WorldWideScience

Sample records for alkaline chemical injury

  1. The effect of alkaline agents on retention of EOR chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, P.B.

    1991-07-01

    This report summarizes a literature survey on how alkaline agents reduce losses of surfactants and polymers in oil recovery by chemical injection. Data are reviewed for crude sulfonates, clean anionic surfactants, nonionic surfactants, and anionic and nonionic polymers. The role of mineral chemistry is briefly described. Specific effects of various alkaline anions are discussed. Investigations needed to improve the design of alkaline-surfactant-polymer floods are suggested. 62 refs., 28 figs., 6 tabs.

  2. Chemical degradation mechanisms of membranes for alkaline membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Yoong-Kee [National Institute of Advanced Industrial Science and Technology, Umezono 1-1-1, Tsukuba (Japan); Henson, Neil J.; Kim, Yu Seung [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2015-12-31

    Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane should enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions.

  3. Chemical degradation of fluoroelastomer in an alkaline environment

    DEFF Research Database (Denmark)

    Mitra, S.; Ghanbari-Siahkali, A.; Kingshott, P.;

    2004-01-01

    bond formation on the rubber backbone which accelerates the degradation even further with longer exposure. Furthermore, the cross-link sites of the exposed rubber samples are also found to be vulnerable to hydrolytic attack under the studied chemical environment as evidenced by the decrease in cross......We have investigated the time-dependent chemical degradation of a fluoroelastomer, FKM (Viton((R)) A), in an alkaline environment (10% NaOH, 80 degreesC). Optical microscopy and SEM analysis reveal that degradation starts with surface roughness right from the earliest stage of exposure (e.g., 1...... of this surface degradation is found to be strong enough to affect the bulk mechanical properties. The molecular mechanisms of the surface chemical degradation were determined using surface analysis (XPS and ATR-FTIR) where the initial degradation was found to proceed via dehydrofluorination. This leads to double...

  4. Alkaline phosphatase levels in diagnostic peritoneal lavage fluid as a predictor of hollow visceral injury.

    Science.gov (United States)

    Jaffin, J H; Ochsner, M G; Cole, F J; Rozycki, G S; Kass, M; Champion, H R

    1993-06-01

    Isolated injuries to hollow viscera may result in equivocal diagnostic peritoneal lavage (DPL) findings. Small bowel injuries cause alkaline phosphatase (AP) levels to increase in DPL effluent. The goal of this study was to better define the role of AP levels in the evaluation of the injured abdomen. We prospectively measured AP levels in 672 patients undergoing DPL. These were retrospectively compared with the clinical findings. All 12 patients with small bowel injuries and three of four with large bowel injuries had an AP level > 10 IU/L. There was one patient with an AP level > 10 IU/L without clinically significant intra-abdominal injury. An AP level > 10 IU/L in the DPL effluent predicted injury requiring laparotomy with a specificity of 99.8% and a sensitivity of 94.7%. We recommend using AP levels only in the management of patients with equivocal findings on DPL who would otherwise not undergo laparotomy. This selective use of AP levels will improve the probability of early diagnosis of bowel injury without increasing the cost of care.

  5. Martian alkaline basites chemically resemble basic rocks of the Lovozero alkaline massif, Kola peninsula

    Science.gov (United States)

    Kochemasov, G.

    The comparative wave planetology [1, 5] successfully overcomes the most principal martian test having now analyses of alkaline rocks from Columbia Hills [2, 3, 4]. This kind of rocks was predicted earlier on basis of the wave paradigm having stated that "the higher planetary relief range - the higher density difference between lithologies composing hypsometrically (tectonically) contrasting blocks [5]. This paradigm declares that "celestial bodies are dichotomic"(Theorem 1), "celestial bodies are sectoral" (Theorem 2), "celestial bodies are granular"(Theorem 3), "angular momenta of different level blocks tend to be equal" (Theorem 4)[1, 5]. Mars is a typical terrestrial planet but the farthest from Sun and thus with the smallest tide effects. Nevertheless it has the highest relief range and seems to be most distorted (ellipsoid in shape) and broken by deep fissures. The wave approach explains this by a warping action of standing waves of 4 ortho- and diagonal directions - they are the longest and highest in the martian case. These interfering warping waves caused by the elliptic keplerian orbits implying periodically changing accelerations and inertia-gravity forces produce inevitable tectonic dichotomy (the fundamental wave 1 long 2πR), sectoring (wave 2, πR, and other overtones), granulation. A granule size depends on an orbital frequency: the higher frequency the smaller granule. The Earth's granule, as a scale, is πR/4 (see it in NASA's PIA04159), Venus ` πR/6, Mercury's πR/16, Mars' πR/2 (the sizes are strictly tied to orb. fr.). Along with the granule sizes increase relief ranges ( Mercury ˜5 km, Venus 14, Earth 20, Mars ˜30) and compositional (density) difference between lowland and highland lithologies [5]. The lowland compositions become Fericher and denser: enstatite (Mercury), Mg-basalt (Venus), tholeiite (Earth), Fe-basalt (Mars). The highland compositions get less dense, lighter: anorthosite, alkaline basalt, andesite and conditional "albitite

  6. Planarization mechanism of alkaline copper CMP slurry based on chemical mechanical kinetics

    Science.gov (United States)

    Shengli, Wang; Kangda, Yin; Xiang, Li; Hongwei, Yue; Yunling, Liu

    2013-08-01

    The planarization mechanism of alkaline copper slurry is studied in the chemical mechanical polishing (CMP) process from the perspective of chemical mechanical kinetics. Different from the international dominant acidic copper slurry, the copper slurry used in this research adopted the way of alkaline technology based on complexation. According to the passivation property of copper in alkaline conditions, the protection of copper film at the concave position on a copper pattern wafer surface can be achieved without the corrosion inhibitors such as benzotriazole (BTA), by which the problems caused by BTA can be avoided. Through the experiments and theories research, the chemical mechanical kinetics theory of copper removal in alkaline CMP conditions was proposed. Based on the chemical mechanical kinetics theory, the planarization mechanism of alkaline copper slurry was established. In alkaline CMP conditions, the complexation reaction between chelating agent and copper ions needs to break through the reaction barrier. The kinetic energy at the concave position should be lower than the complexation reaction barrier, which is the key to achieve planarization.

  7. Planarization mechanism of alkaline copper CMP slurry based on chemical mechanical kinetics

    Institute of Scientific and Technical Information of China (English)

    Wang Shengli; Yin Kangda; Li Xiang; Yue Hongwei; Liu Yunling

    2013-01-01

    The planarization mechanism of alkaline copper slurry is studied in the chemical mechanical polishing (CMP) process from the perspective of chemical mechanical kinetics.Different from the international dominant acidic copper slurry,the copper slurry used in this research adopted the way of alkaline technology based on complexation.According to the passivation property of copper in alkaline conditions,the protection of copper film at the concave position on a copper pattern wafer surface can be achieved without the corrosion inhibitors such as benzotriazole (BTA),by which the problems caused by BTA can be avoided.Through the experiments and theories research,the chemical mechanical kinetics theory of copper removal in alkaline CMP conditions was proposed.Based on the chemical mechanical kinetics theory,the planarization mechanism of alkaline copper slurry was established.In alkaline CMP conditions,the complexation reaction between chelating agent and copper ions needs to break through the reaction barrier.The kinetic energy at the concave position should be lower than the complexation reaction barrier,which is the key to achieve planarization.

  8. Chemical nature of alkaline polyphosphate boundary film at heated rubbing surfaces

    Science.gov (United States)

    Wan, Shanhong; Tieu, A. Kiet; Zhu, Qiang; Zhu, Hongtao; Cui, Shaogang; Mitchell, David R. G.; Kong, Charlie; Cowie, Bruce; Denman, John A.; Liu, Rong

    2016-05-01

    Alkaline polyphosphate has been demonstrated to be able to reduce significant wear and friction of sliding interfaces under heavy loads (>1 GPa) and elevated temperature (800 °C and above) conditions, e.g. hot metal manufacturing. The chemical composition and fine structure of polyphosphate lubricating film is not well understood as well as the role of alkaline elements within the reaction film at hot rubbing surface. This work makes use of the coupling surface analytical techniques on the alkaline polyphosphate tribofilm, XANES, TOF-SIMS and FIB/TEM. The data show the composition in gradient distribution and trilaminar structure of tribofilm: a shorter chain phosphate overlying a long chain polyphosphate that adheres onto oxide steel base through a short chain phosphate. The chemical hardness model well explains the anti-abrasive mechanism of alkaline polyphosphate at elevated temperatures and also predicts a depolymerisation and simultaneous cross-linking of the polyphosphate glass. The role of alkaline elements in the lubrication mechanism is especially explained. This work firstly serves as a basis for a detailed study of alkaline polyphosphate tribofilm at temperature over 600 °C.

  9. Acute and subacute chemical-induced lung injuries: HRCT findings

    Energy Technology Data Exchange (ETDEWEB)

    Akira, Masanori, E-mail: Akira@kch.hosp.go.jp [Department of Radiology, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-cho, Kita-ku, Sakai City, Osaka 591-8555 (Japan); Suganuma, Narufumi [Department of Environmental Medicine, Kochi Medical School (Japan)

    2014-08-15

    Lung injury caused by chemicals includes bronchitis, bronchiolitis, chemical pneumonitis, pulmonary edema, acute respiratory distress syndrome, organizing pneumonia, hypersensitivity pneumonitis, acute eosinophilic pneumonia, and sarcoid-like granulomatous lung disease. Each chemical induces variable pathophysiology and the situation resembles to the drug induced lung disease. The HRCT features are variable and nonspecific, however HRCT may be useful in the evaluation of the lung injuries and so we should know about HRCT features of lung parenchymal abnormalities caused by chemicals.

  10. Feasibility study of an alkaline-based chemical treatment for the purification of polyhydroxybutyrate produced by a mixed enriched culture

    NARCIS (Netherlands)

    Jiang, Y.; Mikova, G.; Kleerebezem, R.; Van der Wielen, L.A.M.; Cuellar Soares, M.C.

    2015-01-01

    This study focused on investigating the feasibility of purifying polyhydroxybutyrate (PHB) from mixed culture biomass by alkaline-based chemical treatment. The PHB-containing biomass was enriched on acetate under non-sterile conditions. Alkaline treatment (0.2 M NaOH) together with surfactant SDS (0

  11. Physical and chemical injuries to eyes and eyelids.

    Science.gov (United States)

    Pargament, Jonathan M; Armenia, Joseph; Nerad, Jeffrey A

    2015-01-01

    Ocular and periocular injuries are common reasons for emergency department visits. In fact, an estimated 2 million Americans suffer ocular injuries each year. Evaluation and treatment of physical and chemical injuries to the eyes and eyelids begin with a systematic examination. Visual acuity and pupillary reaction should be assessed first. Evaluation of the eye should precede examination of the periocular structures due to the potential for causing further damage to a full-thickness ocular injury with manipulation of the eyelids. Physical injuries to the eyes and periocular structures include lacerations, abrasions, foreign bodies, and open globe injuries and can range from minor irritation to visual devastation. Chemical injuries can be divided into alkali and acid injuries. Alkali burns are more common, due to the prevalent use of alkali substances in industrial and home cleaning applications, and usually result in more serious injuries. Definitive care of chemical injuries ranges from topical antibiotics to full-thickness skin grafts with the goal of preventing cicatricial scarring and exposure of the ocular surface. Familiarity with the various types of ocular and periocular injuries is important for all medical professionals and is critical to providing the most appropriate management.

  12. High Temperature and Pressure Alkaline Electrochemical Reactor for Conversion of Power to Chemicals

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos

    2016-01-01

    Moving away from fossil fuels requires harvesting more and more intermittent renewable energy resources and establishing a sustainable system for the production of chemicals. This brings forward the need for efficient large scale energy storage technologies 1-3 and technologies for the conversion...... densities. This work will provide an overview of our efforts to develop components of such high temperature alkaline electrochemical reactors for different applications. Low-cost large-scale production methods have been successfully employed for the production of ceramic diaphragms and full cells...... of renewable electricity to chemicals. Electrochemical reactors can play a crucial role in this endeavor, since they can efficiently and reversibly transform electricity to high-value chemicals, and thus serve as energy storage and recovery devices for balancing the grid, while offering a means...

  13. Alkaline peroxide pulping of oil palm empty fruit bunch by variation of chemical strength

    Science.gov (United States)

    Dermawan, Yunita Megasari; Ghazali, Arniza; Daud, Wan Rosli Wan; Lazin, Mohd Azli Khairil Mat

    2012-09-01

    Papers produced from oil palm empty fruit bunches (EFB) via Alkaline Peroxide Pulping (APP) was preceded by three main steps; dewaxing of EFB, alkaline peroxide (AP) impregnation into EFB and refining of biomass to generate pulp. The experiment was carried by varying chemical level and number of impregnation stages. For 2:2.5% AP level, two-stage impregnation improved hand sheets tear index by 45%, 164% boost in tensile index, 26% enhancement in zero span index and more than 5% in burst index. By applying 8:10% AP level, significant improvements were gained at the third and fourth stages of AP impregnation. Although there was no significant change in hand sheet strength with multiple impregnation for 4:5% AP level, improvement in brightness of hand sheets was apparent, analogous to the effect of increasing AP level. The found paper properties development show that alkaline peroxide pulping of EFB could be adapted to various targeted properties by adjustment of AP level and impregnation stages.

  14. Chemical degradation of an uncrosslinked pure fluororubber in an alkaline environment

    DEFF Research Database (Denmark)

    Mitra, S.; Ghanbari-Siahkali, A.; Kingshott, P.

    2004-01-01

    after prolonged exposure (e.g., 12 weeks). The molecular mechanisms of the chemical degradation processes at the surface were evaluated with X-ray photoelectron spectroscopy and attenuated total reflectance/Fourier transform infrared spectroscopy. The results revealed that the early degradation......The chemical degradation of an uncrosslinked pure fluoroelastomer (FKM; Viton A) in an alkaline environment (10% NaOH and 80 degreesC) was investigated. Scanning electron microscopy images showed that on a microscopic level, significant degradation substantially increased the surface roughness...... proceeded primarily via dehydrofluorination reactions, creating double bonds in the rubber backbone. This further accelerated the degradation after longer exposure times. Furthermore, the resulting double bonds underwent nucleophilic attack by an aqueous NaOH solution to form several oxygenated species. All...

  15. Ab Initio Calculation of 19F NMR Chemical Shielding for Alkaline-earth-metal Fluorides

    Institute of Scientific and Technical Information of China (English)

    CAI,Shu-Hui(蔡淑惠); CHEN,Zhong,(陈忠); LU,Xin(吕鑫); CHEN,Zhi-Wei(陈志伟); WAN,Hui-Lin(万惠霖)

    2001-01-01

    Gauge-independent atomic orbital (GIAO) method atHartree-Fock (HF) and density functional theory (DFr) lev-els,respectively,was employed to calculate 19F NMR chemi-cal shieldings of solid state alkaline-earth-metal fluorides MF2 (M = Mg,Ca,Sr,Ba).The results show that,although thecalculated19F chemical shieldings tend to be larger than the experinental values,they have a fairly good linear relation-ship with the observed ones.The calculated results based on different combinations of basis sets show that the B3LYP (ahybrid of DFT with HF) predictions are greatly superior tothe I-IF predictions.When a basis set of metal atom with ef- fecfive core potential (ECP) has well representation of valencewavefunction,especially wavefuncfion of d component,andproper definition of core electron nmnher,it can be applied toobtain 19F chemical shielding which is dose to that of all-elec-tron calculation.Tne variation of 19F chemical shielding of al-kaline-earth-metal fluorides correlates well with the latticefactor A/R2.``

  16. An advanced alkaline slurry for barrier chemical mechanical planarization on patterned wafers

    Institute of Scientific and Technical Information of China (English)

    Wang Chenwei; Liu Yuling; Niu Xinhuan; Tian Jianying; Gao Baohong; Zhang Xiaoqiang

    2012-01-01

    We have developed an alkaline barrier slurry (named FA/O slurry) for barrier removal and evaluated its chemical mechanical planarization (CMP) performance through comparison with a commercially developed barrier slurry.The FA/O slurry consists of colloidal silica,which is a complexing and an oxidizing agent,and does not have any inhibitors.It was found that the surface roughness of copper blanket wafers polished by the FA/O slurry was lower than the commercial barrier slurry,demonstrating that it leads to a better surface quality.In addition,the dishing and electrical tests also showed that the patterned wafers have a lower dishing value and sheet resistance as compared to the commercial barrier slurry.By comparison,the FA/O slurry demonstrates good planarization performance and can be used for barrier CMP.

  17. Emergency management of chemical weapons injuries.

    Science.gov (United States)

    Anderson, Peter D

    2012-02-01

    The potential for chemical weapons to be used in terrorism is a real possibility. Classes of chemical weapons include nerve agents, vesicants (blister agents), choking agents, incapacitating agents, riot control agents, blood agents, and toxic industrial chemicals. The nerve agents work by blocking the actions of acetylcholinesterase leading to a cholinergic syndrome. Nerve agents include sarin, tabun, VX, cyclosarin, and soman. The vesicants include sulfur mustard and lewisite. The vesicants produce blisters and also damage the upper airways. Choking agents include phosgene and chlorine gas. Choking agents cause pulmonary edema. Incapacitating agents include fentanyl and its derivatives and adamsite. Riot control agents include Mace and pepper spray. Blood agents include cyanide. The mechanism of toxicity for cyanide is blocking oxidative phosphorylation. Toxic industrial chemicals include agents such as formaldehyde, hydrofluoric acid, and ammonia.

  18. Suitable alkaline for graphene peeling grown on metallic catalysts using chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Karamat, S., E-mail: shumailakaramat@gmail.com [Department of Physics, Middle East Technical University, Ankara 06800 (Turkey); COMSATS Institute of Information Technology, Islamabad 54000 (Pakistan); Sonuşen, S. [Sabancı Üniversitesi (SUNUM), İstanbul 34956 (Turkey); Çelik, Ü. [Nanomagnetics Instruments, Ankara (Turkey); Uysallı, Y. [Department of Physics, Middle East Technical University, Ankara 06800 (Turkey); Oral, A., E-mail: orahmet@metu.edu.tr [Department of Physics, Middle East Technical University, Ankara 06800 (Turkey)

    2016-04-15

    Graphical abstract: - Highlights: • Graphene layers were grown on Pt and Cu foil via ambient pressure chemical vapor deposition method and for the delicate removal of graphene from metal catalysts, electrolysis method was used by using different alkaline (sodium hydroxide, potassium hydroxide, lithium hydroxide and barium hydroxide). • The delamination speed of PMMA/graphene stack was higher during the KOH and LiOH electrolysis as compare to NaOH and Ba(OH){sub 2}. Ba(OH){sub 2} is not advisable because of the residues left on the graphene surface which would further trapped in between graphene and SiO{sub 2}/Si surface after transfer. The average peeling time in case of Pt electrode is ∼6 min for KOH and LiOH and ∼15 min for NaOH and Ba(OH){sub 2}. • Electrolysis method also works for the Cu catalyst. The peeling of graphene was faster in the case of Cu foil due to small size of bubbles which moves faster between the stack and the electrode surface. The average peeling time was ∼3–5 min. • XPS analysis clearly showed that the Pt substrates can be re-used again. Graphene layer was transferred to SiO{sub 2}/Si substrates and to the flexible substrate by using the same peeling method. - Abstract: In chemical vapor deposition, the higher growth temperature roughens the surface of the metal catalyst and a delicate method is necessary for the transfer of graphene from metal catalyst to the desired substrates. In this work, we grow graphene on Pt and Cu foil via ambient pressure chemical vapor deposition (AP-CVD) method and further alkaline water electrolysis was used to peel off graphene from the metallic catalyst. We used different electrolytes i.e., sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH) and barium hydroxide Ba(OH){sub 2} for electrolysis, hydrogen bubbles evolved at the Pt cathode (graphene/Pt/PMMA stack) and as a result graphene layer peeled off from the substrate without damage. The peeling time for KOH and Li

  19. Suitable alkaline for graphene peeling grown on metallic catalysts using chemical vapor deposition

    Science.gov (United States)

    Karamat, S.; Sonuşen, S.; Çelik, Ü.; Uysallı, Y.; Oral, A.

    2016-04-01

    In chemical vapor deposition, the higher growth temperature roughens the surface of the metal catalyst and a delicate method is necessary for the transfer of graphene from metal catalyst to the desired substrates. In this work, we grow graphene on Pt and Cu foil via ambient pressure chemical vapor deposition (AP-CVD) method and further alkaline water electrolysis was used to peel off graphene from the metallic catalyst. We used different electrolytes i.e., sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH) and barium hydroxide Ba(OH)2 for electrolysis, hydrogen bubbles evolved at the Pt cathode (graphene/Pt/PMMA stack) and as a result graphene layer peeled off from the substrate without damage. The peeling time for KOH and LiOH was ∼6 min and for NaOH and Ba(OH)2 it was ∼15 min. KOH and LiOH peeled off graphene very efficiently as compared to NaOH and Ba(OH)2 from the Pt electrode. In case of copper, the peeling time is ∼3-5 min. Different characterizations like optical microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy were done to analyze the as grown and transferred graphene samples.

  20. Optimization of Gas-Water Absorption Equilibrium of Carbon Dioxide for Algae Liquors: Selection of Alkaline Buffering Chemicals

    Directory of Open Access Journals (Sweden)

    Wen-Hsi Cheng

    2016-01-01

    Full Text Available The apparent Henry’s Law constant (H′, which quantifies the concentration partition of a gas-liquid equilibrium of carbon dioxide (CO2, is used to optimize the absorption of carbon dioxide in algae liquors. The values of H′ were examined under various conditions: in water at different temperatures (27 and 37°C, in alkaline buffering chemicals (sodium hydroxide (NaOH and sodium carbonate (Na2CO3, and in aquatic algae plants (Egeria densa and Anubias barteri nana. The optimal conditions for CO2 absorption can be obtained by controlling the aqueous pH values (around weak alkalinity with pH 9-10 using sodium carbonate as an alkaline buffering chemical at 27°C, yielding exact H′ values of around 16.3–21.3 atm/M, which were obtained from the mean gaseous CO2 concentration of 803 ppm and the total aqueous carbonate concentration of 4.085 mg/L. The experimental results reveal that an alkaline buffering compound, sodium carbonate, can be added to water to maintain a constant aqueous alkalinity enough for the fixation of carbon dioxide by the photosynthesis of green algae in a photobioreactor.

  1. Chemical reactivity of {alpha}-isosaccharinic acid in heterogeneous alkaline systems

    Energy Technology Data Exchange (ETDEWEB)

    Glaus, M. A.; Loon, L. R. Van

    2009-05-15

    Cellulose degradation under alkaline conditions is of relevance for the mobility of many radionuclides in the near-field of a cementitious repository for radioactive waste, because metal-binding degradation products may be formed. Among these, {alpha}- isosaccharinic acid ({alpha}-ISA) is the strongest complexant. The prediction of the equilibrium concentration of {alpha}-ISA in cement pore water is therefore an important step in the assessment of the influence of cellulose degradation products on the speciation of radionuclides in such environments. The present report focuses on possible chemical transformation reactions of {alpha}-ISA in heterogeneous alkaline model systems containing either Ca(OH){sub 2} or crushed hardened cement paste. The transformation reactions were monitored by measuring the concentration of {alpha}-ISA by high performance anion exchange chromatography and the formation of reaction products by high performance ion exclusion chromatography. The overall loss of organic species from solution was monitored by measuring the concentration of non-purgeable organic carbon. The reactions were examined in diluted and compacted suspensions, at either 25 {sup o}C or 90 {sup o}C, and under anaerobic atmospheres obtained by various methods. It was found that {alpha}-ISA was transformed under all conditions tested to some extent. Reaction products, such as glycolate, formate, lactate and acetate, all compounds with less complexing strength than {alpha}-ISA, were detected. The amount of reaction products identified by the chromatographic technique applied was {approx} 50 % of the amount of {alpha}-ISA reacted. Sorption of {alpha}-ISA to Ca(OH){sub 2} contributed only to a minor extent to the loss of {alpha}-ISA from the solution phase. As the most important conclusion of the present work it was demonstrated that the presence of oxidising agents had a distinctive influence on the turnover of {alpha}-ISA. Under aerobic conditions {alpha}-ISA was

  2. Comparison of the chemical properties of wheat straw and beech fibers following alkaline wet oxidation and laccase treatments

    DEFF Research Database (Denmark)

    Schmidt, A. S.; Mallon, S.; Thomsen, Anne Belinda;

    2002-01-01

    Wheat straw (Triticum aestivum) and beech (Fagus sylvatica), were used to evaluate the effects of two pre-treatment processes (alkaline wet oxidation and enzyme treatment with laccase) on lignocellulosic materials for applications in particleboards and fiberboards. Wheat straw and beech fibers...... reacted differently in the two processes. The chemical composition changed little following enzyme treatment. After alkaline wet oxidation, fibers enriched in cellulose were obtained. With both materials, almost all hemicellulose (80%) together with a large portion of the lignin were solubilised...... by alkaline wet oxidation, but essentially all cellulose remained in the solid fraction. Following enzyme treatment most material remained as a solid. For wheat straw, reaction with acetic anhydride indicated that both treatments resulted in more hydroxyl groups being accessible for reaction. The enzyme...

  3. A facile chemical route for recovery of high quality zinc oxide nanoparticles from spent alkaline batteries.

    Science.gov (United States)

    Deep, Akash; Sharma, Amit L; Mohanta, Girish C; Kumar, Parveen; Kim, Ki-Hyun

    2016-05-01

    Recycling of spent domestic batteries has gained a great environmental significance. In the present research, we propose a new and simple technique for the recovery of high-purity zinc oxide nanoparticles from the electrode waste of spent alkaline Zn-MnO2 batteries. The electrode material was collected by the manual dismantling and mixed with 5M HCl for reaction with a phosphine oxide reagent Cyanex 923® at 250°C for 30min. The desired ZnO nanoparticles were restored from the Zn-Cyanex 923 complex through an ethanolic precipitation step. The recovered particle product with about 5nm diameter exhibited fluorescent properties (emission peak at 400nm) when excited by UV radiation (excitation energy of 300nm). Thus, the proposed technique offered a simple and efficient route for recovering high purity ZnO nanoparticles from spent alkaline batteries.

  4. Physico-Chemical, Biological and Therapeutic Characteristics of Electrolyzed Reduced Alkaline Water (ERAW

    Directory of Open Access Journals (Sweden)

    Marc Henry

    2013-12-01

    Full Text Available The consumption of alkaline reduced water produced by domestic electrolysis devices was approved in Japan in 1965 by the Ministry of Health, Labour and Welfare for the cure of gastro-intestinal disorders. Today, these devices are freely available in several countries and can be easily purchased without reserve. The commercial information included with the device recommends the consumption of 1–1.5 L of water per day, not only for gastro-intestinal disorders but also for numerous other illnesses such as diabetes, cancer, inflammation, etc. Academic research in Japan on this subject has been undergoing since 1990 only but has established that the active ingredient is dissolved dihydrogen that eliminates the free radical HO• in vivo. In addition, it was demonstrated that degradation of the electrodes during functioning of the device releases very reactive nanoparticles of platinum, the toxicity of which has not yet been clearly proven. This report recommends alerting health authorities of the uncontrolled availability of these devices used as health products, but which generate drug substances and should therefore be sold according to regulatory requirements.

  5. Study on Chemical Components of Alkaline Nitrobenzene Oxidation from Plantation Woods

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper deals with the chemical components and the chemical structure of lignin of Chinese fir and Poplar I-214 from plantationforest. The results revealed that the contents ofchemical component in heart wood and sapwood were almost the same except ethanol-benzene extract both in Chinese fir and in Poplar I-214, The contents of ash, holocellulose, α -cellulose, pentosan, ethanol-benzene extract and cold-water extract in Poplar I-214 were higher than that in Chinesefir, The content of lignin in Poplar...

  6. [Chemical structure of bioethanol lignin by low-temperature alkaline catalytic hydrothermal treatment].

    Science.gov (United States)

    Liu, Xiao-Huan; Zhang, Ming-Ming; Wang, Ji-Fu; Xu, Yu-Zhi; Wang, Chun-Peng; Chu, Fu-Xiang

    2013-11-01

    In order to improve the reaction activity of bioethanol lignin, we investigated the activation of bioethanol lignin by a hydrothermal treatment method. Catalytic hydrothermal treatment of bioethanol lignin was performed at 180 degrees C for 3 h in the presence of alkaline solutions (NaOH, Na2 CO3, KOH and K2 CO3), the change in bioethanol lignin structures was studied comparatively by FTIR, 1H NMR,GPC and elemental analysis. FTIR spectra showed that after alkali hydrothermal treatment, the band at 1 375 cm(-1) attributed to the phenolic hydroxyl groups increased, and the band intensity at 1 116 cm(-1) attributed to the ether bond decreased. On the other hand, the band at 1 597 and 1 511 cm(-1) attributed to aromatic skeletal vibration remained almost unchanged. 1H NMR spectra showed that after alkali hydrothermal treatment, the number of aromatic methoxyl is increased, and based on the increment of the content of phenolic hydroxyl, the catalytic activity can be ranked as follows: KOH > NaOH > K2 CO3 > Na2 CO3. Especially for KOH, the increment of the content of phenolic hydroxyl was 170%, because the ion radius of potassium cation is bigger than sodium cation, so the potassium cations more easily formed cation adducts with lignin. GPC results showed that the molecular weight of alkali hydrothermal treatment lignin decreased and the molecular distribution got wider. Elemental analysis showed that hydrothermal treatment could break the interlinkage between lignin and protein, which can reduce the protein content and increase the purity of lignin, meanwhile, the content of O and H both decreased,while C fell, indicating that the bioethanol lignin had suffered a decarbonylation reaction. This is the most benefit of the lignin as a substitute for phenol.

  7. Effect of alkalinity on nitrite accumulation in treatment of coal chemical industry wastewater using moving bed biofilm reactor.

    Science.gov (United States)

    Hou, Baolin; Han, Hongjun; Jia, Shengyong; Zhuang, Haifeng; Zhao, Qian; Xu, Peng

    2014-05-01

    Nitrogen removal via nitrite (the nitrite pathway) is more suitable for carbon-limited industrial wastewater. Partial nitrification to nitrite is the primary step to achieve nitrogen removal via nitrite. The effect of alkalinity on nitrite accumulation in a continuous process was investigated by progressively increasing the alkalinity dosage ratio (amount of alkalinity to ammonia ratio, mol/mol). There is a close relationship among alkalinity, pH and the state of matter present in aqueous solution. When alkalinity was insufficient (compared to the theoretical alkalinity amount), ammonia removal efficiency increased first and then decreased at each alkalinity dosage ratio, with an abrupt removal efficiency peak. Generally, ammonia removal efficiency rose with increasing alkalinity dosage ratio. Ammonia removal efficiency reached to 88% from 23% when alkalinity addition was sufficient. Nitrite accumulation could be achieved by inhibiting nitrite oxidizing bacteria (NOB) by free ammonia (FA) in the early period and free nitrous acid in the later period of nitrification when alkalinity was not adequate. Only FA worked to inhibit the activity of NOB when alkalinity addition was sufficient.

  8. HUMAN AMNIOTIC MEMBRANE GRAFTING: A BOON IN OCULAR CHEMICAL INJURIES

    Directory of Open Access Journals (Sweden)

    Shashikala

    2013-03-01

    Full Text Available INTRODUCTION: Amniotic membrane is the innermost layer of the f etal membranes. It has a stromal matrix, a collagen layer, and an overlying basement membrane with a single layer of epithelium. (1 Amniotic membrane has unique properties including an ti-adhesive effects, bacterio-static properties, wound protection, pain redu ction, and epithelialisation effects. Another characteristic of amniotic membrane is the lack of imunogenicity. (2 Amniotic membranes have been used as a dressing to promote he aling of chronic ulcers of the leg and as a biological dressing for burned skin and skin woun ds. (3, 4 It has also been used in surgical reconstruction of artificial vagina, for repairing o mphaloceles, and to prevent tissue adhesion in surgeries of the abdomen, head, or pelvis. (5, 6 Amniotic membrane has been successfully used in ocular conditions like persistent epithelial defects (7, pterygium, (8 Symblepharon (9 and for ocular surface reconstruction. (10, 11 The purpose of this study was to evaluate the use of cryo- preserved Human amniotic membrane graft( HAMT, with or without limbal autograft transplantation (LAT in patients with previous and fr esh chemical eye injuries respectively. Institutional ethical committee approval was obtained .

  9. Chemical equilibria model of strontium-90 adsorption and transport in soil in response to dynamic alkaline conditions.

    Science.gov (United States)

    Spalding, B P; Spalding, I R

    2001-01-15

    Strontium-90 is a major hazardous contaminant of radioactive wastewater and its processing sludges at many Department of Energy (DOE) facilities. In the past, such contaminated wastewater and sludge have been disposed in soil seepage pits, lagoons, or cribs often under highly perturbed alkaline conditions (pH > 12) where 90Sr solubility is low and its adsorption to surrounding soil is high. As natural weathering returns these soils to near-neutral or slightly acidic conditions, the adsorbed and precipitated calcium and magnesium phases, in which 90Sr is carried, change significantly in both nature and amounts. No comprehensive computational method has been formulated previously to quantitatively simulate the dynamics of 90Sr in the soil-groundwater environment under such dynamic and wide-ranging conditions. A computational code, the Hydrologic Utility Model for Demonstrating Integrated Nuclear Geochemical Environmental Responses (HUMDINGER), was composed to describe the changing equilibria of 90Sr in soil based on its causative chemical reactions including soil buffering, pH-dependent cation-exchange capacity, cation selectivity, and the precipitation/dissolution of calcium carbonate, calcium hydroxide, and magnesium hydroxide in response to leaching groundwater characteristics including pH, acid-neutralizing capacity, dissolved cations, and inorganic carbonate species. The code includes a simulation of one-dimensional transport of 90Sr through a soil column as a series of soil mixing cells where the equilibrium soluble output from one cell is applied to the next cell. Unamended soil leaching and highly alkaline soil treatments, including potassium hydroxide, sodium silicate, and sodium aluminate, were simulated and compared with experimental findings using large (10 kg) soil columns that were leached with 90Sr-contaminated groundwater after treatment. HUMDINGER's simulations were in good agreement with dynamic experimental observations of soil exchange capacity

  10. THE EFFECT OF CHARGE AND CHEMICAL STRUCTURE OF CATIONIC SURFACTANTS ON LASER TONER AGGLOMERATION UNDER ALKALINE PULPING CONDITIONS

    Directory of Open Access Journals (Sweden)

    Jie Jiang,

    2012-02-01

    Full Text Available Laboratory-scale agglomeration experiments followed by image analysis were used to evaluate the effectiveness of different cationic surfactants on the 1-octadecanol agglomeration of a negatively charged laser toner. Various types of surfactants with different geometric structures were investigated. It was found that this toner became agglomerated under neutral pulping conditions, but it did not agglomerate under alkaline conditions at all. A small amount of the cationic surfactant compensated for the agglomeration disruption caused by the negative surface charge of the toner and made this toner agglomerate very well. These cationic surfactants consist of a chemical structure of C12 to C18 saturated alkyl hydrophobic chains. The positive charge of these surfactants played the major role in alleviating agglomeration disruption. Additionally, an extra phenol group on these surfactants contributed only minor advantages for toner agglomeration in the presence of 1-octadecanol. The best co-agglomeration performance occurred within a very narrow range of similar total positive charge densities based on the total toner weight. It was also found that this positive charge effect could not be applied to the chemical compounds of high molecular weight polymeric materials.

  11. The frequency of chemical injuries of the eye in a tertiary referral centre

    Directory of Open Access Journals (Sweden)

    Radosavljević Aleksandra

    2013-01-01

    Full Text Available Introduction. Chemical injuries can occur under various circumstances and may cause serious damage to the anterior segment of the eye. Objective. The aim of the study was to analyze the frequency of chemical injuries treated in a tertiary referral centre. Methods. The medical records of consecutive patients admitted for the chemical injury of the eye to the Clinic for Eye Diseases in Belgrade between January 1999 and December 2008 were retrospectively analyzed in order to obtain data about proportions of injuries, demographical characteristics of patients, circumstances under which injuries happened, the chemicals involved, the severity of injury according to the Roper-Hall classification and the length of hospitalization. Results. Out of a total of 60,868 hospitalized patients, 148 (2.43/1,000 were treated for chemical injury of the eye, with the highest incidence observed during summer months. Men were over five times more often affected (84.5% and most of the injured individuals belonged to the working-age population (mean age 44.4±16.2 years. The most common causative agents were alkalis (73.0%, while acids (18.2% and other substances (8.8% were less common. None of 35.1% patients for whom data were obtained used any protection while handling the chemicals. The vast majority of injuries were graded as grade II (31.1% and III (42.6% and the most severe ones were caused by alkalis. An average length of hospitalization was 17.7±24.1 days and correlated with the severity of injury. Conclusion. Chemical injuries are relatively common problem in the Emergency Ophthalmology. Constant education and usage of adequate protective equipment should be advised in order to prevent serious complications.

  12. Physical and chemical injury as causes of sudden cardiac death: the forensic forum.

    Science.gov (United States)

    Riddick, L

    1994-01-01

    Physical and chemical injuries account for the largest number of sudden, unexpected cardiac deaths in persons between the ages of 1 and 44 years. Blunt-force injuries, lacerations, avulsions, and contusions of the heart and great vessels sustained during motor vehicle crashes constitute the most prevalent type of lethal physical trauma to the cardiovascular system. The second most prevalent type of trauma is from penetrating and perforating wounds inflicted by firearms. The mechanisms of these injuries are discussed, with emphasis placed on those factors contributing to lethality. The three most prevalent chemicals associated with sudden cardiac death-ethyl alcohol, cocaine, and tricylic antidepressants-are briefly mentioned.

  13. Chemical injuries from assaults: An increasing trend in a developing country

    Directory of Open Access Journals (Sweden)

    Olaitan Peter

    2008-01-01

    Full Text Available Objective: This paper describes chemical injuries, which presented to us and were managed at a burn unit in Nigeria. The purpose of this paper is to highlight the etiologies of these injuries, the extent of the injuries as well as to suggest possible ways to prevent chemical injuries in our environment. Materials and Methods: We carried out a retrospective review of chemical burns treated at our center. Our sources of information were the burn unit admission registers, case notes of the patients and operation registers. The results were collated and then analyzed. Results: Twenty eight patients presented with chemical burn injuries during the study period between January 2000 and December 2003, constituting 5.7% of all patients with burns treated within that period. Seventeen (60.7% of the patients were males while 11 (29.3% were females with a mean age of 20.6 years. The injuries were sustained from assault in 21 (75%, armed robbery attacks in five (17.8% and suicide attempts in two (7.1%. The agents were usually unknown. Late presentation was observed in all the patients. Raw eggs, palm oil, gentian violet and engine oil were the substances applied immediately after the injuries. Complications observed included septicemia, respiratory distress, blindness, renal failure, mentosternal contractures, ectropion, axillary contractures, hypertrophic scars, keloids and skin depigmentation. Conclusion: Chemical burn injuries are mainly due to assaults in Nigeria and are usually extensive and presented late. Education of the people and penalty for any offender will reduce the current spate of such injuries.

  14. Characterization of chemically induced liver injuries using gene co-expression modules.

    Directory of Open Access Journals (Sweden)

    Gregory J Tawa

    Full Text Available Liver injuries due to ingestion or exposure to chemicals and industrial toxicants pose a serious health risk that may be hard to assess due to a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific damage and clinical outcomes via biomarkers or biomarker panels will provide the foundation for highly specific and robust diagnostic tests. Here, we have used DrugMatrix, a toxicogenomics database containing organ-specific gene expression data matched to dose-dependent chemical exposures and adverse clinical pathology assessments in Sprague Dawley rats, to identify groups of co-expressed genes (modules specific to injury endpoints in the liver. We identified 78 such gene co-expression modules associated with 25 diverse injury endpoints categorized from clinical pathology, organ weight changes, and histopathology. Using gene expression data associated with an injury condition, we showed that these modules exhibited different patterns of activation characteristic of each injury. We further showed that specific module genes mapped to 1 known biochemical pathways associated with liver injuries and 2 clinically used diagnostic tests for liver fibrosis. As such, the gene modules have characteristics of both generalized and specific toxic response pathways. Using these results, we proposed three gene signature sets characteristic of liver fibrosis, steatosis, and general liver injury based on genes from the co-expression modules. Out of all 92 identified genes, 18 (20% genes have well-documented relationships with liver disease, whereas the rest are novel and have not previously been associated with liver disease. In conclusion, identifying gene co-expression modules associated with chemically induced liver injuries aids in generating testable hypotheses and has the potential to identify putative biomarkers of adverse health effects.

  15. Characterization of Chemically Induced Liver Injuries Using Gene Co-Expression Modules

    Science.gov (United States)

    Tawa, Gregory J.; AbdulHameed, Mohamed Diwan M.; Yu, Xueping; Kumar, Kamal; Ippolito, Danielle L.; Lewis, John A.; Stallings, Jonathan D.; Wallqvist, Anders

    2014-01-01

    Liver injuries due to ingestion or exposure to chemicals and industrial toxicants pose a serious health risk that may be hard to assess due to a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific damage and clinical outcomes via biomarkers or biomarker panels will provide the foundation for highly specific and robust diagnostic tests. Here, we have used DrugMatrix, a toxicogenomics database containing organ-specific gene expression data matched to dose-dependent chemical exposures and adverse clinical pathology assessments in Sprague Dawley rats, to identify groups of co-expressed genes (modules) specific to injury endpoints in the liver. We identified 78 such gene co-expression modules associated with 25 diverse injury endpoints categorized from clinical pathology, organ weight changes, and histopathology. Using gene expression data associated with an injury condition, we showed that these modules exhibited different patterns of activation characteristic of each injury. We further showed that specific module genes mapped to 1) known biochemical pathways associated with liver injuries and 2) clinically used diagnostic tests for liver fibrosis. As such, the gene modules have characteristics of both generalized and specific toxic response pathways. Using these results, we proposed three gene signature sets characteristic of liver fibrosis, steatosis, and general liver injury based on genes from the co-expression modules. Out of all 92 identified genes, 18 (20%) genes have well-documented relationships with liver disease, whereas the rest are novel and have not previously been associated with liver disease. In conclusion, identifying gene co-expression modules associated with chemically induced liver injuries aids in generating testable hypotheses and has the potential to identify putative biomarkers of adverse health effects. PMID:25226513

  16. 碱性固化材料对红土地基的化学侵蚀%Chemical Erosion of Laterite Soils by Alkaline Materials

    Institute of Scientific and Technical Information of China (English)

    杨华舒; 杨宇璐; 闫毅志; 王毅; 汪皓; 胡应庭

    2013-01-01

    The alkaline viscous substances used as reinforcement have engendered long-term erosion of laterite groundwork. Scene-sampling and archetype-testing were executed in a geotechnical engineering project. Chemical erosion of laterite by alkaline material were investigated, and accelerated life tests were designed for laterite eroded by alkaline materials. Engineering factors were compared and concentrations of seeping support-ions were tested for studying laterite eroded by alkaline viscous substances. Mechanism of laterite groundwork eroded by alkaline viscous substances was established. The chemical reactions are important cause for reduction of laterite groundwork life and long term economic benefit, and even can cause catastrophic accident.%碱性材料的固化措施对红土地基产生了不可忽视的长期侵蚀.在岩土工程现场进行了取样和原型试验,分析了导致材料损伤的化学反应,有针对性地设计了红土的碱液加速侵蚀试验,对比讨论了化学损伤前后红土的工程支撑指标变化、红土的工程支撑离子衰减,研究了碱性固化材料在酸性红土的接触带造成损伤的机制,认为化学反应是导致红土地基寿命降低、远期效益低下,乃至诱发灾难性事故的重要原因.

  17. Urothelial injury to the rabbit bladder from various alkaline and acidic solutions used to dissolve kidney stones.

    Science.gov (United States)

    Reckler, J; Rodman, J S; Jacobs, D; Rotterdam, H; Marion, D; Vaughan, E D

    1986-07-01

    Different irrigating solutions are used clinically to dissolve uric acid, cystine and struvite stones. These studies were undertaken to assess the toxicity to the rabbit bladder epithelium of several commonly used formulations. Test solutions were infused antegrade through a left ureterotomy overnight. Bladders were removed and routine histological sections made. A pH 7.6 solution of NaHCO3 appeared harmless. The same solution with two per cent acetylcysteine produced slight injury. All pH 4 solutions caused significant damage to the urothelium. Hemiacidrin, which contains magnesium, produced less damage than did other pH 4 solutions without that cation. Our data tend to support Suby's conclusions that addition of magnesium reduces urothelial injury even though the presence of magnesium will slow dissolution of struvite.

  18. "Tetracycline hydrochloride chemical burn" as self-inflicted mucogingival injury: A rare case report

    Directory of Open Access Journals (Sweden)

    Mundoor Manjunath Dayakar

    2012-01-01

    Full Text Available Injuries to oral soft tissue can be accidental, iatrogenic, and factitious trauma. Chemical, thermal, and physical agents are the main causative agents for oral soft-tissue burns. The present case describes the chemical burn of oral mucosa caused by tetracycline hydrochloride and its management. Diagnosis was made on the basis of definitive history elicited from the patient. The early detection of the lesion by the patient and immediate institution of therapeutic measures ensure a rapid cure and possible prevention of further mucogingival damage. In addition, we believe that proper guidance and education of the patient is an important prophylactic measure in preventing this self-inflicting injury.

  19. Uranium in alkaline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential.

  20. Methods of use of calcium hexa aluminate refractory linings and/or chemical barriers in high alkali or alkaline environments

    Science.gov (United States)

    McGowan, Kenneth A; Cullen, Robert M; Keiser, James R; Hemrick, James G; Meisner, Roberta A

    2013-10-22

    A method for improving the insulating character/and or penetration resistance of a liner in contact with at least one of an alkali and/or alkaline environments is provided. The method comprises lining a surface that is subject to wear by an alkali environment and/or an alkaline environment with a refractory composition comprising a refractory aggregate consisting essentially of a calcium hexa aluminate clinker having the formula CA.sub.6, wherein C is equal to calcium oxide, wherein A is equal to aluminum oxide, and wherein the hexa aluminate clinker has from zero to less than about fifty weight percent C.sub.12A.sub.7, and wherein greater than 98 weight percent of the calcium hexa aluminate clinker having a particle size ranging from -20 microns to +3 millimeters, for forming a liner of the surface. This method improves the insulating character/and or penetration resistance of the liner.

  1. Research into Uncertainty in Measurement of Seawater Chemical Oxygen Demand by Potassium Iodide-Alkaline Potassium Permanganate Determination Method.

    OpenAIRE

    Zhang, Shiqiang; Guo, Changsong

    2007-01-01

    Using the glucose and L-glutamic-acid to prepare the standard substance according to the ratio of 1:1, and the artificial seawater and the standard substance to prepare a series of standard solutions, the distribution pattern of uncertainty in measurement of seawater COD is obtained based on the measured results of the series of standard solutions by the potassium iodide-alkaline potassium permanganate determination method. The distribution pattern is as follows: Uncertainty in measurement is...

  2. Enhanced alkaline cellulases production by the thermohalophilic Aspergillus terreus AUMC 10138 mutated by physical and chemical mutagens using corn stover as substrate.

    Science.gov (United States)

    Isaac, George Saad; Abu-Tahon, Medhat Ahmed

    2015-01-01

    A thermohalophilic fungus, Aspergillus terreus AUMC 10138, isolated from the Wadi El-Natrun soda lakes in northern Egypt was exposed successively to gamma and UV-radiation (physical mutagens) and ethyl methan-sulfonate (EMS; chemical mutagen) to enhance alkaline cellulase production under solid state fermentation (SSF) conditions. The effects of different carbon sources, initial moisture, incubation temperature, initial pH, incubation period, inoculum levels and different concentrations of NaCl on production of alkaline filter paper activity (FPase), carboxymethyl cellulase (CMCase) and β-glucosidase by the wild-type and mutant strains of A. terreus were evaluated under SSF. The optimum conditions for maximum production of FPase, CMCase and β-glucosidase were found to be the corn stover: moisture ratio of 1:3(w/v), temperature 45 °C, pH range, 9.0-11.0, and fermentation for 4, 4 and 7 day, respectively. Inoculum levels of 30% for β-glucosidase and 40% for FPase, CMCase gave the higher cellulase production by the wild-type and mutant strains, respectively. Higher production of all three enzymes was obtained at a 5% NaCl. Under the optimized conditions, the mutant strain A. terreus M-17 produced FPase (729 U/g), CMCase (1,783 U/g), and β-glucosidase (342 U/g), which is, 1.85, 1.97 and 2.31-fold higher than the wild-type strain. Our results confirmed that mutant strain M-17 could be a promising alkaline cellulase enzyme producer employing lignocellulosics especially corn stover.

  3. Effects of Irrigation with Well Water on Chemical Characteristics of a Weakly Alkaline Soil Used as Rice Field

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper discussed the effects of irrigation with well water on the salinity and pH of a weakly alkaline paddy soil in Fujin of Heilongjiang Province in the north-eastern part of China. It has been found that after seven years the accumulation of total soluble salts did not occur and that the pH of 0~15 cm layer fell down from 7.92~8. 30 to 6. 76~7. 45,and that the content of anion HCO-3 and its proportion in the total soluble anions have fallen down. Conversion from paddy soil to upland restored the pH of soil ,exchangeable sodium,ESR(exchangeable sodium ratio) to their original levels of upland fields respectively.

  4. Copper-zinc electrodeposition in alkaline-sorbitol medium: Electrochemical studies and structural, morphological and chemical composition characterization

    Science.gov (United States)

    de Almeida, M. R. H.; Barbano, E. P.; de Carvalho, M. F.; Tulio, P. C.; Carlos, I. A.

    2015-04-01

    The galvanostatic technique was used to analyze the electrodeposition of Cu-Zn on to AISI 1010 steel electrode from an alkaline-sorbitol bath with various proportions of the metal ions in the bath: Cu70/Zn30, Cu50/Zn50 and Cu30/Zn70. Coloration of Cu-Zn films were whitish golden, light golden, golden/gray depending on the Cu2+/Zn2+ ratios in the electrodeposition bath, deposition current density (jdep) and charge density (qdep). The highest current efficiency was ∼54.0%, at jdep -1.0 mA cm-2 and qdep 0.40 C cm-2 in the Cu70/Zn30 bath. Energy dispersive spectroscopy indicated that electrodeposits produced from the bath Cu70/Zn30 showed higher Cu content at lower jdep. Also, for same jdep the Cu content increased with qdep. Scanning electron microscopy showed that Cu-Zn electrodeposits of high quality were obtained from the Cu70/Zn30 bath, since the films were fine-grained, except the obtained at jdep -20.0 mA cm-2 and qdep 10.0 C cm-2. Also, these electrodeposits did not present cracks. X-ray analysis of the Cu-Zn electrodeposits obtained at jdep -8.0, -20.0 and -40.0 mA cm-2, in each case, with qdep 2.0 and 10.0 C cm-2, in the Cu70/Zn30 bath, suggested the occurrence of a mixture of the following phases, CuZn, CuZn5 and Cu5Zn8. Galvanostatic electrodeposits of Cu-Zn obtained from sorbitol-alkaline baths exhibited whitish golden color, with good prospects for industrial applications, especially for decorative purposes.

  5. Effect of zinc phosphate chemical conversion coating on corrosion behaviour of mild steel in alkaline medium: protection of rebars in reinforced concrete

    Directory of Open Access Journals (Sweden)

    Florica Simescu and Hassane Idrissi

    2008-01-01

    Full Text Available We outline the ability of zinc phosphate coatings, obtained by chemical conversion, to protect mild steel rebars against localized corrosion, generated by chloride ions in alkaline media. The corrosion resistance of coated steel, in comparison with uncoated rebars and coated and uncoated steel rebars embedded in mortar, were evaluated by open-circuit potential, potentiodynamic polarization, cronoamperometry and electrochemical impedance spectroscopy. The coated surfaces were characterized by x-ray diffraction and scanning electron microscopy. First, coated mild steel rebars were studied in an alkaline solution with and without chloride simulating a concrete pore solution. The results showed that the slow dissolution of the coating generates hydroxyapatite Ca10(PO46(OH2. After a long immersion, the coating became dense and provided an effective corrosion resistance compared with the mild steel rebar. Secondly, the coated and uncoated steel rebars embedded in mortar and immersed in chloride solution showed no corrosion or deterioration of the coated steel. Corrosion rate is considerably lowered by this phosphate coating.

  6. Effect of zinc phosphate chemical conversion coating on corrosion behaviour of mild steel in alkaline medium: protection of rebars in reinforced concrete.

    Science.gov (United States)

    Simescu, Florica; Idrissi, Hassane

    2008-12-01

    We outline the ability of zinc phosphate coatings, obtained by chemical conversion, to protect mild steel rebars against localized corrosion, generated by chloride ions in alkaline media. The corrosion resistance of coated steel, in comparison with uncoated rebars and coated and uncoated steel rebars embedded in mortar, were evaluated by open-circuit potential, potentiodynamic polarization, cronoamperometry and electrochemical impedance spectroscopy. The coated surfaces were characterized by x-ray diffraction and scanning electron microscopy. First, coated mild steel rebars were studied in an alkaline solution with and without chloride simulating a concrete pore solution. The results showed that the slow dissolution of the coating generates hydroxyapatite Ca10(PO4)6(OH)2. After a long immersion, the coating became dense and provided an effective corrosion resistance compared with the mild steel rebar. Secondly, the coated and uncoated steel rebars embedded in mortar and immersed in chloride solution showed no corrosion or deterioration of the coated steel. Corrosion rate is considerably lowered by this phosphate coating.

  7. Assessment of the in vivo genotoxicity of cadmium chloride, chloroform, and D,L-menthol as coded test chemicals using the alkaline comet assay.

    Science.gov (United States)

    Wada, Kunio; Fukuyama, Tomoki; Nakashima, Nobuaki; Matsumoto, Kyomu

    2015-07-01

    As part of the Japanese Center for the Validation of Alternative Methods (JaCVAM) international validation study of in vivo rat alkaline comet assays, we examined cadmium chloride, chloroform, and D,L-menthol under blind conditions as coded chemicals in the liver and stomach of Sprague-Dawley rats after 3 days of administration. Cadmium chloride showed equivocal responses in the liver and stomach, supporting previous reports of its poor mutagenic potential and non-carcinogenic effects in these organs. Treatment with chloroform, which is a non-genotoxic carcinogen, did not induce DNA damage in the liver or stomach. Some histopathological changes, such as necrosis and degeneration, were observed in the liver; however, they did not affect the comet assay results. D,L-Menthol, a non-genotoxic non-carcinogen, did not induce liver or stomach DNA damage. These results indicate that the comet assay can reflect genotoxic properties under blind conditions.

  8. Copper–zinc electrodeposition in alkaline-sorbitol medium: Electrochemical studies and structural, morphological and chemical composition characterization

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, M.R.H. de [Faculdades Integradas Maria Imaculada, Rua Paula Bueno 240, Mogi Guaçu, SP (Brazil); Barbano, E.P.; Carvalho, M.F. de [Universidade Federal de São Carlos, Via Washington Luís km 235, São Carlos, SP (Brazil); Tulio, P.C. [Universidade Tecnológica Federal do Paraná, Av. Alberto Carazzai 1640, Cornélio Procópio, PR (Brazil); Carlos, I.A., E-mail: diac@ufscar.br [Universidade Federal de São Carlos, Via Washington Luís km 235, São Carlos, SP (Brazil)

    2015-04-01

    Highlights: • Cu–Zn electrodeposition was investigated galvanostatically. • Coloration of Cu–Zn films were whitish golden, light golden, golden/gray. • Electrodeposits produced from Cu70/Zn30 bath showed higher Cu content at lower j. • Scanning electron microscopy showed that Cu–Zn electrodeposits were fine-grained. • X-ray analysis of the Cu–Zn electrodeposits suggested a mixture of phases. - Abstract: The galvanostatic technique was used to analyze the electrodeposition of Cu–Zn on to AISI 1010 steel electrode from an alkaline-sorbitol bath with various proportions of the metal ions in the bath: Cu70/Zn30, Cu50/Zn50 and Cu30/Zn70. Coloration of Cu–Zn films were whitish golden, light golden, golden/gray depending on the Cu{sup 2+}/Zn{sup 2+} ratios in the electrodeposition bath, deposition current density (j{sub dep}) and charge density (q{sub dep}). The highest current efficiency was ∼54.0%, at j{sub dep} −1.0 mA cm{sup −2} and q{sub dep} 0.40 C cm{sup −2} in the Cu70/Zn30 bath. Energy dispersive spectroscopy indicated that electrodeposits produced from the bath Cu70/Zn30 showed higher Cu content at lower j{sub dep}. Also, for same j{sub dep} the Cu content increased with q{sub dep}. Scanning electron microscopy showed that Cu–Zn electrodeposits of high quality were obtained from the Cu70/Zn30 bath, since the films were fine-grained, except the obtained at j{sub dep} −20.0 mA cm{sup −2} and q{sub dep} 10.0 C cm{sup −2}. Also, these electrodeposits did not present cracks. X-ray analysis of the Cu–Zn electrodeposits obtained at j{sub dep} −8.0, −20.0 and −40.0 mA cm{sup −2}, in each case, with q{sub dep} 2.0 and 10.0 C cm{sup −2}, in the Cu70/Zn30 bath, suggested the occurrence of a mixture of the following phases, CuZn, CuZn{sub 5} and Cu{sub 5}Zn{sub 8}. Galvanostatic electrodeposits of Cu–Zn obtained from sorbitol-alkaline baths exhibited whitish golden color, with good prospects for industrial applications

  9. Chemical measurement strategies for enhancing natural resource damage assessment injury studies

    Energy Technology Data Exchange (ETDEWEB)

    Costa, H.; Comeau, J.; Wyck, N. van; Downey, P. [Inchcape Testing Services Aquatec Labs., Colchester, VT (United States); Beltman, D. [Hagler Bailly Consulting, Boulder, CO (United States); Bailey, A.; Olsiewski, R. [EcoChem, Inc., Seattle, WA (United States)

    1995-12-31

    Documenting linkage between natural resource injuries and chemical contaminant exposure is often limited by one or more factors. Few standard analytical methods that are widely used for contaminated site investigations have been successfully validated for application to tissue residue analysis. Many frequently used target analyte lists fail to adequately represent source contaminants responsible for causing injuries. Standard analytical approaches typically fail to provide the sensitivity, accuracy, and precision desired in the range of residue concentrations that bracket injury-causation thresholds, which may be in the low parts-per-billion concentration range. Matrix interferences in sediments and biota often require innovative cleanups. Environmental weathering and metabolic biotransformation of source contaminants further confound analytical strategies. Appropriate target analyte lists, analytical methods, and quality control requirements for designing injury studies are presented. Considerations for source contaminant characterization and fate and transport modeling for PACS, PCBs, an organochlorine residues are discussed. Alternative markers of exposure are examined with predicted likelihood of their success for several theoretical scenarios.

  10. Extending injury prevention methodology to chemical terrorism preparedness: the Haddon Matrix and sarin.

    Science.gov (United States)

    Varney, Shawn; Hirshon, Jon Mark; Dischinger, Patricia; Mackenzie, Colin

    2006-01-01

    The Haddon Matrix offers a classic epidemiological model for studying injury prevention. This methodology places the public health concepts of agent, host, and environment within the three sequential phases of an injury-producing incident-pre-event, event, and postevent. This study uses this methodology to illustrate how it could be applied in systematically preparing for a mass casualty disaster such as an unconventional sarin attack in a major urban setting. Nineteen city, state, federal, and military agencies responded to the Haddon Matrix chemical terrorism preparedness exercise and offered feedback in the data review session. Four injury prevention strategies (education, engineering, enforcement, and economics) were applied to the individual factors and event phases of the Haddon Matrix. The majority of factors identified in all phases were modifiable, primarily through educational interventions focused on individual healthcare providers and first responders. The Haddon Matrix provides a viable means of studying an unconventional problem, allowing for the identification of modifiable factors to decrease the type and severity of injuries following a mass casualty disaster such as a sarin release. This strategy could be successfully incorporated into disaster planning for other weapons attacks that could potentially cause mass casualties.

  11. Dissolution of glass wool, rock wool and alkaline earth silicate wool: morphological and chemical changes in fibers.

    Science.gov (United States)

    Campopiano, Antonella; Cannizzaro, Annapaola; Angelosanto, Federica; Astolfi, Maria Luisa; Ramires, Deborah; Olori, Angelo; Canepari, Silvia; Iavicoli, Sergio

    2014-10-01

    The behavior of alkaline earth silicate (AES) wool and of other biosoluble wools in saline solution simulating physiological fluids was compared with that of a traditional wool belonging to synthetic vitreous fibers. Morphological and size changes of fibers were studied by scanning electron microscopy (SEM). The elements extracted from fibers were analyzed by inductively coupled plasma atomic emission spectrometry. SEM analysis showed a larger reduction of length-weighted geometric mean fiber diameter at 4.5 pH than at 7.4 pH. At the 7.4 pH, AES wool showed a higher dissolution rate and a dissolution time less than a few days. Their dissolution was highly non-congruent with rapid leaching of calcium. Unlike rock wool, glass wool dissolved more rapidly at physiological pH than at acid pH. Dissolution of AES and biosoluble rock wool is accompanied by a noticeable change in morphology while by no change for glass wool. Biosoluble rock wool developed a leached surface with porous honeycomb structure. SEM analysis showed the dissolution for glass wool is mainly due to breakage transverse of fiber at pH 7.4. AES dissolution constant (Kdis) was the highest at pH 7.4, while at pH 4.5 only biosoluble rockwool 1 showed a higher Kdis.

  12. Distribution of chemical elements in calc-alkaline igneous rocks, soils, sediments and tailings deposits in northern central Chile

    Science.gov (United States)

    Oyarzún, Jorge; Oyarzun, Roberto; Lillo, Javier; Higueras, Pablo; Maturana, Hugo; Oyarzún, Ricardo

    2016-08-01

    This study follows the paths of 32 chemical elements in the arid to semi-arid realm of the western Andes, between 27° and 33° S, a region hosting important ore deposits and mining operations. The study encompasses igneous rocks, soils, river and stream sediments, and tailings deposits. The chemical elements have been grouped according to the Goldschmidt classification, and their concentrations in each compartment are confronted with their expected contents for different rock types based on geochemical affinities and the geologic and metallogenic setting. Also, the element behavior during rock weathering and fluvial transport is here interpreted in terms of the ionic potentials and solubility products. The results highlight the similarity between the chemical composition of the andesites and that of the average Continental Crust, except for the higher V and Mn contents of the former, and their depletion in Mg, Ni, and Cr. The geochemical behavior of the elements in the different compartments (rocks, soils, sediments and tailings) is highly consistent with the mobility expected from their ionic potentials, their sulfates and carbonates solubility products, and their affinities for Fe and Mn hydroxides. From an environmental perspective, the low solubility of Cu, Zn, and Pb due to climatic, chemical, and mineralogical factors reduces the pollution risks related to their high to extremely high contents in source materials (e.g., rocks, altered zones, tailings). Besides, the complex oxyanions of arsenic get bound by colloidal particles of Fe-hydroxides and oxyhydroxides (e.g., goethite), thus becoming incorporated to the fine sediment fraction in the stream sediments.

  13. Effects of changes in straw chemical properties and alkaline soils on bacterial communities engaged in straw decomposition at different temperatures.

    Science.gov (United States)

    Zhou, Guixiang; Zhang, Jiabao; Zhang, Congzhi; Feng, Youzhi; Chen, Lin; Yu, Zhenghong; Xin, Xiuli; Zhao, Bingzi

    2016-02-26

    Differences in the composition of a bacterial community engaged in decomposing wheat straw in a fluvo-aquic soil at 15 °C, 25 °C, and 35 °C were identified using barcode pyrosequencing. Functional carbon groups in the decomposing wheat straw were evaluated by (13)C-NMR (nuclear magnetic resonance). Actinobacteria and Firmicutes were more abundant, whereas Alphaproteobacteria and Bacteroidetes were less abundant, at higher temperatures during the later stages of decomposition. Differences in the chemical properties of straw accounted for 19.3% of the variation in the community composition, whereas soil properties accounted for more (24.0%) and temperature, for less (7.4%). Carbon content of the soil microbial biomass and nitrogen content of straw were significantly correlated with the abundance of Alphaproteobacteria, Actinobacteria, and Bacteroidetes. The chemical properties of straw, especially the NCH/OCH3, alkyl O-C-O, and O-alkyl functional groups, exercised a significant effect on the composition of the bacterial community at different temperatures during decomposition-results that extend our understanding of bacterial communities associated with the decomposition of straw in agro-ecosystems and of the effects of temperature and chemical properties of the decomposing straw and soil on such communities.

  14. Structural and spectroscopic studies of water-alkaline earth ion micro clusters: an alternate approach using genetic algorithm in conjunction with quantum chemical methods

    Science.gov (United States)

    Ganguly Neogi, S.; Chaudhury, P.

    2014-08-01

    We present an approach of using a stochastic optimization technique namely genetic algorithm in association with quantum chemical methods to first elucidate structure and then infrared spectroscopy and thermochemistry of water-alkaline earth metal ion clusters. We show that an initial determination of structure using stochastic techniques and following it up with quantum chemical calculation can lead to much faster convergence to high quality structures for these systems. Infrared spectroscopic, thermochemical calculations and natural population analysis based charges on the central metal ions are done to further ascertain the correctness of the structures using our technique. We have done a comparative study with a pure density functional theory calculation and have shown that even for very poor starting guess geometries genetic algorithm in conjunction with density functional theory indeed converges to global structure while pure density functional theory can encounter problems in certain situations to arrive at global geometry. We have also discussed usefulness of Unimodal Normal distribution crossover for handling situation with real coded variables.

  15. Systems toxicology of chemically induced liver and kidney injuries: histopathology-associated gene co-expression modules.

    Science.gov (United States)

    Te, Jerez A; AbdulHameed, Mohamed Diwan M; Wallqvist, Anders

    2016-09-01

    Organ injuries caused by environmental chemical exposures or use of pharmaceutical drugs pose a serious health risk that may be difficult to assess because of a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific histopathology outcomes via biomarkers will provide a foundation for designing precise and robust diagnostic tests. We identified co-expressed genes (modules) specific to injury endpoints using the Open Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System (TG-GATEs) - a toxicogenomics database containing organ-specific gene expression data matched to dose- and time-dependent chemical exposures and adverse histopathology assessments in Sprague-Dawley rats. We proposed a protocol for selecting gene modules associated with chemical-induced injuries that classify 11 liver and eight kidney histopathology endpoints based on dose-dependent activation of the identified modules. We showed that the activation of the modules for a particular chemical exposure condition, i.e., chemical-time-dose combination, correlated with the severity of histopathological damage in a dose-dependent manner. Furthermore, the modules could distinguish different types of injuries caused by chemical exposures as well as determine whether the injury module activation was specific to the tissue of origin (liver and kidney). The generated modules provide a link between toxic chemical exposures, different molecular initiating events among underlying molecular pathways and resultant organ damage. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Journal of Applied Toxicology published by John Wiley & Sons, Ltd.

