutions, it was established that alkali ions are preferentially involved in the charge compensation of (AlO4)- entities in the glass network comparatively to alkaline-earth ions. The glass compositions containing calcium give way to the crystallization of an apatite silicate phase bearing calcium and rare-earth ions. The melt crystallization tendency during cooling strongly varies with the nature of the alkaline-earth. (authors)

  2. Rare-earth metal π-complexes of reduced arenes, alkenes, and alkynes: Bonding, electronic structure, and comparison with actinides and other electropositive metals

    OpenAIRE

    Huang, W.; Diaconescu, PL

    2015-01-01

    © 2015 The Royal Society of Chemistry. Rare-earth metal complexes of reduced π ligands are reviewed with an emphasis on their electronic structure and bonding interactions. This perspective discusses reduced carbocyclic and acyclic π ligands; in certain categories, when no example of a rare-earth metal complex is available, a closely related actinide analogue is discussed. In general, rare-earth metals have a lower tendency to form covalent interactions with π ligands compared to actinides, m...

  3. Rare earth elements and titanium in plants, soils and groundwaters in the alkaline-ultramafic complex of Salitre, MG, Brazil

    OpenAIRE

    Ceccantini, G.; Figueiro, A.M.G.; Sondag, Francis; Soubiès, François

    1997-01-01

    The contents of Rare Earth Elements (REE) and titanium in various species of plants, in groundwaters and in soils from the ultramafic complex of Salitre, MG, Brazil, were determined. Due to the particular mineralogy of the bedrock, REE and Ti present high concentrations in the soils. The transfer factors of the REE from soil to plants were calculated, giving values ranging from 0.0001 to 0.0028, much lower than the values reported elsewhere in Brazil. Furthermore, as suggested by other author...

  4. Nickel based alloys as electrocatalysts for oxygen evolution from alkaline solutions. [Metal--air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lu, P.W.T.; Srinivasan, S.

    1977-01-01

    The slowness of the oxygen evolution reaction is one of the main reasons for significant energy losses in water electrolysis cells and secondary air--metal batteries. To date, data on the kinetics of this reaction on alloys and intermetallic compounds are sparse. In this work, mechanically polished alloys of nickel with Ir, Ru or W and Ni--Ti intermetallic compounds were studied as oxygen electrodes. Since the oxygen evolution reaction always takes place on oxide-film covered surfaces, the nature of oxide films formed on these alloys were investigated using cyclic voltametric techniques. Steady-state potentiostatic and slow potentiodynamic (at 0.1 mV/s) methods were employed to obtain the electrode kinetic parameters for the oxygen evolution reaction in 30 wt. percent KOH at 80/sup 0/C, the conditions normally used in water electrolysis cells. The peaks for the formation or reduction of oxygen-containing layers appearing on the pure metals are not always found on the alloys. The maximum decreases in oxygen overpotential at an apparent current density of 20 mA cm/sup -2/ (as compared with that on Ni) were found for the alloys of 50Ni--50Ir and 75Ni--25Ru and the intermetallic compound Ni/sub 3/Ti, these decreases being about 40, 30, and 20 mV, respectively. On the long-term polarization in the potential region of oxygen evolution, the oxygen-containing layers on Ni--Ir or Ni--Ru alloys are essentially composed of nickel oxides instead of true mixed oxide films of two components. The present work confirms that, possibly because of coverage by oxide films, there is no direct dependence of the electrocatalytic activities of the alloys on their electronic properties. 11 figures, 1 table.

  5. Processing of LEU targets for 99Mo production - Dissolution of metal foil targets by alkaline hydrogen peroxide

    International Nuclear Information System (INIS)

    In FY 1995, we started studies on a new process for dissolution of low-enriched uranium (LEU) targets for 99Mo production. In this process, an LEU metal foil target is dissolved in a mixture of sodium hydroxide and hydrogen peroxide, then 99Mo is recovered from the dissolved solution. We focused on the dissolution kinetics to develop a mechanistic model for predicting the products and the rate of uranium dissolution under process conditions. We thoroughly studied the effects of hydrogen peroxide concentration, sodium hydroxide concentration, and temperature on the rate of uranium dissolution. It was found that uranium dissolution can be classified into a low-base (0.2M) process. In the low-base process, both the equilibrium hydrogen peroxide and hydroxide concentrations affect the rate of uranium dissolution; in the high base process, uranium dissolution is a 0.25th order reaction with respect to the equilibrium hydrogen peroxide. The dissolution activation energy was experimentally determined to be 48.8 kJ/mol. Generally, the rate of uranium dissolution increases to a maximum as the hydroxide concentration is increased from 0.01 to about 1.5M, then it decreases as the hydroxide concentration is further increased. The alkalinity of the dissolution solution is an important factor that affects not only the dissolution rate, but also the amount of radioactive waste. (author)

  6. Influence of monovalent alkaline metal cations on binder-free nano-zeolite X in para-xylene separation

    Institute of Scientific and Technical Information of China (English)

    Milad Rasouli; Nakisa Yaghobi; Hossein Atashi; Majid Rasouli

    2015-01-01

    The adsorption process was studied for separating para-xylene from xylene mixture on modified nano-zeolite X in a breakthrough system. Nano-zeolitic adsorbent with different ratios of SiO2/Al2O3 was synthesized through hydrothermal process and ion-exchanged with alkaline metal cations like lithium, sodium and potassium. The product was characterized by X-ray diffraction, scanning electron microscopy (SEM), nitrogen adsorption, transform electron microscopy (TEM) and in situ Fourier transform infrared (FTIR) spectroscopy. The influence of nano-zeolite water content and desorbent type on the selectivity of para-xylene toward other C8 aromatic isomers was studied. The optimization of adsorption process was also investigated under variable operation conditions. The isotherm for each isomer of C8 aromatics and the desorbents possess the adsorption characteristics of Langmuir type. The selectivity factor of para-xylene relative to each of meta-xylene, ortho-xylene and ethylben-zene under the optimum conditions obtained to be 5.36, 2.43 and 3.22, in the order given.

  7. High-Field Magnetization of Light Rare-Earth Metals

    DEFF Research Database (Denmark)

    McEwen, K.A.; Cock, G.J.; Roeland, L.W.;

    1973-01-01

    The magnetization of single crystals of Eu, Sm, Nd, Pr, and Pr-Nd alloys has been measured in fields up to 37 T (370 kG). The results give new information on the magnetic properties of these metals. Of particular interest is a first-order transition from a nonmagnetic to a metamagnetic phase in d...

  8. Contribution to the theoretical study of metallic systems containing rare earths: hyperfine interactions and exchange coupling

    International Nuclear Information System (INIS)

    A theoretical study involving rare earth impurities, which were embedded in transition metals (s-p or noble), from the point of view of the hyperfine interactions is presented. A model was created to describe a d-resonance (Anderson-Moriya) acting on a s-p conduction band which was strongly perturbed by a slater-koster potential, used to describe the rare earths which were diluted in matrices of transition elements. (author)

  9. Geochemical modelling of arsenic and selenium leaching in alkaline water treatment sludge from the production of non-ferrous metals.

    Science.gov (United States)

    Cornelis, Geert; Poppe, Sofie; Van Gerven, Tom; Van den Broeck, Eric; Ceulemans, Michiel; Vandecasteele, Carlo

    2008-11-30

    Geochemical modelling of leaching of oxyanion forming elements such as arsenic (As) and selenium (Se) is frequently not successful. A consistent thermodynamic dataset of As and Se was therefore composed, not only including precipitation, but also adsorption and solid solution, and was applied to the pH-dependent leaching behaviour of As and Se in an alkaline residue with a pH 11.1 from the lime treatment of sulphuric acid wastewaters from the production of non-ferrous metals. The As and Se content ranged up to 6.7 wt% and 0.29 wt%, respectively and speciation analysis showed that 96.3% of As occured as arsenate whereas Se speciation comprised 79% selenate and 21.0% selenite. XRD and SEM/EDX analysis showed that arsenate occurred as rauenthalite (Ca(3)(AsO(4))(2).10H(2)O), associated with gypsum, the most important mineral. Arsenate and arsenite concentrations were only slightly below equilibrium with rauenthalite and calciumarsenite (CaHAsO(3)), respectively and consideration of adsorption and solid solution only marginally improved model predictions. Selenate (Se(VI)) and selenite (Se(IV)), on the other hand, were far from equilibrium with their corresponding calcium metalate. The application of solid solutions and adsorption of Se(VI) and Se(IV) oxyanions with gypsum, calcite and ettringite significantly improved model predictions but missing thermodynamic data and especially the lack of a comprehensive model for solid solution and surface exchange with calcite and ettringite still hampered efficient modelling. PMID:18387734

  10. 1H NMR studies of insulin: histidine residues, metal binding, and dissociation in alkaline solution

    International Nuclear Information System (INIS)

    The shifts of the H2 histidine B5 and B10 resonances of 2-Zn insulin hexamer were followed in 2H2O by 1H NMR spectroscopy at 270 MHz from pH 9.85 to 7. The two resonances present at high pH, previously assigned to H2 histidine B5 and B10 residues, moved slightly downfield and split into four resonances at pH 8.95 and also at pH 7. By use of a paramagnetic broadening probe (Mn2+) and the addition of Zn2+ to metal-free insulin, it was deduced that the four resonances arose from histidines B10 and B5 in two different magnetic environments, probably either bound to Zn2+ or not bound to Zn2+. The pK' values of the B5 and B10 histidines were determined in 60% 2H2O-40% dioxan, in which insulin was soluble throughout the pH range, to be 7.1 and 6.8, respectively at 37 degrees C. Studies at higher pH indicated that at a concentration level suitable for 1H NMR (approximately 1 mM) at 37 degrees C in 2H2O the 2-Zn hexamer was largely dissociated to dimer at pH 10.3 and to monomer at pH 10.8. Addition of paramagnetic shift probe Ni2+ to metal-free insulin caused changes to the spectrum similar to those produced on addition of diamagnetic Zn2+. Addition of Co2+ gave a different result, but there was no paramagnetic shift of the H2 histidine B10 resonance, probably because of rapid exchange at the binding site. Addition of Cd2+ and of Cd2+ and Ca2+ produced changes that were similar to each other but were different from those observed on addition of Zn2+, probably due to the binding of Cd2+ and Ca2+ at glutamate B13

  11. Simultaneous production of alkaline lipase and protease by antibiotic and heavy metal tolerant Pseudomonas aeruginosa.

    Science.gov (United States)

    Bisht, Deepali; Yadav, Santosh Kumar; Gautam, Pallavi; Darmwal, Nandan Singh

    2013-09-01

    An efficient bacterial strain capable of simultaneous production of lipase and protease in a single production medium was isolated. Thirty six bacterial strains, isolated from diverse habitats, were screened for their lipolytic and proteolytic activity. Of these, only one bacterial strain was found to be lipase and protease producer. The 16S rDNA sequencing and phylogenetic analyses revealed that strain (NSD-09) was in close identity to Pseudomonas aeruginosa. The maximum lipase (221.4 U/ml) and protease (187.9 U/ml) activities were obtained after 28 and 24 h of incubation, respectively at pH 9.0 and 37 °C. Castor oil and wheat bran were found to be the best substrate for lipase and protease production, respectively. The strain also exhibited high tolerance to lead (1450 µg/ml) and chromium (1000 µg/ml) in agar plates. It also showed tolerance to other heavy metals, such as Co(+2) , Zn(+2) , Hg(+2) , Ni(+2) and Cd(+2) . Therefore, this strain has scope for tailing bioremediation. Presumably, this is the first attempt on P. aeruginosa to explore its potential for both industrial and environmental applications. PMID:22961768

  12. Metal enhanced fluorescence in rare earth doped plasmonic core-shell nanoparticles

    Science.gov (United States)

    Derom, S.; Berthelot, A.; Pillonnet, A.; Benamara, O.; Jurdyc, A. M.; Girard, C.; Colas des Francs, G.

    2013-12-01

    We theoretically and numerically investigate metal enhanced fluorescence of plasmonic core-shell nanoparticles doped with rare earth (RE) ions. Particle shape and size are engineered to maximize the average enhancement factor (AEF) of the overall doped shell. We show that the highest enhancement (11 in the visible and 7 in the near-infrared) is achieved by tuning either the dipolar or the quadrupolar particle resonance to the rare earth ion’s excitation wavelength. Additionally, the calculated AEFs are compared to experimental data reported in the literature, obtained in similar conditions (plasmon mediated enhancement) or when a metal-RE energy transfer mechanism is involved.

  13. Inference on the Nature and the Mass of Earth's Late Veneer from Noble Metals and Gases

    CERN Document Server

    Dauphas, N

    2001-01-01

    Noble metals and gases are very sensitive to the late accretion to the Earth of asteroids and comets. We present mass balance arguments based on these elements that indicate that 0.7E22-2.7E22 kg of extraterrestrial bodies struck the Earth after core formation and that comets comprised less than 1E-5 by mass of the impacting population. These results imply that the dynamics of asteroids and comets changed drastically with time and that biogenic elements and prebiotic molecules were not delivered to the Earth by comets but rather by carbonaceous asteroids.

  14. Colored cool colorants based on rare earth metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Sreeram, Kalarical Janardhanan; Aby, Cheruvathoor Poulose; Nair, Balachandran Unni; Ramasami, Thirumalachari [Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai 600 020 (India)

    2008-11-15

    Colored pigments with high near infrared reflectance and not based on toxic metal ions like cadmium, lead and cobalt are being sought as cool colorants. Through appropriate doping two pigments Ce-Pr-Mo and Ce-Pr-Fe have been developed to offer a reddish brown and reddish orange color, respectively. These pigments have been characterized and found to be highly crystalline with an average size of 300 nm. A shift in band gap energy from 2.21 to 2.18 eV has been observed when Li{sub 2}CO{sub 3} was used as a mineralizer. Scanning electron microscope-energy dispersive X-ray analysis (SEM-EDAX) measurement indicate a uniform grind shape and distribution of metal ion, with over 65% reflectance in the NIR region, these pigments can well serve as cool colorants. (author)

  15. Alkali and alkaline metal oxide materials for high temperature CO2 sorption studies

    International Nuclear Information System (INIS)

    In recent years, a number of novel ceramic oxide materials have emerged that are capable of absorbing CO2 at high temperatures (>500OC) while remaining stable over a large number of cycles and a wide range of temperatures. The most promising are been considered for carbon capture applications – specifically, for use in combustion chambers and the smoke stacks of power plants where combustion gases which contain primarily a mixture of CO2 and N2 at high temperature. Compared to other CO2 sequestration technologies, these ceramics have some advantages (eg. chemisorption at high temperatures) and disadvantages (eg. limited kinetics over time). Examples of oxides already known to show significant CO2 absorption include Li5AlO4, Li6Zr2O7, Na2ZrO3 and Ba4Sb2O9. The phase formations and structural evolution of these metal oxides have been studied under environmental conditions mimicking those found in combustion chambers and power plants, over the temperature range 873–1173 K. CO2 absorption by these materials is believed to proceed through a layering effect of the sorbent material, explained through a core-shell model. Each phase is represented as a layer covering a particle, with the outermost layer exposed and allowed to react with the environment. Detailed studies into the mechanism of CO2 absorption and the material layers will shed more information that can be used to fine tune the materials to increase their CO2 absorption capacity. Previous work has focused on the identification of phases ex situ and studies of their practical absorption capacity and kinetics. The new work we will present here uses a combination of a xray spectroscopy, x-ray and neutron diffraction, to understand both how the sorption process works and how the structural evolution of the phases affects the CO2 sorption of the materials over time in-situ.

  16. Structural, electronic, elastic and high-pressure properties of some alkaline-earth chalcogenides: An ab initio study

    International Nuclear Information System (INIS)

    The full-potential linearized augmented plane wave method (FP-LAPW) within the generalized gradient approximation (GGA) is used to calculate the electronic band structures and the total energies of BaS, CaSe and CaTe in NaCl and CsCl-type structures. The latter provide us with the ground states properties such as lattice parameter, bulk modulus and its pressure derivative, elastic constants and the structural phase stability of these compounds. The transition pressures at which these compounds undergo the structural phase transition from NaCl to CsCl phase are calculated. The energy band gaps and their volume dependence in NaCl and CsCl type-structures are investigated. The pressure and the volume at which band overlap metallization occurs are also determined. The ground state properties, the transition and metallization pressures (volumes) are found to agree with the experimental and other theoretical results. The elastic constants at equilibrium in both NaCl and CsCl structures are calculated and compared with the available theoretical results for CaSe, while for BaS and CaTe the elastic constants are not available

  17. A field study on heavy metals phytoattenuation potential of monocropping and intercropping of maize and/or legumes in weakly alkaline soils.

    Science.gov (United States)

    Zhu, Saiyong; Ma, Xinwang; Guo, Rui; Ai, Shiwei; Liu, Bailin; Zhang, Wenya; Zhang, Yingmei

    2016-10-01

    The study focused on the phytoattenuation effects of monocropping and intercropping of maize (Zea mays) and/or legumes on Cu, Zn, Pb, and Cd in weakly alkaline soils. Nine growth stages of monocropping maize were chosen to study the dynamic process of extraction of heavy metals. The total content of heavy metals extracted by the aerial part of monocropped maize increased in a sigmoidal pattern over the effective accumulative temperature. The biggest biomass, highest extraction content, and lowest heavy metals bioaccumulation level occurred at physiological maturity. Among the different planting patterns, including monocropping and intercropping of maize and/or soybean (Glycine max), pea (Pisum sativum), and alfalfa (Medicago sativa), the extraction efficiency of Cu, Zn, Pb, and Cd varied greatly. Only intercropping of maize and soybean yielded relatively higher extraction efficiency for the four metals with no significant difference in the total biomass. Moreover, the heavy metals concentrations in dry biomass from all the planting patterns in the present study were within China's national legal thresholds for fodder use. Therefore, slightly polluted alkaline soils can be safely used through monocropping and intercropping of maize and/or legumes for a range of purposes. In particular, this study indicated that intercropping improves soil ecosystems polluted by heavy metals compared with monocropping. PMID:27159531

  18. New technology of extracting the amount of rare earth metals from the red mud

    Science.gov (United States)

    Martoyan, G. A.; Karamyan, G. G.; Vardan, G. A.

    2016-01-01

    The paper outlined the environmental and economic problems associated with red mud - the waste generated in processing of bauxite ore for aluminum production. The chemical analysis of red mud has identified a number of useful elements including rare earth metals. The electromembrane technology of red mud processing with extraction of valuable elements is described. A possible scheme of separation of these metals through electrolysis is also given.

