WorldWideScience

Sample records for alkaline cementitious materials

  1. Low-alkaline cementitious grout for high-level nuclear waste disposal

    International Nuclear Information System (INIS)

    The stratum disposal system for high-level nuclear waste mainly involves the use of natural bedrock, called the natural barrier, and over pack and the buffer, those are designated as the artificial barrier. Grouting technology is indispensable for the environment that the crack and the underground water flow of the bedrock bring about mass transport, also ratio active component. However, typical cementitious grout material is strongly alkaline and the alkalinity that it imparts to the barrier material, especially to mineral substances in the bedrock or buffer, is suspected to compromise the performance of the barrier system over the long term. In order to avoid this undesirable alkaline influence, we have developed a procedure for reducing the alkaline state in cementitious materials by employing high volumes of additives such as pozzolanic materials. In this paper, we discuss the basic properties of low-alkaline cementitious grout, and explain how to select and mix appropriate proportions of grout to accomplish the end-objective, i.e., develop an efficient stratum disposal system. We also elaborate on progress achieved in research on this topic over the last two years. (author)

  2. Development of New Cementitious Caterials by Alkaline Activating Industrial by-Products

    Science.gov (United States)

    Fernández-Jimenez, A.; García-Lodeiro, I.; Palomo, A.

    2015-11-01

    The alkaline activation of aluminosiliceous industrial by-products such as blast furnace slag and fly ash is widely known to yield binders whose properties make them comparable to or even stronger and more durable than ordinary Portland cement. The present paper discusses activation fundamentals (such as the type and concentration of alkaline activator and curing conditions) as well as the structure of the cementitious gels formed (C-A-S-H, N-A-S-H). The durability and strength of these systems make these materials apt for use in many industrial applications, such as precast concrete elements (masonery blocks, railroad sleepers), protective coatings for materials with low fire ratings and lightweight elements.

  3. Microfibres and hydrogels to promote autogenous healing in cementitious materials

    OpenAIRE

    Snoeck, Didier; Dubruel, Peter; De Belie, Nele

    2013-01-01

    Cementitious materials are sensitive to crack formation and it would be beneficial if the material could stop the crack propagation, repair the damage and reach again the original liquid-tightness and/or strength. Therefore, a cementitious material with synthetic microfibres and superabsorbent polymers (SAPs) is proposed. Upon crack formation, the microfibres will become active and due to the bridging action, they will stop the opening of a crack, forcing the cementitious material to crack so...

  4. Method for characterization of the redox condition of cementitious materials

    Energy Technology Data Exchange (ETDEWEB)

    Almond, Philip M.; Langton, Christine A.; Stefanko, David B.

    2015-12-22

    Disclosed are methods for determining the redox condition of cementitious materials. The methods are leaching methods that utilize an in situ redox indicator that is present in the cementitious materials as formed. The in situ redox indicator leaches from cementitious material and, when the leaching process is carried out under anaerobic conditions can be utilized to determine the redox condition of the material. The in situ redox indicator can exhibit distinct characteristics in the leachate depending upon the redox condition of the indicator.

  5. Self-degradable Cementitious Sealing Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, T.; Butcher, T., Lance Brothers, Bour, D.

    2010-10-01

    A self-degradable alkali-activated cementitious material consisting of a sodium silicate activator, slag, Class C fly ash, and sodium carboxymethyl cellulose (CMC) additive was formulated as one dry mix component, and we evaluated its potential in laboratory for use as a temporary sealing material for Enhanced Geothermal System (EGS) wells. The self-degradation of alkali-activated cementitious material (AACM) occurred, when AACM heated at temperatures of {ge}200 C came in contact with water. We interpreted the mechanism of this water-initiated self-degradation as resulting from the in-situ exothermic reactions between the reactants yielded from the dissolution of the non-reacted or partially reacted sodium silicate activator and the thermal degradation of the CMC. The magnitude of self-degradation depended on the CMC content; its effective content in promoting degradation was {ge}0.7%. In contrast, no self-degradation was observed from CMC-modified Class G well cement. For 200 C-autoclaved AACMs without CMC, followed by heating at temperatures up to 300 C, they had a compressive strength ranging from 5982 to 4945 psi, which is {approx}3.5-fold higher than that of the commercial Class G well cement; the initial- and final-setting times of this AACM slurry at 85 C were {approx}60 and {approx}90 min. Two well-formed crystalline hydration phases, 1.1 nm tobermorite and calcium silicate hydrate (I), were responsible for developing this excellent high compressive strength. Although CMC is an attractive, as a degradation-promoting additive, its addition to both the AACM and the Class G well cement altered some properties of original cementitious materials; among those were an extending their setting times, an increasing their porosity, and lowering their compressive strength. Nevertheless, a 0.7% CMC-modified AACM as self-degradable cementitious material displayed the following properties before its breakdown by water; {approx}120 min initial- and {approx}180 min final

  6. Chloride diffusion in partially saturated cementitious material

    DEFF Research Database (Denmark)

    Nielsen, Erik Pram; Geiker, Mette Rica

    2003-01-01

    The paper proposes a combined application of composite theory and Powers' model for microstructural development for the estimation of the diffusion coefficient as a function of the moisture content of a defect-free cementitious material. Measurements of chloride diffusion in mortar samples (440 kg....../m(3) rapid-hardening Portland cement, w/c = 0.5, maturity minimum 6 months) stored at 65% and 85% RH, as well as in vacuum-saturated mortar samples, illustrate the applicability of the method. (C) 2003 Elsevier Science Ltd. All rights reserved....

  7. Architecture for gas transport through cementitious materials

    Science.gov (United States)

    Vu, Thai Hoa; Frizon, Fabien; Lorente, Sylvie

    2009-05-01

    This paper documents the transport of gaseous species through porous media, with application to cementitious materials. An artificial pore network was created based on mercury intrusion porometry results obtained with samples of cement paste. The flow architecture model consists of parallel channels made of assemblies of truncated cones. Gas diffusion is described as a function of the saturation degree of the material. The model accounts for the effects of the liquid curtains, and the impact of tortuosity on gas diffusion. The results show that constructing an artificial architecture based on Hg porometry allows us to describe with a good accuracy the material porous network. The liquid curtains operate as an obstacle to H2 diffusion. They are determined as a function of the water saturation level and the pore channels geometry. Furthermore, the role of tortuosity as an indicator of gas diffusion accessibility is captured. The sudden drop in the effective diffusion coefficient around a saturation degree of 70% is predicted accurately.

  8. A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material

    DEFF Research Database (Denmark)

    Wu, Min; Johannesson, Björn; Geiker, Mette

    2012-01-01

    .e. the use of hollow fibers, microencapsulation, expansive agents and mineral admixtures, bacteria and shape memory materials, are reviewed and summarized. A comparison study is conducted subsequently on different strategies to self-healing and on different healing agents used as well. Engineered......Cementitious materials are the most widely used building materials all over the word. However, deterioration is inevitable even since the very beginning of the service life, then maintenance and repair work, which are often labor- and capital-intensive, would be followed. Thus, self......-healing of the affected cementitious materials is of great importance. Self-healing phenomenon in cementitious materials has been noticed and been studying for a long time. The possible mechanisms for self-healing phenomenon in cementitious materials, which are summarized based on substantial experimental studies...

  9. Entombment Using Cementitious Materials: Design Considerations and International Experience

    International Nuclear Information System (INIS)

    Cementitious materials have physical and chemical properties that are well suited for the requirements of radioactive waste management. Namely, the materials have low permeability and durability that is consistent with the time frame required for short-lived radionuclides to decay. Furthermore, cementitious materials can provide a long-term chemical environment that substantially reduces the mobility of some long-lived radionuclides of concern for decommissioning (e.g., C-14, Ni-63, Ni-59). Because of these properties, cementitious materials are common in low-level radioactive waste disposal facilities throughout the world and are an attractive option for entombment of nuclear facilities. This paper describes design considerations for cementitious barriers in the context of performance over time frames of a few hundreds of years (directed toward short-lived radionuclides) and time frames of thousands of years (directed towards longer-lived radionuclides). The emphasis is on providing a n overview of concepts for entombment that take advantage of the properties of cementitious materials and experience from the design of low-level radioactive waste disposal facilities. A few examples of the previous use of cementitious materials for entombment of decommissioned nuclear facilities and proposals for the use in future decommissioning of nuclear reactors in a few countries are also included to provide global perspective

  10. Challenges and Benefits of Utilizing Carbon Nanofilaments in Cementitious Materials

    Directory of Open Access Journals (Sweden)

    Ardavan Yazdanbakhsh

    2012-01-01

    Full Text Available Carbon nanofibers/tubes (CNF/Ts are very strong and stiff and as a result, are expected to be capable of enhancing the mechanical properties of cementitious materials significantly. Yet there are practical issues concerning the utilization of CNF/Ts in cementitious materials. This study summarizes some of the past efforts made by different investigators for utilizing carbon nanofilaments in cementitious materials and also reports recent experimental research performed by the authors on the mechanical properties of CNF-reinforced hardened cement paste. The major difficulties concerning the utilization of CNF/Ts in cementitious materials are introduced and discussed. Most of these difficulties are related to the poor dispersibility of CNF/Ts. However, the findings from the research presented in this work indicate that, despite these difficulties, carbon nanofilaments can significantly improve the mechanical properties of cementitious materials. The results show that CNFs, even when poorly dispersed within the cementitious matrix, can remarkably increase the flexural strength and cracking resistance of concrete subjected to drying conditions.

  11. Obtaining cementitious material from municipal solid waste

    Directory of Open Access Journals (Sweden)

    Macías, A.

    2007-06-01

    Full Text Available The primary purpose of the present study was to determine the viability of using incinerator ash and slag from municipal solid waste as a secondary source of cementitious materials. The combustion products used were taken from two types of Spanish MSW incinerators, one located at Valdemingómez, in Madrid, and the other in Melilla, with different incineration systems: one with fluidised bed combustion and other with mass burn waterwall. The effect of temperature (from 800 to 1,200 ºC on washed and unwashed incinerator residue was studied, in particular with regard to phase formation in washed products with a high NaCl and KCl content. The solid phases obtained were characterized by X-ray diffraction and BET-N2 specific surface procedures.El principal objetivo del trabajo ha sido determinar la viabilidad del uso de las cenizas y escorias procedentes de la incineración de residuos sólidos urbanos, como materia prima secundaria para la obtención de fases cementantes. Para ello se han empleado los residuos generados en dos tipos de incineradoras españolas de residuos sólidos urbanos: la incineradora de Valdemingómez y la incineradora de Melilla. Se ha estudiado la transformación de los residuos, sin tratamiento previo, en función de la temperatura de calentamiento (desde 800 ºC hasta 1.200 ºC, así como la influencia del lavado de los residuos con alto contenido en NaCl y KCl en la formación de fases obtenidas a las diferentes temperaturas de calcinación. Las fases obtenidas fueron caracterizadas por difracción de rayos X y área superficial por el método BET-N2.

  12. Electro-decontamination of cementitious materials

    International Nuclear Information System (INIS)

    The end of operations in nuclear facilities is followed by various decontamination and decommissioning operations. Similar to other electrochemical techniques such as re-alkalinisation and chloride extraction, an electrokinetic remediation process is being developed as a specific method for deeply contaminated concrete structures. Two cements, an ordinary Portland and a 30% slag cement, have been chosen for the conducted work.Mortars and concretes are contaminated by adding non-radioactive cesium in the batch water, cesium being a representative specie of deep encountered contaminants. The conducted experimental and numerical work have focused on three main aspects: characterizing and understanding the cesium transport mechanisms, assessing the electro-remediation process at lab-scale and evaluating the real scale constraints. Using existing knowledge of chloride transport mechanisms, experiments have been conducted to characterize the cesium interactions with cementitious phase and ionic transport in saturated materials. A numerical model have then been developed to describe the cesium transport, taking into account the ionic activity coefficients and interactions with solid phases. Indeed, lab-scale experiments have demonstrated that electro-remediation reduced to 20-50% the initially contained cesium after a three weeks treatment. Treated samples analysis confirmed that deeply diffused cesium is migrating to the surface. Moreover, conducted experiments showed the consistency between the different materials properties, applied currents and decontamination efficiency. A comparative analysis of experiments carried on samples with different shapes, formulations and contamination modes helped assessing and optimizing the process efficiency for various continuous and variable applied currents. Finally, electro-remediation experiments have also been carried on 1m2 concrete slabs. Liquid catholyte and anolyte solutions are replaced by alumina gels and cellulose pastes

  13. Thermodynamics of Autogenous Self-healing in Cementitious Materials

    NARCIS (Netherlands)

    Huang, H.

    2014-01-01

    Concrete is a brittle composite cementitious material that easily fractures under tensile loading. Microcracks can appear throughout the concrete prior to application of any load because of temperature-induced strain and autogenous and drying shrinkage. There is no doubt that these cracks provide pr

  14. Optimization of SO3 Content in Blended Cementitious Materials

    Institute of Scientific and Technical Information of China (English)

    CHEN Mei-zhu; LIANG Wen-quan; HE Zhen; LI Bei-xing

    2003-01-01

    Experimental investigation was conducted on the effects of gypsum types and SO3 content on the fluidity and strengths of different cementitious systems.The experimental results show that influences of gypsum in various cementitious materials are different.For cementitious materials blended with various proportions of slag-fly ash and 5% gypsum content,influences of gypsum and calcined gypsum on the fluidity and flexural/compressive strength are similar.It is revealed that "combination effect" and "synergistic effect" of slag and fly ash play an important role during hydration.For cementitious materials with 45% clinkers,30%slag,20%fly ash and 5%limestone,the optimized SO3 contents in gypsum and calcined gypsum are 3.13% and 3.51% respectively and the optimized gypsum content is 6.5%.While both of them are blended,the optimum ratio of gypsum to calcined gypsum is 40%∶60%(total gypsum content 6.5%),correspondingly the optimum ratio of SO3 is 19.3%∶32.4%.

  15. Monitoring early age cementitious materials using ultrasonic guided waves

    Science.gov (United States)

    Borgerson, Jacob L.

    The evaluation of early age concrete is critical for reducing construction times and ensuring quality. In this study, the use of ultrasonic guided waves for monitoring the development of early age cementitious materials is investigated. A torsional wave is transmitted and received through a waveguide that is embedded in early age mortar or concrete. As the cementitious material sets and hardens, the received wave(s) change, indicating the transition from a semifluid to a solid state. This thesis proposes two systems. The first system is a through-transmission system; a wave is transmitted on one end of an embedded waveguide using a sensor arrangement and then it is received on the opposite end of the rod with another sensor. This approach monitors the attenuation of the fundamental torsional wave mode, resulting from the leakage of energy from the cylindrical steel rod to the surrounding cementitious material. The evolution of the material's properties is related to the energy leakage or attenuation of the guided wave. The second system is a pulse-echo system; a wave is transmitted on one end of a partially embedded waveguide via a sensor arrangement that also receives the reflected signals. This approach monitors both the reflection from the end of the rod and the reflection from the point where the waveguide enters the material. The development of the cementitious material's mechanical properties is related to both the energy leaked into the surrounding material and the energy reflected at the point of entry. The ability of this method to only require access to one side of the specimen makes it attractive for monitoring early age cementitious materials in the field. Experiments were performed on mixtures with varying water-cement ratios (w/c = 0.40, 0.50, and 0.60), chemical admixtures (accelerant and retardant), mineral admixtures (silica fume and fly ash), and coarse aggregate (pea gravel). The time of setting and compressive strength of the various mixtures

  16. Mechanical properties of gangue-containing aluminosilicate based cementitious materials

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    High performance aluminosilicate based cementitious materials were produced using calcined gangue as one of the major raw materials.The gangue was calcined at 500℃.The main constituent was calcined gangue, fly ash and slag, while alkali-silicate solutions were used as the diagenetic agent.The structure of gangue-containing aluminosilicate based cementitious materials was studied by the methods of IR, NMR and SEM.The results show that the mechanical properties are affected by the mass ratio between the gangue, slag and fly ash, the kind of activator and additional salt.For 28-day curing time, the compressive strength of the sample with a mass proportion of 2:1:1 (gangue: slag: fly ash) is 58.9 MPa, while the compressive strength of the sample containing 80wt%gangue can still be up to 52.3 MPa.The larger K+ favors the formation of large silicate oligomers with which Al(OH)4- prefers to bind.Therefore, in Na-K compounding activator solutions more oligomers exist which result in a stronger compressive strength of aluminosilicate-based cementitious materials than in the case of Na-containing activator.The reasons for this were found through IR and NMR analysis.Glauber's salt reduces the 3-day compressive strength of the paste, but increases its 7-day and 28-day compressive strengths.

  17. Thermodynamics of Autogenous Self-healing in Cementitious Materials

    OpenAIRE

    Huang, H

    2014-01-01

    Concrete is a brittle composite cementitious material that easily fractures under tensile loading. Microcracks can appear throughout the concrete prior to application of any load because of temperature-induced strain and autogenous and drying shrinkage. There is no doubt that these cracks provide preferential access for aggressive agents to penetrate into the concrete, probably causing corrosion of reinforcement steel and degradation of concrete. As a result, the service life of reinforced co...

  18. Glass cullet as a new supplementary cementitious material (SCM)

    Science.gov (United States)

    Mirzahosseini, Mohammadreza

    Finely ground glass has the potential for pozzolanic reactivity and can serve as a supplementary cementitious material (SCM). Glass reaction kinetics depends on both temperature and glass composition. Uniform composition, amorphous nature, and high silica content of glass make ground glass an ideal material for studying the effects of glass type and particle size on reactivity at different temperature. This study focuses on how three narrow size ranges of clear and green glass cullet, 63--75 mum, 25--38 mum, and smaller than 25 mum, as well as combination of glass types and particle sizes affects the microstructure and performance properties of cementitious systems containing glass cullet as a SCM. Isothermal calorimetry, chemical shrinkage, thermogravimetric analysis (TGA), quantitative analysis of X-ray diffraction (XRD), and analysis of scanning electron microscope (SEM) images in backscattered (BS) mode were used to quantify the cement reaction kinetics and microstructure. Additionally, compressive strength and water sorptivity experiments were performed on mortar samples to correlate reactivity of cementitious materials containing glass to the performance of cementitious mixtures. A recently-developed modeling platform called "muic the model" was used to simulated pozzolanic reactivity of single type and fraction size and combined types and particle sizes of finely ground glass. Results showed that ground glass exhibits pozzolanic properties, especially when particles of clear and green glass below 25 mum and their combination were used at elevated temperatures, reflecting that glass cullet is a temperature-sensitive SCM. Moreover, glass composition was seen to have a large impact on reactivity. In this study, green glass showed higher reactivity than clear glass. Results also revealed that the simultaneous effect of sizes and types of glass cullet (surface area) on the degree of hydration of glass particles can be accounted for through a linear addition

  19. Impact of carbonation on water transport properties of cementitious materials

    International Nuclear Information System (INIS)

    Carbonation is a very well-known cementitious materials pathology. It is the major cause of reinforced concrete structures degradation. It leads to rebar corrosion and consequent concrete cover cracking. In the framework of radioactive waste management, cement-based materials used as building materials for structures or containers would be simultaneously submitted to drying and atmospheric carbonation. Although scientific literature regarding carbonating is vast, it is clearly lacking information about the influence of carbonation on water transport properties. This work then aimed at studying and understanding the change in water transport properties induced by carbonation. Simultaneously, the representativeness of accelerated carbonation (in the laboratory) was also studied. (author)

  20. Degradation of cellulosic materials under the alkaline conditions of a cementitious repository for low- and intermediate level radioactive waste. Pt. III. Effect of degradation products on the sorption of radionuclides on feldspar

    International Nuclear Information System (INIS)

    The effect of degradation products of different cellulosic materials on the sorption behaviour of Th(IV), Eu(III) and Ni(II) on feldspar at pH 13.3 was studied. For all three metals, a decrease in sorption could be observed with increasing concentration of organics in solution. For Th(IV), α-ISA is the effective ligand present in the solutions of degraded cellulose, independent on the type of cellulose studied. For Eu(III), α-ISA is the effective ligand in the case of pure cellulose degradation. In the case of other cellulosic materials, unknown ligands cause the sorption reduction. For Ni(II), also unknown ligands cause sorption reduction, independent on the type of cellulose studied. These unknown ligands are not formed during alkaline degradation of cellulose, but are present as impurities in certain cellulosic materials. (orig.)

  1. Cementitious barriers partnership transport properties of damaged materials

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-11-01

    The objective of the Cementitious Barriers Partnership (CBP) project is to develop tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers used in low level waste storage applications. One key concern for the long-term durability of concrete is the degradation of the cementitious matrix, which occurs as a result of aggressive chemical species entering the material or leaching out in the environment, depending on the exposure conditions. The objective of the experimental study described in this report is to provide experimental data relating damage in cementitious materials to changes in transport properties, which can eventually be used to support predictive model development. In order to get results within a reasonable timeframe and to induce as much as possible uniform damage level in materials, concrete samples were exposed to freezing and thawing (F/T) cycles. The methodology consisted in exposing samples to F/T cycles and monitoring damage level with ultrasonic pulse velocity measurements. Upon reaching pre-selected damage levels, samples were tested to evaluate changes in transport properties. Material selection for the study was motivated by the need to get results rapidly, in order to assess the relevance of the methodology. Consequently, samples already available at SIMCO from past studies were used. They consisted in three different concrete mixtures cured for five years in wet conditions. The mixtures had water-to-cement ratios of 0.5, 0.65 and 0.75 and were prepared with ASTM Type I cement only. The results showed that porosity is not a good indicator for damage caused by the formation of microcracks. Some materials exhibited little variations in porosity even for high damage levels. On the other hand, significant variations in tortuosity were measured in all materials. This implies that damage caused by internal pressure do not necessarily creates additional pore space in

  2. Engineering Properties and Correlation Analysis of Fiber Cementitious Materials

    OpenAIRE

    Wei-Ting Lin; Yuan-Chieh Wu; An Cheng; Sao-Jeng Chao; Hui-Mi Hsu

    2014-01-01

    This study focuses on the effect of the amount of silica fume addition and volume fraction of steel fiber on the engineering properties of cementitious materials. Test variables include dosage of silica fume (5% and 10%), water/cement ratio (0.35 and 0.55) and steel fiber dosage (0.5%, 1.0% and 2.0%). The experimental results included: compressive strength, direct tensile strength, splitting tensile strength, surface abrasion and drop-weight test, which were collected to carry out the analysi...

  3. Retention mechanisms of oxyanions in cementitious materials

    OpenAIRE

    Mota Gassó, Berta

    2011-01-01

    Increasing global cement production faces challenges such as cost increases in energy supply, requirements to reduce CO2 emissions, and the supply of raw materials in sufficient quality and amounts. Worldwide cement manufacturing represents 5% of man-made CO2 emissions, from which 50% is related to chemical process of clinker production, 40% to burning fuel and 10% is split between electricity use and transportation. To conserve natural non-renewable resources and preventing unnecessary landf...

  4. Effect of silicate solutions on metakaolinite based cementitious material

    Institute of Scientific and Technical Information of China (English)

    XIAO Xue-jun; LI Hua-jian; SUN Heng-hu

    2006-01-01

    High performance metakaolinite based cementitious materials were prepared with metakaolinite as main component, and the different modules of Na and Na-K silicate solutions as diagenetic agent. The results show that the mechanical properties are affected by different silicate solutions, compressive strengths of pastes hydrated for 3 d and 28 d with Na-K silicate solution (The modulus is 1) are about 43.68 and 78.52 MPa respectively. By analyzing the mechanical properties of Metakaolinite based cementitious materials, the diagenetic effect of lower module is better than higher module, and Na-K silicate solution is better than Na silicate solution. The structure of the Na and Na-K silicate solutions is studied with IR and 29Si NMR, the reason of the lower module and Na-K silicate solution improving the mechanical properties is that the low module silicate solution has lower polymeric degree of silicon dioxide, and the higher polymeric degree of silicon oxide tetrahedron(Q4) in Na-K silicate solution is less than Na silicate solution.

  5. VARIABILITY OF KD VALUES IN CEMENTITIOUS MATERIALS AND SEDIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Almond, P.; Kaplan, D.; Shine, E.

    2012-02-02

    Measured distribution coefficients (K{sub d} values) for environmental contaminants provide input data for performance assessments (PA) that evaluate physical and chemical phenomena for release of radionuclides from wasteforms, degradation of engineered components and subsequent transport of radionuclides through environmental media. Research efforts at SRNL to study the effects of formulation and curing variability on the physiochemical properties of the saltstone wasteform produced at the Saltstone Disposal Facility (SDF) are ongoing and provide information for the PA and Saltstone Operations. Furthermore, the range and distribution of plutonium K{sub d} values in soils is not known. Knowledge of these parameters is needed to provide guidance for stochastic modeling in the PA. Under the current SRS liquid waste processing system, supernate from F & H Tank Farm tanks is processed to remove actinides and fission products, resulting in a low-curie Decontaminated Salt Solution (DSS). At the Saltstone Production Facility (SPF), DSS is mixed with premix, comprised of blast furnace slag (BFS), Class F fly ash (FA), and portland cement (OPC) to form a grout mixture. The fresh grout is subsequently placed in SDF vaults where it cures through hydration reactions to produce saltstone, a hardened monolithic waste form. Variation in saltstone composition and cure conditions of grout can affect the saltstone's physiochemical properties. Variations in properties may originate from variables in DSS, premix, and water to premix ratio, grout mixing, placing, and curing conditions including time and temperature (Harbour et al. 2007; Harbour et al. 2009). There are no previous studies reported in the literature regarding the range and distribution of K{sub d} values in cementitious materials. Presently, the Savannah River Site (SRS) estimate ranges and distributions of K{sub d} values based on measurements of K{sub d} values made in sandy SRS sediments (Kaplan 2010). The actual

  6. Variability Of KD Values In Cementitious Materials And Sediments

    International Nuclear Information System (INIS)

    Measured distribution coefficients (Kd values) for environmental contaminants provide input data for performance assessments (PA) that evaluate physical and chemical phenomena for release of radionuclides from wasteforms, degradation of engineered components and subsequent transport of radionuclides through environmental media. Research efforts at SRNL to study the effects of formulation and curing variability on the physiochemical properties of the saltstone wasteform produced at the Saltstone Disposal Facility (SDF) are ongoing and provide information for the PA and Saltstone Operations. Furthermore, the range and distribution of plutonium Kd values in soils is not known. Knowledge of these parameters is needed to provide guidance for stochastic modeling in the PA. Under the current SRS liquid waste processing system, supernate from F and H Tank Farm tanks is processed to remove actinides and fission products, resulting in a low-curie Decontaminated Salt Solution (DSS). At the Saltstone Production Facility (SPF), DSS is mixed with premix, comprised of blast furnace slag (BFS), Class F fly ash (FA), and portland cement (OPC) to form a grout mixture. The fresh grout is subsequently placed in SDF vaults where it cures through hydration reactions to produce saltstone, a hardened monolithic waste form. Variation in saltstone composition and cure conditions of grout can affect the saltstone's physiochemical properties. Variations in properties may originate from variables in DSS, premix, and water to premix ratio, grout mixing, placing, and curing conditions including time and temperature (Harbour et al. 2007; Harbour et al. 2009). There are no previous studies reported in the literature regarding the range and distribution of Kd values in cementitious materials. Presently, the Savannah River Site (SRS) estimate ranges and distributions of Kd values based on measurements of Kd values made in sandy SRS sediments (Kaplan 2010). The actual cementitious material Kd values

  7. Degradation Of Cementitious Materials Associated With Saltstone Disposal Units

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P; Smith, F. G. III

    2013-03-19

    The Saltstone facilities at the DOE Savannah River Site (SRS) stabilize and dispose of low-level radioactive salt solution originating from liquid waste storage tanks at the site. The Saltstone Production Facility (SPF) receives treated salt solution and mixes the aqueous waste with dry cement, blast furnace slag, and fly ash to form a grout slurry which is mechanically pumped into concrete disposal cells that compose the Saltstone Disposal Facility (SDF). The solidified grout is termed “saltstone”. Cementitious materials play a prominent role in the design and long-term performance of the SDF. The saltstone grout exhibits low permeability and diffusivity, and thus represents a physical barrier to waste release. The waste form is also reducing, which creates a chemical barrier to waste release for certain key radionuclides, notably Tc-99. Similarly, the concrete shell of an SDF disposal unit (SDU) represents an additional physical and chemical barrier to radionuclide release to the environment. Together the waste form and the SDU compose a robust containment structure at the time of facility closure. However, the physical and chemical state of cementitious materials will evolve over time through a variety of phenomena, leading to degraded barrier performance over Performance Assessment (PA) timescales of thousands to tens of thousands of years. Previous studies of cementitious material degradation in the context of low-level waste disposal have identified sulfate attack, carbonation influenced steel corrosion, and decalcification (primary constituent leaching) as the primary chemical degradation phenomena of most relevance to SRS exposure conditions. In this study, degradation time scales for each of these three degradation phenomena are estimated for saltstone and concrete associated with each SDU type under conservative, nominal, and best estimate assumptions. The nominal value (NV) is an intermediate result that is more probable than the conservative

  8. Innovative Structural Materials and Sections with Strain Hardening Cementitious Composites

    Science.gov (United States)

    Dey, Vikram

    The motivation of this work is based on development of new construction products with strain hardening cementitious composites (SHCC) geared towards sustainable residential applications. The proposed research has three main objectives: automation of existing manufacturing systems for SHCC laminates; multi-level characterization of mechanical properties of fiber, matrix, interface and composites phases using servo-hydraulic and digital image correlation techniques. Structural behavior of these systems were predicted using ductility based design procedures using classical laminate theory and structural mechanics. SHCC sections are made up of thin sections of matrix with Portland cement based binder and fine aggregates impregnating continuous one-dimensional fibers in individual or bundle form or two/three dimensional woven, bonded or knitted textiles. Traditional fiber reinforced concrete (FRC) use random dispersed chopped fibers in the matrix at a low volume fractions, typically 1-2% to avoid to avoid fiber agglomeration and balling. In conventional FRC, fracture localization occurs immediately after the first crack, resulting in only minor improvement in toughness and tensile strength. However in SHCC systems, distribution of cracking throughout the specimen is facilitated by the fiber bridging mechanism. Influence of material properties of yarn, composition, geometry and weave patterns of textile in the behavior of laminated SHCC skin composites were investigated. Contribution of the cementitious matrix in the early age and long-term performance of laminated composites was studied with supplementary cementitious materials such as fly ash, silica fume, and wollastonite. A closed form model with classical laminate theory and ply discount method, coupled with a damage evolution model was utilized to simulate the non-linear tensile response of these composite materials. A constitutive material model developed earlier in the group was utilized to characterize and

  9. Cementitious composite materials with improved self-healing potential

    Directory of Open Access Journals (Sweden)

    Cornelia BAERA

    2015-12-01

    Full Text Available Cement-based composites have proved, over the time, certain abilities of self-healing the damages (cracks and especially microcracs that occur within their structure. Depending on the level of damage and of the composite type in which this occurs, the self - healing process (SH can range from crack closing or crack sealing to the stage of partial or even complete recovery of material physical - mechanical properties. The aim of this paper is to present the general concept of Engineered Cementitious Composites (ECCs with their unique properties including their self-healing (SH capacity, as an innovative direction for a global sustainable infrastructure. The experimental steps initiated for the development in Romania of this unique category of materials, using materials available on the local market, are also presented.

  10. 3D morphological and micromechanical modeling of cementitious materials

    International Nuclear Information System (INIS)

    The goal of this thesis is to develop morphological models of cementitious materials and use these models to study their local and effective response. To this aim, 3D images of cementitious materials (mortar and concrete), obtained by micro-tomography, are studied. First, the mortar image is segmented in order to obtain an image of a real microstructure, to be used for linear elasticity computations. The image of concrete is used, after being processed, to determine various morphological characteristics of the material. A random model of concrete is then developed and validated by means of morphological data. This model is made up of three phases, corresponding to the matrix, aggregates and voids. The aggregates phase is modelled by implantation of Poisson polyhedra without overlap. For this purpose, an algorithm suited to the vector generation of Poisson polyhedra is introduced and validated with morphological measurements. Finally, the effective linear elastic properties of the mortar and other simulated microstructures are estimated with the FFT (Fast-Fourier Transform) method, for various contrasts between the aggregates and matrix' Young moduli. To complete this work, focused on effective properties, an analysis of the local elastic response in the matrix phase is undertaken, in order to determine the spatial arrangement between stress concentration zones in the matrix and the phases of the microstructure (aggregates and voids). Moreover, a statistical fields characterization, in the matrix, is achieved, including the determination of the Representative Volume Element (RVE) size. Furthermore, a comparison between effective and local elastic properties obtained from microstructures containing polyhedra and spheres is carried out. (author)

  11. Bioreceptivity evaluation of cementitious materials designed to stimulate biological growth.

    Science.gov (United States)

    Manso, Sandra; De Muynck, Willem; Segura, Ignacio; Aguado, Antonio; Steppe, Kathy; Boon, Nico; De Belie, Nele

    2014-05-15

    Ordinary Portland cement (OPC), the most used binder in construction, presents some disadvantages in terms of pollution (CO2 emissions) and visual impact. For this reason, green roofs and façades have gain considerable attention in the last decade as a way to integrate nature in cities. These systems, however, suffer from high initial and maintenance costs. An alternative strategy to obtain green facades is the direct natural colonisation of the cementitious construction materials constituting the wall, a phenomenon governed by the bioreceptivity of such material. This work aims at assessing the suitability of magnesium phosphate cement (MPC) materials to allow a rapid natural colonisation taking carbonated OPC samples as a reference material. For that, the aggregate size, the w/c ratio and the amount of cement paste of mortars made of both binders were modified. The assessment of the different bioreceptivities was conducted by means of an accelerated algal fouling test. MPC samples exhibited a faster fouling compared to OPC samples, which could be mainly attributed to the lower pH of the MPC binder. In addition to the binder, the fouling rate was governed by the roughness and the porosity of the material. MPC mortar with moderate porosity and roughness appears to be the most feasible material to be used for the development of green concrete walls.

  12. Bioreceptivity evaluation of cementitious materials designed to stimulate biological growth.

    Science.gov (United States)

    Manso, Sandra; De Muynck, Willem; Segura, Ignacio; Aguado, Antonio; Steppe, Kathy; Boon, Nico; De Belie, Nele

    2014-05-15

    Ordinary Portland cement (OPC), the most used binder in construction, presents some disadvantages in terms of pollution (CO2 emissions) and visual impact. For this reason, green roofs and façades have gain considerable attention in the last decade as a way to integrate nature in cities. These systems, however, suffer from high initial and maintenance costs. An alternative strategy to obtain green facades is the direct natural colonisation of the cementitious construction materials constituting the wall, a phenomenon governed by the bioreceptivity of such material. This work aims at assessing the suitability of magnesium phosphate cement (MPC) materials to allow a rapid natural colonisation taking carbonated OPC samples as a reference material. For that, the aggregate size, the w/c ratio and the amount of cement paste of mortars made of both binders were modified. The assessment of the different bioreceptivities was conducted by means of an accelerated algal fouling test. MPC samples exhibited a faster fouling compared to OPC samples, which could be mainly attributed to the lower pH of the MPC binder. In addition to the binder, the fouling rate was governed by the roughness and the porosity of the material. MPC mortar with moderate porosity and roughness appears to be the most feasible material to be used for the development of green concrete walls. PMID:24602907

  13. Alkali-activated cementitious materials: Mechanisms, microstructure and properties

    Science.gov (United States)

    Jiang, Weimin

    The goal of this study was to examine the activation reaction, microstructure, properties, identify the mechanisms of activation, and achieve an enhanced understanding of activation processes occurring during the synthesis of alkali activated cementitious materials (AAC). The discussions classify the following categories. (1) alkali activated slag cement; (2) alkali activated portland-slag cement; (3) alkali activated fly ash-slag cement; (4) alkali activated pozzolana-lime cement; (5) alkali activated pozzolana cement. The activators involved are NaOH, KOH; Nasb2SOsb4;\\ Nasb2COsb3;\\ CaSOsb4, and soluble silicate of sodium and potassium. The effect of alkali activation on the microstructure of these materials were analyzed at the micro-nanometer scale by SEM, EDS, ESEM, and TEM. Also sp{29}Si and sp{27}Al MAS-NMR, IR, Raman, TGA, and DTA were performed to characterize the phase in these systems. Slag, fly ash, silica fume, as well as blended cements containing mixtures of these and other components were characterized. A set of ordinary portland cement paste samples served as a control. This study confirmed that AAC materials have great potential because they could generate very early high strength, greater durability and high performance. Among the benefits to be derived from this research is a better understanding of the factors that control concrete properties when using AAC materials, and by controlling the chemistry and processing to produce desired microstructures and properties, as well as their durability.

  14. Penetration of corrosion products and corrosion-induced cracking in reinforced cementitious materials

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Brad J.; Peterova, Adela;

    2014-01-01

    This paper describes experimental investigations on corrosion-induced deterioration in reinforced cementitious materials and the subsequent development and implementation of a novel conceptual model. Rejnforced mortar specimens of varying water-to-cement ratios were subjected to current...

  15. A fully general and adaptive inverse analysis method for cementitious materials

    DEFF Research Database (Denmark)

    Jepsen, Michael S.; Damkilde, Lars; Lövgren, Ingemar

    2016-01-01

    are applied when modeling the fracture mechanisms in cementitious materials, but the vast development of pseudo-strain hardening, fiber reinforced cementitious materials require inverse methods, capable of treating multi-linear σ - w functions. The proposed method is fully general in the sense that it relies......The paper presents an adaptive method for inverse determination of the tensile σ - w relationship, direct tensile strength and Young’s modulus of cementitious materials. The method facilitates an inverse analysis with a multi-linear σ - w function. Usually, simple bi- or tri-linear functions...... number of variables describing the σ - w relationship constitutes the basis for obtaining detailed information of crack propagation in any cementitious material....

  16. Evaluation of natural colonisation of cementitious materials: Effect of bioreceptivity and environmental conditions

    OpenAIRE

    Manso Blanco, Sandra; Calvo-Torrás, María Angeles; De Belie, Nele; Segura Pérez, Ignacio; Aguado de Cea, Antonio

    2015-01-01

    Incorporation of living organisms, such as photosynthetic organisms, on the structure envelope has become a priority in the area of architecture and construction due to aesthetical, economic and ecological advantages. Important research efforts are made to achieve further improvements, such as for the development of cementitious materials with an enhanced bioreceptivity to stimulate biological growth. Previously, the study of the bioreceptivity of cementitious materials has been carried out m...

  17. Development of Ecoefficient Engineered Cementitious Composites Using Supplementary Cementitious Materials as a Binder and Bottom Ash Aggregate as Fine Aggregate

    Directory of Open Access Journals (Sweden)

    Jin Wook Bang

    2015-01-01

    Full Text Available The purpose of this study is to develop ecoefficient engineered cementitious composites (ECC using supplementary cementitious materials (SCMs, including fly ash (FA and blast furnace slag (SL as a binder material. The cement content of the ECC mixtures was replaced by FA and SL with a replacement rate of 25%. In addition, the fine aggregate of the ECC was replaced by bottom ash aggregate (BA with a substitution rate of 10%, 20%, and 30%. The influences of ecofriendly aggregates on fresh concrete properties and on mechanical properties were experimentally investigated. The test results revealed that the substitution of SCMs has an advantageous effect on fresh concrete’s properties; however, the increased water absorption and the irregular shape of the BA can potentially affect the fresh concrete’s properties. The substitution of FA and SL in ECC led to an increase in frictional bond at the interface between PVA fibers and matrix, improved the fiber dispersion, and showed a tensile strain capacity ranging from 3.3% to 3.5%. It is suggested that the combination of SCMs (12.5% FA and 12.5% SL and the BA aggregate with the substitution rate of 10% can be effectively used in ECC preparation.

  18. Timing of Getter Material Addition in Cementitious Wasteforms

    Science.gov (United States)

    Lawter, A.; Qafoku, N. P.; Asmussen, M.; Neeway, J.; Smith, G. L.

    2015-12-01

    A cementitious waste form, Cast Stone, is being evaluated as a possible supplemental immobilization technology for the Hanford sites's low activity waste (LAW), which contains radioactive 99Tc and 129I, as part of the tank waste cleanup mission. Cast Stone is made of a dry blend 47% blast furnace slag, 45% fly ash, and 8% ordinary Portland cement, mixed with a low-activity waste (LAW). To improve the retention of Tc and/or I in Cast Stone, materials with a high affinity for Tc and/or I, termed "getters," can be added to provide a stable domain for the radionuclides of concern. Previous testing conducted with a variety of getters has identified Tin(II)-Apatite and Silver Exchanged Zeolite as promising candidates for Tc and I, respectively. Investigation into the sequence in which getters are added to Cast Stone was performed following two methods: 1) adding getters to the Cast Stone dry blend, and then mixing with liquid waste, and 2) adding getters to the liquid waste first, followed by addition of the Cast Stone dry blend. Cast Stone monolith samples were prepared with each method and leach tests, following EPA method 1315, were conducted in either distilled water or simulated vadose zone porewater for a period of up to 63 days. The leachate was analyzed for Tc, I, Na, NO3-, NO2- and Cr with ICP-MS, ICP-OES and ion chromatography and the results indicated that the Cast Stone with getter addition in the dry blend mix (method 1) has lower rates of Tc and I leaching. The mechanisms of radionuclide release from the Cast Stone were also investigated with a variety of solid phase characterization techniques of the monoliths before and after leaching, such as XRD, SEM/EDS, TEM/SAED and other spectroscopic techniques.

  19. Mechanisms of cementitious material deterioration in biogas digester.

    Science.gov (United States)

    Voegel, C; Bertron, A; Erable, B

    2016-11-15

    Digesters produce biogas from organic wastes through anaerobic digestion processes. These digesters, often made of concrete, suffer severe premature deterioration caused mainly by the presence of fermentative microorganisms producing metabolites that are aggressive towards cementitious materials. To clarify the degradation mechanisms in an anaerobic digestion medium, ordinary Portland cement paste specimens were immersed in the liquid fraction of a running, lab-scale digester for 4weeks. The anaerobic digestion medium was a mixture of a biowaste substrate and sludge from municipal wastewater treatment plant used as a source of anaerobic bacteria. The chemical characteristics of the anaerobic digestion liquid phase were monitored over time using a pH metre, high performance liquid chromatography (HPLC) and ion chromatography (HPIC). An initial critical period of low pH in the bioreactors was observed before the pH stabilized around 8. Acetic, propionic and butyric acids were produced during the digestion with a maximum total organic acid concentration of 50mmolL(-1). The maximum ammonium content of the liquid phase was 40mmolL(-1), which was about seven times the upper limit of the highly aggressive chemical environment class (XA3) as defined by the European standard for the specification of concrete design in chemically aggressive environments (EN 206). The changes in the mineralogical, microstructural and chemical characteristics of the cement pastes exposed to the solid and liquid phase of the digesters were analysed at the end of the immersion period by X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectrometry (EDS) and electron-probe micro-analysis (EPMA). A 700-μm thick altered layer was identified in the cement paste specimens. The main biodeterioration patterns in the bioreactors' solid/liquid phase were calcium leaching and carbonation of the cement matrix.

  20. Mechanisms of cementitious material deterioration in biogas digester.

    Science.gov (United States)

    Voegel, C; Bertron, A; Erable, B

    2016-11-15

    Digesters produce biogas from organic wastes through anaerobic digestion processes. These digesters, often made of concrete, suffer severe premature deterioration caused mainly by the presence of fermentative microorganisms producing metabolites that are aggressive towards cementitious materials. To clarify the degradation mechanisms in an anaerobic digestion medium, ordinary Portland cement paste specimens were immersed in the liquid fraction of a running, lab-scale digester for 4weeks. The anaerobic digestion medium was a mixture of a biowaste substrate and sludge from municipal wastewater treatment plant used as a source of anaerobic bacteria. The chemical characteristics of the anaerobic digestion liquid phase were monitored over time using a pH metre, high performance liquid chromatography (HPLC) and ion chromatography (HPIC). An initial critical period of low pH in the bioreactors was observed before the pH stabilized around 8. Acetic, propionic and butyric acids were produced during the digestion with a maximum total organic acid concentration of 50mmolL(-1). The maximum ammonium content of the liquid phase was 40mmolL(-1), which was about seven times the upper limit of the highly aggressive chemical environment class (XA3) as defined by the European standard for the specification of concrete design in chemically aggressive environments (EN 206). The changes in the mineralogical, microstructural and chemical characteristics of the cement pastes exposed to the solid and liquid phase of the digesters were analysed at the end of the immersion period by X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectrometry (EDS) and electron-probe micro-analysis (EPMA). A 700-μm thick altered layer was identified in the cement paste specimens. The main biodeterioration patterns in the bioreactors' solid/liquid phase were calcium leaching and carbonation of the cement matrix. PMID:27432729

  1. Hybrid fiber reinforcement and crack formation in Cementitious Composite Materials

    DEFF Research Database (Denmark)

    Pereira, E.B.; Fischer, Gregor; Barros, J.A.O.

    2011-01-01

    The use of different types of fibers simultaneously for reinforcing cementitious matrices is motivated by the concept of a multi-scale nature of the crack propagation process. Fibers with different geometrical and mechanical properties are used to bridge cracks of different sizes from the micro- ...

  2. Quantifying moisture transport in cementitious materials using neutron radiography

    Science.gov (United States)

    Lucero, Catherine L.

    A portion of the concrete pavements in the US have recently been observed to have premature joint deterioration. This damage is caused in part by the ingress of fluids, like water, salt water, or deicing salts. The ingress of these fluids can damage concrete when they freeze and expand or can react with the cementitious matrix causing damage. To determine the quality of concrete for assessing potential service life it is often necessary to measure the rate of fluid ingress, or sorptivity. Neutron imaging is a powerful method for quantifying fluid penetration since it can describe where water has penetrated, how quickly it has penetrated and the volume of water in the concrete or mortar. Neutrons are sensitive to light atoms such as hydrogen and thus clearly detect water at high spatial and temporal resolution. It can be used to detect small changes in moisture content and is ideal for monitoring wetting and drying in mortar exposed to various fluids. This study aimed at developing a method to accurately estimate moisture content in mortar. The common practice is to image the material dry as a reference before exposing to fluid and normalizing subsequent images to the reference. The volume of water can then be computed using the Beer-Lambert law. This method can be limiting because it requires exact image alignment between the reference image and all subsequent images. A model of neutron attenuation in a multi-phase cementitious composite was developed to be used in cases where a reference image is not available. The attenuation coefficients for water, un-hydrated cement, and sand were directly calculated from the neutron images. The attenuation coefficient for the hydration products was then back-calculated. The model can estimate the degree of saturation in a mortar with known mixture proportions without using a reference image for calculation. Absorption in mortars exposed to various fluids (i.e., deionized water and calcium chloride solutions) were investigated

  3. Alkaline activation of ceramic waste materials

    OpenAIRE

    REIG CERDÁ, LUCÍA; Tashima, M. M.; Soriano, L.; Borrachero, M. V.; Monzó, J.; Payá, J.

    2013-01-01

    Ceramic materials represent around 45 % of construction and demolition waste, and originate not only from the building process, but also as rejected bricks and tiles from industry. Despite the fact that these wastes are mostly used as road sub-base or construction backfill materials, they can also be employed as supplementary cementitious materials, or even as raw material for alkali-activated binders This research aimed to investigate the properties and microstructure of alkali-activated cem...

  4. Development and Demonstration of Material Properties Database and Software for the Simulation of Flow Properties in Cementitious Materials

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-30

    This report describes work performed by the Savannah River National Laboratory (SRNL) in fiscal year 2014 to develop a new Cementitious Barriers Project (CBP) software module designated as FLOExcel. FLOExcel incorporates a uniform database to capture material characterization data and a GoldSim model to define flow properties for both intact and fractured cementitious materials and estimate Darcy velocity based on specified hydraulic head gradient and matric tension. The software module includes hydraulic parameters for intact cementitious and granular materials in the database and a standalone GoldSim framework to manipulate the data. The database will be updated with new data as it comes available. The software module will later be integrated into the next release of the CBP Toolbox, Version 3.0. This report documents the development efforts for this software module. The FY14 activities described in this report focused on the following two items that form the FLOExcel package; 1) Development of a uniform database to capture CBP data for cementitious materials. In particular, the inclusion and use of hydraulic properties of the materials are emphasized; and 2) Development of algorithms and a GoldSim User Interface to calculate hydraulic flow properties of degraded and fractured cementitious materials. Hydraulic properties are required in a simulation of flow through cementitious materials such as Saltstone, waste tank fill grout, and concrete barriers. At SRNL these simulations have been performed using the PORFLOW code as part of Performance Assessments for salt waste disposal and waste tank closure.

  5. Cracks and pores - Their roles in the transmission of water confined in cementitious materials

    Science.gov (United States)

    Bordallo, H. N.; Aldridge, L. P.; Wuttke, J.; Fernando, K.; Bertram, W. K.; Pardo, L. C.

    2010-10-01

    Cement paste is formed through a process called hydration by combining water with a cementitious material. Concrete, the worlds most versatile and most widely used material, can then be obtained when aggregates (sand, gravel, crushed stone) are added to the paste. The quality of hardened concrete is greatly influenced by the water confined in the cementitious materials and how it is transmitted through cracks and pores. Here we demonstrate that the water transport in cracks and capillary pores of hardened cement pastes can be approximately modeled by simple equations. Our findings highlight the significance of arresting the development of cracks in cementitious materials used in repository barriers. We also show that neutron scattering is an advantageous technique for understanding how water transmission is effected by gel pore structures. Defining measurable differences in gel pores may hold a key to prediction of the reduction of water transport through cement barriers.

  6. LONG-TERM TECHNETIUM INTERACTIONS WITH REDUCING CEMENTITIOUS MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D.; Lilley, M.; Almond, P.; Powell, B.

    2011-03-15

    Technetium is among the key risk drivers at the Saltstone Facility. The way that it is immobilized in this cementitious waste form is by converting its highly mobile Tc(VII) form to a much less mobile Tc(IV) form through reduction by the cement's blast furnace slag. This report includes a review of published data and experimental results dealing with Tc leaching from Portland cement waste forms. The objectives for the literature study were to document previous reports of Tc interactions with slag-containing cementitious materials. The objectives for the laboratory study were to measure Tc-saltstone Kd values under reducing conditions. From the literature it was concluded: (1) Spectroscopic evidence showed that when Tc(IV) in a slag-cement was exposed to an oxidizing environment, it will convert to the more mobile Tc(VII) species within a short time frame, 2.5 years. (2) SRS saltstone will reduce Tc(VII) in the absence of NaS or sodium dithionite in a reducing atmosphere. (3) Only trace concentrations of atmospheric oxygen (30 to 60 ppm O{sub 2}; Eh 120 mV) at the high pH levels of cementitious systems is required to maintain Tc as Tc(VII). (4) Experimental conditions must be responsible for wide variability of measured K{sub d} values, such that they are either very low, {approx}1 mL/g, or they are very high {approx}1000 mL/g, suggesting that Tc(VII) or Tc(IV) dominate the systems. Much of this variability appears to be the result of experimental conditions, especially direct controls of oxygen contact with the sample. (5) A field study conducted at SRS in the 1980s indicated that a slag-saltstone immobilized Tc for 2.5 years. Below background concentrations of Tc leached out of the slag-containing saltstone, whereas Tc leached out of the slag-free saltstone at the rate of nitrate loss. One possible explanation for the immobilization of Tc in this study was that the slag-saltstone maintained reducing conditions within the core of the 55-gallon sample, whereas

  7. LONG-TERM TECHNETIUM INTERACTIONS WITH REDUCING CEMENTITIOUS MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D.; Lilley, M.; Almond, P.; Powell, B.

    2011-03-15

    Technetium is among the key risk drivers at the Saltstone Facility. The way that it is immobilized in this cementitious waste form is by converting its highly mobile Tc(VII) form to a much less mobile Tc(IV) form through reduction by the cement's blast furnace slag. This report includes a review of published data and experimental results dealing with Tc leaching from Portland cement waste forms. The objectives for the literature study were to document previous reports of Tc interactions with slag-containing cementitious materials. The objectives for the laboratory study were to measure Tc-saltstone Kd values under reducing conditions. From the literature it was concluded: (1) Spectroscopic evidence showed that when Tc(IV) in a slag-cement was exposed to an oxidizing environment, it will convert to the more mobile Tc(VII) species within a short time frame, 2.5 years. (2) SRS saltstone will reduce Tc(VII) in the absence of NaS or sodium dithionite in a reducing atmosphere. (3) Only trace concentrations of atmospheric oxygen (30 to 60 ppm O{sub 2}; Eh 120 mV) at the high pH levels of cementitious systems is required to maintain Tc as Tc(VII). (4) Experimental conditions must be responsible for wide variability of measured K{sub d} values, such that they are either very low, {approx}1 mL/g, or they are very high {approx}1000 mL/g, suggesting that Tc(VII) or Tc(IV) dominate the systems. Much of this variability appears to be the result of experimental conditions, especially direct controls of oxygen contact with the sample. (5) A field study conducted at SRS in the 1980s indicated that a slag-saltstone immobilized Tc for 2.5 years. Below background concentrations of Tc leached out of the slag-containing saltstone, whereas Tc leached out of the slag-free saltstone at the rate of nitrate loss. One possible explanation for the immobilization of Tc in this study was that the slag-saltstone maintained reducing conditions within the core of the 55-gallon sample, whereas

  8. Method for characterization of the rate of movement of an oxidation front in cementitious materials

    Energy Technology Data Exchange (ETDEWEB)

    Almond, Philip M.; Langton, Christine A.; Stefanko, David B.

    2016-03-01

    Disclosed are methods for determining the redox condition of cementitious materials. The methods are leaching methods that utilize a redox active transition metal indicator that is present in the cementitious material and exhibits variable solubility depending upon the oxidation state of the indicator. When the leaching process is carried out under anaerobic conditions, the presence or absence of the indicator in the leachate can be utilized to determine the redox condition of and location of the oxidation front in the material that has been subjected to the leaching process.

  9. Iron ore tailings used for the preparation of cementitious material by compound thermal activation

    Institute of Scientific and Technical Information of China (English)

    Zhong-lai Yi; Heng-hu Sun; Xiu-quan Wei; Chao Li

    2009-01-01

    In the background of little reuse and large stockpile for iron ore railings, iron ore tailing from Chinese Tonghua were used as raw material to prepare cementitious materials. Cementitious properties of the iron ore tailings activated by compound thermal ac-tivation were studied. Testing methods, such as XRD, TG-DTA, and IR were used for researching the phase and structure variety of the iron ore tailings in the process of compound thermal activation. The results reveal that a new cementitious material that contains 30wt% of the iron ore tailings can be obtained by compounded thermal activation, whose mortar strength can come up to the stan-dard of 42.5 cement of China.

  10. Behaviour of cementitious materials: sulfates and temperature actions

    International Nuclear Information System (INIS)

    The research work presented in this Ph.D. thesis is related to the nuclear waste underground repository concept. Concrete could be used in such a repository, and would be subjected to variations of temperature in presence of sulfate, a situation that could induce expansion of concrete. The research was lead in three parts: an experimental study of the possibility of an internal sulfate attack on mortars; an experimental study and modeling of the chemical equilibriums of the CaO-SiO2-Al2O3-SO3-H2O system; and a modeling of the mechanisms of internal and external sulfate attacks, and the effect of temperature. The results show that mortars can develop expansions after a steam-cure during hydration, but also when a long steam-cure is applied to one-year-old mortars, which is a new point. Ettringite precipitation can be considered as responsible for these expansions. The experimental study of the CaO-SiO2-Al2O3-SO3-H2O system clarified the role of Calcium Silicate Hydrates (C-S-H) on chemical equilibriums of cementitious materials. Sulfate sorption on C-S-H has been studied in detail. The quantity of sulfate bound to the C-S-H mainly depends on the sulfate concentration in solution, on the Ca/Si ratio of the C-S-H and is not significantly influenced by temperature. Aluminium inclusion in the C-S-H seems to be a significant phenomenon. Temperature increases the calcium sulfo-aluminate solubilities and thus increases sulfates concentration in solution. A modeling of the chemical system is proposed. Simulations of external sulfate attack (15 mmol/L of Na2SO4) predict ettringite precipitation at 20 and 85±C. Simulation of internal sulfate attack was performed at a local scale (a hydrated cement grain). An initial inhomogeneity can lead, after a thermal curing at 85±C, to ettringite precipitation in zones originally free from ettringite. This new-formed ettringite could be the origin of the expansions. (author)

  11. Design of microcapsule system used for self-healing cementitious material

    NARCIS (Netherlands)

    Zhang, M.; Han, N.; Xing, F.; Schlangen, H.E.J.G.

    2013-01-01

    For a microcapsule based self-healing system in the cementitious material, a fundamental issue is to find and facilitate a suitable microcapsule system, concerning either the material selection or design and manufacture process. In this study, urea formaldehyde resin is used for the shell of microca

  12. Various durability aspects of cement pastes and concretes with supplementary cementitious materials

    OpenAIRE

    SAILLIO, Mickael; BAROGHEL BOUNY, Véronique; PRADELLE, Sylvain

    2016-01-01

    The use of supplementary cementitious materials (SCMs) as a constituent for concrete receives considerable attention, due to the lower CO2 emission of these materials compared to the production of classic Portland cement. Furthermore, concretes incorporating SCMs show some improved durability properties. SCMs are mainly pozzolanic materials (Fly Ash or Metakaolin) or alkali-activated materials such as ground granulated blast slag (GGBS). In this paper, the durability of concretes and cement p...

  13. Study on the alteration of hydrogeological and mechanical properties of the cementitious Material. 3

    International Nuclear Information System (INIS)

    We experimentally investigated the influence of several phenomena at the disposal environment, to evaluate the long-term alteration of cementitious material. The results are shown below. 1. Hardened cement paste specimens were altered and characterized after artificial seawater permeation. The calcium dissolution was accelerated, and secondary minerals containing magnesium were deposited. The permeability became one to three orders of magnitude smaller than data from specimens altered by deionized water permeation. It was estimated that secondary mineral formations reduced the permeability. These results meant that seawater and pure water differ remarkably from each other in influence to alteration of cementitious material. 2. Two type mixture proportions concrete, two type mixture proportions mortar and a cement paste under same W/C ratio 55% were characterized, to apply the accumulated data of paste to concrete or mortar. Compressive strength of paste was lower than that of concrete and mortar. It was contrary to the previous report. The behavior of Young's modulus and Poisson's ratio could be explained well using amount of aggregate. The data of permeability meant that boundary between aggregate and cement paste didn't become path of water flow, and that aggregate disturbed permeation. 3. Self-sealing property of cracked specimen of cementitious material were investigated by the water permeation test using sodium bicarbonate solution. The permeability decreased in two orders of magnitude, and possibility of sealing was suggested. By the morphology, the deposits in the cracks might be portlandite and C-S-H, and be not calcium carbonate. 4. Alteration of characteristics of cementitious material in sodium-nitrate and ammonia solution was evaluated by the water permeation test. Alteration degree of the nitrate and ammonia solution case showed similar trend to that of the sodium nitrate solution case. This result meant that ammonia solution would not influence the

  14. Preparation of Cementitious Material Using Smelting Slag and Tailings and the Solidification and Leaching of Pb2+

    OpenAIRE

    Dan Zhang; Shiliu Shi; Chengbiao Wang; Xiaocong Yang; Lijie Guo; Shanshan Xue

    2015-01-01

    The composite cementitious materials were prepared with lead-zinc tailings, lead-zinc smelting slag, and cement clinker. The effect of material ratio on the mechanical properties, the phase analysis, and microstructures were investigated. The effect of the pH and stripping time on the leaching amount of lead ion was discussed. The results show that the additive amount of the tailings should be minimized for the cementitious materials meeting the strength requirements, controlled within 10%. T...

  15. Design of microcapsule system used for self-healing cementitious material

    OpenAIRE

    Zhang, M.; Han, N.; Xing, F.(Department of Physics, University of Oxford, Oxford, United Kingdom); Schlangen, H.E.J.G.

    2013-01-01

    For a microcapsule based self-healing system in the cementitious material, a fundamental issue is to find and facilitate a suitable microcapsule system, concerning either the material selection or design and manufacture process. In this study, urea formaldehyde resin is used for the shell of microcapsule, and bisphenol – an epoxy resin E-51 diluted by n-butyl glycidy ether (BGE) is adopted as the heal-agent inside the microcapsule. The production process mainly includes pre-polymerization pre...

  16. Setting and Strength Characteristics of Alkali-activated Carbonatite Cementitious Materials with Ground Slag Replacement

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effect of the ground granulated blast-furnace slag (GGBFS) addition, the modulus n (mole ratio of SiO2 to Na2 O ) and the concentration of sodium silicate solution on the compressive strength of the ma terial, i e alkali-activated carbonatite cementitious material (AACCMfor short ) was investigated.In addition, it is found that barium chloride has a satisfactory retarding effect on the setting of AACCM in which more than 20% ( by mass ) groud carbonatite was replaced by GGBFS.As a result, a cementitious material, inwhich ground carbona tite rock served as dominative starting material, with 3-day and 28-da y compressive strength greater than 30 MPa and 60 MPa and with continuous strength gain beyond 90 days was obtained.

  17. Chemical modeling of cementitious grout materials alteration in HLW repositories

    International Nuclear Information System (INIS)

    This paper reports on an investigation initiated into the nature of the chemical alteration of cementitious grout in HLW repository seals, and the implications for long-term seal performance. The equilibrium chemical reaction of two simplified portland cement-based grout models with natural Canadian Shield groundwater compositions was modeled with the computer codes PHREEQE and EQ3NR/EQ6. Increases in porosity and permeability of the grout resulting from dissolution of grout phases and precipitation of secondary phases were estimated. Two bounding hydrologic scenarios were evaluated, one approximating a high gradient, high flow regime, the other a low-gradient, sluggish flow regime. Seal longevity depends in part upon the amount of groundwater coming into intimate contact with, and dissolving, the grout per unit time. Results of the analyses indicate that, given the assumptions and simplifications inherent in the models, acceptable seal performance (i.e., acceptable increases in hydraulic conductivity of the seals) may be expected for at least thousands of years in the worst cases analyzed, and possibly much longer

  18. Evaluation of natural colonisation of cementitious materials: effect of bioreceptivity and environmental conditions.

    Science.gov (United States)

    Manso, Sandra; Calvo-Torras, María Ángeles; De Belie, Nele; Segura, Ignacio; Aguado, Antonio

    2015-04-15

    Incorporation of living organisms, such as photosynthetic organisms, on the structure envelope has become a priority in the area of architecture and construction due to aesthetical, economic and ecological advantages. Important research efforts are made to achieve further improvements, such as for the development of cementitious materials with an enhanced bioreceptivity to stimulate biological growth. Previously, the study of the bioreceptivity of cementitious materials has been carried out mainly under laboratory conditions although field-scale experiments may present different results. This work aims at analysing the colonisation of cementitious materials with different levels of bioreceptivity by placing them in three different environmental conditions. Specimens did not present visual colonisation, which indicates that environmental conditions have a greater impact than intrinsic properties of the material at this stage. Therefore, it appears that in addition to an optimized bioreceptivity of the concrete (i.e., composition, porosity and roughness), extra measures are indispensable for a rapid development of biological growth on concrete surfaces. An analysis of the colonisation in terms of genus and quantity of the most representative microorganisms found on the specimens for each location was carried out and related to weather conditions, such as monthly average temperature and total precipitation, and air quality in terms of NOx, SO2, CO and O3. OPC-based specimens presented a higher colonisation regarding both biodiversity and quantity. However, results obtained in a previous experimental programme under laboratory conditions suggested a higher suitability of Magnesium Phosphate Cement-based (MPC-based) specimens for algal growth. Consequently, carefully considering the environment and the relationships between the different organisms present in an environment is vital for successfully using a cementitious material as a substrate for biological growth. PMID

  19. Final Report - Assessment of Potential Phosphate Ion-Cementitious Materials Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL; Mattus, Catherine H [ORNL; Dole, Leslie Robert [ORNL

    2007-06-01

    The objectives of this limited study were to: (1) review the potential for degradation of cementitious materials due to exposure to high concentrations of phosphate ions; (2) provide an improved understanding of any significant factors that may lead to a requirement to establish exposure limits for concrete structures exposed to soils or ground waters containing high levels of phosphate ions; (3) recommend, as appropriate, whether a limitation on phosphate ion concentration in soils or ground water is required to avoid degradation of concrete structures; and (4) provide a "primer" on factors that can affect the durability of concrete materials and structures in nuclear power plants. An assessment of the potential effects of phosphate ions on cementitious materials was made through a review of the literature, contacts with concrete research personnel, and conduct of a "bench-scale" laboratory investigation. Results of these activities indicate that: no harmful interactions occur between phosphates and cementitious materials unless phosphates are present in the form of phosphoric acid; phosphates have been incorporated into concrete as set retarders, and phosphate cements have been used for infrastructure repair; no standards or guidelines exist pertaining to applications of reinforced concrete structures in high-phosphate environments; interactions of phosphate ions and cementitious materials has not been a concern of the research community; and laboratory results indicate similar performance of specimens cured in phosphate solutions and those cured in a calcium hydroxide solution after exposure periods of up to eighteen months. Relative to the "primer," a separate NUREG report has been prepared that provides a review of pertinent factors that can affect the durability of nuclear power plant reinforced concrete structures.

