WorldWideScience

Sample records for alkaline anaerobic respiration

  1. Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria

    DEFF Research Database (Denmark)

    Stams, A.J.; Oude Elferink, S.J.; Westermann, Peter

    2003-01-01

    Most types of anaerobic respiration are able to outcompete methanogenic consortia for common substrates if the respective electron acceptors are present in sufficient amounts. Furthermore, several products or intermediate compounds formed by anaerobic respiring bacteria are toxic to methanogenic...... consortia. Despite the potentially adverse effects, only few inorganic electron acceptors potentially utilizable for anaerobic respiration have been investigated with respect to negative interactions in anaerobic digesters. In this chapter we review competitive and inhibitory interactions between anaerobic...... respiring populations and methanogenic consortia in bioreactors. Due to the few studies in anaerobic digesters, many of our discussions are based upon studies of defined cultures or natural ecosystems...

  2. Enumeration of Organohalide Respirers in Municipal Wastewater Anaerobic Digesters

    OpenAIRE

    Bryan J.K. Smith; Boothe, Melissa A; Brice A. Fiddler; Tania M. Lozano; Russel K. Rahi; Krzmarzick, Mark J

    2015-01-01

    Organohalide contaminants such as triclosan and triclocarban have been well documented in municipal wastewater treatment plants (WWTPs), but the degradation of these contaminants is not well understood. One possible removal mechanism is organohalide respiration by which bacteria reduce the halogenated compound. The purpose of this study was to determine the abundance of organohalide-respiring bacteria in eight WWTP anaerobic digesters. The obligate organohalide respiring Dehalococcoides mccar...

  3. Fermentation and Anaerobic Respiration by Rhodospirillum rubrum and Rhodopseudomonas capsulata

    OpenAIRE

    Schultz, J E; Weaver, P. F.

    1982-01-01

    Rhodospirillum rubrum and Rhodopseudomonas capsulata were able to grow anaerobically in the dark either by a strict mixed-acid fermentation of sugars or, in the presence of an appropriate electron acceptor, by an energy-linked anaerobic respiration. Both species fermented fructose without the addition of accessory oxidants, but required the initial presence of bicarbonate before fermentative growth could begin. Major products of R. rubrum fermentation were succinate, acetate, propionate, form...

  4. Anaerobic respiration of Escherichia coli in the mouse intestine.

    Science.gov (United States)

    Jones, Shari A; Gibson, Terri; Maltby, Rosalie C; Chowdhury, Fatema Z; Stewart, Valley; Cohen, Paul S; Conway, Tyrrell

    2011-10-01

    The intestine is inhabited by a large microbial community consisting primarily of anaerobes and, to a lesser extent, facultative anaerobes, such as Escherichia coli, which we have shown requires aerobic respiration to compete successfully in the mouse intestine (S. A. Jones et al., Infect. Immun. 75:4891-4899, 2007). If facultative anaerobes efficiently lower oxygen availability in the intestine, then their sustained growth must also depend on anaerobic metabolism. In support of this idea, mutants lacking nitrate reductase or fumarate reductase have extreme colonization defects. Here, we further explore the role of anaerobic respiration in colonization using the streptomycin-treated mouse model. We found that respiratory electron flow is primarily via the naphthoquinones, which pass electrons to cytochrome bd oxidase and the anaerobic terminal reductases. We found that E. coli uses nitrate and fumarate in the intestine, but not nitrite, dimethyl sulfoxide, or trimethylamine N-oxide. Competitive colonizations revealed that cytochrome bd oxidase is more advantageous than nitrate reductase or fumarate reductase. Strains lacking nitrate reductase outcompeted fumarate reductase mutants once the nitrate concentration in cecal mucus reached submillimolar levels, indicating that fumarate is the more important anaerobic electron acceptor in the intestine because nitrate is limiting. Since nitrate is highest in the absence of E. coli, we conclude that E. coli is the only bacterium in the streptomycin-treated mouse large intestine that respires nitrate. Lastly, we demonstrated that a mutant lacking the NarXL regulator (activator of the NarG system), but not a mutant lacking the NarP-NarQ regulator, has a colonization defect, consistent with the advantage provided by NarG. The emerging picture is one in which gene regulation is tuned to balance expression of the terminal reductases that E. coli uses to maximize its competitiveness and achieve the highest possible population in

  5. Enumeration of Organohalide Respirers in Municipal Wastewater Anaerobic Digesters.

    Science.gov (United States)

    Smith, Bryan Jk; Boothe, Melissa A; Fiddler, Brice A; Lozano, Tania M; Rahi, Russel K; Krzmarzick, Mark J

    2015-01-01

    Organohalide contaminants such as triclosan and triclocarban have been well documented in municipal wastewater treatment plants (WWTPs), but the degradation of these contaminants is not well understood. One possible removal mechanism is organohalide respiration by which bacteria reduce the halogenated compound. The purpose of this study was to determine the abundance of organohalide-respiring bacteria in eight WWTP anaerobic digesters. The obligate organohalide respiring Dehalococcoides mccartyi was the most abundant and averaged 3.3 × 10(7) copies of 16S rRNA genes per gram, while the Dehalobacter was much lower at 2.6 × 10(4) copies of 16S rRNA genes per gram. The genus Sulfurospirillum spp. was also detected at 1.0 × 10(7) copies of 16S rRNA genes per gram. No other known or putatively organohalide-respiring strains in the Dehalococcoidaceae family were found to be present nor were the genera Desulfitobacterium or Desulfomonile. PMID:26508873

  6. The respiration pattern as an indicator of the anaerobic threshold.

    Science.gov (United States)

    Mirmohamadsadeghi, Leila; Vesin, Jean-Marc; Lemay, Mathieu; Deriaz, Olivier

    2015-08-01

    The anaerobic threshold (AT) is a good index of personal endurance but needs a laboratory setting to be determined. It is important to develop easy AT field measurements techniques in order to rapidly adapt training programs. In the present study, it is postulated that the variability of the respiratory parameters decreases with exercise intensity (especially at the AT level). The aim of this work was to assess, on healthy trained subjects, the putative relationships between the variability of some respiration parameters and the AT. The heart rate and respiratory variables (volume, rate) were measured during an incremental exercise performed on a treadmill by healthy moderately trained subjects. Results show a decrease in the variance of 1/tidal volume with the intensity of exercise. Consequently, the cumulated variance (sum of the variance measured at each level of the exercise) follows an exponential relationship with respect to the intensity to reach eventually a plateau. The amplitude of this plateau is closely related to the AT (r=-0.8). It is concluded that the AT is related to the variability of the respiration. PMID:26736320

  7. FNR-mediated regulation of bioluminescence and anaerobic respiration in the light-organ symbiont Vibrio fischeri

    OpenAIRE

    Septer, Alecia N.; Bose, Jeffrey L.; Dunn, Anne K.; Stabb, Eric V.

    2010-01-01

    Vibrio fischeri induces both anaerobic respiration and bioluminescence during symbiotic infection. In many bacteria, the oxygen-sensitive regulator FNR activates anaerobic respiration, and a preliminary study using the light-generating lux genes from V. fischeri MJ1 cloned in Escherichia coli suggested that FNR stimulates bioluminescence. To test for FNR-mediated regulation of bioluminescence and anaerobic respiration in V. fischeri, we generated fnr mutants of V. fischeri strains MJ1 and ES1...

  8. Growth of microbial mixed cultures under anaerobic, alkaline conditions

    International Nuclear Information System (INIS)

    Cement and concrete are the most important engineered barrier materials in a repository for low- and intermediate-level waste and thus represent the most significant component of the total disposal inventory. Based on the chemical composition of the concrete used in the repository and the groundwater fluxes in the modelled host rock, it is to be expected that the pH in the near vicinity of the repository could exceed a value of 10.5 for more than a million years. The groundwater in the repository environment also has a limited carbon concentration. Since microorganisms will be present in a repository and can even find suitable living conditions within the waste itself, investigations were carried out in order to establish the extent to which microbial activity is possible under the extreme conditions of the repository near-field. For the investigations, alkalophilic cultures were enriched from samples from alkaline habitats and from Valanginian Marl. Anaerobic bacteria with fermentative, sulfate-reducing and methanogenic metabolism were selected. The growth and activity of the mixed cultures were studied under alkaline conditions and the dependence on pH and carbon concentration determined. All the mixed cultures investigated are alkalophilic. The optimum growth range for the cultures is between pH 9.0 and pH 10.0. The activity limit for the fermentative mixed culture is at pH 12, for the sulfate-reducers at pH 11 and for the methanogens at pH 10.5. Given the limited supply of carbon, the mixed cultures can only grow under slightly alkaline conditions. Only the fermentative cultures are capable of surviving with limited carbon supply at pH 13. (author) 24 figs., 18 tabs., 101 refs

  9. Anaerobic Respiration on Tellurate and Other Metalloids in Bacteria from Hydrothermal Vent Fields in the Eastern Pacific Ocean

    OpenAIRE

    Csotonyi, Julius T.; Stackebrandt, Erko; Yurkov, Vladimir

    2006-01-01

    This paper reports the discovery of anaerobic respiration on tellurate by bacteria isolated from deep ocean (1,543 to 1,791 m) hydrothermal vent worms. The first evidence for selenite- and vanadate-respiring bacteria from deep ocean hydrothermal vents is also presented. Enumeration of the anaerobic metal(loid)-resistant microbial community associated with hydrothermal vent animals indicates that a greater proportion of the bacterial community associated with certain vent fauna resists and red...

  10. Isolation, Growth, and Metabolism of an Obligately Anaerobic, Selenate-Respiring Bacterium, Strain SES-3

    OpenAIRE

    Oremland, Ronald S.; Blum, Jodi Switzer; Culbertson, Charles W.; Visscher, Pieter T.; Miller, Laurence G.; Dowdle, Phillip; Strohmaier, Frances E.

    1994-01-01

    A gram-negative, strictly anaerobic, motile vibrio was isolated from a selenate-respiring enrichment culture. The isolate, designated strain SES-3, grew by coupling the oxidation of lactate to acetate plus CO2 with the concomitant reduction of selenate to selenite or of nitrate to ammonium. No growth was observed on sulfate or selenite, but cell suspensions readily reduced selenite to elemental selenium (Se0). Hence, SES-3 can carry out a complete reduction of selenate to Se0. Washed cell sus...

  11. Anaerobic respiration on tellurate and other metalloids in bacteria from hydrothermal vent fields in the eastern Pacific Ocean.

    Science.gov (United States)

    Csotonyi, Julius T; Stackebrandt, Erko; Yurkov, Vladimir

    2006-07-01

    This paper reports the discovery of anaerobic respiration on tellurate by bacteria isolated from deep ocean (1,543 to 1,791 m) hydrothermal vent worms. The first evidence for selenite- and vanadate-respiring bacteria from deep ocean hydrothermal vents is also presented. Enumeration of the anaerobic metal(loid)-resistant microbial community associated with hydrothermal vent animals indicates that a greater proportion of the bacterial community associated with certain vent fauna resists and reduces metal(loid)s anaerobically than aerobically, suggesting that anaerobic metal(loid) respiration might be an important process in bacteria that are symbiotic with vent fauna. Isolates from Axial Volcano and Explorer Ridge were tested for their ability to reduce tellurate, selenite, metavanadate, or orthovanadate in the absence of alternate electron acceptors. In the presence of metal(loid)s, strains showed an ability to grow and produce ATP, whereas in the absence of metal(loid)s, no growth or ATP production was observed. The protonophore carbonyl cyanide m-chlorophenylhydrazone depressed metal(loid) reduction. Anaerobic tellurate respiration will be a significant component in describing biogeochemical cycling of Te at hydrothermal vents. PMID:16820492

  12. Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions: biogas production, metagenome and metatranscriptome

    Directory of Open Access Journals (Sweden)

    Vimac Nolla-Ardevol

    2015-06-01

    Full Text Available A haloalkaline anaerobic microbial community obtained from soda lake sediments was used to inoculate anaerobic reactors for the production of methane rich biogas. The microalga Spirulina was successfully digested by the haloalkaline microbial consortium at alkaline conditions (pH 10, 2.0 M Na+. Continuous biogas production was observed and the obtained biogas was rich in methane, up to 96 %. Alkaline medium acted as a CO2 scrubber which resulted in low amounts of CO2 and no traces of H2S in the produced biogas. A hydraulic retention time of 15 days and 0.25 g Spirulina L-1 day-1 organic loading rate were identified as the optimal operational parameters. Metagenomics and metatranscriptomics analysis showed that the hydrolysis of the supplied substrate was mainly carried out by Bacteroidetes of the ML635J-40 aquatic group while the hydrogenotrophic pathway was the main producer of methane in a methanogenic community dominated by Methanocalculus.

  13. NarK is a nitrite-extrusion system involved in anaerobic nitrate respiration by Escherichia coli

    NARCIS (Netherlands)

    Rowe, John J.; Ubbink-Kok, Trees; Molenaar, Douwe; Konings, Wilhelmus; Driessen, Arnold J.M.

    1994-01-01

    Escherichia coli can use nitrate as a terminal electron acceptor for anaerobic respiration. A polytopic membrane protein, termed NarK, has been implicated in nitrate uptake and nitrite excretion and is thought to function as a nitrate/nitrite antiporter. The longest-lived radioactive isotope of nitr

  14. Anaerobic respiration: In vitro efficacy of Nitazoxanide against mitochondriate Acanthamoeba castellanii of the T4 genotype.

    Science.gov (United States)

    Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Farooq, Maria; Khan, Naveed Ahmed

    2015-10-01

    Acanthamoeba is an opportunistic protist pathogen that is responsible for serious human and animal infection. Being one of the most frequently isolated protists from the environment, it is likely that it readily encounters microaerophilic environments. For respiration under anaerobic or low oxygen conditions in several amitochondriate protists, decarboxylation of pyruvate is catalyzed by pyruvate ferredoxin oxidoreductase instead of pyruvate dehydrogenase. In support, Nitazoxanide, an inhibitor of pyruvate ferredoxin oxidoreductase, is effective and non-mutagenic clinically against a range of amitochondriate protists, Giardia intestinalis, Entamoeba histolytica and Trichomonas vaginalis. The overall aim of the present study was to determine in vitro efficacy of Nitazoxanide against Acanthamoeba castellanii. At micromolar concentrations, the findings revealed that Nitazoxanide neither affected A. castellanii growth or viability nor amoeba-mediated host cell monolayer damage in vitro or extracellular proteolytic activities. Similarly, microaerophilic conditions alone had no significant effects. In contrast, microaerophilic conditions together with Nitazoxanide showed amoebicidal effects and inhibited A. castellanii-mediated host cell monolayer damage as well as extracellular proteases. Using encystation assays, it was observed that Nitazoxanide inhibited trophozoite transformation into cysts both under aerophilic and microaerophilic conditions. Furthermore, pre-treatment of cysts with Nitazoxanide inhibited A. castellanii excystation. These findings are important in the identification of potential targets that could be useful against parasite-specific respiration as well as to understand the basic biology of the life cycle of Acanthamoeba. PMID:26297676

  15. Effects of alkalinity sources on the stability of anaerobic digestion from food waste.

    Science.gov (United States)

    Chen, Shujun; Zhang, Jishi; Wang, Xikui

    2015-11-01

    This study investigated the effects of some alkalinity sources on the stability of anaerobic digestion (AD) from food waste (FW). Four alkalinity sources, namely lime mud from papermaking (LMP), waste eggshell (WES), CaCO3 and NaHCO3, were applied as buffer materials and their stability effects were evaluated in batch AD. The results showed that LMP and CaCO3 had more remarkable effects than NaHCO3 and WES on FW stabilization. The methane yields were 120.2, 197.0, 156.2, 251.0 and 194.8 ml g(-1) VS for the control and synergistic digestions of CaCO3, NaHCO3, LMP and WES added into FW, respectively. The corresponding final alkalinity reached 5906, 7307, 9504, 7820 and 6782 mg l(-1), while the final acidities were determined to be 501, 200, 50, 350 and 250 mg l(-1), respectively. This indicated that the synergism between alkalinity and inorganic micronutrients from different alkalinity sources played an important role in the process stability of AD from FW. PMID:26391806

  16. The anaerobic corrosion of carbon steel in alkaline media – Phase 2 results

    Directory of Open Access Journals (Sweden)

    Fennell P.A.H.

    2013-07-01

    Full Text Available In the Belgian Supercontainer concept a carbon steel overpack will surround high-level waste and spent fuel containers and be encased in a cementitious buffer material. A programme of research was carried out to investigate and measure the rate of anaerobic corrosion of carbon steel in an artificial alkaline porewater that simulates the aqueous phase in the cementitious buffer material. The corrosion rates were measured by monitoring hydrogen evolution using a manometric gas cell technique and by applying electrochemical methods. Phase 2 of the programme has repeated and extended previous Phase 1 measurements of the effects of radiation, temperature and chloride concentration of the anaerobic corrosion rate. This paper provides an update on the results from Phase 2 of the programme. The results confirm previous conclusions that the long-term corrosion rate of carbon steel in alkaline simulated porewater is determined by the formation of a thin barrier layer and a thicker outer layer composed of magnetite. Anaerobic corrosion of steel in cement requires an external supply of water.

  17. The anaerobic corrosion of carbon steel in alkaline media - Phase 2 results

    International Nuclear Information System (INIS)

    In the Belgian Super-container concept a carbon steel overpack will surround high-level waste and spent fuel containers and be encased in a cementitious buffer material. A programme of research was carried out to investigate and measure the rate of anaerobic corrosion of carbon steel in an artificial alkaline pore water that simulates the aqueous phase in the cementitious buffer material. The corrosion rates were measured by monitoring hydrogen evolution using a manometric gas cell technique and by applying electrochemical methods. Phase 2 of the programme has repeated and extended previous Phase 1 measurements of the effects of radiation, temperature and chloride concentration of the anaerobic corrosion rate. This paper provides an update on the results from Phase 2 of the programme. The results confirm previous conclusions that the long-term corrosion rate of carbon steel in alkaline simulated pore water is determined by the formation of a thin barrier layer and a thicker outer layer composed of magnetite. Anaerobic corrosion of steel in cement requires an external supply of water. (authors)

  18. The role of anaerobic respiration in the immobilization of uranium through biomineralization of phosphate minerals

    Science.gov (United States)

    Salome, Kathleen R.; Green, Stefan J.; Beazley, Melanie J.; Webb, Samuel M.; Kostka, Joel E.; Taillefert, Martial

    2013-04-01

    Although bioreduction of uranyl ions (U(VI)) and biomineralization of U(VI)-phosphate minerals are both able to immobilize uranium in contaminated sediments, the competition between these processes and the role of anaerobic respiration in the biomineralization of U(VI)-phosphate minerals has yet to be investigated. In this study, contaminated sediments incubated anaerobically in static microcosms at pH 5.5 and 7.0 were amended with the organophosphate glycerol-2-phosphate (G2P) as sole phosphorus and external carbon source and iron oxides, sulfate, or nitrate as terminal electron acceptors to determine the most favorable geochemical conditions to these two processes. While sulfate reduction was not observed even in the presence of G2P at both pHs, iron reduction was more significant at circumneutral pH irrespective of the addition of G2P. In turn, nitrate reduction was stimulated by G2P at both pH 5.5 and 7.0, suggesting nitrate-reducing bacteria provided the main source of inorganic phosphate in these sediments. U(VI) was rapidly removed from solution in all treatments but was not reduced as determined by X-ray absorption near edge structure (XANES) spectroscopy. Simultaneously, wet chemical extractions and extended X-ray absorption fine structure (EXAFS) spectroscopy of these sediments indicated the presence of U-P species in reactors amended with G2P at both pHs. The rapid removal of dissolved U(VI), the simultaneous production of inorganic phosphate, and the existence of U-P species in the solid phase indicate that uranium was precipitated as U(VI)-phosphate minerals in sediments amended with G2P. Thus, under reducing conditions and in the presence of G2P, bioreduction of U(VI) was outcompeted by the biomineralization of U(VI)-phosphate minerals and U(VI) sorption at both pHs.

  19. Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions: biogas production, metagenome, and metatranscriptome

    Science.gov (United States)

    Nolla-Ardèvol, Vímac; Strous, Marc; Tegetmeyer, Halina E.

    2015-01-01

    A haloalkaline anaerobic microbial community obtained from soda lake sediments was used to inoculate anaerobic reactors for the production of methane rich biogas. The microalga Spirulina was successfully digested by the haloalkaline microbial consortium at alkaline conditions (pH 10, 2.0 M Na+). Continuous biogas production was observed and the obtained biogas was rich in methane, up to 96%. Alkaline medium acted as a CO2 scrubber which resulted in low amounts of CO2 and no traces of H2S in the produced biogas. A hydraulic retention time (HRT) of 15 days and 0.25 g Spirulina L−1 day−1 organic loading rate (OLR) were identified as the optimal operational parameters. Metagenomic and metatranscriptomic analysis showed that the hydrolysis of the supplied substrate was mainly carried out by Bacteroidetes of the “ML635J-40 aquatic group” while the hydrogenotrophic pathway was the main producer of methane in a methanogenic community dominated by Methanocalculus. PMID:26157422

  20. Alkaline thermal pretreatment at mild temperatures for biogas production from anaerobic digestion of antibiotic mycelial residue.

    Science.gov (United States)

    Li, Chunxing; Zhang, Guangyi; Zhang, Zhikai; Ma, Dachao; Xu, Guangwen

    2016-05-01

    This paper aims at lowering the temperature for thermal pretreatment (TPT) of antibiotic mycelial residue (AMR) by alkali addition but without significantly worsening subsequent anaerobic digestion (AD) for biogas. Batch TPT and AD experiments were conducted in a bench-scale autoclave and several bench-scale anaerobic digesters, respectively. The results showed that the methane yield (<200ml·(gVS)(-1)) was visibly lower with lowering pretreatment temperature, compared to that (290ml·(gVS)(-1)) for TPT at the optimal temperature of 120°C, while it rebounded to 231ml·(gVS)(-1) when proper amounts of alkali were employed (to adjust the pH of the AMR to 12) for TPT at 80°C. Further analysis indicated that low-temperature alkaline TPT was significantly less energy-consumption compared to only TPT, at cost of small amounts of alkali. It was more convenient and economical to implement AD of AMR in combination with alkaline TPT at mild temperatures for biogas. PMID:26921869

  1. Isolation, growth, and metabolism of an obligately anaerobic, selenate- respiring bacterium, strain SES-3

    Science.gov (United States)

    Oremland, R.S.; Blum, J.S.; Culbertson, C.W.; Visscher, P.T.; Miller, L.G.; Dowdle, P.; Strohmaier, F.E.

    1994-01-01

    A gram-negative, strictly anaerobic, motile vibrio was isolated from a selenate-respiring enrichment culture. The isolate, designated strain SES-3, grew by coupling the oxidation of lactate to acetate plus CO2 with the concomitant reduction of selenate to selenite or of nitrate to ammonium. No growth was observed on sulfate or selenite, but cell suspensions readily reduced selenite to elemental selenium (Se0). Hence, SES-3 can carry out a complete reduction of selenate to Se0. Washed cell suspensions of selenate- grown cells did not reduce nitrate, and nitrate-grown cells did not reduce selenate, indicating that these reductions are achieved by separate inducible enzyme systems. However, both nitrate-grown and selenate-grown cells have a constitutive ability to reduce selenite or nitrite. The oxidation of [14C]lactate to 14CO2 coupled to the reduction of selenate or nitrate by cell suspensions was inhibited by CCCP (carbonyl cyanide m- chlorophenylhydrazone), cyanide, and azide. High concentrations of selenite (5 mM) were readily reduced to Se0 by selenate-grown cells, but selenite appeared to block the synthesis of pyruvate dehydrogenase. Tracer experiments with [75Se]selenite indicated that cell suspensions could achieve a rapid and quantitative reduction of selenite to Se0. This reduction was totally inhibited by sulfite, partially inhibited by selenate or nitrite, but unaffected by sulfate or nitrate. Cell suspensions could reduce thiosulfate, but not sulfite, to sulfide. These results suggest that reduction of selenite to Se0 may proceed, in part, by some of the components of a dissimilatory system for sulfur oxyanions.

  2. Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xueju [Georgia Inst. of Technology, Atlanta, GA (United States); Handley, Kim M. [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Gilbert, Jack A. [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Marine Biological Lab., Woods Hole, MA (United States); Zhejiang Univ., Hangzhou (China); Kostka, Joel E. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2015-05-22

    To probe the metabolic potential of abundant Archaea in boreal peats, we reconstructed two near-complete archaeal genomes, affiliated with Thaumarchaeota group 1.1c (bin Fn1, 8% abundance), which was a genomically unrepresented group, and Thermoplasmata (bin Bg1, 26% abundance), from metagenomic data acquired from deep anoxic peat layers. Each of the near-complete genomes encodes the potential to degrade long-chain fatty acids (LCFA) via β-oxidation. Fn1 has the potential to oxidize LCFA either by syntrophic interaction with methanogens or by coupling oxidation with anaerobic respiration using fumarate as a terminal electron acceptor (TEA). Fn1 is the first Thaumarchaeota genome without an identifiable carbon fixation pathway, indicating that this mesophilic phylum encompasses more diverse metabolisms than previously thought. Furthermore, we report genetic evidence suggestive of sulfite and/or organosulfonate reduction by Thermoplasmata Bg1. In deep peat, inorganic TEAs are often depleted to extremely low levels, yet the anaerobic respiration predicted for two abundant archaeal members suggests organic electron acceptors such as fumarate and organosulfonate (enriched in humic substances) may be important for respiration and C mineralization in peatlands.

  3. Effect study of ultrasonic/alkaline pretreatment on anaerobic digestion of penicillin bacterial residue

    Directory of Open Access Journals (Sweden)

    Zaixing LI

    2016-06-01

    Full Text Available In order to improve the efficiency of anaerobic digestion for biogas production and achieve the resource recovery and decrement of antibiotic bacterial residue, ultrasonic/alkaline pretreatment is used to treat penicillin bacterial residues (PBR, the influence of pH value, ultrasonic sound energy density, moisture content and reaction time on pretreatment effect are investigated, and the biodegradability of PBR is evaluated by biochemical methane potential (BMP test. The orthogonal experiment result shows that ultrasonic/alkaline pretreatment can enhance the residue cell wall broken effect, and promote intracellular organic matter dissolution. The optimum pretreatment conditions are pH of 10, ultrasonic sound energy density of 20 W/mL, moisture content of 97%, and pretreatment time of 5 min. In this case, the highest COD dissolution rate can reach 84.69%, which is 2.08 times higher than that by the ultrasonic pretreatment only. The BMP test results show that the impact of the pretreatment factors is as follows: moisture content > ultrasonic sound energy density > reaction time > pH value. The optimum pretreatment conditions according to methane productivity are pH of 9, ultrasonic sound energy density of 0.5 W/mL, moisture content of 96%, and reaction time of 30 min. In this case, the methane yield rate can reached 335 mL/g, which is 2.2 times higher than that from the untreated bacteria residue.

  4. Effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the biochemical methane potential and kinetics of the anaerobic digestion of wheat straw and sugarcane bagasse.

    Science.gov (United States)

    Bolado-Rodríguez, Silvia; Toquero, Cristina; Martín-Juárez, Judit; Travaini, Rodolfo; García-Encina, Pedro Antonio

    2016-02-01

    The effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the methane produced by the anaerobic digestion of wheat straw (WS) and sugarcane bagasse (SCB) was studied, using whole slurry and solid fraction. All the pretreatments released formic and acetic acids and phenolic compounds, while 5-hydroxymetilfurfural (HMF) and furfural were generated only by acid pretreatment. A remarkable inhibition was found in most of the whole slurry experiments, except in thermal pretreatment which improved methane production compared to the raw materials (29% for WS and 11% for SCB). The alkaline pretreatment increased biodegradability (around 30%) and methane production rate of the solid fraction of both pretreated substrates. Methane production results were fitted using first order or modified Gompertz equations, or a novel model combining both equations. The model parameters provided information about substrate availability, controlling step and inhibitory effect of compounds generated by each pretreatment. PMID:26642223

  5. Enhancement of thermophilic anaerobic digestion of thickened waste activated sludge by combined microwave and alkaline pretreatment

    Institute of Scientific and Technical Information of China (English)

    Yongzhi Chi; Yuyou Li; Xuening Fei; Shaopo Wang; Hongying Yun

    2011-01-01

    Pretreatment of thickened waste activated sludge (TWAS) by combined microwave and alkaline pretreatment (MAP) was studied to improve thermophilic anaerobic digestion efficiency.Uniform design was applied to determine the combination of target temperature (110-210℃),microwave holding time (1-51 min),and NaOH dose (0-2.5 g NaOH/g suspended solids (SS)) in terms of their effect on volatile suspended solids (VSS) solubilization.Maximum solubilization ratio (85.1%) of VSS was observed at 210℃ with 0.2 g-NaOH/g-SS and 35 min holding time.The effects of 12 different pretreatment methods were investigated in 28 thermophilic batch reactors by monitoring cumulative methane production (CMP).Improvements in methane production in the TWAS were directly related to the microwave and alkaline pretreatment of the sludge.The highest CMP was a 27% improvement over the control.In spite of the increase in soluble chemical oxygen demand concentration and the decrease in dewaterability of digested sludge,a semi-continuous thennophilic reactor fed with pretreated TWAS without neutralization (at 170℃ with 1 rain holding time and 0.05 g NaOH/g SS) was stable and functioned well,with volatile solid (VS) and total chemical oxygen demand (TCOD) reductions of 28% and 18%,respectively,which were higher than those of the control system.Additionally,methane yields (L@STP/g-CODadded,at standard temperature and pressure (STP) conditions of 0℃ and 101.325 kPa) and (L@STP/g VSadded) increased by 17% and 13%,respectively,compared to the control reactor.