  19. High-Field Magnetization of Light Rare-Earth Metals

    DEFF Research Database (Denmark)

    McEwen, K.A.; Cock, G.J.; Roeland, L.W.;

    1973-01-01

    The magnetization of single crystals of Eu, Sm, Nd, Pr, and Pr-Nd alloys has been measured in fields up to 37 T (370 kG). The results give new information on the magnetic properties of these metals. Of particular interest is a first-order transition from a nonmagnetic to a metamagnetic phase in...... double-hexagonal close-packed Pr, due to the crossing of crystal-field levels, when a field of about 32 T is applied in the hard direction at low temperatures....

  20. Multi-element trace determinations in pure alkaline earth fluoride powders by high-resolution ICP-MS using wet-chemical sample preparation and laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Tibi, Markus; Heumann, Klaus G. [Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099, Mainz (Germany)

    2003-09-01

    Four alternative analytical procedures for the determination of ten important trace impurities (Mg, Cr, Fe, Cu, Zn, Sr, Zr, Cd, Ba, and Pb) in pure alkaline earth fluoride powders were applied using high-resolution inductively coupled plasma mass spectrometry (ICP-MS). Two procedures are based on a wet-chemical microwave digestion with boric acid and quantification by the standard addition technique and isotope dilution mass spectrometry (IDMS), respectively. In addition, analyses are also performed by laser ablation as a direct solid sampling technique applying matrix-matched external calibration as well as isotope dilution of the powdered sample. For most elements good agreement between the different methods is found. Detection limits for laser ablation vary between 0.05 ng g{sup -1} for Zr and 20 ng g{sup -1} for Mg. They are about one to two orders of magnitude lower than those of the wet-chemical procedures, which is mainly due to the high dilution factor during the sample preparation step. Advantages and restrictions of the different analytical procedures are discussed with respect to their routine applicability. Due to its relatively high accuracy, low detection limits, and time-efficiency LA-ICP-IDMS is the preferred choice if no standard reference materials are available. (orig.)

  1. High hydrogen loading of thin palladium wires through alkaline earth carbonates' precipitation on the cathodic surface - evidence of a new phase in the Pd-H system

    International Nuclear Information System (INIS)

    A new protocol for the electrolytic loading of hydrogen (H) in thin palladium (Pd) wires has been developed. In order to increase the cathodic overvoltage, which is known to be the main parameter capable to enhance the electrolytic H loading of Pd, the catalytic action of the Pd surface versus H-H recombination has been strongly reduced by precipitation of a thin layer of alkaline-earth carbonates on the cathode. A set of electrolytes has been employed, containing small amounts of hydrochloric or sulfuric acid and strontium or calcium ions. The H loading has been continuously evaluated through ac measurements of the Pd wire resistance. Uncommonly low resistivity values, leading to an estimate of exceptionally high H loading, have been observed. Evidence of the existence of a new phase in the very high H content region of the Pd-H system has been inferred on the basis of the determination of the temperature coefficient of the electrical resistivity. Mainly for this purpose a thin layer of Hg was galvanically deposed on the cathodic surface, in order to prevent any H deloading during the measurements. The results have been fully reproduced in other 2 well equipped and experienced Laboratories (Italy, USA)

  2. Transfer of alkaline earth elements in mothers' milk and doses from {sup 45}Ca, {sup 90}Sr and {sup 226}Ra

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T.J.; Phipps, A.W.; Fell, T.P.; Harrison, J.D

    2003-07-01

    An international programme of work is currently under way to develop methods for calculating doses to infants from ingestion of radionuclides present in mothers' milk. This paper considers the special case of the alkaline earth elements. Models have been developed for {sup 45}Ca, {sup 90}Sr and {sup 226}Ra and the sensitivity of results to various changes in parameter values is discussed. A complication when calculating doses from intakes of radium is that the International Commission on Radiological Protection has previously recommended that doses from decay products of radium should be calculated using element-specific biokinetic models (so-called independent biokinetics). An extension of this method to the models for breastfeeding is proposed. Preliminary estimates of the doses received by the infant for a number of maternal intake scenarios show that doses to the infant can exceed the corresponding adult dose, such as for {sup 45}Ca (ratio = 3.1) while, in other cases such as {sup 90}Sr, the infant dose can be a significant fraction of the adult dose. (author)

  3. Tracking environmental impacts in global product chains - Rare Earth Metals and other critical metals used in the cleantech industry

    Energy Technology Data Exchange (ETDEWEB)

    Pathan, A.; Schilli, A.; Johansson, J.; Vehvilaeinen, I.; Larsson, A.; Hutter, J.

    2013-03-15

    Metals form a central part of the global economy, but their extraction and supply are linked to several environmental and social concerns. This study aims to create a picture of the supply chain of Rare Earth Metals (REMs) and other critical metals used in the clean technology (cleantech) sectors of electric vehicles and solar panels. The study examines how Nordic cleantech companies are aware and acting on the challenges related to the lifecycle of these metals and what are the potentials to minimise environmental and social impacts. Recommendations of the study can be summarised as three initiatives: establishment of an awareness platform and roundtable initiative (short-term), research and information gathering (mid-term), and development of closed-loop solutions (long-term). (Author)

  4. PERVAPORATION SEPARATION OF WATER-ACETIC ACID MIXTURES THROUGH AN-co-AA MEMBRANES TREATED WITH RARE EARTH METAL IONS

    Institute of Scientific and Technical Information of China (English)

    SHEN Zhiquan; ZHANG Fuyao; ZHANG Yifeng

    1995-01-01

    Pervaporation separation of water-acetic acid mixtures through Poly (AN-co-AA)membranes and rare earth metal ions treated Poly(AN-co-AA)membranes was investigated for the first time. The results showed that the treatment with rare earth metal ions could greatly improve the characteristics of the separation of water-acetic acid mixtures.

  5. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system

    International Nuclear Information System (INIS)

    Highlights: • Recycling of rare earth metals from fluorescent lamps was conducted by ionic liquid-mediated extraction. • Acid leaching from a waste phosphor powder was carried out using sulfuric and nitric acids. • An ionic liquid was used as extracting solvent for the rare earth metals. • Selective extraction of rare earth metals from leach solutions was attained. •The extracting ionic liquid phase was recyclable in the recovery process. -- Abstract: The recycling of rare earth metals from phosphor powders in waste fluorescent lamps by solvent extraction using ionic liquids was studied. Acid leaching of rare earth metals from the waste phosphor powder was examined first. Yttrium (Y) and europium (Eu) dissolved readily in the acid solution; however, the leaching of other rare earth metals required substantial energy input. Ionization of target rare earth metals from the waste phosphor powders into the leach solution was critical for their successful recovery. As a high temperature was required for the complete leaching of all rare earth metals, ionic liquids, for which vapor pressure is negligible, were used as an alternative extracting phase to the conventional organic diluent. An extractant, N, N-dioctyldiglycol amic acid (DODGAA), which was recently developed, showed a high affinity for rare earth metal ions in liquid–liquid extraction although a conventional commercial phosphonic extractant did not. An effective recovery of the rare earth metals, Y, Eu, La and Ce, from the metal impurities, Fe, Al and Zn, was achieved from the acidic leach solution of phosphor powders using an ionic liquid containing DODGAA as novel extractant system

  6. Fluid dynamics experiments on impact-induced metal dispersion during Earth's accretion

    Science.gov (United States)

    Deguen, R.; Risso, F.; Landeau, M.; Olson, P.

    2015-12-01

    Much of the Earth was built by high-energy impacts of planetesimals and embryos, many of these impactors already differentiated, with metallic cores of their own. Geochemical data provide critical information on the timing of accretion and the prevailing physical conditions, but their interpretation depends critically on the degree of metal-silicate chemical equilibration and metal dispersion during core-mantle differentiation, which is poorly constrained. Efficient equilibration requires that the large volumes of iron derived from impactor cores mix with molten silicates down to scales small enough to allow fast metal-silicate mass transfer. Here we use fluid dynamics experiments to investigate the fate of the metal phase of a planetesimal or planetary embryo colliding with the proto-Earth. The degree of metal-dispersion and metal-silicate mixing are found to depend primarily on the Froude number of the impactor, with "small" impacts (having large Froude numbers) having a comparatively higher amount of dispersion and mixing than "large" impacts (moderate Froude numbers).

  7. Magnetic and magneto-optical properties of nanostructured rare earth-transition metal multilayered films

    International Nuclear Information System (INIS)

    Experimental and theoretical research into the magnetic and magneto-optic properties of rare earth-transition metal (RE/TM) multilayers is reviewed. The occurrence of perpendicular magnetic anisotropy is understood in terms of a detailed model based on single-tone anisotropy. Magneto-optic properties of RE/TM multilayers are, in general, similar in magnitude to those of the TM. Plasma-enhancement and related effects in magnetic/metallic bilayers are observed and discussed in detail. This paper is intended to review the physics of a new class of artificially-structured magnetic thin films. In particular the authors discuss recent work on compositionally-modulated rare earth (RE) -transition metal (TM) films with characteristic individual layer thicknesses in the nanometer region

  8. Effect of rare earth metal on the spin-orbit torque in magnetic heterostructures

    Science.gov (United States)

    Ueda, Kohei; Pai, Chi-Feng; Tan, Aik Jun; Mann, Maxwell; Beach, Geoffrey S. D.

    2016-06-01

    We report the effect of the rare earth metal Gd on current-induced spin-orbit torques (SOTs) in perpendicularly magnetized Pt/Co/Gd heterostructures, characterized using harmonic measurements and spin-torque ferromagnetic resonance (ST-FMR). By varying the Gd metal layer thickness from 0 nm to 8 nm, harmonic measurements reveal a significant enhancement of the effective fields generated from the Slonczewski-like and field-like torques. ST-FMR measurements confirm an enhanced effective spin Hall angle and show a corresponding increase in the magnetic damping constant with increasing Gd thickness. These results suggest that Gd plays an active role in generating SOTs in these heterostructures. Our finding may lead to spin-orbitronics device application such as non-volatile magnetic random access memory, based on rare earth metals.

  9. Study the effect of alkali/alkaline earth addition on the environment of borochromate glasses by means of spectroscopic analysis

    International Nuclear Information System (INIS)

    Highlights: • The xSrO–(30 − x)Li2O–65.5B2O3–0.5Cr2O3 (x = 0,5,10,15 and 20 mol%) glassy system was prepared by a quenching method. • XRD patterns reveal the amorphous nature of the present glass matrix. • Spectroscopy analysis shows an increase in Cr3+ concentration which acts as modifiers. • UV-optical measurements show a decrement of optical band gap energy and an increment of refractive index. • The electronegativity plays an important role in deforming the crystal field around the transition metal ions. -- Abstract: Glassy samples of composition xSrO–(30 − x)Li2O–65.5B2O3–0.5Cr2O3 (x = 0, 5, 10, 15 and 20 mol%) were fabricated by using the melt quenching technique method. The investigated glass samples have been examined using powder X-ray diffraction (XRD) technique. FT-IR spectroscopy, density, optical absorption in UV–VIS range and the calculated optical basicity and EPR spectra were recorded. The obtained results of the XRD spectra of all the samples confirmed the amorphous nature of the prepared glasses. The spectrum of FT-IR reveals that, the BO4 units decrease with increasing SrO content and the non bridging oxygen’s increase. The obtained density and the molar volume exhibit linear increase with increasing SrO content. Optical measurements show a decrement of optical band gap energy and steepness parameter as well as an increment of the Urbach energy and refractive index. The ligand field parameters calculation shows that, the values of the crystal field strength and the degree of covalency between ions increase as well as the interelectronic d–d repulsion Racah parameters decrease. The increase of the (Dq/B) ratio with increasing SrO content which reaches to 2.58 for x = 20 mol%, suggesting that strong crystal field strength. An increase of the electronegativity by replacing Li2O by SrO, causes a decrease of the glass matrix basicity. The obtained EPR parameters indicate that the increasing of Cr3+ signal intensity and

  10. The t-matrix resistivity of liquid rare earth metals using pseudopotential

    International Nuclear Information System (INIS)

    Present theoretical study of liquid metal resistivity of some trivalent (La,Ce,Gd) and divalent (Eu,Yb) rare earth metals using pseudopotential has been carried out employing Ziman’s weak scattering and transition matrix (t-matrix) approaches. Our computed results of liquid metal resistivity using t-matrix approach are better than resistivity computed using Ziman’s approach and are also in excellent agreement with experimental results and other theoretical findings. The present study confirms that for f-shell metals pseudopotential must be determined uniquely and t-matrix approach is more physical in comparison with Ziman’s nearly free electron approach. The present pseudopotential accounts s-p-d hybridization properly. Such success encourages us to study remaining liquid state properties of these metals

  11. Metal enhanced fluorescence in rare earth doped plasmonic core–shell nanoparticles

    International Nuclear Information System (INIS)

    We theoretically and numerically investigate metal enhanced fluorescence of plasmonic core–shell nanoparticles doped with rare earth (RE) ions. Particle shape and size are engineered to maximize the average enhancement factor (AEF) of the overall doped shell. We show that the highest enhancement (11 in the visible and 7 in the near-infrared) is achieved by tuning either the dipolar or the quadrupolar particle resonance to the rare earth ion’s excitation wavelength. Additionally, the calculated AEFs are compared to experimental data reported in the literature, obtained in similar conditions (plasmon mediated enhancement) or when a metal–RE energy transfer mechanism is involved. (paper)

  12. Interaction of Rydberg atoms in circular states with the alkaline-earth Ca(4s{sup 2}) and Sr(5s{sup 2}) atoms

    Energy Technology Data Exchange (ETDEWEB)

    Mironchuk, E. S.; Narits, A. A.; Lebedev, V. S., E-mail: vlebedev@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2015-11-15

    The resonant mechanism of interaction of alkaline-earth atoms having a low electron affinity to Rydberg atoms in circular (l = vertical bar m vertical bar = n–1) and near-circular states has been studied. To describe the dynamics of resonant processes accompanied by nonadiabatic transitions between ionic and Rydberg covalent terms of a quasimolecule, an approach based on the integration of coupled equations for the probability amplitudes has been developed taking into account the possibility of the decay of an anion in the Coulomb field of the positive ionic core of a highly excited atom. The approach involves the specific features of the problem associated with the structure of the wavefunction of a Rydberg electron in states with high orbital angular momenta l ∼ n–1. This approach provides a much more accurate description of the dynamics of electronic transitions at collisions between atoms than that within the modified semiclassical Landau–Zener model. In addition, this approach makes it possible to effectively take into account many channels of the problem. The cross sections for resonant quenching of Rydberg states of the Li(nlm) atom with given principal n, orbital l = n–1, and magnetic m quantum numbers at thermal collisions with the Ca(4s{sup 2}) and Sr(5s{sup 2}) atoms have been calculated. The dependences of the results on n, m, and angle α between the relative velocity of the atoms and the normal to the plane of the orbit of the Rydberg electron have been obtained. The influence of orientational effects on the efficiency of the collisional destruction of circular and near-circular states has been studied. The results indicate a higher stability of such states to their perturbations by neutral particles as compared to usually studied nl states with low values of l (l ≪ n)

  13. Interaction of Rydberg atoms in circular states with the alkaline-earth Ca(4s2) and Sr(5s2) atoms

    International Nuclear Information System (INIS)

    The resonant mechanism of interaction of alkaline-earth atoms having a low electron affinity to Rydberg atoms in circular (l = vertical bar m vertical bar = n–1) and near-circular states has been studied. To describe the dynamics of resonant processes accompanied by nonadiabatic transitions between ionic and Rydberg covalent terms of a quasimolecule, an approach based on the integration of coupled equations for the probability amplitudes has been developed taking into account the possibility of the decay of an anion in the Coulomb field of the positive ionic core of a highly excited atom. The approach involves the specific features of the problem associated with the structure of the wavefunction of a Rydberg electron in states with high orbital angular momenta l ∼ n–1. This approach provides a much more accurate description of the dynamics of electronic transitions at collisions between atoms than that within the modified semiclassical Landau–Zener model. In addition, this approach makes it possible to effectively take into account many channels of the problem. The cross sections for resonant quenching of Rydberg states of the Li(nlm) atom with given principal n, orbital l = n–1, and magnetic m quantum numbers at thermal collisions with the Ca(4s2) and Sr(5s2) atoms have been calculated. The dependences of the results on n, m, and angle α between the relative velocity of the atoms and the normal to the plane of the orbit of the Rydberg electron have been obtained. The influence of orientational effects on the efficiency of the collisional destruction of circular and near-circular states has been studied. The results indicate a higher stability of such states to their perturbations by neutral particles as compared to usually studied nl states with low values of l (l ≪ n)

  14. Efficient separation of transition metals from rare earths by an undiluted phosphonium thiocyanate ionic liquid.

    Science.gov (United States)

    Rout, Alok; Binnemans, Koen

    2016-06-21

    The ionic liquid trihexyl(tetradecyl)phosphonium thiocyanate has been used for the extraction of the transition metal ions Co(ii), Ni(ii), Zn(ii), and the rare-earth ions La(iii), Sm(iii) and Eu(iii) from aqueous solutions containing nitrate or chloride salts. The transition metal ions showed a high affinity for the ionic liquid phase and were efficiently extracted, while the extraction efficiency of the rare-earth ions was low. This difference in extraction behavior enabled separation of the pairs Co(ii)/Sm(iii), Ni(ii)/La(iii) and Zn(ii)/Eu(iii). These separations are relevant for the recycling of rare earths and transition metals from samarium cobalt permanent magnets, nickel metal hydride batteries and lamp phosphors, respectively. The extraction of metal ions from a chloride or nitrate solution with a thiocyanate ionic liquid is an example of "split-anion extraction", where different anions are present in the aqueous and ionic liquid phase. Close to 100% loading was possible for Co(ii) and Zn(ii) up to a concentration of 40 g L(-1) of the transition metal salt in the initial aqueous feed solution, whereas the extraction efficiency for Ni(ii) gradually decreased with increase in the initial feed concentration. Stripping of Co(ii), Zn(ii) and Ni(ii) from the loaded ionic liquid phase was possible by a 15 wt% NH3 solution. The ionic liquid could reused after extraction and stripping. PMID:27243450

  15. Thermodynamic parameters and stabilities of some rare-earth metal ion chelates of alpha-valine

    International Nuclear Information System (INIS)

    Solution equilibrium for some rare-earth metal ions with valine have been studied potentiometrically in aqueous medium at temperature from 25 to 55 deg. C and ionic strength from 0.1 to 1.0 mol dm/sup -3/NaClO/sub 4/. The thermodynamic parameters delta H, delta S, delta G for the formation process were evaluated in terms of temperature, ionic strength and nature of metal ion present. The stability of the complexes was found to: La(III)< Nd(III)< Gd(III)< Eu(III)Yb(III)< Lu(III). (author)

  16. Electrodeposition of luminescent composite metal coatings containing rare-earth phosphor particles

    OpenAIRE

    Ganapathi, Murugan; Eliseeva, Svetlana V.; Brooks, Neil; Soccol, Dimitri; Fransaer, Jan; Binnemans, Koen

    2012-01-01

    Mixtures of acetamide and dimethylsulfone (DMSO2) with dissolved anhydrous transition metal chlorides are introduced as new non-aqueous electrolytes for the preparation of composite metal coatings with embedded hydrophilic particles via an electrolytic co-deposition process. Red-emitting (Eu2O3 and Y2O3:Eu3+), yellow-emitting (Y3Al5O12:Ce3+), green-emitting (Gd2O2S:Tb3+) and blue-emitting (BaMg2Al16O27:Eu2+) rare-earth phosphor particles and yttrium oxide particles have been embedded into thi...