  16. Nuclear, biological, and chemical combined injuries and countermeasures on the battlefield.

    Science.gov (United States)

    Knudson, Gregory B; Elliott, Thomas B; Brook, Itzhak; Shoemaker, Michael O; Pastel, Ross H; Lowy, Robert J; King, Gregory L; Herzig, Thomas C; Landauer, Michael R; Wilson, Scott A; Peacock, Susan J; Bouhaouala, S Samy; Jackson, William E; Ledney, G David

    2002-02-01

    The Armed Forces Radiobiological Research Institute (AFRRI) has developed a research program to determine the major health risks from exposure to ionizing radiation in combination with biological and chemical warfare agents and to assess the extent to which exposure to ionizing radiation compromises the effectiveness of protective drugs, vaccines, and other biological and chemical warfare prophylactic and treatment strategies. AFRRI's Defense Technology Objective MD22 supports the development of treatment modalities and studies to assess the mortality rates for combined injuries from exposure to ionizing radiation and Bacillus anthracis, and research to provide data for casualty prediction models that assess the health consequences of combined exposures. In conjunction with the Defense Threat Reduction Agency, our research data are contributing to the development of casualty prediction models that estimate mortality and incapacitation in an environment of radiation exposure plus other weapons of mass destruction. Specifically, the AFFRI research program assesses the effects of ionizing radiation exposure in combination with B. anthracis, Venezuelan equine encephalomyelitis virus, Shigella sonnei, nerve agents, and mustard as well as their associated treatments and vaccines. In addition, the long-term psychological effects of radiation combined with nuclear, biological, and chemical (NBC) injuries are being evaluated. We are also assessing the effectiveness of gamma photons and high-speed neutrons and electrons for neutralizing biological and chemical warfare agents. New protocols based on our NBC bioeffects experiments will enable U.S. armed forces to accomplish military operations in NBC environments while optimizing both survival and military performance. Preserving combatants' health in an NBC environment will improve warfighting operations and mission capabilities.

  17. A case of chemical scalp burns after hair highlights: experimental evidence of oxidative injuries.

    Science.gov (United States)

    Bertani, Roberta; Sgarbossa, Paolo; Pendolino, Flavio; Facchin, Giangiacomo; Snenghi, Rossella

    2016-12-01

    Hair highlights are quite common procedures carried out in hair salons by using a mixture of a lightening powder containing persulfates with a suspension containing hydrogen peroxide: a representative case of chemical scalp burns is described as a consequence of this treatment. The aim of the paper is to demonstrate the strict relationship between the scalp damage and the commercial products used in a case of hair highlighting. The results of some chemical analyses have been reported, showing, in particular, that the chemical reactivity of the mixture changes in the time, thus strongly suggesting that the procedure for the application of the mixture is critical for the occurrence of possible accidents. The presence in the powder of chemical compounds bearing aliphatic chains as surfactants explains the appearance of dramatic symptoms after days due to a slow dissolution of the oxidant compounds in the stratum corneum of skin with no effect in reducing injury of palliative treatments. Safety suggestions and recommendations for producers and workers are also included.

  18. Endoplasmic Reticulum Stress-Induced Autophagy Provides Cytoprotection from Chemical Hypoxia and Oxidant Injury and Ameliorates Renal Ischemia-Reperfusion Injury.

    Directory of Open Access Journals (Sweden)

    Bhavya B Chandrika

    Full Text Available We examined whether endoplasmic reticulum (ER stress-induced autophagy provides cytoprotection from renal tubular epithelial cell injury due to oxidants and chemical hypoxia in vitro, as well as from ischemia-reperfusion (IR injury in vivo. We demonstrate that the ER stress inducer tunicamycin triggers an unfolded protein response, upregulates ER chaperone Grp78, and activates the autophagy pathway in renal tubular epithelial cells in culture. Inhibition of ER stress-induced autophagy accelerated caspase-3 activation and cell death suggesting a pro-survival role of ER stress-induced autophagy. Compared to wild-type cells, autophagy-deficient MEFs subjected to ER stress had enhanced caspase-3 activation and cell death, a finding that further supports the cytoprotective role of ER stress-induced autophagy. Induction of autophagy by ER stress markedly afforded cytoprotection from oxidants H2O2 and tert-Butyl hydroperoxide and from chemical hypoxia induced by antimycin A. In contrast, inhibition of ER stress-induced autophagy or autophagy-deficient cells markedly enhanced cell death in response to oxidant injury and chemical hypoxia. In mouse kidney, similarly to renal epithelial cells in culture, tunicamycin triggered ER stress, markedly upregulated Grp78, and activated autophagy without impairing the autophagic flux. In addition, ER stress-induced autophagy markedly ameliorated renal IR injury as evident from significant improvement in renal function and histology. Inhibition of autophagy by chloroquine markedly increased renal IR injury. These studies highlight beneficial impact of ER stress-induced autophagy in renal ischemia-reperfusion injury both in vitro and in vivo.

  19. The radiolytic and chemical degradation of organic ion exchange resins under alkaline conditions: effect on radionuclide speciation

    Energy Technology Data Exchange (ETDEWEB)

    Loon, L. van; Hummel, W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1995-10-01

    The formation of water soluble organic ligands by the radiolytic and chemical degradation of several ion exchange resins was investigated under conditions close to those of the near field of a cementitious repository. The most important degradation products were characterised and their role on radionuclide speciation evaluated thoroughly. Irradiation of strong acidic cation exchange resins (Powdex PCH and Lewatite S-100) resulted in the formation of mainly sulphate and dissolved organic carbon. A small part of the carbon (10-20%) could be identified as oxalate. The identity of the remainder is unknown. Complexation studies with Cu{sup 2+} and Ni{sup 2+} showed the presence of two ligands: oxalate and ligand X. Although ligand X could not be identified, it could be characterised by its concentration, a deprotonation constant and a complexation constant for the NiX complex. The influence of oxalate and ligand X on the speciation of radionuclides is examined in detail. For oxalate no significant influence on the speciation of radionuclides is expected. The stronger complexing ligand X may exert some influence depending on its concentration and the values of other parameters. These critical parameters are discussed and limiting values are evaluated. In absence of irradiation, no evidence for the formation of ligands was found. Irradiation of strong basic anion exchange resins (Powdex PAO and Lewatite M-500) resulted in the formation of mainly ammonia, amines and dissolved organic carbon. Up to 50% of the carbon could be identified as methyl-, dimethyl- and trimethylamine. Complexation studies with Eu{sup 3+} showed that the complexing capacity under near field conditions was negligible. The speciation of cations such as Ag, Ni, Cu and Pd can be influenced by the presence of amins. The strongest amine-complexes are formed with Pd and therefore, as an example, the aqueous Pd-ammonia system is examined in great detail. (author) 30 figs., 10 tabs., refs.

  20. The fluvial geochemistry, contributions of silicate, carbonate and saline-alkaline components to chemical weathering flux and controlling parameters: Narmada River (Deccan Traps), India

    Science.gov (United States)

    Gupta, Harish; Chakrapani, Govind J.; Selvaraj, Kandasamy; Kao, Shuh-Ji

    2011-02-01

    The Narmada River in India is the largest west-flowing river into the Arabian Sea, draining through the Deccan Traps, one of the largest flood basalt provinces in the world. The fluvial geochemical characteristics and chemical weathering rates (CWR) for the mainstream and its major tributaries were determined using a composite dataset, which includes four phases of seasonal field (spot) samples (during 2003 and 2004) and a decade-long (1990-2000) fortnight time series (multiannual) data. Here, we demonstrate the influence of minor lithologies (carbonates and saline-alkaline soils) on basaltic signature, as reflected in sudden increases of Ca 2+-Mg 2+ and Na + contents at many locations along the mainstream and in tributaries. Both spot and multiannual data corrected for non-geological contributions were used to calculate the CWR. The CWR for spot samples (CWR spot) vary between 25 and 63 ton km -2 year -1, showing a reasonable correspondence with the CWR estimated for multiannual data (CWR multi) at most study locations. The weathering rates of silicate ( SilWR), carbonate ( CarbWR) and evaporite ( Sal-AlkWR) have contributed ˜38-58, 28-45 and 8-23%, respectively to the CWR spot at different locations. The estimated SilWR (11-36 ton km -2 year -1) for the Narmada basin indicates that the previous studies on the North Deccan Rivers (Narmada-Tapti-Godavari) overestimated the silicate weathering rates and associated CO 2 consumption rates. The average annual CO 2 drawdown via silicate weathering calculated for the Narmada basin is ˜0.032 × 10 12 moles year -1, suggesting that chemical weathering of the entire Deccan Trap basalts consumes approximately 2% (˜0.24 × 10 12 moles) of the annual global CO 2 drawdown. The present study also evaluates the influence of meteorological parameters (runoff and temperature) and physical weathering rates (PWR) in controlling the CWR at annual scale across the basin. The CWR and the SilWR show significant correlation with runoff

  1. Principles of technological design of wasteless chemical processes based on the use of wastes for production of alkaline slag cements and concretes

    Energy Technology Data Exchange (ETDEWEB)

    Glukhovskii, V.D.; Chernobaev, I.P.; Emel' yanov, B.M.; Semenyuk, A.P.

    1985-05-20

    The strength characteristics of alkaline slag-cement made with the use of waste from alkaline sealing of metals are presented. The cement was prepared from granulated blast-furnance slag with average component contents in the following ranges (mass %): SiO/sub 2/ 36.0-40.2, Al/sub 2/O/sub 3/ 4-18.2, FeO 0.1-3.7, MnO 0.4-5.2, CaO 33.1-48.8, MgO 2.2-9.8. With the use of wastes from the descaling process in alkali melts for production of alkaline slag cements it is possible to obtain highly effective cements of type 700-900, which is 2 to 3 times the value for portland cements. Therefore, the use of wastes from alkaline descaling for production of alkaline slag cements is of great economic and conservational significance. It is possible to devise a wasteless process of scale removal from metals; this is an important advantage of the alkaline scaling method over acid pickling.

  2. Spatiotemporally controlled and multifactor involved assay of neuronal compartment regeneration after chemical injury in an integrated microfluidics.

    Science.gov (United States)

    Li, Li; Ren, Li; Liu, Wenming; Wang, Jian-Chun; Wang, Yaolei; Tu, Qin; Xu, Juan; Liu, Rui; Zhang, Yanrong; Yuan, Mao-Sen; Li, Tianbao; Wang, Jinyi

    2012-08-07

    Studies on the degeneration and regeneration of neurons as individual compartments of axons or somata can provide critical information for the clinical therapy of nervous system diseases. A controllable in vitro platform for multiple purposes is key to such studies. In the present study, we describe an integrated microfluidic device designed for achieving localized stimulation to neuronal axons or somata. We observed neuronal compartment degeneration after localized chemical stimulation and regeneration under the accessorial function of an interesting compound treatment or coculture with desired cells in controllable chambers. In a spatiotemporally controlled manner, this device was used to investigate hippocampal neuronal soma and axon degeneration after acrylamide stimulation, as well as subsequent regeneration after treatment with the monosialoganglioside GM1 or with cocultured glial cells (astrocytes or Schwann cells). To gain insight into the molecular mechanisms that mediate neuronal injury and regeneration, as well as to investigate whether acrylamide stimulation to neurons induces changes in Ca(2+) concentrations, the related neuronal genes and real-time Ca(2+) signal in neurons were also analyzed. The results showed that neuronal axons were more resistant to acrylamide injury than neuronal somata. Under localized stimulation, axons had self-destruct programs different from somata, and somatic injury caused the secondary response of axon collapse. This study provides a foundation for future in-depth analyses of spatiotemporally controlled and multifactor neuronal compartment regeneration after various injuries. The microfluidic device is also useful in evaluating potential therapeutic strategies to treat chemical injuries involving the central nervous system.

  3. Activation of chemical biological defense mechanisms and remission of vital oxidative injury by low dose radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaoka, K. [Okayama University Medical School, Okayama (Japan); Nomura, T. [Central Research Institute of Electric Power Industry, Tokyo (Japan); Kojima, S. [Science University of Tokyo, Chiba (Japan)

    2000-05-01

    Excessive active oxygen produced in vivo by various causes is toxic. Accumulation of oxidation injuries due to excessive active causes cell and tissue injuries, inducing various pathologic conditions such as aging and carcinogenesis. On the other hand, there are chemical defense mechanisms in the body that eliminate active oxygen or repair damaged molecules, defending against resultant injury. It is interesting reports that appropriate oxidation stress activate the chemical biological defense mechanisms. In this study, to elucidate these phenomena and its mechanism by low dose radiation, we studied on the below subjects. Activation of chemical biological defense mechanisms by low dose radiation: (1) The effects radiation on lipid peroxide (LPO) levels in the organs, membrane fluidity and the superoxide dismutase (SOD) activity were examined in rats and rabbits. Rats were irradiated with low dose X-ray over their entire bodies, and rabbits inhaled vaporized radon spring water, which primarily emitted {alpha}-ray. The following results were obtained. Unlike high dose X-ray, low dose X-ray and radon inhalation both reduced LPO levels and made the state of the SH-group on membrane-bound proteins closer to that of juvenile animals, although the sensitivity to radioactivity varied depending on the age of the animals and among different organs and tissues. The SOD activity was elevated, suggesting that low dose X-ray and radon both activate the host defensive function. Those changes were particularly marked in the organs related to immune functions of the animals which received low dose X-ray, while they were particularly marked in the brain after radon inhalation. It was also found that those changes continued for longer periods after low dose X-irradiation. (2) Since SOD is an enzyme that mediates the dismutation of O{sub 2}- to H{sub 2}O{sub 2}, the question as to whether the resultant H{sub 2}O{sub 2} is further detoxicated into H{sub 2}O and O{sub 2} or not must

  4. Mechanisms of the hepatoprotective effects of tamoxifen against drug-induced and chemical-induced acute liver injuries

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Yukitaka; Miyashita, Taishi; Higuchi, Satonori [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Tsuneyama, Koichi [Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Sugitani, Toyama 930‐0194 (Japan); Endo, Shinya [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Tsukui, Tohru [Research Center for Genomic Medicine, Saitama Medical University, Yamane, Hidaka 350‐1241 (Japan); Toyoda, Yasuyuki; Fukami, Tatsuki; Nakajima, Miki [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Yokoi, Tsuyoshi, E-mail: tyokoi@p.kanazawa-u.ac.jp [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan)

    2012-10-01

    Although estrogen receptor (ER)α agonists, such as estradiol and ethinylestradiol (EE2), cause cholestasis in mice, they also reduce the degree of liver injury caused by hepatotoxicants as well as ischemia–reperfusion. The functional mechanisms of ERα have yet to be elucidated in drug-induced or chemical-induced liver injury. The present study investigated the effects of an ERα agonist, selective ER modulators (SERMs) and an ER antagonist on drug-induced and chemical-induced liver injuries caused by acetaminophen, bromobenzene, diclofenac, and thioacetamide (TA). We observed hepatoprotective effects of EE2, tamoxifen (TAM) and raloxifene pretreatment in female mice that were exposed to a variety of hepatotoxic compounds. In contrast, the ER antagonist did not show any hepatoprotective effects. DNA microarray analyses suggested that monocyte to macrophage differentiation-associated 2 (Mmd2) protein, which has an unknown function, is commonly increased by TAM and RAL pretreatment, but not by pretreatment with the ER antagonist. In ERα-knockout mice, the hepatoprotective effects of TAM and the increased expression of Mmd2 mRNA were not observed in TA-induced liver injury. To investigate the function of Mmd2, the expression level of Mmd2 mRNA was significantly knocked down to approximately 30% in mice by injection of siRNA for Mmd2 (siMmd2). Mmd2 knockdown resulted in a reduction of the protective effects of TAM on TA-induced liver injury in mice. This is the first report of the involvement of ERα in drug-induced or chemical-induced liver injury. Upregulation of Mmd2 protein in the liver was suggested as the mechanism of the hepatoprotective effects of EE2 and SERMs. -- Highlights: ► Liver injury induced by drugs or chemicals was investigated in mice. ► Liver injury was suppressed by pretreatment with tamoxifen in female mice. ► Mmd2, whose function was unknown, could be a candidate gene for liver protection. ► Tamoxifen up-regulated Mmd2 mRNA expression

  5. Injury Rates, Limited Duty Days, Medically Not Ready Rates, and Injury Risk Factors in an Army Chemical Brigade

    Science.gov (United States)

    2015-09-01

    Control and Prevention (CDC). About BMI for Adults. In Healthy Weight - it’s not a diet, it’s a lifestyle ., Division of Nutrition, Physical Activity...PT with moderate to easier PT days to prevent injuries due to fatigue or overuse. Healthier lifestyles and moderate training regimen can reduce...Centers for Disease Control and Prevention (CDC) classifications for “normal,” “overweight,” and “obese” [1]. Current cigarette smokers were defined

  6. Inflammation Modulatory Protein TSG-6 for Chemical Injuries to the Cornea

    Science.gov (United States)

    2015-10-01

    protein TNF -stimulating gene 6 (TSG-6). TSG-6 may modulate the excessive inflammatory response that exacerbates the injury to the cornea caused by...period. The inflammatory response as measured by biochemical markers correlated with concentration of NAOH applied and began within 2 hours of injury...Goal – Establish the appropriate conditions for testing TSG-6 Determine timing and patterns of cellular and cytokine inflammatory responses as a

  7. Immunohistochemical detection of disease-associated prion protein in the intestine of cattle naturally affected with bovine spongiform encephalopathy by using an alkaline-based chemical antigen retrieval method.

    Science.gov (United States)

    Okada, Hiroyuki; Iwamaru, Yoshihumi; Imamura, Morikazu; Masujin, Kentaro; Yokoyama, Takashi; Mohri, Shirou

    2010-11-01

    An alkaline-based chemical antigen retrieval pretreatment step was used to enhance immunolabeling of disease-associated prion protein (PrP(Sc)) in formalin-fixed and paraffin-embedded tissue sections from cattle naturally affected with bovine spongiform encephalopathy (BSE). The modified chemical method used in this study amplified the PrP(Sc) signal by unmasking PrP(Sc) compared with the normal cellular prion protein. In addition, this method reduced nonspecific background immunolabeling that resulted from the destruction of the residual normal cellular form of prion protein, and reduced the treatment time compared with the usual autoclave pretreatment step. Immunolabeled PrP(Sc) was thereby clearly detected in the myenteric plexus of the ileum in naturally occurring BSE cattle.

  8. Direct, simple derivatization of disulfide bonds in proteins with organic mercury in alkaline medium without any chemical pre-reducing agents

    Energy Technology Data Exchange (ETDEWEB)

    Campanella, Beatrice; Onor, Massimo [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici-ICCOM- UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Ferrari, Carlo [National Research Council of Italy, C.N.R., Istituto Nazionale di Ottica, INO-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); D’Ulivo, Alessandro [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici-ICCOM- UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Bramanti, Emilia, E-mail: bramanti@pi.iccom.cnr.it [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici-ICCOM- UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy)

    2014-09-16

    Highlights: • A simple procedure for the derivatization of proteins disulfide bonds. • Cysteine groups in several proteins derivatised with pHMB in alkaline media. • 75–100% labelling of cysteines in proteins with pHMB. - Abstract: In this work we have studied the derivatization of protein disulfide bonds with p-Hydroxymercurybenzoate (pHMB) in strong alkaline medium without any preliminary reduction. The reaction has been followed by the determination of the protein–pHMB complex using size exclusion chromatography coupled to a microwave/UV mercury oxidation system for the on-line oxidation of free and protein-complexed pHMB and atomic fluorescence spectrometry (SEC–CVG–AFS) detection. The reaction has been optimized by an experimental design using lysozyme as a model protein and applied to several thiolic proteins. The proposed method reports, for the first time, that it is possible to label 75–100% cysteines of proteins and, thus, to determine thiolic proteins without the need of any reducing step to obtain reduced -SH groups before mercury labelling. We obtained a detection limit of 100 nmol L{sup −1} based on a signal-to-noise ratio of 3 for unbound and complexed pHMB, corresponding to a detection limit of proteins ranged between 3 and 360 nmol L{sup −1}, depending on the number of cysteines in the protein sequence.

  9. Isolation andin vivo hepatoprotective activity ofMelothria heterophylla (Lour.) Cogn. against chemically induced liver injuries in rats

    Institute of Scientific and Technical Information of China (English)

    Arijit Mondal; Tapan Kumar Maity; Dilipkumar Pal; Santanu Sannigrahi; Jagadish Singh

    2011-01-01

    Objective:To investigate hepatoprotective activity of ethanol extract of Melothria heterophylla Lour Cogn.(EEMH) againstCCl4-induced hepatic damage in rats.Methods:β-sitosterol was isolated by column chromatography and characterized spectroscopically. Two different doses (200 and400mg/kg bw) ofEEMHwere administered orally in alternate days. The hepatoprotective activity was studied in liver by measuring biochemical parameters such as serum aspartate amino transferase (AST), alanine amino transferase(ALT), alkaline phosphatase(ALP), total protein and total bilirubin. Lipid peroxidation product and different antioxidant enzyme activities were assessed in liver homogenate.Results:EEMH reduced all biochemical parameters and lipid peroxidation, as well as it increased the antioxidant enzyme activities in comparison with silymarin. The protective effect of the extract on CCl4 induced damage was confirmed by histopathological examination of the liver.Conclusions: This result strongly supports the protective effect ofEEMH against acute liver injury, and may be attributed to its antioxidative activity.

  10. Development of alkaline fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassovs research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herrings group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  11. Characterization of Chemically Induced Liver Injuries Using Gene Co-Expression Modules

    Science.gov (United States)

    2014-09-16

    si/j were computed across the second index of the Z-score matrix as defined in Equation (1). Using the values of r p i we determined the center gene of...therapeutic index and are associated with such side effects as nausea, vomiting, and weight loss [39–41]. Glucocorticoid receptor agonists are reported to...liver injuries in the CTD. Table 6 shows genes associated with liver disease endpoints that include 1) blood chemistry ( anemia : low hemoglobin), 2) fatty

  12. Anodes for alkaline electrolysis

    Science.gov (United States)

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  13. Chemical modification of radiation injury in granuloid cells of mouse bone marrow

    Energy Technology Data Exchange (ETDEWEB)

    Bhagat, R.M.; Kumar, A. (Himachal Pradesh Univ., Simla (India). Dept. of Bio-sciences)

    1983-08-01

    Modifying effects of MPG (2-Mercaptopropionylglycine) have been studied on bone marrow granuloid cells of Swiss albino mice after injecting radiocalcium (/sup 45/Ca) at the dose of 37 kBq/g body weight MPG was injected 30 minutes before radiocalcium injection at dose 20 mg/kg body weight intraperitoneally and also MPG was injected at various repeated doses. Present observations indicate that MPG in repeated doses is effective in reducing radiation injury in bone marrow granuloid cells of Swiss albino mice following radiocalcium (/sup 45/Ca) internal irradiation.

  14. By-products of the serpentinization process on the Oman ophiolite : chemical and isotopic composition of carbonate deposits in alkaline springs, and associated secondary phases

    Science.gov (United States)

    Sissmann, O.; Martinez, I.; Deville, E.; Beaumont, V.; Pillot, D.; Prinzhofer, A.; Vacquand, C.; Chaduteau, C.; Agrinier, P.; Guyot, F. J.

    2014-12-01

    The isotopic compositions (d13C, d18O) of natural carbonates produced by the alteration of basic and ultrabasic rocks on the Oman ophiolite have been measured in order to better understand their formation mechanisms. Fossil carbonates developed on altered peridotitic samples, mostly found in fractures, and contemporary carbonates were studied. The samples bear a large range of d13C. Those collected in veins are magnesian (magnesite, dolomite) and have a carbon signature reflecting mixing of processes and important fractionation (-11‰ to 8‰). Their association with talc and lizardite suggests they are by-products of a serpentinization process, that must have occurred as a carbon-rich fluid was circulating at depth. On the other hand, the carbonates are mostly calcic when formed in alkaline springs, most of which are located in the vicinity of lithological discontinuities such as the peridotite-gabbro contact (Moho). Aragonite forms a few meters below the surface of the ponds in Mg-poor water, and is systematically associated with brucite (Mg(OH)2). This suggests most of the Mg dissolved at depth has reprecipitated during the fluid's ascension through fractures or faults as carbonates and serpentine. Further up, on the surface waters of the ponds (depleted in Mg and D.I.C.), thin calcite films precipitate and reach extremely negative d13C values (-28‰), which could reflect either a biological carbon source, or kinetic fractionation from pumping atmospheric CO2. Their formation represent an efficient and natural process for carbon dioxide mineral sequestration. The d18O signature from all samples confirm the minerals crystallized from a low-temperature fluid. The hyperalkaline conditions (pH between 11 and 12) allowing for these fast precipitation kinetics are generated by the serpentinization process occurring at depth, as indicated by the measured associated H2-rich gas flows (over 50%) seeping out to the surface.

  15. Characterization of the Kallikrein-Kinin System Post Chemical Neuronal Injury: An In Vitro Biochemical and Neuroproteomics Assessment.

    Directory of Open Access Journals (Sweden)

    Amaly Nokkari

    Full Text Available Traumatic Brain Injury (TBI is the result of a mechanical impact on the brain provoking mild, moderate or severe symptoms. It is acknowledged that TBI leads to apoptotic and necrotic cell death; however, the exact mechanism by which brain trauma leads to neural injury is not fully elucidated. Some studies have highlighted the pivotal role of the Kallikrein-Kinin System (KKS in brain trauma but the results are still controversial and inconclusive. In this study, we investigated both the expression and the role of Bradykinin 1 and 2 receptors (B1R and B2R, in mediating neuronal injury under chemical neurotoxicity paradigm in PC12 cell lines. The neuronal cell line PC12 was treated with the apoptotic drug Staurosporine (STS to induce cell death. Intracellular calcium release was evaluated by Fluo 4-AM staining and showed that inhibition of the B2R prevented calcium release following STS treatment. Differential analyses utilizing immunofluorescence, Western blot and Real-time Polymerase Chain Reaction revealed an upregulation of both bradykinin receptors occurring at 3h and 12h post-STS treatment, but with a higher induction of B2R compared to B1R. This implies that STS-mediated apoptosis in PC12 cells is mainly conducted through B2R and partly via B1R. Finally, a neuroproteomics approach was conducted to find relevant proteins associated to STS and KKS in PC12 cells. Neuroproteomics results confirmed the presence of an inflammatory response leading to cell death during apoptosis-mediated STS treatment; however, a "survival" capacity was shown following inhibition of B2R coupled with STS treatment. Our data suggest that B2R is a key player in the inflammatory pathway following STS-mediated apoptosis in PC12 cells and its inhibition may represent a potential therapeutic tool in TBI.

  16. TAFA4, a Chemokine-like Protein, Modulates Injury-Induced Mechanical and Chemical Pain Hypersensitivity in Mice

    Directory of Open Access Journals (Sweden)

    Marie-Claire Delfini

    2013-10-01

    Full Text Available C-low-threshold mechanoreceptors (C-LTMRs are unique among C-unmyelinated primary sensory neurons. These neurons convey two opposite aspects of touch sensation: a sensation of pleasantness, and a sensation of injury-induced mechanical pain. Here, we show that TAFA4 is a specific marker of C-LTMRs. Genetic labeling in combination with electrophysiological recordings show that TAFA4+ neurons have intrinsic properties of mechano-nociceptors. TAFA4-null mice exhibit enhanced mechanical and chemical hypersensitivity following inflammation and nerve injury as well as increased excitability of spinal cord lamina IIi neurons, which could be reversed by intrathecal or bath application of recombinant TAFA4 protein. In wild-type C57/Bl6 mice, intrathecal administration of TAFA4 strongly reversed carrageenan-induced mechanical hypersensitivity, suggesting a potent analgesic role of TAFA4 in pain relief. Our data provide insights into how C-LTMR-derived TAFA4 modulates neuronal excitability and controls the threshold of somatic sensation.

  17. TAFA4, a chemokine-like protein, modulates injury-induced mechanical and chemical pain hypersensitivity in mice.

    Science.gov (United States)

    Delfini, Marie-Claire; Mantilleri, Annabelle; Gaillard, Stéphane; Hao, Jizhe; Reynders, Ana; Malapert, Pascale; Alonso, Serge; François, Amaury; Barrere, Christian; Seal, Rebecca; Landry, Marc; Eschallier, Alain; Alloui, Abdelkrim; Bourinet, Emmanuel; Delmas, Patrick; Le Feuvre, Yves; Moqrich, Aziz

    2013-10-31

    C-low-threshold mechanoreceptors (C-LTMRs) are unique among C-unmyelinated primary sensory neurons. These neurons convey two opposite aspects of touch sensation: a sensation of pleasantness, and a sensation of injury-induced mechanical pain. Here, we show that TAFA4 is a specific marker of C-LTMRs. Genetic labeling in combination with electrophysiological recordings show that TAFA4+ neurons have intrinsic properties of mechano-nociceptors. TAFA4-null mice exhibit enhanced mechanical and chemical hypersensitivity following inflammation and nerve injury as well as increased excitability of spinal cord lamina IIi neurons, which could be reversed by intrathecal or bath application of recombinant TAFA4 protein. In wild-type C57/Bl6 mice, intrathecal administration of TAFA4 strongly reversed carrageenan-induced mechanical hypersensitivity, suggesting a potent analgesic role of TAFA4 in pain relief. Our data provide insights into how C-LTMR-derived TAFA4 modulates neuronal excitability and controls the threshold of somatic sensation.

  18. Alkaline battery operational methodology

    Science.gov (United States)

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  19. Chemical composition of modern and fossil hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation - Part 2: Alkaline earth elements as tracers of watershed hydrochemistry and provenance

    Science.gov (United States)

    Brügmann, G.; Krause, J.; Brachert, T. C.; Stoll, B.; Weis, U.; Kullmer, O.; Ssemmanda, I.; Mertz, D. F.

    2012-11-01

    This study demonstrates that alkaline earth elements in enamel of hippopotamids, in particular Ba and Sr, are tracers for water provenance and hydrochemistry in terrestrial settings. The studied specimens are permanent premolar and molar teeth found in modern and fossil lacustrine sediments of the Western Branch of the East African Rift system (Lake Kikorongo, Lake Albert, and Lake Malawi) and from modern fluvial environments of the Nile River. Concentrations in enamel vary by two orders of magnitude for Ba (120-9336 μg g-1) as well as for Sr (9-2150 μg g-1). The variations are partially induced during post-mortem alteration and during amelogenesis, but the major contribution originates ultimately from the variable water chemistry in the habitats of the hippopotamids which is controlled by the lithologies and weathering processes in the watershed areas. Amelogenesis causes a distinct distribution of MgO, Ba and Sr in modern and fossil enamel, in that element concentrations increase along profiles from the outer rim towards the enamel-dentin junction by a factor of 1.3-1.9. These elements are well correlated in single specimens, thus suggesting that their distribution is determined by a common, single process, which can be described by closed system Rayleigh crystallization of bioapatite in vivo. Enamel from most hippopotamid specimens has Sr/Ca and Ba/Ca which are typical for herbivores. However, Ba/Sr ranges from 0.1 to 3 and varies on spatial and temporal scales. Thus, Sr concentrations and Ba/Sr in enamel differentiate between habitats having basaltic mantle rocks or Archean crustal rocks as the ultimate sources of Sr and Ba. This provenance signal is modulated by climate change. In Miocene to Pleistocene enamel from the Lake Albert region, Ba/Sr decreases systematically with time from 2 to 0.5. This trend can be correlated with changes in climate from humid to arid, in vegetation from C3 to C4 biomass as well as with increasing evaporation of the lake water

  20. The neuroprotective role of endocannabinoids against chemical-induced injury and other adverse effects.

    Science.gov (United States)

    Zogopoulos, Panagiotis; Vasileiou, Ioanna; Patsouris, Efstratios; Theocharis, Stamatios

    2013-04-01

    Considerable progress has been made, recently, in understanding the role of the endocannabinoid system in regard to neuroprotection. Endogenous cannabinoids have received increasing attention as potential protective agents in several cases of neuronal injury. The endocannabinoid system is comprised of cannabinoid receptors (CB1 and CB2), their endogenous ligands (endocannabinoids) and proteins responsible for their metabolism. Endocannabinoids serve as retrograde signalling messengers in GABAergic and glutamatergic synapses, as well as modulators of post-synaptic transmission, interacting with other neurotransmitters, including norepinephrine and dopamine. Furthermore, endocannabinoids modulate neuronal, glial and endothelial cell function and exert neuromodulatory, anti-excitotoxic, anti-inflammatory and vasodilatory effects. Physiological stimuli and pathological conditions lead to differential increases in brain endocannabinoids that regulate distinct biological functions. The purpose of this review is to present the available in vivo and in vitro experimental data, up to date, regarding the endocannabinoid system and its role in neuroprotection, as well as its possible therapeutic perspectives.

  1. Chemical aromatization of 19-hydroxyandrosta-1,4-diene-3,17-dione with acid or alkaline: elimination of the 19-hydroxymethyl group as formaldehyde.

    Science.gov (United States)

    Numazawa, Mitsuteru; Yamashita, Kouwa; Kimura, Nao; Takahashi, Madoka

    2009-02-01

    In order to determine whether or not a 19-hydroxymethyl group of 19-hydroxyandrosta-1,4-diene-3,17-dione (2, 19-hydroxy ADD), an intermediate of aromatase-catalyzed estrone formation from ADD, a suicide substrate of aromatase, is eliminated as formaldehyde, we examine chemical nature of removal of the 19-hydroxymethyl group. 19-acetate 3 and 19-tert-butyldimethylsiloxy compound 4 are known to convert rapidly to estrone with treatment of NaOH or n-Bu4NF. Since compound 2 was unstable and unobtainable under these conditions, compounds 3 and 4 as equivalents to compound 2 were used in this study. The acetate 3 with 5 mol/l HCl in acetone and 10% KOH in MeOH along with the silyl ether 4 with 5 mol/l HCl in acetone and 1 mol/l n-Bu4NF in THF gave formaldehyde and estrone in which a ratio of the aldehyde to estrone was near 1. This result indicates that the 19-hydroxymethyl groups of compound 3 and 4 are eliminated as formaldehyde along with estrone derived from the steroid skeleton under the acid or base treatment. The findings suggest that a single hydroxylation at the 19 carbon of ADD (1) would be, chemically, all that was required for estrone formation.

  2. Decay accelerating factor (CD55 protects neuronal cells from chemical hypoxia-induced injury

    Directory of Open Access Journals (Sweden)

    Tsokos George C

    2010-04-01

    Full Text Available Abstract Background Activated complement system is known to mediate neuroinflammation and neurodegeneration following exposure to hypoxic-ischemic insults. Therefore, inhibition of the complement activation cascade may represent a potential therapeutic strategy for the management of ischemic brain injury. Decay-accelerating factor (DAF, also known as CD55 inhibits complement activation by suppressing the function of C3/C5 convertases, thereby limiting local generation or deposition of C3a/C5a and membrane attack complex (MAC or C5b-9 production. The present study investigates the ability of DAF to protect primary cultured neuronal cells subjected to sodium cyanide (NaCN-induced hypoxia from degeneration and apoptosis. Methods Cultured primary cortical neurons from embryonic Sprague-Dawley rats were assigned one of four groups: control, DAF treatment alone, hypoxic, or hypoxic treated with DAF. Hypoxic cultures were exposed to NaCN for 1 hour, rinsed, followed by 24 hour exposure to 200 ng/ml of recombinant human DAF in normal medium. Human DAF was used in the present study and it has been shown to effectively regulate complement activation in rats. Neuronal cell function, morphology and viability were investigated by measuring plateau depolarization potential, counting the number dendritic spines, and observing TUNEL and MTT assays. Complement C3, C3a, C3a receptor (R production, C3a-C3aR interaction and MAC formation were assessed along with the generation of activated caspase-9, activated caspase-3, and activated Src. Results When compared to controls, hypoxic cells had fewer dendritic spines, reduced plateau depolarization accompanied by increased apoptotic activity and accumulation of MAC, as well as up-regulation of C3, C3a and C3aR, enhancement of C3a-C3aR engagement, and elevated caspase and Src activity. Treatment of hypoxic cells with 200 ng/ml of recombinant human DAF resulted in attenuation of neuronal apoptosis and exerted

  3. Efecto del secado térmico y el tratamiento alcalino en las características microbiológicas y químicas de biosólidos de plantas de tratamiento de aguas residuales domésticas Effect of thermal drying and alkaline treatment on the microbiological and chemical characteristics of biosolids from domestic wastewater treatment plants

    Directory of Open Access Journals (Sweden)

    Jorge Silva-Leal

    2013-01-01

    Full Text Available We evaluated the effect of thermal drying (60 to 75 ºC and times from 0 to 12.58 h and alkaline treatment (Ca(OH2 and CaO at doses from 8 to 10%. on the microbiological and chemical characteristics of biosolids from the Cañaveralejo WWTP. The results showed that in thermal drying all temperatures studied were sufficient to achieve the sanitation of biosolids. In the alkaline treatment the two types of lime showed the total elimination of fecal coliforms, E. coli and helminth eggs, however, the process of alkalization of biosolids had significant influences on organic carbon and calcium.

  4. Chemical composition and hepatotoxic effect of Geranium schiedeanum in a thioacetamide-induced liver injury model

    Directory of Open Access Journals (Sweden)

    Juan Gayosso-De-Lucio

    2014-01-01

    Full Text Available One of the major components of some geraniums is geraniin, described by its discoverer as crystallizable tannin, well known as an excellent antioxidant, and also found in fruits such as pomegranate. Recently, natural antioxidants have attracted great attention from consumers over the world due to their lower toxicity than synthetics. But geraniin is not a stable compound, and also is difficult to obtain, that is why in the present study we obtained acetonylgeraniin from Geranium schideanum (Gs, a stable acetone condensate of geraniin. In the present study the effect of Gs acetone-water extract was studied in reference to postnecrotic liver regeneration induced by thioacetamide (TA in rats. Two months male rats were pretreated with daily dose of Gs extract for 4 days (300 mg/kg and the last day also were intraperitoneally injected with TA (6.6 mmol/kg. Samples of blood were obtained from rats at 0, 24, 48, 72 and 96 h following TA intoxication. The pre-treatment with the crude extract in the model of thioacetamide-induced hepatotoxicity in rats decreased and delayed liver injury by 66% at 24 h. This result suggests that Gs extract may be used as an alternative for reduction of liver damage. On the other hand, acute toxicity study revealed that the LD 50 value of the Gs extract is more than the dose 5000 mg/kg in rats, according to the Lorke method.

  5. Increased river alkalinization in the Eastern U.S

    Science.gov (United States)

    Kaushal, S.; Likens, G. E.; Utz, R.; Pace, M.; Grese, M.; Yepsen, M.

    2013-12-01

    The interaction between human activities and watershed geology is accelerating long-term changes in the carbon cycle of rivers. We evaluated changes in bicarbonate alkalinity, a product of chemical weathering, and tested for long-term trends at 97 sites in the eastern United States draining over 260,000 km2. We observed statistically significant increasing trends in alkalinity at 62 of the 97 sites, while remaining sites exhibited no significant decreasing trends. Over 50% of study sites also had statistically significant increasing trends in concentrations of calcium (another product of chemical weathering) where data were available. River alkalinization rates were significantly related to watershed carbonate lithology, acid deposition, and topography. These 3 variables explained ~40% of variation in river alkalinization rates. The strongest predictor of river alkalinization rates was carbonate lithology. The most rapid rates of river alkalinization occurred at sites with highest inputs of acid deposition and highest elevation. The rise of alkalinity in many rivers throughout the eastern U.S. suggests human-accelerated chemical weathering, in addition to previously documented impacts of mining and land use. Increased river alkalinization has major environmental implications including impacts on water hardness and salinization of drinking water, alterations of air-water exchange of CO2, coastal ocean acidification, and the influence of bicarbonate availability on primary production.

  6. Increased river alkalinization in the Eastern U.S.

    Science.gov (United States)

    Kaushal, Sujay S; Likens, Gene E; Utz, Ryan M; Pace, Michael L; Grese, Melissa; Yepsen, Metthea

    2013-09-17

    The interaction between human activities and watershed geology is accelerating long-term changes in the carbon cycle of rivers. We evaluated changes in bicarbonate alkalinity, a product of chemical weathering, and tested for long-term trends at 97 sites in the eastern United States draining over 260,000 km(2). We observed statistically significant increasing trends in alkalinity at 62 of the 97 sites, while remaining sites exhibited no significant decreasing trends. Over 50% of study sites also had statistically significant increasing trends in concentrations of calcium (another product of chemical weathering) where data were available. River alkalinization rates were significantly related to watershed carbonate lithology, acid deposition, and topography. These three variables explained ~40% of variation in river alkalinization rates. The strongest predictor of river alkalinization rates was carbonate lithology. The most rapid rates of river alkalinization occurred at sites with highest inputs of acid deposition and highest elevation. The rise of alkalinity in many rivers throughout the Eastern U.S. suggests human-accelerated chemical weathering, in addition to previously documented impacts of mining and land use. Increased river alkalinization has major environmental implications including impacts on water hardness and salinization of drinking water, alterations of air-water exchange of CO2, coastal ocean acidification, and the influence of bicarbonate availability on primary production.

  7. Alkaline earth metal thioindates

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov-Ehmin, B.N.; Ivlieva, V.I.; Filatenko, L.A.; Zajtsev, B.E.; Kaziev, G.Z.; Sarabiya, M.G.

    1984-08-01

    Alkaline earth metal thioindates of MIn/sub 2/S/sub 4/ composition were synthesized by interaction of alkaline earth metal oxoindates with hydrogen sulfide during heating. Investigation into the compounds by X-ray analysis showed that calcium compound crystallizes in cubic crystal system and strontium and barium compounds in rhombic crystal system. Lattice parameters and the number of formula units were determined. Thioindates of M/sub 3/In/sub 2/S/sub 6/ composition were synthesized, their individuality was shown.

  8. Chemical injury treated with autologous limbal epithelial stem cell transplantation and subconjunctival bevacizumab

    Directory of Open Access Journals (Sweden)

    Cavallini GM

    2014-08-01

    Full Text Available Gian Maria Cavallini,1 Graziella Pellegrini,2 Veronica Volante,1 Pietro Ducange,1 Michele De Maria,1 Giulio Torlai,1 Caterina Benatti,1 Matteo Forlini1 1Institute of Ophthalmology, 2Centre for Regenerative Medicine “Stefano Ferrari”, University of Modena e Reggio Emilia, Modena, Italy Background: Limbal stem cell (LSC deficiency leads to corneal opacity due to a conjunctivalization of the corneal surface. LSC transplantation, which can be followed by corneal keratoplasty, is an effective procedure to restore corneal transparency; however, a common cause of failure of this procedure is neovascularization (NV.Methods: A 59-year-old man with a 21-year history of a corneal chemical burn caused by phosphoric acid in his left eye was examined. He presented with unilateral total LSC deficiency with severe conjunctivalization and a corrected distance visual acuity that was limited to hand motion.Results: We reported the short-term in vivo efficacy of subconjunctival bevacizumab for progressive corneal NV in a patient with LSC deficiency that underwent LSC transplantation. Four months after autologous LSC transplantation and 1 month after the second subconjunctival bevacizumab injection, the patient’s corrected distance visual acuity was 1/10.Conclusion: Subconjunctival injection of bevacizumab can reduce the corneal NV, reducing conjunctival inflammation and supporting restoration of a stable ocular surface that is able to counteract graft failure, with no toxicity for the transplanted LSC. Keywords: stem cells, bevacizumab, limbal stem cell deficiency, transplantation

  9. Alkaline phosphatase protects against renal inflammation through dephosphorylation of lipopolysaccharide and adenosine triphosphate

    NARCIS (Netherlands)

    Peters, E; Geraci, S; Heemskerk, S; Wilmer, M J; Bilos, A; Kraenzlin, B; Gretz, N; Pickkers, P; Masereeuw, R

    2015-01-01

    BACKGROUND AND PURPOSE: Recently, two phase-II trials demonstrated improved renal function in critically ill patients with sepsis-associated acute kidney injury treated with the enzyme alkaline phosphatase. Here, we elucidated the dual active effect on renal protection by alkaline phosphatase presum

  10. Chemical composition and release in situ due to injury of the invasive coral tubastraea (Cnidaria, Scleractinia

    Directory of Open Access Journals (Sweden)

    Bruno G. Lages

    2010-01-01

    Full Text Available Defensive chemistry may be used against consumers and competitors by invasive species as a strategy for colonization and perpetuation in a new area. There are relatively few studies of negative chemical interactions between scleratinian corals. This study characterizes the secondary metabolites in the invasive corals Tubastraea tagusensis and T. coccinea and relates these to an in situ experiment using a submersible apparatus with Sep-Paks® cartridges to trap substances released by T. tagusensis directly from the sea-water. Colonies of Tubastraea spp were collected in Ilha Grande Bay, RJ, extracted with methanol (MeOH, and the extracts washed with hexane, dichloromethane (DCM and methanol, and analyzed by GC/MS. Methyl stearate and methyl palmitate were the major components of the hexane and hexane:MeOH fractions, while cholesterol was the most abundant in the DCM and DCM:MeOH fractions from Tubastraea spp. The organic material retained in Sep-Paks® cartridges was tentatively identified as hydrocarbons. There was a significant difference between treatments and controls for 1-hexadecene, n-hexadecane and n-eicosane contents. The production of defensive substances by the invasive corals may be a threat to the benthic communities of the region, which include endemic species.Substâncias químicas de defesa contra consumidores e competidores podem ser usadas por espécies invasoras marinhas como estratégia de colonização e perpetuação em novo ambiente. Entretanto, há poucos estudos experimentais que demonstrem as possíveis interações negativas entre corais escleractínios. Este trabalho tem como objetivo caracterizar os metabólitos secundários dos corais invasores Tubastraea tagusensis e T. coccinea; avaliar através da técnica de amostragem in situ quais são as substâncias de T. tagusensis liberadas na água do mar, com o auxílio de aparelho subaquático com colunas Sep-Paks®. Colônias dos corais invasores Tubastraea spp foram

  11. Alkaline chemistry of transuranium elements and technetium and the treatment of alkaline radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, C.H. [Westinghouse Hanford Co., Richland, WA (United States); Peretrukhin, V.F.; Shilov, V.P.; Pikaev, A.K. [Russian Academy of Sciences (Russian Federation). Inst. of Physical Chemistry

    1995-05-01

    Goal of this survey is to generalize the known data on fundamental physical-chemical properties of TRUs and Tc, methods for their isolation, and to provide recommendations that will be useful for partitioning them from alkaline high-level wastes.

  12. Linkages between the life-history evolution of tropical and temperate birds and the resistance of cultured skin fibroblasts to oxidative and non-oxidative chemical injury

    OpenAIRE

    Jimenez, Ana Gabriela; Harper, James M.; Simon A. Queenborough; Williams, Joseph B.

    2013-01-01

    A fundamental challenge facing physiological ecologists is to understand how variation in life history at the whole-organism level might be linked to cellular function. Thus, because tropical birds have higher annual survival and lower rates of metabolism, we hypothesized that cells from tropical species would have greater cellular resistance to chemical injury than cells from temperate species. We cultured dermal fibroblasts from 26 tropical and 26 temperate species of birds and examined cel...

  13. Alkaline broadening in Stars

    CERN Document Server

    De Kertanguy, A

    2015-01-01

    Giving new insight for line broadening theory for atoms with more structure than hydrogen in most stars. Using symbolic software to build precise wave functions corrected for ds;dp quantum defects. The profiles obtained with that approach, have peculiar trends, narrower than hydrogen, all quantum defects used are taken from atomic database topbase. Illustration of stronger effects of ions and electrons on the alkaline profiles, than neutral-neutral collision mechanism. Keywords : Stars: fundamental parameters - Atomic processes - Line: profiles.

  14. Hydrogen sulfide protects against chemical hypoxia-induced injury by inhibiting ROS-activated ERK1/2 and p38MAPK signaling pathways in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Aiping Lan

    Full Text Available Hydrogen sulfide (H(2S has been proposed as a novel neuromodulator and neuroprotective agent. Cobalt chloride (CoCl(2 is a well-known hypoxia mimetic agent. We have demonstrated that H(2S protects against CoCl(2-induced injuries in PC12 cells. However, whether the members of mitogen-activated protein kinases (MAPK, in particular, extracellular signal-regulated kinase1/2(ERK1/2 and p38MAPK are involved in the neuroprotection of H(2S against chemical hypoxia-induced injuries of PC12 cells is not understood. We observed that CoCl(2 induced expression of transcriptional factor hypoxia-inducible factor-1 alpha (HIF-1α, decreased cystathionine-β synthase (CBS, a synthase of H(2S expression, and increased generation of reactive oxygen species (ROS, leading to injuries of the cells, evidenced by decrease in cell viability, dissipation of mitochondrial membrane potential (MMP , caspase-3 activation and apoptosis, which were attenuated by pretreatment with NaHS (a donor of H(2S or N-acetyl-L cystein (NAC, a ROS scavenger. CoCl(2 rapidly activated ERK1/2, p38MAPK and C-Jun N-terminal kinase (JNK. Inhibition of ERK1/2 or p38MAPK or JNK with kinase inhibitors (U0126 or SB203580 or SP600125, respectively or genetic silencing of ERK1/2 or p38MAPK by RNAi (Si-ERK1/2 or Si-p38MAPK significantly prevented CoCl(2-induced injuries. Pretreatment with NaHS or NAC inhibited not only CoCl(2-induced ROS production, but also phosphorylation of ERK1/2 and p38MAPK. Thus, we demonstrated that a concurrent activation of ERK1/2, p38MAPK and JNK participates in CoCl(2-induced injuries and that H(2S protects PC12 cells against chemical hypoxia-induced injuries by inhibition of ROS-activated ERK1/2 and p38MAPK pathways. Our results suggest that inhibitors of ERK1/2, p38MAPK and JNK or antioxidants may be useful for preventing and treating hypoxia-induced neuronal injury.

  15. Surfactant-enhanced alkaline flooding: Buffering at intermediate alkaline pH

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, J.; Wasan, D.T. (Illinois Inst. of Tech., Chicago, IL (United States))

    1993-11-01

    The alkaline flooding process involves injecting alkaline agents into the reservoir to produce more oil than is produced through conventional waterflooding. The interaction of the alkali in the flood water with the naturally occurring acids in the reservoir oil results in in-situ formation of soaps, which are partially responsible for lowering IFT and improving oil recovery. The extent to which IFT is lowered depends on the specific oil and injection water properties. Numerous investigators have attempted to clarify the relationship between system chemical composition and IFT. An experimental investigation of buffered alkaline flooding system chemistry was undertaken to determine the influence of various species present on interfacial tension (IFT) as a function of pH and ionic strength. IFT was found to go through an ultralow minimum in certain pH ranges. This synergism results from simultaneous adsorption of un-ionized and ionized acid species on the interface.

  16. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  17. Visual Acuity Before and After Treatment in Patients with Chemical Injuries at the National Eye Center, Cicendo Eye Hospital, Bandung from 2010 to 2011

    Directory of Open Access Journals (Sweden)

    Endi Pramudya Laksana

    2015-09-01

    Full Text Available Background: Chemical trauma is one of the emergency cases in ophthalmology since it can lead to severe, permanent blindness if not immediately treated. This study aimed to reveal pre- and post-therapy visual acuity on patients with chemical trauma at theNational Eye Center, Cicendo Eye Hospital, Bandung. Methods: This study was performed on 40 patients’ medical records from the National Eye Center, Cicendo Eye Hospital Bandung from January 2010 to January 2011 as secondary data, using the descriptive retrospective method. The data were divided into two groups: acid and alkali trauma. The collected data were analyzed and presented in tables. Results: Chemical trauma cases were mostly caused by caustic soda (17/40 whereas the least were caused by vinegar (3/40 and commonly occurred on adult patients in the right eye on alkali trauma. Patients with chemical trauma generally had normal eyesight before therapy.The number of patients with acid and alkali trauma who experienced improved eyesight after therapy alkali were similar (3 patients while worsening symptoms occurred in one patient with alkali chemical trauma from mild to medium low vision. Conclusions: There are some improvements of visual acuity after treatment in patients with chemical injuries.

  18. Titanium corrosion in alkaline hydrogen peroxide environments

    Science.gov (United States)

    Been, Jantje

    1998-12-01

    The corrosion of Grade 2 titanium in alkaline hydrogen peroxide environments has been studied by weight loss corrosion tests, electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR) measurements and potentiodynamic polarography. Calcium ions and wood pulp were investigated as corrosion inhibitors. In alkaline peroxide, the titanium corrosion rate increased with increasing pH, temperature, and hydrogen peroxide concentration. The corrosion controlling mechanism is thought to be the reaction of the oxide with the perhydroxyl ion. No evidence of thermodynamically stable calcium titanate was found in the surface film of test coupons exposed to calcium-inhibited alkaline peroxide solutions. Calcium inhibition is probably the result of low local alkali and peroxide concentrations at the metal surface produced by reaction of adsorbed calcium with hydrogen peroxide. It has been shown that the inhibiting effect of calcium is temporary, possibly through an effect of calcium on the chemical and/or physical stability of the surface oxide. Pulp is an effective and stable corrosion inhibitor. Raising the pulp concentration decreased the corrosion rate. The inhibiting effect of pulp may be related to the adsorption and interaction of the pulp fibers with H 2O2, thereby decreasing the peroxide concentration and rendering the solution less corrosive. The presence of both pulp and calcium led to higher corrosion rates than obtained by either one inhibitor alone. Replacement of hydrofluoric acid with alkaline peroxide for pickling of titanium was investigated. Titanium corrosion rates in alkaline peroxide exceeded those obtained in the conventional hydrofluoric acid bath. General corrosion was observed with extensive roughening of the surface giving a dull gray appearance. Preferred dissolution of certain crystallographic planes was investigated through the corrosion of a titanium single crystal. Whereas the overall effect on the corrosion rate was small

  19. Minocycline and doxycycline, but not other tetracycline-derived compounds, protect liver cells from chemical hypoxia and ischemia/reperfusion injury by inhibition of the mitochondrial calcium uniporter

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Justin; Holmuhamedov, Ekhson; Zhang, Xun; Lovelace, Gregory L.; Smith, Charles D. [Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC (United States); Lemasters, John J., E-mail: JJLemasters@musc.edu [Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC (United States); Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC (United States)

    2013-11-15

    Minocycline, a tetracycline-derived compound, mitigates damage caused by ischemia/reperfusion (I/R) injury. Here, 19 tetracycline-derived compounds were screened in comparison to minocycline for their ability to protect hepatocytes against damage from chemical hypoxia and I/R injury. Cultured rat hepatocytes were incubated with 50 μM of each tetracycline-derived compound 20 min prior to exposure to 500 μM iodoacetic acid plus 1 mM KCN (chemical hypoxia). In other experiments, hepatocytes were incubated in anoxic Krebs–Ringer–HEPES buffer at pH 6.2 for 4 h prior to reoxygenation at pH 7.4 (simulated I/R). Tetracycline-derived compounds were added 20 min prior to reperfusion. Ca{sup 2+} uptake was measured in isolated rat liver mitochondria incubated with Fluo-5N. Cell killing after 120 min of chemical hypoxia measured by propidium iodide (PI) fluorometry was 87%, which decreased to 28% and 42% with minocycline and doxycycline, respectively. After I/R, cell killing at 120 min decreased from 79% with vehicle to 43% and 49% with minocycline and doxycycline. No other tested compound decreased killing. Minocycline and doxycycline also inhibited mitochondrial Ca{sup 2+} uptake and suppressed the Ca{sup 2+}-induced mitochondrial permeability transition (MPT), the penultimate cause of cell death in reperfusion injury. Ru360, a specific inhibitor of the mitochondrial calcium uniporter (MCU), also decreased cell killing after hypoxia and I/R and blocked mitochondrial Ca{sup 2+} uptake and the MPT. Other proposed mechanisms, including mitochondrial depolarization and matrix metalloprotease inhibition, could not account for cytoprotection. Taken together, these results indicate that minocycline and doxycycline are cytoprotective by way of inhibition of MCU. - Highlights: • Minocycline and doxycycline are the only cytoprotective tetracyclines of those tested • Cytoprotective tetracyclines inhibit the MPT and mitochondrial calcium and iron uptake. • Cytoprotective

  20. 百草枯致眼化学伤15例分析%Clinical analysis of 15 cases of paraquat-induced ocular chemical injury

    Institute of Scientific and Technical Information of China (English)

    严新华; 徐欣悦

    2015-01-01

    目的 探讨百草枯(Paraquat)致眼化学伤的临床表现和治疗方法.方法 对2012年7月至2014年6月百草枯致眼化学伤15例(21眼)进行回顾性分析.结果 百草枯所致眼损伤均出现特征性的结膜伪膜,立即给以结膜囊冲洗,抗生素滴眼液和自体血清滴眼,全身糖皮质激素应用联合伪膜撕除.除1例穹隆部发生睑球粘连外,其余均恢复良好.结论 百草枯致眼化学伤典型临床特征为结膜伪膜,患者应及时救治.采用上述治疗方案,效果良好.%Objective To investigate the clinical manifestation and therapeutic method of paraquat-induced ocular chemical injury.Methods A retrospective analysis was conducted on the clinical data of 21 eyes from 15 patients with paraquat-induced ocular chemical injury from July 2012 to June 2014.Results Specific pseudomembranous conjunctivitis was manifested on all patients.The treatment with rinsing conjunctival sac, antibiotic eye drops and autologous serum eye drops, as well as systematically injection with glucocorticoid were used combined with pseudomembrane removal.All patients were recovered well except symblepharon occurred on the zone of the fomix in one patient.Conclusion The specific clinical manifestation of paraquat-induced ocular chemical injury is conjunctival pseudomembrane.Those patients should to be rescued timely with the methods given above and they will recover well.

  1. An alkaline element

    Energy Technology Data Exchange (ETDEWEB)

    Arita, T.; Murakami, K.; Okha, K.

    1983-04-28

    A cathode with a dual layer active mass is installed in the disk shaped alkaline silver and zinc element. The first layer, which is turned towards the anode, contains 85 parts Ag2O, 5 parts electrolytic MnO2 and 10 parts graphite. The second layer, which contacts the bottom of the element, contains 35 parts Ag2O, 60 parts electrolytic MnO2 and 5 parts graphite. The electrical capacity of the first and second layers is 60 and 40, respectively. The first layer may be discharged with a high current density and the second layer with less current density. The element has high characteristics with comparatively low cost.

  2. Systems Toxicology of Chemically Induced Liver and Kidney Injuries: Histopathology-Associated Gene Co-Expression Modules

    Science.gov (United States)

    2016-01-04

    Balanced Accuracy or ½ (Sen+ Spc). J. A. Te et al. 1144whereas triamterene is an acute nephrotoxicant known to cause nephropathy (Nasr et al., 2014...liver and kidney injuries and may provide a rational basis for identifying and developing poten- tial biomarkers for diagnosis or prognosis. For...10.1111/j.1440-1746.2009.06187.x. Nasr SH, Milliner DS, Wooldridge TD, Sethi S. 2014. Triamterene crystalline nephropathy . Am. J. Kidney Dis. 63: 148–152

  3. Protective effects of medical ozone combined with traditional Chinese medicine against chemically-induced hepatic injury in dogs

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the protective effect of medical ozone (O3) combined with Traditional Chinese Medicine (TCM) Yigan Fuzheng Paidu Capsules (YC) against carbon tetrachloride (CCl4)-induced hepatic injury in dogs.METHODS: Thirty healthy dogs were divided randomly into five groups (n = 6 in each group), namely control,oleanolic acid tablet (OAT), O3, YC and O3 + YC, given either no particular pre-treatment, oral OAT, medical ozone rectal insulfflation every other day, oral YC, or oral YC plus medical ozone rectal insulfflation every other day, respectively, for 30 consecutive days. After pre-treatment, acute hepatic injury was induced in all dogs with a single-dose intraperitoneal injection of CCl4.General condition and survival time were recorded.The biochemical and hematological indexes of alanine aminotransferase (ALT), aspartate aminotransferase/alanine aminotransferase (AST/ALT), serum total bilirubin (TBIL), prothrombin time (PT), blood ammonia (AMMO),and blood urea nitrogen (BUN) were measured after CCl4 injection. Hepatic pathological changes were also observed.RESULTS: Compared to the other four groups, the changes of group O3 + YC dogs' general conditions(motoricity, mental state, eating, urination and defecation) could be better controlled. In group O3 +YC the survival rates were higher (P < 0.05 vs group control). AST/ALT values were kept within a normal level in group O3 + YC. Hepatic histopathology showed that hepatic injury in group O3 + YC was less serious than those in the other four groups.CONCLUSION: Medical ozone combined with TCM YC could exert a protective effect on acute liver injury induced by CCl4.

  4. Alkaline carbonates in blast furnace process

    Directory of Open Access Journals (Sweden)

    P. Besta

    2014-10-01

    Full Text Available The production of iron in blast furnaces is a complex of physical, chemical and mechanical processes. The input raw materials contain not only metallic components, but also a number of negative elements. The most important negative elements include alkaline carbonates. They can significantly affect the course of the blast furnace process and thus the overall performance of the furnace. As a result of that, it is essential to accurately monitor the alkali content in the blast furnace raw materials. The article analyzes the alkali content in input and output raw materials and their impact on the blast furnace process.

  5. Quality of life in chemical warfare survivors with ophthalmologic injuries: the first results form Iran Chemical Warfare Victims Health Assessment Study

    Directory of Open Access Journals (Sweden)

    Soroush Mohammad

    2009-01-01

    Full Text Available Abstract Background Iraq used chemical weapons extensively against the Iranians during the Iran-Iraq war (1980–1988. The aim of this study was to assess the health related quality of life (HRQOL in people who had ophthalmologic complications due to the sulfur mustard gas exposure during the war. Methods The Veterans and Martyrs Affair Foundation (VMAF database indicated that there were 196 patients with severe ophthalmologic complications due to chemical weapons exposure. Of these, those who gave consent (n = 147 entered into the study. Quality of life was measured using the 36-item Short Form Health Survey (SF-36 and scores were compared to those of the general public. In addition logistic regression analysis was performed to indicate variables that contribute to physical and mental health related quality of life. Results The mean age of the patients was 44.8 (SD = 8.7 ranging from 21 to 75 years. About one-third of the cases (n= 50 reported exposure to chemical weapons more than once. The mean exposure duration to sulfur mustard gas was 21.6 years (SD = 1.2. The lowest scores on the SF-36 subscales were found to be: the role physical and the general health. Quality of life in chemical warfare victims who had ophthalmologic problems was significantly lower than the general public (P Conclusion The study findings suggest that chemical warfare victims with ophthalmologic complications suffer from poor health related quality of life. It seems that the need for provision of health and support for this population is urgent. In addition, further research is necessary to measure health related quality of life in victims with different types of disabilities in order to support and enhance quality of life among this population.

  6. Medical countermeasure against respiratory toxicity and acute lung injury following inhalation exposure to chemical warfare nerve agent VX.

    Science.gov (United States)

    Nambiar, Madhusoodana P; Gordon, Richard K; Rezk, Peter E; Katos, Alexander M; Wajda, Nikolai A; Moran, Theodore S; Steele, Keith E; Doctor, Bhupendra P; Sciuto, Alfred M

    2007-03-01

    To develop therapeutics against lung injury and respiratory toxicity following nerve agent VX exposure, we evaluated the protective efficacy of a number of potential pulmonary therapeutics. Guinea pigs were exposed to 27.03 mg/m(3) of VX or saline using a microinstillation inhalation exposure technique for 4 min and then the toxicity was assessed. Exposure to this dose of VX resulted in a 24-h survival rate of 52%. There was a significant increase in bronchoalveolar lavage (BAL) protein, total cell number, and cell death. Surprisingly, direct pulmonary treatment with surfactant, liquivent, N-acetylcysteine, dexamethasone, or anti-sense syk oligonucleotides 2 min post-exposure did not significantly increase the survival rate of VX-exposed guinea pigs. Further blocking the nostrils, airway, and bronchioles, VX-induced viscous mucous secretions were exacerbated by these aerosolized treatments. To overcome these events, we developed a strategy to protect the animals by treatment with atropine. Atropine inhibits muscarinic stimulation and markedly reduces the copious airway secretion following nerve agent exposure. Indeed, post-exposure treatment with atropine methyl bromide, which does not cross the blood-brain barrier, resulted in 100% survival of VX-exposed animals. Bronchoalveolar lavage from VX-exposed and atropine-treated animals exhibited lower protein levels, cell number, and cell death compared to VX-exposed controls, indicating less lung injury. When pulmonary therapeutics were combined with atropine, significant protection to VX-exposure was observed. These results indicate that combinations of pulmonary therapeutics with atropine or drugs that inhibit mucous secretion are important for the treatment of respiratory toxicity and lung injury following VX exposure.

  7. Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification

    OpenAIRE

    Chen Ye; Stevens Mark A; Zhu Yongming; Holmes Jason; Xu Hui

    2013-01-01

    Abstract Background Previous research on alkaline pretreatment has mainly focused on optimization of the process parameters to improve substrate digestibility. To achieve satisfactory sugar yield, extremely high chemical loading and enzyme dosages were typically used. Relatively little attention has been paid to reduction of chemical consumption and process waste management, which has proven to be an indispensable component of the bio-refineries. To indicate alkali strength, both alkali conce...

  8. Synthetic surfactant containing SP-B and SP-C mimics is superior to single-peptide formulations in rabbits with chemical acute lung injury

    Directory of Open Access Journals (Sweden)

    Frans J. Walther

    2014-05-01

    Full Text Available Background. Chemical spills are on the rise and inhalation of toxic chemicals may induce chemical acute lung injury (ALI/acute respiratory distress syndrome (ARDS. Although the pathophysiology of ALI/ARDS is well understood, the absence of specific antidotes has limited the effectiveness of therapeutic interventions.Objectives. Surfactant inactivation and formation of free radicals are important pathways in (chemical ALI. We tested the potential of lipid mixtures with advanced surfactant protein B and C (SP-B and C mimics to improve oxygenation and lung compliance in rabbits with lavage- and chemical-induced ALI/ARDS.Methods. Ventilated young adult rabbits underwent repeated saline lung lavages or underwent intratracheal instillation of hydrochloric acid to induce ALI/ARDS. After establishment of respiratory failure rabbits were treated with a single intratracheal dose of 100 mg/kg of synthetic surfactant composed of 3% Super Mini-B (S-MB, a SP-B mimic, and/or SP-C33 UCLA, a SP-C mimic, in a lipid mixture (DPPC:POPC:POPG 5:3:2 by weight, the clinical surfactant Infasurf®, a bovine lung lavage extract with SP-B and C, or synthetic lipids alone. End-points consisted of arterial oxygenation, dynamic lung compliance, and protein and lipid content in bronchoalveolar lavage fluid. Potential mechanism of surfactant action for S-MB and SP-C33 UCLA were investigated with captive bubble surfactometry (CBS assays.Results. All three surfactant peptide/lipid mixtures and Infasurf equally lowered the minimum surface tension on CBS, and also improved oxygenation and lung compliance. In both animal models, the two-peptide synthetic surfactant with S-MB and SP-C33 UCLA led to better arterial oxygenation and lung compliance than single peptide synthetic surfactants and Infasurf. Synthetic surfactants and Infasurf improved lung function further in lavage- than in chemical-induced respiratory failure, with the difference probably due to greater capillary

  9. Immobilization of cesium in alkaline activated fly ash matrix

    Science.gov (United States)

    Fernandez-Jimenez, A.; Macphee, D. E.; Lachowski, E. E.; Palomo, A.