  6. Tellurite-, tellurate-, and selenite-based anaerobic respiration by strain CM-3 isolated from gold mine tailings.

    Science.gov (United States)

    Maltman, Chris; Piercey-Normore, Michele D; Yurkov, Vladimir

    2015-09-01

    The newly discovered strain CM-3, a Gram-negative, rod-shaped bacterium from gold mine tailings of the Central Mine in Nopiming Provincial Park, Canada, is capable of dissimilatory anaerobic reduction of tellurite, tellurate, and selenite. CM-3 possesses very high level resistance to these oxides, both aerobically and anaerobically. During aerobic growth, tellurite and tellurate resistance was up to 1500 and 1000 µg/ml, respectively. In the presence of selenite, growth occurred at the highest concentration tested, 7000 µg/ml. Under anaerobic conditions, resistance was decreased to 800 µg/ml for the Te oxides; however, much like under aerobic conditions, growth with selenite still took place at 7000 µg/ml. In the absence of oxygen, CM-3 couples oxide reduction to an increase in biomass. Following an initial drop in viable cells, due to switching from aerobic to anaerobic conditions, there was an increase in CFU/ml greater than one order of magnitude in the presence of tellurite (6.6 × 10(3)-8.6 × 10(4) CFU/ml), tellurate (4.6 × 10(3)-1.4 × 10(5) CFU/ml), and selenite (2.7 × 10(5)-5.6 × 10(6) CFU/ml). A control culture without metalloid oxides showed a steady decrease in CFU/ml with no recovery. ATP production was also increased in the presence of each oxide, further indicating anaerobic respiration. Partial 16S rRNA gene sequencing revealed a 99.0 % similarity of CM-3 to Pseudomonas reactans. PMID:26254805

  7. Treatment of a high-strength sulphate-rich alkaline leachate using an anaerobic filter

    International Nuclear Information System (INIS)

    The research looks at the feasibility of treating an alkaline sulphate-rich leachate arising from the co-disposal of municipal solid waste with cement kiln dust by means of an anaerobic filter (AF). This type of leachate with a high sulphate concentration is commonly prohibited for discharge to sewer and requires an on-site treatment solution. The AF used had a working volume of 4 l and contained reticulated polyurethane foam as the biomass support material. The filters were operated over a 152 day experimental period during which the COD loading onto the filter was increased from 0.76 to 7.63 kg COD m-3 d-1. In the early stages of operation at low loading, soluble sulphides accumulated that inhibited methanogenic activity. This was restored by dosing FeCl3 to the reactor. The continued dosing allowed efficient COD removal of between 75% and 90% until the nominal retention time in the reactor was 3 days, at which point reactor performance declined significantly. The main mechanism for COD removal was by sulphate-reducing bacteria, which also resulted in up to 88% sulphate removal from the leachate. The average methane generation rate was 0.10 l g-1 COD removed. The results indicate the potential for using this approach as a pre-treatment that could significantly reduce the COD load to a second stage treatment process, but problems associated with the implementation of the technology at a larger scale have been identified

  8. Diversity and Ubiquity of Bacteria Capable of Utilizing Humic Substances as Electron Donors for Anaerobic Respiration

    OpenAIRE

    Coates, John D.; Cole, Kimberly A.; Chakraborty, Romy; O'Connor, Susan M.; Achenbach, Laurie A.

    2002-01-01

    Previous studies have demonstrated that reduced humic substances (HS) can be reoxidized by anaerobic bacteria such as Geobacter, Geothrix, and Wolinella species with a suitable electron acceptor; however, little is known of the importance of this metabolism in the environment. Recently we investigated this metabolism in a diversity of environments including marine and aquatic sediments, forest soils, and drainage ditch soils. Most-probable-number enumeration studies were performed using 2,6-a...

  9. Nitrilotriacetate Stimulation of Anaerobic Fe(III) Respiration by Mobilization of Humic Materials in Soil

    OpenAIRE

    Luu, Y.; Ramsay, B. A.; Ramsay, J A

    2003-01-01

    An enrichment culture capable of naphthalene mineralization reduced Fe(III) oxides without direct contact in anaerobic soil microcosms when the Fe(III) was placed in dialysis membranes or entrapped within alginate beads. Both techniques demonstrated that a component in soil, possibly humic materials, facilitated Fe(III) reduction when direct contact between cells and Fe(III) was not possible. The addition of the synthetic Fe(III) chelator, nitrilotriacetic acid (NTA), to soil enhanced Fe(III)...

  10. Reductive Dechlorination of Carbon Tetrachloride by Tetrachloroethene and Trichloroethene Respiring Anaerobic Mixed Cultures

    Science.gov (United States)

    Vickstrom, K. E.; Azizian, M.; Semprini, L.

    2015-12-01

    Carbon tetrachloride (CT) is a toxic and recalcitrant groundwater contaminant with the potential to form a broad range of transformation products. Of the possible biochemical pathways through which CT can be degraded, reductive dehalogenation to less chlorinated compounds and mineralization to carbon dioxide (CO2) appear to be the most frequently utilized pathways by anaerobic organisms. Results will be presented from batch experiments of CT degradation by the Evanite (EV), Victoria Strain (VS) and Point Mugu (PM) anaerobic dechlorinating cultures. The cultures are grown in chemostats and are capable of transforming tetrachloroethene (PCE) or trichloroethene (TCE) to ethene by halorespiration via reductive dehalogenase enzymes. For the batch CT transformation tests, the cells along with supernatant were harvested from chemostats fed PCE or TCE, but never CT. The batch reactors were initially fed 0.0085 mM CT and an excess of formate (EV and VS) or lactate (PM) as electron donor. Transformation of CT was 100% with about 20% converted to chloroform (CF) and undetected products. Multiple additions of CT showed a slowing of pseudo first-order CT transformation rates across all cultures. Batch reactors were then established and fed 0.085 mM CT with an excess of electron donor in order to better quantify the reductive pathway. CT was transformed to CF and dichloromethane (DCM), with trace amounts of chloromethane (CM) detected. Between 60-90% of the mass added to the system was accounted for, showing that the majority of the carbon tetrachloride present is being reductively dehalogenated. Results from batch reactors that were poisoned using sodium azide, and from reactors not provided electron donor will be presented to distinguish between biotic and abiotic reactions. Furthermore, results from reactors prepared with acetylene (a potent, reversible inhibitor of reductive dehalogenases (1)) will be presented as a means of identifying the enzymes involved in the

  11. Genomic Analysis of Anaerobic Respiration in the Archaeon Halobacterium sp. Strain NRC-1: Dimethyl Sulfoxide and Trimethylamine N-Oxide as Terminal Electron Acceptors†

    OpenAIRE

    Müller, Jochen A.; DasSarma, Shiladitya

    2005-01-01

    We have investigated anaerobic respiration of the archaeal model organism Halobacterium sp. strain NRC-1 by using phenotypic and genetic analysis, bioinformatics, and transcriptome analysis. NRC-1 was found to grow on either dimethyl sulfoxide (DMSO) or trimethylamine N-oxide (TMAO) as the sole terminal electron acceptor, with a doubling time of 1 day. An operon, dmsREABCD, encoding a putative regulatory protein, DmsR, a molybdopterin oxidoreductase of the DMSO reductase family (DmsEABC), and...

  12. Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration.

    Science.gov (United States)

    Coates, John D; Cole, Kimberly A; Chakraborty, Romy; O'Connor, Susan M; Achenbach, Laurie A

    2002-05-01

    Previous studies have demonstrated that reduced humic substances (HS) can be reoxidized by anaerobic bacteria such as Geobacter, Geothrix, and Wolinella species with a suitable electron acceptor; however, little is known of the importance of this metabolism in the environment. Recently we investigated this metabolism in a diversity of environments including marine and aquatic sediments, forest soils, and drainage ditch soils. Most-probable-number enumeration studies were performed using 2,6-anthrahydroquinone disulfonate (AHDS), an analog for reduced HS, as the electron donor with nitrate as the electron acceptor. Anaerobic organisms capable of utilizing reduced HS as an electron donor were found in all environments tested and ranged from a low of 2.31 x 10(1) in aquifer sediments to a high of 9.33 x 10(6) in lake sediments. As part of this study we isolated six novel organisms capable of anaerobic AHDS oxidation. All of the isolates coupled the oxidation of AHDS to the reduction of nitrate with acetate (0.1 mM) as the carbon source. In the absence of cells, no AHDS oxidation was apparent, and in the absence of AHDS, no cell density increase was observed. Generally, nitrate was reduced to N(2). Analysis of the AHDS and its oxidized form, 2,6-anthraquinone disulfonate (AQDS), in the medium during growth revealed that the anthraquinone was not being biodegraded as a carbon source and was simply being oxidized as an energy source. Determination of the AHDS oxidized and nitrate reduced accounted for 109% of the theoretical electron transfer. In addition to AHDS, all of these isolates could also couple the oxidation of reduced humic substances to the reduction of nitrate. No HS oxidation occurred in the absence of cells and in the absence of a suitable electron acceptor, demonstrating that these organisms were capable of utilizing natural HS as an energy source and that AHDS serves as a suitable analog for studying this metabolism. Alternative electron donors included

  13. What iron minerals contribute to anaerobic respiration in peats differing in maturity on the Arctic Coastal Plain ?

    Science.gov (United States)

    Masue-Slowey, Y.; Wagner, F. E.; Lipson, D.; Raab, T. K.

    2013-12-01

    Microbial Fe-reduction accounts for 30-60% of ecosystem respiration in drained thaw-lake tundra of the Arctic Coastal Plain. Near Barrow, we collected diffraction, Fe-XANES, Moessbauer spectra (RT and liqHe), and wet-chemical data on the Fe mineralogy of DTLB over an age gradient from 0 - 5500 y BP to delineate the important phases involved in microbial cycling of Fe. Soils were cored frozen in early June of 2010/ 2011, wrapped/ transported to CA by overnight express. Cores varying in age since formation were further sectioned, and transferred to an anaerobic hood for size-fractionation based on settling velocity, and subjected to bulk XRD at SSRL. Fe-XANES of both clay-separates and bulk soil were collected at BL 4-1. Subsamples were packed into anaerobic vials and sent for Moessbauer spectroscopy. Present in bulk soils of all ages by XRD were quartz, albite and vermiculite. Additional smectitic minerals, goethite and Fe-phosphates were evident in some basin classes, esp. Young and Medium. XANES confirmed wet-chem results of a highly-reduced state for Fe in bulk soils, and fits of XAFS indicated goethite as 20% of the reactive Fe-pool among basin-age classes. The most abundant Fe-containing minerals in clay fractions (Old and Young soils) were a ferrosmectite, or hornblende-derived mineral. (Fig.1) MB spectra from various depths of an Old Basin (300-2000 yrs BP) - the DTLB class of greatest areal extent -- revealed largely reduced Fe pools (50-60%), with goethite and a Fhd-like component visible (~23%). LHe spectra indicated the presence of goethite as ~ 20% of the MB-visible pool (Fig 2). Two prominent quadrupole doublets had QS=3.24 mm/s; IS = 1.10 mm/s and QS = 2.84; IS=1.05 mm/s, respectively, and upon oxidation, demonstrated divergent kinetics. We attribute the doublet with lower splitting to the ferrosmectite component visible by XAFS. Although previous sequential extractions of Barrow soil minerals suggested a sizeable component of siderites (indeed geochem

  14. Use of cassava wastewater treated anaerobically with alkaline agents as fertilizer for maize (Zea mays L.)

    OpenAIRE

    Maria Magdalena Ferreira Ribas; Marney Pascoli Cereda; Roberto Lyra Villas Bôas

    2010-01-01

    The wastewater of the processing of cassava's flour (manipueira) was submitted to the anaerobic treatment in two phases: acidogenic and methanogenic. In the acidogenic phase, the wastewater was stabilized with NaOH (ASH) and with limestone (ASL). After that, both stabilized effluents were treated by a methanogenic reactor. Then, the effluent of the methanogenic reactor was used as fertilizer on maize in the initial growth stage (30 days), cultivated in pots in a greenhouse. The treatments wer...

  15. Improved Anaerobic Fermentation of Wheat Straw by Alkaline Pre-Treatment and Addition of Alkali-Tolerant Microorganisms

    Directory of Open Access Journals (Sweden)

    Heike Sträuber

    2015-04-01

    Full Text Available The potential of two alkali-tolerant, lignocellulolytic environmental enrichment cultures to improve the anaerobic fermentation of Ca(OH2-pre-treated wheat straw was studied. The biomethane potential of pre-treated straw was 36% higher than that of untreated straw. The bioaugmentation of pre-treated straw with the enrichment cultures did not enhance the methane yield, but accelerated the methane production during the first week. In acidogenic leach-bed fermenters, a 61% higher volatile fatty acid (VFA production and a 112% higher gas production, mainly CO2, were observed when pre-treated instead of untreated straw was used. With one of the two enrichment cultures as the inoculum, instead of the standard inoculum, the VFA production increased by an additional 36% and the gas production by an additional 110%, again mainly CO2. Analysis of the microbial communities in the leach-bed processes revealed similar bacterial compositions in the fermenters with pre-treated straw, which developed independently of the used inoculum. It was suggested that the positive metabolic effects with the enrichment cultures observed in both systems were due to initial activities of the alkali-tolerant microorganisms tackling the alkaline conditions better than the standard inocula, whereas the latter dominated in the long term.

  16. Improvement of anaerobic digestion of waste-activated sludge by using H₂O₂ oxidation, electrolysis, electro-oxidation and thermo-alkaline pretreatments.

    Science.gov (United States)

    Feki, Emna; Khoufi, Sonia; Loukil, Slim; Sayadi, Sami

    2015-10-01

    Disintegration of municipal waste-activated sludge (WAS) is regarded as a prerequisite of the anaerobic digestion process to reduce sludge volume and improve biogas yield. Pretreatment of WAS using thermo-alkaline (TA), H2O2 oxidation, electrolysis and electro-oxidation (EO) processes were investigated and compared in term of COD solubilization and biogas production. For each pretreatment, the influences of different operational variables were studied in detail. At optimum conditions, EO gave the maximum COD solubilization (28 %). The effects of pretreatments under the optimum conditions on anaerobic digestion were experienced with biochemical methane potential assay. Significant increases in biogas yield up to 78 and 40 % were observed respectively in the EO and TA pretreated samples compared to raw sludge. Results clearly revealed that the application of EO is a significant alternative method for the improvement of WAS anaerobic digestion. PMID:25982985

  17. Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration

    NARCIS (Netherlands)

    Holliger, C; Hahn, D; Harmsen, H; Ludwig, W; Schumacher, W; Tindall, B; Vazquez, F; Weiss, N; Zehnder, AJB

    1998-01-01

    The highly enriched anaerobic bacterium that couples the reductive dechlorination of tetrachloroethene to growth, previously referred to as PER-K23, was obtained in pure culture and characterized. The bacterium, which does not form spores, is a small, gram-negative rod with one lateral flagellum. It

  18. Use of cassava wastewater treated anaerobically with alkaline agents as fertilizer for maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Maria Magdalena Ferreira Ribas

    2010-02-01

    Full Text Available The wastewater of the processing of cassava's flour (manipueira was submitted to the anaerobic treatment in two phases: acidogenic and methanogenic. In the acidogenic phase, the wastewater was stabilized with NaOH (ASH and with limestone (ASL. After that, both stabilized effluents were treated by a methanogenic reactor. Then, the effluent of the methanogenic reactor was used as fertilizer on maize in the initial growth stage (30 days, cultivated in pots in a greenhouse. The treatments were T1: control without urea addition (only N from soil; T2: NPK (2.2 g of urea with 45% of N; T3: ASH (84 mL.kg soil-1; T4: ASL (102 mL.kg soil-1; T5: double dose ASH (168 mL.kg soil-1 and T6: double dose ASL (204 mL.kg soil-1. Each treatment was composed by 4 plants/pot in five repetitions. It was observed that all the treatments with stabilized wastewater had favorable effect to the soil pH (> than 7.5 and basis saturation (V% in the soil around to 90%. The performances of nitrogen absorption by the maize plants were 64, 54, 80 and 78% for T3, T4, T5 and T6, respectively.A água residuária do processamento de farinha de mandioca (manipueira foi submetida ao tratamento anaeróbio em duas fases: acidogênica e metanogênica. Na fase acidogênica, a água residuária foi estabilizada com NaOH (ASH e com calcário (ASL. Em seguida, ambos efluentes estabilizados foram tratados por um reator metanogênico. Então, o efluente do reator metanogênico foi usado como fertilizante no milho no estádio inicial de crescimento (30 dias cultivado em vaso em casa de vegetação. Os tratamentos foram T1: controle sem uréia (somente N do solo; T2: NPK (2,2 g de uréia com 45% de N; T3: ASH (84 mL.kg solo-1; T4: ASL (102 mL.kg solo-1; T5: dose dupla de ASH (168 mL.kg solo-1 e T6: dose dupla de ASL (204 mL.kg solo-1. Cada tratamento foi composto por 4 plantas/vaso com 5 repetições. Foi observado que todos os tratamentos com á água residuária estabilizada tiveram efeitos

  19. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH?

    Science.gov (United States)

    Ma, Huijun; Chen, Xingchun; Liu, He; Liu, Hongbo; Fu, Bo

    2016-02-01

    In this study, the anaerobic fermentation was carried out for volatile fatty acids (VFAs) production at different pH (between 7.0 and 10.0) conditions with untreated sludge and heat-alkaline pretreated waste activated sludge. In the fermentation with untreated sludge, the extent of hydrolysis of organic matters and extent of acidification at alkaline pH are 54.37% and 30.37%, respectively, resulting in the highest VFAs yield at 235.46mg COD/gVS of three pH conditions. In the fermentation with heat-alkaline pretreated sludge, the acidification rate and VFAs yield at neutral pH are 30.98% and 240.14mg COD/gVS, respectively, which are higher than that at other pH conditions. With the glucose or bovine serum albumin as substrate for VFAs production, the neutral pH showed a higher VFAs concentration than the alkaline pH condition. The results of terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that the alkaline pH caused low microbial richness. Based on the results in this study, we demonstrated that the alkaline pH is favor of hydrolysis of organic matter in sludge while neutral pH improved the acidogenesis for the VFAs production from sludge. Our finding is obvious different to the previous research and helpful for the understanding of how heat-alkaline pretreatment and alkaline fermentation influence the VFAs production, and beneficial to the development of VFAs production process. PMID:26652215

  20. Comparative Genomics Analysis and Phenotypic Characterization of Shewanella putrefaciens W3-18-1: Anaerobic Respiration, Bacterial Microcompartments, and Lateral Flagella

    International Nuclear Information System (INIS)

    Respiratory versatility and psychrophily are the hallmarks of Shewanella. The ability to utilize a wide range of electron acceptors for respiration is due to the large number of c-type cytochrome genes present in the genome of Shewanella strains. More recently the dissimilatory metal reduction of Shewanella species has been extensively and intensively studied for potential applications in the bioremediation of radioactive wastes of groundwater and subsurface environments. Multiple Shewanella genome sequences are now available in the public databases (Fredrickson et al., 2008). Most of the sequenced Shewanella strains were isolated from marine environments and this genus was believed to be of marine origin (Hau and Gralnick, 2007). However, the well-characterized model strain, S. oneidensis MR-1, was isolated from the freshwater lake sediment of Lake Oneida, New York (Myers and Nealson, 1988) and similar bacteria have also been isolated from other freshwater environments (Venkateswaran et al., 1999). Here we comparatively analyzed the genome sequence and physiological characteristics of S. putrefaciens W3-18-1 and S. oneidensis MR-1, isolated from the marine and freshwater lake sediments, respectively. The anaerobic respirations, carbon source utilization, and cell motility have been experimentally investigated. Large scale horizontal gene transfers have been revealed and the genetic divergence between these two strains was considered to be critical to the bacterial adaptation to specific habitats, freshwater or marine sediments.

  1. Comparative Genomics Analysis and Phenotypic Characterization of Shewanella putrefaciens W3-18-1: Anaerobic Respiration, Bacterial Microcompartments, and Lateral Flagella

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, D.; Tu, Q.; He, Zhili; Zhou, Jizhong

    2010-05-17

    Respiratory versatility and psychrophily are the hallmarks of Shewanella. The ability to utilize a wide range of electron acceptors for respiration is due to the large number of c-type cytochrome genes present in the genome of Shewanella strains. More recently the dissimilatory metal reduction of Shewanella species has been extensively and intensively studied for potential applications in the bioremediation of radioactive wastes of groundwater and subsurface environments. Multiple Shewanella genome sequences are now available in the public databases (Fredrickson et al., 2008). Most of the sequenced Shewanella strains were isolated from marine environments and this genus was believed to be of marine origin (Hau and Gralnick, 2007). However, the well-characterized model strain, S. oneidensis MR-1, was isolated from the freshwater lake sediment of Lake Oneida, New York (Myers and Nealson, 1988) and similar bacteria have also been isolated from other freshwater environments (Venkateswaran et al., 1999). Here we comparatively analyzed the genome sequence and physiological characteristics of S. putrefaciens W3-18-1 and S. oneidensis MR-1, isolated from the marine and freshwater lake sediments, respectively. The anaerobic respirations, carbon source utilization, and cell motility have been experimentally investigated. Large scale horizontal gene transfers have been revealed and the genetic divergence between these two strains was considered to be critical to the bacterial adaptation to specific habitats, freshwater or marine sediments.

  2. Molecular and Stable Isotope Investigation of Nitrite Respiring Bacterial Communities Capable of Anaerobic Ammonium Oxidation (ANAMMOX) and Denitrifying Anaerobic Methane Oxidation (DAMO) in Nitrogen Contaminated Groundwater

    Science.gov (United States)

    Song, B.; Hirsch, M.; Taylor, J.; Smith, R. L.; Repert, D.; Tobias, C. R.

    2010-12-01

    Anaerobic ammonium oxidation (ANAMMOX) and denitrifying anaerobic methane oxidation (DAMO) are two recently discovered N2 production pathways in the microbial nitrogen cycle. ANAMMOX has been relatively well investigated in various aquatic ecosystems, while DAMO has been examined only in freshwater wetlands. However, neither ANAMMOX nor DAMO have been studied in groundwater ecosystems as microbial N removal processes where they could compliment or compete with denitrification to remediate N contaminated aquifers. Thus, we conducted molecular and stable isotope analyses to detect and measure ANAMMOX and DAMO in a nitrogen contaminated aquifer on Cape Cod, Massachusetts. The study site has a plume of nitrogen contaminated groundwater as a result of continuous discharge of treated wastewater over 60 years. Groundwater was collected from multiport sampling devices installed at two sites, near the waste-water disposal location (A) and more than 3 km down gradient (B) along the contamination plume. Biomass was collected from water samples for DNA extraction and 15N tracer incubation experiments. PCR with specific 16S rRNA gene primers detected the presence of ANAMMOX and DAMO bacteria at both sites. Phylogenetic analysis of 16S rRNA genes revealed that the ANAMMOX community at site A was most associated with Kuenenia spp. while site B had a community more closely related to Brocadia spp. The DAMO communities at the two sites were quite different based on 16S rRNA gene analysis. The communities at site B are closely associated with Candidatus “Methylomirabilis oxyfera”, which is the first enriched DAMO culture. Most of the 16S rRNA sequences detected in site A were related to those found in other DAMO enrichment cultures established from a eutrophic ditch sediment. In order to determine active members of ANAMMOX communities, the transcriptional expression of hydrazine oxidase (hzo) and hydrazine hydrolase (hh) genes was examined at both sites. In addition, 15N tracer

  3. Using the properties of soil to speed up the start-up process, enhance process stability, and improve the methane content and yield of solid-state anaerobic digestion of alkaline-pretreated poplar processing residues

    OpenAIRE

    Yao, Yiqing; Luo, Yang; Li, Tian; Yang, Yingxue; Sheng, Hongmei; Virgo, Nolan; Xiang, Yun; Song, Yuan; Zhang, Hua; An, Lizhe

    2015-01-01

    Background Solid-state anaerobic digestion (SS-AD) was initially adopted for the treatment of municipal solid waste. Recently, SS-AD has been increasingly applied to treat lignocellulosic biomass, such as agricultural and forestry residues. However, studies on the SS-AD process are few. In this study, the process performance and methane yield from SS-AD of alkaline-pretreated poplar processing residues (PPRs) were investigated using the properties of soil, such as buffering capacity and nutri...

  4. Anaerobic methanethiol degradation and methanogenic community analysis in an alkaline (pH 10) biological process for liquefied petroleum gas desulfurization

    NARCIS (Netherlands)

    Leerdam, van R.C.; Bonilla-Salinas, M.; Bok, de F.A.M.; Bruning, H.; Lens, P.N.L.; Stams, A.J.M.; Janssen, A.J.H.

    2008-01-01

    Anaerobic methanethiol (MT) degradation by mesophilic (30 degrees C) alkaliphilic (pH 10) communities was studied in a lab-scale Upflow Anaerobic Sludge Bed (UASB) reactor inoculated with a mixture of sediments from the Wadden Sea (The Netherlands), Soap Lake (Central Washington), and Russian soda l

  5. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21

    OpenAIRE

    Iverson, Andrew; Garza, Erin; Manow, Ryan; Wang, Jinhua; Gao, Yuanyuan; Grayburn, Scott; Zhou, Shengde

    2016-01-01

    Background Anaerobic rather than aerobic fermentation is preferred for conversion of biomass derived sugars to high value redox-neutral and reduced commodities. This will likely result in a higher yield of substrate to product conversion and decrease production cost since substrate often accounts for a significant portion of the overall cost. To this goal, metabolic pathway engineering has been used to optimize substrate carbon flow to target products. This approach works well for the product...

  6. Ecotechnological water quality control in acidic mining lakes. Part 2. Primary production and respiration; Oekotechnologische Steuerung der Gewaesserguete in sauren Tagebauseen. Teil 2. Primaerproduktion und Respiration

    Energy Technology Data Exchange (ETDEWEB)

    Uhlmann, W. [Inst. fuer Wasser und Boden, Dresden (Germany); Nixdorf, B. [Brandenburgisch-Technische Univ., Fakultaet fuer Umweltwissenschaften, Lehrstuhl fuer Gewaesserschutz, Bad Saarow (Germany)

    2002-07-01

    The necessity of neutralizing acidic mining lakes is obvious if the water is to be used in reservoirs (Lohsa II) or for other purposes such as balancing the water budget, fishing or recreation or to be discharged into river systems. Flushing of mining lakes with alkaline surface water from rivers is the moist common method to stabilize the lake structures and to neutralize acidic water. This method is limited in lakes without river coupling or with a high re-acidification potential. The present contribution demonstrates the possibility of biogenic alkalinity production in acidic mining lakes focusing on the main biological processes of primary production and respiration. The influence of biogenic matter transformation on water chemistry in acidic mining lakes is analyzed. Calculation of the extent of aerobic and anaerobic decay of organic matter will be a necessary prerequisite for sustainable sulfate reduction. (orig.)

  7. Effect of Thermal-alkaline Pretreatment on Anaerobic Digestion of Sludge with Low Organic Content%热碱预处理改善低有机质污泥厌氧消化性能的效果

    Institute of Scientific and Technical Information of China (English)

    严媛媛; 陈汉龙; 何群彪; 戴晓虎; 周琪

    2012-01-01

    以高含固率(10%)、低有机质含量(VS/TS值<0.5)的污泥为对象,研究在控制pH值为11时不同加热温度的热碱预处理对其溶胞效果的影响,并通过厌氧消化产甲烷潜力(BMP)试验评价其对厌氧消化性能的促进作用.结果表明:SS的减量化程度以及COD、TOC、蛋白质和碳水化合物的溶出效果随着热碱处理时加热温度的上升而不断提高,且在100 cC以上变化更趋明显.在经pH值为11、120℃加热处理30 min后,COD溶出率和对SS的去除率达到最大分别为54.1%和11.6%.在热碱联合预处理过程中,伴随着有机物的溶出,各种元素也不断由固相释放至液相.C、N和P三种元素的溶出率在加热温度为120℃时达到最大,分别为69.1%、76.2%和86.1%.BMP试验显示,经pH值为11、加热温度分别为100℃和120℃的热碱预处理后,低有机质污泥厌氧消化25 d的沼气产率比空白分别提高了37.7%和41.5%,其对应的VS去除率分别为34.8%和37.9%.%Disintegration of sludge with high solid content and low organic content by thermal-alkaline pretreatment at different temperatures with pH 11 was studied. The effect of thermal-alkaline pretreatment on anaerobic digestibility was investigated by biochemical methane potential ( BMP) experiment. The results showed the reduction of SS and solubilization of COD, TOC, protein and carbohydrate increased with the rise in thermal temperature under thermal-alkaline condition. The increase was faster at above 100 ℃. The maximum COD solubilization and SS removal rate were 54. 1% and 11. 6% respectively after 30 min of thermal-alkaline pretreatment at 120 ℃. And pH 11. Various elements would be released from solid phase to liquid phase as organic matters dissolved during the process of thermal-alkaline pretreatment. The maximum solubilization rates of C, N and P during thermal-alkaline pretreatment at 120 ℃ were 69. 1% , 76. 2% and 86. 1% respectively. BMP experiment

  8. Anaerobes beyond anaerobic digestion

    OpenAIRE

    Sousa, D. Z.; Pereira, M A; Alves, M.M.

    2009-01-01

    Anaerobic microorganisms are widespread in nature. Sediments, gastrointestinal tracks, volcanic vents, geothermal sources are examples of habitats where anaerobic metabolism prevail, in some cases at extreme temperature, pH and pressure conditions. In such microbial ecosystems waste of some is food for others in a true integrated structure. Anaerobic microorganisms are able to use a wide variety of organic and inorganic compounds. Recalcitrant compounds, such as hydrocarbons, a...

  9. Can soil respiration estimate neglect the contribution of abiotic exchange?

    Institute of Scientific and Technical Information of China (English)

    Xi CHEN; WenFeng WANG; GePing LUO; Hui YE

    2014-01-01

    This study examines the hypothesis that soil respiration can always be interpreted purely in terms of biotic processes, neglecting the contribution of abiotic exchange to CO2 fluxes in alkaline soils of arid areas that characterize 5%of the Earth’s total land surface. Analyses on flux data collected from previous studies suggested reconciling soil respiration as organic (root/microbial respiration) and inorganic (abiotic CO2 exchange) respiration, whose contributions in the total CO2 flux were determined by soil alkaline content. On the basis of utilizing mete-orological and soil data collected from the Xinjiang and Central Asia Scientific Data Sharing Platform, an incorpo-rated model indicated that inorganic respiration represents almost half of the total CO2 flux. Neglecting the abiotic module may result in overestimates of soil respiration in arid alkaline lands, which partly explains the long-sought“missing carbon sink”.