  17. Modification of Non-Metallic Inclusions by Rare-Earth Elements in Microalloyed Steels

    OpenAIRE

    M. Opiela; A. Grajcar

    2012-01-01

    The modification of the chemical composition of non-metallic inclusions by rare-earth elements in the new-developed microalloyed steels was discussed in the paper. The investigated steels are assigned to production of forged elements by thermo- mechanical treatment. The steels were melted in a vaccum induction furnace and modification of non-metallic inclusions was carried out by the michmetal in the amount of 2.0 g per 1 kg of steel. It was found that using material charge of high purity and...

  18. Influence of elevated alkalinity and natural organic matter (NOM) on tissue-specific metal accumulation and reproductive performance in fathead minnows during chronic, multi-trophic exposures to a metal mine effluent.

    Science.gov (United States)

    Ouellet, Jacob D; Dubé, Monique G; Niyogi, Som

    2013-09-01

    Metal bioavailability in aquatic organisms is known to be influenced by various water chemistry parameters. The present study examined the influence of alkalinity and natural organic matter (NOM) on tissue-specific metal accumulation and reproductive performance of fathead minnows (Pimephales promelas) during environmentally relevant chronic exposures to a metal mine effluent (MME). Sodium bicarbonate (NaHCO3) or NOM (as commercial humic acid) were added to a Canadian MME [45 percent process water effluent (PWE)] in order to evaluate whether increases in alkalinity (3-4 fold) or NOM (~1.5-3mg/L dissolved organic carbon) would reduce metal accumulation and mitigate reproductive toxicity in fathead minnows during a 21-day multi-trophic exposure. Eleven metals (barium, boron, cobalt, copper, lithium, manganese, molybdenum, nickel, rubidium, selenium, and strontium) were elevated in the 45 percent PWE relative to the reference water. Exposure to the unmodified 45 percent PWE resulted in a decrease of fathead minnow egg production (~300 fewer eggs/pair) relative to the unmodified reference water, over the 21-day exposure period. Water chemistry modifications produced a modest decrease in free ion activity of some metals (as shown by MINTEQ, Version 3) in the 45 percent PWE exposure water, but did not alter the metal burden in the treatment-matched larval Chironomus dilutus (the food source of fish during exposure). The tissue-specific metal accumulation increased in fish exposed to the 45 percent PWE relative to the reference water, irrespective of water chemistry modifications, and the tissue metal concentrations were found to be similar between fish in the unmodified and modified 45 percent PWE (higher alkalinity or NOM) treatments. Interestingly however, increased alkalinity and NOM markedly improved fish egg production both in the reference water (~500 and ~590 additional eggs/pair, respectively) and 45 percent PWE treatments (~570 and ~260 additional eggs

  19. Heavy metals and rare earth elements in phosphate fertilizer components using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    The technique of instrumental neutron activation analysis was applied as a sensitive nondestructive analytical tool for the determination of heavy metals and rare earth elements in phosphate fertilizer ingredients. The contents of heavy metals Fe, Zn, Co, Cr and Sc as well as rare earth elements La, Ce, Hf, Eu, Yb and Sm were determined in four samples representing the phosphate fertilizer components (e.g. rock phosphate, limestone and sulfur). These samples were collected from the Abu-Zabal phosphate factory in El-Qalubia governarate, Egypt. The aim of this study was to determine the elemental pattern in phosphate ingredients as well as in the produced phosphate fertilizer. Fair agreement was found between the results obtained for the standard reference material Soil-7 and the certified values reported by the International Atomic Energy Agency. The results for the input raw materials (rock phosphate, limestone and sulfur) and the output product as final fertilizer are presented and discussed

  20. Studies of the work function of rare earth and other metal films

    International Nuclear Information System (INIS)

    Rare earth metal films have been prepared in Ultra-high Vacuum (U.H.V.) and work function measurements made, in situ, by a vibrating capacitor technique. The effects of aging in U.H.V. and of atmospheric contamination have been studied. Measurements have been made on Gd above and below the Curie temperature, before and after annealing at 3900K by means of a novel nichrome-film heater (developed for U.H.V. use). The resistivities of the rare earth films were determined by an in situ potential probe method in conjunction with interferometric thickness measurements. Work function measurements have also been made on other metal films and on silicon surfaces to provide data relevant to theoretical work on point-contact detectors for far infra-red radiation. (author)

  1. Electromigration in molten salts and application to isotopic separation of alkaline and alkaline-earth elements; Electromigration en sels fondus et application a la separation des isotopes des elements alcalins et alcalino-terreux

    Energy Technology Data Exchange (ETDEWEB)

    Menes, F. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    The separation of the isotopes of the alkaline-earth elements has been studied using counter-current electromigration in molten bromides. The conditions under which the cathode operates as a bromine electrode for the highest possible currents have been examined. For the separation of calcium, it has been necessary to use a stable CaBr{sub 2} - (CaBr{sub 2} + KBr) 'chain'. In the case of barium and strontium, it was possible to employ the pure bromides. Enrichment factors of the order of 10 for {sup 48}Ca and of the order of 1.5 for the rare isotopes of barium and strontium have been obtained. In the case of magnesium the method is slightly more difficult to apply because of material loss due to the relatively high vapour pressure of the salt requiring the use of electrolyte chains, MgBr{sub 2} - CeBr{sub 3}. A study has been made that has led to a larger-scale application of the method. These are essentially the inhibition of reversible operation of the cathode by traces of water, limiting the intensity which can be tolerated; evacuation of the heat produced by the Joule effect, in the absence of which the separation efficiency is reduced by thermal gradients; corrosion of the materials by molten salts at high temperature. Several cells capable of treating a few kilograms of substance have been put into operation; none of these has lasted long enough to produce a satisfactory enrichment. The method is thus limited actually to yields of the order of a few grams. (author) [French] On a etudie la separation des isotopes des elements alcalino-terreux par electromigration a contre-courant en bromures fondus. On a etudie les conditions dans lesquelles la cathode fonctionne en electrode a brome pour des intensites les plus elevees possibles. Pour la separation du calcium, il a ete necessaire d'utiliser une chaine stable CaBr{sub 2} - (CaBr{sub 2} + KBr). Pour le baryum et le strontium, on a pu operer sur les bromures purs. On a obtenu des facteurs d

  2. μSR-studies of magnetic properties of metallic rare earth compounds

    International Nuclear Information System (INIS)

    Positive muons can probe the magnitude and the time dependence of the magnetic field at interstitial sites in condensed matter. Thus the relatively new techniques of muons spin rotation and muon spin relaxation have become unique tools for studying magnetism. After a brief introduction into the experimental method we then discuss measurements on the elemental rare earth metals and on intermetallic compounds, in particular on the cubic Laves phases REAl2

  3. No Giant Two-Ion Anisotropy in the Heavy-Rare-Earth Metals

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1976-01-01

    A new Bose-operator expansion of tensor operators is applied to the heavy-rare-earth metals. The Er data for the cone phase have been analyzed successfully with single-ion anisotropy and isotropic exchange interaction. The Tb data can be understood on the same basis. The previously found large two......-ion anisotropy was due to an inadequate treatment of the large single-ion anisotropy leading to an incorrect expression for the spin-wave energy....

  4. Optimization of film synthesized rare earth transition metal permanent magnet systems

    International Nuclear Information System (INIS)

    Progress is reported in three areas: high coercivity Sm-Fe-Ti-V, Sm-Fe-Zr, and two element Sm-Fe Sm5(Fe,T)17 type crystalline phases; ThMn12 type pseudobinary SmFe12-xTx(0≤x≤1.5); and sputter process control for the synthesis of precisely textured rare earth-transition metal magnetic films

  5. Low-energy description of the metal-insulator transition in the rare-earth nickelates

    OpenAIRE

    A. Subedi; Peil, O.; Georges, A.

    2015-01-01

    We propose a simple theoretical description of the metal-insulator transition of rare-earth nickelates. The theory involves only two orbitals per nickel site, corresponding to the low-energy antibonding eg states. In the monoclinic insulating state, bond-length disproportionation splits the manifold of eg bands, corresponding to a modulation of the effective on-site energy. We show that, when subject to a local Coulomb repulsion U and Hund's coupling J, the resulting bond-disproportionated st...

  6. On the factors affecting the high temperature insulator-metal transition in rare-earth manganites

    OpenAIRE

    Bhattacharya, Dipten; Das, Pintu; A Pandey; Raychaudhuri, A. K.; Chakraborty, Amitava; Ojha, V. N.

    2000-01-01

    The measurement of resistivity across a wide temperature range - from 15 to 1473 K - in rare-earth manganite series of compounds reveals a very interesting feature : normally observed insulating pattern beyond Tc (Curie Point) gives way to a reentrant metallic pattern around a characteristic temperature T*. The transport activation barrier Ea collapses to zero around T*. T* is found to be dependent on the carrier concentration or the concentration of the Jahn-Teller-active Mn(3+) ions as well...

  7. EVALUATION OF RADIOLOGICAL SIGNIFICANCE OF RARE-EARTH METALS WITH NATURAL RADIOACTIVE ISOTOPES

    OpenAIRE

    E. P. Lisachenko

    2013-01-01

    Among the rare-earth metals with natural radioactive isotopes, lantan, lutetium and samarium are allocated a relatively high specific activity. The formation of the additional external radiation keep it close to the significance of the materials to the radiation categories of materials with a high content of natural radionuclides of uranium and thorium family, lanthanum value is much less. Samarium, with acceptable toxicology content in the working area, forms the internal exposure to the lim...

  8. Gallium Pnictides of the Alkaline Earth Metals, Synthesized by Means of the Flux Method: Crystal Structures and Properties of CaGa[subscript 2]Pn[subscript 2], SrGa[subscript 2]As[subscript 2], Ba[subscript 2]Ga[subscript 5]As[subscript 5], and Ba[subscript 4]Ga[subscript 5]Pn[subscript 8] (Pn = P or As)

    Energy Technology Data Exchange (ETDEWEB)

    He, Hua; Stearrett, Ryan; Nowak, Edmund R.; Bobev, Svilen (Delaware)

    2014-05-28

    The focus of this paper is on the structural characterization of the new Zintl phases CaGa{sub 2}P{sub 2}, CaGa{sub 2}As{sub 2}, SrGa{sub 2}As{sub 2}, and Ba{sub 2}Ga{sub 5}As{sub 5}, and the solid solution (Ba{sub 0.85(1)}Sr{sub 0.15}){sub 2}Ga{sub 5}As{sub 5}, all of which were synthesized from molten metal fluxes.CaGa{sub 2}P{sub 2}, CaGa{sub 2}As{sub 2}, and SrGa{sub 2}As{sub 2} have layered structures with polyanionic layers made of ethane-like Ga{sub 2}P6 and Ga{sub 2}As6 motifs fused through common edges; the polyanionic substructure in Ba{sub 2}Ga{sub 5}As{sub 5} consists of condensed Ga{sub 2}As6 units and GaAs{sub 4} tetrahedra. Ba{sub 4}Ga{sub 5}P{sub 8} and Ba{sub 4}Ga{sub 5}As{sub 8}, another pair of new compounds with channel-like 3D structures, were also synthesized from metal fluxes, and their structures were established from single-crystal X-ray and synchrotron powder diffraction. They are based on GaP{sub 4} and GaAs{sub 4} tetrahedra, with parts of their structures being heavily disordered. The electronic structures computed with the linear muffin-tin orbital (LMTO) method are discussed as well, alongside the thermopower and the electrical conductivity, measured on single crystals of Ba{sub 2}Ga{sub 5}As{sub 5} and the solid solution (Ba{sub 0.85(1)}Sr{sub 0.15}){sub 2} Ga{sub 5}As{sub 5}. They demonstrate that such an approach would be an effective way to fine-tune the transport properties.

  9. Effect of Rare Earth Metals on Structure and Properties of Electroless Co-B Alloy Coating

    Institute of Scientific and Technical Information of China (English)

    宣天鹏; 张雷; 黄秋华

    2002-01-01

    The effect of rare earth metals cerium, lanthanum and yttrium on chemical composition, structure and properties of electroless Co-B alloy coating was studied. By plasma transmitting spectrograph, electron energy spectrometer, X-ray diffractometter, micro-hardometer and vibratory sample magnetometer the chemical constitution, structure and properties of the alloy coatings were analyzed and inspected. The results show that with a tiny quantity of rare earth metal added into Co-B alloy coating, the content of boron is decreased in the alloy coatings, and the kinds of rare earth metal have enormous effect on the structure and properties of electroless Co-B alloy coating. At the same time electroless Co-B alloy with amorphous structure is transformed to electroless Co-B-RE alloy with microcrystalline or crystalline structure. In this way microhardness of the coatings is increased remarkably. Cerium and lanthanum would also increase the saturated magnetic intensity and decrease coercitive force of the coating. So soft magnetization of the coatings would be improved.

  10. Chemical composition of modern and fossil Hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation - Part 2: Alkaline earth elements as tracers of watershed hydrochemistry and provenance

    Science.gov (United States)

    Brügmann, G.; Krause, J.; Brachert, T. C.; Stoll, B.; Weis, U.; Kullmer, O.; Ssemmanda, I.; Mertz, D. F.

    2012-03-01

    For reconstructing environmental change in terrestrial realms the geochemistry of fossil bioapatite in bones and teeth is among the most promising applications. This study demonstrates that alkaline earth elements in enamel of Hippopotamids, in particular Ba and Sr are tracers for water provenance and hydrochemistry. The studied specimens are molar teeth from Hippopotamids found in modern and fossil lacustrine settings of the Western Branch of the East African Rift system (Lake Kikorongo, Lake Albert, and Lake Malawi) and from modern fluvial environments of the Nile River. Concentrations in enamel vary by ca. two orders of magnitude for Ba (120-9336 μg g-1) as well as for Sr (9-2150 μg g-1). Concentration variations in enamel are partly induced during post-mortem alteration and during amelogenesis, but the major contribution originates from the variable water chemistry in the habitats of the Hippopotamids which is dominated by the lithologies and weathering processes in the watershed areas. Amelogenesis causes a distinct distribution of Ba and Sr in modern and fossil enamel, in that element concentrations increase along profiles from the outer rim towards the enamel-dentin junction by a factor of 1.3-1.5. These elements are well correlated with MgO and Na2O in single specimens, thus suggesting that their distribution is determined by a common, single process. Presuming that the shape of the tooth is established at the end of the secretion process and apatite composition is in equilibrium with the enamel fluid, the maturation process can be modeled by closed system Rayleigh crystallization. Enamel from many Hippopotamid specimens has Sr/Ca and Ba/Ca which are typical for herbivores, but the compositions extend well into the levels of plants and carnivores. Within enamel from single specimens these element ratios covary and provide a specific fingerprint of the Hippopotamid habitat. All specimens together, however, define subparallel trends with different Ba

  11. Inlfuence of Mixed Alkali-Alkaline Earth Effect on Alkali Resistance of Medium Temperature Fritted Glaze%混合碱/碱土金属效应对中温熔块釉耐碱性的影响

    Institute of Scientific and Technical Information of China (English)

    秦立邦; 卢希龙; 曹春娥; 陈云霞; 沈华荣; 黄钢

    2014-01-01

    In order to improve the alkali resistance of medium temperature fritted glaze, a large number of experiments were carried out to get a better base fritted glaze. Then, inlfuence of mixed alkali metal effect and mixed alkaline earth metal effect on alkali resistance of the glaze was studied. Results show that mixed alkali effect existed in two alkali metal oxides-Li2O and Na2O. When the Li+/Na+molar ratio was equal to 1, the frit had the best alkali resistance. Calcium oxide had obvious suppression effect on alkali metal oxides. When the CaO/(Li2O+Na2O) molar ratio was equal to 1.22, the frit had the best alkali resistance. For binary mixed alkali metal oxides, when both the molar ratios of CaO/BaO and CaO/MgO were equal to 8.2, the frit had the best alkali resistance, but BaO worked better than MgO. For ternary mixed alkali metal oxides, when the molar ratio of CaO:MgO:BaO was equal to 14:3.3:1, both the frit and fritted glaze had the best alkali resistance.%为了提高中温熔块釉的耐碱性,通过大量实验得到较好的基础熔块釉组成,在此基础上,探讨混合碱金属效应、混合碱土金属效应对熔块耐碱性的影响。结果表明:Li2O和Na2O两种碱金属氧化物存在“混合碱金属效应”,其摩尔比为1时,熔块耐碱性最佳。氧化钙对碱金属(Li2O+Na2O)的压制效应明显,当CaO/(Li2O+Na2O)为1.22时,熔块耐碱性最好。二元碱土金属混合时,CaO/BaO、CaO/MgO摩尔比均为8.2时耐碱性最好,但BaO的效果要大于MgO;三元碱土混合中, CaO∶MgO∶BaO摩尔比为14∶3.3∶1时,熔块耐碱性最高,且此时釉的耐碱性也最强。

  12. Rare earth elements and critical metal content of extracted landfilled material and potential recovery opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Gutiérrez-Gutiérrez, Silvia C.; Coulon, Frédéric; Jiang, Ying; Wagland, Stuart, E-mail: s.t.wagland@cranfield.ac.uk