  20. Ion Transport and Microstructure of Sandwich Cementitious Materials Exposed to Chloride Environment

    Institute of Scientific and Technical Information of China (English)

    WANG Xingang; WANG Kai; WANG Rui; XIE Tao; HUANG Jie

    2015-01-01

    Ion transport of sandwich cementitious materials (SCM) exposed to chloride environment was investigated by accelerated diffusion method and natural diffusion method. Pore structure and micromorphology of SCM were investigated by MIP and SEM-EDS. In comparison with the monolayer structural high performance concrete (HPC), conductive charge for 6 hours, chloride diffusion coefficient, and apparent chloride diffusion coefifcient of SCM were decreased by 30%-40%, two orders of magnitude and 40%-50%, respectively. Pore structure of ultra low ion permeability cementitious materials (ULIPCM) prepared for the facesheet is superior to that of HPC prepared for the core. As for porosity, the most probable pore radius, the content of pores with radius 50 nm and the surface area of pores, the order is ULIPCM

  1. Innovative mix design of cementitious materials for enhancing strength and ductility

    OpenAIRE

    Ahmad, Sajjad

    2015-01-01

    Cement based composites i.e. paste, mortar and concrete are the most utilized materials in the construction industry all over the world. Cement composites are quasi-brittle in nature and possess extremely low tensile strength as compared to their compressive strength. Due to their low tensile strength capacity, cracks develop in cementitious composites due to the drying shrinkage, plastic settlements and/or stress concentrations (due to external restrains and/or applied stresses) etc. These c...

  2. Hydration characteristics and environmental friendly performance of a cementitious material composed of calcium silicate slag.

    Science.gov (United States)

    Zhang, Na; Li, Hongxu; Zhao, Yazhao; Liu, Xiaoming

    2016-04-01

    Calcium silicate slag is an alkali leaching waste generated during the process of extracting Al2O3 from high-alumina fly ash. In this research, a cementitious material composed of calcium silicate slag was developed, and its mechanical and physical properties, hydration characteristics and environmental friendly performance were investigated. The results show that an optimal design for the cementitious material composed of calcium silicate slag was determined by the specimen CFSC7 containing 30% calcium silicate slag, 5% high-alumina fly ash, 24% blast furnace slag, 35% clinker and 6% FGD gypsum. This blended system yields excellent physical and mechanical properties, confirming the usefulness of CFSC7. The hydration products of CFSC7 are mostly amorphous C-A-S-H gel, rod-like ettringite and hexagonal-sheet Ca(OH)2 with small amount of zeolite-like minerals such as CaAl2Si2O8·4H2O and Na2Al2Si2O8·H2O. As the predominant hydration products, rod-like ettringite and amorphous C-A-S-H gel play a positive role in promoting densification of the paste structure, resulting in strength development of CFSC7 in the early hydration process. The leaching toxicity and radioactivity tests results indicate that the developed cementitious material composed of calcium silicate slag is environmentally acceptable. This study points out a promising direction for the proper utilization of calcium silicate slag in large quantities. PMID:26691955

  3. Hydration characteristics and environmental friendly performance of a cementitious material composed of calcium silicate slag.

    Science.gov (United States)

    Zhang, Na; Li, Hongxu; Zhao, Yazhao; Liu, Xiaoming

    2016-04-01

    Calcium silicate slag is an alkali leaching waste generated during the process of extracting Al2O3 from high-alumina fly ash. In this research, a cementitious material composed of calcium silicate slag was developed, and its mechanical and physical properties, hydration characteristics and environmental friendly performance were investigated. The results show that an optimal design for the cementitious material composed of calcium silicate slag was determined by the specimen CFSC7 containing 30% calcium silicate slag, 5% high-alumina fly ash, 24% blast furnace slag, 35% clinker and 6% FGD gypsum. This blended system yields excellent physical and mechanical properties, confirming the usefulness of CFSC7. The hydration products of CFSC7 are mostly amorphous C-A-S-H gel, rod-like ettringite and hexagonal-sheet Ca(OH)2 with small amount of zeolite-like minerals such as CaAl2Si2O8·4H2O and Na2Al2Si2O8·H2O. As the predominant hydration products, rod-like ettringite and amorphous C-A-S-H gel play a positive role in promoting densification of the paste structure, resulting in strength development of CFSC7 in the early hydration process. The leaching toxicity and radioactivity tests results indicate that the developed cementitious material composed of calcium silicate slag is environmentally acceptable. This study points out a promising direction for the proper utilization of calcium silicate slag in large quantities.

  4. Effects of Technological Parameters on the Mechanical Performances of SAC-cementitious Materials

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new type of SAC-cementitious material was manufactured by taking sulphoaluminate cement(SAC) as the basic material, polyvinyl alcohol(PVA) as the organic polymer and adding coupling agent(KH). Its flexural strength can reach 165 MPa, the compressive strength can be larger than 267 MPa.A set of fitable technological parameters of the material were gained through experiments. In addition, the flexural strength and toughness can be improved greatly by adding KH, whose values can be increased by 49.76% and 14.55%, respectively.

  5. A new alkali-activated steel slag-based cementitious material for photocatalytic degradation of organic pollutant from waste water

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yao Jun, E-mail: yaojzhang@yahoo.com.cn [College of Material Science and Engineering, Xi' an University of Architecture and Technology, Xi' an 710055 (China); Liu, Li Cai; Xu, Yong; Wang, Ya Chao; Xu, De Long [College of Material Science and Engineering, Xi' an University of Architecture and Technology, Xi' an 710055 (China)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer A novel Ni,Ca-cementitious material is synthesized by a two-step reaction. Black-Right-Pointing-Pointer Ni,Ca-geopolymer is firstly used for the photocatalytic degradation of MB. Black-Right-Pointing-Pointer Absorption bands in the UV and NIR regions are reported for the first time. Black-Right-Pointing-Pointer A reaction mechanism of photocatalytic degradation was proposed. - Abstract: A new type of Ni,Ca-cementitious material was firstly synthesized via a two-step reaction of alkali-activated steel slag polymerization and ion exchange. The XRF results showed that almost all the Na{sup +} ions in the matrix of Na,Ca-cementitious material were replaced by Ni{sup 2+} ions at room temperature. The new hydrated products of metahalloysite (Si{sub 2}Al{sub 2}O{sub 5}(OH){sub 4}) and calcium silicate hydrate (CSH) were formed in the Na,Ca-cementitious material. The diffuse reflectance UV-vis near infrared ray spectrum was blue-shifted due to the strong interaction between Ni{sup 2+} and negative charge of [AlO{sub 4}]{sup 5-} tetrahedron in the framework of cementitious material. The Ni,Ca-cementitious material was used as a catalyst for the photocatalytic degradation of methylene blue dye and showed a degradation rate of 94.39% under UV irradiation. The high photocatalytic degradation activity was suggested to be the synergistic effect of the cementitious matrix, Ni{sup 2+} ions and the iron oxides of wustite (FeO) and calcium iron oxide (Ca{sub 2}Fe{sub 2}O{sub 5}) from the steel slag. A probable mechanism of photocatalytic oxidative degradation was proposed.

  6. Utilization of Construction Waste Composite Powder Materials as Cementitious Materials in Small-Scale Prefabricated Concrete

    Directory of Open Access Journals (Sweden)

    Cuizhen Xue

    2016-01-01

    Full Text Available The construction and demolition wastes have increased rapidly due to the prosperity of infrastructure construction. For the sake of effectively reusing construction wastes, this paper studied the potential use of construction waste composite powder material (CWCPM as cementitious materials in small-scale prefabricated concretes. Three types of such concretes, namely, C20, C25, and C30, were selected to investigate the influences of CWCPM on their working performances, mechanical properties, and antipermeability and antifrost performances. Also the effects of CWCPM on the morphology, hydration products, and pore structure characteristics of the cement-based materials were analyzed. The results are encouraging. Although CWCPM slightly decreases the mechanical properties of the C20 concrete and the 7 d compressive strengths of the C25 and C30 concretes, the 28 d compressive strength and the 90 d flexural strength of the C25 and C30 concretes are improved when CWCPM has a dosage less than 30%; CWCPM improves the antipermeability and antifrost performances of the concretes due to its filling and pozzolanic effects; the best improvement is obtained at CWCPM dosage of 30%; CWCPM optimizes cement hydration products, refines concrete pore structure, and gives rise to reasonable pore size distribution, therefore significantly improving the durability of the concretes.

  7. Cost-Effective Cementitious Material Compatible with Yucca Mountain Repository Geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dole, LR

    2004-12-17

    The current plans for the Yucca Mountain (YM) repository project (YMP) use steel structures to stabilize the disposal drifts and connecting tunnels that are collectively over 100 kilometers in length. The potential exist to reduce the underground construction cost by 100s of millions of dollars and improve the repository's performance. These economic and engineering goals can be achieved by using the appropriate cementitious materials to build out these tunnels. This report describes the required properties of YM compatible cements and reviews the literature that proves the efficacy of this approach. This report also describes a comprehensive program to develop and test materials for a suite of underground construction technologies.

  8. The effect of nitrates on the alteration of the cementitious material

    International Nuclear Information System (INIS)

    TRU waste includes various chemical compounds such as nitrates. The influence of the chemical compounds on the performance of the barrier system should be estimated. Since the temperature of the deep-underground is higher than that of the near surface and a part of the TRU waste generates the heat accompanied with the decay of the radioactive nuclides, the influences of the heat to the barrier material also should be taken into account. In this study, we estimated the influence of sodium nitrate and also that of the leachate from the ROBE-waste (borate-solidified body of concentrated low-level waste) to the degradation of the cementitious material. We also obtained the mineralogical data of cementitious mineral after alteration in elevated temperature conditions. Results in this year are described below. 1) Alteration of characteristics of cementitious material in nitrate solution were evaluated by the water permeation test using sodium nitrate solution. The enhancement of the alteration of cementitious material due to sodium nitrate was observed. The dissolution quantity of the calcium of sodium nitrate solution permeated sample was larger than that of deionized water permeated sample (denoted as 'blank' in following). Hydraulic conductivity of sodium nitrate solution permeated sample was lower than blank, but after changing permeation liquid from sodium nitrate solution to deionized water, hydraulic conductivity rose quickly. The increase of porosity and the decrease of compressive strength were observed in the case of sodium nitrate solution compared with blank. In the nitrate solution, sulfate type and carbonate type of AFm changed into the nitrate type AFm. The nitrate type AFm altered to the carbonate type AFm when the nitrate concentration was lowered. 2) The influence of the leachate from the two types of ROBE-waste on the dissolution of the cementitious material was evaluated by the leaching experiments. Dissolution of the calcium from the cementitious

  9. Studies of ancient concrete as analogs of cementitious sealing materials for a repository in tuff

    Energy Technology Data Exchange (ETDEWEB)

    Roy, D.M.; Langton, C.A.

    1989-03-01

    The durability of ancient cementitious materials has been investigated to provide data applicable to determining the resistance to weathering of concrete materials for sealing a repository for storage of high-level radioactive waste. Because tuff and volcanic ash are used in the concretes in the vicinity of Rome, the results are especially applicable to a waste repository in tuff. Ancient mortars, plasters, and concretes collected from Rome, Ostia, and Cosa dating to the third century BC show remarkable durability. The aggregates used in the mortars, plasters, and concretes included basic volcanic and pyroclastic rocks (including tuff), terra-cotta, carbonates, sands, and volcanic ash. The matrices of ancient cementitious materials have been characterized and classified into four categories: (1) hydraulic hydrated lime and hydrated lime cements, (2) hydraulic aluminous and ferruginous hydrated lime cements ({plus_minus} siliceous components), (3) pozzolana/hydrated lime cements, and (4) gypsum cements. Most of the materials investigated are in category (3). The materials were characterized to elucidate aspects of the technology that produced them and their response to the environmental exposure throughout their centuries of existence. Their remarkable properties are the result of a combination of chemical, mineralogical, and microstructural factors. Their durability was found to be affected by the matrix mineralogy, particle size, and porosity; aggregate type, grading and proportioning; and the methodology of placement. 30 refs.

  10. Preparation of Cementitious Material Using Smelting Slag and Tailings and the Solidification and Leaching of Pb2+

    Directory of Open Access Journals (Sweden)

    Dan Zhang

    2015-01-01

    Full Text Available The composite cementitious materials were prepared with lead-zinc tailings, lead-zinc smelting slag, and cement clinker. The effect of material ratio on the mechanical properties, the phase analysis, and microstructures were investigated. The effect of the pH and stripping time on the leaching amount of lead ion was discussed. The results show that the additive amount of the tailings should be minimized for the cementitious materials meeting the strength requirements, controlled within 10%. The leaching amount of cementitious materials remains low in a larger range of pH, which can effectively reduce the leaching of heavy metal lead. The leaching kinetics of lead ions in the three kinds of samples could be better described by the pseudo-second-model.

  11. Impact of cementitious materials decalcification on transfer properties: application to radioactive waste deep repository

    International Nuclear Information System (INIS)

    Cementitious materials have been selected to compose the engineering barrier system (EBS) of the French radioactive waste deep repository, because of concrete physico-chemical properties: the hydrates of the cementitious matrix and the pH of the pore solution contribute to radionuclides retention; furthermore the compactness of these materials limits elements transport. The confinement capacity of the system has to be assessed while a period at least equivalent to waste activity (up to 100.000 years). His durability was sustained by the evolution of transfer properties in accordance with cementitious materials decalcification, alteration that expresses structure long-term behavior. Then, two degradation modes were carried out, taking into account the different physical and chemical solicitations imposed by the host formation. The first mode, a static one, was an accelerated decalcification test using nitrate ammonium solution. It replicates the EBS alteration dues to underground water. Degradation kinetic was estimated by the amount of calcium leached and the measurement of the calcium hydroxide dissolution front. To evaluate the decalcification impact, samples were characterized before and after degradation in term of microstructure (porosity, pores size distribution) and of transfer properties (diffusivity, gas and water permeability). The influence of cement nature (ordinary Portland cement, blended cement) and aggregates type (lime or siliceous) was observed: experiments were repeated on different mortars mixes. On this occasion, an essential reflection on this test metrology was led. The second mode, a dynamical degradation, was performed with an environmental permeameter. It recreates the EBS solicitations ensured during the re-saturation period, distinguished by the hydraulic pressure imposed by the geologic layer and the waste exothermicity. This apparatus, based on triaxial cell functioning, allows applying on samples pressure drop between 2 and 10 MPa and

  12. On the application of cohesive crack modeling in cementitious materials

    DEFF Research Database (Denmark)

    Stang, Henrik; Olesen, John Forbes; Poulsen, Peter Noe;

    2007-01-01

    typically for multi scale problems such as crack propagation in fiber reinforced composites. Mortar and concrete, however, are multi-scale materials and the question naturally arises, if bridged crack models in fact are more suitable for concrete and mortar as well? In trying to answer this question a model...

  13. Micro-crack detection in high-performance cementitious materials

    DEFF Research Database (Denmark)

    Lura, Pietro; Guang, Ye; Tanaka, Kyoji;

    2005-01-01

    aggregate size. Gallium intrusion of the cracks and subsequent examination by electron probe micro analysis, EPMA, are used to identify the cracks. The gallium intrusion technique allows controllable impregnation of cracks in the cement paste. A distinct contrast between gallium and the surrounding material...

  14. Computational modelling of dynamic failure of cementitious materials

    NARCIS (Netherlands)

    Pedersen, R.R.

    2010-01-01

    A safe design of civil engineering concrete structures must include dynamic loading conditions. However, the knowledge on crack patterns and tensile failure strength of concrete material as a function of the dynamic loading is not sufficiently understood to accurately predict the risks and consequen

  15. Review of the potential effects of alkaline plume migration from a cementitious repository for radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Savage, D.

    1997-09-01

    Extensive use of cement and concrete is envisaged in the construction of geological repositories for low and intermediate-level radioactive wastes, both for structural, and encapsulation and backfilling purposes. Saturation of these materials with groundwater may occur in the post-closure period of disposal, producing a hyperalkaline pore fluid with a pH in the range 10-13.5. These pore fluids have the potential to migrate from the repository according to local groundwater flow conditions and react chemically with the host rock. These chemical reactions may affect the rock`s capacity to retard the migration of radionuclides released from the repository after the degradation of the waste packages. The effects of these chemical reactions on the behaviour of the repository rock as a barrier to waste migration need to be investigated for the purposes of assessing the safety of the repository design (so-called `safety assessment` or `performance assessment`). The objectives of the work reported here were to: identify those processes influencing radionuclide mobility in the geosphere which could be affected by plume migration; review literature relevant to alkali-rock reaction; contact organisations carrying out relevant research and summarise their current and future activities; and make recommendations how the effects of plume migration can be incorporated into models of repository performance assessment. (author).

  16. Utilization of copper slag as a cementitious material in reactive powder concrete

    OpenAIRE

    Edwin, Romy Suryaningrat; De Schepper, Mieke; Gruyaert, Elke; De Belie, Nele

    2015-01-01

    This research studies the use of copper slag from a plant in Belgium as a cementitious material in reactive powder concrete (RPC). The quickly cooled granulated copper slag (QCS) was ground intensively using a planetary ball mill. A lower water-to-binder ratio of 0.18 was chosen for the RPC in this study. Various concrete and cement paste samples were produced with increasing copper slag contents from 0 to 20 wt% in steps of 5 wt%. Particle size distribution (PSD) and specific surface area (S...

  17. Influence of supplementary cementitious materials on hydration, microstructure development, and durability of concrete

    OpenAIRE

    Simcic, Tina

    2015-01-01

    In recent years the use of supplementary cementitious materials in the production of concrete has become an ever more frequent trend, since such use contributes to a sustainable concrete industry. The main reason for this lies in the reduction of the specific energy requirement and of carbon dioxide emissions in the production of cement (OPC). One such environmentally friendly product is fly ash (FA), which occurs as a by-product of coal-fired thermal power plants. In the first part of the...

  18. Development of porosity of cement paste blended with supplementary cementitious materials after carbonation

    OpenAIRE

    Wu, B.; YE, guang

    2015-01-01

    Supplementary cementitious materials (SCMs) like fly ash (FA) and blast furnace slag (BFS) are normally used to replace parts of Ordinary Portland cement (OPC) to reduce the cost and CO2 emission. Some consequences are the reduction of portlandite (CH) content and the formation of C-S-H with low Ca/Si ratio, due to pozzolanic reactions. It is known that carbonation of portlandite leads to a reduction in the porosity which is ascribed to the positive difference of molar volumes between CH and ...

  19. Accelerated leaching of cementitious materials using ammonium nitrate (6 M): influence of test conditions

    International Nuclear Information System (INIS)

    We have focused on the test conditions influence on accelerated degradation of cementitious materials using ammonium nitrate. PH-buffering and renewal of the leaching solution were studied. PH-buffering appeared not to be very important when the renewal pH remains under eight. Renewal appeared to be the most influential feature. Its absence leads to calcium accumulation in the leaching solution inducing aggressiveness fall. Degradation is then less marked in terms of depth, flux and mineralogy. The resulting porosity increase is also smaller. (authors)

  20. Low to high performance recycled cementitious materials: case studies

    OpenAIRE

    Etxeberria Larrañaga, Miren

    2015-01-01

    In this work, four real case studies using concrete produced with recycled aggregates are described. The four real cases carried out in Barcelona are: 1) Pavement filling with control low strength material (CLSM) employing fine recycled aggregates, 2) pervious recycled aggregate concrete employing coarse mixed recycled aggregates in the works undertaken at Cervantes park; 3) Concrete blocks produced employing recycled and slag aggregates as well as sea water for a new breakwater dyke and 4) R...

  1. COMBS: open source python library for RVE generation - Application to microscale diffusion simulations in cementitious materials

    International Nuclear Information System (INIS)

    In the context of radioactive waste storage and disposal, the knowledge of the concrete diffusivity is primordial in the numerical simulations of the long term behavior of these materials. COMBS is an open source python library, it is used to define the shapes of the inclusions, to insert them in the box featuring the representative volume element (RVE) of the cementitious medium, and to assess their diffusive properties. The algorithms developed in COMBS target a fast placement of the inclusions and a fast generation of the RVE shape and mesh. Two application cases are considered: the unaltered material diffusivity and the degraded material diffusivity. The first case of application focuses on the description of the capillary porosity. The second application case focuses on the description of the degradation of cementitious material (mineral and porosity) and the diffusive properties associated. The reliability of the analytical effective medium approximations (MT and SC) is confirmed from 3D finite elements (FE) calculations performed on a matrix-inclusions microstructure obtained by RVE generation with Combs. The results also show the need to take into account the percolation behavior

  2. A new pozzolan for high performance cementitious materials

    Directory of Open Access Journals (Sweden)

    de Gutiérrez, R. M.

    2000-12-01

    Full Text Available This paper presents results on the physical and chemical properties of metakaolinite, MK which is prepared by dehydroxylation of high quality kaolinite. The properties of Portland cement mortars blended with MK additions up to 50% are investigated. These properties are compressive strength, pore size distribution, resistance to the penetration of water and chloride ions and corrosion performance of steels embedded in the mortar. The optimum replacement of ordinary Portland cement (OPC with MK to obtain high strength concrete is about 20%, but it is possible to use a higher percent in order to achieve the best durability properties and strength similar to the control mixture. There is a significant decrease in average pore size with an increase in MK replacement. Metakaolinite is able to bind chloride ions to produce Friedel's salt (SF, which can be considered as the main cause of the lower chloride penetration in portland cement mortars blended with MK addition. This chemical binding capacity was proved by XRD. In general, the test results indicate that the MK is a highly pozzolanic material and can be used as a supplementary cementing material in order to produce a high-performance concrete especially for use in aggressive environments. Such as, thawing salts and dew of the sea.

    Este artículo reporta los resultados de las propiedades físicas y químicas de un producto denominado metacaolín, MK; que fue preparado a partir del tratamiento térmico controlado de una caolinita de alta pureza. Se discuten las propiedades de morteros de cemento adicionados con MK en porcentajes hasta del 50%. Las propiedades investigadas corresponden a la resistencia a la compresión, la distribución del tamaño de poros, la resistencia a la penetración del agua y los iones cloruro y el comportamiento a la corrosión de barras de acero de refuerzo embebidas en este material. Se concluye que para alcanzar un hormigón de alta resistencia se requiere un

  3. Sequestration of phosphorus from wastewater by cement-based or alternative cementitious materials.

    Science.gov (United States)

    Wang, Xinjun; Chen, Jiding; Kong, Yaping; Shi, Xianming

    2014-10-01

    Cement-based and alternative cementitious materials were tested in the laboratory for their capability of removing phosphate from wastewater. The results demonstrated that both Langmuir and Freundlich adsorption isotherms were suitable for describing the adsorption characteristics of these materials. Among the four types of filter media tested, the cement-based mortar A has the highest value of maximum adsorption (30.96 mg g(-1)). The P-bonding energy (KL) and adsorption capacity (K) exhibited a positive correlation with the total content of Al2O3 and Fe2O3 in each mortar. The maximum amount of P adsorbed (Qm) and adsorption intensity (1/n) exhibited a positive correlation with the CaO content in each mortar. For three of them, the P-removal rates were in excess of 94 percent for phosphorus concentrations ranging from 20 to 1000 mg L(-1). The underlying mechanisms were examined using field emission scanning microscopy (FESEM), coupled with energy-dispersive X-ray spectroscopy (EDX) and X-ray powder diffraction (XRD). The results reveal that the removal of phosphate predominantly followed a precipitation mechanism in addition to weak physical interactions between the surface of adsorbent filter media and the metallic salts of phosphate. The use of cement-based or alternative cementitious materials in the form of ground powder shows great promise for developing a cost-effective and environmentally sustainable technology for P-sequestration and for wastewater treatment.

  4. Desorption isotherms of cementitious materials: study of an accelerated protocol and estimation of RVE

    International Nuclear Information System (INIS)

    In the framework of French radioactive waste management and storage, the durability evaluation and prediction of concrete structures requires the knowledge of desorption isotherm of concrete. The aim of the present study is to develop an accelerated experimental method to obtain desorption isotherm of cementitious materials more quickly and to estimate the Representative Volume Element (RVE) size related to the desorption isotherm of concrete. In order to ensure that experimental results can be statistically considered representative, a great amount of sliced samples of cementitious materials with three different thicknesses (1 mm, 2 mm and 3 mm) have been de-saturated. The effect of slice thickness and the saturation condition on the mass variation kinetics and the desorption isotherms is analyzed. The influence of the aggregate distribution on the water content and the water saturation degree is also analyzed. A method based on statistical analysis of water content and water saturation degree is proposed to estimate the RVE for water desorption experiment of concrete. The evolution of shrinkage with relative humidity is also followed for each material during the water desorption experiment. A protocol of cycle of rapid desaturation-re-saturation is applied and shows the existence of hysteresis between desorption and adsorption. (author)

  5. Micro-mechanics based representative volume element modeling of heterogeneous cementitious materials

    Science.gov (United States)

    Shahzamanian Sichani, Mohammadmehdi

    The current work focuses on evaluation of the effective elastic properties of cementitious materials through a voxel based FEA approach. Voxels are generated for a heterogeneous cementitious material (Type-I cement) consisting of typical volume fractions of various constituent phases from digital microstructures. The microstructure is modeled as a micro-scale representative volume element (RVE) in ABAQUS to generate cubes several tens of microns in dimension and subjected to various prescribed deformation modes to generate the effective elastic tensor of the material. The RVE-calculated elastic properties such as moduli and Poisson's ratio are validated through an asymptotic expansion homogenization (AEH) and compared with rule of mixtures. Both Periodic (PBC) and Kinematic boundary conditions (KBC) are investigated to determine if the elastic properties are invariant due to boundary conditions. In addition the method of "Windowing" was used to assess the randomness of the constituents and to validate how the isotropic elastic properties were determined. The average elastic properties obtained from the displacement based FEA of various locally anisotropic micro-size cubes extracted from an RVE of size 100x100x100 microns showed that the overall RVE response was fully isotropic. The effects of domain size, degree of hydration, kinematic and periodic boundary conditions, domain sampling techniques, local anisotropy, particle size distribution (PSD), and random microstructure on elastic properties are studied.

  6. Cementitious materials for the immobilisation of radioactive wastes

    International Nuclear Information System (INIS)

    The mechanical and physical properties of cements are influenced by the microstructure which changes significantly going from the plastic state of freshly mixed cement, to the hardened state. The microstructure is highly complex containing many phases and many differing morphological features. Before setting, the rheology of cement is, technologically, of prime importance. The porosity of a set cement varies widely depending on many factors and produces pore size distributions in a range extending from a few tens of angstroms to a few millimetres. An understanding of techniques to investigate porosity is vital before the effects of microstructure on the mechanical or physical properties of cement can be appreciated. Although the strength of a cement monolith is not necessarily of prime concern in the radwaste context, a low value is often indicative of other poor physical, chemical and mechanical properties. Standard techniques for the measurement of strength are discussed and, as cements act as brittle materials, the strength is considered using Griffith's criterion. Alterations in the microstructure (and hence porosity) in cements leads to highly complex changes in both permeability and leach rate. Some recent work highlighting the effects of water/cement ratio and curing regimes is outlined in an effort to indicate this complexity. (author)

  7. Development of evaluation methodology for effects of cementitious grouting materials on groundwater and rock in fractured media

    International Nuclear Information System (INIS)

    Leachates from cementitious grouting materials used for reducing water inflow are hyperalkaline and chemically reactive with the engineered barriers and host rock for geological disposal of high-level radioactive waste. Evaluation methods for long-term alteration of the fractured rock have been developed since the extent of chemical modification may influence the transport and retardation properties of radionuclides in the far field. The present study shows the current status of the development of the methodology (i.e., procedure, models, and simulation codes) for evaluating the effects of cementitious grouting materials on groundwater and rock. (author)

  8. The Effectiveness of High Quality Supplementary Cementitious Materials for Mitigating ASR Expansion in Concrete with High Alkali Content

    Directory of Open Access Journals (Sweden)

    I. Prasetia

    2015-10-01

    Full Text Available Alkali silica reaction (ASR is influenced by external factors such as the surrounding environment of high alkalinity. Countries with cold climate have a high probability to be exposed to high concentrations of NaCl solution by the deicing salt. This condition will lead to serious ASR problems in concrete, if the aggregates contain reactive silica. The main research work in this paper is to investigate the effect of 15% replacement ratio of high quality fine fly ash (FA15% and 42% replacement ratio of blast furnace slag (BFS42% on the ASR mitigation in concrete with different alkali amount inside the pore solution. The experiments were conducted according to the accelerated mortar bars experiment following the JIS A1146 mortar bar test method. In addition, post-analysis such as observation of ASR gel formation by the Uranyl Acetate Fluorescence Method and observation of thin sections using a Polarizing Microscope were also conducted. The mortar bar tests show a very good mitigation effect of supplementary cementitious materials (SCMs. The results show that only small ASR expansions, which can be categorized as “innocuous”, occurred for specimens with 1.2% Na2Oeq using FA15% and BFS42%. However, larger alkali amount inside the system will require more SCMs amount.

  9. Measurement of volume change in cementitious materials at early ages - Review of testing protocols and interpretation of results

    DEFF Research Database (Denmark)

    Sant, Gaurav; Lura, Pietro; Weiss, Jason

    2006-01-01

    Early-age cracking in concrete bridge decks, pavements, and superstructure elements has served as the impetus for substantial research on early-age shrinkage in cementitious materials. Much of this research has indicated how mixture proportions, constituent materials, and construction operations...

  10. Significance of Shrinkage Induced Clamping Pressure in Fiber-Matrix Bonding in Cementitious Composite Materials

    DEFF Research Database (Denmark)

    Stang, Henrik

    1996-01-01

    The present paper accesses the significance of shrinkage inducedclamping pressure in fiber/matrix bonding mechanisms incementitious composite materials. The paper contains a description of an experimental setup whichallows mbox{measurement} of the clamping pressure which develops on anelastic...... inhomogeneity embedded in a matrix consisting of acementitious material undergoing shrinkage during hydration(autogenous shrinkage). Furthermore, the paperpresents the analysis necessary to perform an interpretation of the experimental results and which allows for thedetermination of the clamping pressure...... used in high performance cementitious composite materials.Assuming a Coulomb type of friction on the fiber/matrix interface andusing typical values for the frictional coefficient it is shownthat the shrinkage induced clamping pressure could be one of the mostimportant factors determining the frictional...

  11. Electrokinetic decontamination of porous media. Experimental study and modeling of the cesium transport through cementitious materials

    International Nuclear Information System (INIS)

    The aim of this work is to study the nuclear decontamination of cementitious materials by an electrokinetic method. Special attention is given to the understanding of the mechanisms leading to the removal of radioelements from the material. First, a bibliographic research allowed us to reduce the study to a normalized mortar and to cesium ions. This choice was confirmed by the experimental study of interactions between the contaminant and the material. Next, the efficiency of the electrokinetic decontamination was experimentally shown in laboratory conditions and electromigration was identified as the main transport phenomenon. Then, a numerical model was implemented in order to describe the ionic transport by electromigration. The results obtained were compared to experiments. Finally, some applications and developments of the electrokinetic process were proposed. (author)

  12. Hydration mechanism and leaching behavior of bauxite-calcination-method red mud-coal gangue based cementitious materials.

    Science.gov (United States)

    Zhang, Na; Li, Hongxu; Liu, Xiaoming

    2016-08-15

    A deep investigation on the hydration mechanism of bauxite-calcination-method red mud-coal gangue based cementitious materials was conducted from viewpoints of hydration products and hydration heat analysis. As a main hydration product, the microstructure of C-A-S-H gel was observed using high resolution transmission electron microscopy. It was found that the C-A-S-H gel is composed of amorphous regions and nanocrystalline regions. Most of regions in the C-A-S-H gel are amorphous with continuous distribution, and the nanocrystalline regions on scale of ∼5nm are dispersed irregularly within the amorphous regions. The hydration heat of red mud-coal gangue based cementitious materials is much lower than that of the ordinary Portland cement. A hydration model was proposed for this kind of cementitious materials, and the hydration process mainly consists of four stages which are dissolution of materials, formation of C-A-S-H gels and ettringite, cementation of hydration products, and polycondensation of C-A-S-H gels. There are no strict boundaries among these four basic stages, and they proceed crossing each other. Moreover, the leaching toxicity tests were also performed to prove that the developed red mud-coal gangue based cementitious materials are environmentally acceptable. PMID:27131457

  13. MORTAR INCORPORATING SUPPLEMENTARY CEMENTITIOUS MATERIALS: STRENGTH, ISOTHERMAL CALORIMETRY AND ACIDS ATTACK

    Directory of Open Access Journals (Sweden)

    Y. Senhadji

    2016-05-01

    Full Text Available Supplementary cementitious materials (SCMs prove to be effective to meet most of the requirements of durable concrete and leads to a significant reduction in CO2 emissions. This research studies the effect different SCMs (natural pozzolan (PN/ limestone fine (FC at various remplacement levels on the physical and mechano-chemical resistance of blended mortar. The paper primarily deals with the characteristics of these materials, including heat of hydration, strength and effects of aggressive chemical environments (using sulphuric acid and nitric acid. Over 6 mixes were made and compared to the control mix. Tests were conducted at different ages up to 360 days. The experimental results in general showed that Algerian mineral admixtures (PN/FC were less vulnerable to nitric and sulphuric acid attack and improved the properties of mortars, but at different rates depending on the quantity of binder.

  14. The influence of superabsorbent polymers on the autogenous shrinkage properties of cement pastes with supplementary cementitious materials

    DEFF Research Database (Denmark)

    Snoeck, D.; Jensen, Ole Mejlhede; De Belie, N.

    2015-01-01

    shrinkage was determined by manual and automated shrinkage measurements. Autogenous shrinkage was reduced in cement pastes with the supplementary cementitious materials versus Portland cement pastes. At later ages, the rate of autogenous shrinkage is higher due to the pozzolanic activity. Internal curing...

  15. Titanium dioxide coated cementitious materials for air purifying purposes: Preparation, characterization and toluene removal potential

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Anibal Maury; De Belie, Nele [Magnel Laboratory for Concrete Research, Department of Structural Engineering, Engineering Faculty, Ghent University, Technologiepark Zwijnaarde 904, B-9052 Ghent (Belgium); Demeestere, Kristof [Research Group EnVOC, Department of Organic Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653. B-9000 Ghent (Belgium); Maentylae, Tapio; Levaenen, Erkki [Department of Materials Science, Tampere University of Technology, Korkeakoulunkatu 6, FIN-33720 Tampere (Finland)

    2010-04-15

    This work presents promising results for air purification by heterogeneous photocatalysis on new titanium dioxide loaded cementitious materials. A set of eight concretes and plasters is enriched with TiO{sub 2} photocatalyst by dip-coating and/or sol-gel methods. First, the macro-structural features of the cementitious materials have been studied in terms of porosity and roughness. The first parameter has been determined using mercury intrusion porosimetry or by vacuum saturation, and ranged between 9 and 75%, with the highest values obtained for autoclaved aerated white concrete. Surface roughness, determined by laser profilometry, has been characterized by the R{sub a} factor. This expresses the mean deviation of the profile from the centre line and ranged between 0.7 and 252 {mu}m, with the highest value obtained for conventional grey concrete finished with surface brush. Secondly, the weathering resistance of the TiO{sub 2} coatings has been determined by exposing them to different abrasive conditions and by performing SEM-Edax analyses to measure quantitatively the coating's titanium content. Hereby, it is shown that high porosity and roughness are favourable for TiO{sub 2} particles retention. Finally, the preliminary air purification potential of both dip-coated and sol-gel coated TiO{sub 2} enriched concrete samples has been investigated on lab-scale using toluene as a model pollutant. High removal efficiencies (up to 86%) were obtained with the dip-coated samples, indicating their attractive photocatalytic properties for future application as air purifying building materials. (author)

  16. Wet-Treated MSWI Fly Ash Used as Supplementary Cementitious Material

    Directory of Open Access Journals (Sweden)

    Martin Keppert

    2015-01-01

    Full Text Available Municipal solid waste incineration (MSWI is a common technique in treatment of domestic waste. This technique annually produces approximately 25 Mt solid residues (i.e., bottom and fly ash worldwide which is also a major issue in current research. In this research we are concerned with reusing the fly ash (FA as supplementary cementitious material (SCM in concrete. Such application solves the problem with heavy metal immobilization as well. To remove the high content of undesired soluble salts, number of washing treatments has been applied. Chemical composition of FA has been examined before and after treatments. The impact of cement substitution by FA in concrete was evaluated by measurement of its compressive strength and durability.

  17. Electrical percolation threshold of cementitious composites possessing self-sensing functionality incorporating different carbon-based materials

    Science.gov (United States)

    Al-Dahawi, Ali; Haroon Sarwary, Mohammad; Öztürk, Oğuzhan; Yıldırım, Gürkan; Akın, Arife; Şahmaran, Mustafa; Lachemi, Mohamed

    2016-10-01

    An experimental study was carried out to understand the electrical percolation thresholds of different carbon-based nano- and micro-scale materials in cementitious composites. Multi-walled carbon nanotubes (CNTs), graphene nanoplatelets (GNPs) and carbon black (CB) were selected as the nano-scale materials, while 6 and 12 mm long carbon fibers (CF6 and CF12) were used as the micro-scale carbon-based materials. After determining the percolation thresholds of different electrical conductive materials, mechanical properties and piezoresistive properties of specimens produced with the abovementioned conductive materials at percolation threshold were investigated under uniaxial compressive loading. Results demonstrate that regardless of initial curing age, the percolation thresholds of CNT, GNP, CB and CFs in ECC mortar specimens were around 0.55%, 2.00%, 2.00% and 1.00%, respectively. Including different carbon-based conductive materials did not harm compressive strength results; on the contrary, it improved overall values. All cementitious composites produced with carbon-based materials, with the exception of the control mixtures, exhibited piezoresistive behavior under compression, which is crucial for sensing capability. It is believed that incorporating the sensing attribute into cementitious composites will enhance benefits for sustainable civil infrastructures.

  18. Investigation of the methodology for selecting cementitious materials for the different components in the underground facility. Deriving component requirements and investigation of the weighting methodology

    International Nuclear Information System (INIS)

    For conceptual facility design, it is necessary to select appropriate cementitious materials to meet the requirements for each component of the underground disposal facility before detailed investigations are carried out for site selection. Cementitious materials will be used for constructing major components of the underground facility and suitable materials for each component are selected tentatively by comparing the selection methodology with relevant information about the component for which the cementitious material will be used. The objective of this study is to list and sort the required characteristics of cementitious materials for each component in the facility, in order to provide input for determining the material selection methodology. When deriving the required characteristics of the cementitious materials for each component, physico-chemical properties that will fulfil required operational functions and minimize effects on the safety function of the disposal system due to alteration or degradation were investigated. Based on these investigations, step changes in the state of the disposal system are identified, including the bedrock around the drifts, by considering alteration or degradation of the cementitious material. Significant components for ensuring the safety function can be identified by specifying the step changes in the state of the disposal system. (author)

  19. Effect of alkali-activation on aluminosilicate-based cementitious materials

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    High-performance aluminosilieate-based eementitious materials were produced with fly ash from a coal power plant as one of the major raw materials.The structures of fly ash containing aluminosilicate-based cementitious materials were compared before and after treatment by the methods of nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM).During the 28 d curing time,the compressive strength of water glass and fly ash samples increased from 9.08 MPa to 26.75 MPa.The results show that most of the stiff shells are destroyed after mechanical grinding and chemical activation.Magic angle spinning (MAS)NMR of 27Al shows that the wide peak becomes narrow and the main peak shifts to the direction of low field,indicating the decrease of polymerization degree,the enhancing of activity,the decrease of six-coordination structure,and the increase of small and symmetrical four-coordination polyhedron structure within the aluminum-oxygen polyhedron network.Comparisons between MAS NMR of 29Si with different treatments suggest that Q0 disappears,the quantity of Q2 increases,and the quantity of Q4 decreases.The polym

  20. Overview of recent work on self-healing in cementitious materials

    Directory of Open Access Journals (Sweden)

    Lv, Z.

    2014-12-01

    Full Text Available Cracks, especially microcracks, in concrete are of paramount importance to the durability and the service life of cementitious composite. However, the self-healing technology, including autogenous healing and autonomous healing, is expected to be one of effective tools to overcome this boring problem. In this paper, we focus on the autogenous healing of concrete material and a few of recent works of autonomous healing are also mentioned. The durability and the mechanical properties improved by the self-healing phenomenon are reviewed from experimental investigation and practical experience. Several aspects of researches, such as autogenous healing capability of an innovative concrete incorporated geo-materials, self-healing of engineered cementitious composite and fire-damaged concrete, effect of mineral and admixtures on mechanism and efficiency of self-healing concrete are summarized to evaluate the presented progresses in the past several years and to outline the perspective for the further developments. Moreover, a special emphasis is given on the analytical models and computer simulation method of the researches of self-healing in cementitious materials.Las fisuras, y sobre todo las microfisuras, tienen una gran repercusión en la durabilidad y en la vida útil de los materiales cementantes. Ante este problema, la tecnología de la autorreparación, tanto autógena como autónoma, se presenta como una solución eficaz. El artículo se centra en la reparación autógena del hormigón, así como en algunos trabajos recientes sobre la reparación autónoma. Se describen las mejoras de las propiedades de durabilidad y de resistencia que proporciona la técnica del hormigón autorreparable, tanto desde el punto de vista de la investigación experimental como del de la experiencia práctica. A fin de evaluar los avances logrados en los últimos años y de trazar las grandes líneas de desarrollo futuro, se resumen varios de los aspectos

  1. The Influence of Calcium Chloride Salt Solution on the Transport Properties of Cementitious Materials

    OpenAIRE

    Yaghoob Farnam; Taylor Washington; Jason Weiss

    2015-01-01

    The chemical interaction between calcium chloride (CaCl2) and cementitious binder may alter the transport properties of concrete which are important in predicting the service life of infrastructure elements. This paper presents a series of fluid and gas transport measurements made on cementitious mortars before and after exposure to various solutions with concentrations ranging from 0% to 29.8% CaCl2 by mass. Fluid absorption, oxygen diffusivity, and oxygen permeability were measured on morta...

  2. The Behaviours of Cementitious Materials in Long Term Storage and Disposal of Radioactive Waste. Results of a Coordinated Research Project

    International Nuclear Information System (INIS)

    Radioactive waste with widely varying characteristics is generated from the operation and maintenance of nuclear power plants, nuclear fuel cycle facilities, research laboratories and medical facilities. This waste must be treated and conditioned, as necessary, to provide waste forms acceptable for safe storage and disposal. Many countries use cementitious materials (concrete, mortar, etc.) as a containment matrix for immobilization, as well as for engineered structures of disposal facilities. Radionuclide release is dependent on the physicochemical properties of the waste forms and packages, and on environmental conditions. In the use of cement, the diffusion process and metallic corrosion can induce radionuclide release. The advantage of cementitious materials is the added stability and mechanical support during storage and disposal of waste. Long interim storage is becoming an important issue in countries where it is difficult to implement low level waste and intermediate level waste disposal facilities, and in countries where cement is used in the packaging of waste that is not suitable for shallow land disposal. This coordinated research project (CRP), involving 24 research organizations from 21 Member States, investigated the behaviour and performance of cementitious materials used in an overall waste conditioning system based on the use of cement - including waste packaging (containers), waste immobilization (waste form) and waste backfilling - during long term storage and disposal. It also considered the interactions and interdependencies of these individual elements (containers, waste, form, backfill) to understand the processes that may result in degradation of their physical and chemical properties. The main research outcomes of the CRP are summarized in this report under four topical sections: (i) conventional cementitious systems; (ii) novel cementitious materials and technologies; (iii) testing and waste acceptance criteria; and (iv) modelling long

  3. Preparation of Silica Nanoparticles and Its Beneficial Role in Cementitious Materials

    Directory of Open Access Journals (Sweden)

    S. Ahalawat

    2011-07-01

    Full Text Available Spherical silica nanoparticles (n‐SiO2 with controllable size have been synthesized using tetraethoxysilane as starting material and ethanol as solvent by sol‐gel method. Morphology and size of the particles was controlled through surfactants. Sorbitan monolaurate, sorbitain monopalmitate and sorbitain monostearate produced silica nanoparticles of varying sizes (80‐150 nm, indicating the effect of chain length of the surfactant. Increase in chain length of non‐ionic surfactant resulted in decreasing particle size of silica nanoparticles. Further, the size of silica particles was also controlled using NH3 as base catalyst. These silica nanoparticles were incorporated into cement paste and their role in accelerating the cementitious reactions was investigated. Addition of silica nanoparticles into cement paste improved the microstructure of the paste and calcium leaching is significantly reduced as n‐SiO2 reacts with calcium hydroxide and form additional calcium‐ silicate‐hydrate (C‐S‐H gel. It was found that calcium hydroxide content in silica nanoparticles incorporated cement paste reduced ~89% at 1 day and up to ~60% at 28 days of hydration process. Synthesized silica particles and cement paste samples were characterized using scanning electron microscopy (SEM, powder X‐ray diffraction (XRD, infrared spectroscopy (IR and thermogravimetric analysis (TGA.

  4. Development of leachate test for delayed ettringite formation potential in cementitious materials

    Science.gov (United States)

    France-Mensah, Jojo

    Delayed Ettringite Formation (DEF) has been known to be the cause of expansion and cracking at latter ages in concrete that has been heat cured at temperatures around 70 degree Celsius or above. Currently, the only method available for measuring DEF-related physical expansion in concrete can sometimes take over a year to yield relevant results. A leachate method was proposed as a means of taking advantage of the release and solubility of the adsorbed ions (e.g., calcium, sulfates and aluminates) and alkali ions (e.g., sodium and potassium) in the pore solution after heat curing of the cement paste matrix. These ions, known to contribute to DEF, were leached out of concrete into the leaching solution. The results of the leachate test were correlated to physical expansion data of similar samples from an earlier study. The aim of this research is to apply this knowledge to develop an accelerated leachate test method for identifying the potential for DEF in cementitious materials in a shorter time than the existing method. The objectives of this research are: (1) to identify the ion(s) through leaching that is/are the controlling factors in predicting the rate of expansion and overall expansion of mortar; (2) to identify the ion(s) that is/are responsible for the lag time or age of deleterious expansion through DEF; and (3) to investigate the effect of heat curing on the overall, rate of, and age (time) of expansion.

  5. Data on plutonium sorption onto cementitious materials under conditions of reducing and of presence of nitrate

    International Nuclear Information System (INIS)

    In terms of safety assessment of TRU waste disposal, data on plutonium sorption of cementitious materials have been obtained by means of a static batch-type experiment. Because the repository condition will be reducing and be affected by considerable amount of nitrate, the authors carried out the experiments using ordinary portland cement (OPC) under the reducing (Na2S2O4 as added as reductant) and anoxic condition (O2 ≤ 1 ppm) and solution of 0 to 0.5 M NaNo3. Other experimental conditions are: liquid/solid (L/S) ratios; 100 and 1000 mLg-1, Initially added plutonium; 2.84x10-10 M, Temperature; 25±5degC and Reaction times; 7, 14 and 28 days. the experimental results suggest that distribution coefficient (Kd) ranges 50 to 1000 mLg-1 in case of L/S = 100 mL g-1. Similarly the Kd ranges, 100 to 10000 mLg-1 at L/S = 1000 mLg-1. These Kd values tend to increase with lapsing reaction time. On the basis of these results, we recommend 50 mLg-1 as a conservative Kd value of plutonium on OPC in a TRU waste repository condition. (author)

  6. USE OF CEMENTITIOUS MATERIALS FOR SRS REACTOR FACILITY IN-SITU DECOMMISSIONING - 11620

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Stefanko, D.; Serrato, M.; Blankenship, J.; Griffin, W.; Waymer, J.; Matheny, D.; Singh, D.

    2010-12-07

    The United States Department of Energy (US DOE) concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., producing (reactor facilities), processing (isotope separation facilities) or storing radioactive materials. The Savannah River Site 105-P and 105-R Reactor Facility ISD requires about 250,000 cubic yards of grout to fill the below grade structure. The fills are designed to prevent subsidence, reduce water infiltration, and isolate contaminated materials. This work is being performed as a Comprehensive Environmental Response, Compensations and Liability Act (CERCLA) action and is part of the overall soil and groundwater completion projects for P- and R-Areas. Cementitious materials were designed for the following applications: (1) Below grade massive voids/rooms: Portland cement-based structural flowable fills for - Bulk filling, Restricted placement and Underwater placement. (2) Special below grade applications for reduced load bearing capacity needs: Cellular portland cement lightweight fill (3) Reactor vessel fills that are compatible with reactive metal (aluminum metal) components in the reactor vessels: Calcium sulfoaluminate flowable fill, and Magnesium potassium phosphate flowable fill. (4) Caps to prevent water infiltration and intrusion into areas with the highest levels of radionuclides: Portland cement based shrinkage compensating concrete. A system engineering approach was used to identify functions and requirements of the fill and capping materials. Laboratory testing was performed to identify candidate formulations and develop final design mixes. Scale-up testing was performed to verify material production and placement as well as fresh and cured properties. The 105-P and 105-R ISD projects are currently in progress and are expected to be complete in 2012. The focus of this paper is to describe the (1) grout mixes

  7. Oxidation of carbon fiber surfaces for use as reinforcement in high-temperature cementitious material systems

    Science.gov (United States)

    Sugama, Toshifumi

    1990-01-01

    The interfacial bond characteristics between carbon fiber and a cement matrix, in high temperature fiber-reinforced cementitious composite systems, can be improved by the oxidative treatment of the fiber surfaces. Compositions and the process for producing the compositions are disclosed.

  8. Self-healing behavior of strain hardening cementitious composites incorporating local waste materials

    NARCIS (Netherlands)

    Qian, S.; Zhou, J.; Rooij, M.R. de; Schlangen, E.; Ye, G.; Breugel, K. van

    2009-01-01

    The self-healing behavior of a series of pre-cracked fiber reinforced strain hardening cementitious composites incorporating blast furnace slag (BFS) and limestone powder (LP) with relatively high water/binder ratio is investigated in this paper, focusing on the recovery of its deflection capacity.

  9. Development of an accurate pH measurement methodology for the pore fluids of low pH cementitious materials

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, M. C.; Garcia Calvo, J. L. [The Spanish National Research Council (CSIC), Madrid (Spain); Walker, C. [Japan Atomic Energy Agency (JAEA), Ibaraki (Japan)] [and others

    2012-08-15

    The main objective of this project has been the development of an agreed set of protocols for the pH measurement of the pore fluid of a low pH cementitious material. Three protocols have been developed (Chapter 2), a reference method, based on pore fluid expression (PFE), and two routine methods with and without filtering, based on Ex Situ Leaching (ESL) procedures. Templates have been designed on which to record details of the pH measurement for the reference (PFE) method (Appendix C) and the routine (ESL) methods without and with filtering (Appendix D). Preliminary protocols were based on a broad review of the literature (Appendix A) and refined through a series of test experiments of the more critical parameters (Appendix B). After definition of the preliminary protocols, two phases of interlaboratory tests were performed. The first phase (Chapter 3) used the same low pH cement paste and enabled the nine participating laboratories to use, become familiar with and to identify any problems/uncertainties in the preliminary protocols. The reported pH values were subjected to a statistical analysis of the (within laboratory) repeatability and (between-laboratory) reproducibility and so provided a reliability test of the preliminary protocols. The second phase (Chapter 4) of interlaboratory tests used four different candidate low pH cementitious materials in the same nine laboratories, which allowed testing, validation and comparison of the reported pH values, which were obtained using the final protocols for the reference (PFE) and routine (ESL) methods by statistical analysis. The proposed final protocols (Chapter 2) have resulted in the reported pH values having low deviation and high reproducibility and repeatability. This will allow confidence in the pH value when selecting a candidate low pH cementitious material to be used in the engineered component of a high-level nuclear waste repository.

  10. Development of an accurate pH measurement methodology for the pore fluids of low pH cementitious materials

    International Nuclear Information System (INIS)

    The main objective of this project has been the development of an agreed set of protocols for the pH measurement of the pore fluid of a low pH cementitious material. Three protocols have been developed (Chapter 2), a reference method, based on pore fluid expression (PFE), and two routine methods with and without filtering, based on Ex Situ Leaching (ESL) procedures. Templates have been designed on which to record details of the pH measurement for the reference (PFE) method (Appendix C) and the routine (ESL) methods without and with filtering (Appendix D). Preliminary protocols were based on a broad review of the literature (Appendix A) and refined through a series of test experiments of the more critical parameters (Appendix B). After definition of the preliminary protocols, two phases of interlaboratory tests were performed. The first phase (Chapter 3) used the same low pH cement paste and enabled the nine participating laboratories to use, become familiar with and to identify any problems/uncertainties in the preliminary protocols. The reported pH values were subjected to a statistical analysis of the (within laboratory) repeatability and (between-laboratory) reproducibility and so provided a reliability test of the preliminary protocols. The second phase (Chapter 4) of interlaboratory tests used four different candidate low pH cementitious materials in the same nine laboratories, which allowed testing, validation and comparison of the reported pH values, which were obtained using the final protocols for the reference (PFE) and routine (ESL) methods by statistical analysis. The proposed final protocols (Chapter 2) have resulted in the reported pH values having low deviation and high reproducibility and repeatability. This will allow confidence in the pH value when selecting a candidate low pH cementitious material to be used in the engineered component of a high-level nuclear waste repository

  11. The Evaluation of Material Properties of Low-pH Cement Grout for the Application of Cementitious Materials to Deep Radioactive Waste Repository Tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Seop; Kwon, S. K.; Cho, W. J.; Kim, G. W

    2009-12-15

    Considering the current construction technology and research status of deep repository tunnels for radioactive waste disposal, it is inevitable to use cementitious materials in spite of serious concern about their long-term environmental stability. Thus, it is an emerging task to develop low pH cementitious materials. This study reviews the state of the technology on low pH cements developed in Sweden, Switzerland, France, and Japan as well as in Finland which is constructing a real deep repository site for high-level radioactive waste disposal. Considering the physical and chemical stability of bentonite which acts as a buffer material, a low pH cement limits to pH {<=}11 and pozzolan-type admixtures are used to lower the pH of cement. To attain this pH requirement, silica fume, which is one of the most promising admixtures, should occupy at least 40 wt% of total dry materials in cement and the Ca/Si ratio should be maintained below 0.8 in cement. Additionally, selective super-plasticizer needs to be used because a high amount of water is demanded from the use of a large amount of silica fume. In this report, the state of the technology on application of cementitious materials to deep repository tunnels for radioactive waste disposal was analysed. And the material properties of low-pH and high-pH cement grouts were evaluated base on the grout recipes of ONKALO in Finlan.

  12. Photovoltaic's silica-rich waste sludge as supplementary cementitious material (SCM)

    Energy Technology Data Exchange (ETDEWEB)

    Quercia, G., E-mail: g.quercia@tue.nl [Materials innovation institute (M2i), Mekelweg 2, P.O. Box 5008, 2600 GA Delft (Netherlands); Eindhoven University of Technology, Department of the Built Environment, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Putten, J.J.G. van der [Eindhoven University of Technology, Department of the Built Environment, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Hüsken, G. [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, D-12205 Berlin (Germany); Brouwers, H.J.H. [Eindhoven University of Technology, Department of the Built Environment, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2013-12-15

    Waste sludge, a solid recovered from wastewater of photovoltaic-industries, composes of agglomerates of nano-particles like SiO{sub 2} and CaCO{sub 3}. This sludge deflocculates in aqueous solutions into nano-particles smaller than 1 μm. Thus, this sludge constitutes a potentially hazardous waste when it is improperly disposed. Due to its high content of amorphous SiO{sub 2}, this sludge has a potential use as supplementary cementitious material (SCM) in concrete. In this study the main properties of three different samples of photovoltaic's silica-rich waste sludge (nSS) were physically and chemically characterized. The characterization techniques included: scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), nitrogen physical adsorption isotherm (BET method), density by Helium pycnometry, particle size distribution determined by laser light scattering (LLS) and zeta-potential measurements by dynamic light scattering (DLS). In addition, a dispersability study was performed to design stable slurries to be used as liquid additives for the concrete production on site. The effects on the hydration kinetics of cement pastes by the incorporation of nSS in the designed slurries were determined using an isothermal calorimeter. A compressive strength test of standard mortars with 7% of cement replacement was performed to determine the pozzolanic activity of the waste nano-silica sludge. Finally, the hardened system was fully characterized to determine the phase composition. The results demonstrate that the nSS can be utilized as SCM to replace portion of cement in mortars, thereby decreasing the CO{sub 2} footprint and the environmental impact of concrete. -- Highlights: •Three different samples of PV nano-silica sludge (nSS) were fully characterized. •nSS is composed of agglomerates of nano-particles like SiO{sub 2} and CaCO{sub 3}. •Dispersability studies demonstrated that nSS agglomerates are broken to nano

  13. Contribution to the French program dedicated to cementitious and clayey materials behavior in the context of Intermediate Level Waste management – Hydrogen transfer and materials durability

    Directory of Open Access Journals (Sweden)

    Muzeau B.

    2013-07-01

    Full Text Available This article illustrates a contribution of the CEA Laboratory of Concrete and Clay Behavior (“LECBA”s for the assessment and modeling of the Long-Term behavior of cementitious and clayey materials in the context of nuclear ILW (Intermediate Level Waste management. In particular, we aim at presenting two main topics that are studied at the Lab. The first one is linked to safety aspects and concern hydrogen transfer within cementitious as well as clayey materials (host rock for French nuclear waste disposal. The second point concerns the assessment of durability properties of reinforced concrete structures in the disposal (pre-closure and post-closure conditions. Experimental specific tests and phenomenological modelling are presented.

  14. ANDRA - Referential Materials. Volume 1: Context and scope; Volume 2: Argillaceous materials; Volume 3: Cementitious materials; Volume 4: The corrosion of metallic materials

    International Nuclear Information System (INIS)

    This huge document gathers four volumes. The first volume presents some generalities about materials used in the storage of radioactive materials (definition, design principle, current choices and corresponding storage components, general properties of materials and functions of the corresponding storage components, physical and chemical solicitations experienced by materials in a storage), and the structure and content of the other documents. The second volume addresses argillaceous materials. It presents some generalities about these materials in the context of a deep geological storage, and about their design. It presents and comments the crystalline and chemical, and physical and chemical characteristics of swelling argillaceous materials and minerals, describes how these swelling argillaceous materials are shaped and set up, presents and comments physical properties (hydraulic, mechanical and thermal properties) of these materials, comments and discusses the modelling of the geo-chemical behaviour, and their behaviour in terms of containment and transport of radionuclides. The third volume addresses cementitious materials. It presents some generalities about these materials in the context of a deep geological storage, and about their definition and specifications. It presents some more detailed generalities (cement definition and composition, hydration, microstructure of hydrated cements, adjuvants), presents and comments their physical properties (fresh concrete structure and influence of composition, main aimed properties in the hardened status, transfer, mechanical, and thermal properties, shaping and setting up of these materials, technical solutions for hydraulic works). The fourth volume addresses the corrosion of metallic materials. It presents some generalities about these materials in the context of a deep geological storage of radioactive materials. It presents metallic materials and discusses their corrosion behaviour. It describes the peculiarities

  15. Numerical Studies of the Effects of Water Capsules on Self-Healing Efficiency and Mechanical Properties in Cementitious Materials

    Directory of Open Access Journals (Sweden)

    Haoliang Huang

    2016-01-01

    Full Text Available In this research, self-healing due to further hydration of unhydrated cement particles is taken as an example for investigating the effects of capsules on the self-healing efficiency and mechanical properties of cementitious materials. The efficiency of supply of water by using capsules as a function of capsule dosages and sizes was determined numerically. By knowing the amount of water supplied via capsules, the efficiency of self-healing due to further hydration of unhydrated cement was quantified. In addition, the impact of capsules on mechanical properties was investigated numerically. The amount of released water increases with the dosage of capsules at different slops as the size of capsules varies. Concerning the best efficiency of self-healing, the optimizing size of capsules is 6.5 mm for capsule dosages of 3%, 5%, and 7%, respectively. Both elastic modulus and tensile strength of cementitious materials decrease with the increase of capsule. The decreasing tendency of tensile strength is larger than that of elastic modulus. However, it was found that the increase of positive effect (the capacity of inducing self-healing of capsules is larger than that of negative effects (decreasing mechanical properties when the dosage of capsules increases.

  16. Cementitious Materials in Safety Cases for Geological Repositories for Radioactive Waste: Role, Evolution and Interactions. A Workshop organised by the OECD/NEA Integration Group for the Safety Case and hosted by ONDRAF/NIRAS. Cementitious materials in safety cases for radioactive waste: role, evolution and interactions

    International Nuclear Information System (INIS)

    The OECD Nuclear Energy Agency (NEA) Integration Group for the Safety Case (IGSC) organised a workshop to assess current understanding on the use of cementitious materials in radioactive waste disposal. The workshop was hosted by the Belgian Agency for Radioactive Waste and Enriched Fissile Materials (Ondraf/Niras), in Brussels, Belgium on 17-19 November 2009. The workshop brought together a wide range of people involved in supporting safety case development and having an interest in cementitious materials: namely, cement and concrete experts, repository designers, scientists, safety assessors, disposal programme managers and regulators. The workshop was designed primarily to consider issues relevant to the post-closure safety of radioactive waste disposal, but also addressed some related operational issues, such as cementitious barrier emplacement. Where relevant, information on cementitious materials from analogous natural and anthropogenic systems was also considered. This report provides a synthesis of the workshop, and summarises its main results and findings. The structure of this report follows the workshop agenda: - Section 2 summarises plenary and working group discussions on the uses, functions and evolution of cementitious materials in geological disposal, and highlights key aspects and discussions points. - Section 3 summarises plenary and working group discussions on interactions of cementitious materials with other disposal system components, and highlights key aspects and discussions points. - Section 4 summarises the workshop session on the integration of issues related to cementitious materials using the safety case. - Section 5 presents the main conclusions from the workshop. - Section 6 contains a list of references. - Appendix A presents the workshop agenda. - Appendix B contains the abstracts and, where provided, technical papers supporting oral presentations at the workshop. - Appendix C contains the abstracts and, where provided, technical

  17. A multi-scale approach of mechanical and transport properties of cementitious materials under rises of temperature

    International Nuclear Information System (INIS)

    The modern industrial activities (storage of nuclear waste, geothermal wells, nuclear power plants,...) can submit cementitious materials to some extreme conditions, for example at temperatures above 200 C. This level of temperature will induce phenomena of dehydration in the cement paste, particularly impacting the CSH hydrates which led to the mechanical cohesion. The effects of these temperatures on the mechanical and transport properties have been the subject of this thesis.To understand these effects, we need to take into account the heterogeneous, porous, multi-scale aspects of these materials. To do this, micro-mechanics and homogenization tools based on the Eshelby problem's solution were used. Moreover, to support this multi-scale modeling, mechanical testing based on the theory of porous media were conducted. The measurements of modulus compressibility, permeability and porosity under confining pressure were used to investigate the mechanisms of degradation of these materials during thermal loads up to 400 C. (author)

  18. Carbon Fiber as Anode Material for Cathodic Prevention in Cementitious Materials

    OpenAIRE

    Zhang, Emma Qingnan; Tang, Luping; Zack, Thomas

    2016-01-01

    Cathodic prevention (CPre) technique is a promising method and has been used for the past two decades to prevent steel from corrosion in concrete structures. However, wide application of this technique has been restricted due to high costs of anode materials. In order to lower the cost and further improve this technique, carbon fiber composite anode has been introduced as an alternative anode material with affordable price and other outstanding properties. This paper presents the study of usi...

  19. Analogue simulation by dem of material structure for property estimation of cementitious materials

    NARCIS (Netherlands)

    Stroeven, P.; He, H.; Le, L.B.N.

    2012-01-01

    Realistic simulation of particulate materials like concrete on meso- as well as micro-level is nowadays possible by fast developments in computer technology. This would be a more economic way than by physical experiinents, which are more time-consuming, laborious and thus expensive. This concern the

  20. The Influence of Calcium Chloride Salt Solution on the Transport Properties of Cementitious Materials

    Directory of Open Access Journals (Sweden)

    Yaghoob Farnam

    2015-01-01

    Full Text Available The chemical interaction between calcium chloride (CaCl2 and cementitious binder may alter the transport properties of concrete which are important in predicting the service life of infrastructure elements. This paper presents a series of fluid and gas transport measurements made on cementitious mortars before and after exposure to various solutions with concentrations ranging from 0% to 29.8% CaCl2 by mass. Fluid absorption, oxygen diffusivity, and oxygen permeability were measured on mortar samples prepared using Type I and Type V cements. Three primary factors influence the transport properties of mortar exposed to CaCl2: (1 changes in the degree of saturation, (2 calcium hydroxide leaching, and (3 formation of chemical reaction products (i.e., Friedel’s salt, Kuzel’s salt, and calcium oxychloride. It is shown that an increase in the degree of saturation decreases oxygen permeability. At lower concentrations (~12%, the formation of chemical reaction products (mainly calcium oxychloride is a dominant factor decreasing the fluid and gas transport in concrete.

  1. Damage development, phase changes, transport properties, and freeze-thaw performance of cementitious materials exposed to chloride based salts

    Science.gov (United States)

    Farnam, Yaghoob

    Recently, there has been a dramatic increase in premature deterioration in concrete pavements and flat works that are exposed to chloride based salts. Chloride based salts can cause damage and deterioration in concrete due to the combination of factors which include: increased saturation, ice formation, salt crystallization, osmotic pressure, corrosion in steel reinforcement, and/or deleterious chemical reactions. This thesis discusses how chloride based salts interact with cementitious materials to (1) develop damage in concrete, (2) create new chemical phases in concrete, (3) alter transport properties of concrete, and (4) change the concrete freeze-thaw performance. A longitudinal guarded comparative calorimeter (LGCC) was developed to simultaneously measure heat flow, damage development, and phase changes in mortar samples exposed to sodium chloride (NaCl), calcium chloride (CaCl 2), and magnesium chloride (MgCl2) under thermal cycling. Acoustic emission and electrical resistivity measurements were used in conjunction with the LGCC to assess damage development and electrical response of mortar samples during cooling and heating. A low-temperature differential scanning calorimetry (LT-DSC) was used to evaluate the chemical interaction that occurs between the constituents of cementitious materials (i.e., pore solution, calcium hydroxide, and hydrated cement paste) and salts. Salts were observed to alter the classical phase diagram for a salt-water system which has been conventionally used to interpret the freeze-thaw behavior in concrete. An additional chemical phase change was observed for a concrete-salt-water system resulting in severe damage in cementitious materials. In a cementitious system exposed to NaCl, the chemical phase change occurs at a temperature range between -6 °C and 8 °C due to the presence of calcium sulfoaluminate phases in concrete. As a result, concrete exposed to NaCl can experience additional freeze-thaw cycles due to the chemical

  2. Microwave material characterization of alkali-silica reaction (ASR) gel in cementitious materials

    Science.gov (United States)

    Hashemi, Ashkan

    Since alkali-silica reaction (ASR) was recognized as a durability challenge in cement-based materials over 70 years ago, numerous methods have been utilized to prevent, detect, and mitigate this issue. However, quantifying the amount of produced ASR byproducts (i.e., ASR gel) in-service is still of great interest in the infrastructure industry. The overarching objective of this dissertation is to bring a new understanding to the fundamentals of ASR formation from a microwave dielectric property characterization point-of-view, and more importantly, to investigate the potential for devising a microwave nondestructive testing approach for ASR gel detection and evaluation. To this end, a comprehensive dielectric mixing model was developed with the potential for predicting the effective dielectric constant of mortar samples with and without the presence of ASR gel. To provide pertinent inputs to the model, critical factors on the influence of ASR gel formation on dielectric and reflection properties of several mortar samples were investigated at R, S, and X-band. Effects of humidity, alkali content, and long-term curing conditions on ASR-prone mortars were also investigated. Additionally, dielectric properties of chemically different synthetic ASR gel were also determined. All of these, collectively, served as critical inputs to the mixing model. The resulting developed dielectric mixing model has the potential to be further utilized to quantify the amount of produced ASR gel in cement-based materials. This methodology, once becomes more mature, will bring new insight to the ASR reaction, allowing for advancements in design, detection and mitigation of ASR, and eventually has the potential to become a method-of-choice for in-situ infrastructure health-monitoring of existing structures.