  10. Anaerobic methanethiol degradation and methanogenic community analysis in an alkaline (pH 10) biological process for liquefied petroleum gas desulfurization.

    Science.gov (United States)

    van Leerdam, Robin C; Bonilla-Salinas, Monica; de Bok, Frank A M; Bruning, H; Lens, Piet N L; Stams, Alfons J M; Janssen, Albert J H

    2008-11-01

    Anaerobic methanethiol (MT) degradation by mesophilic (30 degrees C) alkaliphilic (pH 10) communities was studied in a lab-scale Upflow Anaerobic Sludge Bed (UASB) reactor inoculated with a mixture of sediments from the Wadden Sea (The Netherlands), Soap Lake (Central Washington), and Russian soda lakes. MT degradation started after 32 days of incubation. During the first 252 days, complete degradation was achieved till a volumetric loading rate of 7.5 mmol MT/L/day, and sulfide, methane, and carbon dioxide were the main reaction products. Temporary inhibition of MT degradation occurred after MT peak loads and in the presence of dimethyl disulfide (DMDS), which is the autooxidation product of MT. From day 252 onwards, methanol was dosed to the reactor as co-substrate at a loading rate of 3-6 mmol/L/day to stimulate growth of methylotrophic methanogens. Methanol was completely degraded and also a complete MT degradation was achieved till a volumetric loading rate of 13 mmol MT/L/day (0.77 mmol MT/gVSS/day). However, from day 354 till the end of the experimental run (day 365), acetate was formed and MT was not completely degraded anymore, indicating that methanol-degrading homoacetogenic bacteria had partially outcompeted the methanogenic MT-degrading archea. The archeal community in the reactor sludge was analyzed by DGGE and sequencing of 16S rRNA genes. The methanogenic archea responsible for the degradation of MT in the reactor were related to Methanolobus oregonensis. A pure culture, named strain SODA, was obtained by serial dilutions in medium containing both trimethyl amine and dimethyl sulfide (DMS). Strain SODA degraded MT, DMS, trimethyl amine, and methanol. Flow sheet simulations revealed that for sufficient MT removal from liquefied petroleum gas, the extraction and biological degradation process should be operated above pH 9. PMID:18814290

  11. Millimeter-scale alkalinity measurement in marine sediment using DET probes and colorimetric determination.

    Science.gov (United States)

    Metzger, E; Viollier, E; Simonucci, C; Prévot, F; Langlet, D; Jézéquel, D

    2013-10-01

    Constrained DET (Diffusive Equilibration in Thin films) probes equipped with 75 sampling layers of agarose gel (DGT Research(©)) were used to sample bottom and pore waters in marine sediment with a 2 mm vertical resolution. After retrieval, each piece of hydrogel, corresponding to 25 μL, was introduced into 1 mL of colorimetric reagent (CR) solution consisting of formic acid and bromophenol blue. After the elution/reaction time, absorbance of the latter mixture was read at 590 nm and compared to a calibration curve obtained with the same protocol applied to mini DET probes soaked in sodium hydrogen carbonate standard solutions. This method allows rapid alkalinity determinations for the small volumes of anoxic pore water entrapped into the gel. The method was assessed on organic-rich coastal marine sediments from Thau lagoon (France). Alkalinity values in the overlying waters were in agreement with data obtained by classical sampling techniques. Pore water data showed a progressive increase of alkalinity in the sediment from 2 to 10 mmol kg(-1), corresponding to anaerobic respiration in organic-rich sediments. Moreover, replicates of high-resolution DET profiles showed important lateral heterogeneity at a decimeter scale. This underlines the importance of high-resolution spatial methods for alkalinity profiling in coastal marine systems. PMID:23870435

  12. 酸碱预处理对稻草秸秆发酵产氢的影响%Effect of acid and alkaline pretreatment on bio-hydrogen production from rice straw by anaerobic fermentation

    Institute of Scientific and Technical Information of China (English)

    潘晶; 于龙; 王楠

    2012-01-01

    Hydrogen, as a clean energy that can replace conventional fossil fuels, is attracting worldwide attentions. Bio-hydrogen production process with anaerobic fermentation resolves the organic waste by the biological technology to produce hydrogen with simple equipments, easy manipulation and low cost. Effects of acid and alkaline pretreatment on bio-hydrogen production from rice straw by anaerobic sludge fermentation were studied. The results show that H2SO4 pretreatment is the best one. Rice straw with 1% H2SO4 pretreatment, the maximum hydrogen concentration, the highest specific hydrogen production yield rate and the highest hydrogen production yield were respectively 47. 68% 、4. 67 mL/( h · g) and 59. 21 mL/g. With 1 % NaOH pretreatment, the maximum hydrogen concentration, the highest specific hydrogen production yield rate and the highest hydrogen production yield were respectively 41.92% 、3. 24 mL/( h · g) and 42.02 mL/g. The produced volatile fatty acids in the fermentation solutions are mainly ethanol, acetate and butyrate.%随着环保要求的日益严格和化石能源的日益短缺,氢能作为清洁高效的可再生能源受到人们的普遍重视.厌氧发酵生物制氢是利用生物技术分解有机废弃物制备氢气,该工艺设备简单、操作容易、成本低廉等优点.以稻草秸秆为发酵底料,以厌氧活性污泥为接种物,研究酸碱预处理对秸秆发酵产氢的影响.结果表明,H2SO4预处理为最佳的预处理方式;稻草秸秆经1%的H2SO4预处理后发酵气中氢气的最大含量、最高比产氢速率和最高氢气产率分别为47.68%、4.67mL/(h·g)和59.21mL/g;经1%的NaOH预处理后发酵气中氢气的最大含量、最高比产氢速率和最高氢气产率分别为41.92%、3.24mL/(h·g)和42.02mL/g;发酵液相中主要产物为乙醇、乙酸和丁酸.

  13. Respiration in spiders (Araneae).

    Science.gov (United States)

    Schmitz, Anke

    2016-05-01

    Spiders (Araneae) are unique regarding their respiratory system: they are the only animal group that breathe simultaneously with lungs and tracheae. Looking at the physiology of respiration the existence of tracheae plays an important role in spiders with a well-developed tracheal system. Other factors as sex, life time, type of prey capture and the high ability to gain energy anaerobically influence the resting and the active metabolic rate intensely. Most spiders have metabolic rates that are much lower than expected from body mass; but especially those with two pairs of lungs. Males normally have higher resting rates than females; spiders that are less evolved and possess a cribellum have lower metabolic rates than higher evolved species. Freely hunting spiders show a higher energy turnover than spiders hunting with a web. Spiders that live longer than 1 year will have lower metabolic rates than those species that die after 1 year in which development and reproduction must be completed. Lower temperatures and starvation, which most spiders can cope with, will decrease the metabolic rate as well. PMID:26820263

  14. RESPONSE OF RICE ROOT IN RESPIRATION AT JOINTING STAGE TO OZONE POLLUTION AND ALTERNATION OF ANAEROBIC AND AEROBIC CONDITIONS%水稻拔节期根系呼吸对臭氧污染和厌氧—有氧环境变化的响应

    Institute of Scientific and Technical Information of China (English)

    寇太记; 朱建国

    2013-01-01

    Effects of elevated atmospheric ozone (pO3) (50% higher than the ambient pO3 in concentration) on root respiration and biomass accumulation and distribution of rice (Oryza sativa L.cv.Xiandao 63) at the jointing stage were investigated in fully open-air field conditions,and effect of alternation of anaerobic and aerobic conditions on root respiration was analyzed using special gas-collecting installations.Results show that under elevated pO3canopy and total biomass of the crop decreased slightly,while its root dry matter weight and ratio of root/canopy dropped significantly by 14.7% and 10.4%,respectively.The mixture of N2 and O2at a ratio of 9∶1 or 9.5∶0.5 was the most propitious for root respiration,whereas in pure N2,natural air and CO2-saturated distilled water root respiration rate was lowered to a varying degree.The treatment of elevated pO3 coupled with measurement inn CO2-saturated distilled water and the treatment of ambient air coupled with measurement in pure N2 was the least in root respiration rate,indicating that although the condition in which root respiration was measured affected root respiration rate,the impact was restricted in degree by the atmospheric environment in which the plant grew.The root respiration rate of rice growing under elevated ozone was 23.6% ~52.7% higher than that under natural atmosphere when measured in pure gas condition,and the difference between the two was insignificant when the measurement was done in CO2-saturated distilled water,showing that the influence of ozone pollution on root respiration obviously decreased.Under elevated and ambient pO3 environments,root respiration of the rice displayed a curve of convex quadratic function with increasing oxygen supply in the gaseous environment for measurement.The oxygen concentration of 5%~ 10% in the environment promoted rice root respiration,while stronge anaerobic condition (i.e.,pure N2) and aerobic conditions (i.e.,air) both affected root

  15. Microbial Iron Respiration Can Protect Steel from Corrosion

    OpenAIRE

    Dubiel, M.; Hsu, C H; Chien, C. C.; Mansfeld, F.; Newman, D. K.

    2002-01-01

    Microbiologically influenced corrosion (MC) of steel has been attributed to the activity of biofilms that include anaerobic microorganisms such as iron-respiring bacteria, yet the mechanisms by which these organisms influence corrosion have been unclear. To study this process, we generated mutants of the iron-respiring bacterium Shewanella oneidensis strain MR-1 that were defective in biofilm formation and/or iron reduction. Electrochemical impedance spectroscopy was used to determine changes...

  16. Respirator field performance factors

    International Nuclear Information System (INIS)

    The Industrial Hygiene Group assisted OSHA and the NRC in measurements of respirator performance under field conditions. They reviewed problems associated with sampling aerosols within the respirator in order to determine fit factors (FFs) or field performance factor (FPF). In addition, they designed an environmental chamber study to determine the effects of temperature and humidity on a respirator wearer

  17. Anaerobic bacteria

    Science.gov (United States)

    Brook I, Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 297. Stedman's Online ...

  18. Choosing the right respirator

    International Nuclear Information System (INIS)

    Selecting respirators to help protect workers from airborne contaminants can be a confusing process. The consequences of selecting the incorrect respirator can be intimidating, and worker safety and health may be dramatically and irreparably affected if an inappropriate respirator is chosen. When used in the workplace, a formal respiratory protection program must be established covering the basic requirements outlined in the OSHA Respiratory Protection Standard (29 CFR 1910.134). Education and training must be properly emphasized and conducted periodically. Maintenance, cleaning, and storage programs must be established and routinely followed for reusable respirators. The process of establishing a respiratory protection program can be broken down into four basic steps: Identify respiratory hazards and concentrations; understand the contaminants effects on workers' health; select appropriate respiratory protection; and train in proper respirator use and maintenance. These four steps are the foundation for establishing a basic respirator protection program. Be sure to consult state and federal OSHA requirements to ensure that the program complies. Leading industrial respirator manufacturers should be able to assist with on-site training and education in this four-step process, in addition to helping employers train their workers and conduct respirator fit testing

  19. Microbial iron respiration can protect steel from corrosion.

    Science.gov (United States)

    Dubiel, M; Hsu, C H; Chien, C C; Mansfeld, F; Newman, D K

    2002-03-01

    Microbiologically influenced corrosion (MC) of steel has been attributed to the activity of biofilms that include anaerobic microorganisms such as iron-respiring bacteria, yet the mechanisms by which these organisms influence corrosion have been unclear. To study this process, we generated mutants of the iron-respiring bacterium Shewanella oneidensis strain MR-1 that were defective in biofilm formation and/or iron reduction. Electrochemical impedance spectroscopy was used to determine changes in the corrosion rate and corrosion potential as a function of time for these mutants in comparison to the wild type. Counter to prevailing theories of MC, our results indicate that biofilms comprising iron-respiring bacteria may reduce rather than accelerate the corrosion rate of steel. Corrosion inhibition appears to be due to reduction of ferric ions to ferrous ions and increased consumption of oxygen, both of which are direct consequences of microbial respiration. PMID:11872499

  20. Anaerobic workout

    OpenAIRE

    McAdam, Ewan J.

    2010-01-01

    Anaerobic technology cannot directly replace current wastewater treatment processes exclusively. The UASB reactor configuration removes slightly less organic carbon by comparison as the process relies on lamella separation for passive clarification rather than using fine pores like anMBR. By contrast, whilst anMBR can operate as a single unit process for organic carbon removal, the membrane surface has to be cleaned using gas sparging to limit surface deposition, which requires extra energy. ...

  1. Respirator Fact Sheet

    Science.gov (United States)

    ... Products NIOSH-Issued Publications Publication Types Alerts Current Intelligence Bulletins Criteria Documents Fact Sheets Health Hazard Evaluations ( ... using gas mask and escape respirators. At the end of this Fact Sheet, you will find a ...

  2. Fate of polychlorinated biphenyls (PCBs) in anaerobic soils

    International Nuclear Information System (INIS)

    Degradation of 14C labelled 2,5,2; 2,5,2',5' PCBs was studied in Hagerstown silty clay loam with and without sludge amendments under anaerobic conditions for 42 days. Soil respiration was enhanced by PCBs in soil. PCBs reduced the soil respiration in soil with sludge. Volatilization of PCBs was decreased by sludge in soil. Most of the radioactivity was found in hexane extracts of soils. No further degradation products were observed. (author)

  3. Teaching Cellular Respiration & Alternate Energy Sources with a Laboratory Exercise Developed by a Scientist-Teacher Partnership

    Science.gov (United States)

    Briggs, Brandon; Mitton, Teri; Smith, Rosemary; Magnuson, Timothy

    2009-01-01

    Microbial fuel cells are a current research area that harvests electricity from bacteria capable of anaerobic respiration. Graphite is an electrically conductive material that bacteria can respire on, thus it can be used to capture electrons from bacteria. When bacteria transfer electrons to graphite, an electrical potential is created that can…

  4. Thermodynamic and kinetic control on anaerobic oxidation of methane in marine sediments

    DEFF Research Database (Denmark)

    Knab, Nina J.; Dale, Andrew W.; Lettmann, Karsten;

    2008-01-01

    The free energy yield of microbial respiration reactions in anaerobic marine sediments must be sufficient to be conserved as biologically usable energy in the form of ATP. Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SRR) has a very low standard free energy yield of ΔG  = -3...

  5. Perspectives of the microbial carbon pump with special references to microbial respiration and ecological efficiency

    Directory of Open Access Journals (Sweden)

    H. Dang

    2014-01-01

    Full Text Available Although respiration consumes fixed carbon and produce CO2, it provides energy for essential biological processes of an ecosystem, including the microbial carbon pump (MCP. In MCP-driving biotransformation of labile DOC to recalcitrant DOC (RDOC, microbial respiration provides the metabolic energy for environmental organic substrate sensing, cellular enzyme syntheses and catalytic processes such as uptake, secretion, modification, fixation and storage of carbon compounds. The MCP efficiency of a heterotrophic microorganism is thus related to its energy production efficiency and hence to its respiration efficiency. Anaerobically respiring microbes usually have lower energy production efficiency and lower energy-dependent carbon transformation efficiency, and consequently lower MCP efficiency at per cell level. This effect is masked by the phenomena that anoxic environments often store more organic matter. Here we point out that organic carbon preservation and RDOC production is different in mechanisms, and anaerobically respiring ecosystems could also have lower MCP ecological efficiency. Typical cases can be found in large river estuarine ecosystems. Due to strong terrigenous input of nutrients and organic matter, estuarine ecosystems usually experience intense heterotrophic respiration processes that rapidly consume dissolved oxygen, potentially producing hypoxic and anoxic zones in the water column. The lowered availability of dissolved oxygen and the excessive supply of nutrients such as nitrate from river input prompt enhanced anaerobic respiration processes. Thus, some nutrients may be consumed by anaerobically respiring heterotrophic microorganisms, instead of being utilized by phytoplankton for carbon fixation and primary production. In this situation, the ecological functioning of the estuarine ecosystem is altered and the ecological efficiency is lowered, as less carbon is fixed and less energy is produced. Ultimately this would have

  6. Anaerobic thermophiles.

    Science.gov (United States)

    Canganella, Francesco; Wiegel, Juergen

    2014-01-01

    The term "extremophile" was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of "extreme" environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally "hot environments" on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong to the Archaea has definitely

  7. Anaerobic Thermophiles

    Directory of Open Access Journals (Sweden)

    Francesco Canganella

    2014-02-01

    Full Text Available The term “extremophile” was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of “extreme” environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally “hot environments” on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong

  8. Taurine reduction in anaerobic respiration of Bilophila wadsworthia RZATAU.

    OpenAIRE

    Laue, Heike; Denger, Karin; Cook, Alasdair M.

    1997-01-01

    Organosulfonates are important natural and man-made compounds, but until recently (T. J. Lie, T. Pitta, E. R. Leadbetter, W. Godchaux III, and J. R. Leadbetter. Arch. Microbiol. 166:204-210, 1996), they were not believed to be dissimilated under anoxic conditions. We also chose to test whether alkane- and arenesulfonates could serve as electron sinks in respiratory metabolism. We generated 60 anoxic enrichment cultures in mineral salts medium which included several potential electron donors a...

  9. ALP (Alkaline Phosphatase) Test

    Science.gov (United States)

    ... Also known as: ALK PHOS; Alkp Formal name: Alkaline Phosphatase Related tests: AST ; ALT ; GGT ; Bilirubin ; Liver Panel ; Bone Markers ; Alkaline Phosphatase Isoenzymes; Bone Specific ALP All content on ...

  10. Anaerobic treatment of wastewater containing methanol in upflow anaerobic sludge bed (UASB) reactor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The direct conversion of methanol into methane is the main process in anaerobic treatment of methanol containing wastewater.However,acetic acid can also be produced from methanol theoretically,which may probably result in an abrupt pH drop and deteriorate the anaerobic process.Therefore,it is interesting to know what would really happen in an anaerobic reactor treating methanol wastewater.In this study,an up-flow anaerobic sludge bed (UASB) reactor treating methanol wastewater was operated.The chemical oxygen demand (COD),acetic acid and pH of the effluent were monitored at different loadings and influent alkalinity.The results showed that the anaerobic reactor could be operated steadily at as low as 119 mg/L of influent alkalinity and high organic loading rate with no obvious pH drops.Volatile fatty acids accumulation was not observed even at strong shock loadings.The microorganisms in the sludge at the end of the test became homogeneous in morphology,which were mainly spherical or spheroidal in shape.

  11. Soil Respiration in Different Agricultural and Natural Ecosystems in an Arid Region

    OpenAIRE

    Liming Lai; Xuechun Zhao; Lianhe Jiang; Yongji Wang; Liangguo Luo; Yuanrun Zheng; Xi Chen; Rimmington, Glyn M.

    2012-01-01

    The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal ...

  12. Anaerobic Digestion: Process

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Batstone, Damien J.

    2011-01-01

    Organic waste may degrade anaerobically in nature as well as in engineered systems. The latter is called anaerobic digestion or biogasification. Anaerobic digestion produces two main outputs: An energy-rich gas called biogas and an effluent. The effluent, which may be a solid as well as liquid with...... very little dry matter may also be called a digest. The digest should not be termed compost unless it specifically has been composted in an aerated step. This chapter describes the basic processes of anaerobic digestion. Chapter 9.5 describes the anaerobic treatment technologies, and Chapter 9.......6 addresses the mass balances and environmental aspects of anaerobic digestion....

  13. Bacterial respiration of arsenic and selenium

    Science.gov (United States)

    Stolz, J.F.; Oremland, R.S.

    1999-01-01

    Oxyanions of arsenic and selenium can be used in microbial anaerobic respiration as terminal electron acceptors. The detection of arsenate and selenate respiring bacteria in numerous pristine and contaminated environments and their rapid appearance in enrichment culture suggest that they are widespread and metabolically active in nature. Although the bacterial species that have been isolated and characterized are still few in number, they are scattered throughout the bacterial domain and include Gram- positive bacteria, beta, gamma and epsilon Proteobacteria and the sole member of a deeply branching lineage of the bacteria, Chrysiogenes arsenatus. The oxidation of a number of organic substrates (i.e. acetate, lactate, pyruvate, glycerol, ethanol) or hydrogen can be coupled to the reduction of arsenate and selenate, but the actual donor used varies from species to species. Both periplasmic and membrane-associated arsenate and selenate reductases have been characterized. Although the number of subunits and molecular masses differs, they all contain molybdenum. The extent of the environmental impact on the transformation and mobilization of arsenic and selenium by microbial dissimilatory processes is only now being fully appreciated.

  14. A Diverse Community of Metal(loid) Oxide Respiring Bacteria Is Associated with Tube Worms in the Vicinity of the Juan de Fuca Ridge Black Smoker Field

    OpenAIRE

    Maltman, Chris; Walter, Graham; Yurkov, Vladimir

    2016-01-01

    Epibiotic bacteria associated with tube worms living in the vicinity of deep sea hydrothermal vents of the Juan de Fuca Ridge in the Pacific Ocean were investigated for the ability to respire anaerobically on tellurite, tellurate, selenite, selenate, metavanadate and orthovanadate as terminal electron acceptors. Out of 107 isolates tested, 106 were capable of respiration on one or more of these oxides, indicating that metal(loid) oxide based respiration is not only much more prevalent in natu...

  15. Soil respiration in different agricultural and natural ecosystems in an arid region.

    Directory of Open Access Journals (Sweden)

    Liming Lai

    Full Text Available The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal soil respiration rates of the agricultural ecosystems were 96%-386% higher and agricultural ecosystems exhibited lower CO(2 absorption by the saline/alkaline soil. Soil temperature and moisture together explained 48%, 86%, 84%, 54% and 54% of the seasonal variations of soil respiration in the five ecosystems, respectively. There was a significant negative relationship between soil respiration and soil electrical conductivity, but a weak correlation between soil respiration and soil pH or soil organic carbon content. Our results showed that soil CO(2 emissions were significantly different among different agricultural and natural ecosystems, although we caution that this was an observational, not manipulative, study. Temperature at the soil surface and electric conductivity were the main driving factors of soil respiration across the five ecosystems. Care should be taken when converting native vegetation into cropland from the point of view of greenhouse gas emissions.

  16. Combined electrical-alkali pretreatment to increase the anaerobic hydrolysis rate of waste activated sludge during anaerobic digestion

    International Nuclear Information System (INIS)

    Highlights: • Combined electrical-alkali pretreatment for improving sludge anaerobic digestion was proposed. • Combined process enhanced the cell lysis, biopolymers releases, and thus sludge disintegration. • Increased solubilization of sludge increased the anaerobic hydrolysis rate. • Increased solubilization does not always induce an improved anaerobic digestion efficiency. - Abstract: Pretreatment can be used prior to anaerobic digestion to improve the efficiency of waste activated sludge (WAS) digestion. In this study, electrolysis and a commonly used pretreatment method of alkaline (NaOH) solubilization were integrated as a pretreatment method for promoting WAS anaerobic digestion. Pretreatment effectiveness of combined process were investigated in terms of disintegration degree (DDSCOD), suspended solids (TSS and VSS) removals, the releases of protein (PN) and polysaccharide (PS), and subsequent anaerobic digestion as well as dewaterability after digestion. Electrolysis was able to crack the microbial cells trapped in sludge gels and release the biopolymers (PN and PS) due to the cooperation of alkaline solubilization, enhancing the sludge floc disintegration/solubilization, which was confirmed by scanning electron microscopy (SEM) analysis. Biochemical methane potential (BMP) assays showed the highest methane yield was achieved with 5 V plus pH 9.2 pretreatment with up to 20.3% improvement over the non-pretreated sludge after 42 days of mesophilic operation. In contrast, no discernible improvements on anaerobic degradability were observed for the rest of pretreated sludges, probably due to the overmuch leakage of refractory soluble organics, partial chemical mineralization of solubilized compounds and sodium inhibition. The statistical analysis further indicated that increased solubilization induced by electrical-alkali pretreatment increased the first-order anaerobic hydrolysis rate (khyd), but had no, or very slight enhancement on WAS ultimate

  17. Anodes for alkaline electrolysis

    Science.gov (United States)

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  18. Alkaline "Permanent" Paper.

    Science.gov (United States)

    Pacey, Antony

    1991-01-01

    Discussion of paper manufacturing processes and their effects on library materials focuses on the promotion of alkaline "permanent" paper, with less acid, by Canadian library preservation specialists. Standards for paper acidity are explained; advantages of alkaline paper are described, including decreased manufacturing costs; and recyclability is…

  19. Proteomic dataset of the organohalide-respiring bacterium Dehalococcoides mccartyi strain CBDB1 grown on hexachlorobenzene as electron acceptor.

    Science.gov (United States)

    Schiffmann, Christian L; Otto, Wolfgang; Hansen, Rasmus; Nielsen, Per Halkjær; Adrian, Lorenz; Seifert, Jana; von Bergen, Martin; Jehmlich, Nico

    2016-06-01

    The proteome of the anaerobic organohalide-respiring bacterium Dehalococcoides mccartyi strain CBDB1 was analyzed by nano liquid chromatography coupled to mass spectrometry (LC-MS/MS). Two different preparation methods, (i) in-solution and (ii) in-gel proteolytic digestion were assessed to elucidate the core and the functional proteome of bacterial cultures grown in synthetic anaerobic medium with hexachlorobenzene as sole electron acceptor. A detailed analysis of the data presented is available (Schiffmann et al., 2014) [1]. PMID:26958645

  20. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones

    DEFF Research Database (Denmark)

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene Mark;

    2015-01-01

    denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off...... and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our......Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic...

  1. Alkaline battery operational methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  2. Gender comparisons in anaerobic power and anaerobic capacity tests.

    OpenAIRE

    Maud, P. J.; Shultz, B B

    1986-01-01

    The purpose of the study was to compare anaerobic power and anaerobic capacity test scores between young active men and women. Three performance measures of anaerobic power and two of anaerobic capacity were administered to a sample comprising 52 male and 50 female college students (means age = 21.4 yrs). Results indicated significant differences between men and women in body height, weight and per cent fat, in fat free mass (FFM), anaerobic power, and anaerobic capacity when recorded as gros...

  3. Monitoring and control of anaerobic reactors

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær;

    2003-01-01

    The current status in monitoring and control of anaerobic reactors is reviewed. The influence of reactor design and waste composition on the possible monitoring and control schemes is examined. After defining the overall control structure, and possible control objectives, the possible process...... measurements are reviewed in detail. In the sequel, possible manipulated variables, such as the hydraulic retention time, the organic loading rate, the sludge retention time, temperature, pH and alkalinity are evaluated with respect to the two main reactor types: high-rate and low-rate. Finally, the different...

  4. Uranium in alkaline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential.

  5. Uranium in alkaline rocks

    International Nuclear Information System (INIS)

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential

  6. Perspectives for anaerobic digestion

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    2003-01-01

    to the soil. Anaerobic digestion (AD) is one way of achieving this goal and it will furthermore, reduce energy consumption or may even be net energy producing. This chapter aims at provide a basic understanding of the world in which anaerobic digestion is operating today. The newest process developments...

  7. Anaerobic sludge granulation

    NARCIS (Netherlands)

    Hulshoff Pol, L.W.; Castro Lopes, de S.I.; Lettinga, G.; Lens, P.N.L.

    2004-01-01

    This paper reviews different theories on anaerobic sludge granulation in UASB-reactors that have been proposed during the past two decades
    This paper reviews different theories on anaerobic sludge granulation in UASB-reactors that have been proposed during the past two decades. The initial stage

  8. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones.

    Directory of Open Access Journals (Sweden)

    Tim Kalvelage

    Full Text Available Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100% in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein.

  9. Chemical characteristic of respirable particulates

    International Nuclear Information System (INIS)

    Respirable particulates are particulates which having diameter size at 2-5 µm, due to aerodynamically may be inhaled through respiratory tract and having ability to deposit into lungs, causing damage of the alveolar tissues and inducing health problems. Health Department of Bandung have reported that prevalency of acute respiratory tract infection disease having increasing tendency every year. Measurement of PM10 in period of 2002-2005 have done by BPLH Bandung city which pointed that in some places the concentration of PM10 was higher than daily threshold limit values. This research having intend to understand of respirable particulates exposure in society with characterization of chemical materials contained as hazard identification. Location of research have done in four regions of Bandung City. Personal sampler has used for collection of respirable particulates from human breathing zone. Chemical characteristic were done using neutron activation analysis, atomic absorption spectrometer and reflectance methods. The useful of this procedure as the baseline to calculate IEC (Inhalation Exposure Concentration) values for estimate the exposure of respirable particulates which inhaled during period of time. Calculating of IEC is the earlier step from epidemiological study or risk assessment which connecting prevalency of tract respiratory disease with characteristic of respirable particulates. Elements Br, Mn, Al, I, V, Cl, Ti, Na, Hg, Pb, and black carbon (BC), are the elements which identified. The results showed that respirable particulates which inhaled by citizen as receptor at Tegalega, Aria Graha, Dago Pakar, and Cisaranten Wetan are relatively higher than PM2,5 ambient air at the same places. Almost whole of such elements which contained in respirable particulates was found in highest concentration at Cisaranten Wetan. (author)

  10. Life in the absence of oxygen: alterative electron acceptors for anaerobic microorganisms in a petroleum environment

    NARCIS (Netherlands)

    Balk, M.