    2005-11-01

    The immobilization potential of alkaline activated fly ash (AAFA) matrices for cesium has been investigated. The presence of Cs in the AAFA pastes, prepared using 8M NaOH solution as activator, showed no significant adverse effects on mechanical strength or microstructure, nor were significant quantities of Cs leached following application of the Toxic Characteristic Leaching Procedure (TCLP) and American Nuclear Society (ANS) 16.1 leaching protocols. Microstructural analysis shows Cs associated with the main reaction product in the AAFA suggesting that cesium is chemically bound rather than physically encapsulated. It is proposed that cesium is incorporated into the alkaline aluminosilicate gel, a precursor for zeolite formation.

  10. Study on the establishment of corneal alkali chemical injury on rats%大鼠角膜碱烧伤模型制备方法的研究

    Institute of Scientific and Technical Information of China (English)

    顾宏卫; 胡楠

    2013-01-01

    目的:探索相对稳定性强、一致性好的大鼠角膜碱烧伤动物模型.方法:将87只SD大鼠分为角膜缘碱烧伤20s组(A组,34只),角膜缘碱烧伤40s组(B组,23只),角膜中央碱烧伤40s组(C组,30只),用浸润1mol/L氢氧化钠的滤纸片,分别烧灼大鼠角膜缘和角膜中央,术后7d裂隙灯显微镜观察角膜透明度、角膜溃疡及角膜新生血管情况,并记录上述指标.结果:角膜缘碱烧伤(B组)较角膜中央烧伤(C组)溃疡发生率、角膜穿孔率和角膜上皮荧光素钠染色阳性率高,且有统计学差异(P<0.05);角膜缘烧灼时间长组(B组)溃疡发生率及角膜穿孔率高于角膜缘烧灼时间短组(A组),且有统计学差异(P<0.05);烧灼角膜缘和角膜中央(A,B,C组)均能诱导出角膜新生血管.结论:对于研究角膜新生血管的动物模型,以选择3mm圆形滤纸片角膜中央烧伤为佳;对于研究角膜缘干细胞缺乏所致角膜病变的实验,以选择环形滤纸片放置于角膜缘20s为佳.%AIM:To investigate the appropriate methods to establish corneal alkali chemical injury on rats.METHODS:The rats (n = 87) were randomly divided into three groups. Corneal alkali injury was induced by placing 1 mol/L NaOH soaked filter paper on the limbus of right cornea for 20 seconds (group A, n = 34) or 40 seconds (group B, n=23), and on the central axis of the right cornea for 40 seconds (group C, n = 30) respectively. Corneal transparency, corneal ulceration, and corneal neovascularization were observed and recorded under slit-lamp biomicroscope on day 7 post-operation.RESULTS: Incidence of corneal ulceration, corneal perforation and positive rate of corneal fluorescein staining in limbal corneal injury groups (group A and B) were significantly higher than that of central corneal injury group (group C) (P< 0. 05). Incidence of corneal ulceration and corneal perforation in group B was significantly higher than group A (P<0. 05). Corneal neovascularization was

  11. Decomposition Studies of Triphenylboron, Diphenylborinic Acid and Phenylboric Acid in Aqueous Alkaline Solutions Containing Copper

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Peterson, R. A.

    1997-02-11

    This report documents the copper-catalyzed chemical kinetics of triphenylboron, diphenylborinic acid and phenylboric acid (3PB, 2PB and PBA) in aqueous alkaline solution contained in carbon-steel vessels between 40 and 70 degrees C.

  12. Influence of ozone, sulfur dioxide, and salinity on leaf injury, stomatal resistance, growth, and chemical composition of bean plants

    Energy Technology Data Exchange (ETDEWEB)

    Bytnerowicz, A.; Taylor, O.C.

    1983-01-01

    Bean plants (Phaseolus vulgaris) growing in half-strength Hoagland solutions modified to provide three salinity levels of -40, -240, and -440 kPa, were exposed four times to 390 ..mu..g m/sup -3/ O/sub 3/, 520 ..mu..g m/sup -3/ SO/sub 2/, and 390 ..mu..g m/sup -3/ O/sub 3/ + 520 ..mu..g m/sup -3/ SO/sub 2/. Plants fumigated with SO/sub 2/ alone showed no injury. Primary leaves of O/sub 3/-treated plants were injured more than those of plants fumigated with the combination of O/sub 3/ and SO/sub 2/. Pollutant injury to leaves decreased as salinity increased. Stomatal resistance on the abaxial surface of primary leaves of SO/sub 2/, and especially of (O/sub 3/ + SO/sub 2/)-treated plants, increased sharply during fumigations, and returned to prefumigation levels the next day. Stomatal resistances of O/sub 3/-treated plants were similar to nonfumigated plants during the first phase of the experiment, but after the last fumigation, this resistance returned to essentially normal only in plants growing at the highest salinity level. Plant growth was suppressed by increased salinity. Root growth on O/sub 3/- and (O/sub 3/ + SO/sub 2/)-treated plants was reduced at all salinity levels. As salinity increased, plants accumulated Cl and Ca. Sodium increased in stems and roots, and decreased in leaves of plants grown in high Na-nutrient solutions. Plants fumigated with SO/sub 2/ and (O/sub 3/ + SO/sub 2/) had higher S content in roots than nonfumigated and O/sub 3/-treated plants. The highest S content in leaves was found in SO/sub 2/-treated plants at the -40 kPa salinity level. Accumulation of Ca in leaves and of Mg in roots was lowest in plants fumigated with O/sub 3/ alone and (O/sub 3/ + SO/sub 2/). Plants fumigated with O/sub 3/ alone and (O/sub 3/ + SO/sub 2/) accumulated more K in stems and leaves, and more Fe in roots and leaves, compared with nonfumigated and SO/sub 2/-treated plants. The O/sub 3/ and (O/sub 3/ + SO/sub 2/) effects on mineral content of the plants

  13. ADVANCES IN THE MODEL OF CYLINDRICAL ALKALINE CELLS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The advancement of a systematic investigation on the modeling of cylindrical alkaline cells is presented.Initial analysis utilizes thermodynamic and kinetic information to predict alkaline cell performance under low discharge rates.Subsequent modling has taken into consideration detailed information on the chemistry of electrode reactions,mass tranport of dissolved species,physical and chemical properties of the electrolyte and solid phases,and internal geonetry of cell systems.The model is capable of predicting alkaline cell performance under a variety of dicharge conditions.The model also provides information regarding internal cell changes during discharge.The model is the basis of a rational approach for the optimal design of cells.

  14. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  15. Chemical recycling of post-consumer PET: structural characterization of terephthalic acid and the effect of Alkaline Hydrolysis at low temperature; Reciclagem quimica do PET pos-consumo: caracterizacao estrutural do acido tereftalico e efeito da hidrolise alcalina em baixa temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, Talitha Granja; Almeida, Yeda Medeiros Bastos de; Vinhas, Gloria Maria, E-mail: gmvinhas@yahoo.com.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Engenharia Quimica

    2014-09-15

    Due to the environmental impact caused by PET packaging disposal, this material recycling has been thoroughly discussed and evaluated. In particular, chemical recycling enables achievement of the monomers that are used in PET resin manufacture: ethylene glycol (EG) and terephthalic acid (PTA). Therefore, studies for this process optimization are important from environmental and economic points of view. The present study investigated certain parameters that influence the depolymerization reaction of PET post-consumer via alkaline hydrolysis in order to obtain PTA. Assays were performed at 70 °C by varying the concentration of sodium hydroxide and the reaction time. The best results were obtained at 10.82 mol L{sup -1} NaOH and 9 h reaction time. Consequently, it was possible to prove this process viability, once analyses by infrared and nuclear magnetic resonance confirmed that PTA was obtained in all reactions performed. (author)

  16. 2nd Generation Alkaline Electrolysis

    DEFF Research Database (Denmark)

    Yde, Lars; Kjartansdóttir, Cecilia Kristin; Allebrod, Frank;

    This report provides the results of the 2nd Generation Alkaline Electrolysis project which was initiated in 2008. The project has been conducted from 2009-2012 by a consortium comprising Århus University Business and Social Science – Centre for Energy Technologies (CET (former HIRC)), Technical...

  17. Back Injuries

    Science.gov (United States)

    ... extending from your neck to your pelvis. Back injuries can result from sports injuries, work around the house or in the garden, ... back is the most common site of back injuries and back pain. Common back injuries include Sprains ...

  18. Alkaline resistant ceramics; Alkalimotstaandskraftiga keramer

    Energy Technology Data Exchange (ETDEWEB)

    Westberg, Stig-Bjoern [Vattenfall Utveckling AB, Aelvkarleby (Sweden)

    2001-02-01

    Despite durability in several environments, ceramics and refractories can not endure alkaline environments at high temperature. An example of such an environment is when burning biofuel in modern heat and power plants in which the demand for increasing efficiency results in higher combustion temperatures and content of alkaline substances in the flue gas. Some experiences of these environments has been gained from such vastly different equipment as regenerator chambers in the glass industry and MHD-generators. The grains of a ceramic material are usually bonded together by a glassy phase which despite it frequently being a minor constituent render the materials properties and limits its use at elevated temperature. The damage is usually caused by alkaline containing low-melting phases and the decrease of the viscosity of the bonding glass phase which is caused by the alkaline. The surfaces which are exposed to the flue gas in a modern power plant are not only exposed to the high temperature but also a corroding and eroding, particle containing, gas flow of high velocity. The use of conventional refractory products is limited to 1300-1350 deg C. Higher strength and fracture toughness as well as durability against gases, slag and melts at temperatures exceeding 1700 deg C are expected of the materials of the future. Continuous transport of corrosive compounds to the surface and corrosion products from the surface as well as a suitable environment for the corrosion to occur in are prerequisites for extensive corrosion to come about. The highest corrosion rate is therefore found in a temperature interval between the dew point and the melting point of the alkaline-constituent containing compound. It is therefore important that the corrosion resistance is sufficient in the environment in which alkaline containing melts or slag may appear. In environments such as these, even under normal circumstances durable ceramics, such as alumina and silicon carbide, are attacked

  19. Chemical characterization of insoluble macromolecules (kerogen) from marine and lacustrine sediments. Molecular distribution of aliphatic dicarboxylic acids in alkaline KMnO4 oxidation products; Kaiyo oyobi konuma taisekibutsuchu no fuyosei yukibutsu (kerogen) no characterization

    Energy Technology Data Exchange (ETDEWEB)

    Morinaga, S.; Ishiwatari, R.; Machihara, T. [The University of Tokyo, Tokyo (Japan). Faculty of Science

    1996-04-15

    The insoluble macromolecules (kerogen) in marine and lacustrine sediments was oxidated by alkaline KMnO4, and the kerogen was characterized by molecular distribution of produced aliphatic dicarboxylic acids. Seven seas and ten lakes in the world are used as a sample. The oxidation products consist of n-C4-C15 {alpha}, {omega}-dicarboxylic acids, n-C7-C28 mono-carboxylic acids, and benzene carboxylic acids. The dicarboxylic acid decreases from C4 to C15 for the marine kerogen and has a maximum at C8 to C9 for the lacustrine kerogen. The method for representing the molecular distribution by two mathematical expressions was proposed. The marine and lacustrine kerogens are classified into different groups, and the sample of an eruption bay is located between the two kerogens. The polymerized structure of polyhydoroxy acids in these kerogens is assumed to have been transformed into aliphatic dicarboxylic acids by oxidation. This is also backed up by the result of cutin oxidation. 38 refs., 4 figs., 4 tags.

  20. Acylglucuronide in alkaline conditions: migration vs. hydrolysis.

    Science.gov (United States)

    Di Meo, Florent; Steel, Michele; Nicolas, Picard; Marquet, Pierre; Duroux, Jean-Luc; Trouillas, Patrick

    2013-06-01

    This work rationalizes the glucuronidation process (one of the reactions of the phase II metabolism) for drugs having a carboxylic acid moiety. At this stage, acylglucuronides (AG) metabolites are produced, that have largely been reported in the literature for various drugs (e.g., mycophenolic acid (MPA), diclofenac, ibuprofen, phenylacetic acids). The competition between migration and hydrolysis is rationalized by adequate quantum calculations, combing MP2 and density functional theory (DFT) methods. At the molecular scale, the former process is a real rotation of the drug around the glucuconic acid. This chemical-engine provides four different metabolites with various toxicities. Migration definitely appears feasible under alkaline conditions, making proton release from the OH groups. The latter reaction (hydrolysis) releases the free drug, so the competition is of crucial importance to tackle drug action and elimination. From the theoretical data, both migration and hydrolysis appear kinetically and thermodynamically favored, respectively.

  1. Linkages between the life-history evolution of tropical and temperate birds and the resistance of cultured skin fibroblasts to oxidative and non-oxidative chemical injury.

    Science.gov (United States)

    Jimenez, Ana Gabriela; Harper, James M; Queenborough, Simon A; Williams, Joseph B

    2013-04-15

    A fundamental challenge facing physiological ecologists is to understand how variation in life history at the whole-organism level might be linked to cellular function. Thus, because tropical birds have higher annual survival and lower rates of metabolism, we hypothesized that cells from tropical species would have greater cellular resistance to chemical injury than cells from temperate species. We cultured dermal fibroblasts from 26 tropical and 26 temperate species of birds and examined cellular resistance to cadmium, H(2)O(2), paraquat, thapsigargin, tunicamycium, methane methylsulfonate (MMS) and UV light. Using ANCOVA, we found that the values for the dose that killed 50% of cells (LD(50)) from tropical birds were significantly higher for H(2)O(2) and MMS. When we tested for significance using a generalized least squares approach accounting for phylogenetic relationships among species to model LD(50), we found that cells from tropical birds had greater tolerance for Cd, H(2)O(2), paraquat, tunicamycin and MMS than cells from temperate birds. In contrast, tropical birds showed either lower or no difference in tolerance to thapsigargin and UV light in comparison with temperate birds. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to be more resistant to forms of oxidative and non-oxidative stress than cells from shorter-lived temperate species.

  2. Chemical composition of modern and fossil Hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation – Part 2: Alkaline earth elements as tracers of watershed hydrochemistry and provenance

    Directory of Open Access Journals (Sweden)

    I. Ssemmanda

    2012-03-01

    Full Text Available For reconstructing environmental change in terrestrial realms the geochemistry of fossil bioapatite in bones and teeth is among the most promising applications. This study demonstrates that alkaline earth elements in enamel of Hippopotamids, in particular Ba and Sr are tracers for water provenance and hydrochemistry. The studied specimens are molar teeth from Hippopotamids found in modern and fossil lacustrine settings of the Western Branch of the East African Rift system (Lake Kikorongo, Lake Albert, and Lake Malawi and from modern fluvial environments of the Nile River. Concentrations in enamel vary by ca. two orders of magnitude for Ba (120–9336 μg g−1 as well as for Sr (9–2150 μg g−1. Concentration variations in enamel are partly induced during post-mortem alteration and during amelogenesis, but the major contribution originates from the variable water chemistry in the habitats of the Hippopotamids which is dominated by the lithologies and weathering processes in the watershed areas. Amelogenesis causes a distinct distribution of Ba and Sr in modern and fossil enamel, in that element concentrations increase along profiles from the outer rim towards the enamel-dentin junction by a factor of 1.3–1.5. These elements are well correlated with MgO and Na2O in single specimens, thus suggesting that their distribution is determined by a common, single process. Presuming that the shape of the tooth is established at the end of the secretion process and apatite composition is in equilibrium with the enamel fluid, the maturation process can be modeled by closed system Rayleigh crystallization. Enamel from many Hippopotamid specimens has Sr/Ca and Ba/Ca which are typical for herbivores, but the compositions extend well into the levels of plants and carnivores. Within enamel from single specimens these element ratios covary and provide a specific fingerprint of the Hippopotamid habitat. All specimens together, however, define subparallel

  3. Antagonism of ionotropic glutamate receptors attenuates chemical ischemia-induced injury in rat primary cultured myenteric ganglia.

    Directory of Open Access Journals (Sweden)

    Elisa Carpanese

    Full Text Available Alterations of the enteric glutamatergic transmission may underlay changes in the function of myenteric neurons following intestinal ischemia and reperfusion (I/R contributing to impairment of gastrointestinal motility occurring in these pathological conditions. The aim of the present study was to evaluate whether glutamate receptors of the NMDA and AMPA/kainate type are involved in myenteric neuron cell damage induced by I/R. Primary cultured rat myenteric ganglia were exposed to sodium azide and glucose deprivation (in vitro chemical ischemia. After 6 days of culture, immunoreactivity for NMDA, AMPA and kainate receptors subunits, GluN(1 and GluA(1-3, GluK(1-3 respectively, was found in myenteric neurons. In myenteric cultured ganglia, in normal metabolic conditions, -AP5, an NMDA antagonist, decreased myenteric neuron number and viability, determined by calcein AM/ethidium homodimer-1 assay, and increased reactive oxygen species (ROS levels, measured with hydroxyphenyl fluorescein. CNQX, an AMPA/kainate antagonist exerted an opposite action on the same parameters. The total number and viability of myenteric neurons significantly decreased after I/R. In these conditions, the number of neurons staining for GluN1 and GluA(1-3 subunits remained unchanged, while, the number of GluK(1-3-immunopositive neurons increased. After I/R, -AP5 and CNQX, concentration-dependently increased myenteric neuron number and significantly increased the number of living neurons. Both -AP5 and CNQX (100-500 µM decreased I/R-induced increase of ROS levels in myenteric ganglia. On the whole, the present data provide evidence that, under normal metabolic conditions, the enteric glutamatergic system exerts a dualistic effect on cultured myenteric ganglia, either by improving or reducing neuron survival via NMDA or AMPA/kainate receptor activation, respectively. However, blockade of both receptor pathways may exert a protective role on myenteric neurons following and I

  4. Interaction of alkali and alkaline earth ions with Ochratoxin A

    Energy Technology Data Exchange (ETDEWEB)

    Poor, Miklos [Institute of Laboratory Medicine, University of Pecs, Pecs H-7624 (Hungary); Kunsagi-Mate, Sandor; Matisz, Gergely; Li, Yin; Czibulya, Zsuzsanna [Department of General and Physical Chemistry, University of Pecs, Pecs H-7624 (Hungary); Janos Szentagothai Research Center, Pecs H-7624 (Hungary); Peles-Lemli, Beata [Department of General and Physical Chemistry, University of Pecs, Pecs H-7624 (Hungary); Koszegi, Tamas, E-mail: koszegit@freemail.hu [Institute of Laboratory Medicine, University of Pecs, Pecs H-7624 (Hungary)

    2013-03-15

    The effect of alkali and alkaline earth ions on the chemical equilibrium of mono- and dianionic forms of the mycotoxin Ochratoxin A (OTA) and their bonding onto the surface of Bovine Serum Albumin (BSA) have been investigated by fluorescence spectroscopy and fluorescence polarization techniques. Our results show that alkali metal ions shift the chemical equilibrium towards formation of dianionic form of OTA. Furthermore, the alkaline earth ions can compete with BSA for binding to OTA when these ions are present in millimolar concentrations. Our data also highlight the possibility that the 'free' fraction of OTA (not bound onto the surface of albumin) or at least a part of it is present in cation-bound form in body fluids. These observations are supported by stability constants and quantum-chemical calculations. Among the studied alkaline metal ions magnesium showed the highest affinity towards OTA under physiological conditions. Further research is required to analyze the potential significance of Mg{sup 2+}-OTA complex in cellular uptake and/or elimination of the toxin in the human body. - Highlights: Black-Right-Pointing-Pointer Fluorescence spectroscopy reveals cation-Ochratoxin A (OTA) interactions. Black-Right-Pointing-Pointer Alkali ions shift the equilibrium of OTA to formation of a dianionic structure. Black-Right-Pointing-Pointer Alkaline earth ions directly bind to OTA in the order: Mg{sup 2+}, Ca{sup 2+}, Ba{sup 2+}. Black-Right-Pointing-Pointer Quantum chemical calculations and logK values support our experimental data.

  5. Chemical composition of modern and fossil hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation – Part 2: Alkaline earth elements as tracers of watershed hydrochemistry and provenance

    Directory of Open Access Journals (Sweden)

    I. Ssemmanda

    2012-11-01

    Full Text Available This study demonstrates that alkaline earth elements in enamel of hippopotamids, in particular Ba and Sr, are tracers for water provenance and hydrochemistry in terrestrial settings. The studied specimens are permanent premolar and molar teeth found in modern and fossil lacustrine sediments of the Western Branch of the East African Rift system (Lake Kikorongo, Lake Albert, and Lake Malawi and from modern fluvial environments of the Nile River. Concentrations in enamel vary by two orders of magnitude for Ba (120–9336 μg g−1 as well as for Sr (9–2150 μg g−1. The variations are partially induced during post-mortem alteration and during amelogenesis, but the major contribution originates ultimately from the variable water chemistry in the habitats of the hippopotamids which is controlled by the lithologies and weathering processes in the watershed areas. Amelogenesis causes a distinct distribution of MgO, Ba and Sr in modern and fossil enamel, in that element concentrations increase along profiles from the outer rim towards the enamel–dentin junction by a factor of 1.3–1.9. These elements are well correlated in single specimens, thus suggesting that their distribution is determined by a common, single process, which can be described by closed system Rayleigh crystallization of bioapatite in vivo. Enamel from most hippopotamid specimens has Sr/Ca and Ba/Ca which are typical for herbivores. However, Ba/Sr ranges from 0.1 to 3 and varies on spatial and temporal scales. Thus, Sr concentrations and Ba/Sr in enamel differentiate between habitats having basaltic mantle rocks or Archean crustal rocks as the ultimate sources of Sr and Ba. This provenance signal is modulated by climate change. In Miocene to Pleistocene enamel from the Lake Albert region, Ba/Sr decreases systematically with time from 2 to 0.5. This trend can be correlated with changes in climate from humid to arid, in vegetation from C3 to C4 biomass as well as with increasing

  6. Enzymatic Hydrolysis of Alkaline Pretreated Coconut Coir

    Directory of Open Access Journals (Sweden)

    Akbarningrum Fatmawati

    2013-06-01

    Full Text Available The purpose of this research is to study the effect of concentration and temperature on the cellulose and lignin content, and the reducing sugars produced in the enzymatic hydrolysis of coconut coir. In this research, the coconut coir is pretreated using 3%, 7%, and 11% NaOH solution at 60oC, 80oC, and 100oC. The pretreated coir were assayed by measuring the amount of cellulose and lignin and then hydrolysed using Celluclast and Novozyme 188 under various temperature (30oC, 40oC, 50oC and pH (3, 4, 5. The hydrolysis results were assayed for the reducing sugar content. The results showed that the alkaline delignification was effective to reduce lignin and to increase the cellulose content of the coir. The best delignification condition was observed at 11% NaOH solution and 100oC which removed 14,53% of lignin and increased the cellulose content up to 50,23%. The best condition of the enzymatic hydrolysis was obtained at 50oC and pH 4 which produced 7,57 gr/L reducing sugar. © 2013 BCREC UNDIP. All rights reservedReceived: 2nd October 2012; Revised: 31st January 2013; Accepted: 6th February 2013[How to Cite: Fatmawati, A., Agustriyanto, R., Liasari, Y. (2013. Enzymatic Hydrolysis of Alkaline Pre-treated Coconut Coir. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 34-39 (doi:10.9767/bcrec.8.1.4048.34-39[Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4048.34-39] | View in  |

  7. On electrochemical devices using alkaline polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, L. [Wuhan Univ., Wuhan (China). Dept. of Chemistry

    2010-07-01

    Solid polymer electrolytes (SPEs) enable a compact assembly of fuel cells and electrolyzers, thereby increasing the space-specific conversion efficiency and avoiding electrolyte leakage. The most widely used SPE in proton exchange membrane fuel cells (PEMFC) and chloro-alkali electrolyzers is Nafion. However, this strongly acidic polyelectrolyte allows only noble metals to be used as the catalysts in the electrochemical devices, which poses a problem in terms of price and resource limits. In principle, alkaline polymer electrolytes (APEs) should be used to eliminate the dependence on noble metal catalysts. The general structure of alkaline polymer electrolytes is a positively charged polymer, notably, a polymer chain attached with fixed cations such as quaternary ammonia group, and dissociated anion, OH-, to act as the charge carrier. This presentation described the challenges of developing APEs in terms of the chemical stability of quaternary ammonia group, the mobility of OH-, and high ionic concentration. The authors have been working on developing high-performance APEs since 2001. The most recent APEs were quaternary ammonia polysulfone (QAPS), which were found to be suitable for fuel cell and electrolyzer applications. The ionic conductivity was high and the crosslinked membrane had excellent mechanical strength, enabling operation at 90 degrees C. Non-precious metal catalysts were used in the APEs. For APE-based fuel cells (APEFC), chromium decorated nickel was used as the anode catalyst for hydrogen oxidation, and silver was used as the cathode catalyst for oxygen reduction. The preliminary performance of such an APEFC with non-Pt catalysts was found to be much better than that of traditional water electrolyzers using KOH solutions. 2 refs.

  8. Sports Injuries

    Science.gov (United States)

    ... sometimes you can injure yourself when you play sports or exercise. Accidents, poor training practices, or improper ... can also lead to injuries. The most common sports injuries are Sprains and strains Knee injuries Swollen ...

  9. Eye Injuries

    Science.gov (United States)

    The structure of your face helps protect your eyes from injury. Still, injuries can damage your eye, sometimes severely enough that you could lose your vision. Most eye injuries are preventable. If you play sports or ...

  10. Injury Statistics

    Science.gov (United States)

    ... Certification Import Safety International Recall Guidance Civil and Criminal Penalties Federal Court Orders & Decisions Research & Statistics Research & Statistics Technical Reports Injury Statistics NEISS Injury ...

  11. Chemical Characterization of Cellulose-degrading Streptomyces and Its Alkaline Extraction Fraction During Cellulose Degradation%纤维素降解过程中链霉菌菌体及其碱提取物组分研究

    Institute of Scientific and Technical Information of China (English)

    张伟; 窦森

    2014-01-01

    针对链霉菌降解纤维素后是否能形成腐殖质及其碱提取物组分是否为腐殖质组分这一微生物利用问题,采用液体摇床振荡培养实验,获得链霉菌降解纤维素形成的菌体,利用元素组成、差热分析和红外光谱法等现代仪器分析手段,初步研究了菌体的化学结构和碱提取物组分碳的分配状况。结果表明:随着培养时间的延长,培养后期(60 d)的链霉菌菌体产率显著增加;链霉菌菌体在化学结构上相似,与黑土胡敏酸(HA)相比,菌体的结晶度较低,芳香性较弱,热稳定性较强,脂肪碳链和含氧官能团含量较高;链霉菌经纤维素作用后形成的菌体,与黑土碱提取物(胡敏酸、富里酸)相比,“水溶性组分”较多,“碱溶组分”(类似于胡敏酸和富里酸的总和)较少,富含“碱溶酸不溶组分(类似于胡敏酸)”的物质增多,“水溶性组分”和“碱溶酸不溶组分”与纤维素和链霉菌的共同作用有关。以上结果表明,纤维素培养过程中链霉菌菌体与真正的黑土胡敏酸(HA)是有差别的。%Streptomyces are Gram-positive filamentous bacteria that live in the superficial layer of soil where they can degrade cellulose. They play important roles in producing the currently known antibiotics and many other bioactive molecules useful to human health and agri-culture. However, little is known about the characteristics of mycelia and alkaline extraction of Streptomyces sp. during cellulose degrada-tion. In the present study, sodium carboxymethyl cellulose(CMC)was used as a unique carbon source for the isolated strain Streptomyces sp. F in the liquid culture condition during the 60 day period. Carbon distribution, elemental compositions, thermostability and infrared structure of the alkali extraction of the harvested cells were further explored. The results showed that sodium carboxymethyl cellulose could be used

  12. Alkaline Water and Longevity: A Murine Study.

    Science.gov (United States)

    Magro, Massimiliano; Corain, Livio; Ferro, Silvia; Baratella, Davide; Bonaiuto, Emanuela; Terzo, Milo; Corraducci, Vittorino; Salmaso, Luigi; Vianello, Fabio

    2016-01-01

    The biological effect of alkaline water consumption is object of controversy. The present paper presents a 3-year survival study on a population of 150 mice, and the data were analyzed with accelerated failure time (AFT) model. Starting from the second year of life, nonparametric survival plots suggest that mice watered with alkaline water showed a better survival than control mice. Interestingly, statistical analysis revealed that alkaline water provides higher longevity in terms of "deceleration aging factor" as it increases the survival functions when compared with control group; namely, animals belonging to the population treated with alkaline water resulted in a longer lifespan. Histological examination of mice kidneys, intestine, heart, liver, and brain revealed that no significant differences emerged among the three groups indicating that no specific pathology resulted correlated with the consumption of alkaline water. These results provide an informative and quantitative summary of survival data as a function of watering with alkaline water of long-lived mouse models.

  13. Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification

    Directory of Open Access Journals (Sweden)

    Chen Ye

    2013-01-01

    Full Text Available Abstract Background Previous research on alkaline pretreatment has mainly focused on optimization of the process parameters to improve substrate digestibility. To achieve satisfactory sugar yield, extremely high chemical loading and enzyme dosages were typically used. Relatively little attention has been paid to reduction of chemical consumption and process waste management, which has proven to be an indispensable component of the bio-refineries. To indicate alkali strength, both alkali concentration in pretreatment solution (g alkali/g pretreatment liquor or g alkali/L pretreatment liquor and alkali loading based on biomass solids (g alkali/g dry biomass have been widely used. The dual approaches make it difficult to compare the chemical consumption in different process scenarios while evaluating the cost effectiveness of this pretreatment technology. The current work addresses these issues through pretreatment of corn stover at various combinations of pretreatment conditions. Enzymatic hydrolysis with different enzyme blends was subsequently performed to identify the effects of pretreatment parameters on substrate digestibility as well as process operational and capital costs. Results The results showed that sodium hydroxide loading is the most dominant variable for enzymatic digestibility. To reach 70% glucan conversion while avoiding extensive degradation of hemicellulose, approximately 0.08 g NaOH/g corn stover was required. It was also concluded that alkali loading based on total solids (g NaOH/g dry biomass governs the pretreatment efficiency. Supplementing cellulase with accessory enzymes such as α-arabinofuranosidase and β-xylosidase significantly improved the conversion of the hemicellulose by 6–17%. Conclusions The current work presents the impact of alkaline pretreatment parameters on the enzymatic hydrolysis of corn stover as well as the process operational and capital investment costs. The high chemical consumption for alkaline

  14. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2004-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Neither aluminum citrate-polyacrylamide nor silicate-polyacrylamide gel systems produced significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of

  15. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qui; Dan Wilson; Phil Dowling

    2004-05-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding in the swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to the naturally fractured reservoirs or those with thief zones because much of the injected solution bypasses the target pore space containing oil. The objective of this work is to investigate whether combining these two technologies could broaden the applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium--polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values of 9.2 to 12.9.

  16. 中(碱)性造纸及其湿部化学助剂的发展趋势%an review of neutral/alkaline papermaking and the development trend of wet end Chemicals

    Institute of Scientific and Technical Information of China (English)

    朱勇强

    2009-01-01

    造纸湿部化学起源于七十年代,国外的造纸生产实践表明,造纸湿部化学的控制水平在很大的程度上取决了造纸生产线的质量和产量,而中性造纸在生产成本,产品质量,能耗,排污以及设备腐蚀等方面具有明显的经济优势,因此,世界性的纸张生产都在从酸性转向中性.本文综述了中性造纸环境中造纸助剂的选用与发展趋势.%Wet-end chemistry originated in the seventies, the practice of foreign countries shows that the quality and yield of paper-making production line rely on the paper wet end chemistry control in a large extent. Neutral papermaking in the production costs, product quality, energy consumption, sewage, as well as corrosion of equipment has obvious economic advantages, therefore, the world's paper production shifted from the neutral acid. The selection and development trends of paper chemicals for neutral paper-making was reviewed In this paper.

  17. 马来西亚西部眼化学伤75例回顾分析%Chemical injuries of eye——A review of 75 cases from West Malaysia

    Institute of Scientific and Technical Information of China (English)

    S C Reddy; I Tahunisah

    2007-01-01

    目的:探讨化学伤的致伤物质种类、最容易发生化学伤的职业,眼部化学伤的严重性和伤后的并发症和视力预后.方法:通过病例回顾性研究,包括伤者的性别、年龄、种族、职业,探讨化学伤的致伤物质种类,就诊时视力,眼部化学伤的严重性和伤后的并发症和视力预后.结果:在75例患者中,90.3%为男性,84% 在工作年龄范围(21-50岁);29.3% 是工厂工人;52% 碱烧伤:65.4% 为制造厂和建筑工人;57.3% 双眼受累;9.3% 就诊时受伤眼视力<6/60;72% 为I级;19.5% 患者并发干眼症,角膜血管翳,角膜混浊,并发性白内障,继发性青光眼等;92%的伤眼最后视力是6/18或以上;6.2%伤眼失明.结论:虽然化学伤常常累及双眼,但多数患者伤情不严重,且视力预后较好.及时充分的冲洗可以缓解眼化学伤.适当的紧急处理可以减少长期的并发症和视力损害,但一些严重的化学伤可致盲.%AIM:To determlne the nature of chemicals involved,type of occupation most at risk,severity of ocular injury,complications and visual outcome in patients with chemical injuries of eye.METHODS:In a retrospective study gender,age,race,occupation of patients,nature of chemical,eye involved,vision at admission,severity of ocular injury,complications and visual outcome were noted from the case records.RESULTs:Among 75 patients reviewed 90.3% of patients were males;84% were in the working age group (21-50 years);29.3% were factory workers;52% Sufiered from alkali injuries;65.4% were factory/construction workers;57.3% had both eyes involvement;9.3% of the affected eyes had vision<6/60 at admission;72% of injuries were of grade I nature;19.5% of the affected eyes developed complications such as dry eye,vascularization of cornea,corneal opacity,complicated cataract,secondary glaucoma etc.; final outcome of vision 6/18 or better was achieved in 92% of eyes;blindness was noted in 6.2% of the affected eyes.CONCLUSION:Even though

  18. Electrical Conductivity of Alkaline-reduced Graphene Oxide

    Institute of Scientific and Technical Information of China (English)

    WANG Huan; TIAN Hong-wei; WANG Xin-wei; QIAO Liang; WANG Shu-min; WANG Xing-li; ZHENG Wei-tao; LIU Yi-chun

    2011-01-01

    A green route using a very simple and straightforward ultrasonic process under alkaline conditions,rather than a general chemical reduction process using hydrazine,was utilized to obtain the hydrophilic reduced graphene oxide(RGO) sheets,via removing oxygen functional groups from graphene oxide(GO) and repairing the aromatic structure.It is found that the conductivity of the obtained RGO could be tuned by changing pH value in alkaline solution,and the current-voltage(Ⅰ-Ⅴ) curves of both GO and RGO are nonlinear and slightly asymmetric.Under the same applied voltage,the current of RGO is much larger than that of GO,indicating a pronounced increase in the electrical conductivity of RGO,compared to that of GO.

  19. Visceral injuries.

    Science.gov (United States)

    Wisner, D H; Blaisdell, F W

    1992-06-01

    Abdominal visceral injuries are encountered by every surgeon who deals with trauma. It is simple and useful to divide abdominal visceral injuries into those caused by penetrating mechanisms of injury and those due to blunt mechanisms. Determination of the need for operative intervention is generally easier after penetrating trauma. Gunshot wounds to the abdomen should be explored, as should stab wounds to the anterior abdomen that penetrate the fascia. A midline incision is the standard approach to abdominal visceral injuries because of its ease and versatility. Abdominal exploration should be consistent and systemic so as not to miss significant injuries. Hollow viscus injury is most common after penetrating injury, while blunt injury most often results in injury to solid viscera. Diagnostic and operative aspects of the treatment of specific visceral injuries are reviewed.

  20. Gabbroic xenoliths in alkaline lavas in the region of Sanganguey Volcano, Nayarit, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Giosa, T.A.; Nelson, S.A.

    1985-01-01

    Gabbroic xenoliths occur in alkaline cinder cones and lava flows erupted from vents along five parallel lines trending through the calc-alkaline volcano, Sanganguey in the northwestern portion of the Mexican Volcanic Belt. The xenoliths consist of varying proportions of olivine, clinopyroxene, orthopyroxene, and plagioclase. The complete lack of hydrous phases indicates that the gabbros crystallized under conditions of low PH/sub 2/O. Many xenoliths show textures indicative of a cumulate origin and others exhibit recrystallization indicative of subsolidus reactions prior to incorporation in the host liquids. Reaction between xenolithic minerals and host liquids are also observed. The range of Mg numbers calculated for liquids that would have been in equilibrium with olivines in the xenoliths suggests that these olivines crystallized from magmas such as those represented by either calc-alkaline basaltic andesites and andesites or the more evolved alkalic rocks which occur throughout the area. Crystal fractionation models show that the xenoliths may be related to such magmas. The fact that xenoliths occur most commonly in the alkaline rocks suggests that alkaline magmas rise to the surface more rapidly than the more chemically evolved calc-alkaline and alkaline magmas. Alternatively the lack of xenoliths in the more evolved magmas produced by high level crystal fractionation may indicate that the xenoliths are derived from zones below that from which the differentiated magmas begin their final ascent to the surface.

  1. Handbook of Indigenous Foods Involving Alkaline Fermentation

    NARCIS (Netherlands)

    Sarkar, P.K.; Nout, M.J.R.

    2014-01-01

    This book details the basic approaches of alkaline fermentation, provides a brief history, and offers an overview of the subject. The book discusses the diversity of indigenous fermented foods involving an alkaline reaction, as well as the taxonomy, ecology, physiology, and genetics of predominant m

  2. Chapter A6. Section 6.6. Alkalinity and Acid Neutralizing Capacity

    Science.gov (United States)

    Rounds, Stewart A.; Wilde, Franceska D.

    2002-01-01

    Alkalinity (determined on a filtered sample) and Acid Neutralizing Capacity (ANC) (determined on a whole-water sample) are measures of the ability of a water sample to neutralize strong acid. Alkalinity and ANC provide information on the suitability of water for uses such as irrigation, determining the efficiency of wastewater processes, determining the presence of contamination by anthropogenic wastes, and maintaining ecosystem health. In addition, alkalinity is used to gain insights on the chemical evolution of an aqueous system. This section of the National Field Manual (NFM) describes the USGS field protocols for alkalinity/ANC determination using either the inflection-point or Gran function plot methods, including calculation of carbonate species, and provides guidance on equipment selection.

  3. Alkaline diagenesis and its influence on a reservoir in the Biyang depression

    Institute of Scientific and Technical Information of China (English)

    QIU; Longwei; (邱隆伟); JIANG; Zaixing; (姜在兴); CAO; Yingchang; (操应长); QIU; Ronghua(邱荣华); CHEN; Wenxue; (陈文学); &; TU; Yangfa; (涂阳发)

    2002-01-01

    Alkaline diagnesis is a diagenetic process that a reservoir undergoes under an alkaline environment. Because of the influence of alkaline formation water, the most typical characteristics of diagnesis is that quartz is obviously dissolved, feldspar is massively enlarged, and less late carbonate cement is formed in the evolution of carbonate minerals. With the decrease of the alkalinity of the formation water in diagenesis, the quartz overgrowths become common. The change in the chemical characteristics of the formation water leads to a more complex distribution of reservoir porosity at different depths than that of the secondary porosity formed by classical acidic water. It also makes the B stage of early diagenesis the important development period of secondary porosity.

  4. Alkaline Waterflooding Demonstration Project, Ranger Zone, Long Beach Unit, Wilmington Field, California. Fourth annual report, June 1979-May 1980. Volume 3. Appendices II-XVII

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, J.D.

    1981-03-01

    Volume 3 contains Appendices II through XVII: mixing instructions for sodium orthosilicate; oil displacement studies using THUMS C-331 crude oil and extracted reservoir core material from well B-110; clay mineral analysis of B-827-A cores; sieve analysis of 4 Fo sand samples from B-110-IA and 4 Fo sand samples from B-827-A; core record; delayed secondary caustic consumption tests; long-term alkaline consumption in reservoir sands; demulsification study for THUMS Long Beach Company, Island White; operating plans and instructions for DOE injection demonstration project, alkaline injection; caustic pilot-produced water test graphs; well test irregularities (6/1/79-5/31/80); alkaline flood pump changes (6/1/79-5/31/80); monthly DOE pilot chemical waterflood injection reports (preflush injection, alkaline-salt injection, and alkaline injection without salt); and caustic safety procedures-alkaline chemicals.

  5. Batteries: from alkaline to zinc-air.

    Science.gov (United States)

    Dondelinger, Robert M

    2004-01-01

    applications (for example, zinc-air for alkaline--if it is cost-effective), this is absolutely forbidden for secondary cells. Because of the differing cell voltages, charge characteristics and overcharge tolerance between different types of secondary cells, substituting a nickel-cadmium battery pack for the more expensive lithium-ion pack (if it is physically able to fit into the battery compartment), might appear to save money (e.g. $50 vs. $100) but it would be very ill advised. Since the cell characteristics are very different, it would be downright fatal to anyone within the 'kill radius' when the pack explodes. Those outside the kill radius would receive chemical burns from the electrolyte. Substitutions of secondary cell battery packs are generally not a good idea for biomeds to engage in. These are engineering decisions best left to either aftermarket battery pack manufacturers or the medical device manufacturer as a design engineering change.

  6. Adsorptive desulfurization over hierarchical beta zeolite by alkaline treatment

    Institute of Scientific and Technical Information of China (English)

    Fuping Tian; Xiaojian Yang; Yanchun Shi; Cuiying Jia; Yongying Chen

    2012-01-01

    Hierarchical beta zeolites with SiO2/Al2O3 molar ratios of 16 to 25 were obtained by alkaline treatment in NaOH solution.The effects of treatment temperature on crystallinity,textural properties and chemical composites were studied by XRD,N2 sorption,FT-IR and XRF techniques.The desulfurization performance of parent and alkaline-treated beta zeolites was investigated by static absorption in four model fuels,containing four sulfur compounds of different molecular sizes like thiophene (TP),3-methylthiophene (3-MT),benzothiophene (BT) and dibenzothiophene (DBT),respectively.The crystallinity was observed to be successfully maintained when the treatment temperature was below 50℃.Mesoporosity of beta zeolite was evidently developed with alkaline treatment.The formation of mesopore remarkably improved the desulfurization performance for TP,3-MT,BT and DBT,especially for DBT with larger molecular diameter.Though the addition of toluene in the model fuels resulted in a significant drop of the desulfurization performance of mesoporous beta zeolite,the introduction of cerium ions to some extent mitigated the effect of toluene,which means that both the adsorbents porous structure and the adsorption mode are responsible for the desulfurization performance.The adsorbent of cerium ion-exchanged mesoporous beta showed about 80% recovery of desulfurization after the first regeneration.

  7. Mechanism of gold dissolving in alkaline thiourea solution

    Institute of Scientific and Technical Information of China (English)

    CHAI Li-yuan; WANG Yun-yan

    2007-01-01

    Reaction mechanism of gold dissolving in alkaline thiourea solution was studied by electrochemical methods, such as cyclic voltammetry, chronopotentiometry, AC impedance, linear sweep voltammetry. Apparent activation energy of anodic process of gold electrode dissolving in alkaline thiourea solution is 14.91 kJ/mol. Rate determining step is the process of gold thiourea complex diffusing away from electrode surface to solution. The results of AC impedance and chronopotentiometry indicate that thiourea adsorbs on gold electrode surface before dissolving in solution. There does not exist proceeding chemical reactions. Formamidine disulfide, the decomposed product of thiourea, does not participate the process of gold dissolution and thiourea complex. Species with electro-activity produced in the process of electrode reaction adsorbs on the electrode surface. In alkaline thiourea solution, gold dissolving mechanism undergoes the following courses: adsorption of thiourea on electrode surface; charge transfer from gold atom to thiourea molecule; Au[SC(NH2)2]ads+ receiving a thiourea molecule and forming stable Au[SC(NH2)2]2+; and then Au[SC(NH2)2]2+diffusing away from the electrode surface to solution, the last step is the rate-determining one.

  8. Estimation of the chemical-induced eye injury using a weight-of-evidence (WoE) battery of 21 artificial neural network (ANN) c-QSAR models (QSAR-21): part I: irritation potential.

    Science.gov (United States)

    Verma, Rajeshwar P; Matthews, Edwin J

    2015-03-01

    Evaluation of potential chemical-induced eye injury through irritation and corrosion is required to ensure occupational and consumer safety for industrial, household and cosmetic ingredient chemicals. The historical method for evaluating eye irritant and corrosion potential of chemicals is the rabbit Draize test. However, the Draize test is controversial and its use is diminishing - the EU 7th Amendment to the Cosmetic Directive (76/768/EEC) and recast Regulation now bans marketing of new cosmetics having animal testing of their ingredients and requires non-animal alternative tests for safety assessments. Thus, in silico and/or in vitro tests are advocated. QSAR models for eye irritation have been reported for several small (congeneric) data sets; however, large global models have not been described. This report describes FDA/CFSAN's development of 21 ANN c-QSAR models (QSAR-21) to predict eye irritation using the ADMET Predictor program and a diverse training data set of 2928 chemicals. The 21 models had external (20% test set) and internal validation and average training/verification/test set statistics were: 88/88/85(%) sensitivity and 82/82/82(%) specificity, respectively. The new method utilized multiple artificial neural network (ANN) molecular descriptor selection functionalities to maximize the applicability domain of the battery. The eye irritation models will be used to provide information to fill the critical data gaps for the safety assessment of cosmetic ingredient chemicals.

  9. CHARACTERIZATION OF BULK SOIL HUMIN AND ITS ALKALINE-SOLUBLE AND ALKALINE-INSOLUBLE FRACTIONS

    Directory of Open Access Journals (Sweden)

    Cuilan Li

    2015-02-01

    Full Text Available Humic substances are the major components of soil organic matter. Among the three humic substance components (humic acid, fulvic acid, and humin, humin is the most insoluble in aqueous solution at any pH value and, in turn, the least understood. Humin has poor solubility mainly because it is tightly bonded to inorganic soil colloids. By breaking the linkage between humin and inorganic soil colloids using inorganic or organic solvents, bulk humin can be partially soluble in alkali, enabling a better understanding of the structure and properties of humin. However, the structural relationship between bulk humin and its alkaline-soluble (AS and alkaline-insoluble (AIS fractions is still unknown. In this study, we isolated bulk humin from two soils of Northeast China by exhaustive extraction (25 to 28 times with 0.1 mol L-1 NaOH + 0.1 mol L-1 Na4P2O7, followed by the traditional treatment with 10 % HF-HCl. The isolated bulk humin was then fractionated into AS-humin and AIS-humin by exhaustive extraction (12 to 15 times with 0.1 mol L-1 NaOH. Elemental analysis and solid-state 13C cross-polarization magic angle spinning nuclear magnetic resonance (13C CPMAS NMR spectroscopy were used to characterize and compare the chemical structures of bulk humin and its corresponding fractions. The results showed that, regardless of soil types, bulk humin was the most aliphatic and most hydrophobic, AS-humin was the least aliphatic, and AIS-humin was the least alkylated among the three humic components. The results showed that bulk humin and its corresponding AS-humin and AIS-humin fractions are structurally differed from one another, implying that the functions of these humic components in the soil environment differed.

  10. Association of alkaline phosphatase phenotypes with arthritides

    Directory of Open Access Journals (Sweden)

    Padmini A

    2004-01-01

    Full Text Available Arthritides, a symmetrical polyarticular disease of the bone are a heterogenous group of disorders in which hereditary and environmental factors in combination with an altered immune response appear to play a causative and pathogenic role in its occurrence. Alkaline phosphatase (ALP is an enzyme found in all tissues, with particularly high concentrations of ALP observed in the liver, bile ducts, placenta, and bone.Alkaline phosphatase is an orthophosphoric monoester phosphohydrolase catalyzing the hydrolysis of organic esters at alkaline pH, indicating that alkaline phosphatase is involved in fundamental biological processes.1 The present study envisages on identifying the specific electromorphic association of alkaline phosphatase with arthritides. Phenotyping of serum samples was carried out by PAGE (Polyacrylamide gel electrophoresis following Davies (19642 protocol on 41 juvenile arthritis, 150 rheumatoid arthritis and 100 osteo arthritis apart from, 25 normal children and 100 adult healthy subjects. Phenotyping of alkaline phosphatase revealed an increase in preponderance of p+ and p++ phenotypes in juvenile, rheumatoid and osteo arthritic patients. However a significant association of these phenotypes was observed only with rheumatoid arthritis condition (c2:17.46. Similarly, a significant increase of p+ phenotypes in female rheumatoid arthritis patients was observed (c2:14.973, suggesting that the decrease in p° (tissue non specific synthesis/secretion of alkaline phosphatase could be associated with decreased mineralization and ossification process in arthritis condition.

  11. Alkaline solution neutralization capacity of soil.

    Science.gov (United States)

    Asakura, Hiroshi; Sakanakura, Hirofumi; Matsuto, Toshihiko

    2010-10-01

    Alkaline eluate from municipal solid waste (MSW) incineration residue deposited in landfill alkalizes waste and soil layers. From the viewpoint of accelerating stability and preventing heavy metal elution, pH of the landfill layer (waste and daily cover soil) should be controlled. On the other hand, pH of leachate from existing MSW landfill sites is usually approximately neutral. One of the reasons is that daily cover soil can neutralize alkaline solution containing Ca(2+) as cation. However, in landfill layer where various types of wastes and reactions should be taken into consideration, the ability to neutralize alkaline solutions other than Ca(OH)(2) by soil should be evaluated. In this study, the neutralization capacities of various types of soils were measured using Ca(OH)(2) and NaOH solutions. Each soil used in this study showed approximately the same capacity to neutralize both alkaline solutions of Ca(OH)(2) and NaOH. The cation exchange capacity was less than 30% of the maximum alkali neutralization capacity obtained by the titration test. The mechanism of neutralization by the pH-dependent charge can explain the same neutralization capacities of the soils. Although further investigation on the neutralization capacity of the soils for alkaline substances other than NaOH is required, daily cover soil could serve as a buffer zone for alkaline leachates containing Ca(OH)(2) or other alkaline substances.

  12. Combined wet oxidation and alkaline hydrolysis of polyvinylchloride

    DEFF Research Database (Denmark)

    Sørensen, E.; Bjerre, A.B.

    1992-01-01

    In view of the widespread aversion to burning polyvinylchloride (PVC) together with municipal waste, we have attempted an alternative approach to its decomposition. This paper describes a combined wet oxidation/alkaline hydrolysis yielding water soluble, biodegradable products. Experiments were...... carried out at temperatures from 180-260 degree C and reaction times of 8-24 min. The chloride liberated provides information on the rate constants. Considering the measured Cl- and Chemical Oxygen Demand (COD) values, we find hydrolysis and oxidation processes to be interdependent. The main products...

  13. Role of dust alkalinity in acid mobilization of iron

    Directory of Open Access Journals (Sweden)

    A. Ito

    2010-10-01

    Full Text Available Atmospheric processing of mineral aerosols by acid gases (e.g., SO2, HNO3, N2O5, and HCl may play a key role in the transformation of insoluble iron (Fe in the oxidized or ferric (III form to soluble forms (e.g., Fe(II, inorganic soluble species of Fe(III, and organic complexes of iron. On the other hand, mineral dust particles have a potential of neutralizing the acidic species due to the alkaline buffer ability of carbonate minerals (e.g., CaCO3 and MgCO3. Here we demonstrate the impact of dust alkalinity on the acid mobilization of iron in a three-dimensional aerosol chemistry transport model that includes a mineral dissolution scheme. In our model simulations, most of the alkaline dust minerals cannot be entirely consumed by inorganic acids during the transport across the North Pacific Ocean. As a result, the inclusion of alkaline compounds in aqueous chemistry substantially limits the iron dissolution during the long-range transport to the North Pacific Ocean: only a small fraction of iron (<0.2% dissolves from hematite in the coarse-mode dust aerosols with 0.45% soluble iron initially. On the other hand, a significant fraction of iron (1–2% dissolves in the fine-mode dust aerosols due to the acid mobilization of the iron-containing minerals externally mixed with carbonate minerals. Consequently, the model quantitatively reproduces higher iron solubility in smaller particles as suggested by measurements over the Pacific Ocean. It implies that the buffering effect of alkaline content in dust aerosols might help to explain the inverse relationship between aerosol iron solubility and particle size. We also demonstrate that the iron solubility is sensitive to the chemical specification of iron-containing minerals in dust. Compared with the dust sources, soluble iron from combustion sources contributes to a relatively marginal effect for deposition of soluble iron over the North

  14. Head Injuries

    Science.gov (United States)

    ... ATV) Safety Balance Disorders Knowing Your Child's Medical History First Aid: Falls First Aid: Head Injuries Preventing Children's Sports Injuries Getting Help: Know the Numbers Concussions Stay Safe: Baseball Concussions Concussions: Getting Better Sports and Concussions Dealing ...

  15. Ear Injury

    Science.gov (United States)

    ... Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic Disorders Immune Disorders Infections Injuries and Poisoning Kidney and ... Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic Disorders Immune Disorders Infections Injuries and Poisoning Kidney and ...

  16. Genital injury

    Science.gov (United States)

    ... each side of a bar, such as a monkey bar or the middle of a bicycle Symptoms ... Names Scrotal trauma; Straddle injury; Toilet seat injury Images Female reproductive anatomy Male reproductive anatomy Normal female ...

  17. Knee Injuries

    Science.gov (United States)

    ... bursitis . Symptoms of bursitis in the knee include warmth, tenderness, swelling, and pain on the front of ... injury without the aid of a television screen. Physical Therapy Depending on the type of knee injury ...

  18. Studies on chemical protectors against radiation, 29; Protective effects of methanol extracts of various Chinese traditional medicines on skin injury induced by X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cheng-Ming; Ohta, Setsuko; Shinoda, Masato (Hoshi Coll. of Pharmacy, Tokyo (Japan))

    1990-03-01

    In order to investigate useful protective medicines for the relief of skin injury induced by irradiation, 60 methanol extracts of Chinese traditional medicines were used in the test of protective potency on skin injury. ICR male mice at 6 weeks of age were whole-body irradiated with 1100R by using a soft X-ray generator (30 kVp, 10 mA, 190 R/min). Each methanol extract of these medicines was injected intraperitoneally into mice before or after irradiation. The degrees of skin injury were determined by a score system of skin reaction within the observation period from 21st to 40th day after irradiation. Protective potency of each medicine on skin injury was calculated from the maximum mean scores of administrated group and un-administrated group. As a result of these studies, the protective potency was detected in Unsei-in, Kumibinro-to, Keisi-syakuyaku-chimo-to, Keigai-rengyo-to, Gosyuyu-to, Koso-san, Saiko-seikan-to, Syo-kankyo-to, Syo-saiko-to, Syoma-kakkon-to, Sen-kan-meimoku-to, Zokumei-to, Sokei-kakketu-to, Bokuryo-in, Mao-to and Rikkunsi-to by intraperitoneal injection before irradiation. Of these effective medicines, only Unsei-in and Mao-to are shown to have a significant protective effect by intraperitoneal injection after irradiation. (author).

  19. Orienteering injuries

    OpenAIRE

    Folan, Jean M.

    1982-01-01

    At the Irish National Orienteering Championships in 1981 a survey of the injuries occurring over the two days of competition was carried out. Of 285 individual competitors there was a percentage injury rate of 5.26%. The article discusses the injuries and aspects of safety in orienteering.

  20. Cultivation of marine shrimp in biofloc technology (BFT system under different water alkalinities

    Directory of Open Access Journals (Sweden)

    V Piérri

    Full Text Available AbstractThe aim of this study was to evaluate the influence of different levels of alkalinity for the superintensive cultivation of marine shrimp Litopenaeus vannamei in biofloc system. A total of 12 experimental circular units of 1000L were used supplied with 850L water from a nursery, populated at a density of 165 shrimps.m–3 and average weight of 5.6 g. The treatments, in triplicate, consisted in four levels of alkalinity in the water: 40, 80, 120 and 160 mg.L–1 of calcium carbonate. To correct the alkalinity was used calcium hydroxide (CaOH. It was observed a decrease in pH of the water in the treatments with lower alkalinity (p<0.05. The total suspended settleable solids were also lower in the treatment of low alkalinity. No significant difference was observed in other physico-chemical and biological parameters in the water quality assessed, as well as the zootechnical parameters of cultivation between treatments (p≥0.05. The results of survival and growth rate of shrimps were considered suitable for the cultivation system used in the different treatments. The cultivation of marine shrimp Litopenaeus vannamei in biofloc at density of 165 shrimps.m–3 can be performed in waters with alkalinity between 40 and 160 mg.L–1 of CaCO3, without compromising the zootechnical indexes of cultivation.

  1. Bicycling injuries.

    Science.gov (United States)

    Silberman, Marc R

    2013-01-01

    Bicycling injuries can be classified into bicycle contact, traumatic, and overuse injuries. Despite the popularity of cycling, there are few scientific studies regarding injuries. Epidemiological studies are difficult to compare due to different methodologies and the diverse population of cyclists studied. There are only three studies conducted on top level professionals. Ninety-four percent of professionals in 1 year have experienced at least one overuse injury. Most overuse injuries are mild with limited time off the bike. The most common site of overuse injury is the knee, and the most common site of traumatic injury is the shoulder, with the clavicle having the most common fracture. Many overuse and bicycle contact ailments are relieved with simple bike adjustments.

  2. THREE SHRUBS WOOD PULPS PREPARED BY HYDROGEN PEROXIDE -ALKALINE (PA) COOKING

    Institute of Scientific and Technical Information of China (English)

    Feng Xu; RunCang Sun; huaiyu Zhan

    2004-01-01

    The physical, chemical and fiber characteristics of Caragana Korshinskii, Salix psammophila and Hedysarum scoparium fischer Mey were assessed for their suitability for papermaking. Nonsulfur cooking of hydrogen peroxide-alkaline (PA) was carried out.It is shown from the results that all these three shrubs are good raw materials for pulping and papermaking.The unbleached pulps have high mechanical strengthes.

  3. THREE SHRUBS WOOD PULPS PREPARED BY HYDROGEN PEROXIDE -ALKALINE (PA) COOKING

    Institute of Scientific and Technical Information of China (English)

    FengXu; RunCangSun; huaiyuZhan

    2004-01-01

    The physical, chemical and fiber characteristics ofCaragana Korshinskii, Salix psammophila andHedysarum scoparium fischet Mey were assessed fortheir suitability for papermaking. Nonsulfur cookingof hydrogen peroxide-alkaline (PA) was carried out.It is shown from the results that all these three shrubsare good raw materials for pulping and papermaking.The unbleached pulps have high mechanicalstren~hes.

  4. Delignification outperforms alkaline extraction for xylan fingerprinting of oil palm empty fruit bunch

    NARCIS (Netherlands)

    Murciano Martínez, Patricia; Kabel, Mirjam A.; Gruppen, Harry

    2016-01-01

    Enzyme hydrolysed (hemi-)celluloses from oil palm empty fruit bunches (EFBs) are a source for production of bio-fuels or chemicals. In this study, after either peracetic acid delignification or alkaline extraction, EFB hemicellulose structures were described, aided by xylanase hydrolysis. Deligni

  5. DIFFERENTIAL SUSCEPTIBILITY OF HUMAN SP-B GENETIC VARIANTS ON LUNG INJURY CAUSED BY BACTERIAL PNEUMONIA AND THE EFFECT OF A CHEMICALLY MODIFIED CURCUMIN.

    Science.gov (United States)

    Xu, Yongan; Ge, Lin; Abdel-Razek, Osama; Jain, Sumeet; Liu, Zhiyong; Hong, Yucai; Nieman, Gary; Johnson, Francis; Golub, Lorne M; Cooney, Robert N; Wang, Guirong

    2016-04-01

    Staphylococcus aureus is a common cause of nosocomial pneumonia frequently resulting in acute respiratory distress syndrome (ARDS). Surfactant protein B (SP-B) gene expresses two proteins involved in lowering surface tension and host defense. Genotyping studies demonstrate a significant association between human SP-B genetic variants and ARDS. Curcumins have been shown to attenuate host inflammation in many sepsis models. Our hypothesis is that functional differences of SP-B variants and treatment with curcumin (CMC2.24) modulate lung injury in bacterial pneumonia. Humanized transgenic mice, expressing either SP-B T or C allele without mouse SP-B gene, were used. Bioluminescent labeled S. aureus Xen 36 (50 μL) was injected intratracheally to cause pneumonia. Infected mice received daily CMC2.24 (40 mg/kg) or vehicle alone by oral gavage. Dynamic changes of bacteria were monitored using in vivo imaging system. Histological, cellular, and molecular indices of lung injury were studied in infected mice 48 h after infection. In vivo imaging analysis revealed total flux (bacterial number) was higher in the lung of infected SP-B-C mice compared with infected SP-B-T mice (P pneumonia than mice with SP-B-T allele, and that CMC2.24 attenuates lung injury thus reducing mortality.

  6. 2nd Generation alkaline electrolysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yde, L. [Aarhus Univ. Business and Social Science - Centre for Energy Technologies (CET), Aarhus (Denmark); Kjartansdottir, C.K. [Technical Univ. of Denmark. DTU Mechanical Engineering, Kgs. Lyngby (Denmark); Allebrod, F. [Technical Univ. of Denmark. DTU Energy Conversion, DTU Risoe Campus, Roskilde (Denmark)] [and others

    2013-03-15

    The overall purpose of this project has been to contribute to this load management by developing a 2{sup nd} generation of alkaline electrolysis system characterized by being compact, reliable, inexpensive and energy efficient. The specific targets for the project have been to: 1) Increase cell efficiency to more than 88% (according to the higher heating value (HHV)) at a current density of 200 mA /cm{sup 2}; 2) Increase operation temperature to more than 100 degree Celsius to make the cooling energy more valuable; 3) Obtain an operation pressure more than 30 bar hereby minimizing the need for further compression of hydrogen for storage; 4) Improve stack architecture decreasing the price of the stack with at least 50%; 5) Develop a modular design making it easy to customize plants in the size from 20 to 200 kW; 6) Demonstrating a 20 kW 2{sup nd} generation stack in H2College at the campus of Arhus University in Herning. The project has included research and development on three different technology tracks of electrodes; an electrochemical plating, an atmospheric plasma spray (APS) and finally a high temperature and pressure (HTP) track with operating temperature around 250 deg. C and pressure around 40 bar. The results show that all three electrode tracks have reached high energy efficiencies. In the electrochemical plating track a stack efficiency of 86.5% at a current density of 177mA/cm{sup 2} and a temperature of 74.4 deg. C has been shown. The APS track showed cell efficiencies of 97%, however, coatings for the anode side still need to be developed. The HTP cell has reached 100 % electric efficiency operating at 1.5 V (the thermoneutral voltage) with a current density of 1. 1 A/cm{sup 2}. This track only tested small cells in an externally heated laboratory set-up, and thus the thermal loss to surroundings cannot be given. The goal set for the 2{sup nd} generation electrolyser system, has been to generate 30 bar pressure in the cell stack. An obstacle to be

  7. Solid Inclusions in Au-nuggets, genesis and derivation from alkaline rocks of the Guli Massif, Northern Siberia

    Directory of Open Access Journals (Sweden)

    Dvorani Sami N.

    2016-04-01

    Full Text Available A total of 112 Au-nuggets, collected from alluvial placer deposits of the Ingarinda River from the Guli massif, located in northem Siberia, Russia, were investigated. The Guli massif consists of a huge dunite-clinopyroxenite complex (the largest complex in the world, an alkaline to highly alkaline rock suite (melilite, nephelinite, ijolite enveloping the dunite and carbonatite intrusions, associated with disseminated schlieren type chromitite and Au-Ag, Pt placer deposits. The nuggets are characterized by various sizes and shapes and show chemical compositions Au, Au-Ag and AuCu, typical for a derivate of carbon-atites and/or ultramafic complexes. A great variety of oxide, silicate, REE-minerals, carbonate and sulphide inclusions have been detected in the nuggets, which are identical in mineralogy and chemical composition to mineral constituents of the alkaline to highly alkaline rock suite surrounding the Guli dunite core complex thus, considered as the source for Au-nuggets.

  8. Injury - kidney and ureter

    Science.gov (United States)

    Kidney damage; Toxic injury of the kidney; Kidney injury; Traumatic injury of the kidney; Fractured kidney; Inflammatory injury of the kidney; Bruised kidney; Ureteral injury; Pre-renal failure - injury, ...

  9. [Alkaline phosphatase in Amoeba proteus].

    Science.gov (United States)

    Sopina, V A

    2005-01-01

    In free-living Amoeba proteus (strain B), 3 phosphatase were found after disc-electrophoresis of 10 microg of protein in PAGE and using 1-naphthyl phosphate as a substrate a pH 9.0. These phosphatases differed in their electrophoretic mobilities - "slow" (1-3 bands), "middle" (one band) and "fast" (one band). In addition to 1-naphthyl phosphate, "slow" phosphatases were able to hydrolyse 2-naphthyl phosphate and p-nitrophenyl phosphate. They were slightly activated by Mg2+, completely inhibited by 3 chelators (EDTA, EGTA and 1,10-phenanthroline), L-cysteine, sodium dodecyl sulfate and Fe2+, Zn2+ and Mn2+ (50 mM), considerably inactivated by orthovanadate, molybdate, phosphatase inhibitor cocktail 1, p-nitrophenyl phosphate, Na2HPO4, DL-dithiothreitol and urea and partly inhibited by H2O2, DL-phenylalanine, 2-mercaptoethanol, phosphatase inhibitor cocktail 2 and Ca2+. Imidazole, L-(+)-tartrate, okadaic acid, NaF and sulfhydryl reagents -p-(hydroxy-mercuri)benzoate and N-ethylmaleimide - had no influence on the activity of "slow" phosphatases. "Middle" and "fast" phosphatases, in contrast to "slow" ones, were not inactivated by 3 chelators. The "middle" phosphatase differed from the "fast" one by smaller resistance to urea, Ca2+, Mn2+, phosphates and H2O2 and greater resistance to dithiothreitol and L-(+)-tartrate. In addition, the "fast" phosphatase was inhibited by L-cysteine but the "middle" one was activated by it. Of 5 tested ions (Mg2+, Cu2+, Mn2+, Ca2+ and Zn2+), only Zn2+ reactivated "slow" phosphatases after their inactivation by EDTA treatment. The reactivation of apoenzyme was only partial (about 35 %). Thus, among phosphatases found in amoebae at pH 9.0, only "slow" ones are Zn-metalloenzymes and may be considered as alkaline phosphatases (EC 3.1.3.1). It still remains uncertain, to which particular phosphatase class "middle" and "fast" phosphatases (pH 9.0) may belong.