  3. Salt repository seal materials: a synopsis of early cementitious materials development

    International Nuclear Information System (INIS)

    Development of seal materials for radioactive waste repositories in evaporite rocks spans ten years. Experimental mixes have been tested under both laboratory and field conditions in halite, anhydrite, and accompanying clastic strata. Physical properties of the mixtures gradually improved through these experiments, leading to development of mixtures we now commonly call the BCT Series of mixtures. Two of these mixtures, BCT-1F (a salt-saturated mixture) and BCT-1FF (the equivalent mixture without salt), were developed for use in the Bell Canyon test in New Mexico, although only the BCT-1FF formulation was used in the field test. Other grouts, studied subsequent to Bell Canyon field emplacement, have provided more data about mineralogy, and physical performance as a function of compositional and curing variables. The interface between grout and rock has been studied on a limited basis, including some simulated boreholes and concretes. For those properties that have been tested, including expansion and compressive strength, the BCT-1F and -1FF and related grouts appear to meet preliminary performance criteria. Other properties, such as thermal expansion and creep, require additional attention. Four classes of grouts are established by chemistry and expansive mechanism: (1) non-expansive; (2) chloride expansive; (3) sulfate expansive; and (4) mixed expansive mechanisms. Additional study of evaporite-compatible mixtures, especially concretes, is recommended, under constant simulated shaft conditions. Characteristics of grout/rock interfaces, and mechanisms of expansion also require further study. 83 refs., 15 figs., 30 tabs

  4. Basalt as a solid source of calcium and alkalinity for the sequestration of carbon dioxide in building materials

    Science.gov (United States)

    Johnson, N. C.; Westfield, I.; Lu, P.; Bourcier, W. L.; Kendall, T.; Constantz, B. R.

    2010-12-01

    Motivated by the idea of converting waste carbon dioxide into usable building products, Calera Corporation has developed a multi-step process that sequesters CO2 as carbonate minerals in cementitious materials. Process inputs include dissolved divalent cations and alkalinity, both of which can be extracted from basalt. In one mode of the Calera process, the electrochemical production of alkalinity generates large volumes of hydrochloric acid as a by-product, which has been shown to effectively leach divalent cations from basalt while being neutralized by the basalt dissolution reaction. Using a 10:1 1M HCl solution to rock ratio, 3500 ppm Ca was extracted while the initial solution was neutralized to a pH of 2.60 in two weeks at a temperature of 80oC in an anoxic batch reactor. In this scenario, mineral carbonation occurs via three steps: electrochemical production of alkalinity, CO2 absorption by the alkaline stream, then precipitation by mixing the basalt-derived divalent cation stream and the CO2-containing alkaline stream. In a second scenario, alkalinity is extracted from basalt using an alkalinity capacitor, a weak acid. This solution may contain a proton source, such as ammonium chloride, or a hydroxyl acceptor, such as boric acid, but the main design constraint is that the pKa of the capacitor be high enough to deprontonate carbonic acid. The weak acid solution is mixed with basalt in an anoxic batch reactor and the dissolving rock consumes protons from the weak acid, generating the conjugate base. The solution rich in conjugate base then absorbs CO2 and the carbonate-rich solution is mixed with a calcium-rich stream to precipitate carbonate minerals. We have extracted up to 1100 mmol alkalinity per kg rock using an alkalinity capacitor, versus no more than 50 mmol alkalinity per kg rock using DI water as a solvent. Again, carbon sequestration occurs via three steps: alkalinity extraction from basalt, CO2 absorption, and finally carbonate precipitation

  5. Performance and mechanism on a high durable silica alumina based cementitious material composed of coal refuse and coal combustion byproducts

    Science.gov (United States)

    Yao, Yuan

    Coal refuse and combustion byproducts as industrial solid waste stockpiles have become great threats to the environment. Recycling is one practical solution to utilize this huge amount of solid waste through activation as substitute for ordinary Portland cement. The central goal of this dissertation is to investigate and develop a new silica-alumina based cementitious material largely using coal refuse as a constituent that will be ideal for durable construction, mine backfill, mine sealing and waste disposal stabilization applications. This new material is an environment-friendly alternative to ordinary Portland cement. The main constituents of the new material are coal refuse and other coal wastes including coal sludge and coal combustion products (CCPs). Compared with conventional cement production, successful development of this new technology could potentially save energy and reduce greenhouse gas emissions, recycle vast amount of coal wastes, and significantly reduce production cost. A systematic research has been conducted to seek for an optimal solution for enhancing pozzolanic reactivity of the relatively inert solid waste-coal refuse in order to improve the utilization efficiency and economy benefit for construction and building materials. The results show that thermal activation temperature ranging from 20°C to 950°C significantly increases the workability and pozzolanic property of the coal refuse. The optimal activation condition is between 700°C to 800°C within a period of 30 to 60 minutes. Microanalysis illustrates that the improved pozzolanic reactivity contributes to the generated amorphous materials from parts of inert aluminosilicate minerals by destroying the crystallize structure during the thermal activation. In the coal refuse, kaolinite begins to transfer into metakaol in at 550°C, the chlorite minerals disappear at 750°C, and muscovite 2M1 gradually dehydroxylates to muscovite HT. Furthermore, this research examines the environmental

  6. Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material.

    Science.gov (United States)

    Subhedar, Preeti B; Gogate, Parag R

    2014-01-01

    Alkaline and ultrasound-assisted alkaline pretreatment under mild operating conditions have been investigated for intensification of delignification. The effect of NaOH concentration, biomass loading, temperature, ultrasonic power and duty cycle on the delignification has been studied. Most favorable conditions for only alkaline pretreatment were alkali concentration of 1.75 N, solid loading of 0.8% (w/v), temperature of 353 K and pretreatment time of 6 h and under these conditions, 40.2% delignification was obtained. In case of ultrasound-assisted alkaline approach, most favorable conditions obtained were alkali concentration of 1N, paper loading of 0.5% (w/v), sonication power of 100 W, duty cycle of 80% and pretreatment time of 70 min and the delignification obtained in ultrasound-assisted alkaline approach under these conditions was 80%. The material samples were characterized by FTIR, SEM, XRD and TGA technique. The lignin was recovered from solution by precipitation method and was characterized by FTIR, GPC and TGA technique.

  7. State of the art of TiO2 containing cementitious materials: self-cleaning properties

    Directory of Open Access Journals (Sweden)

    Maury, A.

    2010-06-01

    Full Text Available Due to the physico-chemical characteristics of cementitious materials the aesthetic quality of these materials tend to decrease easily. On the other hand, the photocatalytic activity produced by TiO2 loaded cementitious materials have recently allowed them to include self-cleaning and air-purifying properties. However, because a better understanding of these properties is still needed, only a limited number of these materials is present in the construction market. As a strategy to improve this situation, non standards tests based on photodegradation of organic dyes have become widely used to evaluate the photocatalytic action of the different materials. Today, a wide spectrum of non easily comparable results have been produced. In order to improve this situation, this paper focuses on the description of the developed laboratory tests as well as on the evaluation of the self-cleaning potential of the first buildings containing TiO2. Finally, future research challenges in this field are identified.

    Debido a las características físico-químicas de los materiales a base de cemento, la calidad estética de estos materiales tiende a disminuir con facilidad. Por otra parte, la actividad fotocatalítica producida por los materiales a base de cemento que contienen TiO2, ha permitido incorporar recientemente en estos materiales propiedades de auto-limpieza y purificación del aire. Sin embargo, actualmente sólo existe en el mercado un número limitado de dichos materiales, dado que aún se necesita conocer mejor las mencionadas propiedades. Para mejorar esta situación, se vienen desarrollando ensayos no estandarizados donde se evalúa la foto-degradación de colorantes orgánicos producida por los diferentes materiales. Por tanto, se han producido una gran cantidad de resultados no fácilmente comparables entre sí. Este artículo presenta una descripción de los diferentes ensayos de laboratorio desarrollados

  8. Study of the moisture content gradient in a cementitious material by measuring its impedance and gamma-densitometry

    Directory of Open Access Journals (Sweden)

    Guilbaud, J. P.

    2000-03-01

    Full Text Available The local water content in cementitious material depends on the equilibrium between its atmospheric environment and its bulk properties. So, the moisture profile in material can vary with time. The object of this study is to follow the change of this profile by measuring the electrical impedance of the material with pairs of small wires embedded at different depths. This method was applied to young cement paste specimens. The results obtained show that this method is quite satisfactory. The best frequency to be applied, is about 50 or 100 Hz. These results were compared with those obtained with gamma-densitometry.

    El agua contenida en los materiales en base cemento depende del equilibrio entre la atmósfera que le rodea y las propiedades de la matriz sólida. Por lo tanto el perfil de humedad en los materiales puede variar con el tiempo. La finalidad de este estudio es seguir los cambios en dicho perfil, a través de la medición de la impedancia eléctrica del material con varios pares de pequeños conductores situados a diferentes profundidadades. Este sistema se aplicó a diversas muestras de pasta de cemento Jóvenes. Los resultados obtenidos nos hacen ver que el método es satisfactorio, debiendo aplicarse a una frecuencia de 50 a 100 Hz. Dichos resultados se compararon con los obtenidos a través de la gammadensitometría.

  9. A comparison of finite element analysis to smooth particle hydrodynamics for application to projectile impact on cementitious material

    Science.gov (United States)

    Nordendale, Nikolas A.; Heard, William F.; Sherburn, Jesse A.; Basu, Prodyot K.

    2016-03-01

    The response of structural components of high-strength cementitious (HSC) materials to projectile impact is characterized by high-rate fragmentation resulting from strong compressive shock waves coupled with reflected tensile waves. Accurate modeling of armor panels of such brittle materials under high-velocity projectile impact is a complex problem requiring meticulous experimental characterization of material properties. In a recent paper by the authors, an approach to handle such problems based on a modified Advanced Fundamental Concrete (AFC) constitutive model was developed. In the HSC panels considered in this study, an analogous approach is applied, and the predictions are verified with ballistic impact test data. Traditional Lagrangian finite element analysis (FEA) of these problems tends to introduce errors and suffers from convergence issues resulting from large deformations at free surfaces. Also, FEA cannot properly account for the issues of secondary impact of spalled fragments when multiple armor panels are used. Smoothed particle hydrodynamics (SPH) is considered to be an attractive alternative to resolve these and other issues. However, SPH-based quantitative results have been found to be less accurate than the FEA-based ones when the deformations are not sufficiently large. This paper primarily focuses on a comparison of FEA and SPH models to predict high-velocity projectile impact on single and stacked HSC panels. Results are compared to recent ballistic experiments performed as a part of this research, and conclusions are drawn based on the findings.

  10. Micro-structural characterization of the hydration products of bauxite-calcination-method red mud-coal gangue based cementitious materials

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoming [State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Na [Green Construction Materials and Circulation Economy Center, Architectural Design and Research Institute of Tsinghua University Co., Ltd., Beijing 100084 (China); Yao, Yuan, E-mail: yuanyaocas@163.com [School of Engineering and Computer Science, University of the Pacific, Stockton, CA 95211 (United States); Sun, Henghu; Feng, Huan [School of Engineering and Computer Science, University of the Pacific, Stockton, CA 95211 (United States)

    2013-11-15

    Highlights: • Al{sup IV} and Al{sup VI} both exist in the hydration products. • Increase of Ca/Si ratio promotes the conversion from [AlO{sub 4}] to [AlO{sub 6}]. • Polymerization degree of [SiO{sub 4}] in the hydration products declines. -- Abstract: In this research, the micro-structural characterization of the hydration products of red mud-coal gangue based cementitious materials has been investigated through SEM-EDS, {sup 27}Al MAS NMR and {sup 29}Si MAS NMR techniques, in which the used red mud was derived from the bauxite calcination method. The results show that the red mud-coal gangue based cementitious materials mainly form fibrous C-A-S-H gel, needle-shaped/rod-like AFt in the early hydration period. With increasing of the hydration period, densification of the pastes were promoted resulting in the development of strength. EDS analysis shows that with the Ca/Si of red mud-coal gangue based cementitious materials increases, the average Ca/Si and Ca/(Si + Al) atomic ratio of C-A-S-H gel increases, while the average Al/Si atomic ratio of C-A-S-H gel decreases. MAS NMR analysis reveals that Al in the hydration products of red mud-coal gangue based cementitious materials exists in the forms of Al{sup IV} and Al{sup VI}, but mainly in the form of Al{sup VI}. Increasing the Ca/Si ratio of raw material promotes the conversion of [AlO{sub 4}] to [AlO{sub 6}] and inhibits the combination between [AlO{sub 4}] and [SiO{sub 4}] to form C-A-S-H gel. Meanwhile, the polymerization degree of [SiO{sub 4}] in the hydration products declines.

  11. Experimental study on long-term stability of bentonite. Influence of hyperalkaline pore water generated by the chemical reaction of cementitious material and saline groundwater

    International Nuclear Information System (INIS)

    The engineered barrier system (EBS) in the geological disposal of TRU waste is composed of bentonite and cementitious materials. The montmorillonite component of bentonite is, however, not chemically compatible with the high pH leachates derived from cementitious materials and may alter to a more stable secondary mineral assemblage. Previous research for TRU waste disposal has focused on the alteration behavior of bentonite in leachates from cementitious materials exposed to fresh groundwater. If the EBS is located in the coastal region, then the leachates will instead be derived from the interaction of cementitious materials and saline groundwater. This has important implications for the alteration of bentonite because the likely difference in the chemical composition of the leachate will influence the dissolution rate of montmorillonite and the composition of the secondary mineral assemblage. At present, these processes are not well understood. The focus of the present study was to examine the alteration of bentonite in high pH saline groundwaters. Two solutions were used in batch immersion experiments of bentonite. The first solution was prepared using a mixture of NaOH and NaCl (NN), and the second solution was prepared using synthetic Region 1 water (high K and Na content) and synthetic seawater (SR). Analysis showed that bentonite altered to analcime in the NN solution and to analcime and phillipsite-K in the SR solution. Moreover, the generation of calcium silicate hydrate and calcium aluminosilicate hydrate were extrapolated in the SR solution based on the concentrations of dissolved species. These alteration products were in accord with Oda et al.(2005), who summarized the possible relationships between the secondary mineral assemblage of bentonite under high pH conditions and the influence of solution composition. (author)

  12. The solubility of nickel and its migration through the cementitious backfill of a geological disposal facility for nuclear waste.

    Science.gov (United States)

    Felipe-Sotelo, M; Hinchliff, J; Field, L P; Milodowski, A E; Holt, J D; Taylor, S E; Read, D

    2016-08-15

    This work describes the solubility of nickel under the alkaline conditions anticipated in the near field of a cementitious repository for intermediate level nuclear waste. The measured solubility of Ni in 95%-saturated Ca(OH)2 solution is similar to values obtained in water equilibrated with a bespoke cementitious backfill material, on the order of 5×10(-7)M. Solubility in 0.02M NaOH is one order of magnitude lower. For all solutions, the solubility limiting phase is Ni(OH)2; powder X-ray diffraction and scanning transmission electron microscopy indicate that differences in crystallinity are the likely cause of the lower solubility observed in NaOH. The presence of cellulose degradation products causes an increase in the solubility of Ni by approximately one order of magnitude. The organic compounds significantly increase the rate of Ni transport under advective conditions and show measurable diffusive transport through intact monoliths of the cementitious backfill material.

  13. Effect of distortion degree on the hydration of red mud base cementitious material

    Institute of Scientific and Technical Information of China (English)

    SUN Wen-biao; FENG Xiang-peng; ZHAO Guang-xing

    2009-01-01

    The interaction of Si anions with AI sites during the hydration process was ob-served by NMR,IR and SEM to understand the reaction mechanism of the hydrates for-mation mixed with oil shale calcined at different temperatures.As the reaction progressed,the coordination of AI (Ⅳ,Ⅴ,and Ⅵ) changed almost completely to Ⅳ,when mixed with oil shale calcined at 700 ℃.However,when mixed with oil shale calcined at 400℃,some 6-coordination of AI still remained in the hydrates.Under the function of alkaline solutions,which were produced with the hydration of clinker,a certain amount of Si and AI atoms dissolved or hydrolyzed from aluminosilicate,formed geomonomers in solutions,and then polycondensed to form networks.

  14. Separator Materials Used in Secondary Alkaline Batteries Characterized and Evaluated

    Science.gov (United States)

    1996-01-01

    Nickel-cadmium (Ni/Cd) and nickel-hydrogen (Ni/H2) secondary alkaline batteries are vital to aerospace applications. Battery performance and cycle life are significantly affected by the type of separators used in those batteries. A team from NASA Lewis Research Center's Electrochemical Technology Branch developed standardized testing procedures to characterize and evaluate new and existing separator materials to improve performance and cycle life of secondary alkaline batteries. Battery separators must function as good electronic insulators and as efficient electrolyte reservoirs. At present, new types of organic and inorganic separator materials are being developed for Ni/Cd and Ni/H2 batteries. The separator material previously used in the NASA standard Ni/Cd was Pellon 2505, a 100-percent nylon-6 polymer that must be treated with zinc chloride (ZnCl2) to bond the fibers. Because of stricter Environmental Protection Agency regulation of ZnCl2 emissions, the battery community has been searching for new separators to replace Pellon 2505. As of today, two candidate separator materials have been identified; however, neither of the two materials have performed as well as Pellon 2505. The separator test procedures that were devised at Lewis are being implemented to expedite the search for new battery separators. The new test procedures, which are being carried out in the Separator Laboratory at Lewis, have been designed to guarantee accurate evaluations of the properties that are critical for sustaining proper battery operation. These properties include physical and chemical stability, chemical purity, gas permeability, electrolyte retention and distribution, uniformity, porosity, and area resistivity. A manual containing a detailed description of 12 separator test procedures has been drafted and will be used by the battery community to evaluate candidate separator materials for specific applications. These standardized procedures will allow for consistent, uniform

  15. Application of X-ray CT to the study of microstructure and diffusivity in cementitious materials

    OpenAIRE

    Darma, Ivan Sandi

    2014-01-01

    At the beginning of its development, the X-ray CT technique originally was developed for medical analysis. However, along with the advances in technology, the ability of X-ray CT continues to increase. Therefore, the use of X-ray CT is no longer intended for medical application but has expanded to other fields such as civil engineering especially for material science. Related to construction materials, there are many experimental methods that can be used to study the microstructure of cementi...

  16. Use of polypropylene fibers coated with nano-silica particles into a cementitious mortar

    Energy Technology Data Exchange (ETDEWEB)

    Coppola, B., E-mail: bcoppola@unisa.it; Di Maio, L.; Scarfato, P.; Incarnato, L. [Department of Industrial Engineering, University of Salerno Via Giovanni Paolo II n. 132, 84084 Fisciano (Italy)

    2015-12-17

    Fiber reinforced cementitious composite (FRCC) materials have been widely used during last decades in order to overcome some of traditional cementitious materials issues: brittle behaviour, fire resistance, cover spalling, impact strength. For composite materials, fiber/matrix bond plays an important role because by increasing fiber/matrix interactions is possible to increase the behaviour of the entire material. In this study, in order to improve fiber to matrix adhesion, two chemical treatments of polypropylene fibers were investigated: alkaline hydrolysis and nano-silica sol-gel particles deposition. Treatmtents effect on fibers morphology and mechanical properties was investigated by scanning electron microscopy (SEM) and tensile tests. SEM investigations report the presence of spherical nano-silica particles on fiber surface, in the case of sol-gel process, while alkaline hydrolysis leads to an increase of fibers roughness. Both treatments have negligible influence on fibers mechanical properties confirming the possibility of their use in a cementitious mortar. Pullout tests were carried out considering three embedded length of fibers in mortar samples (10, 20 and 30 mm, respectively) showing an increase of pullout energy for treated fibers. The influence on fiber reinforced mortar mechanical properties was investigated by three-point flexural tests on prismatic specimens considering two fibers length (15 and 30 mm) and two fibers volume fractions (0.50 and 1.00 %). A general increase of flexural strength over the reference mix was achieved and an overall better behaviour is recognizable for mortars containing treated fibers.

  17. Characterization of diffusive transport in cementitious materials: influence of microstructure in mortars

    International Nuclear Information System (INIS)

    Concrete durability is a subject of considerable interest, especially with the use of cement based materials on structures increasingly demanding on term of sustainability and resistance to aggressive ions penetration or radionuclide release. Diffusion is considered as one of the main transport phenomena that cause migration of aggressive solutes and radionuclide in a porous media according to most studies. In order to enable more effective prediction of structures service life, the understanding of the link between cement based materials microstructure and transport macro properties needed to be enhanced. In this context, the present study is undertaken to enhance our understanding of the links between microstructure and tritiated water diffusivity in saturated mortars. The effect of aggregates via the ITZ (Interfacial Transition Zone) on transport properties and materials durability is studied. (author)

  18. Cementitious Spray Dryer Ash-Tire Fiber Material for Maximizing Waste Diversion

    OpenAIRE

    Charles E. Riley; Atadero, Rebecca A.; van de Lindt, John W.; Heyliger, Paul R.

    2011-01-01

    Spray dryer absorber (SDA) material, also known as spray dryer ash, is a byproduct of coal combustion and flue gas scrubbing processes that has self-cementing properties similar to those of class C fly ash. SDA material does not usually meet the existing standards for use as a pozzolan in Portland cement concrete due to its characteristically high sulfur content, and thus unlike fly ash, it is rarely put to beneficial use. This paper presents the results of a study with the objective of devel...

  19. 碱-激发再生胶凝材料的研究%Study on of Alkali-activated Recycled Cementitious Material

    Institute of Scientific and Technical Information of China (English)

    张琦

    2015-01-01

    The waste cement paste in concrete crushing,sieving separated,then cement paste powder obtained after ball milling,sieving,and then the cement paste powder after 800 ℃ calcined to ob-tain Recycled Cementitious Material.According to the properties of Recycled Cementitious Mate-rial choice Na2 SO4、CaSO4、Ca (HCO3 )2 and Na2 SiO4 as the object of study of activator,the stand-ard of cement mortar strength test.The test results show that,the dosage of 2•5% Na2 SO4 has good effect on the of the excitation of Recycled Cementitious Material.%将废弃混凝土中的水泥浆经过破碎、筛分分离出来,再经过球磨、筛分得到水泥浆体粉末,再将水泥浆体粉末经过800℃煅烧得到再生胶凝材料。根据再生胶凝材料的性质选择了Na2 SO4、CaSO4、Ca(HCO3)2和Na2 SiO4为激发剂的研究对象,进行标准水泥胶砂强度试验。试验结果表明,掺量为2•5%的Na2 SO4对再生胶凝材料具有良好的激发效果。

  20. Cementitious Spray Dryer Ash-Tire Fiber Material for Maximizing Waste Diversion

    Directory of Open Access Journals (Sweden)

    Charles E. Riley

    2011-01-01

    Full Text Available Spray dryer absorber (SDA material, also known as spray dryer ash, is a byproduct of coal combustion and flue gas scrubbing processes that has self-cementing properties similar to those of class C fly ash. SDA material does not usually meet the existing standards for use as a pozzolan in Portland cement concrete due to its characteristically high sulfur content, and thus unlike fly ash, it is rarely put to beneficial use. This paper presents the results of a study with the objective of developing beneficial uses for SDA material in building materials when combined with tire fiber reinforcement originating from a recycling process. Specifically, spray dryer ash was investigated for use as the primary or even the sole binding component in a mortar or concrete. This study differs from previous research in that it focuses on very high contents of spray dryer ash (80 to 100 percent in a hardened product. The overarching objective is to divert products that are normally sent to landfills and provide benefit to society in beneficial applications.

  1. Micro-level Porosimetry of Virtual Cementitious Materials: Structural Impact on Mechanical and Durability Evolution

    NARCIS (Netherlands)

    Le, L.B.N.

    2015-01-01

    Understanding the microstructure of cement paste is the basis of a study towards properties and behaviour of cementi¬tious materials. It is attractive exploit¬ing modern computer facilities for this purpose, favourably competing with time-consuming and laborious experimental approaches. This study a

  2. Experimental Study and Numerical Simulation of the Development of the Microstructure and Permeability of Cementitious Materials

    NARCIS (Netherlands)

    YE, Guang

    2003-01-01

    The aim of this thesis was to investigate and to simulate the development of the microstructure, porosity and permeability in hardening cement-based materials. Based on experimental information and the cement hydration model HYMOSTRUC, the microstructural details including porosity, connectivity of

  3. Test system for defect detection in cementitious material with artificial neural network

    Directory of Open Access Journals (Sweden)

    Saowanee Saechai

    2013-04-01

    Full Text Available This paper introduces a newly developed test system for defect detection, classification of number of defects andidentification of defect materials in cement-based products. With the system, the pattern of ultrasonic waves for each case ofspecimen can be obtained from direct and indirect measurements. The machine learning algorithm called artificial neuralnetwork classifier with back-propagation model is employed for classification and verification of the wave patterns obtainedfrom different specimens. By applying the system, the presence or absence of a defect in mortar can be identified. Moreover,the system is applied to identify the number and materials of defects inside the mortar. The methodology is explained and theclassification results are discussed. The effectiveness of the developed test system is evaluated. Comparison of the classification results between different input features with different number of training sets is demonstrated. The results show that thistechnique based on pattern recognition has a potential for practical inspection of concrete structures.

  4. Influence of the binder nature and the temperature on the chloride transport through cementitious materials

    International Nuclear Information System (INIS)

    The objective of this work is to document the effect of the temperature on the chloride diffusion through cement-based materials. The chloride diffusion coefficient, the penetration profiles and the chloride interactions with the solid phase were highlighted. The materials were CEM I and CEM V/A mortars and pastes. They were cured in wet room (21 ± 2 C, 90% relative humidity) for 1 month in the case of CEM I and 3 months in the case of CEM V before the experiments started. The temperature levels were 5, 21, 35 and 80 C.In addition, microstructure analyses were carried on using X-rays diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques. The experimental results were then used to continue to develop the numerical code, MsDiff, developed in our research group. A good agreement between the numerical concentration profiles and the experimental ones was found. (author)

  5. Performance of Waste Glass Powder (WGP) Supplementary Cementitious Material (SCM) - Workability and Compressive Strength

    OpenAIRE

    Borosnyói, A; Kara, P; Mlinárik, L; Kaše, K

    2013-01-01

    Ecological and environmental benefits support the use of waste glass powder (WGP) as supplementary cementing material by the decrease of the amount of landfills, by the reduction of non-renewable natural resource consumption, by the reduction of energy demand for cement production (less cement is needed), and the reduction of greenhouse gas emission. Laboratory tests were carried out on cement paste specimens, in which waste glass powder (WGP) addition was used as a supplementary cem...

  6. Geochemical performance evaluation and characterization of a potential cementitious repository sealing material for application in the Topopah Spring tuff NNWSI investigations

    International Nuclear Information System (INIS)

    Preliminary geochemical evaluations of some portland cement based materials have been made in Nevada Nuclear Waste Storage Investigations (NNWSI), for possible nuclear waste repository sealing applications in welded tuff focused in the Yucca Mountain area. Portland cement based sealing materials have been evaluated in the NNWSI for possible sealing applications in a nuclear waste repository in the Topopah Spring tuff member. Cementitious sealing materials developed for long-term stability should be as nearly as possible in thermodynamic equilibrium with the host rock, or any disequilibrium should not have negative impact upon the integrity of the host rock. A primary step in achieving this equilibrium condition is to minimize the chemical potential between the sealant and the host rock. Two different approaches were evaluated to achieve this compatibility. The one approach utilized indigenous materials for the formulation of the concrete and the other utilized reactive admixtures to adjust the bulk chemical composition of the concrete formulation to approximate the local rock bulk chemistry. Testing of both formulations at conditions that represented the maximum credible temperature and pressure conditions of a repository were completed and show that the use of an indigenous tuff in the formulation without adjusting the matrix chemistry caused alterations which might compromise the performance of the concrete. In contrast, the chemically adjusted cementitious formulation exhibited minimal alteration in the J-13 groundwater of the designed test. 3 refs., 2 figs., 4 tabs

  7. Synthesis of a Cementitious Material Nanocement Using Bottom-Up Nanotechnology Concept: An Alternative Approach to Avoid CO2 Emission during Production of Cement

    Directory of Open Access Journals (Sweden)

    Byung Wan Jo

    2014-01-01

    Full Text Available The world’s increasing need is to develop smart and sustainable construction material, which will generate minimal climate changing gas during their production. The bottom-up nanotechnology has established itself as a promising alternative technique for the production of the cementitious material. The present investigation deals with the chemical synthesis of cementitious material using nanosilica, sodium aluminate, sodium hydroxide, and calcium nitrate as reacting phases. The characteristic properties of the chemically synthesized nanocement were verified by the chemical composition analysis, setting time measurement, particle size distribution, fineness analysis, and SEM and XRD analyses. Finally, the performance of the nanocement was ensured by the fabrication and characterization of the nanocement based mortar. Comparing the results with the commercially available cement product, it is demonstrated that the chemically synthesized nanocement not only shows better physical and mechanical performance, but also brings several encouraging impacts to the society, including the reduction of CO2 emission and the development of sustainable construction material. A plausible reaction scheme has been proposed to explain the synthesis and the overall performances of the nanocement.

  8. Impact of carbonation on the durability of cementitious materials: water transport properties characterization

    Science.gov (United States)

    Auroy, M.; Poyet, S.; Le Bescop, P.; Torrenti, J.-M.

    2013-07-01

    Within the context of long-lived intermediate level radioactive waste geological disposal, reinforced concrete would be used. In service life conditions, the concrete structures would be subjected to drying and carbonation. Carbonation relates to the reaction between carbon dioxide (CO2) and the main hydrates of the cement paste (portlandite and C-S-H). Beyond the fall of the pore solution pH, indicative of steel depassivation, carbonation induces mineralogical and microstructural changes (due to portlandite and C-S-H dissolution and calcium carbonate precipitation). This results in the modification of the transport properties, which can impact the structure durability. Because concrete durability depends on water transport, this study focuses on the influence of carbonation on water transport properties. In fact, the transport properties of sound materials are known but they still remain to be assessed for carbonated ones. An experimental program has been designed to investigate the transport properties in carbonated materials. Four hardened cement pastes, differing in mineralogy, are carbonated in an accelerated carbonation device (in controlled environmental conditions) at CO2 partial pressure of about 3%. Once fully carbonated, all the data needed to describe water transport, using a simplified approach, will be evaluated.

  9. Impact of carbonation on the durability of cementitious materials: Water transport properties characterization

    International Nuclear Information System (INIS)

    Within the context of long-lived intermediate level radioactive waste geological disposal, reinforced concrete would be used. In service life conditions, the concrete structures would be subjected to drying and carbonation. Carbonation relates to the reaction between carbon dioxide (CO2) and the main hydrates of the cement paste (portlandite and C-S-H). Beyond the fall of the pore solution pH, indicative of steel depassivation, carbonation induces mineralogical and microstructural changes (due to portlandite and C-S-H dissolution and calcium carbonate precipitation). This results in the modification of the transport properties, which can impact the structure durability. Because concrete durability depends on water transport, this study focuses on the influence of carbonation on water transport properties. In fact, the transport properties of sound materials are known but they still remain to be assessed for carbonated ones. An experimental program has been designed to investigate the transport properties in carbonated materials. Four hardened cement pastes, differing in mineralogy, are carbonated in an accelerated carbonation device (in controlled environmental conditions) at CO2 partial pressure of about 3%. Once fully carbonated, all the data needed to describe water transport, using a simplified approach, will be evaluated. (authors)

  10. Impact of carbonation on the durability of cementitious materials: water transport properties characterization

    Directory of Open Access Journals (Sweden)

    Le Bescop P.

    2013-07-01

    Full Text Available Within the context of long-lived intermediate level radioactive waste geological disposal, reinforced concrete would be used. In service life conditions, the concrete structures would be subjected to drying and carbonation. Carbonation relates to the reaction between carbon dioxide (CO2 and the main hydrates of the cement paste (portlandite and C-S-H. Beyond the fall of the pore solution pH, indicative of steel depassivation, carbonation induces mineralogical and microstructural changes (due to portlandite and C-S-H dissolution and calcium carbonate precipitation. This results in the modification of the transport properties, which can impact the structure durability. Because concrete durability depends on water transport, this study focuses on the influence of carbonation on water transport properties. In fact, the transport properties of sound materials are known but they still remain to be assessed for carbonated ones. An experimental program has been designed to investigate the transport properties in carbonated materials. Four hardened cement pastes, differing in mineralogy, are carbonated in an accelerated carbonation device (in controlled environmental conditions at CO2 partial pressure of about 3%. Once fully carbonated, all the data needed to describe water transport, using a simplified approach, will be evaluated.

  11. Electrical resistance tomography to monitor unsaturated moisture flow in cementitious materials

    Energy Technology Data Exchange (ETDEWEB)

    Hallaji, Milad [Department of Civil Construction and Environmental Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Seppänen, Aku [Department of Applied Physics, University of Eastern Finland, Kuopio (Finland); Pour-Ghaz, Mohammad, E-mail: mpourghaz@ncsu.edu [Department of Civil Construction and Environmental Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2015-03-15

    Traditionally the electrically-based assessment of the moisture flow in cement-based materials relies on two- or four-point measurements. In this paper, imaging of moisture distribution with electrical resistance tomography (ERT) is considered. Especially, the aim is to study whether ERT could give information on unsaturated moisture flows in cases where the flow is non-uniform. In the experiment, the specimens are monitored with ERT during the water ingress. The ERT reconstructions are compared with neutron radiographs, which provide high resolution information on the 2D distribution of the moisture. The results indicate that ERT is able to detect the moisture movement and to show approximately the shape and position of the water front even if the flow is nonuniform.

  12. Electrical resistance tomography to monitor unsaturated moisture flow in cementitious materials

    International Nuclear Information System (INIS)

    Traditionally the electrically-based assessment of the moisture flow in cement-based materials relies on two- or four-point measurements. In this paper, imaging of moisture distribution with electrical resistance tomography (ERT) is considered. Especially, the aim is to study whether ERT could give information on unsaturated moisture flows in cases where the flow is non-uniform. In the experiment, the specimens are monitored with ERT during the water ingress. The ERT reconstructions are compared with neutron radiographs, which provide high resolution information on the 2D distribution of the moisture. The results indicate that ERT is able to detect the moisture movement and to show approximately the shape and position of the water front even if the flow is nonuniform

  13. Neutron Radiography Based Visualization and Profiling of Water Uptake in (Uncracked and Autonomously Healed Cementitious Materials

    Directory of Open Access Journals (Sweden)

    Philip Van den Heede

    2016-04-01

    Full Text Available Given their low tensile strength, cement-based materials are very susceptible to cracking. These cracks serve as preferential pathways for corrosion inducing substances. For large concrete infrastructure works, currently available time-consuming manual repair techniques are not always an option. Often, one simply cannot reach the damaged areas and when making those areas accessible anyway (e.g., by redirecting traffic, the economic impacts involved would be enormous. Under those circumstances, it might be useful to have concrete with an embedded autonomous healing mechanism. In this paper, the effectiveness of incorporating encapsulated high and low viscosity polyurethane-based healing agents to ensure (multiple crack healing has been investigated by means of capillary absorption tests on mortar while monitoring the time-dependent water ingress with neutron radiography. Overall visual interpretation and water front/sample cross-section area ratios as well as water profiles representing the area around the crack and their integrals do not show a preference for the high or low viscosity healing agent. Another observation is that in presence of two cracks, only one is properly healed, especially when using the latter healing agent. Exposure to water immediately after release of the healing agent stimulates the foaming reaction of the polyurethane and ensures a better crack closure.

  14. Preparation and Properties of Melamine Urea-Formaldehyde Microcapsules for Self-Healing of Cementitious Materials

    Directory of Open Access Journals (Sweden)

    Wenting Li

    2016-03-01

    Full Text Available Self-healing microcapsules were synthesized by in situ polymerization with a melamine urea-formaldehyde resin shell and an epoxy resin adhesive. The effects of the key factors, i.e., core–wall ratio, reaction temperature, pH and stirring rate, were investigated by characterizing microcapsule morphology, shell thickness, particle size distribution, mechanical properties and chemical nature. Microcapsule healing mechanisms in cement paste were evaluated based on recovery strength and healing microstructure. The results showed that the encapsulation ability, the elasticity modulus and hardness of the capsule increased with an increase of the proportion of shell material. Increased polymerization temperatures were beneficial to the higher degree of shell condensation polymerization, higher resin particles deposition on microcapsule surfaces and enhanced mechanical properties. For relatively low pH values, the less porous three-dimensional structure led to the increased elastic modulus of shell and the more stable chemical structure. Optimized microcapsules were produced at a temperature of 60 °C, a core-wall ratio of 1:1, at pH 2~3 and at a stirring rate of 300~400 r/min. The best strength restoration was observed in the cement paste pre-damaged by 30% fmax and incorporating 4 wt % of capsules.

  15. Influence of supplementary cementitious materials on water transport kinetics and mechanical properties of hydrated lime and cement mortars

    Directory of Open Access Journals (Sweden)

    Ince, C.

    2015-06-01

    Full Text Available The purpose of this paper is an investigation of the possible role of supplementary cementitious materials (SCMs on water transport kinetics and mechanical properties of hydrated lime (CL90 and Portland cement (PC mortars. The properties of hydrated lime are significantly different from those of cement and therefore modifying fresh and hardened properties of these mortars are vital for mortar/substrate optimisation in masonry construction. The parameters investigated in this paper often are the main barriers to the use of hydrated lime in construction practice. The results show that transfer sorptivity and time to dewater freshly-mixed hydrated lime mortars can be modified when binder is partially replaced with SCMs. Compressive strength of CL90 mortars is increased systematically with the increased replacement levels of SCMs and the results are supported with the microstructural images. The ability to modify the water transport kinetics and mechanical properties allows compatibility between the mortar and the substrate unit in masonry construction.El objetivo de este artículo es investigar el papel de los materiales cementantes suplementarios (SCMs en la cinética de transporte del agua y en las propiedades mecánicas de los morteros de cal hidratada (CL90 y cemento Portland. Las propiedades de la cal hidratada son significativamente diferentes a las del cemento y por lo tanto el control de las propiedades de los morteros frescos y endurecidos es fundamental en la optimización mortero/substrato en albañilería. Los parámetros estudiados en este trabajo son a menudo las principales barreras para el uso de la cal hidratada en la práctica de la construcción. Los resultados indican que la absortividad y el tiempo necesario para deshidratar morteros de cal hidratada recién mezclados pueden ser controlados cuando el conglomerante es parcialmente remplazado por SCMs. La resistencia a compresión de los morteros CL90 aumenta sistem

  16. Experimental studies on the inventory of cement-derived colloids in the pore water of a cementitious backfill material

    Energy Technology Data Exchange (ETDEWEB)

    Wieland, E

    2001-06-01

    The potential role of near-field colloids for the colloid-facilitated migration of radionuclides has stimulated investigations concerning the generation and presence of colloids in the near-field of a repository for low- and intermediate level waste (L/ILW). The highly gas permeable mortar (Nagra designation: mortar M1) is currently favoured as backfill material for the engineered barrier of the planned Swiss L/ILW repository. The cementitious backfill is considered to be a chemical environment with some potential for colloid generation. In a series of batch-style laboratory experiments the physico-chemical processes controlling the inventory of colloids in cement pore water of the backfill were assessed for chemical conditions prevailing in the initial stage of the cement degradation. In these experiments, backfill mortar M1 or quartz, respectively, which may be used as aggregate material for the backfill, were immersed in artificial cement pore water (a NaOH/KOH rich cement fluid). Colloid concentrations in the cement pore water were recorded as a function of time for different experimental settings. The results indicate that a colloid-colloid interaction process (coagulation) controlled the colloid inventory. The mass concentration of dispersed colloids was found to be typically lower than 0.02 ppm in undisturbed batch systems. An upper-bound value was estimated to be 0.1 ppm taking into account uncertainties on the measurements. To assess the potential for colloid generation in a dynamic system, colloid concentrations were determined in the pore water of a column filled with backfill mortar. The chemical conditions established in the mortar column corresponded to conditions observed in the second stage of the cement degradation (a Ca(OH){sub 2{sup -}} controlled cement system). In this dynamic system, the upper-bound value for the colloid mass concentration was estimated to be 0.1 ppm. Implications for radionuclide mobility were deduced taking into account the

  17. Experimental studies on the inventory of cement-derived colloids in the pore water of a cementitious backfill material

    International Nuclear Information System (INIS)

    The potential role of near-field colloids for the colloid-facilitated migration of radionuclides has stimulated investigations concerning the generation and presence of colloids in the near-field of a repository for low- and intermediate level waste (L/ILW). The highly gas permeable mortar (Nagra designation: mortar M1) is currently favoured as backfill material for the engineered barrier of the planned Swiss L/ILW repository. The cementitious backfill is considered to be a chemical environment with some potential for colloid generation. In a series of batch-style laboratory experiments the physico-chemical processes controlling the inventory of colloids in cement pore water of the backfill were assessed for chemical conditions prevailing in the initial stage of the cement degradation. In these experiments, backfill mortar M1 or quartz, respectively, which may be used as aggregate material for the backfill, were immersed in artificial cement pore water (a NaOH/KOH rich cement fluid). Colloid concentrations in the cement pore water were recorded as a function of time for different experimental settings. The results indicate that a colloid-colloid interaction process (coagulation) controlled the colloid inventory. The mass concentration of dispersed colloids was found to be typically lower than 0.02 ppm in undisturbed batch systems. An upper-bound value was estimated to be 0.1 ppm taking into account uncertainties on the measurements. To assess the potential for colloid generation in a dynamic system, colloid concentrations were determined in the pore water of a column filled with backfill mortar. The chemical conditions established in the mortar column corresponded to conditions observed in the second stage of the cement degradation (a Ca(OH)2- controlled cement system). In this dynamic system, the upper-bound value for the colloid mass concentration was estimated to be 0.1 ppm. Implications for radionuclide mobility were deduced taking into account the experimental

  18. Principles and Materials Aspects of Direct Alkaline Alcohol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Eileen Hao Yu

    2010-08-01

    Full Text Available Direct alkaline alcohol fuel cells (DAAFCs have attracted increasing interest over the past decade because of their favourable reaction kinetics in alkaline media, higher energy densities achievable and the easy handling of the liquid fuels. In this review, principles and mechanisms of DAAFCs in alcohol oxidation and oxygen reduction are discussed. Despite the high energy densities available during the oxidation of polycarbon alcohols they are difficult to oxidise. Apart from methanol, the complete oxidation of other polycarbon alcohols to CO2 has not been achieved with current catalysts. Different types of catalysts, from conventional precious metal catalyst of Pt and Pt alloys to other lower cost Pd, Au and Ag metal catalysts are compared. Non precious metal catalysts, and lanthanum, strontium oxides and perovskite-type oxides are also discussed. Membranes like the ones used as polymer electrolytes and developed for DAAFCs are reviewed. Unlike conventional proton exchange membrane fuel cells, anion exchange membranes are used in present DAAFCs. Fuel cell performance with DAAFCs using different alcohols, catalysts and membranes, as well as operating parameters are summarised. In order to improve the power output of the DAAFCs, further developments in catalysts, membrane materials and fuel cell systems are essential.

  19. Radon exhalation of cementitious materials made with coal fly ash: Part 1 - scientific background and testing of the cement and fly ash emanation

    International Nuclear Information System (INIS)

    Increased interest in measuring radionuclides and radon concentrations in fly ash, cement and other components of building products is due to the concern of health hazards of naturally occurring radioactive materials (NORM). The current work focuses on studying the influence of fly ash (FA) on radon-exhalation rate (radon flux) from cementitious materials. The tests were carried out on cement paste specimens with different FA contents. The first part of the paper presents the scientific background and describes the experiments, which we designed for testing the radon emanation of the raw materials used in the preparation of the cement-FA pastes. It is found that despite the higher 226Ra content in FA (more than 3 times, compared with Portland cement) the radon emanation is significantly lower in FA (7.65% for cement vs. 0.52% only for FA)

  20. Hydration Characteristic of Cementitious Material of Steel Slag Concrete Used for Artificial Reefs%人工鱼礁用钢渣混凝土胶凝材料的水化特性

    Institute of Scientific and Technical Information of China (English)

    王中杰; 倪文; 高术杰; 祝丽萍; 乔春雨

    2012-01-01

    以鞍钢-0.088 mm热闷法钢渣和鞍钢高炉矿渣为胶凝材料的主要组分,以鞍钢0.088~19 mm热闷法钢渣为骨料,制备出了具有较高强度的人工鱼礁用钢渣混凝土.通过X射线衍射分析、场发射扫描电镜分析、差热分析和红外吸收光谱分析对胶凝材料的水化特性进行研究,结果表明:该胶凝材料在水化初期生成大量低碱度水化硅酸钙凝胶和少量钙矾石,水化硅酸钙凝胶是混凝土早期强度的主要来源;而随着水化进程的延续,水化硅酸钙凝胶的继续发展和不断增多、长大的钙矾石对体系空隙的充填则共同使混凝土的后期强度得到进一步的提高.%An Artificial reef characterized by its high strength was prepared Its cementitious material is composed of - 0. 088 mm steel slag stabilized by a hot-simmering method and blast furnace slag from Ansteel company; its fine and coarse aggregates are also steel slag stabilized by a hot-simmering method with sizes from 0.088 ram to 19 mm. By analyses of X-ray diffraction, field emission scanning electron microscope, differential thermal and infrared absorption spectrum for the hydration characteristic of the cementitious material, it can be found that a large amount of calcium silicate hydrate which mainly contributes to the early strength characterized by its low-alkalinity and a small amount of ettringte are both formed at early hydration stage. With the development of the hydration process, the calcium silicate hydrate and ettringite which is filling in the gaps of the hydration system are increasing continually. Therefore, the long-term strength can be improved by calcium silicate hydrate and ettringite.

  1. Microstructure characterization of multi-phase composites and utilization of phase change materials and recycled rubbers in cementitious materials

    Science.gov (United States)

    Meshgin, Pania

    2011-12-01

    This research focuses on two important subjects: (1) Characterization of heterogeneous microstructure of multi-phase composites and the effect of microstructural features on effective properties of the material. (2) Utilizations of phase change materials and recycled rubber particles from waste tires to improve thermal properties of insulation materials used in building envelopes. Spatial pattern of multi-phase and multidimensional internal structures of most composite materials are highly random. Quantitative description of the spatial distribution should be developed based on proper statistical models, which characterize the morphological features. For a composite material with multi-phases, the volume fraction of the phases as well as the morphological parameters of the phases have very strong influences on the effective property of the composite. These morphological parameters depend on the microstructure of each phase. This study intends to include the effect of higher order morphological details of the microstructure in the composite models. The higher order statistics, called two-point correlation functions characterize various behaviors of the composite at any two points in a stochastic field. Specifically, correlation functions of mosaic patterns are used in the study for characterizing transport properties of composite materials. One of the most effective methods to improve energy efficiency of buildings is to enhance thermal properties of insulation materials. The idea of using phase change materials and recycled rubber particles such as scrap tires in insulation materials for building envelopes has been studied.

  2. Adhesives in Building--Lamination of Structural Timber Beams, Bonding of Cementitious Materials, Bonding of Gypsum Drywall Construction. Proceedings of a Conference of the Building Research Institute, Division of Engineering and Industrial Research (Spring 1960).

    Science.gov (United States)

    National Academy of Sciences - National Research Council, Washington, DC.

    The role of adhesives in building design is discussed. Three major areas are as follows--(1) lamination of structural timber beams, (2) bonding of cementitious materials, and (3) bonding of gypsum drywall construction. Topical coverage includes--(1) structural lamination today, (2) adhesives in use today, (3) new adhesives needed, (4) production…

  3. Block copolymers for alkaline fuel cell membrane materials

    Science.gov (United States)

    Li, Yifan

    Alkaline fuel cells (AFCs) using anion exchange membranes (AEMs) as electrolyte have recently received considerable attention. AFCs offer some advantages over proton exchange membrane fuel cells, including the potential of non-noble metal (e.g. nickel, silver) catalyst on the cathode, which can dramatically lower the fuel cell cost. The main drawback of traditional AFCs is the use of liquid electrolyte (e.g. aqueous potassium hydroxide), which can result in the formation of carbonate precipitates by reaction with carbon dioxide. AEMs with tethered cations can overcome the precipitates formed in traditional AFCs. Our current research focuses on developing different polymer systems (blend, block, grafted, and crosslinked polymers) in order to understand alkaline fuel cell membrane in many aspects and design optimized anion exchange membranes with better alkaline stability, mechanical integrity and ionic conductivity. A number of distinct materials have been produced and characterized. A polymer blend system comprised of poly(vinylbenzyl chloride)-b-polystyrene (PVBC-b-PS) diblock copolymer, prepared by nitroxide mediated polymerization (NMP), with poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) or brominated PPO was studied for conversion into a blend membrane for AEM. The formation of a miscible blend matrix improved mechanical properties while maintaining high ionic conductivity through formation of phase separated ionic domains. Using anionic polymerization, a polyethylene based block copolymer was designed where the polyethylene-based block copolymer formed bicontinuous morphological structures to enhance the hydroxide conductivity (up to 94 mS/cm at 80 °C) while excellent mechanical properties (strain up to 205%) of the polyethylene block copolymer membrane was observed. A polymer system was designed and characterized with monomethoxy polyethylene glycol (mPEG) as a hydrophilic polymer grafted through substitution of pendent benzyl chloride groups of a PVBC

  4. Review of durability of cementitious engineered barriers in repository environments

    International Nuclear Information System (INIS)

    This report is concerned with the durability of cementitious engineered barriers in a repository for low and intermediate level nuclear waste. Following the introduction the second section of the review identifies the environmental conditions associated with a deep, hard rock repository for ILW and LLW that are relevant to the durability of cementitious barriers. Section three examines the microstructure and macrostructure of cementitious materials and considers the physical and chemical processes of radionuclide immobilization. Potential repository applications and compositions of cementitious materials are reviewed in Section four. The main analysis of durability is dealt with in Section five. The different types of cementitious barrier are considered separately and their most probable modes of degradation are analysed. Concluding remarks that highlight critical technical matters are given in Section six. (author)

  5. Adesão em materiais cimentícios: "In-built nanotechnology" Adhesion in cementitious materials: In-built nanotechnology

    Directory of Open Access Journals (Sweden)

    H. L. Rossetto

    2009-06-01

    Full Text Available A Engenharia de Materiais propiciou os avanços mais notáveis em termos do desempenho mecânico dos materiais cimentícios nas últimas décadas, por meio das técnicas de conformação e do projeto da microestrutura. Com isso foi demonstrada ser equivocada a idéia de que baixas resistências mecânicas seriam inerentes aos materiais cimentícios. No entanto, pouco ainda se sabe a respeito de um parâmetro físico-químico que poderá nos conduzir a novos avanços: a adesão entre as fases hidratadas. Logo, o objetivo do presente trabalho é investigar a adesão com o intuito de ampliar o entendimento sobre seu papel na resistência mecânica dos materiais cimentícios. Os resultados indicaram que a resistência mecânica desses materiais é governada por moléculas de água confinadas em películas nanométricas entre as superfícies das fases cimentícias hidratadas. Em outras palavras, essa pode ser uma contribuição para tornar viável a nanotecnologia desses materiais por meio de um tema até então pouco explorado: a adesão por água confinada.The Materials Engineering afforded the greatest known advances on the mechanical performance of cementitious materials in the latest decades, by casting techniques and microstructural design. Therewith, it was demonstrated to be inadequate the idea that low mechanical strengths should be inherent to cement-based materials. Nevertheless, another promising parameter still remains in the early stages of understanding: the adhesion. Thus, this paper aims to investigate adhesion in order to get an in-depth understanding about its role on the mechanical strength of cementitious materials. According to the experimental evidences, the mechanical strength of such materials is ruled by water molecules which are confined in nanolayers by the hydrated surfaces. These results provided helpful insights on in-built nanotechnology able to render high performance materials through a so far little explored subject

  6. Research and Development of a New Silica-Alumina Based Cementitious Material Largely Using Coal Refuse for Mine Backfill, Mine Sealing and Waste Disposal Stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Henghu Sun; Yuan Yao

    2012-06-29

    Coal refuse and coal combustion byproducts as industrial solid waste stockpiles have become great threats to the environment. To activate coal refuse is one practical solution to recycle this huge amount of solid waste as substitute for Ordinary Portland Cement (OPC). The central goal of this project is to investigate and develop a new silica-alumina based cementitious material largely using coal refuse as a constituent that will be ideal for durable construction, mine backfill, mine sealing and waste disposal stabilization applications. This new material is an environment-friendly alternative to Ordinary Portland Cement. The main constituents of the new material are coal refuse and other coal wastes including coal sludge and coal combustion products (CCPs). Compared with conventional cement production, successful development of this new technology could potentially save energy and reduce greenhouse gas emissions, recycle vast amount of coal wastes, and significantly reduce production cost. A systematic research has been conducted to seek for an optimal solution for enhancing pozzolanic reactivity of the relatively inert solid waste-coal refuse in order to improve the utilization efficiency and economic benefit as a construction and building material.

  7. Development of rock bolt grout and shotcrete for rock support and corrosion of steel in low-pH cementitious materials

    International Nuclear Information System (INIS)

    It is foreseen that cementitious products will be utilized in the construction of the final repository. The use of conventional cementitious material creates pulses in the magnitude of pH 12.13 in the leachates and release alkalis. Such a high pH is detrimental mainly to impairment of bentonite functioning, but also to possibly enhanced dissolution of spent fuel and alteration of fracture filling materials. It also complicates the safety analysis of the repository, as the effect of a high pH-plume should be considered in the evaluation. As no reliable pH-plume models exist, the use of products giving a pH below 11 in the leachates facilitates the safety analysis, although limiting the amount of low-pH cement is recommended. In earlier studies it was found that shotcreting, standard casting and rock bolting with low-pH cement (pH . 11 in the leachate) should be possible without any major development work. This report summarizes the results of development work done during 2008 and 2009 in the fields of low-pH rock bolt grout, low-pH shotcrete and steel corrosion in low-pH concrete. Development of low-pH rock bolt grout mixes and laboratory testing of the selected grout was followed by installation of twenty rock bolts for rock support at Aspo HRL using the chosen low-pH grout. The operation was successful and the bolts and grout are subject to follow up the next ten years. Low-pH shotcrete for rock support was initially developed within the ESDRED project, which was an Integrated Project within the European Commission sixth framework for research and technological development. ESDRED is an abbreviation for Engineering Studies and Demonstrations of Repository Designs. ESDRED was executed from 1st February 2004 to 31st January 2009. The development of the mix design described in this report was based on the results from ESDRED. After laboratory testing of the chosen mix, it was field tested in niche NASA 0408A at Aspo HRL. Further, some areas in the TASS-tunnel were

  8. Development of rock bolt grout and shotcrete for rock support and corrosion of steel in low-pH cementitious materials

    Energy Technology Data Exchange (ETDEWEB)

    Boden, Anders (Vattenfall Power Consultant AB, Vaellingby (Sweden)); Pettersson, Stig (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2011-04-15

    It is foreseen that cementitious products will be utilized in the construction of the final repository. The use of conventional cementitious material creates pulses in the magnitude of pH 12.13 in the leachates and release alkalis. Such a high pH is detrimental mainly to impairment of bentonite functioning, but also to possibly enhanced dissolution of spent fuel and alteration of fracture filling materials. It also complicates the safety analysis of the repository, as the effect of a high pH-plume should be considered in the evaluation. As no reliable pH-plume models exist, the use of products giving a pH below 11 in the leachates facilitates the safety analysis, although limiting the amount of low-pH cement is recommended. In earlier studies it was found that shotcreting, standard casting and rock bolting with low-pH cement (pH . 11 in the leachate) should be possible without any major development work. This report summarizes the results of development work done during 2008 and 2009 in the fields of low-pH rock bolt grout, low-pH shotcrete and steel corrosion in low-pH concrete. Development of low-pH rock bolt grout mixes and laboratory testing of the selected grout was followed by installation of twenty rock bolts for rock support at Aspo HRL using the chosen low-pH grout. The operation was successful and the bolts and grout are subject to follow up the next ten years. Low-pH shotcrete for rock support was initially developed within the ESDRED project, which was an Integrated Project within the European Commission sixth framework for research and technological development. ESDRED is an abbreviation for Engineering Studies and Demonstrations of Repository Designs. ESDRED was executed from 1st February 2004 to 31st January 2009. The development of the mix design described in this report was based on the results from ESDRED. After laboratory testing of the chosen mix, it was field tested in niche NASA 0408A at Aspo HRL. Further, some areas in the TASS-tunnel were

  9. Temporary Cementitious Sealers in Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sugama T.; Pyatina, T.; Butcher, T.; Brothers, L.; Bour, D.

    2011-12-31

    Unlike conventional hydrothennal geothermal technology that utilizes hot water as the energy conversion resources tapped from natural hydrothermal reservoir located at {approx}10 km below the ground surface, Enhanced Geothermal System (EGS) must create a hydrothermal reservoir in a hot rock stratum at temperatures {ge}200 C, present in {approx}5 km deep underground by employing hydraulic fracturing. This is the process of initiating and propagating a fracture as well as opening pre-existing fractures in a rock layer. In this operation, a considerable attention is paid to the pre-existing fractures and pressure-generated ones made in the underground foundation during drilling and logging. These fractures in terms of lost circulation zones often cause the wastage of a substantial amount of the circulated water-based drilling fluid or mud. Thus, such lost circulation zones must be plugged by sealing materials, so that the drilling operation can resume and continue. Next, one important consideration is the fact that the sealers must be disintegrated by highly pressured water to reopen the plugged fractures and to promote the propagation of reopened fractures. In response to this need, the objective of this phase I project in FYs 2009-2011 was to develop temporary cementitious fracture sealing materials possessing self-degradable properties generating when {ge} 200 C-heated scalers came in contact with water. At BNL, we formulated two types of non-Portland cementitious systems using inexpensive industrial by-products with pozzolanic properties, such as granulated blast-furnace slag from the steel industries, and fly ashes from coal-combustion power plants. These byproducts were activated by sodium silicate to initiate their pozzolanic reactions, and to create a cemetitious structure. One developed system was sodium silicate alkali-activated slag/Class C fly ash (AASC); the other was sodium silicate alkali-activated slag/Class F fly ash (AASF) as the binder of temper

  10. A chamber study on the reactions of O3, NO, NO2 and selected VOCs with a photocatalytically active cementitious coating material.

    Science.gov (United States)

    Mothes, F; Böge, O; Herrmann, H

    2016-08-01

    Chamber studies were performed to investigate the efficiency of a photocatalytically active cementitious coating material to depollute contaminated air. The results showed a photocatalytic effect on ozone (O3), proven by an increase of the geometric uptake coefficient from 5.2 × 10(-6) for the inactive to 7.7 × 10(-6) for the active material under irradiation. Measured first-order rate constants for nitrogen oxides (NOx) under irradiation are in the range of 2.6-5.9 × 10(-4) s(-1), which is significantly higher compared to the inactive material (7.3-9.7 × 10(-5) s(-1)) demonstrating the photocatalytic effect. However, no significant photocatalytic degradation was observed for the studied volatile organic compounds (VOCs) toluene and isoprene resulting in only an upper limit uptake coefficient of 5.0 × 10(-7) for both VOCs. In all experiments using the photocatalytically active material, a clear formation of small carbonyl (C1-C5) gas phase compounds was identified which is suggested to result from the photocatalytic degradation of organic additives. In contrast to the uptake observed for pure O3, during the experiments with NOx (≥50 % relative humidity), a clear photocatalytic formation of O3 was observed. For the material investigated, an empirically derived overall zero-order rate constant of k 0 (O3) ≈ 5 × 10(7) molecules cm(-3) s(-1) was determined. The results demonstrate the necessity of detailed studies of heterogeneous reactions on such surfaces under more complex simulated atmospheric conditions as enabled by simulation chambers. PMID:27102618

  11. Alkaline degradation of organic materials contained in TRU wastes under repository conditions

    International Nuclear Information System (INIS)

    Alkaline degradation tests for 9 organic materials were conducted under the conditions of TRU waste disposal: anaerobic alkaline conditions. The tests were carried out at 90degC for 91 days. The sample materials for the tests were selected from the standpoint of constituent organic materials of TRU wastes. It has been found that cellulose and plastic solidified products are degraded relatively easily and that rubbers are difficult to degrade. It could be presumed that the alkaline degradation of organic materials occurs starting from the functional group in the material. Therefore, the degree of degradation difficulty is expected to be dependent on the kinds of functional group contained in the organic material. (author)

  12. Specific Examples of Hybrid Alkaline Cement

    OpenAIRE

    Fernández-Jiménez Ana; García-Lodeiro Inés; Donatello Shane; Maltseva Olga; Palomo Ángel

    2014-01-01

    Hybrid alkaline cements are obtained by alkali-activating cementitious blends in the Na2O-CaO-SiO2-Al2O3-H2O system. The present paper discusses the results of activating different cementitious blends containing a low OPC clinker content ( 15MPa a 2 days) different alkaline activators were used (liquid and solid). The reaction products obtained were also characterised by XRD, SEM/EDX and 27Al and 29Si NMRMAS. The results showed that the main reaction product was a mix of cementitious gels C-A...

  13. The solubility of nickel and its migration through the cementitious backfill of a geological disposal facility for nuclear waste.

    Science.gov (United States)

    Felipe-Sotelo, M; Hinchliff, J; Field, L P; Milodowski, A E; Holt, J D; Taylor, S E; Read, D

    2016-08-15

    This work describes the solubility of nickel under the alkaline conditions anticipated in the near field of a cementitious repository for intermediate level nuclear waste. The measured solubility of Ni in 95%-saturated Ca(OH)2 solution is similar to values obtained in water equilibrated with a bespoke cementitious backfill material, on the order of 5×10(-7)M. Solubility in 0.02M NaOH is one order of magnitude lower. For all solutions, the solubility limiting phase is Ni(OH)2; powder X-ray diffraction and scanning transmission electron microscopy indicate that differences in crystallinity are the likely cause of the lower solubility observed in NaOH. The presence of cellulose degradation products causes an increase in the solubility of Ni by approximately one order of magnitude. The organic compounds significantly increase the rate of Ni transport under advective conditions and show measurable diffusive transport through intact monoliths of the cementitious backfill material. PMID:27198634

  14. Evaluation of long-term interaction between cement and bentonite for geological disposal (2) XAFS analysis of calcium silicate hydrate precipitates at cementitious and bentonite material interface

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. Numerical analyses of the long-term alteration of the engineered barriers used for the disposal of TRU waste predicted precipitation of C-S-H minerals at the interface between the cementitious materials and the bentonite-based buffer. When the C-S-H precipitates at this interface, the diffusion coefficient in the engineered barriers will decrease, resulting in reduced mass transport, which feeds back to reduce the rate of subsequent alteration. The C-S-H predicted to form at the cement-bentonite interface could not be identified directly using conventional analytical tools, including XRD, due to its low crystallinity. The authors propose that XAFS analysis, which provides spectra sensitive to the valency and coordination of the element of interest regardless of its crystallinity, would be capable of characterizing the C-S-H. The presence of the C-S-H precipitated as a secondary mineral has already been confirmed by applying chemical and XAFS analyses to bentonite specimens collected from the compacted bentonite-cement interface. However, because of the limitations on the width of specimens that can be collected by cutting from block samples, i.e. approximately 1 mm, detailed concentration profiles could not be obtained for this secondary C-S-H. In this study, XAFS spectra of thin specimens were measured using an X-ray detector in order to obtain detailed concentration profiles for the C-S-H formed at the interface between the cementitious material and the bentonite-based buffer. The X-ray detector used in the XAFS analysis consists of 1024 photodiodes arranged in line with a 0.025 mm pitch (photodiode array; PDA). Ca-K-edge XAFS measurements were conducted at the Photon Factory of the KEK. The synchrotron was operated in top-up mode with 450 mA during the measurements. Specimens were taken from a contact sample of compacted bentonite (Kunigel V1; dry density of 1.6 g/cm3) and hardened OPC (w/c = 0.6) immersed in

  15. Co-composting solid biowastes with alkaline materials to enhance carbon stabilization and revegetation potential.

    Science.gov (United States)

    Chowdhury, Saikat; Bolan, Nanthi S; Seshadri, Balaji; Kunhikrishnan, Anitha; Wijesekara, Hasintha; Xu, Yilu; Yang, Jianjun; Kim, Geon-Ha; Sparks, Donald; Rumpel, Cornelia

    2016-04-01

    Co-composting biowastes such as manures and biosolids can be used to stabilize carbon (C) without impacting the quality of these biowastes. This study investigated the effect of co-composting biowastes with alkaline materials on C stabilization and monitored the fertilization and revegetation values of these co-composts. The stabilization of C in biowastes (poultry manure and biosolids) was examined by their composting in the presence of various alkaline amendments (lime, fluidized bed boiler ash, flue gas desulphurization gypsum, and red mud) for 6 months in a controlled environment. The effects of co-composting on the biowastes' properties were assessed for different physical C fractions, microbial biomass C, priming effect, potentially mineralizable nitrogen, bioavailable phosphorus, and revegetation of an urban landfill soil. Co-composting biowastes with alkaline materials increased C stabilization, attributed to interaction with alkaline materials, thereby protecting it from microbial decomposition. The co-composted biowastes also increased the fertility of the landfill soil, thereby enhancing its revegetation potential. Stabilization of biowastes using alkaline materials through co-composting maintains their fertilization value in terms of improving plant growth. The co-composted biowastes also contribute to long-term soil C sequestration and reduction of bioavailability of heavy metals. PMID:26381784

  16. Self-Healing Efficiency of Cementitious Materials Containing Microcapsules Filled with Healing Adhesive: Mechanical Restoration and Healing Process Monitored by Water Absorption

    Science.gov (United States)

    Li, Wenting; Jiang, Zhengwu; Yang, Zhenghong; Zhao, Nan; Yuan, Weizhong

    2013-01-01

    Autonomous crack healing of cementitious composite, a construction material that is susceptible to cracking, is of great significance to improve the serviceability and to prolong the longevity of concrete structures. In this study, the St-DVB microcapsules enclosing epoxy resins as the adhesive agent were embedded in cement paste to achieve self-healing capability. The self-healing efficiency was firstly assessed by mechanical restoration of the damaging specimens after being matured. The flexural and compressive configurations were both used to stimulate the localized and distributed cracks respectively. The effects of some factors, including the content of microcapsules, the curing conditions and the degree of damage on the healing efficiency were investigated. Water absorption was innovatively proposed to monitor and characterize the evolution of crack networks during the healing process. The healing cracks were observed by SEM-EDS following. The results demonstrated that the capsule-containing cement paste can achieve the various mechanical restorations depending on the curing condition and the degree of damage. But the voids generated by the surfactants compromised the strength. Though no noticeable improved stiffness obtained, the increasing fracture energy was seen particularly for the specimen acquiring 60% pre-damage. The sorptivity and amount of water decreased with cracks healing by the adhesive, which contributed to cut off and block ingress of water. The micrographs by SEM-EDS also validated that the cracks were bridged by the hardened epoxy as the dominated elements of C and O accounted for 95% by mass in the nearby cracks. PMID:24312328

  17. Self-healing efficiency of cementitious materials containing microcapsules filled with healing adhesive: mechanical restoration and healing process monitored by water absorption.