    2007-01-01

    Anaerobic microorganisms derive energy by transferring electrons from an external source or donor to an external electron sink or terminal acceptor and often have the capacity to reduce 2 or more terminal electron acceptors. The well-known type of microbial respiration, in which oxygen serves as an

  11. Contribution of anaerobic energy expenditure to whole body thermogenesis

    Directory of Open Access Journals (Sweden)

    Scott Christopher B

    2005-06-01

    Full Text Available Abstract Heat production serves as the standard measurement for the determination of energy expenditure and efficiency in animals. Estimations of metabolic heat production have traditionally focused on gas exchange (oxygen uptake and carbon dioxide production although direct heat measurements may include an anaerobic component particularly when carbohydrate is oxidized. Stoichiometric interpretations of the ratio of carbon dioxide production to oxygen uptake suggest that both anaerobic and aerobic heat production and, by inference, all energy expenditure – can be accounted for with a measurement of oxygen uptake as 21.1 kJ per liter of oxygen. This manuscript incorporates contemporary bioenergetic interpretations of anaerobic and aerobic ATP turnover to promote the independence of these disparate types of metabolic energy transfer: each has different reactants and products, uses dissimilar enzymes, involves different types of biochemical reactions, takes place in separate cellular compartments, exploits different types of gradients and ultimately each operates with distinct efficiency. The 21.1 kJ per liter of oxygen for carbohydrate oxidation includes a small anaerobic heat component as part of anaerobic energy transfer. Faster rates of ATP turnover that exceed mitochondrial respiration and that are supported by rapid glycolytic phosphorylation with lactate production result in heat production that is independent of oxygen uptake. Simultaneous direct and indirect calorimetry has revealed that this anaerobic heat does not disappear when lactate is later oxidized and so oxygen uptake does not adequately measure anaerobic efficiency or energy expenditure (as was suggested by the "oxygen debt" hypothesis. An estimate of anaerobic energy transfer supplements the measurement of oxygen uptake and may improve the interpretation of whole-body energy expenditure.

  12. Anaerobic Digestion and its Applications

    Science.gov (United States)

    Anaerobic digestion is a natural biological process. The initials "AD" may refer to the process of anaerobic digestion, or the built systems of anaerobic digesters. While there are many kinds of digesters, the biology is basically the same for all. Anaerobic digesters are built...

  13. Facepiece leakage and fitting of respirators

    International Nuclear Information System (INIS)

    The ways in which airborne contaminants can penetrate respirators and the factors which affect the fit of respirators are discussed. The fit of the respirator to the face is shown to be the most critical factor affecting the protection achieved by the user. Qualitative and quantitative fit testing techniques are described and their application to industrial respirator programs is examined. Quantitative measurement of the leakage of a respirator while worn can be used to numerically indicate the protection achieved. These numbers, often referred to as protection factors, are sometimes used as the basis for selecting suitable respirators and this practice is reviewed. (author)

  14. Pretreatment of wheat straw and conversion of xylose and xylan to ethanol by thermophilic anaerobic bacteria

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Jensen, K.; Nielsen, P.;

    1996-01-01

    Wheat straw was pretreated by wet oxidation (oxygen pressure, alkaline conditions, elevated temperature) or hydrothermal processing (without oxygen) in order to solubilize the hemicellulose, facilitating bio-conversion. The effect of oxygen pressure and sodium carbonate addition on hemicellulose...... solubilization was investigated. The two process parameters had little effect on the solubilization of hemicellulose. However alkaline conditions affected the furfural formation whereas oxygen had no effect. After pretreatment, the filtrate was used as a fermentation medium for thermophilic anaerobic bacterin...

  15. Sulfide oxidation at halo-alkaline conditions in a fed-batch bioreactor

    NARCIS (Netherlands)

    Bosch, van den P.L.F.; Beusekom, van O.C.; Buisman, C.J.N.; Janssen, A.J.H.

    2007-01-01

    A biotechnological process is described to remove hydrogen sulfide (H2S) from high-pressure natural gas and sour gases produced in the petrochemical industry. The process operates at halo-alkaline conditions and combines an aerobic sulfide-oxidizing reactor with an anaerobic sulfate (SO) and thiosul

  16. Use of Facemasks and Respirators

    Centers for Disease Control (CDC) Podcasts

    2007-05-15

    This program demonstrates the differences of facemasks and respirators that are to be used in public settings during an influenza pandemic.  Created: 5/15/2007 by CDC, National Institute for Occupational Safety and Health (NIOSH).   Date Released: 5/25/2007.

  17. General Instructions for Disposable Respirators

    Centers for Disease Control (CDC) Podcasts

    2009-04-09

    This podcast, intended for the general public, demonstrates how to put on and take off disposable respirators that are to be used in areas affected by the influenza outbreak.  Created: 4/9/2009 by CDC, National Institute for Occupational Safety and Health (NIOSH).   Date Released: 4/29/2009.

  18. Increased performance of hydrogen production in microbial electrolysis cells under alkaline conditions.

    Science.gov (United States)

    Rago, Laura; Baeza, Juan A; Guisasola, Albert

    2016-06-01

    This work reports the first successful enrichment and operation of alkaline bioelectrochemical systems (microbial fuel cells, MFC, and microbial electrolysis cells, MEC). Alkaline (pH=9.3) bioelectrochemical hydrogen production presented better performance (+117%) compared to conventional neutral conditions (2.6 vs 1.2litres of hydrogen gas per litre of reactor per day, LH2·L(-1)REACTOR·d(-1)). Pyrosequencing results of the anodic biofilm showed that while Geobacter was mainly detected under conventional neutral conditions, Geoalkalibacter sp. was highly detected in the alkaline MFC (21%) and MEC (48%). This is the first report of a high enrichment of Geoalkalibacter from an anaerobic mixed culture using alkaline conditions in an MEC. Moreover, Alkalibacter sp. was highly present in the anodic biofilm of the alkaline MFC (37%), which would indicate its potentiality as a new exoelectrogen. PMID:26855359

  19. Soil Respiration: Concept and Measurement Methods

    Directory of Open Access Journals (Sweden)

    SANDOR M.

    2010-08-01

    Full Text Available Soil respiration is the main element in the carbon cycle that makes possible for plants carbon plants to return inthe atmosphere. The objective of this work was to present and discuss some aspects of the soil CO2 efflux. We definedherein, some terms associated to the soil respiration concept, we tackled some aspects regarding the influence oftemperature, humidity and soil pH on soil respiration and we presented the principle of soil respiration measurement byusing dynamic closed chamber system.

  20. Soil Respiration in Response to Landscape Position

    Science.gov (United States)

    Variations in soil type, due to landscape position, may influence soil respiration. This study was conducted to determine how landscape position (summit, side-slope, and depression) influences heterotrophic and autotrophic soil respiration. Soil respiration was determined at three landscape positio...

  1. Alkaline quinone flow battery.

    Science.gov (United States)

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. PMID:26404834

  2. Alkaline broadening in Stars

    CERN Document Server

    De Kertanguy, A

    2015-01-01

    Giving new insight for line broadening theory for atoms with more structure than hydrogen in most stars. Using symbolic software to build precise wave functions corrected for ds;dp quantum defects. The profiles obtained with that approach, have peculiar trends, narrower than hydrogen, all quantum defects used are taken from atomic database topbase. Illustration of stronger effects of ions and electrons on the alkaline profiles, than neutral-neutral collision mechanism. Keywords : Stars: fundamental parameters - Atomic processes - Line: profiles.

  3. Alkaline quinone flow battery

    OpenAIRE

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise Ann; Valle, Alvaro West; Hardee, D.; Gordon, Roy Gerald; Aziz, Michael J.; Marshak, M

    2015-01-01

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe f...

  4. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones

    DEFF Research Database (Denmark)

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene Mark;

    2015-01-01

    Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically...... denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off...... and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our...

  5. Respiration in Neonate Sea Turtles

    OpenAIRE

    Price, Edwin R.; Paladino, Frank V.; Strohl, Kingman P.; Pilar Santidrián, T.; Klann, Kenneth; Spotila, James R.

    2006-01-01

    The pattern and control of respiration is virtually unknown in hatchling sea turtles. Using incubator-raised turtles, we measured oxygen consumption, frequency, tidal volume, and minute volume for leatherback (Dermochelys coriacea) and olive ridley (Lepidochelys olivacea) turtle hatchlings for the first six days after pipping. In addition, we tested the hatchlings’ response to hypercapnic, hyperoxic, and hypoxic challenges over this time period. Hatchling sea turtles generally showed resting ...

  6. Plastron Respiration Using Commercial Fabrics

    OpenAIRE

    Shaun Atherton; Brennan, Joseph C; Morris, Robert H.; Joshua D.E. Smith; Christopher A.E. Hamlett; Glen McHale; Neil J Shirtcliffe; Newton, Michael I.

    2014-01-01

    A variety of insect and arachnid species are able to remain submerged in water indefinitely using plastron respiration. A plastron is a surface-retained film of air produced by surface morphology that acts as an oxygen-carbon dioxide exchange surface. Many highly water repellent and hydrophobic surfaces when placed in water exhibit a silvery sheen which is characteristic of a plastron. In this article, the hydrophobicity of a range of commercially available water repellent fabrics and polymer...

  7. Comparison of liquid hot water and alkaline pretreatments of giant reed for improved enzymatic digestibility and biogas energy production.

    Science.gov (United States)

    Jiang, Danping; Ge, Xumeng; Zhang, Quanguo; Li, Yebo

    2016-09-01

    Liquid hot water (LHW) and alkaline pretreatments of giant reed biomass were compared in terms of digestibility, methane production, and cost-benefit efficiency for electricity generation via anaerobic digestion with a combined heat and power system. Compared to LHW pretreatment, alkaline pretreatment retained more of the dry matter in giant reed biomass solids due to less severe conditions. Under their optimal conditions, LHW pretreatment (190°C, 15min) and alkaline pretreatment (20g/L of NaOH, 24h) improved glucose yield from giant reed by more than 2-fold, while only the alkaline pretreatment significantly (pelectrical energy production due to high energy input. Alkaline pretreatment achieved 27% higher net electrical energy production than that of non-pretreatment (3859kJ/kg initial total solids), but alkaline liquor reuse is needed for improved net benefit. PMID:27233098

  8. Impact of Anodic Respiration on Biopolymer Production and Consequent Membrane Fouling.

    Science.gov (United States)

    Ishizaki, So; Terada, Kotaro; Miyake, Hiroshi; Okabe, Satoshi

    2016-09-01

    Microbial fuel cells (MFCs) have recently been integrated with membrane bioreactors (MBRs) for wastewater treatment and energy recovery. However, the impact of integration of the two reactors on membrane fouling of MBR has not been reported yet. In this study, MFCs equipped with different external resistances (1-10 000 ohm) were operated, and membrane-fouling potentials of the MFC anode effluents were directly measured to study the impact of anodic respiration by exoelectrogens on membrane fouling. It was found that although the COD removal efficiency was comparable, the fouling potential was significantly reduced due to less production of biopolymer (a major foulant) in MFCs equipped with lower external resistance (i.e., with higher current generation) as compared with aerobic respiration. Furthermore, it was confirmed that Geobacter sulfurreducens strain PCA, a dominant exoelectrogen in anode biofilms of MFCs in this study, produced less biopolymer under anodic respiration condition than fumarate (anaerobic) respiration condition, resulting in lower membrane-fouling potential. Taken together, anodic respiration can mitigate membrane fouling of MBR due to lower biopolymer production, suggesting that development of an electrode-assisted MBR (e-MBR) without aeration is feasible. PMID:27427998

  9. Enhancing anaerobic digestion of waste activated sludge by pretreatment: effect of volatile to total solids.

    Science.gov (United States)

    Wang, Xiao; Duan, Xu; Chen, Jianguang; Fang, Kuo; Feng, Leiyu; Yan, Yuanyuan; Zhou, Qi

    2016-06-01

    In this study the effect of volatile to total solids (VS/TS) on anaerobic digestion of waste activated sludge (WAS) pretreated by alkaline, thermal and thermal-alkaline strategies was studied. Experimental results showed that the production of methane from sludge was increased with VS/TS. When anaerobic digesters were fed with sludge pretreated by the thermal-alkaline method, the average methane yield was improved from 2.8 L/d at VS/TS 0.35 to 4.7 L/d at VS/TS 0.56. Also, the efficiency of VS reduction during sludge anaerobic digestion varied between 18.9% and 45.6%, and increased gradually with VS/TS. Mechanism investigation of VS/TS on WAS anaerobic digestion suggested that the general activities of anaerobic microorganisms, activities of key enzymes related to sludge hydrolysis, acidification and methanogenesis, and the ratio of Archaea to Bacteria were all increased with VS/TS, showing good agreement with methane production. PMID:26698921

  10. Comparative investigation on microbial community and electricity generation in aerobic and anaerobic enriched MFCs.

    Science.gov (United States)

    Quan, Xiang-chun; Quan, Yan-ping; Tao, Kun; Jiang, Xiao-man

    2013-01-01

    This study compared the difference in microbial community and power generation capacity of air-cathode MFCs enriched under anode aerobic and anaerobic conditions. Results showed that MFCs successfully started with continuous air inputting to anode chamber. The aerobic enriched MFC produced comparable and even more electricity with the fuels of acetate, glucose and ethanol compared to the anaerobic MFC when returning to anaerobic condition. The two MFCs showed a slightly different microbial community for anode biofilms (a similarity of 77%), but a highly similar microbial community (a similarity of 97%) for anolyte microbes. The anode biofilm of aerobic enriched MFC showed the presence of some specific bacteria closely related to Clostridium sticklandii, Leucobacter komagatae and Microbacterium laevaniformans. The anaerobic enriched MFC found the presence of a large number of yeast Trichosporon sp. This research demonstrates that it is possible to enrich oxygen-tolerant anode respiring bacteria through purposely aeration in anode chamber. PMID:23196248

  11. The pressure effects on two-phase anaerobic digestion

    International Nuclear Information System (INIS)

    Highlights: • The pressure effect on anaerobic digestion up to 9 bar was examined. • Increasing pressure decreased pH value in the anaerobic filter. • Increasing pressure increased methane content. • Increasing pressure decreased specific methane yield slightly. • The pressurized methane reactor was very stable and performed well. - Abstract: Two-phase pressurized anaerobic digestion is a novel process aimed at facilitating injection of the produced biogas into the natural gas grid by integrating the fermentative biogas production and upgrading it to substitute natural gas. In order to understand the mechanisms, knowledge of pressure effects on anaerobic digestion is required. To examine the effects of pressure on the anaerobic digestion process, a two-phase anaerobic digestion system was built up in laboratory scale, including three acidogenesis-leach-bed-reactors and one pressure-resistant anaerobic filter. Four different pressure levels (the absolute pressure of 1 bar, 3 bar, 6 bar and 9 bar) were applied to the methane reactor in sequence, with the organic loading rate maintained at approximately 5.1 kgCOD m−3 d−1. Gas production, gas quality, pH value, volatile fatty acids, alcohol, ammonium-nitrogen, chemical oxygen demand (COD) and alkaline buffer capacity were analyzed. No additional caustic chemicals were added for pH adjustment throughout the experiment. With the pressure increasing from 1.07 bar to 8.91 bar, the pH value decreased from 7.2 to 6.5, the methane content increased from 66% to 75%, and the specific methane yield was slightly reduced from 0.33 lN g−1COD to 0.31 lN g−1COD. There was almost no acid-accumulation during the entire experiment. The average COD-degradation grade was always more than 93%, and the average alkaline buffering capacity (VFA/TIC ratio) did not exceed 0.2 at any pressure level. The anaerobic filter showed a very stable performance, regardless of the pressure variation

  12. Anaerobic biotransformation of estrogens

    Energy Technology Data Exchange (ETDEWEB)

    Czajka, Cynthia P. [Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2 (Canada); Londry, Kathleen L. [Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2 (Canada)]. E-mail: londryk@cc.umanitoba.ca

    2006-08-31

    Estrogens are important environmental contaminants that disrupt endocrine systems and feminize male fish. We investigated the potential for anaerobic biodegradation of the estrogens 17-{alpha}-ethynylestradiol (EE2) and 17-{beta}-estradiol (E2) in order to understand their fate in aquatic and terrestrial environments. Cultures were established using lake water and sediment under methanogenic, sulfate-, iron-, and nitrate-reducing conditions. Anaerobic degradation of EE2 (added at 5 mg/L) was not observed in multiple trials over long incubation periods (over three years). E2 (added at 5 mg/L) was transformed to estrone (E1) under all four anaerobic conditions (99-176 {mu}g L{sup -1} day{sup -1}), but the extent of conversion was different for each electron acceptor. The oxidation of E2 to E1 was not inhibited by E1. Under some conditions, reversible inter-conversion of E2 and E1 was observed, and the final steady state concentration of E2 depended on the electron-accepting condition but was independent of the total amount of estrogens added. In addition, racemization occurred and E1 was also transformed to 17-{alpha}-estradiol under all but nitrate-reducing conditions. Although E2 could be readily transformed to E1 and in many cases 17-{alpha}-estradiol under anaerobic conditions, the complete degradation of estrogens under these conditions was minimal, suggesting that they would accumulate in anoxic environments.

  13. The anaerobic digestion process

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States); Boone, D.R. [Oregon Graduate Inst., Portland, OR (United States)

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

  14. Monitoring and control of anaerobic reactors

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær;

    2003-01-01

    The current status in monitoring and control of anaerobic reactors is reviewed. The influence of reactor design and waste composition on the possible monitoring and control schemes is examined. After defining the overall control structure, and possible control objectives, the possible process...... measurements are reviewed in detail. In the sequel, possible manipulated variables, such as the hydraulic retention time, the organic loading rate, the sludge retention time, temperature, pH and alkalinity are evaluated with respect to the two main reactor types: high-rate and low-rate. Finally, the different...... control approaches that have been used are comprehensively described. These include simple and adaptive controllers, as well as more recent developments such as fuzzy controllers, knowledge-based controllers and controllers based on neural networks....

  15. Anaerobic Biotransformation and Mobility of Pu and of Pu-EDTA

    International Nuclear Information System (INIS)

    The enhanced mobility of radionuclides by co-disposed chelating agent, ethylenediaminetetraacetate (EDTA), is likely to occur only under anaerobic conditions. Our extensive effort to enrich and isolate anaerobic EDTA-degrading bacteria has failed. Others has tried and also failed. To explain the lack of anaerobic biodegradation of EDTA, we proposed that EDTA has to be transported into the cells for metabolism. A failure of uptake may contribute to the lack of EDTA degradation under anaerobic conditions. We demonstrated that an aerobic EDTA-degrading bacterium strain BNC1 uses an ABC-type transporter system to uptake EDTA. The system has a periplasmic binding protein that bind EDTA and then interacts with membrane proteins to transport EDTA into the cell at the expense of ATP. The bind protein EppA binds only free EDTA with a Kd of 25 nM. The low Kd value indicates high affinity. However, the Kd value of Ni-EDTA is 2.4 x 10-10 nM, indicating much stronger stability. Since Ni and other trace metals are essential for anaerobic respiration, we conclude that the added EDTA sequestrates all trace metals and making anaerobic respiration impossible. Thus, the data explain the lack of anaerobic enrichment cultures for EDTA degradation. Although we did not obtain an EDTA degrading culture under anaerobic conditions, our finding may promote the use of certain metals that forms more stable metal-EDTA complexes than Pu(III)-EDTA to prevent the enhanced mobility. Further, our data explain why EDTA is the most dominant organic pollutant in surface waters, due to the lack of degradation of certain metal-EDTA complexes.

  16. Mechanistic studies of the alkaline degradation of cellulose in cement

    International Nuclear Information System (INIS)

    The alkaline degradation of cellulose-based materials under conditions simulating those of a deep underground radioactive waste repository has been investigated. A number of key degradation products, of which 2-C-(hydroxymethyl)-3-deoxy-D-pentonic acid (isosaccharinic acid) is the most important, have been synthesised, and the solubilities of their plutonium complexes have been determined. Analysis of leachates of anaerobically degraded cellulose has shown concentrations of organic acids which are broadly consistent with the enhanced plutonium solubilities found in these leachates. Reaction mechanisms have been identified that can lead to isosaccharinic acid production by non-oxidative transformations, which may be catalysed by some divalent cations. (Author)

  17. Alkaline Phosphatase in Stem Cells

    Directory of Open Access Journals (Sweden)

    Kateřina Štefková

    2015-01-01

    Full Text Available Alkaline phosphatase is an enzyme commonly expressed in almost all living organisms. In humans and other mammals, determinations of the expression and activity of alkaline phosphatase have frequently been used for cell determination in developmental studies and/or within clinical trials. Alkaline phosphatase also seems to be one of the key markers in the identification of pluripotent embryonic stem as well as related cells. However, alkaline phosphatases exist in some isoenzymes and isoforms, which have tissue specific expressions and functions. Here, the role of alkaline phosphatase as a stem cell marker is discussed in detail. First, we briefly summarize contemporary knowledge of mammalian alkaline phosphatases in general. Second, we focus on the known facts of its role in and potential significance for the identification of stem cells.

  18. Anaerobic biological treatment

    International Nuclear Information System (INIS)

    The Enso-Fenox process has been very successfully used to remove chlorinated phenolic compounds from pulp bleaching effluents. It is a two-stage anaerobic/aerobic process consisting of a nonmethanogenic anaerobic fluidized bed followed by a trickling filter. Studies have been conducted on reductive dechlorination of chlorinated aromatic compounds under anaerobic conditions with chlorinated phenols as the sole carbon and energy source. Approximately 40% of the added chlorophenols was converted to CH4 and CO2. Substrate loading rates were 20 mg/L/d at hydraulic detention times of 2-4 days with 90% substrate conversion efficiency. Reductive dechlorination of mono, di-, tri-, and pentachlorophenols has been demonstrated in anaerobic sewage sludge. The following constituents were tested in the laboratory at their approximate concentrations in coal conversion wastewater (CCWW) and were anaerobically degraded in serum bottles: 1,000 mg/L phenol; 500 mg/L resorcinol; 1,000 mg/L benzoic acid; 500 mg/L p-cresol; 200 mg/L pyridine; 2,000 mg/L benzoic acid; 250 mg/L 40 methylcatechol; 500 mg/L 4-ethylpyridine; and 2,000 mg/L hexanoic acid. A petrochemical may initially exhibit toxicity to an unacclimated population of methane-fermenting bacteria, but with acclimation the toxicity may be greatly reduced or disappear. In addition, the microorganisms may develop the capacity to actually degrade compounds which showed initial toxicity. Since biomass digestion requires a complete consortium of bacteria, it is relevant to study the effect of a given process as well as to individual steps within the process. A toxicant can inhibit the rate-limiting step and/or change the step that is rate-limiting. Both manifestations of toxicity can severely affect the overall process

  19. Effect of Rocking Movements on Respiration.

    Directory of Open Access Journals (Sweden)

    Ximena Omlin

    Full Text Available For centuries, rocking has been used to promote sleep in babies or toddlers. Recent research suggested that relaxation could play a role in facilitating the transition from waking to sleep during rocking. Breathing techniques are often used to promote relaxation. However, studies investigating head motions and body rotations showed that vestibular stimulation might elicit a vestibulo-respiratory response, leading to an increase in respiration frequency. An increase in respiration frequency would not be considered to promote relaxation in the first place. On the other hand, a coordination of respiration to rhythmic vestibular stimulation has been observed. Therefore, this study aimed to investigate the effect of different movement frequencies and amplitudes on respiration frequency. Furthermore, we tested whether subjects adapt their respiration to movement frequencies below their spontaneous respiration frequency at rest, which could be beneficial for relaxation. Twenty-one healthy subjects (24-42 years, 12 males were investigated using an actuated bed, moving along a lateral translation. Following movement frequencies were applied: +30%, +15%, -15%, and -30% of subjects' rest respiration frequency during baseline (no movement. Furthermore, two different movement amplitudes were tested (Amplitudes: 15 cm, 7.5 cm; movement frequency: 0.3 Hz. In addition, five subjects (25-28 years, 2 males were stimulated with their individual rest respiration frequency. Rocking movements along a lateral translation caused a vestibulo-respiratory adaptation leading to an increase in respiration frequency. The increase was independent of the applied movement frequencies or amplitudes but did not occur when stimulating with subjects' rest respiration frequency. Furthermore, no synchronization of the respiration frequency to the movement frequency was observed. In particular, subjects did not lower their respiration frequency below their resting frequency. Hence, it

  20. Alkaline fuel cells applications

    Science.gov (United States)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  1. Anaerobic treatment of natural tannin extracts in UASB reactors.

    Science.gov (United States)

    López-Fluza, J; Omil, F; Méndez, R

    2003-01-01

    Tannin extracts are substances commonly used in leather production processes. Since most of the steps of tannery manufacturing processes are carried out in aqueous environments, the presence of these compounds in the wastewaters is important. The aim of this work is to study the feasibility of the anaerobic degradation of three natural tannin extracts in three Upflow Anaerobic Sludge Blanket (UASB) reactors, which were fed with increasing concentrations of two condensed (quebracho and wattle) and one hydrolysable tannin extract (chestnut). Concentrations of applied extracts were 100, 200, 400, 800 and 1,000 mg/l, and 5 g/l of glucose was used as cosubstrate. Reactors were operated during 210 days and their performance was evaluated from the values of total and soluble COD, total and intermediate alkalinity, volatile fatty acids, pH and UV absorption at 280 nm. COD removal efficiencies higher than 85% were achieved in all cases. However, tannin extract removal efficiencies (based on UV-280 nm absorption measurements) were significantly lower, around 20% for condensed extracts and 60% for the hydrolysable one, when the reactors operated with the highest tannin extract concentration. The operation of the reactors was stable, commonly with alkalinity ratios below 0.30. Mass balances carried out indicate that most of the COD removal efficiencies are due to the removal of the readily biodegradable organic matter (glucose), whereas the tannin extracts are hardly anaerobically biodegradable, especially condensed extracts (wattle and quebracho). PMID:14640213

  2. A Respiration Rate Body Sensor

    OpenAIRE

    Viktor Avbelj; Aleksandra Rashkovska; Roman Trobec

    2012-01-01

    We propose a new body sensor for extracting the respiration rate based on the amplitude changes in the body surface potential differences between two proximal body electrodes. The sensor could be designed as a plaster-like reusable unit that can be easily fixed onto the surface of the body. It could be equipped either with a sufficiently large memory for storing the measured data or with a low-power radio system that can transmit the measured data to a gateway for further processing. We explo...

  3. Characteristics of high-sulfate wastewater treatment by two-phase anaerobic digestion process with Jet-loop anaerobic fluidized bed

    Institute of Scientific and Technical Information of China (English)

    WEI Chao-hai; WANG Wen-xiang; DENG Zhi-yi; WU Chao-fei

    2007-01-01

    A new anaerobic reactor,Jet-loop anaerobic fluidized bed(JLAFB),was designed for treating high-sulfate wastewater.The treatment characteristics,including the effect of influent COD/SO42- ratio and alkalinity and sulfide inhibition in reactors,were discussed for a JLAFB and a general anaerobic fluidized bed(AFB)reactor used as sulfate-reducing phase and methane-producing phase,respectively,in two-phase anaerobic digestion process.The formation of granules in the two reactors was also examined.The results indicated that COD and sulfate removal had different demand of influent COD/S042- ratios.When total COD removal Was up to 85%,the ratio was only required up to 1.2,whereas,total sulfate removal up to 95%required it exceeding 3.0.The alkalinity in the two reactors increased linearly with the growth of influent alkalinity.Moreover,the change of influent alkalinity had no significant effect on pH and volatile fatty acids(VFA)in the two reactors.Influent alkalinity kept at 400-500 mg/t,could meet the requirement of the treating process.The JLAFB reactor had great advantage in avoiding sulfide and free-H2S accumulation and toxicity inhibition on microorganisms.When sulfate loading rate was up to 8.1 kg/(m3·d),the sulfide and free-H2S concentrations in JLAFB reactor were 58.6 and 49.7 mg/L,respectively.Furthermore,the granules,with offwhite color,ellipse shape and diameters of 1.0-3.0 mm,could be developed in JLAFB reactor.In granules,different groups of bacteria were distributed in different layers,and some inorganic metal compounds such as Fe,Ca,Mg etc.were found.

  4. Anaerobic oxidation of methane in grassland soils used for cattle husbandry

    Directory of Open Access Journals (Sweden)

    A. Bannert

    2012-04-01

    Full Text Available While the importance of anaerobic methane oxidation has been reported for marine ecosystems, the role of this process in soils is still questionable. Grasslands used as pastures for cattle-overwintering show an increase in anaerobic soil micro-sites caused by animal treading and excrement deposition. Therefore anaerobic potential methane oxidation activity of severely impacted soil from a cattle winter pasture was investigated in an incubation experiment under anaerobic conditions using 13C-labeled methane. We were able to detect a high microbial activity utilizing CH4 as nutrient source shown by the respiration of 13CO2. Measurements of possible terminal electron acceptors for anaerobic oxidation of methane were carried out. Soil sulfate concentrations were too low to explain the oxidation of the amount of methane added, but enough nitrate and iron(III were detected. However, only nitrate was consumed during the experiment. 13C-PLFA analyses clearly showed the utilization of CH4 as nutrient source mainly by organisms harbouring 16:1ω7 PLFAs. These lipids were found in Gram-negative microorganisms and anaerobes. The fact that these lipids are also typical for type I methanotrophs, known as aerobic methane oxidizers, might indicate a link between aerobic and anaerobic methane oxidation.

  5. Dynamic characteristics of Paracoccus denitrificans in alternate aerobic-anaerobic continuous cultivations

    Energy Technology Data Exchange (ETDEWEB)

    Waki, T.; Kawato, Y.; Shimatani, Y.; Ichikawa, K.

    1980-06-01

    The alternate aerobic-anaerobic continuous culture system was used to analyze the adaptation phenomena of Paracoccus denitrificans quantitatively, which will be observed in a single sludge nitrification-denitrification system. After the initial rapid reduction of nitrate in the anaerobic period, a rather high rate of nitrate reduction was maintained. The lag of adaptation to each condition was short and this was explained by the presence of large amounts of the cytochromes and enzymes required for both aerobic and nitrate/nitrite respirations. When the alternation cycle of aerobic and anaerobic conditions was short, the nitrate concentration was lower than that in anaerobic continuous cultures at the same dilution rate. The apparent specific rate of nitrate reduction was almost the same as that in anaerobic continuous cultures when the alternation cycle was short. On the other hand, the nitrite accumulated at high concentrations and the apparent specific rate of nitrite reduction was very low. The actual reduction rate of nitrate in the anaerobic periods was found to be unaffected by the length of the aerobic periods, however, the actual reduction rate of nitrite was highly affected by the aerobic periods. By considering the initial rapid reduction of nitrate in the alternate aerobic-anaerobic system, it was suggested that the higher recycling ratio which corresponds to the shorter alternation cycle, was effective in increasing the efficiency of nitrogen removal in the single sludge nitrification-denitrification system.