  10. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  11. Prophylactic treatment with alkaline phosphatase in cardiac surgery induces endogenous alkaline phosphatase release

    NARCIS (Netherlands)

    Kats, Suzanne; Brands, Ruud; Hamad, Mohamed A. Soliman; Seinen, Willem; Schamhorst, Volkher; Wulkan, Raymond W.; Schoenberger, Jacques P.; van Oeveren, Wim

    2012-01-01

    Introduction: Laboratory and clinical data have implicated endotoxin as an important factor in the inflammatory response to cardiopulmonary bypass. We assessed the effects of the administration of bovine intestinal alkaline phosphatase (bIAP), an endotoxin detoxifier, on alkaline phosphatase levels

  12. Uptake of arsenic by alkaline soils near alkaline coal fly ash disposal facilities.

    Science.gov (United States)

    Khodadoust, Amid P; Theis, Thomas L; Murarka, Ishwar P; Naithani, Pratibha; Babaeivelni, Kamel

    2013-12-01

    The attenuation of arsenic in groundwater near alkaline coal fly ash disposal facilities was evaluated by determining the uptake of arsenic from ash leachates by surrounding alkaline soils. Ten different alkaline soils near a retired coal fly ash impoundment were used in this study with pH ranging from 7.6 to 9.0, while representative coal fly ash samples from two different locations in the coal fly ash impoundment were used to produce two alkaline ash leachates with pH 7.4 and 8.2. The arsenic found in the ash leachates was present as arsenate [As(V)]. Adsorption isotherm experiments were carried out to determine the adsorption parameters required for predicting the uptake of arsenic from the ash leachates. For all soils and leachates, the adsorption of arsenic followed the Langmuir and Freundlich equations, indicative of the favorable adsorption of arsenic from leachates onto all soils. The uptake of arsenic was evaluated as a function of ash leachate characteristics and the soil components. The uptake of arsenic from alkaline ash leachates, which occurred mainly as calcium hydrogen arsenate, increased with increasing clay fraction of soil and with increasing soil organic matter of the alkaline soils. Appreciable uptake of arsenic from alkaline ash leachates with different pH and arsenic concentration was observed for the alkaline soils, thus attenuating the contamination of groundwater downstream of the retired coal fly ash impoundment.

  13. Atributos químicos do solo e lixiviação de compostos fenólicos após adição de resíduo sólido alcalino Chemical attributes of soil and leaching of phenolic compounds after addition of alkaline solid residue

    Directory of Open Access Journals (Sweden)

    Sabrina B. Branco

    2013-05-01

    Full Text Available A utilização de resíduos alcalinos da indústria de papel e celulose (DREGS na agricultura como corretivo de acidez do solo, vem sendo amplamente empregada como alternativa de descarte no solo de forma a reduzir o impacto ambiental. Objetivou-se, com este trabalho, determinar a influência da aplicação do dregs, rejeito da indústria de papel e celulose, nos atributos químicos do solo e na lixiviação de compostos fenólicos. As unidades experimentais foram constituídas por colunas de lixiviação preenchidas com solo incorporado com dregs nas doses de 0,0; 2,5; 5,0 e 10,0 g kg-1. Foram realizadas análises químicas nos solos estudados, um Camibissolo Húmico e um Neossolo Quartzarênico, testes de solubilização dos compostos fenólicos e ensaios de lixiviação visando determinar os teores totais de compostos fenólicos presentes nos lixiviados. O uso do dregs modificou os atributos químicos do Cambissolo Húmico e do Neossolo Quartzarênico. Os resultados obtidos nas análises dos lixiviados demonstraram que a aplicação do dregs levou ao incremento de compostos acima do máximo permitido pela legislação vigente, 0,01 mg L-1(ANBR, 2004a e de 0,5 mg L-1 (CONAMA, 2008.The use of alkaline residues from pulp and paper industry ('dregs' in agriculture as a corrective of soil acidity is being widely used as an alternative of ground disposal in order to reduce the environmental impact. The objective of this study was to determine the influence of application of the 'dregs', waste from pulp and paper industry, in soil chemical properties and leaching of phenolic compounds. The experimental units consisted of leaching columns filled with soil incorporated with 'dregs' at doses of 0, 2.5, 5.0 and 10.0 g kg-1. Chemical analysis were performed in these soils, a Humic Camibissolo and a Typic Quartzipsamment soils, tests of solubilization of phenolic compounds and leaching tests were also carried out to determine the total content of phenolic

  14. Paragliding injuries.

    OpenAIRE

    Krüger-Franke, M; Siebert, C H; Pförringer, W

    1991-01-01

    Regulations controlling the sport of paragliding were issued in April 1987 by the German Department of Transportation. The growing popularity of this sport has led to a steady increase in the number of associated injuries. This study presents the incidence, localization and degree of injuries associated with paragliding documented in Germany, Austria and Switzerland. The 283 injuries suffered by 218 paragliders were documented in the period 1987-1989: 181 occurred during landing, 28 during st...

  15. Towards a stable ion-solvating polymer electrolyte for advanced alkaline water electrolysis

    DEFF Research Database (Denmark)

    Aili, David; Wright, Andrew G.; Kraglund, Mikkel Rykær

    2017-01-01

    Advanced alkaline water electrolysis using ion-solvating polymer membranes as electrolytes represents a new direction in the field of electrochemical hydrogen production. Polybenzimidazole membranes equilibrated in aqueous KOH combine the mechanical robustness and gas-tightness of a polymer...... stability in alkaline environments. The novel electrolytes are extensively characterized with respect to physicochemical and electrochemical properties and the chemical stability is assessed in 0-50 wt% aqueous KOH for more than 6 months at 88 degrees C. In water electrolysis tests using porous 3...

  16. Recent progress in alkaline direct ethylene glycol fuel cells for sustainable energy production

    Science.gov (United States)

    An, L.; Chen, R.

    2016-10-01

    Alkaline direct ethylene glycol fuel cells are one of the most promising power sources for portable, mobile and stationary power applications, primarily because this type of fuel cell runs on a sustainable fuel and the key materials that constitute the fuel cell are relatively inexpensive. This review article summarizes and discusses the past investigations on the development of alkaline direct ethylene glycol fuel cells, including the physical and chemical processes through the fuel cell structure, the electrocatalytic oxidation and electrocatalysts of ethylene glycol, the singe-cell performance, and innovative system designs.

  17. Paragliding injuries.

    Science.gov (United States)

    Krüger-Franke, M; Siebert, C H; Pförringer, W

    1991-06-01

    Regulations controlling the sport of paragliding were issued in April 1987 by the German Department of Transportation. The growing popularity of this sport has led to a steady increase in the number of associated injuries. This study presents the incidence, localization and degree of injuries associated with paragliding documented in Germany, Austria and Switzerland. The 283 injuries suffered by 218 paragliders were documented in the period 1987-1989: 181 occurred during landing, 28 during starting procedures and nine during flight. The mean patient age was 29.6 years. There were 34.9% spinal injuries, 13.4% upper extremity injuries and 41.3% lower limb injuries. Over half of these injuries were treated surgically and in 54 instances permanent disability remained. In paragliding the lower extremities are at greatest risk of injury during landing. Proper equipment, especially sturdy footwear, exact training in landing techniques as well as improved instruction in procedures during aborted or crash landings is required to reduce the frequency of these injuries.

  18. A systemic study of stepwise chlorination-chemical vapor transport characteristics of pure rare earth oxides from Sc{sub 2}O{sub 3} to Lu{sub 2}O{sub 3} mediated by alkaline chlorides as complex former

    Energy Technology Data Exchange (ETDEWEB)

    Sun Yanhui [School of Chemistry and Environment, South China Normal University, Guangzhou 510631 (China)]. E-mail: sunyanhui0102@163.com; He Peng [Department of Ecology, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Chen Huani [School of Chemistry and Environment, South China Normal University, Guangzhou 510631 (China)

    2007-08-30

    A systematic study has been carried out for the stepwise chlorination-chemical vapor transport (SC-CVT) characteristics of pure rare earth oxides from Sc{sub 2}O{sub 3} to Lu{sub 2}O{sub 3} mediated by the vapor complexes KLnCl{sub 4} and NaLnCl{sub 4} (Ln = Sc, Y and La-Lu) used NaCl and KCl as complex former, respectively. The results showed that the SC-CVT characteristics are similarly for NaCl and KCl as complex former, the main deposition temperature of the rare earth chlorides LnCl{sub 3} is in the increasing order ScCl{sub 3} < YCl{sub 3} < LaCl{sub 3}, and then with a systematically decreasing trend from the early lanthanide chlorides to the end one. The results also showed that the total transported amount of the produced chlorides is YCl{sub 3} > ScCl{sub 3}, and they are much higher than that of most lanthanoid chlorides. For lanthanoids, the total transported amount of chloride increases systematically from the early lanthanoid chlorides to the end one except for EuCl{sub 3} and GdCl{sub 3} mediated by KCl and NaCl as complex former, respectively, which showed the divergence effect of Gd in the total transport efficiency. But there are some differences in SC-CVT characteristics of pure rare earth oxide mediated by KCl and NaCl as complex former, that is the main deposition temperature region for the same rare earth element was lower for KCl than that for NaCl as complex former except for LaCl{sub 3}, CeCl{sub 3}, YbCl{sub 3} and LuCl{sub 3}, while the total transport amount of rare earth chloride for KCl as complex former is higher than that for NaCl except for LaCl{sub 3} and EuCl{sub 3}. More over, the discussion was carried out for Sc and Y on the one hand and the lanthanides contain 4f electron as another hand based on the 4f electron hybridization assumption. Further more, the transport characteristics of rare earth oxides with alkaline chlorides as complex former in this study were compared to that with AlCl{sub 3} as complex former.

  19. Some durability aspects of hybrid alkaline cements

    Directory of Open Access Journals (Sweden)

    Donatello S.

    2014-04-01

    Full Text Available Blended cements that contain a high content of fly ash and a low content of Portland cement typically suffer from low early strength development and long setting times. Recently, one method of overcoming these problems has been to use an alkali activator to enhance the reactivity of fly ash particles at early ages. Such cements can be grouped under the generic term “hybrid alkaline cements”, where both cement clinker and fly ash, encouraged by the presence of alkalis, are expected to contribute to cementitious gel formation. The work presented here examines some of the durability aspects of high fly ash content hybrid alkaline cement. Specifically, the aspects investigated were: exposure at high temperatures (up to 1000°C, resistance to immersion in aggressive solutions and susceptibility to the alkali aggregate reaction. All tests were repeated with a commercially available sulfate resistant Portland cement for comparison. When exposed to high temperatures, the hybrid alkaline cement showed strikingly different behaviour compared to the control Portland cement, showing fewer micro-cracks and maintaining residual compressive strengths at least equal to original strengths. Beyond 700°C, the hybrid alkaline cement began to sinter, which resulted in shrinkage of around 5% and a 100% increase in residual compressive strengths. No such sintering event was noted in the control Portland cement, which showed a drastic loss in residual compressive strengths upon heating. In immersion tests, the hybrid alkaline cement possessed excellent resistance to sulfate and seawater attack, similar to the control sulfate resistant cement. Both cements were however severely degraded by immersion in 0.1M HCl for 90 days. Both binders complied with the accelerated alkali-aggregate test but when this test was extended, the hybrid alkaline binder showed much greater dimensional stability. Possible reasons for the differences in durability behaviour in both cements

  20. Hydrogen embrittlement on {alpha}-iron in high alkaline environment

    Energy Technology Data Exchange (ETDEWEB)

    Hu, R.; Habashi, M.; Galland, J. [Ecole Central Paris, Chatenay-Malabry (France)

    1994-12-31

    The partial pressure of hydrogen in concrete`s pore is very low. This hydrogen is due to the chemical reaction between the silica fumes and the alkaline solutions filling the concrete`s pore. Silica fumes are added in the concrete to increase its compression resistance. If the hydrogen pressure is low, the risk of hydrogen embrittlement is also low. However, for constructional works destined to endure more than 50 years, is this risk negligible? To answer this question, the authors have studied the hydrogen embrittlement on {alpha}-iron in alkaline solutions, in the pH range 9.5 to 13.3, presenting the liquids found in the concrete`s pores after different aging, periods. Cathodic charging has been performed for low current densities in the range 0.25 to 90 A/m{sup 2} simulating several partial pressures of hydrogen on the {alpha}-iron surface with and without EDTA inhibitor. The deformation rate was 2.5{times}10{sup {minus}5} s{sup {minus}1}. Finally {alpha}-iron samples and tensile specimens have been immersed in a mixture of silica fumes and an alkaline solution at pH 13.3 in an autoclave during 1,000 hours with the aim to measure the outgassed quantity of hydrogen under vacuum at 600C and to measure also the hydrogen embrittlement. The main conclusions of this study are as following: (1) Hydrogen embrittlement is promoted by oxide Fe{sub 3}O{sub 4} film rupture and/or hydroxide Fe(OH){sub 2}. This mechanism is efficient for current densities equivalent to a cathodic potential lower or equal to {minus}1V/NHE. (2) Silica fumes in contact with a solution of pH 13.3 provoke hydrogen release and its diffusion into the {alpha}-iron, but this quantity is not enough to embrittle it.

  1. Planarization properties of an alkaline slurry without an inhibitor on copper patterned wafer CMP

    Institute of Scientific and Technical Information of China (English)

    Wang Chenwei; Liu Yuling; Tian Jianying; Niu Xinhuan; Zheng Weiyan; Yue Hongwei

    2012-01-01

    The chemical mechanical polishing/planarization (CMP) performance of an inhibitor-free alkaline copper slurry is investigated.The results of the Cu dissolution rate (DR) and the polish rate (PR) show that the alkaline slurry without inhibitors has a relatively high copper removal rate and considerable dissolution rate.Although the slurry with inhibitors has a somewhat low DR,the copper removal rate was significantly reduced due to the addition of inhibitors (Benzotriazole,BTA).The results obtained from pattern wafers show that the alkaline slurry withoutinhibitors has a better planarization efficacy; it can planarize the uneven patterned surface during the excess copper removal.These results indicate that the proposed inhibitor-free copper slurry has a considerable planarization capability for CMP of Cu pattern wafers,it can be applied in the first step ofCu CMP for copper bulk removal.

  2. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Directory of Open Access Journals (Sweden)

    Eero eSalminen

    2014-02-01

    Full Text Available The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat benzalkonium [ADBA] (alkyldimethylbenzylammonium was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs. Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC. The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  3. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Science.gov (United States)

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-02-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  4. Alkaline sulfide pretreatment of an antimonial refractory Au-Ag ore for improved cyanidation

    Science.gov (United States)

    Alp, Ibrahim; Celep, Oktay; Deveci, Haci

    2010-11-01

    This paper presents the alkaline sulfide pretreatment of an antimonial refractory gold and silver ore. In the ore, gold occurs mainly as gold-silver alloys and as associated with quartz and framboidal pyrite grains, and, to a small extent, as the inclusions within antimonial sulfides. Silver is present extensively as antimonial sulfides such as andorite. Alkaline sulfide pretreatment was shown to allow the decomposition of the antimonial sulfide minerals (up to 98% Sb removal) and to remarkably improve the amenability of gold (e.g., from silver (e.g., from leaching. An increase in reagent concentration (1-4 mol/L Na2S or NaOH) and temperature (20-80°C), and a decrease in particle size seem to produce an enhancing effect on metal extraction. These findings suggest that alkaline sulfide leaching can be suitably used as a chemical pretreatment method prior to the conventional cyanidation for antimonial refractory gold and silver ores.

  5. Shifts in leaf N:P stoichiometry during rehabilitation in highly alkaline bauxite processing residue sand.

    Science.gov (United States)

    Goloran, Johnvie B; Chen, Chengrong; Phillips, Ian R; Elser, James J

    2015-10-07

    Large quantities of sodic and alkaline bauxite residue are produced globally as a by-product from alumina refineries. Ecological stoichiometry of key elements [nitrogen (N) and phosphorus (P)] plays a critical role in establishing vegetation cover in bauxite residue sand (BRS). Here we examined how changes in soil chemical properties over time in rehabilitated sodic and alkaline BRS affected leaf N to P stoichiometry of native species used for rehabilitation. Both Ca and soil pH influenced the shifts in leaf N:P ratios of the study species as supported by consistently significant positive relationships (P stoichiometry can effectively provide a meaningful assessment on understanding nutrient limitation and productivity of native species used for vegetating highly sodic and alkaline BRS, and is a crucial indicator for assessing ecological rehabilitation performance.

  6. Delignification outperforms alkaline extraction for xylan fingerprinting of oil palm empty fruit bunch.

    Science.gov (United States)

    Murciano Martínez, Patricia; Kabel, Mirjam A; Gruppen, Harry

    2016-11-20

    Enzyme hydrolysed (hemi-)celluloses from oil palm empty fruit bunches (EFBs) are a source for production of bio-fuels or chemicals. In this study, after either peracetic acid delignification or alkaline extraction, EFB hemicellulose structures were described, aided by xylanase hydrolysis. Delignification of EFB facilitated the hydrolysis of EFB-xylan by a pure endo-β-1,4-xylanase. Up to 91% (w/w) of the non-extracted xylan in the delignified EFB was hydrolysed compared to less than 4% (w/w) of that in untreated EFB. Alkaline extraction of EFB, without prior delignification, yielded only 50% of the xylan. The xylan obtained was hydrolysed only for 40% by the endo-xylanase used. Hence, delignification alone outperformed alkaline extraction as pretreatment for enzymatic fingerprinting of EFB xylans. From the analysis of the oligosaccharide-fingerprint of the delignified endo-xylanase hydrolysed EFB xylan, the structure was proposed as acetylated 4-O-methylglucuronoarabinoxylan.

  7. Comparative evaluation of different hemicelluloses isolation processes integrated with alkaline cooking - HemiEx

    Energy Technology Data Exchange (ETDEWEB)

    Sixta, H.; Testova, L.; Rauhala, T. (and others) (Aalto Univ. School of Science and Technology, Espoo (Finland). Dept. of Forest Products Technology)

    2010-10-15

    HemiEx is a project focusing on the selective extraction of hemicelluloses from hardwood species in connection with alkaline pulping and study of different chemical aspects of the process. The project scope includes investigation of hemicelluloses isolation methods i.e. water prehydrolysis and alkaline pre-extraction prior to and subsequent to alkaline pulping. The sugar fraction of the extracts is then separated from other wood degradation products by means of membrane separation technology before it is converted to furanic compounds and xylose-based food additives. As regards pulp production, both dissolving and paper pulps are aimed at. The effect of pretreatment conditions on papermaking properties of pulp will also be investigated. (orig.)

  8. Comparative evaluation of different hemicelluloses isolation processes integrated with alkaline cooking - HemiEx

    Energy Technology Data Exchange (ETDEWEB)

    Sixta, H.; Testova, L.; Rauhala, T. (and others) (Helsinki Univ. of Technology, Dept. of Forest Products Technology, Espoo (Finland))

    2009-10-15

    HemiEx is a project focusing on the selective extraction of hemicelluloses from hardwood species in connection with alkaline pulping and study of different chemical aspects of the process. The project scope includes investigation of hemicelluloses isolation methods i.e. water prehydrolysis and alkaline pre-extraction prior to and novel solvents extraction subsequent to alkaline pulping. The sugar fraction of the extracts is then separated from other wood degradation products by means of membrane separation technology before it is converted to furanic compounds and xylose-based food additives. As regards pulp production, both dissolving and paper pulps are aimed at. The effect of pretreatment conditions on papermaking properties of pulp will also be investigated. (orig.)

  9. Whiplash injuries.

    Science.gov (United States)

    Malanga, Gerard; Peter, Jason

    2005-10-01

    Whiplash injuries are very common and usually are associated with rear-end collisions. However, a whiplash injury can be caused by any event that results in hyperextension and flexion of the cervical spine. These injuries are of serious concern to all consumers due to escalating cost of diagnosis, treatment, insurance, and litigation. Most acute whiplash injury cases respond well to conservative treatments, which result in resolution of symptoms usually within weeks to a few months after the injury occurred. Chronic whiplash injuries often are harder to diagnose and treat and often result in poor outcomes. Current research shows that various structures in the cervical spine receive nociceptive innervation and potentially may be the cause of chronic pain symptoms. One potential pain generator showing promise is the facet or zygapophyseal joints. Various researchers have proven that these joints are injured during whiplash injuries and that diagnosis and temporary pain relief can be obtained with facet joint injections. The initial evaluation of any patient should follow an organized and stepwise approach, and more serious causes of neck pain must first be ruled out through the history, physical examination, and diagnostic testing. Treatment regimens should be evidence-based, focusing on treatments that have proven to be effective in treating acute and chronic whiplash injuries.

  10. Ocular Injury

    Science.gov (United States)

    ... eye and face protection is essential to prevent injuries. Sports such as hockey, baseball, racquet ball, squash, and shooting require protective goggles or full face mask wear at all times. Do fireworks still cause eye injuries? Each year hundreds of individuals (often children) sustain ...

  11. Role of miR-21 in alkalinity stress tolerance in tilapia.

    Science.gov (United States)

    Zhao, Yan; Wu, Jun-Wei; Wang, Yan; Zhao, Jin-Liang

    2016-02-26

    MicroRNAs (miRNAs) are a class of short, evolutionary conserved non-coding RNA molecules, which are shown as the key regulators of many biological functions. External stress can alter miRNA expression levels, thereby changing the expression of mRNA target genes. Here, we show that miR-21 is involved in the regulation of alkalinity tolerance in Nile tilapia. Alkalinity stress results in a marked reduction in miR-21 levels. miR-21 loss of function could affect ion balance regulation, ROS production, and antioxidant enzyme activity in vivo. Moreover, miR-21 knockdown protects cell against alkalinity stress-induced injury in vitro. miR-21 directly regulates VEGFB and VEGFC expression by targeting the 3'-untranslated regions (UTRs) of their mRNAs, and inhibition of miR-21 significantly increases the levels of VEGFB and VEGFC expression in vivo. Taken together, our study reveals that miR-21 knockdown plays a protective role in alkalinity tolerance in tilapia.

  12. Alkaline Capacitors Based on Nitride Nanoparticles

    Science.gov (United States)

    Aldissi, Matt

    2003-01-01

    High-energy-density alkaline electrochemical capacitors based on electrodes made of transition-metal nitride nanoparticles are undergoing development. Transition- metal nitrides (in particular, Fe3N and TiN) offer a desirable combination of high electrical conductivity and electrochemical stability in aqueous alkaline electrolytes like KOH. The high energy densities of these capacitors are attributable mainly to their high capacitance densities, which, in turn, are attributable mainly to the large specific surface areas of the electrode nanoparticles. Capacitors of this type could be useful as energy-storage components in such diverse equipment as digital communication systems, implanted medical devices, computers, portable consumer electronic devices, and electric vehicles.

  13. Electrochemical behaviour of alkaline copper complexes

    Indian Academy of Sciences (India)

    C L Aravinda; S M Mayanna; V R Muralidharan

    2000-10-01

    A search for non-cyanide plating baths for copper resulted in the development of alkaline copper complex baths containing trisodium citrate [TSC] and triethanolamine [TEA]. Voltammetric studies were carried out on platinum to understand the electrochemical behaviour of these complexes. In TSC solutions, the deposition of copper involves the slow formation of a monovalent species. Adsorption of this species obeys Langmuir isotherm. In TEA solutions the deposition involves the formation of monovalent ions obeying the non-activated Temkin isotherm. Conversion of divalent to monovalent copper is also slow. In TEA and TSC alkaline copper solutions, the predominant species that undergo stepwise reduction contain only TEA ligands

  14. Alkaline nanoparticle coatings improve resin bonding of 10-methacryloyloxydecyldihydrogenphosphate-conditioned zirconia

    Directory of Open Access Journals (Sweden)

    Qian M

    2016-10-01

    Full Text Available Mengke Qian,1 Zhicen Lu,1 Chen Chen,2 Huaiqin Zhang,1 Haifeng Xie1 1Department of Prosthodontics, 2Department of Endodontics, Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People’s Republic of China Abstract: Creating an alkaline environment prior to 10-methacryloyloxydecyldihydrogen­phosphate (MDP conditioning improves the resin bonding of zirconia. The present study evaluated the effects of four alkaline coatings with different water solubilities and pH values on resin bonding of MDP-conditioned zirconia. Two alkaline nanoparticle coatings were studied in particular. Thermodynamics calculations were performed to evaluate the strengths of MDP-tetragonal phase zirconia chemical bonds at different pH values. Zirconia surfaces with and without alkaline coatings were characterized by scanning electron microscope (SEM/energy dispersive spectrometer and Fourier transform infrared spectroscopy; alkaline coatings included NaOH, Ca(OH2, nano-MgO, and nano-Zr(OH4. A shear bond strength (SBS test was performed to evaluate the effects of the four alkaline coatings on bonding; the alkaline coatings were applied to the surfaces prior to conditioning the zirconia with MDP-containing primers. Gibbs free energies of the MDP-tetragonal zirconia crystal model coordination reaction in different pH environments were -583.892 (NaOH, -569.048 [Ca(OH2], -547.393 (MgO, and -530.279 kJ/mol [Zr(OH4]. Thermodynamic calculations indicated that the alkaline coatings improved bonding in the following order: NaOH > Ca(OH2 > MgO > Zr(OH4. Statistical analysis of SBS tests showed a different result. SBSs were significantly different in groups that had different alkaline coatings, but it was not influenced by different primers. All four alkaline coatings increased SBS compared to control groups. Of the four coatings, nano-Zr(OH4 and -MgO showed higher SBS. Therefore, preparing nano-Zr(OH4 or -Mg

  15. 研发特效药械组合产品提高急性化学损伤救治水平%Developing specific drug/device combination products improves the treatment level of the acute chemical injury

    Institute of Scientific and Technical Information of China (English)

    高春生; 赵建; 杨志奎; 钟武

    2016-01-01

    To deal with effectively acute chemical injury events,the service ability of protective medicine against chemical weapons has being widened from dealing with traditional chemical warfare to public chemical accident or chemical terrorist attack. Fo⁃cusing on the important researching and developing of medicine for chemical defense use only,the novel drug/device combination products should be vigorously promoted including the new mechanism,good curative effect and high safety of detoxification drugs such as hydroxycobalamin used in the treatment of known or suspected cyanide poisoning in both adults and the pediatric population ,and the convenient and quick drug delivering technologies such as auto-injectors with a retreat hidden needle and a smart remindful injec⁃tion,which could improve greatly the emergency medical rescue ability of chemical accidents.%为有效应对日益增多的急性化学损伤事件,化学应急医学卫勤职能正由单纯应对经典化学战剂向突发化学事故和化学恐怖袭击的应急医学处置拓展。反映在重要的防化特需药品研发上,应大力推进作用机制新、疗效好、安全性高的解毒/抗毒药物,如疑似氰化物中毒即可服用的抗氰新药羟钴胺,以及更加便捷自如的现场递药技术如针头能自动回撤隐藏、注药时限可智能提示的自动注射针等新型药械产品的研发,从而提高突发化学事件的现场处理与应急救援能力。

  16. Oxidative dissolution of spent nuclear fuel in aqueous alkaline solutions - An alternative to the Purex process?

    Energy Technology Data Exchange (ETDEWEB)

    Runde, Wolfgang; Peper, Shane; Brodnax, Lia; Crooks, William; Zehnder, Ralph; Jarvinen, Gordon

    2004-07-01

    As an alternative to acidic reprocessing of spent nuclear, oxidative dissolution of UO{sub 2} into aqueous alkaline solutions and subsequent separation of fission products is considered. The efficacy of such a method is limited by the kinetics of the UO{sub 2} dissolution and the capacity of alkaline solutions for dissolved U(VI) species. We performed a series of dissolution studies on UO{sub 2} and U{sub 3}O{sub 8} in aqueous alkaline solutions applying various oxidants. Among the oxidative agents commonly used to transform low-valence actinides into their higher oxidation states, H{sub 2}O{sub 2} has proven to be the most effective in basic media. Consequently, we investigated the dissolution of UO{sub 2} and U{sub 3}O{sub 8} in NaOH-H{sub 2}O{sub 2} and Na{sub 2}CO{sub 3}-H{sub 2}O{sub 2} solutions and determined the dissolution kinetics as a function of peroxide and hydroxide (carbonate) concentrations. Methods to remove fission products, e.g., Cs, Sr, Ba and Zr, from alkaline solutions will be evaluated based upon their decontamination factors. We will discuss the feasibility of using chemically oxidizing alkaline solutions as an alternative spent nuclear fuel reprocessing method based on results from experimental quantitative investigations. (authors)

  17. ALKALINE PEROXIDE MECHANICAL PULPING OF NOVEL BRAZILIAN EUCALYPTUS HYBRIDS

    Directory of Open Access Journals (Sweden)

    Marcelo Coelho dos Santos Muguet,

    2012-07-01

    Full Text Available Eucalyptus wood is among the most important biomass resource in the world. Wood mechanical defibration and fibrillation are energy-intensive processes utilized not only to produce pulp for papermaking, but also to produce reinforcement fibers for biocomposites, nanocellulose, or pretreat lignocellulosic material for biofuels production. The structural features of different Eucalyptus hybrids affecting the refining energy consumption and produced fiber furnish properties were evaluated. The defibration and fiber development were performed using an alkaline peroxide mechanical pulping (APMP process, which included chelation followed by an alkaline peroxide treatment prior to wood chip defibration. Despite the similar wood densities and chemical compositions of different Eucalyptus hybrids, there was a clear difference in the extent of defibration and fibrillation among the hybrids. The high energy consumption was related to a high amount of guaiacyl lignin. This observation is of major importance when considering the optimal wood hybrids for mechanical wood defibration and for understanding the fundamental phenomena taking place in chemi-mechanical defibration of wood.

  18. Degradation modes of alkaline fuel cells and their components

    Science.gov (United States)

    Tomantschger, Klaus; Findlay, Robert; Hanson, Michael; Kordesch, Karl; Srinivasan, Supramaniam

    The performance and life-limiting parameters of multilayer polytetrafluoroethylene (PTFE) bonded carbon air cathodes and hydrogen anodes, developed at the Institute for Hydrogen Systems (IHS) for use in low temperature alkaline electrolyte fuel cells (AFC) and batteries, were investigated. Scanning electron microscopy (SEM), X-ray energy spectroscopy (XES), electron spectroscopy for chemical analysis (ESCA), microcalorimetry and intrusion porosimetry techniques in conjunction with electrochemical testing methods were used to characterize electrode components, electrodes and alkaline fuel cells. The lifetime of air cathodes is mainly limited by carbon corrosion and structural degradation, while that of hydrogen anodes is frequently limited by electrocatalyst problems and structural degradation. The PTFE binder was also found to degrade in both the cathodes and the anodes. The internal resistance, which was found to generally increase in AFCs in particular between the cathode and the current collector, can be minimized by the proper choice of materials. Temperature cycling of AFCs may result in mechanical problems; however, these problems can be overcome by using AFC components with compatible thermal expansion coefficients.

  19. Combined alkaline and ultrasonic pretreatment of sludge before aerobic digestion

    Institute of Scientific and Technical Information of China (English)

    JIN Yiying; LI Huan; MAHAR Rasool Bux; WANG Zhiyu; NIE Yongfeng

    2009-01-01

    Alkaline and ultrasonic sludge disintegration can both be used as pretreatments of waste activated sludge (WAS) for improving the subsequent anaerobic or aerobic digestion. The pretreatment has been carried out using different combination of these two methods in this study. The effect was evaluated based on the quantity of soluble chemical oxygen demand (SCOD) in the pretreated sludge as well as the degradation of organic matter in the following aerobic digestion. For WAS samples with combined pretreatment, the released COD was in high level than those with ultrasonic or alkaline treatment. When combined with the same ultrasonic treatment, NaOH treatment resulted in more solubilization of WAS than Ca(OH)2. For combined NaOH and ultrasonic treatments with different sequences, the released COD were in the order: simultaneous treatment > ultrasonic treatment following NaOH treatment > NaOH treatment following ultrasonic treatment. For simultaneous treatment, low NaOH dosage (100 g/kg dry solid), short duration (30 min) of NaOH treatment, and low ultrasonic specific energy (7 500 kJ/kg dry solid) were beneficial for sludge disintegration. Using combined NaOH and ultrasonic pretreatment with the optimium parameters, the degradation efficiency of organic matter was increased from 38.0% to 50.7%, which is much higher than with ultrasonic (42.5%) or with NaOH pretreatment (43.5%) in the subsequent aerobic digestion at the same retention time.

  20. Kinetic aspects of human placental alkaline phosphatase enzyme membrane.

    Science.gov (United States)

    Roig, M G; Serrano, M A; Bello, J F; Cachaza, J M; Kennedy, J F

    1991-01-01

    The crosslinking of alkaline phosphatase of human placenta with human serum albumin has been optimized. During the physico-chemical characterization of this immobilized biocatalyst, special attention was paid to attributes such as the irreversibility of the enzyme support bonding, the stability of the catalytic activity, and the effects of pH and temperature on this activity. Regarding stability, patterns of denaturation are proposed, to account for inactivation curves over time and under storage/operation conditions. These patterns, in some cases, indicate the existence of different populations of immobilized enzyme molecules, with a different degree of sensitivity to denaturation. The activity vs pH profiles are clearly modified by the immobilization process. This is because the pH of the free homogeneous solution, measurable with a pH-meter, differs from the real pH of the immediate microenvironment of the immobilized enzyme molecules due to the effects of proton accumulation in the microenvironment (in the reaction catalysed by alkaline phosphatase, protons are produced), to limitations to the free diffusion of H+ and to the possible partition effects of H+ due to polar interactions with residues or molecules of the enzyme membrane. In the experimental working conditions, the apparent optimum temperatures are centered at 40 degrees C, inactivation (thermal denaturation) occurring above this temperature. In the temperature range 10-40 degrees C, the kinetic control over the overall activity of the immobilized enzyme was observed, causing the Arrhenius profiles to be linear.

  1. Permeability Modification Using a Reactive Alkaline-Soluble Biopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Sandra L. Fox; Xina Xie; Greg Bala

    2004-11-01

    Polymer injection has been used in reservoirs to alleviate contrasting permeability zones to enhance oil recovery (EOR). Polymer technology relies mainly on the use of polyacrylamides cross-linked by a hazardous metal or organic. Contemporary polymer plugging has investigated the stimulation of in-situ microorganisms to produce polymers (Jenneman et. al., 2000) and the use of biocatalysts to trigger gelling (Bailey et. al., 2000). The use of biological polymers are advantageous in that they can block high permeability areas, are environmentally friendly, and have potential to form reversible gels without the use of hazardous cross-linkers. Recent efforts have produced a reactive alkaline-soluble biopolymer from Agrobacterium species ATCC # 31749 that gels upon decreasing the pH of the polymeric solution. Microbial polymers are of interest due to their potential cost savings, compared to conventional use of synthetic chemical polymers. Numerous microorganisms are known to produce extracellular polysaccharides. One microbiological polymer of interest is curdlan, â - (1, 3) glucan, which has demonstrated gelling properties by a reduction in pH. The focus of this study was to determine the impact an alkaline-soluble biopolymer can have on sandstone permeability.

  2. Digestibility Improvement of Sorted Waste with Alkaline Hydrothermai Pretreatment

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; WANG Hongtao; LU Wenjing; ZHAO Yan

    2009-01-01

    The digestibility of sorted municipal solid waste (MSW) is often limited by the high content of structured green waste. The objectives of this study are to investigate the effect of alkaline hydrothermal pretreatment on the anaerobic digestion of sorted waste and to analyze the biogas production of different parts of the waste. The waste was hydrothermally pretreated in a dilute alkali solution. The hydrolysis product was then incubated in a 500 mL saline bottle to determine the biochemical methane potential (BMP) under mesophilic anaerobic conditions. The optimum hydrothermal condition was 170℃ at 4 g NaOH/100 g solid for one hour. The concentration of chemical oxygen demand (COD) was 13 936 mg/L and the methane yield was 164 mL/g volatile solid (VS) for 6 days incubation at the optimum conditions. The biogas production was increased more than 50% over the control, with the methane conversion ratio on a carbon basis enhanced to 30.6%. The organic part of the sorted waste was mainly kitchen garbage and leaves. Model kitchen garbage completely liquified at 130℃ for one hour had a methane yield of 276 mL/g VS. The alkali addition slightly enhanced the hydrolyzation rate and methane yield. The biogas potential of leaves was improved by pre-treatment at above 150℃ under alkaline conditions.

  3. CATALYSED ALKALINE OXIDATION AS A WOOD FRACTIONATION TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Stella Rovio,

    2012-01-01

    Full Text Available Alkaline oxidation (AlkOx is an effective fractionation technique for lignocellulosic raw materials. The efficiency of the AlkOx treatment can further be enhanced by using a catalyst (CatOx. Both CatOx and AlkOx provide a fiber fraction containing readily hydrolysable carbohydrates that can be utilized in biotechnical processes and a liquid fraction containing solubilized lignin and reaction products from various biomass components. The effects of different fractionation conditions on yields and chemical composition of solubilized and insoluble fractions were investigated. Two temperatures and two reaction times were studied with and without a catalyst. The composition and content of carbohydrates in the fiber and liquid fractions were examined. The generation of aliphatic carboxylic acids as oxidation products was also investigated. The catalytically assisted oxidation was more efficient than the alkaline counterpart in dissolution of wood components under a four-hour treatment period resulting in higher dissolution of hemicelluloses. A longer reaction time of 20 hours leveled out the differences between the oxidation processes. Comparison of different bases showed that similar solubilisation of dry matter was obtained with NaOH, KOH, and Na2CO3. Oxidation in Na2CO3 caused higher dissolution of glucomannan and greater acid production. The dissolution of hemicellulose and lignin, and their oxidation to acids was most efficient in the first 4 hours of oxidation.

  4. Synthesis of Zeolites by Alkaline Activation of Fly Ash

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In terms of mineral transformation, and chemical composition of acid-soluble component as a function of reaction time, the effect of alkaline solution on zeolite-like fly ash was studied by employing fly ash and NaOH solution as starting materials. When fly ash and 1€? 0mol/L NaOH solution were processed at 100℃ for 24h with 1:10 W/S rat io in a relatively closed system, powder XRD patterns of resulting pro ducts indicated the formation of various zeolites. Zeolite P crystalli zed early at low alkaline concentration, which was replaced then by ze olites X and A. At high concentration, hydroxy sodalite was the only n ew phase. Quartz, in fly ash and NaOH solution system, gradually disso lved, and mullite, however, remained stable. It was concluded that, wi th Al/Si and Na/Si finally reaching equilibrium in molar ratio, compos ition of starting mixtures affects the crystallization of zeolite from fly ash.

  5. The alkaline diet: is there evidence that an alkaline pH diet benefits health?

    Science.gov (United States)

    Schwalfenberg, Gerry K

    2012-01-01

    This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine.

  6. The Alkaline Diet: Is There Evidence That an Alkaline pH Diet Benefits Health?

    Directory of Open Access Journals (Sweden)

    Gerry K. Schwalfenberg

    2012-01-01

    Full Text Available This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine.

  7. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

    2005-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability

  8. Biomass production on saline-alkaline soils

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, A.N.

    1985-01-01

    In a trial of twelve tree species (both nitrogen fixing and non-fixing) for fuel plantations on saline-alkaline soil derived from Gangetic alluvium silty clay, Leucaena leucocephala failed completely after showing rapid growth for six months. Results for other species at age two showed that Prosopis juliflora had the best productivity.

  9. Use Alkalinity Monitoring to Optimize Bioreactor Performance.

    Science.gov (United States)

    Jones, Christopher S; Kult, Keegan J

    2016-05-01

    In recent years, the agricultural community has reduced flow of nitrogen from farmed landscapes to stream networks through the use of woodchip denitrification bioreactors. Although deployment of this practice is becoming more common to treat high-nitrate water from agricultural drainage pipes, information about bioreactor management strategies is sparse. This study focuses on the use of water monitoring, and especially the use of alkalinity monitoring, in five Iowa woodchip bioreactors to provide insights into and to help manage bioreactor chemistry in ways that will produce desirable outcomes. Results reported here for the five bioreactors show average annual nitrate load reductions between 50 and 80%, which is acceptable according to established practice standards. Alkalinity data, however, imply that nitrous oxide formation may have regularly occurred in at least three of the bioreactors that are considered to be closed systems. Nitrous oxide measurements of influent and effluent water provide evidence that alkalinity may be an important indicator of bioreactor performance. Bioreactor chemistry can be managed by manipulation of water throughput in ways that produce adequate nitrate removal while preventing undesirable side effects. We conclude that (i) water should be retained for longer periods of time in bioreactors where nitrous oxide formation is indicated, (ii) measuring only nitrate and sulfate concentrations is insufficient for proper bioreactor operation, and (iii) alkalinity monitoring should be implemented into protocols for bioreactor management.

  10. Alkaline electrochemical cells and method of making

    Science.gov (United States)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1970-01-01

    Equilibrated cellulose ether membranes of increased electrolytic conductivity for use as separators in concentrated alkaline electrochemical cells are investigated. The method of making such membranes by equilibration to the degree desired in an aqueous alkali solution mantained at a temperature below about 10 C is described.

  11. Hand chemical burns.

    Science.gov (United States)

    Robinson, Elliot P; Chhabra, A Bobby

    2015-03-01

    There is a vast and ever-expanding variety of potentially harmful chemicals in the military, industrial, and domestic landscape. Chemical burns make up a small proportion of all skin burns, yet they can cause substantial morbidity and mortality. Additionally, the hand and upper extremity are the most frequently involved parts of the body in chemical burns, and therefore these injuries may lead to severe temporary or permanent loss of function. Despite this fact, discussion of the care of these injuries is sparse in the hand surgery literature. Although most chemical burns require only first response and wound care, some require the attention of a specialist for surgical debridement and, occasionally, skin coverage and reconstruction. Exposure to certain chemicals carries the risk of substantial systemic toxicity and even mortality. Understanding the difference between thermal and chemical burns, as well as special considerations for specific compounds, will improve patient treatment outcomes.

  12. Foam Based Gas Diffusion Electrodes for Reversible Alkaline Electrolysis Cells

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2014-01-01

    Alkaline electrolysis cells operated at 250 °C and 40 bar have shown to be able to convert electrical energy into chemical energy in the form of hydrogen at very high efficiencies and power densities. Foam based gas diffusion electrodes and a liquid immobilized electrolyte allow the operation...... of the newly designed electrolysis cell as a fuel cell, but condensation of steam may lead to blocked pores, thereby inhibiting gas diffusion and decreasing the performance of the cell. In the here presented work we present the application of a hydrophobic, porous, and electro-catalytically active layer...... the electrochemical characteristics of the cell. The thickness of the electrolyte matrix was reduced to 200 µm, thereby achieving a serial resistance and area specific resistance as low as 60 mΩ cm2 and 150 mΩ cm2, respectively, at a temperature of 200 °C and 20 bar pressure. A new production method was developed...

  13. Increasing the Biological Stability Profile of a New Chemical Entity, UPEI-104, and Potential Use as a Neuroprotectant Against Reperfusion-Injury

    Directory of Open Access Journals (Sweden)

    Tarek M. Saleh

    2015-04-01

    Full Text Available Previous work in our laboratory demonstrated the utility of synthetic combinations of two naturally occurring, biologically active compounds. In particular, we combined two known anti-oxidant compounds, lipoic acid and apocynin, covalently linked via an ester bond (named UPEI-100. In an animal model of ischemia-reperfusion injury (tMCAO, UPEI-100 was shown to produce equivalent neuroprotection compared to each parent compound, but at a 100-fold lower dose. However, it was determined that UPEI-100 was undetectable in any tissue samples almost immediately following intravenous injection. Therefore, the present investigation was done to determine if biological stability of UPEI-100 could be improved by replacing the ester bond with a more bio cleavage-resistant bond, an ether bond (named UPEI-104. We then compared the stability of UPEI-104 to the original parent compound UPEI-100 in human plasma as well as liver microsomes. Our results demonstrated that both UPEI-100 and UPEI-104 could be detected in human plasma for over 120 min; however, only UPEI-104 was detectable for an average of 7 min following incubation with human liver microsomes. This increased stability did not affect the biological activity of UPEI-104 as measured using our tMCAO model. Our results suggest that combining compounds using an ether bond can improve stability while maintaining biological activity.

  14. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  15. Improved electrodes and gas impurity investigations on alkaline electrolysers

    DEFF Research Database (Denmark)

    Reissner, R.; Schiller, G.; Knoeri, T.;

    Alkaline water electrolysis for hydrogenproduction is a well-established techniquebut some technological issues regarding thecoupling of alkaline water electrolysis andRenewable Energy Sources (RES) remain tobe improved....

  16. ALKALINE PEROXIDE BLEACHING OF HOT WATER TREATED WHEAT STRAW

    Directory of Open Access Journals (Sweden)

    Suvi Mustajoki

    2010-05-01

    Full Text Available The aim of this study was to evaluate the possibilities for chemical consumption reduction in P-P-Paa-P bleaching (P alkaline peroxide stage, Paa peracetic stage of hot water treated straw and the effect of the wheat straw variability on the process. Papermaking fibre production from wheat straw using such a process could be implemented on a small scale if chemical consumption was low enough to eliminate the need for chemical recovery. The pulp properties obtained with this process are equal to or even superior to the properties of wheat straw soda pulp. The possibility of enhancing the first peroxide stage with oxygen and pressure was studied. The possibility for substitution of sodium hydroxide partially with sodium carbonate was also investigated. The objective was to achieve International Standardization Organization (ISO brightness of 75%, with minimal sodium hydroxide consumption, whilst maintaining the pulp properties. The optimization of the peroxide bleaching is challenging if the final brightness target cannot be reduced. Results indicate that up to 25% of the sodium hydroxide could be substituted with sodium carbonate without losing brightness or affecting pulp properties. Another possibility is a mild alkali treatment between the hot water treatment and the bleaching sequence.

  17. [Leucocyte alkaline phosphatase in normal and pathological pregnancy (author's transl)].

    Science.gov (United States)

    Stark, K H; Zaki, I; Sobolewski, K

    1981-01-01

    The activities of leucocyte alkaline phosphatase were determined in 511 patients with normal and pathological pregnancy. Mean values were compared and the enzyme followed up, and the conclusion was drawn that leucocyte alkaline phosphatase was no safe indicator of foetal condition. No direct relationship were found to exist between leucocyte alkaline phosphatase, total oestrogens, HSAP, HLAP, HPL, and oxytocinase.

  18. Biomaterials in the repair of sports injuries

    Science.gov (United States)

    Ducheyne, Paul; Mauck, Robert L.; Smith, Douglas H.

    2012-08-01

    The optimal stimulation of tissue regeneration in bone, cartilage and spinal cord injuries involves a judicious selection of biomaterials with tailored chemical compositions, micro- and nanostructures, porosities and kinetic release properties for the delivery of relevant biologically active molecules.

  19. Oxidation catalysts on alkaline earth supports

    Energy Technology Data Exchange (ETDEWEB)

    Mohajeri, Nahid

    2017-03-21

    An oxidation catalyst includes a support including particles of an alkaline earth salt, and first particles including a palladium compound on the support. The oxidation catalyst can also include precious metal group (PMG) metal particles in addition to the first particles intermixed together on the support. A gas permeable polymer that provides a continuous phase can completely encapsulate the particles and the support. The oxidation catalyst may be used as a gas sensor, where the first particles are chemochromic particles.

  20. Oat hulls treated with alkaline hydrogen peroxide associated with extrusion as fiber source in cookies

    OpenAIRE

    Galdeano,Melícia Cintia; Grossmann,Maria Victória Eiras

    2006-01-01

    Cookies were prepared with the replacement of 20% of wheat flour by chemically (alkaline hydrogen peroxide) and physically (extrusion) treated oat hulls, with the objective to investigate the possibility of use of this modified material. Cookies elaborated with the untreated hulls were used as control. Cookies were evaluated for their physical (spread ratio, specific volume and color) and sensory characteristics, and no difference was detected (p

  1. Airway Management and Smoke Inhalation Injury in the Burn Patient

    Science.gov (United States)

    2009-10-01

    deficit and alveolar -arterial gradient during resuscitation contribute independently but modestly to the prediction of mortality after burn injury. J Burn...parenchymal injuries (eg, tracheal, bronchial, and alveolar injuries) caused by chemical and particulate constituents of smoke. Unless otherwise...perivascular fuzziness or cuffing, alveolar or intersitital pulmonary edema, consolidation, and atelectasis, have been reported.20–23 In sheep, Park and

  2. Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material.

    Science.gov (United States)

    Subhedar, Preeti B; Gogate, Parag R

    2014-01-01

    Alkaline and ultrasound-assisted alkaline pretreatment under mild operating conditions have been investigated for intensification of delignification. The effect of NaOH concentration, biomass loading, temperature, ultrasonic power and duty cycle on the delignification has been studied. Most favorable conditions for only alkaline pretreatment were alkali concentration of 1.75 N, solid loading of 0.8% (w/v), temperature of 353 K and pretreatment time of 6 h and under these conditions, 40.2% delignification was obtained. In case of ultrasound-assisted alkaline approach, most favorable conditions obtained were alkali concentration of 1N, paper loading of 0.5% (w/v), sonication power of 100 W, duty cycle of 80% and pretreatment time of 70 min and the delignification obtained in ultrasound-assisted alkaline approach under these conditions was 80%. The material samples were characterized by FTIR, SEM, XRD and TGA technique. The lignin was recovered from solution by precipitation method and was characterized by FTIR, GPC and TGA technique.

  3. Comparative performance of enzymatic and combined alkaline-enzymatic pretreatments on methane production from ensiled sorghum forage.

    Science.gov (United States)

    Rollini, Manuela; Sambusiti, Cecilia; Musatti, Alida; Ficara, Elena; Retinò, Isabella; Malpei, Francesca

    2014-12-01

    This study investigated the effect of enzymatic and combined alkaline-enzymatic pretreatments on chemical composition and methane production from ensiled sorghum forage. Four commercial enzymatic preparations were tested and the two yielding the highest sugars release were added to evaluate any hydrolytic effect on both untreated and alkaline pretreated samples. In the combined alkaline-enzymatic pretreatment trials, the highest sugar release was found with Primafast and BGL preparations (added at a final concentration 0.12 and 0.20 mL/g TS, respectively), with a total monomeric content of 12 and 6.5 g/L. Fibre composition analysis confirmed that the combined alkaline-enzymatic pretreatment led to cellulose (up to 32 %) and hemicelluloses (up to 56 %) solubilisation, compared to the enzymatic pretreatment alone. BMP tests were performed on both untreated and pretreated samples, and time courses of methane production were fitted. Both enzymatic and combined alkaline-enzymatic pretreatment led to a methane production increase (304 and 362 mL CH4/g VS), compared to that of untreated sorghum (265 mL CH4/g VS), as  +15 and  +37 %, respectively. Moreover, higher specific methane production rates, compared to that of untreated sorghum (20.31 mL CH4/g VS/d), were obtained by applying the enzymatic and combined alkaline-enzymatic pretreatment (33.94 and 31.65 mL CH4/g VS/d), respectively.

  4. Facial Sports Injuries

    Science.gov (United States)

    ... Find an ENT Doctor Near You Facial Sports Injuries Facial Sports Injuries Patient Health Information News media interested in ... should receive immediate medical attention. Prevention Of Facial Sports Injuries The best way to treat facial sports injuries ...

  5. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  6. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  7. Systematic Phase Behaviour Study and Foam Stability Analysis for Optimal Alkaline/Surfactant/Foam Enhanced Oil Recovery

    NARCIS (Netherlands)

    Hosseini Nasab, S.M.; Zitha, P.L.J.

    2015-01-01

    Alkaline-Surfactant-Foam (ASF) flooding is a recently introduced enhanced oil recovery (EOR) method. This paper presents laboratory study of this ASF to better understand its mechanisms. The focus is on the interaction of ASF chemical agents with oil and in the presence and absence of naphthenic com

  8. The Effects of Alkaline pH on Microleakage of Mineral Trioxide Aggregate and Calcium-Enriched Mixture Apical Plugs

    Directory of Open Access Journals (Sweden)

    Hossein Mirhadi

    2016-03-01

    Full Text Available Statement of the Problem: Alkaline pH can affect the physical and chemical properties and sealing ability of apical plug material. Calcium hydroxide is used in non-vital teeth as an intracanal medication to complete disinfection of root canals. It raises the pH of environment to alkaline value. Purpose: The aim of this in vitro study was to evaluate and compare the effect of alkaline pH on the sealing ability of calcium-enriched mixture (CEM cement and mineral trioxide aggregate (MTA apical plugs. Materials and Method: Seventy single-rooted human maxillary anterior teeth were randomly divided to two experimental groups for Angelus MTA and CEM cement (n=30 and two control groups (n=5. Each group was divided into two subgroups of 15 for neutral and alkaline pH, and 1 negative and 1 positive control groups of 5. The root canals were cleaned and shaped by using ProTaper rotary system (Dentsply Maillefer; Ballaigues, Switzerland and the terminal 3mm of the roots were resected. Then, MTA and CEM cement were condensed in apical region with 3mm thickness. The samples were exposed to two environments with different pH values of 13 and 7.4. The leakage was assessed by using the fluid filtration technique at 1, 7, 14, 30 days intervals. Data were analyzed by the repeated measures MANOVA. Results: There was no statistically significant difference in the rate of microleakage between neutral and alkaline pH of CEM cement and MTA (p> 0.05. The sealing ability of MTA in an alkaline pH of 13 was significantly less than CEM cement in this pH (p< 0.05. Conclusion: An environment with alkaline pH had no adverse effect on the sealing ability of MTA and CEM cement used as apical plugs. CEM cement had better sealing ability in alkaline pH.

  9. ALKALINE PEROXIDE MECHANICAL PULPING OF FAST GROWTH PAULOWNIA WOOD

    Directory of Open Access Journals (Sweden)

    Ahmad Jahan Latibari,

    2011-11-01

    Full Text Available Alkaline peroxide mechanical pulping of paulownia wood harvested from exotic tree plantations in northern Iran was investigated. The fiber length, width, and cell wall thickness of this wood were measured as 0.82 mm, 40.3 μm, and 7.1 μm, respectively. The chemical composition including cellulose, lignin, and extractives soluble in ethanol-acetone, 1% NaOH, hot and cold water was determined as 49.5%, 25%, 12.1%, 26.9%, 11.4%, and 8.1% respectively. The ash content of this wood was 0.45%. Pre-washed chips were chemically treated at 70°C for 120 minutes with different combinations of three dosages (1.5, 3, and 4.5% of hydrogen peroxide and three dosages (1.5, 3, and 4.5% of sodium hydroxide prior to defibration. Other chemicals including DTPA, sodium silicate, and MgSO4 were constant at 0.5%, 3%, and 0.5%, respectively. The results showed that using a 1.5% hydrogen peroxide and 4.5% sodium hydroxide charge, the brightness of APMP pulp reached 68.7% ISO and higher chemical dosages did not improve the brightness; however, to produce APMP pulp with higher strength, a sodium hydroxide charge of 4.5% was needed. The tensile strength, tear strength, burst strength indices, and bulk density of the APMP pulp produced from 1.5% hydrogen peroxide and 4.5% sodium hydroxide were measured as 15.5Nm/g, 6.54mN.m2/g, 0.56kPa.m2/g, and 3.47cm3/g, respectively. The resulting pulp was bulky and is suitable for use in the middle layer of boxboard to provide the desired stiffness with a lower basis weight.

  10. Alkaline Pretreatment of Sweet Sorghum Bagasse for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Yanni Sudiyani

    2016-08-01

    Full Text Available Lignocellulosic material, which consist mainly of cellulose, hemicelluloses and lignin, are among the most promising renewable feedstocks for the production of energy and chemicals.   The bagasse residue of sweet sorghum can be utilized as raw material for alternative energy such as bioethanol.  Bioethanol production consists of pretreatment, saccharification, fermentation and purification process.  The pretreatment process was of great importance to ethanol yield.  In the present study, alkaline pretreatment was conducted using a steam explosion reactor at 1300C with concentrations of NaOH  6, and 10% (kg/L for 10, and 30 min.  For ethanol production separated hydrolysis and fermentation (SHF and simultaneous saccharification and fermentation (SSF process were conducted with 30 FPU of Ctec2 and Htec2 enzyme and yeast of Saccharomyces cerevisiae.   The results showed that maximum cellulose conversion to total glucose plus xylose were showed greatest with NaOH 10% for 30 min.  The highest yield of ethanol is 96.26% and high concentration of ethanol 66.88 g/L were obtained at SSF condition during 48 h process. Using SSF process could increase yields and concentration of ethanol with less energy process. Article History: Received January 16th 2016; Received in revised form May 25th 2016; Accepted June 28th 2016; Available online How to Cite This Article: Sudiyani, Y., Triwahyuni, E., Muryanto, Burhani, D., Waluyo, J. Sulaswaty, A. and Abimanyu, H. (2016 Alkaline Pretreatment of Sweet Sorghum Bagasse for Bioethanol Production. Int. Journal of Renewable Energy Development, 5(2, 113-118. http://dx.doi.org/10.14710/ijred.5.2.113-118 

  11. Coated magnetic particles in electrochemical systems: Synthesis, modified electrodes, alkaline batteries, and paste electrodes

    Science.gov (United States)

    Unlu, Murat

    Magnetic field effects on electrochemical reactions have been studied and shown to influence kinetics and dynamics. Recently, our group has introduced a novel method to establish magnetic field effects by incorporating inert, magnetic microparticles onto the electrode structure. This modification improved several electrochemical systems including modified electrodes, alkaline batteries, and fuel cells. This dissertation describes the applicability of magnetic microparticles and the understanding of magnetic field effects in modified electrodes, alkaline batteries, and paste electrodes. Magnetic effects are studied on electrodes that are coated with an ion exchange polymer that embeds chemically inert, commercial, magnetic microparticles. The flux (electrolysis current) of redox probe to the magnetically modified system is compared to a similar non-magnetic electrode. Flux enhancements of 60% are achieved at magnetically modified electrode as compared to non-magnetic controls. In addition to modifying electrode surfaces, the incorporation of magnetic microparticles into the electrode material itself establishes a 20% increase in flux. Possible magnetic field effects are evaluated. Study of samarium cobalt modified electrolytic manganese dioxide, EMD electrodes further establish a magnetic effect on alkaline cathode performance. Magnetic modification improves alkaline battery performance in primary and secondary applications. The reaction mechanism is examined through voltammetric methods. This work also includes coating protocols to produce inert magnetic microparticles with high magnetic content. Magnetite powders are encapsulated in a polymer matrix by dispersion polymerization. Composite particles are examined in proton exchange membrane fuel cells to study carbon monoxide tolerance.

  12. Birth Injury

    Science.gov (United States)

    ... Commentary Recent News Scientists Working on Solar-Powered Prosthetic Limbs Exercise a Great Prescription to Help Older Hearts Bavencio Approved for Rare Skin Cancer Older Mothers May Raise Better-Behaved Kids, Study ... lying in an abnormal position in the uterus before birth. Overall, the rate of birth injuries is much lower now than in previous decades because of improved ...

  13. Sources of alkalinity and acidity along an acid mine drainage remediated stream in SE Ohio: Hewett Fork

    Science.gov (United States)

    Schleich, K. L.; Lopez, D. A.; Bowman, J. R.; Kruse, N. A.; Mackey, A. L.; VanDervort, D.; Korenowsky, R.

    2013-12-01

    In the remediation of acid mine drainage impacted streams, it is important to locate and quantify the sources of acidity and alkalinity inputs. These parameters affect the long-term recovery of the stream habitat. Previous studies have focused on treating the remediation of AMD as point source pollution, targeting the main acid seep for remediation. However, in the interest of biological and chemical recovery, it is important to understand how sources of alkalinity and acidity, throughout the stream, affect water and sediment quality. The Hewett Fork watershed in Southeastern Ohio is impacted by AMD from the AS-14 mine complex in Carbondale, Ohio. In attempts to remediate the stream, the water is being treated with a continuous alkaline input from a calcium oxide doser. While the section of watershed furthest downstream from the doser is showing signs of recovery, the water chemistry and aquatic life near the doser are still impacted. The objective of this study is to examine and model the chemistry of the tributaries of Hewett Fork to see how they contribute to the alkalinity and acidity budgets of the main stem of the stream. By examining the inputs of tributaries into the main stem, this project aims to understand processes occurring during remediation throughout the entire stream. Discharge was measured during a dry period in October, 2012 and at a high flow in May, 2013. Field parameters such as pH, TDS, DO, alkalinity and acidity were also determined. Low flow data collected during fall sampling shows variable flow along the stream path, the stream gains water from ground water at some points while it loses water at others, potentially due to variable elevation of the water table. Flow data collected during spring sampling shows that Hewett Fork is a gaining stream during that period with inputs from groundwater contributing to increasing flow downstream. When using this data to calculate the net alkalinity load along the stream, there are areas with alkaline

  14. Mechanism of Methanol Formation during Alkaline Pulping of Non-wood Fiber Materials Part I The relationship between the quantity of methanol and chemical composition%非木材原料碱法蒸煮甲醇产生机理的研究 第一部分甲醇发生量与化学成分的关系

    Institute of Scientific and Technical Information of China (English)

    文0秋娟; 刘海学; 李丹

    2012-01-01

    Methanol is the main alcohol of air pollutants generated in the alkaline pulping process. The relationship between the quantity of methanol generated in alkaline processes and lignin and pentosan content of several commonly used non-wood raw materials, as well as the course of methanol formation during sulfate pulping of bamboo, were studied. The results showed that the quantity of generated methanol varied greatly according to the species of raw material. During bamboo kraft pulping process, the amount of methanol increased with the increase of the dissolution of lignin and pentosan.%甲醇为碱法蒸煮过程中产生的主要醇类大气污染物。本文主要研究了几种常用的非木材原料碱法蒸煮甲醇的发生量与木素和聚戊糖含量的关系,并研究了竹材硫酸盐法蒸煮甲醇产生的历程。实验得出,原料种类不同,其甲醇发生量相差很大。刺竹硫酸盐法蒸煮过程中,甲醇发生量随着木索和聚戊糖溶出量的增大而升高。

  15. Characterization of Laboratory Prepared Concrete Pastes Exposed to High Alkaline and High Sodium Salt Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-06-30

    The objective of this study was to identify potential chemical degradation mechanisms for the Saltstone Disposal Unit (SDU) concretes, which over the performance life of the structures may be exposed to highly alkaline sodium salt solutions containing sulfate, hydroxide, and other potentially corrosive chemicals in salt solution and saltstone flush water, drain water, leachate and / or pore solution. The samples analyzed in this study were cement pastes prepared in the SIMCO Technologies, Inc. concrete laboratory. They were based on the paste fractions of the concretes used to construct the Saltstone Disposal Units (SDUs). SDU 1 and 4 concrete pastes were represented by the PV1 test specimens. The paste in the SDU 2, 3, 5, and 6 concrete was represented by the PV2 test specimens. SIMCO Technologies, Inc. selected the chemicals and proportions in the aggressive solutions to approximate proportions in the saltstone pore solution [2, 3, 5, and 6]. These test specimens were cured for 56 days in curing chamber before being immersed in aggressive solutions. After exposure, the samples were frozen to prevent additional chemical transport and reaction. Selected archived (retrieved from the freezer) samples were sent to the Savannah River National Laboratory (SRNL) for additional characterization using x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray (EDX) spectroscopy. Characterization results are summarized in this report. In addition, a correlation between the oxide composition of the pastes and their chemical durability in the alkaline salt solutions is provided.

  16. Non-cellulosic heteropolysaccharides from sugarcane bagasse - sequential extraction with pressurized hot water and alkaline peroxide at different temperatures.

    Science.gov (United States)

    Banerjee, Protibha Nath; Pranovich, Andrey; Dax, Daniel; Willför, Stefan

    2014-03-01

    The xylan-rich hemicellulose components of sugarcane bagasse were sequentially extracted with pressurized hot-water extraction (PHWE) and alkaline peroxide. The hemicelluloses were found to contain mainly arabinoxylans with varying substitutions confirmed by different chemical and spectroscopic methods. The arabinoxylans obtained from PHWE were found to be more branched compared to those obtained after alkaline extraction. Sequential extraction could be useful for the isolation of hemicelluloses with different degree of branching, molar mass, and functional groups from sugarcane bagasse, which can be of high potential use for various industrial applications.

  17. Low serum alkaline phosphatase activity in Wilson's disease.

    Science.gov (United States)

    Shaver, W A; Bhatt, H; Combes, B

    1986-01-01

    Low values for serum alkaline phosphatase activity were observed early in the course of two patients with Wilson's disease presenting with the combination of severe liver disease and Coombs' negative acute hemolytic anemia. A review of other cases of Wilson's disease revealed that 11 of 12 patients presenting with hemolytic anemia had values for serum alkaline phosphatase less than their respective sex- and age-adjusted mean values; in eight, serum alkaline phosphatase activity was less than the lower value for the normal range of the test. Low values for serum alkaline phosphatase were much less common in Wilson's disease patients with more chronic forms of presentation. Copper added in high concentration to serum in vitro did not have an important effect on serum alkaline phosphatase activity. The mechanism responsible for the decrease in serum alkaline phosphatase activity in patients is uncertain.

  18. Overuse Injury: How to Prevent Training Injuries

    Science.gov (United States)

    ... http://www.niams.nih.gov/Health_Info/Sports_Injuries/sports_injuries_ff.asp. Accessed Dec. 21, 2015. Tips for ... cfm?topic=A00132. Accessed Dec. 21, 2015. Overuse injury. The American Orthopaedic Society for Sports Medicine. http://www.stopsportsinjuries.org/overuse-injury.aspx. ...