    2015-08-15

    Highlights: • Samples from multiple core drills were obtained from 4× landfill sites in the UK. • Each sample analysed for rare earth elements, critical metals and valuable metals. • Two stage microwave digestion method ensuring high yield. • High quantities of copper and aluminium were observed in the soil layers of landfill. • Across 4× landfills aluminium and copper present has a value of around $400 million. - Abstract: Rare earth elements (REEs), Platinum group metals (PGMs) and other critical metals currently attract significant interest due to the high risks of supply shortage and substantial impact on the economy. Their uses in many applications have made them present in municipal solid waste (MSW) and in commercial and industrial waste (C&I), since several industrial processes produce by-products with high content of these metals. With over 4000 landfills in the UK alone, the aim of this study was to assess the existence of these critical metals within landfills. Samples collected from four closed landfills in UK were subjected to a two-step acid digestion to extract 27 metals of interest. Concentrations across the four landfill sites were 58 ± 6 mg kg{sup −1} for REEs comprising 44 ± 8 mg kg{sup −1} for light REEs, 11 ± 2 mg kg{sup −1} for heavy REEs and 3 ± 1 mg kg{sup −1} for Scandium (Sc) and 3 ± 1.0 mg kg{sup −1} of PGMs. Compared to the typical concentration in ores, these concentrations are too low to achieve a commercially viable extraction. However, content of other highly valuable metals (Al and Cu) was found in concentrations equating to a combined value across the four landfills of around $400 million, which increases the economic viability of landfill mining. Presence of critical metals will mainly depend on the type of waste that was buried but the recovery of these metals through landfill mining is possible and is economically feasible only if additional materials (plastics, paper, metallic items and other) are

  13. Rare earth elements and critical metal content of extracted landfilled material and potential recovery opportunities

    International Nuclear Information System (INIS)

    Highlights: • Samples from multiple core drills were obtained from 4× landfill sites in the UK. • Each sample analysed for rare earth elements, critical metals and valuable metals. • Two stage microwave digestion method ensuring high yield. • High quantities of copper and aluminium were observed in the soil layers of landfill. • Across 4× landfills aluminium and copper present has a value of around $400 million. - Abstract: Rare earth elements (REEs), Platinum group metals (PGMs) and other critical metals currently attract significant interest due to the high risks of supply shortage and substantial impact on the economy. Their uses in many applications have made them present in municipal solid waste (MSW) and in commercial and industrial waste (C&I), since several industrial processes produce by-products with high content of these metals. With over 4000 landfills in the UK alone, the aim of this study was to assess the existence of these critical metals within landfills. Samples collected from four closed landfills in UK were subjected to a two-step acid digestion to extract 27 metals of interest. Concentrations across the four landfill sites were 58 ± 6 mg kg−1 for REEs comprising 44 ± 8 mg kg−1 for light REEs, 11 ± 2 mg kg−1 for heavy REEs and 3 ± 1 mg kg−1 for Scandium (Sc) and 3 ± 1.0 mg kg−1 of PGMs. Compared to the typical concentration in ores, these concentrations are too low to achieve a commercially viable extraction. However, content of other highly valuable metals (Al and Cu) was found in concentrations equating to a combined value across the four landfills of around $400 million, which increases the economic viability of landfill mining. Presence of critical metals will mainly depend on the type of waste that was buried but the recovery of these metals through landfill mining is possible and is economically feasible only if additional materials (plastics, paper, metallic items and other) are also recovered for reprocessing

  14. Rare earth element recycling from waste nickel-metal hydride batteries

    International Nuclear Information System (INIS)

    Highlights: • Leaching kinetics of REEs has rarely been reported. • A new method, including hydrochloric acid leaching and oxalic acid precipitation, was proposed. • REEs recovery rate of 95.16% and pure rare earth oxides of 99% were obtained. • Leaching process was controlled by chemical reaction. • The kinetic equation was determined. - Abstract: With an increase in number of waste nickel-metal hydride batteries, and because of the importance of rare earth elements, the recycling of rare earth elements is becoming increasingly important. In this paper, we investigate the effects of temperature, hydrochloric acid concentration, and leaching time to optimize leaching conditions and determine leach kinetics. The results indicate that an increase in temperature, hydrochloric acid concentration, and leaching time enhance the leaching rate of rare earth elements. A maximum rare earth elements recovery of 95.16% was achieved at optimal leaching conditions of 70 °C, solid/liquid ratio of 1:10, 20% hydrochloric acid concentration, −74 μm particle size, and 100 min leaching time. The experimental data were best fitted by a chemical reaction-controlled model. The activation energy was 43.98 kJ/mol and the reaction order for hydrochloric acid concentration was 0.64. The kinetic equation for the leaching process was found to be: 1−(1−x)1/3=A/ρr0[HCl]0.64exp((−439,800)/(8.314T) )t. After leaching and filtration, by adding saturated oxalic solution to the filtrate, rare earth element oxalates were obtained. After removing impurities by adding ammonia, filtering, washing with dilute hydrochloric acid, and calcining at 810 °C, a final product of 99% pure rare earth oxides was obtained

  15. Chemical composition of modern and fossil hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation - Part 2: Alkaline earth elements as tracers of watershed hydrochemistry and provenance

    Science.gov (United States)

    Brügmann, G.; Krause, J.; Brachert, T. C.; Stoll, B.; Weis, U.; Kullmer, O.; Ssemmanda, I.; Mertz, D. F.

    2012-11-01

    This study demonstrates that alkaline earth elements in enamel of hippopotamids, in particular Ba and Sr, are tracers for water provenance and hydrochemistry in terrestrial settings. The studied specimens are permanent premolar and molar teeth found in modern and fossil lacustrine sediments of the Western Branch of the East African Rift system (Lake Kikorongo, Lake Albert, and Lake Malawi) and from modern fluvial environments of the Nile River. Concentrations in enamel vary by two orders of magnitude for Ba (120-9336 μg g-1) as well as for Sr (9-2150 μg g-1). The variations are partially induced during post-mortem alteration and during amelogenesis, but the major contribution originates ultimately from the variable water chemistry in the habitats of the hippopotamids which is controlled by the lithologies and weathering processes in the watershed areas. Amelogenesis causes a distinct distribution of MgO, Ba and Sr in modern and fossil enamel, in that element concentrations increase along profiles from the outer rim towards the enamel-dentin junction by a factor of 1.3-1.9. These elements are well correlated in single specimens, thus suggesting that their distribution is determined by a common, single process, which can be described by closed system Rayleigh crystallization of bioapatite in vivo. Enamel from most hippopotamid specimens has Sr/Ca and Ba/Ca which are typical for herbivores. However, Ba/Sr ranges from 0.1 to 3 and varies on spatial and temporal scales. Thus, Sr concentrations and Ba/Sr in enamel differentiate between habitats having basaltic mantle rocks or Archean crustal rocks as the ultimate sources of Sr and Ba. This provenance signal is modulated by climate change. In Miocene to Pleistocene enamel from the Lake Albert region, Ba/Sr decreases systematically with time from 2 to 0.5. This trend can be correlated with changes in climate from humid to arid, in vegetation from C3 to C4 biomass as well as with increasing evaporation of the lake water

  16. Rare earth elements and critical metal content of extracted landfilled material and potential recovery opportunities.

    Science.gov (United States)

    Gutiérrez-Gutiérrez, Silvia C; Coulon, Frédéric; Jiang, Ying; Wagland, Stuart

    2015-08-01

    Rare earth elements (REEs), Platinum group metals (PGMs) and other critical metals currently attract significant interest due to the high risks of supply shortage and substantial impact on the economy. Their uses in many applications have made them present in municipal solid waste (MSW) and in commercial and industrial waste (C&I), since several industrial processes produce by-products with high content of these metals. With over 4000 landfills in the UK alone, the aim of this study was to assess the existence of these critical metals within landfills. Samples collected from four closed landfills in UK were subjected to a two-step acid digestion to extract 27 metals of interest. Concentrations across the four landfill sites were 58±6mgkg(-1) for REEs comprising 44±8mgkg(-1) for light REEs, 11±2mgkg(-1) for heavy REEs and 3±1mgkg(-1) for Scandium (Sc) and 3±1.0mgkg(-1) of PGMs. Compared to the typical concentration in ores, these concentrations are too low to achieve a commercially viable extraction. However, content of other highly valuable metals (Al and Cu) was found in concentrations equating to a combined value across the four landfills of around $400 million, which increases the economic viability of landfill mining. Presence of critical metals will mainly depend on the type of waste that was buried but the recovery of these metals through landfill mining is possible and is economically feasible only if additional materials (plastics, paper, metallic items and other) are also recovered for reprocessing. PMID:25957938

  17. Modification of Non-Metallic Inclusions by Rare-Earth Elements in Microalloyed Steels

    Directory of Open Access Journals (Sweden)

    M. Opiela

    2012-04-01

    Full Text Available The modification of the chemical composition of non-metallic inclusions by rare-earth elements in the new-developed microalloyed steels was discussed in the paper. The investigated steels are assigned to production of forged elements by thermo- mechanical treatment. The steels were melted in a vaccum induction furnace and modification of non-metallic inclusions was carried out by the michmetal in the amount of 2.0 g per 1 kg of steel. It was found that using material charge of high purity and a realization of metallurgical process in vacuous conditions result in a low concentration of sulfur (0.004%, phosphorus (from 0.006 to 0.008% and oxygen (6 ppm. The high metallurgical purity is confirmed by a small fraction of non-metallic inclusions averaging 0.075%. A large majority of non-metallic inclusions are fine, globular oxide-sulfide or sulfide particles with a mean size 17m2. The chemical composition and morphology of non-metallic inclusions was modified by Ce, La and Nd, what results a small deformability of non- metallic inclusions during hot-working.

  18. Pressure effects on hydrogen atoms near the metal plane in the HCP phase of rare-earth metal trihydrides

    Science.gov (United States)

    Tunghathaithip, N.; Pakornchote, T.; Phaisangittisakul, N.; Bovornratanaraks, T.; Pinsook, U.

    2016-04-01

    Rare-earth metal trihydrides, REH3 (RE=Sc, Y, La), in the hcp phase were investigated under high pressure by the ab initio method. We concentrated on the behavior of hydrogen atoms which is affected by pressure. Two-thirds of the hydrogen atoms near the metal plane (Hm) were found to displace away from the metal plane as pressure increases. The trajectory of these squeezed hydrogen atoms is from a site near the metal plane, and moves past the plane of the tetragonal sites, and heads toward the nearest octahedral site. However, the rate of displacement depends on the local environment. LaH3 exhibits the least impediment on the Hm displacement while YH3 and ScH3 exhibit stronger impediment. Furthermore, our calculated Raman and IR active modes are in general agreement with the experimental data. The displacement of Hm can be used to explain the behavior of the Ov peak in Raman spectra, where it exists at low pressure and disappears at higher pressure in YH3 and ScH3.

  19. Use of the ion exchange method for the determination of stability constants of trivalent metal complexes with humic and fulvic acids II. Tb3+, Yb3+ and Gd3+ complexes in weakly alkaline conditions

    International Nuclear Information System (INIS)

    The conditional stability constants for tracer concentrations of Tb(III), Yb(III), and Gd(III) with three soil humic acids, three soil fulvic acids and a fulvic acid from weathered coal were determined at pH 9.0-9.1 (these values are similar to those in calcareous soils) in the presence of NaHCO3 by using the anion exchange method. It was found that 1 : 1 and 1 : 2 complexes were simultaneously formed in the weakly alkaline conditions. The conditional stability constants of these 1 : 1 and 1 : 2 complexes were calculated from the distribution coefficients of rare earth elements at various concentrations of humate or fulvate. The stability constants indicate the very high stability of trivalent Tb3+, Yb3+ and Gd3+ complexes with humic substances in weakly alkaline conditions. The key parameters necessary for the experimental determination of the conditional stability constants of metal ions with humic substances in the presence of NaHCO3 by using an anion exchange method were discussed. The conditional stability constants of these 1 : 1 and 1 : 2 complexes were compared in this paper. It was found that stabilities of Tb3+ 1 : 1 and 1 : 2 complexes with humic acid are greater than the corresponding ones with fulvic acid from the same soil. In addition, the effect of the presence of Ca2+ as a competitor on the stabilities of 1 : 1 and 1 : 2 complexes of Yb was examined and no pronounced change of stabilities of 1 : 1 complex was found, even though Ca2+ is in a 103 excess to Yb3+

  20. The oxygen evolution reaction on passive oxide covered transition metal electrodes in alkaline solution. Part 2-Cobalt.

    OpenAIRE

    LYONS, MICHAEL EDWARD

    2008-01-01

    Details are outlined of an electrochemical investigation of the oxygen evolution reaction (OER) at passive oxide covered polycrystalline Co electrodes in aqueous alkaline solution. Kinetic studies on electrodes subjected to different pre-treatment routines, yielded different values of the Tafel slope and the reaction order with respect to OH- activity. Only one mechanistic pathway could account for all observed values of these kinetic parameters. This pathway is similar, although ...

  1. The oxygen evolution reaction on passive oxide covered transition metal electrodes in alkaline solution. Part III - Iron.

    OpenAIRE

    LYONS, MICHAEL EDWARD

    2008-01-01

    The kinetics of the oxygen evolution reaction (OER) at passive oxide covered polycrystalline Fe electrodes in aqueous alkaline solution were examined using both dc steady state polarisation and ac impedance techniques. It proved difficult to obtain reproducible polarisation data for bright anodes, and so an electrochemical pre-treatment routine was devised. Upon ageing of a given electrode specimen, and with application of the pre-treatment regime before each experiment, it was po...

  2. The oxygen evolution reaction on passive oxide covered transition metal electrodes in aqueous alkaline solution. Part 1 - Nickel

    OpenAIRE

    LYONS, MICHAEL EDWARD

    2008-01-01

    Various aspects of the oxygen evolution reaction (OER) at passive oxide covered polycrystalline Ni electrodes in aqueous alkaline solution were investigated using electrochemical techniques. Steady state polarisation and electrochemical impedance spectroscopy (EIS) were used to measure kinetically significant parameters including the Tafel slope and the reaction order with respect to OH- activity. While reproducible values of the Tafel slope were readily observed, the recorded cur...

  3. Alkaline quinone flow battery

    OpenAIRE

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise Ann; Valle, Alvaro West; Hardee, D.; Gordon, Roy Gerald; Aziz, Michael J.; Marshak, M

    2015-01-01

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe f...

  4. The atmospheric circulation of the super Earth GJ 1214b: Dependence on composition and metallicity

    CERN Document Server

    Kataria, Tiffany; Fortney, Jonathan J; Marley, Mark S; Freedman, Richard S

    2014-01-01

    We present three-dimensional atmospheric circulation models of GJ 1214b, a 2.7 Earth-radius, 6.5 Earth-mass super Earth detected by the MEarth survey. Here we explore the planet's circulation as a function of atmospheric metallicity and atmospheric composition, modeling atmospheres with a low mean-molecular weight (i.e., H2-dominated) and a high mean-molecular weight (i.e. water- and CO2-dominated). We find that atmospheres with a low mean-molecular weight have strong day-night temperature variations at pressures above the infrared photosphere that lead to equatorial superrotation. For these atmospheres, the enhancement of atmospheric opacities with increasing metallicity lead to shallower atmospheric heating, larger day-night temperature variations and hence stronger superrotation. In comparison, atmospheres with a high mean-molecular weight have larger day-night and equator-to-pole temperature variations than low mean-molecular weight atmospheres, but differences in opacity structure and energy budget lead ...

  5. High-pressure phase transitions in rare earth metal thulium to 195 GPa

    International Nuclear Information System (INIS)

    We have performed image plate x-ray diffraction studies on a heavy rare earth metal, thulium (Tm), in a diamond anvil cell to a pressure of 195 GPa and volume compression V/Vo = 0.38 at room temperature. The rare earth crystal structure sequence, hcp → Sm-type → dhcp → fcc → distorted fcc, is observed in Tm below 70 GPa with the exception of a pure fcc phase. The focus of our study is on the ultrahigh-pressure phase transition and Rietveld refinement of crystal structures in the pressure range between 70 and 195 GPa. The hexagonal hR- 24 phase is seen to describe the distorted fcc phase between 70 and 124 GPa. Above 124 ± 4 GPa, a structural transformation from hR 24 phase to a monoclinic C 2/m phase is observed with a volume change of - 1.5%. The equation of state data shows rapid stiffening above the phase transition at 124 GPa and is indicative of participation of f-electrons in bonding. We compare the behavior of Tm to other heavy rare-earths and heavy actinide metals under extreme conditions of pressure.

  6. Rare-earth transition-metal intermetallics: Structure-bonding-property relationships

    Energy Technology Data Exchange (ETDEWEB)

    Han, M.K.

    2006-05-06

    The explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding property relationships. The work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe{sub 13-x}Si{sub x} system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides Re{sub 2-x}Fe{sub 4}Si{sub 14-y} and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi{sub 2}: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb{sub 3}Zn{sub 3.6}Al{sub 7.4}: Partially ordered structure of Tb{sub 3}Zn{sub 3.6}Al{sub 7.4} compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn{sub 39}(Cr{sub x}Al{sub 1-x}){sub 81}: These layered structures are similar to icosahedral Mn-Al quasicrystalline

  7. Rare-Earth Transition-Metal Intermetallics: Structure-bonding-Property Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Mi-Kyung Han

    2006-05-01

    Our explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding-property relationships. Our work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe{sub 13-x}Si{sub x} system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides RE{sub 2-x}Fe{sub 4}Si{sub 14-y} and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi{sub 2}: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb{sub 3}Zn{sub 3.6}Al{sub 7.4}: Partially ordered structure of Tb{sub 3}Zn{sub 3.6}Al{sub 7.4} compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn{sub 39}(Cr{sub x}Al{sub 1-x}){sub 81}: These layered structures are similar to icosahedral Mn-Al quasicrystalline

  8. Development of a capillary electrophoresis method for the analysis in alkaline media as polyoxoanions of two strategic metals: Niobium and tantalum.