    Directory of Open Access Journals (Sweden)

    Wenting Li

    Full Text Available Autonomous crack healing of cementitious composite, a construction material that is susceptible to cracking, is of great significance to improve the serviceability and to prolong the longevity of concrete structures. In this study, the St-DVB microcapsules enclosing epoxy resins as the adhesive agent were embedded in cement paste to achieve self-healing capability. The self-healing efficiency was firstly assessed by mechanical restoration of the damaging specimens after being matured. The flexural and compressive configurations were both used to stimulate the localized and distributed cracks respectively. The effects of some factors, including the content of microcapsules, the curing conditions and the degree of damage on the healing efficiency were investigated. Water absorption was innovatively proposed to monitor and characterize the evolution of crack networks during the healing process. The healing cracks were observed by SEM-EDS following. The results demonstrated that the capsule-containing cement paste can achieve the various mechanical restorations depending on the curing condition and the degree of damage. But the voids generated by the surfactants compromised the strength. Though no noticeable improved stiffness obtained, the increasing fracture energy was seen particularly for the specimen acquiring 60% pre-damage. The sorptivity and amount of water decreased with cracks healing by the adhesive, which contributed to cut off and block ingress of water. The micrographs by SEM-EDS also validated that the cracks were bridged by the hardened epoxy as the dominated elements of C and O accounted for 95% by mass in the nearby cracks.

  18. Study on utilization of industrial waste residue for production of microporous cementitious materials%利用工业废渣生产多微孔胶凝材料的研究

    Institute of Scientific and Technical Information of China (English)

    周君生; 徐伟; 陈益兰; 潘荣伟

    2012-01-01

    A new inorganic cementitious material with microporous structure was prepared by single low-temperature sintering process with fly ash,carbide slag,and desulfurization gypsum as raw materials and with adding a small amount of mineralizer,adhesive agent,and pore-forming agent and the material's performances were also studied.Taking the optimized formula and under the conditions of pre-heat temperature 400 ℃, roasting temperature 1 220 ℃, and holding time 25 min, water absorption, apparent density, and 3 d compressive strength of the prepared microporous cementitious material were 2.10% ,1.32 g/cm3,and 8.56 MPa,respectively.XRD analysis showed the main phases of synthesized material were calcium silicate and gehlenite.Using industrial waste slag as raw material as well as the combination of porosity and cementitious character made the microporous cementitious material can partially replace cement and lightweight aggregates (haydite) to prepare insulating mortar so that the purpose of environmental protection and energy saving could be realized.%以粉煤灰、电石渣和脱硫石膏为主要原料,掺加少量矿化剂、黏结剂和造孔剂,采用一次低温烧成工艺,制备出具有多微孔结构的新型无机胶凝材料,并对产品性能进行了研究.采用优化配方,在预热温度为400℃、焙烧温度为1 220℃、保温时间为25 min条件下制备的多微孔胶凝材料,其吸水率为2.10%、表观密度为1.32 g/cm3,3d抗压强度为8.56 MPa.通过XRD分析可知,合成材料的主要矿物相为硅酸钙和钙铝黄长石.材料采用工业废渣制备,集多孔性和胶凝性,可部分代替水泥和陶粒制成保温砂浆,达到环保节能的目的.

  19. 胶凝材料对胶凝砂砾石材料抗压强度的影响%Study on the Effect of the Amount of Cementitious Materials on the Compressive Strength of CSG Material

    Institute of Scientific and Technical Information of China (English)

    杨世锋; 柴启辉; 孙明权

    2016-01-01

    针对胶凝砂砾石材料水泥用量少、粉煤灰掺量多的特点,研究低水泥用量和粉煤灰掺量对材料前期、后期强度的影响规律。通过对不同水泥用量、粉煤灰掺量和不同龄期的胶凝砂砾石材料进行试验研究,得到不同胶凝材料用量下的强度区间,以及粉煤灰的最优掺量和粉煤灰掺量对材料后期强度的影响规律等。水泥用量每增加10 kg/m3,材料抗压强度可提高15%~20%。粉煤灰掺量占胶凝材料总量(水泥+粉煤灰)的50%为最优掺量,此时强度出现峰值;掺量占胶凝材料总量(水泥+粉煤灰)的40%左右为经济掺量,即掺入粉煤灰提高材料强度的效率最高。在胶凝砂砾石材料中,粉煤灰掺量的增加对其抗压强度有提高作用,其中对前期(28 d)强度影响较小;粉煤灰用量每增加10 kg/m3,后期(90 d)强度提高幅度为5%~18%,其影响随着砂率的增大而减小。%In view of the characteristics of CSG material of low cement content and much fly ash content, it studied the effect of low cement content and fly ash content on the early stage of the material and the influence of the late strength was very important. Through a large number of experimental studies on the different amount of cement, fly ash content and different age period of CSG materials, the strength interval of materials with different cementitious materials, the fly ash of the optimal mixing and the fly ash amount of materials later strength influences were obtained. The compressive strength of the material can be increased by 20%⁃15% with the increase of the amount of cement per 10 kg. When the amount of fly ash is 50% of the total amount of cementitious materials ( cement+fly ash) , it is the"optimal dosage", at this time the intensity of peak. When the amount of fly ash is 40% of the total amount of cementitious materials ( cement+fly ash ) , it is the"economical dosage

  20. Impact of cementitious materials decalcification on transfer properties: application to radioactive waste deep repository; Influence de la decalcification de materiaux cimentaires sur les proprietes de transfert: application au stockage profond de dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Perlot, C

    2005-09-15

    Cementitious materials have been selected to compose the engineering barrier system (EBS) of the French radioactive waste deep repository, because of concrete physico-chemical properties: the hydrates of the cementitious matrix and the pH of the pore solution contribute to radionuclides retention; furthermore the compactness of these materials limits elements transport. The confinement capacity of the system has to be assessed while a period at least equivalent to waste activity (up to 100.000 years). His durability was sustained by the evolution of transfer properties in accordance with cementitious materials decalcification, alteration that expresses structure long-term behavior. Then, two degradation modes were carried out, taking into account the different physical and chemical solicitations imposed by the host formation. The first mode, a static one, was an accelerated decalcification test using nitrate ammonium solution. It replicates the EBS alteration dues to underground water. Degradation kinetic was estimated by the amount of calcium leached and the measurement of the calcium hydroxide dissolution front. To evaluate the decalcification impact, samples were characterized before and after degradation in term of microstructure (porosity, pores size distribution) and of transfer properties (diffusivity, gas and water permeability). The influence of cement nature (ordinary Portland cement, blended cement) and aggregates type (lime or siliceous) was observed: experiments were repeated on different mortars mixes. On this occasion, an essential reflection on this test metrology was led. The second mode, a dynamical degradation, was performed with an environmental permeameter. It recreates the EBS solicitations ensured during the re-saturation period, distinguished by the hydraulic pressure imposed by the geologic layer and the waste exothermicity. This apparatus, based on triaxial cell functioning, allows applying on samples pressure drop between 2 and 10 MPa and

  1. On a morphological approach of the meso-structure for the multi-scale analysis of the thermo-hydro-mechanical behaviour of cementitious materials

    International Nuclear Information System (INIS)

    The investigation of the behavior of heated concrete is a major research topic which concerns the assessment of safety level of structures when exposed to high temperatures, for instance during a fire. For this purpose, several modeling approaches were developed within thermo-hydro-mechanical (THM) frameworks in order to take into account the involved physic-chemical and mechanical processes that affect stability of heated concrete. However, existing models often do note account explicitly for the heterogeneity of the material: concrete is composite material that may be schematized as an assembly of inclusions (aggregates) embedded in a cementitious matrix (cement paste). This latter may be described as a partially saturated open porous medium. The aggregates are characterized by their mineralogical nature together with their morphology and size distribution. The material heterogeneity bring an additional complexity: the need to take into account the microstructure in order to quantify the effect of matrix-inclusion thermal, hygral and mechanical incompatibilities on the THM behavior of concrete. This work is a first step in this direction. For this purpose, a three-dimensional (3D) multi-scale finite element model is developed. It allows affecting specific behaviors to matrix and inclusions. For the former, where mass transports occur within the connected porous network, a three-fluids approach (liquid water, vapor and dry air) is adopted and is coupled to a poro-mechanical damage based approach. For inclusions (aggregates) no hygral component arises a pure thermo-mechanical model is considered. The developed model is then used to investigate, either by 2D or 3D numerical simulations, effects of mineralogical nature, morphology and distribution of aggregates. Studied effects have mainly concerned the influence of these parameters on local fluctuations of simulated temperature, gas pressure and damage fields with regard to experimentally observed dispersion. The

  2. 环境极性对水泥基材料抗低温硫酸盐侵蚀性能的影响∗%Effect of environment polarity on sulfate attack resistance of cementitious materials at low temperature

    Institute of Scientific and Technical Information of China (English)

    肖佳; 孟庆业; 郭明磊; 吴婷

    2015-01-01

    通过分析甘油对水泥-石灰石粉胶凝材料在低温(5℃)、5%硫酸钠溶液中侵蚀的影响,研究了环境极性对水泥基材料抗低温硫酸盐侵蚀性能的影响。结果表明,水泥-石灰石粉试件腐蚀程度随时间增加而加重,腐蚀产物主要为碳硫硅钙石,未掺甘油的试件棱角发生明显脱落;掺甘油降低了腐蚀产物中碳硫硅钙石的生成量,随甘油掺量增加腐蚀产物中碳硫硅钙石的生成量减少,腐蚀程度减轻。甘油可以抑制水泥基材料中碳硫硅钙石的生成,降低环境极性能提高水泥基材料抗低温硫酸盐侵蚀性能。%By means of analyzing the effect of glycerol sulfate attack resistance of cement-ground limestone ce-mentitious materials at low temperature(5 ℃,5% Na2 SO 4 ),the effect of solvent polarity on thaumasite forma-tion was studied.The results showed that the degree of corrosion of cement-limestone powder specimens aggra-vated with prolonged,and the corrosion products were mainly thaumasite.The specimens without glycerol fell out at edges and corners obviously,while the glycerol reduced the generation of thaumasite in the corrosion products,and the generation of thaumasite decreased with the increase of glycerol content.Glycerol can reduce the generation of thaumasite in cement-ground limestone cementitious material,and lowering environment po-larity of cementitious materials could improve the resistance of cementitious material to thaumasite form of sul-fate attack at low temperature.

  3. Investigation of Self Consolidating Concrete Containing High Volume of Supplementary Cementitious Materials and Recycled Asphalt Pavement Aggregates

    Science.gov (United States)

    Patibandla, Varun chowdary

    The use of sustainable technologies such as supplementary cementitiuous materials (SCMs), and/or recycled materials is expected to positively affect the performance of concrete mixtures. However, it is important to study and qualify such mixtures and check if the required specifications of their intended application are met before they can be implemented in practice. This study presents the results of a laboratory investigation of Self Consolidating concrete (SCC) containing sustainable technologies. A total of twelve concrete mixtures were prepared with various combinations of fly ash, slag, and recycled asphalt pavement (RAP). The mixtures were divided into three groups with constant water to cementitiuous materials ratio of 0.37, and based on the RAP content; 0, 25, and 50% of coarse aggregate replaced by RAP. All mixtures were prepared to achieve a target slump flow equal to or higher than 500 mm (24in). A control mixture for each group was prepared with 100% Portland cement whereas all other mixtures were designed to have up to 70% of portland cement replaced by a combination of supplementary cementitiuous materials (SCMs) such as class C fly ash and granulated blast furnace slag. The properties of fresh concrete investigated in this study include flowability, deformability; filling capacity, and resistance to segregation. In addition, the compressive strength at 3, 14, and 28 days, the tensile strength, and the unrestrained shrinkage up to 80 days was also investigated. As expected the inclusion of the sustainable technologies affected both fresh and hardened concrete properties. Analysis of the experimental data indicated that inclusion of RAP not only reduces the ultimate strength, but it also affected the compressive strength development rate. Moreover, several mixes satisfied compressive strength requirements for pavements and bridges; those mixes included relatively high percentages of SCMs and RAP. Based on the results obtained in this study, it is not

  4. Neutron Radiography Based Visualization and Profiling of Water Uptake in (Un)cracked and Autonomously Healed Cementitious Materials

    OpenAIRE

    Philip Van den Heede; Bjorn Van Belleghem; Natalia Alderete; Kim Van Tittelboom; Nele De Belie

    2016-01-01

    Given their low tensile strength, cement-based materials are very susceptible to cracking. These cracks serve as preferential pathways for corrosion inducing substances. For large concrete infrastructure works, currently available time-consuming manual repair techniques are not always an option. Often, one simply cannot reach the damaged areas and when making those areas accessible anyway (e.g., by redirecting traffic), the economic impacts involved would be enormous. Under those circumstance...

  5. Real-time materials evolution visualized within intact cycling alkaline batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gallaway, JW; Erdonmez, CK; Zhong, Z; Croft, M; Sviridov, LA; Sholklapper, TZ; Turney, DE; Banerjee, S; Steingart, DA

    2014-01-01

    The scientific community has focused on the problem of inexpensive, safe, and sustainable large-scale electrical energy storage, which is needed for a number of emerging societal reasons such as stabilizing intermittent renewables-based generation like solar and wind power. The materials used for large-scale storage will need to be low cost, earth-abundant, and safe at the desired scale. The Zn-MnO2 "alkaline" battery chemistry is associated with one-time use, despite being rechargeable. This is due to material irreversibilities that can be triggered in either the anode or cathode. However, as Zn and MnO2 have high energy density and low cost, they are economically attractive even at limited depth of discharge. As received, a standard bobbin-type alkaline cell costs roughly $20 per kW h. The U. S. Department of Energy ARPA-E $100 per kW h cost target for grid storage is thus close to the cost of alkaline consumer primary cells if re-engineered and/or cycled at 5-20% nominal capacity. Herein we use a deeply-penetrating in situ technique to observe ZnO precipitation near the separator in an alkaline cell anode cycled at 5% DOD, which is consistent with cell failures observed at high cycle life. Alkaline cells designed to avoid such causes of cell failure could serve as a low-cost baseload for large-scale storage.

  6. Evaluation of Microstructure and Transport Properties of Deteriorated Cementitious Materials from Their X-ray Computed Tomography (CT Images

    Directory of Open Access Journals (Sweden)

    Michael Angelo B. Promentilla

    2016-05-01

    Full Text Available Pore structure, tortuosity and permeability are considered key properties of porous materials such as cement pastes to understand their long-term durability performance. Three-dimensional image analysis techniques were used in this study to quantify pore size, effective porosity, tortuosity, and permeability from the X-ray computed tomography (CT images of deteriorated pastes that were subjected to accelerated leaching test. X-ray microtomography is a noninvasive three-dimensional (3D imaging technique which has been recently gaining attention for material characterization. Coupled with 3D image analysis, the digitized pore can be extracted and computational simulation can be applied to the pore network to measure relevant microstructure and transport properties. At a spatial resolution of 0.50 μm, the effective porosity (ψe was found to be in the range of 0.04 to 0.33. The characteristic pore size (d using a local thickness algorithm was found to be in the range of 3 to 7 μm. The geometric tortuosity (τg based on a 3D random walk simulation in the percolating pore space was found to be in the range of 2.00 to 7.45. The water permeability values (K using US NIST Permeability Stokes Solver range from an order of magnitudes of 10−14 to 10−17 m2. Indications suggest that as effective porosity increases, the geometric tortuosity increases and the permeability decreases. Correlation among these microstructure and transport parameters is also presented in this study.

  7. Test Procedures for Characterizing, Evaluating, and Managing Separator Materials used in Secondary Alkaline Batteries

    Science.gov (United States)

    Guasp, Edwin; Manzo, Michelle A.

    1997-01-01

    Secondary alkaline batteries, such as nickel-cadmium and silver-zinc, are commonly used for aerospace applications. The uniform evaluation and comparison of separator properties for these systems is dependent upon the measurement techniques. This manual presents a series of standard test procedures that can be used to evaluate, compare, and select separator materials for use in alkaline batteries. Detailed test procedures evaluating the following characteristics are included in this manual: physical measurements of thickness and area weight, dimensional stability measurements, electrolyte retention, resistivity, permeability as measured via bubble pressure, surface evaluation via SEM, chemical stability, and tensile strength.

  8. 偏高岭土和硅灰对三元胶凝材料的改性%Modification of ternary cementitious materials blended with metakaolin and silica fume

    Institute of Scientific and Technical Information of China (English)

    许涛; 卢都友; 罗旌旺

    2012-01-01

    To increase the amount of supplementary cementitious materials in cement-based materials, ternary cementitious system of fly ash ( FA)-metakaolin ( MK ) -cement (PC) and FA-silica fume(SF)-cement were prepared, and their compressive strengths and microstructures were investigated. The effects of MK and SF on high-volume FA content cementitious system were compared. Results showed that suitable dosage of MK and SF could enhance the compressive strength of high FA volume ternary system, MK and SF had a slightly different effect due to dosage and curing time. MK and SF could reduce the content of Ca(OH)2(CH) and refine pore structure. The hydration reaction products formed the reaction between MK and CH were.different from that with SF. MK and SF could improve microstructure and interface in pastes for their filler and pozzolanic effects. The high quality MK had similar or even better effect than that of SF used in high volume FA cementitious system.%为了提高水泥基材料中辅助性胶凝材料用量,对比研究偏高岭土(MK)和硅灰(SF)对高粉煤灰(FA)掺量的三元胶凝材料体系抗压强度和微观结构的影响.结果表明:适量MK和SF均能提高FA掺量的三元胶凝材料不同龄期的强度,两者对强度的提高幅度随掺量和浆体龄期的改变而稍有改变;MK和SF均能显著降低三元胶凝材料浆体中Ca(OH)2(CH)的含量、优化浆体孔结构,但两者反应形成的产物有明显不同.MK和SF的物理填充、火山灰效应可优化三元胶凝体系浆体的微观结构、改善不同相界面结合.高品质MK可代替SF用于制备高FA含量三元胶凝材料体系.

  9. Evaluation of hydraulic conductivities of bentonite and rock under hyper alkaline and nitrate conditions

    International Nuclear Information System (INIS)

    The chemical conditions of TRU waste repository were estimated as alkaline conditions effected by cementitious materials. And, some TRU wastes include soluble nitrate salt, we have to consider the repository conditions might be high ionic strength condition leaching of nitrate salt. In this study, experimental studies were carried out to evaluate hydraulic conductivities of bentonite and rock under hyper alkaline and nitrate conditions. The followings results were obtained for bentonite. 1) In the immersion experiments of bentonite in hyper alkaline fluids with and without nitrate, the disappearance of montmorillonite of bentonite was observed and CSH formation was found after 30 days. In hyper alkaline fluid with nitrate, minerals at θ=37 nm by XRD was identified. 2) Significant effects of hyper alkaline on hydraulic conductivity of compacted bentonite were not observed. However, hydraulic conductivities of hyper alkaline fluid with nitrate and ion exchanged bentonite increased. In hyper alkaline with nitrate, more higher hydraulic conductivities of exchanged bentonite were measured. The followings results were obtained for rock. 1) In the immersion experiments of crushed tuff in hyper alkaline fluids with and without nitrate, CSH and CASH phases were observed. 2) The hydraulic conductivity of tuff in hyper alkaline fluids decreased gradually. Finally, hyper alkaline flow in tuff stopped after 2 months and hyper alkaline flow with nitrate stopped shorter than without nitrate. In the results of analysis of tuff after experiment, we could identified secondary minerals, but we couldn't find the clogging evidence of pores in tuff by secondary minerals. (author)

  10. Fracture propagation in cementitious materials

    DEFF Research Database (Denmark)

    Skocek, Jan

    of its constituents and composition or when focus is put on a single crack and an accurate estimation of its width. Similarly, in the case of ordinary portland cement paste, a simple relationship linking the strength of the cement paste with its porosity was proposed and widely used for a long time...... and concrete, it is demonstrated that the measured mode-I fracture properties of the matrix together with tted ratios of mode-I to mode-II properties are sucient to provide estimations of mode-I, mixed-mode and compressive experiments matching favorably experimental records. In the case of pure cement paste...

  11. New Alkaline-Earth Polymeric Frameworks as green materials for sorption and heterogeneous catalysis

    OpenAIRE

    Platero Prats, Ana Eva

    2011-01-01

    Metal-Organic Frameworks (or MOFs) are porous organic-inorganic crystalline materials in which the metallic centers are joined through organic ligands via coordination bonds to give frameworks with different dimensionalities. The work presented in this thesis is focused on the obtaining of new MOFs using alkaline-earth elements as metal centers, which could represent a comparatively cheap, nontoxic and green alternative to conventional MOFs based on transition metals or rare-earth elements.Th...

  12. The Effect of Alkaline Material Particle Size on Adjustment Ability of Buffer Capacity

    Directory of Open Access Journals (Sweden)

    Girts Bumanis

    2015-09-01

    Full Text Available The pH control in biotechnological processes like anaerobic digestion is one of the key factors to ensure high efficiency in the biogas production process. The decrease of pH level in the digestion process occurs due to the rapid acid formation during metabolic processes of bacteria which leads to the inhibition of the methane producing bacteria; therefore further digestion process is limited. The efficiency of anaerobic digestion reactor decreases dramatically if the pH level falls under pH 6.6. This problem is common for single-stage continuous digesters with a high organic solid content; therefore the active pH controlling method is commonly used. By creating inorganic alkaline material, the passive pH controlling system could be created. Soluble alkalis are enclosed in the matrix of material during the activation process thus providing slow leaching of free alkalis from the material structure in water medium and ensuring pH increase. In this research a porous alkaline composite material was developed as a pH controlling agent for the biogas production. Two mixture compositions with a different Si/Al and Si/Na ratio were created. The effect of particle size of the material was investigated in order to provide different leaching rates for the described material. Granular material with particle fractions 1/2 mm, 2/4 mm and 4/8 mm and a cubical specimen with dimensions 20×20×20 mm were tested. The pH level of water medium increased up to pH 11.6 during the first day and final pH value decreased to 7.8 after 20-day leaching. Alkali leaching can be increased by 19-32% changing the mixture composition by adding glass powder to the alkaline material. The particle size factor was negligible for leaching rate of alkaline material due to the high porosity of material. Research results show that this composite material has a potential to be applied in pH control for biotechnological purposes.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7325

  13. Ancient analogues concerning stability and durability of cementitious wasteform

    International Nuclear Information System (INIS)

    The history of cementitious materials goes back to ancient times. The Greeks and Romans used calcined limestone and later developed pozzolanic cement by grinding together lime and volcanic ash called open-quotes pozzolanclose quotes which was first found near Port Pozzuoli, Italy. The ancient Chinese used lime-pozzolanic mixes to build the Great Wall. The ancient Egyptians used calcined impure gypsum to build the Great Pyramid of Cheops. The extraordinary stability and durability of these materials has impressed us, when so much dramatically damaged infrastructure restored by using modern portland cement now requires rebuilding. Stability and durability of cementitious materials have attracted intensive research interest and contractors' concerns, as does immobilization of radioactive and hazardous industrial waste in cementitious materials. Nuclear waste pollution of the environment and an acceptable solution for waste management and disposal constitute among the most important public concerns. The analogy of ancient cementitious materials to modern Portland cement could give us some clues to study their stability and durability. This present study examines selected results of studies of ancient building materials from France, Italy, China, and Egypt, combined with knowledge obtained from the behavior of modern portland cement to evaluate the potential for stability and durability of such materials in nuclear waste forms

  14. 直接挤压孔溶液的氯离子存在状态及碱度研究%Experimental Research on Chloride Form and pH Value of Pore Solution Expressed from Cementitious Materials

    Institute of Scientific and Technical Information of China (English)

    万小梅; 冯玉坤; 赵铁军; 刘超

    2012-01-01

    通过对直接挤压得到的孔溶液进行化学分析,研究了水灰比、龄期、氯盐掺量、碳化暴露等因素对水泥基材料孔溶液的氯离子存在状态以及碱度的影响规律.结果表明:孔溶液中的自由氯离子浓度与水灰比及氯盐掺量有关;随着龄期延长,水化产物对氯离子的结合率上升.在自由氯离子浓度较高的情况下,孔溶液中的氯离子结合率降低;完全碳化条件下孔溶液中的自由氯离子浓度表现出明显增大的趋势,提高幅度为1~11倍;碳化后孔溶液中的氯离子结合率比未碳化试块的孔溶液降低了27%~54%;碳化使得孔溶液的碱度由13.19~13.47降至7.67~8.10.碳化反应降低了水泥浆体的pH值,释放了自由氯离子,极大地改变了混凝土内部的化学环境.%Chloride and alkalinity in pore solution expressed directly from cementitious materials under various influencing factors including mw/mc, age, chloride addition and carbonation exposure were investigated by ion chromatography and pH meter. It is found that the content of free chloride decreases with increase of mw/mc and decrease of chloride addition. The rate of combination of chloride increases with time and decreases with free chloride content in pore solution. The effect of carbonation on the dissolved chloride content in pore solution is great. For cement mortar or paste with different mw/wc(0. 5 and 0. 7) and chloride addition(0, 0. 5% and 1. 0%), complete carbonation can increase the amount of free chloride in pore solution 2 to 12 times. Furthermore, the amount of chemically combined chloride is lowered by 27% to 54%, and the pH value decreases from values in the range between 13. 19 and 13. 47 to values in the range between 7. 67 and 8. 10. It can be concluded that, in addition to lower the pH value of the pore solution, carbonation will release more free chloride from the hydration products into pore solution and the internal chemical

  15. Effects of bioleaching on the chemical, mineralogical and morphological properties of natural and waste-derived alkaline materials

    OpenAIRE

    Chiang, Yi Wai; Santos, Rafael; Monballiu, Annick; Ghyselbrecht, Karel; Martens, Johan; Mattos, Maria Laura T.; Van Gerven, Tom; Meesschaert, Boudewijn

    2013-01-01

    Bioleaching is a potential route for the valorisation of low value natural and waste alkaline materials. It may serve as a pre-treatment stage to mineral carbonation and sorbent synthesis processes by increasing the surface area and altering the mineralogy of the solid material and by generating an alkaline rich (Ca and Mg) aqueous stream. It may also aid the extraction of high value metals from these materials (e.g. Ni), transforming them into valuable ore reserves. The bioleaching potential...

  16. Analysis of Graphite-Reinforced Cementitious Composites

    Science.gov (United States)

    Vaughan, R. E.

    2002-01-01

    Strategically embedding graphite meshes in a compliant cementitious matrix produces a composite material with relatively high tension and compressive properties as compared to steel-reinforced structures fabricated from a standard concrete mix. Although these composite systems are somewhat similar, the methods used to analyze steel-reinforced composites often fail to characterize the behavior of their more advanced graphite-reinforced counterparts. This Technical Memorandum describes some of the analytical methods being developed to determine the deflections and stresses in graphite-reinforced cementitious composites. It is initially demonstrated that the standard transform section method fails to provide accurate results when the elastic moduli ratio exceeds 20. An alternate approach is formulated by using the rule of mixtures to determine a set of effective material properties for the composite. Tensile tests are conducted on composite samples to verify this approach. When the effective material properties are used to characterize the deflections of composite beams subjected to pure bending, an excellent agreement is obtained. Laminated composite plate theory is investigated as a means for analyzing even more complex composites, consisting of multiple graphite layers oriented in different directions. In this case, composite beams are analyzed using the laminated composite plate theory with material properties established from tensile tests. Then, finite element modeling is used to verify the results. Considering the complexity of the samples, a very good agreement is obtained.

  17. A Plastic Damage Mechanics Model for Engineered Cementitious Composites

    DEFF Research Database (Denmark)

    Dick-Nielsen, Lars; Stang, Henrik; Poulsen, Peter Noe;

    2007-01-01

    This paper discusses the establishment of a plasticity-based damage mechanics model for Engineered Cementitious Composites (ECC). The present model differs from existing models by combining a matrix and fiber description in order to describe the behavior of the ECC material. The model provides...

  18. CEMENTITIOUS GROUT FOR CLOSING SRS HIGH LEVEL WASTE TANKS - #12315

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Burns, H.; Stefanko, D.

    2012-01-10

    In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. The closure will also fill, physically stabilize and isolate ancillary equipment abandoned in the tanks. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and chemically reduction potential (Eh) of -200 to -400 to stabilize selected potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted, respectively, to support the mass placement strategy developed by

  19. Alkaline earth metal doped tin oxide as a novel oxygen storage material

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Qiang, E-mail: dong@tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan); Yin, Shu; Yoshida, Mizuki; Wu, Xiaoyong; Liu, Bin [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan); Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro [Department of Research Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Miyamae cho-7, Kofu 400-8511 (Japan); Sato, Tsugio [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan)

    2015-09-15

    Alkaline earth metal doped tin oxide (SnO{sub 2}) hollow nanospheres with a diameter of 50 nm have been synthesized successfully via a facial solvothermal route in a very simple system composed of only ethanol, acetic acid, SnCl{sub 4}·5H{sub 2}O and A(NO{sub 3}){sub 2}·xH{sub 2}O (A = Mg, Ca, Sr, Ba). The synthesized undoped SnO{sub 2} and A-doped SnO{sub 2} hollow nanospheres were characterized by the oxygen storage capacity (OSC), X-ray diffraction, transmission electron microscopy and the Brunauer–Emmet–Teller (BET) technique. The OSC values of all samples were measured using thermogravimetric-differential thermal analysis. The incorporation of alkaline earth metal ion into tin oxide greatly enhanced the thermal stability and OSC. Especially, Ba-doped SnO{sub 2} hollow nanospheres calcined at 1000 °C for 20 h with a BET surface area of 61 m{sup 2} g{sup −1} exhibited the considerably high OSC of 457 μmol-O g{sup −1} and good thermal stability. Alkaline earth metal doped tin oxide has the potential to be a novel oxygen storage material.

  20. Alkaline earth metal doped tin oxide as a novel oxygen storage material

    International Nuclear Information System (INIS)

    Alkaline earth metal doped tin oxide (SnO2) hollow nanospheres with a diameter of 50 nm have been synthesized successfully via a facial solvothermal route in a very simple system composed of only ethanol, acetic acid, SnCl4·5H2O and A(NO3)2·xH2O (A = Mg, Ca, Sr, Ba). The synthesized undoped SnO2 and A-doped SnO2 hollow nanospheres were characterized by the oxygen storage capacity (OSC), X-ray diffraction, transmission electron microscopy and the Brunauer–Emmet–Teller (BET) technique. The OSC values of all samples were measured using thermogravimetric-differential thermal analysis. The incorporation of alkaline earth metal ion into tin oxide greatly enhanced the thermal stability and OSC. Especially, Ba-doped SnO2 hollow nanospheres calcined at 1000 °C for 20 h with a BET surface area of 61 m2 g−1 exhibited the considerably high OSC of 457 μmol-O g−1 and good thermal stability. Alkaline earth metal doped tin oxide has the potential to be a novel oxygen storage material

  1. Shape optimization of small span textile reinforced cementitious composite shells

    OpenAIRE

    TYSMANS, Tine; ADRIAENSSENS, Sigrid; Wastiels, Jan

    2009-01-01

    p. 1755-1766 The property of concrete to be poured into any shape and harden at ambient temperatures makes it the most widely-used material for shells. Using this traditionally brittle material in shells restricts their forms to mostly compression shapes. Often steel reinforcement is still necessary to carry tensile forces occurring under different load combinations and to limit crack formation. A new composite material, textile reinforced cementitious composite (TRC), eliminates this rest...

  2. Analysis of Graphite Reinforced Cementitious Composites

    Science.gov (United States)

    Vaughan, Robert E.; Gilbert, John A.; Spanyer, Karen (Technical Monitor)

    2001-01-01

    This paper describes analytical methods that can be used to determine the deflections and stresses in highly compliant graphite-reinforced cementitious composites. It is demonstrated that the standard transform section fails to provide accurate results when the elastic modulus ratio exceeds 20. So an alternate approach is formulated by using the rule of mixtures to determine a set of effective material properties for the composite. Tensile tests are conducted on composite samples to verify this approach; and, when the effective material properties are used to characterize the deflections of composite beams subject to pure bending, an excellent agreement is obtained. Laminated composite plate theory is also investigated as a means for analyzing even more complex composites, consisting of multiple graphite layers oriented in different directions. In this case, composite beams are analyzed by incorporating material properties established from tensile tests. Finite element modeling is used to verity the results and, considering the complexity of the samples, a very good agreement is obtained.

  3. Specific Examples of Hybrid Alkaline Cement

    Directory of Open Access Journals (Sweden)

    Fernández-Jiménez Ana

    2014-04-01

    Full Text Available Hybrid alkaline cements are obtained by alkali-activating cementitious blends in the Na2O-CaO-SiO2-Al2O3-H2O system. The present paper discusses the results of activating different cementitious blends containing a low OPC clinker content ( 15MPa a 2 days different alkaline activators were used (liquid and solid. The reaction products obtained were also characterised by XRD, SEM/EDX and 27Al and 29Si NMRMAS. The results showed that the main reaction product was a mix of cementitious gels C-A-S-H and (N,C-A-S-H, and that their relative proportions were strongly influenced by the calcium content in the initial binder

  4. Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes

    Science.gov (United States)

    Narayan, Sri R.; Yen, Shiao-Ping S.; Reddy, Prakash V.; Nair, Nanditha

    2012-01-01

    Polymer electrolyte membranes that conduct hydroxide ions have potential use in fuel cells. A variety of polystyrene-based quaternary ammonium hydroxides have been reported as anion exchange fuel cell membranes. However, the hydrolytic stability and conductivity of the commercially available membranes are not adequate to meet the requirements of fuel cell applications. When compared with commercially available membranes, polystyrene-imidazolium alkaline membrane electrolytes are more stable and more highly conducting. At the time of this reporting, this has been the first such usage for imidazolium-based polymeric materials for fuel cells. Imidazolium salts are known to be electrochemically stable over wide potential ranges. By controlling the relative ratio of imidazolium groups in polystyrene-imidazolium salts, their physiochemical properties could be modulated. Alkaline anion exchange membranes based on polystyrene-imidazolium hydroxide materials have been developed. The first step was to synthesize the poly(styrene-co-(1-((4-vinyl)methyl)-3- methylimidazolium) chloride through a free-radical polymerization. Casting of this material followed by in situ treatment of the membranes with sodium hydroxide solutions provided the corresponding hydroxide salts. Various ratios of the monomers 4-chloromoethylvinylbenzine (CMVB) and vinylbenzine (VB) provided various compositions of the polymer. The preferred material, due to the relative ease of casting the film, and its relatively low hygroscopic nature, was a 2:1 ratio of CMVB to VB. Testing confirmed that at room temperature, the new membranes outperformed commercially available membranes by a large margin. With fuel cells now in use at NASA and in transportation, and with defense potential, any improvement to fuel cell efficiency is a significant development.

  5. REFERENCE CASES FOR USE IN THE CEMENTITIOUS BARRIERS PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C

    2009-01-06

    The Cementitious Barriers Project (CBP) is a multidisciplinary cross cutting project initiated by the US Department of Energy (DOE) to develop a reasonable and credible set of tools to improve understanding and prediction of the structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. The period of performance is >100 years for operating facilities and > 1000 years for waste management. The CBP has defined a set of reference cases to provide the following functions: (1) a common set of system configurations to illustrate the methods and tools developed by the CBP, (2) a common basis for evaluating methodology for uncertainty characterization, (3) a common set of cases to develop a complete set of parameter and changes in parameters as a function of time and changing conditions, and (4) a basis for experiments and model validation, and (5) a basis for improving conceptual models and reducing model uncertainties. These reference cases include the following two reference disposal units and a reference storage unit: (1) a cementitious low activity waste form in a reinforced concrete disposal vault, (2) a concrete vault containing a steel high-level waste tank filled with grout (closed high-level waste tank), and (3) a spent nuclear fuel basin during operation. Each case provides a different set of desired performance characteristics and interfaces between materials and with the environment. Examples of concretes, grout fills and a cementitious waste form are identified for the relevant reference case configurations.

  6. REFERENCE CASES FOR USE IN THE CEMENTITIOUS BARRIERS PARTNERSHIP

    International Nuclear Information System (INIS)

    The Cementitious Barriers Project (CBP) is a multidisciplinary cross cutting project initiated by the US Department of Energy (DOE) to develop a reasonable and credible set of tools to improve understanding and prediction of the structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. The period of performance is >100 years for operating facilities and > 1000 years for waste management. The CBP has defined a set of reference cases to provide the following functions: (1) a common set of system configurations to illustrate the methods and tools developed by the CBP, (2) a common basis for evaluating methodology for uncertainty characterization, (3) a common set of cases to develop a complete set of parameter and changes in parameters as a function of time and changing conditions, and (4) a basis for experiments and model validation, and (5) a basis for improving conceptual models and reducing model uncertainties. These reference cases include the following two reference disposal units and a reference storage unit: (1) a cementitious low activity waste form in a reinforced concrete disposal vault, (2) a concrete vault containing a steel high-level waste tank filled with grout (closed high-level waste tank), and (3) a spent nuclear fuel basin during operation. Each case provides a different set of desired performance characteristics and interfaces between materials and with the environment. Examples of concretes, grout fills and a cementitious waste form are identified for the relevant reference case configurations

  7. Evaluation of hydraulic conductivities of bentonite and rock under hyper alkaline and nitrate conditions. 2

    International Nuclear Information System (INIS)

    Circumstance of TRU waste repository shows alkaline condition due to leaching of cementitious materials. The waste containing significant soluble nitrate may changes ground water chemistry to high ion strength. Several experimental studies have been carried out in this study in order to assess quantitatively water conductivity of bentonite which is altered by hyper alkaline and nitrate. Modeling for previous results is carried out and several requirements to be defined are proposed. The conclusion of this study is summarized as below. Secondary minerals of bentonite alteration due to hyper alkaline with nitrate: 1) CSH and CAH were observed corresponding to solving montmorillonite in AWN solution. 2) Na2O Al2O3 1.68SiO2 generated from 90 days in batch experiment and it was observed in 360 days. Assessment of swelling and water conductivity changing by hyper alkaline with nitrate: 1) Little changing of water conductivity of bentonite was observed by saturated Ca(OH)2 solution and hyper alkaline solution. The conductivity significantly increased by penetrating sodium nitrate solution. 2) Water conductivity of ion exchanged bentonite by hyper alkaline solution significantly increased. It increased more by penetrating AWN solution. Modeling of tuff alteration by hyper alkaline solution: 1) Flow through test is proposed since soluble velocity to hyper alkaline solution should be defined. (author)

  8. Cementitious Barriers Partnership FY2013 End-Year Report

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States); Langton, C. A. [Savannah River Site (SRS), Aiken, SC (United States); Burns, H. H. [Savannah River Site (SRS), Aiken, SC (United States); Smith, F. G. [Savannah River Site (SRS), Aiken, SC (United States); Kosson, D. S. [Vanderbilt University, School of Engineering, Nashville, TN (United States); Brown, K. G. [Vanderbilt University, School of Engineering, Nashville, TN (United States); Samson, E. [SIMCO Technologies, Inc., Quebec (Canada); Meeussen, J. C.L. [Nuclear Research and Consultancy Group (NRG), Petten (The Netherlands); van der Sloot, H. A. [Hans van der Sloot Consultancy, Langedijk (The Netherlands); Garboczi, E. J. [Materials & Construction Research Division, National Institute of Standards and Technology, Gaithersburg, MD (United States)

    2013-11-01

    In FY2013, the Cementitious Barriers Partnership (CBP) demonstrated continued tangible progress toward fulfilling the objective of developing a set of software tools to improve understanding and prediction of the long-term structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. In November 2012, the CBP released “Version 1.0” of the CBP Software Toolbox, a suite of software for simulating reactive transport in cementitious materials and important degradation phenomena. In addition, the CBP completed development of new software for the “Version 2.0” Toolbox to be released in early FY2014 and demonstrated use of the Version 1.0 Toolbox on DOE applications. The current primary software components in both Versions 1.0 and 2.0 are LeachXS/ORCHESTRA, STADIUM, and a GoldSim interface for probabilistic analysis of selected degradation scenarios. The CBP Software Toolbox Version 1.0 supports analysis of external sulfate attack (including damage mechanics), carbonation, and primary constituent leaching. Version 2.0 includes the additional analysis of chloride attack and dual regime flow and contaminant migration in fractured and non-fractured cementitious material. The LeachXS component embodies an extensive material property measurements database along with chemical speciation and reactive mass transport simulation cases with emphasis on leaching of major, trace and radionuclide constituents from cementitious materials used in DOE facilities, such as Saltstone (Savannah River) and Cast Stone (Hanford), tank closure grouts, and barrier concretes. STADIUM focuses on the physical and structural service life of materials and components based on chemical speciation and reactive mass transport of major cement constituents and aggressive species (e.g., chloride, sulfate, etc.). THAMES is a planned future CBP Toolbox component focused on simulation of the microstructure of cementitious materials and calculation of resultant

  9. Meso-mechanical analysis of steel fiber reinforced cementitious composites

    OpenAIRE

    Caggiano, Antonio

    2013-01-01

    2010 - 2011 The mechanical behavior of cement-based materials is greatly affected by crack propagation under general stress states. The presence of one or more dominant cracks in structural members modifies its response, possibly leading to brittle failure modes. The random dispersion of short steel fibers in cement materials is a new methodology used for enhancing the response in the post-cracking regime. The behavior of Fiber-Reinforced Cementitious Composite (FRCC), compared...

  10. Strengthening masonry infill panels using engineered cementitious composites

    DEFF Research Database (Denmark)

    Dehghani, Ayoub; Fischer, Gregor; Nateghi Alahi, Fariborz

    2015-01-01

    This comprehensive experimental study aims at investigating the behavior of masonry infill panels strengthened by fiber reinforced engineered cementitious composites (ECC). The experimental program included testing of materials, masonry elements and panels. Material tests were carried out first...... on masonry elements. Finally, a total of 10 brick panels including two control specimens and eight specimens with different ECC-strengthening configuration were selected. The specimens were subjected to diagonal compression loading under displacement control to evaluate their in-plane deformation...

  11. Predicting the Probability of Failure of Cementitious Sewer Pipes Using Stochastic Finite Element Method

    OpenAIRE

    Alani, Amir M.; Asaad Faramarzi

    2015-01-01

    In this paper, a stochastic finite element method (SFEM) is employed to investigate the probability of failure of cementitious buried sewer pipes subjected to combined effect of corrosion and stresses. A non-linear time-dependant model is used to determine the extent of concrete corrosion. Using the SFEM, the effects of different random variables, including loads, pipe material, and corrosion on the remaining safe life of the cementitious sewer pipes are explored. A numerical example is prese...

  12. Evaluation of hydraulic conductivities of bentonite and rock under hyper alkaline and nitrate conditions (3) (Summary)

    International Nuclear Information System (INIS)

    This report is the summary of JNC-TJ--8400-2005-002. 1) Circumstance of TRU waste repository shows alkaline condition due to leaching of cementitious materials. The waste containing significant soluble nitrate may changes ground water chemistry to high ion strength. Consolidation test and permeability test are carried out in order to as. exchanged with nitrate. It is noted that permeability of bentonite increased at from 40 to 200 times by cation exchange. 2) Permeability of hyper alkaline solution is almost same to water. Permeability of hyper alkaline solution with nitrates increased corresponding to rising ion strength. 3) The results of batch of column test were simulated. The model can explain clearly the results in short period. This can estimate leaching ratio and secondary minerals. The model can simulate the experimental results by two types of velocity theory on altering bentonite. (author)

  13. Assessment of commercially available ion exchange materials for cesium removal from highly alkaline wastes

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, K.P.; Kim, A.Y.; Kurath, D.E.

    1996-04-01

    Approximately 61 million gallons of nuclear waste generated in plutonium production, radionuclide removal campaigns, and research and development activities is stored on the Department of Energy`s Hanford Site, near Richland, Washington. Although the pretreatment process and disposal requirements are still being defined, most pretreatment scenarios include removal of cesium from the aqueous streams. In many cases, after cesium is removed, the dissolved salt cakes and supernates can be disposed of as LLW. Ion exchange has been a leading candidate for this separation. Ion exchange systems have the advantage of simplicity of equipment and operation and provide many theoretical stages in a small space. The organic ion exchange material Duolite{trademark} CS-100 has been selected as the baseline exchanger for conceptual design of the Initial Pretreatment Module (IPM). Use of CS-100 was chosen because it is considered a conservative, technologically feasible approach. During FY 96, final resin down-selection will occur for IPM Title 1 design. Alternate ion exchange materials for cesium exchange will be considered at that time. The purpose of this report is to conduct a search for commercially available ion exchange materials which could potentially replace CS-100. This report will provide where possible a comparison of these resin in their ability to remove low concentrations of cesium from highly alkaline solutions. Materials which show promise can be studied further, while less encouraging resins can be eliminated from consideration.

  14. Cementitious artificial aggregate particles for high-skid resistance pavements

    OpenAIRE

    De Larrard, François; MARTINEZ CASTILLO, Rafael; Sedran, Thierry; HAUZA, Philippe; Poirier, Jean Eric

    2012-01-01

    For some critical road sections, a high skid resistance of wearing course is required to minimise the risk of traffic accidents. Nowadays this skid resistance is mainly brought by the use of special aggregates as calcined bauxite, a scarce and expensive material. The paper presents a patented technology, where a special high-performance mortar is produced and crushed at early age. These cementitious artificial aggregates (CAA) can display aggregate properties close to those of calcined bauxit...

  15. Structure elucidation of alkaline earth impregnated MCM-41 type mesoporous materials obtained by direct synthesis: An experimental and theoretical study

    Science.gov (United States)

    Paz, Gizeuda L.; Silva, Francisco das Chagas M.; Araújo, Maciel M.; Lima, Francisco das Chagas A.; Luz, Geraldo E.

    2014-06-01

    In this work, MCM-41 were synthesized hydrothermally and functionalized with calcium and strontium salts by direct method, using the Si/M = 50 molar ratio, in order to elucidate the way as the alkaline earth is incorporated on MCM-41 molecular sieve. The materials were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, nitrogen adsorption-desorption and theoretical calculations by DFT method. Experimental results and computer simulations showed that the alkaline earths were incorporated on MCM-41 through a complex structure, which negatively influences on basic sites formation.

  16. REVIEW OF MECHANISTIC UNDERSTANDING AND MODELING AND UNCERTAINTY ANALYSIS METHODS FOR PREDICTING CEMENTITIOUS BARRIER PERFORMANCE

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Kosson, D.

    2009-11-30

    Cementitious barriers for nuclear applications are one of the primary controls for preventing or limiting radionuclide release into the environment. At the present time, performance and risk assessments do not fully incorporate the effectiveness of engineered barriers because the processes that influence performance are coupled and complicated. Better understanding the behavior of cementitious barriers is necessary to evaluate and improve the design of materials and structures used for radioactive waste containment, life extension of current nuclear facilities, and design of future nuclear facilities, including those needed for nuclear fuel storage and processing, nuclear power production and waste management. The focus of the Cementitious Barriers Partnership (CBP) literature review is to document the current level of knowledge with respect to: (1) mechanisms and processes that directly influence the performance of cementitious materials (2) methodologies for modeling the performance of these mechanisms and processes and (3) approaches to addressing and quantifying uncertainties associated with performance predictions. This will serve as an important reference document for the professional community responsible for the design and performance assessment of cementitious materials in nuclear applications. This review also provides a multi-disciplinary foundation for identification, research, development and demonstration of improvements in conceptual understanding, measurements and performance modeling that would be lead to significant reductions in the uncertainties and improved confidence in the estimating the long-term performance of cementitious materials in nuclear applications. This report identifies: (1) technology gaps that may be filled by the CBP project and also (2) information and computational methods that are in currently being applied in related fields but have not yet been incorporated into performance assessments of cementitious barriers. The various

  17. 碱硅酸反应对水泥基材料力学性能的影响%Influence of Alkali-Silica Reaction on Mechanical Properties of Cementitious Materials

    Institute of Scientific and Technical Information of China (English)

    陈达; 杨一琛; 冯兴国; 欧阳峰

    2014-01-01

    通过对比活性不同的两种砂制备的砂浆试样在碱硅酸反应中的膨胀率,结合三轴抗压测试研究了碱硅酸反应前后水泥基材料的力学性能变化,分析了碱硅酸反应后材料微观结构演变与力学性能间的关系。结果表明碱惰性砂制备的砂浆试样中骨料周围局部区域形成少量针状凝胶相,由于碱硅酸反应速率较慢且凝胶相较少,因而其膨胀率较小且对水泥基材料力学性能的影响较小。碱活性砂制备的砂浆试样中,骨料周围易生成大量针状凝胶层,且随着碱硅酸反应的进行凝胶相膨胀加剧,促进水泥基材料中骨料周围的水泥浆体中形成大量裂纹,进而明显影响水泥基材料的力学性能。研究表明,三轴抗压测试中,除膨胀率外,极限抗压强度和应变量也可以作为评价水泥基材料碱硅酸反应水平的参量。%The expansion rate of mortars ,prepared with active sand and non-active sand ,under alkali-silica reaction (ASR) was recorded .The effects of ASR on mechanical properties of cementitious materials were studied by triaxial compression test .The relation between the microstructure of cementitious materials and the mechanical properties was investigated as well .The results showed that there was a little blade crystals gel formed in a local region near the aggregate in materials prepared with non-active sand .For the quantity of formed gel is small ,the expansion effects of ASR are limited .Whereas ,thick blade crystals gel layers formed near the aggregate when the active sand prepared materials subjected to ASR .Moreover ,the reactive products would lead to cracks and then significantly affects the mechanical properties of mortars . Additionally ,the results showed that besides the expansion rate ,the ultimate compressive strength and the strain are also effective indexes to estimate the influence of ASR .

  18. Weathering Effect on 99Tc Leachability from Cementitious Waste Form

    International Nuclear Information System (INIS)

    The mass transfer of contaminants from the solid phase to the waste form pore water, and subsequently out of the solid waste form, is directly related to the number and size distribution of pores as well as the microstructure of the waste form. Because permeability and porosity are controlled by pore aperture size, pore volume, and pore distribution, it is important to have some indication of how these characteristics change in the waste form during weathering. Knowledge of changes in these key parameters can be used to develop predictive models that estimate diffusivity or permeability of radioactive contaminants can be used to develop predictive models that estimate diffusivity or permeability of radioactive contaminants from waste forms for long-term performance assessment. It is known that dissolution or precipitation of amorphous/crystalline phases within waste forms alters their pore structure and controls the transport of contaminants our of waste forms. One very important precipitate is calcite, which is formed as a result of carbonation reactions in cement and other high-alkalinity waste forms. Enhanced oxidation can also increase Tc leachability from the waste form. To account for these changes, weathering experiments were conducted in advance to increase our understating of the long-term Tc leachability, especially out of the cementitious waste form. Pore structure analysis was characterized using both N2 absorption analysis and XMT techniques, and the results show that cementitious waste form is a relatively highly-porous material compared to other waste forms studied in this task, Detailed characterization of Cast Stone chunks and monolith specimens indicate that carbonation reactions can change the Cast Stone pore structure, which in turn may correlate with Tc leachability. Short carbonation reaction times for the Cast Stone causes pore volume and surface area increases, while the average pore diameter decreases. Based on the changes in pore volumes

  19. Inhibition of pitting in ferrous materials by carbonate as a function of temperature and alkalinity

    Energy Technology Data Exchange (ETDEWEB)

    Adamy, S.T.; Cala, F.R. [Church and Dwight Co., Inc., Princeton, NJ (United States)

    1999-09-01

    The ability of bicarbonate and carbonate salts to inhibit pitting in ferrous materials was studied in aerated alkaline solutions at 60 C. These conditions were used in order that the systems would be representative of typical aqueous metal cleaning systems. Even though ferrous materials generally have been regarded as exhibiting a low susceptibility to corrosion at pH values > 10, it was shown that for C4140 (UNS G41400), increasing the temperature to 60 C at pH 10 increased the overall corrosion rate (as measured by linear polarization) by about 20 times to 100 times compared with the rate at room temperature. Addition of potassium bicarbonate/potassium carbonate (KHCO{sub 3}/K{sub 2}CO{sub 3}) to the solution significantly reduced the corrosion rate. The influence of temperature at pH values of 11 to 13 on overall corrosion rate was very minor. To investigate the influence of alloy type, electrochemical experiments were performed at pH 11 at 60 C on gray cast iron type G-2 class 40 (UNS F12801), C4140 carbon steel, C1008 carbon steel (UNS G10080), and unalloyed iron. In cyclic polarization studies, pitting was observed in C4140 and in the cast iron solutions at pH 11 when only sodium hydroxide (NaOH) was present. Inclusion of KHCO{sub 3} and K{sub 2}CO{sub 3} inhibited the pitting. The threshold concentration to inhibit pitting in cast iron was 2 orders of magnitude higher than in the case of C4140. C1008 and iron showed no visible tendency to pit even when no carbonate was present. The tendency to exhibit localized corrosion was therefore more prevalent in materials with a higher amount of carbon, although scanning electron microscopy (SEM) indicated that features in the initial surfaces also may have contributed to relative corrosion susceptibilities. Analyses via x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) indicated the probable presence of ferrous carbonate (FeCO{sub 3}) in the form of amorphous particulates on sample surfaces

  20. Service life prediction and cementitious composites

    DEFF Research Database (Denmark)

    Stoklund Larsen, E.

    The present Ph.D.thesis describes and discusses the applicability of a systematic methodology recommended by CIB W80/RILEM-PSL for sevice life prediction. The report describes the most important inherent and environmental factors affecting the service life of structures of cementitious composites....... On the basis of this discription of factors and experience from a test programme described in SBI Report 222, Service life prediction and fibre reinforced cementitious composites, the applicabillity of the CIB/RILEM methodology is discussed....

  1. Anodes for alkaline electrolysis

    Science.gov (United States)

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  2. The anaerobic corrosion of carbon steel in alkaline media – Phase 2 results

    Directory of Open Access Journals (Sweden)

    Fennell P.A.H.

    2013-07-01

    Full Text Available In the Belgian Supercontainer concept a carbon steel overpack will surround high-level waste and spent fuel containers and be encased in a cementitious buffer material. A programme of research was carried out to investigate and measure the rate of anaerobic corrosion of carbon steel in an artificial alkaline porewater that simulates the aqueous phase in the cementitious buffer material. The corrosion rates were measured by monitoring hydrogen evolution using a manometric gas cell technique and by applying electrochemical methods. Phase 2 of the programme has repeated and extended previous Phase 1 measurements of the effects of radiation, temperature and chloride concentration of the anaerobic corrosion rate. This paper provides an update on the results from Phase 2 of the programme. The results confirm previous conclusions that the long-term corrosion rate of carbon steel in alkaline simulated porewater is determined by the formation of a thin barrier layer and a thicker outer layer composed of magnetite. Anaerobic corrosion of steel in cement requires an external supply of water.

  3. Cementitious Grout for Closing SRS High Level Waste Tanks - 12315

    International Nuclear Information System (INIS)

    In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. Ancillary equipment abandoned in the tanks will also be filled to the extent practical. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and to be chemically reducing with a reduction potential (Eh) of -200 to -400. Grouts with this chemistry stabilize potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted to support the mass placement strategy developed by

  4. Concrete mixture characterization. Cementitious barriers partnership

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Protiere, Yannick [SIMCO Technologies, Inc., Quebec (Canada)

    2014-12-01

    This report summarizes the characterization study performed on two concrete mixtures used for radioactive waste storage. Both mixtures were prepared with approximately 425 kg of binder. The testing protocol mostly focused on determining the transport properties of the mixtures; volume of permeable voids (porosity), diffusion coefficients, and water permeability were evaluated. Tests were performed after different curing durations. In order to obtain data on the statistical distribution of transport properties, the measurements after 2 years of curing were performed on 10+ samples. Overall, both mixtures exhibited very low tortuosities and permeabilities, a direct consequence of their low water-to-binder ratio and the use of supplementary cementitious materials. The data generated on 2-year old samples showed that porosity, tortuosity and permeability follow a normal distribution. Chloride ponding tests were also performed on test samples. They showed limited chloride ingress, in line with measured transport properties. These test results also showed that both materials react differently with chloride, a consequence of the differences in the binder chemical compositions.

  5. Cementitious barriers partnership concrete mixture characterization

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Protiere, Yannick [SIMCO Technologies, Inc., Quebec (Canada)

    2014-12-01

    This report summarizes the characterization study performed on two concrete mixtures used for radioactive waste storage. Both mixtures were prepared with approximately 425 kg of binder. The testing protocol mostly focused on determining the transport properties of the mixtures; volume of permeable voids (porosity), diffusion coefficients, and water permeability were evaluated. Tests were performed after different curing durations. In order to obtain data on the statistical distribution of transport properties, the measurements after 2 years of curing were performed on 10+ samples. Overall, both mixtures exhibited very low tortuosities and permeabilities, a direct consequence of their low water-to-binder ratio and the use of supplementary cementitious materials. The data generated on 2-year old samples showed that porosity, tortuosity and permeability follow a normal distribution. Chloride ponding tests were also performed on test samples. They showed limited chloride ingress, in line with measured transport properties. These test results also showed that both materials react differently with chloride, a consequence of the differences in the binder chemical compositions.

  6. The Impact of Coal Combustion Fly Ash Used as a Supplemental Cementitious Material on the Leaching of Constituents from Cements and Concretes

    Science.gov (United States)

    The objective of this report is to compare the leaching of portland cement-based materials that have been prepared with and without coal combustion fly ash to illustrate whether there is evidence that the use of fly ash in cement and concrete products may result in increased leac...

  7. Deterioration of Cement-Concrete Cementitious Materials under Acid Rain Attack and Its Evaluation-Effect of Acid Rain Components%酸雨侵蚀下水泥基材料的腐蚀损伤与评价——酸雨介质成分的影响

    Institute of Scientific and Technical Information of China (English)

    陈梦成; 王凯; 谢力

    2012-01-01

    通过测试长期浸泡在不同酸雨中的混凝土试件相对弹性模量随侵蚀时间的变化,着重研究了酸雨酸度( pH值)及其SO2-4浓度等酸雨侵蚀介质参数对水泥混凝土抗酸雨侵蚀能力的影响.研究结果表明:在酸雨静态长期浸泡环境下,水泥基材料表面和内部腐蚀损伤程度及速率与酸雨侵蚀介质H+和SO2-4浓度以及产生的腐蚀产物有关;在酸雨介质其它离子成分保持不变的情况下,酸雨pH值和SO2-4对受酸雨腐蚀后的水泥混凝土表面性能及其内部微观结构有着十分明显的影响,并且从酸雨侵蚀破坏过程来看,各水泥混凝土随着酸雨中的H+和SO2-4浓度的增加而腐蚀越来越严重.%Variations of relative elastic modulus with deterioration duration of cement-concrete specimens immersed for long time in different simulated acid rain solutions were measured, and effects of H+ and SO42- concentrations, etc. On corrosion-resistance of cementitious materials under the acid rain attack were investigated particularly. The experiment results show that the deterioration extent and rate of the outer layer and inner layer of cementitious materials are related to H+ and SOO42- concentrations in the acid rain and their corrosion products under conditions of long-term acid rain immersion. If other components of acid rain remain unchanged, H+ and SO42- concentrations in the acid rain have great impacts on inner microstructures and surface properties of cement-concrete cementitious materials under the acid rain attack. The deterioration of cement-concrete cementitious materials becomes more and more serious with increasing H + and SO42- concentrations in the acid rain from the process of deterioration.

  8. Study on cementitious properties of steel slag

    Directory of Open Access Journals (Sweden)

    Zhu G.

    2013-01-01

    Full Text Available The converter steel slag chemical and mineral components in China’s main steel plants have been analysed in the present paper. The electronic microscope, energy spectrum analysis, X-ray diffraction analysis confirmed the main mineral compositions in the converter slag. Converter slag of different components were grounded to obtain a powder with specific surface area over 400m2/kg, making them to take place some part of the cement in the concrete as the admixture and carry out the standard tests. The results indicate that the converter slag can be used as cementitious materials for construction. Furthermore, physical mechanic and durability tests on the concrete that certain amount of cement be substituted by converter steel slag powder from different steel plants are carried out, the results show that the concrete with partial substitution of steel slag powder has the advantages of higher later period strength, better frost resistance, good wear resistance and lower hydration heat, etc. This study can be used as the technical basis for “Steel Slag Powder Used For Cement And Concrete”, “Steel Slag Portland Cement”, “Low Heat Portland Steel Slag Cement”, “Steel Slag Road Cement” in China, as well as a driving force to the works of steel slag utilization with high-value addition, circular economy, energy conservation and discharge reduction in the iron and steel industry.

  9. Service life prediction and fibre reinforced cementitious composites

    DEFF Research Database (Denmark)

    Stoklund Larsen, E.

    The present Ph.D.thesis addresses the service life concept on the fibre reinforced cementitious composites. The advantages and problems of adding fibre to a cementitious matrix and the influence on service life are described. In SBI Report 221, Service life prediction and cementitious somposites...

  10. Investigations on cementitious composites based on rubber particle waste additions

    Directory of Open Access Journals (Sweden)

    Glaucio Laun Nacif

    2013-04-01

    Full Text Available The amount of waste rubber has gradually increased over recent years because of over-growing use of rubber products. The disposal of waste rubber has caused serious environmental problems. The incorporation of recycled materials into cementitious composites is a feasible alternative that has gained ground in civil construction. The performance of such materials is much affected not only by the rubber addition, but also the particle size which has been controversially reported in the literature. In order to investigate the single effect of rubber particles into cement based materials, rubber cementitious composites were prepared with no silica particle additions. A full factorial design has been conducted to assess the influence of the rubber particle size (0.84/0.58 mm and 0.28/0.18 mm; mass fraction used (5, 15 and 30%; and water/cement ratio (0.35 and 0.50 on the physic-mechanical properties of the composites. The materials were characterized through apparent density, porosity, compressive strength, flexural strength, modulus of elasticity and microstructural analysis. The interactions of rubber particle size, rubber fraction and water/cement ratio affected significantly the density and compressive strength of the composites. The apparent porosity was influenced mainly by the rubber particle size. The flexural strength was affected by the main factors and the modulus of elasticity was affected by the interaction factors rubber particle size and fraction, and rubber fraction and w/c ratio.

  11. Numerical framework for modeling of cementitious composites at the meso-scale

    OpenAIRE

    Jerábek, Jakub

    2011-01-01

    The application of composite materials as a building material has been constantly growing in popularity during the last decades. Composite materials combine several material components to allow for an optimal utilization of their favorable properties. The focus of this work is the modeling of the cementitious composites at the extit{meso-scale}. In particular, the motivation of the thesis is to model textile reinforced concrete, a new composite material combining a high-strength textile reinf...