  19. 2nd Generation alkaline electrolysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yde, L. [Aarhus Univ. Business and Social Science - Centre for Energy Technologies (CET), Aarhus (Denmark); Kjartansdottir, C.K. [Technical Univ. of Denmark. DTU Mechanical Engineering, Kgs. Lyngby (Denmark); Allebrod, F. [Technical Univ. of Denmark. DTU Energy Conversion, DTU Risoe Campus, Roskilde (Denmark)] [and others

    2013-03-15

    The overall purpose of this project has been to contribute to this load management by developing a 2{sup nd} generation of alkaline electrolysis system characterized by being compact, reliable, inexpensive and energy efficient. The specific targets for the project have been to: 1) Increase cell efficiency to more than 88% (according to the higher heating value (HHV)) at a current density of 200 mA /cm{sup 2}; 2) Increase operation temperature to more than 100 degree Celsius to make the cooling energy more valuable; 3) Obtain an operation pressure more than 30 bar hereby minimizing the need for further compression of hydrogen for storage; 4) Improve stack architecture decreasing the price of the stack with at least 50%; 5) Develop a modular design making it easy to customize plants in the size from 20 to 200 kW; 6) Demonstrating a 20 kW 2{sup nd} generation stack in H2College at the campus of Arhus University in Herning. The project has included research and development on three different technology tracks of electrodes; an electrochemical plating, an atmospheric plasma spray (APS) and finally a high temperature and pressure (HTP) track with operating temperature around 250 deg. C and pressure around 40 bar. The results show that all three electrode tracks have reached high energy efficiencies. In the electrochemical plating track a stack efficiency of 86.5% at a current density of 177mA/cm{sup 2} and a temperature of 74.4 deg. C has been shown. The APS track showed cell efficiencies of 97%, however, coatings for the anode side still need to be developed. The HTP cell has reached 100 % electric efficiency operating at 1.5 V (the thermoneutral voltage) with a current density of 1. 1 A/cm{sup 2}. This track only tested small cells in an externally heated laboratory set-up, and thus the thermal loss to surroundings cannot be given. The goal set for the 2{sup nd} generation electrolyser system, has been to generate 30 bar pressure in the cell stack. An obstacle to be

  20. High-Strength / High Alkaline Resistant Fe-Phosphate Glass Fibers as Concrete Reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Mariano Velez

    2008-03-31

    Calcium-iron-phosphate glasses were developed whose chemical durabilities in alkaline solutions (pH 13) were comparable or superior to those of commercial alkaline-resistant (AR) silica-based glasses. However, the tensile strength of Ca-Fe-phosphate fibers, after being exposed to alkaline environments, including wet Portland cement pastes, is lower than that of current AR silicate fibers. Another series of Ca-Fe-phosphate glasses were developed with excellent chemical durability in strong acidic solutions (H2SO4, HF), indicating potential applications where silica-based fibers degrade very quickly, including E-glass. The new Ca-Fe-phosphate glasses can be melted and processed 300 to 500°C lower than silica-based glasses. This offers the possibility of manufacturing glass fibers with lower energy costs by 40-60% and the potential to reduce manufacturing waste and lower gas emissions. It was found that Ca-Fe-phosphate melts can be continuously pulled into fibers depending on the slope of the viscosity-temperature curve and with viscosity ~100 poise, using multi-hole Pt/Rh bushings.

  1. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ji-Lu, E-mail: triace@163.com; Zhu, Ming-Qiang; Wu, Hai-tang

    2015-09-15

    Highlights: • Swine carcasses can be converted to bio-oil by alkaline hydrothermal liquefaction. • It seems that the use of the bio-oil for heat or CHP is technically suitable. • Some valuable chemicals were found in the bio-oils. • The bio-oil and the solid residue constituted an energy efficiency of 93.63% for the feedstock. • The solid residue can be used as a soil amendment, to sequester C and for preparing activated carbon. - Abstract: It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, the effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2 wt% bio-oil, having a high heating value of 32.35 MJ/kg and a viscosity of 305cp, and 22 wt% solid residue were realized at a liquefaction temperature of 250 °C, a reaction time of 60 min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels.

  2. Effect of matrine hydrochloride on liver injury

    Institute of Scientific and Technical Information of China (English)

    CHEN Li-bo; XU Feng; MA Wen-hui

    2008-01-01

    Objective Searching the function that the Injection of the matrine hydrochloride prevents and cures acute chemical liver injury of mice、 immunity liver injury of mice and chronic liver injury of rats. Methods Acute hepatic injury models of mice induced by Chemical poison carbon tetrachloride (CCl4), thioacetamide(TAA), D-galactosamine(D-GalN), immunity hepatic injury model of mice induced by BCG and fat polysaccharide (LPS), chronic liver injury model of rats induced by CCI, were introduced in the experiment. The serum ALT and AST were measured in acute hepatic injury experiments. Serum ALT, AST, AKP, ALB, TP, BiL-T, ereatinine, triglyceride, sialie acid, larninin, hyaluronic acid, type Ⅲ proeollagen and type Ⅳ collagen, hepatic hydroxyproline (HyP) of rats in chronic liver injury animals were determined after Injection of the matrine hydrochloride. Results The Injection of the matrine hydrochloride reduced serum ALT and AST level of acute chemical liver injury of mice induced by CCl4, TAA and D-GaIN. The index of the liver and the spleen of immunity liver injury of mice induced by BCG and LPS were decreased after the injection of matrine hydrochloride treatment. Compared with the model group, the injection may obviously inhibited serum ALT, AST, TP, AKP, TRI, BiL-T, creatinine, triglyceride, sialic acid, laminin , hyaluronic acid , type Ⅲ procollagen and type Ⅳ collagen activity of chronic liver injury of rats induced by CCl4, elevated ALB、A/G, reduced the liver HyP, decreased the index of the liver and the spleen. The liver visual observation, the pathology inspection and the HAI grading result showed the injection may reduce the inflammatory activity in liver tissue, restrain the liver cell damage, reduce the pseudolobuli formation. Conclusions The Injection of matrine hydrochloride had the protective function to acute chemical hepatic injury of mice induced by CCl4、TAA、D-GalN、immunity hepatic injury of mice induced by the BCG and LPS and

  3. Alkaline xylan extraction of bleached kraft pulp-effect of extraction time on pulp chemical composition and physical properties%漂白硫酸盐浆的碱性木聚糖抽提对纸浆化学组分和物理性质的影响

    Institute of Scientific and Technical Information of China (English)

    林庆旭; 夏新兴

    2013-01-01

    In this pilot scale study, we examined the effects of alkaline extraction time on xylan removal, pulp and paper properties, and the consequences that need to be addressed when scaling up and intensifying the process. Alkaline extraction of bleached birch kraft pulp yields two fractions:pure polymeric xylan and pulp with reduced xylan content. Our results indicate that a similar amount of xylan can be extracted in 5 min as the amount obtained in 60 min. We found, however, that the shorter extraction time is beneficial to maintain the fiber and paper properties at an acceptable level. This pilot trial demonstrated that the washing procedure of the alkali-treated fibers must be selected with care to avoid causing mechanical damage to fibers and to avoid the loss of fines.%  研究了扩大和强化过程时碱抽提时间对木聚糖去除、纸浆和纸张性能及结果的影响。漂白桦木硫酸盐浆的碱抽提产生了两部分产物:纯木聚糖和木聚糖含量降低的纸浆。研究结果表明:抽提5m in得到的木聚糖量与抽提60m in得到的木聚糖量是相近的;在合理的范围内,缩短提取时间有利于保持纤维和纸张的性能;碱处理纤维的洗涤必须小心进行,以避免造成对纤维的机械损伤,以及细小纤维的流失。

  4. Transport phenomena in alkaline direct ethanol fuel cells for sustainable energy production

    Science.gov (United States)

    An, L.; Zhao, T. S.

    2017-02-01

    Alkaline direct ethanol fuel cells (DEFC), which convert the chemical energy stored in ethanol directly into electricity, are one of the most promising energy-conversion devices for portable, mobile and stationary power applications, primarily because this type of fuel cell runs on a carbon-neutral, sustainable fuel and the electrocatalytic and membrane materials that constitute the cell are relatively inexpensive. As a result, the alkaline DEFC technology has undergone a rapid progress over the last decade. This article provides a comprehensive review of transport phenomena of various species in this fuel cell system. The past investigations into how the design and structural parameters of membrane electrode assemblies and the operating parameters affect the fuel cell performance are discussed. In addition, future perspectives and challenges with regard to transport phenomena in this fuel cell system are also highlighted.

  5. Facile synthesis of water-soluble carbon nano-onions under alkaline conditions

    Directory of Open Access Journals (Sweden)

    Gaber Hashem Gaber Ahmed

    2016-05-01

    Full Text Available Carbonization of tomatoes at 240 °C using 30% (w/v NaOH as catalyst produced carbon onions (C-onions, while solely carbon dots (C-dots were obtained at the same temperature in the absence of the catalyst. Other natural materials, such as carrots and tree leaves (acer saccharum, under the same temperature and alkaline conditions did not produce carbon onions. XRD, FTIR, HRTEM, UV–vis spectroscopy, and photoluminescence analyses were performed to characterize the as-synthesized carbon nanomaterials. Preliminary tests demonstrate a capability of the versatile materials for chemical sensing of metal ions. The high content of lycopene in tomatoes may explain the formation of C-onions in alkaline media and a possible formation mechanism for such structures was outlined.

  6. Facile synthesis of water-soluble carbon nano-onions under alkaline conditions.

    Science.gov (United States)

    Ahmed, Gaber Hashem Gaber; Laíño, Rosana Badía; Calzón, Josefa Angela García; García, Marta Elena Díaz

    2016-01-01

    Carbonization of tomatoes at 240 °C using 30% (w/v) NaOH as catalyst produced carbon onions (C-onions), while solely carbon dots (C-dots) were obtained at the same temperature in the absence of the catalyst. Other natural materials, such as carrots and tree leaves (acer saccharum), under the same temperature and alkaline conditions did not produce carbon onions. XRD, FTIR, HRTEM, UV-vis spectroscopy, and photoluminescence analyses were performed to characterize the as-synthesized carbon nanomaterials. Preliminary tests demonstrate a capability of the versatile materials for chemical sensing of metal ions. The high content of lycopene in tomatoes may explain the formation of C-onions in alkaline media and a possible formation mechanism for such structures was outlined.

  7. Development of alkaline/surfactant/polymer (ASP flooding technology for recovery of Karazhanbas oil

    Directory of Open Access Journals (Sweden)

    Birzhan Zhappasbaev

    2016-03-01

    Full Text Available The tertiary oil recovery methods like alkaline, surfactant and polymer (ASP flooding are very perspective in order to achieve the synergetic effect out of the different impacts which are caused by these chemicals, which affect oil and water filtration in the reservoir and increase oil recovery. In this communication, we consider the applicability of hydrophobically modified polyampholyte – poly(hexadecylaminocrotonatebetaine (PHDACB as ASP flooding agent for recovery of oil from Karazhanbas oilfield. As “polysoap”, the aqueous solution of PHDACB dissolved in aqueous KOH was used. This system combines the advantages of alkaline, surfactant and polymer and exhibits the synergistic effect. The laboratory results showed that the ASP flooding considerably increases the oil recovery in addition to water flooding. In perspective, the ASP flooding may substitute the steam injection and other thermal enhanced oil recovery (EOR technologies.

  8. Overestimation of organic phosphorus in wetland soils by alkaline extraction and molybdate colorimetry.

    Science.gov (United States)

    Turner, Benjamin L; Newman, Susan; Reddy, K Ramesh

    2006-05-15

    Accurate information on the chemical nature of soil phosphorus is essential for understanding its bioavailability and fate in wetland ecosystems. Solution phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy was used to assess the conventional colorimetric procedure for phosphorus speciation in alkaline extracts of organic soils from the Florida Everglades. Molybdate colorimetry markedly overestimated organic phosphorus by between 30 and 54% compared to NMR spectroscopy. This was due in large part to the association of inorganic phosphate with organic matter, although the error was exacerbated in some samples by the presence of pyrophosphate, an inorganic polyphosphate that is not detected by colorimetry. The results have important implications for our understanding of phosphorus biogeochemistry in wetlands and suggest that alkaline extraction and solution 31p NMR spectroscopy is the only accurate method for quantifying organic phosphorus in wetland soils.

  9. Characterization of rice starch and protein obtained by a fast alkaline extraction method.

    Science.gov (United States)

    Souza, Daiana de; Sbardelotto, Arthur Francisco; Ziegler, Denize Righetto; Marczak, Ligia Damasceno Ferreira; Tessaro, Isabel Cristina

    2016-01-15

    This study evaluated the characteristics of rice starch and protein obtained by a fast alkaline extraction method on rice flour (RF) derived from broken rice. The extraction was conducted using 0.18% NaOH at 30°C for 30min followed by centrifugation to separate the starch rich and the protein rich fractions. This fast extraction method allowed to obtain an isoelectric precipitation protein concentrate (IPPC) with 79% protein and a starchy product with low protein content. The amino acid content of IPPC was practically unchanged compared to the protein in RF. The proteins of the IPPC underwent denaturation during extraction and some of the starch suffered the cold gelatinization phenomenon, due to the alkaline treatment. With some modifications, the fast method can be interesting in a technological point of view as it enables process cost reduction and useful ingredients obtention to the food and chemical industries.

  10. Comparative study of low-energy ultrasonic and alkaline treatment on biosludge from secondary industrial wastewater treatment.

    Science.gov (United States)

    Li, Dongzhe; Tan, Youming; Zhou, Yan; Pathak, Santosh; Sendjaja, Antonius Yudi; Abdul Majid, Maszenan; Chowdhury, Prannoy; Ng, Wun Jern

    2015-01-01

    In this study, low-energy ultrasonic (3 and 6 kJ/g volatile solids of feed biomass (FB) which was lower than the heat value of the FB), alkaline, and ultrasonic-alkaline pretreatments were applied on FB, a biosludge from secondary industrial wastewater treatment. Biochemical methane potential (BMP), particle size distribution, Biomass Stress Index (BSI™), soluble chemical oxygen demand (SCOD), protein, carbohydrate, and size-exclusion chromatography (SEC) fingerprints were used to comparatively study the mechanisms of these pretreatment methods. The results indicated that low-energy ultrasonication and alkali exhibited significantly different impacts on the FB. After ultrasonication with energy input of 6 kJ/g-VS, the average particle size of FB was reduced from 102.6 to 19.4 µm. However, ultrasonication had no obvious effect on microbial cells rupture, solubilization of protein and carbohydrate, and SEC fingerprint. Consequently, low-energy ultrasonication could not enhance methane generation. However, after alkaline pretreatment with dosage of 0.3 g-NaOH/g-VS, SCOD, soluble protein, and soluble carbohydrate concentration of FB increased from 0.66, 0.00, 0.07 to 2.83, 0.83, 0.47 g/L, respectively. At the same time, BSI™ increased from 5.3% to 96.8%, and the SEC fingerprint changed significantly. Consequently, the methane generation in the BMP test increased from 68.9 to 135.0 mL. Ultrasonic-alkaline pretreatment was similar to alkaline pretreatment in terms of methane generation. Based on this study, alkaline pretreatment is recommended over both low-energy ultrasonic and low-energy ultrasonic-alkaline pretreatment to enhance the biodegradability of FB.

  11. Alkaline activated slag cements. Determination of reaction degree

    Directory of Open Access Journals (Sweden)

    Fernández-Jiménez, A.

    2001-03-01

    Full Text Available The aim of the present work was to evaluate the validity of non-calorimetric different methods, used in the determination of reaction degree of alkaline activated slag pastes. The methods used were: (a chemical separation by methanol-salicylic acid; (b determination of the weight loss mass between 100-600°C in TG curves, associated to chemically combined water; (c quantification of the -74 ppm signal in 29Si MAS-NMR spectra. The parameters considered in the process were: nature of the alkaline activator (Waterglass, Na2CO3 and NaOH, activator concentration (4% and 3% Na2O in mass with respect to the slag, curing temperature (25 and 45°C, slag specific surface (460 and 900 m2/kg and time of reaction (from 7 days to 18 months. The results obtained indicate that none of the three methods is definitive but complementary and they provide to follow the reactive evolution of the alkaline activated slag cements. The method based on the quantification of the -74 ppm signal in the 29Si MAS NMR is the most suitable method.

    El objetivo del presente trabajo fue evaluar la validez de diferentes métodos, no calorimétricos, utilizados en la determinación del grado de reacción de pastas de escoria activada alcalinamente. Los métodos utilizados fueron: (a método de separación química por disolución en metanol ácido-salicílico; (b determinación de las pérdidas de masa entre 100-600°C en las curvas de TG, pérdidas asociadas a la cantidad de agua químicamente combinada: (c cuantificación de la señal de -74 ppm de los espectros de 29Si RMN MAS. Las variables consideradas en el proceso fueron: naturaleza del activador alcalino (Waterglass, Na2CO3 y NaOH, concentración del activador (4% y 3% de Na2O en masa respecto a la escoria, temperatura de curado (25 y 45°C, superficie específica de la escoria (460 y 900 m2/kg y

  12. Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil.

    Science.gov (United States)

    Zhang, Guixiang; Guo, Xiaofang; Zhao, Zhihua; He, Qiusheng; Wang, Shuifeng; Zhu, Yuen; Yan, Yulong; Liu, Xitao; Sun, Ke; Zhao, Ye; Qian, Tianwei

    2016-11-01

    A pot experiment was conducted to investigate the effects of biochars on the availability of heavy metals (Cd, Cu, Mn, Ni, Pb, and Zn) to ryegrass in an alkaline contaminated soil. Biochars only slightly decreased or even increased the availability of heavy metals assesses by chemical extractant (a mixture of 0.05 mol L(-1) ethylenediaminetetraacetic acid disodium, 0.01 mol L(-1) CaCl2, and 0.1 mol L(-1) triethanolamine). The significantly positive correlation between most chemical-extractable heavy metals and the ash content in biochars indicated the positive role of ash in this extraction. Biochars significantly reduced the plant uptake of heavy metals, excluding Mn. The absence of a positive correlation between the chemical-extractable heavy metals and the plant uptake counterparts (except for Mn) indicates that chemical extractability is probably not a reliable indicator to predict the phytoavailability of most heavy metals in alkaline soils treated with biochars. The obviously negative correlation between the plant uptake of heavy metals (except for Mn) and the (O + N)/C and H/C indicates that biochars with more polar groups, which were produced at lower temperatures, had higher efficiency for reducing the phytoavailability of heavy metals. The significantly negative correlations between the plant uptake of Mn and ryegrass biomass indicated the "dilution effect" caused by the improvement of biomass. These observations will be helpful for designing biochars as soil amendments to reduce the availability of heavy metals to plants in soils, especially in alkaline soils.

  13. Polyvinyl alcohol membranes as alkaline battery separators

    Science.gov (United States)

    Sheibley, D. W.; Gonzalez-Sanabria, O.; Manzo, M. A.

    1982-01-01

    Polyvinly alcohol (PVA) cross-linked with aldehyde reagents yields membranes that demonstrate properties that make them suitable for use as alkaline battery separators. Film properties can be controlled by the choice of cross-linker, cross-link density and the method of cross-linking. Three methods of cross-linking and their effects on film properties are discussed. Film properties can also be modified by using a copolymer of vinyl alcohol and acrylic acid as the base for the separator and cross-linking it similarly to the PVA. Fillers can be incorporated into the films to further modify film properties. Results of separator screening tests and cell tests for several variations of PBA films are discussed.

  14. Hydrogen production by alkaline water electrolysis

    Directory of Open Access Journals (Sweden)

    Diogo M. F. Santos

    2013-01-01

    Full Text Available Water electrolysis is one of the simplest methods used for hydrogen production. It has the advantage of being able to produce hydrogen using only renewable energy. To expand the use of water electrolysis, it is mandatory to reduce energy consumption, cost, and maintenance of current electrolyzers, and, on the other hand, to increase their efficiency, durability, and safety. In this study, modern technologies for hydrogen production by water electrolysis have been investigated. In this article, the electrochemical fundamentals of alkaline water electrolysis are explained and the main process constraints (e.g., electrical, reaction, and transport are analyzed. The historical background of water electrolysis is described, different technologies are compared, and main research needs for the development of water electrolysis technologies are discussed.

  15. Advanced-capability alkaline fuel cell powerplant

    Science.gov (United States)

    Deronck, Henry J.

    The alkaline fuel cell powerplant utilized in the Space Shuttle Orbiter has established an excellent performance and reliability record over the past decade. Recent AFC technology programs have demonstrated significant advances in cell durability and power density. These capabilities provide the basis for substantial improvement of the Orbiter powerplant, enabling new mission applications as well as enhancing performance in the Orbiter. Improved durability would extend the powerplant's time between overhaul fivefold, and permit longer-duration missions. The powerplant would also be a strong candidate for lunar/planetary surface power systems. Higher power capability would enable replacement of the Orbiter's auxiliary power units with electric motors, and benefits mass-critical applications such as the National AeroSpace Plane.

  16. High Temperature and Pressure Alkaline Electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank

    and oxygen with a new type of alkaline electrolysis cell at high temperatures and pressures. To perform measurements under high pressure and at elevated temperatures it was necessary to build a measurement system around an autoclave which could stand high temperatures up to 250 °C and pressures up to 200 bar...... as well as extremely caustic environments. Based on a literature study to identify resistant materials for these conditions, Inconel 600 was selected among the metals which are available for autoclave construction. An initial single atmosphere high temperature and pressure measurement setup was build...... comprising this autoclave. A second high temperature and pressure measurement setup was build based on experiences from the first setup in order to perform automatized measurements. The conductivity of aqueous KOH at elevated temperatures and high concentrations was investigated using the van der Pauw method...

  17. RES Hydrogen: efficient pressurised alkaline electrolysers

    DEFF Research Database (Denmark)

    Bowen, Jacob R.; Bentzen, Janet Jonna; Jørgensen, Peter Stanley;

    including BoP. Investigation of cathodes revealed highly heterogeneous microstructures and 3D microstructure quantification methods were developed. Nanometre scale -Ni(OH)2 formation was identified on tested cathode surfaces and is considered a potential degradation mechanism that is not presently well......The RESelyser project addresses issues associated with coupling alkaline electrolysis to renewable energy sources such as electrode stability and gas purity by implementing improved electrodes and a new separator membrane concept. The project aims to improve performance, operation pressure...... and reduce system cost. The project supports DTU Energy's activities on electrodes within the larger FCH-JU project. The overall project demonstrated: improved electrode efficiency also during cyclic operation, safe gas purity at a system pressure of 30 bar, 10 kW stack operation and estimated system costs...

  18. Mechanisms of Cell Injury with Hepatotoxic Chemicals

    Science.gov (United States)

    1985-05-01

    protective effect of mercaptopropionyl glycine, Biochem. Pharmacol., 26:31-35. Lau, S. S., G. D. Abrams , and V. G. Zannoni (1979), Severity of hepatic...Hepatic microsomal epoxida- tion of bromobenzene to phenols and its toxicological implica- tion, Tox. Appl. Pharmacol., 50:309-318. Lau, S. S., G. D. Abrams ... Floyd , P. R. McCay, E. r,. Janzen, and E. P. Davis (1978), Spin-trapping of the trichloromethyl radical produced during NADPH oxidation in the presence

  19. Metastable zinc–nickel alloys deposited from an alkaline electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Magagnin, Luca; Nobili, Luca, E-mail: luca.nobili@polimi.it; Cavallotti, Pietro Luigi

    2014-12-05

    Highlights: • Zn–Ni coatings with high corrosion resistance were prepared by electrodeposition. • The electrodeposited γ alloy is found to be different from the equilibrium γ phase. • A random atomic distribution is proposed for the electrodeposited alloy. • The calculated free energy function can explain the phase composition of Zn–Ni coatings. - Abstract: Zinc alloy offers superior sacrificial protection to steel as the alloy dissolves more slowly than pure zinc. The degree of protection and the rate of dissolution depend on the alloying metal and its composition. In this work, the physico-chemical characterization of zinc–nickel electrodeposits obtained from an alkaline bath is carried out and a description of the structural and thermodynamic properties of these alloys is proposed. Contrary to the common acceptance, XRD spectra and DSC thermal analysis show that the electrodeposited γ alloy has to be regarded as a metastable phase, whose atomic arrangement is different from that of the equilibrium γ intermetallic compound. A model for atomic distribution in the electrodeposited alloy is proposed. The Gibbs free-energy function for the electrodeposited phase has been evaluated and the metastable boundaries of the single-phase and two-phase fields have been calculated. Reasonable agreement is found with experimental values reported in the literature for Zn–Ni coatings with different composition.

  20. Space-time variability of alkalinity in the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    G. Cossarini

    2014-09-01

    Full Text Available The paper provides a basin assessment of the spatial distribution of ocean alkalinity in the Mediterranean Sea. The assessment is made using a 3-D transport-biogeochemical-carbonate model to integrate the available experimental findings, which also constrains model output. The results indicate that the Mediterranean Sea shows alkalinity values that are much higher than those observed in the Atlantic Ocean on a basin-wide scale. A marked west-to-east surface gradient of alkalinity is reproduced as a response to the terrestrial discharges, the mixing effect with the Atlantic water entering from the Gibraltar Strait and the Black Sea water from Dardanelles, and the surface flux of evaporation minus precipitation. Dense water production in marginal seas (Adriatic and Aegean Seas, where alkaline inputs are relevant, and the Mediterranean thermohaline circulation sustains the west-to-east gradient along the entire water column. In the surface layers, alkalinity has a relevant seasonal cycle (up to 40 μmol kg−1 that is driven both by physical and biological processes. A comparison of alkalinity vs. salinity indicates that different regions present different relationships. In regions of freshwater influence, the two measures are negatively correlated due to riverine alkalinity input, whereas they are positively correlated in open seas. Alkalinity always is much higher than in the Atlantic waters, which might indicate a higher than usual buffering capacity towards ocean acidification, even at high concentrations of dissolved inorganic carbon.

  1. Brain injury - discharge

    Science.gov (United States)

    ... and caregivers. Biausa.org. www.biausa.org/brain-injury-family-caregivers.htm#Manage the Home . Accessed December 8, 2016. ... Caregiver Alliance; National Center on Caregiving. Traumatic brain injury. ... www.caregiver.org/traumatic-brain-injury . Accessed ...

  2. Growth Plate Injuries

    Science.gov (United States)

    ... Growth Plate Injuries? Key Words Information Box The Salter-Harris Classification of Growth Plate Injuries What Is ... of Growth Plate Injuries? Since the 1960s, the Salter-Harris classification, which divides most growth plate fractures ...

  3. Dealing with Sports Injuries

    Science.gov (United States)

    ... for falling accidents, such as horseback riding and gymnastics. Head injuries include fractures, concussions , contusions (bruises), and ... hockey, or in weightlifting, rowing, golf, figure skating, gymnastics, and dancing. Sex Organ Injuries Injuries to the ...

  4. Traumatic Brain Injury

    Science.gov (United States)

    Traumatic brain injury (TBI) happens when a bump, blow, jolt, or other head injury causes damage to the brain. Every year, millions of people in the U.S. suffer brain injuries. More than half are bad enough that ...

  5. "Floating shoulder" injuries.

    Science.gov (United States)

    Heng, Kenneth

    2016-12-01

    "Floating shoulder" is a rare injury complex resulting from high-energy blunt force trauma to the shoulder, resulting in scapulothoracic dissociation. It is commonly associated with catastrophic neurovascular injury. Two cases of motorcyclists with floating shoulder injuries are described.

  6. Eye Injuries in Sports

    Science.gov (United States)

    ... in Sports Which sports cause the most eye injuries?Sports cause more than 40,000 eye injuries each ... and racquet sports.When it comes to eye injuries, sports can be classified as low risk, high risk ...

  7. Preventing Knee Injuries

    Science.gov (United States)

    ... Our Newsletter Donate Blog Skip breadcrumb navigation Preventing Knee Injuries Knee injuries in children and adolescent athletes ... this PDF Share this page: WHAT ARE COMMON KNEE INJURIES? Pain Syndromes One of the most common ...

  8. Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids.

    Science.gov (United States)

    Marino, M G; Kreuer, K D

    2015-02-01

    The alkaline stability of 26 different quaternary ammonium groups (QA) is investigated for temperatures up to 160 °C and NaOH concentrations up to 10 mol L(-1) with the aim to provide a basis for the selection of functional groups for hydroxide exchange membranes in alkaline fuel cells and of ionic-liquid cations stable in basic conditions. Most QAs exhibit unexpectedly high alkaline stability with the exception of aromatic cations. β-Protons are found to be far less susceptible to nucleophilic attack than previously suggested, whereas the presence of benzyl groups, nearby hetero-atoms, or other electron-withdrawing species promote degradation reactions significantly. Cyclic QAs proved to be exceptionally stable, with the piperidine-based 6-azonia-spiro[5.5]undecane featuring the highest half-life at the chosen conditions. Absolute and relative stabilities presented herein stand in contrast to literature data, the differences being ascribed to solvent effects on degradation.

  9. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Jemmerson, R.; Low, M.G.

    1987-09-08

    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either /sup 3/H-fatty acids or (/sup 3/H)ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the /sup 3/H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of (/sup 3/H)ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from /sup 3/H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the /sup 3/H-fatty acid and the (/sup 3/H)ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the (/sup 3/H)ethanolamine label from the purified alkaline phosphatase. The /sup 3/H radioactivity in alkaline phosphatase purified from (/sup 3/H)ethanolamine-labeled cells comigrated with authentic (/sup 3/H)ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the /sup 3/H-fatty acid and (/sup 3/H)ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase.

  10. The effect of irrigated rice cropping on the alkalinity of two alkaline rice soils in the Sahel

    NARCIS (Netherlands)

    Asten, van P.J.A.; Zelfde, van 't J.A.; Zee, van der S.E.A.T.M.; Hammecker, C.

    2004-01-01

    Irrigated rice cropping is practiced to reclaim alkaline-sodic soils in many parts of the world. This practice is in apparent contrast with earlier studies in the Sahel, which suggests that irrigated rice cropping may lead to the formation of alkaline-sodic soils. Soil column experiments were done w

  11. Injuries in orienteering.

    Science.gov (United States)

    Linde, F

    1986-09-01

    In a one-year prospective study of 42 elite orienteers, 73 recent injuries (1.7 per runner per year) were found. Acute injuries totalled 52% and 48% were due to overuse. Ankle sprains made up 37% of acute injuries while the remaining were mainly contusions caused by falls or bumps against branches or rocks. Medial shin pain, Achilles peritendinitis, peroneal tenosynovitis and iliotibial band friction syndrome were the most frequent overuse injuries. All overuse injuries were located in the lower extremity while 18% of acute injuries was located elsewhere. Acute injuries were most frequent in the competitive season while overuse injuries occurred most often during the continuous training period.

  12. Sports injuries of the ear.

    Science.gov (United States)

    Wagner, G A

    1972-07-01

    The author describes common sports injuries involving the ear. Such injuries include hematoma, lacerations, foreign bodies (tattoo), and thermal injuries. Ear canal injuries include swimmer's ear and penetrating injuries. Tympanum injuries include tympanic membrane perforations, ossicular discontinuity, eustachian tube dysfunction, temporal bone fractures and traumatic facial nerve palsy. Inner ear injuries include traumatic sensorineural deafness. The author emphasizes the management of these injuries.

  13. 碘化钾碱性高锰酸钾法测量海水化学需氧量不确定度的研究%Research into Uncertainty in Measurement of Seawater Chemical Oxygen Demand by Potassium Iodide-Alkaline Potassium Permanganate Determination Method

    Institute of Scientific and Technical Information of China (English)

    张世强; 郭长松

    2007-01-01

    葡萄糖与谷氨酸以 1:1 的比例配制成标准物质,用人工海水和标准物质配制成系列标准溶液,根据碘化钾碱性高锰酸钾法对系列标准溶液的测量结果,获得了海水 COD 测量不确定度在全量程范围内的分布规律,即测量不确定度在高端大不恒定,在低端小恒定.%Using the glucose and L-glutamic-acid to prepare the standard substance according to the ratio of 1:1, and the artificial seawater and the standard substance to prepare a series of standard solutions, the distribution pattern of uncertainty in measurement of seawater COD is obtained based on the measured results of the series of standard solutions by the potassium iodide-alkaline potassium permanganate determination method. The distribution pattern is as follows: Uncertainty in measurement is big and not constant at the high end, but small and constant at the low end.

  14. Managing traumatic brain injury secondary to explosions

    Directory of Open Access Journals (Sweden)

    Burgess Paula

    2010-01-01

    Full Text Available Explosions and bombings are the most common deliberate cause of disasters with large numbers of casualties. Despite this fact, disaster medical response training has traditionally focused on the management of injuries following natural disasters and terrorist attacks with biological, chemical, and nuclear agents. The following article is a clinical primer for physicians regarding traumatic brain injury (TBI caused by explosions and bombings. The history, physics, and treatment of TBI are outlined.

  15. Epidemiology and sociodemographic aspects of ocular traumatic injuries in Iran.

    Science.gov (United States)

    Jafari, Alireza Keshtkar; Anvari, Faramarz; Ameri, Ahmad; Bozorgui, Shima; Shahverdi, Nooshin

    2010-12-01

    Although the incidence of ocular trauma has been clearly described in developed countries, few published data are available on the epidemiology and the effects of parameters that can influence the incidence and severity of ocular injuries in Iran. The present study tried to determine epidemiological aspects of ocular traumatic injuries and evaluate their effects on different types of ocular injury. The case series included 1950 consecutive patients with acute ophthalmic trauma presented to the emergency ward of Farabi Hospital in Tehran. Information was collected by interviewing patients and having them fill in a questionnaire. The final diagnosis was made by a medical resident. If there was a difficulty or doubt in diagnosis or classification, confirmation of diagnosis was made by senior faculty. Ocular injuries were classified into globe and non-globe injuries according to the site of injury. Mechanical globe injuries were classified according to Birmingham Eye Trauma Terminology (BETT) into closed and open injuries. The mean age of patients was 28.8 ± 12.8 years; 87.6% were male. The most common causes of injury were work-related (49.0%) and chance events (42.0%). The most frequent ocular injury was globe injury (95.6%), including mechanical (77.6% closed and 5.9% open), chemical (7.6%), photic (2.3%) and thermal (2.2%) injuries. Non-globe injury also occurred in 10.8% of patients; both globe and non-globe injuries occurred in 6.5% of patients. The hospitalization rate in all patients was 8.8%. Previous history of eye trauma was significantly more common in the group with isolated globe injuries (P < 0.001). History of eye trauma is a risk factor for globe injuries and female gender is a risk factor only for non-globe injuries. These two factors may predict future eye injury and increase its risk by 5.2 and 1.6 times, respectively.

  16. Phase behavior and oil recovery investigations using mixed and alkaline-enhanced surfactant systems

    Energy Technology Data Exchange (ETDEWEB)

    Llave, F.M.; Gall, B.L.; French, T.R.; Noll, L.A.; Munden, S.A.

    1992-03-01

    The results of an evaluation of different mixed surfactant and alkaline-enhanced surfactant systems for enhanced oil recovery are described. Several mixed surfactant systems have been studies to evaluate their oil recovery potential as well as improved adaptability to different ranges of salinity, divalent ion concentrations, and temperature. Several combinations of screening methods were used to help identify potential chemical formulations and determine conditions where particular chemical systems can be applied. The effects of different parameters on the behavior of the overall surfactant system were also studied. Several commercially available surfactants were tested as primary components in the mixtures used in the study. These surfactants were formulated with different secondary as well as tertiary components, including ethoxylated and non-ethoxylated sulfonates and sulfates. Improved salinity and hardness tolerance was achieved for some of these chemical systems. The salinity tolerance of these systems were found to be dependent on the molecular weight, surfactant type, and concentration of the surfactant components.

  17. Microbial thiocyanate utilization under highly alkaline conditions.

    Science.gov (United States)

    Sorokin, D Y; Tourova, T P; Lysenko, A M; Kuenen, J G

    2001-02-01

    Three kinds of alkaliphilic bacteria able to utilize thiocyanate (CNS-) at pH 10 were found in highly alkaline soda lake sediments and soda soils. The first group included obligate heterotrophs that utilized thiocyanate as a nitrogen source while growing at pH 10 with acetate as carbon and energy sources. Most of the heterotrophic strains were able to oxidize sulfide and thiosulfate to tetrathionate. The second group included obligately autotrophic sulfur-oxidizing alkaliphiles which utilized thiocyanate nitrogen during growth with thiosulfate as the energy source. Genetic analysis demonstrated that both the heterotrophic and autotrophic alkaliphiles that utilized thiocyanate as a nitrogen source were related to the previously described sulfur-oxidizing alkaliphiles belonging to the gamma subdivision of the division Proteobacteria (the Halomonas group for the heterotrophs and the genus Thioalkalivibrio for autotrophs). The third group included obligately autotrophic sulfur-oxidizing alkaliphilic bacteria able to utilize thiocyanate as a sole source of energy. These bacteria could be enriched on mineral medium with thiocyanate at pH 10. Growth with thiocyanate was usually much slower than growth with thiosulfate, although the biomass yield on thiocyanate was higher. Of the four strains isolated, the three vibrio-shaped strains were genetically closely related to the previously described sulfur-oxidizing alkaliphiles belonging to the genus Thioalkalivibrio. The rod-shaped isolate differed from the other isolates by its ability to accumulate large amounts of elemental sulfur inside its cells and by its ability to oxidize carbon disulfide. Despite its low DNA homology with and substantial phenotypic differences from the vibrio-shaped strains, this isolate also belonged to the genus Thioalkalivibrio according to a phylogenetic analysis. The heterotrophic and autotrophic alkaliphiles that grew with thiocyanate as an N source possessed a relatively high level of cyanase

  18. Evaluation of the environmental sustainability of farmers' land use decisions in the saline-alkaline areas.

    Science.gov (United States)

    Yu, Ran; Wang, Jiali

    2015-04-01

    Environmental sustainability has become the focus of agricultural sustainability. This study is aimed at evaluating the environmental sustainability of farmers' land use decisions on saline-alkaline soil in China. Based on empirical and theoretical approaches, the decisions mainly include planting, crop distribution, irrigation, drainage, and fertilization. By surveying 22 administrative villages in typical ecologically fragile saline-alkaline areas of five regions (Shandong, Jiangsu, Jilin, Ningxia, and Xinjiang), the paper builds the evaluation criteria at village level, and obtains a comprehensive index. From the results, irrigation concerns are absent from decision-making. For other decisions, farmers in most villages can appropriately deal with planting, drainage, and fertilization according to the regional natural and social geography conditions. But the comprehensive index of crop distribution in the coastal areas is much stronger than in the northeast and northwest. It is found that the similarities of unsustainability lie in the planting of water-consuming crops, the arbitrary distribution of crops, lack of drainage planning, obsolete water conservancy facilities, excessive use of chemical fertilizers, etc. According to the research, on the one hand, it can guide farmers to rationally make use of saline-alkaline land; on the other hand, it can also provide the basis for government to make differentiated policies in different areas and enhance pertinence in the course of technological extension and application.

  19. Corrosion of two kinds of cast steels containing chromium in hot concentrated alkaline

    Directory of Open Access Journals (Sweden)

    LI Wei

    2007-02-01

    Full Text Available A typical hot concentrated alkaline corrosion environment exists in alumina metallurgical industry, so that steel materials with outstanding alkaline corrosion resistance are strongly demanded for its processing equipment. In this paper, the corrosion resistance of two kinds of martensitic cast steels containing chromium in static 303g/L NaOH alkaline solution at 85℃ was studied through polarization and potential-time curves, corrosion weight loss and corrosion morphology analysis. Experimental results showed that protection effect by passive film of cast steel containing Cr was temporary. The low carbon steel without Cr content also exhibited chemical passivity in the same solution. The corrosion mode of the tested Cr-containing cast steel was composed of active dissolving corrosion and caustic embrittlement cracking. Dissolving corrosion was the primary mechanism for the induced weight loss, while severe caustic embrittlement cracking was secondary. With the increase of chromium content in the cast steel, the tendency of the caustic embrittlement cracking decreased, while the active dissolving corrosion increased.

  20. Corrosion of two kinds of cast steels containing chromium in hot concentrated alkaline

    Institute of Scientific and Technical Information of China (English)

    LI Wei; LIU Jun-quan; TU Xiao-hui

    2007-01-01

    A typical hot concentrated alkaline corrosion environment exists in alumina metallurgical industry, so that steel materials with outstanding alkaline corrosion resistance are strongly demanded for its processing equipment. In this paper, the corrosion resistance of two kinds of martensitic cast steels containing chromium in static 303 g/L NaOH alkaline solution at 85℃ was studied through polarization and potential-time curves, corrosion weight loss and corrosion morphology analysis. Experimental results showed that protection effect by passive film of cast steel containing Cr was temporary. The low carbon steel without Cr content also exhibited chemical passivity in the same solution. The corrosion mode of the tested Cr-containing cast steel was composed of active dissolving corrosion and caustic embrittlement cracking. Dissolving corrosion was the primary mechanism for the induced weight loss, while severe caustic embrittlement cracking was secondary. With the increase of chromium content in the cast steel, the tendency of the caustic embrittlement cracking decreased, while the active dissolving corrosion increased.

  1. EFFECTS OF ALKALINE PRE-IMPREGNATION AND PULPING ON MALAYSIA CULTIVATED KENAF (HIBISCUS CANNABINUS

    Directory of Open Access Journals (Sweden)

    Lin Suan Ang

    2010-05-01

    Full Text Available This study was carried out to identify an appropriate alkaline pulping condition for Malaysia cultivated kenaf (Hibiscus cannabinus L.. The chemical composition of the kenaf bast and core fibers, and also whole stalk with different growing time were examined prior to pulping attempts. The results of various soda-AQ pulping showed that the degree of carbohydrate degradation and delignification increased with the increase of active alkali and cooking temperature, but decreased with the increase of liquor to material (L:M ratio. The most satisfactory properties of pulp and handsheets from bast could be attained by employing soda-AQ pulping with 19.4% active alkali, 0.10% AQ, and L:M ratio of 7:1 cooked for 2 hours at 160˚C. Besides, it was also found that a mild alkaline pre-impregnation prior pulping improved the pulp viscosity and handsheets’ strength properties, especially the tensile index and folding endurance effectively. Moreover, among the three alkaline pulping processes—kraft, kraft-AQ, and soda-AQ—the results of pulp and handsheet properties showed that the soda-AQ pulp was comparable or even slightly of higher quality than the kraft pulps. Between the unbeaten bast and core soda-AQ handsheets, the strength properties of the core were higher than the bast, as the thin-walled core fibers exhibited much better conformability than the thick-walled bast fibers.

  2. Effect of Alkaline-Stabilised Sewage Sludge on Extractable Organic Carbon and Copper in Soils

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An incubation experiment was conducted to evaluate the potential for water contamination with sludgederived organic substances and copper following land application of alkaline-stabilised sewage sludge. Two contrasting sludge-amended soils were studied. Both soils were previously treated with urban and rural alkaline biosolids separately at sludge application rates of 0, 30 and 120 t ha-1 fresh product. The air-dried soil/sludge mixtures were wetted with distilled water, maintained at 40 % of water-holding capacity and equilibrated for three weeks at 4 ℃ before extraction. Subsamples were extracted with either distilled water or 0.5 mol L-1 K2SO4 solution. The concentrations of organic C in the aqueous and chemical extracts were determined directly with a total organic carbon (TOC) analyser. The concentrations of Cu in the two extracts were also determined by atomic absorption spectrophotometry. The relationship between the two extractable organic C fractions was examined, together with that between extractable organic C concentration and extractable Cu concentration. Application of alkaline biosolids increased the concentrations of soil mobile organic substances and Cu. The results are discussed in terms of a possible increase in the potential for leaching of sludge-derived organics and Cu in the sludge-amended soils

  3. Extremely alkaline (pH > 12) ground water hosts diverse microbial community.

    Science.gov (United States)

    Roadcap, George S; Sanford, Robert A; Jin, Qusheng; Pardinas, José R; Bethke, Craig M

    2006-01-01

    Chemically unusual ground water can provide an environment for novel communities of bacteria to develop. Here, we describe a diverse microbial community that inhabits extremely alkaline (pH > 12) ground water from the Lake Calumet area of Chicago, Illinois, where historic dumping of steel slag has filled in a wetland. Using microbial 16S ribosomal ribonucleic acid gene sequencing and microcosm experiments, we confirmed the presence and growth of a variety of alkaliphilic beta-Proteobacteria, Bacillus, and Clostridium species at pH up to 13.2. Many of the bacterial sequences most closely matched those of other alkaliphiles found in more moderately alkaline water around the world. Oxidation of dihydrogen produced by reaction of water with steel slag is likely a primary energy source to the community. The widespread occurrence of iron-oxidizing bacteria suggests that reduced iron serves as an additional energy source. These results extend upward the known range of pH tolerance for a microbial community by as much as 2 pH units. The community may provide a source of novel microbes and enzymes that can be exploited under alkaline conditions.

  4. Experimental Simulation of Long Term Weathering in Alkaline Bauxite Residue Tailings

    Directory of Open Access Journals (Sweden)

    Talitha C. Santini

    2015-07-01

    Full Text Available Bauxite residue is an alkaline, saline tailings material generated as a byproduct of the Bayer process used for alumina refining. Developing effective plans for the long term management of potential environmental impacts associated with storage of these tailings is dependent on understanding how the chemical and mineralogical properties of the tailings will change during weathering and transformation into a soil-like material. Hydrothermal treatment of bauxite residue was used to compress geological weathering timescales and examine potential mineral transformations during weathering. Gibbsite was rapidly converted to boehmite; this transformation was examined with in situ synchrotron XRD. Goethite, hematite, and calcite all precipitated over longer weathering timeframes, while tricalcium aluminate dissolved. pH, total alkalinity, and salinity (electrical conductivity all decreased during weathering despite these experiments being performed under “closed” conditions (i.e., no leaching. This indicates the potential for auto-attenuation of the high alkalinity and salinity that presents challenges for long term environmental management, and suggests that management requirements will decrease during weathering as a result of these mineral transformations.

  5. DEVELOPMENT AND SELECTION OF IONIC LIQUID ELECTROLYTES FOR HYDROXIDE CONDUCTING POLYBENZIMIDAZOLE MEMBRANES IN ALKALINE FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, E.

    2012-05-01

    Alkaline fuel cell (AFC) operation is currently limited to specialty applications such as low temperatures and pure HO due to the corrosive nature of the electrolyte and formation of carbonates. AFCs are the cheapest and potentially most efficient (approaching 70%) fuel cells. The fact that non-Pt catalysts can be used, makes them an ideal low cost alternative for power production. The anode and cathode are separated by and solid electrolyte or alkaline porous media saturated with KOH. However, CO from the atmosphere or fuel feed severely poisons the electrolyte by forming insoluble carbonates. The corrosivity of KOH (electrolyte) limits operating temperatures to no more than 80°C. This chapter examines the development of ionic liquids electrolytes that are less corrosive, have higher operating temperatures, do not chemically bond to CO and enable alternative fuels. Work is detailed on the IL selection and characterization as well as casting methods within the polybenzimidazole based solid membrane. This approach is novel as it targets the root of the problem (the electrolyte) unlike other current work in alkaline fuel cells which focus on making the fuel cell components more durable.

  6. OPTIMIZATION OF MEDIA CONSTITUENTS FOR THE PRODUCTION OF ALKALINE PROTEASE FROM BACILLUS LICHENIFORMIS Mohideen

    Directory of Open Access Journals (Sweden)

    Mohideen Askar Nawas P

    2015-07-01

    Full Text Available Production of alkaline protease by Bacillus licheniformis has been investigated under submerged fermentation. The physical and chemical parameters influencing submerged fermentation were optimized. The effect of incubation time, temperature, pH, carbon sources and nitrogen sources and additional nutrients on the production of alkaline protease was characterized. The optimum conditions for the protease production by Bacillus licheniformis were found to be at pH 9.0 and temperature at 40ºC. The outcome of carbon and inorganic nitrogen sources on protease production proved that glucose and casein were the effective medium ingredients for Bacillus licheniformis respectively. The maximum amount of protease production was recorded in medium supplemented with ammonium sulphate. Among the tested metal ions, the level of protease yield was found to be high in medium supplemented with magnesium chloride. The protease production was amplified in the presence of 1.5% sodium chloride. The extreme stability towards Triton X-100, Tween 20 and SDS was observed in Bacillus licheniformis alkaline protease.

  7. Titratable Acidity and Alkalinity of Red Soil Surfaces

    Institute of Scientific and Technical Information of China (English)

    SHAOZONG-CHEN; HEQUN; 等

    1993-01-01

    The surfaces of red soils have an apparent amphoteric character,carrying titratable acidity and titratable alkalinity simultaneously.The titratable acidity arises from deprotonation of hydroxyl groups of hydrous oxide-type surfaces and dissociation of weak-acid functional groups of soil organic matter,while the titratable alkalinity is derived from release of hydroxyl groups of hydrous oxide-type surfaces.The titratable acidity and titratable alkalinity mainly depended on the composition and content of iron and aluminum oxides in the soils.The results showed that the titratable acidity and titratable alkalinity were in significantly positive correlation not only with the content of amorphous aluminum oxide(Alo) and iron oxide(Feo) extracted with acid ammonium oxalate solution,free iron oxide(Fed) extracted with sodium dithionite-citrate-bicarbonate(DCB) and clays,but also with the zero point of charge (ZPC) of the samples.Organic matter made an important contribution to the titratable acidity.the titratable alkalinity was closely correlated with the amount of fluoride ions adsorbed.The titratable acidity and titratable alkalinity of red soils were influenced by parent materials,being in the order of red soil derived from basalt> that from tuff> that from granite.The titratable acidity and titratable alkalinity ware closely related with origination of the variable charges of red soils,and to a certain extent were responsible for variable negative and positive charges of the soils.

  8. A metagenomic alkaline protease from saline habitat: cloning, over-expression and functional attributes.

    Science.gov (United States)

    Purohit, Megha K; Singh, Satya P

    2013-02-01

    Metagenomics has opened new horizon to unlock the biotechnological potential for novel enzymes. An alkaline protease gene was obtained from the total environmental DNA extracted from a saline habitat. After cloning and sequencing, it was identified that the protease gene related to uncultivable bacteria (HM219181). The protease was over expressed at 6h of induction with optimum induction at 1mM IPTG and 27°C. The purified enzyme was characterized with respect to various factors; temperature, pH, NaCl and chemical denaturant. The sequence analysis indicated a hydrophobic tendency of the protein, while the predicted 3D structure indicated the enzyme as a serine protease.

  9. Process for treating alkaline wastes for vitrification

    Science.gov (United States)

    Hsu, Chia-lin W.

    1994-01-01

    According to its major aspects and broadly stated, the present invention is a process for treating alkaline waste materials, including high level radioactive wastes, for vitrification. The process involves adjusting the pH of the wastes with nitric acid, adding formic acid (or a process stream containing formic acid) to reduce mercury compounds to elemental mercury and MnO{sub 2} to the Mn(II) ion, and mixing with class formers to produce a melter feed. The process minimizes production of hydrogen due to noble metal-catalyzed formic acid decomposition during, treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. An important feature of the present invention is the use of different acidifying and reducing, agents to treat the wastes. The nitric acid acidifies the wastes to improve yield stress and supplies acid for various reactions; then the formic acid reduces mercury compounds to elemental mercury and MnO{sub 2}) to the Mn(II) ion. When the pH of the waste is lower, reduction of mercury compounds and MnO{sub 2}) is faster and less formic acid is needed, and the production of hydrogen caused by catalytically-active noble metals is decreased.

  10. Response of Desulfovibrio vulgaris to Alkaline Stress

    Energy Technology Data Exchange (ETDEWEB)

    Stolyar, S.; He, Q.; He, Z.; Yang, Z.; Borglin, S.E.; Joyner, D.; Huang, K.; Alm, E.; Hazen, T.C.; Zhou, J.; Wall, J.D.; Arkin, A.P.; Stahl, D.A.

    2007-11-30

    The response of exponentially growing Desulfovibrio vulgarisHildenborough to pH 10 stress was studied using oligonucleotidemicroarrays and a study set of mutants with genes suggested by microarraydata to be involved in the alkaline stress response deleted. The datashowed that the response of D. vulgaris to increased pH is generallysimilar to that of Escherichia coli but is apparently controlled byunique regulatory circuits since the alternative sigma factors (sigma Sand sigma E) contributing to this stress response in E. coli appear to beabsent in D. vulgaris. Genes previously reported to be up-regulated in E.coli were up-regulated in D. vulgaris; these genes included three ATPasegenes and a tryptophan synthase gene. Transcription of chaperone andprotease genes (encoding ATP-dependent Clp and La proteases and DnaK) wasalso elevated in D. vulgaris. As in E. coli, genes involved in flagellumsynthesis were down-regulated. The transcriptional data also identifiedregulators, distinct from sigma S and sigma E, that are likely part of aD. vulgaris Hildenborough-specific stress response system.Characterization of a study set of mutants with genes implicated inalkaline stress response deleted confirmed that there was protectiveinvolvement of the sodium/proton antiporter NhaC-2, tryptophanase A, andtwo putative regulators/histidine kinases (DVU0331 andDVU2580).

  11. High temperature and pressure alkaline electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2013-01-01

    and pressures. Two measurement systems were built to perform measurements under high pressures and at elevated temperatures of up to 95 bar and 250 °C, respectively. The conductivity of aqueous KOH and aqueous KOH immobilized in a porous SrTiO3 structure were investigated at elevated temperatures and high...... the operational temperature and pressure to produce pressurized hydrogen at high rate (m3 H2·h-1·m-2 cell area) and high electrical efficiency. This work describes an exploratory technical study of the possibility to produce hydrogen and oxygen with a new type of alkaline electrolysis cell at high temperatures...... concentrations of the electrolyte using the van der Pauw method in combination with electrochemical impedance spectroscopy (EIS). Conductivity values as high as 2.9 S cm-1 for 45 wt% KOH aqueous KOH and 0.84 S cm-1 for the immobilized KOH of the same concentration were measured at 200 °C. Porous SrTiO3 was used...

  12. Alkaline-assisted screw press pretreatment affecting enzymatic hydrolysis of wheat straw.

    Science.gov (United States)

    Yan, Qingqi; Wang, Yumei; Rodiahwati, Wawat; Spiess, Antje; Modigell, Michael

    2017-02-01

    Screw press processing of biomass can be considered as a suitable mechanically based pretreatment for biofuel production since it disrupts the structure of lignocellulosic biomass with high shear and pressure forces. The combination with chemical treatment has been suggested to increase the conversion of lignocellulosic biomass to fermentable sugars. Within the study, the synergetic effect of alkaline (sodium hydroxide, NaOH) soaking and screw press pretreatment on wheat straw was evaluated based on, e.g., sugar recovery and energy efficiency. After alkaline soaking (at 0.1 M for 30 min) and sequential screw press pretreatment with various screw press configurations and modified screw barrel, the lignin content of pretreated wheat straw was quantified. In addition, the structure of pretreated wheat straw was investigated by scanning electron microscopy and measurement of specific surface area. It could be shown that removal of lignin is more important than increase of surface area of the biomass to reach a high sugar recovery. The rate constant of the enzymatic hydrolysis increased from 1.1 × 10(-3) 1/h for the non-treated material over 2.3 × 10(-3) 1/h for the alkaline-soaked material to 26.9 × 10(-3) 1/h for alkaline-assisted screw press pretreated material, indicating a nearly 25-fold improvement of the digestibility by the combined chemo-mechanical pretreatment. Finally, the screw configuration was found to be an important factor for improving the sugar recovery and for reducing the specific energy consumption of the screw press pretreatment.

  13. Optimization of Soilless Media for Alkaline Irrigation Water

    OpenAIRE

    Tramp, Cody Alexander; Chard, Julie K.; Bugbee, Bruce

    2009-01-01

    High root zone pH reduces nutrient availability and high alkalinity water is strongly buffered around an alkaline pH. Soilless media can be altered to improve nutrient availability. This study was conducted to optimize the composition of soilless media for use with high alkalinity water. Mixes of peat and/or perlite or vermiculite in 50/50 and 33/33/33 volumetric ratios were tested. In some studies, mixes were also amended with up to 2.4 g/L of dolomite limestone to neutralize the initial aci...

  14. Managing iatrogenic tracheal injuries

    Directory of Open Access Journals (Sweden)

    A. Goonasekera C

    2005-01-01

    Full Text Available We present three cases of iatrogenic tracheal injury. Two patients suffered acute tracheal injuries during anesthesia/surgery, one was managed surgically and the other conservatively. The third case is a delayed tracheal injury presenting as a fistula. The reasons for surgical vs conservative management of tracheal injuries and preventive measures are discussed.

  15. Patterns of work injuries

    DEFF Research Database (Denmark)

    Lander, Flemming; Nielsen, Kent Jacob; Rasmussen, Kurt;

    2014-01-01

    To compare work injuries treated in an emergency department (ED) and injuries reported to the Danish Working Environment Authority (DWEA).......To compare work injuries treated in an emergency department (ED) and injuries reported to the Danish Working Environment Authority (DWEA)....

  16. Associations between renal hyperfiltration and serum alkaline phosphatase.

    Directory of Open Access Journals (Sweden)

    Se Won Oh

    Full Text Available Renal hyperfiltration, which is associated with renal injury, occurs in diabetic or obese individuals. Serum alkaline phosphatase (ALP level is also elevated in patients with diabetes (DM or metabolic syndrome (MS, and increased urinary excretion of ALP has been demonstrated in patients who have hyperfiltration and tubular damage. However, little was investigated about the association between hyperfiltration and serum ALP level. A retrospective observational study of the 21,308 adults in the Korea National Health and Nutrition Examination Survey IV-V databases (2008-2011 was performed. Renal hyperfiltration was defined as exceeding the age- and sex-specific 97.5th percentile. We divided participants into 4 groups according to their estimated glomerular filtration rate (eGFR: >120, 90-119, 60-89, and 120 mL/min/1.73 m2 showed the highest risk for MS, in the highest ALP quartiles (3.848, 95% CI, 1.876-7.892, compared to the lowest quartile. Similarly, the highest risk for DM, in the highest ALP quartiles, was observed in participants with eGFR >120 ml/min/1.73 m2 (2.166, 95% CI, 1.084-4.329. ALP quartiles were significantly associated with albuminuria in participants with eGFR ≥ 60 ml/min/1.73m2. The highest ALP quartile had a 1.631-fold risk elevation for albuminuria with adjustment of age and sex. (95% CI, 1.158-2.297, P = 0.005. After adjustment, the highest ALP quartile had a 1.624-fold risk elevation, for renal hyperfiltration (95% CI, 1.204-2.192, P = 0.002. In addition, hyperfiltration was significantly associated with hemoglobin, triglyceride, white blood cell count, DM, smoking, and alcohol consumption (P<0.05. The relationship between serum ALP and metabolic disorders is stronger in participants with an upper-normal range of eGFR. Higher ALP levels are significantly associated with renal hyperfiltration in Korean general population.

  17. Activity of alkaline and acidic phosphatase in glandular cells of uterine endometrium of puerperal ewes after exposure to polychlorinated biphenyls

    OpenAIRE

    Valocky I.; Krajničakova Maria; Legath J.; Lenhardt L.; Ostro A.; Danko J.; Tkačikova L`udmila; Mojžišova Jana; Fialkovičova Maria; Mardzinova Silvia

    2005-01-01

    The study is focused on the observation of alkaline and acidic phosphatase activity in the glandular cells of uterine endometrium in puerperal ewes after exposure to polychlorinated biphenyls. Ewes of Slovak merino breed (n=25) divided into 2 groups were included in the experiment. The animals in the experimental group (n=14) and control group (n=11) were euthanised on day 17, 25 and 34 postpartum. The ewes in the experimental group were given per os capsules of the chemical preparation Delor...

  18. Sulfate—Exchange Alkalinity of Ferralsol Colloid

    Institute of Scientific and Technical Information of China (English)

    ZHANGGANGYA; ZHANGXIAONIAN

    1999-01-01

    The amount of OH- replaced by sulfate,i.e.,sulfate-exchange alkalinity,from the electric double layer of ferralsol colloid was measured quantitatively in different conditions with an automatic titration equipment.The amount of OH- release increased with the amount of Na2SO4 added and decreased with raising pH in the suspension of ferralsol colloid.The exchange acidity was displayed as pH was higher than 5.6,If the negative effect of sodium ions was offset,the amount of OH- replaced by sulfate was larger than the original amount of OH- released in the pH range of lower than 5.8.The amount of OH- released decreased rapidly as pH was higher than 6.0 and dropped to zero when pH reached 6.5.In the solution of 2.0molL-1 NaClO4,the amount of OH- repleaced by sulfate from the surface of ferralsol colloid could be considered as the amount of OH- adsorbed by ligand exchange reaction.The amount of OH- released in the solution of NaClO4 concentration below 2.0mol L-1 from which the amount of OH- adsorbed by ligand exchange reaction was subtracted could be conidered as the OH- adsorbed by electrostatic force,The OH- adsorbed by electrostatic force decreased with increases in the concentration of NaClO4 and pH and increased almost linearly with the increasing amount of Na2SON4 added.The percentages of OH- adsorbed by electrostatic force in water and in the electrolyte solutions of 0.05 and 0.5mol L-1 NaClO4 in the total OH- released were calculated,respectively.

  19. Chlorine solubility in evolved alkaline magmas

    Directory of Open Access Journals (Sweden)

    M. R. Carroll

    2005-06-01

    Full Text Available Experimental studies of Cl solubility in trachytic to phonolitic melts provide insights into the capacity of alkaline magmas to transport Cl from depth to the earth?s surface and atmosphere, and information on Cl solubility variations with pressure, temperature and melt or fluid composition is crucial for understanding the reasons for variations in Cl emissions at active volcanoes. This paper provides a brief review of Cl solubility experiments conducted on a range of trachytic to phonolitic melt compositions. Depending on the experimental conditions the melts studied were in equilibrium with either a Cl-bearing aqueous fluid or a subcritical assemblage of low- Cl aqueous fluid + Cl-rich brine. The nature of the fluid phase(s was identified by examination of fluid inclusions present in run product glasses and the fluid bulk composition was calculated by mass balance. Chlorine concentrations in the glass increase with increasing Cl molality in the fluid phase until a plateau in Cl concentration is reached when melt coexists with aqueous fluid + brine. With fluids of similar Cl molality, higher Cl concentrations are observed in peralkaline phonolitic melts compared with peraluminous phonolitic melts; overall the Cl concentrations observed in phonolitic and trachytic melts are approximately twice those found in calcalkaline rhyolitic melts under similar conditions. The observed negative pressure dependence of Cl solubility implies that Cl contents of melts may actually increase during magma decompression if the magma coexists with aqueous fluid and Cl-rich brine (assuming melt-vapor equilibrium is maintained. The high Cl contents (approaching 1 wt% Cl observed in some melts/glasses from the Vesuvius and Campi Flegrei areas suggest saturation with a Cl-rich brine prior to eruption.

  20. Photovoltaic hydrogen production with commercial alkaline electrolysers

    Energy Technology Data Exchange (ETDEWEB)

    Ursua, A.; Lopez, J.; Gubia, E.; Marroyo, L.; Sanchis, P. [Public Univ. of Navarra, Pamplona (Spain). Dept. of Electric and Electronic Engineering

    2010-07-01

    Renewable energy sources and Electrolysis generate the so-called green Hydrogen, a zero-emission and potentially fossil fuel independent energy source. However, the inherent variability of the renewable energy sources implies a mode of operation for which most current electrolysers have not been designed. This paper analyses the operation of a water electrolyser fed with photovoltaic (PV) generator electric profile. The system, Integrated by a 1 Nm{sup 3}/h Hydrogenics alkaline electrolyser and a 5100 W PV generator with 60 BP585 modules, is installed at the Public University of Navarra (Spain). The PV generator profile fed to the electrolyser is emulated by a custom-made apparatus designed and built by the authors of this paper. The profile is designed according to real irradiance data measured by a calibration cell. The irradiance data are converted to the electric power profile that the PV generator would have delivered in case of having been connected to the electrolyser by means of a DC/DC converter with maximum power point tracking (MPPT). Finally, from previously measured power-current electrolyser characteristic curves, the current profile to be delivered to the electrolyser is obtained and programmed to the electronic device. The electrolyser was tested for two types of days. During the first day, the irradiance was very stable, whereas during the second day, the irradiance was very variable. The experimental results show an average power consumption rate and an efficiency of 4908 Wh/Nm{sup 3} and 72.1%, on the first day, and 4842 Wh/Nm{sup 3} and 73.3% on the second day. The electrolyser performance was particularly good in spite of the high variability of the electric supply of the second day. (orig.)

  1. Marked Transient Alkaline Phosphatemia Following Pediatric Liver Transplantation

    Science.gov (United States)

    Koneru, Baburao; Carone, Eduardo; Malatack, J. Jeffrey; Esquivel, Carlos O.; Starzl, Thomas E.

    2010-01-01

    An isolated marked transient rise in serum alkaline phosphatase levels in otherwise healthy children is a well-documented occurrence. However, in children undergoing liver transplantation, elevated alkaline phosphatase values raise the possibility of biliary obstruction, rejection, or both. During a 6-year period, 6 of 278 children undergoing liver transplantation exhibited a similar phenomenon as an isolated abnormality. None had rejection, biliary obstruction, or other allograft dysfunction during a long follow-up. Eventually and without intervention, the alkaline phosphatase levels returned to normal. These instructive cases suggest that caution be used in advocating Invasive procedures if elevated alkaline phosphatase levels are an isolated abnormality, and close observation with noninvasive testing is recommended. PMID:2658549

  2. APPLICATION OF ALKALINE SULFITE PULPING ON CORN STALKS

    Directory of Open Access Journals (Sweden)

    Ahmad Jahan Latibari

    2011-02-01

    Full Text Available Alkaline sulfite pulping of corn stalks was investigated to produce supplementary pulp for corrugating board manufacture. Three pulping temperatures (125, 145, and 165°C and five active alkali charges (10, 12, 14, 16, and 18% were used. Cooking time at 30 minutes, Na2SO3/ NaOH ratio at 50:50, and liquor to residue ratio of 8:1 were kept constant. The highest total yield (61.9% was reached applying the treatment combination of 125°C and 10% active alkali, and the lowest total yield (42.5% was related to 165°C and 16% chemical. The influence of sodium sulfite/sodium hydroxide ratios was studied applying different ratios (30:70, 40:60, 50:50, 60:40, and 70:30 at constant time and temperature of 30 minutes and 145°C respectively and 14 and 16% active alkali. Pulping condition; 16% active alkali, 30 minutes time, 145°C pulping temperature and varying ratios of sodium sulfite/sodium hydroxide were selected for pulp strength evaluation. The results of handsheet evaluation indicated that 16% active alkali, 30 minutes pulping at 145ºC and sodium sulfite/sodium hydroxide ratio of 50:50 is the optimum pulping condition for corn stalks. Tear, tensile, and burst indices and breaking length of this pulp were measured as 10.53 mN.m2g-1, 62.4 N.mg-1, 3.80 kPa.m2g-1, and 6.07 km, respectively.