    Science.gov (United States)

    Deblonde, Gauthier J-P; Chagnes, Alexandre; Cote, Gérard; Vial, Jérôme; Rivals, Isabelle; Delaunay, Nathalie

    2016-03-11

    Tantalum (Ta) and niobium (Nb) are two strategic metals essential to several key sectors, like the aerospace, gas and oil, nuclear and electronic industries, but their separation is really difficult due to their almost identical chemical properties. Whereas they are currently produced by hydrometallurgical processes using fluoride-based solutions, efforts are being made to develop cleaner processes by replacing the fluoride media by alkaline ones. However, methods to analyze Nb and Ta simultaneously in alkaline samples are lacking. In this work, we developed a capillary zone electrophoresis (CE) method able to separate and quantify Nb and Ta directly in alkaline media. This method takes advantage of the hexaniobate and hexatantalate ions which are naturally formed at pH>9 and absorb in the UV domain. First, the detection conditions, the background electrolyte (BGE) pH, the nature of the BGE co-ion and the internal standard (IS) were optimized by a systematic approach. As the BGE counter-ion nature modified the speciation of both ions, sodium- and lithium-based BGE were tested. For each alkaline cation, the BGE ionic strength and separation temperature were optimized using experimental designs. Since changes in the migration order of IS, Nb and Ta were observed within the experimental domain, the resolution was not a monotonic function of ionic strength and separation temperature. This forced us to develop an original data treatment for the prediction of the optimum separation conditions. Depending on the consideration of either peak widths or peak symmetries, with or without additional robustness constraints, four optima were predicted for each tested alkaline cation. The eight predicted optima were tested experimentally and the best experimental optimum was selected considering analysis time, resolution and robustness. The best separation was obtained at 31.0°C and in a BGE containing 10mM LiOH and 35mM LiCH3COO.The separation voltage was finally optimized

  9. Controlling the metal insulator transition using the ferroelectric field effect in rare earth nickelates

    Science.gov (United States)

    Marshall, Matthew; Disa, Ankit; Kumah, Divine; Chen, Hanghui; Ismail-Beigi, Sohrab; Walker, Fred; Ahn, Charles

    2013-03-01

    A ferroelectric field effect transistor (FE-FET) modulates conductivity in a non-volatile manner by electrostatically accumulating and depleting charge carriers at the interface between a conducting channel and ferroelectric gate. The rare earth nickelate LaNiO3 is metallic in bulk, while other rare earth nickelates, such as NdNiO3, exhibit metal-insulator transitions and anti-ferromagnetic behavior in the bulk. Here, we show that by coupling the ferroelectric polarization of Pb0.8Zr0.2TiO3 (PZT) to the carriers in a nickelate, we can dynamically induce a metal- insulator transition in ultra-thin films of LaNiO3, and induce large changes in the MIT transition temperature in NdNiO3. Density functional theory is used to determine changes in the physical and electronic Ni-O-Ni bond angle of the nickelate at the interface between PZT and LaNiO3. The effect of the ferroelectric polarization is to decrease the Ni-O-Ni bond angle from 180 degrees and increase the carrier effective mass. Related to this change in electronic structure, we observe a change in resistivity of approximately 80% at room temperature for an ultra-thin 3 unit cell thick film of LaNiO3. Work supported by FENA and the NSF under MRSEC DMR 1119826.

  10. Moderate pressure synthesis of rare earth nickelate with metal-insulator transition using polymeric precursors

    Science.gov (United States)

    Napierala, C.; Lepoittevin, C.; Edely, M.; Sauques, L.; Giovanelli, F.; Laffez, P.; VanTedeloo, G.

    2010-07-01

    Rare earth nickelates exhibit a reversible metal-semiconductor phase transition that is, in the infrared range, responsible for a thermo-optical contrast. The state of the art synthesis of these compounds usually requires high oxygen pressure to stabilize Ni in the oxidation state 3 +. In this work, using polymeric precursor associated with moderate pressure annealing, we show that it is possible to obtain fully oxidized rare earth nickelate with metal-insulator transition. Using thermogravimetric analysis, X-ray diffraction and transmission electronic microscopy we compare different samples synthesized at different oxygen pressures and demonstrate their structural similarity. Thermo-optical properties were measured, in the infrared range, using reflectance measurements and confirmed the metal-insulator transition at 60 °C in both samples.TEM observations lead to the conclusion that the structure commonly obtained at 175 bar is perfectly observed in the 20 bar sample without major structural defects. The two samples exhibit a thermochromic behavior and thermo-optical properties of the two samples are equivalent.

  11. Moderate pressure synthesis of rare earth nickelate with metal-insulator transition using polymeric precursors

    International Nuclear Information System (INIS)

    Rare earth nickelates exhibit a reversible metal-semiconductor phase transition that is, in the infrared range, responsible for a thermo-optical contrast. The state of the art synthesis of these compounds usually requires high oxygen pressure to stabilize Ni in the oxidation state 3+. In this work, using polymeric precursor associated with moderate pressure annealing, we show that it is possible to obtain fully oxidized rare earth nickelate with metal-insulator transition. Using thermogravimetric analysis, X-ray diffraction and transmission electronic microscopy we compare different samples synthesized at different oxygen pressures and demonstrate their structural similarity. Thermo-optical properties were measured, in the infrared range, using reflectance measurements and confirmed the metal-insulator transition at 60 oC in both samples.TEM observations lead to the conclusion that the structure commonly obtained at 175 bar is perfectly observed in the 20 bar sample without major structural defects. The two samples exhibit a thermochromic behavior and thermo-optical properties of the two samples are equivalent. - Graphical Abstract: Thermochromic behavior of Nd0.3Sm0.7NiO3 samples annealed under 20 and 175 bar at 278 and 373 K.

  12. Influence of rare-earth metal passivation treatments on the dissolution of tin-zinc coatings

    Energy Technology Data Exchange (ETDEWEB)

    Breslin, C.B.; Geary, M. [National Univ of Ireland, Maynooth (Ireland). Dept. of Chemistry

    1998-12-01

    The electrochemical behavior of an 80% Sn-20% Zn electrodeposited alloy following passivation in cerium-, lanthanum-, and praseodymium-containing solutions was studied. For comparative purposes, some tests were carried out for chromium- and molybdenum-treated deposits. All three rare-earth passivation procedures led to an increase in the corrosion protection afforded by the 80% Sn-20% Zn electrodeposit, with the greatest increase being observed following the cerium passivation treatment. The performance of cerium-treated electrodeposits approached that of chromium-treated deposits, while the performance of the lanthanum- and praseodymium-treated electrodeposits was more superior than the performance of the molybdate-treated electrodes. Results were explained in terms of a reduction in the rate of the zinc dissolution reaction from the electrodeposit by the deposited rare-earth metal oxides/hydroxides, which, in turn, extended the cathodic protection (CP) periods of the deposit.

  13. Alkali and alkaline earth metal salts of boron anionic complexes with o-hydroxy-benzyl alcohols (saligenin)

    International Nuclear Information System (INIS)

    Salts of two anionic boron complexes with 2 hydroxy-benzyl alcohol-[BA2- and [B(OH)2A]- - were synthesized. The first complex was separated in the form of anhydrous potassium and cesium salts, the second one - in the form of sodium (dihydrate), calcium (dihydrate) and barium (tetrahydrate and anhydrous salt) salts. Conditions of formation are discussed. Solubility in water and organic solvents, interplanar distances of crystal lattice were determined. The compounds were studied by the methods of infrared spectroscopy, thermal analysis. Hypothetical composition of the compounds is given

  14. Computer modeling of the local structure, mixing properties, and stability of solid solutions of alkaline-earth metal oxides

    International Nuclear Information System (INIS)

    A technique for the computer modeling of disordered binary oxide solid solutions MO-M'O in a wide composition range has been developed. The method of atomistic pair potentials was used for 4 x 4 x 4 supercells. The parameters of the potentials are optimized using the structural and elastic properties of pure components MgO, CaO, SrO, and BaO. The temperature dependences of the heat capacity and entropy are calculated for pure components. The excess mixing properties (enthalpy, volume, bulk modulus, vibrational entropy) are found for different compositions of MgxCa(1-x)O, CaxSr(1-x)O, and SrxBa(1-x)O solid solutions. Temperature and composition dependences of the excess Gibbs energy were constructed, which made it possible to approximately estimate the critical decomposition temperatures and limits of component miscibility. Statistical analysis of lattice distortions in the first and second coordination spheres reveals a detailed picture of the solid-solution local structure.

  15. Mechanism of Soft Solution Processing Formation of Alkaline earth Metal Tungstates : An Electrochemical and in situ AFM Study

    Czech Academy of Sciences Publication Activity Database

    Krtil, Petr; Fattakhova, Dina; Yoshimura, M.

    2002-01-01

    Roč. 6, - (2002), s. 367-373. ISSN 1432-8488 R&D Projects: GA ČR GA203/99/0879 Institutional research plan: CEZ:AV0Z4040901 Keywords : atomic force microscopy * tungstate s * thin film deposition Subject RIV: CG - Electrochemistry Impact factor: 1.279, year: 2002

  16. The influence of alkaline earth metal equilibria on the rheological properties of rennet-induced skim milk gels

    OpenAIRE

    Cooke, Darren; McSweeney, Paul

    2014-01-01

    The mineral equilibria of milk can have a major influence on the properties of rennet milk gels. The influence of increased Mg, Ca, and Sr concentrations on milk and rennet milk gels was investigated. Reconstituted skim milk was supplemented with MgCl2, CaCl2, or SrCl2 at levels from 2.5–10 mmol.L−1 and adjusted to pH 6.6. Dynamic rheological properties of the renneted milks at 32 °C were investigated during 6-h time sweeps and by frequency sweeps. Whey was separated from rennet gels by centr...

  17. Orbital free ab initio simulations of liquid alkaline earth metals: from pseudopotential construction to structural and dynamic properties.

    Science.gov (United States)

    Rio, Beatriz G del; González, Luis E

    2014-11-19

    We have performed a comprehensive study of the properties of liquid Be, Ca and Ba, through the use of orbital free ab initio simulations. To this end we have developed a force-matching method to construct the necessary local pseudopotentials from standard ab initio calculations. The structural magnitudes are analyzed, including the average and local structures and the dynamic properties are studied. We find several common features, like an asymmetric second peak in the structure factor, a large amount of local structures with five-fold symmetry, a quasi-universal behaviour of the single-particle dynamic properties and a large degree of positive dispersion in the propagation of collective density fluctuations, whose damping is dictated by slow thermal relaxations and fast viscoelastic ones. Some peculiarities in the dynamic properties are however observed, like a very high sound velocity and a large violation of the Stokes-Einstein relation for Be, or an extremely high positive dispersion and a large slope in the dispersion relation of shear waves at the onset of the wavevector region where they are supported for Ba. PMID:25347355

  18. A comparative investigation of metal-support interactions on the catalytic activity of Pt nanoparticles for ethanol oxidation in alkaline medium

    Science.gov (United States)

    Godoi, Denis R. M.; Villullas, Hebe M.; Zhu, Fu-Chun; Jiang, Yan-Xia; Sun, Shi-Gang; Guo, Junsong; Sun, Lili; Chen, Rongrong

    2016-04-01

    The effects of interactions of Pt nanoparticles with hybrid supports on reactivity towards ethanol oxidation in alkaline solution are investigated. Studies involve catalysts with identical Pt nanoparticles on six hybrid supports containing carbon powder and transition metal oxides (TiO2, ZrO2, SnO2, CeO2, MoO3 and WO3). In situ X-ray absorption spectroscopy (XAS) results evidence that metal-support interactions produce changes in the Pt 5d band vacancy, which appears to determine the catalytic activity. The highest and lowest activities are observed for Pt nanoparticles on hybrid supports containing TiO2 and CeO2, respectively. Further studies are presented for these two catalysts. In situ FTIR reflection spectroscopy measurements, taken using both multi-stepped FTIR spectroscopy (MS-FTIR) and single potential alteration FTIR spectroscopy (SPA-FTIR), evidence that the main product of ethanol oxidation is acetate, although signals attributed to carbonate and CO2 indicate some differences in CO2 production. Fuel cell performances of these catalysts, tested in a 4.5 cm2 single cell at different temperatures (40-90 °C) show good agreement with data obtained by electrochemical techniques. Results of this comprehensive study point out the possibility of compensating a reduction of noble metal load with an increase in activity promoted by interactions between metallic nanoparticles and a support.

  19. A Complete Design of a Rare Earth Metal-Free Permanent Magnet Generator

    OpenAIRE

    Petter Eklund; Stefan Sjökvist; Sandra Eriksson; Mats Leijon

    2014-01-01

    The price of rare-earth metals used in neodymium-iron-boron (NdFeB) permanent magnets (PMs) has fluctuated greatly recently. Replacing the NdFeB PMs with more abundant ferrite PMs will avoid the cost insecurity and insecurity of supply. Ferrite PMs have lower performance than NdFeB PMs and for similar performance more PM material has to be used, requiring more support structure. Flux concentration is also necessary, for example, by a spoke-type rotor. In this paper the rotor of a 12 kW NdFeB ...

  20. Pressure-induced valence change in the rare earth metals:The case of Praseodymium

    OpenAIRE

    Tateiwa, Naoyuki; Nakagawa, Akitoshi; Fujio, Kazuhiko; Kawae, Tatsuya; Takeda, Kazuyoshi

    2005-01-01

    The rare earth metal praseodymium (Pr) transforms from the d-fcc crystal structure (Pr-III) to {$\\alpha$}-U one (Pr-IV) at 20 GPa with a large volume collapse (${\\rm\\Delta} V/V$ = 0.16), which is associated with the valence change of the Pr ion. The two 4{\\it f} electrons in the Pr ion is supposed to be itinerant in the Pr-IV phase. In order to investigate the electronic state of the phase IV, we performed the high pressure electrical resistance measurement using the diamond anvil cell up to ...

  1. Microstructure and composition of rare earth-transition metal-aluminium-magnesium alloys

    OpenAIRE

    Lia Maria Carlotti Zarpelon; Eguiberto Galego; Hidetoshi Takiishi; Rubens Nunes Faria

    2008-01-01

    The determination of the microstructure and chemical composition of La0.7-xPr xMg0.3Al 0.3Mn0.4Co0.5 Ni3.8 (0 < x < 0.7) metal hydride alloys has been carried out using scanning electron microscopy (SEM), energy dispersive X ray analysis (EDX) and X ray diffraction analysis (XRD). The substitution of La with Pr changed the grain structure from equiaxial to columnar. The relative atomic ratio of rare earth to (Al, Mn, Co, Ni) in the matrix phase was 1:5 (LaNi5-type structure). Magnesium was de...

  2. Low-energy description of the metal-insulator transition in the rare-earth nickelates

    OpenAIRE

    Subedi, Alaska; Peil, Oleg E.; Georges, Antoine

    2014-01-01

    We propose a simple theoretical description of the metal-insulator transition of rare-earth nickelates. The theory involves only two orbitals per nickel site, corresponding to the low-energy anti-bonding $e_g$ states. In the monoclinic insulating state, bond-length disproportionation splits the manifold of $e_g$ bands, corresponding to a modulation of the effective on-site energy. We show that, when subject to a local Coulomb repulsion $U$ and Hund's coupling $J$, the resulting bond-dispropor...

  3. Study on the Critical Metal and Rare Earth Element Occurrences in Sulawesi

    OpenAIRE

    Maulana, Adi

    2015-01-01

    As the development of modern-high technology application is growing, demands of the constant supply of Scandium (Sc) and rare earth elements (REE) as a new green source of energy is increasing. Meanwhile, source of these elements are limited hence new source of these minerals have to be found. Nowadays, Scandium (Sc) is an important metal for electrolyte of solid oxide fuel cells and the demand is likely to increase in the near future. In addition, REE is an important element in the use of pe...

  4. Method development and optimization for the determination of rare earth metal ions by capillary zone electrophoresis

    International Nuclear Information System (INIS)

    The separation of rare earth metal ions by capillary zone electrophoresis in the presence of creatinine as UV-absorbing background electrolyte and the complexing agent 2-hydroxyisobutyric acid was investigated. The separation is mainly influenced by the pH of the buffer and the concentration of the complexing agent. Both parameters were used in a central composite design to determine optimal conditions. After modelling of the migration behaviour, the optimal conditions were selected using a multi-criteria approach in which separation coefficient (α), sensitivity and analysis time were considered. Finally, the method was validated regarding its detection limit, linearity and reproducibility

  5. Organic light emitting diodes the use of rare earth and transition metals

    CERN Document Server

    Pereira, Luiz F R

    2012-01-01

    The Organic Light Emitting Diode (OLED) world is one of the most fascinated fields of research with an enormous technological application market. Besides the actual use in displays, the intrinsic and unique properties of that electroluminescent devices opens new potential applications since efficient lighting to decorative environments, with a very simple incorporation in architectural design. This book addresses the development of OLEDs based on rare-earth and transition-metal complexes, focusing in special the Europium, Terbium, Ruthenium and Rhenium. The idea is to explain how these organic

  6. EVALUATION OF RADIOLOGICAL SIGNIFICANCE OF RARE-EARTH METALS WITH NATURAL RADIOACTIVE ISOTOPES

    Directory of Open Access Journals (Sweden)

    E. P. Lisachenko

    2013-01-01

    Full Text Available Among the rare-earth metals with natural radioactive isotopes, lantan, lutetium and samarium are allocated a relatively high specific activity. The formation of the additional external radiation keep it close to the significance of the materials to the radiation categories of materials with a high content of natural radionuclides of uranium and thorium family, lanthanum value is much less. Samarium, with acceptable toxicology content in the working area, forms the internal exposure to the limits for professionals. The use of these elements in science and industry requires the radiation-hygienic evaluation.

  7. Rare earth metals in North America; Zeldzame aardmetalen in Noord-Amerika

    Energy Technology Data Exchange (ETDEWEB)

    Louzada, K.

    2012-11-15

    The uncertain supply of rare earth metals (Rare Earth Elements) from China for the high tech industry in the U.S. is a barrier for innovation and the high-tech manufacturing industry. Many rare earths are applied in permanent magnets for sustainable energy generation and for energy storage systems in for example electric cars. Also other sectors feel the pressure of shortages. The federal government in the USA and US companies use the opportunity to encourage research into recycling, reducing the use and finding alternatives for rare earths. Canada sees in the uncertain supply and dwindling reserves in the USA and elsewhere an economic opportunity. Canada can start the development of hitherto unprofitable reserves of valuable materials. Both in the USA and Canada, the number of exploration projects in the mining industry has grown significantly [Dutch] De onzekere aanvoer van zeldzame aardmetalen (Rare Earth Elements) uit China voor de hightechindustrie vormt in de VS een hindernis voor innovatie en voor de hightech maakindustrie. Met name in permanente magneten voor duurzame energieopwekking en energieopslagsystemen voor bijvoorbeeld elektrische auto's worden veel zeldzame aardmetalen verwerkt. Ook andere sectoren staan onder druk. De federale overheid en bedrijven in de VS maken van de gelegenheid gebruik om onderzoek naar de recycling, vermindering van het gebruik en alternatieven voor zeldzame aardmetalen te stimuleren. Canada ziet de onzekere aanvoer en slinkende reserves in de VS en elders als een economische kans. Het land kan tot nu toe onrendabele voorkomens van de waardevolle materialen gaan ontwikkelen. Zowel in de VS als in Canada is het aantal exploratieprojecten in de mijnbouw aanzienlijk gegroeid.

  8. Anomalous positive flatband voltage shifts in metal gate stacks containing rare-earth oxide capping layers

    KAUST Repository

    Caraveo-Frescas, J. A.