  12. Cementitious Barriers Partnership - FY2015 End-Year Report

    Energy Technology Data Exchange (ETDEWEB)

    Burns, H. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Langton, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, F. G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kosson, D. S. [Vanderbilt Univ., Nashville, TN (United States). School of Engineering; Brown, K. G. [Vanderbilt Univ., Nashville, TN (United States). School of Engineering; Samson, E. [SIMCO Technologies, Inc., QC (Canada); Meeussen, J. C. L. [Nuclear Research and Consultancy Group (NRG); Seignette, Paul [Energy Research Center of the Netherlands; van der Sloot, H. A. [Hans van der Sloot Consultancy

    2015-09-17

    The DOE-EM Office of Tank Waste Management Cementitious Barriers Partnership (CBP) is chartered with providing the technical basis for implementing cement-based waste forms and radioactive waste containment structures for long-term disposal. Therefore, the CBP ultimate purpose is to support progress in final treatment and disposal of legacy waste and closure of High-Level Waste (HLW) tanks in the DOE complex. This status report highlights the CBP 2015 Software and Experimental Program efforts and accomplishments that support DOE needs in environmental cleanup and waste disposal. DOE needs in this area include: Long-term performance predictions to provide credibility (i.e., a defensible technical basis) for regulator and DOE review and approvals, Facility flow sheet development/enhancements, and Conceptual designs for new disposal facilities. In 2015, the CBP developed a beta release of the CBP Software Toolbox – “Version 3.0”, which includes new STADIUM carbonation and damage models, a new SRNL module for estimating hydraulic properties and flow in fractured and intact cementitious materials, and a new LeachXS/ORCHESTRA (LXO) oxidation module. In addition, the STADIUM sulfate attack and chloride models have been improved as well as the LXO modules for sulfate attack, carbonation, constituent leaching, and percolation with radial diffusion (for leaching and transport in cracked cementitious materials). These STADIUM and LXO models are applicable to and can be used by both DOE and the Nuclear Regulatory Commission (NRC) end-users for service life prediction and long-term leaching evaluations of radioactive waste containment structures across the DOE complex.

  13. Interaction between microcapsules and cementitious matrix after cracking in a self-healing system

    NARCIS (Netherlands)

    Wang, X.; Xing, F.; Zhang, M.; Han, N.; Qian, Z.

    2013-01-01

    A new type of self-healing cementitious composites by using organic microcapsules is designed in Guangdong Key Laboratory of Durability for Coastal Civil Engineering, Shenzhen University. For the organic microcapsules, the shell material is urea formoldehyde (UF), and the core healing agent is Epoxy

  14. Acoustic Liners Utilizing A Cementitious Material Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I STTR project for NASA, Concrete Solutions Inc (CSI), together with the University of Texas at Austin (UTA), will develop a detailed research plan...

  15. Modelling of water permeability in cementitious materials

    DEFF Research Database (Denmark)

    Guang, Ye; Lura, Pietro; van Breugel, K.

    2006-01-01

    This paper presents a network model to predict the permeability of cement paste from a numerical simulation of its microstructure. Based on a linked list pore network structure, the effective hydraulic conductivity is estimated and the fluid flow is calculated according to the Hagen-Poiseuille law....... The pressure gradient at all nodes is calculated with the Gauss elimination method and the absolute permeability of the pore network is calculated directly from Darcy's law. Finally, the permeability model is validated by comparison with direct water permeability measurements. According to this model...

  16. Biodeterioration of cementitious materials in biogas digester

    OpenAIRE

    Voegel, C.; Bertron, A.; Erable, B

    2015-01-01

    In biogas production plants, concrete structures suffer chemical and biological attacks during the anaerobic digestion process. The attack on concrete may be linked to the effects of (i) organic acids; (ii) ammonium and CO2 co-produced by the microorganisms’ metabolisms; and (iii) the bacteria’s ability to form biofilms on the concrete surface. In a context of biogas industry expansion, the mechanisms of concrete deterioration need to be better understood in order to propose innovative, effic...

  17. Alkaline earth lead and tin compounds Ae2Pb, Ae2Sn, Ae = Ca, Sr, Ba, as thermoelectric materials

    Directory of Open Access Journals (Sweden)

    David Parker and David J Singh

    2013-01-01

    Full Text Available We present a detailed theoretical study of three alkaline earth compounds Ca2Pb, Sr2Pb and Ba2Pb, which have undergone little previous study, calculating electronic band structures and Boltzmann transport and bulk moduli using density functional theory. We also study the corresponding tin compounds Ca2Sn, Sr2Sn and Ba2Sn. We find that these are all narrow band gap semiconductors with an electronic structure favorable for thermoelectric performance, with substantial thermopowers for the lead compounds at temperature ranges from 300 to 800 K. For the lead compounds, we further find very low calculated bulk moduli—roughly half of the values for the lead chalcogenides, suggestive of soft phonons and hence low lattice thermal conductivity. All these facts indicate that these materials merit experimental investigation as potential high performance thermoelectrics. We find good potential for thermoelectric performance in the environmentally friendly stannide materials, particularly at high temperature.

  18. Enhancing simultaneous nitritation and anammox in recirculating biofilters: effects of unsaturated zone depth and alkalinity dissolution of packing materials.

    Science.gov (United States)

    Wen, Jianfeng; Tao, Wendong; Wang, Ziyuan; Pei, Yuansheng

    2013-01-15

    This study investigated effects of unsaturated zone depth on nitrogen removal via simultaneous nitritation and anammox in three vertical flow recirculating biofilters. The biofilters had different depths (25, 40, and 60 cm) of an unsaturated zone and the same depth (35 cm) of a saturated zone. Unsaturated zone depth could be regulated to maintain suitable dissolved oxygen concentrations and enhance entrapment of carbon dioxide for co-occurrence of aerobic ammonia oxidation and anammox in the saturated zones. The biofilters with the larger unsaturated zones had higher ammonium and total inorganic nitrogen removal rates (16.2-33.5 g N/m(3)/d and 4.6-16.7 g N/m(3)/d, respectively) than the biofilter with the smallest unsaturated zone (11.9-18.1 g N/m(3)/d and 4.4-7.9 g N/m(3)/d, respectively). Electric arc furnace slag and marble chips were packed in the unsaturated and saturated zones, respectively, as low-cost materials to supplement alkalinity and buffer pH. Laboratory experiments showed that the maximum alkalinity dissolution efficiency was 513 mg CaCO(3)/kg marble chips and 761 mg CaCO(3)/kg electric arc furnace slag. Marble chips and electric arc furnace slag could increase dairy wastewater pH up to 7 and 9, respectively. The laboratory results are also useful for utilization of furnace slag and marble chips in constructed wetlands.

  19. Alkaline "Permanent" Paper.

    Science.gov (United States)

    Pacey, Antony

    1991-01-01

    Discussion of paper manufacturing processes and their effects on library materials focuses on the promotion of alkaline "permanent" paper, with less acid, by Canadian library preservation specialists. Standards for paper acidity are explained; advantages of alkaline paper are described, including decreased manufacturing costs; and recyclability is…

  20. Evaluation of hydraulic conductivities of bentonite and rock under hyper alkaline and nitrate conditions (3)

    International Nuclear Information System (INIS)

    Circumstance of TRU waste repository shows alkaline condition due to leaching of cementitious materials. The waste containing significant soluble nitrate may changes ground water chemistry to high ion strength. Consolidation test and permeability test are carried out in order to assess quantitatively permeability of bentonite altered by hyper alkaline and nitrate. Modeling is progressed based on experimental results. The following results are obtained. 1) Consolidation test was carried out in 3 types of bentonite and 30 % sand mixture in which cation exchanged with nitrate. It is noted that permeability of bentonite increased at from 40 to 200 times by cation exchange. 2) Permeability of hyper alkaline solution is almost same to water. Permeability of hyper alkaline solution with nitrates increased corresponding to rising ion strength. 3) The results of batch of column test were simulated. The model can explain clearly the results in short period. This can estimate leaching ratio and secondary minerals. The model can simulate the experimental results by two types of velocity theory on altering bentonite. (author)

  1. FeS/C composite as high-performance anode material for alkaline nickel-iron rechargeable batteries

    Science.gov (United States)

    Shangguan, Enbo; Li, Fei; Li, Jing; Chang, Zhaorong; Li, Quanmin; Yuan, Xiao-Zi; Wang, Haijiang

    2015-09-01

    FeS and its composite, FeS/C, are synthesized via a simple calcination method followed by a co-precipitation process. The electrochemical properties of the bare FeS and FeS/C composite as anode materials for alkaline nickel-iron batteries are investigated. The results show that the FeS/C-3wt%Bi2O3-mixed electrode delivers a high specific capacity of 325 mAh g-1 at a current density of 300 mA g-1 with a faradaic efficiency of 90.3% and retains 99.2% of the initial capacity after 200 cycles. For the first time, it is demonstrated that even at a discharge rate as high as 1500 mA g-1 (5C) the FeS/C-3wt%Bi2O3-mixed electrode delivers a specific capacity of nearly 230 mAh g-1. SEM results confirm that after 200 discharge-charge cycles, the size of FeS/C particles reduces from 5 to 15 μm to less than 300 nm in diameter and the particles are highly dispersed on the surface of carbon black, which is likely caused by the dissolution-deposition process of Fe(OH)2 and Fe via intermediate iron species. As a result, the FeS/C composite exhibits considerably high charge efficiency, high discharge capacities, excellent rate capability and superior cycling stability. We believe that this composite is a potential candidate of high-performance anode materials for alkaline iron-based rechargeable batteries.

  2. Predicting the Probability of Failure of Cementitious Sewer Pipes Using Stochastic Finite Element Method

    Directory of Open Access Journals (Sweden)

    Amir M. Alani

    2015-06-01

    Full Text Available In this paper, a stochastic finite element method (SFEM is employed to investigate the probability of failure of cementitious buried sewer pipes subjected to combined effect of corrosion and stresses. A non-linear time-dependant model is used to determine the extent of concrete corrosion. Using the SFEM, the effects of different random variables, including loads, pipe material, and corrosion on the remaining safe life of the cementitious sewer pipes are explored. A numerical example is presented to demonstrate the merit of the proposed SFEM in evaluating the effects of the contributing parameters upon the probability of failure of cementitious sewer pipes. The developed SFEM offers many advantages over traditional probabilistic techniques since it does not use any empirical equations in order to determine failure of pipes. The results of the SFEM can help the concerning industry (e.g., water companies to better plan their resources by providing accurate prediction for the remaining safe life of cementitious sewer pipes.

  3. Predicting the Probability of Failure of Cementitious Sewer Pipes Using Stochastic Finite Element Method.

    Science.gov (United States)

    Alani, Amir M; Faramarzi, Asaad

    2015-06-01

    In this paper, a stochastic finite element method (SFEM) is employed to investigate the probability of failure of cementitious buried sewer pipes subjected to combined effect of corrosion and stresses. A non-linear time-dependant model is used to determine the extent of concrete corrosion. Using the SFEM, the effects of different random variables, including loads, pipe material, and corrosion on the remaining safe life of the cementitious sewer pipes are explored. A numerical example is presented to demonstrate the merit of the proposed SFEM in evaluating the effects of the contributing parameters upon the probability of failure of cementitious sewer pipes. The developed SFEM offers many advantages over traditional probabilistic techniques since it does not use any empirical equations in order to determine failure of pipes. The results of the SFEM can help the concerning industry (e.g., water companies) to better plan their resources by providing accurate prediction for the remaining safe life of cementitious sewer pipes. PMID:26068092

  4. Formation of dichloroacetylene from trichloroethylene in the presence of alkaline material--possible cause of intoxication after abundant use of chloroethylene-containing solvents.

    Science.gov (United States)

    Greim, H; Wolff, T; Höfler, M; Lahaniatis, E

    1984-12-01

    Inhabitants of a private home suffered from symptoms possibly due to dichloroacetylene intoxication. Subsequent anamnesis revealed that abundant amounts of trichloroethylene had been used to remove a wax coating from a concrete-lined stone floor. This prompted us to examine whether dichloroacetylene could have been formed. Incubation of two commercial samples of trichloroethylene with aqueous alkaline solutions between pH 11 and 13, with mortar and tile filling material resulted in the formation of dichloroacetylene. This finding suggests formation of dichloroacetylene, when trichloroethylene comes into contact with moderately alkaline material, such as moist concrete.

  5. Gel-like properties of MCM-41 material and its transformation to MCM-50 in a caustic alkaline surround

    International Nuclear Information System (INIS)

    Highlights: ► MCM-41 material transforms gradually into MCM-50 lamellar gel upon controlled exposure to 6 M KOH. ► The formation of MCM-50 ordered gel structure occurs at KOH weight content of 40–70 wt. %. ► MCM gel phase shows pseudoplastic behavior and possesses homogeneous matrix texture. -- Abstract: MCM-41 material, prepared by sol–gel method, reveals gel-like properties in a caustic alkaline environment, i.e., 6 M potassium hydroxide (KOH) electrolyte. The gellation of MCM-41 starts at a KOH weight ratio of 40 wt.%. The structural change of the material is verified with X-Ray diffractograms and supported by observation using Scanning Electron Microscope (SEM). As the KOH weight ratio increases, the MCM-41 hexagonal arrays structure gradually transforms into MCM-50 lamellar structure before disappearing completely at 80 wt.% KOH. The MCM gel phase is further characterized by rotational viscometry and texture analysis. The gel phase shows shear thinning or pseudoplastic behavior and possesses homogeneous matrix structure.

  6. Direct assessment of tensile stress-crack opening behavior of Strain Hardening Cementitious Composites (SHCC)

    OpenAIRE

    Pereira, E. N. B.; Fischer, G.; Barros, Joaquim A. O.

    2012-01-01

    The process of designing Strain Hardening Cementitious Composites (SHCC) is driven by the need to achieve certain performance parameters in tension. These are typically the pseudo-strain hardening behavior and the ability to develop multiple cracks. The assessment of the tensile load-deformation of these materials is therefore of great importance and is frequently carried out by characterizing the material tensile stress-strain behavior. In this paper an alternative approach...

  7. Characterization of cracking in strain hardening cementitious composites using the compact tension test

    OpenAIRE

    Pereira, E. N. B.; Fischer, G.; Barros, Joaquim A. O.

    2012-01-01

    The characterization of the tensile behavior of strain hardening cementitious composites (SHCC) is of significant importance to the material design. In a previous work the tensile stress-crack opening response of different types of SHCC was characterized using notched specimens tested in direct tension, where a single crack was obtained and mechanically characterized by performing Single Crack Tension Test (SCTT). In this study the tensile behavior of SHCC materials is charact...

  8. Alkaline chemical activation of urban glass wastes to produce cementituous materials

    OpenAIRE

    Torres, Trinidad José de; Palacios, M.; Hellouin, M.; Puertas, F.

    2009-01-01

    En: 1st Spanish National Conference on Advances in Materials Recycling and Eco – Energy Madrid, 12-13 November 2009.-- Editors: F. A. López, F. Puertas, F. J. Alguacil and A. Guerrero.-- 4 pages, 4 figures, 2 tables.

  9. OVERVIEW OF THE U.S. DEPARTMENT OF ENERGY AND NUCLEAR REGULATORY COMMISSION PERFORMANCE ASSESSMENT APPROACHES: CEMENTITIOUS BARRIERS PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Burns, H.

    2009-05-29

    Engineered barriers including cementitious barriers are used at sites disposing or contaminated with low-level radioactive waste to enhance performance of the natural environment with respect to controlling the potential spread of contaminants. Drivers for using cementitious barriers include: high radionuclide inventory, radionuclide characteristics (e.g., long half-live, high mobility due to chemical form/speciation, waste matrix properties, shallow water table, and humid climate that provides water for leaching the waste). This document comprises the first in a series of reports being prepared for the Cementitious Barriers Partnership. The document is divided into two parts which provide a summary of: (1) existing experience in the assessment of performance of cementitious materials used for radioactive waste management and disposal and (2) sensitivity and uncertainty analysis approaches that have been applied for assessments. Each chapter is organized into five parts: Introduction, Regulatory Considerations, Specific Examples, Summary of Modeling Approaches and Conclusions and Needs. The objective of the report is to provide perspective on the state of the practice for conducting assessments for facilities involving cementitious barriers and to identify opportunities for improvements to the existing approaches. Examples are provided in two contexts: (1) performance assessments conducted for waste disposal facilities and (2) performance assessment-like analyses (e.g., risk assessments) conducted under other regulatory regimes. The introductory sections of each section provide a perspective on the purpose of performance assessments and different roles of cementitious materials for radioactive waste management. Significant experience with assessments of cementitious materials associated with radioactive waste disposal concepts exists in the US Department of Energy Complex and the commercial nuclear sector. Recently, the desire to close legacy facilities has created

  10. WORKING WITH ALKALINE MATERIALS TO ACHIEVE A CLASS B, CLASS A, AND/OR A BIOSOLIDS THAT DOES NOT ATTRACT VECTORS

    Science.gov (United States)

    This workshop presentation begins with a discussion of the use of lime and other alkaline materials from the very earliest times to the present for killing bacteria, viruses and parasites and for controlling odors in wastewaters and sludge. It answers the question "How did EPA ar...

  11. CMP process optimization using alkaline bulk copper slurry on a 300 mm Applied Materials Reflexion LK system

    International Nuclear Information System (INIS)

    CMP process optimization for bulk copper removal based on alkaline copper slurry was performed on a 300 mm Applied Materials Reflexion LK system. Under the DOE condition, we conclude that as the pressure increases, the removal rate increases and non-uniformity is improved. As the slurry flow rate increases, there is no significant improvement in the material removal rate, but it does slightly reduce the WIWNU and thus improve uniformity. The optimal variables are obtained at a reduced pressure of 1.5 psi and a slurry flow rate of 300 ml/min. Platen/carrier rotary speed is set at a constant value of 97/103 rpm. We obtain optimized CMP characteristics including a removal rate over 6452 Å/min and non-uniformity below 4% on blanket wafer and the step height is reduced by nearly 8000 Å/min in the center of the wafer on eight layers of copper patterned wafer, the surface roughness is reduced to 0.225 nm. (semiconductor technology)

  12. Design of a novel optically stimulated luminescent dosimeter using alkaline earth sulfides doped with SrS:Eu,Sm materials

    Institute of Scientific and Technical Information of China (English)

    Yanping Liu; Zhaoyang Chen; Yanwei Fan; Weizhen Ba; Wu Lu; Qi Guo; Shilie Pan; Aimin Chang; Xinqiang Tang

    2008-01-01

    Optically stimulated luminescence (OSL) is the luminescence emitted from an irradiated insulator or semiconductor during exposure to light.The OSL intensity is a function of the dose of radiation absorbed by the sample and thus can be used as the basis of a radiation dosimetry method.Alkaline earth sulfides doped with rare-earth elements such as Ce,Sm and Eu are OSL dosimeters having very high sensitivity,and the OSL with a short time constant is separated from the stimulated light.In this paper,a novel OSL dosimeter designed with SrS:Eu,Sm materials is described.The dosimeter takes advantage of the characteristics of charge trapping materials SrS:Eu,Sm that exhibit OSL.The measuring range of the dosimeter is from 0.01 to 100Gy.The equipment,which is relatively simple and small in size,is promising for applications in space exploration and high dose radiation dosimetry.

  13. Hierarchical Co@C Nanoflowers: Synthesis and Electrochemical Properties as an Advanced Negative Material for Alkaline Secondary Batteries.

    Science.gov (United States)

    Li, Li; Ma, Jianmin; Zhang, Zichao; Cao, Bingqiang; Wang, Yijing; Jiao, Lifang; Yuan, Huatang

    2015-11-01

    Hierarchical Co@C nanoflowers have been facilely synthesized via a simple route based on a low-temperature solid-phase reaction. The obtained hierarchical Co@C nanoflowers, each constructed of a number of nanosheets, display a three-dimensional architecture with an average grain size of about 300 nm. The electrochemical properties of the Co@C nanoflowers as the negative material for Ni/Co cells have been systemically researched. In particular, Co@C material exhibits high discharge-specific capacity and good cycling stability. The discharge-specific capacity of our Co@C-3 electrode can reach 612.1 mA h g(-1), and the specific capacity of 415.3 mA h g(-1) is retained at a current density of 500 mA g(-1) after 120 cycles, indicating its great potential for high-performance Ni/Co batteries. Interestingly, the as-synthesized Co@C electrode also exhibits favorable rate capability. These desirable properties can be attributed to porous pathways, which allow fast transportation of ions and electrons and easy accessibility to the electrolyte. The dominant electrochemical mechanism of Co@C can be attributed to the reduction-oxidation reaction between metallic cobalt and cobalt hydroxide in alkaline solution. PMID:26460934

  14. Effects of Using Silica Fume and Polycarboxylate-Type Superplasticizer on Physical Properties of Cementitious Grout Mixtures for Semiflexible Pavement Surfacing

    Science.gov (United States)

    Karim, Mohamed Rehan; Mahmud, Hilmi; Mashaan, Nuha S.; Katman, Herdayati; Husain, Nadiah Md

    2014-01-01

    Semi-flexible pavement surfacing is a composite pavement that utilizes the porous pavement structure of the flexible bituminous pavement, which is subsequently grouted with appropriate cementitious materials. This study aims to investigate the compressive strength, flexural strength, and workability performance of cementitious grout. The grout mixtures are designed to achieve high strength and maintain flow properties in order to allow the cement slurries to infiltrate easily through unfilled compacted skeletons. A paired-sample t-test was carried out to find out whether water/cement ratio, SP percentages, and use of silica fume influence the cementitious grout performance. The findings showed that the replacement of 5% silica fume with an adequate amount of superplasticizer and water/cement ratio was beneficial in improving the properties of the cementitious grout. PMID:24526911

  15. Effects of using silica fume and polycarboxylate-type superplasticizer on physical properties of cementitious grout mixtures for semiflexible pavement surfacing.

    Science.gov (United States)

    Koting, Suhana; Karim, Mohamed Rehan; Mahmud, Hilmi; Mashaan, Nuha S; Ibrahim, Mohd Rasdan; Katman, Herdayati; Husain, Nadiah Md

    2014-01-01

    Semi-flexible pavement surfacing is a composite pavement that utilizes the porous pavement structure of the flexible bituminous pavement, which is subsequently grouted with appropriate cementitious materials. This study aims to investigate the compressive strength, flexural strength, and workability performance of cementitious grout. The grout mixtures are designed to achieve high strength and maintain flow properties in order to allow the cement slurries to infiltrate easily through unfilled compacted skeletons. A paired-sample t-test was carried out to find out whether water/cement ratio, SP percentages, and use of silica fume influence the cementitious grout performance. The findings showed that the replacement of 5% silica fume with an adequate amount of superplasticizer and water/cement ratio was beneficial in improving the properties of the cementitious grout. PMID:24526911

  16. Effects of Using Silica Fume and Polycarboxylate-Type Superplasticizer on Physical Properties of Cementitious Grout Mixtures for Semiflexible Pavement Surfacing

    Directory of Open Access Journals (Sweden)

    Suhana Koting

    2014-01-01

    Full Text Available Semi-flexible pavement surfacing is a composite pavement that utilizes the porous pavement structure of the flexible bituminous pavement, which is subsequently grouted with appropriate cementitious materials. This study aims to investigate the compressive strength, flexural strength, and workability performance of cementitious grout. The grout mixtures are designed to achieve high strength and maintain flow properties in order to allow the cement slurries to infiltrate easily through unfilled compacted skeletons. A paired-sample t-test was carried out to find out whether water/cement ratio, SP percentages, and use of silica fume influence the cementitious grout performance. The findings showed that the replacement of 5% silica fume with an adequate amount of superplasticizer and water/cement ratio was beneficial in improving the properties of the cementitious grout.

  17. A Review on Nanomaterial Dispersion, Microstructure, and Mechanical Properties of Carbon Nanotube and Nanofiber Reinforced Cementitious Composites

    Directory of Open Access Journals (Sweden)

    Shama Parveen

    2013-01-01

    Full Text Available Excellent mechanical, thermal, and electrical properties of carbon nanotubes (CNTs and nanofibers (CNFs have motivated the development of advanced nanocomposites with outstanding and multifunctional properties. After achieving a considerable success in utilizing these unique materials in various polymeric matrices, recently tremendous interest is also being noticed on developing CNT and CNF reinforced cement-based composites. However, the problems related to nanomaterial dispersion also exist in case of cementitious composites, impairing successful transfer of nanomaterials' properties into the composites. Performance of cementitious composites also depends on their microstructure which is again strongly influenced by the presence of nanomaterials. In this context, the present paper reports a critical review of recent literature on the various strategies for dispersing CNTs and CNFs within cementitious matrices and the microstructure and mechanical properties of resulting nanocomposites.

  18. Electrodeposited gold nanoparticles on carbon nanotube-textile: Anode material for glucose alkaline fuel cells

    KAUST Repository

    Pasta, Mauro

    2012-06-01

    In the present paper we propose a new anode material for glucose-gluconate direct oxidation fuel cells prepared by electrodepositing gold nanoparticles onto a conductive textile made by conformally coating single walled carbon nanotubes (SWNT) on a polyester textile substrate. The electrodeposition conditions were optimized in order to achieve a uniform distribution of gold nanoparticles in the 3D porous structure of the textile. On the basis of previously reported studies, the reaction conditions (pH, electrolyte composition and glucose concentration) were tuned in order to achieve the highest oxidation rate, selectively oxidizing glucose to gluconate. The electrochemical characterization was carried out by means of cyclic voltammetry. © 2012 Elsevier B.V. All rights reserved.

  19. Non-cementitious compositions comprising vaterite and methods thereof

    Energy Technology Data Exchange (ETDEWEB)

    Devenney, Martin; Fernandez, Miguel; Morgan, Samuel O.

    2015-09-15

    Non-cementitious compositions and products are provided. The compositions of the invention include a carbonate additive comprising vaterite such as reactive vaterite. Additional aspects of the invention include methods of making and using the non-cementitious compositions and products.

  20. In situ preparation of 1D Co@C composite nanorods as negative materials for alkaline secondary batteries.

    Science.gov (United States)

    An, Cuihua; Wang, Yijing; Xu, Yanan; Wang, Ying; Huang, Yanan; Jiao, Lifang; Yuan, Huatang

    2014-03-26

    Cobalt-based coordination compounds were successfully prepared via employing nitrilotriacetic acid (NTA) as a complexing agent through a mild surfactant-free solvothermal process. Cobalt ions are linked with the amino group or carboxyl groups of NTA to become one-dimensional nanorods that can be proved by Fourier transform infrared measurement findings. The morphologies of the precursor Co-NTA highly depend on the solvent composition, the reaction time and temperature. The probable growth mechanism has been proposed. After heat treatment, the Co-NTA precursor can be completely converted into Co@C nanorods assembled by numerous core-shell-like Co@C nanoparticles, which preserved the rodlike morphology. The as-prepared Co@C composites display a rodlike morphology with 4 μm length and 100 nm diameter. The electrochemical performances of this novel Co@C material as the alkaline secondary Ni/Co battery negative electrode have been systematically researched. The discharge capacity of the Co@C-1 composite electrode can attain 609 mAh g(-1) and retains about 383.3 mAh g(-1) after 120 cycles (the discharge current density of 500 mA g(-1)). The novel material exhibits a high discharge capacity of 610 and 470 mAh g(-1) at discharge currents of 100 and 1000 mA g(-1), respectively. This suggests that approximately 77% of the discharge capacity is kept when the discharge current density is increased to 1000 mA g(-1) (10 times the initial current density of 100 mA g(-1)). The excellent electrochemical properties could be ascribed to the porous channels of the novel Co@C materials, which is beneficial to electrolyte diffusion and electrons and ions transportation. PMID:24571638

  1. Interaction between microcapsules and cementitious matrix after cracking in a self-healing system

    OpenAIRE

    Wang, X.; Xing, F.(Department of Physics, University of Oxford, Oxford, United Kingdom); Zhang, M.; Han, N.; Qian, Z.

    2013-01-01

    A new type of self-healing cementitious composites by using organic microcapsules is designed in Guangdong Key Laboratory of Durability for Coastal Civil Engineering, Shenzhen University. For the organic microcapsules, the shell material is urea formoldehyde (UF), and the core healing agent is Epoxy. The effect of organic microcapsules on mechanical behaviors of the composite specimens and the interaction between an organic microcapsule and an approaching crack is investigated in this study. ...

  2. THE COMPARISON OF STRENGTH PROPERTY BETWWEEN KRAFT PULP AND ALKALINE SULFITE-ANTHRAQUINONE PULP FOR THICKER CELL WALL FIBER MATERIALS

    Institute of Scientific and Technical Information of China (English)

    LiLi; FeifeiWang; YunzhanZhang

    2004-01-01

    The comparison of strength property between kraftpulp ( KP ) and Alkaline Sulfite-Anthraquinone(AS-AQ) pulp for thicker cell wall fiber materialsLarch and Quercus as examples was studied. Theaverage coefficient of flexibility of Larch andQuercus are 0.6-0.7 and 0.45-0.50, respectively. Theresults showed that the strength property of thickercell wall pulp is some what different from thosereported earlier. The strengths of AS-AQ are allhigher than those of KP for Larch and Quercus. ForLarch, under same beating degree the breaking lengthof AS-AQ is 8-16% higher than that of KP, burstindex 3-14% higher, folding endurance 30% higher,tear index slightly higher. For Quercus, the breakinglength of AS-AQ is 5-10% higher then that of KP,burst index 10-15% higher, folding endurance30-50% higher, tear index 5-15% higher. Under thesame breaking length the tear index of AS-AQ pulpis significantly higher than that of KP for both Larchand Quercus.

  3. Penetrablity for cementitious injection groups

    OpenAIRE

    Eklund, Daniel

    2003-01-01

    Grouting as a method of strengthening and sealing rock, soiland concrete is widely spread. The possibilities of sealingstructures are of great importance in both economical andenvironmental point of view. The costs of grouting have incertain projects been as high as the cost for the blasting andexcavation of the tunnel. To improve the technique of groutingwith cement based material, it is necessary to focus on theproperties of the used grout mixture. The ability of a grout to penetrate caviti...

  4. Mechanical interaction of Engineered Cementitious Composite (ECC) reinforced with Fiber Reinforced Polymer (FRP) rebar in tensile loading

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi; Fischer, Gregor; Jönsson, Jeppe

    2010-01-01

    This paper introduces a preliminary study of the composite interaction of Engineered Cementitious Composite (ECC), reinforced with Glass Fiber Reinforced Polymer (GFRP) rebar. The main topic of this paper will focus on the interaction of the two materials (ECC and GFRP) during axial loading...

  5. Properties and Microstructure of Polymer Emulsions Modified Fibers Reinforced Cementitious Composites

    Institute of Scientific and Technical Information of China (English)

    WU Ying; SUN Qianyao; KONG Lian; FANG He

    2014-01-01

    The synthesis and characterization of a new class of cementitious composites filled with polymer emulsions were investigated, and their superior mechanical strength and durability properties compared to composites devoid of fillers were reported. Polymer emulsions were utilized to mechanically reinforce the composite and bridge the cement, fly ash, aggregate and fibers. The results reveal that the epoxy emulsion and poly (ethylene-co-vinyl acetate) emulsion markedly enhance the mechanical and durability properties of cemetitious composites. The fibers can be pulled out in the form of slip-hardening and the abrasion phenomenon can be observed clearly on the surface of the fibers. The hydration extent of cement is higher than that of the pristine composites. The polymer modified cementitious composites designed on micromechanics, have flexibility and plasticity which could be applied for a novel form of multifunctional materials with a range of pipeline coatings applications.

  6. Mobility of as, Cu, Cr, and Zn from tailings covered with sealing materials using alkaline industrial residues: a comparison between two leaching methods.

    Science.gov (United States)

    Jia, Yu; Maurice, Christian; Öhlander, Björn

    2016-01-01

    Different alkaline residue materials (fly ash, green liquor dregs, and lime mud) generated from the pulp and paper industry as sealing materials were evaluated to cover aged mine waste tailings (<1% sulfur content, primarily pyrite). The mobility of four selected trace elements (Cr, Cu, Zn, and As) was compared based on batch and column leaching studies to assess the effectiveness of these alkaline materials as sealing agents. Based on the leaching results, Cr, Cu, and Zn were immobilized by the alkaline amendments. In the amended tailings in the batch system only As dramatically exceeded the limit values at L/S 10 L/kg. The leaching results showed similar patterns to the batch results, though leached Cr, Cu, and Zn showed higher levels in the column tests than in the batch tests. However, when the columns were compared with the batches, the trend for Cu was opposite for the unamended tailings. By contrast, both batch and column results showed that the amendment caused mobilization of As compared with the unamended tailings in the ash-amended tailings. The amount of As released was greatest in the ash column and decreased from the dregs to the lime columns. The leaching of As at high levels can be a potential problem whenever alkaline materials (especially for fly ash) are used as sealing materials over tailings. The column test was considered by the authors to be a more informative method in remediation of the aged tailings with low sulfur content, since it mimics better actual situation in a field. PMID:26330323

  7. Relations between structure and material properties in earth alkaline silicate basing phosphors; Struktureigenschaftsbeziehungen in Erdalkalisilikat basierenden Leuchtstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Wolfgang

    2008-03-19

    This work is basing on the relation between structure and luminescence of Eu{sup 2+} doped Earth-Alkaline-Silicates. After an overview of Earth-Alkaline-Silicates silicates with an additional cation (Li{sup +}, Al{sup 3+}) and an additional anion (Cl{sup -}, N{sup 3-}) are examined in chapter 4 and 5. Basing on this data an relation between structural influence - like ion-radii, anion and coordination polyeder - and phosphor luminescence is set up. The ability of using as an industrial phosphor is made in the final chapter. (orig.)

  8. Self-decomposable Fibrous Bridging Additives for Temporary Cementitious Fracture Sealers in EGS Wells

    Energy Technology Data Exchange (ETDEWEB)

    Sugama T.; Pyatina, T.; Gill, S.; Kisslinger, K.; Iverson, B.; Bour, D.

    2012-11-01

    This study evaluates compatibility of a self-degradable temporary fracture sealer with the drilling mud and plugging and self-degrading performance of different fibers to be used in combination with the sealer. The sodium silicate-activated slag/Class C fly ash (SSASC) cementitious sealer must plug fractures at 85oC to allow continuous well drilling and it must degrade and leave the fractures open for water at later times when exposed to temperatures above 200oC. The sealer showed good compatibility with the mud. Even the blend of 80/20 vol.% of sealer/mud reached a compressive strength of more than 2000 psi set as one of the material criteria, mostly due to the additional activation of the slag and Class C fly ash by the alkaline ingredient present in the drilling fluid. In contrast, the drilling fluid was detrimental to the compressive strength development in conventional Class G well cement, so that it failed to meet this criterion. Among several organic fibers tested both polyvinyl alcohol (PVA)-and nylon-based fibers showed adequate plugging of the sealer in slot nozzles of 1-in. wide x 6-in. long x 0.08 in. and 0.24 in. high under pressures up to 700 psi. PVA fibers displayed better compressive toughness and self-degrading properties than nylon. The compressive toughness of sealers made by adding 1.0 wt% 6 mm-length PVA and 0.5 wt% 19 mm-length PVA was 9.5-fold higher than that of a non-bridged sealer. One factor governing the development of such high toughness was an excellent adherence of PVA to the SSASC cement. The alkali-catalyzed self-decomposition of PVA at 200°C led to the morphological transformation of the material from a fibrous structure to a microscale flake-like structure that helped the desirable conversion of the sealer into small fragments. In contrast, nylon’s decomposition provided a reticular network structure in the self-degraded sealer resulting in bigger fragments compared against the sealer with PVA. The PVA fiber has a high

  9. Setup of Extruded Cementitious Hollow Tubes as Containing/Releasing Devices in Self-Healing Systems

    Directory of Open Access Journals (Sweden)

    Alessandra Formia

    2015-04-01

    Full Text Available The aim of this research is to produce self-healing cementitious composites based on the use of cylindrical capsules containing a repairing agent. Cementitious hollow tubes (CHT having two different internal diameters (of 2 mm and 7.5 mm were produced by extrusion and used as containers and releasing devices for cement paste/mortar healing agents. Based on the results of preliminary mechanical tests, sodium silicate was selected as the healing agent. The morphological features of several mix designs used to manufacture the extruded hollow tubes, as well as the coatings applied to increase the durability of both core and shell materials are discussed. Three-point bending tests were performed on samples produced with the addition of the above-mentioned cementitious hollow tubes to verify the self-healing effectiveness of the proposed solution. Promising results were achieved, in particular when tubes with a bigger diameter were used. In this case, a substantial strength and stiffness recovery was observed, even in specimens presenting large cracks (>1 mm. The method is inexpensive and simple to scale up; however, further research is needed in view of a final optimization.

  10. Cementitious Barriers Partnership (CBP): Training and Release of CBP Toolbox Software, Version 1.0 - 13480

    International Nuclear Information System (INIS)

    The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional collaboration supported by the Office of Tank Waste Management within the Office of Environmental Management of U.S. Department of Energy (US DOE). The CBP program has developed a set of integrated tools (based on state-of-the-art models and leaching test methods) that improve understanding and predictions of the long-term hydraulic and chemical performance of cementitious barriers used in nuclear applications. Tools selected for and developed under this program are intended to evaluate and predict the behavior of cementitious barriers used in near-surface engineered waste disposal systems for periods of performance up to or longer than 100 years for operating facilities and longer than 1,000 years for waste management purposes. CBP software tools were made available to selected DOE Office of Environmental Management and field site users for training and evaluation based on a set of important degradation scenarios, including sulfate ingress/attack and carbonation of cementitious materials. The tools were presented at two-day training workshops held at U.S. National Institute of Standards and Technology (NIST), Savannah River, and Hanford included LeachXSTM/ORCHESTRA, STADIUMR, and a CBP-developed GoldSim Dashboard interface. Collectively, these components form the CBP Software Toolbox. The new U.S. Environmental Protection Agency leaching test methods based on the Leaching Environmental Assessment Framework (LEAF) were also presented. The CBP Dashboard uses a custom Dynamic-link library developed by CBP to couple to the LeachXSTM/ORCHESTRA and STADIUMR codes to simulate reactive transport and degradation in cementitious materials for selected performance assessment scenarios. The first day of the workshop introduced participants to the software components via presentation materials, and the second day included hands-on tutorial exercises followed by discussions of

  11. Shrinkage Reducing Measures for Engineering Cementitious Composites

    Institute of Scientific and Technical Information of China (English)

    YANG Yingzi; YAO Yan; GAO Xiaojian; DENG Hongwei; YU Pengzhan

    2008-01-01

    Inhibition measurement of shrinkage of engineering cementitious composites(ECC) was investigated due to typical ECC with higher free drying shrinkage.The effects of expanded admixture (EA),shrinkage reducing admixture (SRA),coarse sand+stone powder (CS+SP)and superabsorbent polymer (SAP) on drying shrinkage and mechanical properties were studied.The experimental results show that ECC incorporating EA,SRA and coarse sand can retain around 60% of the typical ECC's free drying shrinkage.Superabsorbent polymerl(SAP) can delay the development of free drying shrinkage of ECC at different ages,and the effect of SAP is not distinct like the actions of EA,superabsorbent polymer(SRA) and coarse sand.Significantly,SAP may act as artificial flaw to form a more homogeneous defect system that increases the potential of saturated multiple cracking,hence the ductility of ECC will be improved greatly.

  12. Interrelationship of Kaolin, Alkaline Liquid Ratio and Strength of Kaolin Geopolymer

    Science.gov (United States)

    Ramasamy, Shamala; Hussin, Kamarudin; Bakri Abdullah, Mohd Mustafa Al; Mohd Ruzaidi Ghazali, Che; Binhussain, Mohammed; Sandu, Andrei Victor

    2016-06-01

    Geopolymer is an incredible alternative green cementitious material which has ceramic-like properties, but does not require calcining that leads to reduction in processing energy usage. The purpose of this research is to study the correlation between kaolin: liquid ratio with the performance of kaolin geopolymer. Kaolin, a prominent raw geopolymer material was used to prepare enhanced geopolymer paste by mixing with alkaline activator solution. Interrelationship of kaolin to alkaline liquid ratio with hardness and flexural strength was the focus of this work. Therefore kaolin geopolymer paste with varying solid to liquid ratio ranging from 0.7 to 1.1 was prepared. Geopolymer paste was coated on low grade wood substrate prior to Vickers hardness and flexural strength. X-ray diffraction was conducted on geopolymer paste itself after 7 days to analyze the change in phase identification at early age. Kaolin geopolymer coating on wood with solid/liquid(S/L) ratio of 0.7 shows the most promising hardness and flexural strength of 15.3 Hv and 94.73MPa. X-ray diffraction test showed high existence of kaolinite on higher S/L ratio where as sodalite was observed in S/L ratio of 0.7. Microstructural studies also compliments our finding which further proves the positive dependency of S/L ratio and kaolin geopolymer strength.

  13. Uniaxial Compressive Properties of Ultra High Toughness Cementitious Composite

    Institute of Scientific and Technical Information of China (English)

    CAI Xiangrong; XU Shilang

    2011-01-01

    Uniaxial compression tests were conducted to characterize the main compressive performance of ultra high toughness cementitious composite(UHTCC)in terms of strength and toughness and to obtain its stress-strain relationships.The compressive strength investigated ranges from 30 MPa to 60 MPa.Complete stress-strain curves were directly obtained,and the strength indexes,including uniaxial compressive strength,compressive strain at peak stress,elastic modulus and Poisson's ratio,were calculated.The comparisons between UHTCC and matrix were also carried out to understand the fiber effect on the compressive strength indexes.Three dimensionless toughness indexes were calculated,which either represent its relative improvement in energy absorption capacity because of fiber addition or provide an indication of its behavior relative to a rigid-plastic material.Moreover,two new toughness indexes,which were named as post-crack deformation energy and equivalent compressive strength,were proposed and calculated with the aim at linking up the compressive toughness of UHTCC with the existing design concept of concrete.The failure mode was also given.The study production provides material characteristics for the practical engineering application of UHTCC.

  14. FeS anchored reduced graphene oxide nanosheets as advanced anode material with superior high-rate performance for alkaline secondary batteries

    Science.gov (United States)

    Shangguan, Enbo; Guo, Litan; Li, Fei; Wang, Qin; Li, Jing; Li, Quanmin; Chang, Zhaorong; Yuan, Xiao-Zi

    2016-09-01

    A new nanocomposite formulation of the iron-based anode for alkaline secondary batteries is proposed. For the first time, FeS nanoparticles anchored on reduced graphene oxide (RGO) nanosheets are synthesized via a facile, environmentally friendly direct-precipitation approach. In this nanocomposite, FeS nanoparticles are anchored uniformly and tightly on the surface of RGO nanosheets. As an alkaline battery anode, the FeS@RGO electrode delivers a superior high-rate charge/discharge capability and outstanding cycling stability, even at a condition without any conductive additives and a high electrode loading of ∼40 mg cm-2. At high charge/discharge rates of 5C, 10C and 20C (6000 mA g-1), the FeS@RGO electrode presents a specific capacity of ∼288, 258 and 220 mAh g-1, respectively. Moreover, the FeS@RGO electrode exhibits an admirable long cycling stability with a superior capacity retention of 87.6% for 300 cycles at a charge/discharge rate of 2C. The excellent electrochemical properties of the FeS@RGO electrode can be stemmed from the high specific surface area, peculiar electric conductivity and robust sheet-anchored structure of the FeS@RGO nanocomposite. By virtue of its superior fast charge/discharge properties, the FeS@RGO nanocomposite is suitable as an advanced anode material for high-performance alkaline secondary batteries.

  15. Cementitious waste option scoping study report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.E.; Taylor, D.D.

    1998-02-01

    A Settlement Agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering and Environmental Laboratory (INEEL) will be treated so that it is ready to be moved out of Idaho for disposal by a target date of 2035. This study investigates the nonseparations Cementitious Waste Option (CWO) as a means to achieve this goal. Under this option all liquid sodium-bearing waste (SBW) and existing HLW calcine would be recalcined with sucrose, grouted, canisterized, and interim stored as a mixed-HLW for eventual preparation and shipment off-Site for disposal. The CWO waste would be transported to a Greater Confinement Disposal Facility (GCDF) located in the southwestern desert of the US on the Nevada Test Site (NTS). All transport preparation, shipment, and disposal facility activities are beyond the scope of this study. CWO waste processing, packaging, and interim storage would occur over a 5-year period between 2013 and 2017. Waste transport and disposal would occur during the same time period.

  16. Acoustic Emission Monitoring of Cementitious Wasteforms

    International Nuclear Information System (INIS)

    A summary is presented of the potential of non-destructive acoustic emission (AE) method to be applied for structures immobilising nuclear wastes. The use and limitations of the method are discussed with given examples of experimental configurations and results obtained from AE monitoring and data analysis of two different processes addressing particular issues related to the nuclear waste immobilisation. These are (a) corrosion of aluminium, classified as intermediate level waste (ILW) in the UK, encapsulated in cementitious structures and (b) partial melting and solidification during cooling of granite at a pressure of 0.15 GPa which simulates the conditions in a deep borehole disposal of canisters of vitrified high level waste (HLW). Methodology for analysis of the collected data and characterisation of the potential AE sources is performed at different steps including simple signals count and more complex signal parameter-based approach and advanced signal processing. The AE method has been shown as a potential tool for monitoring and inspection of structures immobilising nuclear wastes in relation to the time progress of different interactions of the waste with the encapsulating matrix or the wasteform with the hosting environment for permanent disposal. (author)

  17. Cementitious waste option scoping study report

    International Nuclear Information System (INIS)

    A Settlement Agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering and Environmental Laboratory (INEEL) will be treated so that it is ready to be moved out of Idaho for disposal by a target date of 2035. This study investigates the nonseparations Cementitious Waste Option (CWO) as a means to achieve this goal. Under this option all liquid sodium-bearing waste (SBW) and existing HLW calcine would be recalcined with sucrose, grouted, canisterized, and interim stored as a mixed-HLW for eventual preparation and shipment off-Site for disposal. The CWO waste would be transported to a Greater Confinement Disposal Facility (GCDF) located in the southwestern desert of the US on the Nevada Test Site (NTS). All transport preparation, shipment, and disposal facility activities are beyond the scope of this study. CWO waste processing, packaging, and interim storage would occur over a 5-year period between 2013 and 2017. Waste transport and disposal would occur during the same time period

  18. Conductivity-based strain monitoring and damage characterization of fiber reinforced cementitious structural components

    Science.gov (United States)

    Hou, Tsung-Chin; Lynch, Jerome P.

    2005-05-01

    In recent years, a new class of cementitious composite has been proposed for the design and construction of durable civil structures. Termed engineered cementitious composites (ECC), ECC utilizes a low volume fraction of short fibers (polymer, steel, carbon) within a cementitious matrix resulting in a composite that strain hardens when loaded in tension. By refining the mechanical properties of the fiber-cement interface, the material exhibits high tolerance to damage. This study explores the electrical properties of ECC materials to monitor their performance and health when employed in the construction of civil structures. In particular, the conductivity of ECC changes in proportion to strain indicating that the material is piezoresistive. In this paper, the piezoresistive properties of various ECC composites are thoroughly explored. To measure the electrical resistance of ECC structures in the field, a low-cost wireless active sensing unit is proposed. The wireless active sensing unit is capable of applying DC and AC voltage signals to ECC elements while simultaneously measuring their corresponding voltages away from the signal input. By locally processing the corresponding input-output electrical signals recorded by the wireless active sensing units, the magnitude of strain in ECC elements can be calculated. In addition to measuring strain, the study seeks to correlate changes in ECC electrical properties to the magnitude of crack damage witnessed in tested specimens. A large number of ECC specimens are tested in the laboratory including a large-scale ECC bridge pier laterally loaded under cyclically repeated drift reversals. The novel self-sensing properties of ECC exploited by a wireless monitoring system hold tremendous promise for the advancement of structural health monitoring of ECC structures.

  19. Predictive calculations to assess the long-term effect of cementitious materials on the pH and solubility of uranium(VI) in a shallow land disposal environment

    Energy Technology Data Exchange (ETDEWEB)

    Criscenti, L.J.; Serne, R.J.; Krupka, K.M. [Pacific Northwest Lab., Richland, WA (United States); Wood, M.I. [Westinghouse Hanford Company, Richland, WA (United States)

    1996-09-01

    One proposed method of low-level radioactive waste (LLW) disposal is to mix the radioactive waste streams with cement, place the mixture in steel barrels, and dispose of the barrels in near-surface unsaturated sediments. Cement or concrete is frequently used in burial grounds, because cement porewaters are buffered at high pH values and lanthanides and actinides; are very insoluble in highly alkaline environments. Therefore, leaching of these contaminants from the combined cement/low-level radioactive waste streams will at least initially be retarded. The calculations performed in this study demonstrate that the pH of cement porewaters will be maintained at a value greater than 10 for 10,000 years under Hanford specific hydrogeochemical conditions. Ten thousand years is the period generally studied in longterm performance assessments per regulatory guidance. The concentrations of dissolved hexavalent uranium [U(VI)], the valence form of dissolved U usually present in oxidizing surface and groundwaters, are also constrained by the high pH and predicted solution compositions over the 10,000-year period, which is favorable from a long-term performance perspective.

  20. Predictive calculations to assess the long-term effect of cementitious materials on the pH and solubility of uranium(VI) in a shallow land disposal environment

    International Nuclear Information System (INIS)

    One proposed method of low-level radioactive waste (LLW) disposal is to mix the radioactive waste streams with cement, place the mixture in steel barrels, and dispose of the barrels in near-surface unsaturated sediments. Cement or concrete is frequently used in burial grounds, because cement porewaters are buffered at high pH values and lanthanides and actinides; are very insoluble in highly alkaline environments. Therefore, leaching of these contaminants from the combined cement/low-level radioactive waste streams will at least initially be retarded. The calculations performed in this study demonstrate that the pH of cement porewaters will be maintained at a value greater than 10 for 10,000 years under Hanford specific hydrogeochemical conditions. Ten thousand years is the period generally studied in longterm performance assessments per regulatory guidance. The concentrations of dissolved hexavalent uranium [U(VI)], the valence form of dissolved U usually present in oxidizing surface and groundwaters, are also constrained by the high pH and predicted solution compositions over the 10,000-year period, which is favorable from a long-term performance perspective

  1. Oxide property of SG tube materials exposed to an alkaline environment as a secondary side of a PWR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongjin; Mun, Byung Hak; Kim, Hong Pyo; Hwang, Seong Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Stress corrosion cracking (SCC) is an issue that should be overcome in nuclear power plants (NPP). Recognizing that cracks initiate and propagate through unavoidable breakdowns and alterations of the surface oxide on Alloy 600, the SCC behavior is closely related to the oxide property. Corrosion resistance against SCC, in particular, was improved through a newly developed heat treatment process from LTMA (low temperature mill annealed) Alloy 600 to HTMA (high temperature mill annealed) Alloy 600, and then TT (thermally treated) Alloy 600. Intra-granular carbide widely spread in LTMA Alloy 600 dissolves, and inter-granular carbide is then formed during high-temperature mill annealing and cooling, which leads to a great SCC resistance enhancement. Inter-granular carbide is well developed, healing chromium depletion at a grain boundary, and residual stress is removed during additional thermal treatment following mill annealing, which improves the SCC resistance more. In spite of this improvement of TT Alloy 600, Seabrook and Vogtle 1 in the US, using TT Alloy 600, also showed SCC due to a non-optimum microstructure, residual stress, Pb existence, and so on over a 20-year operation of an NPP even though SCC occurs less frequently than LTMA and (or) HTMA Alloy 600s. SCC has also occurred for TT Alloy 600 tubes in Korea, whose main causes resemble US cases. The pH at high temperature in the crevice of SG tubes distributes from acidic of 4 to alkaline above 10 at high temperature depending on the impurity concentration such as chloride and hydroxide ions including other corrosive impurities such as Pb known as very detrimental species even though the bulk pH of secondary water is a mild alkaline solution. Regarding the aggressiveness of Pb, even Alloy 690 is also susceptible to SCC in a strong alkaline solution with lead. Therefore, in the present work, the oxides were investigated in a leaded alkaline solution of pH(T) 9.9 at 315 .deg. C as a function of immersion time

  2. The immobilisation of clinoptilolite within cementitious systems

    International Nuclear Information System (INIS)

    The zeolitic ion exchanger clinoptilolite was encapsulated within various cementitious systems in order to assess their suitability for the retention of the radioelements, Cs and Sr. The pozzolanic reaction of clinoptilolite is reduced in composites containing BFS and PFA and appears not to continue after 7 days of hydration. Ca(OH)2 persists up to 360 days of hydration in a 9:1BFS:OPC system with 10% clinoptilolite added, despite the presence of unreacted pozzolana. This may be due to low pH of the pore solution, if Na and K act as counter cations in the aluminous C-S-H, a product of pozzolanic hydration or are exchanged onto the clinoptilolite. Saturation of the pore solution with Ca may prevent further dissolution of Ca(OH)2. Cs leaching occurs in all samples during accelerated tests due to breakdown of the clinoptilolite structure. The alternative cement system calcium sulfo-aluminate cement (CSA) has a different hydration chemistry and properties to OPC and OPC composites with a lower pore solution pH. Clinoptilolite appears to react in a hydrating CSA system with significant reaction continuing between 28 and 90 days of hydration. Leaching of Cs from CSA is higher than from an OPC system, in which almost all of the clinoptilolite crystallinity is lost. The major product of CSA hydration is ettringite. Cs may be adsorbed within cation sites of the C-S-H in an OPC system but not by ettringite which does not retain Cs so Cs has high mobility and leachability through the CSA matrix. (authors)

  3. A new and superior ultrafine cementitious grout

    International Nuclear Information System (INIS)

    Sealing fractures in nuclear waste repositories concerns all programs investigating deep burial as a means of disposal. Because the most likely mechanism for contaminant migration is by dissolution and movement through groundwater, sealing programs are seeking low-viscosity sealants that are chemically, mineralogically, and physically compatible with the host rock. This paper presents the results of collaborative work directed by Sandia National Laboratories (SNL) and supported by Whiteshell Laboratories, operated by Atomic Energy of Canada, Ltd. The work was undertaken in support of the Waste Isolation Pilot Plant (WIPP), an underground nuclear waste repository located in a salt formation east of Carlsbad, NM. This effort addresses the technology associated with long-term isolation of nuclear waste in a natural salt medium. The work presented is part of the WIPP plugging and sealing program, specifically the development and optimization of an ultrafine cementitious grout that can be injected to lower excessive, strain-induced hydraulic conductivity in the fractured rock termed the Disturbed Rock Zone (DRZ) surrounding underground excavations. Innovative equipment and procedures employed in the laboratory produced a usable cement-based grout; 90% of the particles were smaller than 8 microns and the average particle size was 4 microns. The process involved simultaneous wet pulverization and mixing. The grout was used for a successful in situ test underground at the WIPP. Injection of grout sealed microfractures as small as 6 microns (and in one rare instance, 3 microns) and lowered the gas transmissivity of the DRZ by up to three orders of magnitude. Following the WIPP test, additional work produced an improved version of the grout containing particles 90% smaller than 5 microns and averaging 2 microns. This grout will be produced in dry form, ready for the mixer

  4. SCM Paste Samples Exposed To Aggressive Solutions. Cementitious Barriers Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Foster, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-12-01

    This report summarizes experimental work performed by SIMCO Technologies Inc. (SIMCO) as part of the Cementitious Barriers Partnership (CBP) project. The test series followed an experimental program dedicated to the study of ordinary Portland cement (OPC) hydrated cement pastes exposed to aggressive solutions. In the present study, the scope is extended to hydrated cement pastes incorporating supplementary cementitious materials (SCM) such as fly ash and ground granulated blast furnace slag (GGBFS). Also, the range of aggressive contact solutions was expanded. The experimental program aimed at testing aggressive contact solutions that more closely mimic the chemical composition of saltstone pore solution. Five different solutions, some of which incorporated high levels of carbonate and nitrate, were placed in contact with four different hydrated cement paste mixes. In all solutions, 150 mmol/L of SO42– (14 400 ppm) were present. The solutions included different pH conditions and different sodium content. Two paste mixes were equivalent to Vault 1/4 and Vault 2 concrete mixes used at SRS in storage structures. Two additional paste mixes, cast at the same water-to-cement ratio and using the same cements but without SCMs, were also tested. The damage evolution in samples was monitored using ultrasonic pulse velocity (UPV) and mass measurements. After three and twelve months of exposure conditions, samples were taken out of solution containers and analyzed to perform migration tests and porosity measurements. Globally, results were in line with the previous study and confirmed that high pH may limit the formation of some deleterious phases like gypsum. In this case, ettringite may form but is not necessarily associated with damage. However, the high concentration of sodium may be associated with the formation of an AFm-like mineral called U-phase. The most significant evidences of damage were all associated with the Vault 2 paste analog. This

  5. Effect of total cementitious content on shear strength of high-volume fly ash concrete beams

    International Nuclear Information System (INIS)

    Highlights: ► Existing design standards conservatively predicted the capacity of the HVFAC beams. ► In general, the HVFAC beams exceeded the code predicted shear strengths. ► The cementitious content did not have effect on the shear behavior of the HVFAC beams. - Abstract: The production of portland cement – the key ingredient in concrete – generates a significant amount of carbon dioxide. However, due to its incredible versatility, availability, and relatively low cost, concrete is the most consumed manmade material on the planet. One method of reducing concrete’s contribution to greenhouse gas emissions is the use of fly ash to replace a significant amount of the cement. This paper compares two experimental studies that were conducted to investigate the shear strength of full-scale beams constructed with high-volume fly ash concrete (HVFAC) – concrete with at least 50% of the cement replaced with fly ash. The primary difference between the two studies involved the amount of cementitious material, with one mix having a relatively high total cementitious content (502 kg/m3) and the other mix having a relatively low total cementitious content (337 kg/m3). Both mixes utilized a 70% replacement of portland cement with a Class C fly ash. Each of these experimental programs consisted of eight beams (six without shear reinforcing and two with shear reinforcing in the form of stirrups) with three different longitudinal reinforcement ratios. The beams were tested under a simply supported four-point loading condition. The experimental shear strengths of the beams were compared with both the shear provisions of selected standards (US, Australia, Canada, Europe, and Japan) and a shear database of conventional concrete (CC) specimens. Furthermore, statistical data analyses (both parametric and nonparametric) were performed to evaluate whether or not there is any statistically significant difference between the shear strength of both mixes. Results of these

  6. Reactive transport modeling of the interaction between water and a cementitious grout in a fractured rock. Application to ONKALO (Finland)

    International Nuclear Information System (INIS)

    Highlights: → It is planned to seal conductive fractures near a repository with cementitious grout. → Modeling includes simultaneous hydration and leaching of the grout. → Modeling results show a very limited formation of the high-pH plume. → Results are in qualitative agreement with borehole monitoring data. - Abstract: Grouting of water-conducting fractures with low-alkali cement is foreseen for the potential future repository for spent nuclear fuel in Finland (ONKALO). A possible consequence of the interaction between groundwater and grout is the formation of high-pH solutions which will be able to react with the host rock (gneisses) and alter its mineralogy and porosity. A reactive transport modeling study of this possible alteration has been conducted. First, the hydration of the low-alkali cementitious grout has been modeled, using results from the literature as a guide. The hydrated cement is characterized by the absence of portlandite and the presence of a C-S-H gel with a Ca/Si ratio about 0.8 after tens of years (Ca/Si is about 1.7 in Ordinary Portland Cement). Second, calculations have simulated the interaction between flowing water and grout and the formation of an alkalinity plume, which flows beyond the grouted section of the fracture. The calculations include the hydration and simultaneous leaching of the grout through diffusive exchange between the porewater in the grout and the flowing water in the fracture. The formation of an alkaline plume is extremely limited when the low-pH grout is used. Even when using a grout with a lower silica fume content, the extent and magnitude of the alkaline plume is quite minor. These results are in qualitative agreement with monitoring at ONKALO.

  7. The Influence of Nano-Fe3O4 on the Microstructure and Mechanical Properties of Cementitious Composites.

    Science.gov (United States)

    Sikora, Pawel; Horszczaruk, Elzbieta; Cendrowski, Krzysztof; Mijowska, Ewa

    2016-12-01

    In the last decade, nanotechnology has been gathering a spectacular amount of attention in the field of building materials. The incorporation of nanosized particles in a small amount to the building materials can influence their properties significantly. And it can contribute to the creation of novel and sustainable structures. In this work, the effect of nano-Fe3O4 as an admixture (from 1 to 5 wt.% in mass of the cement) on the mechanical and microstructural properties of cementitious composites has been characterised. The study showed that Fe3O4 nanoparticles acted as a filler which improved the microstructure of a cementitious composite and reduced its total porosity, thus increasing the density of the composite. The presence of nanomagnetite did not affect the main hydration products and the rate of cement hydration. In addition, the samples containing nanomagnetite exhibited compressive strength improvement (up to 20 %). The study showed that 3 wt.% of nano-Fe3O4 in the cementitious composite was the optimal amount to improve both its mechanical and microstructural properties. PMID:27067730

  8. The Influence of Nano-Fe3O4 on the Microstructure and Mechanical Properties of Cementitious Composites

    Science.gov (United States)

    Sikora, Pawel; Horszczaruk, Elzbieta; Cendrowski, Krzysztof; Mijowska, Ewa

    2016-04-01

    In the last decade, nanotechnology has been gathering a spectacular amount of attention in the field of building materials. The incorporation of nanosized particles in a small amount to the building materials can influence their properties significantly. And it can contribute to the creation of novel and sustainable structures. In this work, the effect of nano-Fe3O4 as an admixture (from 1 to 5 wt.% in mass of the cement) on the mechanical and microstructural properties of cementitious composites has been characterised. The study showed that Fe3O4 nanoparticles acted as a filler which improved the microstructure of a cementitious composite and reduced its total porosity, thus increasing the density of the composite. The presence of nanomagnetite did not affect the main hydration products and the rate of cement hydration. In addition, the samples containing nanomagnetite exhibited compressive strength improvement (up to 20 %). The study showed that 3 wt.% of nano-Fe3O4 in the cementitious composite was the optimal amount to improve both its mechanical and microstructural properties.

  9. Engineered cementitious composites for strengthening masonry infilled reinforced concrete frames

    DEFF Research Database (Denmark)

    Dehghani, Ayoub; Nateghi-Alahi, Fariborz; Fischer, Gregor

    2015-01-01

    The results of the second part of a comprehensive experimental program, aimed at investigating the behavior of masonry infilled reinforced concrete (RC) frames strengthened with fiber reinforced engineered cementitious composites (ECC) used as an overlay on the masonry wall, are presented in this...

  10. Influence of the binder nature and the temperature on the chloride transport through cementitious materials; Influence de la nature du liant et de la temperature sur le transport des chlorures dans les materiaux cimentaires

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Th.S

    2006-09-15

    The objective of this work is to document the effect of the temperature on the chloride diffusion through cement-based materials. The chloride diffusion coefficient, the penetration profiles and the chloride interactions with the solid phase were highlighted. The materials were CEM I and CEM V/A mortars and pastes. They were cured in wet room (21 {+-} 2 C, 90% relative humidity) for 1 month in the case of CEM I and 3 months in the case of CEM V before the experiments started. The temperature levels were 5, 21, 35 and 80 C.In addition, microstructure analyses were carried on using X-rays diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques. The experimental results were then used to continue to develop the numerical code, MsDiff, developed in our research group. A good agreement between the numerical concentration profiles and the experimental ones was found. (author)

  11. Electrochemical behavior of Ni{sub x}W{sub 1-x} materials as catalyst for hydrogen evolution reaction in alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Oliver-Tolentino, Miguel A. [UPIBI-IPN, Departamento de Ciencias Basicas, Av. Acueducto s/n, Barrio La Laguna, Col. Ticoman, Mexico D.F. 07340 (Mexico); Arce-Estrada, Elsa M. [ESIQIE-IPN Departamento de Ingenieria en Metalurgia y Materiales, UPALM, UPALM, Mexico D.F. 07738 (Mexico); Cortes-Escobedo, Claudia A. [Centro de Investigacion e Innovacion Tecnologica del IPN, Cda. Cecati s/n, Col. Sta. Catarina, CP 02250 Azcapotzalco D.F. (Mexico); Bolarin-Miro, Ana M.; Sanchez-De Jesus, Felix [Area Academica de Ciencias de la Tierra y Materiales, Universidad Autonoma del Estado de Hidalgo, CU, Carr. Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma, CP 42184 Hidalgo (Mexico); Gonzalez-Huerta, Rosa de G. [ESIQIE-IPN, Departamento de Ingenieria Quimica - Laboratorio de Electroquimica y Corrosion, Edif. Z-5 3er piso, UPALM, Mexico D.F. 07738 (Mexico); Manzo-Robledo, Arturo, E-mail: amanzor@ipn.mx [ESIQIE-IPN, Departamento de Ingenieria Quimica - Laboratorio de Electroquimica y Corrosion, Edif. Z-5 3er piso, UPALM, Mexico D.F. 07738 (Mexico)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer The electrochemical techniques used in this study elucidated the Ni-W surface state. Black-Right-Pointing-Pointer The Ni-W materials were effective for the hydrogen evolution reaction. Black-Right-Pointing-Pointer The prepared alloys exhibited higher catalytic activity than their precursors. Black-Right-Pointing-Pointer The preparation method is relatively simple and effective procedure. - Abstract: In the present work, results of electrochemical evaluation, as well as morphological and structural characterization of Ni{sub x}W{sub 1-x} materials with x = 0.77, 0.64, 0.4, 0.19 and 0.07 processed by means of high energy ball milling from high purity powders are presented. Also, the electrocatalytic performance on the hydrogen evolution reaction (HER) of the Ni{sub x}W{sub 1-x} materials evaluated by linear polarization and cyclic voltammetry techniques in alkaline media at room temperature is discussed. The structural and morphological characterization of the as-prepared materials was carried out using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results indicated a small-particle clusters and solid solution formation. According to the kinetics parameters the best electrocatalytic activity was observed at Ni{sub 64}W{sub 36}.

  12. 脱硫石膏基胶凝材料用于保温墙体的探糾%Exploration of desulfurization gypsum cementitious materials used for thermal insulation wall

    Institute of Scientific and Technical Information of China (English)

    孔文栋; 薛力梨; 李强; 潘佳林

    2014-01-01

    将火力发电厂产生的脱硫石膏,粉煤灰两大废弃物以及另一种废弃物粉煤灰以一定比例混合制成胶凝材料,并与废弃的泡沫玻璃边角料复合制备成保温板,研究其强度、导热系数和表观密度等性能,并分析应用前景。结果表明:制得的保温板抗压强度在1.8MPa以上,导热系数在0.12-0.14w/(m.k)之间,干表观密度最小可以达到900kg/m3.。制得保温板成本低廉、保温性好,应具有良好的应用前景。%The coal-fired power plant desulfurization gypsum, two large waste, fly ash, and another kind of waste, to a certain proportion of fly ash to make cement materials and waste foam glass compound preparation into insulation board, examines the strength, thermal conductivity and apparent density, such as performance, and study its market prospects. Experiments prove that the compressive strength of insulation board above 1.8 MPa, the coefficient of thermal conductivity between 0.12 to 0.14 W/(m.k), dry apparent density minimum can reach 900 kg/m3.Because of new thermal insulation wall materials manufacture simple, low cost, good heat preservation, should have a good application prospect.