  6. Hydrolysis of particulate substrate by activated sludge under aerobic, anoxic and anaerobic conditions

    DEFF Research Database (Denmark)

    Henze, Mogens; Mladenovski, C.

    1991-01-01

    An investigation of hydrolysis of particulate organic substrate by activated sludge has been made. Raw municipal wastewater was used as substrate. It was mixed with activated sludge from a high loaded activated sludge plant with pure oxygen aeration. During 4 days batch experiments under aerobic......, anoxic and anaerobic conditions, the hydrolysis was following through the production of ammonia. The hydrolysis rate of nitrogeneous compounds is significantly affected by the electron donor available. The rate is high under aerobic conditions, medium under anaerobic conditions and low under anoxic...... conditions. The ratio between the hydrolysis rates under aerobic and under anoxic conditions are very similar to the respiration rates measured as electron equivalents....

  7. Respirators: Supervisors Self-Study #43442

    Energy Technology Data Exchange (ETDEWEB)

    Chochoms, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-20

    This course, Respirators: Supervisors Self-Study (#43442), addresses training requirements for supervisors of respirator wearers as specified by the American National Standard Institute (ANSI) Standard for Respiratory Protection, ANSI Z88.2, and as incorporated by reference in the Department of Energy (DOE) Worker Health and Safety Rule, 10 Code of Federal Regulations (CFR) 851. This course also presents the responsibilities of supervisors of respirator wearers at Los Alamos National Laboratory (LANL).

  8. [Effects of Tillage on Soil Respiration and Root Respiration Under Rain-Fed Summer Corn Field].

    Science.gov (United States)

    Lu, Xing-li; Liao, Yun-cheng

    2015-06-01

    To explore the effects of different tillage systems on soil respiration and root respiration under rain-fed condition. Based on a short-term experiment, this paper investigated soil respiration in summer corn growth season under four tillage treatments including subsoiling tillage (ST), no tillage (NT), rotary tillage (RT) and moldboard plow tillage (CT). The contribution of root respiration using root exclusion method was also discussed. The results showed that soil respiration rate presented a single peak trend under four tillage methods during the summer corn growing season, and the maximum value was recorded at the heading stage. The trends of soil respiration were as follows: heading stage > flowering stage > grain filling stage > maturity stage > jointing stage > seedling stage. The trends of soil respiration under different tillage systems were as follows: CT > ST > RT > NT. There was a significant correlation between soil respiration rate and soil temperatures (P decomposition of soil carbon. PMID:26387335

  9. Respirator selection for clandestine methamphetamine laboratory investigation.

    Science.gov (United States)

    Nelson, Gary O; Bronder, Gregory D; Larson, Scott A; Parker, Jay A; Metzler, Richard W

    2012-01-01

    First responders to illicit drug labs may not always have SCBA protection available. Air-purifying respirators using organic vapor cartridges with P-100 filters may not be sufficient. It would be better to use a NIOSH-approved CBRN respirator with its required multi-purpose cartridge system, which includes a P-100 filter. This would remove all the primary drug lab contaminants—organic vapors, acid gases, ammonia, phosphine, iodine, and airborne meth particulates. To assure the proper selection and use of a respirator, it is recommended that the contaminants present be identified and quantified and the OSHA 29 CFR 1910.134 respirator protection program requirements followed. PMID:22571884

  10. Bifunctional alkaline oxygen electrodes

    Science.gov (United States)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The authors describe the identification and testing of electrocatalysts and supports for the positive electrode of moderate-temperature, single-unit, rechargeable alkaline fuel cells. Recent work on Na(x)Pt3O4, a potential bifunctional catalyst, is described, as well as the application of novel approaches to the development of more efficient bifunctional electrode structures. The three dual-character electrodes considered here showed similar superior performance; the Pt/RhO2 and Rh/RhO2 electrodes showed slightly better performance than the Pt/IrO2 electrode. It is concluded that Na(x)Pt3O4 continues to be a promising bifunctional oxygen electrode catalyst but requires further investigation and development.

  11. Silica in alkaline brines

    Science.gov (United States)

    Jones, B.F.; Rettig, S.L.; Eugster, H.P.

    1967-01-01

    Analysis of sodium carbonate-bicarbonate brines from closed basins in volcanic terranes of Oregon and Kenya reveals silica contents of up to 2700 parts per million at pH's higher than 10. These high concentrations of SiO 2 can be attributed to reaction of waters with silicates, and subsequent evaporative concentration accompanied by a rise in pH. Supersaturation with respect to amorphous silica may occur and persist for brines that are out of contact with silicate muds and undersaturated with respect to trona; correlation of SiO2 with concentration of Na and total CO2 support this interpretation. Addition of moredilute waters to alkaline brines may lower the pH and cause inorganic precipitation of substantial amounts of silica.

  12. Uncoupling Mitochondrial Respiration for Diabesity.

    Science.gov (United States)

    Larrick, James W; Larrick, Jasmine W; Mendelsohn, Andrew R

    2016-08-01

    Until recently, the mechanism of adaptive thermogenesis was ascribed to the expression of uncoupling protein 1 (UCP1) in brown and beige adipocytes. UCP1 is known to catalyze a proton leak of the inner mitochondrial membrane, resulting in uncoupled oxidative metabolism with no production of adenosine triphosphate and increased energy expenditure. Thus increasing brown and beige adipose tissue with augmented UCP1 expression is a viable target for obesity-related disorders. Recent work demonstrates an UCP1-independent pathway to uncouple mitochondrial respiration. A secreted enzyme, PM20D1, enriched in UCP1+ adipocytes, exhibits catalytic and hydrolytic activity to reversibly form N-acyl amino acids. N-acyl amino acids act as endogenous uncouplers of mitochondrial respiration at physiological concentrations. Administration of PM20D1 or its products, N-acyl amino acids, to diet-induced obese mice improves glucose tolerance by increasing energy expenditure. In short-term studies, treated animals exhibit no toxicity while experiencing 10% weight loss primarily of adipose tissue. Further study of this metabolic pathway may identify novel therapies for diabesity, the disease state associated with diabetes and obesity. PMID:27378359

  13. Plastron Respiration Using Commercial Fabrics

    Directory of Open Access Journals (Sweden)

    Shaun Atherton

    2014-01-01

    Full Text Available A variety of insect and arachnid species are able to remain submerged in water indefinitely using plastron respiration. A plastron is a surface-retained film of air produced by surface morphology that acts as an oxygen-carbon dioxide exchange surface. Many highly water repellent and hydrophobic surfaces when placed in water exhibit a silvery sheen which is characteristic of a plastron. In this article, the hydrophobicity of a range of commercially available water repellent fabrics and polymer membranes is investigated, and how the surface of the materials mimics this mechanism of underwater respiration is demonstrated allowing direct extraction of oxygen from oxygenated water. The coverage of the surface with the plastron air layer was measured using confocal microscopy. A zinc/oxygen cell is used to consume oxygen within containers constructed from the different membranes, and the oxygen consumed by the cell is compared to the change in oxygen concentration as measured by an oxygen probe. By comparing the membranes to an air-tight reference sample, it was found that the membranes facilitated oxygen transfer from the water into the container, with the most successful membrane showing a 1.90:1 ratio between the cell oxygen consumption and the change in concentration within the container.

  14. Avaliação da acurácia de diversos métodos para determinação de ácidos graxos voláteis e alcalinidade a bicarbonato para monitoramento de reatores anaeróbios Evaluation of the accuracy of several methods for determination of volatile fatty acids and bicarbonate alkalinity for the monitoring of anaerobic reactors

    Directory of Open Access Journals (Sweden)

    Maria Magdalena Ferreira Ribas

    2007-09-01

    Full Text Available Sistemas de tratamento anaeróbios são sensíveis às mudanças de condições ambientais que influenciam no metabolismo dos microrganismos responsáveis pela estabilidade do processo. Os objetivos deste trabalho foram (i avaliar a acurácia de métodos que determinam os parâmetros de controle ácidos graxos voláteis (AGV e alcalinidade a bicarbonato (AB em amostras preparadas com concentrações de 50 a 1000 mg/L e, (ii verificar diferentes procedimentos de remoção de CO2 formado durante titulação ácida das amostras. A partir do teste estatístico de Tukey aplicado aos resultados obtidos, observou-se que os métodos Kapp e DiLallo & Albertson com utilização de ultra-som para a remoção de CO2 do meio líquido apresentaram os melhores resultados para AGV. Os métodos da Condutividade, Kapp e Jenkins se destacaram na determinação de AB.Anaerobic treatment systems are sensitive to the environmental condition changes. Such changes may have influence on the metabolism of the microorganisms responsible for the process stability. The aims of this work were (i to evaluate the accuracy of methods to determine control parameters volatile fatty acids (VFA and bicarbonate alkalinity (BA in samples prepared with concentrations from 50 to 1000 mg/L and, (ii to verify different procedures of the CO2 removal formed during the acid titration of the samples. From the Tukey statistical test applied to the obtained results it was observed that the Kapp and DiLallo & Albertson methods using sonic equipment to remove CO2 from the liquid presented better results for VFA. The Conductivity, Kapp and Jenkins methods were considered the most reliable for BA determination.

  15. Anaerobic azo dye reduction

    OpenAIRE

    Zee, van der, KG Kristoffer

    2002-01-01

    Azo dyes, aromatic moieties linked together by azo (-N=N-) chromophores, represent the largest class of dyes used in textile-processing and other industries. The release of these compounds into the environment is undesirable, not only because of their colour, but also because many azo dyes and their breakdown products are toxic and/or mutagenic to life. To remove azo dyes from wastewater, a biological treatment strategy based on anaerobic reduction of the azo dyes, followed by aerobic transfo...

  16. The effects of operational and environmental variations on anaerobic wastewater treatment systems: a review

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, R.C. [Embrapa Agroindustria Tropical (Brazilian Agricultural Research Corporation, Inst. of Tropical Agroindustry), Fortaleza (Brazil); Haandel, A.C. van [Federal University of Campina Grande (Brazil); Zeeman, G.; Lettinga, G. [Wageningen Univ. (Netherlands)

    2006-06-15

    With the aim of improving knowledge about the stability and reliability of anaerobic wastewater treatment systems, several researchers have studied the effects of operational or environmental variations on the performance of such reactors. In general, anaerobic reactors are affected by changes in external factors, but the severity of the effect is dependent upon the type, magnitude, duration and frequency of the imposed changes. The typical responses include a decrease in performance, accumulation of volatile fatty acids, drop in pH and alkalinity, change in biogas production and composition, and sludge washout. This review summarises the causes, types and effects of operational and environmental variation on anaerobic wastewater treatment systems. However, there still remain some unclear technical and scientific aspects that are necessary for the improvement of the stability and reliability of anaerobic processes. (author)

  17. Anaerobic digestion of olive oil mill effluents together with swine manure in UASB reactors

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Ahring, Birgitte Kiær; Deng, H.;

    2002-01-01

    . Using upflow anaerobic sludge blanket (UASB) reactors, it was shown that codigestion of OME with swine manure (up to 50% OME) was successful with a COD reduction up to 75%. The process was adapted for degradation of OME with stepwise increase of the OME load to the UASB reactor. The results showed...... that the high content of ammonia in swine manure, together with content of other nutrients, make it possible to degrade OME without addition of external alkalinity and without addition of external nitrogen source. Anaerobic treatment of OME in UASB reactors resulted in reduction of simple phenolic compounds......Combined anaerobic digestion of olive oil mill effluent (OME) with swine manure, was investigated. In batch experiments was shown that for anaerobic degradation of OME alone nitrogen addition was needed. A COD:N ratio in the range of 65:1 to 126:1 was necessary for the optimal degradation process...

  18. Digestibility Improvement of Sorted Waste with Alkaline Hydrothermai Pretreatment

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; WANG Hongtao; LU Wenjing; ZHAO Yan

    2009-01-01

    The digestibility of sorted municipal solid waste (MSW) is often limited by the high content of structured green waste. The objectives of this study are to investigate the effect of alkaline hydrothermal pretreatment on the anaerobic digestion of sorted waste and to analyze the biogas production of different parts of the waste. The waste was hydrothermally pretreated in a dilute alkali solution. The hydrolysis product was then incubated in a 500 mL saline bottle to determine the biochemical methane potential (BMP) under mesophilic anaerobic conditions. The optimum hydrothermal condition was 170℃ at 4 g NaOH/100 g solid for one hour. The concentration of chemical oxygen demand (COD) was 13 936 mg/L and the methane yield was 164 mL/g volatile solid (VS) for 6 days incubation at the optimum conditions. The biogas production was increased more than 50% over the control, with the methane conversion ratio on a carbon basis enhanced to 30.6%. The organic part of the sorted waste was mainly kitchen garbage and leaves. Model kitchen garbage completely liquified at 130℃ for one hour had a methane yield of 276 mL/g VS. The alkali addition slightly enhanced the hydrolyzation rate and methane yield. The biogas potential of leaves was improved by pre-treatment at above 150℃ under alkaline conditions.

  19. New perspectives in anaerobic digestion

    DEFF Research Database (Denmark)

    van Lier, J.B.; Tilche, A.; Ahring, Birgitte Kiær;

    2001-01-01

    requirements. In fact, most advances were achieved during the last three decades, when high-rate reactor systems were developed and a profound insight was obtained in the microbiology of the anaerobic communities. This insight led to a better understanding of anaerobic treatment and, subsequently, to a broader......The IWA specialised group on anaerobic digestion (AD) is one of the oldest working groups of the former IAWQ organisation. Despite the fact that anaerobic technology dates back more than 100 years, the technology is still under development, adapting novel treatment systems to the modern...

  20. Photosynthesis and Respiration in a Jar.

    Science.gov (United States)

    Buttner, Joseph K.

    2000-01-01

    Describes an activity that reduces the biosphere to a water-filled jar to simulate the relationship between cellular respiration, photosynthesis, and energy. Allows students in high school biology and related courses to explore quantitatively cellular respiration and photosynthesis in almost any laboratory setting. (ASK)

  1. Respirators: APR Issuer Self Study 33461

    Energy Technology Data Exchange (ETDEWEB)

    Chochoms, Michael [Los Alamos National Laboratory

    2016-07-13

    Respirators: APR Issuer Self-Study (course 33461) is designed to introduce and familiarize employees selected as air-purifying respirator (APR) issuers at Los Alamos National Laboratory (LANL) with the responsibilities, limitations, procedures, and resources for issuing APRs at LANL. The goal is to enable these issuers to consistently provide proper, functioning APRs to authorized users

  2. Depressive Symptoms and Impaired Respiration in Sleep.

    Science.gov (United States)

    Bliwise, Donald L.; And Others

    1986-01-01

    Associations between depression and impaired respiration in sleep are frequently noted clinically. This relationship was documented psychometrically with the Geriatric Depression Scale, a self-report measure of nonsomatic depressive symptoms. Mean values and effect size suggest that impaired respiration in sleep was associated with only relatively…

  3. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers

    Science.gov (United States)

    Anderson, I. C.; Levine, J. S.

    1986-01-01

    An account is given of the atmospheric chemical and photochemical effects of biogenic nitric and nitrous oxide emissions. The magnitude of the biogenic emission of NO is noted to remain uncertain. Possible soil sources of NO and N2O encompass nitrification by autotropic and heterotropic nitrifiers, denitrification by nitrifiers and denitrifiers, nitrate respiration by fermenters, and chemodenitrification. Oxygen availability is the primary determinant of these organisms' relative rates of activity. The characteristics of this major influence are presently investigated in light of the effect of oxygen partial pressure on NO and N2O production by a wide variety of common soil-nitrifying, denitrifying, and nitrate-respiring bacteria under laboratory conditions. The results obtained indicate that aerobic soils are primary sources only when there is sufficient moisture to furnish anaerobic microsites for denitrification.

  4. Low-potential respirators support electricity production in microbial fuel cells.

    Science.gov (United States)

    Grüning, André; Beecroft, Nelli J; Avignone-Rossa, Claudio

    2015-07-01

    In this paper, we analyse how electric power production in microbial fuel cells (MFCs) depends on the composition of the anodic biofilm in terms of metabolic capabilities of identified sets of species. MFCs are a promising technology for organic waste treatment and sustainable bioelectricity production. Inoculated with natural communities, they present a complex microbial ecosystem with syntrophic interactions between microbes with different metabolic capabilities. Our results demonstrate that low-potential anaerobic respirators--that is those that are able to use terminal electron acceptors with a low redox potential--are important for good power production. Our results also confirm that community metabolism in MFCs with natural inoculum and fermentable feedstock is a two-stage system with fermentation followed by anode respiration. PMID:25388758

  5. δ18O measurements of dissolved O2 undergoing respiration in contaminated ground water

    International Nuclear Information System (INIS)

    Dissolved oxygen (O2) is an important constituent in ground water, as it controls the geochemistry and microbiology of aquifers. Microbial respiration consumes O2 and alters the O2 concentration, which controls ground-water redox conditions. In contaminated environments, O2 demand and aerobic versus anaerobic pathways of degradation largely determine whether remediation of a particular set of contaminants occurs and what kind of additional in situ reclamation approaches might be possible. Microbial processes fractionate isotopes of O2 because molecules containing lighter isotopes react faster than those containing heavier isotopes; therefore the fractionation of O2 isotopes can be used to identify O2 respiration in aquatic systems. Two methods were used to analyze isotopes of dissolved O2 in ground water; the major differences between the two methods are sample size and handling in the field and laboratory

  6. Modulators of intestinal alkaline phosphatase.

    Science.gov (United States)

    Bobkova, Ekaterina V; Kiffer-Moreira, Tina; Sergienko, Eduard A

    2013-01-01

    Small molecule modulators of phosphatases can lead to clinically useful drugs and serve as invaluable tools to study functional roles of various phosphatases in vivo. Here, we describe lead discovery strategies for identification of inhibitors and activators of intestinal alkaline phosphatases. To identify isozyme-selective inhibitors and activators of the human and mouse intestinal alkaline phosphatases, ultrahigh throughput chemiluminescent assays, utilizing CDP-Star as a substrate, were developed for murine intestinal alkaline phosphatase (mIAP), human intestinal alkaline phosphatase (hIAP), human placental alkaline phosphatase (PLAP), and human tissue-nonspecific alkaline phosphatase (TNAP) isozymes. Using these 1,536-well assays, concurrent HTS screens of the MLSMR library of 323,000 compounds were conducted for human and mouse IAP isozymes monitoring both inhibition and activation. This parallel screening approach led to identification of a novel inhibitory scaffold selective for murine intestinal alkaline phosphatase. SAR efforts based on parallel testing of analogs against different AP isozymes generated a potent inhibitor of the murine IAP with IC50 of 540 nM, at least 65-fold selectivity against human TNAP, and >185 selectivity against human PLAP. PMID:23860652

  7. Contribution of root respiration to soil respiration in a C3/C4 mixed grassland

    Indian Academy of Sciences (India)

    Wei Wang; Kenji Ohse; Jianjun Liu; Wenhong Mo; Takehisa Oikawa

    2005-09-01

    The spatial and temporal variations of soil respiration were studied from May 2004 to June 2005 in a C3/C4 mixed grassland of Japan. The linear regression relationship between soil respiration and root biomass was used to determine the contribution of root respiration to soil respiration. The highest soil respiration rate of 11.54 mol m–2 s–1 was found in August 2004 and the lowest soil respiration rate of 4.99 mol m–2 s–1 was found in April 2005. Within-site variation was smaller than seasonal change in soil respiration. Root biomass varied from 0.71 kg m–2 in August 2004 to 1.02 in May 2005. Within-site variation in root biomass was larger than seasonal variation. Root respiration rate was highest in August 2004 (5.7 mol m–2 s–1) and lowest in October 2004 (1.7 mol m–2 s–1). Microbial respiration rate was highest in August 2004 (5.8 mol m–2 s–1) and lowest in April 2005 (2.59 mol m–2 s–1). We estimated that the contribution of root respiration to soil respiration ranged from 31% in October to 51% in August of 2004, and from 45% to 49% from April to June 2005.

  8. Alkaline battery, separator therefore

    Science.gov (United States)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  9. Automatic online buffer capacity (alkalinity) measurement of wastewater using an electrochemical cell.

    Science.gov (United States)

    Cheng, Liang; Charles, Wipa; Cord-Ruwisch, Ralf

    2016-10-01

    The use of an automatic online electrochemical cell (EC) for measuring the buffer capacity of wastewater is presented. pH titration curves of different solutions (NaHCO3, Na2HPO4, real municipal wastewater, and anaerobic digester liquid) were obtained by conventional chemical titration and compared to the online EC measurements. The results show that the pH titration curves from the EC were comparable to that of the conventional chemical titration. The results show a linear relationship between the response of the online EC detection system and the titrimetric partial alkalinity and total alkalinity of all tested samples. This suggests that an EC can be used as a simple online titration device for monitoring the buffer capacity of different industrial processes including wastewater treatment and anaerobic digestion processes. PMID:26935968

  10. Anaerobic wastewater treatment using anaerobic baffled bioreactor: a review

    Science.gov (United States)

    Hassan, Siti; Dahlan, Irvan

    2013-09-01

    Anaerobic wastewater treatment is receiving renewed interest because it offers a means to treat wastewater with lower energy investment. Because the microorganisms involved grow more slowly, such systems require clever design so that the microbes have sufficient time with the substrate to complete treatment without requiring enormous reactor volumes. The anaerobic baffled reactor has inherent advantages over single compartment reactors due to its circulation pattern that approaches a plug flow reactor. The physical configuration of the anaerobic baffled reactor enables significant modifications to be made; resulting in a reactor which is proficient of treating complex wastewaters which presently require only one unit, ultimately significant reducing capital costs. This paper also concerns about mechanism, kinetic and hydrodynamic studies of anaerobic digestion for future application of the anaerobic baffled reactor for wastewater treatment.

  11. Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes

    Science.gov (United States)

    Megonigal, J. P.; Hines, M. E.; Visscher, P. T.

    2003-12-01

    Life evolved and flourished in the absence of molecular oxygen (O2). As the O2 content of the atmosphere rose to the present level of 21% beginning about two billion years ago, anaerobic metabolism was gradually supplanted by aerobic metabolism. Anaerobic environments have persisted on Earth despite the transformation to an oxidized state because of the combined influence of water and organic matter. Molecular oxygen diffuses about 104 times more slowly through water than air, and organic matter supports a large biotic O2 demand that consumes the supply faster than it is replaced by diffusion. Such conditions exist in wetlands, rivers, estuaries, coastal marine sediments, aquifers, anoxic water columns, sewage digesters, landfills, the intestinal tracts of animals, and the rumen of herbivores. Anaerobic microsites are also embedded in oxic environments such as upland soils and marine water columns. Appreciable rates of aerobic respiration are restricted to areas that are in direct contact with air or those inhabited by organisms that produce O2.Rising atmospheric O2 reduced the global area of anaerobic habitat, but enhanced the overall rate of anaerobic metabolism (at least on an area basis) by increasing the supply of electron donors and acceptors. Organic carbon production increased dramatically, as did oxidized forms of nitrogen, manganese, iron, sulfur, and many other elements. In contemporary anaerobic ecosystems, nearly all of the reducing power is derived from photosynthesis, and most of it eventually returns to O2, the most electronegative electron acceptor that is abundant. This photosynthetically driven redox gradient has been thoroughly exploited by aerobic and anaerobic microorganisms for metabolism. The same is true of hydrothermal vents (Tunnicliffe, 1992) and some deep subsurface environments ( Chapelle et al., 2002), where thermal energy is the ultimate source of the reducing power.Although anaerobic habitats are currently a small fraction of Earth

  12. Anaerobic changes in the energy metabolism of mouse brain during the recovery from acute radiation sickness

    International Nuclear Information System (INIS)

    There months after whole-body irradiation of mice with a sublethal dose of 5 Gy a study was made of some indices of energy metabolism like tissue respiration, oxidative phosphorylation, and formation of lactic acid in the survived brain homogenate. Revealed were (a) the diminution of coupling of tissue respiration to oxidative phosphorylation, the rate of oxygen consumption and the level of cyanoresistant respiration being constant, (b) the increase in the rate of glycolysis in anaerobic and particularly, in aerobic conditions, and (c) reduction of the Pasteur and Crabtree effects. The above mentioned changes in the brain energy metabolism seem to be a manifestation of the process of the reduced metabolism formation in the nervous tissue at the remote tims after irradiation

  13. Techniques for anaerobic susceptibility testing.

    Science.gov (United States)

    Thornsberry, C

    1977-03-01

    Minimal inhibitory concentrations (MICs) of antimicrobial agents for anaerobic bacteria can be determined by agar dilution and broth dilution (including microdilution) techniques. If MICs are not determined routinely, the disk broth or category methods are recommended for routine use. The Bauer-Kirby disk diffusion method and its interpretative standards should not be used for anaerobes. PMID:850089

  14. Anaerobic Digestion of Piggery Waste

    NARCIS (Netherlands)

    Velsen, van A.F.M.

    1981-01-01

    Anaerobic digestion is a biological process by which organic matter is converted to methane and carbon dioxide by microbes in the absence of air (oxygen). In nature, anaerobic conversions occur at all places where organic material accumulates and the supply of oxygen is deficient, e.g. in marshes an

  15. Economic viability of anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Wellinger, A. [INFOENERGIE, Ettenhausen (Switzerland)

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  16. Anaerobically functioning mitochondria: evolutionary perspective on modulation of energy metabolism in Mytilus edulis

    Directory of Open Access Journals (Sweden)

    GB Stefano

    2015-01-01

    Full Text Available The mitochondrion represents a compelling biological model of complex organelle development driven by evolutionary modification of permanently enslaved primordial purple non-sulphur bacteria. As an evolutionary modification, the dynamic nature of the mitochondrion has been observed to exhibit biochemical and functional variation, including the capacity for energy production driven by anaerobic respiratory mechanisms. In invertebrates, mitochondrial anaerobic respiration allows the organism to survive at a lower energy state while yielding more ATP than can be achieved by glycolysis alone. Furthermore, a preferred physiological state of lower energy production operationally yields diminished free radical generation, thereby offering a protective existential advantage. It has been established that energy production by the blue mussel, Mytilus edulis, is functionally dependent on anaerobic respiratory mechanisms within the mitochondrion. Importantly, under hypoxic conditions metabolic pathways in M. edulis have been demonstrated to synthesize and utilize amino acid adducts termed opines as chemically defined energy reserves. In addition to the utilization of opines as anaerobic metabolic intermediates by invertebrate organisms, opines were also discovered and characterized as metabolic intermediates in plant parasites, specifically crown gall tumors. A careful review of the biomedical literature indicates mechanistic similarities between anaerobically functioning mitochondria in M. edulis and crown gall tissues and metabolic processes in human tumors. The anaerobically functioning mitochondrion in M. edulis tissues is a potentially valuable high resolution model system for development of novel anticancer therapeutic agents.

  17. Start-up phase of an anaerobic full-scale farm reactor - Appearance of mesophilic anaerobic conditions and establishment of the methanogenic microbial community.

    Science.gov (United States)

    Goux, Xavier; Calusinska, Magdalena; Fossépré, Marie; Benizri, Emile; Delfosse, Philippe

    2016-07-01

    The goal of this study was to investigate how the microbial community structure establishes during the start-up phase of a full-scale farm anaerobic reactor inoculated with stale and cold cattle slurry. The 16S/18S high-throughput amplicon sequencing results showed an increase of the bacterial, archaeal and eukaryotic diversity, evenness and richness during the settlement of the mesophilic anaerobic conditions. When a steady performing digestion process was reached, the microbial diversity, evenness and richness decreased, indicating the establishment of a few dominant microbial populations, best adapted to biogas production. Interestingly, among the environmental parameters, the temperature, alkalinity, free-NH3, total solids and O2 content were found to be the main drivers of microbial dynamics. Interactions between eukaryotes, characterized by a high number of unknown organisms, and the bacterial and archaeal communities were also evidenced, suggesting that eukaryotes might play important roles in the anaerobic digestion process. PMID:27099947

  18. Development of washing apparatus for respirators

    International Nuclear Information System (INIS)

    Shikoku Electric Power Co., Inc. Ikata Nuclear Power Station has a regulation that workers must wear a half-face respirator (referred to in figure 1) to avoid internal exposure at the work place through coming into contact with radioactive substances. The washing of these respirators, currently performed in the Station, is done by manually rubbing them with a cloth penetrated with ethyl alcohol. The workers are therefore often required to lobar for a long time under rigorous conditions. Under these circumstances, experimental work has been conducted with the aim of developing washing apparatus suitable for the most commonly used type to respirator in the Station. (author)

  19. The alkaline and alkaline-carbonatite magmatism from Southern Brazil

    Science.gov (United States)

    Ruberti, E.; Gomes, C. D. B.; Comin-Chiaramonti, P.