    2012-03-09

    It is shown that the well-known negative flatband voltage (VFB) shift, induced by rare-earth oxide capping in metal gate stacks, can be completely reversed in the absence of the silicon overlayer. Using TaN metal gates and Gd2O3-doped dielectric, we measure a ∼350 mV negative shift with the Si overlayer present and a ∼110 mV positive shift with the Si overlayer removed. This effect is correlated to a positive change in the average electrostatic potential at the TaN/dielectric interface which originates from an interfacial dipole. The dipole is created by the replacement of interfacial oxygen atoms in the HfO2 lattice with nitrogen atoms from TaN.

  9. Decomposition kinetics of alkaline earth carbonates by integral approximation method Cinética de decomposição de carbonatos de terra alcalina pelo método de aproximação integral

    Directory of Open Access Journals (Sweden)

    S. Maitra

    2008-09-01

    Full Text Available The decomposition kinetics of four synthetic alkaline earth metal carbonates (MgCO3, CaCO3, SrCO3 and BaCO3 was studied under non-isothermal conditions from thermo-gravimetric measurements as compared to. The integral approximation method of Coats and Redfern was used to determine the kinetic parameters for the decomposition processes. The decomposition reactions followed mostly first order kinetics and the activation energy of the decomposition reactions increased with the increase in the molecular mass of the carbonates. The change in enthalpy for the decomposition processes was also calculated and compared with the activation energies for the decomposition processes. The activation energy of the decomposition process for all the carbonates was higher than the enthalpy of the reaction excepting SrCO3.A cinética de decomposição de quatro carbonatos sintéticos de metais de terra alcalina (MgCO3, CaCO3, SrCO3 e BaCO3 foi estudada sob condições não isotérmicas por meio de medidas de termogravimétricas e feita sua comparação. O método de aproximação integral de Coats e Redfern foi usado para determinar os parâmetros cinéticos dos processos de decomposição. As reações de decomposição seguiram principalmente cinética de primeira ordem e a energia de ativação para as reações de decomposição aumentou com o aumento da massa molecular dos carbonatos. A variação na entalpia para os processos de decomposição foi também calculada e comparada com as energias de ativação. A energia de ativação dos processos de decomposição de todos os carbonatos foi maior que a entalpia da reação excepto para SrCO3.

  10. Synthesis and Structures of A Series of Novel Rare Earth Transition Metal Sulfates

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Seven new rare earth transition metal sulfates were synthesized by hydrothermal reactions under conditions slightly above the critical point of water. Their crystal structures were determined from single crystal X-ray data. The compositions of the new compounds can be represented by two general formulae: REM(OH)3(SO4) and RE2M(OH)3(SO4)2F(H2O) with RE=Gd, Tb, Dy; M=Ni, Cu. Three different crystal structure types were found for the formula REM(OH)3(SO4). The structures of the new compounds all feature infinite chains of REOn coordination polyhedra, which are connected to chains of CuO6 or NiO6 octahedra. The limited size range of the rare earth cations observed in these compounds is most likely because of interactions between the octahedral chains and the chains of REOn polyhedra. The new compounds are closely related to the known yttrium transition metal sulfates.

  11. Ab initio calculation of molecular field interactions in rare-earth transition-metal intermetallics (invited)

    Science.gov (United States)

    Brooks, M. S. S.; Gasche, T.; Auluck, S.; Nordström, L.; Severin, L.; Trygg, J.; Johansson, B.

    1991-11-01

    The interaction, KRM, between the rare-earth 4f moment and the transition-metal 3d moments in rare-earth transition-metal intermetallics is shown to depend upon the R-5d moment, which is due to 3d-5d hybridization, and local 4f-5d exchange integrals. Both the R-5d moment and KRM may be calculated ab initio from the local spin-density approximation to density functional theory in self-consistent energy-band calculations with the localized 4f-moments fixed at their Russel-Saunders values. Detailed examples are given for the RFe2 (R=Gd-Yb) series. The exchange integrals are similar to those entering into the density functional version of Stoner theory and their energy dependence must be treated carefully. The calculated local exchange integrals are shown to be related to the molecular fields derived from spin Hamiltonians, hence to the spin-wave spectra. Reasonable agreement with values of the molecular fields extracted from inelastic neutron scattering and high field susceptibility measurements is obtained.

  12. Carbon-14 analysis in solidified product of non-metallic solid waste by a combination of alkaline fusion and gaseous CO2 trapping.

    Science.gov (United States)

    Ishimori, Ken-ichiro; Kameo, Yutaka; Matsue, Hideaki; Ohki, Yoshiyuki; Nakashima, Mikio; Takahashi, Kuniaki

    2011-02-01

    In order to establish a simple and rapid analytical method for (14)C in solidified products made from non-metallic low-level radioactive solid wastes such as concrete, mortar and glass by melting treatment, a radiochemical analysis in combination with alkaline fusion as a sample decomposition method was examined. A simulated solidified product containing (14)C, which was prepared by using nuclear reaction (14)N(n, p)(14)C with thermal neutron irradiation, was analyzed by the present method to compare with a conventional radiochemical analysis using oxidizing combustion. The reproducible and quantitative recovery of (14)C from the simulated solidified product indicates that the present method is more efficient for (14)C analysis in solidified products than the conventional method using oxidizing combustion. PMID:21074999

  13. The Atmospheric Circulation of the Super Earth GJ 1214b: Dependence on Composition and Metallicity

    Science.gov (United States)

    Kataria, T.; Showman, A. P.; Fortney, J. J.; Marley, M. S.; Freedman, R. S.

    2014-04-01

    We present three-dimensional atmospheric circulation models of GJ 1214b, a 2.7 Earth-radius, 6.5 Earth-mass super Earth detected by the MEarth survey. Here we explore the planet's circulation as a function of atmospheric metallicity and atmospheric composition, modeling atmospheres with a low mean molecular weight (MMW; i.e., H2-dominated) and a high MMW (i.e., water- and CO2-dominated). We find that atmospheres with a low MMW have strong day-night temperature variations at pressures above the infrared photosphere that lead to equatorial superrotation. For these atmospheres, the enhancement of atmospheric opacities with increasing metallicity lead to shallower atmospheric heating, larger day-night temperature variations, and hence stronger superrotation. In comparison, atmospheres with a high MMW have larger day-night and equator-to-pole temperature variations than low MMW atmospheres, but differences in opacity structure and energy budget lead to differences in jet structure. The circulation of a water-dominated atmosphere is dominated by equatorial superrotation, while the circulation of a CO2-dominated atmosphere is instead dominated by high-latitude jets. By comparing emergent flux spectra and light curves for 50× solar and water-dominated compositions, we show that observations in emission can break the degeneracy in determining the atmospheric composition of GJ 1214b. The variation in opacity with wavelength for the water-dominated atmosphere leads to large phase variations within water bands and small phase variations outside of water bands. The 50× solar atmosphere, however, yields small variations within water bands and large phase variations at other characteristic wavelengths. These observations would be much less sensitive to clouds, condensates, and hazes than transit observations.

  14. The atmospheric circulation of the super Earth GJ 1214b: Dependence on composition and metallicity

    Energy Technology Data Exchange (ETDEWEB)

    Kataria, T.; Showman, A. P. [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Fortney, J. J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Marley, M. S.; Freedman, R. S., E-mail: tkataria@lpl.arizona.edu [NASA Ames Research Center 245-3, Moffett Field, CA 94035 (United States)

    2014-04-20

    We present three-dimensional atmospheric circulation models of GJ 1214b, a 2.7 Earth-radius, 6.5 Earth-mass super Earth detected by the MEarth survey. Here we explore the planet's circulation as a function of atmospheric metallicity and atmospheric composition, modeling atmospheres with a low mean molecular weight (MMW; i.e., H{sub 2}-dominated) and a high MMW (i.e., water- and CO{sub 2}-dominated). We find that atmospheres with a low MMW have strong day-night temperature variations at pressures above the infrared photosphere that lead to equatorial superrotation. For these atmospheres, the enhancement of atmospheric opacities with increasing metallicity lead to shallower atmospheric heating, larger day-night temperature variations, and hence stronger superrotation. In comparison, atmospheres with a high MMW have larger day-night and equator-to-pole temperature variations than low MMW atmospheres, but differences in opacity structure and energy budget lead to differences in jet structure. The circulation of a water-dominated atmosphere is dominated by equatorial superrotation, while the circulation of a CO{sub 2}-dominated atmosphere is instead dominated by high-latitude jets. By comparing emergent flux spectra and light curves for 50× solar and water-dominated compositions, we show that observations in emission can break the degeneracy in determining the atmospheric composition of GJ 1214b. The variation in opacity with wavelength for the water-dominated atmosphere leads to large phase variations within water bands and small phase variations outside of water bands. The 50× solar atmosphere, however, yields small variations within water bands and large phase variations at other characteristic wavelengths. These observations would be much less sensitive to clouds, condensates, and hazes than transit observations.

  15. The atmospheric circulation of the super Earth GJ 1214b: Dependence on composition and metallicity

    International Nuclear Information System (INIS)

    We present three-dimensional atmospheric circulation models of GJ 1214b, a 2.7 Earth-radius, 6.5 Earth-mass super Earth detected by the MEarth survey. Here we explore the planet's circulation as a function of atmospheric metallicity and atmospheric composition, modeling atmospheres with a low mean molecular weight (MMW; i.e., H2-dominated) and a high MMW (i.e., water- and CO2-dominated). We find that atmospheres with a low MMW have strong day-night temperature variations at pressures above the infrared photosphere that lead to equatorial superrotation. For these atmospheres, the enhancement of atmospheric opacities with increasing metallicity lead to shallower atmospheric heating, larger day-night temperature variations, and hence stronger superrotation. In comparison, atmospheres with a high MMW have larger day-night and equator-to-pole temperature variations than low MMW atmospheres, but differences in opacity structure and energy budget lead to differences in jet structure. The circulation of a water-dominated atmosphere is dominated by equatorial superrotation, while the circulation of a CO2-dominated atmosphere is instead dominated by high-latitude jets. By comparing emergent flux spectra and light curves for 50× solar and water-dominated compositions, we show that observations in emission can break the degeneracy in determining the atmospheric composition of GJ 1214b. The variation in opacity with wavelength for the water-dominated atmosphere leads to large phase variations within water bands and small phase variations outside of water bands. The 50× solar atmosphere, however, yields small variations within water bands and large phase variations at other characteristic wavelengths. These observations would be much less sensitive to clouds, condensates, and hazes than transit observations.

  16. NLO in correlation of phase transition and the alkaline metal environment effect on it in KDP family

    Energy Technology Data Exchange (ETDEWEB)

    Ennaceur, Nasreddine, E-mail: nasr.ennaceur@yahoo.fr [Laboratoire Physico-chimie de l' État Solide, Faculté des Sciences, Université de Sfax, BP 1171, 3000 (Tunisia); Laboratoire de Photonique Quantique et Moléculaire Institut d’Alembert—École Normale Supérieure, 61 avenue du Président Wilson, 94230 Cachan (France); Ledoux-Rak, Isabelle; Singh, Anu [Laboratoire de Photonique Quantique et Moléculaire Institut d’Alembert—École Normale Supérieure, 61 avenue du Président Wilson, 94230 Cachan (France); Mhiri, Tahar; Jarraya, Khaled [Laboratoire Physico-chimie de l' État Solide, Faculté des Sciences, Université de Sfax, BP 1171, 3000 (Tunisia)

    2013-11-01

    The NaH{sub 2}(P{sub 0.48}As{sub 0.52})O{sub 4}·H{sub 2}O (NDAP) compounds allow favorable conditions to the study of evolution of the NLO response during the non-centrosymmetry phases transitions. In fact, NDAP shows the existence of three reversible non-centrosymmetry phase transitions between 272 and 313 K. These experiments are good tools for probing phase transitions and their nature. In this process, several experiments are useful to reveal not only an agreement between the thermal and the quadratic nonlinear (NLO) studies, but also an attempt amongst other things to correlate the probable effect of the alkaline environment of the KDP family on the effectiveness of the NLO intensity.

  17. Alkaline quinone flow battery.

    Science.gov (United States)

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. PMID:26404834

  18. Tidal Downsizing Model. III. Planets from sub-Earths to Brown Dwarfs: structure and metallicity preferences

    CERN Document Server

    Nayakshin, Sergei

    2015-01-01

    We present improved population synthesis calculations in the context of the Tidal Downsizing (TD) hypothesis for planet formation. Our models provide natural explanations and/or quantitative match to exoplanet observations in the following categories: (i) most abundant planets being super-Earths; (ii) cores more massive than $\\sim 5-15 M_\\oplus$ are enveloped by massive metal-rich atmospheres; (iii) the frequency of occurrence of close-in gas giant planets correlates strongly with metallicity of the host star; (iv) no such correlation is found for sub-Neptune planets; (v) presence of massive cores in giant planets; (vi) the composition of gas giant planets is over-abundant in metals compared to their host stars; (vii) this over-abundance decreases with planet's mass, as observed; (viii) a deep valley in the planet mass function between masses of $\\sim 10-20 M_\\oplus$ and $\\sim 100 M_\\oplus$. We provide a number of observational predictions distinguishing the model from Core Accretion: (a) composition of the m...

  19. Structural and magentic characterization of rare earth and transition metal films grown on epitaxial buffer films on semiconductor substrates

    International Nuclear Information System (INIS)

    Structural and magnetic data are presented and discussed for epitaxial films of rare earth metals (Dy, Ho, Er) on LaF3 films on the GaAs(TTT) surface and Fe on Ag films on the GaAs(001) surface. Both systems exhibit unusual structural characteristics which influence the magnetic properties of the metal films. In the case of rare earth epitaxy on LaF3 the authors present evidence for epitaxy across an incommensurate or discommensurate interface. Coherency strain is not transmitted into the metal which behaves much like bulk crystals of the rare earths. In the case of Fe films, tilted epitaxy and long-range coherency strain are confirmed by X- ray diffractometry. Methods of controlling some of these structural effects by modifying the epitaxial structures are presented

  20. Influence of Rare Earth Metals on Microstructure and Inclusions Morphology G17CrMo5-5 Cast Steel

    Directory of Open Access Journals (Sweden)

    Kasińska J.

    2014-10-01

    Full Text Available This paper presents influence of rare earth metals (REM on the microstructure and morphology of non-metallic inclusions of G17CrMo5-5 cast carbon steel The research has been performed on successive industrial melts. Each time about 2000 kg of liquid metal was modified. The REM was in the form of mishmetal of the composition 49, 8% Ce, 21, 8% La, 17, 1% Nd, 5, 5% Pr and 5, 35% the rest of REM. Therareearth metals were put into the ladle during tapping of heat melt from the furnace.

  1. New Rare Earth Element Abundance Distributions for the Sun and Five r-Process-Rich Very Metal-Poor Stars

    CERN Document Server

    Sneden, Christopher; Cowan, John J; Ivans, Inese I; Hartog, Elizabeth A Den

    2009-01-01

    We have derived new abundances of the rare-earth elements Pr, Dy, Tm, Yb, and Lu for the solar photosphere and for five very metal-poor, neutron-capture r-process-rich giant stars. The photospheric values for all five elements are in good agreement with meteoritic abundances. For the low metallicity sample, these abundances have been combined with new Ce abundances from a companion paper, and reconsideration of a few other elements in individual stars, to produce internally-consistent Ba, rare-earth, and Hf (56<= Z <= 72) element distributions. These have been used in a critical comparison between stellar and solar r-process abundance mixes.

  2. Effects of rare earth metals addition on the resistance to pitting corrosion of super duplex stainless steel - Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soon-Tae; Jeon, Soon-Hyeok; Lee, In-Sung [Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Park, Yong-Soo [Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)], E-mail: yongsoop@yonsei.ac.kr

    2010-06-15

    To elucidate the effects of rare earth metals addition on the resistance to pitting corrosion of super duplex stainless steel, a metallographic examination, potentiodynamic and potentiostatic polarization tests, a SEM-EDS and a SAM analysis of inclusion, austenite phase and ferrite phase were conducted. The addition of rare earth metals to the base alloy led to the formation of (Mn, Cr, Si, Al, Ce) oxides and (Mn, Cr, Si, Ce) oxides, which improved the resistance to pitting corrosion and caused a decrease in the preferential interface areas for the initiation of the pitting corrosion.

  3. Ab initio studies of structural, electronic, magnetic and mechanical properties of alkali earth metal silicides

    International Nuclear Information System (INIS)

    Alkali earth metal silicides MSi (M = Mg, Ca, Sr, Ba) are multi-phase compound and exist simultaneously in CrB, CsCl, NaCl or rock salt (RS) and zinc blende (zb) structures. In the CrB and CsCl phases, their behavior is metallic in the non-magnetic (NM) as well as the ferromagnetic (FM) structure. The total spin magnetic moment of these compounds in the zb phase is more than that in the corresponding RS phase; therefore, detailed studies for the zb phase are presented in this paper. This study includes structural, electronic and mechanical properties by using the full potential linear augmented plain wave scheme with local orbitals. Ferromagnetic CaSi, SrSi and BaSi show true half-metallic character. For a better understanding of the half-metallicity in the above-mentioned sp-type compounds, their band structures have been calculated and densities of state plots have been produced. The FM structures are more stable and harder than the corresponding NM structures. The magnetic moment corresponding to equilibrium lattice constants is calculated as 2 µB for FM CaSi, SrSi and BaSi, which are in accordance with the earlier work on the sp-type compounds CaC, SrC and BaC. The FM character changes to the paramagnetic character as the lattice parameter decreases. The general trend is that the values of the elastic constants C11, C12 and C44 increase with increasing hydrostatic pressure

  4. Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions.