  13. Direct assessment of tensile stress-crack opening behavior of Strain Hardening Cementitious Composites (SHCC)

    DEFF Research Database (Denmark)

    Pereira, Eduardo B.; Fischer, Gregor; Barros, Joaquim A.O.

    2012-01-01

    -deformation behavior of these materials is therefore of great importance and is frequently carried out by characterizing the material tensile stress–strain behavior. In this paper an alternative approach to evaluate the tensile performance of SHCC is investigated. The behavior of the material in tension is studied at......The process of designing Strain Hardening Cementitious Composites (SHCC) is driven by the need to achieve certain performance parameters in tension. These are typically the pseudo-strain hardening behavior and the ability to develop multiple cracks. The assessment of the tensile load...... the level of a single crack. The derived tensile stress-crack opening behavior is utilized to analyze and compare the influence of various composite parameters on the resulting tensile behavior. The deformations occurring during tensile loading are furthermore examined using a digital image...

  14. RC beams shear-strengthened with fabric-reinforced-cementitious-matrix (FRCM) composite

    Science.gov (United States)

    Loreto, Giovanni; Babaeidarabad, Saman; Leardini, Lorenzo; Nanni, Antonio

    2015-12-01

    The interest in retrofit/rehabilitation of existing concrete structures has increased due to degradation and/or introduction of more stringent design requirements. Among the externally-bonded strengthening systems fiber-reinforced polymers is the most widely known technology. Despite its effectiveness as a material system, the presence of an organic binder has some drawbacks that could be addressed by using in its place a cementitious binder as in fabric-reinforced cementitious matrix (FRCM) systems. The purpose of this paper is to evaluate the behavior of reinforced concrete (RC) beams strengthened in shear with U-wraps made of FRCM. An extensive experimental program was undertaken in order to understand and characterize this composite when used as a strengthening system. The laboratory results demonstrate the technical viability of FRCM for shear strengthening of RC beams. Based on the experimental and analytical results, FRCM increases shear strength but not proportionally to the number of fabric plies installed. On the other hand, FRCM failure modes are related with a high consistency to the amount of external reinforcement applied. Design considerations based on the algorithms proposed by ACI guidelines are also provided.

  15. Sr, C and O isotopes as markers of alkaline disturbances in the Toarcian argillites of the Tournemire experimental platform (France). Case of a 15-years old engineered analogue.

    Science.gov (United States)

    Techer, I.; Boulvais, P.; Bartier, D.; Tinseau, E.

    2009-04-01

    In France, the concept of a geological disposal of high-activity and long-period nuclear wastes requires the use of concrete and cement-bearing materials as building structures or as waste containment packages, in conjunction with clayey barriers (e.g., compacted bentonite as an engineered barrier and/or argillite-type rocks as a geological barrier). Hydrolysis of cementitious phases is however known to produce hyper-alkaline pore fluids with pH ranging from 10 to 13.5 that will be in disequilibrium with the geological setting environment (argillite pore-water pH around 8). The disturbance of clayey rocks in contact with such materials is thus an important task in safety assessment studies of deep geological storage. This concerns the knowledge of mineral / solution paths but also the spatial extent of the alkaline plume into the clayey material. Experimental and modelling approaches were performed this last decade to answer these questions. In addition to these approaches, natural or engineered contexts in which a clayey formation has been in contact with cementitious materials can be considered as analogues of a deep geological storage for the study of argillite /cement interaction. Such contexts can be found in the IRSN Tournemire experimental platform in Aveyron (France). This platform is based on a tunnel, excavated between 1882 and 1886 through Domerian marls and Toarcian argillites, which is dedicated since 1990 to multidisciplinary research programs. In the frameworks of these programs, exploration boreholes were realized from the basement of the tunnel in the 1990 years. The boreholes were then filled with concrete and cement that are presently in contact with the Toarcian argillites for 15-20 years. One of this borehole - DM borehole - was overcored in 2005 in order to collect the Toarcian argillites in contact with the cement and the concrete. Mineralogical, petrographic and microstructural analyses have argued for a clear disturbance of the Toarcian

  16. Characterization of cracking in Strain-Hardening Cementitious Composites using the compact tension test

    DEFF Research Database (Denmark)

    Pereira, Eduardo B.; Fischer, Gregor; Barros, Joaquim A. O.

    The characterization of the tensile behavior of strain hardening cementitious composites (SHCC) is of significant importance to the material design. In a previous work the tensile stress-crack opening response of different types of SHCC was characterized using notched specimens tested in direct...... tension, where a single crack was obtained and mechanically characterized by performing Single Crack Tension Test (SCTT). In this study the tensile behavior of SHCC materials is characterized under eccentric tensile load using the Compact Tension Test (CTT). The long edge notch placed in the rectangular...... results are discussed and compared to the numerically derived responses. The tensile load-displacement responses observed in the CTTs were simulated using the cohesive crack model. The tensile stress-crack opening behaviors previously obtained with the SCTT tests were utilized to derive the traction...

  17. Cementitious binder from fly ash and other industrial wastes

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M.; Garg, M. [Central Building Research Inst., Roorkee (India)

    1999-03-01

    In this paper, investigations were undertaken to formulate cementitious binder by judicious blending of fly ash with Portland cement as well as by admixing fly ash with calcined phosphogypsum, fluorogypsum, lime sludge, and chemical activators of different finenesses. The effect of addition of calcined clay in these types of binders was studied. Data showed that cementitious binders of high compressive strength and water retentivity can be produced. The strength of masonry mortars increased with the addition of chemical activators. The strength development of binders takes place through formation of ettringite. C-S-H, and C{sub 4}AH{sub 13}. The binders are eminently suitable for partial replacement (up to 25%) of the cement in concrete without any detrimental affect on the strength. The results showed that fly ash can be used in the range from 45% to 70% in formulating these binders along with other industrial wastes to help in mitigating environmental pollution.

  18. Water absorption of superabsorbent polymers in a cementitious environment

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2011-01-01

    This paper focuses on the water absorption of superabsorbent polymers in a cementitious environment. The paper discusses different techniques to measure the water absorption capacity, and in particular it describes a technique which enables a simple and quick estimation of the water absorption...... simple, but a closer examination of the topic discloses many, significant difficulties. However, given proper cautiousness it is possible both to quickly estimate the water absorption capacity through a simple measurement as well as to examine how it will be influenced by different factors....... capacity in a cementitious environment. The challenges met in defining the concept of water absorption capacity are treated, and the appropriateness of different types of superabsorbent polymers is also briefly dealt with. The concept “water absorption capacity” and its measurement seem straightforwardly...

  19. Progress in Research on Carbon Nanotubes Reinforced Cementitious Composites

    Directory of Open Access Journals (Sweden)

    Qinghua Li

    2015-01-01

    Full Text Available As one-dimensional (1D nanofiber, carbon nanotubes (CNTs have been widely used to improve the performance of nanocomposites due to their high strength, small dimensions, and remarkable physical properties. Progress in the field of CNTs presents a potential opportunity to enhance cementitious composites at the nanoscale. In this review, current research activities and key advances on multiwalled carbon nanotubes (MWCNTs reinforced cementitious composites are summarized, including the effect of MWCNTs on modulus of elasticity, porosity, fracture, and mechanical and microstructure properties of cement-based composites. The issues about the improvement mechanisms, MWCNTs dispersion methods, and the major factors affecting the mechanical properties of composites are discussed. In addition, large-scale production methods of MWCNTs and the effects of CNTs on environment and health are also summarized.

  20. Rheology and Reactivity of Cementitious Binders with Plasticizers

    OpenAIRE

    Vikan, Hedda Vestøl

    2005-01-01

    The rheological behaviour of cementitious pastes has been studied by various means. Six different cements have been studied in main parts of the work and all of them have been characterized according to the Rietveld method in order to determine the exact content of minerals. Easily soluble alkalis were measured by plasma-emission- spectroscopy of the fluid filtered from paste. Three types of plasticizers namely naphthalene sulfonate formaldehyde condensate (SNF), lignosulphonate and polyacryl...

  1. Effect of Limestone Powder on Microstructure of Ternary Cementitious System

    OpenAIRE

    Zhang, Y.; Ye, G.

    2012-01-01

    The pressure to reach sustainability favours the development of ternary composite cement. The synergistic effect on mechanical behaviour at 28 days between limestone powder (LP) and pozzolanic additives, i.e. fly ash (FA) and blast furnace slag (BFS), has been documented. In order to better understand the synergistic effect, this article investigated the effect of LP on the microstructure of PC-FA and PC-BFS cementitious system. The mineralogy and pore structure were determined after 28 days ...

  2. Mechanical properties of structures 3D printed with cementitious powders

    OpenAIRE

    Feng, Peng; Meng, Xinmiao; Chen, Jian Fei; Ye, Lieping

    2015-01-01

    The three dimensional (3D) printing technology has undergone rapid development in the last few years and it is now possible to print engineering structures. This paper presents a study of the mechanical behavior of 3D printed structures using cementitious powder. Microscopic observation reveals that the 3D printed products have a layered orthotropic microstructure, in which each layer consists of parallel strips. Compression and flexural tests were conducted to determine the mechanical proper...

  3. Stress-strain behavior of cementitious materials with different sizes.

    Science.gov (United States)

    Zhou, Jikai; Qian, Pingping; Chen, Xudong

    2014-01-01

    The size dependence of flexural properties of cement mortar and concrete beams is investigated. Bazant's size effect law and modified size effect law by Kim and Eo give a very good fit to the flexural strength of both cement mortar and concrete. As observed in the test results, a strong size effect in flexural strength is found in cement mortar than in concrete. A modification has been suggested to Li's equation for describing the stress-strain curve of cement mortar and concrete by incorporating two different correction factors, the factors contained in the modified equation being established empirically as a function of specimen size. A comparison of the predictions of this equation with test data generated in this study shows good agreement.

  4. Flexural strengthening of masonry members using advanced cementitious materials

    OpenAIRE

    Barros, Joaquim A. O.; Esmaeeli, Esmaeel; Manning, Elizabeth; Häßler, D.

    2011-01-01

    Two different cement based fiber reinforced composites for the flexural strengthening of masonry beams under monotonic loading are studied. Steel Fiber Reinforced Self- Compacting Concrete (SFRSCC) with tensile strain-softening behavior, and PVA fiber reinforced cement based mortar (SHCC) with tensile Strain-Hardening were the developed composites. Both composites were applied on the tensile surface of masonry beams and the effectiveness of this technique for the flexural stren...

  5. Mesoscopic analysis of drying shrinkage damage in a cementitious material

    DEFF Research Database (Denmark)

    Moonen, P.; Pedersen, R.R.; Simone, A.;

    2008-01-01

    a typical sample preparation procedure is assessed. To this extent, a coupled hygro-thermo-mechanical model, incorporating rate-effects, is developed. The constitutive model is applied at a mesoscopic level where the aggregates and the interfacial transition zone (ITZ) are explicitly modelled. Two drying...

  6. Interactions between chloride ingress and carbonation in cementitious materials

    OpenAIRE

    SAILLIO, Mickael; BARBERON, Fabien; BAROGHEL BOUNY, Véronique; GEGOUT, Philippe; PLATRET, Gérard; D'ESPINOSE DE LA CAILLERIE, JB

    2011-01-01

    Carbonation and chloride attacks are the major causes of reinforced concrete (RC) structure deterioration by initiation of steel rebar corrosion. These attacks are usually studied separately in the literature. Chloride-induced corrosion takes place mainly in marine environment or in the case of contact with deicing salts, while carbonation is systematically present in all RC structures at a variable degree. Since carbonation leads to significant microstructure changes, the effect of chloride ...

  7. Engineering materials

    OpenAIRE

    Kumaraswamy, Mohan

    2002-01-01

    One element of the CIVCAL project Web-based resources containing images, tables, texts and associated data of the Engineering Materials such as concrete, metals and wood. Portland Cement Concrete is a particulate composite consisting of a continuous binder phase, the cementitious matrix and a dispersed particulate phase, the aggregates. Metals as construction material are an important construction material. They possess characteristics such as strength, stiffness, toughness and ductili...

  8. 不同碱性材料对酸性土壤的改良效果研究%Improvement Effects of Different Alkaline Materials on Acidic Soil

    Institute of Scientific and Technical Information of China (English)

    谭宗富; 向永生; 杨再辉; 周富忠

    2015-01-01

    In order to improve acidic soil effectively, we studied the effects of five alkaline soil conditioners, slaked lime, QUIMI-TE (Ulexite), talcum powder, etc. on yield and economic benefit of radish. The results showed that, the effects on radish yield and soil pH value were basically the same as the variation trend of the pH value of the five alkaline soil conditioners. Slaked lime and QUIMI-TE had the best improvement effect, and the radish yield was significantly increased by 6%-8%, while the soil pH value was raised from 4.98 to 5.63-5.78. Ca and Mg powder and talcum powder had better improvement effect, with the soil pH value increased by 5%-10%, but gypsum powder had the worst improvement effect, with the increment of soil pH value less than 5%. The three materials talcum powder, Ca and Mg powder and gypsum powder had significant yield-increasing effect, but made net output value decreased, as a consequence, the perfect soil conditioners were slaked lime and QUIMI-TE (Ulexite) in the test.%为有效改良酸性土壤,研究了熟石灰、奎米素、滑石粉等5种材料对萝卜产量及效益的影响。试验结果表明,熟石灰、奎米素、滑石粉等对萝卜产量及土壤pH值的影响与材料本身的pH值变化趋势基本一致。熟石灰、奎米素当季效果好,萝卜增产极显著,增幅在6%~8%,土壤pH值可由4.98提高到5.63~5.78,增幅在10%以上;双飞粉、滑石粉效果较好,当季土壤pH值提高幅度在5%~10%;石膏粉当季效果差,当季土壤pH值变化低于5%。滑石粉、双飞粉和石膏粉增产显著,但增产不增收,因此,此次试验筛选出的理想材料为熟石灰和奎米素。

  9. 不同碱性材料对酸性土壤的改良效果研究%Improvement Effects of Different Alkaline Materials on Acidic Soil

    Institute of Scientific and Technical Information of China (English)

    谭宗富; 向永生; 杨再辉; 周富忠

    2015-01-01

    为有效改良酸性土壤,研究了熟石灰、奎米素、滑石粉等5种材料对萝卜产量及效益的影响。试验结果表明,熟石灰、奎米素、滑石粉等对萝卜产量及土壤pH值的影响与材料本身的pH值变化趋势基本一致。熟石灰、奎米素当季效果好,萝卜增产极显著,增幅在6%~8%,土壤pH值可由4.98提高到5.63~5.78,增幅在10%以上;双飞粉、滑石粉效果较好,当季土壤pH值提高幅度在5%~10%;石膏粉当季效果差,当季土壤pH值变化低于5%。滑石粉、双飞粉和石膏粉增产显著,但增产不增收,因此,此次试验筛选出的理想材料为熟石灰和奎米素。%In order to improve acidic soil effectively, we studied the effects of five alkaline soil conditioners, slaked lime, QUIMI-TE (Ulexite), talcum powder, etc. on yield and economic benefit of radish. The results showed that, the effects on radish yield and soil pH value were basically the same as the variation trend of the pH value of the five alkaline soil conditioners. Slaked lime and QUIMI-TE had the best improvement effect, and the radish yield was significantly increased by 6%-8%, while the soil pH value was raised from 4.98 to 5.63-5.78. Ca and Mg powder and talcum powder had better improvement effect, with the soil pH value increased by 5%-10%, but gypsum powder had the worst improvement effect, with the increment of soil pH value less than 5%. The three materials talcum powder, Ca and Mg powder and gypsum powder had significant yield-increasing effect, but made net output value decreased, as a consequence, the perfect soil conditioners were slaked lime and QUIMI-TE (Ulexite) in the test.

  10. Modelling the influence of steel fibres on the electrical resistivity of cementitious composites

    DEFF Research Database (Denmark)

    Solgaard, Anders Ole Stubbe; Michel, Alexander; Stang, Henrik;

    2009-01-01

    the overall resistivity of the material and thereby the corrosion rate of the embedded reinforcement. To the knowledge of the authors, only preliminary studies have been made on the influence of corrosion of the reinforcement bars from the addition of the electrical conductive steel fibres. Thus the present......One of the governing factors on the corrosion of embedded reinforcement is the electrical resistivity of the concrete. The combination of steel fibres and conventional reinforcement bars has been used in a number of structures. However, the addition of electrical con-ductive fibres might influence...... work concerns the electrical resistivity of cementitious composites and some of the parameters influencing it in order to get a more thorough understanding of the factors governing the overall resistivity. The basis of the present study is an experimental investigation of the electrical resistivity...

  11. Multiscale characterization of chemical–mechanical interactions between polymer fibers and cementitious matrix

    Energy Technology Data Exchange (ETDEWEB)

    Hernández-Cruz, Daniel; Hargis, Craig W.; Bae, Sungchul; Itty, Pierre A.; Meral, Cagla; Dominowski, Jolee; Radler, Michael J.; Kilcoyne, David A.; Monteiro, Paulo J. M.

    2014-04-01

    Together with a series of mechanical tests, the interactions and potential bonding between polymeric fibers and cementitious materials were studied using scanning transmission X-ray microscopy (STXM) and microtomography (lCT). Experimental results showed that these techniques have great potential to characterize the polymer fiber-hydrated cement-paste matrix interface, as well as differentiating the chemistry of the two components of a bi-polymer (hybrid) fiber the polypropylene core and the ethylene acrylic acid copolymer sheath. Similarly, chemical interactions between the hybrid fiber and the cement hydration products were observed, indicating the chemical bonding between the sheath and the hardened cement paste matrix. Microtomography allowed visualization of the performance of the samples, and the distribution and orientation of the two types of fiber in mortar. Beam flexure tests confirmed improved tensile strength of mixes containing hybrid fibers, and expansion bar tests showed similar reductions in expansion for the polypropylene and hybrid fiber mortar bars.

  12. Theoretical analysis and experimental investigation on flexural performance of steel reinforced ultrahigh toughness cementitious composite (RUHTCC) beams

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    UHTCC (ultrahigh toughness cementitious composite), which is a kind of ultrahigh toughness cemen- titious composites material, exhibits pseudo strain hardening feature when subjected to tension load, and has enormous ductility and prominent crack dispersal ability. Accordingly, UHTCC can improve mechanical behavior of ordinary concrete structure especially its durability, and has been regarded as historical breakthrough to traditional cementitious materials. In this paper, the study focuses on flexure behavior of steel reinforced beam made of UHTCC. Based on the plane section assumption, along with two equilibrium equations of force and moment, the formulae to calculate the flexural load capability for the reinforced ultrahigh toughness cementitious composite (RUHTCC) beam were developed under the assumption that the compression stress- strain relationship in the UHTCC material is a bilinear model. Following this, the simplified formulae were further evolved by effective rectangle stress distribution approach in order to facilitate design of practical engineering. Two effective parameters introduced in effective rectangle approach were determined. The mathematical expressions to evaluate limited rein- forcement ratio, flexural stiffness as well as ductility index were proposed, too. Last, two series of dif- ferent reinforcement ratios of the RUHTCC beams were tested in four-point flexure loading. For com- parison purposes, ordinary RC (reinforced concrete) beams also were prepared. Both moment curva- ture curves and load mid-span displacement curves were recorded and compared with the theoretical calculations. A good agreement between them was found, which validates the proposed theoretical formulae. For ductility index, a slightly big difference between the experimental values and the calcu- lated ones exists. The experimental results show that, compared to control RC beams, the RUHTCC beam can improve both flexural capacity and ductility index, and the degree of

  13. Extrusion of ECC-Material

    DEFF Research Database (Denmark)

    Stang, Henrik; Li, Victor C.

    1999-01-01

    An extrusion process especially designed for extrusion of pipes made from fiber reinforced cementitious materials has been developed at Department of Structural Engineering and Materials at the Technical University of DenmarkEngineered Cementitious Composite (ECC) materials have been developed in...... recent years at Department of Civil and Envirionmetal Engineering, University of Michigan. These materials have been developed with the special aim of producing high performance , strain hardening materials with low volume concentrations of short fibers in a cementitious material.ECC material spcimens...... have until now been produced by traditional casting processes. In the present paper results from a recent collaborative reserach project are documented - demonstrating that ECC materials can be extruded in the process referred to above....

  14. Project Opalinus Clay: Radionuclide Concentration Limits in the Cementitious Near-Field of an ILW Repository

    Energy Technology Data Exchange (ETDEWEB)

    Berner, U

    2003-05-01

    The disposal feasibility study currently performed by Nagra includes a succession of quantitative models, aiming at describing the fate of radionuclides potentially escaping from the repository system. In this chain of models the present report provides the so called 'solubility limits' (maximum expected concentrations) for safety relevant radionuclides from ILW wastes, disposed of in a chemically reducing, cementitious environment. From a chemical point of view, the pore waters of hydrated cement matrices provide an exceptional environment. Compared with usual ground waters exhibiting pH-values of around 8, cement pore waters are strongly alkaline with pH-values from 12.5 to 13.5 and contain nearly no carbonate and only little sulfate. Oxides and hydroxides mainly determine solubility and speciation of the elements. Solubility and speciation calculations in cementitious pore waters were performed using the very recently updated Nagra/PSI Chemical Thermodynamic Data Base (TDB) for the majority of the 36 elements addressed as potentially relevant. Wherever possible, maximum concentrations compiled in this report were based on geochemical calculations. In order to ensure full traceability, all thermodynamic data not included in the TDB are explicitly specified in the document. For similar reasons the compilation of results (Table 1) clearly distinguishes between calculated and recommended items. The heading 'CALCULATED' lists maximum concentrations based on data fully documented in the TDB; results under the heading 'RECOMMENDED' include data from other sources. The pH sensitivity of the results was examined by performing calculations at pH 13.4, in accordance with the pH of non-altered cement pore water. Solubility increases predominantly for elements that tend to form anionic hydroxide complexes (Sn, Pd, Zr, Ni, Eu, Cd, Mo, Co). Oxidizing conditions around +350 mV might be expected in the environment of nitrate-containing wastes. In

  15. Inorganic-organic separators for alkaline batteries

    Science.gov (United States)

    Sheibley, D. W. (Inventor)

    1978-01-01

    A flexible separator is reported for use between the electrodes of Ni-Cd and Ni-Zn batteries using alkaline electrolytes. The separator was made by coating a porous substrate with a battery separator composition. The coating material included a rubber-based resin copolymer, a plasticizer and inorganic and organic fillers which comprised 55% by volume or less of the coating as finally dried. One or more of the filler materials, whether organic or inorganic, is preferably active with the alkaline electrolyte to produce pores in the separator coating. The plasticizer was an organic material which is hydrolyzed by the alkaline electrolyte to improve conductivity of the separator coating.

  16. ALP (Alkaline Phosphatase) Test

    Science.gov (United States)

    ... Also known as: ALK PHOS; Alkp Formal name: Alkaline Phosphatase Related tests: AST ; ALT ; GGT ; Bilirubin ; Liver Panel ; Bone Markers ; Alkaline Phosphatase Isoenzymes; Bone Specific ALP All content on ...

  17. Shear behavior of reinforced Engineered Cementitious Composites (ECC) beams

    DEFF Research Database (Denmark)

    Paegle, Ieva; Fischer, Gregor

    2010-01-01

    This paper describes an experimental investigation of the shear behavior of beams consisting of steel reinforced Engineered Cementitious Composites (ECC). Based on the strain hardening and multiple cracking behavior of ECC, this study investigates the extent to which ECC can improve the shear...... a high contrast speckle pattern to the beams surface. The multiple micro cracking resulting from the strain-hardening response of ECC in tension develop in a di-agonal between the load and support point. The formation of multiple micro cracks is highly dependent on the tensile stress-strain behavior...

  18. Designing added functions in engineered cementitious composites

    Science.gov (United States)

    Yang, En-Hua

    In this dissertation, a new and systematic material design approach is developed for ECC with added functions through material microstructures linkage to composite macroscopic behavior. The thesis research embodies theoretical development by building on previous ECC micromechanical models, and experimental investigations into three specific new versions of ECC with added functions aimed at addressing societal demands of our built infrastructure. Specifically, the theoretical study includes three important ECC modeling elements: Steady-state crack propagation analyses and simulation, predictive accuracy of the fiber bridging constitutive model, and development of the rate-dependent strain-hardening criteria. The first element establishes the steady-state cracking criterion as a fundamental requirement for multiple cracking behavior in brittle matrix composites. The second element improves the accuracy of crack-width prediction in ECC. The third element establishes the micromechanics basis for impact-resistant ECC design. Three new ECCs with added functions were developed and experimentally verified in this thesis research through the enhanced theoretical framework. A green ECC incorporating a large volume of industrial waste was demonstrated to possess reduced crack width and drying shrinkage. The self-healing ECC designed with tight crack width was demonstrated to recover transport and mechanical properties after microcrack damage when exposed to wet and dry cycles. The impact-resistant ECC was demonstrated to retain tensile ductility with increased strength under moderately high strain-rate loading. These new versions of ECC with added functions are expected to contribute greatly to enhancing the sustainability, durability, and safety of civil infrastructure built with ECC. This research establishes the effectiveness of micromechanics-based design and material ingredient tailoring for ECC with added new attributes but without losing its basic tensile ductile

  19. Absorbency of Superabsorbent Polymers in Cementitious Environments

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro; Jensen, Ole Mejlhede

    2012-01-01

    Optimal use of superabsorbent polymers (SAP) in cement-based materials relies on knowledge on how SAP absorbency is influenced by different physical and chemical parameters. These parameters include salt concentration in the pore fluid, temperature of the system and SAP particle size. The present...... work shows experimental results on this and presents a new technique to measure the swelling of SAP particles. This new technique is compared with existing techniques that have been recently proposed for the measurement of pore fluid absorption by superabsorbent polymers. It is seen...

  20. 碱性电解水析氢电极的研究进展%Research progress in hydrogen electrode materials for alkaline water electrolysis

    Institute of Scientific and Technical Information of China (English)

    张开悦; 刘伟华; 陈晖; 张博; 刘建国; 严川伟

    2015-01-01

    电解水制氢将成为未来绿色制氢工业的核心技术。研究新型阴极材料以有效降低阴极过电位,对降低电解水能耗和设备成本、提高生产稳定性和安全性,具有十分重要的现实意义。本文主要对碱性水溶液电解制氢工业的析氢阴极材料进行综述。围绕电极结晶结构设计和尺寸结构设计两个主要的电极发展方向,重点介绍了3类基于电沉积制备技术的Ni基电极材料:合金析氢电极、复合析氢电极、多孔析氢电极。分析了当前析氢电极在实验研发与工业应用中存在的问题。指出采用电沉积法,制备催化活性更高且适用于工业电解环境的多元复合电极材料将是今后析氢电极发展的趋势。%Water electrolysis will become the core technology of environmental production for hydrogen industry in the future. It is very important to study new cathode materials for reducing the cathode overpotential. Because it not only can reduce energy consumption and the cost of water electrolysis,but also can enhance the stability and safety of production. This paper mainly discusses the research status of hydrogen electrode materials for alkaline water electrolysis. Based on the major improvement of catalytic activity for hydrogen evolution reaction,this paper mainly focuses on the electrodepositing preparation method for three kinds of nickel-based electrodes,which are alloy hydrogen evolution electrode,composite hydrogen evolution electrode,and porous hydrogen evolution electrode. The existing problems on hydrogen evolution electrode in experimental research and industrial application are analyzed. In the end,it is pointed out that the more catalytic activity and more stable electrochemical performance of multivariate composite electrodes based on electrodepositing preparation will be the future of hydrogen electrode development.

  1. Experimental Study on Cementitious Composites Embedded with Organic Microcapsules

    Directory of Open Access Journals (Sweden)

    Zhiwei Qian

    2013-09-01

    Full Text Available The recovery behavior for strength and impermeability of cementitious composites embedded with organic microcapsules was investigated in this study. Mortar specimens were formed by mixing the organic microcapsules and a catalyst with cement and sand. The mechanical behaviors of flexural and compression strength were tested. The results showed that strength could increase by up to nine percent with the addition of a small amount of microcapsules and then decrease with an increasing amount of microcapsules. An orthogonal test for investigating the strength recovery rate was designed and implemented for bending and compression using the factors of water/cement ratio, amount of microcapsules, and preloading rate. It is shown that the amount of microcapsules plays a key role in the strength recovery rate. Chloride ion permeability tests were also carried out to investigate the recovery rate and healing effect. The initial damage was obtained by subjecting the specimens to compression. Both the recovery rate and the healing effect were nearly proportional to the amount of microcapsules. The obtained cementitious composites can be seen as self-healing owing to their recovery behavior for both strength and permeability.

  2. Tailoring of fiber-reinforced cementitious composites (FRCC) for flexural strength and reliability

    Science.gov (United States)

    Obla, Karthikeyan Hariya

    Bending is the most common form of loading for many construction elements. The bending strength or Modulus of Rupture (MOR) and flexural ductility are therefore critical properties particularly for those elements which are not reinforced by rebars. Such elements include highway barriers, certain wall panels, thin sheet elements and small diameter pipes. The tensile and bending strengths of concrete are very low. In addition, as a brittle material, concrete also demonstrates a large variability in bending strength. A large variability in MOR leads to inefficient use of the material since the design strength has to be close to the lower bound of the material's strength distribution. The potential of fiber in improving MOR is well recognized in fiber reinforced concrete. The use of fiber to enhance material reliability is much less studied. This thesis addresses both aspects employing a combination of theoretical and experimental treatments. Research findings are reported as Part I and Part II of this thesis. Carbon fibers are increasingly attractive for reinforcing cementitious composites. They can be manufactured to yield a wide range in modulus and strength. Carbon fibers are non-corrosive, and fire and alkali. In addition, the price of pitch based carbon fibers are dropping rapidly to make them economically viable for the building and construction industries. In Part I of the thesis, a study on the optimization of the bending strength of carbon FRCC using a fracture based flexural model that links the fiber, interface, and matrix micro-parameters to composite bending strength is presented. Carbon fiber, interface and matrix parameters were tailored to yield optimal properties such as high MOR and ductility. Four point bend tests were conducted on CFRCCs to confirm the findings. Some problems specially affecting carbon FRCCs such as fiber breakage during mixing were also studied and its effects on composite uniaxial tensile properties analyzed by developing new

  3. DEMONSTRATION OF LEACHXS/ORCHESTRA CAPABILITIES BY SIMULATING CONSTITUENT RELEASE FROM A CEMENTITIOUS WASTE FORM IN A REINFORCED CONCRETE VAULT

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Meeussen, J.; Sloot, H.

    2010-03-31

    The objective of the work described in this report is to demonstrate the capabilities of the current version of LeachXS{trademark}/ORCHESTRA for simulating chemical behavior and constituent release processes in a range of applications that are relevant to the CBP. This report illustrates the use of LeachXS{trademark}/ORCHESTRA for the following applications: (1) Comparing model and experimental results for leaching tests for a range of cementitious materials including cement mortars, grout, stabilized waste, and concrete. The leaching test data includes liquid-solid partitioning as a function of pH and release rates based on laboratory column, monolith, and field testing. (2) Modeling chemical speciation of constituents in cementitious materials, including liquid-solid partitioning and release rates. (3) Evaluating uncertainty in model predictions based on uncertainty in underlying composition, thermodynamic, and transport characteristics. (4) Generating predominance diagrams to evaluate predicted chemical changes as a result of material aging using the example of exposure to atmospheric conditions. (5) Modeling coupled geochemical speciation and diffusion in a three layer system consisting of a layer of Saltstone, a concrete barrier, and a layer of soil in contact with air. The simulations show developing concentration fronts over a time period of 1000 years. (6) Modeling sulfate attack and cracking due to ettringite formation. A detailed example for this case is provided in a separate article by the authors (Sarkar et al. 2010). Finally, based on the computed results, the sensitive input parameters for this type of modeling are identified and discussed. The chemical speciation behavior of substances is calculated for a batch system and also in combination with transport and within a three layer system. This includes release from a barrier to the surrounding soil as a function of time. As input for the simulations, the physical and chemical properties of the

  4. Using Converter Dust to Produce Low Cost Cementitious Composites by in situ Carbon Nanotube and Nanofiber Synthesis

    Directory of Open Access Journals (Sweden)

    Péter Ludvig

    2011-03-01

    Full Text Available Carbon nanotubes (CNTs and nanofibers (CNFs were synthesized on clinker and silica fume particles in order to create a low cost cementitious nanostructured material. The synthesis was carried out by an in situ chemical vapor deposition (CVD process using converter dust, an industrial byproduct, as iron precursor. The use of these materials reduces the cost, with the objective of application in large-scale nanostructured cement production. The resulting products were analyzed by scanning electron microscopy (SEM, transmission electron microscopy (TEM and thermogravimetric analysis (TGA and were found to be polydisperse in size and to have defective microstructure. Some enhancement in the mechanical behavior of cement mortars was observed due to the addition of these nano-size materials. The contribution of these CNTs/CNFs to the mechanical strength of mortar specimens is similar to that of high quality CNTs incorporated in mortars by physical mixture.

  5. Dynamic fracture behaviour in fibre-reinforced cementitious composites

    Science.gov (United States)

    Yu, Rena C.; Cifuentes, Héctor; Rivero, Ignacio; Ruiz, Gonzalo; Zhang, Xiaoxin

    2016-08-01

    The object of this work is to simulate the dynamic fracture propagation in fibre-reinforced cementitious composites, in particular, in steel fibre reinforced concrete (SFRC). Beams loaded in a three-point bend configuration through a drop-weight impact device are considered. A single cohesive crack is assumed to propagate at the middle section; the opening of this crack is governed by a rate-dependent cohesive law; the fibres around the fracture plane are explicitly represented through truss elements. The fibre pull-out behaviour is depicted by an equivalent constitutive law, which is obtained from an analytical load-slip curve. The obtained load-displacement curves and crack propagation velocities are compared with their experimental counterparts. The good agreement with experimental data testifies to the feasibility of the proposed methodology and paves the way to its application in a multi-scale framework.

  6. Talc-based cementitious products: Effect of talc calcination

    Directory of Open Access Journals (Sweden)

    C.J. Ngally Sabouang

    2015-09-01

    Full Text Available This study reports the use of calcined talc for cementitious products making. The calcination is used to enhance the availability of magnesium from talc to react with phosphate for cement phase formation. It is shown that previous calcination of talc leads to products having enhanced mechanical performance due to the formation of more cement phase than in products based on raw talc. Talc fired at 900 °C was found to be the one in which magnesium release was maximal. Firing at temperature higher than 900 °C leads to the stabilization of enstatite, which decreased the magnesium availability. The cement phase is struvite, which was better detected on the X-ray patterns of the products involving fired talc. All the products have very rapid setting time and low shrinkage.

  7. Cementitious Stabilization of Mixed Wastes with High Salt Loadings

    Energy Technology Data Exchange (ETDEWEB)

    Spence, R.D.; Burgess, M.W.; Fedorov, V.V.; Downing, D.J.

    1999-04-01

    Salt loadings approaching 50 wt % were tolerated in cementitious waste forms that still met leach and strength criteria, addressing a Technology Deficiency of low salt loadings previously identified by the Mixed Waste Focus Area. A statistical design quantified the effect of different stabilizing ingredients and salt loading on performance at lower loadings, allowing selection of the more effective ingredients for studying the higher salt loadings. In general, the final waste form needed to consist of 25 wt % of the dry stabilizing ingredients to meet the criteria used and 25 wt % water to form a workable paste, leaving 50 wt % for waste solids. The salt loading depends on the salt content of the waste solids but could be as high as 50 wt % if all the waste solids are salt.

  8. STEREOLOGICAL ESTIMATES FOR ROUGHNESS AND TORTUOSITY IN CEMENTITIOUS COMPOSITES

    Directory of Open Access Journals (Sweden)

    Piet Stroeven

    2011-05-01

    Full Text Available Relatively weak interfaces between aggregate grains and the cementitious matrix initiate the damage evolution process leading to fracture. Coalescence between nearby interface cracks is promoted by the small nearest neighbour distances in a dense random packing of the aggregate. The fracture surface is therefore modelled as a dividing plane from which particles protrude. Assuming spherical aggregate, roughness is obtained as the global geometrical-statistical expression for the increase in fracture surface area due to a multitude of dome-like caps of various sizes. Transport phenomena in concrete are equally influenced by the aggregate, because traversing water-born molecules or ions have to go around the dense grains. This route is additionally promoted by the relatively high porosity in the interfacial transition zone. The planar and linear concepts of tortuosity in the transport path are analogous to those of roughness.

  9. Shear crack formation and propagation in reinforced Engineered Cementitious Composites

    DEFF Research Database (Denmark)

    Paegle, Ieva; Fischer, Gregor

    2011-01-01

    This paper describes an experimental investigation of the shear behaviour of beams consisting of steel reinforced Engineered Cementitious Composites (R/ECC). Based on the strain hardening and multiple cracking behaviour of ECC, this study investigates the extent to which ECC influences the shear...... capacity of beams loaded primarily in shear. The experimental program consists of ECC with short randomly distributed polyvinyl alcohol (PVA) fiber beams with different stirrup arrangements and conventional reinforced concrete (R/C) counterparts for comparison. The shear crack formation mechanism of ECC...... is investigated in detail and can be characterized by an opening and sliding of the crack. Photogrammetry was utilized to monitor the shear deformations of the specimens. Multiple shear cracking and strain hardening of ECC was observed under shear loading and based upon photogrammetric results fundamental...

  10. Setup of Extruded Cementitious Hollow Tubes as Containing/Releasing Devices in Self-Healing Systems

    OpenAIRE

    Alessandra Formia; Salvatore Terranova; Paola Antonaci; Nicola Maria Pugno; Jean Marc Tulliani

    2015-01-01

    The aim of this research is to produce self-healing cementitious composites based on the use of cylindrical capsules containing a repairing agent. Cementitious hollow tubes (CHT) having two different internal diameters (of 2 mm and 7.5 mm) were produced by extrusion and used as containers and releasing devices for cement paste/mortar healing agents. Based on the results of preliminary mechanical tests, sodium silicate was selected as the healing agent. The morphological features of several mi...

  11. Preparation of New Cementitious System using Fly Ash and Dehydrated Autoclaved Aerated Concrete

    Institute of Scientific and Technical Information of China (English)

    SHUI Zhonghe; LU Jianxin; TIAN Sufang; SHEN Peiliang; DING Sha

    2014-01-01

    We experimentally studied the interaction between pozzolanic material (fly ash) and dehydrated autoclaved aerated concrete (DAAC). The DAAC powder was obtained by grinding aerated concrete waste to particles finer than 75μm and was then heated to temperatures up to 900℃. New cementitious material was prepared by proportioning fly ash and DAAC, named as AF. X-ray diffraction (XRD) was employed to identify the crystalline phases of DAAC before and after rehydration. The hydration process of AF was analyzed by the heat of hydration and non-evaporable water content (Wn). The experimental results show that the highest reactivity of DAAC can be obtained by calcining the powder at 700℃and the dehydrated products are mainlyβ-C2S and CaO. The cumulative heat of hydration and Wn was found to be strongly dependent on the replacement level of fly ash, increasing the replacement level of fly ash lowered them in AF. The strength contribution rates on pozzolanic effect of fly ash in AF are always negative, showing a contrary tendency of that of cement-fly ash system.

  12. Self-Healing of Microcracks in Engineered Cementitious Composites (ECC Under a Natural Environment

    Directory of Open Access Journals (Sweden)

    Victor C. Li

    2013-07-01

    Full Text Available This paper builds on previous self-healing engineered cementitious composites (ECC research by allowing ECC to heal outdoors, in the natural environment, under random and sometimes extreme environmental conditions. Development of an ECC material that can heal itself in the natural environment could lower infrastructure maintenance costs and allow for more sustainable development in the future by increasing service life and decreasing the amount of resources and energy needed for repairs. Determining to what extent current ECC materials self-heal in the natural environment is the first step in the development of an ECC that can completely heal itself when exposed to everyday environmental conditions. This study monitored outdoor ECC specimens for one year using resonant frequency (RF and mechanical reloading to determine the rate and extent of self-healing in the natural environment. It was found that the level of RF, stiffness, and first cracking strength recovery increased as the duration of natural environment exposure increased. For specimens that underwent multiple damage cycles, it was found that the level of recovery was highly dependent on the average temperature and amount of precipitation between each damage event. However, RF, stiffness, and first cracking strength recovery data for specimens that underwent multiple loading cycles suggest that self-healing functionality can be maintained under multiple damage events.

  13. Development of alkaline fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari [Colorado School of Mines, Golden, CO; Horan, James L. [Colorado School of Mines, Golden, CO; Caire, Benjamin R. [Colorado School of Mines, Golden, CO; Ziegler, Zachary C. [Colorado School of Mines, Golden, CO; Herring, Andrew M. [Colorado School of Mines, Golden, CO; Yang, Yuan [Colorado School of Mines, Golden, CO; Zuo, Xiaobing [Argonne National Laboratory, Argonne, IL; Robson, Michael H. [University of New Mexico, Albuquerque, NM; Artyushkova, Kateryna [University of New Mexico, Albuquerque, NM; Patterson, Wendy [University of New Mexico, Albuquerque, NM; Atanassov, Plamen Borissov [University of New Mexico, Albuquerque, NM

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassov's research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herring's group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  14. Development of alkaline fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassovs research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herrings group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  15. The Cementitious Barriers Partnership Experimental Programs and Software Advancing DOE’s Waste Disposal/Tank Closure Efforts – 15436

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Heather [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, Greg [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, Frank [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Langton, Christine [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brown, Kevin [Vanderbilt Univ./CRESP, Nashville, TN (United States); Kosson, David [Vanderbilt Univ./CRESP, Nashville, TN (United States); Samson, Eric [SIMCO Technologies, Inc. (United States); Mallick, Pramod [US DOE, Washington, DC (United States)

    2015-01-27

    The U.S. Department of Energy Environmental Management (DOE-EM) Office of Tank Waste Management-sponsored Cementitious Barriers Partnership (CBP) is chartered with providing the technical basis for implementing cement-based waste forms and radioactive waste containment structures for long-term disposal. DOE needs in this area include the following to support progress in final treatment and disposal of legacy waste and closure of High-Level Waste (HLW) tanks in the DOE complex: long-term performance predictions, flow sheet development and flow sheet enhancements, and conceptual designs for new disposal facilities. The DOE-EM Cementitious Barriers Partnership is producing software and experimental programs resulting in new methods and data needed for end-users involved with environmental cleanup and waste disposal. Both the modeling tools and the experimental data have already benefited the DOE sites in the areas of performance assessments by increasing confidence backed up with modeling support, leaching methods, and transport properties developed for actual DOE materials. In 2014, the CBP Partnership released the CBP Software Toolbox –“Version 2.0” which provides concrete degradation models for 1) sulfate attack, 2) carbonation, and 3) chloride initiated rebar corrosion, and includes constituent leaching. These models are applicable and can be used by both DOE and the Nuclear Regulatory Commission (NRC) for service life and long-term performance evaluations and predictions of nuclear and radioactive waste containment structures across the DOE complex, including future SRS Saltstone and HLW tank performance assessments and special analyses, Hanford site HLW tank closure projects and other projects in which cementitious barriers are required, the Advanced Simulation Capability for Environmental Management (ASCEM) project which requires source terms from cementitious containment structures as input to their flow simulations, regulatory reviews of DOE performance

  16. The Cementitious Barriers Partnership Experimental Programs and Software Advancing DOE@@@s Waste Disposal/Tank Closure Efforts @@@ 15436

    International Nuclear Information System (INIS)

    The U.S. Department of Energy Environmental Management (DOE-EM) Office of Tank Waste Management-sponsored Cementitious Barriers Partnership (CBP) is chartered with providing the technical basis for implementing cement-based waste forms and radioactive waste containment structures for long-term disposal. DOE needs in this area include the following to support progress in final treatment and disposal of legacy waste and closure of High-Level Waste (HLW) tanks in the DOE complex: long-term performance predictions, flow sheet development and flow sheet enhancements, and conceptual designs for new disposal facilities. The DOE-EM Cementitious Barriers Partnership is producing software and experimental programs resulting in new methods and data needed for end-users involved with environmental cleanup and waste disposal. Both the modeling tools and the experimental data have already benefited the DOE sites in the areas of performance assessments by increasing confidence backed up with modeling support, leaching methods, and transport properties developed for actual DOE materials. In 2014, the CBP Partnership released the CBP Software Toolbox @@ @@Version 2.0@@@ which provides concrete degradation models for 1) sulfate attack, 2) carbonation, and 3) chloride initiated rebar corrosion, and includes constituent leaching. These models are applicable and can be used by both DOE and the Nuclear Regulatory Commission (NRC) for service life and long-term performance evaluations and predictions of nuclear and radioactive waste containment structures across the DOE complex, including future SRS Saltstone and HLW tank performance assessments and special analyses, Hanford site HLW tank closure projects and other projects in which cementitious barriers are required, the Advanced Simulation Capability for Environmental Management (ASCEM) project which requires source terms from cementitious containment structures as input to their flow simulations, regulatory reviews of DOE performance

  17. Alkaline battery operational methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  18. Alkaline and alkaline earth metal phosphate halides and phosphors

    Science.gov (United States)

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  19. Long-term degradation (or improvement?) of cementitious grout/concrete for waste disposal at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Piepho, M.G. [Daniel B. Stephens & Associates, Inc., Richland, WA (United States)

    1997-12-31

    If grout and/or concrete barriers and containments are considered for long-term (500 yrs to 100,000 ) waste disposal, then long-term degradation of grout/cement materials (and others) need to be studied. Long-term degradations of a cementitious grout monolith (15.4mW x 10.4mH x 37.6mL) and its containment concrete shell and asphalt shell (each 1-m thick) were analyzed. The main degradation process of the concrete shell was believed to be fractures due to construction joints, shrinkage, thermal stress, settlement, and seismic events. A scenario with fractures was modeled (flow and transport model) for long-term risk performance (out to a million yrs). Even though the concrete/grout is expected to fracture, the concrete/grout chemistry, which has high Ph value, is very beneficial in causing calcite deposits from calcium in the water precipitating in the fractures. These calcite deposits will tend to plug the fracture and keep water from entering. The effectiveness of such plugging needs to be studied more. It`s possible that the plugged fractures are more impermeable than the original concrete/grout. The long-term performance of concrete/grout barriers will be determined by its chemistry, not its mechanical properties.

  20. Uranium in alkaline rocks

    International Nuclear Information System (INIS)

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential

  1. Uranium in alkaline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential.

  2. Nano-modification to improve the ductility of cementitious composites

    Energy Technology Data Exchange (ETDEWEB)

    Yeşilmen, Seda [Department of Civil Engineering, Çankaya University, Ankara (Turkey); Al-Najjar, Yazin [Department of Civil Engineering, Gaziantep University, Gaziantep (Turkey); Balav, Mohammad Hatam [Department of Civil Engineering, Gazi University, Ankara (Turkey); Şahmaran, Mustafa, E-mail: sahmaran@gazi.edu.tr [Department of Civil Engineering, Gazi University, Ankara (Turkey); Yıldırım, Gürkan [Department of Civil Engineering, Gazi University, Ankara (Turkey); Lachemi, Mohamed [Department of Civil Engineering, Ryerson University, Toronto, ON (Canada)

    2015-10-15

    Effect of nano-sized mineral additions on ductility of engineered cementitious composites (ECC) containing high volumes of fly ash was investigated at different hydration degrees. Various properties of ECC mixtures with different mineral additions were compared in terms of microstructural properties of matrix, fiber-matrix interface, and fiber surface to assess improvements in ductility. Microstructural characterization was made by measuring pore size distributions through mercury intrusion porosimetry (MIP). Hydration characteristics were assessed using thermogravimetric analysis/differential thermal analysis (TGA/DTA), and fiber-matrix interface and fiber surface characteristics were assessed using scanning electron microscopy (SEM) through a period of 90 days. Moreover, compressive and flexural strength developments were monitored for the same period. Test results confirmed that mineral additions could significantly improve both flexural strength and ductility of ECC, especially at early ages. Cheaper Nano-CaCO{sub 3} was more effective compared to nano-silica. However, the crystal structure of CaCO{sub 3} played a very important role in the range of expected improvements.

  3. Effects of aggregate volume content on sulfate resistance properties of cement based materials with supplementary cementitious materials%集料含量对掺矿物掺合料水泥基材料抗硫酸盐侵蚀性能的影响

    Institute of Scientific and Technical Information of China (English)

    吴凯; 徐玲琳; 施惠生; 高云

    2016-01-01

    The degradation of cement-based materials with different aggregate volume contents and ad-ditions, was analyzed when they were exposed to 5 and 50 g/L Na2 SO4 at 20℃.The microstructures of the corresponding cement-based materials was determined by mercury intrusion porosimetry (MIP), scanning electron microscopy backscattered electron ( SEM-BSE) image, and energy dispersive spec-trum ( EDS) analysis.The influence mechanism of the mineral addition and the aggregate volume con-tent on the sulfate resistance properties of cement-based materials was investigated.Results show that the addition of limestone powder ( LP) causes an increase in the porosity of hardened paste, exerting an adverse effect on the sulfate-resistance ability of cement-based materials.The incorporation of high amount of slag increases the total porosity, but refines the slurry pore structure from coarse pore to fi-ner one (>10 nm) .Moreover, the addition of slag strengthens the sulfate-resistance ability of ce-ment-based materials significantly.After corrosion by Na2 SO4 , the degradation of cement-based mate-rials prepared with pure Portland cement or Portland cement-limestone powder binary binders is more severe as the aggregate volume content increases.However, this negative effect caused by the aggre-gate is less remarkable in case of the slag blended system.From the BSE image and EDS analysis, the preferable deposition of gypsum in the region close to the aggregate is the main reason for the expand-ed degradation of specimens with a relative high amount of aggregate.%对不同集料体积掺量及掺合料配制的水泥基材料在室温、Na2 SO4溶液浓度为5和50 g/L时的损伤破坏过程进行分析,并采用压汞法、扫描电镜背散射电子图像分析和能谱扫描等方法得到相应水泥基材料的微观结构,研究了矿物掺合料和集料含量对水泥基材料抗硫酸盐侵蚀性能的影响机理。结果表明:单掺石灰石粉造成的硬化浆体

  4. 基于多元非线性回归优化制备碱钢渣胶凝材料%Optimized Preparation of Alkaline Steel Slag Cement Materials Based on Multivariate Nonlinear Regression

    Institute of Scientific and Technical Information of China (English)

    张庆丰; 张浩; 陆彪

    2016-01-01

    以钢渣作为研究对象,采用水玻璃、氢氧化钠与氢氧化钙三元复合活化剂,制备碱钢渣胶凝材料。基于均匀设计和多元非线性回归法研究了各因素对碱钢渣胶凝材料力学性能的影响。结果表明,各因素对性能影响的主次顺序为:3 d时钢渣用量>氢氧化钠用量>水玻璃用量>氢氧化钙用量,7 d时钢渣用量>水玻璃用量>氢氧化钠用量>氢氧化钙用量,28 d时钢渣用量>水玻璃用量>氢氧化钙用量>氢氧化钠用量;28 d碱钢渣胶凝材料的优化制备方案为:钢渣用量为225 g,水玻璃用量为22.5 g,氢氧化钠用量为9.0 g,氢氧化钙用量为13.2 g;优化制备模型选择正确,其相对误差仅为2.19%。%Alkaline steel slag cement materials were prepared with steel slag as the research object, sodium silicate, sodium hydroxide and calcium hydroxide as the ternary compound activator. The effect of every factor on mechanical property of alkaline steel slag cement materials was studied by orthogonal design and multivariate nonlinear regression. The results show that primary and secondary sequence of factors is steel slag dosage>sodium hydroxide dosage>sodium silicate dosage>calcium hydroxide dosage in 3 d, steel slag dosage>sodium silicate dosage>sodium hydroxide dosage>calcium hydroxide dosage in 7 d, steel slag dosage>sodium silicate dosage>calcium hydroxide dosage>sodium hydroxide dosage in 28 d. The optimization program of alkaline steel slag cement materials in 28 d is steel slag dosage 225 g, sodium silicate dosage 22.5 g, sodium hydroxide dosage 9.0 g and calcium hydroxide dosage 13.2 g. Optimized preparation model is correct, its relative error is only 2.19%.

  5. Effect of hybrid fiber reinforcement on the cracking process in fiber reinforced cementitious composites

    DEFF Research Database (Denmark)

    Pereira, Eduardo B.; Fischer, Gregor; Barros, Joaquim A.O.

    2012-01-01

    The simultaneous use of different types of fibers as reinforcement in cementitious matrix composites is typically motivated by the underlying principle of a multi-scale nature of the cracking processes in fiber reinforced cementitious composites. It has been hypothesized that while undergoing...... tensile deformations in the composite, the fibers with different geometrical and mechanical properties restrain the propagation and further development of cracking at different scales from the micro- to the macro-scale. The optimized design of the fiber reinforcing systems requires the objective...... assessment of the contribution of each type of fiber to the overall tensile response. Possible synergistic effects resulting from particular combinations of fibers need to be clearly identified. In the present study, the evaluation of the response of different fiber reinforced cementitious composite...

  6. Electrochemical properties of ZnO added with Zn-Al-hydrotalcites as anode materials for Zinc/Nickel alkaline secondary batteries

    International Nuclear Information System (INIS)

    Zn-Al layer double hydroxides (LDHs) were prepared through a simple hydrothermal method and proposed as an anode additive for Zn/Ni alkaline secondary batteries. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) of sample LDHs indicates that LDHs was well prepared. The electrochemical properties of the ZnO anodes with different contents of Zn-Al-LDHs were investigated by galvanostatic charge-discharge, cyclic voltammetry (CV) and electrochemical impedance spectroscope (EIS). The structures and morphologies after cycles were also measured by SEM. The results indicate that the presence of Zn-Al-LDHs in the electrode exhibits better electrochemical performance compared with the pure ZnO electrode, such as superior electrochemical cycle stability, better reversibility and higher discharge capacity and utilization ratio. Especially for the electrode added with 24% Zn-Al-LDHs, the discharge capacity hardly declined over 250 cycles, the average utilization ratio could reach 98.5%, and the electrode had no obvious shape change and Zn dendrites after the cycling tests

  7. Mechanical resilience and cementitious processes in Imperial Roman architectural mortar.

    Science.gov (United States)

    Jackson, Marie D; Landis, Eric N; Brune, Philip F; Vitti, Massimo; Chen, Heng; Li, Qinfei; Kunz, Martin; Wenk, Hans-Rudolf; Monteiro, Paulo J M; Ingraffea, Anthony R

    2014-12-30

    The pyroclastic aggregate concrete of Trajan's Markets (110 CE), now Museo Fori Imperiali in Rome, has absorbed energy from seismic ground shaking and long-term foundation settlement for nearly two millenia while remaining largely intact at the structural scale. The scientific basis of this exceptional service record is explored through computed tomography of fracture surfaces and synchroton X-ray microdiffraction analyses of a reproduction of the standardized hydrated lime-volcanic ash mortar that binds decimeter-sized tuff and brick aggregate in the conglomeratic concrete. The mortar reproduction gains fracture toughness over 180 d through progressive coalescence of calcium-aluminum-silicate-hydrate (C-A-S-H) cementing binder with Ca/(Si+Al) ≈ 0.8-0.9 and crystallization of strätlingite and siliceous hydrogarnet (katoite) at ≥ 90 d, after pozzolanic consumption of hydrated lime was complete. Platey strätlingite crystals toughen interfacial zones along scoria perimeters and impede macroscale propagation of crack segments. In the 1,900-y-old mortar, C-A-S-H has low Ca/(Si+Al) ≈ 0.45-0.75. Dense clusters of 2- to 30-µm strätlingite plates further reinforce interfacial zones, the weakest link of modern cement-based concrete, and the cementitious matrix. These crystals formed during long-term autogeneous reaction of dissolved calcite from lime and the alkali-rich scoriae groundmass, clay mineral (halloysite), and zeolite (phillipsite and chabazite) surface textures from the Pozzolane Rosse pyroclastic flow, erupted from the nearby Alban Hills volcano. The clast-supported conglomeratic fabric of the concrete presents further resistance to fracture propagation at the structural scale.

  8. Mechanical resilience and cementitious processes in Imperial Roman architectural mortar

    Science.gov (United States)

    Landis, Eric N.; Brune, Philip F.; Vitti, Massimo; Chen, Heng; Li, Qinfei; Kunz, Martin; Wenk, Hans-Rudolf; Monteiro, Paulo J. M.; Ingraffea, Anthony R.

    2014-01-01

    The pyroclastic aggregate concrete of Trajan’s Markets (110 CE), now Museo Fori Imperiali in Rome, has absorbed energy from seismic ground shaking and long-term foundation settlement for nearly two millenia while remaining largely intact at the structural scale. The scientific basis of this exceptional service record is explored through computed tomography of fracture surfaces and synchroton X-ray microdiffraction analyses of a reproduction of the standardized hydrated lime–volcanic ash mortar that binds decimeter-sized tuff and brick aggregate in the conglomeratic concrete. The mortar reproduction gains fracture toughness over 180 d through progressive coalescence of calcium–aluminum-silicate–hydrate (C-A-S-H) cementing binder with Ca/(Si+Al) ≈ 0.8–0.9 and crystallization of strätlingite and siliceous hydrogarnet (katoite) at ≥90 d, after pozzolanic consumption of hydrated lime was complete. Platey strätlingite crystals toughen interfacial zones along scoria perimeters and impede macroscale propagation of crack segments. In the 1,900-y-old mortar, C-A-S-H has low Ca/(Si+Al) ≈ 0.45–0.75. Dense clusters of 2- to 30-µm strätlingite plates further reinforce interfacial zones, the weakest link of modern cement-based concrete, and the cementitious matrix. These crystals formed during long-term autogeneous reaction of dissolved calcite from lime and the alkali-rich scoriae groundmass, clay mineral (halloysite), and zeolite (phillipsite and chabazite) surface textures from the Pozzolane Rosse pyroclastic flow, erupted from the nearby Alban Hills volcano. The clast-supported conglomeratic fabric of the concrete presents further resistance to fracture propagation at the structural scale. PMID:25512521

  9. Mechanical resilience and cementitious processes in Imperial Roman architectural mortar.

    Science.gov (United States)

    Jackson, Marie D; Landis, Eric N; Brune, Philip F; Vitti, Massimo; Chen, Heng; Li, Qinfei; Kunz, Martin; Wenk, Hans-Rudolf; Monteiro, Paulo J M; Ingraffea, Anthony R

    2014-12-30

    The pyroclastic aggregate concrete of Trajan's Markets (110 CE), now Museo Fori Imperiali in Rome, has absorbed energy from seismic ground shaking and long-term foundation settlement for nearly two millenia while remaining largely intact at the structural scale. The scientific basis of this exceptional service record is explored through computed tomography of fracture surfaces and synchroton X-ray microdiffraction analyses of a reproduction of the standardized hydrated lime-volcanic ash mortar that binds decimeter-sized tuff and brick aggregate in the conglomeratic concrete. The mortar reproduction gains fracture toughness over 180 d through progressive coalescence of calcium-aluminum-silicate-hydrate (C-A-S-H) cementing binder with Ca/(Si+Al) ≈ 0.8-0.9 and crystallization of strätlingite and siliceous hydrogarnet (katoite) at ≥ 90 d, after pozzolanic consumption of hydrated lime was complete. Platey strätlingite crystals toughen interfacial zones along scoria perimeters and impede macroscale propagation of crack segments. In the 1,900-y-old mortar, C-A-S-H has low Ca/(Si+Al) ≈ 0.45-0.75. Dense clusters of 2- to 30-µm strätlingite plates further reinforce interfacial zones, the weakest link of modern cement-based concrete, and the cementitious matrix. These crystals formed during long-term autogeneous reaction of dissolved calcite from lime and the alkali-rich scoriae groundmass, clay mineral (halloysite), and zeolite (phillipsite and chabazite) surface textures from the Pozzolane Rosse pyroclastic flow, erupted from the nearby Alban Hills volcano. The clast-supported conglomeratic fabric of the concrete presents further resistance to fracture propagation at the structural scale. PMID:25512521

  10. Bond strength of cementitious borehole plugs in welded tuff

    Energy Technology Data Exchange (ETDEWEB)

    Akgun, H.; Daemen, J.J.K. [Arizona Univ., Tucson, AZ (USA). Dept. of Mining and Geological Engineering

    1991-02-01

    Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young`s modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs.

  11. Bond strength of cementitious borehole plugs in welded tuff

    International Nuclear Information System (INIS)

    Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young's modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs

  12. Preparation and Electrochemical Performance of LiNi1/3Co1/3Mn1/3O2 Cathode Materials for Lithium-ion Batteries from Spent Mixed Alkaline Batteries

    Science.gov (United States)

    Yang, Li; Xi, Guoxi

    2016-01-01

    LiNi1/3Co1/3Mn1/3O2 cathode materials of lithium-ion batteries were successfully re-synthesized using mixed spent alkaline zinc-manganese batteries and spent lithium-ion batteries as the raw materials. These materials were synthesized by using a combination of dissolution, co-precipitation, calcination, battery preparation, and battery charge-discharge processes. The phase composition, morphology, and electrochemical performance of the products were determined by inductively coupled plasma optical emission spectroscopy, infrared spectra, x-ray diffraction, scanning electron microscopy-energy dispersive spectroscopy, and charge-discharge measurements. The results showed that LiNi1/3Co1/3Mn1/3O2 cathode materials could be successfully re-synthesized at optimal preparation conditions of: co-precipitation, pH value of 8, calcination temperature of 850°C, and calcination time of 10 h. Furthermore, the electrochemical results showed that the re-synthesized sample could deliver an initial discharge capacity of up to 160.2 mAh g-1 and Coulomb efficiency of 99.8%.

  13. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    Science.gov (United States)

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  14. Micro-mechanical Analysis of Fiber Reinforced Cementitious Composites using Cohesive Crack Modeling

    DEFF Research Database (Denmark)

    Dick-Nielsen, Lars; Stang, Henrik; Poulsen, Peter Noe

    2006-01-01

    are implemented. It is shown that the cohesive law for a unidirectional fiber reinforced cementitious composite can be found through superposition of the cohesive law for mortar and the fiber bridging curve. A comparison between the numerical and an analytical model for fiber pull-out is performed....

  15. THERMALLY CONDUCTIVE CEMENTITIOUS GROUTS FOR GEOTHERMAL HEAT PUMPS. PROGRESS REPORT BY 1998

    Energy Technology Data Exchange (ETDEWEB)

    ALLAN,M.L.; PHILIPPACOPOULOS,A.J.

    1998-11-01

    Research commenced in FY 97 to determine the suitability of superplasticized cement-sand grouts for backfilling vertical boreholes used with geothermal heat pump (GHP) systems. The overall objectives were to develop, evaluate and demonstrate cementitious grouts that could reduce the required bore length and improve the performance of GHPs. This report summarizes the accomplishments in FY 98.

  16. Glass science tutorial: Lecture No. 8, introduction cementitious systems for Low-Level Waste immobilization

    International Nuclear Information System (INIS)

    This report presents details about cementitious systems for low-level waste immobilization. Topics discussed include: composition and properties of portland cement; hydration properties; microstructure of concrete; pozzolans; slags; zeolites; transport properties; and geological aspects of long-term durability of concrete

  17. Cementitious Composites Engineered with Embedded Carbon Nanotube Thin Films for Enhanced Sensing Performance

    Science.gov (United States)

    Loh, Kenneth J.; Gonzalez, Jesus

    2015-07-01

    Cementitious composites such as concrete pavements are susceptible to different damage modes, which are primarily caused by repeated loading and long-term deterioration. There is even greater concern that damage could worsen and occur more frequently with the use of heavier vehicles or new aircraft carrying greater payloads. Thus, the objective of this research is to engineer cementitious composites with capabilities of self-sensing or detecting damage. The approach was to enhance the damage sensitivity of cementitious composites by incorporating multi-walled carbon nanotubes (MWNT) as part of the mix design and during casting. However, as opposed to directly dispersing MWNTs in the cement matrix, which is the current state-of-art, MWNT-based thin films were airbrushed and coated onto sand particles. The film-coated sand was then used as part of the mix design for casting mortar specimens. Mortar specimens were subjected to compressive cyclic loading tests while their electrical properties were recorded simultaneously. The results showed that the electrical properties of these cementitious composites designed with film-coated sand exhibited extremely high strain sensitivities. The electrical response was also stable and consistent between specimens.

  18. Glass science tutorial: Lecture No. 8, introduction cementitious systems for Low-Level Waste immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.F.; Kirkpatrick, R.J.; Mason, T.O.; Brough, A.

    1995-07-01

    This report presents details about cementitious systems for low-level waste immobilization. Topics discussed include: composition and properties of portland cement; hydration properties; microstructure of concrete; pozzolans; slags; zeolites; transport properties; and geological aspects of long-term durability of concrete.