  3. IGCC sulfur compounds abatement with earth alkaline sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Ramon Alvarez-Rodriguez; Carmen Clemente-Jul [Universidad Politecnica de Madrid, Madrid (Spain). Escuela Tecnica Superior de Ingenieros de Minas

    2007-07-01

    In Integrated Gasification Combined Cycle (IGCC) process, in the reference plant built in Puertollano, Spain by Elcogas, a consortium formed by several utilities and engineering companies with a technology that is one of the most promising electricity generation options, both from the environmental and the efficiency point of view and that allows an efficient and environmentally friendly use of national coal, and also a refinery residue, petroleum coke, the high sulphur contents in coal and specially in petcoke, their presence in the feedstock, led to significant contents of gaseous sulphur compounds whose advanced removal has been the aim of this project. Different sorbents to reduce the presence of H{sub 2}S have been researched and between them the earth alkaline compounds, dolomite and calcite that react with H{sub 2}S to give calcium sulphide have been chosen due to their properties and low cost. The calcium sulphide is a reactive product because it reacts with water to regenerate the H{sub 2}S but it can be converted in calcium sulphate, inert product with diverse uses. This conversion to sulphate present some problems of possible lack of total conversion and different conditions to improve this conversion have been investigated. The tests have been carried out with dolomite and calcite and firstly the sulphuration of the same have been produced using a mixture of gases that simulates the IGCC gas and after their oxidation has been studied. The influence of the conditions of sulfurization and oxidation on the final conversion of calcium sulphide to sulphate as the presence of H{sub 2}O vapour, the variation in the composition of the gases, the temperature and the bed length have been evaluated. The solid products obtained have been characterized by X-ray diffraction and scanning electronic microscopy and chemical analysis to assess the evolution and progress of the reactions. 8 refs., 3 figs., 1 tab.

  4. Cation exchange properties of zeolites in hyper alkaline aqueous media.

    Science.gov (United States)

    Van Tendeloo, Leen; de Blochouse, Benny; Dom, Dirk; Vancluysen, Jacqueline; Snellings, Ruben; Martens, Johan A; Kirschhock, Christine E A; Maes, André; Breynaert, Eric

    2015-02-03

    Construction of multibarrier concrete based waste disposal sites and management of alkaline mine drainage water requires cation exchangers combining excellent sorption properties with a high stability and predictable performance in hyper alkaline media. Though highly selective organic cation exchange resins have been developed for most pollutants, they can serve as a growth medium for bacterial proliferation, impairing their long-term stability and introducing unpredictable parameters into the evolution of the system. Zeolites represent a family of inorganic cation exchangers, which naturally occur in hyper alkaline conditions and cannot serve as an electron donor or carbon source for microbial proliferation. Despite their successful application as industrial cation exchangers under near neutral conditions, their performance in hyper alkaline, saline water remains highly undocumented. Using Cs(+) as a benchmark element, this study aims to assess the long-term cation exchange performance of zeolites in concrete derived aqueous solutions. Comparison of their exchange properties in alkaline media with data obtained in near neutral solutions demonstrated that the cation exchange selectivity remains unaffected by the increased hydroxyl concentration; the cation exchange capacity did however show an unexpected increase in hyper alkaline media.

  5. From Geochemistry to Biochemistry: Simulating Prebiotic Chemistry Driven by Geochemical Gradients in Alkaline Hydrothermal Vents

    Science.gov (United States)

    Barge, Laurie

    2016-07-01

    Planetary water-rock interfaces generate energy in the form of redox, pH, and thermal gradients, and these disequilibria are particularly focused in hydrothermal vent systems where the reducing, heated hydrothermal fluid feeds back into the more oxidizing ocean. Alkaline hydrothermal vents have been proposed as a likely location for the origin of life on the early Earth due to various factors: including the hydrothermal pH / Eh gradients that resemble the ubiquitous electrical / proton gradients in biology, the catalytic hydrothermal precipitates that resemble inorganic catalysts in enzymes, and the presence of electron donors and acceptors in hydrothermal systems (e.g. H2 + CH4 and CO2) that are thought to have been utilized in the earliest metabolisms. Of particular importance for the emergence of metabolism are the mineral "chimneys" that precipitate at the vent fluid / seawater interface. Hydrothermal chimneys are flow-through chemical reactors that form porous and permeable inorganic membranes transecting geochemical gradients; in some ways similar to biological membranes that transect proton / ion gradients and harness these disequilibria to drive metabolism. These emergent chimney structures in the far-from-equilibrium system of the alkaline vent have many properties of interest to the origin of life that can be simulated in the laboratory: for example, they can generate electrical energy and drive redox reactions, and produce catalytic minerals (in particular the metal sulfides and iron oxyhydroxides - "green rust") that can facilitate chemical reactions towards proto-metabolic cycles and biosynthesis. Many of the factors prompting interest in alkaline hydrothermal vents on Earth may also have been present on early Mars, or even presently within icy worlds such as Europa or Enceladus - thus, understanding the disequilibria and resulting prebiotic chemistry in these systems can be of great use in assessing the potential for other environments in the Solar

  6. Alkalinity and structure of soils determine the truffle production in the Pyrenean Regions

    Directory of Open Access Journals (Sweden)

    Benoit Jaillard

    2014-08-01

    Full Text Available Aim of study: The program "Typology of truffle stations in the Pyrenean Regions" aimed to define the ecological conditions and culture practices that favor Tuber melanosporum growth and fruiting in this area.Area of study: Navarra, Catalonia, Midi-Pyrénées and Languedoc-Roussillon.Material and methods: The program was based on the survey of 212 wild and cultivated truffle beds of evergreen oaks (Quercus ilex. The data collected in the field consisted of photographs, samples of soil, roots and mycorrhizae, and information on cultural practices followed by truffle growers.Main results: (i truffle soils are alkaline, from neutral, dolomitic, to moderately or very calcareous soils; (ii truffle soils are light, well-structured and stable to water immersion; (iii mycelium that colonizes roots survives in suboptimal conditions, but it does not necessarily bear ascocarps. Finally our results suggest that T. melanosporum is a relatively ubiquitous fungus able to grow, or at least to persist, in a wide range of physical and chemical soil conditions. We propose a probabilistic model of the environment favorable for fruiting, built around a two-dimensional graph with an axis for the chemical conditions, like soil alkalinity, and another axis for the physical conditions, like soil structure. Research highlights: Soil alkalinity and structure allow to built a convenient representation of the ecological capacity of a place to be good T. melanosporum habitat, and thus of the probability for truffle growers to harvest truffles according to the environmental properties of their truffle orchards.Keywords: dolomite; limestone; mycorrhizae; Quercus ilex; field survey; Tuber melanosporum.

  7. Microbial community succession in alkaline, saline bauxite residue: a cross-refinery study

    Science.gov (United States)

    Santini, T.; Malcolm, L. I.; Tyson, G. W.; Warren, L. A.

    2015-12-01

    Bauxite residue, a byproduct of the Bayer process for alumina refining, is an alkaline, saline tailings material that is generally considered to be inhospitable to microbial life. In situ remediation strategies promote soil formation in bauxite residue by enhancing leaching of saline, alkaline pore water, and through incorporation of amendments to boost organic matter content, decrease pH, and improve physical structure. The amelioration of chemical and physical conditions in bauxite residue is assumed to support diversification of microbial communities from narrow, poorly functioning microbial communities towards diverse, well-functioning communities. This study aimed to characterise microbial communities in fresh and remediated bauxite residues from refineries worldwide, to identify (a) whether initial microbial communities differed between refineries; (b) major environmental controls on microbial community composition; and (c) whether remediation successfully shifts the composition of microbial communities in bauxite residue towards those found in reference (desired endpoint) soils. Samples were collected from 16 refineries and characterised using 16S amplicon sequencing to examine microbial community composition and structure, in conjunction with physicochemical analyses. Initial microbial community composition was similar across refineries but partitioned into two major groups. Microbial community composition changes slowly over time and indicates that alkalinity and salinity inhibit diversification. Microbially-based strategies for in situ remediation should consider the initial microbial community composition and whether the pre-treatment of chemical properties would optimise subsequent bioremediation outcomes. During in situ remediation, microbial communities become more diverse and develop wider functional capacity, indicating progression towards communities more commonly observed in natural grassland and forest soils.

  8. Production of Steel Casts in Two-Layer Moulds with Alkaline Binders Part 1. Backing sand with the alkaline inorganic binder RUDAL

    Directory of Open Access Journals (Sweden)

    M. Holtzer

    2011-04-01

    Full Text Available Steel casts in Z.N. POMET were produced in moulds made of the moulding sand Floster. This sand did not have good knocking outproperties, required a significant binder addition (4.5-5.0 parts by weight, and the casting surface quality gave rise to clients objections.Therefore a decision of implementing two-layer moulds, in which the facing sand would consist of the moulding sand with an alkalineorganic binder while the backing sand would be made of the moulding sand with an inorganic binder also of an alkaline character - wasundertaken. The fraction of this last binder in the moulding sand mass would be smaller than that of the binder used up to now (waterglass. The application of two moulding sands of the same chemical character (highly alkaline should facilitate the reclamation processand improve the obtained reclaimed material quality, due to which it would be possible to increase the reclaim fraction in the mouldingsand (up to now it was 50%. The results of the laboratory investigations of sands with the RUDAL binder are presented in the paper.

  9. Transcapillary transport after thermal injury.

    Science.gov (United States)

    Arturson, G; Jonsson, C E

    1979-01-01

    The pathophysiology of the burn wound is characterized by an inflammatory reaction leading to rapid edema formation due to (1) dilatation of resistance vessels with increased effective transcapillary filtration pressure, (2) increased extravascular osmotic activity created in damaged tissue, and (3) increased microvascular permeability to macromolecules. In extensive burns increased microvascular permeability was found also in tissues remote from the thermal injury. These reactions are due to direct heat effect on the microvasculature and to chemical mediators of inflammation. Important is the increased biosynthesis of prostaglandins at the site of tissue injury which may partly explain vasodilatation, increased microvascular permeability and accumulation of polymorphonuclear leucocytes observed following thermal injury. The morphological interpretations of the changes in the functional ultrastructure of the blood-lymph barrier following thermal injury seem to be a remarkable and persistant increase in the numbers of vacuoles and many open endothelial intercellular junctions. Further less explored changes of the interstitial tissue after severe burn trauma seem to be of great importance.

  10. The clinical efficacy of Diphoterine® in the management of cutaneous chemical burns: a 2-year evaluation study.

    Science.gov (United States)

    Zack-Williams, S D L; Ahmad, Z; Moiemen, N S

    2015-03-31

    Diphoterine(®) is an amphoteric irrigating agent for the treatment of chemical burns and rapidly neutralises both acids and alkalis faster than water alone. Diphoterine(®) is widely used as a first aid agent in a wide range of industries globally. This is a retrospective review of the clinical use of Diphoterine(®) on chemical burns in an adult tertiary referral burn centre, often with a delay of several hours after the injury. patients admitted with chemical burns within 24 hours of the incident with an abnormal wound pH or in pain, were treated with Diphoterine(®) spray. Over a 32-month period, 1,875 burn referrals were admitted of which 131 (7%) were chemical burns. Diphoterine(®) was used in 47 patients (36%). The male to female ratio for the 131 patients was 4:1. Alkaline burns were the commonest (55%). patients who received Diphoterine(®) were significantly younger (38 vs 43 years; p=0.05) and presented earlier (0.5 vs 2.55 days; p=0.004). There was a significant change in the wound pH pre- and post-application of Diphoterine(®), compared to patients who were treated with water irrigation only, with a pH change of 1.076 vs 0.4 (p burns.

  11. Injury in rugby league.

    Science.gov (United States)

    Hoskins, W; Pollard, H; Hough, K; Tully, C

    2006-05-01

    It was the purpose of this review to document the range, incidence, location and mechanism of injury occurring in the sport of rugby league. Rugby league is a collision sport played in Europe and the Pacific regions including Australia. The sport is well established and has competitions ranging from junior to elite professional. Due to the contact nature of the game, injury is relatively common. The most common injuries are musculotendinous in nature and afflict the lower limb more frequently than elsewhere. Despite the high incidence of minor (sprains/strains) to moderate musculoskeletal injury (fracture, ligament and joint injury) and minor head injuries such as lacerations, nasal fractures and concussions, rare more serious spinal cord and other injuries causing death have also been recorded. The literature on rugby league injury is small but growing and suffers from a lack of consistent definition of what an injury is, thereby causing variability in the nature and incidence/prevalence of injury. Information is lacking on the injury profiles of different age groups. Importantly, there has been little attempt to establish a coordinated injury surveillance program in rugby league in the junior or professional levels. The implementation of such programs would require a universal definition of injury and a focus on important events and competitions. The implementation could provide important information in the identification and prevention of risk factors for injury.

  12. Designing Alkaline Exchange Membranes from Scratch

    Science.gov (United States)

    2011-10-10

    changes are reversible. An inherent limitation of the use of polystyrene for the hydrophobic block is its high glass transition temperature and...block is now a low glass transition temperature amorphous block. An added advantage of this synthetic route is that the chemical composition, and...soluble in lower alcohols and other solvents so that it can be included in the catalyst layer as an ionomer , thereby extending the triple-phase

  13. Chemical Emergencies

    Science.gov (United States)

    When a hazardous chemical has been released, it may harm people's health. Chemical releases can be unintentional, as in the case of an ... the case of a terrorist attack with a chemical weapon. Some hazardous chemicals have been developed by ...

  14. Preparation of anion exchange membrane using polyvinyl chloride (PVC) for alkaline water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gab-Jin; Bong, Soo-Yeon; Ryu, Cheol-Hwi [Hoseo University, Asan (Korea, Republic of); Lim, Soo-Gon [Energy and Machinery Korea Co., Ltd., Changwon (Korea, Republic of); Choi, Ho-Sang [Kyungil University, Gyeongsan (Korea, Republic of)

    2015-09-15

    An anion exchange membrane was prepared by the chloromethylation and the amination of polyvinyl chloride (PVC), as the base polymer. The membrane properties of the prepared anion exchange membrane, including ionic conductivity, ion exchange capacity, and water content were measured. The ionic conductivity of the prepared anion exchange membrane was in the range of 0.098x10{sup -2} -7.0x10{sup -2}S cm{sup -1}. The ranges of ion exchange capacity and water content were 1.9-3.7meq./g-dry-membrane and 35.1-63.1%, respectively. The chemical stability of the prepared anion exchange membrane was tested by soaking in 30 wt% KOH solution to determine its availability as a separator in the alkaline water electrolysis. The ionic conductivity during the chemical stability test largely did not change.

  15. Rehabilitation of basketball injuries.

    Science.gov (United States)

    Malanga, Gerard A; Chimes, Gary P

    2006-08-01

    Basketball is one of the most popular sports in the United States and throughout the world, and therefore represents one of the most common sources of sports-related injuries. Basketball injuries should be managed by the same general rehabilitation principles as other sports injuries. Additionally, the clinician should be aware not only of general sports injuries but of those injuries most commonly seen in basketball players. By maintaining knowledge of the most common basketball injuries as well as their diagnosis and treatment, the clinician can help to optimize the athlete's return to play and enjoyment of the sport.

  16. Maxillofacial injuries in sport.

    Science.gov (United States)

    Echlin, Paul; McKeag, Douglas B

    2004-02-01

    Maxillofacial injuries occur in contact and noncontact sports. Despite advancements in protective equipment and rule changes, there is still an unacceptably high rate of maxillofacial injuries. These injuries are clinically challenging. The significant morbidity, deformity, and disability associated with these injuries can be avoided by their prompt diagnosis and appropriate management. It is important for the sports medicine professional to be competent in the correct diagnosis and management of maxillofacial injuries. This article reviews some of the major maxillofacial injuries, along with their emergent examinations and treatments.

  17. Bodygraphic Injury Surveillance System

    Science.gov (United States)

    Tsuboi, Toshiki; Kitamura, Koji; Nishida, Yoshihumi; Motomura, Yoichi; Takano, Tachio; Yamanaka, Tatsuhiro; Mizoguchi, Hiroshi

    This paper proposes a new technology,``a bodygraphic injury surveillance system (BISS)'' that not only accumulates accident situation data but also represents injury data based on a human body coordinate system in a standardized and multilayered way. Standardized and multilayered representation of injury enables accumulation, retrieval, sharing, statistical analysis, and modeling causalities of injury across different fields such as medicine, engineering, and industry. To confirm the effectiveness of the developed system, the authors collected 3,685 children's injury data in cooperation with a hospital. As new analyses based on the developed BISS, this paper shows bodygraphically statistical analysis and childhood injury modeling using the developed BISS and Bayesian network technology.

  18. Lisfranc Joint Injuries

    Institute of Scientific and Technical Information of China (English)

    Lisa Chinn

    2009-01-01

    @@ The ankle and foot are the most common sites for athletic injuries.[1]Midfoot,or Lisfranc,injuries are the second most common foot injury and have a high in cidence in particular sports.They account for 4% of all football injuries per year,occurring frequently in linemen.[2]They are also common in equestrians,surfers,and windsurfers.[2]Lisfranc injuries are often misdiagnosed and if not treated properly can have lingering symptoms.It is estimated that Lisfranc joint injuries occur in 1 in every 55,000 persons every year.[3,4

  19. Ulceration Caused by a Small Alkaline Battery: Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Fatih Tekin

    2017-03-01

    Full Text Available Small alkaline or lithium-ion batteries, which are commonly referred to as watch batteries or button cells, may cause potentially dangerous organ injuries and tissue damage if swallowed. This condition, which is commonly seen in children, may cause damage, particularly in the respiratory and gastrointestinal tracts, as well as in the nose, external ear canal, and middle and inner ears. Ulceration due toxin contact is a very rare condition. In this study, we present the case of an 18-month-old male who swallowed a cell which caused damage in the medial femoral area after harmlessly passing through the entire gastrointestinal tract. The battery caused skin necrosis with the contribution of the electrolytic effect of stool in a diaper is an infrequent case and avoidable with only the parents' attention. Usually, swallowing watch batteries does not cause any symptoms or findings, and it easily excreted in stool. However, serious injuries and even deaths in cases involving the nasal cavities, outer and inner ear, esophagus, stomach, intestines, and neighboring organs have been reported in the literature. It is important to acknowledge the negative consequences and signs and symptoms of such conditions, and note that the battery may stick to body parts such as genital, medial femoral, anal, and intergluteal regions that remain in the diaper-covered area and may cause skin ulcerations due to the electrolytic characteristics of the stool.

  20. Characterization of Electrochemical and Morphological Properties of Iron-Phosphate-Silicate Chemical Garden Structures

    Science.gov (United States)

    Doloboff, I. J.; Barge, L. M.; Russell, M. J.; Kanik, I.

    2012-03-01

    Examination of the growth of Fe^2^+, phosphate, and silicate chemical garden structures to understand properties of similar structures that may have formed at Hadean alkaline hydrothermal vents which may play an important role in the emergence of life.

  1. Protection of Si photocathode using TiO2 deposited by high power impulse magnetron sputtering for H2 evolution in alkaline media

    DEFF Research Database (Denmark)

    Bae, Dowon; Shayestehaminzadeh, Seyedmohammad; Thorsteinsson, Einar B.

    2016-01-01

    Si is an excellent absorber material for use in photoelectrochemical (PEC) hydrogen production. Only a few studies have been done using Si in alkaline electrolyte for hydrogen evolution due to its poor chemical stability in high pH electrolyte, indicating that a chemically stable protection layer...

  2. Evaluation of some bean lines tolerance to alkaline soil

    Directory of Open Access Journals (Sweden)

    Abeer A. Radi

    2012-01-01

    Full Text Available Introduction: In less arid climates, salts are less concentrated and sodium dominates in carbonate and bicarbonate forms, which enhance the formation of alkaline soils. The development and identification of salt-tolerant crop cultivars or lines would complement salt management programs to improve the productivity and yields of salt stressed plants.Materials and methods: This work was to study the evaluation of alkalinity tolerance of some bean lines grown under different levels of sodium carbonate (Na2CO3 to select the most alkalinity tolerant lines versus the most-sensitive ones out of 6 lines of the test plants.Results: The symptoms induced by alkalinity included reduction in root, shoot growth, and leaf area which were more severe in some bean lines. Potassium leakage was severely affected by alkalinity in some lines at all tested levels, while in some others a moderate damage was manifested only at the higher levels. The increase in Na2CO3 level was associated with a gradual fall in chlorophyll a and b biosynthesis of all the test bean lines. However, alkalinity at low and moderate levels had a favorable effect on the biosynthesis of carotenoids in all the test bean lines. The increase in Na2CO3 supply had a considerable stimulatory effect on sodium accumulation, while potassium accumulation fluctuated in organs of bean lines.Conclusion: Assiut 1104 out of all the different lines investigated was found to display the lowest sensitivity to alkalinity stress, while Assiut 12/104 was the most sensitive one.

  3. Alkalinity Enrichment Enhances Net Calcification of a Coral Reef Flat

    Science.gov (United States)

    Albright, R.; Caldeira, K.

    2015-12-01

    Ocean acidification is projected to shift reefs from a state of net accretion to one of net dissolution sometime this century. While retrospective studies show large-scale changes in coral calcification over the last several decades, it is not possible to unequivocally link these results to ocean acidification due to confounding factors of temperature and other environmental parameters. Here, we quantified the calcification response of a coral reef flat to alkalinity enrichment to test whether reef calcification increases when ocean chemistry is restored to near pre-industrial conditions. We used sodium hydroxide (NaOH) to increase the total alkalinity of seawater flowing over a reef flat, with the aim of increasing carbonate ion concentrations [CO32-] and the aragonite saturation state (Ωarag) to values that would have been attained under pre-industrial atmospheric pCO2 levels. We developed a dual tracer regression method to estimate alkalinity uptake (i.e., calcification) in response to alkalinity enrichment. This approach uses the change in ratios between a non-conservative tracer (alkalinity) and a conservative tracer (a non-reactive dye, Rhodamine WT) to assess the fraction of added alkalinity that is taken up by the reef as a result of an induced increase in calcification rate. Using this method, we estimate that an average of 17.3% ± 2.3% of the added alkalinity was taken up by the reef community. In providing results from the first seawater chemistry manipulation experiment performed on a natural coral reef community (without artificial confinement), we demonstrate that, upon increase of [CO32-] and Ωarag to near pre-industrial values, reef calcification increases. Thus, we conclude that, the impacts of ocean acidification are already being felt by coral reefs. This work is the culmination of years of work in the Caldeira lab at the Carnegie Institution for Science, involving many people including Jack Silverman, Kenny Schneider, and Jana Maclaren.

  4. Mild Traumatic Brain Injury

    Science.gov (United States)

    ... Videos mild Traumatic Brain Injury 94447 reads Please Log in You must be logged in to access ... Brain Injury (DCoE) to promote the processes of building resilience, facilitating recovery and supporting reintegration of returning ...

  5. Preventing Children's Sports Injuries

    Science.gov (United States)

    ... might not be possible to return to the sport without risking further injury. Because overuse injuries are characterized by swelling, a doctor may prescribe rest, medicines to ease inflammation, and physical therapy. When recovery is complete, your child's technique or ...

  6. Spinal Cord Injury

    Science.gov (United States)

    ... indicated by a total lack of sensory and motor function below the level of injury. People who survive a spinal cord injury will most likely have medical complications such as chronic pain and bladder and bowel ...

  7. What Are Sports Injuries?

    Science.gov (United States)

    ... 06:02 Size: 11.7 MB November 2014 What Are Sports Injuries? Fast Facts: An Easy-to- ... Research Is Being Done on Treating Sports Injuries? What’s the Difference Between an Acute and a Chronic ...

  8. Preventing eye injuries

    Directory of Open Access Journals (Sweden)

    Daksha Patel

    2016-01-01

    Full Text Available The main challenge in developing a strategy to prevent eye injuries is that there are so many different causes and situations that can lead to eye injuries, each requiring a different approach.

  9. Studies on Fast Remediation of Soda Meadow Alkaline Soil

    Institute of Scientific and Technical Information of China (English)

    ZHOU Lianren; SUN Yankun; LI Dawei

    2010-01-01

    Researches on models of remediation quickly in soda meadow alkaline soil, and dynamic variation of water-salt in saline soil of Zhaozhou County were studied systematically from 2001 to 2006. Realize the vegetation cover of those years through the artificial planting, mixed seeding lymc grass (Elymus dahuricus Turcz) and melilot in the mode of rotary tillage and deep loosening in lower and medium saline soils. The results showed that there was remarkable relationship between net evaporation (difference of precipitation and evaporation) and total salt content in the soil. The net evaporation could be used as a new method to forecast the dynamics variation of salt to ensure the pasture optimum sowing time. Realize the autumnal vegetation cover of those years through direct planting on the bourgeon layer of soda meadow alkaline soil, on the other hand, the covered pasture made the function of restraining salt and alkaline content to realize the biology reverse succession quickly. Forage seeds were seeded directly on the seeding bed of soda alkaline meadow at the end of July. In fall of the same year, a certain amount of biomass was obtained. The model, which has remarkable economical efficiency and use widely, represented the innovative model for the fast vegetation restoration on the soda alkaline meadow soil.

  10. Primary cilia: the chemical antenna regulating human adipose-derived stem cell osteogenesis.

    Directory of Open Access Journals (Sweden)

    Josephine C Bodle

    Full Text Available Adipose-derived stem cells (ASC are multipotent stem cells that show great potential as a cell source for osteogenic tissue replacements and it is critical to understand the underlying mechanisms of lineage specification. Here we explore the role of primary cilia in human ASC (hASC differentiation. This study focuses on the chemosensitivity of the primary cilium and the action of its associated proteins: polycystin-1 (PC1, polycystin-2 (PC2 and intraflagellar transport protein-88 (IFT88, in hASC osteogenesis. To elucidate cilia-mediated mechanisms of hASC differentiation, siRNA knockdown of PC1, PC2 and IFT88 was performed to disrupt cilia-associated protein function. Immunostaining of the primary cilium structure indicated phenotypic-dependent changes in cilia morphology. hASC cultured in osteogenic differentiation media yielded cilia of a more elongated conformation than those cultured in expansion media, indicating cilia-sensitivity to the chemical environment and a relationship between the cilium structure and phenotypic determination. Abrogation of PC1, PC2 and IFT88 effected changes in both hASC proliferation and differentiation activity, as measured through proliferative activity, expression of osteogenic gene markers, calcium accretion and endogenous alkaline phosphatase activity. Results indicated that IFT88 may be an early mediator of the hASC differentiation process with its knockdown increasing hASC proliferation and decreasing Runx2, alkaline phosphatase and BMP-2 mRNA expression. PC1 and PC2 knockdown affected later osteogenic gene and end-product expression. PC1 knockdown resulted in downregulation of alkaline phosphatase and osteocalcin gene expression, diminished calcium accretion and reduced alkaline phosphatase enzymatic activity. Taken together our results indicate that the structure of the primary cilium is intimately associated with the process of hASC osteogenic differentiation and that its associated proteins are critical

  11. [Acute kidney injury

    NARCIS (Netherlands)

    Hageman, D.; Kooman, J.P.; Lance, M.D.; Heurn, L.W. van; Snoeijs, M.G.

    2012-01-01

    - 'Acute kidney injury' is modern terminology for a sudden decline in kidney function, and is defined by the RIFLE classification (RIFLE is an acronym for Risk, Injury, Failure, Loss and End-stage kidney disease).- Acute kidney injury occurs as a result of the combination of reduced perfusion in the

  12. Spinal Cord Injuries

    Science.gov (United States)

    ... forth between your body and your brain. A spinal cord injury disrupts the signals. Spinal cord injuries usually begin with a blow that fractures or ... down on the nerve parts that carry signals. Spinal cord injuries can be complete or incomplete. With a complete ...

  13. Rotator Cuff Injuries.

    Science.gov (United States)

    Connors, G. Patrick

    Many baseball players suffer from shoulder injuries related to the rotator cuff muscles. These injuries may be classified as muscular strain, tendonitis or tenosynovitis, and impingement syndrome. Treatment varies from simple rest to surgery, so it is important to be seen by a physician as soon as possible. In order to prevent these injuries, the…

  14. HAND INJURIES IN VOLLEYBALL

    NARCIS (Netherlands)

    BHAIRO, NH; NIJSTEN, MWN; VANDALEN, KC; TENDUIS, HJ

    1992-01-01

    We studied the long-term sequelae of hand injuries as a result of playing volleyball. In a retrospective study, 226 patients with injuries of the hand who were seen over a 5-year period at our Trauma Department, were investigated. Females accounted for 66 % of all injuries. The mean age was 26 years

  15. Metasomatized lithosphere and the origin of alkaline lavas.

    Science.gov (United States)

    Pilet, Sébastien; Baker, Michael B; Stolper, Edward M

    2008-05-16

    Recycled oceanic crust, with or without sediment, is often invoked as a source component of continental and oceanic alkaline magmas to account for their trace-element and isotopic characteristics. Alternatively, these features have been attributed to sources containing veined, metasomatized lithosphere. In melting experiments on natural amphibole-rich veins at 1.5 gigapascals, we found that partial melts of metasomatic veins can reproduce key major- and trace-element features of oceanic and continental alkaline magmas. Moreover, experiments with hornblendite plus lherzolite showed that reaction of melts of amphibole-rich veins with surrounding lherzolite can explain observed compositional trends from nephelinites to alkali olivine basalts. We conclude that melting of metasomatized lithosphere is a viable alternative to models of alkaline basalt formation by melting of recycled oceanic crust with or without sediment.

  16. Alkaline Comet Assay for Assessing DNA Damage in Individual Cells.

    Science.gov (United States)

    Pu, Xinzhu; Wang, Zemin; Klaunig, James E

    2015-08-06

    Single-cell gel electrophoresis, commonly called a comet assay, is a simple and sensitive method for assessing DNA damage at the single-cell level. It is an important technique in genetic toxicological studies. The comet assay performed under alkaline conditions (pH >13) is considered the optimal version for identifying agents with genotoxic activity. The alkaline comet assay is capable of detecting DNA double-strand breaks, single-strand breaks, alkali-labile sites, DNA-DNA/DNA-protein cross-linking, and incomplete excision repair sites. The inclusion of digestion of lesion-specific DNA repair enzymes in the procedure allows the detection of various DNA base alterations, such as oxidative base damage. This unit describes alkaline comet assay procedures for assessing DNA strand breaks and oxidative base alterations. These methods can be applied in a variety of cells from in vitro and in vivo experiments, as well as human studies.

  17. POLYETHER POLYURETHANE FROM MODIFIED WHEAT STRAW OXYGEN-ALKALINE LIGNIN

    Institute of Scientific and Technical Information of China (English)

    QuanxiaoLiu; HuaiyuZhan; BeihaiHe; ShuhuiYang; JianhuaLiu; JianluLiu(1); ZhenxingPang

    2004-01-01

    Polyether polyurethane was synthesized from modified wheat straw oxygen-alkaline lignin, polyethylene glycol and two different diisocyanates (diphenylemethane-4, 4'-diisocyanate, tolulene diisocyanate) by solution casting method, its properties were investigated. The results show that modified wheat straw oxygen-alkaline lignin can substitute part of polyethylene glycol to react with diisocyanate to synthesize polyurethane. The molar ratio of NCO to OH and modified wheat straw oxygen-alkaline lignin content affect the properties of lignin-based polyether polyurethane respectively. The addition of plasticizer in the polyurethane synthesis process improves the properties of synthesized polyurethane, especially the elasticity of polyurethane. The synthesized polyurethane from modified wheat straw oxygen-alkali lignin can be used as both engineering plastic and hard foam plastic in future.

  18. POLYETHER POLYURETHANE FROM MODIFIED WHEAT STRAW OXYGEN-ALKALINE LIGNIN

    Institute of Scientific and Technical Information of China (English)

    Quanxiao Liu; Huaiyu Zhan; Beihai He; Shuhui Yang; Jianhua Liu; Jianlu Liu; Zhenxing Pang

    2004-01-01

    Polyether polyurethane was synthesized from modified wheat straw oxygen-alkaline lignin,polyethylene glycol and two different diisocyanates (diphenylemethane-4, 4′-diisocyanate, tolulene diisocyanate) by solution casting method, its properties were investigated. The results show that modified wheat straw oxygen-alkaline lignin can substitute part of polyethylene glycol to react with diisocyanate to synthesize polyurethane. The molar ratio of NCO to OH and modified wheat straw oxygen-alkaline lignin content affect the properties of lignin-based polyether polyurethane respectively. The addition of plasticizer in the polyurethane synthesis process improves the properties of synthesized polyurethane, especially the elasticity of polyurethane. The synthesized polyurethane from modified wheat straw oxygen-alkali lignin can be used as both engineering plastic and hard foam plastic in future.

  19. Perovskites As Electrocatalysts for Alkaline Water Electrolysis

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey Valerievich; De La Osa Puebla, Ana Raquel; Jensen, Jens Oluf

    2014-01-01

    such as X-ray diffraction, electrical conductivity, scanning electron microscopy (SEM), energy dispersive microscopy (EDX) and rotating disk electrode. The perovskites tested in this work were both produced by a ball-milling technique and by an auto-combustion synthesis, which appeared to be a fast...... and robust method for synthesis of perovskites with various chemical compositions1. The electrochemical performance of the materials was tested through pellet pressing of the perovskite powders. This involved in some case a time consuming preparation process. Furthermore the technique should show...... the adequate reproducibility.2 In this work we show the development of the method, which was further used to compare the activity of various electrocatalysts (Figures 1,2). The electrocatalytic activity of all prepared perovskites was tested in 1M KOH at 80 °C, using an ink consisting of potassium exchanged...

  20. Apatite formation on alkaline-treated dense TiO2 coatings deposited using the solution precursor plasma spray process.

    Science.gov (United States)

    Chen, Dianying; Jordan, Eric H; Gell, Maurice; Wei, Mei

    2008-05-01

    A dense titania (TiO2) coating was deposited from an ethanol-based solution containing titanium isopropoxide using the solution precursor plasma spray (SPPS) process. XRD and Raman spectrum analyses confirmed that the coating is exclusively composed of rutile TiO2. SEM micrographs show the as-sprayed coating is dense with a uniform thickness and there are no coarse splat boundaries. The as-sprayed coating was chemically treated in 5M NaOH solution at 80 degrees C for 48 h. The bioactivity of as-sprayed and alkaline-treated coatings was investigated by immersing the coatings in simulated body fluid (SBF) for 14-28 days, respectively. After 28 days immersion, there is a complete layer of carbonate-containing apatite formed on the alkaline-treated TiO2 coating surface, but none formed on the as-sprayed coating.

  1. Enhanced alkaline hydrolysis and biodegradability studies of nitrocellulose-bearing missile propellant

    Science.gov (United States)

    Sidhoum, Mohammed; Christodoulatos, Christos; Su, Tsan-Liang; Redis, Mercurios

    1995-01-01

    Large amounts of energetic materials which have been accumulated over the years in various manufacturing and military installations must be disposed of in an environmentally sound manner. Historically, the method of choice for destruction of obsolete or aging energetic materials has been open burning or open detonation (OB/OD). This destruction approach has become undesirable due to air pollution problems. Therefore, there is a need for new technologies which will effectively and economically deal with the disposal of energetic materials. Along those lines, we have investigated a chemical/biological process for the safe destruction and disposal of a double base solid rocket propellant (AHH), which was used in several 8 inch projectile systems. The solid propellant is made of nitrocellulose and nitroglycerin as energetic components, two lead salts which act as ballistic modifiers, triacetin as a plasticizer and 2-Nitrodiphenylamine (2-NDPA) as a stabilizer. A process train is being developed to convert the organic components of the propellant to biodegradable products and remove the lead from the process stream. The solid propellant is first hydrolyzed through an enhanced alkaline hydrolysis process step. Following lead removal and neutralization, the digested liquor rich in nitrates and nitrites is found to be easily biodegradable. The digestion rate of the intact ground propellant as well as the release of nitrite and nitrate groups were substantially increased when ultrasound were supplied to the alkaline reaction medium compared to the conventional alkaline hydrolysis. The effects of reaction time, temperature, sodium hydroxide concentration and other relevant parameters on the digestion efficiency and biodegradability have been studied. The present work indicates that the AHH propellant can be disposed of safely with a combination of physiochemical and biological processes.

  2. Separation, Concentration, and Immobilization of Technetium and Iodine from Alkaline Supernate Waste

    Energy Technology Data Exchange (ETDEWEB)

    James Harvey; Michael Gula

    1998-12-07

    Development of remediation technologies for the characterization, retrieval, treatment, concentration, and final disposal of radioactive and chemical tank waste stored within the Department of Energy (DOE) complex represents an enormous scientific and technological challenge. A combined total of over 90 million gallons of high-level waste (HLW) and low-level waste (LLW) are stored in 335 underground storage tanks at four different DOE sites. Roughly 98% of this waste is highly alkaline in nature and contains high concentrations of nitrate and nitrite salts along with lesser concentrations of other salts. The primary waste forms are sludge, saltcake, and liquid supernatant with the bulk of the radioactivity contained in the sludge, making it the largest source of HLW. The saltcake (liquid waste with most of the water removed) and liquid supernatant consist mainly of sodium nitrate and sodium hydroxide salts. The main radioactive constituent in the alkaline supernatant is cesium-137, but strontium-90, technetium-99, and transuranic nuclides are also present in varying concentrations. Reduction of the radioactivity below Nuclear Regulatory Commission (NRC) limits would allow the bulk of the waste to be disposed of as LLW. Because of the long half-life of technetium-99 (2.1 x 10 5 y) and the mobility of the pertechnetate ion (TcO 4 - ) in the environment, it is expected that technetium will have to be removed from the Hanford wastes prior to disposal as LLW. Also, for some of the wastes, some level of technetium removal will be required to meet LLW criteria for radioactive content. Therefore, DOE has identified a need to develop technologies for the separation and concentration of technetium-99 from LLW streams. Eichrom has responded to this DOE-identified need by demonstrating a complete flowsheet for the separation, concentration, and immobilization of technetium (and iodine) from alkaline supernatant waste.

  3. [Trampoline injuries in children].

    Science.gov (United States)

    Sinikumpu, Juha-Jaakko; Antila, Eeva; Korhonen, Jussi; Rättyä, Johanna; Serlo, Willy

    2012-01-01

    Trampolines for home use have become common in Finland during the past ten years, being especially favored by children. Trampoline jumping is beneficial and constructive physical exercise, but poses a significant risk for injuries. The most common injuries include sprains and strains. During summertime, trampoline injuries account for as many as 13% of children's accidents requiring hospital care. Fractures are by far the most common trampoline injuries requiring hospital care. Injuries can be prevented by using safety nets. Only one child at a time is allowed to jump on the trampoline.

  4. Multiple unfolding intermediates of human placental alkaline phosphatase in equilibrium urea denaturation.

    Science.gov (United States)

    Hung, H C; Chang, G G

    2001-12-01

    Alkaline phosphatase is an enzyme with a typical alpha/beta hydrolase fold. The conformational stability of the human placental alkaline phosphatase was examined with the chemical denaturant urea. The red shifts of fluorescence spectra show a complex unfolding process involving multiple equilibrium intermediates indicating differential stability of the subdomains of the enzyme. None of these unfolding intermediates were observed in the presence of 83 mM NaCl, indicating the importance of ionic interactions in the stabilization of the unfolding intermediates. Guanidinium chloride, on the other hand, could stabilize one of the unfolding intermediates, which is not a salt effect. Some of the unfolding intermediates were also observed in circular dichroism spectroscopy, which clearly indicates steady loss of helical structure during unfolding, but very little change was observed for the beta strand content until the late stage of the unfolding process. The enzyme does not lose its phosphate-binding ability after substantial tertiary structure changes, suggesting that the substrate-binding region is more resistant to chemical denaturant than the other structural domains. Global analysis of the fluorescence spectral change demonstrated the following folding-unfolding process of the enzyme: N I(1) I(2) I(3) I(4) I(5) D. These discrete intermediates are stable at urea concentrations of 2.6, 4.1, 4.7, 5.5, 6.6, and 7.7 M, respectively. These intermediates are further characterized by acrylamide and/or potassium iodide quenching of the intrinsic fluorescence of the enzyme and by the hydrophobic probes, 1-anilinonaphthalene-8-sulfonic acid and 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid. The stepwise unfolding process was interpreted by the folding energy landscape in terms of the unique structure of the enzyme. The rigid central beta-strand domain is surrounded by the peripheral alpha-helical and coil structures, which are marginally stable toward a chemical

  5. Extracellular alkaline pH leads to increased metastatic potential of estrogen receptor silenced endocrine resistant breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Maitham A Khajah

    Full Text Available INTRODUCTION: Endocrine resistance in breast cancer is associated with enhanced metastatic potential and poor clinical outcome, presenting a significant therapeutic challenge. We have established several endocrine insensitive breast cancer lines by shRNA induced depletion of estrogen receptor (ER by transfection of MCF-7 cells which all exhibit enhanced expression profile of mesenchymal markers with reduction of epithelial markers, indicating an epithelial to mesenchymal transition. In this study we describe their behaviour in response to change in extracellular pH, an important factor controlling cell motility and metastasis. METHODS: Morphological changes associated with cell exposure to extracellular alkaline pH were assessed by live cell microscopy and the effect of various ion pumps on this behavior was investigated by pretreatment with chemical inhibitors. The activity and expression profile of key signaling molecules was assessed by western blotting. Cell motility and invasion were examined by scratch and under-agarose assays respectively. Total matrix metalloproteinase (MMP activity and specifically of MMP2/9 was assessed in conditioned medium in response to brief alkaline pH exposure. RESULTS: Exposure of ER -ve but not ER +ve breast cancer cells to extracellular alkaline pH resulted in cell shrinkage and spherical appearance (termed contractolation; this was reversed by returning the pH back to 7.4. Contractolation was blocked by targeting the Na(+/K(+ and Na(+/H(+ pumps with specific chemical inhibitors. The activity and expression profile of key signaling molecules critical for cell adhesion were modulated by the exposure to alkaline pH. Brief exposure to alkaline pH enhanced MMP2/9 activity and the invasive potential of ER -ve cells in response to serum components and epithelial growth factor stimulation without affecting unhindered motility. CONCLUSIONS: Endocrine resistant breast cancer cells behave very differently to estrogen

  6. Direct Promotion of Collagen Calcification by Alkaline Phosphatase

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Alkaline phosphatase promotes hydrolysis of phosphate containing substrates, causes a rise in inorganic phosphate and, therefore, enhances calcification of biological tissues. In this work, the calcification of collagen in a model serum was used as a model of collagenous tissue biomaterials to study the possible calcification promotion mechanism of alkaline phosphatase. In the enzyme concentration range of 0.10.5mg/mL, the enzyme shows a direct calcification promoting effect which is independent of the hydrolysis of its phosphate containing substrates but proportional to the enzyme concentration. Potassium pyrophosphate somewhat inhibits the calcification promotion.

  7. Research on Alkaline Filler Flame-Retarded Asphalt Pavement

    Institute of Scientific and Technical Information of China (English)

    HU Shuguang; ZHANG Houji; WANG Jiaolan

    2006-01-01

    Used as flame retardant of tunnel asphalt pavement, organic bromides produce a large amount of poisons and smoke in construction and flame retardation stage. The alkaline filler was found to replace mineral filler, and the flame-retarded asphalt mixtures were produced. Experimental results show that these asphalt mixtures are smoke restrained; the performances and construction technology of asphalt pavement are not influenced; also the alkaline filler is of low-price. So this kind of flame-retarded asphalt mixtures is suitable for tunnel pavement.

  8. Impact of Alkaline Dust Pollution on Soil Microbial Biomass Carbon

    OpenAIRE

    Kara, Ömer; Bolat, İlyas

    2007-01-01

    The effect of alkaline dust pollution emitted from Bartın cement plant on the soil microbial biomass carbon was investigated using the chloroform fumigation-extraction (CFE) method. Microbial biomass C (Cmic) values ranged from 157.82 to 1201.51 µg g-1 soils in the polluted area and from 726.70 to 1529.14 µg g-1 soils in the control area. Soils polluted with alkaline cement dust resulted in significant reductions in Cmic levels compared to control soils. Microbial biomass C correlated negativ...

  9. Alkaline protease production by solid state fermentation on polyurethane foam

    OpenAIRE

    Hongzhang, Chen; Hui, Wang; Aijun, Zhang; Zuohu, Li

    2006-01-01

    This paper investigated the process of solid state fermentation (SSF) using PUF (polyurethane foam) as inert solid support to produce alkaline protease. Maximal enzyme activity was 2185U/ml at pH 9.0, incubation temperature 32 0C inoculum amount of 1.0 % (v/v) , nutrient solution3.75 ml/g PUF, incubation time for 2 h and 15.0 mM of added CaCl2. Under the same conditions, the yield of alkaline protease produced by SSF using PUF as support is higher than that by submerged fermentation (SMF).

  10. Advances in alkaline cooling water treatment technology: An update

    Energy Technology Data Exchange (ETDEWEB)

    Shaffer, A.E. Jr.; Klatskin, S.D.

    1985-01-01

    A series of chromate and non-chromate treatment programs, specifically designed for alkaline pH cooling waters, have been developed. The treatments provide excellent corrosion and scale control over a broad range of water chemistries and are applicable to high conductivity and iron contaminated waters. Low levels of zinc are used to reduce the dependency on alkalinity, chromate and calcium carbonate supersaturation for corrosion control. The precipitation and fouling problems previously encountered with zinc containing treatments have been eliminated by the use of polymeric dispersants.

  11. Application conditions for ester cured alkaline phenolic resin sand

    Institute of Scientific and Technical Information of China (English)

    Ren-he Huang; Bao-ping Zhang; Yao-ji Tang

    2016-01-01

    Five organic esters with different curing speeds: propylene carbonate (i.e. high-speed ester A); 1, 4-butyrolactone; glycerol triacetate (i.e. medium-speed ester B); glycerol diacetate; dibasic ester (DBE) (i.e. low-speed ester C), were chosen to react with alkaline phenolic resin to analyze the application conditions of ester cured alkaline phenolic resin. The relationships between the curing performances of the resin (including pH value, gel pH value, gel time of resin solution, heat release rate of the curing reaction and tensile strength of the resin sand) and the amount of added organic ester and curing temperature were investigated. The results indicated the folowing: (1) The optimal added amount of organic ester should be 25wt.%-30wt.% of alkaline phenolic resin and it must be above 20wt.%-50 wt.% of the organic ester hydrolysis amount. (2) High-speed ester A (propylene carbonate) has a higher curing speed than 1, 4-butyrolactone, and they were both used as high-speed esters. Glycerol diacetate is not a high-speed ester in alkaline phenolic resin although it was used as a high-speed ester in ester cured sodium silicate sand; glycerol diacetate and glycerol triacetate can be used as medium-speed esters in alkaline phenolic resin. (3) High-speed ester A, medium-speed ester B (glycerol triacetate) and low-speed ester C (dibasic ester, i.e., DBE) should be used below 15 ºC, 35 ºC and 50 ºC, respectively. High-speed ester A or low-speed ester C should not be used alone but mixed with medium-speed ester B to improve the strength of the resin sand. (4) There should be a suitable solid content (generaly 45wt.%-65wt.% of resin), alkali content (generaly 10wt.%-15wt.% of resin) and viscosity of alkaline phenolic resin (generaly 50-300 mPa·s) in the preparation of alkaline phenolic resin. Finaly, the technique conditions of alkaline phenolic resin preparation and the application principles of organic ester were discussed.

  12. Surface-treatment of Alkaline Earth Sulfides Based Phosphor

    Institute of Scientific and Technical Information of China (English)

    GUO Chong-feng; CHU Ben-li; XU Jian; SU Qiang

    2004-01-01

    A series of alkaline earth sulfides based phosphors Ca0.8Sr0.2S∶Eu2+, Tm3+ were covered with a layer of protective coating with alkaline earth fluorides by heating the mixture of phosphor and NH4HF2 at elevated temperatures. The coatings were characterized by means of XRD and SEM. The optical properties of the coated phosphors and the influences of the coating on their properties have been discussed extensively. The stabilities of the coated and uncoated phosphors have been compared.

  13. Human placental alkaline phosphatase electrophoretic alleles: Quantitative studies

    Science.gov (United States)

    Lucarelli, Paola; Scacchi, Renato; Corbo, Rosa Maria; Benincasa, Alberto; Palmarino, Ricciotti

    1982-01-01

    Human placental alkaline phosphatase (ALP) activity has been determined in specimens obtained from 562 Italian subjects. The mean activities of the three common homozygotes (Pl 2 = 4.70 ± 0.24, Pl 1 = 4.09 ± 0.08, and Pl 3 = 2.15 ± 0.71 μmol of p-nitrophenol produced) were significantly different. The differences among the various allelic forms account for 10% of the total quantitative variation of the human placental alkaline phosphatase. PMID:7072721

  14. Impact of Alkaline Dust Pollution on Soil Microbial Biomass Carbon

    OpenAIRE

    KARA, Ömer; Bolat, İlyas

    2014-01-01

    The effect of alkaline dust pollution emitted from Bartın cement plant on the soil microbial biomass carbon was investigated using the chloroform fumigation-extraction (CFE) method. Microbial biomass C (Cmic) values ranged from 157.82 to 1201.51 µg g-1 soils in the polluted area and from 726.70 to 1529.14 µg g-1 soils in the control area. Soils polluted with alkaline cement dust resulted in significant reductions in Cmic levels compared to control soils. Microbial biomass C correlated negativ...

  15. Structural Analysis Of Alfa Fibers After Chemical Treatment

    Directory of Open Access Journals (Sweden)

    Zakaria Mouallif

    2015-02-01

    Full Text Available Nowadays, natural fibers are used as reinforcement in composite materials. The Alfa fibers have undergone an alkaline treatment with sodium hydroxide NaOH at a concentration of 10%, during an immersion period of two days. After drying, the Fourier transform infrared spectroscopy by attenuated total reflection (FTIR-ATR and X-ray diffraction (XRD were used for the analysis of the chemical properties of these fibers which were extracted from the plant Alfa of the region Al Haouz (Morocco in order to study the modifications resulting from the alkaline treatment. The results proved the presence of the cellulose, with an increase in its proportion in those fibers which have undergone an alkaline treatment with NaOH, the presence of lignin and pectin, as well as their disappearance after the alkaline extraction.

  16. Alkaline Hydrolysis/Polymerization of 2,4,6-Trinitrotoluene: Characterization of Products by 13C and 15N NMR

    Science.gov (United States)

    Thorn, K.A.; Thorne, P.G.; Cox, L.G.

    2004-01-01

    Alkaline hydrolysis has been investigated as a nonbiological procedure for the destruction of 2,4,6-trinitrotoluene (TNT) in explosives contaminated soils and munitions scrap. Nucleophilic substitutions of the nitro and methyl groups of TNT by hydroxide ion are the initial steps in the alkaline degradation of TNT. Potential applications of the technique include both in situ surface liming and ex situ alkaline treatment of contaminated soils. A number of laboratory studies have reported the formation of an uncharacterized polymeric material upon prolonged treatment of TNT in base. As part of an overall assessment of alkaline hydrolysis as a remediation technique, and to gain a better understanding of the chemical reactions underlying the hydrolysis/polymerization process, the soluble and precipitate fractions of polymeric material produced from the calcium hydroxide hydrolysis of unlabeled and 15N-labeled TNT were analyzed by elemental analysis and 13C and 15N nuclear magnetic resonance spectroscopy. Spectra indicated that reactions leading to polymerization included nucleophilic displacement of nitro groups by hydroxide ion, formation of ketone, carboxyl, alcohol, ether, and other aliphatic carbons, conversion of methyl groups to diphenyl methylene carbons, and recondensation of aromatic amines and reduced forms of nitrite, including ammonia and possibly hydroxylamine, into the polymer. Compared to the distribution of carbons in TNT as 14% sp 3- and 86% sp2-hybridized, the precipitate fraction from hydrolysis of unlabeled TNT contained 33% sp3- and 67% sp 2-hybridized carbons. The concentration of nitrogen in the precipitate was 64% of that in TNT. The 15N NMR spectra showed that, in addition to residual nitro groups, forms of nitrogen present in the filtrate and precipitate fractions include aminohydroquinone, primary amide, indole, imine, and azoxy, among others. Unreacted nitrite was recovered in the filtrate fraction. The toxicities and susceptibilities to

  17. Early containment of high-alkaline solution simulating low-level radioactive waste stream in clay-bearing blended cement

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A.A. [Westinghouse Hanford Co., Richland, WA (United States); Olson, R.A.; Tennis, P.D. [Northwestern Univ., Evanston, IL (United States). Center for Advanced Cement-Based Materials] [and others

    1995-04-01

    Portland cement blended with fly ash and attapulgite clay was mixed with high-alkaline solution simulating low-level radioactive waste stream at a one-to-one weight ratio. Mixtures were adiabatically and isothermally cured at various temperatures and analyzed for phase composition, total alkalinity, pore solution chemistry, and transport properties as measured by impedance spectroscopy. Total alkalinity is characterized by two main drops. The early one corresponds to a rapid removal of phosphorous, aluminum, sodium, and to a lesser extent potassium solution. The second drop from about 10 h to 3 days is mainly associated with the removal of aluminum, silicon, and sodium. Thereafter, the total alkalinity continues descending, but at a lower rate. All pastes display a rapid flow loss that is attributed to an early precipitation of hydrated products. Hemicarbonate appears as early as one hour after mixing and is probably followed by apatite precipitation. However, the former is unstable and decomposes at a rate that is inversely related to the curing temperature. At high temperatures, zeolite appears at about 10 h after mixing. At 30 days, the stabilized crystalline composition Includes zeolite, apatite and other minor amounts of CaCO{sub 3}, quartz, and monosulfate Impedance spectra conform with the chemical and mineralogical data. The normalized conductivity of the pastes shows an early drop, which is followed by a main decrease from about 12 h to three days. At three days, the permeability of the cement-based waste as calculated by Katz-Thompson equation is over three orders of magnitude lower than that of ordinary portland cement paste. However, a further decrease in the calculated permeability is questionable. Chemical stabilization is favorable through incorporation of waste species into apatite and zeolite.

  18. PHYSICO CHEMICAL PARAMETERS OF NASPUR LAKE ADILABAD DISTRICT (A.P.

    Directory of Open Access Journals (Sweden)

    P.Sivalingam

    2013-08-01

    Full Text Available Present paper deals with the physic-chemical parameters of Naspur lake, Manchiryal mandal, Aailabad district. The work was carried out during the period of Sep-2011 to Aug 2012.This lake was established for Irrigation, Drinking water and Fish culture purpose last two decades back. It was in the out of 7 km distance from Manchiryal town. Singareni coal mine employs are living in the Manchiryal town, day by day expanding of city population last two decades .In rainy season it’s receiving city sewage .industrial wastes, coalmine dust run off to the lake. This type of water injuries to the health of human other aquatic fauna. So there is an urgent requirement for its extent of pollution which will help us in further management of conservation. During the study period examine the physic-chemical parameters such as: atmosphere temperature, water temperature, pH, electrical conductivity, alkalinity, total hardness, TDS, Ca.Mg, chlorides, sulphates and phosphate, following stranded methods (APHA 1998. Now this lake is becoming eutrophic nature.

  19. Acute kidney injury: A rare cause

    Directory of Open Access Journals (Sweden)

    Satish Mendonca

    2015-01-01

    Full Text Available We present a young lady who consumed hair dye, which contained paraphenylene diamine (PPD, as a means of deliberate self-harm. This resulted in severe angio-neurotic edema for which she had to be ventilated, and thereafter developed rhabdomyolysis leading to acute kidney injury (AKI. The unusual aspect was that the patient continued to have flaccid quadriparesis and inability to regain kidney function. Renal biopsy performed 10 weeks after the dye consumption revealed severe acute tubular necrosis with myoglobin pigment casts. This suggests that PPD has a long-term effect leading to ongoing myoglobinuria, causing flaccid paralysis to persist and preventing the recovery of AKI. In such instances, timely treatment to prevent AKI in the form alkalinization of urine should be initiated promptly. Secondly, because PPD is a nondialyzable toxin, and its long-term effect necessitates its speedy removal, hemoperfusion might be helpful and is worth considering

  20. Investigation of ruthenium promoted palladium catalysts for methanol electrooxidation in alkaline media

    Science.gov (United States)

    Jurzinsky, Tilman; Kammerer, Patricia; Cremers, Carsten; Pinkwart, Karsten; Tübke, Jens

    2016-01-01

    In this study, the investigation of binary palladium based electrocatalysts for methanol oxidation in alkaline media is reported. For this purpose, electrocatalysts with a loading of 20wt% metal on VulcanXC72-R were synthesized via wet chemical reduction with various compositions of palladium and ruthenium. Physical characterization via transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and inductively coupled plasma optical emission spectroscopy (ICP-OES) was done and verified the synthesis of nanoparticles on carbon support. Electrochemical evaluation of the catalytic behavior of Pd/C, Ru/C and PdXRu/C (X = 1, 3, 5) via cyclic voltammetry and chronoamperometry was conducted in a 3-electrode setup. These measurements suggested that Pd3Ru/C is a promising material for methanol oxidation reaction in alkaline media with an onset potential of 0.465 VRHE and a peak current density of over 1 A mg-1Pd. To further investigate the oxidation of methanol on Pd/C and Ru promoted catalysts, differential electrochemical mass spectrometry (DEMS) measurements were done. From these results a higher CO2 current efficiency (CCE) of 86% for Pd3Ru/C compared to 65% for Pd/C was found. Moreover, fuel cell tests verified the results and showed that Pd3Ru/C has the better performance.

  1. Investigations Into the Nature of Alkaline Soluble, Non-Pertechnetate Technetium

    Energy Technology Data Exchange (ETDEWEB)

    Rapko, Brian M.; Bryan, Samuel A.; Chatterjee, Sayandev; Edwards, Matthew K.; Levitskaia, Tatiana G.; Peterson, James M.; Peterson, Reid A.; Sinkov, Sergey I.

    2013-11-14

    This report summarizes work accomplished in fiscal year (FY) 2013, exploring the chemistry of a low-valence technetium(I) species, [Tc(CO)3(H2O)3]+, a compound of interest due to its implication in the speciation of alkaline-soluble technetium in several Hanford tank waste supernatants. Various aspects of FY 2013’s work were sponsored both by Washington River Protection Solutions and the U.S. Department of Energy’s Office of River Protection; because of this commonality, both sponsors’ work is summarized in this report. There were three tasks in this FY 2013 study. The first task involved examining the speciation of [(CO)3Tc(H2O)3]+ in alkaline solution by 99Tc nuclear magnetic resonance spectroscopy. The second task involved the purchase and installation of a microcalorimeter suitable to study the binding affinity of [(CO)3Tc(H2O)3]+ with various inorganic and organic compounds relevant to Hanford tank wastes, although the actual measure of such binding affinities is scheduled to occur in future FYs. The third task involved examining the chemical reactivity of [(CO)3Tc(H2O)3]+ as relevant to the development of a [(CO)3Tc(H2O)3]+ spectroelectrochemical sensor based on fluorescence spectroscopy.

  2. Alkaline phosphatase activity and the phosphorus mineralization rate of Lake Taihu

    Institute of Scientific and Technical Information of China (English)

    GAO; Guang; ZHU; Guangwei; QIN; Boqiang; CHEN; Jun

    2006-01-01

    The phosphorus fractions, the alkaline phosphatase activity (APA) and other water chemical parameters were concomitantly monitored from April 2003 to October 2004 in different ecotype sites of Lake Taihu. During the stages of algae growth, the phosphorus fractions and their relationships with APA in different ecotype sites were discussed and the phosphorus mineralization rate was calculated. In the water of Lake Taihu, most of the phosphorus (70.2%) could be attributed to the suspended particulate phosphorus, while the dissolved reactive phosphorus (DRP) seems to contribute less than 7%. About 58% of the total phosphorus, however, can be hydrolyzed as inorganic phosphate to compensate for phosphorus deficiency of algae and bacteria growth. During the different algae growth stages, the APA and its Kinetic parameters were varied significantly between different ecotype sites of Lake Taihu. This trend is also visible by comparing the phosphorus mineralization rate,and the most rapidly phosphorus turnover time is only several minutes. The fast recycle of phosphorus can, to some extent, be explained that the phosphorus source of algal blooms. The phytoplankton seems to compensate for phosphorus deficiency by using the alkaline phosphatase to hydrolyze phosphomonoesters.

  3. Electrochemical Deposition and Characterization of Ni-Mo Alloys as Cathode for Alkaline Water Electrolysis

    Science.gov (United States)

    Manazoğlu, Mert; Hapçı, Gökçe; Orhan, Gökhan

    2016-01-01

    In this study, Ni-Mo alloy coatings were electrochemically deposited on a copper plate in citrate solutions. The effects of Ni/Mo mole ratio in the electrolyte and pH value on hydrogen evolution reaction (HER) as well as the electrochemical stability were investigated in the alkaline solution for electrodeposited NiMo. The electrocatalytic activity of the fabricated NiMo alloys for HER in alkaline solutions was investigated by the polarization measurements and electrochemical impedance spectroscopy techniques. The morphology and chemical composition of the electrodeposited Ni-Mo were investigated using SEM and EDS analyses. It was found that NiMo electrode with the highest molybdenum content (ca. 38 wt.%) and high surface area show high electrocatalytic activity in the HER. This was produced from a bath with a pH of 9.5, Ni/Mo ratio of 1/10 and 0.5 M sodium citrate concentration. The stability of this coating was tested by polarization measurements after different anodic and cathodic treatment in 1 M NaOH solution. The open circuit potential ( E ocp) of the electrode as a function of immersion time was also measured.

  4. Electrochemical kinetic and mass transfer model for direct ethanol alkaline fuel cell (DEAFC)

    Science.gov (United States)

    Abdullah, S.; Kamarudin, S. K.; Hasran, U. A.; Masdar, M. S.; Daud, W. R. W.

    2016-07-01

    A mathematical model is developed for a liquid-feed DEAFC incorporating an alkaline anion-exchange membrane. The one-dimensional mass transport of chemical species is modelled using isothermal, single-phase and steady-state assumptions. The anode and cathode electrochemical reactions use the Tafel kinetics approach, with two limiting cases, for the reaction order. The model fully accounts for the mixed potential effects of ethanol oxidation at the cathode due to ethanol crossover via an alkaline anion-exchange membrane. In contrast to a polymer electrolyte membrane model, the current model considers the flux of ethanol at the membrane as the difference between diffusive and electroosmotic effects. The model is used to investigate the effects of the ethanol and alkali inlet feed concentrations at the anode. The model predicts that the cell performance is almost identical for different ethanol concentrations at a low current density. Moreover, the model results show that feeding the DEAFC with 5 M NaOH and 3 M ethanol at specific operating conditions yields a better performance at a higher current density. Furthermore, the model indicates that crossover effects on the DEAFC performance are significant. The cell performance decrease from its theoretical value when a parasitic current is enabled in the model.

  5. Sequential Washing with Electrolyzed Alkaline and Acidic Water Effectively Removes Pathogens from Metal Surfaces.

    Science.gov (United States)

    Nakano, Yuichiro; Akamatsu, Norihiko; Mori, Tsuyoshi; Sano, Kazunori; Satoh, Katsuya; Nagayasu, Takeshi; Miyoshi, Yoshiaki; Sugio, Tomomi; Sakai, Hideyuki; Sakae, Eiji; Ichimiya, Kazuko; Hamada, Masahisa; Nakayama, Takehisa; Fujita, Yuhzo; Yanagihara, Katsunori; Nishida, Noriyuki

    2016-01-01

    Removal of pathogenic organisms from reprocessed surgical instruments is essential to prevent iatrogenic infections. Some bacteria can make persistent biofilms on medical devices. Contamination of non-disposable equipment with prions also represents a serious risk to surgical patients. Efficient disinfection of prions from endoscopes and other instruments such as high-resolution cameras remains problematic because these instruments do not tolerate aggressive chemical or heat treatments. Herein, we develop a new washing system that uses both the alkaline and acidic water produced by electrolysis. Electrolyzed acidic water, containing HCl and HOCl as active substances, has been reported to be an effective disinfectant. A 0.15% NaCl solution was electrolyzed and used immediately to wash bio-contaminated stainless steel model systems with alkaline water (pH 11.9) with sonication, and then with acidic water (pH 2.7) without sonication. Two bacterial species (Staphylococcus aureus and Pseudomonas aeruginosa) and a fungus (Candida albicans) were effectively removed or inactivated by the washing process. In addition, this process effectively removed or inactivated prions from the stainless steel surfaces. This washing system will be potentially useful for the disinfection of clinical devices such as neuroendoscopes because electrolyzed water is gentle to both patients and equipment and is environmentally sound.

  6. Phosphorus Mobilization from Manure-Amended and Unamended Alkaline Soils to Overlying Water during Simulated Flooding.

    Science.gov (United States)

    Amarawansha, E A G S; Kumaragamage, D; Flaten, D; Zvomuya, F; Tenuta, M

    2015-07-01

    Anaerobic soil conditions resulting from flooding often enhance release of phosphorus (P) to overlying water. Enhanced P release is well documented for flooded acidic soils; however, there is little information for flooded alkaline soils. We examined the effect of flooding and anaerobic conditions on P mobilization using 12 alkaline soils from Manitoba that were either unamended or amended with solid cattle manure. Pore water and floodwater were analyzed over 8 wk of simulated flooding for dissolved reactive P (DRP), Ca, Mg, Fe, and Mn. As expected, manured soils had significantly greater pore and floodwater DRP concentrations than unamended. Flooding increased pore water DRP concentrations significantly in all soils and treatments except one manured clay in which concentrations increased initially and then decreased. Floodwater DRP concentrations increased significantly by two- to 15-fold in 10 soils regardless of amendment treatment but remained relatively stable in the two soils with greatest clay content. Phosphorus release at the onset of flooding was associated with the release of Ca, Mg, and Mn, suggesting that P release may be controlled by the dissolution of Mg and Ca phosphates and reductive dissolution of Mn phosphates. Thereafter, P release was associated with release of Fe, suggesting the reductive dissolution of Fe phosphates. Differences in pore water and floodwater DRP concentrations among soils and amendment treatments and the high variability in P mobilization from pore water to floodwater among soils indicate the need to further investigate chemical reactions responsible for P release and mobility under anaerobic conditions.

  7. Stabilisation of acid generating waste rock with fly ash : immobilization of arsenic under alkaline conditions

    Energy Technology Data Exchange (ETDEWEB)

    Backstrom, M. [Orebro Univ. (Sweden). Man-Technology Environment Research Centre; Sartz, L. [Bergslagen, Kopparberg (Sweden)

    2010-07-01

    This study evaluated the potential for using fly ash as an alkaline material for increasing the pH and decreasing arsenic leaching from highly acidic mine waste. A wood ash sample known to contain high concentrations of both calcium and barium was tested with highly acidic mine waste samples that leached approximately 200 mg/L of arsenic at a liquid/solid ratio of 2. Samples were mixed with the fly ash. Control samples consisted of only mine waste, while the amended samples contained 10 g of mine waste and 10 g of wood ash. Ultra pure water was used as a leachant for both systems until the liquid-solid ratio that corresponded to 900 years of drainage for a waste pile that was 3 m high with an annual run-off of 300 mm. Results of the experimental study showed that the pH in the control increased from 1.7 to 2.7, while the pH in the amended system decreased from 12.6 to 11.5. Initial concentrations of arsenic decreased by almost 3 orders of magnitude in the amended systems. Co-precipitation with the iron, and the calcium arsenate precipitation process were identified as the principal arsenic immobilization mechanisms. The study demonstrated that under the right chemical conditions, alkaline amendments can be used to reduce arsenic leaching from mine wastes. 5 refs., 2 tabs., 1 fig.