    Science.gov (United States)

    Thoi, V Sara; Sun, Yujie; Long, Jeffrey R; Chang, Christopher J

    2013-03-21

    Growing global energy demands and climate change motivate the development of new renewable energy technologies. In this context, water splitting using sustainable energy sources has emerged as an attractive process for carbon-neutral fuel cycles. A key scientific challenge to achieving this overall goal is the invention of new catalysts for the reductive and oxidative conversions of water to hydrogen and oxygen, respectively. This review article will highlight progress in molecular electrochemical approaches for catalytic reduction of protons to hydrogen, focusing on complexes of earth-abundant metals that can function in pure aqueous or mixed aqueous-organic media. The use of water as a reaction medium has dual benefits of maintaining high substrate concentration as well as minimizing the environmental impact from organic additives and by-products. PMID:23034627

  5. Structural order and magnetism of rare-earth metallic amorphous alloys

    International Nuclear Information System (INIS)

    Local symmetry (as evaluated from the electric field gradient tensor) and radial distribution functions (obtained by EXAFS measurement) are determined in a series of amorphous rare-earth base alloys. Local order is found to increase with the extent of heteroatomic interactions. Various magnetic phases (including ferromagnetic, spin-glass, reentrant spin-glass) occur for europium alloys with simple metals (Mg, Zn, Cd, Al, Au, ...). This variety reflects the sensitivity of exchange interactions to the presence of non-s conduction electrons. Asperomagnetic structures are established for the Dy alloys. The crystalline electric field interactions at the Dy3+ ions are interpreted with the help of local symmetry data. Quadratic axial and non-axial crystal field terms are sufficient and necessary in order to account for the hyperfine and bulk experimental results

  6. Low-energy description of the metal-insulator transition in the rare-earth nickelates

    Science.gov (United States)

    Subedi, Alaska; Peil, Oleg E.; Georges, Antoine

    2015-02-01

    We propose a simple theoretical description of the metal-insulator transition of rare-earth nickelates. The theory involves only two orbitals per nickel site, corresponding to the low-energy antibonding eg states. In the monoclinic insulating state, bond-length disproportionation splits the manifold of eg bands, corresponding to a modulation of the effective on-site energy. We show that, when subject to a local Coulomb repulsion U and Hund's coupling J , the resulting bond-disproportionated state is a paramagnetic insulator for a wide range of interaction parameters. Furthermore, we find that when U -3 J is small or negative, a spontaneous instability to bond disproportionation takes place for large enough J . This minimal theory emphasizes that a small or negative charge-transfer energy, a large Hund's coupling, and a strong coupling to bond disproportionation are the key factors underlying the transition. Experimental consequences of this theoretical picture are discussed.

  7. Binary rare earth element-Ni/Co metallic glasses with distinct β-relaxation behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Z. G.; Wang, Z.; Wang, W. H., E-mail: whw@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-10-21

    We report the formation of a series of rare earth element (RE)-Ni/Co binary metallic glasses (MGs) with unusual distinct β-relaxation peak compared with that of most of the reported MGs which usually exhibit as an excess wing or a shoulder. The β-relaxation behavior of RE-Ni/Co MGs is sensitive to the composition and the atomic radii of the RE and can be tuned through changing the fraction of RE-Ni (or Co) atomic pairs. The novel RE-Ni/Co MGs with distinct β-relaxation can serve as model system to investigate the nature of the β-relaxation as well as its relations with other physical and mechanical properties of MGs.

  8. Thermodynamics analysis of the rare earth metals and their alloys with indium in solid state

    International Nuclear Information System (INIS)

    Graphical abstract: Gibbs energies of formation vs. RE atomic numbers in REIn3. Highlights: •Set of experimental values was collected for REIn3 phases. •Thermodynamic functions of formation were calculated at 298 K and 775 K. •Experimental and calculated values were compared. -- Abstract: Nonlinear correlative analyses between thermodynamic and some physico-chemical properties of rare-earth metals (RE) and their alloys with indium are performed for the isostructural phases RE and REIn3. The thermodynamics values (Gibbs energies of formation, enthalpies of formation, and entropies of formation at 298 K and 775 K and standard entropies) of LnIn3 phases are calculated on the basis of calorimetry and potentiometry results. The proposed correlation between physico-chemical and thermodynamic properties agrees for all the isostructural phases REX (X are others elements of the periodic table). The resulting thermodynamic data are recommended for metallurgical handbook

  9. Thermodynamics analysis of the rare earth metals and their alloys with indium in solid state

    Energy Technology Data Exchange (ETDEWEB)

    Vassiliev, V.P., E-mail: valeryvassiliev@yahoo.fr [Chemical Department, Lomonossov University, Moscow 119992 (Russian Federation); Benaissa, Ablazeze [Département des Matériaux, Faculté des Sciences de l’Ingénieur, Université M’hamed Bougara, Boumerdes 35000 (Algeria); Taldrik, A.F. [Institute of Superconductivity and Solid State Physics, Academician Kurchatov 1, Moscow 123098 (Russian Federation)

    2013-09-25

    Graphical abstract: Gibbs energies of formation vs. RE atomic numbers in REIn{sub 3}. Highlights: •Set of experimental values was collected for REIn{sub 3} phases. •Thermodynamic functions of formation were calculated at 298 K and 775 K. •Experimental and calculated values were compared. -- Abstract: Nonlinear correlative analyses between thermodynamic and some physico-chemical properties of rare-earth metals (RE) and their alloys with indium are performed for the isostructural phases RE and REIn{sub 3}. The thermodynamics values (Gibbs energies of formation, enthalpies of formation, and entropies of formation at 298 K and 775 K and standard entropies) of LnIn{sub 3} phases are calculated on the basis of calorimetry and potentiometry results. The proposed correlation between physico-chemical and thermodynamic properties agrees for all the isostructural phases REX (X are others elements of the periodic table). The resulting thermodynamic data are recommended for metallurgical handbook.

  10. Theory of Temperature Dependence of the Magnetization in Rare-Earth-Transition-Metal Alloys

    DEFF Research Database (Denmark)

    Szpunar, B.; Lindgård, Per-Anker

    1977-01-01

    It is shown that the temperature dependence of the magnetic moments and Curie and ferrimagnetic compensation temperatures for Gdl-xTx (T = Co, Ni, and Fe) and Y1-xCox can be accounted for by a simple model assuming a RKKY interaction between the rare-earth moments and the transition-metal pseudo......-spin. The interaction is mediated by an effective alloy medium calculated using the CPA theory and elliptic densities of states. Es wird gezeigt, daß die Temperaturabhängigkeit der magnetischen Momente und die Curie-Temperatur sowie die Temperatur der ferrimagnetischen Kompensation für Gd1-xTx (T = Co, Ni...

  11. Binary rare earth element-Ni/Co metallic glasses with distinct β-relaxation behaviors

    International Nuclear Information System (INIS)

    We report the formation of a series of rare earth element (RE)-Ni/Co binary metallic glasses (MGs) with unusual distinct β-relaxation peak compared with that of most of the reported MGs which usually exhibit as an excess wing or a shoulder. The β-relaxation behavior of RE-Ni/Co MGs is sensitive to the composition and the atomic radii of the RE and can be tuned through changing the fraction of RE-Ni (or Co) atomic pairs. The novel RE-Ni/Co MGs with distinct β-relaxation can serve as model system to investigate the nature of the β-relaxation as well as its relations with other physical and mechanical properties of MGs

  12. New cadmium and rare-earth metal molybdates with scheelite-type structure

    International Nuclear Information System (INIS)

    New cadmium and rare-earth metal molybdates with the formula Cd0.25RE0.50MoO4 (RE = Pr, Nd, Sm-Dy) were synthesized by the solid-state reaction of CdMoO4 with corresponding RE2(MoO4)3. The obtained compounds crystallize in the scheelite-type structure. They were characterized here by XRD, DTA-TG, IR and EPR methods. The Cd0.25RE0.50MoO4 compounds showed solubility in CdMoO4 forming the CdxRE2-2x(MoO4)3-2x (0.50 3+ ions content, that Gd3+ ions can be located at sites of octahedral symmetry, and both temperature and gadolinium content have an influence on local magnetic interaction and relaxation processes of Gd3+ ions.

  13. Influence of selected rare earth metals on structural characteristics of 42CrMo4 steel

    Directory of Open Access Journals (Sweden)

    J. Drápala

    2016-10-01

    Full Text Available The influence of rare earth metals (REM addition on solidification structure of the low-carbon 42CrMo4 steel was investigated. Alloys were prepared by means of a centrifugal casting. The addition of cerium, praseodymium or mischmetal in the steel produced greatly improved solidification structure with a suppressed columnar grain zone, finer grain size in the equiaxed grain zone. The additions occurred in the steel bath in the form of REM oxide and/or oxide-sulphide inclusions and as dissolved REM segregated along with other elements at prior grain boundaries and interdendritic spaces. Microstructure (light microscope, SEM/EDX chemical microanalysis, and TOF-SIMS analysis – mapping of elements in the structure of alloys were obtained.

  14. Behavior and Distribution of Heavy Metals Including Rare Earth Elements, Thorium, and Uranium in Sludge from Industry Water Treatment Plant and Recovery Method of Metals by Biosurfactants Application

    OpenAIRE

    Lidi Gao; Naoki Kano; Yuichi Sato; Chong Li; Shuang Zhang; Hiroshi Imaizumi

    2012-01-01

    In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs), thorium (Th), and uranium (U) in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil. In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni) from the polluted sludge was studied with biosurfactant (saponin and sophorolipid...

  15. Diurnal variations in, and influences on, concentrations of particulate and dissolved arsenic and metals in the mildly alkaline Wallkill River, New Jersey, USA

    Science.gov (United States)

    Barringer, J.L.; Wilson, T.P.; Szabo, Z.; Bonin, J.L.; Fischer, J.M.; Smith, N.P.

    2008-01-01

    Diurnal variations in particulate and dissolved As and metal concentrations were observed in mildly alkaline water from a wetlands site on the Wallkill River in northwestern New Jersey. The site, underlain by glacial sediments over dolomite bedrock, is 10 km downstream from a mined area of the Franklin Marble, host to Zn ores, also As and Mn minerals. In mid-September 2005, maxima and minima in dissolved-oxygen-concentration and pH, typically caused by photosynthesis and respiration, occurred at 2000 and 0800 hours. Concentrations of dissolved As (1.52-1.95 ??g/L) peaked at dusk (2000 hours), whereas dissolved Mn and Zn concentrations (76.5-96.9 and 8.55-12.8 ??g/L, respectively) were lowest at dusk and peaked at 1000 hours. These opposing cycles probably reflect sorption and desorption of As (an anion), and Mn and Zn (cations) as pH varied throughout the 24-h period. Doubly-peaked cycles of B, Cl, SO4, and nutrients also were observed; these may result from upstream discharges of septic-system effluent. Both recoverable amd particulate Al, Fe, Mn, and Zn concentrations peaked between 0200 and 0600 hours. The particulate metals cycle, with perturbations at 0400 hours, may be influenced by biological activity. ?? 2007 Springer-Verlag.

  16. Application of nano-sized nanoporous zinc 2-methylimidazole metal-organic framework for electrocatalytic oxidation of methanol in alkaline solution

    Science.gov (United States)

    Samadi-Maybodi, Abdolraouf; Ghasemi, Shahram; Ghaffari-Rad, Hamid

    2016-01-01

    In this work, a novel non-platinum group metals (non-PGM) catalyst based on modified zinc 2-methylimidazole metal-organic framework (ZIF-8) is proposed and used for electrooxidation of methanol. Nano-sized particles of nonporous ZIF-8 are synthesized at room temperature using a simple template-free method. The synthesized ZIF-8 nanoparticles are characterized by X-ray diffraction, scanning electronic microscopy and nitrogen adsorption-desorption techniques. In order to decrease the overvoltage of methanol oxidation on carbon paste electrode (CPE), nickel species doped ZIF-8 modified carbon paste electrode (Ni/ZIF-8CPE) is fabricated as a modified electrode. Electrochemical techniques such as cyclic voltammetry and chronoamperometry are used to investigate the electrocatalytic activity of Ni/ZIF-8CPE toward methanol oxidation in alkaline solution. Cyclic voltammetry results show that oxidation current is considerably increased using Ni/ZIF-8CPE in comparison with unmodified CPE. Catalytic rate constant of methanol oxidation on Ni/ZIF-8CPE is obtained using chronoamperometric studies. Besides the good catalytic activity of the modified electrode toward methanol oxidation, it has other advantages such as simple preparation, ease of operation, good stability and low cost, which can be promising in the field of preparation of non-PGM electrocatalysts for application in fuel cells.

  17. Role of surface oxygen-to-metal ratio on the wettability of rare-earth oxides

    International Nuclear Information System (INIS)

    Hydrophobic surfaces that are robust can have widespread applications in drop-wise condensation, anti-corrosion, and anti-icing. Recently, it was shown that the class of ceramics comprising the lanthanide series rare-earth oxides (REOs) is intrinsically hydrophobic. The unique electronic structure of the rare-earth metal atom inhibits hydrogen bonding with interfacial water molecules resulting in a hydrophobic hydration structure where the surface oxygen atoms are the only hydrogen bonding sites. Hence, the presence of excess surface oxygen can lead to increased hydrogen bonding and thereby reduce hydrophobicity of REOs. Herein, we demonstrate how surface stoichiometry and surface relaxations can impact wetting properties of REOs. Using X-ray Photoelectron Spectroscopy and wetting measurements, we show that freshly sputtered ceria is hydrophilic due to excess surface oxygen (shown to have an O/Ce ratio of ∼3 and a water contact angle of ∼15°), which when relaxed in a clean, ultra-high vacuum environment isolated from airborne contaminants reaches close to stoichiometric O/Ce ratio (∼2.2) and becomes hydrophobic (contact angle of ∼104°). Further, we show that airborne hydrocarbon contaminants do not exclusively impact the wetting properties of REOs, and that relaxed REOs are intrinsically hydrophobic. This study provides insight into the role of surface relaxation on the wettability of REOs

  18. Role of surface oxygen-to-metal ratio on the wettability of rare-earth oxides

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Sami; Varanasi, Kripa K., E-mail: varanasi@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Azimi, Gisele [Department of Chemical Engineering and Applied Chemistry and Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E5 (Canada); Yildiz, Bilge [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-02-09

    Hydrophobic surfaces that are robust can have widespread applications in drop-wise condensation, anti-corrosion, and anti-icing. Recently, it was shown that the class of ceramics comprising the lanthanide series rare-earth oxides (REOs) is intrinsically hydrophobic. The unique electronic structure of the rare-earth metal atom inhibits hydrogen bonding with interfacial water molecules resulting in a hydrophobic hydration structure where the surface oxygen atoms are the only hydrogen bonding sites. Hence, the presence of excess surface oxygen can lead to increased hydrogen bonding and thereby reduce hydrophobicity of REOs. Herein, we demonstrate how surface stoichiometry and surface relaxations can impact wetting properties of REOs. Using X-ray Photoelectron Spectroscopy and wetting measurements, we show that freshly sputtered ceria is hydrophilic due to excess surface oxygen (shown to have an O/Ce ratio of ∼3 and a water contact angle of ∼15°), which when relaxed in a clean, ultra-high vacuum environment isolated from airborne contaminants reaches close to stoichiometric O/Ce ratio (∼2.2) and becomes hydrophobic (contact angle of ∼104°). Further, we show that airborne hydrocarbon contaminants do not exclusively impact the wetting properties of REOs, and that relaxed REOs are intrinsically hydrophobic. This study provides insight into the role of surface relaxation on the wettability of REOs.

  19. Role of surface oxygen-to-metal ratio on the wettability of rare-earth oxides

    Science.gov (United States)

    Khan, Sami; Azimi, Gisele; Yildiz, Bilge; Varanasi, Kripa K.

    2015-02-01

    Hydrophobic surfaces that are robust can have widespread applications in drop-wise condensation, anti-corrosion, and anti-icing. Recently, it was shown that the class of ceramics comprising the lanthanide series rare-earth oxides (REOs) is intrinsically hydrophobic. The unique electronic structure of the rare-earth metal atom inhibits hydrogen bonding with interfacial water molecules resulting in a hydrophobic hydration structure where the surface oxygen atoms are the only hydrogen bonding sites. Hence, the presence of excess surface oxygen can lead to increased hydrogen bonding and thereby reduce hydrophobicity of REOs. Herein, we demonstrate how surface stoichiometry and surface relaxations can impact wetting properties of REOs. Using X-ray Photoelectron Spectroscopy and wetting measurements, we show that freshly sputtered ceria is hydrophilic due to excess surface oxygen (shown to have an O/Ce ratio of ˜3 and a water contact angle of ˜15°), which when relaxed in a clean, ultra-high vacuum environment isolated from airborne contaminants reaches close to stoichiometric O/Ce ratio (˜2.2) and becomes hydrophobic (contact angle of ˜104°). Further, we show that airborne hydrocarbon contaminants do not exclusively impact the wetting properties of REOs, and that relaxed REOs are intrinsically hydrophobic. This study provides insight into the role of surface relaxation on the wettability of REOs.

  20. Synthesis of organolanthanides by metal addition on insaturated substrates in ether and reactivity

    International Nuclear Information System (INIS)

    The aim of the study is the extension to rare earths of the synthesis, well known for alkaline or alkaline earth metals, by direct metal addition to insaturated substrates in ether and where the metal is directly bound to carbon. A definition of formation conditions and affinity rules is attempled, both with substrates (essentially aromatic hydrocarbons and ketones) and with metals: Yb, Sm, Ce, Nd and others. The nature of obtained products by reaction of electrophiles on synthetised organometallics, allows investigations specific reactivity and structure. Potential catalytic transformation of olefins is precised

  1. Extraction of trivalent rare-earth metal nitrates by solutions of tributyl phosphate and diisooctylmethylphosphonate in kerosene

    International Nuclear Information System (INIS)

    Isotherms of extraction of trivalent rare-earth metal nitrates in the series lanthanum-lutetium, yttrium by 0.5-2.5 M solutions of tri-n-buty1 phosphate and diisooctyl methylphosphonate in kerosene at 298.15 K, pH 2 are presented. The influence of the ionic strength of aqueous phase and extractant concentration on the concentration extraction constants in the case of formation of metal(III) trisolvates in organic phase is given by equation

  2. The Importance of Rare-Earth Additions in Zr-Based AB2 Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2016-07-01

    Full Text Available Effects of substitutions of rare earth (RE elements (Y, La, Ce, and Nd to the Zr-based AB2 multi-phase metal hydride (MH alloys on the structure, gaseous phase hydrogen storage (H-storage, and electrochemical properties were studied and compared. Solubilities of the RE atoms in the main Laves phases (C14 and C15 are very low, and therefore the main contributions of the RE additives are through the formation of the RENi phase and change in TiNi phase abundance. Both the RENi and TiNi phases are found to facilitate the bulk diffusion of hydrogen but impede the surface reaction. The former is very effective in improving the activation behaviors. −40 °C performances of the Ce-doped alloys are slightly better than the Nd-doped alloys but not as good as those of the La-doped alloys, which gained the improvement through a different mechanism. While the improvement in ultra-low-temperature performance of the Ce-containing alloys can be associated with a larger amount of metallic Ni-clusters embedded in the surface oxide, the improvement in the La-containing alloys originates from the clean alloy/oxide interface as shown in an earlier transmission electron microscopy study. Overall, the substitution of 1 at% Ce to partially replace Zr gives the best electrochemical performances (capacity, rate, and activation and is recommended for all the AB2 MH alloys for electrochemical applications.

  3. Bis(imidazolin-2-iminato) rare earth metal complexes: synthesis, structural characterization, and catalytic application.