    2015-12-01

    Early to Late Cretaceous lasting to Paleocene alkaline magmatism from southern Brazil is found associated with major extensional structural features in and around the Paraná Basin and grouped into various provinces on the basis of several data. Magmatism is variable in size, mode of occurrence and composition. The alkaline rocks are dominantly potassic, a few occurrences showing sodic affinity. The more abundant silicate rocks are evolved undersaturated to saturated in silica syenites, displaying large variation in igneous forms. Less evolved types are restricted to subvolcanic environments and outcrops of effusive suites occur rarely. Cumulatic mafic and ultramafic rock types are very common, particularly in the alkali-carbonatitic complexes. Carbonatite bodies are represented by Ca-carbonatites and Mg-carbonatites and more scarcely by Fe-carbonatites. Available radiometric ages for the alkaline rocks fit on three main chronological groups: around 130 Ma, subcoveal with the Early Cretaceous flood tholeiites of the Paraná Basin, 100-110 Ma and 80-90 Ma (Late Cretaceous). The alkaline magmatism also extends into Paleocene times, as indicated by ages from some volcanic lavas. Geochemically, alkaline potassic and sodic rock types are distinguished by their negative and positive Nb-Ta anomalies, respectively. Negative spikes in Nb-Ta are also a feature common to the associated tholeiitic rocks. Sr-Nd-Pb systematics confirm the contribution of both HIMU and EMI mantle components in the formation of the alkaline rocks. Notably, Early and Late Cretaceous carbonatites have the same isotopic Sr-Nd initial ratios of the associated alkaline rocks. C-O isotopic Sr-Nd isotopic ratios indicate typical mantle signature for some carbonatites and the influence of post-magmatic processes in others. Immiscibility of liquids of phonolitic composition, derived from mafic alkaline parental magmas, has been responsible for the origin of the carbonatites. Close association of alkaline

  20. Investigations on the inactivation of selected bacteria and viruses during mesophilic and thermophilic anaerobic alkaline cofermentation of biological waste materials, food residues and other animal residues; Seuchenhygienische Untersuchungen zur Inaktivierung ausgewaehlter Bakterien und Viren bei der mesophilen und thermophilen anaeroben alkalischen Faulung von Bio- und Kuechenabfaellen sowie anderen Rest- und Abfallstoffen tierischer Herkunft

    Energy Technology Data Exchange (ETDEWEB)

    Hoferer, M. [Hohenheim Univ., Stuttgart (Germany). Inst. fuer Umwelt- und Tierhygiene sowie Tiermedizin mit Tierklinik

    2001-07-01

    The purpose of this study is to investigate the inactivation kinetics of a number of different bacteria (Salmonella Senftenberg, Escherichia coli O157, Enterococcus faecium) and viruses (Bovine Enterovirus (ECBO), Equine Rhinovirus (ERV), Poliovirus, Bovine Parvovirus (BPV)) during the process of anaerobic cofermentation. Experiments were conducted in a semi-technical biogas plant at the University of Hohenheim. The fermenter was fed with a mixture of slurry from pigs or cattle (75%) and leftovers (25%) and was run under mesophilic (30 C + 35 C) as well as under thermophilic temperature conditions (50 C + 55 C). Volume and filter-sandwich germ-carriers were specifically developed and/or optimised for these analyses. Parallel to the experiments at the University of Hohenheim and under almost identical process conditions, various viruses (African Swine Fever Virus, Pseudorabies Virus, Classical Swine Fever Virus, Foot and Mouth Disease Virus, Swine Vesicular Disease Virus) were examined at the Federal Research Centre for Virus Diseases of Animals in Tuebingen. The results obtained at each research institution are directly compared. (orig.)

  1. Anaerobic fungal populations

    International Nuclear Information System (INIS)

    The development of molecular techniques has greatly broadened our view of microbial diversity and enabled a more complete detection and description of microbial communities. The application of these techniques provides a simple means of following community changes, for example, Ishii et al. described transient and more stable inhabitants in another dynamic microbial system, compost. Our present knowledge of anaerobic gut fungal population diversity within the gastrointestinal tract is based upon isolation, cultivation and observations in vivo. It is likely that there are many species yet to be described, some of which may be non-culturable. We have observed a distinct difference in the ease of cultivation between the different genera, for example, Caecomyes isolates are especially difficult to isolate and maintain in vitro, a feature that is likely to result in the under representation of this genera in culture-based enumerations. The anaerobic gut fungi are the only known obligately anaerobic fungi. For the majority of their life cycles, they are found tightly associated with solid digesta in the rumen and/or hindgut. They produce potent fibrolytic enzymes and grow invasively on and into the plant material they are digesting making them important contributors to fibre digestion. This close association with intestinal digesta has made it difficult to accurately determine the amount of fungal biomass present in the rumen, with Orpin suggesting 8% contribution to the total microbial biomass, whereas Rezaeian et al. more recently gave a value of approximately 20%. It is clear that the rumen microbial complement is affected by dietary changes, and that the fungi are more important in digestion in the rumens of animals fed with high-fibre diets. It seems likely that the gut fungi play an important role within the rumen as primary colonizers of plant fibre, and so we are particularly interested in being able to measure the appearance and diversity of fungi on the plant

  2. Re-interpreting anaerobic metabolism: an argument for the application of both anaerobic glycolysis and excess post-exercise oxygen comsumption (EPOC) as independent sources of energy expenditure.

    Science.gov (United States)

    Scott, C B

    1998-02-01

    Due to current technical difficulties and changing cellular conditions, the measurement of anaerobic and recovery energy expenditure remains elusive. During rest and low-intensity steady-state exercise, indirect calorimetric measurements successfully represent energy expenditure. The same steady-state O2 uptake methods are often used to describe the O2 deficit and excess post-oxygen consumption (EPOC): 1 l O2 = 5 kcal = 20.9 kJ. However, an O2 deficit plus exercise O2 uptake measurement ignores energy expenditure during recovery, and an exercise O2 uptake plus EPOC measurement misrepresents anaerobic energy expenditure. An alternative solution has not yet been proposed. Anaerobic glycolysis and mitochondrial respiration are construed here as a symbiotic union of metabolic pathways, each contributing independently to energy expenditure and heat production. Care must be taken when using O2 uptake alone to quantify energy expenditure because various high-intensity exercise models reveal that O2 uptake can lag behind estimated energy demands or exceed them. The independent bioenergetics behind anaerobic glycolysis and mitochondrial respiration can acknowledge these discrepancies. Anaerobic glycolysis is an additive component to an exercise O2 uptake measurement. Moreover, it is the assumptions behind steady-state O2 uptake that do not permit proper interpretation of energy expenditure during EPOC; 1 l O2 not = 20.9 kJ. Using both the O2 deficit and a modified EPOC for interpretation, rather than one or the other, leads to a better method of quantifying energy expenditure for higher intensity exercise and recovery. PMID:9535579

  3. Photosynthesis and Respiration in Leaf Slices.

    Science.gov (United States)

    Brown, Simon

    1998-01-01

    Demonstrates how leaf slices provide an inexpensive material for illustrating several fundamental points about the biochemistry of photosynthesis and respiration. Presents experiments that illustrate the effects of photon flux density and herbicides and carbon dioxide concentration. (DDR)

  4. Probing soil respiration process of grasslands

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Soil respiration, which is primarily the only output approach for CO2 exchanges in soils between the global terrestrial ecosystem and the atmosphere,exerts a direct influence on the speed of carbon turnover rate of the soil.

  5. The Low Energy-Coupling Respiration in Zymomonas mobilis Accelerates Flux in the Entner-Doudoroff Pathway

    Science.gov (United States)

    Rutkis, Reinis; Strazdina, Inese; Balodite, Elina; Lasa, Zane; Galinina, Nina; Kalnenieks, Uldis

    2016-01-01

    Performing oxidative phosphorylation is the primary role of respiratory chain both in bacteria and eukaryotes. Yet, the branched respiratory chains of prokaryotes contain alternative, low energy-coupling electron pathways, which serve for functions other than oxidative ATP generation (like those of respiratory protection, adaptation to low-oxygen media, redox balancing, etc.), some of which are still poorly understood. We here demonstrate that withdrawal of reducing equivalents by the energetically uncoupled respiratory chain of the bacterium Zymomonas mobilis accelerates its fermentative catabolism, increasing the glucose consumption rate. This is in contrast to what has been observed in other respiring bacteria and yeast. This effect takes place after air is introduced to glucose-consuming anaerobic cell suspension, and can be simulated using a kinetic model of the Entner-Doudoroff pathway in combination with a simple net reaction of NADH oxidation that does not involve oxidative phosphorylation. Although aeration hampers batch growth of respiring Z. mobilis culture due to accumulation of toxic byproducts, nevertheless under non-growing conditions respiration is shown to confer an adaptive advantage for the wild type over the non-respiring Ndh knock-out mutant. If cells get occasional access to limited amount of glucose for short periods of time, the elevated glucose uptake rate selectively improves survival of the respiring Z. mobilis phenotype. PMID:27100889

  6. A New Rate Law Describing Microbial Respiration

    OpenAIRE

    Jin, Qusheng; Bethke, Craig M

    2003-01-01

    The rate of microbial respiration can be described by a rate law that gives the respiration rate as the product of a rate constant, biomass concentration, and three terms: one describing the kinetics of the electron-donating reaction, one for the kinetics of the electron-accepting reaction, and a thermodynamic term accounting for the energy available in the microbe's environment. The rate law, derived on the basis of chemiosmotic theory and nonlinear thermodynamics, is unique in that it accou...

  7. Effect of Music on Emotions and Respiration

    OpenAIRE

    Noguchi Kengo; Masaoka Yuri; Satoh Kanako; Katoh Nobumasa; Homma Ikuo

    2012-01-01

    In the present study we investigated whether the emotional state induced by music can change respiratory rate (RR), tidal volume (VT), minute ventilation (VE), and end-tidal CO2concentration (ETCO2). In a pioneering study investigating the effect of music on respiration, the music of Stockhausen and Chopin was used. In the present study, we examined the effects of the same musical stimuli used in that study on respiration. Each stimulus (Stockhausen, Chopin, and silence) was delivered for 30 ...

  8. Specific neural substrate linking respiration to locomotion

    OpenAIRE

    Gariépy, Jean-François; Missaghi, Kianoush; Chevallier, Stéphanie; Chartré, Shannon; Robert, Maxime; Auclair, François; Lund, James P; DUBUC, RÉJEAN

    2011-01-01

    When animals move, respiration increases to adapt for increased energy demands; the underlying mechanisms are still not understood. We investigated the neural substrates underlying the respiratory changes in relation to movement in lampreys. We showed that respiration increases following stimulation of the mesencephalic locomotor region (MLR) in an in vitro isolated preparation, an effect that persists in the absence of the spinal cord and caudal brainstem. By using electrophysiological and a...

  9. Thermochemical Pretreatment for Anaerobic Digestion of Sorted Waste

    Science.gov (United States)

    Hao, W.; Hongtao, W.

    2008-02-01

    The effect of alkaline hydrothermal pre-treatment for anaerobic digestion of mechanically-sorted municipal solid waste (MSW) and source-sorted waste was studied. Waste was hydrothermally pre-treated in dilute alkali solution. Hydrolysis product was incubated in 500 ml saline bottle to determine methane potential (MP) under mesospheric anaerobic conditions. Optimum reaction condition obtained in the study is 170 °C at the dose of 4 g NaOH/100 g solid for one hour. Soluble COD was 13936 mg/L and methane yield was 164 ml/g VS for 6 days incubation at optimum conditions. More than 50% biogas increase was achieved over the control, and methane conversion ratio on carbon basis was enhanced to 30.6%. The digestion period was less than 6 days when pre-treatment temperature was above 130 °C. The organic part of sorted waste is mainly constituted of kitchen garbage and leaf. Model kitchen garbage was completely liquidized at 130 °C for one hour and the methane yield was 276 ml/g VS. Addition of alkali enhance hydroxylation rate and methane yield slightly. The biogas potential of leaf could be observed by pre-treatment above 150 °C under alkaline condition.

  10. 42 CFR 84.174 - Respirator containers; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.174... Air-Purifying Particulate Respirators § 84.174 Respirator containers; minimum requirements. (a) Except..., durable container bearing markings which show the applicant's name, the type of respirator it...

  11. 42 CFR 84.197 - Respirator containers; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.197... Cartridge Respirators § 84.197 Respirator containers; minimum requirements. Respirators shall be equipped with a substantial, durable container bearing markings which show the applicant's name, the type...

  12. 42 CFR 84.134 - Respirator containers; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.134... Respirators § 84.134 Respirator containers; minimum requirements. Supplied-air respirators shall be equipped with a substantial, durable container bearing markings which show the applicant's name, the type...

  13. Alkaline degradation of organic materials contained in TRU wastes under repository conditions

    International Nuclear Information System (INIS)

    Alkaline degradation tests for 9 organic materials were conducted under the conditions of TRU waste disposal: anaerobic alkaline conditions. The tests were carried out at 90degC for 91 days. The sample materials for the tests were selected from the standpoint of constituent organic materials of TRU wastes. It has been found that cellulose and plastic solidified products are degraded relatively easily and that rubbers are difficult to degrade. It could be presumed that the alkaline degradation of organic materials occurs starting from the functional group in the material. Therefore, the degree of degradation difficulty is expected to be dependent on the kinds of functional group contained in the organic material. (author)

  14. Mitochondrial respiration without ubiquinone biosynthesis.

    Science.gov (United States)

    Wang, Ying; Hekimi, Siegfried

    2013-12-01

    Ubiquinone (UQ), a.k.a. coenzyme Q, is a redox-active lipid that participates in several cellular processes, in particular mitochondrial electron transport. Primary UQ deficiency is a rare but severely debilitating condition. Mclk1 (a.k.a. Coq7) encodes a conserved mitochondrial enzyme that is necessary for UQ biosynthesis. We engineered conditional Mclk1 knockout models to study pathogenic effects of UQ deficiency and to assess potential therapeutic agents for the treatment of UQ deficiencies. We found that Mclk1 knockout cells are viable in the total absence of UQ. The UQ biosynthetic precursor DMQ9 accumulates in these cells and can sustain mitochondrial respiration, albeit inefficiently. We demonstrated that efficient rescue of the respiratory deficiency in UQ-deficient cells by UQ analogues is side chain length dependent, and that classical UQ analogues with alkyl side chains such as idebenone and decylUQ are inefficient in comparison with analogues with isoprenoid side chains. Furthermore, Vitamin K2, which has an isoprenoid side chain, and has been proposed to be a mitochondrial electron carrier, had no efficacy on UQ-deficient mouse cells. In our model with liver-specific loss of Mclk1, a large depletion of UQ in hepatocytes caused only a mild impairment of respiratory chain function and no gross abnormalities. In conjunction with previous findings, this surprisingly small effect of UQ depletion indicates a nonlinear dependence of mitochondrial respiratory capacity on UQ content. With this model, we also showed that diet-derived UQ10 is able to functionally rescue the electron transport deficit due to severe endogenous UQ deficiency in the liver, an organ capable of absorbing exogenous UQ. PMID:23847050

  15. Anaerobic Halo-Alkaliphilic Baterial Community of Athalassic, Hypersaline Mono Lake in California

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.; Marsic, Damien; Ng, Joseph D.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The microorganisms of soda Mono Lake and other similar athalassic hypersaline alkaline soda lakes are of significance to Astrobiology. The microorganisms of these regimes represent the best known terrestrial analogs for microbial life that might have inhabited the hypersaline alkaline lakes and evaporites confined within closed volcanic basins and impact craters during the late Noachian and early Hesperian epochs (3.6 - 4.2 Gya) of ancient Mars. We have investigated the anaerobic microbiota of soda Mono Lake in northern California. In this paper we discuss the astrobiological significance of these ecosystems and describe several interesting features of two novel new species of anaerobic halo-alkaliphilic bacteria (Spirochaeta americana, sp. nov. and Desulfonatronum paiuteum, sp. nov) that we have isolated from Mono Lake.

  16. Nitrogen in the Process of Waste Activated Sludge Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    Suschka Jan

    2014-07-01

    Full Text Available Primary or secondary sewage sludge in medium and large WWTP are most often processed by anaerobic digestion, as a method of conditioning, sludge quantity minimization and biogas production. With the aim to achieve the best results of sludge processing several modifications of technologies were suggested, investigated and introduced in the full technical scale. Various sludge pretreatment technologies before anaerobic treatment have been widely investigated and partially introduced. Obviously, there are always some limitations and some negative side effects. Selected aspects have been presented and discussed. The problem of nitrogen has been highlighted on the basis of the carried out investigations. The single and two step - mesophilic and thermophilic - anaerobic waste activated sludge digestion processes, preceded by preliminary hydrolysis were investigated. The aim of lab-scale experiments was pre-treatment of the sludge by means of low intensive alkaline and hydrodynamic disintegration. Depending on the pretreatment technologies and the digestion temperature large ammonia concentrations, up to 1800 mg NH4/dm3 have been measured. Return of the sludge liquor to the main sewage treatment line means additional nitrogen removal costs. Possible solutions are discussed.

  17. Parotitis due to anaerobic bacteria.

    Science.gov (United States)

    Matlow, A; Korentager, R; Keystone, E; Bohnen, J

    1988-01-01

    Although Staphylococcus aureus remains the pathogen most commonly implicated in acute suppurative parotitis, the pathogenic role of gram-negative facultative anaerobic bacteria and strict anaerobic organisms in this disease is becoming increasingly recognized. This report describes a case of parotitis due to Bacteroides disiens in an elderly woman with Sjögren's syndrome. Literature reports on seven additional cases of suppurative parotitis due to anaerobic bacteria are reviewed. Initial therapy of acute suppurative parotitis should include coverage for S. aureus and, in a very ill patient, coverage of gram-negative facultative organisms with antibiotics such as cloxacillin and an aminoglycoside. A failure to respond clinically to such a regimen or isolation of anaerobic bacteria should lead to the consideration of the addition of clindamycin or penicillin. PMID:3287567

  18. Plant Respiration and Climate Change Effects

    International Nuclear Information System (INIS)

    Plant respiration is one of the key processes in terms of an understanding of plant growth and functioning in a future climate. Short- and long-term effects of temperature and CO2 on plant respiration were investigated in a number of plant species. The experiments tested effects of either temperature and/or CO2 from the level of individual respiratory enzymes, isolated mitochondria, whole-tissue, and up to the whole canopy level. The short-term effects of elevated atmospheric CO2 on plant respiration appeared to be less than suggested so far in the literature. This was true both at the tissue level and for intact mitochondria. Respiratory enzymes can, however, be affected already at low CO2. These effects did not manifest itself at the tissue level, though, due to low degrees of control on the whole respiratory process exerted by the particular enzymes. Plant respiration on the other hand was affected by long-term growth at elevated atmospheric CO2. The findings of the reduced plant respiration at the leaf level were consistent with the literature and potential causes are discussed. Short-term effects of temperature on plant respiration were demonstrated to be dependent on the actual measurement temperature. Further, it is shown that mitochondrial leaf respiration in darkness and light differ substantially in the temperature sensitivity with the former being the far most sensitive. This has implications for modelling CO2 exchange between vegetation and atmosphere as demonstrated here, since this has so far been neglected. Long-term effects of temperature resulted in respiratory acclimation in a number of species. Respiratory acclimation appeared not to occur to any one single type of growth temperature. The implications of this finding in combination with the timing of acclimation are discussed for modelling respiratory CO2 release. (au)

  19. Plant Respiration and Climate Change Effects

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, D.

    2002-04-01

    Plant respiration is one of the key processes in terms of an understanding of plant growth and functioning in a future climate. Short- and long-term effects of temperature and CO{sub 2} on plant respiration were investigated in a number of plant species. The experiments tested effects of either temperature and/or CO{sub 2} from the level of individual respiratory enzymes, isolated mitochondria, whole-tissue, and up to the whole canopy level. The short-term effects of elevated atmospheric CO{sub 2} on plant respiration appeared to be less than suggested so far in the literature. This was true both at the tissue level and for intact mitochondria. Respiratory enzymes can, however, be affected already at low CO{sub 2}. These effects did not manifest itself at the tissue level, though, due to low degrees of control on the whole respiratory process exerted by the particular enzymes. Plant respiration on the other hand was affected by long-term growth at elevated atmospheric CO{sub 2}. The findings of the reduced plant respiration at the leaf level were consistent with the literature and potential causes are discussed. Short-term effects of temperature on plant respiration were demonstrated to be dependent on the actual measurement temperature. Further, it is shown that mitochondrial leaf respiration in darkness and light differ substantially in the temperature sensitivity with the former being the far most sensitive. This has implications for modelling CO{sub 2} exchange between vegetation and atmosphere as demonstrated here, since this has so far been neglected. Long-term effects of temperature resulted in respiratory acclimation in a number of species. Respiratory acclimation appeared not to occur to any one single type of growth temperature. The implications of this finding in combination with the timing of acclimation are discussed for modelling respiratory CO{sub 2} release. (au)

  20. Optical tweezers and non-ratiometric fluorescent-dye-based studies of respiration in sperm mitochondria

    International Nuclear Information System (INIS)

    The purpose of this study is to investigate how the mitochondrial membrane potential affects sperm motility using laser tweezers and a non-ratiometric fluorescent probe, DiOC6(3). A 1064 nm Nd:YVO4 continuous wave laser was used to trap motile sperm at a power of 450 mW in the trap spot. Using customized tracking software, the curvilinear velocity (VCL) and the escape force from the laser tweezers were measured. Human (Homo sapiens), dog (Canis lupis familiaris) and drill (Mandrillus leucophaeus) sperm were treated with DiOC6(3) to measure the membrane potential in the mitochondria-rich sperm midpieces. Sperm from all three species exhibited an increase in fluorescence when treated with the DiOC6(3). When a cyanide inhibitor (CCCP) of aerobic respiration was applied, sperm of all three species exhibited a reduction in fluorescence to pre-dye levels. With respect to VCL and escape force, the CCCP had no effect on dog or human sperm, suggesting a major reliance upon anaerobic respiration (glycolysis) for ATP in these two species. Based on the preliminary study on drill sperm, CCCP caused a drop in the VCL, suggesting potential reliance on both glycolysis and aerobic respiration for motility. The results demonstrate that optical trapping in combination with DiOC6(3) is an effective way to study sperm motility and energetics

  1. Large scale study on measurement of respiration activity (AT(4)) by Sapromat and OxiTop.

    Science.gov (United States)

    Binner, Erwin; Böhm, Katharina; Lechner, Peter

    2012-10-01

    In the run-up for amending the Austrian landfill ordinance, parameters were developed to assess the stability/reactivity of mechanically-biologically pretreated residual wastes. The Landfill Ordinance 2008 regulates limit values for Respiration Activity (="Atmungsaktivität") RA(4) (AT(4))wastes (sewage sludge, commercial waste, material from abandoned sites, biowaste compost). For measurement of respiration activity in Austria mainly two methods are used: the Sapromat®-method and the OxiTop®-method. Whether respectively to what extent these two methods give same results, is discussed in this paper. Since 2009 at ABF-BOKU 169 respiration activity tests of samples taken from different stages of MBT - as well as biowaste composting processes, materials from landfills as well as abandoned sites and residues from anaerobic treatment plants were analysed parallel by Sapromat® and OxiTop®. The results manifest very strong correlation between the Sapromat® and OxiTop® method. The correlation coefficient is 0.993. As a very clear tendency OxiTop® gives lower amounts than Sapromat®. In average the lower values of OxiTop® are around 88%. PMID:22704002

  2. 2nd Generation Alkaline Electrolysis

    DEFF Research Database (Denmark)

    Yde, Lars; Kjartansdóttir, Cecilia Kristin; Allebrod, Frank; Mogensen, Mogens Bjerg; Møller, Per; Hilbert, Lisbeth R.; Nielsen, Peter Tommy; Mathiesen, Troels; Jensen, Jørgen; Andersen, Lars; Dierking, Alexander

    This report provides the results of the 2nd Generation Alkaline Electrolysis project which was initiated in 2008. The project has been conducted from 2009-2012 by a consortium comprising Århus University Business and Social Science – Centre for Energy Technologies (CET (former HIRC)), Technical...

  3. Ammonium excretion and oxygen respiration of tropical copepods and euphausiids exposed to oxygen minimum zone conditions

    Science.gov (United States)

    Kiko, Rainer; Hauss, Helena; Buchholz, Friedrich; Melzner, Frank

    2016-04-01

    Calanoid copepods and euphausiids are key components of marine zooplankton communities worldwide. Most euphausiids and several copepod species perform diel vertical migrations (DVMs) that contribute to the export of particulate and dissolved matter to midwater depths. In vast areas of the global ocean, and in particular in the eastern tropical Atlantic and Pacific, the daytime distribution depth of many migrating organisms corresponds to the core of the oxygen minimum zone (OMZ). At depth, the animals experience reduced temperature and oxygen partial pressure (pO2) and an increased carbon dioxide partial pressure (pCO2) compared to their near-surface nighttime habitat. Although it is well known that low oxygen levels can inhibit respiratory activity, the respiration response of tropical copepods and euphausiids to relevant pCO2, pO2, and temperature conditions remains poorly parameterized. Further, the regulation of ammonium excretion at OMZ conditions is generally not well understood. It was recently estimated that DVM-mediated ammonium supply could fuel bacterial anaerobic ammonium oxidation - a major loss process for fixed nitrogen in the ocean considerably. These estimates were based on the implicit assumption that hypoxia or anoxia in combination with hypercapnia (elevated pCO2) does not result in a down-regulation of ammonium excretion. We exposed calanoid copepods from the Eastern Tropical North Atlantic (ETNA; Undinula vulgaris and Pleuromamma abdominalis) and euphausiids from the Eastern Tropical South Pacific (ETSP; Euphausia mucronata) and the ETNA (Euphausia gibboides) to different temperatures, carbon dioxide and oxygen levels to study their survival, respiration and excretion rates at these conditions. An increase in temperature by 10 °C led to an approximately 2-fold increase of the respiration and excretion rates of U. vulgaris (Q10, respiration = 1.4; Q10, NH4-excretion = 1.6), P. abdominalis (Q10, respiration = 2.0; Q10, NH4-excretion = 2.4) and

  4. Medium factors on anaerobic production of rhamnolipids by Pseudomonas aeruginosa SG and a simplifying medium for in situ microbial enhanced oil recovery applications.

    Science.gov (United States)

    Zhao, Feng; Zhou, Jidong; Han, Siqin; Ma, Fang; Zhang, Ying; Zhang, Jie

    2016-04-01

    Aerobic production of rhamnolipid by Pseudomonas aeruginosa was extensively studied. But effect of medium composition on anaerobic production of rhamnolipid by P. aeruginosa was unknown. A simplifying medium facilitating anaerobic production of rhamnolipid is urgently needed for in situ microbial enhanced oil recovery (MEOR). Medium factors affecting anaerobic production of rhamnolipid were investigated using P. aeruginosa SG (Genbank accession number KJ995745). Medium composition for anaerobic production of rhamnolipid by P. aeruginosa is different from that for aerobic production of rhamnolipid. Both hydrophobic substrate and organic nitrogen inhibited rhamnolipid production under anaerobic conditions. Glycerol and nitrate were the best carbon and nitrogen source. The commonly used N limitation under aerobic conditions was not conducive to rhamnolipid production under anaerobic conditions because the initial cell growth demanded enough nitrate for anaerobic respiration. But rhamnolipid was also fast accumulated under nitrogen starvation conditions. Sufficient phosphate was needed for anaerobic production of rhamnolipid. SO4(2-) and Mg(2+) are required for anaerobic production of rhamnolipid. Results will contribute to isolation bacteria strains which can anaerobically produce rhamnolipid and medium optimization for anaerobic production of rhamnolipid. Based on medium optimization by response surface methodology and ions composition of reservoir formation water, a simplifying medium containing 70.3 g/l glycerol, 5.25 g/l NaNO3, 5.49 g/l KH2PO4, 6.9 g/l K2HPO4·3H2O and 0.40 g/l MgSO4 was designed. Using the simplifying medium, 630 mg/l of rhamnolipid was produced by SG, and the anaerobic culture emulsified crude oil to EI24 = 82.5 %. The simplifying medium was promising for in situ MEOR applications. PMID:26925616

  5. Soil Respiration During a Soybean-Growing Season

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Soil respiration induced by soybean cultivation over its entire growing season and the factors influencing soil respiration were investigated to examine the seasonal pattern of soil respiration induced by soybean cultivation, explore soybean growth and photosynthesis on soil respiration, and determine the temperature dependence on soil respiration. Soil respiration in a pot experiment with and without soybean plants was sampled using the static chamber method and measured using gas chromatograph. Air temperature was a dominant factor controlling soil respiration rate in unplanted soil. Additionally,rhizosphere respiration comprised 62% to 98% of the soil respiration rate in the soybean-planted soil varying with the soybean growth stages. Harvesting aerial parts of soybean plant caused an immediate drop in the soil respiration rate at that stage. After harvesting the aerial parts of the soybean plant, a highly significant correlation between soil respiration rate and air temperature was found at the flowering stage (P < 0.01), the pod stage (P < 0.01), and the seed-filling stage(P < 0.05). Thus, rhizosphere respiration during the soybean-growing period not only made a great contribution to soil respiration, but also determined the seasonal variation pattern of the soil respiration rate.

  6. Soil respiration partition and its components in the total agro-ecosystem respiration

    Science.gov (United States)

    Delogu, Emilie; LeDantec, Valerie; Mordelet, Patrick; Buysse, Pauline; Aubinet, Marc; Pattey, Elizabeth; Mary, Bruno

    2013-04-01

    Close to 15% of the Earth's terrestrial surface is used for cropland. In the context of global warming, and acknowledged by the Kyoto Protocol, agricultural soils could be a significant sink for atmospheric CO2. Understanding the factors influencing carbon fluxes of agricultural soils is essential for implementing efficient mitigation practices. Most of the soil respiration modeling studies was carried out in forest ecosystems, but only a few was carried out in agricultural ecosystems. In the study, we evaluated simple formalisms to model soil respiration using wheat data from four contrasting geographical mi-latitude regions. Soil respiration were measured in three winter wheat fields at Lamasquère (43°49'N, 01°23'E, 2007) and Auradé (43°54'N, 01°10'E, 2008), South-West France and Lonzée (50°33'N, 4°44'E, 2007), Belgium, and in a spring wheat field at Ottawa (45°22'N, 75°43'W, 2007, 2011), Ontario, Canada. Manual closed chambers were used in the French sites. The Belgium and Canadian sites were equipped with automated closed chamber systems, which continuously collected 30-min soil respiration exchanges. All the sites were also equipped with eddy flux towers. When eddy flux data were collected over bare soil, the net ecosystem exchange (NEE) was equal to soil respiration exchange. These NEE data were used to validate the model. Different biotic and abiotic descriptors were used to model daily soil respiration and its heterotrophic and autotrophic components: soil temperature, soil relative humidity, Gross Primary Productivity (GPP), shoot biomass, crop height, with different formalisms. It was interesting to conclude that using biotic descriptors did not improve the performances of the model. In fact, a combination of abiotic descriptors (soil humidity and soil temperature) allowed significant model formalism to model soil respiration. The simple soil respiration model was used to calculate the heterotrophic and autotrophic source contributions to

  7. Maintenance, endogeneous, respiration, lysis, decay and predation

    DEFF Research Database (Denmark)

    loosdrecht, Marc C. M. Van; Henze, Mogens

    1999-01-01

    In activated sludge processes an increased sludge age is associated with a decreased sludge production. This phenomenon is generally interpreted as a result of endogenous respiration processes. In the activated sludge models cell lysis (or decay) is incorporated. The lysis is modelled such that it...... mechanism is microbiologically correct. The lysis/decay model mechanism is a strongly simplified representation of reality. This paper tries to review the processes grouped under endogenous respiration in activated sludge models. Mechanisms and processes such as maintenance, lysis, internal and external...... maintenance processes. This conversion will in general be denoted as endogenous respiration. Based on the literature review the phenomena are discussed and organised, in order to create a working platform for discussing more detailed activated sludge models, one of which is being sketched. (C) 1999 IAWQ...