  19. Evolution of 99Tc Species in Cementitious Nuclear Waste Form

    International Nuclear Information System (INIS)

    Technetium (Tc) is produced in large quantities as a fission product during the irradiation of 235U-enriched fuel for commercial power production and plutonium genesis for nuclear weapons. The most abundant isotope of Tc present in the wastes is 99Tc because of its high fission yield (∼6%) and long half-life (2.13x105 years). During the Cold War era, generation of fissile 239Pu for use in America's atomic weapons arsenal yielded nearly 1900 kg of 99Tc at the U.S. Department of Energy's (DOE) Hanford Site in southeastern Washington State. Most of this 99Tc is present in fuel reprocessing wastes temporarily stored in underground tanks awaiting retrieval and permanent disposal. After the wastes are retrieved from the storage tanks, the bulk of the high-level waste (HLW) and lowactivity waste (LAW) stream is scheduled to be converted into a borosilicate glass waste form that will be disposed of in a shallow burial facility called the Integrated Disposal Facility (IDF) at the Hanford Site. Even with careful engineering controls, volatilization of a fraction of Tc during the vitrification of both radioactive waste streams is expected. Although this volatilized Tc can be captured in melter off-gas scrubbers and returned to the melter, some of the Tc is expected to become part of the secondary waste stream from the vitrification process. The off-gas scrubbers downstream from the melters will generate a high pH, sodium-ammonium carbonate solution containing the volatilized Tc and other fugitive species. Effective and cost-efficient disposal of Tc found in the off-gas scrubber solution remains difficult. A cementitious waste form (Cast Stone) is one of the nuclear waste form candidates being considered to solidify the secondary radioactive liquid waste that will be generated by the operation of the waste treatment plant (WTP) at the Hanford Site. Because Tc leachability from the waste form is closely related with Tc speciation or oxidation state in both the simulant and

  20. EIS and adjunct electrical modeling for material selection by evaluating two mild steels for use in super-alkaline mineral processing

    DEFF Research Database (Denmark)

    Bakhtiyari, Leila; Moghimi, Fereshteh; Mansouri, Seyed Soheil;

    2012-01-01

    in susceptible parts, often in sensitive areas. This requires unscheduled maintenance and plant shut down. In order to test the corrosion resistance of different available materials as replacement materials, polarization and electrochemical impedance spectroscopy (EIS) tests were carried out. The EIS numerical...... outputs were then transformed into an equivalent electric circuit using Z-View software, and the predictive behavior was contrasted with actual performance after long-term immersion, depicted through SEM, EDS, XRD and weight change observations. Also, results of pits and cracks, obtained with climax...

  1. Grace DAKASEP alkaline battery separator

    Science.gov (United States)

    Giovannoni, R. T.; Lundquist, J. T.; Choi, W. M.

    1987-01-01

    The Grace DAKASEP separator was originally developed as a wicking layer for nickel-zinc alkaline batteries. The DAKASEP is a filled non-woven separator which is flexible and heat sealable. Through modification of formulation and processing variables, products with a variety of properties can be produced. Variations of DAKASEP were tested in Ni-H2, Ni-Zn, Ni-Cd, and primary alkaline batteries with good results. The properties of DAKASEP which are optimized for Hg-Zn primary batteries are shown in tabular form. This separator has high tensile strength, 12 micron average pore size, relatively low porosity at 46-48 percent, and consequently moderately high resistivity. Versions were produced with greater than 70 percent porosity and resistivities in 33 wt percent KOH as low as 3 ohm cm. Performance data for Hg-Zn E-1 size cells containing DAKASEP with the properties shown in tabular form, are more reproducible than data obtained with a competitive polypropylene non-woven separator. In addition, utilization of active material is in general considerably improved.

  2. Evaluation and comparison of SuperLig{reg_sign} 644, resorcinol-formaldehyde and CS-100 ion exchange materials for the removal of cesium from simulated alkaline supernate

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.N.; Bray, L.A.; Eloviche, R.J. [Pacific Northwest Lab., Richland, WA (United States); Bruening, R.L.; Decker, R.M. [IBC Advanced Technologies, Inc., Provo, UT (United States); Kafka, T.M.; White, L.R. [3M Co., St. Paul, MN (United States)

    1995-03-01

    PNL evaluated three polymeric materials for Cs removal efficiency from a simulated Hanford Neutralized Current Acid Waste (NCAW) supernatant liquid using 200 mL ion exchange columns. Cs loadings (mmole Cs/g resin) were 0.20, 0.18, and 0.039 for Super Lig 644, R-F, and CS-100 (0.045, 0.070, 0.011 mmole Cs/mL resin). Elution of each resin material with 0.5 M HNO{sub 3} required 3.5, 7.0, and 3.2 cv to reach 0.1 C/C{sub 0} for the respective materials, resulting in volume compressions of 27, 20, and 6.9. Peak Cs concentrations during elution was 185, 38.5, and 27.8 C/C{sub 0}. SuperLig 644 had the highest Cs loading per gram in NCAW and the greatest volume compression on aci elution. Because of high density and poor elution, R-F had the highest Cs loading per unit volume and lower volume compression. CS-100, the baseline material for Cs removal at Hanford, was inferior to both SuperLig 644 and R-F in terms of Cs loading and selectivity over sodium.

  3. On the Application of Inertial Microfluidics for the Size-Based Separation of Polydisperse Cementitious Particulates

    Science.gov (United States)

    Kumar, Aditya; Lewis, Peter; Balonis, Magdalena; Di Carlo, Dino; Sant, Gaurav

    2015-06-01

    The early-age performance of concrete is determined by the properties of the cementitious binder and the evolution of its chemical reactions. The chemical reactivity, and to some extent, the composition of cementitious particles can depend on particle size. Therefore, it is valuable to physically separate cementing minerals into well-defined size classes so that the influences of both particle size and composition on reaction progress can be studied without the confounding effects of a broad particle size distribution. However, conventional particle separation methods (e.g., density fractionation, wet sieving, field-flow extraction, ultrasonification-sedimentation) are time-consuming and cumbersome and result in poor particle yields and size-selectivity, thus, making them unsuitable for processing larger volumes of cementitious powders (on the order of grams). This study applies a novel inertial microfluidics (IMF) based procedure to separate cementitious powders on the basis of their size. Special attention is paid to optimizing operating variables to ensure that particles in a fluid streamline achieve unique equilibrium positions within the device. From such positions, particles can be retrieved as per their size using symmetrical outlet configurations with tuned fluidic resistances. The approach is critically assessed in terms of: (1) its ability to separate cementitious powders into narrow size bins, and therefore its feasibility as a fractionation procedure, and (2) quantitatively relating the operating parameters to the particle yield and size selectivity. The study establishes metrics for assessing the ability of IMF methods to classify minerals and other polydisperse particles on the basis of their size.

  4. Alkaline quinone flow battery.

    Science.gov (United States)

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. PMID:26404834

  5. Alkaline broadening in Stars

    CERN Document Server

    De Kertanguy, A

    2015-01-01

    Giving new insight for line broadening theory for atoms with more structure than hydrogen in most stars. Using symbolic software to build precise wave functions corrected for ds;dp quantum defects. The profiles obtained with that approach, have peculiar trends, narrower than hydrogen, all quantum defects used are taken from atomic database topbase. Illustration of stronger effects of ions and electrons on the alkaline profiles, than neutral-neutral collision mechanism. Keywords : Stars: fundamental parameters - Atomic processes - Line: profiles.

  6. Reclaiming the spent alkaline zinc manganese dioxide batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi0.5Mn1.5O4 materials.

    Science.gov (United States)

    Ma, Ya; Cui, Yan; Zuo, Xiaoxi; Huang, Shanna; Hu, Keshui; Xiao, Xin; Nan, Junmin

    2014-10-01

    A process for reclaiming the materials in spent alkaline zinc manganese dioxide (Zn-Mn) batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi0.5Mn1.5O4 materials is presented. After dismantling battery cans, the iron cans, covers, electric rods, organic separator, label, sealing materials, and electrolyte are separated through the washing, magnetic separation, filtrating, and sieving operations. Then, the powder residues react with H2SO4 (2 mol L(-1)) solution to dissolve zinc under a liquid/solid ratio of 3:1 at room temperature, and subsequently, the electrolytic Zn with purity of ⩾99.8% is recovered in an electrolytic cell with a cathode efficiency of ⩾85% under the conditions of 37-40°C and 300 A m(-2). The most of MnO2 and a small quantity of electrolytic MnO2 are recovered from the filtration residue and the electrodeposit on the anode of electrolytic cell, respectively. The recovered manganese oxides are used to synthesize LiNi0.5Mn1.5O4 material of lithium-ion battery. The as-synthesized LiNi0.5Mn1.5O4 discharges 118.3 mAh g(-1) capacity and 4.7 V voltage plateau, which is comparable to the sample synthesized using commercial electrolytic MnO2. This process can recover the substances in the spent Zn-Mn batteries and innocuously treat the wastewaters, indicating that it is environmentally acceptable and applicable. PMID:24906867

  7. INTERNATIONAL PROGRAM: SUMMARY REPORT ON THE PROPERTIES OF CEMENTITIOUS WASTE FORMS

    Energy Technology Data Exchange (ETDEWEB)

    Harbour, J

    2007-03-02

    effective diffusivity of {approx}5 x 10{sup -9} cm{sup 2}/sec and a corresponding leaching index of {approx}8.2. Leaching tests at the lower bound of concentration and the leaching tests to determine the impact of redox (selenium exists in two oxidation states, selenite (SeO{sub 3}{sup -2}) and selenate (SeO{sub 4}{sup -2})) on Se-79 release were not completed due to lack of funding. The heat of hydration of a Saltstone mix limits the processing rate at the Saltstone Production Facility. Therefore, reduction in the heat of hydration of a Saltstone formulation that still complies with the remaining property requirements would provide for a greater rate of production. Initial testing for this task was completed. There was good agreement between the isothermal measurements of heat of hydration performed as part of this task with previous measurements of heat of hydration of Saltstone obtained adiabatically over the same 80 hour time period. The slightly higher heat of hydration per gram of cementitious material measured adiabatically can be explained by the higher temperatures achieved during the adiabatic measurements. The isothermal measurements reveal additional details of the heat generation process that were not evident in the adiabatic measurements. An initial heat release in the first minutes was observed isothermally. A second peak at about 5 hours was also observed isothermally that was not detected adiabatically. The major heat releases in the 10 to 30 hour period were observed by both techniques but at slightly different times and ratios of the two major peaks that comprise that region. The degree of reaction was calculated from these measurements based upon the value assigned to maximum hydration. Using the Schmidt method, the degree of reaction after 80 hours was 36% complete by isothermal calorimetry and 46% complete by adiabatic calorimetry. Using the theoretical maximum wherein the fly ash and slag are hydraulically equivalent to the portland cement, the degree

  8. Treatment of Alkaline Cr(VI)-Contaminated Leachate with an Alkaliphilic Metal-Reducing Bacterium.

    Science.gov (United States)

    Watts, Mathew P; Khijniak, Tatiana V; Boothman, Christopher; Lloyd, Jonathan R

    2015-08-15

    Chromium in its toxic Cr(VI) valence state is a common contaminant particularly associated with alkaline environments. A well-publicized case of this occurred in Glasgow, United Kingdom, where poorly controlled disposal of a cementitious industrial by-product, chromite ore processing residue (COPR), has resulted in extensive contamination by Cr(VI)-contaminated alkaline leachates. In the search for viable bioremediation treatments for Cr(VI), a variety of bacteria that are capable of reduction of the toxic and highly soluble Cr(VI) to the relatively nontoxic and less mobile Cr(III) oxidation state, predominantly under circumneutral pH conditions, have been isolated. Recently, however, alkaliphilic bacteria that have the potential to reduce Cr(VI) under alkaline conditions have been identified. This study focuses on the application of a metal-reducing bacterium to the remediation of alkaline Cr(VI)-contaminated leachates from COPR. This bacterium, belonging to the Halomonas genus, was found to exhibit growth concomitant to Cr(VI) reduction under alkaline conditions (pH 10). Bacterial cells were able to rapidly remove high concentrations of aqueous Cr(VI) (2.5 mM) under anaerobic conditions, up to a starting pH of 11. Cr(VI) reduction rates were controlled by pH, with slower removal observed at pH 11, compared to pH 10, while no removal was observed at pH 12. The reduction of aqueous Cr(VI) resulted in the precipitation of Cr(III) biominerals, which were characterized using transmission electron microscopy and energy-dispersive X-ray analysis (TEM-EDX) and X-ray photoelectron spectroscopy (XPS). The effectiveness of this haloalkaliphilic bacterium for Cr(VI) reduction at high pH suggests potential for its use as an in situ treatment of COPR and other alkaline Cr(VI)-contaminated environments. PMID:26048926

  9. Experimental investigation and analysis on flexural performance of functionally graded composite beam crack-controlled by ultrahigh toughness cementitious composites

    Institute of Scientific and Technical Information of China (English)

    LI QingHua; XU ShiLang

    2009-01-01

    Based on the concept of functionally graded concrete, UHTCC (ultrahigh toughness cementitious composites) material with excellent crack-controlling ability is strategically substituted for part of the concrete, which surrounds the main longitudinal reinforcement in a reinforced concrete member. In-vestigations on bending behavior of such a functionally graded composite beam crack-controlled by UHTCC (abbreviated as UHTCC-FGC beam) have been carried out. After establishing a theoretical cal-culation model, the paper discusses the results of four-point bending experiment on long composite beams without web reinforcement, and validates the theoretical formulae through experimental results of UHTCC-FGC beams with different thicknesses of UHTCC layer. Besides improving bearing capacity and saving steel reinforcements, the results indicate that UHTCC-FGC beams can also effectively con-trol the deformation and enhance the ductility of members. At last, the optimal thickness of UHTCC layer in UHTCC-FGC beams has been confirmed, which can not only save materials and improve me-chanical performance of members, but also be very effective in preventing corrosion-induced damage and enhancing the durability of members by controlling crack width below 0.05 mm under service con-ditions.

  10. Experimental investigation and analysis on flexural performance of functionally graded composite beam crack-controlled by ultrahigh toughness cementitious composites

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the concept of functionally graded concrete,UHTCC(ultrahigh toughness cementitious composites)material with excellent crack-controlling ability is strategically substituted for part of the concrete,which surrounds the main longitudinal reinforcement in a reinforced concrete member.Investigations on bending behavior of such a functionally graded composite beam crack-controlled by UHTCC(abbreviated as UHTCC-FGC beam)have been carried out.After establishing a theoretical cal-culation model,the paper discusses the results of four-point bending experiment on long composite beams without web reinforcement,and validates the theoretical formulae through experimental results of UHTCC-FGC beams with different thicknesses of UHTCC layer.Besides improving bearing capacity and saving steel reinforcements,the results indicate that UHTCC-FGC beams can also effectively control the deformation and enhance the ductility of members.At last,the optimal thickness of UHTCC layer in UHTCC-FGC beams has been confirmed,which can not only save materials and improve mechanical performance of members,but also be very effective in preventing corrosion-induced damage and enhancing the durability of members by controlling crack width below 0.05mm under service conditions.

  11. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    International Nuclear Information System (INIS)

    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either 3H-fatty acids or [3H]ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the 3H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of [3H]ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from 3H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the 3H-fatty acid and the [3H]ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the [3H]ethanolamine label from the purified alkaline phosphatase. The 3H radioactivity in alkaline phosphatase purified from [3H]ethanolamine-labeled cells comigrated with authentic [3H]ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the 3H-fatty acid and [3H]ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase

  12. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Jemmerson, R.; Low, M.G.

    1987-09-08

    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either /sup 3/H-fatty acids or (/sup 3/H)ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the /sup 3/H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of (/sup 3/H)ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from /sup 3/H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the /sup 3/H-fatty acid and the (/sup 3/H)ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the (/sup 3/H)ethanolamine label from the purified alkaline phosphatase. The /sup 3/H radioactivity in alkaline phosphatase purified from (/sup 3/H)ethanolamine-labeled cells comigrated with authentic (/sup 3/H)ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the /sup 3/H-fatty acid and (/sup 3/H)ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase.

  13. Alkaline Phosphatase in Stem Cells

    Directory of Open Access Journals (Sweden)

    Kateřina Štefková

    2015-01-01

    Full Text Available Alkaline phosphatase is an enzyme commonly expressed in almost all living organisms. In humans and other mammals, determinations of the expression and activity of alkaline phosphatase have frequently been used for cell determination in developmental studies and/or within clinical trials. Alkaline phosphatase also seems to be one of the key markers in the identification of pluripotent embryonic stem as well as related cells. However, alkaline phosphatases exist in some isoenzymes and isoforms, which have tissue specific expressions and functions. Here, the role of alkaline phosphatase as a stem cell marker is discussed in detail. First, we briefly summarize contemporary knowledge of mammalian alkaline phosphatases in general. Second, we focus on the known facts of its role in and potential significance for the identification of stem cells.

  14. Alkaline fuel cells applications

    Science.gov (United States)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  15. Alkaline carbonates in blast furnace process

    Directory of Open Access Journals (Sweden)

    P. Besta

    2014-10-01

    Full Text Available The production of iron in blast furnaces is a complex of physical, chemical and mechanical processes. The input raw materials contain not only metallic components, but also a number of negative elements. The most important negative elements include alkaline carbonates. They can significantly affect the course of the blast furnace process and thus the overall performance of the furnace. As a result of that, it is essential to accurately monitor the alkali content in the blast furnace raw materials. The article analyzes the alkali content in input and output raw materials and their impact on the blast furnace process.

  16. Reclaiming the spent alkaline zinc manganese dioxide batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} materials

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ya; Cui, Yan; Zuo, Xiaoxi; Huang, Shanna; Hu, Keshui; Xiao, Xin; Nan, Junmin, E-mail: jmnan@scnu.edu.cn

    2014-10-15

    Highlights: • The spent Zn–Mn batteries collected from manufacturers is the target waste. • A facile reclaiming process is presented. • The zinc is reclaimed to valuable electrolytic zinc by electrodepositing method. • The manganese elements are to produce valuable LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} battery material. • The reclamation process features environmental friendliness and saving resource. - Abstract: A process for reclaiming the materials in spent alkaline zinc manganese dioxide (Zn–Mn) batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} materials is presented. After dismantling battery cans, the iron cans, covers, electric rods, organic separator, label, sealing materials, and electrolyte are separated through the washing, magnetic separation, filtrating, and sieving operations. Then, the powder residues react with H{sub 2}SO{sub 4} (2 mol L{sup −1}) solution to dissolve zinc under a liquid/solid ratio of 3:1 at room temperature, and subsequently, the electrolytic Zn with purity of ⩾99.8% is recovered in an electrolytic cell with a cathode efficiency of ⩾85% under the conditions of 37–40 °C and 300 A m{sup −2}. The most of MnO{sub 2} and a small quantity of electrolytic MnO{sub 2} are recovered from the filtration residue and the electrodeposit on the anode of electrolytic cell, respectively. The recovered manganese oxides are used to synthesize LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} material of lithium-ion battery. The as-synthesized LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} discharges 118.3 mAh g{sup −1} capacity and 4.7 V voltage plateau, which is comparable to the sample synthesized using commercial electrolytic MnO{sub 2}. This process can recover the substances in the spent Zn–Mn batteries and innocuously treat the wastewaters, indicating that it is environmentally acceptable and applicable.

  17. Effect of phase separation structure on cementitious reactivity of blast furnace slag

    Institute of Scientific and Technical Information of China (English)

    LI Yu; SUN HengHu; LIU XiaoMing; CUI ZengDi

    2009-01-01

    Blast furnace slag samples with phase separation structure were prepared by re-melting and then water quenching process. By use of XRD, DTA and SEM technologies in combination with mechanical prop-erty experiment, the structure characteristics of samples were determined and their effects on cemen-titious reactivity were investigated. The results show that the samples with phase separation have better cementitious reactivity than sample with homogenous glass and sample with crystalline phases, which mainly contributes to its grass structure with coexistence of Ca-O rich phase and Si-O rich phase. Moreover, the amorphous samples possess hydrability which is affected by their formation process, since phase separation extends the range of possible Ca-rich crystalline phases.

  18. Transition from Multiple Macro-Cracking to Multiple Micro-Cracking in Cementitious Composites

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun; LENG Bing

    2008-01-01

    This paper presents an experimental study of the possibility of transition from multiple macro-cracking to multiple micro-cracking in cementitious composites.Conventional polyvinyl alcohol fiber reinforced cementitious composites normally exhibit macroscopic strain-hardening and multiple cracking after the first cracks appear.However,the individual crack width at the saturated stage is normally 60 to 80 μm.In the current study,the effect of fine aggregate size on the cracking performance,especially the individual crack width in the strain-hardening stage was studied by bending tests.The results show that the individual crack widths can be reduced from 60-80 μm to 10-30 μm by modifying the particle size of the fine aggregates used in the composites.

  19. Effect of phase separation structure on cementitious reactivity of blast furnace slag

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Blast furnace slag samples with phase separation structure were prepared by re-melting and then water quenching process. By use of XRD,DTA and SEM technologies in combination with mechanical property experiment,the structure characteristics of samples were determined and their effects on cementitious reactivity were investigated. The results show that the samples with phase separation have better cementitious reactivity than sample with homogenous glass and sample with crystalline phases,which mainly contributes to its glass structure with coexistence of Ca-O rich phase and Si-O rich phase. Moreover,the amorphous samples possess hydrability which is affected by their formation process,since phase separation extends the range of possible Ca-rich crystalline phases.

  20. Alkaline earth cation extraction from acid solution

    Science.gov (United States)

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  1. Quantitative methods used to characterize the impregnation of a glass multifilament yarn by a cementitious matrix

    OpenAIRE

    Aljewifi, Hana; Fiorio, Bruno; Gallias, Jean-Louis.

    2009-01-01

    International audience This paper presents two experimental methods that allow to quantify the impregnation level of the yarn / matrix interface, in the case of Textile Reinforced Concrete (TRC). These methods have been tested on three different glass yarns laid in a cementitious matrix, with three different impregnation levels resulting from the manufacturing process. The first method (comparative mercury intrusion porosity test) is based on the evaluation by mercury intrusion porosity of...

  2. Quantitative methods to characterize the impregnation of a glass multifilament yarn by a cementitious matrix

    OpenAIRE

    Aljewifi, Hana; Fiorio, Bruno; Gallias, Jean-Louis.

    2009-01-01

    This paper focuses on two experimental methods that give indicators linked to the impregnation level of the yarn / matrix interface, in the case of Textile Reinforced Concrete (TRC). These methods have been tested on three different glass yarns laid in a cementitious matrix, with three different impregnation levels resulting from the manufacturing process. The first method (comparative mercury intrusion porosity test) is based on the evaluation by mercury intrusion porosity of the pores volum...

  3. Evaluation of test methods used to characterize fiber reinforced cementitious composites

    DEFF Research Database (Denmark)

    Paegle, Ieva; Fischer, Gregor

    2013-01-01

    This paper describes an investigation of fiber reinforced cementitious composites in terms of their behavior under tensile and flexural loading. Flexural testing and subsequent derivation of the tensile stress-deformation response from the flexural test data are preferred in the assessment of the...... and crack development has been quantitatively documented using a digital image correlation (DIC) system to investigate the validity of the commonly made assumptions....

  4. Phenomenological interpretation of the shear behavior of reinforced Engineered Cementitious Composite beams

    DEFF Research Database (Denmark)

    Paegle, Ieva; Fischer, Gregor

    2016-01-01

    This paper describes an experimental investigation of the shear behavior of beams consisting of steel Reinforced Engineered Cementitious Composites (R/ECC). This study investigates and quantifies the effect of ECC's strain hardening and multiple cracking behavior on the shear capacity of beams...... in a diagonal arrangement between the load and support points due to the strain-hardening response of ECC in tension. The strain-hardening response strongly influenced the shear response of the beam specimen....

  5. Bond Characteristics of Macro Polypropylene Fiber in Cementitious Composites Containing Nanosilica and Styrene Butadiene Latex Polymer

    Directory of Open Access Journals (Sweden)

    Jae-Woong Han

    2015-01-01

    Full Text Available This study evaluated the bond properties of polypropylene (PP fiber in plain cementitious composites (PCCs and styrene butadiene latex polymer cementitious composites (LCCs at different nanosilica contents. The bond tests were evaluated according to JCI SF-8, in which the contents of nanosilica in the cement were 0, 2, 4, 6, 8, and 10 wt%, based on cement weight. The addition of nanosilica significantly affected the bond properties between macro PP fiber and cementitious composites. For PCCs, the addition of 0–2 wt% nanosilica enhanced bond strength and interface toughness, whereas the addition of 4 wt% or more reduced bond strength and interface toughness. The bond strength and interfacial toughness of LCCs also increased with the addition of up to 6% nanosilica. The analysis of the relative bond strength showed that the addition of nanosilica affects the bond properties of both PCC and LCC. This result was confirmed via microstructural analysis of the macro PP fiber surface after the bond tests, which revealed an increase in scratches due to frictional forces and fiber tearing.

  6. 从废旧碱性锌锰电池极性材料中浸出锌的试验研究%Experimental Reseach on Leaching of Zinc From Electrode Material in Spent Alkaline Zn-Mn Battery

    Institute of Scientific and Technical Information of China (English)

    孙铜; 伍碧; 彭蜀君; 孙维义; 丁桑岚; 苏仕军

    2013-01-01

    The leaching of zinc from electrode materials of spent alkaline Zn-Mn battery using acids was not ideal ,and it was difficult to separate zinc from manganese in leaching solution .The leaching mechanism of zinc from electrode materials in ammonia and NH3 · H2 O-(NH4 )2 SO4 system respectively were investigated . The results showed that in ammonia system ,the leaching rate of zinc only reached 45% when the electrode materials were leached for 40 min at room temperature using 25% ammonia aqueous solution at V(liquid)∶m(solid) of 15∶1 .After adding (NH4)2SO4 into ammonia aqueous system ,the leaching rate of zinc reached 96% when the electrode materials were leached for 20 min at the conditions of room temperature ,(N H4 )2 SO4 mass concentration of 200 g/L and V (liquid)∶ m(solid) of 15∶1 using 25% ammonia aqueous solution .%  针对从废旧碱性锌锰电池极性材料酸浸锌时选择性差以及锌、锰分离困难等问题。研究了在N H3· H2 O体系和N H3· H2 O-(N H4)2 SO4体系中浸出锌。结果表明:在N H3· H2 O体系中,氨水质量分数为25%、液固体积质量比为15∶1、浸出时间40 min条件下,锌浸出率最高仅为45%;在 N H3· H2 O-(N H4)2 SO4体系中,氨水质量分数为25%、硫酸铵质量浓度为200 g/L、液固体积质量比为15∶1、浸出时间为20 min条件下,锌浸出率最高达96%。氨水中加入硫酸铵可以促进锌的选择性浸出。

  7. Utilize Cementitious High Carbon Fly Ash (CHCFA) to Stabilize Cold In-Place Recycled (CIR) Asphalt Pavement as Base Coarse

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Haifang; Li, Xiaojun; Edil, Tuncer; O' Donnell, Jonathan; Danda, Swapna

    2011-02-05

    The purpose of this study was to evaluate the performance of cementitious high carbon fly ash (CHCFA) stabilized recycled asphalt pavement as a base course material in a real world setting. Three test road cells were built at MnROAD facility in Minnesota. These cells have the same asphalt surface layers, subbases, and subgrades, but three different base courses: conventional crushed aggregates, untreated recycled pavement materials (RPM), and CHCFA stabilized RPM materials. During and after the construction of the three cells, laboratory and field tests were carried out to characterize the material properties. The test results were used in the mechanistic-empirical pavement design guide (MEPDG) to predict the pavement performance. Based on the performance prediction, the life cycle analyses of cost, energy consumption, and greenhouse gasses were performed. The leaching impacts of these three types of base materials were compared. The laboratory and field tests showed that fly ash stabilized RPM had higher modulus than crushed aggregate and RPM did. Based on the MEPDG performance prediction, the service life of the Cell 79 containing fly ash stabilized RPM, is 23.5 years, which is about twice the service life (11 years) of the Cell 77 with RPM base, and about three times the service life (7.5 years) of the Cell 78 with crushed aggregate base. The life cycle analysis indicated that the usage of the fly ash stabilized RPM as the base of the flexible pavement can significantly reduce the life cycle cost, the energy consumption, the greenhouse gases emission. Concentrations of many trace elements, particularly those with relatively low water quality standards, diminish over time as water flows through the pavement profile. For many elements, concentrations below US water drinking water quality standards are attained at the bottom of the pavement profile within 2-4 pore volumes of flow.

  8. Bifunctional alkaline oxygen electrodes

    Science.gov (United States)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The authors describe the identification and testing of electrocatalysts and supports for the positive electrode of moderate-temperature, single-unit, rechargeable alkaline fuel cells. Recent work on Na(x)Pt3O4, a potential bifunctional catalyst, is described, as well as the application of novel approaches to the development of more efficient bifunctional electrode structures. The three dual-character electrodes considered here showed similar superior performance; the Pt/RhO2 and Rh/RhO2 electrodes showed slightly better performance than the Pt/IrO2 electrode. It is concluded that Na(x)Pt3O4 continues to be a promising bifunctional oxygen electrode catalyst but requires further investigation and development.

  9. Silica in alkaline brines

    Science.gov (United States)

    Jones, B.F.; Rettig, S.L.; Eugster, H.P.

    1967-01-01

    Analysis of sodium carbonate-bicarbonate brines from closed basins in volcanic terranes of Oregon and Kenya reveals silica contents of up to 2700 parts per million at pH's higher than 10. These high concentrations of SiO 2 can be attributed to reaction of waters with silicates, and subsequent evaporative concentration accompanied by a rise in pH. Supersaturation with respect to amorphous silica may occur and persist for brines that are out of contact with silicate muds and undersaturated with respect to trona; correlation of SiO2 with concentration of Na and total CO2 support this interpretation. Addition of moredilute waters to alkaline brines may lower the pH and cause inorganic precipitation of substantial amounts of silica.

  10. An alkaline element

    Energy Technology Data Exchange (ETDEWEB)

    Arita, T.; Murakami, K.; Okha, K.

    1983-04-28

    A cathode with a dual layer active mass is installed in the disk shaped alkaline silver and zinc element. The first layer, which is turned towards the anode, contains 85 parts Ag2O, 5 parts electrolytic MnO2 and 10 parts graphite. The second layer, which contacts the bottom of the element, contains 35 parts Ag2O, 60 parts electrolytic MnO2 and 5 parts graphite. The electrical capacity of the first and second layers is 60 and 40, respectively. The first layer may be discharged with a high current density and the second layer with less current density. The element has high characteristics with comparatively low cost.

  11. Investigation of electrode materials for alkaline batteries

    Science.gov (United States)

    Arcand, G. M.

    1971-01-01

    A number of amalgam electrode systems were investigated for possible use as high rate anodes and cathodes. The systems examined include: lithium, sodium, and potassium in Group 1, magnesium, calcium, and barium in Group 2, aluminum in Group 3, lead in Group 4, copper in Group 1b, and zinc and cadmium in Group 2b. The K(Hg) and Na(Hg) anodes in 10 VF and 15 VF (an unambiguous expression of concentration that indicates the number of formula weights of solute dissolved in a liter of solution) hydroxide solutions have proven satisfactory; some of these have produced current densities of more than 8 A/sq cm. None of the amalgam cathodes have approached this performance although the TI(Hg) has delivered 1 A/sq cm. Se(Hg) and Te(Hg) cathodes have given very stable discharges. Zn(Hg) and Cd(Hg) electrodes did not show good high rate characteristics, 200 to 300 mA/sq cm being about the maximum current densities obtainable. Both anodes are charged through a two-step process in which M(Hg) is first formed electrochemically and subsequently reduces Zn(II or Cd(II) to form the corresponding amalgam. The second step is extremely rapid for zinc and very slow for cadmium.

  12. Properties of Calcium Acetate Manufactured with Etching Waste Solution and Limestone Sludge as a Cementitious High-Early-Strength Admixture

    Directory of Open Access Journals (Sweden)

    Deuck-Mo Kim

    2016-01-01

    Full Text Available Concrete is one of the most widely used construction materials. There are several methods available to improve its performance, with one of them being the use of high-early-strength admixtures (HESAs. Typical HESAs include calcium nitrate, calcium chloride, and calcium formate (CF. Industrial by-products, such as acetic acid and lime stone sludge (LSS, can be used together to produce calcium acetate (CA, which can subsequently be used as a cementitious HESA. In this study, calcium carbonate and LSS were mixed with cement in weight ratios of 1 : 1, 1 : 1.5, and 1 : 2, and the properties of the as-produced CA were evaluated. CA and CF were mixed with cement in different weight ratios (0, 1, 2, and 3 wt% to obtain CA- and CF-mortars, respectively. The flow behavior, setting time, pH, and compressive strength of these mortars were evaluated, and their X-ray diffraction patterns were also analyzed. It was found that as the CF content in the CF-mortar increased, the initial strength of the mortar also increased. However, it impaired its long-term strength. On the other hand, when 1% CA was mixed with cement, satisfactory early and long-term strengths were achieved. Thus, CA, which is obtained from industrial by-products, can be an effective HESA.

  13. Placental-type alkaline phosphatase in cervical neoplasia.

    OpenAIRE

    McLaughlin, P. J.; Warne, P H; Hutchinson, G. E.; Johnson, P. M.; Tucker, D. F.

    1987-01-01

    Monoclonal antibodies reactive with placental-type alkaline phosphatase have formed the basis of methods for detection of this oncodevelopmental antigen in patients with pre-invasive and invasive cervical neoplasia, with or without evidence of papilloma virus infection. Disease-related elevations of placental-type alkaline phosphatase were not observed in patients' sera. Solubilised cervical smears or biopsy material, and cervical mucus swabs, often contained substantial amounts of this isoen...

  14. Screening of Alkaline Protease-Producing Streptomyces diastaticus and Optimization of Enzyme Production

    Directory of Open Access Journals (Sweden)

    Elham Dawoodi

    2014-12-01

    Full Text Available Background and Aim: Alkaline proteases are used in pharmaceutical, film and photography, silk production and food, leather and detergent industries. Actinomycetes are gram positive bacteria that produce different enzymes such as proteases. The aims of this research were isolation of native alkaline protease-producing Actinomycete spp. from different soil samples as well as optimizing the conditions for enzyme production. Materials and Methods: The different soil samples were collected from different locations of the provinces of Khouzestan, Chahar Mahalo Bakhtiari and Isfahan, Iran. After determining of the best alkaline protease producing species using Lowry method, the optimization of alkaline protease was performed. Results: The alkaline protease producing Actinomycete spp. was isolated from soil. The most enzyme activity was measured in S.diastaticus. The best concentration of sucrose as the carbon source for the highest production of alkaline protease was 10 g/l. The optimum pH and temperature for the alkaline protease production by S. diastaticus were 10 and 30°C respectively. The maximum activity of alkaline protease was measured at 200 rpm as the best aeration speed. Conclusions: This is the first report of alkaline protease production by Streptomyces diastaticus in Iran. The accomplished examinations in this research confirmed the previous theories of alkaline protease production by Actinomycetes relatively. Regarding the immense applications of alkaline proteases in several industries and isolation of a native alkaline protease producing Actinomycete, The production potential of this enzyme in our country could be accessible in the near future.

  15. Titratable Acidity and Alkalinity of Red Soil Surfaces

    Institute of Scientific and Technical Information of China (English)

    SHAOZONG-CHEN; HEQUN; 等

    1993-01-01

    The surfaces of red soils have an apparent amphoteric character,carrying titratable acidity and titratable alkalinity simultaneously.The titratable acidity arises from deprotonation of hydroxyl groups of hydrous oxide-type surfaces and dissociation of weak-acid functional groups of soil organic matter,while the titratable alkalinity is derived from release of hydroxyl groups of hydrous oxide-type surfaces.The titratable acidity and titratable alkalinity mainly depended on the composition and content of iron and aluminum oxides in the soils.The results showed that the titratable acidity and titratable alkalinity were in significantly positive correlation not only with the content of amorphous aluminum oxide(Alo) and iron oxide(Feo) extracted with acid ammonium oxalate solution,free iron oxide(Fed) extracted with sodium dithionite-citrate-bicarbonate(DCB) and clays,but also with the zero point of charge (ZPC) of the samples.Organic matter made an important contribution to the titratable acidity.the titratable alkalinity was closely correlated with the amount of fluoride ions adsorbed.The titratable acidity and titratable alkalinity of red soils were influenced by parent materials,being in the order of red soil derived from basalt> that from tuff> that from granite.The titratable acidity and titratable alkalinity ware closely related with origination of the variable charges of red soils,and to a certain extent were responsible for variable negative and positive charges of the soils.

  16. Mechanical Properties of High Cementitious Grout (I)

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

     The present report describes tests carried out on the high performance grout MASTERFLOW 9500, marked WMG 7145 FP, developed by BASF Construction Materials and designed for use in grouted connections of offshore windmill foundations....

  17. Applications of Titanium Dioxide Photocatalysis to Construction Materials

    CERN Document Server

    Ohama, Yoshihiko

    2011-01-01

    Titanium dioxide photocatalysis is based on the semiconducting nature of its anatase crystal type. Construction materials with titanium photocatalyst show performances of air purification, self-cleaning, water purification, antibacterial action. This book describes principles of titanium dioxide photocatalysis, its applications to cementitious and noncementitious materials, as well as an overview of standardization of testing methods.

  18. Modulators of intestinal alkaline phosphatase.

    Science.gov (United States)

    Bobkova, Ekaterina V; Kiffer-Moreira, Tina; Sergienko, Eduard A

    2013-01-01

    Small molecule modulators of phosphatases can lead to clinically useful drugs and serve as invaluable tools to study functional roles of various phosphatases in vivo. Here, we describe lead discovery strategies for identification of inhibitors and activators of intestinal alkaline phosphatases. To identify isozyme-selective inhibitors and activators of the human and mouse intestinal alkaline phosphatases, ultrahigh throughput chemiluminescent assays, utilizing CDP-Star as a substrate, were developed for murine intestinal alkaline phosphatase (mIAP), human intestinal alkaline phosphatase (hIAP), human placental alkaline phosphatase (PLAP), and human tissue-nonspecific alkaline phosphatase (TNAP) isozymes. Using these 1,536-well assays, concurrent HTS screens of the MLSMR library of 323,000 compounds were conducted for human and mouse IAP isozymes monitoring both inhibition and activation. This parallel screening approach led to identification of a novel inhibitory scaffold selective for murine intestinal alkaline phosphatase. SAR efforts based on parallel testing of analogs against different AP isozymes generated a potent inhibitor of the murine IAP with IC50 of 540 nM, at least 65-fold selectivity against human TNAP, and >185 selectivity against human PLAP. PMID:23860652

  19. Alkaline battery, separator therefore

    Science.gov (United States)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  20. Advanced inorganic separators for alkaline batteries

    Science.gov (United States)

    Sheibley, D. W. (Inventor)

    1982-01-01

    A flexible, porous battery separator comprising a coating applied to a porous, flexible substrate is described. The coating comprises: (1) a thermoplastic rubber-based resin which is insoluble and unreactive in the alkaline electrolyte; (2) a polar organic plasticizer which is reactive with the alkaline electrolyte to produce a reaction product which contains a hydroxyl group and/or a carboxylic acid group; and (3) a mixture of polar particulate filler materials which are unreactive with the electrolyte, the mixture comprising at least one first filler material having a surface area of greater than 25 meters sq/gram, at least one second filler material having a surface area of 10 to 25 sq meters/gram, wherein the volume of the mixture of filler materials is less than 45% of the total volume of the fillers and the binder, the filler surface area per gram of binder is about 20 to 60 sq meters/gram, and the amount of plasticizer is sufficient to coat each filler particle. A method of forming the battery separator is also described.

  1. The Expanded Capabilities Of The Cementitious Barriers Partnership Software Toolbox Version 2.0 - 14331

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Heather; Flach, Greg; Smith, Frank; Langton, Christine; Brown, Kevin; Kosson, David; Samson, Eric; Mallick, Pramod

    2014-01-10

    The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional collaboration supported by the U.S. Department of Energy (US DOE) Office of Tank Waste Management. The CBP program has developed a set of integrated tools (based on state-of-the-art models and leaching test methods) that help improve understanding and predictions of the long-term structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. The CBP Software Toolbox – “Version 1.0” was released early in FY2013 and was used to support DOE-EM performance assessments in evaluating various degradation mechanisms that included sulfate attack, carbonation and constituent leaching. The sulfate attack analysis predicted the extent and damage that sulfate ingress will have on concrete vaults over extended time (i.e., > 1000 years) and the carbonation analysis provided concrete degradation predictions from rebar corrosion. The new release “Version 2.0” includes upgraded carbonation software and a new software module to evaluate degradation due to chloride attack. Also included in the newer version are a dual regime module allowing evaluation of contaminant release in two regimes – both fractured and un-fractured. The integrated software package has also been upgraded with new plotting capabilities and many other features that increase the “user-friendliness” of the package. Experimental work has been generated to provide data to calibrate the models to improve the credibility of the analysis and reduce the uncertainty. Tools selected for and developed under this program have been used to evaluate and predict the behavior of cementitious barriers used in near-surface engineered waste disposal systems for periods of performance up to or longer than 100 years for operating facilities and longer than 1000 years for waste disposal. The CBP Software Toolbox is and will continue to produce tangible benefits to the working DOE

  2. Heat of Hydration of Low Activity Cementitious Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Nasol, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-23

    During the curing of secondary waste grout, the hydraulic materials in the dry mix react exothermally with the water in the secondary low-activity waste (LAW). The heat released, called the heat of hydration, can be measured using a TAM Air Isothermal Calorimeter. By holding temperature constant in the instrument, the heat of hydration during the curing process can be determined. This will provide information that can be used in the design of a waste solidification facility. At the Savannah River National Laboratory (SRNL), the heat of hydration and other physical properties are being collected on grout prepared using three simulants of liquid secondary waste generated at the Hanford Site. From this study it was found that both the simulant and dry mix each had an effect on the heat of hydration. It was also concluded that the higher the cement content in the dry materials mix, the greater the heat of hydration during the curing of grout.

  3. Separator for alkaline batteries

    Science.gov (United States)

    Hoyt, H. W.; Pfluger, H. L.

    1968-01-01

    Separator compositions have been tested as components of three-plate silver-zinc oxide cells in a standard cycling test. Six materials meet imposed requirements, giving cycling performance superior to cellophane.

  4. Effects of the material composition in the TL curves of alkaline halides with Eu{sup 2+} exposed to {beta} radiation; Efectos de la composicion del material en las curvas de TL de halogenuros alcalinos con Eu{sup 2+} expuestos a radiacion {beta}

    Energy Technology Data Exchange (ETDEWEB)

    Perez S, R.; Piters, T.; Aceves, R.; Rodriguez M, R. [Dpto. de Investigacion en Fisica, Universidad de Sonora, 83190 Hermosillo, Sonora (Mexico)

    2006-07-01

    The solid state dosemeters plays a very important paper in the growing use of the ionizing radiation. When being increased the use of the radioactive isotopes in the medicine and in the industry, the necessity to have materials but adapted in each case it has increased. To synthesize such materials, it is necessary to enlarge the knowledge on the paper that its play the physical characteristics of the crystals such as the crystalline structure, the lattice constant, imbibed nano structures, dislocations, ions size, electronic states of the ions, etc., on the effects of the ionizing radiation. In the past its have been carried out many studies approaching these problems in some materials, but we consider that its are insufficient before the challenges of the applications. To contribute to the understanding of these effects, we present a study focused to alkaline halide crystals impurified with Eu{sup 2+} ions, making an analysis on the paper that its play a) the ions concentration of Eu{sup 2+} in KBr: Eu{sup 2+}, b) the different sites of trapping of electrons and holes in KBr: Eu{sup 2+}, KCl: Eu{sup 2+}, RbBr:Eu{sup 2+}, RbCl: Eu{sup 2+} and c) the composition of the crystalline solid solutions KCl{sub x}Br{sub 1-X}: Eu{sup 2+} and RbCI{sub x}KBr{sub 1-x}: Eu{sup 2+} on the thermoluminescence curve when these materials are exposed to small dose of {beta} irradiation. The increase in the concentration of Eu{sup 2+} ions produces a smaller relative intensity of the emissions of high temperature for a given dose and it is found that in a RbCl{sub x}KBr{sub 1-x}: Eu{sup 2+} with the greater/smaller concentration of Cl{sup -} ions, the temperature of the characteristic emission is near to the 453/373 K. The composition x of halogenous ions and not the one of alkaline in the crystalline solid solution dominates the landslide of the temperature of the emission. (Author)

  5. The alkaline and alkaline-carbonatite magmatism from Southern Brazil

    Science.gov (United States)

    Ruberti, E.; Gomes, C. D. B.; Comin-Chiaramonti, P.

    2015-12-01

    Early to Late Cretaceous lasting to Paleocene alkaline magmatism from southern Brazil is found associated with major extensional structural features in and around the Paraná Basin and grouped into various provinces on the basis of several data. Magmatism is variable in size, mode of occurrence and composition. The alkaline rocks are dominantly potassic, a few occurrences showing sodic affinity. The more abundant silicate rocks are evolved undersaturated to saturated in silica syenites, displaying large variation in igneous forms. Less evolved types are restricted to subvolcanic environments and outcrops of effusive suites occur rarely. Cumulatic mafic and ultramafic rock types are very common, particularly in the alkali-carbonatitic complexes. Carbonatite bodies are represented by Ca-carbonatites and Mg-carbonatites and more scarcely by Fe-carbonatites. Available radiometric ages for the alkaline rocks fit on three main chronological groups: around 130 Ma, subcoveal with the Early Cretaceous flood tholeiites of the Paraná Basin, 100-110 Ma and 80-90 Ma (Late Cretaceous). The alkaline magmatism also extends into Paleocene times, as indicated by ages from some volcanic lavas. Geochemically, alkaline potassic and sodic rock types are distinguished by their negative and positive Nb-Ta anomalies, respectively. Negative spikes in Nb-Ta are also a feature common to the associated tholeiitic rocks. Sr-Nd-Pb systematics confirm the contribution of both HIMU and EMI mantle components in the formation of the alkaline rocks. Notably, Early and Late Cretaceous carbonatites have the same isotopic Sr-Nd initial ratios of the associated alkaline rocks. C-O isotopic Sr-Nd isotopic ratios indicate typical mantle signature for some carbonatites and the influence of post-magmatic processes in others. Immiscibility of liquids of phonolitic composition, derived from mafic alkaline parental magmas, has been responsible for the origin of the carbonatites. Close association of alkaline

  6. Significance of steel electrical resistance method in the evaluation of reinforcement corrosion in cementitious systems

    Directory of Open Access Journals (Sweden)

    Krajci, L.

    2004-06-01

    Full Text Available The suitable detection system of steel reinforcement corrosion in concrete structures contributes to the reduction of their maintenance costs. Method of steel electrical resistance represents non-destructive monitoring of steel in cementitious systems. Specially prepared and arranged test specimen of steel as a corrosion sensor is embedded in mortar specimen. Verification tests of this method based on chloride corrosion of steel in mortars as well as its visual inspection are introduced. Significance of steel electrical resistance method lies in the expression of steel corrosion by these quantitative parameters: reduction of cross-section of steel, thickness of corroded layer and loss of weight of steel material. This method is an integral method that allows the indirect determination of mentioned corrosion characteristics. The comparison of verified method with gravimetric evaluation of steel corrosion gives a good correspondence. Test results on mortars with calcium chloride dosages between 0.5% and 4.0% by weight of cement prove high sensitiveness and reliability of steel electrical resistance method.

    La utilización de un sistema de detección de la corrosión de las armaduras en estructuras de hormigón puede contribuir a la reducción de sus costes de mantenimiento. El método de la resistencia eléctrica del acero consiste en la monitorización no-destructiva realizada sobre el acero en sistemas cementantes. Dentro de la muestra de mortero se coloca el sistema de detección, especialmente preparado y fijado, actuando como un sensor de la corrosión. En este trabajo se presentan ensayos de verificación de este método, junto con inspecciones visuales, en morteros sometidos a corrosión de armaduras por efecto de los cloruros. La efectividad de este método de la resistencia eléctrica del acero se expresa, en la corrosión de armaduras, de acuerdo a los siguientes parámetros cuantitativos: reducción de la sección transversal del

  7. Application of Engineered Cementitious Composites (ECC) in modular floor panels

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi; Fischer, Gregor; Jönsson, Jeppe

    2008-01-01

    This paper describes the design, manufacturing, and structural behavior of a prefabricated floor panel consisting of a modular assembly of a thin-walled ECC slab and steel truss girders. The features of this composite structure include light weight, the modular manufacturing process with adaptabi......This paper describes the design, manufacturing, and structural behavior of a prefabricated floor panel consisting of a modular assembly of a thin-walled ECC slab and steel truss girders. The features of this composite structure include light weight, the modular manufacturing process...... with adaptability to various loading requirements, and the efficient utilization of material resources and industrial byproducts. The work described in this paper is a continuation of previous activities on composite floor panels in which light gage steel joists were integrally cast with the ECC slab. The modular...... service conditions and at ultimate. The modular floor panel concept is introduced, modeled, and verified with experimental tests of various configurations....

  8. Property investigation of calcium–silicate–hydrate (C–S–H) gel in cementitious composites

    International Nuclear Information System (INIS)

    Calcium–silicate–hydrate (C–S–H) gel, the main product of cement hydration, contributes the most to engineering properties of concrete. Hence, the microstructural physical and mechanical properties of C–S–H gel present in cementitious composites were investigated by the coupled nanoindentation and scanning electron microscope analysis. The physical and mechanical properties were linked through the micro-poromechanical approach. Through this study, an insight was provided into the microstructural features of C–S–H gel present in cementitious composites. It is found that C–S–H gel is a multi-scale composite composed of C–S–H solid, pore and intermixtures at the scale of nanoindentation on C–S–H gel, and the physical and mechanical properties of C–S–H gel can be influenced by the porosity and volume fraction of the intermixtures. - Highlights: • A coupled nanoindentation and scanning electron microscope technique was applied. • The physical and mechanical properties were linked by the proposed model. • The porosity and poroelastic parameters were reported for the first time. • The influence of water to cement ratio was studied

  9. Selection and durability of seal materials for a bedded salt repository: preliminary studies

    International Nuclear Information System (INIS)

    This report details preliminary results of both experimental and theoretical studies of cementitious seal materials for use in a proposed nuclear waste repository in bedded salt. Effects of changes in bulk composition and environment upon phase stability and physical/mechanical properties have been evaluated for more than 25 formulations. Bonding and interfacial characteristics of the region between host rock and seal material or concrete aggregate and cementitious matrix for selected formulations have been studied. Compatibilities of clays and zeolites in brines typical of the SE New Mexico region have been investigated, and their stabilities reviewed. Results of these studies have led to the conclusion that cementitious materials can be formulated which are compatible with the major rock types in a bedded salt repository environment. Strengths are more than adequate, permeabilities are consistently very low, and elastic moduli generally increase only very slightly with time. Seal formulation guidelines and recommendations for present and future work are presented. 73 references, 25 figures, 61 tables

  10. Selection and durability of seal materials for a bedded salt repository: preliminary studies

    Energy Technology Data Exchange (ETDEWEB)

    Roy, D.M.; Grutzeck, M.W.; Wakeley, L.D.

    1983-11-01

    This report details preliminary results of both experimental and theoretical studies of cementitious seal materials for use in a proposed nuclear waste repository in bedded salt. Effects of changes in bulk composition and environment upon phase stability and physical/mechanical properties have been evaluated for more than 25 formulations. Bonding and interfacial characteristics of the region between host rock and seal material or concrete aggregate and cementitious matrix for selected formulations have been studied. Compatibilities of clays and zeolites in brines typical of the SE New Mexico region have been investigated, and their stabilities reviewed. Results of these studies have led to the conclusion that cementitious materials can be formulated which are compatible with the major rock types in a bedded salt repository environment. Strengths are more than adequate, permeabilities are consistently very low, and elastic moduli generally increase only very slightly with time. Seal formulation guidelines and recommendations for present and future work are presented. 73 references, 25 figures, 61 tables.

  11. Effect of blast furnace slag on self-healing of microcracks in cementitious materials

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Haoliang, E-mail: haoliang.huang@tudelft.nl [Microlab, Faculty of Civil Engineering and Geosciences, Delft University of Technology (Netherlands); Ye, Guang [Microlab, Faculty of Civil Engineering and Geosciences, Delft University of Technology (Netherlands); Magnel Laboratory for Concrete Research, Department of Structural Engineering, Ghent University (Belgium); Damidot, Denis [Université Lille Nord de France (France); EM Douai, LGCgE-MPE-GCE, Douai (France)

    2014-06-01

    The physico-chemical process of self-healing in blast furnace slag cement paste was investigated in this paper. With a high slag content i.e., 66% in cement paste and saturated Ca(OH)₂ solution as activator, it was found that the reaction products formed in cracks are composed of C-S-H, ettringite, hydrogarnet and OH–hydrotalcite. The fraction of C-S-H in the reaction products is much larger than the other minerals. Large amount of ettringite formed in cracks indicates the leaching of SO₄⁻² ions from the bulk paste and consequently the recrystallization. Self-healing proceeds fast within 50 h and then slows down. According to thermodynamic modeling, when the newly formed reaction products are carbonated, the filling fraction of crack increases first and then decreases. Low soluble minerals such as silica gel, gibbsite and calcite are formed. Compared to Portland cement paste, the potential of self-healing in slag cement paste is higher when the percentage of slag is high. Highlights: • Self-healing reaction products in slag cement paste were characterized. • Self-healing reaction products formed in time were quantified with image analysis. • Self-healing in slag cement paste was simulated with a reactive transport model. • Effect of carbonation on self-healing was investigated by thermodynamic modeling. • Effect of slag on self-healing was discussed based on experiments and simulation.

  12. Microstructure and transport phenomena in visco-elastic modelling of hardening cementitious materials

    NARCIS (Netherlands)

    Van der Ham, H.W.M.

    2011-01-01

    Since the durability depends, among other things, on the quality of the concrete and presence of cracks, it is necessary to calculate the probability of cracking in hardening concrete as reliable as possible in case of durability predictions. In this thesis, it is investigated how the accuracy of st

  13. Experimental study on ultrasonic pulse velocity evaluation of the microstructure of cementitious material at early age

    NARCIS (Netherlands)

    Guang Ye; Van Breugel, K.; Fraaij, A.L.A.

    2001-01-01

    This paper describes an ultrasonic experimental set-up to monitor the development of the microstructure of fresh concrete at different temperatures (isothermal curing at 10, 20, 30 and 50 °C) and water/cement ratios (0.40, 0.45 and 0.55). The Ultrasonic Pulse Velocity (UPV) is used as an indication

  14. Design of polymeric capsules for autonomous healing of cracks in cementitious materials

    OpenAIRE

    HILLOULIN, Benoit; Van Tittelboom, Kim; Gruyaert, Elke; LOUKILI, Ahmed; De Belie, Nele

    2013-01-01

    Now, most of the capsules used to contain polymeric healing agents in self-healing concrete, are made of glass. However, glass capsules cannot be mixed in concrete and are therefore placed manually into the moulds during concrete casting in laboratory tests. This represents a major drawback for an eventual industrialisation. In this study, polymeric capsules were designed to meet three requirements: breakage upon crack appearance, compatibility with the polymeric healing agent and survival...

  15. The Effect of Fiber Geometry and Interfacial Properties on the Elastic Properties of Cementitious Nanocomposite Material

    Directory of Open Access Journals (Sweden)

    Ala G. Abu Taqa

    2015-01-01

    Full Text Available This paper investigates the elastic (Young’s modulus of carbon Nanotube- (CNT- reinforced cement paste using 3D and axisymmetric models using Abaqus software. The behavior of the CNT and the cement matrix was assumed to be fully elastic while the cohesive surface framework was used to model the interface. To investigate the effect of fiber waviness on the value of the elastic modulus, 3D models were developed assuming different distributions of fibers. The results obtained using the 3D model were compared to those obtained using the simplified three-phase axisymmetric model which consists of one single CNT aligned in the center of composite unit cell, an interface, and cement matrix. A parametric study was then carried out using the axisymmetric model to study the role of the interface in the composite elastic modulus without accounting for the presence of the interfacial transition zone (ITZ or interphase. The results showed that the CNTs waviness significantly reduced their reinforcing capability in the cement paste. On the other hand, the results obtained using the axisymmetric model were found to be in good agreement with those obtained using the 3D model. Moreover, the results of the parametric study showed that the interface properties significantly affect the composite elastic modulus and alter its behavior.

  16. Evaluation of a microcapsule based self-healing system for cementitious materials

    NARCIS (Netherlands)

    Zhang, M.; Han, N.; Xing, F.; Wang, X.; Schlangen, H.E.J.G.

    2013-01-01

    An international cooperation research project has been financially supported by China Nature Science Foundation, which consists of three relatively independent, but strategically integrated research sub-programs, aiming at the formation of a selfhealing system based on the microcapsule principle for

  17. Effect of carbon nanofiber addition in the mechanical properties and durability of cementitious materials

    Directory of Open Access Journals (Sweden)

    Galao, O.

    2012-09-01

    Full Text Available This paper reports on recent work that is directed at studying the changes in the mechanical properties of Portland cement based mortars due to the addition of carbon nanofiber (CNF. Both flexural and compression strength has been determined and related to the CNF addition to the mix, to the curing time and to the porosity and density of the matrix. Also, corrosion of embedded steel rebars in CNF cement pastes exposed to carbonation and chloride attacks has been investigated. The increase in CNF addition implies higher corrosion intensity and higher levels of mechanical properties.En este artículo se han estudiado los cambios en las propiedades mecánicas de los morteros de cemento Portland debido a la adición de nanofibras de carbono (NFC. Se han determinado las resistencias a flexotracción y a compresión de los morteros en relación a la cantidad de NFC añadidas a la mezcla, al tiempo de curado y a la porosidad y densidad de los mismos. Además se han investigado los niveles de corrosión de barras de acero embebidas en pastas de cemento con NFC expuestos al ataque por carbonatación y por ingreso de cloruros. El aumento en el porcentaje de NFC añadido se traduce en un aumento la intensidad de corrosión registrada y una mejora de las propiedades mecánicas.

  18. Effect of Magnesium Sulphate on Self-Compacting Concrete Containing Supplementary Cementitious Materials

    OpenAIRE

    Aiad Hassan; Hilmi Bin Mahmud; Mohd Zamin Jumaat; Belal ALsubari; Aziz Abdulla

    2013-01-01

    The length change is negligible and can be attributed to the normal distension of concrete. On the other hand, concrete suffering from mass loss gives a good indicator about the durability of SCC. Permeability of concrete is an important factor in classifying its durability generally; concrete with low Permeability will afford better protection of the reinforcement within it than concrete with high Permeability. In this paper, the assessment of magnesium sulphate (MS) attack on concrete conta...

  19. 温度对地质聚合物胶凝体系激发特性的影响试验研究%Experiment study on the effect of temperatures on excitation characteristics of geopolymer cementitious system

    Institute of Scientific and Technical Information of China (English)

    白二雷; 许金余; 周龙飞; 马舒宁

    2014-01-01

    In order to explore the effect of temperatures on excitation characteristics of geopolymer cementitious system,chose slag and fly ash as the raw materials to make the geopolymer cementitious system which water-binder ratio was 0.31,design the solution reactor of different temperatures and different curing temperatures to analysis the effect of temperatures on rheological characterization and strength in 24 h of the cementitious system.The test result shows that the rheological characterization and strength in 24 h of the slag-fly ash cemen-titious system were closely related to the temperature,the rheological characterization,flexural strength and flexural strength in 24 h in-creased at the beginning and then decreased with the rise of temperature,the optimum temperature of rheological characterization was about 50 ℃,and the optimum temperature of strength was about 60 ℃.%为研究不同温度条件对地质聚合物胶凝体系激发反应特性的影响,选取矿渣和粉煤灰作为原材料制备了水胶比为0.31的地聚物胶凝体系,设计了不同温度的碱性反应溶液(10~90℃)和不同的养护温度(10~90℃),以此来分析温度对胶凝体系制备过程中的流变性能的影响和早期(24 h)强度的影响。结果表明:矿渣粉煤灰胶凝体系的流变性能和24 h 抗折、抗压强度与温度密切相关,随温度的升高,其流变性能和24 h 抗折、抗压强度都是先增大后减小,流变性能的最佳温度在50℃左右,而强度的最佳温度则在60℃左右。

  20. Alkaline Earth Core Level Photoemission Spectroscopy of High-Temperature Superconductors

    Science.gov (United States)

    Vasquez, R.

    1993-01-01

    This paper examines photoemission measurements of the alkaline Earth core levels of high-temperature superconductors and related materials, models that seek to explain the large negative shifts observed relative to the corresponding alkaline Earth metals, and the effect of lattice site disorder on the core level spectra and the presence or absence of intrinsic surface peaks.

  1. Porous poly(perfluorosulfonic acid) membranes for alkaline water electrolysis

    DEFF Research Database (Denmark)

    Aili, David; Hansen, Martin Kalmar; Andreasen, Jens Wenzel;

    2015-01-01

    Poly(perfluorosulfonic acid) (PFSA) is one of a few polymer types that combine excellent alkali resistance with extreme hydrophilicity. It is therefore of interest as a base material in separators for alkaline water electrolyzers. In the pristine form it, however, shows high cation selectivity. T...

  2. Evaluation of some bean lines tolerance to alkaline soil

    Directory of Open Access Journals (Sweden)

    Abeer A. Radi

    2012-01-01

    Full Text Available Introduction: In less arid climates, salts are less concentrated and sodium dominates in carbonate and bicarbonate forms, which enhance the formation of alkaline soils. The development and identification of salt-tolerant crop cultivars or lines would complement salt management programs to improve the productivity and yields of salt stressed plants.Materials and methods: This work was to study the evaluation of alkalinity tolerance of some bean lines grown under different levels of sodium carbonate (Na2CO3 to select the most alkalinity tolerant lines versus the most-sensitive ones out of 6 lines of the test plants.Results: The symptoms induced by alkalinity included reduction in root, shoot growth, and leaf area which were more severe in some bean lines. Potassium leakage was severely affected by alkalinity in some lines at all tested levels, while in some others a moderate damage was manifested only at the higher levels. The increase in Na2CO3 level was associated with a gradual fall in chlorophyll a and b biosynthesis of all the test bean lines. However, alkalinity at low and moderate levels had a favorable effect on the biosynthesis of carotenoids in all the test bean lines. The increase in Na2CO3 supply had a considerable stimulatory effect on sodium accumulation, while potassium accumulation fluctuated in organs of bean lines.Conclusion: Assiut 1104 out of all the different lines investigated was found to display the lowest sensitivity to alkalinity stress, while Assiut 12/104 was the most sensitive one.

  3. Influence of cementitious additions on rheological and mechanical properties of reactive powder concretes

    Science.gov (United States)

    Zenati, A.; Arroudj, K.; Lanez, M.; Oudjit, M. N.

    2009-11-01

    Following needs of concrete market and the economic and ecological needs, several researchers, all over the world, studied the beneficial effect which the incorporation of the mineral additions in Portland cement industry can bring. It was shown that the incorporation of local mineral additions can decrease the consumption of crushing energy of cements, and reduce the CO2 emission. Siliceous additions, moreover their physical role of filling, play a chemical role pozzolanic. They contribute to improving concrete performances and thus their durability. The abundance of dunes sand and blast furnace slag in Algeria led us to study their effect like cementitious additions. The objective of this paper is to study the effect of the incorporation of dunes sand and slag, finely ground on rheological and mechanical properties of reactive powder concretes containing ternary binders.

  4. Impact Properties of Engineered Cementitious Composites with High Volume Fly Ash Using SHPB Test

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhitao; YANG Yingzi; YAO Yan

    2012-01-01

    The split Hopkinson pressure bar (SHPB) testing with diameter 40 mm was used to investigate the dynamic mechanical properties of engineered cementitious composites (ECCs) with different fly ash content.The basic properties including deformation,energy absorption capacity,strain-stress relationship and failure patterns were discussed.The ECCs showed strain-rate dependency and kept better plastic flow during impact process compared with reactive powder concrete (RPC) and concrete,but the critical compressive strength was lower than that of R-PC and concrete.The bridging effect of PVA fiber and addition of fly ash can significantly improve the deformation and energy absorption capacities of ECCs.With the increase of fly ash content in ECCs,the static and dynamic compressive strength lowered and the dynamic increase factor enhanced,Therefore,to meet different engineering needs,the content of fly ash can be an important index to control the static and dynamic mechanical properties of ECCs.

  5. Self-healing of Micro-cracks in Engineered Cementitious Composites

    Directory of Open Access Journals (Sweden)

    Suryanto B.

    2015-12-01

    Full Text Available The performance of an Engineered Cementitious Composite (ECC to self-heal micro-cracks under a controlled laboratory environment is presented. Ten dog-bone shaped samples were prepared; five of them were preloaded to known strains and then left to heal in water in a temperature-controlled laboratory. Ultrasonic pulse velocity (UPV measurements were undertaken to monitor the crack-healing process. It was found that all samples exhibited recoveries in UPV and were able to recover to between 96.6% and 98% of their pre-test UPV values over a period of four weeks. An accelerated rate of healing was observed in the initial two-day period immediately following the preloading test.

  6. Excellent bonding behaviour of novel surface-tailored fibre composite rods with cementitious matrix

    Indian Academy of Sciences (India)

    Fernando Cunha; Sohel Rana; Raul Fangueiro; Graça Vasconcelos

    2014-08-01

    Novel composite rods were produced by a special braiding technique that involves braiding of polyester yarns around a core of resin-impregnated carbon fibres and subsequent curing. The surface roughness of these braided rods was tailored by replacing one or two simple yarns in the outer-braided layer with braided yarns (produced from 8 simple yarns) and adjusting the take-up velocity. Pull-out tests were carried out to characterize the bond behaviour of these composite rods with cementitious matrix. It was observed that the rod produced with two braided yarns in the outer cover and highest take-up speed was ruptured completely before pull-out, leading to full utilization of its tensile strength, and exhibited 134% higher pull-out force as compared to the rods produced using only simple braiding yarns.

  7. Prediction of Flexural Capacity of RC Beams Strengthened in Flexure with FRP Fabric and Cementitious Matrix

    Directory of Open Access Journals (Sweden)

    Kyusan Jung

    2015-01-01

    Full Text Available This paper presents both experimental and analytical research results for predicting the flexural capacity of reinforced concrete (RC beams strengthened in flexure with fabric reinforced cementitious matrix (FRCM. In order to assess the efficiency of the FRCM-strengthening method, six beams were strengthened in flexure with FRCM composite having different amounts and layers of FRP fabric and were tested under four-point loading. From test results, it was confirmed that the slippage between the FRP fabric and matrix occurs at a high strain level, and all of the FRCM-strengthened beams failed by the debonding of the FRCM. Additionally, a new bond strength model for FRCM considering the slippage between fabric and matrix was proposed, using a test database to predict the strengthening performance of the FRCM composite. The prediction of the proposed bond strength model agreed well with the debonding loads of the test database.