    Science.gov (United States)

    Trambitas, Alexandra G; Melcher, Daniel; Hartenstein, Larissa; Roesky, Peter W; Daniliuc, Constantin; Jones, Peter G; Tamm, Matthias

    2012-06-18

    Reaction of anhydrous rare earth metal halides MCl(3) with 2 equiv of 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-imine (Im(Dipp)NH) and 2 equiv of trimethylsilylmethyl lithium (Me(3)SiCH(2)Li) in THF furnished the complexes [(Im(Dipp)N)(2)MCl(THF)(n)] (M = Sc, Y, Lu). The molecular structures of all three compounds were established by single-crystal X-ray diffraction analyses. The coordination spheres around the pentacoordinate metal atoms are best described as trigonal bipyramids. Reaction of YbI(2) with 2 equiv of LiCH(2)SiMe(3) and 2 equiv of the imino ligand Im(Dipp)NH in tetrahydrofuran did not result in a divalent complex, but instead the Yb(III) complex [(Im(Dipp)N)(2)YbI(THF)(2)] was obtained and structurally characterized. Treatment of [(Im(Dipp)N)(2)MCl(THF)(n)] with 1 equiv of LiCH(2)SiMe(3) resulted in the formation of [(Im(Dipp)N)(2)M(CH(2)SiMe(3))(THF)(n)]. The coordination arrangement of these compounds in the solid state at the metal atoms is similar to that found for the starting materials, although the introduction of the neosilyl ligand induces a significantly greater distortion from the ideal trigonal-bipyramidal geometry. [(Im(Dipp)N)(2)Y(CH(2)SiMe(3))(THF)(2)] was used as precatalyst in the intramolecular hydroamination/cyclization reaction of various terminal aminoalkenes and of one aminoalkyne. The complex showed high catalytic activity and selectivity. A comparison with the previously reported dialkyl yttrium complex [(Im(Dipp)N)Y(CH(2)SiMe(3))(2)(THF)(3)] showed no clear tendency in terms of activity. PMID:22662762

  4. From highly polluted Zn-rich acid mine drainage to non-metallic waters: Implementation of a multi-step alkaline passive treatment system to remediate metal pollution

    OpenAIRE

    Macías, Francisco; Caraballo, Manuel A.; Roetting, Tobias Stefan; Pérez López, Rafael; Nieto, José Miguel; Ayora Ibáñez, Carlos

    2012-01-01

    Complete metal removal from highly-polluted acid mine drainage was attained by the use of a pilot multistep passive remediation system. The remediation strategy employed can conceptually be subdivided into a first section where the complete trivalent metal removal was achieved by the employment of a previously tested limestone-based passive remediation technology followed by the use of a novel reactive substrate (caustic magnesia powder dispersed in a wood shavings matrix) obtaining a total d...

  5. Crystal Fields in Dilute Rare-Earth Metals Obtained from Magnetization Measurements on Dilute Rare-Earth Alloys

    DEFF Research Database (Denmark)

    Touborg, P.; Høg, J.

    1974-01-01

    Crystal field parameters of Tb, Dy, and Er in Sc, Y, and Lu are summarized. These parameters are obtained from magnetization measurements on dilute single crystals, and successfully checked by a number of different methods. The crystal field parameters vary unpredictably with the rare-earth solute...

  6. Metallic complexes with glyphosate: a review

    International Nuclear Information System (INIS)

    We present studies involving metallic ions and the herbicide glyphosate. The metallic complexes of Cu(II), Zn(II), Mn(II), Ni(II), Cd(II), Pb(II), Cr(III), Fe(III), Co(III), ammonium, sodium, Ag(I), alkaline earth metals and of some lanthanides ions are described. The complexes are discussed in terms of their synthesis, identification, stability and structural properties, based on data from the current literature. (author)

  7. Quantum mechanical study of molecular collisions at ultra-low energy: applications to alkali and alkaline-earth systems; Etude quantique de collisions moleculaires a ultra-basse energie: applications aux alcalins et alcalino-terreux

    Energy Technology Data Exchange (ETDEWEB)

    Quemener, G

    2006-10-15

    In order to investigate the collisional processes which occur during the formation of molecular Bose-Einstein condensates, a time-independent quantum mechanical formalism, based on hyperspherical coordinates, has been applied to the study of atom-diatom dynamics at ultra-low energies. We present theoretical results for three alkali systems, each composed of lithium, sodium or potassium atoms, and for an alkaline-earth system composed of calcium atoms. We also study dynamics at large and positive atom-atom scattering length. Evidence for the suppression of inelastic processes in a fermionic system is given, as well as a linear relation between the atom-diatom scattering length and the atom-atom scattering length. (author)

  8. Researches on the electrolysis of metal oxides dissolved in boric anhydride or in melt borates. New methods of preparation of amorphous boron, borides and some metals

    International Nuclear Information System (INIS)

    This research thesis reports the investigation of the electrolysis of alkaline borates, alkaline earth borates and magnesium borate, and the investigation of mixtures containing a metal oxide dissolved in a bath formed by a tetraborate and a fluoride. The author more particularly studies the chemical products separated at the cathode level, i.e. boron (more or less pure), borates and other metals (zinc, tungsten, molybdenum)

  9. Synthesis, crystal and band structures, and optical properties of a new lanthanide-alkaline earth tellurium(IV) oxide: La2Ba(Te3O8)(TeO3)2

    International Nuclear Information System (INIS)

    A new quaternary lanthanide alkaline-earth tellurium(IV) oxide, La2Ba(Te3O8)(TeO3)2, has been prepared by the solid-state reaction and structurally characterized. The compound crystallizes in monoclinic space group C2/c with a=19.119(3), b=5.9923(5), c=13.2970(19) A, β=107.646(8)o, V=1451.7(3) A3 and Z=4. La2Ba(Te3O8)(TeO3)2 features a 3D network structure in which the cationic [La2Ba(TeO3)2]4+ layers are cross-linked by Te3O84- anions. Both band structure calculation by the DFT method and optical diffuse reflectance spectrum measurements indicate that La2Ba(Te3O8)(TeO3)2 is a wide band-gap semiconductor. - Graphical abstract: A new quaternary lanthanide alkaline-earth tellurium(IV) oxide, La2Ba(Te3O8)(TeO3)2, has been prepared by the solid-state reaction and structurally characterized. The structure of La2Ba(Te3O8)(TeO3)2 is 3D network in which the cationic [La2Ba(TeO3)2]4+ layers are cross-linked by Te3O84- anions. Both band structure calculation by the DFT method and optical diffuse reflectance spectrum measurements indicate that La2Ba(Te3O8)(TeO3)2 is a wide band-gap semiconductor

  10. Speciation of humic acid and some transition metal ions in presence of each other under alkaline pH conditions

    International Nuclear Information System (INIS)

    Humic acid, the major natural organic matter of marine sediments, is extracted and its interactions with Zn, Mn, Co, Fe and Hg are studied. All these elements are found to form cationic, anionic and neutral complexes with humic acid in the pH range of 7 to 13. A novel feature of the work is that the humic acid itself undergoes change in its ionic character in presence of trace elements in the entire pH range studied. The rates of formation of anionic and neutral species for Zn, Mn, Co, Fe and Hg are different for each metal ion. Iron forms predominantly anionic species and the best fit lines of anionic and neutral species are practically parallel to each other. The best fit line of anionic and neutral species have positive slopes in case of Mn and Co. In case of Hg, the best fit line of the anionic species has positive slope and that of neutral species has a negative slope. Thus the abundance and type of species have an interdependence on metal ion, types of species and pH. (author)

  11. Recyclable Earth-Abundant Metal Nanoparticle Catalysts for Selective Transfer Hydrogenation of Levulinic Acid to Produce γ-Valerolactone.

    Science.gov (United States)

    Gowda, Ravikumar R; Chen, Eugene Y-X

    2016-01-01

    Nanoparticles (NPs) derived from earth-abundant metal(0) carbonyls catalyze conversion of bio-derived levulinic acid into γ-valerolactone in up to 93% isolated yield. This sustainable and green route uses non-precious metal catalysts and can be performed in aqueous or ethanol solution without using hydrogen gas as the hydrogen source. Generation of metal NPs using microwave irradiation greatly enhances the rate of the conversion, enables the use of ethanol as both solvent and hydrogen source without forming the undesired ethyl levulinate, and affords recyclable polymer-stabilized NPs. PMID:26735911

  12. Metal sulfide and rare-earth phosphate nanostructures and methods of making same

    Science.gov (United States)

    Wong, Stanislaus; Zhang, Fen

    2014-05-13

    The present invention provides a method of producing a crystalline metal sulfide nanostructure. The metal is a transitional metal or a Group IV metal. In the method, a porous membrane is placed between a metal precursor solution and a sulfur precursor solution. The metal cations of the metal precursor solution and sulfur ions of the sulfur precursor solution react, thereby producing a crystalline metal sulfide nanostructure.

  13. A Complete Design of a Rare Earth Metal-Free Permanent Magnet Generator

    Directory of Open Access Journals (Sweden)

    Petter Eklund

    2014-05-01

    Full Text Available The price of rare-earth metals used in neodymium-iron-boron (NdFeB permanent magnets (PMs has fluctuated greatly recently. Replacing the NdFeB PMs with more abundant ferrite PMs will avoid the cost insecurity and insecurity of supply. Ferrite PMs have lower performance than NdFeB PMs and for similar performance more PM material has to be used, requiring more support structure. Flux concentration is also necessary, for example, by a spoke-type rotor. In this paper the rotor of a 12 kW NdFeB PM generator was redesigned to use ferrite PMs, reusing the existing stator and experimental setup. Finite element simulations were used to calculate both electromagnetic and mechanical properties of the design. Focus was on mechanical design and feasibility of construction. The result was a design of a ferrite PM rotor to be used with the old stator with some small changes to the generator support structure. The new generator has the same output power at a slightly lower voltage level. It was concluded that it is possible to use the same stator with either a NdFeB PM rotor or a ferrite PM rotor. A ferrite PM generator might require a larger diameter than a NdFeB generator to generate the same voltage.

  14. OBSERVATIONAL EVIDENCE FOR A METAL-RICH ATMOSPHERE ON THE SUPER-EARTH GJ1214b

    International Nuclear Information System (INIS)

    We report observations of two consecutive transits of the warm super-Earth exoplanet GJ 1214b at 3.6 and 4.5 μm with the Infrared Array Camera instrument on board the Spitzer Space Telescope. The two transit light curves allow for the determination of the transit parameters for this system. We find these parameters to be consistent with the previously determined values and no evidence for transit timing variations. The main investigation consists of measuring the transit depths in each bandpass to constrain the planet's transmission spectrum. Fixing the system scale and impact parameters, we measure Rp /R* = 0.1176+0.0008-0.0009 and 0.1163+0.0010-0.0008 at 3.6 and 4.5 μm, respectively. Combining these data with the previously reported MEarth Observatory measurements in the red optical allows us to rule out a cloud-free, solar composition (i.e., hydrogen-dominated) atmosphere at 4.5σ confidence. This independently confirms a recent finding that was based on a measurement of the planet's transmission spectrum using the Very Large Telescope (VLT). The Spitzer, MEarth, and VLT observations together yield a remarkably flat transmission spectrum over the large wavelength domain spanned by the data. Consequently, cloud-free atmospheric models require more than 30% metals (assumed to be in the form of H2O) by volume to be consistent with all the observations.

  15. Features of an intermetallic n-ZrNiSn semiconductor heavily doped with atoms of rare-earth metals

    International Nuclear Information System (INIS)

    The crystal structure, density of electron states, electron transport, and magnetic characteristics of an intermetallic n-ZrNiSn semiconductor heavily doped with atoms of rare-earth metals (R) have been studied in the ranges of temperatures 1.5-400 K, concentrations of rare-earth metal 9.5 x 1019-9.5 x 1021 cm-3, and magnetic fields H ≤ 15 T. The regions of existence of Zr1-xRxNiSn solid solutions are determined, criteria for solubility of atoms of rare-earth metals in ZrNiSn and for the insulator-metal transition are formulated, and the nature of 'a priori doping' of ZrNiSn is determined as a result of redistribution of Zr and Ni atoms at the crystallographic sites of Zr. Correlation between the concentration of the R impurity, the amplitude of modulation of the bands of continuous energies, and the degree of occupation of potential wells of small-scale fluctuations with charge carriers is established. The results are discussed in the context of the Shklovskii-Efros model of a heavily doped and compensated semiconductor.

  16. Development of pyrometallurgical partitioning technology for TRU in high level radioactive wastes. Recovery of rare-earth elements from molten salt by reductive extraction and electrorefining

    International Nuclear Information System (INIS)

    A simulation study was carried out to demonstrate the pyrometallurgical partitioning process of high level wastes generated in PUREX reprocessing. The mixed molten salt of alkali, alkaline-earth, rare-earth, noble metal, and other transition metal chlorides was prepared and the rare-earth elements were used as the simulating material of actinides. In a first step, the rare-earth elements were transferred from the salt phase to the liquid cadmium phase by the reductive extraction. After the salt phase containing the alkali and alkaline-earth elements was replaced with LiCl-KCl eutectic salt, the rare-earth elements were recovered from the liquid cadmium anode to the solid cathode by the electrorefining. The nobler than rare-earth elements remained in the cadmium anode. (author)

  17. Chromatographic separation and inductively coupled plasma atomic emission spectrometric determination of the rare earth metals contained in terbium

    International Nuclear Information System (INIS)

    The chromatographic separation of rare earth elements (REEs), prior to inductively coupled plasma atomic emission spectrometric (ICP-AES) measurements, using a column packed with 2-ethylexyl hydrogen 2-ethyl-hexylphosphonate (PC-88A)-loaded polymer resin in order to exclude spectral interferences was examined. A favourable separation of trace amounts of metals (La, Nd and Sm) from a large amount of terbium was achieved simply by elution with dilute hydrochloric acid. Trace lanthanum and neodymium in metallic terbium were determined by separation of the analyte ions from the matrix element followed by ICP-AES analysis. (author). 16 refs.; 5 figs.; 2 tabs

  18. New Rare Earth Element Abundance Distributions for the Sun and Five r-Process-Rich Very Metal-Poor Stars

    OpenAIRE

    Sneden, Christopher; Lawler, James E.; Cowan, John J.; Ivans, Inese I.; Hartog, Elizabeth A. Den

    2009-01-01

    We have derived new abundances of the rare-earth elements Pr, Dy, Tm, Yb, and Lu for the solar photosphere and for five very metal-poor, neutron-capture r-process-rich giant stars. The photospheric values for all five elements are in good agreement with meteoritic abundances. For the low metallicity sample, these abundances have been combined with new Ce abundances from a companion paper, and reconsideration of a few other elements in individual stars, to produce internally-consistent Ba, rar...

  19. Metal nitride cluster as a template to tune the electronic and magnetic properties of rare-earth metal containing endohedral fullerenes

    International Nuclear Information System (INIS)

    Rare-earth metal containing endohedral fullerenes have attracted much attention due to the feasibility of encaging metal atom, atoms or cluster inside of carbon cages. By switching the metal atom or cluster entrapped inside of the carbon cage the physical and chemical properties of the fullerene compounds can be tuned. The understanding of magnetic and electrochemical properties of endohedral fullerenes plays an essential role in fundamental scientific researches and potential applications in materials science. In this thesis, synthesizing novel rare-earth metal containing endohedral fullerene structures, studying the properties of these isolated endohedral fullerenes and the strategies of tuning the electronic and magnetic properties of endohedral fullerenes were introduced. The DC-arc discharging synthesis of different lanthanide metal-based (Ho, Ce and Pr) mixed metal nitride clusterfullerenes was achieved. Those rare-earth metal containing endohedral fullerenes were isolated by multi-step HPLC. The isolated samples were characterized by spectroscopic techniques included UV-vis-NIR, FTIR, Raman, LDI-TOF mass spectrometry, NMR and electrochemistry. The Ho-based mixed metal nitride clusterfullerenes HoxM3-xN rate at C80 (M= Sc, Lu, Y; x=1, 2) were synthesized by ''reactive gas atmosphere'' method or ''selective organic solid'' route. The isolated samples were characterized by LDI-TOF mass spectrometry, UV-vis-NIR, FTIR, Raman and NMR spectroscopy. The 13C NMR spectroscopic studies demonstrated exceptional NMR behaviors that resulted from switching the second metal inside of the mixed metal nitride cluster HoxM3-xN from Sc to Lu and further to Y. The LnSc2N rate at C80 (Ln= Ce, Pr, Nd, Tb, Dy, Ho, Lu) MMNCFs were characterized by 13C and 45Sc NMR study respectively. According to Bleaney's theory and Reilley method, the separation of δPC and δcon from δpara was achieved by the primary 13C and 45Sc NMR analysis of LnSc2N rate at C80 (I). The good linear fitting (R

  20. Metal nitride cluster as a template to tune the electronic and magnetic properties of rare-earth metal containing endohedral fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yang

    2013-10-16

    Rare-earth metal containing endohedral fullerenes have attracted much attention due to the feasibility of encaging metal atom, atoms or cluster inside of carbon cages. By switching the metal atom or cluster entrapped inside of the carbon cage the physical and chemical properties of the fullerene compounds can be tuned. The understanding of magnetic and electrochemical properties of endohedral fullerenes plays an essential role in fundamental scientific researches and potential applications in materials science. In this thesis, synthesizing novel rare-earth metal containing endohedral fullerene structures, studying the properties of these isolated endohedral fullerenes and the strategies of tuning the electronic and magnetic properties of endohedral fullerenes were introduced. The DC-arc discharging synthesis of different lanthanide metal-based (Ho, Ce and Pr) mixed metal nitride clusterfullerenes was achieved. Those rare-earth metal containing endohedral fullerenes were isolated by multi-step HPLC. The isolated samples were characterized by spectroscopic techniques included UV-vis-NIR, FTIR, Raman, LDI-TOF mass spectrometry, NMR and electrochemistry. The Ho-based mixed metal nitride clusterfullerenes Ho{sub x}M{sub 3-x}N rate at C{sub 80} (M= Sc, Lu, Y; x=1, 2) were synthesized by ''reactive gas atmosphere'' method or ''selective organic solid'' route. The isolated samples were characterized by LDI-TOF mass spectrometry, UV-vis-NIR, FTIR, Raman and NMR spectroscopy. The {sup 13}C NMR spectroscopic studies demonstrated exceptional NMR behaviors that resulted from switching the second metal inside of the mixed metal nitride cluster Ho{sub x}M{sub 3-x}N from Sc to Lu and further to Y. The LnSc{sub 2}N rate at C{sub 80} (Ln= Ce, Pr, Nd, Tb, Dy, Ho, Lu) MMNCFs were characterized by {sup 13}C and {sup 45}Sc NMR study respectively. According to Bleaney's theory and Reilley method, the separation of δ{sup PC} and δ{sup con