  8. Microbial network for waste activated sludge cascade utilization in an integrated system of microbial electrolysis and anaerobic fermentation

    DEFF Research Database (Denmark)

    Liu, Wenzong; He, Zhangwei; Yang, Chunxue;

    2016-01-01

    integrated system of microbial electrolysis cell (MEC) and anaerobic digestion (AD) for waste activated sludge (WAS). Microbial communities in integrated system would build a thorough energetic and metabolic interaction network regarding fermentation communities and electrode respiring communities. The...... Parabacteroides, which showed a delayed contribution to the extracellular electron transport leading to a slow cascade utilization of WAS. Conclusions: Efficient pretreatment could supply more short-chain fatty acids and higher conductivities in the fermentative liquid, which facilitated mass transfer in anodic...

  9. Anaerobic oxidation of methane in grassland soils used for cattle husbandry

    Directory of Open Access Journals (Sweden)

    A. Bannert

    2012-10-01

    Full Text Available While the importance of anaerobic methane oxidation has been reported for marine ecosystems, the role of this process in soils is still questionable. Grasslands used as pastures for cattle overwintering show an increase in anaerobic soil micro-sites caused by animal treading and excrement deposition. Therefore, anaerobic potential methane oxidation activity of severely impacted soil from a cattle winter pasture was investigated in an incubation experiment under anaerobic conditions using 13C-labelled methane. We were able to detect a high microbial activity utilizing CH4 as nutrient source shown by the respiration of 13CO2. Measurements of possible terminal electron acceptors for anaerobic oxidation of methane were carried out. Soil sulfate concentrations were too low to explain the oxidation of the amount of methane added, but enough nitrate and iron(III were detected. However, only nitrate was consumed during the experiment. 13C-PLFA analyses clearly showed the utilization of CH4 as nutrient source mainly by organisms harbouring 16:1ω7 PLFAs. These lipids were also found as most 13C-enriched fatty acids by Raghoebarsing et al. (2006 after addition of 13CH4 to an enrichment culture coupling denitrification of nitrate to anaerobic oxidation of methane. This might be an indication for anaerobic oxidation of methane by relatives of "Candidatus Methylomirabilis oxyfera" in the investigated grassland soil under the conditions of the incubation experiment.

  10. Maintenance, endogeneous, respiration, lysis, decay and predation

    DEFF Research Database (Denmark)

    loosdrecht, Marc C. M. Van; Henze, Mogens

    1999-01-01

    mechanism is microbiologically correct. The lysis/decay model mechanism is a strongly simplified representation of reality. This paper tries to review the processes grouped under endogenous respiration in activated sludge models. Mechanisms and processes such as maintenance, lysis, internal and external...... maintenance processes. This conversion will in general be denoted as endogenous respiration. Based on the literature review the phenomena are discussed and organised, in order to create a working platform for discussing more detailed activated sludge models, one of which is being sketched. (C) 1999 IAWQ...

  11. Treatment of Alkaline Stripped Effluent in Aerated Constructed Wetlands: Feasibility Evaluation and Performance Enhancement

    Directory of Open Access Journals (Sweden)

    Keli He

    2016-09-01

    Full Text Available Ammonium stripping has gained increasing interest for nitrogen recovery in anaerobically digested effluents. However, the stripped effluents often still do not meet discharge standards, having high pH and residual pollutants. Constructed wetlands (CWs are an easy to operate ecosystem and have a long history of application in treatment of wastewaters with extreme pH, such as acid mine drainage. However, knowledge of the mechanistic details involved in the use of CWs to treat high alkaline drainage, such as stripped effluent, is insufficient. This study explored the feasibility and effectiveness of using three sub-surface horizontal flow CWs to treat high alkaline stripped effluent (pH > 10. Two intensification strategies—intermittent aeration and effluent recirculation—were evaluated to enhance nitrogen depuration performance. The results show that the treatment of alkaline stripped effluent is feasible due to the high buffering capacity of the wetlands. Effluent recirculation combined with intermittent artificial aeration improves nitrogen removal, with 71% total nitrogen (TN removal. Ammonia volatilization from the surface of the wetlands in high alkaline conditions only contributed to 3% of the total removed ammonium. The microbial abundance and activity had significant diversity for the various enhancement strategies used in the constructed wetland systems. Anammox is an important process for nitrogen removal in CWs treating alkaline stripped effluent, and possible enhancements of this process should be investigated further.

  12. Combined alkaline and ultrasonic pretreatment of sludge before aerobic digestion

    Institute of Scientific and Technical Information of China (English)

    JIN Yiying; LI Huan; MAHAR Rasool Bux; WANG Zhiyu; NIE Yongfeng

    2009-01-01

    Alkaline and ultrasonic sludge disintegration can both be used as pretreatments of waste activated sludge (WAS) for improving the subsequent anaerobic or aerobic digestion. The pretreatment has been carried out using different combination of these two methods in this study. The effect was evaluated based on the quantity of soluble chemical oxygen demand (SCOD) in the pretreated sludge as well as the degradation of organic matter in the following aerobic digestion. For WAS samples with combined pretreatment, the released COD was in high level than those with ultrasonic or alkaline treatment. When combined with the same ultrasonic treatment, NaOH treatment resulted in more solubilization of WAS than Ca(OH)2. For combined NaOH and ultrasonic treatments with different sequences, the released COD were in the order: simultaneous treatment > ultrasonic treatment following NaOH treatment > NaOH treatment following ultrasonic treatment. For simultaneous treatment, low NaOH dosage (100 g/kg dry solid), short duration (30 min) of NaOH treatment, and low ultrasonic specific energy (7 500 kJ/kg dry solid) were beneficial for sludge disintegration. Using combined NaOH and ultrasonic pretreatment with the optimium parameters, the degradation efficiency of organic matter was increased from 38.0% to 50.7%, which is much higher than with ultrasonic (42.5%) or with NaOH pretreatment (43.5%) in the subsequent aerobic digestion at the same retention time.

  13. Development of alkaline fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari [Colorado School of Mines, Golden, CO; Horan, James L. [Colorado School of Mines, Golden, CO; Caire, Benjamin R. [Colorado School of Mines, Golden, CO; Ziegler, Zachary C. [Colorado School of Mines, Golden, CO; Herring, Andrew M. [Colorado School of Mines, Golden, CO; Yang, Yuan [Colorado School of Mines, Golden, CO; Zuo, Xiaobing [Argonne National Laboratory, Argonne, IL; Robson, Michael H. [University of New Mexico, Albuquerque, NM; Artyushkova, Kateryna [University of New Mexico, Albuquerque, NM; Patterson, Wendy [University of New Mexico, Albuquerque, NM; Atanassov, Plamen Borissov [University of New Mexico, Albuquerque, NM

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassov's research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herring's group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  14. Anaerobic digestion of solid material

    DEFF Research Database (Denmark)

    Vavilin, V.A.; Lokshina, L.Y.; Flotats, X.;

    2007-01-01

    A new multidimensional (3 and 2D) anaerobic digestion model for cylindrical reactor with non-uniform influent concentration distributions was developed to study the way in which mixing intensity affects the efficiency of continuous-flow anaerobic digestion. Batch experiments reported and simulated...... improve the continuous flow reactor performance at the relatively low influent methanogenic biomass concentration. In the continuously stirred tank reactor (CSTR) there are two steady states with and without methane production at slightly different values of initial methanogenic biomass concentration....... In the system, the threshold methanogenic biomass concentration existed because of inhibition by high VFA concentration. High methanogenic biomass concentration is required for efficient anaerobic digestion of MSW in order to avoid possible inhibition due to high VFA build-up. Thus, CSTR configuration might...

  15. RISK FACTORS IN NEONATAL ANAEROBIC INFECTIONS

    Directory of Open Access Journals (Sweden)

    M. S. Tabib

    2008-06-01

    Full Text Available Anaerobic bacteria are well known causes of sepsis in adults but there are few studies regarding their role in neonatal sepsis. In an attempt to define the incidence of neonatal anaerobic infections a prospective study was performed during one year period. A total number of 400 neonates under sepsis study were entered this investigation. Anaerobic as well as aerobic cultures were sent. The patients were subjected to comparison in two groups: anaerobic culture positive and anaerobic culture negative and this comparison were analyzed statistically. There were 7 neonates with positive anaerobic culture and 35 neonates with positive aerobic culture. A significant statistical relationship was found between anaerobic infections and abdominal distention and pneumonia. It is recommended for those neonates with abdominal distention and pneumonia refractory to antibiotic treatment to be started on antibiotics with anaerobic coverage.

  16. 78 FR 18535 - Respirator Certification Fees

    Science.gov (United States)

    2013-03-27

    ... HUMAN SERVICES 42 CFR Part 84 RIN 0920-AA42 Respirator Certification Fees AGENCY: Centers for Disease... and Human Services (HHS) proposes to revise the fee structure currently used by the National Institute... number). SUPPLEMENTARY INFORMATION: This proposed rule is designed to establish fees for the...

  17. Microbial iron respiration: impacts on corrosion processes.

    Science.gov (United States)

    Lee, A K; Newman, D K

    2003-08-01

    In this review, we focus on how biofilms comprising iron-respiring bacteria influence steel corrosion. Specifically, we discuss how biofilm growth can affect the chemistry of the environment around the steel at different stages of biofilm development, under static or dynamic fluid regimes. We suggest that a mechanistic understanding of the role of biofilm metabolic activity may facilitate corrosion control. PMID:12734693

  18. Respirators, internal dose, and Oyster Creek

    International Nuclear Information System (INIS)

    This article looks at the experience of Oyster Creek in relaxing the requirements for the use of respirators in all facets of plant maintenance, on the overall dose received by plant maintenance personnel. For Roger Shaw, director of radiological controls for three years at GPU Nuclear Corporation's Oyster Creek nuclear plant the correct dose balance is determined on a job-by-job basis: Does the job require a respirator, which is an effective means of decreasing worker inhalation of airborne radioactive particles? Will wearing a respirator slow down a worker, consequently increasing whole body radiation exposure by prolonging the time spent in fields of high external radiation? How does respiratory protection affect worker safety and to what degree? While changes to the Nuclear Regulatory Commission's 10CFR20 have updated the radiation protection requirements for the nuclear industry, certain of the revisions have been directed specifically at reducing worker dose, Shaw said. open-quotes It basically delineates that dose is dose,close quotes Shaw said, open-quotes regardless of whether it is acquired externally or internally.close quotes The revision of Part 20 changed the industry's attitude toward internal dose, which had always been viewed negatively. open-quotes Internal dose was always seen as preventable by wearing respirators and by using engineering techniques such as ventilation control and decontamination,close quotes Shaw said, open-quotes whereas external dose, although reduced where practical, was seen as a fact of the job.close quotes

  19. 42 CFR 84.1130 - Respirators; description.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirators; description. 84.1130 Section 84.1130 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND... respective vapors, or from the chemical reaction between their respective vapors and gases. (3)...

  20. Assessment of the ability of sludge to degrade PCP under anaerobic conditions

    Directory of Open Access Journals (Sweden)

    R. M. L. Bolaños

    2005-12-01

    Full Text Available The capacity of sludge from different sources to degrade pentachlorophenol (PCP was evaluated. Three 2.5 liter reactors (R1, R2, and R3 were inoculated with different anaerobic sludges, semi continuously fed and maintained in orbital motion at 30±1°C. R1 was inoculated with aerobic sludge and river sediment collected downstream from a pulp and paper plant. R2 received sludge from an anaerobic reactor treating effluents from a paper recycling plant and R3 received anaerobic sludge from a biodigestor treating industrial and domestic effluents. The sludges were first acclimatized to a culture medium generally recommended for organochloride anaerobic degradation studies. The reactors were then subjected to increasing concentrations of PCP from 0.05 to 10.0 mg.l-1. PCP degradation and metabolite formation were monitored using gas chromatography, and the effects of PCP on the anaerobic process were verified by monitoring pH, volatile fatty acids, alkalinity, total suspended solids, and chemical oxygen demand. It was found that PCP did not affect reactor performance. All the sludges displayed the best PCP degradation capacity at a concentration of 0.2 mg.l-1, producing fewer chlorinated metabolites than when higher PCP concentrations were applied. R1 consistently produced fewer chlorinated metabolites, confirming the hypothesis that pre exposure to chlorinated compounds improves the sludge's capacity to degrade PCP.

  1. Anaerobic Digestion of Piggery Waste

    OpenAIRE

    Velsen, van, L.S.

    1981-01-01

    Anaerobic digestion is a biological process by which organic matter is converted to methane and carbon dioxide by microbes in the absence of air (oxygen). In nature, anaerobic conversions occur at all places where organic material accumulates and the supply of oxygen is deficient, e.g. in marshes and lake sediments. Microbial formation of methane also plays a role in the ruminant digestion.In digestion units, the external conditions acting upon the process can be regulated to speed it up as c...

  2. Anaerobic membrane bioreactors for municipal wastewater treatment

    OpenAIRE

    Fawehinmi, Folasade

    2006-01-01

    Anaerobic treatment has historically been considered unsuitable for the treatment of domestic wastewaters. The work presented in this thesis focuses on the incorporation of membranes into the anaerobic bioreactor to uncouple solid retention time and hydraulic retention time. This in turn prevents biomass washout and allows sufficient acclimatisation periods for anaerobes. However, the exposure of membranes to anaerobic biomass comes with its own inherent problems namely fouling. Fouling w...

  3. Molecular genetic studies on obligate anaerobic bacteria

    International Nuclear Information System (INIS)

    Molecular genetic studies on obligate anaerobic bacteria have lagged behind similar studies in aerobes. However, the current interest in biotechnology, the involvement of anaerobes in disease and the emergence of antibioticresistant strains have focused attention on the genetics of anaerobes. This article reviews molecular genetic studies in Bacteroides spp., Clostridium spp. and methanogens. Certain genetic systems in some anaerobes differ from those in aerobes and illustrate the genetic diversity among bacteria

  4. Toward a general evaluation model for soil respiration (GEMSR)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Soil respiration is an important component of terrestrial carbon budget. Its accurate evaluation is es- sential to the study of terrestrial carbon source/sink. Studies on soil respiration at present mostly focus on the temporal variations and the controlling factors of soil respiration, but its spatial variations and controlling factors draw less attention. Moreover, the evaluation models for soil respiration at present include only the effects of water and heat factors, while the biological and soil factors controlling soil respiration and their interactions with water and heat factors have not been considered yet. These models are not able to accurately evaluate soil respiration in different vegetation/terrestrial ecosystems at different temporal and spatial scales. Thus, a general evaluation model for soil respiration (GEMSR) including the interacting meteorological (water and heat factors), soil nutrient and biological factors is suggested in this paper, and the basic procedure developing GEMSR and the research tasks of soil respiration in the future are also discussed.

  5. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers.

    Science.gov (United States)

    Anderson, I C; Levine, J S

    1986-05-01

    Biogenic emissions of nitric and nitrous oxides have important impacts on the photochemistry and chemistry of the atmosphere. Although biogenic production appears to be the overwhelming source of N(2)O, the magnitude of the biogenic emission of NO is very uncertain. In soils, possible sources of NO and N(2)O include nitrification by autotrophic and heterotrophic nitrifiers, denitrification by nitrifiers and denitrifiers, nitrate respiration by fermenters, and chemodenitrification. The availability of oxygen determines to a large extent the relative activities of these various groups of organisms. To better understand this influence, we investigated the effect of the partial pressure of oxygen (pO(2)) on the production of NO and N(2)O by a wide variety of common soil nitrifying, denitrifying, and nitrate-respiring bacteria under laboratory conditions. The production of NO per cell was highest by autotrophic nitrifiers and was independent of pO(2) in the range tested (0.5 to 10%), whereas N(2)O production was inversely proportional to pO(2). Nitrous oxide production was highest in the denitrifier Pseudomonas fluorescens, but only under anaerobic conditions. The molar ratio of NO/N(2)O produced was usually greater than unity for nitrifiers and much less than unity for denitrifiers. Chemodenitrification was the major source of both the NO and N(2)O produced by the nitrate respirer Serratia marcescens. Chemodenitrification was also a possible source of NO and N(2)O in nitrifier cultures but only when high concentrations of nitrite had accumulated or were added to the medium. Although most of the denitrifiers produced NO and N(2)O only under anaerobic conditions, chemostat cultures of Alcaligenes faecalis continued to emit these gases even when the cultures were sparged with air. Based upon these results, we predict that aerobic soils are primary sources of NO and that N(2)O is produced only when there is sufficient soil moisture to provide the anaerobic microsites

  6. Factors Controlling Respiration Rates and Respired Carbon Dioxide Signatures in Riverine Ecosystems of the Amazon Basin

    Science.gov (United States)

    Ellis, E. E.; Richey, J. E.; Aufdenkampe, A. K.; Quay, P. D.; Krusche, A. V.; Alin, S. R.

    2006-12-01

    This study examined the processes controlling respiration rates observed in streams and rivers throughout the Amazon basin during the dry season by substituting spatial coverage for experimental manipulation. Throughout the Brazilian states of Amazonas and Acre, respiration rates ranged from 0.066 to 1.45 μM/hr of O2 consumed. In situ respiration was positively correlated with pH (r2=0.60), with pH values ranging from 3.95 to 8.57. Although the concentration of bulk size fractions of organic matter(dissolved organic carbon (DOC), fine particulate organic carbon, and coarse particulate organic carbon) were uncorrelated with both pH and respiration, respiration was positively correlated with the percentage of DOC that was less than 5 kDa as determined by centrifuge ultrafiltration (r2=0.52). No correlation was observed for the less than 100 kDa fraction. Further, pH was also correlated with the percentage of DOC in the <5 kDa fraction (r2=0.86), as the <5 kDa fraction increased from 34% in acidic blackwater streams to 91% in more basic whitewater rivers. These results suggest that low molecular weight organic matter (LMWOM, <5 kDa) is labile and supports higher respiration rates as compared to high molecular weight organic matter, and that pH may control the size distribution of dissolved organic matter. Further, at high pH sites with high respiration rates, net primary production ranged from 3.54 to 13.5 μM/hr of O2 produced. These rates suggest that higher pH sites are dominated by in situ production, resulting in high yields of LMWOM, which is rapidly consumed during the dry season. The 13C of respired CO2 was monitored during bottle incubations to characterize the source of organic matter being respired. Values ranged from -15.2 to -27.0‰, similar to the 13C of DIC at each site, indicating that respiration is a key process controlling the δ13C of the DIC. Furthermore, there is a positive correlation between the δ13C of respired CO2 and respiration rate (r2

  7. Viscosity evolution of anaerobic granular sludge

    NARCIS (Netherlands)

    Pevere, A.; Guibaud, G.; Hullebusch, van E.D.; Lens, P.N.L.; Baudu, M.

    2006-01-01

    The evolution of the apparent viscosity at steady shear rate of sieved anaerobic granular sludge (20¿315 ¿m diameter) sampled from different full-scale anaerobic reactors was recorded using rotation tests. The ¿limit viscosity¿ of sieved anaerobic granular sludge was determined from the apparent vis

  8. Kinetics and modeling of anaerobic digestion process

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    Anaerobic digestion modeling started in the early 1970s when the need for design and efficient operation of anaerobic systems became evident. At that time not only was the knowledge about the complex process of anaerobic digestion inadequate but also there were computational limitations. Thus...

  9. Respiration hastens maturation and lowers yield in rice

    OpenAIRE

    Sitaramam, V.; Bhate, R.; Kamalraj, P.; Pachapurkar, S.

    2008-01-01

    Role of respiration in plant growth remains an enigma. Growth of meristematic cells, which are not photosynthetic, is entirely driven by endogenous respiration. Does respiration determine growth and size or does it merely burn off the carbon depleting the biomass? We show here that respiration of the germinating rice seed, which is contributed largely by the meristematic cells of the embryo, quantitatively correlates with the dynamics of much of plant growth, starting with the time for germin...

  10. [Stem respiration of Pinus koraiensis in Changbai Mountains].

    Science.gov (United States)

    Wang, Miao; Ji, Lanzhu; Li, Qiurong; Xiao, Dongmei; Liu, Hailiang

    2005-01-01

    In this paper, soil respiration chamber, a simple and precise method, was used to measure the stem respiration of trees. LI-6400-09 respiration chamber serving as a system is usually used in soil respiration, but we made polyvinyl chloride (PVC) collar and fixed it on the stem surface to measure the stem respiration. From May to October 2003, the stem respiration of Pinus koraiensis, the dominant tree species in Changbai Mountain, was measured in different time and different places using this technique. Meanwhile, the temperatures in the stems and in the forests were measured. The results showed that the stem respiration rate had a remarkably seasonal tendency with a single peak, the maximum was in August and the minimum was in February. The stem respiration rate had an exponential relationship with stem temperature, and the curve exponential regressions for stem respiration rate and temperature factor of trees with big DBH were better than those with small DBH. The stem respiration in different DBH trees was higher in the south stem face than that in the north stem face, and the variance of respiration rate between south and north decreased with a decrease of DBH trees. During the growing season from May to October, the average maintenance respiration accounted for 63.63% in different DBH trees, and the maintenance respiration contribution to total respiratory consumption increased with increasing DBH, which was 66.76, 73.29% and 50.84%, respectively. The stem respiration Q10 values ranged from 2.56-3.32 in different DBH of trees, and the seasonal tendency for stem R, and Rm in different DBH of trees was obtained by using respiration Q10. Therefore, the differences between different parts of stem and different DBH of trees should be considered in estimating the respiration model in ecosystem. PMID:15852948

  11. Acceptable respiratory protection program and LASL respirator research

    International Nuclear Information System (INIS)

    A short history is presented on the LASL Respiratory Protection Training Programs. Then a discussion is given on the major points of an acceptable respiratory protection program utilizing the points required by the Occupational, Safety, and Health Administration (OSHA) Regulation 29 CFR 1910.134. Contributions to respirator research are reviewed. Discussion is presented under the following section headings: program administration; respirator selection; respirator use; fitting and training; respirator maintenance; medical clearance and surveillance; special problems; program evaluation; and documentation

  12. 20 CFR 718.303 - Death from a respirable disease.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Death from a respirable disease. 718.303... from a respirable disease. (a)(1) If a deceased miner was employed for ten or more years in one or more coal mines and died from a respirable disease, there shall be a rebuttable presumption that his or...

  13. 20 CFR 410.462 - Presumption relating to respirable disease.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Presumption relating to respirable disease... Pneumoconiosis § 410.462 Presumption relating to respirable disease. (a) Even though the existence of... was employed for 10 years or more in the Nation's coal mines and died from a respirable disease,...

  14. 21 CFR 892.1970 - Radiographic ECG/respirator synchronizer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiographic ECG/respirator synchronizer. 892.1970... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1970 Radiographic ECG/respirator synchronizer. (a) Identification. A radiographic ECG/respirator synchronizer is a device intended to be used...

  15. 30 CFR 70.300 - Respiratory equipment; respirable dust.

    Science.gov (United States)

    2010-07-01

    ... Respiratory equipment; respirable dust. Respiratory equipment approved by NIOSH under 42 CFR part 84 shall be made available to all persons whenever exposed to concentrations of respirable dust in excess of the... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Respiratory equipment; respirable dust....

  16. 42 CFR 84.1134 - Respirator containers; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84... Combination Gas Masks § 84.1134 Respirator containers; minimum requirements. (a) Except as provided in paragraph (b) of this section each respirator shall be equipped with a substantial, durable...

  17. 42 CFR 84.1156 - Pesticide respirators; performance requirements; general.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Pesticide respirators; performance requirements... DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1156 Pesticide respirators; performance requirements;...

  18. Growth energetics of an alkaline serine protease-producing strain of Bacillus clausii during continuous cultivation

    DEFF Research Database (Denmark)

    Christiansen, Torben; Nielsen, Jens

    2002-01-01

    Glucose-limited chemostats were used to determine the growth yields of biomass of Bacillus clausii PP 473-8 producing an alkaline serine protease Savinase (Novozymes A/S, Bagsvaerd, Denmark) and a low yield of biomass on oxygen was observed. The energy metabolism was investigated further by setting.......93 mmol ATP/gDW/h. From these values it is concluded that the high oxygen consumption compared with other Bacillus species is due to a low efficiency in respiration resulting in a low P/O ratio. Finally, the energetic parameters were estimated for different architectures of the respiratory chain....

  19. Oxygen Effects in Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    Deshai Botheju

    2009-10-01

    Full Text Available Interaction of free oxygen in bio-gasification is a sparsely studied area, apart from the common argument of oxygen being toxic and inhibitory for anaerobic micro-cultures. Some studies have, however, revealed increased solubilisation of organic matter in the presence of some free oxygen in anaerobic digestion. This article analyses these counterbalancing phenomena with a mathematical modelling approach using the widely accepted biochemical model ADM 1. Aerobic oxidation of soluble carbon and inhibition of obligatory anaerobic organisms are modelled using standard saturation type kinetics. Biomass dependent first order hydrolysis kinetics is used to relate the increased hydrolysis rate with oxygen induced increase in biomass growth. The amended model, ADM 1-Ox (oxygen, has 25 state variables and 22 biochemical processes, presented in matrix form. The computer aided simulation tool AQUASIM 2.1 is used to simulate the developed model. Simulation predictions are evaluated against experimental data obtained using a laboratory batch test array comprising miniature anaerobic bio-reactors of 100 ml total volume each, operated under different initial air headspaces giving rise to the different oxygen loading conditions. The reactors were initially fed with a glucose solution and incubated at 35 Celsius, for 563 hours. Under the oxygen load conditions of 22, 44 and 88 mg/L, the ADM1-Ox model simulations predicted the experimental methane potentials quite adequately. Both the experimental data and the simulations suggest a linear reduction of methane potential with respect to the increase in oxygen load within this range.

  20. Anaerobic Treatment of Methanolic Wastes

    NARCIS (Netherlands)

    Lettinga, G.; Geest, van der A.Th.; Hobma, S.W.; Laan, van der J.B.R.

    1979-01-01

    Although it is well known that methanol can be fermented directly by a specific species of methane bacteria, viz. Methanosarcina barkeri, until now little information was available about the effect of important environmental factors on the anaerobic fermentation of methanol. As methanol can be the m

  1. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system

    International Nuclear Information System (INIS)

    The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25 g COD/L/d and 93% at loading rate of 3.37 g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g CODrem for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%.

  2. Anaerobic microbial dehalogenation of organohalides-state of the art and remediation strategies.

    Science.gov (United States)

    Nijenhuis, Ivonne; Kuntze, Kevin

    2016-04-01

    Contamination and remediation of groundwater with halogenated organics and understanding of involved microbial reactions still poses a challenge. Over the last years, research in anaerobic microbial dehalogenation has advanced in many aspects providing information about the reaction, physiology of microorganisms as well as approaches to investigate the activity of microorganisms in situ. Recently published crystal structures of reductive dehalogenases (Rdh), heterologous expression systems and advanced analytical, proteomic and stable isotope approaches allow addressing the overall reaction and specific enzymes as well as co-factors involved during anaerobic microbial dehalogenation. In addition to Dehalococcoides spp., Dehalobacter and Dehalogenimonas strains have been recognized as important and versatile organohalide respirers. Together, these provide perspectives for integrated concepts allowing to improve and monitor in situ biodegradation. PMID:26773757

  3. Alkaline fuel cell performance investigation

    Science.gov (United States)

    Martin, R. E.; Manzo, M. A.

    1988-01-01

    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more that two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.

  4. Anaerobic denitrification in fungi from the coastal marine sediments off Goa, India.

    Science.gov (United States)

    Cathrine, Sumathi J; Raghukumar, Chandralata

    2009-01-01

    Denitrification is a microbial process during which nitrate or nitrite is reduced under anaerobic condition to gaseous nitrogen. The Arabian Sea contains one of the major pelagic denitrification zones and in addition to this, denitrification also takes places along the continental shelf. Prokaryotic microorganisms were considered to be the only players in this process. However recent studies have shown that higher microeukaryotes such as fungi can also adapt to anaerobic mode of respiration and reduce nitrate to harmful green house gases such as NO and N2O. In this study we examined the distribution and biomass of fungi in the sediments of the seasonal anoxic region off Goa from two stations. The sampling was carried out in five different periods from October 2005, when dissolved oxygen levels were near zero in bottom waters to March 2006. We isolated mycelial fungi, thraustochytrids and yeasts. Species of Aspergillus and thraustochytrids were dominant. Fungi were isolated under aerobic, as well as anaerobic conditions from different seasons. Four isolates were examined for their denitrification activity. Two cultures obtained from the anoxic sediments showed better growth under anaerobic condition than the other two cultures that were isolated from oxic sediments. Our preliminary results suggest that several species of fungi can grow under oxygen deficient conditions and participate in denitrification processes. PMID:18834939

  5. Anaerobic Mineralization of Toluene by Enriched Sediments with Quinones and Humus as Terminal Electron Acceptors

    Science.gov (United States)

    Cervantes, Francisco J.; Dijksma, Wouter; Duong-Dac, Tuan; Ivanova, Anna; Lettinga, Gatze; Field, Jim A.