  8. Nucleotide sequences encoding a thermostable alkaline protease

    Science.gov (United States)

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  9. Mechanism of Methanol Formation during Alkaline Pulping of Non-wood Fiber Materials Part I The relationship between the quantity of methanol and chemical composition%非木材原料碱法蒸煮甲醇产生机理的研究 第一部分甲醇发生量与化学成分的关系

    Institute of Scientific and Technical Information of China (English)

    文0秋娟; 刘海学; 李丹

    2012-01-01

    Methanol is the main alcohol of air pollutants generated in the alkaline pulping process. The relationship between the quantity of methanol generated in alkaline processes and lignin and pentosan content of several commonly used non-wood raw materials, as well as the course of methanol formation during sulfate pulping of bamboo, were studied. The results showed that the quantity of generated methanol varied greatly according to the species of raw material. During bamboo kraft pulping process, the amount of methanol increased with the increase of the dissolution of lignin and pentosan.%甲醇为碱法蒸煮过程中产生的主要醇类大气污染物。本文主要研究了几种常用的非木材原料碱法蒸煮甲醇的发生量与木素和聚戊糖含量的关系,并研究了竹材硫酸盐法蒸煮甲醇产生的历程。实验得出,原料种类不同,其甲醇发生量相差很大。刺竹硫酸盐法蒸煮过程中,甲醇发生量随着木索和聚戊糖溶出量的增大而升高。

  10. 温度对碱激发碳酸盐矿胶凝材料的影响%INFLUENCE OF TEMPERATURE ON ALKALI-ACTIVATED CARBONATITE CEMENTITIOUS MLALTERIAL

    Institute of Scientific and Technical Information of China (English)

    林坚钦; 殷素红; 余其俊; 文梓芸

    2008-01-01

    采用化学结合水测定、综合热分析及扫描电镜分析,研究了温度对碱激发碳酸盐矿胶凝材料(alkali-acdvated carbonatite cememitious material,C体系)及碱激发碳酸盐矿-矿渣复合胶凝材料(alkali-activated carbonatite-slag cementitious material,CS体系)的反应程度、反应产物及微观结构的影响.结果表明:相同温度下,两体系的化学结合水量随龄期变化的规律有所不同,CS体系的反应程度较C体系的高;两体系的反应产物有所不同,CS体系的浆体微观结构比C体系的更密实;随温度升高,两体系反应程度提高,凝胶产物增多,浆体结构更加密实,但反应温度不宜超过60℃.

  11. Characterization of cementitiously stabilized subgrades for mechanistic-empirical pavement design

    Science.gov (United States)

    Solanki, Pranshoo

    Pavements are vulnerable to subgrade layer performance because it acts as a foundation. Due to increase in the truck traffic, pavement engineers are challenged to build more strong and long-lasting pavements. To increase the load-bearing capacity of pavements, subgrade layer is often stabilized with cementitious additives. Thus, an overall characterization of stabilized subgrade layer is important for enhanced short- and long-term pavement performance. In this study, the effect of type and amount of additive on the short-term performance in terms of material properties recommended by the new Mechanistic-Empirical Pavement Design Guide (MEPDG) is examined. A total of four soils commonly encountered as subgrades in Oklahoma are utilized. Results show that the changes in the Mr, ME and UCS values stabilized specimens depend on the soil type and properties of additives. The long-term performance (or durability) of stabilized soil specimens is investigated by conducting freeze-thaw (F-T) cycling, vacuum saturation and tube suction tests on 7-day cured P-, K- and C-soil specimens stabilized with 6% lime, 10% CFA and 10% CKD. This study is motivated by the fact that during the service life of pavement stabilized layers are subjected to F-T cycles and moisture variations. It is found that that UCS value of all the stabilized specimens decreased with increase in the number of F-T cycles. A strong correlation was observed between UCS values retained after vacuum saturation and F-T cycles indicating that vacuum saturation could be used as a time-efficient and inexpensive method for evaluating durability of stabilized soils. In this study, short- and long-term observations from stabilization of sulfate bearing soil with locally available low (CFA), moderate (CKD) and high (lime) calcium-based stabilizers are determined to evaluate and compare the effect of additive type on the phenomenon of sulfate-induced heave. The impact of different factors on the development of the

  12. Alkaline polymer electrolyte fuel cells: Principle, challenges, and recent progress

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Polymer electrolyte membrane fuel cells (PEMFC) have been recognized as a significant power source in future energy systems based on hydrogen. The current PEMFC technology features the employment of acidic polymer electrolytes which, albeit superior to electrolyte solutions, have intrinsically limited the catalysts to noble metals, fundamentally preventing PEMFC from widespread deployment. An effective solution to this problem is to develop fuel cells based on alkaline polymer electrolytes (APEFC), which not only enable the use of non-precious metal catalysts but also avoid the carbonate-precipitate issue which has been troubling the conventional alkaline fuel cells (AFC). This feature article introduces the principle of APEFC, the challenges, and our research progress, and focuses on strategies for developing key materials, including high-performance alkaline polyelectrolytes and stable non-precious metal catalysts. For alkaline polymer electrolytes, high ionic conductivity and satisfactory mechanical property are difficult to be balanced, therefore polymer cross-linking is an ultimate strategy. For non-precious metal catalysts, it is urgent to improve the catalytic activity and stability. New materials, such as transition-metal complexes, nitrogen-doped carbon nanotubes, and metal carbides, would become applicable in APEFC.

  13. A non-destructive test method to monitor corrosion products and corrosion-induced cracking in reinforced cement based materials

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Bradley Justin; Peterova, Adela;

    2011-01-01

    This paper introduces a non-destructive test method to monitor the development of corrosion products as well as the corrosion-induced formation and propagation of cracks in cementitious materials. A parametric experimental investigation (utilizing x-ray attenuation measurement technique) was cond......This paper introduces a non-destructive test method to monitor the development of corrosion products as well as the corrosion-induced formation and propagation of cracks in cementitious materials. A parametric experimental investigation (utilizing x-ray attenuation measurement technique...

  14. Alkaline fuel cell performance investigation

    Science.gov (United States)

    Martin, R. E.; Manzo, M. A.

    1988-01-01

    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more that two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.

  15. Recycling of MSWI fly ash by means of cementitious double step cold bonding pelletization: Technological assessment for the production of lightweight artificial aggregates.

    Science.gov (United States)

    Colangelo, Francesco; Messina, Francesco; Cioffi, Raffaele

    2015-12-15

    In this work, an extensive study on the recycling of municipal solid waste incinerator fly ash by means of cold bonding pelletization is presented. The ash comes from an incineration plant equipped with rotary and stoker furnaces, in which municipal, hospital and industrial wastes are treated. Fly ash from waste incineration is classified as hazardous and cannot be utilized or even landfilled without prior treatment. The pelletization process uses cement, lime and coal fly ash as components of the binding systems. This process has been applied to several mixes in which the ash content has been varied from 50% (wt.%) up to a maximum of 70%. An innovative additional pelletization step with only cementitious binder has been performed in order to achieve satisfactory immobilization levels. The obtained lightweight porous aggregates are mostly suitable for recovery in the field of building materials with enhanced sustainability properties. Density, water absorption and crushing strength ranged from 1000 to 1600 kg/m(3), 7 to 16% and 1.3 to 6.2 MPa, respectively, and the second pelletization step increased stabilization efficiency. The feasibility of the process has been analyzed by testing also concrete specimens containing the artificial aggregates, resulting in lightweight concrete of average performance. PMID:26124064

  16. Dolomite Dissolution in Alkaline Cementious Media

    Science.gov (United States)

    Mittermayr, Florian; Klammer, Dietmar; Köhler, Stephan; Dietzel, Martin

    2010-05-01

    of Mg2+ as brucite (Mg(OH)2) precipitates. Brucite and calcite were detected insitu by Raman spectroscopy surrounding partially dissolved dolomite grains. Dolomite dissolution under alkaline condition is a dynamic process of dissolution and precipitation stimulated by high Ca2+ content, high ionic strength, low temperature and high pH with the consequence of low Mg2+ concentration. References: Katayama, T., 2004. How to identify carbonate rock reactions in concrete. Materials Characterization 53, 85-104. Parkhurst, D. L., Appelo, C. A. J. 1999. User's guide to PHREEQC. U.S. Geol. Sur.: 312. Schmidt, T., Lothenbach, B., Romer, M., Neuenschwander, J., Scrivener K., 2009. Physical and microstructural aspects of sulfate attack on ordinary and limestone blended Portland cements. Cement and Concrete Research 39, 1111-1121.

  17. Alkaline Water and Longevity: A Murine Study.

    Science.gov (United States)

    Magro, Massimiliano; Corain, Livio; Ferro, Silvia; Baratella, Davide; Bonaiuto, Emanuela; Terzo, Milo; Corraducci, Vittorino; Salmaso, Luigi; Vianello, Fabio

    2016-01-01

    The biological effect of alkaline water consumption is object of controversy. The present paper presents a 3-year survival study on a population of 150 mice, and the data were analyzed with accelerated failure time (AFT) model. Starting from the second year of life, nonparametric survival plots suggest that mice watered with alkaline water showed a better survival than control mice. Interestingly, statistical analysis revealed that alkaline water provides higher longevity in terms of "deceleration aging factor" as it increases the survival functions when compared with control group; namely, animals belonging to the population treated with alkaline water resulted in a longer lifespan. Histological examination of mice kidneys, intestine, heart, liver, and brain revealed that no significant differences emerged among the three groups indicating that no specific pathology resulted correlated with the consumption of alkaline water. These results provide an informative and quantitative summary of survival data as a function of watering with alkaline water of long-lived mouse models.

  18. Incinerated sewage sludge ash as alternative binder in cement-based materials

    DEFF Research Database (Denmark)

    Krejcirikova, Barbora; Goltermann, Per; Hodicky, Kamil

    2013-01-01

    Sewage sludge ash is characterized by its pozzolanic properties, as cement is. This predetermines its use in a substitution of cement and cementitious materials. Utilization of sewage sludge ash does not only decrease the consumption of cement, one of the largest cause of CO2 emissions, but also...

  19. Improvements in self-consolidating cementitious composites by using micro carbonized aggregates

    Directory of Open Access Journals (Sweden)

    Giuseppe Andrea Ferro

    2014-10-01

    Full Text Available There is growing interest in the use of self-consolidating cementitious systems in construction industry. The present research was conducted to enhance the mechanical performance of cement composites by the utilization of micro-sized inert particles. This paper deals with the synthesis of micro-sized inert carbonized particles from hemp hurds. The synthesized carbonized particles were characterized by field emission scanning electron microscope (FESEM. These particles were further used as additive in self-consolidating cement composites. Total of four different wt% additions (i.e. 0.08, 0.20, 1.00 and 3.00 by wt% of cement were investigated. The cement composites containing carbonized particles inclusions were characterized by three point bending and compression tests. The results indicate that the carbonized particles additions enhanced the flexural and compressive strengths of the cement composites. It was also observed that the fracture properties and the energy absorption capability of the cement composites were enhanced substantially.

  20. Thermally conductive cementitious grouts for geothermal heat pumps. Progress report FY 1998

    Energy Technology Data Exchange (ETDEWEB)

    Allan, M.L.; Philippacopoulos, A.J.

    1998-11-01

    Research commenced in FY 97 to determine the suitability of superplasticized cement-sand grouts for backfilling vertical boreholes used with geothermal heat pump (GHP) systems. The overall objectives were to develop, evaluate and demonstrate cementitious grouts that could reduce the required bore length and improve the performance of GHPs. This report summarizes the accomplishments in FY 98. The developed thermally conductive grout consists of cement, water, a particular grade of silica sand, superplasticizer and a small amount of bentonite. While the primary function of the grout is to facilitate heat transfer between the U-loop and surrounding formation, it is also essential that the grout act as an effective borehole sealant. Two types of permeability (hydraulic conductivity) tests was conducted to evaluate the sealing performance of the cement-sand grout. Additional properties of the proposed grout that were investigated include bleeding, shrinkage, bond strength, freeze-thaw durability, compressive, flexural and tensile strengths, elastic modulus, Poisson`s ratio and ultrasonic pulse velocity.

  1. Microstructural changes in a cementitious membrane due to the application of a DC electric field.

    Science.gov (United States)

    Covelo, Alba; Diaz, Belen; Freire, Lorena; Novoa, X Ramon; Perez, M Consuelo

    2008-07-01

    The use of electromigration techniques to accelerate chloride ions motion is commonly employed to characterise the permeability of cementitious samples to chlorides, a relevant parameter in reinforced concrete corrosion. This paper is devoted to the study of microstructure's changes occurring in mortar samples when submitted to natural diffusion and migration experiments. The application of an electric field reduces testing time in about one order of magnitude with respect to natural diffusion experiments. Nevertheless, the final sample's microstructure differs in both tests. Impedance Spectroscopy is employed for real time monitoring of microstructural changes. During migration experiments the global impedance undergoes important increase in shorter period of time compared to natural diffusion tests. So, the forced motion of ions through the concrete membrane induces significant variations in the porous structure, as confirmed by Mercury Intrusion Porosimetry. After migration experiments, an important increase in the capillary pore size (10-100 nm) was detected. Conversely, no relevant variations are found after natural diffusion tests. Results presented in this work cast doubt on the significance of diffusion coefficient values obtained under accelerated conditions. PMID:18569312

  2. Preparation of Self-compacting Ultra-high Toughness Cementitious Composite

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiufang; XU Shilang; TIAN Yanhua

    2011-01-01

    A self-compacting ultra-high toughness cementitious composite(UHTCC)reinforced by discontinuous short polyvinyl alcohol(PVA)fibers,which exhibits self-compacting performance in the fresh state and strain-hardening and multiple cracking behavior in the hardened state,was developed through controlling flow properties of fresh mortar matrix at constant ingredients concentrations determined by micromechanical design and ensuring uniform fibers dispersion.The superplasticizer was utilized to adjust its flow properties in the fresh state.A series of flow tests,including deformability test,flow rate test,and self-placing test,were conducted to characterize and quantify the fluidity performance of fresh mortar matrix and self-compactability of fresh UHTCC.It is revealed that the utilization of superplasticizer is efficient in producing the fresh mortar matrix with desirable fluidity and the resulting self-compacting UHTCC.In addition,results of four point bending tests on the developed self-compacting UHTCC confirm the insensitivity of mechanical performance of self-compacting UHTCC to the presence of external vibrations as well as the flexural characteristics of deformation hardening and multiple cracking.

  3. Cementitious binders from activated stainless steel refining slag and the effect of alkali solutions.

    Science.gov (United States)

    Salman, Muhammad; Cizer, Özlem; Pontikes, Yiannis; Snellings, Ruben; Vandewalle, Lucie; Blanpain, Bart; Van Balen, Koen

    2015-04-01

    With an aim of producing high value cementitious binder, stainless steel refining slag containing a high amount of CaO in γ-dicalcium silicate form was activated with NaOH and Na-silicate as well as KOH and K-silicate solutions, followed by steam curing at 80 °C. Higher levels of alkali-silicate in the activating solution resulted in higher cumulative heat suggesting accelerated reaction kinetics. With respect to compressive strength, higher levels of alkali silicate resulted in higher strength and the mortars with Na activator were found to have higher early strength than the ones with K activator. The long term strength was found to be similar, regardless of the alkali metal. Thermogravimetric, QXRD and FTIR analyses showed an increase in the amount of reaction products (C-S-H type) over time, further confirming the reactivity of the crystalline slag. Batch leaching results showed lower leaching of heavy metals and metalloids with K activator compared to the Na activator. These results demonstrate that the alkali type and the ratio of hydroxide to silicates have a significant impact on the hydration and mechanical strength development of the stainless steel slag. The above findings can aid in the recycling and valorization of these type of slags which otherwise end up landfilled. PMID:25577317

  4. Progress of research on the influence of alkaline cation and alkaline solution on bentonite properties

    International Nuclear Information System (INIS)

    Based on the previous laboratory studies and numerical simulation on bentonite in alkaline environments, the effects of alkaline cation and alkaline solution on mineral composition, microstructure, swelling capacity and hydraulic properties of bentonite are emphasized in this paper, temperature, pH values and concentration are discussed as main affecting factors. When bentonite is exposed to alkaline cation or alkaline solution, microstructure of bentonite will be changed due to the dissolution of montmorillonite and the formation of secondary minerals, which results in the decrease of swelling pressure. The amount of the reduction of swelling pressure depends on the concentration of alkaline solution. Temperature, polyvalent cation, salinity and concentration are the main factors affecting hydraulic properties of bentonite under alkaline conditions. Therefore, future research should focus on the mechanism of coupling effects of weak alkaline solutions on the mineral composition, microstructure, swelling capacity and hydraulic properties of bentonite under different temperatures and different pH values. (authors)

  5. Alkaline azide mutagenicity in cowpea

    International Nuclear Information System (INIS)

    Sodium azide is known as a potent mutagen in cereals and legumes. It is very effective in acidic medium in barley. Here an attempt is made to measure the effectiveness of sodium azide in alkaline medium (pH 7.4) on cowpea (Vigna unguiculata (L.) Walp., variety FS-68). Seeds pre-soaked in distilled water for 5 hours were treated with different concentrations (10-6, 10-5, 10-4 and 10-3M) of sodium azide (NaN3) for 4 hours at 28± 2 deg. C. Bottles were intermittently shaken, then the seeds were thoroughly washed in running tap water and subsequently planted in pots. The treatment caused significant biological damage such as reduction in seed germination, length of root and shoot, number of nodules and pods per plant and morphological leaf variations. Morphological, as well as chlorophyll mutants, were detected in M2

  6. Water-free Alkaline Polymer-inorganic Acid Complexes with High Conductivity at Ambient Temperature

    Institute of Scientific and Technical Information of China (English)

    O.V.Chervakov; M.V.Andriianova; V.V.Riabenko; A.V.Markevich; E.M.Shembel; D.Meshri

    2007-01-01

    1 Results Recently increased interest is shown to proton conducting materials based on the alkaline polymer-inorganic acid complexes that is caused by a possibility of their application as the high-temperature electrolyte systems for various electrochemical devices (fuel cells,sensors,lithium power sources etc.).Complexes of inorganic acids with the alkaline polymers (polybenzimidazoles[1],polyvinylpyridines[2]) are characterized by high ionic conductivity at ambient temperatures (up to 10-2 Ω-1·cm-1) a...

  7. Carbon nanotubes-gold nanohybrid as potent electrocatalyst for oxygen reduction in alkaline media.

    Science.gov (United States)

    Morozan, Adina; Donck, Simon; Artero, Vincent; Gravel, Edmond; Doris, Eric

    2015-11-01

    A carbon nanotube-gold nanohybrid was used as catalyst for the reduction of molecular oxygen in acidic and alkaline media, the relevant cathode reaction in fuel cells. In alkaline medium, the nanohybrid exhibits excellent activity with a dominant 4e(-) reduction of O2 and low overpotential requirement compared to previously reported nano-gold materials. This property is linked to its capability to efficiently mediate HO2(-) dismutation. PMID:26439282

  8. Modelling study of the distribution of activation products in a cementitious repository

    International Nuclear Information System (INIS)

    Thermodynamic modelling has been used to study the behaviour of the activation products Ni-59, Nb-94 and Zr-93 in the cementitious/bentonite/crushed-rock near field of a radioactive waste repository. The work had two main aims: (a) to obtain estimates of the most realistic solubilities for the three radioelements present in decommissioning waste under the near-field conditions, (b) to calculate the rate of migration of the radionuclides through the near-field barriers. The calculated solubilities at pH 12.4 and 25 deg C are approximately 1*10-7 M, 4*10-9 M and 6*10-8 M for Ni, Zr and Nb respectively. These values correspond to solubilities measured for amorphous-type solids where very efficient solid-liquid separation is achieved. Uncertainties in the data values are discussed. Calculations to investigate the effect of a lower host-rock temperature on these solubilities suggest that the solubilities will rise to about 1*10-5 M, 8*10-9 M for Ni, Zr and Nb respectively, but there is less certainty in the input data. Modelling has been performed using the CHEQMATE computer code to calculate the rate of migration of the radioelements through the concrete and bentonite/crushed-rock barriers, assuming solubility control and control by corrosion of the source metals. The results demonstrated that the assumption of solubility control of corrosion control made little difference to the model, because in the corrosion control case the metals reached their solubility limits rapidly. The inclusion of groundwater flow increased the metal ion concentration by less than a factor of 2 in each case. The fluxes out of the TVO repository after a given time were predicted to be significantly less than those from the IVO repository due to the greater thickness of concrete in the TVO repository. (orig.). (16 refs., 9 figs., 23 tabs.)

  9. DURABILITY OF GREEN CONCRETE WITH TERNARY CEMENTITIOUS SYSTEM CONTAINING RECYCLED AGGREGATE CONCRETE AND TIRE RUBBER WASTES

    Directory of Open Access Journals (Sweden)

    MAJID MATOUQ ASSAS

    2016-06-01

    Full Text Available All over the world billions of tires are being discarded and buried representing a serious ecological threat. Up to now a small part is recycled and millions of tires are just stockpiled, landfilled or buried. This paper presents results about the properties and the durability of green concrete contains recycled concrete as a coarse aggregate with partial replacement of sand by tire rubber wastes for pavement use. Ternary cementious system, Silica fume, Fly ash and Cement Kiln Dust are used as partial replacement of cement by weight. Each one replaced 10% of cement weight to give a total replacement of 30%. The durability performance was assessed by means of water absorption, chloride ion permeability at 28 and 90 days, and resistance to sulphuric acid attack at 1, 7, 14 and 28 days. Also to the compression behaviors for the tested specimens at 7, 14, 28 and 90 days were detected. The results show the existence of ternary cementitious system, silica fly ash and Cement Kiln Dust minimizes the strength loss associated to the use of rubber waste. In this way, up to 10% rubber content and 30% ternary cementious system an adequate strength class value (30 MPa, as required for a wide range of common structural uses, can be reached both through natural aggregate concrete and recycled aggregate concrete. Results also show that, it is possible to use rubber waste up to 15% and still maintain a high resistance to acid attack. The mixes with 10%silica fume, 10% fly ash and 10% Cement Kiln Dust show a higher resistance to sulphuric acid attack than the reference mix independently of the rubber waste content. The mixes with rubber waste and ternary cementious system was a lower resistance to sulphuric acid attack than the reference mix.

  10. Process for treating alkaline wastes for vitrification

    Science.gov (United States)

    Hsu, Chia-lin W.

    1994-01-01

    According to its major aspects and broadly stated, the present invention is a process for treating alkaline waste materials, including high level radioactive wastes, for vitrification. The process involves adjusting the pH of the wastes with nitric acid, adding formic acid (or a process stream containing formic acid) to reduce mercury compounds to elemental mercury and MnO{sub 2} to the Mn(II) ion, and mixing with class formers to produce a melter feed. The process minimizes production of hydrogen due to noble metal-catalyzed formic acid decomposition during, treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. An important feature of the present invention is the use of different acidifying and reducing, agents to treat the wastes. The nitric acid acidifies the wastes to improve yield stress and supplies acid for various reactions; then the formic acid reduces mercury compounds to elemental mercury and MnO{sub 2}) to the Mn(II) ion. When the pH of the waste is lower, reduction of mercury compounds and MnO{sub 2}) is faster and less formic acid is needed, and the production of hydrogen caused by catalytically-active noble metals is decreased.

  11. Monitoring moisture movements in building materials using x-ray attenuation

    DEFF Research Database (Denmark)

    Pease, Bradley Justin; Scheffler, Gregor A.; Janssen, Hans

    2011-01-01

    X-ray attenuation measurements are commonly used as a non-destructive method to monitor internal concentration changes of moisture (i.e., moisture content) and other chemical compounds in porous building materials. The technique provides direct measurements of moisture content changes through ana...... autoclaved concrete, clay brick, cementitious materials, and wood. Results from the parametric investigation indicate the attenuation coefficient of water is dependent on the type and thickness of the porous material....

  12. Alkaline sorbent injection for mercury control

    Science.gov (United States)

    Madden, Deborah A.; Holmes, Michael J.

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  13. Advection of an alkaline fluid through boom clay cores: geochemical modelling of experimental data

    International Nuclear Information System (INIS)

    As part of the ECOCLAY II project, with the financial support of NIRAS-ONDRAF and the European Commission, SCK-CEN has carried out experiments on the percolation of alkaline cement waters through Boom Clay cores. The effluent from these percolation experiments has been analysed as a function of time to provide information about the fluid-rock interactions occurring in the samples. However, the changes in the effluent composition with time are quite complex and require interpretation if insight is to be gained into the mechanisms of the interactions occurring in the samples between the invading alkaline fluid and the Boom Clay. Two cementitious waters were used in the experiments: a high pH (∼ 13,5) young cement water (YCW ) representing the initial eluate from a cement, and a lower pH (∼ 12) evolved cement water (ECW) representing the fluids that would emerge from the cements after long times. These fluids were passed through Boom Clay cores over several years and the composition of the effluent fluid monitored. The primary purpose of the modelling work was to provide an explanation of the processes controlling the interactions between the alkaline fluids and the Boom Clay. Four mechanisms were considered: the maintenance of the dissolution-precipitation thermodynamic equilibrium between the minerals and the pore fluids, ion exchange, kinetically controlled dissolution of primary minerals, and the functional group capacity of organic matter as a function of pH. The modelling was carried out using three essentially independent geochemical modelling packages: PHREEQC [Parkhurst and Apello, 1999] (Serco Assurance), PRECIP [Noy, 1990] (British Geological Survey) and CRUNCH [Steefel, 2001] (SCK-CEN). However, the general approach was similar in the three cases. Overall, this work has shown that it is possible to model the experiments to reproduce the main features seen on the correct time scales using simple models of plausible mechanisms. Similar conclusions have

  14. 2nd Generation alkaline electrolysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yde, L. [Aarhus Univ. Business and Social Science - Centre for Energy Technologies (CET), Aarhus (Denmark); Kjartansdottir, C.K. [Technical Univ. of Denmark. DTU Mechanical Engineering, Kgs. Lyngby (Denmark); Allebrod, F. [Technical Univ. of Denmark. DTU Energy Conversion, DTU Risoe Campus, Roskilde (Denmark)] [and others

    2013-03-15

    The overall purpose of this project has been to contribute to this load management by developing a 2{sup nd} generation of alkaline electrolysis system characterized by being compact, reliable, inexpensive and energy efficient. The specific targets for the project have been to: 1) Increase cell efficiency to more than 88% (according to the higher heating value (HHV)) at a current density of 200 mA /cm{sup 2}; 2) Increase operation temperature to more than 100 degree Celsius to make the cooling energy more valuable; 3) Obtain an operation pressure more than 30 bar hereby minimizing the need for further compression of hydrogen for storage; 4) Improve stack architecture decreasing the price of the stack with at least 50%; 5) Develop a modular design making it easy to customize plants in the size from 20 to 200 kW; 6) Demonstrating a 20 kW 2{sup nd} generation stack in H2College at the campus of Arhus University in Herning. The project has included research and development on three different technology tracks of electrodes; an electrochemical plating, an atmospheric plasma spray (APS) and finally a high temperature and pressure (HTP) track with operating temperature around 250 deg. C and pressure around 40 bar. The results show that all three electrode tracks have reached high energy efficiencies. In the electrochemical plating track a stack efficiency of 86.5% at a current density of 177mA/cm{sup 2} and a temperature of 74.4 deg. C has been shown. The APS track showed cell efficiencies of 97%, however, coatings for the anode side still need to be developed. The HTP cell has reached 100 % electric efficiency operating at 1.5 V (the thermoneutral voltage) with a current density of 1. 1 A/cm{sup 2}. This track only tested small cells in an externally heated laboratory set-up, and thus the thermal loss to surroundings cannot be given. The goal set for the 2{sup nd} generation electrolyser system, has been to generate 30 bar pressure in the cell stack. An obstacle to be

  15. Defect structure of cubic solid solutions of alkaline earth and rare earth fluorides

    NARCIS (Netherlands)

    DenHartog, HW

    1996-01-01

    In this paper we will consider the disorder in some cubic solid solutions consisting of one of the alkaline earth fluorides and one of the rare earth fluorides. This is an attractive group of model materials, because these materials have a rather simple overall cubic structure. We will discuss the m

  16. Influence of salivary enzymes and alkaline pH environment on fatigue behavior of resin composites

    NARCIS (Netherlands)

    H. Mirmohammadi; C.J. Kleverlaan; M.N. Aboushelib; A.J. Feilzer

    2011-01-01

    Purpose: To evaluate the effect of enzymatic activity and alkaline medium on flexural strength and rotary fatigue resistance of direct and indirect resin composite restorative materials. Methods: Three direct resin composite materials Filtek Z100, Filtek Z250 and Filtek Silorane (3M ESPE), and two i

  17. Cementitious near-field sorption data bases for performance assessment of a L/ILW repository in a Palfris marl host rock. CEM-94: update I, June 1997

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, M.H.; Loon, L.R. van [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1998-01-01

    This report is an update on an earlier cementitious sorption data base (SDB) prepared by Bradbury and Sarott (1994). The aim is to review any new information or data which have become available in the intervening time and modify the existing SDB appropriately. Discussions will be confined predominantly to areas which have led to significant changes to or reappraisals of the data/values or procedures for obtaining/modifying them. From this point of view this update and the previous SDB are closely related and belong together. The complexation of radionuclides with organic ligands from the chemical degradation of cellulose, and the subsequent negative effects on sorption properties, were identified as being processes of great importance. Since 1994 significant progress has been made in this field and a major part of this work is devoted to a reassessment of the impact of `organics` on near-field sorption. In particular, the very conservative assumptions which had been made previously because of the general lack of good quality data available at that time, could be replaced by realistic parameter estimates based on new knowledge. For example, maximum likely concentrations of cellulose degradation products and cement additives in the cement pore waters could be calculated allowing the potential effects of these organic ligands on sorption to be bounded. Sorption values for safety relevant radionuclides corresponding to the three broad stages of cement/concrete degradation during the lifetime of the repository are presented in tabulated form. The influence of the wide variety of organic ligands existing in the different waste categories, SMA-1 to SMA-4, is quantified in terms of sorption reduction factors. In the compilation of this cement SDB update, radionuclide uptake onto the vast quantities of aggregate materials and corrosion products from iron/steel was not taken into account. (author) 10 figs., 8 tabs., refs.

  18. Cementitious near-field sorption data bases for performance assessment of a L/ILW repository in a Palfris marl host rock. CEM-94: update I, June 1997

    International Nuclear Information System (INIS)

    This report is an update on an earlier cementitious sorption data base (SDB) prepared by Bradbury and Sarott (1994). The aim is to review any new information or data which have become available in the intervening time and modify the existing SDB appropriately. Discussions will be confined predominantly to areas which have led to significant changes to or reappraisals of the data/values or procedures for obtaining/modifying them. From this point of view this update and the previous SDB are closely related and belong together. The complexation of radionuclides with organic ligands from the chemical degradation of cellulose, and the subsequent negative effects on sorption properties, were identified as being processes of great importance. Since 1994 significant progress has been made in this field and a major part of this work is devoted to a reassessment of the impact of 'organics' on near-field sorption. In particular, the very conservative assumptions which had been made previously because of the general lack of good quality data available at that time, could be replaced by realistic parameter estimates based on new knowledge. For example, maximum likely concentrations of cellulose degradation products and cement additives in the cement pore waters could be calculated allowing the potential effects of these organic ligands on sorption to be bounded. Sorption values for safety relevant radionuclides corresponding to the three broad stages of cement/concrete degradation during the lifetime of the repository are presented in tabulated form. The influence of the wide variety of organic ligands existing in the different waste categories, SMA-1 to SMA-4, is quantified in terms of sorption reduction factors. In the compilation of this cement SDB update, radionuclide uptake onto the vast quantities of aggregate materials and corrosion products from iron/steel was not taken into account. (author) 10 figs., 8 tabs., refs

  19. Prevention of ARD through stabilization of waste rock with alkaline by-products : results from a meso-scale experiment

    Energy Technology Data Exchange (ETDEWEB)

    Backstrom, M.; Allard, B. [Orebro Univ. (Sweden). Man-Technology Environment Research Centre; Sartz, L.; Karlsson, S. [Orebro Univ. (Sweden). Man-Technology Environment Research Centre; Bergskraft Bergslagen, Kopparberg (Sweden)

    2010-07-01

    Mine waste can be mixed with alkaline materials to neutralize and increase the immobilization of trace elements. An impermeable layer can also be created if the alkaline additions react with the waste to form hardpans. Alkaline injection processes have been used in the western United States, where approximately 2 to 3.5 million tonnes of mine tailings have been limed with calcite, calcium hydroxide (Ca(OH){sub 2}), and calcium oxide (CaO). In this study, stabilization experiments were conducted to simulate conditions where weathered mine waste was mixed with various alkaline materials. The aim of the study was to determine the optimal conditions for preventing the oxidation of mine waste isolating surfaces. The alkaline materials included fly ash, lime mud, green liquor dregs, and lime kiln dust. The mine waste and alkaline materials were layered in barrels. Expanded clay aggregates were used to minimize the risk of clogging. Results of the experiments showed that the pH in the alkaline-treated systems increased between 1.3 and 27 pH units when compared with untreated reference samples. The increased pH resulted in a decrease in trace element concentrations of approximately 96 percent. The samples containing fly ash performed better than other systems. 4 refs., 1 tab., 2 figs.

  20. Description of near-tip fracture processes in strain hardening cementitious composites using image-based analysis and the compact tension test

    DEFF Research Database (Denmark)

    Pereira, Eduardo B.; Fischer, Gregor; Barros, Joaquim A.O.

    2013-01-01

    , was characterized under eccentric tensile loading using the Compact Tension Test (CTT). The present research further extends this investigation, with particular emphasis on cementitious composites reinforced with multiple types of fibers. The experimental tensile load-displacement results are discussed and compared...

  1. Technetium recovery from high alkaline solution

    Science.gov (United States)

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  2. Alkaline tolerant dextranase from streptomyces anulatus

    Science.gov (United States)

    Decker, Stephen R.; Adney, William S.; Vinzant, Todd B.; Himmel, Michael E.

    2003-01-01

    A process for production of an alkaline tolerant dextranase enzyme comprises culturing a dextran-producing microorganism Streptomyces anulatus having accession no. ATCC PTA-3866 to produce an alkaline tolerant dextranase, Dex 1 wherein the protein in said enzyme is characterized by a MW of 63.3 kDa and Dex 2 wherein its protein is characterized by a MW of 81.8 kDa.

  3. Alkaline static feed electrolyzer based oxygen generation system

    Science.gov (United States)

    Noble, L. D.; Kovach, A. J.; Fortunato, F. A.; Schubert, F. H.; Grigger, D. J.

    1988-01-01

    In preparation for the future deployment of the Space Station, an R and D program was established to demonstrate integrated operation of an alkaline Water Electrolysis System and a fuel cell as an energy storage device. The program's scope was revised when the Space Station Control Board changed the energy storage baseline for the Space Station. The new scope was aimed at the development of an alkaline Static Feed Electrolyzer for use in an Environmental Control/Life Support System as an oxygen generation system. As a result, the program was divided into two phases. The phase 1 effort was directed at the development of the Static Feed Electrolyzer for application in a Regenerative Fuel Cell System. During this phase, the program emphasized incorporation of the Regenerative Fuel Cell System design requirements into the Static Feed Electrolyzer electrochemical module design and the mechanical components design. The mechanical components included a Pressure Control Assembly, a Water Supply Assembly and a Thermal Control Assembly. These designs were completed through manufacturing drawing during Phase 1. The Phase 2 effort was directed at advancing the Alkaline Static Feed Electrolyzer database for an oxygen generation system. This development was aimed at extending the Static Feed Electrolyzer database in areas which may be encountered from initial fabrication through transportation, storage, launch and eventual Space Station startup. During this Phase, the Program emphasized three major areas: materials evaluation, electrochemical module scaling and performance repeatability and Static Feed Electrolyzer operational definition and characterization.

  4. Improved electrodes and gas impurity investigations on alkaline electrolysers

    DEFF Research Database (Denmark)

    Reissner, R.; Schiller, G.; Knoeri, T.;

    Alkaline water electrolysis for hydrogenproduction is a well-established techniquebut some technological issues regarding thecoupling of alkaline water electrolysis andRenewable Energy Sources (RES) remain tobe improved.......Alkaline water electrolysis for hydrogenproduction is a well-established techniquebut some technological issues regarding thecoupling of alkaline water electrolysis andRenewable Energy Sources (RES) remain tobe improved....

  5. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Leukocyte alkaline phosphatase test. 864.7660... Leukocyte alkaline phosphatase test. (a) Identification. A leukocyte alkaline phosphatase test is a device used to identify the enzyme leukocyte alkaline phosphatase in neutrophilic granulocytes...

  6. Effect of alkaline treatment on the characterization of zalacca midrib wastes fibers

    Science.gov (United States)

    Raharjo, Wahyu Purwo; Soenoko, Rudy; Purnowidodo, Anindito; Choiron, Mochammad Agus; Triyono

    2016-03-01

    Nowadays, the need for new materials is urgent due to the scarcity of conventional materials and energy resources. The environmental issue requires materials which are biodegradable. There are many composites, arranged from synthetic fibers and matrix, which cannot be recyclable after their lifetime. In this research, the utilization potency of zalacca midrib wastes for their fibers as composite reinforcement were investigated, especially after the alkaline treatment to improve their characteristics. The influence of alkaline treatment on the density, functional groups of the fiber surface, thermal stability and crystallinity were measured and/or analyzed by linear-density-and-diameter-calculation, FTIR, TGA-DTA and XRD, respectively. The result showed that the zalacca midrib fibers had lower density than synthetic fibers and several natural fibers. Analysis of FTIR spectra indicated that the alkaline treatment of NaOH slightly raised their density because it removed several functional groups which attributed to the hemicellulose and lignin. TGA-DTA analysis indicated that zalacca fibers had good thermal stability until temperature of 220°C and it was improved by alkaline treatment. XRD analysis showed that the crystallinity of zalacca fibers was higher than several natural fibers like rice straw, sorghum stem and wheat straw fibers. Their crystallinity index was higher than wheat straw fiber. The alkaline treatment increases the crystallinity and crystallinity index rather than untreated fibers.

  7. Ion transport in alkaline and earth alkaline hydrogen fluorides

    NARCIS (Netherlands)

    Kroger, C; Niggemeier, H; Wiemhofer, HD; Glumov, O; Murin, [No Value

    2002-01-01

    The impedance of the hydrogen fluorides KHF2, NH4HF2 and BaHF3 was investigated as a function of temperature and in the presence of HF and H2O. A comparison of results on different electrode materials. (graphite, silver, palladium, Sn \\ SnF2, and Sn \\ SnF2 \\ LaF3) was used to elucidate the contribut

  8. Prophylactic treatment with alkaline phosphatase in cardiac surgery induces endogenous alkaline phosphatase release

    NARCIS (Netherlands)

    Kats, Suzanne; Brands, Ruud; Hamad, Mohamed A. Soliman; Seinen, Willem; Schamhorst, Volkher; Wulkan, Raymond W.; Schoenberger, Jacques P.; van Oeveren, Wim

    2012-01-01

    Introduction: Laboratory and clinical data have implicated endotoxin as an important factor in the inflammatory response to cardiopulmonary bypass. We assessed the effects of the administration of bovine intestinal alkaline phosphatase (bIAP), an endotoxin detoxifier, on alkaline phosphatase levels

  9. Flexible separator for alkaline batteries

    Science.gov (United States)

    Sheibley, D. W.

    1977-01-01

    Device is fabricated from low-cost readily-available commercial-materials by automated methods utilizing conventional paper coating processes. Flexibility of unit prevents cracking and disintegration caused by electrode warpage and dendrite growth, major causes of early battery failure with present separators.

  10. Cotton dust ash from spining texttle industry as a secondary material in concrete

    OpenAIRE

    Borvorn Israngkura Na Ayudhya

    2015-01-01

    As cotton dust (CD) from spinning textile industry contains considerable amounts of cellulose, it can be used as an alternative secondary material for the production of concrete. This study was performed by replacing cementitious material with incinerated CD. Fresh and hardened cotton dust ash concrete was compared to a reference series. The level of replacement was at 0%, 5%, 10%, 15%, and 20% by weight. Observed results indicated that CD ash concrete had consistently led to impr...

  11. Anoxic Biodegradation of Isosaccharinic Acids at Alkaline pH by Natural Microbial Communities.

    Directory of Open Access Journals (Sweden)

    Simon P Rout

    Full Text Available One design concept for the long-term management of the UK's intermediate level radioactive wastes (ILW is disposal to a cementitious geological disposal facility (GDF. Under the alkaline (10.013.0 anoxic conditions expected within a GDF, cellulosic wastes will undergo chemical hydrolysis. The resulting cellulose degradation products (CDP are dominated by α- and β-isosaccharinic acids (ISA, which present an organic carbon source that may enable subsequent microbial colonisation of a GDF. Microcosms established from neutral, near-surface sediments demonstrated complete ISA degradation under methanogenic conditions up to pH 10.0. Degradation decreased as pH increased, with β-ISA fermentation more heavily influenced than α-ISA. This reduction in degradation rate was accompanied by a shift in microbial population away from organisms related to Clostridium sporosphaeroides to a more diverse Clostridial community. The increase in pH to 10.0 saw an increase in detection of Alcaligenes aquatilis and a dominance of hydrogenotrophic methanogens within the Archaeal population. Methane was generated up to pH 10.0 with acetate accumulation at higher pH values reflecting a reduced detection of acetoclastic methanogens. An increase in pH to 11.0 resulted in the accumulation of ISA, the absence of methanogenesis and the loss of biomass from the system. This study is the first to demonstrate methanogenesis from ISA by near surface microbial communities not previously exposed to these compounds up to and including pH 10.0.

  12. Dynamic damage and stress-strain relations of ultra-high performance cementitious composites subjected to repeated impact

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Ultra-high performance cementitious composites (UHPCC) were prepared by replacing 60% of cement with ultra-fine industrial waste powders.The dynamic damage and compressive stress-strain relations of UHPCC were studied using split Hopkinson pressure bar (SHPB).The damage of UHPCC subjected to repeated impact was measured by the ultrasonic pulse velocity method.Results show that the dynamic damage of UHPCC increases linearly with impact times and the abilities of repeated impact resistance of UHPCC are improved with increasing fiber volume fraction.The stress waves on impact were recorded and the average stress,strain and strain rate of UHPCC were calculated based on the wave propagation theory.The effects of strain rate,fibers volume fraction and impact times on the stress-strain relations of UHPCC were studied.Results show that the peak stress and elastic modulus decrease while the strain rate and peak strain increase gradually with increasing impact times.

  13. An investigation of magnox sludge and alumino-ferric floc waste simulate, immobilised by a cementitious matrix

    International Nuclear Information System (INIS)

    Magnox sludge and alumino ferric floc simulates, prepared using non-radioactive tracers were immobilised by a cementitious system. Formulation design aimed at optimising pollutant leaching with permeability and compressive strength as secondary considerations. The behaviour of the products under accelerated weathering conditions was investigated. The study was divided into two parts: Formulation design in Phase I and the systematic testing of the optimum formulations under freeze-thaw, and hydration -dehydration conditions in Phase 2. Analytical method development for leachate analysis continued through both Phases. The Barnwood method of leach testing was used. The immobilised waste had good physical properties (i.e. high strength and low permeability) and a significant improvement was achieved during the course of the work in the leach rates of the tracers, particularly of caesium and strontium. (author)

  14. Alkaline Capacitors Based on Nitride Nanoparticles

    Science.gov (United States)

    Aldissi, Matt

    2003-01-01

    High-energy-density alkaline electrochemical capacitors based on electrodes made of transition-metal nitride nanoparticles are undergoing development. Transition- metal nitrides (in particular, Fe3N and TiN) offer a desirable combination of high electrical conductivity and electrochemical stability in aqueous alkaline electrolytes like KOH. The high energy densities of these capacitors are attributable mainly to their high capacitance densities, which, in turn, are attributable mainly to the large specific surface areas of the electrode nanoparticles. Capacitors of this type could be useful as energy-storage components in such diverse equipment as digital communication systems, implanted medical devices, computers, portable consumer electronic devices, and electric vehicles.

  15. Electrochemical behaviour of alkaline copper complexes

    Indian Academy of Sciences (India)

    C L Aravinda; S M Mayanna; V R Muralidharan

    2000-10-01

    A search for non-cyanide plating baths for copper resulted in the development of alkaline copper complex baths containing trisodium citrate [TSC] and triethanolamine [TEA]. Voltammetric studies were carried out on platinum to understand the electrochemical behaviour of these complexes. In TSC solutions, the deposition of copper involves the slow formation of a monovalent species. Adsorption of this species obeys Langmuir isotherm. In TEA solutions the deposition involves the formation of monovalent ions obeying the non-activated Temkin isotherm. Conversion of divalent to monovalent copper is also slow. In TEA and TSC alkaline copper solutions, the predominant species that undergo stepwise reduction contain only TEA ligands

  16. PIXE/RBS as a tool to study cementitious materials: Application to the dynamic leaching of concrete

    Energy Technology Data Exchange (ETDEWEB)

    Llorente, I., E-mail: irene@cenim.csic.e [Centro Nacional de Investigaciones Metalurgicas (CENIM-CSIC), Avda Gregorio del Amo, 8, 28040 Madrid (Spain); Castellote, M. [Instituto de Ciencias de la Construccion ' Eduardo Torroja' (IETcc-CSIC), Serrano Galvache, 4, 28033 Madrid (Spain); Gonzalez-Arrabal, R. [Parque Cientifico de Madrid, Campus de Cantoblanco, Einstein 13, 28049 Madrid (Spain); Ynsa, M.D.; Munoz-Martin, A. [Centro de Microanalisis de Materiales (CMAM), Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Viedma, P.G. de; Castillo, A.; Martinez, I.; Andrade, C. [Instituto de Ciencias de la Construccion ' Eduardo Torroja' (IETcc-CSIC), Serrano Galvache, 4, 28033 Madrid (Spain); Zuloaga, P.; Ordonez, M. [Empresa Nacional de Residuos Radiactivos, S.A. (ENRESA), Emilio Vargas, 7, 28043 Madrid (Spain)

    2009-12-15

    The suitability of the application of Ion Beam Analysis (IBA) techniques such as Particle Induced X-ray Emission spectrometry (PIXE) and Rutherford Backscattering Spectrometry (RBS) to elemental depth profiling in concrete is analysed, studying hardened samples of concrete prior to and after a dynamic leaching test. A calibration of the data has been done by comparing the results obtained by IBA techniques with those obtained by Chemical and Thermogravimetric Analysis (TG/DTA). From PIXE and RBS data relevant information about the migration of minor elements, within the concrete matrix after leaching is obtained.

  17. Possibility of self-healing by using capsules and vascular system to provide water in cementitious materials

    NARCIS (Netherlands)

    Huang, H.; Ye, G.

    2013-01-01

    Since self-healing of cracks is able to improve the durability of concrete structures, it has attracted much attention in the recent years. As known, in concrete matrix there are large amounts of cement grains remaining unhydrated, particularly in high performance concrete. Further hydration of thes

  18. Properties of Concrete on Replacement of Coarse Aggregate and Cementitious Materials with Styfoam And Rice Husk Ash Respectively

    Directory of Open Access Journals (Sweden)

    Ananya Sheth

    2016-07-01

    Full Text Available This paper reports an experimental investigation on the influence of Rice Husk Ash (RHAand Expanded Poly Styrene (EPS on the mechanical properties and the properties of fresh concrete of the produced RHA and EPS blended concrete. EPS aggregates were used to replace coarse aggregates by volume with an aim to decrease the unit weight. Locally produced RHA was used to replace cement by its weight with an aim to increase workability. Mixture proportioning was performed to produce target strength of 65 MPa. Past researches regarding complete replacement of coarse aggregates with EPS aggregates have shown strength of less than 10 MPa. Hence, our aim is to achieve strength of 25-30 MPa thereby utilizing environmentally sustainable concrete in the rapidly developing low cost housing sectors of developing countries.

  19. A Quantitative Study on Packing Density and Pozzolanic Activity of Cementitious Materials Based on the Compaction Packing Model

    Science.gov (United States)

    Gong, Jianqing; Chou, Kai; Huang, Zheng Yu; Zhao, Minghua

    2014-08-01

    A brief introduction to the theoretical basis of compaction packing model (CPM) and an over-view of the principle of the specific strength method provided the starting point of this study. Then, research on quantitative relations was carried out to find the correlation between the contribution rate of the pozzolanic activity and the contribution value of packing density when CPM was applied to fine powder mixture systems. The concept of the contribution value of the packing density being in direct correspondence with the contribution rate was proved by the compressive strength results and SEM images. The results indicated that the variation rule of the contribution rate of the pozzolanic activity is similar to that of the contribution value of packing density as calculated by CPM. This means the contribution value of the packing density could approximately simulate the change tendency of the contribution rate of the pozzolanic activity, which is of significant value for the future of mix designs for high and ultra-high performance concrete.

  20. Chemical reactivity of {alpha}-isosaccharinic acid in heterogeneous alkaline systems

    Energy Technology Data Exchange (ETDEWEB)

    Glaus, M. A.; Loon, L. R. Van

    2009-05-15

    Cellulose degradation under alkaline conditions is of relevance for the mobility of many radionuclides in the near-field of a cementitious repository for radioactive waste, because metal-binding degradation products may be formed. Among these, {alpha}- isosaccharinic acid ({alpha}-ISA) is the strongest complexant. The prediction of the equilibrium concentration of {alpha}-ISA in cement pore water is therefore an important step in the assessment of the influence of cellulose degradation products on the speciation of radionuclides in such environments. The present report focuses on possible chemical transformation reactions of {alpha}-ISA in heterogeneous alkaline model systems containing either Ca(OH){sub 2} or crushed hardened cement paste. The transformation reactions were monitored by measuring the concentration of {alpha}-ISA by high performance anion exchange chromatography and the formation of reaction products by high performance ion exclusion chromatography. The overall loss of organic species from solution was monitored by measuring the concentration of non-purgeable organic carbon. The reactions were examined in diluted and compacted suspensions, at either 25 {sup o}C or 90 {sup o}C, and under anaerobic atmospheres obtained by various methods. It was found that {alpha}-ISA was transformed under all conditions tested to some extent. Reaction products, such as glycolate, formate, lactate and acetate, all compounds with less complexing strength than {alpha}-ISA, were detected. The amount of reaction products identified by the chromatographic technique applied was {approx} 50 % of the amount of {alpha}-ISA reacted. Sorption of {alpha}-ISA to Ca(OH){sub 2} contributed only to a minor extent to the loss of {alpha}-ISA from the solution phase. As the most important conclusion of the present work it was demonstrated that the presence of oxidising agents had a distinctive influence on the turnover of {alpha}-ISA. Under aerobic conditions {alpha}-ISA was

  1. A consistent thermodynamic database for cement materials

    International Nuclear Information System (INIS)

    In the context of waste confinement and, more specifically, waste from the nuclear industry, concrete is used both as a confinement and as a building material. Alteration processes in contact with clayey formations are also of interest in the context of deep disposal. The present work aims to propose a collection of thermodynamic properties for geochemical calculation in cementitious media. This selection is extended to zeolites and clay minerals in the context of cement/clay interactions. Finally, because temperature is of importance in such contexts, the temperature dependency of the thermodynamic functions is also considered here. Uncertainties remain concerning especially katoite, and some low temperature zeolites like phillipsite, chabazite or gismondine

  2. The Alkaline Diet: Is There Evidence That an Alkaline ph Diet Benefits Health?

    International Nuclear Information System (INIS)

    This review looks at the role of an alkaline diet in health. Pub med was searched looking for articles on ph, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine

  3. The Alkaline Diet: Is There Evidence That an Alkaline pH Diet Benefits Health?

    Directory of Open Access Journals (Sweden)

    Gerry K. Schwalfenberg

    2012-01-01

    Full Text Available This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine.

  4. An Evaluation of Magazines Suitable for Public Libraries for the Presence of Alkaline Paper.

    Science.gov (United States)

    Gambrill, Linda

    Conservation of library materials is becoming an increasing concern, and there has been some effort by publishers to avert the problems created by acidic paper by switching to acid-free alkaline paper. University publishers, responded to this concern by committing themselves to using acid-free paper; however, most commercial publishers, who…

  5. The effect of alkaline phosphatase coated onto titanium alloys on bone responses in rats.

    NARCIS (Netherlands)

    Schouten, C.; Beucken, J.J.J.P. van den; Jonge, L.T. de; Bronkhorst, E.M.; Meijer, G.J.; Spauwen, P.H.M.; Jansen, J.A.

    2009-01-01

    The enzyme alkaline phosphatase (ALP) was recently proposed as an implant coating material in order to improve the biological performance of orthopedic and dental implants. The present study evaluated the in vivo bone response to electrosprayed coatings, consisting of ALP, calcium phosphate (CaP) or

  6. Electroactive materials for rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huiming; Amine, Khalil; Abouimrane, Ali

    2015-04-21

    An as-prepared cathode for a secondary battery, the cathode including an alkaline source material including an alkali metal oxide, an alkali metal sulfide, an alkali metal salt, or a combination of any two or more thereof.

  7. Persistently increased intestinal fraction of alkaline phosphatase

    DEFF Research Database (Denmark)

    Nathan, E; Baatrup, G; Berg, H;

    1984-01-01

    Persistent elevation of the intestinal fraction of the alkaline phosphatase (API) as an isolated finding has to our knowledge not been reported previously. It was found in a boy followed during a period of 5.5 years. The only symptom was transient periodic fatigue observed at home, but not apparent...... phosphatase activity could be demonstrated....

  8. Use Alkalinity Monitoring to Optimize Bioreactor Performance.

    Science.gov (United States)

    Jones, Christopher S; Kult, Keegan J

    2016-05-01

    In recent years, the agricultural community has reduced flow of nitrogen from farmed landscapes to stream networks through the use of woodchip denitrification bioreactors. Although deployment of this practice is becoming more common to treat high-nitrate water from agricultural drainage pipes, information about bioreactor management strategies is sparse. This study focuses on the use of water monitoring, and especially the use of alkalinity monitoring, in five Iowa woodchip bioreactors to provide insights into and to help manage bioreactor chemistry in ways that will produce desirable outcomes. Results reported here for the five bioreactors show average annual nitrate load reductions between 50 and 80%, which is acceptable according to established practice standards. Alkalinity data, however, imply that nitrous oxide formation may have regularly occurred in at least three of the bioreactors that are considered to be closed systems. Nitrous oxide measurements of influent and effluent water provide evidence that alkalinity may be an important indicator of bioreactor performance. Bioreactor chemistry can be managed by manipulation of water throughput in ways that produce adequate nitrate removal while preventing undesirable side effects. We conclude that (i) water should be retained for longer periods of time in bioreactors where nitrous oxide formation is indicated, (ii) measuring only nitrate and sulfate concentrations is insufficient for proper bioreactor operation, and (iii) alkalinity monitoring should be implemented into protocols for bioreactor management.

  9. Degradability of coconut fibre coated with polystyrene in an alkaline medium=Degradability of coconut fibre coated with polystyrene in an alkaline medium

    Directory of Open Access Journals (Sweden)

    Fermin Garcia Velasco

    2016-02-01

    Full Text Available The surface of plant fibre consists mainly of compounds such as cellulose, hemicellulose, lignin, pectin and extractives. These organic compounds are sensitive to the action of many chemical agents and to basic pH, which hinders their use in cementitious composites to make them more sustainable. The aim of this work was to evaluate the efficiency of polystyrene (0, 1, 3 and 5%, plus 3% and heat treatment at 140°C on the protection of coconut fibre in an alkaline medium. The fibres were submersed in an alkaline solution (pH 14 for a total of 63 days, and were periodically evaluated by gravimetric analysis. At the end of the test, the fibres were analysed by scanning electron microscopy. According to the analysis, the sample of coconut fibre with no protective coating lost 80% of its initial weight and, through scanning electron microscopy, it was possible to see the destruction of the surface structure of the fibre, exposing the beams of cellulose microfibres located in the inner regions. The coconut fibres with a 3% polystyrene coating together with heat treatment ended the test with a percentage final weight greater than 50% of the initial weight. A polystyrene coating (3% followed by heat treatment at 140°C improved durability in the coconut fibres by approximately 30%, when immersed in an alkaline medium. =A superfície da fibra vegetal é constituída principalmente por compostos como celulose, hemicelulose, lignina, pectina e extrativos. Esses compostos orgânicos são sensíveis à ação de muitos agentes químicos e ao pH básico, o que dificulta seu emprego em compósitos cimentícios para torná-los mais sustentáveis. Objetivou-se com este trabalho avaliar a eficiência do poliestireno (0, 1, 3 , 5% e 3% mais tratamento térmico a 140 °C na proteção da fibra de coco em meio alcalino. As fibras ficaram imersas em solução alcalina (pH 14 em um total de 63 dias e foram avaliadas periodicamente por meio de ensaio gravimétrico. Ao

  10. Low Frequency Electrical and Magnetic Methods for Non-Destructive Analysis of Fiber Dispersion in Fiber Reinforced Cementitious Composites: An Overview

    OpenAIRE

    Sergio Toscani; Liberato Ferrara; Roberto Ottoboni; Marco Faifer

    2013-01-01

    Non-destructive analysis of fiber dispersion in structural elements made of Fiber Reinforced Concrete (FRC) and Fiber Reinforced Cementitious Composites (FRCCs) plays a significant role in the framework of quality control and performance prediction. In this paper, the research activity of the authors in the aforementioned field all over the last lustrum will be reviewed. A method based on the measurement of the inductance of a probe to be placed on the specimen will be presented and its progr...

  11. Recent progress in alkaline direct ethylene glycol fuel cells for sustainable energy production

    Science.gov (United States)

    An, L.; Chen, R.

    2016-10-01

    Alkaline direct ethylene glycol fuel cells are one of the most promising power sources for portable, mobile and stationary power applications, primarily because this type of fuel cell runs on a sustainable fuel and the key materials that constitute the fuel cell are relatively inexpensive. This review article summarizes and discusses the past investigations on the development of alkaline direct ethylene glycol fuel cells, including the physical and chemical processes through the fuel cell structure, the electrocatalytic oxidation and electrocatalysts of ethylene glycol, the singe-cell performance, and innovative system designs.

  12. Synthesis, characterization and antimicrobial activity of alkaline ion-exchanged ZnO/bentonite nanocomposites

    Institute of Scientific and Technical Information of China (English)

    Hamideh Pouraboulghasem; Mohammad Ghorbanpour; Razieh Shayegh; Samaneh Lotfiman

    2016-01-01

    Nanocomposites of zinc/bentonite clay were synthesized for use as an antibacterial material by a quick and simple alkaline ion exchange method. The synthesis of zinc doped bentonite nanocomposite was accomplished by placing bentonite in a melting bath of ZnSO4 for 10, 20, 40, 60 and 90 min. The complexes were characterized by XRD, SEM and DRS. XRD analyses and SEM observations confirmed the diffusion of zinc to the clay surfaces. Antibacterial activity tests againstEscherichia coli showed that bentonite did not present any antibacterial properties, but after alkaline ion exchange treatment, inhibition was noted. The highest antibacterial activity was observed with ZnO/bentonite composite alkaline ion exchange for 60 and 90 min. Interestingly, the leaching test indicated that ZnO/bentonite did not present any risk for drinking water treatment.

  13. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Science.gov (United States)

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-02-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  14. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Directory of Open Access Journals (Sweden)

    Eero eSalminen

    2014-02-01

    Full Text Available The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat benzalkonium [ADBA] (alkyldimethylbenzylammonium was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs. Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC. The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  15. Prebiotic Synthesis of Protobiopolymers Under Alkaline Ocean Conditions

    Science.gov (United States)

    Ruiz-Bermejo, Marta; Rivas, Luis A.; Palacín, Arantxa; Menor-Salván, César; Osuna-Esteban, Susana

    2011-08-01

    Clasically, prebiotic chemistry has focused on the production and identification of simple organic molecules, many of them forming part of "intractable polymers" named tholins. In a previous work, we demonstrated that in experiments using an external energy source and inorganic carbon the aqueous aerosols improved the formation of hydrophilic tholins. Herein, we elucidate the role of pH (from 4 to 12) in prebiotic experiments using saline aqueous aerosols, spark discharges and an atmosphere containing CH4. At all values of pH, the saline aqueous aerosols increased the production of a significant variety of carboxylic acids that could have been present in a primitive Krebs cycle. Moreover, the study for the first time of hydrophilic tholins by 2-D electrophoresis revealed that these are formed by a set of unexpected heavy polymeric species. The initial alkaline conditions significantly increased both the apparent molecular weight of polymeric species up to 80 kDa and their diversity. We propose the term of protobiopolymers to denote those polymeric species fractionated by 2-D electrophoresis since these are formed by biomolecules present in living systems and show diversity in length as well as in functional groups. Thus, aerosols formed in simulated alkaline ocean conditions could provide an optimal medium for the formation of the primeval materials that could be precursors to the emergence of life.

  16. Synthesis of Zeolites by Alkaline Activation of Fly Ash

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In terms of mineral transformation, and chemical composition of acid-soluble component as a function of reaction time, the effect of alkaline solution on zeolite-like fly ash was studied by employing fly ash and NaOH solution as starting materials. When fly ash and 1€? 0mol/L NaOH solution were processed at 100℃ for 24h with 1:10 W/S rat io in a relatively closed system, powder XRD patterns of resulting pro ducts indicated the formation of various zeolites. Zeolite P crystalli zed early at low alkaline concentration, which was replaced then by ze olites X and A. At high concentration, hydroxy sodalite was the only n ew phase. Quartz, in fly ash and NaOH solution system, gradually disso lved, and mullite, however, remained stable. It was concluded that, wi th Al/Si and Na/Si finally reaching equilibrium in molar ratio, compos ition of starting mixtures affects the crystallization of zeolite from fly ash.

  17. High-risk biodegradable waste processing by alkaline hydrolysis.

    Science.gov (United States)

    Kalambura, Sanja; Voća, Neven; Krička, Tajana; Sindrak, Zoran; Spehar, Ana; Kalambura, Dejan

    2011-09-01

    Biodegradable waste is by definition degraded by other living organisms. Every day, meat industry produces large amounts of a specific type of biodegradable waste called slaughterhouse waste. Traditionally in Europe, this waste is recycled in rendering plants which produce meat and bone meal and fat. However, feeding animals with meat and bone meal has been banned since the outbreaks of bovine spongiform encephalopathy (BSE). In consequence, new slaughterhouse waste processing technologies have been developed, and animal wastes have now been used for energy production. Certain parts of this waste, such as brains and spinal cord, are deemed high-risk substances, because they may be infected with prions. Their treatment is therefore possible only in strictly controlled conditions. One of the methods which seems to bear acceptable health risk is alkaline hydrolysis. This paper presents the results of an alkaline hydrolysis efficiency study. It also proposes reuse of the obtained material as organic fertiliser, as is suggested by the analytical comparison between meat and bone meal and hydrolysate. PMID:21971109

  18. ALKALINE PEROXIDE MECHANICAL PULPING OF NOVEL BRAZILIAN EUCALYPTUS HYBRIDS

    Directory of Open Access Journals (Sweden)

    Marcelo Coelho dos Santos Muguet,

    2012-07-01

    Full Text Available Eucalyptus wood is among the most important biomass resource in the world. Wood mechanical defibration and fibrillation are energy-intensive processes utilized not only to produce pulp for papermaking, but also to produce reinforcement fibers for biocomposites, nanocellulose, or pretreat lignocellulosic material for biofuels production. The structural features of different Eucalyptus hybrids affecting the refining energy consumption and produced fiber furnish properties were evaluated. The defibration and fiber development were performed using an alkaline peroxide mechanical pulping (APMP process, which included chelation followed by an alkaline peroxide treatment prior to wood chip defibration. Despite the similar wood densities and chemical compositions of different Eucalyptus hybrids, there was a clear difference in the extent of defibration and fibrillation among the hybrids. The high energy consumption was related to a high amount of guaiacyl lignin. This observation is of major importance when considering the optimal wood hybrids for mechanical wood defibration and for understanding the fundamental phenomena taking place in chemi-mechanical defibration of wood.

  19. Hydrothermal alkaline stability of bentonite barrier by concrete interstitial wastes

    International Nuclear Information System (INIS)

    At present, the main source of High Level radioactive Waste (HLW) is the electrical energy production during all the steps of developing. In almost all the countries with nuclear programs, the option for the final management of HLW is the Deep Geological Repository (DGR) based on the concept of multi barrier. According to this concept, the waste is isolated from biosphere by the interposition of confinement barriers. Two of the engineering barriers in the Spanish design of DGR in granitic rock are compacted bentonite and concrete. The bentonite barrier is the backfilling and sealing material for the repository gallery, because of its mechanical and physico-chemical properties. The main qualities of concrete as a component of a multi barrier system are its low permeability, mechanical resistance and chemical properties. With regard to chemical composition of concrete, the alkaline nature of cement pore water lowers the solubility of many radioactive elements. However, structural transformation in smectite, dissolution or precipitation of minerals and, consequently, changes in the bentonite properties could occurs in the alkaline conditions generated by the cement degradation. The main objective of the present work is to evaluate the effect of concrete in the stability of Spanish reference bentonite (La Serrata of Nijar, Almeria, Spain) in conditions similar to those estimated in a DGR in granitic rock. Because of the main role of bentonite barrier in the global performance of the repository, the present study is essential to guarantee its security. (Author)

  20. Experimental Simulation of Long Term Weathering in Alkaline Bauxite Residue Tailings

    OpenAIRE

    2015-01-01

    Bauxite residue is an alkaline, saline tailings material generated as a byproduct of the Bayer process used for alumina refining. Developing effective plans for the long term management of potential environmental impacts associated with storage of these tailings is dependent on understanding how the chemical and mineralogical properties of the tailings will change during weathering and transformation into a soil-like material. Hydrothermal treatment of bauxite residue was used to compress geo...