  8. Sequential Washing with Electrolyzed Alkaline and Acidic Water Effectively Removes Pathogens from Metal Surfaces.

    Directory of Open Access Journals (Sweden)

    Yuichiro Nakano

    Full Text Available Removal of pathogenic organisms from reprocessed surgical instruments is essential to prevent iatrogenic infections. Some bacteria can make persistent biofilms on medical devices. Contamination of non-disposable equipment with prions also represents a serious risk to surgical patients. Efficient disinfection of prions from endoscopes and other instruments such as high-resolution cameras remains problematic because these instruments do not tolerate aggressive chemical or heat treatments. Herein, we develop a new washing system that uses both the alkaline and acidic water produced by electrolysis. Electrolyzed acidic water, containing HCl and HOCl as active substances, has been reported to be an effective disinfectant. A 0.15% NaCl solution was electrolyzed and used immediately to wash bio-contaminated stainless steel model systems with alkaline water (pH 11.9 with sonication, and then with acidic water (pH 2.7 without sonication. Two bacterial species (Staphylococcus aureus and Pseudomonas aeruginosa and a fungus (Candida albicans were effectively removed or inactivated by the washing process. In addition, this process effectively removed or inactivated prions from the stainless steel surfaces. This washing system will be potentially useful for the disinfection of clinical devices such as neuroendoscopes because electrolyzed water is gentle to both patients and equipment and is environmentally sound.

  9. Stability analysis of alkaline nitrobenzene-containing wastewater by a catalyzed Fe-Cu treatment process

    Institute of Scientific and Technical Information of China (English)

    FAN Jinhong; XU Wenying; GAO Tingyao; MA Luming

    2007-01-01

    Iron and copper bimetallic system (catalyzed Fe-Cu process) is a promising technology for alkaline nitrobenzene-containing wastewater treatment.However,little is currently known about the changes of treatment efficiency with time going.This research investigated the long-term performance of the catalyzed Fe-Cu process to reduce nitrobenzene (NB) in alkaline wastewater.In addition,the changes of the metal surfaces morphologies and matters before and after the reaction were analyzed by scanning electron microscopy (SEM) in conjunction with energydispersion spectroscopy (EDS) and X-ray diffraction spectroscopy (XRD).The results showed that the surface properties of copper almost remained unchanged after weeks of operation,which spelled its strong chemical stability and resistance to poisoning.Moreover,the results indicated that there were two reasons for the treatment efficiency decreasing with time.One was the gradual iron element consumption due to corrosion.The other was iron reactivity weakened due to the precipitates accumulation on the surfaces that were mainly Fe3O4 and FeCO.

  10. Sequential Washing with Electrolyzed Alkaline and Acidic Water Effectively Removes Pathogens from Metal Surfaces

    Science.gov (United States)

    Nakano, Yuichiro; Akamatsu, Norihiko; Mori, Tsuyoshi; Sano, Kazunori; Satoh, Katsuya; Nagayasu, Takeshi; Miyoshi, Yoshiaki; Sugio, Tomomi; Sakai, Hideyuki; Sakae, Eiji; Ichimiya, Kazuko; Hamada, Masahisa; Nakayama, Takehisa; Fujita, Yuhzo; Yanagihara, Katsunori; Nishida, Noriyuki

    2016-01-01

    Removal of pathogenic organisms from reprocessed surgical instruments is essential to prevent iatrogenic infections. Some bacteria can make persistent biofilms on medical devices. Contamination of non-disposable equipment with prions also represents a serious risk to surgical patients. Efficient disinfection of prions from endoscopes and other instruments such as high-resolution cameras remains problematic because these instruments do not tolerate aggressive chemical or heat treatments. Herein, we develop a new washing system that uses both the alkaline and acidic water produced by electrolysis. Electrolyzed acidic water, containing HCl and HOCl as active substances, has been reported to be an effective disinfectant. A 0.15% NaCl solution was electrolyzed and used immediately to wash bio-contaminated stainless steel model systems with alkaline water (pH 11.9) with sonication, and then with acidic water (pH 2.7) without sonication. Two bacterial species (Staphylococcus aureus and Pseudomonas aeruginosa) and a fungus (Candida albicans) were effectively removed or inactivated by the washing process. In addition, this process effectively removed or inactivated prions from the stainless steel surfaces. This washing system will be potentially useful for the disinfection of clinical devices such as neuroendoscopes because electrolyzed water is gentle to both patients and equipment and is environmentally sound. PMID:27223116

  11. Protective Effects of Different Dosing Position of Misgurnus Anguillicaudatus Lyophilized Power on Chemical Liver Injury in Mice Induced by CCl4%泥鳅不同部位冻干粉对小鼠四氯化碳化学性肝损伤保护作用

    Institute of Scientific and Technical Information of China (English)

    商萌萌; 凌去非; 汪务诚; 刘春宇

    2013-01-01

    Objective: To investigate different dosing position of Misgurnus Anguiliicaudatus lyophilized power on chemical liver injury in mice induced by CCl4, screening of the best effective part. Methods: A mouse model of acute liver injury was induced by carbon tetraohloride, determining of serum ALT and AST activities so as to observe different parts of Misgurnus Anguiliicaudatus lyophilized power protective effect. Results: Misgurnus Anguiliicaudatus whole lyophilized power and muscle lyophilized power can significantly reduce the mice serum ALT and AST activities ( P0.05 ) . Conclusion: The Misgurnus Anguiliicaudatus lyophilized power had significant effect on mice liver injury induced by carbon tetrachloride. The effect of Misgurnus Anguiliicaudatus whole lyophilized power is most obvious, which is the main effective part of liver protection.%目的:本文研究不同部位泥鳅冻干粉对小鼠四氯化碳肝损伤的保护作用,筛选有效部位.方法:采用小鼠四氯化碳急性肝损伤模型,测定小鼠血清ALT、AST活性,观察泥鳅不同部位冻干粉的保护作用.结果:泥鳅全冻干粉和泥鳅肌肉冻干粉显著降低小鼠血清中ALT、AST活性(P<0.05),而泥鳅皮冻干粉的作用不明显(P>0.05).结论:泥鳅冻干粉对小鼠四氯化碳肝损伤具有显著的保护作用,其中泥鳅全冻干粉的作用最明显,是泥鳅保肝的主要有效部位.

  12. Biomechanics of whiplash injury

    Institute of Scientific and Technical Information of China (English)

    CHEN Hai-bin; King H YANG; WANG Zheng-guo

    2009-01-01

    Despite a large number of rear-end collisions on the road and a high frequency of whiplash injuries reported, the mechanism of whiplash injuries is not completely understood. One of the reasons is that the injury is not necessarily accompanied by obvious tissue damage detectable by X-ray or MRI. An extensive series of biomechanics studies, including injury epidemiology, neck kinematics,facet capsule ligament mechanics, injury mechanisms and injury criteria, were undertaken to help elucidate these whiplash injury mechanisms and gain a better understanding of cervical facet pain. These studies provide the following evidences to help explain the mechanisms of the whiplash injury: (1) Whiplash injuries are generally considered to be a soft tissue injury of the neck with symptoms such as neck pain and stiffness, shoulder weakness, dizziness, headache and memory loss, etc. (2) Based on kinematical studies on the cadaver and volunteers, there are three distinct periods that have the potential to cause injury to the neck. In the first stage, flexural deformation of the neck is observed along with a loss of cervical lordosis; in the second stage, the cervical spine assumes an S-shaped curve as the lower vertebrae begin to extend and gradually cause the upper vertebrae to extend; during the final stage, the entire neck is extended due to the extension moments at both ends. (3)The in vivo environment afforded by rodent models of injury offers particular utility for linking mechanics, nociception and behavioral outcomes. Experimental findings have examined strains across the facet joint as a mechanism of whiplash injury, and suggested a capsular strain threshold or a vertebral distraction threshold for whiplash-related injury,potentially producing neck pain. (4) Injuries to the facet capsule region of the neck are a major source of post-crash pain. There are several hypotheses on how whiplash-associated injury may occur and three of these injuries are related to strains within

  13. Biomechanics of whiplash injury.

    Science.gov (United States)

    Chen, Hai-bin; Yang, King H; Wang, Zheng-guo

    2009-10-01

    Despite a large number of rear-end collisions on the road and a high frequency of whiplash injuries reported, the mechanism of whiplash injuries is not completely understood. One of the reasons is that the injury is not necessarily accompanied by obvious tissue damage detectable by X-ray or MRI. An extensive series of biomechanics studies, including injury epidemiology, neck kinematics, facet capsule ligament mechanics, injury mechanisms and injury criteria, were undertaken to help elucidate these whiplash injury mechanisms and gain a better understanding of cervical facet pain. These studies provide the following evidences to help explain the mechanisms of the whiplash injury: (1) Whiplash injuries are generally considered to be a soft tissue injury of the neck with symptoms such as neck pain and stiffness, shoulder weakness, dizziness, headache and memory loss, etc. (2) Based on kinematical studies on the cadaver and volunteers, there are three distinct periods that have the potential to cause injury to the neck. In the first stage, flexural deformation of the neck is observed along with a loss of cervical lordosis; in the second stage, the cervical spine assumes an S-shaped curve as the lower vertebrae begin to extend and gradually cause the upper vertebrae to extend; during the final stage, the entire neck is extended due to the extension moments at both ends. (3) The in vivo environment afforded by rodent models of injury offers particular utility for linking mechanics, nociception and behavioral outcomes. Experimental findings have examined strains across the facet joint as a mechanism of whiplash injury, and suggested a capsular strain threshold or a vertebral distraction threshold for whiplash-related injury, potentially producing neck pain. (4) Injuries to the facet capsule region of the neck are a major source of post-crash pain. There are several hypotheses on how whiplash-associated injury may occur and three of these injuries are related to strains

  14. Regional scale hydrological and biogeochemical processes controlling high biodiversity of a groundwater fed alkaline fen

    Science.gov (United States)

    van der Zee, Sjoerd E. A. T. M.; (D. G.) Cirkel, Gijsbert; (J. P. M) witte, Flip

    2014-05-01

    The high floral biodiversity of groundwater fed fens and mesotrophic grasslands depends on the different chemical signatures of the shallow rainwater fed topsoil water and the slightly deeper geochemically affected groundwater. The relatively abrupt gradients between these two layers of groundwater enable the close proximity of plants that require quite different site factors and have different rooting depths. However, sulphur inflow into such botanically interesting areas is generally perceived as a major threat to biodiversity. Although in Europe atmospheric deposition of sulphur has decreased considerably over the last decades, groundwater pollution by sulphate may still continue due to pyrite oxidation in soil as a result of excessive fertilisation. Inflowing groundwater rich in sulphate can change biogeochemical cycling in nutrient-poor wetland ecosystems because of 'so called' internal eutrophication as well as the accumulation of dissolved sulphide, which is phytotoxic. Complementary to conventions, we propose that upwelling sulphate rich groundwater may, in fact, promote the conservation of rare and threatened alkaline fens: excessive fertilisation and pyrite oxidation also produces acidity, which invokes calcite dissolution, and increased alkalinity and hardness of the inflowing groundwater. For a very species-rich wetland nature reserve, we show that sulphate is reduced and effectively precipitated as iron sulphides, when this calcareous and sulphate rich groundwater flows upward through the organic soil of the investigated nature reserve. Also, we show that sulphate reduction occurs simultaneously with an increase in alkalinity production, which in our case results in active calcite precipitation in the soil. In spite of the occurring sulphate reduction, we found no evidence for internal eutrophication. Extremely low phosphorous concentration in the pore water could be attributed to a high C:P ratio of soil organic matter and co-precipitation with

  15. Extracellular Alkalinization as a Defense Response in Potato Cells

    Science.gov (United States)

    Moroz, Natalia; Fritch, Karen R.; Marcec, Matthew J.; Tripathi, Diwaker; Smertenko, Andrei; Tanaka, Kiwamu

    2017-01-01

    A quantitative and robust bioassay to assess plant defense response is important for studies of disease resistance and also for the early identification of disease during pre- or non-symptomatic phases. An increase in extracellular pH is known to be an early defense response in plants. In this study, we demonstrate extracellular alkalinization as a defense response in potatoes. Using potato suspension cell cultures, we observed an alkalinization response against various pathogen- and plant-derived elicitors in a dose- and time-dependent manner. We also assessed the defense response against a variety of potato pathogens, such as protists (Phytophthora infestans and Spongospora subterranea) and fungi (Verticillium dahliae and Colletotrichum coccodes). Our results show that extracellular pH increases within 30 min in proportion to the number of pathogen spores added. Consistently with the alkalinization effect, the higher transcription level of several defense-related genes and production of reactive oxygen species was observed. Our results demonstrate that the alkalinization response is an effective marker to study early stages of defense response in potatoes. PMID:28174578

  16. Bone alkaline phosphatase and mortality in dialysis patients

    NARCIS (Netherlands)

    C. Drechsler; M. Verduijn; S. Pilz; R.T. Krediet; F.W. Dekker; C. Wanner; M. Ketteler; E.W. Boeschoten; V. Brandenburg

    2011-01-01

    Serum alkaline phosphatase (AP) is associated with vascular calcification and mortality in hemodialysis patients, but AP derives from various tissues of origin. The aim of this study was to assess the effect of bone-specific AP (BAP) on morbidity and mortality in dialysis patients. From a prospectiv

  17. Alkalinity and hardness: Critical but elusive concepts in aquaculture

    Science.gov (United States)

    Total alkalinity and total hardness are familiar variables to those involved in aquatic animal production. Aquaculturists – both scientists and practitioners alike – tend to have some understanding of the two variables and of methods for adjusting their concentrations. The chemistry and the biolog...

  18. Induction of glomerular alkaline phosphatase after challenge with lipopolysaccharide

    NARCIS (Netherlands)

    Kapojos, Jola Jovita; Poelstra, Klaas; Borghuis, Theo; van den Berg, Anke; Baelde, Hans J.; Klok, P.A; Bakker, W.W

    2003-01-01

    Alkaline phosphatase (AP) can be considered as a host defence molecule since this enzyme is able to detoxify bacterial endotoxin at physiological pH. The question emerged whether this anti-endotoxin principle is inducible in the glomerulus and if so, which glomerular cells might be involved in the e

  19. The catalytic properties of alkaline phosphatases under various conditions

    Science.gov (United States)

    Atyaksheva, L. F.; Chukhrai, E. S.; Poltorak, O. M.

    2008-11-01

    A comparative study was performed to examine the catalytic properties of alkaline phosphatases from bacteria Escherichia coli and bovine and chicken intestines. The activity of enzyme dimers and tetramers was determined. The activity of the dimer was three or four times higher than that of the tetramer. The maximum activity and affinity for 4-nitrophenylphosphate was observed for the bacterial alkaline phosphatase ( K M = 1.7 × 10-5 M, V max = 1800 μmol/(min mg of protein) for dimers and V max = 420 μmol/(min mg of protein) for tetramers). The Michaelis constants were equal for two animal phosphatases in various buffer media (pH 8.5) ((3.5 ± 0.2) × 10-4 M). Five buffer systems were investigated: tris, carbonate, hepes, borate, and glycine buffers, and the lowest catalytic activity of alkaline phosphatases at equal pH was observed in the borate buffer (for enzyme from bovine intestine, V max = 80 μmol/(min mg of protein)). Cu2+ cations formed a complex with tris-(oxymethyl)-aminomethane ( tris-HCl buffer) and inhibited the intestine alkaline phosphatases by a noncompetitive mechanism.

  20. Chromatographic separation of alkaline phosphatase from dental enamel

    DEFF Research Database (Denmark)

    Moe, D; Kirkeby, S; Salling, E

    1989-01-01

    Alkaline phosphatase (AP) was prepared from partly mineralized bovine enamel by extraction in phosphate buffer, centrifugation and various chromatographic techniques. Chromatofocusing showed that the enamel enzyme possessed five isoelectric points at the acid pH level ranging from pH 5.7 to pH 4....

  1. Dephosphorylation of endotoxin by alkaline phosphatase in vivo

    NARCIS (Netherlands)

    Poelstra, Klaas; Bakker, W.W; Klok, P.A; Kamps, J.AAM; Hardonk, M.J; Meijer, D.K F

    1997-01-01

    Natural substrates for alkaline phosphatase (AP) are at present not identified despite extensive investigations. Difficulties in imagining a possible physiological function involve its extremely high pH optimum for the usual exogenous substrates and its localization as an ecto-enzyme. As endotoxin i

  2. Alkaline polymer electrolyte fuel cells: Principle, challenges, and recent progress

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Polymer electrolyte membrane fuel cells (PEMFC) have been recognized as a significant power source in future energy systems based on hydrogen. The current PEMFC technology features the employment of acidic polymer electrolytes which, albeit superior to electrolyte solutions, have intrinsically limited the catalysts to noble metals, fundamentally preventing PEMFC from widespread deployment. An effective solution to this problem is to develop fuel cells based on alkaline polymer electrolytes (APEFC), which not only enable the use of non-precious metal catalysts but also avoid the carbonate-precipitate issue which has been troubling the conventional alkaline fuel cells (AFC). This feature article introduces the principle of APEFC, the challenges, and our research progress, and focuses on strategies for developing key materials, including high-performance alkaline polyelectrolytes and stable non-precious metal catalysts. For alkaline polymer electrolytes, high ionic conductivity and satisfactory mechanical property are difficult to be balanced, therefore polymer cross-linking is an ultimate strategy. For non-precious metal catalysts, it is urgent to improve the catalytic activity and stability. New materials, such as transition-metal complexes, nitrogen-doped carbon nanotubes, and metal carbides, would become applicable in APEFC.

  3. Soil salinity and alkalinity in the Great Konya Basin, Turkey

    NARCIS (Netherlands)

    Driessen, P.M.

    1970-01-01

    In the summers of 1964 to 1968 a study was made of soil salinity and alkalinity in the Great Konya Basin, under the auspices of the Konya Project, a research and training programme of the Department of Tropical Soil Science of the Agricultural University, Wageningen.The Great Konya Basin, some 300 k

  4. Transcriptome Analysis of Enterococcus faecalis in Response to Alkaline Stress

    Directory of Open Access Journals (Sweden)

    Ran eshujun

    2015-08-01

    Full Text Available E. faecalis is the most commonly isolated species from endodontic failure root canals; its persistence in treated root canals has been attributed to its ability to resist high pH stress. The goal of this study was to characterize the E. faecalis transcriptome and to identify candidate genes for response and resistance to alkaline stress using Illumina HiSeq 2000 sequencing.We found that E. faecalis could survive and form biofilms in a pH 10 environment and that alkaline stress had a great impact on the transcription of many genes in the E. faecalis genome. The transcriptome sequencing results revealed that 613 genes were differentially expressed (DEGs for E. faecalis grown in pH 10 medium; 211 genes were found to be differentially up-regulated and 402 genes differentially down-regulated. Many of the down-regulated genes found are involved in cell energy production and metabolism and carbohydrate and amino acid metabolism, and the up-regulated genes are mostly related to nucleotide transport and metabolism. The results presented here reveal that cultivation of E. faecalis in alkaline stress has a profound impact on its transcriptome. The observed regulation of genes and pathways revealed that E. faecalis reduced its carbohydrate and amino acid metabolism and increased nucleotide synthesis to adapt and grow in alkaline stress. A number of the regulated genes may be useful candidates for the development of new therapeutic approaches for the treatment of E. faecalis infections.

  5. Solvent Extraction of Alkaline Earth Metals with Alkylphosphorus Acids

    Institute of Scientific and Technical Information of China (English)

    XUXin; ZHUTun

    2002-01-01

    Solvent extraction equiliria of four main alkaline earth metals (magnesium, calcium, strontium and barium) with di(2-ethylhexyl) phosphoric acid (DEHPA), 2-ethylhexyl phosphonic acid mono-(2-ethylhexyl) ester, di(2,4,4-tri-methylpentyl) phosphinic acid and IR spectra of the extracts have been studied. The selectivity order is dependent of the e/r value and hydration energy of the metal ions. The minor shift of the P→O in IR absorption of the alkaline earth metal extracts indicates that the interaction between the metal ions and P→O is much weaker for alkaline earth metals than for transitional metals. The distribution of the four alkaline earth elements between aqueous solutions and solutions of DEHPA and neutral organophosphorus compunds, tri-n-butyl phosphate (TBP) or tri-octyl phosphine oxide (TOPO) in kerosene have been determined at varying ratio of TBP or TOPO to DEHPA and the positive synergism is observed. The synergic effects is explained by using IR spectra of the loaded organic phase.

  6. Determination of the density of zinc powders for alkaline battery

    Institute of Scientific and Technical Information of China (English)

    Beatriz Ares Tejero; David Guede Carnero

    2007-01-01

    The density of zinc powder for alkaline battery was determined using a pyknometer.The results showed that powders made before the end of 2003 could reach relative densities above 99% of the theoretical density.Investigating the relative volume swelling of electrolysed gels of zinc powders,no evident relation between swelling and pyknometer density was found.

  7. Endotoxin detoxification by alkaline phosphatase in cholestatic livers

    NARCIS (Netherlands)

    Poelstra, K; Bakker, WW; Hardonk, MJ; Meijer, DKF; Wisse, E; Knook, DL; Balabaud, C

    1997-01-01

    Increased expression of alkaline phosphatase (AP) in the liver is a hallmark of cholestasis but the pathophysiological role of this is not clear. We argue that deprotonation of carboxyl groups at the active site of the enzyme may be a prerequisite for optimal AP activity. Such a creation of negative

  8. Curing mechanism of alkaline phenolic resin with organic ester

    Institute of Scientific and Technical Information of China (English)

    Huang Renhe; Wang Yanmin; Zhang Baoping

    2014-01-01

    To study the curing mechanism of alkaline phenolic resin with organic ester, three esters were chosen to react with three systems - alkaline phenolic resin, potassium hydroxide aqueous solution containing phenol, and potassium hydroxide aqueous solution. The variations of pH, heat release and gel pH during the reactions were monitored and measured. Infrared spectroscopy (IR) and thermal gravity analysis (TG) techniques were used to characterize the curing reaction. It was found that organic ester is only partial y hydrolyzed and resin can be cured through organic ester hydrolysis process as wel as the reaction with redundant organic ester. The sequential curing mechanism of alkaline phenolic resin cured by organic ester was identified as fol ows: a portion of organic ester is firstly hydrolyzed owing to the effect of the strong alkaline; the gel is then formed after the pH decreases to about 10.8-10.88, meanwhile, the redundant organic ester (i.e. non-hydrolysis ester) starts the curing reaction with the resin. It has also been found that the curing rate depends on the hydrolysis velocity of organic ester. The faster the hydrolysis speed of the ester, the faster the curing rate of the resin.

  9. Kinetic characteristics of acidic and alkaline ceramidase in human epidermis

    NARCIS (Netherlands)

    Houben, E.; Uchida, Y.; Nieuwenhuizen, W.F.; Paepe, K. de; Vanhaecke, T.; Holleran, W.M.; Rogiers, V.

    2007-01-01

    It has recently become evident that at least five ceramidase (CDase) isoforms are present in human epidermis, and that specifically acidic CDase (aCDase) and alkaline CDase (alkCDase) activities increase during keratinocyte differentiation, and thus might play a pivotal role(s) in permeability barri

  10. Field screening of cowpea cultivars for alkaline soil tolerance

    Science.gov (United States)

    Cowpea or Southernpea [Vigna unguiculata (L.) Walp.] is an important legume crop used as a feed for livestock, as a green vegetable and for consumption of its dry beans which provide 22-25% protein. The crop is very sensitive to alkaline soil conditions. When grown at soil pH of 7.5 or higher, cowp...

  11. Yield performance of cowpea genotypes grown in alkaline soils

    Science.gov (United States)

    Cowpea or Southernpea [Vigna unguiculata (L.) Walp.] is an important legume crop used as a feed for livestock, as a green vegetable and for consumption of its dry beans which provide 22-25% protein. The crop is very sensitive to alkaline soil conditions. When grown at soil pH of 7.5 or higher, cowp...

  12. Injuries in Irish dance.

    Science.gov (United States)

    Stein, Cynthia J; Tyson, Kesley D; Johnson, Victor M; Popoli, David M; d'Hemecourt, Pierre A; Micheli, Lyle J

    2013-12-01

    Irish dance is growing in popularity and competitiveness; however, very little research has focused specifically on this genre of dance. The purpose of this study was to analyze the types of dance injuries incurred by Irish dancers. A chart review was performed to identify all injuries associated with Irish dance seen in the sports medicine or orthopaedic clinics at the investigators' hospital over an 11-year period. "Injury" was defined as any dance-related pain or disorder that led to evaluation in the clinics. Survey data were also collected from study participants. Ultimately, 255 patients from over 30 different schools of dance were seen with injuries directly related (726 clinic visits) or partially related (199 visits) to Irish dance. Participants ranged in age from 4 to 47, with 95% (243/255) under the age of 19. These 255 patients received 437 diagnoses. Almost 80% of the injuries (348/437) were attributable to overuse, and 20.4% were acute and traumatic injuries (89/437). Ninety-five percent (95.9%) of injuries involved the hip or lower extremity. The most common sites were the foot (33.2%), ankle (22.7%), knee (19.7%), and hip (14.4%). Typical diagnoses were tendon injury (13.3%), apophysitis (11.4%), patellofemoral pain and instability (10.8%), stress injury (10.1%), and muscle injury (7.8%). The majority of traumatic injuries were seen in clinic within 3 weeks, but less than a quarter of overuse injuries were seen that quickly. The most common treatment, prescribed to 84.3% of patients, was physical therapy and home exercises, and the majority of dancers (64.3%) were able to return to full dance activity after injury.

  13. Assessing inhalation injury in the emergency room

    Directory of Open Access Journals (Sweden)

    Tanizaki S

    2015-07-01

    Full Text Available Shinsuke Tanizaki Department of Emergency Medicine, Fukui Prefectural Hospital, Fukui, Japan Abstract: Respiratory tract injuries caused by inhalation of smoke or chemical products are related to significant morbidity and mortality. While many strategies have been built up to manage cutaneous burn injuries, few logical diagnostic strategies for patients with inhalation injuries exist and almost all treatment is supportive. The goals of initial management are to ensure that the airway allows adequate oxygenation and ventilation and to avoid ventilator-induced lung injury and substances that may complicate subsequent care. Intubation should be considered if any of the following signs exist: respiratory distress, stridor, hypoventilation, use of accessory respiratory muscles, blistering or edema of the oropharynx, or deep burns to the face or neck. Any patients suspected to have inhalation injuries should receive a high concentration of supplemental oxygen to quickly reverse hypoxia and to displace carbon monoxide from protein binding sites. Management of carbon monoxide and cyanide exposure in smoke inhalation patients remains controversial. Absolute indications for hyperbaric oxygen therapy do not exist because there is a low correlation between carboxyhemoglobin levels and the severity of the clinical state. A cyanide antidote should be administered when cyanide poisoning is clinically suspected. Although an ideal approach for respiratory support of patients with inhalation injuries do not exist, it is important that they are supported using techniques that do not further exacerbate respiratory failure. A well-organized strategy for patients with inhalation injury is critical to reduce morbidity and mortality. Keywords: inhalation injury, burn, carbon monoxide poisoning, cyanide poisoning

  14. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments

    Science.gov (United States)

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  15. Role of dust alkalinity in acid mobilization of iron

    Directory of Open Access Journals (Sweden)

    A. Ito

    2010-04-01

    Full Text Available Atmospheric processing of mineral aerosols by acid gases (e.g., SO2, HNO3, N2O5, and HCl may play a key role in the transformation of insoluble iron (Fe2O3 to soluble forms (e.g., Fe(II, inorganic soluble species of Fe(III, and organic complexes of iron. However, mineral dust particles also have a potential of neutralizing the acidic species due to the alkaline buffer ability of carbonate minerals (e.g., CaCO3 and MgCO3. Here we demonstrate the impact of dust alkalinity on the acid mobilization of iron in a three-dimensional aerosol chemistry transport model, which is incorporated with a mineral dissolution scheme. In our model simulations, most of the alkaline dust minerals cannot be entirely consumed by inorganic acids during the transport across the North Pacific Ocean. As a result, the inclusion of alkaline compounds in aqueous chemistry substantially limits the iron dissolution in aerosol solution during the long-range transport. Over the North Pacific Ocean, only a small fraction (<0.2% of iron dissolves from hematite in the coarse-mode dust aerosols, when assuming internally mixed with carbonate minerals. However, if the iron-containing minerals are externally mixed with carbonate minerals, a significant amount (1–2% of iron would dissolve from the acid mobilization. It implies that the alkaline content in dust aerosols might help to explain the inverse relationship between aerosol iron solubility and particle size.

  16. Highly Dispersed Palladium Nanoparticles on Functional MWNT Surfaces for Methanol Oxidation in Alkaline Solutions

    Institute of Scientific and Technical Information of China (English)

    WANG zhe; ZHU Zan-Zan; LI You-Xiang; LI Hu-Lin

    2008-01-01

    Palladium nanoparticles were crystallized on 4-aminobenzoic acid monolayer-grafted multi-walled carbon nanotubes (MWNT) by diazotization. The structure and nature of the resulting Pd/MWNT composite were characterized by transmission electron microscopy and X-ray diffraction, the results show that the chemically synthesized Pd nanoparticles were homogeneously dispersed and well-separated from one another on the modified MWNT surfaces. Cyclic voltammogram showed that the Pd-MWNT composite materials performed higher electrocatalytic activity and better long-term stability toward methanol oxidation in alkaline solution than Pd-C. The results imply that the Pd-MWNT composite materials as a promising support material improve the excellent electrocatalytic activity for methanol oxidation greatly. So the Pd/MWNT composites have a good application potential to fuel cells.

  17. Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review.

    Science.gov (United States)

    Singh, Joginder; Suhag, Meenakshi; Dhaka, Anil

    2015-03-06

    Lignocellulosic materials can be explored as one of the sustainable substrates for bioethanol production through microbial intervention as they are abundant, cheap and renewable. But at the same time, their recalcitrant structure makes the conversion process more cumbersome owing to their chemical composition which adversely affects the efficiency of bioethanol production. Therefore, the technical approaches to overcome recalcitrance of biomass feedstock has been developed to remove the barriers with the help of pretreatment methods which make cellulose more accessible to the hydrolytic enzymes, secreted by the microorganisms, for its conversion to glucose. Pretreatment of lignocellulosic biomass in cost effective manner is a major challenge to bioethanol technology research and development. Hence, in this review, we have discussed various aspects of three commonly used pretreatment methods, viz., steam explosion, acid and alkaline, applied on various lignocellulosic biomasses to augment their digestibility alongwith the challenges associated with their processing.

  18. Electrocatalytic properties of Ni-S-Co coating electrode for hydrogen evolution in alkaline medium

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Amorphous Ni-S-Co alloy was prepared by means of chemical electro-deposition method on the foam nickel matrix. The surface morphology and microstructure of Ni-S-Co coatings were studied using SEM and XRD, and the electrochemical properties were tested by electrochemical methods. The results show that the coating has amorphous structure and the particles of the surface are fine with large specific surface area. The Ni-S-Co alloy is more active with lower potential for hydrogen evolution, higher exchange current density and lower activation energy compared with Ni and Ni-S electrode. Its hydrogen evolution reaction(HER) is enhanced, the size of particles of surface decreases and the surface area increases after being activated by KOH alkaline solution.

  19. Comparison of alkaline industrial wastes for aqueous mineral carbon sequestration through a parallel reactivity study.

    Science.gov (United States)

    Noack, Clinton W; Dzombak, David A; Nakles, David V; Hawthorne, Steven B; Heebink, Loreal V; Dando, Neal; Gershenzon, Michael; Ghosh, Rajat S

    2014-10-01

    Thirty-one alkaline industrial wastes from a wide range of industrial processes were acquired and screened for application in an aqueous carbon sequestration process. The wastes were evaluated for their potential to leach polyvalent cations and base species. Following mixing with a simple sodium bicarbonate solution, chemistries of the aqueous and solid phases were analyzed. Experimental results indicated that the most reactive materials were capable of sequestering between 77% and 93% of the available carbon under experimental conditions in four hours. These materials - cement kiln dust, spray dryer absorber ash, and circulating dry scrubber ash - are thus good candidates for detailed, process-oriented studies. Chemical equilibrium modeling indicated that amorphous calcium carbonate is likely responsible for the observed sequestration. High variability and low reactive fractions render many other materials less attractive for further pursuit without considering preprocessing or activation techniques.

  20. Kinetic study of methanol oxidation on Pt2Ru3/C catalyst in the alkaline media

    Directory of Open Access Journals (Sweden)

    A. V. TRIPKOVIC

    2007-11-01

    Full Text Available The interaction of acridine orange (AO with double-stranded (ds The electrochemical oxidation of methanol in NaOH solution was examined on a thin film Pt2Ru3/C electrode. The XRD pattern revealed that the Pt2Ru3 alloy consisted of a solid solution of Ru in Pt and a small amount of Ru or a solid solution of Pt in Ru. It was shown that in alkaline solution, the difference in activity between Pt/C and Pt2Ru3/C is significantly smaller than in acid solution. It is proposed that the reaction follows a quasi bifunctional mechanism. The kinetic parameters indicated that the chemical reaction between adsorbed COad and OHad species could be the rate limiting step.

  1. Work injuries and disability

    DEFF Research Database (Denmark)

    Tüchsen, Finn; Christensen, Karl Bang; Feveile, Helene

    2009-01-01

    PROBLEM: This study estimated the hazard ratio for disability pension retirement (DPR) for persons who have experienced a work injury causing absence lasting at least one day after the accidental injury occurred and to estimate the fraction of DPR attributable to work injuries. METHODS: A total...... of 4,217 male and 4,105 female employees from a national survey were followed up for subsequent DPR. RESULTS AND IMPACT ON INDUSTRY AND GOVERNMENT: Having had a work injury was a strong predictor of DPR among men. After control for age, smoking, body mass index, body postures, and physical demands......, the hazard ratio (HR) among those employees who had ever experienced a work injury was 1.80 (95% confidence interval (CI): 1.20-2.68). No association was found among women. SUMMARY: Having had a reportable work injury is a strong predictor of subsequent DPR for men....

  2. Soccer injuries in children

    Energy Technology Data Exchange (ETDEWEB)

    Paterson, Anne [Royal Belfast Hospital for Sick Children, Radiology Department, Belfast (United Kingdom)

    2009-12-15

    Soccer is the most popular sport in the world, with FIFA recognising more than 265 million amateur players. Despite the fact that soccer is a contact sport, it is perceived to be relatively safe to play, a factor that has contributed to its status as the fastest growing team sport in the USA. Acute and minor injuries predominate in the statistics, with contusions and abrasions being the most commonly recorded. As would be expected, the majority of soccer injuries are to the lower limbs, with serious truncal and spinal trauma being rare. This article examines the type and anatomic location of injuries sustained by children and adolescents who play soccer, and the main mechanisms whereby such injuries occur. The risk factors underpinning injury occurrence are considered, along with injury avoidance tactics. (orig.)

  3. Injuries in women's basketball.

    Science.gov (United States)

    Trojian, Thomas H; Ragle, Rosemary B

    2008-03-01

    Women's basketball has changed over time. It is a faster paced game than it was 30 years ago. Greatplayers, like Anne Meyers,who was the first, and only, woman to be signed to an NBA contract, would agree today's game is different. The game is played mostly "below the rim" but with players like Candice Parker, Sylvia Fowles and Maya Moore able to dunk the ball, the game is still changing. The one thing that remains constant in basketball, especially women's basketball, is injury. The majority of injuries in women's basketball are similar to those in men's basketball. Studies at the high school and college level show similar injury rates between women and men. ACL injuries are one exception, with female athletes having atwo to four times higher rate ofACL injuries. In this article, we review the common injuries in women's basketball. We discuss treatment issues and possible preventive measures.

  4. Soccer injuries in children.

    Science.gov (United States)

    Paterson, Anne

    2009-12-01

    Soccer is the most popular sport in the world, with FIFA recognising more than 265 million amateur players. Despite the fact that soccer is a contact sport, it is perceived to be relatively safe to play, a factor that has contributed to its status as the fastest growing team sport in the USA. Acute and minor injuries predominate in the statistics, with contusions and abrasions being the most commonly recorded. As would be expected, the majority of soccer injuries are to the lower limbs, with serious truncal and spinal trauma being rare. This article examines the type and anatomic location of injuries sustained by children and adolescents who play soccer, and the main mechanisms whereby such injuries occur. The risk factors underpinning injury occurrence are considered, along with injury avoidance tactics.

  5. Costs of traffic injuries

    DEFF Research Database (Denmark)

    Kruse, Marie

    2015-01-01

    assessed using Danish national healthcare registers. Productivity costs were computed using duration analysis (Cox regression models). In a subanalysis, cost per severe traffic injury was computed for the 12 995 individuals that experienced a severe injury. RESULTS: The socioeconomic cost of a traffic......OBJECTIVE: The aim of this study was to analyse the socioeconomic costs of traffic injuries in Denmark, notably the healthcare costs and the productivity costs related to traffic injuries, in a bottom-up, register-based perspective. METHOD: Traffic injury victims were identified using national...... emergency room data and police records. Victims were matched with five controls per case by means of propensity score, nearest-neighbour matching. In the cohort, consisting of the 52 526 individuals that experienced a traffic injury in 2000 and 262 630 matched controls, attributable healthcare costs were...

  6. Injury Patterns in Youth Sports.

    Science.gov (United States)

    Goldberg, Barry

    1989-01-01

    Presents statistics on injury patterns in youth sports, recommending that physicians who care for young athletes understand the kinds of injuries likely to be sustained. Awareness of injury patterns helps medical professionals identify variables associated with injury, anticipate or prevent injuries, plan medical coverage, and compare individual…

  7. Karate and karate injuries.

    OpenAIRE

    McLatchie, G

    1981-01-01

    The origins of karate and its evolution as a sport are described. Karate injuries tend to occur in three main areas: the head and neck, the viscera, and the limbs. Effective legislation controlling karate, which could help prevent injuries, is lacking at the moment and should be established. Recommendations for the prevention of injury include the introduction of weight classes, mandatory provision of protective equipment such as padded flooring, and the outlawing of certain uncontrollable m...

  8. Enhancement of thermophilic anaerobic digestion of thickened waste activated sludge by combined microwave and alkaline pretreatment

    Institute of Scientific and Technical Information of China (English)

    Yongzhi Chi; Yuyou Li; Xuening Fei; Shaopo Wang; Hongying Yun

    2011-01-01

    Pretreatment of thickened waste activated sludge (TWAS) by combined microwave and alkaline pretreatment (MAP) was studied to improve thermophilic anaerobic digestion efficiency.Uniform design was applied to determine the combination of target temperature (110-210℃),microwave holding time (1-51 min),and NaOH dose (0-2.5 g NaOH/g suspended solids (SS)) in terms of their effect on volatile suspended solids (VSS) solubilization.Maximum solubilization ratio (85.1%) of VSS was observed at 210℃ with 0.2 g-NaOH/g-SS and 35 min holding time.The effects of 12 different pretreatment methods were investigated in 28 thermophilic batch reactors by monitoring cumulative methane production (CMP).Improvements in methane production in the TWAS were directly related to the microwave and alkaline pretreatment of the sludge.The highest CMP was a 27% improvement over the control.In spite of the increase in soluble chemical oxygen demand concentration and the decrease in dewaterability of digested sludge,a semi-continuous thennophilic reactor fed with pretreated TWAS without neutralization (at 170℃ with 1 rain holding time and 0.05 g NaOH/g SS) was stable and functioned well,with volatile solid (VS) and total chemical oxygen demand (TCOD) reductions of 28% and 18%,respectively,which were higher than those of the control system.Additionally,methane yields (L@STP/g-CODadded,at standard temperature and pressure (STP) conditions of 0℃ and 101.325 kPa) and (L@STP/g VSadded) increased by 17% and 13%,respectively,compared to the control reactor.

  9. Acute injuries in Taekwondo.

    Science.gov (United States)

    Schlüter-Brust, K; Leistenschneider, P; Dargel, J; Springorum, H P; Eysel, P; Michael, J W-P

    2011-08-01

    Although Taekwondo is becoming an increasingly popular sport, there is a lack of reliable epidemiologic data on Taekwondo injuries. To perform an epidemiologic study on the variety of types of injury in professional and amateur Taekwondo athletes and to find a relation between Taekwondo style, skill level, weight-class and warm-up routine and the occurrence of injuries, we analysed the injury data using a 7-page questionnaire from a total of 356 Taekwondo athletes who were randomly selected. Overall, we registered a total of 2,164 injuries in 356 athletes. Most traumas were contusions and sprains in the lower extremities. Professional Taekwondo athletes have an increased risk of injury in comparison to recreational athletes. Taekwondo style, weight class and tournament frequency have an influence on the athlete's injury profile. Warm-up routines were found to have a positive effect on injury rates. Overall, Taekwondo may be considered a rather benign activity, if injuries during Taekwondo tournaments can be avoided. If not, Taekwondo can result in serious musculoskeletal problems.

  10. MUSCLE INJURIES IN ATHLETES.

    Science.gov (United States)

    Barroso, Guilherme Campos; Thiele, Edilson Schwansee

    2011-01-01

    This article had the aim of demonstrating the physiology, diagnosis and treatment of muscle injuries, focusing on athletes and their demands and expectations. Muscle injuries are among the most common complaints in orthopedic practice, occurring both among athletes and among non-athletes. These injuries present a challenge for specialists, due to the slow recovery, during which time athletes are unable to take part in training and competitions, and due to frequent sequelae and recurrences of the injuries. Most muscle injuries (between 10% and 55% of all injuries) occur during sports activities. The muscles most commonly affected are the ischiotibial, quadriceps and gastrocnemius. These muscles go across two joints and are more subject to acceleration and deceleration forces. The treatment for muscle injuries varies from conservative treatment to surgery. New procedures are being used, like the hyperbaric chamber and the use of growth factors. However, there is still a high rate of injury recurrence. Muscle injury continues to be a topic of much controversy. New treatments are being researched and developed, but prevention through muscle strengthening, stretching exercises and muscle balance continues to be the best "treatment".

  11. Lawnmower injuries in children.

    LENUS (Irish Health Repository)

    Nugent, Nora

    2012-02-03

    OBJECTIVE: Power lawnmowers can pose significant danger of injury to both the operator and the bystander, from direct contact with the rotary blades or missile injury. Our objective was to review our experience with paediatric lawnmower-associated trauma, and the safety recommendations available to operators of power lawnmowers. METHODS: The patient cohort comprised paediatric (<16 years of age) patients treated for lawnmower-associated trauma, by the plastic surgery service, between 1996 and 2003. These patients were identified retrospectively. Age at the time of injury, location and extent of bony and soft tissue injuries sustained, treatment instituted and clinical outcome were recorded. Brochures and instruction manuals of six lawnmower manufacturers were reviewed, and safety recommendations noted. RESULTS: Fifteen patients were identified. The majority of injuries occurred from direct contact with the rotary blades (93%); the remaining child sustained a burn injury. Fourteen children (93%) required operative intervention. Seven patients (46%) sustained injuries resulting in amputation, two of whom had major limb amputations. All children, except the burns patient, underwent wound debridement and received antibiotic therapy. Reconstructive methods ranged from primary closure to free tissue transfer. Many patients required multiple procedures. In all instruction manuals, instructions to keep children and pets indoors or out of the yard when mowing were found. CONCLUSIONS: Lawnmower injuries can be devastating, particularly in children. Many victims have lasting deformities as a result of their injuries. Awareness of and stringent adherence to safety precautions during use of power lawnmowers can prevent many of these accidents.

  12. In vitro biomimetic deposition of apatite on alkaline and heat treated Ti6Al4V alloy surface

    Indian Academy of Sciences (India)

    K Fatehi; F Moztarzadeh; M Solati-Hashjin; M Tahriri; M Rezvannia; R Ravarian

    2008-04-01

    Titanium alloy (Ti6Al4V) substrates, having the ability of biomimetic calcium phosphate-based materials, especially hydroxyapatite deposition in a simulated body fluid (SBF) means of chemical treatment (alkaline treatment) and subsequent heat treatment, was studied. The effects of alkaline treatment time, concentration and heat treatment temperature on the formation of calcium phosphate (carbonate–hydroxyapatite) on Ti6Al4V surface were examined. For this purpose, the metallic substrates were treated in 0, 5 and 10 M NaOH solutions at a temperature of 60 or 80°C for 1 and 3 days. Subsequently the substrate was heat-treated at 500, 600 and 700°C for 1 h for consolidation of the sodium titanate hydrogel layer. Finally, they were soaked in SBF for 1 and 3 days. The substrate surfaces were characterized by the techniques commonly used for bulk material such as scanning electron microscopy (SEM) and thin film X-ray diffraction (TF–XRD). With regard to the SEM and TF–XRD results, the optimum process consists of 3 days soaking in 5 M NaOH in 80°C and subsequent heat treatment at 600°C for 1h. It is worth mentioning that the results showed that the apatite formed within 3 days on the specimen surfaces, however, there was no sign of apatite formation in the control samples (without alkaline and heat treatment) which was treated for up to 3 days immersion in SBF.

  13. Polymer Film Supported Bimetallic Au-Ag Catalysts for Electrocatalytic Oxidation of Ammonia Borane in Alkaline Media

    Institute of Scientific and Technical Information of China (English)

    Şükriye Ulubay Karabiberoglu; ÇagrCeylan Koçak; Süleyman Kocak; Zekerya Dursun

    2016-01-01

    Ammonia borane is widely used in most areas including fuel cell applications. The present paper describes electrochemical behavior of ammonia borane in alkaline media on the poly(p-aminophenol) film modified with Au and Ag bimetallic nanoparticles. The glassy carbon electrode was firstly covered with polymeric film electrochemically and then, Au, Ag, and Au–Ag nanoparticles were deposited on the polymeric film, respectively. The surface morphology and chemical composition of these electrodes were examined by scanning electron microscopy, transmission electron microscopy, electrochemical impedance spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. It was found that alloyed Au–Ag bimetallic nanoparticles are formed. Electrochemical measurements indicate that the developed electrode modified by Au–Ag bimetallic nanoparticles exhibit the highest electrocatalytic activity for ammonia borane oxidation in alkaline media. The rotating disk electrode voltammetry demonstrates that the developed electrode can catalyze almost six-electron oxidation pathway of ammonia borane. Our results may be attractive for anode materials of ammonia borane fuel cells under alkaline conditions.

  14. Screening of Alkaline Protease-Producing Streptomyces diastaticus and Optimization of Enzyme Production

    Directory of Open Access Journals (Sweden)

    Elham Dawoodi

    2014-12-01

    Full Text Available Background and Aim: Alkaline proteases are used in pharmaceutical, film and photography, silk production and food, leather and detergent industries. Actinomycetes are gram positive bacteria that produce different enzymes such as proteases. The aims of this research were isolation of native alkaline protease-producing Actinomycete spp. from different soil samples as well as optimizing the conditions for enzyme production. Materials and Methods: The different soil samples were collected from different locations of the provinces of Khouzestan, Chahar Mahalo Bakhtiari and Isfahan, Iran. After determining of the best alkaline protease producing species using Lowry method, the optimization of alkaline protease was performed. Results: The alkaline protease producing Actinomycete spp. was isolated from soil. The most enzyme activity was measured in S.diastaticus. The best concentration of sucrose as the carbon source for the highest production of alkaline protease was 10 g/l. The optimum pH and temperature for the alkaline protease production by S. diastaticus were 10 and 30°C respectively. The maximum activity of alkaline protease was measured at 200 rpm as the best aeration speed. Conclusions: This is the first report of alkaline protease production by Streptomyces diastaticus in Iran. The accomplished examinations in this research confirmed the previous theories of alkaline protease production by Actinomycetes relatively. Regarding the immense applications of alkaline proteases in several industries and isolation of a native alkaline protease producing Actinomycete, The production potential of this enzyme in our country could be accessible in the near future.

  15. The role of the interaction between oxygen and catechol in the pitting corrosion of steel in alkaline sulfide solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, S.; Kelly, R.G. [Univ. of Virginia, Charlottesville, VA (United States)

    1995-12-01

    Black liquor corrosivity is shown to depend on the interaction of the chemical species present. Specifically, an interaction between oxygen and 1,2-dihydroxybenzene compounds (catechols) in alkaline sulfide solutions leads to a distinct increase in the severity of the attack. This increased corrosivity is explained in terms of the oxidation of catechol leading to increased open circuit potentials for steel. The importance of the ratio of sulfide concentration to hydroxyl concentration in the initiation of pitting is stressed. The possible role of catechol in stabilizing metastable pits is also discussed.

  16. Hand injuries as an indicator of other associated severe injuries.

    Science.gov (United States)

    Vossoughi, Faranak; Krantz, Brent; Fann, Stephen

    2007-07-01

    The purpose of this study was to investigate the incidence of disabling or life-threatening injuries in patients with hand injuries. Retrospective data were collected from a level 1 trauma center registry. A total of 472 patients with hand injuries were admitted to the trauma unit between January 2000 and March 2004. Forty-four per cent of patients with hand injuries had life-threatening injuries. Fifty-one per cent of them had motor vehicle crash-related injuries. Motorcycle crashes were the next most common cause followed by explosions, falls, gunshots, machinery, stabs, bites, crushes, and so on. Frequency of associated injuries was as follows: head injuries, 31 per cent, including skull fractures, 22 per cent; spine injuries, 18 per cent, including spine fractures 18 per cent; chest injuries, 36 per cent, including rib fractures, 15 per cent; and abdominal injuries, 13 per cent. The authors focused on the incidence of disabling or life-threatening injuries in patients with hand injuries. Motor vehicle crashes were most common cause of hand injuries. The most common organs to be injured were chest and head. The most common head injury was skull fracture. Other injuries in decreasing order were spine and rib fractures. These data may be helpful in assessing ambulatory patients in the emergency room, in those hand injuries maybe indicative of other simultaneous life-threatening or disabling injuries.

  17. Anterior Cruciate Ligament (ACL) Injuries

    Science.gov (United States)

    ... Week of Healthy Breakfasts Shyness Anterior Cruciate Ligament (ACL) Injuries KidsHealth > For Teens > Anterior Cruciate Ligament (ACL) ... and Recovery Coping With an ACL Injury About ACL Injuries A torn anterior cruciate ligament (ACL) is ...

  18. Maxillofacial injuries in the workplace.

    Science.gov (United States)

    Burnham, Richard; Martin, Tim

    2013-04-01

    Over a 2-year period we reviewed patients who presented to a UK maxillofacial unit with facial injuries sustained at work. We looked at links between the mechanism, injury, and characteristics of such injuries.

  19. Recent advances in tailoring the aggregation of heavier alkaline earth metal halides, alkoxides and aryloxides from non-aqueous solvents.

    Science.gov (United States)

    Fromm, Katharina M

    2006-11-21

    This overview on one of the subjects treated in our group deals with the synthesis and study of low-dimensional polymer and molecular solid state structures formed with alkaline earth metal ions in non-aqueous solvents. We have chosen several synthetic approaches in order to obtain such compounds. The first concept deals with the "cutting out" of structural fragments from a solid state structure of a binary compound, which will be explained with reference to BaI2. Depending on the size and concentration of oxygen donor ligands, used as chemical scissors on BaI2, three-, two-, one- and zero-dimensional derived adducts of BaI2 are obtained, comparable to a structural genealogy tree for BaI2. A second part deals with the supramolecular approach for the synthesis of low dimensional polymeric compounds based on alkaline earth metal iodides, obtained by the combination of metal ion coordination with hydrogen bonding between the cationic complexes and their anions. Certain circumstances allow rules to be established for the prediction of the dimensionality of a given compound, contributing to the fundamental problem of structure prediction in crystal engineering. A third section describes a synthetic approach for generating pure alkaline earth metal cage compounds as well as alkali and alkaline earth mixed metal clusters. A first step deals with different molecular solvated alkaline earth metal iodides which are investigated as a function of the ligand size in non-aqueous solvents. These are then reacted with some alkali metal compound in order to partially or totally eliminate alkali iodide and to form the targeted clusters. These unique structures of ligand stabilized metal halide, hydroxide and/or alkoxide and aryloxide aggregates are of interest as potential precursors for oxide materials and as catalysts. Approaches to two synthetic methods of the latter, sol-gel and (MO)CVD (metal-organic chemical vapour deposition), are investigated with some of our compounds. (D

  20. Chemically enhanced in situ recovery

    Energy Technology Data Exchange (ETDEWEB)

    Sale, T. [CH2M Hill, Denver, CO (United States); Pitts, M.; Wyatt, K. [Surtek, Inc., Golden, CO (United States)] [and others

    1996-08-01

    Chemically enhanced recovery is a promising alternative to current technologies for management of subsurface releases of organic liquids. Through the inclusion of surfactants, solvents, polymers, and/or alkaline agents to a waterflood, the transport of targeted organic compounds can be increased and rates of recovery enhanced. By far, the vast majority of work done in the field of chemically enhanced recovery has been at a laboratory scale. The following text focuses on chemically enhanced recovery from a field application perspective with emphasis given to chlorinated solvents in a low permeability setting. While chlorinated solvents are emphasized, issues discussed are also relevant to organic liquids less dense than water such as petroleum products. Topics reviewed include: (1) Description of technology; (2) General technology considerations; (3) Low permeability media considerations; (4) Cost and reliability considerations; (5) Commercial availability; and (6) Case histories. Through this paper an appreciation is developed of both the potential and limitations of chemically enhanced recovery. Excluded from the scope of this paper is the in situ destruction of organic compounds through processes such as chemical or biological oxidation, chemically enhanced recovery of inorganic compounds, and ex situ soil treatment processes. 11 refs., 2 figs., 1 tab.

  1. Sulfate reduction controlled by organic matter availability in deep sediment cores from the saline, alkaline Lake Van (Eastern Anatolia, Turkey

    Directory of Open Access Journals (Sweden)

    Clemens eGlombitza

    2013-07-01

    Full Text Available As part of the International Continental Drilling Program (ICDP deep lake drilling project PaleoVan, we investigated sulfate reduction (SR in deep sediment cores of the saline, alkaline (salinity 21.4 ‰, alkalinity 155 m mEq-1, pH 9.81 Lake Van, Turkey. The cores were retrieved in the Northern Basin (NB and at Ahlat Ridge (AR and reached a maximum depth of 220 m. Additionally, 65-75 cm long gravity cores were taken at both sites. Sulfate reduction rates (SRR were low (≤ 22 nmol cm-3 d-1 compared to lakes with higher salinity and alkalinity, indicating that salinity and alkalinity are not limiting SR in Lake Van. Both sites differ significantly in rates and depth distribution of SR. In NB, SRR are up to 10 times higher than at AR. Sulfate reduction (SR could be detected down to 19 meters below lake floor (mblf at NB and down to 13 mblf at AR. Although SRR were lower at AR than at NB, organic matter (OM concentrations were higher. In contrast, dissolved OM in the pore water at AR contained more macromolecular OM and less low molecular weight OM. We thus suggest, that OM content alone cannot be used to infer microbial activity at Lake Van but that quality of OM has an important impact as well. These differences suggest that biogeochemical processes in lacustrine sediments are reacting very sensitively to small variations in geological, physical or chemical parameters over relatively short distances. 

  2. Enhanced Production of Extracellular Alkaline Lipase by an Improved Strain of Pseudomonas aeruginosa MTCC 10,055

    Directory of Open Access Journals (Sweden)

    Deepali Bisht

    2012-01-01

    Full Text Available Problem statement: Lipases are industrially important enzymes having applications in numerous industries. For easy commercialization it is necessary to produce lipases at industrial level which could be achieved by strain improvement and medium formulation. Approach: In the present study strain improvement of Pseudomonas aeruginosa MTCC 10,055 was done by chemical mutagenesis using mutagen 4-nitroquinoline1-oxide for alkaline lipase production. Different fermentation parameters affecting lipase production were optimized using one-variable-at-a-time approach. Results: The selected mutant (M-05 exhibited 3.6-fold higher productivity over wild type. Maximum alkaline lipase was produced when culture was incubated at 35°C with initial medium pH 9.0 in 28 h with inoculum density 0.5% (v/v (Abs610-1.0. Supplementation of production medium with combination of castor oil and starch as carbon source and Triton-X-100 as surfactant significantly influenced the alkaline lipase production. The composition of fully optimized medium was determined to be (g L-1: (NH42SO4, 1.0; KH2PO4, 0.6; MgSO4, 0.4; yeast extract, 0.2; castor oil, 2.0; starch 20.0; gum arabic, 5.0; Triton-X-100, 1.0. An overall 14-fold enhanced production was achieved after complete medium optimization. Conclusion/Recommendations: The improved strain was capable to produce high titer of alkaline lipase at flask level, which can be examined at fermentor level to obtain sufficient enzyme yield to meet the world wide industrial demand.

  3. Process, mechanism and impacts of scale formation in alkaline flooding by a variable porosity and permeability model

    Institute of Scientific and Technical Information of China (English)

    Zhen Zhang; Jiachun Li

    2016-01-01

    In spite of the role of alkali in enhancing oil recovery (EOR), the formation of precipitation during alkaline-surfactant-polymer (ASP) flooding can severely do harm to the stratum of oil reservoirs, which has been observed in situ tests of oil fields such as scale deposits found in oil stratum and at the bottom of oil wells. On the other hand, remarkable variation of stratum parameters, e.g., pore radius, porosity, and permeability due to scale formation consider-ably affects seepage flow and alkaline flooding process in return. The objective of this study is to firstly examine these mutual influential phenomena and corresponding mecha-nisms along with EOR during alkaline flooding when the effects of precipitation are no longer negligible. The chem-ical kinetic theory is applied for the specific fundamental reactions to describe the process of rock dissolution in silica-based reservoirs. The solubility product principle is used to analyze the mechanism of alkali scale formation in flooding. Then a 3D alkaline flooding coupling model accounting for the variation of porosity and permeability is established to quantitatively estimate the impact of alkali scales on reser-voir stratum. The reliability of the present model is verified in comparison with indoor experiments and field tests of the Daqing oil field. Then, the numerical simulations on a 1/4 well group in a 5-spot pattern show that the precipitation grows with alkali concentration, temperature, and injection pressure and, thus, reduces reservoir permeability and oil recovery correspondingly. As a result, the selection of alkali with a weak base is preferable in ASP flooding by tradeoff strategy.

  4. Acute kidney injury during pregnancy.

    Science.gov (United States)

    Van Hook, James W

    2014-12-01

    Acute kidney injury complicates the care of a relatively small number of pregnant and postpartum women. Several pregnancy-related disorders such as preeclampsia and thrombotic microangiopathies may produce acute kidney injury. Prerenal azotemia is another common cause of acute kidney injury in pregnancy. This manuscript will review pregnancy-associated acute kidney injury from a renal functional perspective. Pathophysiology of acute kidney injury will be reviewed. Specific conditions causing acute kidney injury and treatments will be compared.

  5. A new electrochemical oscillatory system of bromate in alkaline solution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new electrochemical oscillatory system of bromate in alkaline solution is reported. In PtBromate-Alkaline solution system, two different types of electrochemical oscillations (Type Ⅰ and Type Ⅱ) can be observed. Type Ⅰ appears before hydrogen evolution and Type Ⅱ involves periodic hydrogen evolution. Type Ⅰ relates to the adsorption/desorption of the hydrogen on platinum electrode, and Type Ⅱ with periodic oscillation stems from the coupling of electrochemical reactions (the reduction of bromate and evolution hydrogen reaction) with mass transfer (diffusion and convection). More over, under the right conditions, the two types appear in different oscillatory modes, for example,simple periodical mode and mixed one, etc,, Crossed cycle in the cyclic voltammograms, which is the basiccharacteristics for electrochemical oscillatory systems, has also been observed as expected.

  6. Solubilisation of lignite during oxydesulphurization in alkaline solutions

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, S.; Kuecuekbayrak, S. [Istanbul Technical Univ., Chemical Engineering Dept. (Turkey)

    1997-12-31

    Some desulphurization processes such as oxydesulphurization in which dissolved oxygen is attached to coal particles are performed usually in alkaline solutions. Therefore, these processes are resulted in not only sulphur removal but also some solubilisation of the coal matrix. In this study three different Turkish lignite samples are subjected to various oxydesulphurization processes in which dilute solutions of NaOH, Na{sub 2}CO{sub 3}, NH{sub 4}OH or Na{sub 2}B{sub 4}O{sub 7} containing dissolved oxygen under pressure were applied. The experiments were performed in a magnetically stirred and electrically heated Parr autoclave. The extent of the solubilisation is varied depending on the type and concentration of the alkaline used, the applied temperature and the rank of the lignite sample used. (orig.)

  7. Copper Plating from Non-Cyanide Alkaline Baths

    Science.gov (United States)

    Li, Minggang; Wei, Guoying; Wang, Jianfang; Li, Meng; Zhao, Xixi; Bai, Yuze

    2014-12-01

    Non-cyanide alkaline bath was used to prepare copper thin films. Influences of various temperatures on deposition rates, surface morphologies and microstructures of films were investigated. Copper thin films prepared from non-cyanide alkaline bath show typical nodular structures. Copper films fabricated at higher temperature possess rough surface due to hydrolysis of complexing agents. According to the XRD patterns, all deposited films were crystalline and showed Cu (111), Cu (200) and Cu (220) peaks. The intensity of peak (200) increases gradually with the rise on bath temperatures. Films with maximum thickness (7.5 μm) could be obtained at the temperature of 40°C. From the cyclic voltammetry curve, it was found that the cathodic polarization decreased slightly with increase of bath temperatures. In addition, when the bath temperature was equal to 50°C, current efficiency could reach to 96.95%.

  8. Controlled charge exchange between alkaline earth metals and their ions

    Science.gov (United States)

    Gacesa, Marko; Côté, Robin

    2015-05-01

    We theoretically investigate the prospects of realizing controlled charge exchange via magnetic Feshbach resonances in cold and ultracold collisions of atoms and ions. In particular, we focus on near-resonant charge exchange in heteroisotopic combinations of alkaline earth metals, such as 9Be++10 Be9 Be+10Be+ , which exhibit favorable electronic and hyperfine structure. The quantum scattering calculations are performed for a range of initial states and experimentally attainable magnetic fields in standard coupled-channel Feshbach projection formalism, where higher-order corrections such as the mass-polarization term are explicitely included. In addition, we predict a number of magnetic Feshbach resonances for different heteronuclear isotopic combinations of the listed and related alkaline earth elements. Our results imply that near-resonant charge-exchange could be used to realize atom-ion quantum gates, as well as controlled charge transfer in optically trapped cold quantum gases. This work is partially supported by ARO.

  9. Alkylation of imidazole under ultrasound irradiation over alkaline carbons

    Energy Technology Data Exchange (ETDEWEB)

    Costarrosa, L. [Dpto. de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/Senda del Rey, 9, E-28040 Madrid (Spain); Calvino-Casilda, V. [Dpto. de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/Senda del Rey, 9, E-28040 Madrid (Spain); Ferrera-Escudero, S. [Dpto. de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/Senda del Rey, 9, E-28040 Madrid (Spain); Duran-Valle, C.J. [Dpto. de Quimica Inorganica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071 Badajoz (Spain); Martin-Aranda, R.M. [Dpto. de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/Senda del Rey, 9, E-28040 Madrid (Spain)]. E-mail: rmartin@ccia.uned.es

    2006-06-30

    N-Alkyl-imidazole has been synthesized by sonochemical irradiation of imidazole and 1-bromobutane using alkaline-promoted carbons (exchanged with the binary combinations of Na, K and Cs). The catalysts were characterized by X-ray photoelectron spectroscopy, thermal analysis and N{sub 2} adsorption isotherms. Under the experimental conditions, N-alkyl-imidazoles can be prepared with a high activity and selectivity. It is observed that imidazole conversion increases in parallel with increasing the basicity of the catalyst. The influence of the alkaline promoter, the reaction temperature, and the amount of catalyst on the catalytic activity has been studied. For comparison, the alkylation of imidazole has also been performed in a batch reactor system under thermal activation.

  10. Lithuanian Quarry Aggregates Concrete Effects of Alkaline Corrosion Tests

    Directory of Open Access Journals (Sweden)

    Aurimas Rutkauskas

    2016-02-01

    Full Text Available Aggregate alkaline corrosion of cement in concrete is going to respond in sodium and potassium hydroxide (lye with active SiO2 found in some aggregates. During this reaction, the concrete has resulted in significant internal stresses which cause deformation of the concrete, cracking and disintegration. The reaction is slow and concrete signs of decomposition appear only after a few months or years. The study used two different aggregates quarries. Studies show that Lithuania gravel contaminated with reactive particles having amorphous silicon dioxide reacting with cement in sodium and potassium hydroxide and the resulting alkaline concrete corrosion. It was found that, according to AAR 2 large aggregates include Group II – potentially reactive because of their expansion after 14 days, higher than 0.1%.

  11. Alkaline Protease Production by a Strain of Marine Yeasts

    Institute of Scientific and Technical Information of China (English)

    WANG Ping; CHI Zhenming; MA Chunling

    2006-01-01

    Yeast strain 10 with high yield of protease was isolated from sediments of saltern near Qingdao, China.The protease had the highest activity at pH 9.0 and 45 ℃.The optimal medium for the maximum alkaline protease production of strain 10 was 2.5 g soluble starch and 2.0 g NaNO3 in 100 mL seawater with initial pH6.0.The optimal cultivation conditions for the maximum protease production were temperature 24.5 ℃, aeration rate 8.0 L min -1 and agitation speed 150 r min-1.Under the optimal conditions, 623.1 Umg-1 protein of alkaline protease was reached in the culture within 30 h of fermentation.

  12. Alkaline protease production by a strain of marine yeasts

    Science.gov (United States)

    Ping, Wang; Zhenming, Chi; Chunling, Ma

    2006-07-01

    Yeast strain 10 with high yield of protease was isolated from sediments of saltern near Qingdao, China. The protease had the highest activity at pH 9.0 and 45°C. The optimal medium for the maximum alkaline protease production of strain 10 was 2.5g soluble starch and 2.0g NaNO3 in 100mL seawater with initial pH 6.0. The optimal cultivation conditions for the maximum protease production were temperature 24.5°C, aeration rate 8.0L min-1 and agitation speed 150r min-1 Under the optimal conditions, 623.1 U mg-1 protein of alkaline protease was reached in the culture within 30h of fermentation.

  13. Strangulation injuries in children.

    NARCIS (Netherlands)

    Sep, D.Ph.; Thies, K.C.

    2007-01-01

    In this article we present a case of fatal strangulation with playground equipment in a 4-year-old child and a review of the literature. Playground injuries are a major cause of injury in children but fatalities are rare. However, strangulation is the cause of death in more than 50% of all playgroun

  14. CAUSES OF OCCUPATIONAL INJURIES

    NARCIS (Netherlands)

    KINGMA, J

    1994-01-01

    The causes of occupational injuries (N = 2,365) were investigated. Accidents with machinery and hand tools were the two main causes (49.9%). 89% of the patients with occupational injuries were male. The highest risk group were in the age category of 19 years or less (51.9%). This age group also show

  15. Ear Injuries (For Parents)

    Science.gov (United States)

    ... head, sports injuries, and even listening to loud music can cause ear damage, which can affect hearing and balance. That's because the ear not ... Hearing Loss or Balance Problems Ear injuries can affect kids differently. ... sounds or music notes hearing only certain or muffled sounds ringing ...

  16. Microbial processes and factors controlling their activities in alkaline lakes of the Mongolian plateau

    Science.gov (United States)

    Namsaraev, Zorigto B.; Zaitseva, Svetlana V.; Gorlenko, Vladimir M.; Kozyreva, Ludmila P.; Namsaraev, Bair B.

    2015-11-01

    A striking feature of the Mongolian plateau is the wide range of air temperatures during a year, -30 to 30°C. High summer temperatures, atmospheric weathering and the arid climate lead to formation of numerous alkaline soda lakes that are covered by ice during 6-7 months per year. During the study period, the lakes had pH values between 8.1 to 10.4 and salinity between 1.8 and 360 g/L. According to chemical composition, the lakes belong to sodium carbonate, sodium chloride-carbonate and sodium sulfate-carbonate types. This paper presents the data on the water chemical composition, results of the determination of the rates of microbial processes in microbial mats and sediments in the lakes studied, and the results of a Principal Component Analysis of environmental variables and microbial activity data. Temperature was the most important factor that influenced both chemical composition and microbial activity. pH and salinity are also important factors for the microbial processes. Dark CO2 fixation is impacted mostly by salinity and the chemical composition of the lake water. Total photosynthesis and sulfate-reduction are impacted mostly by pH. Photosynthesis is the dominant process of primary production, but the highest rate (386 mg C/(L•d)) determined in the lakes studied were 2-3 times lower than in microbial mats of lakes located in tropical zones. This can be explained by the relatively short warm period that lasts only 3-4 months per year. The highest measured rate of dark CO2 assimilation (59.8 mg C/(L•d)) was much lower than photosynthesis. The highest rate of sulfate reduction was 60 mg S/(L•d), while that of methanogenesis was 75.6 μL CN4/(L•d) in the alkaline lakes of Mongolian plateau. The rate of organic matter consumption during sulfate reduction was 3-4 orders of magnitude higher than that associated with methanogenesis.

  17. Catalytic Diversity in Alkaline Hydrothermal Vent Systems on Ocean Worlds

    Science.gov (United States)

    Cameron, Ryan D.; Barge, Laura; Chin, Keith B.; Doloboff, Ivria J.; Flores, Erika; Hammer, Arden C.; Sobron, Pablo; Russell, Michael J.; Kanik, Isik

    2016-10-01

    Hydrothermal systems formed by serpentinization can create moderate-temperature, alkaline systems and it is possible that this type of vent could exist on icy worlds such as Europa which have water-rock interfaces. It has been proposed that some prebiotic chemistry responsible for the emergence of life on Earth and possibly other wet and icy worlds could occur as a result ofredox potential and pH gradients in submarine alkaline hydrothermal vents (Russell et al., 2014). Hydrothermal chimneys formed in laboratory simulations of alkaline vents under early Earth conditions have precipitate membranes that contain minerals such as iron sulfides, which are hypothesized to catalyze reduction of CO2 (Yamaguchi et al. 2014, Roldan et al. 2014) leading to further organic synthesis. This CO2 reduction process may be affected by other trace components in the chimney, e.g. nickel or organic molecules. We have conducted experiments to investigate catalytic properties of iron and iron-nickel sulfides containing organic dopants in slightly acidic ocean simulants relevant to early Earth or possibly ocean worlds. We find that the electrochemical properties of the chimney as well as the morphology/chemistry of the precipitate are affected by the concentration and type of organics present. These results imply that synthesis of organics in water-rock systems on ocean worlds may lead to hydrothermal precipitates which can incorporate these organic into the mineral matrix and may affect the role of gradients in alkaline vent systems.Therefore, further understanding on the electroactive roles of various organic species within hydrothermal chimneys will have important implications for habitability as well as prebiotic chemistry. This work is funded by NASA Astrobiology Institute JPL Icy Worlds Team and a NAI Director's Discretionary Fund award.Yamaguchi A. et al. (2014) Electrochimica Acta, 141, 311-318.Russell, M. J. et al. (2014), Astrobiology, 14, 308-43.Roldan, A. (2014) Chem. Comm. 51

  18. Cationic Polymers Developed for Alkaline Fuel Cell Applications

    Science.gov (United States)

    2015-01-20

    Fuel! Cells.! Macromolecules!2009,!42,!831688321.! 142 ! (27)! Ong ,!A.!L.;!Saad,!S.;!Lan,!R.;!Goodfellow,!R.!J.;!Tao,!S.:!Anionic!membrane!and...Stabilized!Per!fl!uorinated!Ionomers!for!Alkaline!Membrane!Fuel!Cells.!2013.! ! (76)! Ran,!J.;!Wu,!L.;!Varcoe,!J.!R.;! Ong ,!A.!L.;!Poynton,!S.!D.;!Xu,!T...L.;! Liu,! Y.;! Ong ,! A.! L.;! Poynton,! S.! D.;! Varcoe,! J.! R.;! Xu,! T.:! Alkali! resistant! and! conductive! guanidinium8based! anion8exchange

  19. Modelling the crystallisation of alkaline earth boroaluminosilicate glass ceramics

    DEFF Research Database (Denmark)

    Svenson, Mouritz Nolsøe; Agersted, Karsten; Holm, Paul Martin

    2014-01-01

    To investigate the potential use of a thermochemical software package (FactSage 6.2), in the design of alkaline earth boroaluminosilicate glass ceramics, experimental and modelled results on four glass ceramics were compared. Initially large discrepancies were found. These are described and related...... for the topology of multicomponent melts, before accurate prediction of phase relations within boron-containing glass ceramics can be obtained....

  20. Carbonate and Bicarbonate Ion Transport in Alkaline Anion Exchange Membranes

    Science.gov (United States)

    2013-06-25

    Bicarbonate Ion Transport in Alk Block 13: Supplementary Note © 2013 . Published in Journal of the Electrochemical Society , Vol. Ed. 0 160, (9) (2013...for public release; distribution is unlimited. ... 60325.7-CH-II F994 Journal of The Electrochemical Society , 160 (9) F994-F999 (2013) 0013-4651/2013...160(9)/F994/6/$31.00 © The Electrochemical Society Carbonate and Bicarbonate Ion Transport in Alkaline Anion Exchange Membranes Andrew M. Kiss,a

  1. The Origin of Life in Alkaline Hydrothermal Vents.

    Science.gov (United States)

    Sojo, Victor; Herschy, Barry; Whicher, Alexandra; Camprubí, Eloi; Lane, Nick

    2016-02-01

    Over the last 70 years, prebiotic chemists have been very successful in synthesizing the molecules of life, from amino acids to nucleotides. Yet there is strikingly little resemblance between much of this chemistry and the metabolic pathways of cells, in terms of substrates, catalysts, and synthetic pathways. In contrast, alkaline hydrothermal vents offer conditions similar to those harnessed by modern autotrophs, but there has been limited experimental evidence that such conditions could drive prebiotic chemistry. In the Hadean, in the absence of oxygen, alkaline vents are proposed to have acted as electrochemical flow reactors, in which alkaline fluids saturated in H2 mixed with relatively acidic ocean waters rich in CO2, through a labyrinth of interconnected micropores with thin inorganic walls containing catalytic Fe(Ni)S minerals. The difference in pH across these thin barriers produced natural proton gradients with equivalent magnitude and polarity to the proton-motive force required for carbon fixation in extant bacteria and archaea. How such gradients could have powered carbon reduction or energy flux before the advent of organic protocells with genes and proteins is unknown. Work over the last decade suggests several possible hypotheses that are currently being tested in laboratory experiments, field observations, and phylogenetic reconstructions of ancestral metabolism. We analyze the perplexing differences in carbon and energy metabolism in methanogenic archaea and acetogenic bacteria to propose a possible ancestral mechanism of CO2 reduction in alkaline hydrothermal vents. Based on this mechanism, we show that the evolution of active ion pumping could have driven the deep divergence of bacteria and archaea.

  2. Chemical use

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a summary of research and activities related to chemical use on Neal Smith National Wildlife Refuge between 1992 and 2009. The chemicals used on the Refuge...

  3. Chemical Reactors.

    Science.gov (United States)

    Kenney, C. N.

    1980-01-01

    Describes a course, including content, reading list, and presentation on chemical reactors at Cambridge University, England. A brief comparison of chemical engineering education between the United States and England is also given. (JN)

  4. Biliary tract injury caused by different relative warm ischemia time in liver transplantation in rats

    Institute of Scientific and Technical Information of China (English)

    Hong-Feng Zhao; Guo-Wei Zhang; Jie Zhou; Jian-Hua Lin; Zhong-Lin Cui; Xiang-Hong Li

    2009-01-01

    BACKGROUND: There is a controversy over the degree of liver and biliary injury caused by the period of secondary warm ischemia. A liver autotransplantation model was adopted because it excludes the effects of infection and immunological rejection on bile duct injury. This study was undertaken to assess biliary tract injury caused by relative warm ischemia (secondary warm ischemia time in the biliary tract) and reperfusion. METHODS: One hundred and two rats were randomly divided into 5 groups: groupⅠ (control); groupsⅡ toⅤ, relative warm ischemia times of 0 minute, 30 minutes, 1 hour and 2 hours. In addition to the levels of serum alkaline phosphatase, and total bilirubin, pathomorphology assessment and TUNEL assay were performed to evaluate biliary tract damage. RESULTS: Under the conditions that there were no signiifcant differences in warm ischemia time, cold perfusion time and anhepatic phase, group comparisons showed statistically signiifcant differences. The least injury occurred in groupⅡ (portal vein and hepatic artery reperfused simultaneously) but the most severe injury occurred in groupⅤ (biliary tract relative warm ischemia time 2 hours). CONCLUSIONS: Relative warm ischemia is one of the factors that result in bile duct injury, and the relationship between relative warm ischemia time the bile injury degree is time-dependent. Simultaneous arterial and portal reperfusion is the best choice to avoid the bile duct injury caused by relative warm ischemia.

  5. Mole gun injury.

    Science.gov (United States)

    Pistré, V; Rezzouk, J

    2013-09-01

    A mole gun is a weapon, which is used to trap and kill moles. This report provides an overview of the state of knowledge of mole gun injuries, comparable to blast injuries caused by fireworks, explosive or gunshot. Over a 2-year period, the authors reported their experience with ten hand injuries caused by mole gun. Radial side of the hand was often concerned, particularly the thumb. The authors explain their choices in the management of such lesions. Surgery was performed primarily and a large debridement currently seemed to offer the best outcome for the patient. Blast, crush, burns and lacerations may explain the higher rate of amputation to the digits. A long period of physiotherapy, specifically of the hand, was needed before the patient could return to work. This ballistic hand trauma encountered by surgeons requires knowledge and understanding of these injuries. It should be in accordance with firearms law because of severe injuries encountered and possible lethal wounds.

  6. Prevention of running injuries.

    Science.gov (United States)

    Fields, Karl B; Sykes, Jeannie C; Walker, Katherine M; Jackson, Jonathan C

    2010-01-01

    Evidence for preventive strategies to lessen running injuries is needed as these occur in 40%-50% of runners on an annual basis. Many factors influence running injuries, but strong evidence for prevention only exists for training modification primarily by reducing weekly mileage. Two anatomical factors - cavus feet and leg length inequality - demonstrate a link to injury. Weak evidence suggests that orthotics may lessen risk of stress fracture, but no clear evidence proves they will reduce the risk of those athletes with leg length inequality or cavus feet. This article reviews other potential injury variables, including strength, biomechanics, stretching, warm-up, nutrition, psychological factors, and shoes. Additional research is needed to determine whether interventions to address any of these will help prevent running injury.

  7. An Unusual Laryngeal Injury

    Directory of Open Access Journals (Sweden)

    A Kohli

    2007-01-01

    Full Text Available Blunt injuries to the anterior neck are most commonly due to road traffic accidents but the incidence of such types of injuries are decreasing probably due to stricter laws pertaining to seat belts and drunken driving. Experience in managing such injuries is limited due to their rarity. The mainstay of management revolves around establishing and maintaining a patent airway and integrity of the spine. Here we document a case of a 25 year old male who met with a Road traffic accident while driving a motorbike and sustained a clear cut linear wound on the right side of the neck with minimal airleak due to the helmet clip. On exploration, he was found to have massive epiglottic edema, mucosal abrasions, lacerations and a thyroid cartilage fracture. The mechanism of injury was probably a combination of penetrating and blunt trauma neck. This case highlights the mechanism of laryngeal injury, its presentation and management

  8. Ankle ligament injuries

    Directory of Open Access Journals (Sweden)

    Per A.F.H. Renström

    1998-06-01

    Full Text Available Acute ankle ligament sprains are common injuries. The majority of these occur during athletic participation in the 15 to 35 year age range. Despite the frequency of the injury, diagnostic and treatment protocols have varied greatly. Lateral ligament complex injuries are by far the most common of the ankle sprains. Lateral ligament injuries typically occur during plantar flexion and inversion, which is the position of maximum stress on the anterotalofibular liagment (ATFL. For this reason, the ATFL is the most commonly torn ligament during an inversion injury. In more severe inversion injuries the calcaneofibular (CFL, posterotalofibular (PTFL and subtalar ligament can also be injured. Most acute lateral ankle ligament injuries recover quickly with nonoperative management. The treatment program, called "functional treatment," includes application of the RICE principle (rest, ice, compression, and elevation immediately after the injury, a short period of immobilization and protection with an elastic or inelastic tape or bandage, and early motion exercises followed by early weight bearing and neuromuscular ankle training. Proprioceptive training with a tilt board is commenced as soon as possible, usually after 3 to 4 weeks. The purpose is to improve the balance and neuromuscular control of the ankle. Sequelae after ankle ligament injuries are very common. As much as 10% to 30% of patients with a lateral ligament injury may have chronic symptoms. Symptoms usually include persistent synovitis or tendinitis, ankle stiffness, swelling, and pain, muscle weakness, and frequent giving-way. A well designed physical therapy program with peroneal strengthening and proprioceptive training, along with bracing and/or taping can alleviate instability problems in most patients. For cases of chronic instability that are refractory to bracing and external support, surgical treatment can be explored. If the chronic instability is associated with subtalar instability

  9. Sports related ocular injuries.

    Science.gov (United States)

    Mishra, Avinash; Verma, Ashok K

    2012-07-01

    Every year > 600,000 sports and recreation related eye injuries occur, out of which roughly 13,500 of these result in permanent loss of sight. Up to 90% of these sports related eye injuries are preventable by using adequate eye protection equipment. Protective eyewear is made of polycarbonate, a highly impact-resistant plastic which is now easily available as prescription and non-prescription eyewear and all players should be encouraged to use them. The medical officers by educating their patients regarding the risks of eye injuries in various sports and the confirmed benefits of using protective equipment have the potential to prevent injury to over thousands of eyes every year. The medical fraternity can also play a very important role in educating the coaches, parents, and children and thus put an end to unnecessary blindness and vision loss from sports related ocular injuries, therefore ensuring a lifetime of healthy vision.

  10. Tooth injury in anaesthesiology

    Directory of Open Access Journals (Sweden)

    José Miguel Brandão Ribeiro de Sousa

    2015-12-01

    Full Text Available BACKGROUND AND OBJECTIVES: Dental injury is the most common complication of general anaesthesia and has significant physical, economic and forensic consequences. The aim of this study is to review on the characteristics of dental injury associated with anaesthesiology and existing methods of prevention. CONTENTS: In this review, the time of anaesthesia in which the dental injury occurs, the affected teeth, the most frequent type of injury, established risk factors, prevention strategies, protection devices and medico-legal implications inherent to its occurrence are approached. CONCLUSIONS: Before initiating any medical procedure that requires the use of classic laryngoscopy, a thorough and detailed pre-aesthetic evaluation of the dental status of the patient is imperative, in order to identify teeth at risk, analyze the presence of factors associated with difficult intubation and outline a prevention strategy that is tailored to the risk of dental injury of each patient.

  11. Combination of alkaline phosphatase anti-alkaline phosphatase (APAAP)- and avidin-biotin-alkaline phosphatase complex (ABAP)-techniques for amplification of immunocytochemical staining of human testicular tissue.

    Science.gov (United States)

    Davidoff, M S; Schulze, W; Holstein, A F

    1991-01-01

    An amplification procedure was developed for the visualization of antigens in human testis using monoclonal antibodies against desmin and vimentin. The technique combines the high sensitive and specific APAAP- and ABAP-methods. Depending on the quality of the antibodies used and the processing of the material prior to the immunocytochemical staining the amplification technique may be applied either as a single APAAP and ABAP- or as a double APAAP and ABAP-combination. Especially after the double amplification reaction a distinct increase of the staining intensity of the vimentin- (in Sertoli cells, myofibroblasts of the lamina propria, and fibroblasts of the interstitium) and desmin- (in myofibroblasts of the lamina propria and smooth muscle cells of the blood vessels) like immunoreactivity was observed. If different diazonium salts were used for the visualization of the alkaline phosphatase activity (e.g. Fast Red TR Salt, Fast Blue BB Salt) desmin- and vimentin-like immunoreactivity can be demonstrated in the same tissue section in a double sequential staining approach. For double staining, the alkaline phosphatase technique may be combined successfully with a technique or a combination that uses peroxidase as a marker.

  12. Alkaline protease from Thermoactinomyces sp. RS1 mitigates industrial pollution.

    Science.gov (United States)

    Verma, Amit; Ansari, Mohammad W; Anwar, Mohmmad S; Agrawal, Ruchi; Agrawal, Sanjeev

    2014-05-01

    Proteases have found a wide application in the several industrial processes, such as laundry detergents, protein recovery or solubilization, prion degradation, meat tenderizations, and in bating of hides and skins in leather industries. But the main hurdle in industrial application of proteases is their economical production on a large scale. The present investigation aimed to exploit the locally available inexpensive agricultural and household wastes for alkaline protease production using Thermoactinomyces sp. RS1 via solid-state fermentation (SSF) technique. The alkaline enzyme is potentially useful as an additive in commercial detergents to mitigate pollution load due to extensive use of caustic soda-based detergents. Thermoactinomyces sp. RS1 showed good protease production under SSF conditions of 55 °C, pH 9, and 50 % moisture content with potato peels as solid substrate. The presented findings revealed that crude alkaline protease produced by Thermoactinomyces sp. RS1 via SSF is of potential application in silver recovery from used X-ray films.

  13. Difference between Chitosan Hydrogels via Alkaline and Acidic Solvent Systems

    Science.gov (United States)

    Nie, Jingyi; Wang, Zhengke; Hu, Qiaoling

    2016-10-01

    Chitosan (CS) has generated considerable interest for its desirable properties and wide applications. Hydrogel has been proven to be a major and vital form in the applications of CS materials. Among various types of CS hydrogels, physical cross-linked CS hydrogels are popular, because they avoided the potential toxicity and sacrifice of intrinsic properties caused by cross-linking or reinforcements. Alkaline solvent system and acidic solvent system are two important solvent systems for the preparation of physical cross-linked CS hydrogels, and also lay the foundations of CS hydrogel-based materials in many aspects. As members of physical cross-linked CS hydrogels, gel material via alkaline solvent system showed significant differences from that via acidic solvent system, but the reasons behind are still unexplored. In the present work, we studied the difference between CS hydrogel via alkaline system and acidic system, in terms of gelation process, hydrogel structure and mechanical property. In-situ/pseudo in-situ studies were carried out, including fluorescent imaging of gelation process, which provided dynamic visualization. Finally, the reasons behind the differences were explained, accompanied by the discussion about design strategy based on gelation behavior of the two systems.

  14. Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite.

    Science.gov (United States)

    Vandamme, Dries; Pohl, Philip I; Beuckels, Annelies; Foubert, Imogen; Brady, Patrick V; Hewson, John C; Muylaert, Koenraad

    2015-11-01

    Alkaline flocculation holds great potential as a low-cost harvesting method for marine microalgae biomass production. Alkaline flocculation is induced by an increase in pH and is related to precipitation of calcium and magnesium salts. In this study, we used the diatom Phaeodactylum tricornutum as model organism to study alkaline flocculation of marine microalgae cultured in seawater medium. Flocculation started when pH was increased to 10 and flocculation efficiency reached 90% when pH was 10.5, which was consistent with precipitation modeling for brucite or Mg(OH)2. Compared to freshwater species, more magnesium is needed to achieve flocculation (>7.5mM). Zeta potential measurements suggest that brucite precipitation caused flocculation by charge neutralization. When calcium concentration was 12.5mM, flocculation was also observed at a pH of 10. Zeta potential remained negative up to pH 11.5, suggesting that precipitated calcite caused flocculation by a sweeping coagulation mechanism.

  15. Silicon Improves Maize Photosynthesis in Saline-Alkaline Soils

    Directory of Open Access Journals (Sweden)

    Zhiming Xie

    2015-01-01

    Full Text Available The research aimed to determine the effects of Si application on photosynthetic characteristics of maize on saline-alkaline soil, including photosynthetic rate (Pn, stomatal conductance (gs, transpiration rate (E, and intercellular CO2 concentration (Ci of maize in the field with five levels (0, 45, 90, 150, and 225 kg·ha−1 of Si supplying. Experimental results showed that the values of Pn, gs, and Ci of maize were significantly enhanced while the values of E of maize were dramatically decreased by certain doses of silicon fertilizers, which meant that Si application with proper doses significantly increased photosynthetic efficiency of maize in different growth stages under stressing environment of saline-alkaline soil. The optimal dose of Si application in this experiment was 150 kg·ha−1 Si. It indicated that increase in maize photosynthesis under saline-alkaline stress took place by Si application with proper doses, which is helpful to improve growth and yield of maize.

  16. Silicon improves maize photosynthesis in saline-alkaline soils.

    Science.gov (United States)

    Xie, Zhiming; Song, Ri; Shao, Hongbo; Song, Fengbin; Xu, Hongwen; Lu, Yan

    2015-01-01

    The research aimed to determine the effects of Si application on photosynthetic characteristics of maize on saline-alkaline soil, including photosynthetic rate (P n ), stomatal conductance (g s ), transpiration rate (E), and intercellular CO2 concentration (C i ) of maize in the field with five levels (0, 45, 90, 150, and 225 kg · ha(-1)) of Si supplying. Experimental results showed that the values of P n, g s, and C i of maize were significantly enhanced while the values of E of maize were dramatically decreased by certain doses of silicon fertilizers, which meant that Si application with proper doses significantly increased photosynthetic efficiency of maize in different growth stages under stressing environment of saline-alkaline soil. The optimal dose of Si application in this experiment was 150 kg · ha(-1) Si. It indicated that increase in maize photosynthesis under saline-alkaline stress took place by Si application with proper doses, which is helpful to improve growth and yield of maize.

  17. Activation of Calf Intestinal Alkaline Phosphatase by Trifluoroethanol

    Institute of Scientific and Technical Information of China (English)

    曹志方; 徐真; 朴龙斗; 周海梦

    2001-01-01

    Alkaline phosphatase is a stable enzyme which is strongly resistant to urea, guanidine hydrochloride, acid pH, and heat. But there have been few studies on the effect of organic cosolvents on the activity and structure of alkaline phosphatase. The activity of calf intestinal alkaline phosphatase (CIAP) is markedly increased when incubated in solutions with elevated trifluoroethanol (TFE) concentrations. The activation is a time dependent course. There is a very fast phase in the activation kinetics in the mixing dead time (30 s) using convential methods. Further activation after the very fast phase follows biphasic kinetics. The structural basis of the activation has been monitored by intrinsic fluorescence and far ultraviolet circular dichroism. TFE (0 - 60%) did not lead to any significant change in the intrinsic fluorescence emission maximum, indicating no significant change in the tertiary structure of CIAP. But TFE did significantly change the secondary structure of CIAP, especially increasing α-helix content. We conclude that the activation of ClAP is due to its secondary structural change. The time for the secondary structure change induced by TFE preceds that of the activity increase. These results suggest that a rapid conformational change of ClAP induced by TFE results in the enhancement of ClAP activity, followed by further increase of this activity because of the further slightly slower rearrangements of the activated conformation. It is concluded that the higher catalytic activity of ClAP can be attained with various secondary structures.

  18. Alkalinity and trophic state regulate aquatic plant distribution in Danish lakes

    DEFF Research Database (Denmark)

    Vestergaard, Ole Skafte; Sand-Jensen, Kaj

    2000-01-01

    distinct differences in the distribution of species and growth forms among the lakes. The lakes separated into five groups of characteristic species compositions. Alkalinity was the main factor responsible for the species distribution. Lakes of high alkalinity were dominated by vascular plants...... of the elodeid growth form, lakes of intermediate alkalinity contained a variety of elodeids and vascular plants of the isoetid growth form, while lakes of low alkalinity and low pH had several isoetids and bryophytes, but very few elodeids. Alkalinity is a close descriptor of the bicarbonate concentration...

  19. The Compositional Evolution of the Phyllosilicates in the Lateritic Profile of the Catalão I Ultramafic Alkaline-carbonatitic Complex (GO)

    OpenAIRE

    Rogério Guitarrari Azzone; Excelso Ruberti

    2010-01-01

    The compositional evolution of the phyllosilicates in the lateritic profile of the Catalão I ultramafic alkaline-carbonatiticcomplex (GO) is proposed in this work based on petrographic and X-ray diffraction analysis, as well as, chemical compositionobtained by WDS electron microprobe. The micaceous minerals found in unweathered rocks are classified as phlogopites(with different parageneses) and tetraferriphlogopites (metasomatic products). In the levels of altered rocks and isalteriticsaproli...

  20. Muscle strain injuries.

    Science.gov (United States)

    Garrett, W E

    1996-01-01

    One of the most common injuries seen in the office of the practicing physician is the muscle strain. Until recently, little data were available on the basic science and clinical application of this basic science for the treatment and prevention of muscle strains. Studies in the last 10 years represent action taken on the direction of investigation into muscle strain injuries from the laboratory and clinical fronts. Findings from the laboratory indicate that certain muscles are susceptible to strain injury (muscles that cross multiple joints or have complex architecture). These muscles have a strain threshold for both passive and active injury. Strain injury is not the result of muscle contraction alone, rather, strains are the result of excessive stretch or stretch while the muscle is being activated. When the muscle tears, the damage is localized very near the muscle-tendon junction. After injury, the muscle is weaker and at risk for further injury. The force output of the muscle returns over the following days as the muscle undertakes a predictable progression toward tissue healing. Current imaging studies have been used clinically to document the site of injury to the muscle-tendon junction. The commonly injured muscles have been described and include the hamstring, the rectus femoris, gastrocnemius, and adductor longus muscles. Injuries inconsistent with involvement of a single muscle-tendon junction proved to be at tendinous origins rather than within the muscle belly. Important information has also been provided regarding injuries with poor prognosis, which are potentially repairable surgically, including injuries to the rectus femoris muscle, the hamstring origin, and the abdominal wall. Data important to the management of common muscle injuries have been published. The risks of reinjury have been documented. The early efficacy and potential for long-term risks of nonsteroidal antiinflammatory agents have been shown. New data can also be applied to the field

  1. Two-dimensional zymography differentiates gelatinase isoforms in stimulated microglial cells and in brain tissues of acute brain injuries.

    Science.gov (United States)

    Chen, Shanyan; Meng, Fanjun; Chen, Zhenzhou; Tomlinson, Brittany N; Wesley, Jennifer M; Sun, Grace Y; Whaley-Connell, Adam T; Sowers, James R; Cui, Jiankun; Gu, Zezong

    2015-01-01

    Excessive activation of gelatinases (MMP-2/-9) is a key cause of detrimental outcomes in neurodegenerative diseases. A single-dimension zymography has been widely used to determine gelatinase expression and activity, but this method is inadequate in resolving complex enzyme isoforms, because gelatinase expression and activity could be modified at transcriptional and posttranslational levels. In this study, we investigated gelatinase isoforms under in vitro and in vivo conditions using two-dimensional (2D) gelatin zymography electrophoresis, a protocol allowing separation of proteins based on isoelectric points (pI) and molecular weights. We observed organomercuric chemical 4-aminophenylmercuric acetate-induced activation of MMP-2 isoforms with variant pI values in the conditioned medium of human fibrosarcoma HT1080 cells. Studies with murine BV-2 microglial cells indicated a series of proform MMP-9 spots separated by variant pI values due to stimulation with lipopolysaccharide (LPS). The MMP-9 pI values were shifted after treatment with alkaline phosphatase, suggesting presence of phosphorylated isoforms due to the proinflammatory stimulation. Similar MMP-9 isoforms with variant pI values in the same molecular weight were also found in mouse brains after ischemic and traumatic brain injuries. In contrast, there was no detectable pI differentiation of MMP-9 in the brains of chronic Zucker obese rats. These results demonstrated effective use of 2D zymography to separate modified MMP isoforms with variant pI values and to detect posttranslational modifications under different pathological conditions.

  2. Study of physico-chemical characteristics of water bodies around Jaipur.

    Science.gov (United States)

    Srivastava, Neera; Agrawal, Meena; Tyagi, Anupama

    2003-04-01

    The present study has been undertaken to evaluate physico-chemical parameters (pH, temperature, dissolved oxygen, free carbon dioxide, alkalinity and hardness) and zinc concentration in water bodies in and around Jaipur. Water samples from Jalmachal Lake, Nevta Lake, Amer Lake and Ramgarh Lake were analysed. Results reveal that the water of Jalmahal Lake is most polluted due to high pH, hardness, alkalinity, free carbon dioxide, zinc content, and a low level of dissolved oxygen. Contrarily Ramgarh Lake is least polluted, as it has high dissolved oxygen and low pH, alkalinity, free carbon dioxide, hardness and zinc content.

  3. Triathlon related musculoskeletal injuries: the status of injury prevention knowledge.

    Science.gov (United States)

    Gosling, Cameron McR; Gabbe, Belinda J; Forbes, Andrew B

    2008-07-01

    Triathlon is a popular participation sport that combines swimming, cycling and running into a single event. A number of studies have investigated the incidence of injury, profile of injuries sustained and factors contributing to triathlon injury. This paper summarises the published literature in the context of the evidence base for the prevention of triathlon related injuries. Relevant articles on triathlon injuries were sourced from peer-reviewed English language journals and assessed using the Translating Research into Injury Prevention Practice (TRIPP) framework. This review highlights the significant knowledge gap that exists in the published literature describing the incidence of injury, the profile of injuries sustained and evidence for the prevention of injury in triathlon. Despite the number of studies undertaken to address TRIPP Stages 1 and 2 (injury surveillance, aetiology and mechanism of injury), most triathlon studies have been limited by retrospective designs with substantial, and unvalidated, recall periods, inconsistency in the definitions used for a reportable injury and exposure to injury, or a failure to capture exposure data at all. Overall, the paucity of quality, prospective studies investigating the incidence of injury in triathlon and factors contributing to their occurrence has led to an inability to adequately inform the development of injury prevention strategies (TRIPP Stages 3-6) for this sport, a situation that must be rectified if gains are to be made in reducing the burden of triathlon related injury.

  4. A Comparison between Chemical Synthesis Magnetite Nanoparticles and Biosynthesis Magnetite

    OpenAIRE

    2014-01-01

    The preparation of Fe3O4 from ferrous salt by air in alkaline aqueous solution at various temperatures was proposed. The synthetic magnetites have different particle size distributions. We studied the properties of the magnetite prepared by chemical methods compared with magnetotactic bacterial nanoparticles. The results show that crystallite size, morphology, and particle size distribution of chemically prepared magnetite at 293 K are similar to biosynthesis of magnetite. The new preparation...

  5. Childhood sledding injuries.

    Science.gov (United States)

    Shorter, N A; Mooney, D P; Harmon, B J

    1999-01-01

    Sledding is only rarely thought of as a potentially dangerous childhood activity. However, serious injuries and occasional deaths do occur. A review of patients 18 years old and younger admitted to a pediatric trauma center following a sledding accident from 1991 to 1997 was conducted. By design this study was expected to identify the most seriously injured patients. Twenty-five patients were identified, all but four younger than 13. Seventeen were boys. The mechanisms of injury were: collision with stationary object, 15; sled-sled collision, 1; struck by sled, 2; going off jump, 3; foot caught under sled or on ground, 3; fall off sled being towed by snowmobile, 1. The average pediatric trauma score was 10.5, and the average injury severity score 10.6. There were no deaths. The injuries were: head, 11; long bone/extremity, all lower, 10; abdomen, 5; chest, 1; facial, 2; spinal, 1. Five patients sustained multiple injuries. A surprisingly high number, 5, had pre-existing neurological conditions that could have played a contributory role in the accident. Sledding is predominantly an activity of children, and occasional serious injuries occur. Most are preventable. Obeying the simple caveat that sledding should only be done in clear areas away from stationary objects would eliminate the great majority of serious injuries.

  6. A study on the mechanism of stress corrosion cracking of duplex stainless steels in hot alkaline-sulfide solution

    Science.gov (United States)

    Chasse, Kevin Robert

    Duplex stainless steels (DSS) generally have superior strength and corrosion resistance as compared to most standard austenitic and ferritic stainless grades owing to a balanced microstructure of austenite and ferrite. As a result of having favorable properties, DSS have been selected for the construction of equipment in pulp and paper, chemical processing, nuclear, oil and gas as well as other industries. The use of DSS has been restricted in some cases because of stress corrosion cracking (SCC), which can initiate and grow in either the ferrite or austenite phase depending on the environment. Thorough understanding of SCC mechanisms of DSS in chloride- and hydrogen sulfide-containing solutions has been useful for material selection in many environments. However, understanding of SCC mechanisms of DSS in sulfide-containing caustic solutions is limited, which has restricted the capacity to optimize process and equipment design in pulp and paper environments. Process environments may contain different concentrations of hydroxide, sulfide, and chloride, altering corrosion and SCC susceptibility of each phase. Crack initiation and growth behavior will also change depending on the relative phase distribution and properties of austenite and ferrite. The role of microstructure and environment on the SCC of standard grade UNS S32205 and lean grade UNS S32101 in hot alkaline-sulfide solution were evaluated in this work using electrochemical, film characterization, mechanical testing, X-ray diffraction, and microscopy techniques. Microstructural aspects, which included residual stress state, phase distribution, phase ratio, and microhardness, were related to the propensity for SCC crack initiation in different simulated alkaline pulping liquors at 170 °C. Other grades of DSS and reference austenitic and superferritic grades of stainless steel were studied using exposure coupons for comparison to understand compositional effects and individual phase susceptibility

  7. Sports injuries Lesiones deportivas

    OpenAIRE

    2007-01-01

    Stress generated by sports practice has increased the probability that athletes suffer from acute and chronic injuries. Worldwide, there have been many different investigations concerning the incidence of sport injuries. The different ways in which results have been presented makes it difficult to compare among them. Rates of sports injuries vary between 1.7 and 53 per 1.000 hours of sports practice; 0.8 and 90.9 per 1.000 hours of training; 3.1 and 54.8 per 1.000 hours of competition, and 6....

  8. 碱厂碱渣浸出毒性分析与处理%Leaching Toxicity Experiment and Treatment of Alkaline Slag

    Institute of Scientific and Technical Information of China (English)

    刘兴伟; 刘宪斌; 刘占广; 李国锋

    2011-01-01

    Constituents in solid wastes can enter and contaminate the groundwater and surface water by the eluviation, lixiviation, scour with rainwater, groundwater and surface water. Then they may transfer into soil or creatures and contaminate the food chains, posing serious threats to human's health. This study was a leaching toxicity experiment on alkaline slag from a Chemical Plant (Alkaline Factory) in Bohai coastal area . It analyzed results of the leaching toxicity experiment of alkaline slag under the direction of Identification standards for hazardous wastes - Identification for extraction toxicity, (GB 5085.3-2007). Compared with the limits of heavy metal ions, flu-orin ion and cyanogen ion, each concentration of heavy metal ions except cadmium, fluorin ion and cyanogen ion was within the normal range. Causticity of alkaline slag was high enough to do harm to workers in the factory and residents around the factory as well as the machinery for transporting the alkaline slag. The study was significantly important to the monitoring and assessing the alkaline slag, and it can be accordance as the direction in supervising the alkaline slag together with its overall utilization. It was reported that scholars and technicians around the world had done many research on the leaching toxicity of some solid waste, but alkaline slag caused little attention. In many countries the administration and supervision of solid waste and relevant laws were not in sound operation , so there can be lots of research to do in the field of the disposition of solid waste, especially in the alkaline slag. The suggestion about the disposal of alkaline slag in accordance with its characteristics and jeopardize was proposed in this study through the current hot points of the research home and abroad and the fact of Alkaline Factory. The prospect of the trends of disposal of alkaline slag was pointed out also.%固体废物中的有害成分可随雨水、地表水和地下水的淋溶、浸泡、

  9. Injuries in the Iowa Certified Safe Farm Study.

    Science.gov (United States)

    Rautiainen, R H; Lange, J L; Hodne, C J; Schneiders, S; Donham, K J

    2004-01-01

    The aims of this article are to assess injury characteristics and risk factors in the Iowa Certified Safe Farm (CSF) program and to evaluate the effectiveness of CSF for reducing injuries. This intervention program includes a health screening, on-farm safety review, education, and monetary incentives. Cohorts of farmers in an intervention group (n = 152) and control group (n = 164) in northwestern Iowa were followed for a three-year period. During the follow-up, there were 318 injuries (42/100 person-years), of which 112 (15/100 person-years) required professional medical care. The monetary cost of injuries was $51,764 ($68 per farm per year). There were no differences in the self-reported injury rates and costs between the intervention and control groups. Raising livestock, poor general health, and exposures to dust and gas, noise, chemicals and pesticides, and lifting were among risk factors for injury. Most injuries in this study were related to animals, falls from elevation, slips/trips/falls, being struck by or struck against objects, lifting, and overexertion. Machinery was less prominent than generally reported in the literature. Hurry, fatigue, or stress were mentioned as the primary contributing factor in most injuries. These findings illustrate the need for new interventions to address a multitude of hazards in the farm work environment as well as management and organization of farm work.

  10. Raman and Rietveld structural characterization of sintered alkaline earth doped ceria

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira Junior, Jose Marcio; Brum Malta, Luiz Fernando; Garrido, Francisco M.S. [Departamento de Quimica Inorganica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Centro de Tecnologia, Bloco A, room 632, CEP 68563, 21941-909 Rio de Janeiro, RJ (Brazil); Ogasawara, Tsuneharu [Programa de Engenharia Metalurgica e de Materiais, Coordenacao dos Programas de Pos - Graduacao de Engenharia, Centro de Tecnologia, Universidade Federal do Rio de Janeiro, Ilha do Fundao, CEP 68505, 21941-972 Rio de Janeiro, RJ (Brazil); Medeiros, Marta Eloisa, E-mail: chico@iq.ufrj.br [Departamento de Quimica Inorganica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Centro de Tecnologia, Bloco A, room 632, CEP 68563, 21941-909 Rio de Janeiro, RJ (Brazil)

    2012-08-15

    Nanocrystalline calcium and strontium singly doped ceria and co-doped ceria materials for solid electrolytes were prepared via a hydrothermal route. The effect of the hydrothermal treatment time on the solid solution composition was evaluated. Sr doped ceria was the most difficult to form, due to the Sr{sup 2+} large ionic radius. The small crystal size (12-16 nm) of powders allowed sintering into dense ceramic pellets at 1350 Degree-Sign C for 5 h. Raman spectroscopy evidenced a great lattice distortion for Sr doped and co-doped ceria materials, explaining the deterioration of the electrical properties for these ceramics. Besides that, a second phase was detected for Sr doped ceria pellet by using X-ray powder diffraction and Rietveld refinement of XRD data. Impedance measurements showed that Ca-doped ceria behaves as the best ionic conductor ({sigma}{sub g} 390 Degree-Sign C = 1.0 Multiplication-Sign 10{sup -3} S cm{sup -1}) since the nominal composition was achieved; on the other hand, Sr doped ceria performed as resistive materials since Sr incorporation into ceria lattice was critical. These results enhance the close interlace between electrical performance and chemical composition of alkaline earth doped ceria. -- Highlights: Black-Right-Pointing-Pointer Hydrothermally synthesized calcium doped ceria nanoparticles. Black-Right-Pointing-Pointer Incorporation of alkaline earth dopant into ceria lattice. Black-Right-Pointing-Pointer Raman and Rietveld structural characterization. Black-Right-Pointing-Pointer Calcium doped ceria ceramic pellets with high ionic conductivity. Black-Right-Pointing-Pointer Problems associated with the Sr{sup 2+} incorporation into ceria lattice.

  11. Chemical derivatization to enhance chemical/oxidative stability of resorcinol-formaldehyde resin

    Energy Technology Data Exchange (ETDEWEB)

    Hubler, T. [Pacific Northwest National Laboratory, Richland, WA (United States)

    1996-10-01

    The purpose of this work is to develop modified resorcinol-formaldehyde (R-F) resin with enhanced chemical/oxidative stability in conditions typically encountered in the remediation of radioactive waste tanks. R-F resin is a regenerable organic ion-exchanger developed at Savannah River Technology Center that is being considered for use in the selective removal of radioactive cesium from alkaline waste tank supernates at both the Hanford and Savannah River sites.

  12. Acute chemical pneumonitis caused by nitric acid inhalation: case report

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Hyung Shim; Lee, In Jae; Ko, Eun Young; Lee, Jae Young; Kim, Hyun Beom; Hwang, Dae Hyun; Lee, Kwan Seop; Lee, Yul; Bae, Sang Hoon [Hallym University Sacred Heart Hospital, Anyang (Korea, Republic of)

    2003-06-01

    Chemical pneumonitis induced by nitric acid inhalation is a rare clinical condition. The previously reported radiologic findings of this disease include acute permeability pulmonary edema, delayed bronchiolitis obliterans, and bronchiectasis. In very few published rare radiologic reports has this disease manifested as acute alveolar injury; we report a case of acute chemical pneumonitis induced by nitric acid inhalation which at radiography manifested as bilateral perihilar consolidation and ground-glass attenuation, suggesting acute alveolar injury.

  13. Hydrothermal decomposition of industrial jarosite in alkaline media: The rate determining step of the process kinetics

    Directory of Open Access Journals (Sweden)

    González-Ibarra A.A.

    2016-01-01

    Full Text Available This work examines the role of NaOH and Ca(OH2 on the hydrothermal decomposition of industrial jarosite deposited by a Mexican company in a tailings dam. The industrial jarosite is mainly composed by natrojarosite and contains 150 g Ag/t, showing a narrow particle size distribution, as revealed by XRD, fire assay, SEM-EDS and laser-diffraction analysis. The effect of the pH, when using NaOH or Ca(OH2 as alkalinizing agent was studied by carrying out decomposition experiments at different pH values and 60°C in a homogeneous size particle system (pH = 8, 9, 10 and 11 and in a heterogeneous size particle system (pH = 11. Also, the kinetic study of the process and the controlling step of the decomposition reaction when NaOH and Ca(OH2 are used was determined by fitting the data obtained to the shrinking core model for spherical particles of constant size. These results, supported by chemical (EDS, morphological (SEM and mapping of elements (EDS analysis of a partially reacted jarosite particle allowed to conclude that when NaOH is used, the process kinetics is controlled by the chemical reaction and when Ca(OH2 is used, the rate determining step is changed to a diffusion control through a layer of solid products.

  14. Enzymatic dehairing of goat skins using alkaline protease from Bacillus sp. SB12.

    Science.gov (United States)

    Briki, Selmen; Hamdi, Olfa; Landoulsi, Ahmed

    2016-05-01

    The present paper reports the production, purification and biochemical characterization of an extracellular alkaline protease from Bacillus sp. SB12. The enzyme has been used as an alternative to conventional chemicals treatment for dehairing of goat skins. The protease was optimally active at 37 °C and pH 9. Starch at 2% (w/v) was used as the best carbon source and the addition of yeast extract and peptone at 1% each supported the maximum level of protease production in the presence of 5 mM Ca(2+). Protease purification was performed with ammonium sulphate precipitation at 70% saturated fraction followed by dialysis and gel filtration chromatography using Sephadex G-100. The purified enzyme was homogeneous on non-denaturing PAGE and appeared as a single band with an apparent molecular weight of 41 kDa. This enzyme was moderately thermostable and has a wide pH stability range extending from pH 7 to 11. It showed high tolerance toward surfactants agents and organic solvents while it was completely inhibited by PMSF indicating the serine protease type. Purified protease was used to remove hair from goat skin proving its potential application in leather processing industry. The results revealed that the protease has enhanced the quality and physico-chemical properties of the skins while reducing the pollution.

  15. Intelligent hydrophilic nanoparticles fabricated via alkaline hydrolysis of crosslinked polyacrylonitrile nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y., E-mail: zhyw@dhu.edu.cn; Wu, Q.; Zhang, H.; Zhao, J. [Donghua University, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Chemical Fibers Research Institute (China)

    2013-07-15

    Crosslinked polyacrylonitrile (PAN) nanolatex, with an average hydrodynamic diameter of 84 nm and a polydispersity index of 0.06, was successfully synthesized at a high monomer concentration and low surfactant content via a modified emulsion polymerization. Three measurements were adopted to control the nucleation and growth processes. Taking advantage of the chemical activity of nitrile groups, intelligent hydrophilic polymeric nanoparticles were fabricated via simple alkaline hydrolysis treatment of the crosslinked PAN nanolatex. Dynamic light scattering, electrophoretic light scattering, FT-IR spectroscopy, elemental analysis, and TEM observations were used to monitor the changes in the composition, structure, and morphology of the nanoparticles during the hydrolysis process. The sizes, chemical composition, morphology, and pH-responsive behavior of the intelligent hydrophilic nanoparticles could be adjusted by simply changing the hydrolysis time. As the hydrolysis was prolonged, the following nanoparticles could be obtained, crosslinked PAN nanoparticles with hydrophilic surfaces, amphiphilic nanoparticles with a hydrophobic PAN core and a hydrophilic polymeric shell composed of acrylamide and acrylic acid units, or carboxylic polyacrylamide nanoparticles. These modified nanoparticles all display good hydrophilicity, good biocompatibility, pH-sensitivity, as well as carboxyl functional groups, and thus are ideal candidates for various biomedical applications.

  16. 不同技术级别超声医师对离体猪横纹肌理化损伤模型超声定性诊断的局限性分析%Analysis of the impact of ultrasographer′s experience in diagnosing porcine striped muscle injury from thermal and chemical factors

    Institute of Scientific and Technical Information of China (English)

    赵佳琦; 章建全; 盛建国; 赵璐璐; 潘倩

    2014-01-01

    病理组织学变化。%Objective To investigate the ultrasonic and pathological features of porcine striped muscle injury from thermal and chemical factors respectively, and to analyze the limitation of ultrasound diagnosis given by doctors with different skill levels. Methods An experimental study using fresh porcine striped muscle in vitro was designed, where the injury were caused by microwave ablation (2 450 MHz) and Anhydrous acetic acid (99.8%) injection separately. Blind to pathologic results, the two-dimensiona sonograms taken from each model were analyzed by sonographers with different skill levels independently. Finally, the diagnoses were evaluated and compared among them. Results Two-dimensional sonograms showed distinct changes of the textures in both injury models, which was characterized as the disappearance of regular tissue structure. However, the corresponding histopathology revealed obvious differences between the two interventions on ultrasonograms. There was no statistical difference between chief physician and attending doctor (both of them had over 5-year experiences on skeletal muscle ultrasound ) in identifying the ultrasonic features of boundary, shape and muscle texture (Kappa=0.933, 0.845, 0.789;Kappa=0.790, 0.935, 0.865, all P<0.05). Compared with residents′diagnosis, there were signiifcant differences in identifying the ultrasonic features of echo level and muscle texture in both injury models:Echo level in thermal injury group:chief physician vs residents, Kappa=0.323;attending doctor vs residents, Kappa=0.297. Texture feature in thermal injury group:chief physician vs residents, Kappa=0.259;attending doctor vs residents, Kappa=0.112. Texture feature in chemical injury group:chief physician vsresidents, Kappa=0.253;attending doctor vs residents, Kappa=0.070. Conclusions Microwave ablation and Anhydrous acetic acid can cause different histopathologic changes in correspondence with various features on two-dimensional sonograms. But ultrasonographers with different

  17. Pediatric head injury.

    Science.gov (United States)

    Tulipan, N

    1998-01-01

    Pediatric head injury is a public health problem that exacts a high price from patients, their families and society alike. While much of the brain damage in head-injured patients occurs at the moment of impact, secondary injuries can be prevented by aggressive medical and surgical intervention. Modern imaging devices have simplified the task of diagnosing intracranial injuries. Recent advances in monitoring technology have made it easier to assess the effectiveness of medical therapy. These include intracranial pressure monitoring devices that are accurate and safe, and jugular bulb monitoring which provides a continuous, qualitative measure of cerebral blood flow. The cornerstones of treatment remain hyperventilation and osmotherapy. Despite maximal treatment, however, the mortality and morbidity associated with pediatric head injury remains high. Reduction of this mortality and morbidity will likely depend upon prevention rather than treatment.

  18. Toe Injuries and Disorders

    Science.gov (United States)

    ... severe arthritis, can cause toe problems and pain. Gout often causes pain in the big toe. Common toe problems include Corns and bunions Ingrown toenails Sprains and dislocations Fractures Treatments for toe injuries and disorders vary. They might ...

  19. Injuries in classical ballet

    Directory of Open Access Journals (Sweden)

    Adriana Coutinho de Azevedo Guimarães

    2008-06-01

    Full Text Available This study aimed to elucidate what injuries are most likely to occur due to classical ballet practice. The research used national and international bibliography. The bibliography analysis indicated that technical and esthetical demands lead to a practice of non-anatomical movements, causing the ballet dancer to suffer from a number of associated lesions. Most of the injuries are caused by technical mistakes and wrong training. Troubles in children are usually due to trying to force external rotation at hip level and to undue use of point ballet slippers. The commonest lesions are in feet and ankles, followed by knees and hips. The rarest ones are in the upper limbs. These injuries are caused by exercise excess, by repetitions always in the same side and by wrong and early use of point slippers. The study reached the conclusion that incorrect application of classical ballet technique predisposes the dancers to characteristic injuries.

  20. Injury reduction at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Griffing, Bill; /Fermilab

    2005-06-01

    In a recent DOE Program Review, Fermilab's director presented results of the laboratory's effort to reduce the injury rate over the last decade. The results, shown in the figure below, reveal a consistent and dramatic downward trend in OSHA recordable injuries at Fermilab. The High Energy Physics Program Office has asked Fermilab to report in detail on how the laboratory has achieved the reduction. In fact, the reduction in the injury rate reflects a change in safety culture at Fermilab, which has evolved slowly over this period, due to a series of events, both planned and unplanned. This paper attempts to describe those significant events and analyze how each of them has shaped the safety culture that, in turn, has reduced the rate of injury at Fermilab to its current value.

  1. Genital injuries in adults.

    Science.gov (United States)

    White, Catherine

    2013-02-01

    The examination of the rape victim should focus on the therapeutic, forensic and psychological needs of the individual patient. One aspect will be an examination for ano-genital injuries. From a medical perspective, they tend to be minor and require little in the way of treatment. They must be considered when assessing the risk of blood-borne viruses and the need for prophylaxis. From a forensic perspective, an understanding of genital injury rates, type of injury, site and healing may assist the clinician to interpret the findings in the context of the allegations that have been made. There are many myths and misunderstandings about ano-genital injuries and rape. The clinician has a duty to dispel these.

  2. Home Injury Prevention

    Science.gov (United States)

    ... fax mgfa@myasthenia.org • www.myasthenia.org HOME INJURY PREVENTION Home Injur y Prevention A helpful guide for patients and their caregivers. www.myasthenia.org General cont’d. •Be alert ...

  3. Injury prophylaxis in paragliding

    OpenAIRE

    SCHULZE, W.; J. Richter; Schulze, B; Esenwein, S; Buttner-Janz, K

    2002-01-01

    Objectives: To show trends in paragliding injuries and derive recommendations for safety precautions for paraglider pilots on the basis of accident statistics, interviews, questionnaires, medical reports, and current stage of development of paragliding equipment.

  4. Neck Injuries and Disorders

    Science.gov (United States)

    ... or upper arms. Muscle strain or tension often causes neck pain. The problem is usually overuse, such as from ... or accidents, including car accidents, are another common cause of neck pain. Whiplash, a soft tissue injury to the neck, ...

  5. Brachial Plexus Injuries

    Science.gov (United States)

    ... Disability, Independent Living, and Rehabilitation Research (NIDILRR) National Rehabilitation Information ... is a network of nerves that conducts signals from the spine to the shoulder, arm, and hand. Brachial plexus injuries are caused by damage to ...

  6. Photobiomodulation on sports injuries

    Science.gov (United States)

    Liu, Xiao-Guang; Liu, Timon C.; Jiao, Jian-Ling; Li, Cheng-Zhang; Xu, Xiao-Yang

    2003-12-01

    Sports injuries healing has long been an important field in sports medicine. The stimulatory effects of Low intensity laser (LIL) irradiation have been investigated in several medical fields, such as cultured cell response, wound healing, hormonal or neural stimulation, pain relief and others. The aim of this study was to evaluate whether LIL irradiation can accelerate sports injuries healing. Some experimental and clinical studies have shown the laser stimulation effects on soft tissues and cartilage, however, controversy still exists regarding the role of LIL when used as a therapeutic device. Summarizing the data of cell studies and animal experiments and clinic trials by using the biological information model of photobiomodulation, we conclude that LIL irradiation is a valuable treatment for superficial and localized sports injuries and that the injuries healing effects of the therapy depend on the dosage of LIL irradiation.

  7. Spinal Cord Injury

    Science.gov (United States)

    ... injury. Limited mobility may lead to a more sedentary lifestyle, placing you at risk of obesity, cardiovascular disease ... belt or use an age- and weight-appropriate child safety seat. To protect them from air bag ...

  8. Gallium nitrate inhibits alkaline phosphatase activity in a differentiating mesenchymal cell culture.

    Science.gov (United States)

    Boskey, A L; Ziecheck, W; Guidon, P; Doty, S B

    1993-02-01

    The effect of gallium nitrate on alkaline phosphatase activity in a differentiating chick limb-bud mesenchymal cell culture was monitored in order to gain insight into the observation that rachitic rats treated with gallium nitrate failed to show the expected increase in serum alkaline phosphatase activity. Cultures maintained in media containing 15 microM gallium nitrate showed drastically decreased alkaline phosphatase activities in the absence of significant alterations in total protein synthesis and DNA content. However, addition of 15 microM gallium nitrate to cultures 18 h before assay for alkaline phosphatase activity had little effect. At the light microscopic and electron microscopic level, gallium-treated cultures differed morphologically from gallium-free cultures: with gallium present, there were fewer hypertrophic chondrocytes and cartilage nodules were flatter and further apart. Because of altered morphology, staining with an antibody against chick cartilage alkaline phosphatase appeared less extensive; however, all nodules stained equivalently relative to gallium-free controls. Histochemical staining for alkaline phosphatase activity was negative in gallium-treated cultures, demonstrating that the alkaline phosphatase protein present was not active. The defective alkaline phosphatase activity in cultures maintained in the presence of gallium was also evidenced when cultures were supplemented with the alkaline phosphatase substrate, beta-glycerophosphate (beta GP). The data presented suggest that gallium inhibits alkaline phosphatase activity in this culture system and that gallium causes alterations in the differentiation of mesenchymal cells into hypertrophic chondrocytes.

  9. Ethylene Inhibits Root Elongation during Alkaline Stress through AUXIN1 and Associated Changes in Auxin Accumulation.

    Science.gov (United States)

    Li, Juan; Xu, Heng-Hao; Liu, Wen-Cheng; Zhang, Xiao-Wei; Lu, Ying-Tang

    2015-08-01

    Soil alkalinity causes major reductions in yield and quality of crops worldwide. The plant root is the first organ sensing soil alkalinity, which results in shorter primary roots. However, the mechanism underlying alkaline stress-mediated inhibition of root elongation remains to be further elucidated. Here, we report that alkaline conditions inhibit primary root elongation of Arabidopsis (Arabidopsis thaliana) seedlings by reducing cell division potential in the meristem zones and that ethylene signaling affects this process. The ethylene perception antagonist silver (Ag(+)) alleviated the inhibition of root elongation by alkaline stress. Moreover, the ethylene signaling mutants ethylene response1-3 (etr1-3), ethylene insensitive2 (ein2), and ein3-1 showed less reduction in root length under alkaline conditions, indicating a reduced sensitivity to alkalinity. Ethylene biosynthesis also was found to play a role in alkaline stress-mediated root inhibition; the ethylene overproducer1-1 mutant, which overproduces ethylene because of increased stability of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE5, was hypersensitive to alkaline stress. In addition, the ethylene biosynthesis inhibitor cobalt (Co(2+)) suppressed alkaline stress-mediated inhibition of root elongation. We further found that alkaline stress caused an increase in auxin levels by promoting expression of auxin biosynthesis-related genes, but the increase in auxin levels was reduced in the roots of the etr1-3 and ein3-1 mutants and in Ag(+)/Co(2+)-treated wild-type plants. Additional genetic and physiological data showed that AUXIN1 (AUX1) was involved in alkaline stress-mediated inhibition of root elongation. Taken together, our results reveal that ethylene modulates alkaline stress-mediated inhibition of root growth by increasing auxin accumulation by stimulating the expression of AUX1 and auxin biosynthesis-related genes.

  10. Characterizing Injury among Battlefield Airmen

    Science.gov (United States)

    2014-08-01

    career fields, BA as a whole, and Security Forces as a control group. From 2006 to 2012, injuries to the lower extremities and vertebral column ... vertebral column .” The most expensive injury was to the vertebral column , with a $615 median cost per incident injury. 15. SUBJECT TERMS Warfighter...2006 to 2012, injuries to the lower extremities and vertebral column accounted for 75% of all injuries in BA. BA and Security Forces had similar

  11. Reducing slide sheet injury.

    Science.gov (United States)

    Varcin-Coad, Lynn

    2008-12-01

    Slide sheets are often stated to be the cause of hand and forearm injuries. While there are many other possible reasons injuries to nursing staff, carer and client occur, the most important linking factors relating to musculoskeletal disorders and manual handling of people is the ongoing inappropriateness or lack of suitably designed and equipped work areas. As physiotherapist Lynn Varcin-Coad writes, staff are bearing the brunt of inefficiencies of design and lack of high order risk control.

  12. Acute local radiation injuries

    Energy Technology Data Exchange (ETDEWEB)

    Gongora, R. (Institut Curie, 75 - Paris (France)); Jammet, H. (Commissariat a l' Energie Atomique, ISPN, 92 - Fontenay-aux-Roses (France))

    1983-01-01

    Local acute radiation injuries do not occur very often. Their origin is generally accidental. They show specific anatomo-clinical features. The clinical evolution and therapeutic behaviour are dependent on the dose level and topographical distribution. The dosimetric assessment requires physical methods and paraclinical investigations. From a study of 60 cases followed by the International Center of Radiopathology, the clinical symptomatology is described and the problems raised to the radiopathologist physician by local acute radiation injuries are stated.

  13. Injuries in paragliding.

    Science.gov (United States)

    Zeller, T; Billing, A; Lob, G

    1992-01-01

    In a retrospective study, 376 paragliding accidents have been analysed. Leg injuries were most common, but a large number of spinal injuries also occurred. The causes were either misjudgement by the pilot or the influence of weather and terrain. Improvements in the instructor's knowledge and the pilot's training could have prevented most of the accidents. Analysis of the mechanisms of the crashes and the pattern of trauma help to produce an efficient approach to diagnosis and treatment.

  14. phoD Alkaline Phosphatase Gene Diversity in Soil.

    Science.gov (United States)

    Ragot, Sabine A; Kertesz, Michael A; Bünemann, Else K

    2015-10-01

    Phosphatase enzymes are responsible for much of the recycling of organic phosphorus in soils. The PhoD alkaline phosphatase takes part in this process by hydrolyzing a range of organic phosphoesters. We analyzed the taxonomic and environmental distribution of phoD genes using whole-genome and metagenome databases. phoD alkaline phosphatase was found to be spread across 20 bacterial phyla and was ubiquitous in the environment, with the greatest abundance in soil. To study the great diversity of phoD, we developed a new set of primers which targets phoD genes in soil. The primer set was validated by 454 sequencing of six soils collected from two continents with different climates and soil properties and was compared to previously published primers. Up to 685 different phoD operational taxonomic units were found in each soil, which was 7 times higher than with previously published primers. The new primers amplified sequences belonging to 13 phyla, including 71 families. The most prevalent phoD genes identified in these soils were affiliated with the orders Actinomycetales (13 to 35%), Bacillales (1 to 29%), Gloeobacterales (1 to 18%), Rhizobiales (18 to 27%), and Pseudomonadales (0 to 22%). The primers also amplified phoD genes from additional orders, including Burkholderiales, Caulobacterales, Deinococcales, Planctomycetales, and Xanthomonadales, which represented the major differences in phoD composition between samples, highlighting the singularity of each community. Additionally, the phoD bacterial community structure was strongly related to soil pH, which varied between 4.2 and 6.8. These primers reveal the diversity of phoD in soil and represent a valuable tool for the study of phoD alkaline phosphatase in environmental samples.

  15. Ocular injury in hurling.

    LENUS (Irish Health Repository)

    Flynn, T H

    2012-02-03

    OBJECTIVES: To describe the clinical characteristics of ocular injuries sustained in hurling in the south of Ireland and to investigate reasons for non-use of protective headgear and eye wear. METHODS: Retrospective review of the case notes of 310 patients who attended Cork University Hospital or Waterford Regional Hospital between 1 January 1994 and 31 December 2002 with ocular injuries sustained during a hurling match. A confidential questionnaire on reasons for non-use of protective headgear and eye wear was completed by 130 players. RESULTS: Hurling related eye injuries occurred most commonly in young men. Fifty two patients (17%) required hospital admission, with hyphaema accounting for 71% of admissions. Ten injuries required intraocular surgical INTERVENTION: retinal detachment repair (5); macular hole surgery (1); repair of partial thickness corneal laceration (1); repair of globe perforation (1); enucleation (1); trabeculectomy for post-traumatic glaucoma (1). Fourteen eyes (4.5%) had a final best corrected visual acuity (BCVA) of <6\\/12 and six (2%) had BCVA <3\\/60. In the survey, 63 players (48.5%) reported wearing no protective facemask while playing hurling. Impairment of vision was the most common reason cited for non-use. CONCLUSIONS: Hurling related injury is a significant, and preventable, cause of ocular morbidity in young men in Ireland. The routine use of appropriate protective headgear and faceguards would result in a dramatic reduction in the incidence and severity of these injuries, and should be mandatory.

  16. Quadriceps tendon injuries

    Directory of Open Access Journals (Sweden)

    Ristić Vladimir

    2013-01-01

    Full Text Available Introduction. The aim of study was to analyze risk factors, mechanisms of injury, symptoms and time that elapsed from injury until operation of complete quadriceps tendon ruptures. Material and Methods. This retrospective multicenter study included 30 patients operated for this injury, of whom 28 (93.3% were men. The average age was 53.7 years (18-73. Twenty-six patients had reconstruction of unilateral rupture and four of bilateral one. Results. Eighty percent of them had some risk factors for rupture of the tendon with degenerative changes. Eight patients had diabetes, seven patients were on renal dialysis, two patients had secondary hyperparathyroidism, five patients were obese and two patients had former knee operations. These injuries occurred in 80% following minor trauma caused by falls on stairs, on flat surfaces and squatting. The most frequent symptoms were: pain, swelling, lack of extension of knee and defect above patella, and three cases were initially misdiagnosed. During the first 10 days after injury, acute and chronic ruptures were reconstructed in 22 (73.3% and 8 patients, respectively. Conclusion. Quadriceps tendon injuries most often happen to male patients with predisposing conditions in their fifth and sixth decade of life due to trivial trauma. Patients on renal dialysis are the most vulnerable population group.

  17. Cluster bomb ocular injuries

    Directory of Open Access Journals (Sweden)

    Ahmad M Mansour

    2012-01-01

    Full Text Available Purpose: To present the visual outcomes and ocular sequelae of victims of cluster bombs. Materials and Methods: This retrospective, multicenter case series of ocular injury due to cluster bombs was conducted for 3 years after the war in South Lebanon (July 2006. Data were gathered from the reports to the Information Management System for Mine Action. Results: There were 308 victims of clusters bombs; 36 individuals were killed, of which 2 received ocular lacerations and; 272 individuals were injured with 18 receiving ocular injury. These 18 surviving individuals were assessed by the authors. Ocular injury occurred in 6.5% (20/308 of cluster bomb victims. Trauma to multiple organs occurred in 12 of 18 cases (67% with ocular injury. Ocular findings included corneal or scleral lacerations (16 eyes, corneal foreign bodies (9 eyes, corneal decompensation (2 eyes, ruptured cataract (6 eyes, and intravitreal foreign bodies (10 eyes. The corneas of one patient had extreme attenuation of the endothelium. Conclusions: Ocular injury occurred in 6.5% of cluster bomb victims and 67% of the patients with ocular injury sustained trauma to multiple organs. Visual morbidity in civilians is an additional reason for a global ban on the use of cluster bombs.

  18. ALKALINE PHOSPHATASE ACTIVITY AS A MARKER OF DOG SEMEN FREEZABILITY

    Directory of Open Access Journals (Sweden)

    KOSINIAK-KAMYSZ K.

    2007-01-01

    Full Text Available The investigation was performed to evaluate the dog semen freezability and itsquality after thawing allowing its use for artificial insemination (AI. On the basis ofsperm motility, concentration and alkaline phosphatase (AP activity in semenplasma it was possible to establish that AP activity corresponds with the basic factorof semen examination. Significant statistical differences occurred between thequality of ejaculates which were qualified or disqualified to deep freezing and AI.These results show that AP activity in raw dog semen plasma can be used as amarker for the dog semen qualification for deep freezing and AI with 95%probability of the prognosis of the results.

  19. Fire Resistance of Wood Impregnated with Soluble Alkaline Silicates

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Giudice

    2007-01-01

    Full Text Available The aim of this paper is to determine the fire performance of wood panels (Araucaria angustifolia impregnated with soluble alkaline silicates. Commercial silicates based on sodium and potassium with 2.5/1.0 and 3.0/1.0 silica/alkali molar ratios were selected; solutions and glasses were previously characterized. Experimental panels were tested in a limiting oxygen chamber and in a two-foot tunnel. Results displayed a high fire-retardant efficiency using some soluble silicates.

  20. Evaluation of High Solids Alkaline Pretreatment of Rice Straw

    OpenAIRE

    Cheng, Yu-Shen; Zheng, Yi; Yu, Chao Wei; Dooley, Todd M.; Jenkins, Bryan M.; VanderGheynst, Jean S.

    2010-01-01

    Fresh-harvested, air-dried rice straw was pretreated at a water content of 5 g H2O/g straw using sodium hydroxide (NaOH) and compared to pretreatment at 10 g H2O/g straw by hydrated lime (Ca(OH)2). Full factorial experiments including parallel wash-only treatments were completed with both sources of alkali. The experiments were designed to measure the effects of alkaline loading and pretreatment time on delignification and sugar yield upon enzymatic hydrolysis. Reaction temperature was held c...