    2001-01-01

    The anaerobic microbial oxidation of toluene to CO2 coupled to humus respiration was demonstrated by use of enriched anaerobic sediments from the Amsterdam petroleum harbor (APH) and the Rhine River. Both highly purified soil humic acids (HPSHA) and the humic quinone moiety model compound anthraquinone-2,6-disulfonate (AQDS) were utilized as terminal electron acceptors. After 2 weeks of incubation, 50 and 85% of added uniformly labeled [13C]toluene were recovered as 13CO2 in HPSHA- and AQDS-supplemented APH sediment enrichment cultures, respectively; negligible recovery occurred in unsupplemented cultures. The conversion of [13C]toluene agreed with the high level of recovery of electrons as reduced humus or as anthrahydroquinone-2,6-disulfonate. APH sediment was also able to use nitrate and amorphous manganese dioxide as terminal electron acceptors to support the anaerobic biodegradation of toluene. The addition of substoichiometric amounts of humic acids to bioassay reaction mixtures containing amorphous ferric oxyhydroxide as a terminal electron acceptor led to more than 65% conversion of toluene (1 mM) after 11 weeks of incubation, a result which paralleled the partial recovery of electron equivalents as acid-extractable Fe(II). Negligible conversion of toluene and reduction of Fe(III) occurred in these bioassay reaction mixtures when humic acids were omitted. The present study provides clear quantitative evidence for the mineralization of an aromatic hydrocarbon by humus-respiring microorganisms. The results indicate that humic substances may significantly contribute to the intrinsic bioremediation of anaerobic sites contaminated with priority pollutants by serving as terminal electron acceptors. PMID:11571145

  6. Paper-Based Electrical Respiration Sensor.

    Science.gov (United States)

    Güder, Firat; Ainla, Alar; Redston, Julia; Mosadegh, Bobak; Glavan, Ana; Martin, T J; Whitesides, George M

    2016-05-01

    Current methods of monitoring breathing require cumbersome, inconvenient, and often expensive devices; this requirement sets practical limitations on the frequency and duration of measurements. This article describes a paper-based moisture sensor that uses the hygroscopic character of paper (i.e. the ability of paper to adsorb water reversibly from the surrounding environment) to measure patterns and rate of respiration by converting the changes in humidity caused by cycles of inhalation and exhalation to electrical signals. The changing level of humidity that occurs in a cycle causes a corresponding change in the ionic conductivity of the sensor, which can be measured electrically. By combining the paper sensor with conventional electronics, data concerning respiration can be transmitted to a nearby smartphone or tablet computer for post-processing, and subsequently to a cloud server. This means of sensing provides a new, practical method of recording and analyzing patterns of breathing. PMID:27059088

  7. A MEMS turbine prototype for respiration harvesting

    Science.gov (United States)

    Goreke, U.; Habibiabad, S.; Azgin, K.; Beyaz, M. I.

    2015-12-01

    The design, manufacturing, and performance characterization of a MEMS-scale turbine prototype is reported. The turbine is designed for integration into a respiration harvester that can convert normal human breathing into electrical power through electromagnetic induction. The device measures 10 mm in radius, and employs 12 blades located around the turbine periphery along with ball bearings around the center. Finite element simulations showed that an average torque of 3.07 μNm is induced at 12 lpm airflow rate, which lies in normal breathing levels. The turbine and a test package were manufactured using CNC milling on PMMA. Tests were performed at respiration flow rates between 5-25 lpm. The highest rotational speed was measured to be 9.84 krpm at 25 lpm, resulting in 8.96 mbar pressure drop across the device and 370 mW actuation power.

  8. Impact of human activities on soil respiration:A review

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Soil respiration is one of the primary fluxes of carbon between soils and the atmosphere.It is produced by rhizosphere respiration and soil microbial respiration.Soil respiration is not only affected by environmental factors,but also changes with the hu-man-induced disturbances of ecosystems.Land-use,the measures of land management,the pollution of soil,and so on can affect soil respiration and change the soil efflux.According to some research,the authors summed up their impacts on soil respiration by human activities through land-use changes and land-management measures among agroecosystem,grassland ecosystem,and for-est ecosystem.The results showed that (1) when adding fertilization to farmland,the soil respiration will increase;(2) fenced land can decrease soil respiration,while soil respiration in the grazed land at a grassland ecosystem will decline with the increasing of grazing intensity;(3) with grassland fertilization;farmland cultivation;fire,fertilization,and cutting of forest,conflicting results were found in the changes of soil respiration.Perhaps plant species,site condition,and measurement season can lead to different results on soil respiration.

  9. DIFFUSION IN BIOFILMS RESPIRING ON ELECTRODES

    OpenAIRE

    Renslow, RS; Babauta, JT; Majors, PD; Beyenal, H

    2012-01-01

    The goal of this study was to measure spatially and temporally resolved effective diffusion coefficients (De) in biofilms respiring on electrodes. Two model electrochemically active biofilms, Geobacter sulfurreducens PCA and Shewanella oneidensis MR-1, were investigated. A novel nuclear magnetic resonance microimaging perfusion probe capable of simultaneous electrochemical and pulsed-field gradient nuclear magnetic resonance (PFG-NMR) techniques was used. PFG-NMR allowed noninvasive, nondestr...

  10. Electron transport in microbial chlorate respiration

    OpenAIRE

    Smedja Bäcklund, Anna

    2009-01-01

    Several bacterial species are capable to use perchlorate and/or chlorate as an alternative electron acceptor in absence of oxygen. Microbial respiration of oxochlorates is important for biotreatment of effluent from industries where oxochlorates are produced or handled. One of these species, the Gram-negative Ideonella dechloratans, is able to reduce chlorate but not perchlorate. Two soluble enzymes, chlorate reductase and chlorite dismutase, participate in the conversion of chlorate into chl...

  11. Biologic treatment of wastewater from cassava flour production using vertical anaerobic baffled reactor (VABR

    Directory of Open Access Journals (Sweden)

    Gleyce T Correia

    2008-08-01

    Full Text Available The estimate cassava production in Brazil in 2007 was of 25 million tons (= 15% of the world production and most of it is used in the production of flour. During its processing, waste that can cause environmental inequality is generated, if discharged inappropriately. One of the liquid waste generated, manipueira, is characterized by its high level of organic matter. The anaerobic treatment that uses a vertical anaerobic baffled reactor (VABR inoculated with granulated sludge, is one of the ways of treating this effluent. The anaerobic biodigestion phases are separated in this kind of reactor, allowing greater stability and resistance to load shocks. The VABR was built with a width/height rate of 1:2. The pH, acidity, alkalinity, turbidity and COD removal were analyzed in 6 different regions of the reactor, which was operated with an increasing feeding from ? 2000 to ? 10000 mg COD L?¹ and HRT between 6.0 and 2.5 days. The VABR showed decreasing acidity and turbidity, an increase in alkalinity and pH, and 96% efficiency in COD removal with 3-day HRT and feeding of 3800 mg COD L?¹.

  12. Cassava Stillage Treatment by Thermophilic Anaerobic Continuously Stirred Tank Reactor (CSTR)

    Science.gov (United States)

    Luo, Gang; Xie, Li; Zou, Zhonghai; Zhou, Qi

    2010-11-01

    This paper assesses the performance of a thermophilic anaerobic Continuously Stirred Tank Reactor (CSTR) in the treatment of cassava stillage under various organic loading rates (OLRs) without suspended solids (SS) separation. The reactor was seeded with mesophilic anaerobic granular sludge, and the OLR increased by increments to 13.80 kg COD/m3/d (HRT 5d) over 80 days. Total COD removal efficiency remained stable at 90%, with biogas production at 18 L/d (60% methane). Increase in the OLR to 19.30 kg COD/m3/d (HRT 3d), however, led to a decrease in TCOD removal efficiency to 79% due to accumulation of suspended solids and incomplete degradation after shortened retention time. Reactor performance subsequently increased after OLR reduction. Alkalinity, VFA and pH levels were not significantly affected by OLR variation, indicating that no additional alkaline or pH adjustment is required. More than half of the SS in the cassava stillage could be digested in the process when HRT was 5 days, which demonstrated the suitability of anaerobic treatment of cassava stillage without SS separation.

  13. Effect of incubation conditions on anaerobic susceptibility testing results.

    OpenAIRE

    Murray, P R; Niles, A C

    1982-01-01

    We determined the effect of performing antimicrobial susceptibility tests in five different anaerobic incubation systems: GasPak jar, large GasPak jar, evacuated-gassed anaerobic jar, anaerobic chamber, and Bio-Bag. Growth of the anaerobes was equivalent in all five incubation systems. The results of testing 38 anaerobes against 11 antimicrobial agents were comparable for the anaerobic jars and anaerobic chamber. However, discordant results were observed for metronidazole and cefamandole test...

  14. How Ecosystems Breathe: Measuring Respiration of Soil

    Science.gov (United States)

    McTammany, M. E.

    2005-05-01

    Curriculum for general ecology labs often uses in-lab exercises and computer simulations to demonstrate ecological principles rather than experimental field projects. In addition, ecosystem processes can be difficult to incorporate into general ecology labs because the techniques require sophisticated equipment or complex field designs. As an alternative to in-lab projects, I have integrated field measurement of soil respiration into my general ecology lab to teach students aspects of experimental design (sampling, replication, error, etc.) and to demonstrate how organism-level processes operate beyond single organisms in nature and are influenced by environmental conditions. In a program laden with biomedical interests, analogies between organisms and ecosystems are quite appealing to students. Students in my general ecology course complete a 2-week field project in which they measure soil respiration inside a dark microcosm chamber. We use 10% KOH to trap evolved CO2 and titrate unreacted KOH in lab using 1N HCl. The protocol is simple, only requires some chemicals, and can be used in many different habitats (including flower beds on campus) quite easily. Potential experiments could involve varying environmental conditions, such as soil moisture, nutrient availability, gaseous environment, carbon supply, or temperature, to affect soil respiration rate.

  15. Diffusion in biofilms respiring on electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Renslow, Ryan S. [Washington State Univ., Pullman, WA (United States); Babauta, Jerome T. [Washington State Univ., Pullman, WA (United States); Majors, Paul D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Beyenal, Haluk [Washington State Univ., Pullman, WA (United States)

    2012-11-15

    The goal of this study was to measure spatially and temporally resolved effective diffusion coefficients (De) in biofilms respiring on electrodes. Two model electrochemically active biofilms, Geobacter sulfurreducens PCA and Shewanella oneidensis MR-1, were investigated. A novel nuclear magnetic resonance microimaging perfusion probe capable of simultaneous electrochemical and pulsed-field gradient nuclear magnetic resonance (PFG-NMR) techniques was used. PFG-NMR allowed for noninvasive, nondestructive, high spatial resolution in situ De measurements in living biofilms respiring on electrodes. The electrodes were polarized so that they would act as the sole terminal electron acceptor for microbial metabolism. We present our results as both two-dimensional De heat maps and surface-averaged relative effective diffusion coefficient (Drs) depth profiles. We found that (1) Drs decreases with depth in G. sulfurreducens biofilms, following a sigmoid shape; (2) Drs at a given location decreases with G. sulfurreducens biofilm age; (3) average De and Drs profiles in G. sulfurreducens biofilms are lower than those in S. oneidensis biofilms—the G. sulfurreducens biofilms studied here were on average 10 times denser than the S. oneidensis biofilms; and (4) halting the respiration of a G. sulfurreducens biofilm decreases the De values. Density, reflected by De, plays a major role in the extracellular electron transfer strategies of electrochemically active biofilms.

  16. Continuous respirable mine dust monitor development

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, B.K.; Williams, K.L.; Stein, S.W. [and others

    1996-12-31

    In June 1992, the Mine Safety and Health Administration (MSHA) published the Report of the Coal Mine Respirable Dust Task Group, Review of the Program to Control Respirable Coal Mine Dust in the United States. As one of its recommendations, the report called for the accelerated development of two mine dust monitors: (1) a fixed-site monitor capable of providing continuous information on dust levels to the miner, mine operator, and to MSHA, if necessary, and (2) a personal sampling device capable of providing both a short-term personal exposure measurement as well as a full-shift measurement. In response to this recommendation, the U.S. Bureau of Mines initiated the development of a fixed-site machine-mounted continuous respirable dust monitor. The technology chosen for monitor development is the Rupprecht and Patashnick Co., Inc. tapered element oscillating microbalance. Laboratory and in-mine tests have indicated that, with modification, this sensor can meet the humidity and vibration requirements for underground coal mine use. The U.S. Department of Energy Pittsburgh Research Center (DOE-PRC) is continuing that effort by developing prototypes of a continuous dust monitor based on this technology. These prototypes are being evaluated in underground coal mines as they become available. This effort, conducted as a joint venture with MSHA, is nearing completion with every promise of success.

  17. Grace DAKASEP alkaline battery separator

    Science.gov (United States)

    Giovannoni, R. T.; Lundquist, J. T.; Choi, W. M.

    1987-01-01

    The Grace DAKASEP separator was originally developed as a wicking layer for nickel-zinc alkaline batteries. The DAKASEP is a filled non-woven separator which is flexible and heat sealable. Through modification of formulation and processing variables, products with a variety of properties can be produced. Variations of DAKASEP were tested in Ni-H2, Ni-Zn, Ni-Cd, and primary alkaline batteries with good results. The properties of DAKASEP which are optimized for Hg-Zn primary batteries are shown in tabular form. This separator has high tensile strength, 12 micron average pore size, relatively low porosity at 46-48 percent, and consequently moderately high resistivity. Versions were produced with greater than 70 percent porosity and resistivities in 33 wt percent KOH as low as 3 ohm cm. Performance data for Hg-Zn E-1 size cells containing DAKASEP with the properties shown in tabular form, are more reproducible than data obtained with a competitive polypropylene non-woven separator. In addition, utilization of active material is in general considerably improved.

  18. Hybrid alkali-hydrodynamic disintegration of waste-activated sludge before two-stage anaerobic digestion process

    OpenAIRE

    Grübel, Klaudiusz; Suschka, Jan

    2014-01-01

    The first step of anaerobic digestion, the hydrolysis, is regarded as the rate-limiting step in the degradation of complex organic compounds, such as waste-activated sludge (WAS). The aim of lab-scale experiments was to pre-hydrolyze the sludge by means of low intensive alkaline sludge conditioning before applying hydrodynamic disintegration, as the pre-treatment procedure. Application of both processes as a hybrid disintegration sludge technology resulted in a higher organic matter release (...

  19. Archaeal and bacterial community dynamics and bioprocess performance of a bench-scale two-stage anaerobic digester.

    Science.gov (United States)

    Gonzalez-Martinez, Alejandro; Garcia-Ruiz, Maria Jesus; Rodriguez-Sanchez, Alejandro; Osorio, Francisco; Gonzalez-Lopez, Jesus

    2016-07-01

    Two-stage technologies have been developed for anaerobic digestion of waste-activated sludge. In this study, the archaeal and bacterial community structure dynamics and bioprocess performance of a bench-scale two-stage anaerobic digester treating urban sewage sludge have been studied by the means of high-throughput sequencing techniques and physicochemical parameters such as pH, dried sludge, volatile dried sludge, acid concentration, alkalinity, and biogas generation. The coupled analyses of archaeal and bacterial communities and physicochemical parameters showed a direct relationship between archaeal and bacterial populations and bioprocess performance during start-up and working operation of a two-stage anaerobic digester. Moreover, results demonstrated that archaeal and bacterial community structure was affected by changes in the acid/alkalinity ratio in the bioprocess. Thus, a predominance of the acetoclastic methanogen Methanosaeta was observed in the methanogenic bioreactor at high-value acid/alkaline ratio, while a predominance of Methanomassilicoccaeceae archaea and Methanoculleus genus was observed in the methanogenic bioreactor at low-value acid/alkaline ratio. Biodiversity tag-iTag sequencing studies showed that methanogenic archaea can be also detected in the acidogenic bioreactor, although its biological activity was decreased after 4 months of operation as supported by physicochemical analyses. Also, studies of the VFA producers and VFA consumers microbial populations showed as these microbiota were directly affected by the physicochemical parameters generated in the bioreactors. We suggest that the results obtained in our study could be useful for future implementations of two-stage anaerobic digestion processes at both bench- and full-scale. PMID:26940050

  20. Assessment of anaerobic co-digestion of agro wastes for biogas recovery: A bench scale application to date palm wastes

    OpenAIRE

    Zainab Ziad Ismail, Ali Raad Talib

    2014-01-01

    Anaerobic digestion is a technology widely used for treatment of organic waste to enhance biogas recovery. In this study, recycling of date palm wastes (DPWs) was examined as a source for biogas production. The effects of inoculum addition, pretreatment of substrate, and temperature on the biogas production were investigated in batch mode digesters. Results revealed that the effect of inoculum addition was more significant than alkaline pretreatment of raw waste materials. The biogas recovery...

  1. Alkaline and alkaline earth metal phosphate halides and phosphors

    Science.gov (United States)

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  2. Progress of research on the influence of alkaline cation and alkaline solution on bentonite properties

    International Nuclear Information System (INIS)

    Based on the previous laboratory studies and numerical simulation on bentonite in alkaline environments, the effects of alkaline cation and alkaline solution on mineral composition, microstructure, swelling capacity and hydraulic properties of bentonite are emphasized in this paper, temperature, pH values and concentration are discussed as main affecting factors. When bentonite is exposed to alkaline cation or alkaline solution, microstructure of bentonite will be changed due to the dissolution of montmorillonite and the formation of secondary minerals, which results in the decrease of swelling pressure. The amount of the reduction of swelling pressure depends on the concentration of alkaline solution. Temperature, polyvalent cation, salinity and concentration are the main factors affecting hydraulic properties of bentonite under alkaline conditions. Therefore, future research should focus on the mechanism of coupling effects of weak alkaline solutions on the mineral composition, microstructure, swelling capacity and hydraulic properties of bentonite under different temperatures and different pH values. (authors)

  3. Treatment of Alkaline Cr(VI)-Contaminated Leachate with an Alkaliphilic Metal-Reducing Bacterium.

    Science.gov (United States)

    Watts, Mathew P; Khijniak, Tatiana V; Boothman, Christopher; Lloyd, Jonathan R

    2015-08-15

    Chromium in its toxic Cr(VI) valence state is a common contaminant particularly associated with alkaline environments. A well-publicized case of this occurred in Glasgow, United Kingdom, where poorly controlled disposal of a cementitious industrial by-product, chromite ore processing residue (COPR), has resulted in extensive contamination by Cr(VI)-contaminated alkaline leachates. In the search for viable bioremediation treatments for Cr(VI), a variety of bacteria that are capable of reduction of the toxic and highly soluble Cr(VI) to the relatively nontoxic and less mobile Cr(III) oxidation state, predominantly under circumneutral pH conditions, have been isolated. Recently, however, alkaliphilic bacteria that have the potential to reduce Cr(VI) under alkaline conditions have been identified. This study focuses on the application of a metal-reducing bacterium to the remediation of alkaline Cr(VI)-contaminated leachates from COPR. This bacterium, belonging to the Halomonas genus, was found to exhibit growth concomitant to Cr(VI) reduction under alkaline conditions (pH 10). Bacterial cells were able to rapidly remove high concentrations of aqueous Cr(VI) (2.5 mM) under anaerobic conditions, up to a starting pH of 11. Cr(VI) reduction rates were controlled by pH, with slower removal observed at pH 11, compared to pH 10, while no removal was observed at pH 12. The reduction of aqueous Cr(VI) resulted in the precipitation of Cr(III) biominerals, which were characterized using transmission electron microscopy and energy-dispersive X-ray analysis (TEM-EDX) and X-ray photoelectron spectroscopy (XPS). The effectiveness of this haloalkaliphilic bacterium for Cr(VI) reduction at high pH suggests potential for its use as an in situ treatment of COPR and other alkaline Cr(VI)-contaminated environments. PMID:26048926

  4. Effects of elevated CO2 concentrations on soil microbial respiration and root/rhizosphere respiration in-forest soils

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The two main components of soil respiration,i.e.,root/rhizosphere and microbial respiration,respond differently to elevated atmospheric CO2 concentrations both in mechanism and sensitivity because they have different substrates derived from plant and soil organic matter,respectively.To model the carbon cycle and predict the carbon source/sink of forest ecosystems,we must first understand the relative contributions of root/rhizosphere and microbial respiration to total soil respiration under elevated CO2 concentrations.Root/rhizosphere and soil microbial respiration have been shown to increase,decrease and remain unchanged under elevated CO2 concentrations.A significantly positive relationship between root biomass and root/rhizosphere respiration has been found.Fine roots respond more strongly to elevated CO2 concentrations than coarse roots.Evidence suggests that soil microbial respiration is highly variable and uncertain under elevated CO2 concentrations.Microbial biomass and activity are related or unrelated to rates of microbial respiration.Because substrate availability drives microbial metabolism in soils,it is likely that much of the variability in microbial respiration results from differences in the response of root growth to elevated CO2 concentrations and subsequent changes in substrate production.Biotic and abiotic factors affecting soil respiration were found to affect both root/rhizosphere and microbial respiration.

  5. Using O2 to study the relationships between soil CO2 efflux and soil respiration

    Directory of Open Access Journals (Sweden)

    A. Angert

    2014-08-01

    Full Text Available Soil respiration, is the sum of respiration processes in the soil, and is a major flux in the global carbon cycle. It is usually assumed that the CO2 efflux is equal to the soil respiration rate. Here we challenge this assumption by combining measurements of CO2 with high-precision measurements of O2. These measurements were conducted on different ecosystems and soil types, and included measurements of air-samples taken from the soil profile of three Mediterranean sites, a temperate forest, and two alpine forests. Root-free soils from the alpine sites were also incubated at the lab. We found that the ratio between the CO2 efflux to the O2 influx (which we defined as apparent respiratory quotient, ARQ was in the range of 0.14 to 1.23, which strongly deviates from 0.9 ± 0.1, which is the ratio expected from the elemental composition of average plants and soil organic matter. At the Mediterranean sites these deviations were explained as a result of CO2 dissolution in the soil water and transformation to bi-carbonate in these high pH soils, and by carbonates dissolution and precipitation processes. Thus, correct estimate of the short-term, chamber-based biological respiratory flux in such soils can only be made by dividing the measured CO2 efflux by the average (efflux weighted soil profile ARQ. We demonstrated that applying this approach to a semiarid pine forest resulted in estimated short-term respiration rate 3.8 times higher than the chamber-measured surface CO2 efflux (8.8 μmol CO2 m−2 s−1 instead of 2.3 μmol CO2 m−2 s−1, at the time of measurement. The ARQ values that were often found for the more acidic soils were lower than 0.7, and hence surprising. These values might be the result of the oxidation of reduced iron, which could previously form during times of high soil moisture and local anaerobic conditions inside aggregates. Further research is needed to confirm that low ARQ found in non-calcareous soils, is the result of this

  6. Anaerobic digestion challenge of raw olive mill wastewater.

    Science.gov (United States)

    Sampaio, M A; Gonçalves, M R; Marques, I P

    2011-12-01

    Olive mill wastewater (OMW) was digested in its original composition (100% v/v) in an anaerobic hybrid. High concentrations (54-55 kg COD m(-3)), acid pH (5.0) and lack of alkalinity and nitrogen are some OMW adverse characteristics. Loads of 8 kg COD m(-3) d(-1) provided 3.7-3.8 m3 biogas m(-3) d(-1) (63-64% CH4) and 81-82% COD removal. An effluent with basic pH (8.1) and high alkalinity was obtained. A good performance was also observed with weekly load shocks (2.7-4.1, 8.4-10.4 kg COD m(-3) d(-1)) by introducing piggery effluent and OMW alternately. Biogas of 3.0-3.4 m3 m(-3) d(-1) (63-69% CH4) was reached. Developed biomass (350 days) was neither affected by raw OMW nor by organic shocks. Through the effluents complementarity concept, a stable process able of degrading the original OMW alone was obtained. Unlike what is referred, OMW is an energy resource through anaerobiosis without additional expenses to correct it or decrease its concentration/toxicity. PMID:21983408

  7. Treating leachate mixture with anaerobic ammonium oxidation technology

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-guo; ZHOU Shao-qi

    2006-01-01

    Large amounts of ammonium and a low content of biodegradable chemical oxygen demand(COD) are contained in leachate from aged landfills, together with the effluent containing high concentration of nitric nitrogen after biochemical treatment.Treatment effect of anaerobic ammonium oxidation (anammox) process on the mixture of the leachate and its biochemical effluent was investigated. The results show that the average removal efficiencies of ammonium, nitric nitrogen and total nitrogen are 87.51%,74.95% and 79.59%, respectively, corresponding to the average ratio of removed nitric nitrogen to ammonium, i.e. 1.14 during the steady phase of anammox activity. The mean removal efficiency of COD is only 24.01% during the experimental period. The demand of total phosphorous for the anammox process is unobvious. Especially, the alkalinity and pH value of the effluent are close to those of the influent during the steady phase of anammox activity. In addition, it is demonstrated that the status of the anammox bioreactor can be indicated by the alkalinity and pH value during the course of the experiment. The anammox bioreactor has shown potential for nitrogen removal in the leachate mixture. However, COD and total phosphorous in the leachate mixture need further treatment for removal efficiencies of COD and total phosphorous are not good in the anammox bioreactor.

  8. Anaerobic digestion of solid material

    DEFF Research Database (Denmark)

    Vavilin, V.A.; Lokshina, L.Y.; Flotats, X.; Angelidaki, Irini

    2007-01-01

    A new multidimensional (3 and 2D) anaerobic digestion model for cylindrical reactor with non-uniform influent concentration distributions was developed to study the way in which mixing intensity affects the efficiency of continuous-flow anaerobic digestion. Batch experiments reported and simulated...... improve the continuous flow reactor performance at the relatively low influent methanogenic biomass concentration. In the continuously stirred tank reactor (CSTR) there are two steady states with and without methane production at slightly different values of initial methanogenic biomass concentration. In...... failure. According to the distributed models a plug-flow reactor with non-uniform influent concentration distributions where methanogenic and hydrolytic microorganisms are separated has significant methane production and solids removal at the relatively low influent methanogenic biomass concentration...

  9. Simultaneous removal of perchlorate and energetic compounds in munitions wastewater by zero-valent iron and perchlorate-respiring bacteria.

    Science.gov (United States)

    Ahn, Se Chang; Hubbard, Brian; Cha, Daniel K; Kim, Byung J

    2014-01-01

    Ammonium perchlorate is one of the main constituents in Army's insensitive melt-pour explosive, PAX-21 in addition to RDX and 2,4-dinitroanisole (DNAN). The objective of this study is to develop an innovative treatment process to remove both perchlorate and energetic compounds simultaneously from PAX-21 production wastewater. It was hypothesized that the pretreatment of PAX-21 wastewater with zero-valent iron (ZVI) would convert energetic compounds to products that are more amenable for biological oxidation and that these products serve as electron donors for perchlorate-reducing bacteria. Results of batch ZVI reduction experiments showed that DNAN was completely reduced to 2,4-diaminoanisole and RDX was completely reduced to formaldehyde. Anaerobic batch biodegradation experiments showed that perchlorate (30 mg L(-1)) in ZVI-treated PAX-21 wastewater was decreased to an undetectable level after 5 days. Batch biodegradation experiments also confirmed that formaldehyde in ZVI-treated wastewater was the primary electron donor for perchlorate-respiring bacteria. The integrated iron-anaerobic bioreactor system was effective in completely removing energetic compounds and perchlorate from the PAX-21 wastewater without adding an exogenous electron donor. This study demonstrated that ZVI pretreatment not only removed energetic compounds, but also transformed energetic compounds to products that can serve as the source of electrons for perchlorate-respiring bacteria. PMID:24410688

  10. Anaerobic procedures of wastewater treatment

    OpenAIRE

    Zupančič, Tadeja

    2013-01-01

    Highly polluted wastewater is formed in dairies, pig farms and slaughterhouses. Before released into watercourses, wastewater should be properly processed with different treatment procedures in wastewater treatment plants. The thesis deals with the descriptions of mechanical, physical and chemical, and biological wastewater treatment procedures and the description of the factors which affect the reactions in wastewater treatment plants. I give special emphasis on anaerobic wastewater treatmen...

  11. Anaerobic digestion of aliphatic polyesters.

    Science.gov (United States)

    Šmejkalová, Pavla; Kužníková, Veronika; Merna, Jan; Hermanová, Soňa

    2016-01-01

    Anaerobic processes for the treatment of plastic materials waste represent versatile and effective approach in environmental protection and solid waste management. In this work, anaerobic biodegradability of model aliphatic polyesters, poly(L-lactic acid) (PLA), and poly(ɛ-caprolactone) (PCL), in the form of powder and melt-pressed films with varying molar mass, was studied. Biogas production was explored in batch laboratory trials at 55 ± 1°C under a nitrogen atmosphere. The inoculum used was thermophilic digested sludge (total solids concentration of 2.9%) from operating digesters at the Central Waste Water Treatment Plant in Prague, Czech Republic. Methanogenic biodegradation of PCLs typically yielded from 54 to 60% of the theoretical biogas yield. The biodegradability of PLAs achieved from 56 to 84% of the theoretical value. High biogas yield (up to 677 mL/g TS) with high methane content (more than 60%), comparable with conventionally processed materials, confirmed the potential of polyester samples for anaerobic treatment in the case of their exploitation in agriculture or as a packaging material in the food industry. PMID:27191559

  12. Adjustment of Forest Ecosystem Root Respiration as Temperature Warms

    Institute of Scientific and Technical Information of China (English)

    Andrew J. Burton; Jerry M. Melillo; Serita D. Frey

    2008-01-01

    Adjustment of ecosystem root respiration to warmer climatic conditions can alter the autotrophic portion of soil respiration and influence the amount of carbon available for biomass production. We examined 44 published values of annual forest root respiration and found an increase in ecosystem root respiration with increasing mean annual temperature (MAT),but the rate of this cross-ecosystem increase (Q10 = 1.6) is less than published values for short-term responses of root respiration to temperature within ecosystems (Q10 = 2-3). When specific root respiration rates and root biomass values were examined, there was a clear trend for decreasing root metabolic capacity (respiration rate at a standard temperature) with increasing MAT. There also were tradeoffs between root metabolic capacity and root system biomass, such that there were no instances of high growing season respiration rates and high root biomass occurring together. We also examined specific root respiration rates at three soil warming experiments at Harvard Forest, USA, and found decreases in metabolic capacity for roots from the heated plots. This decline could be due to either physiological acclimation or to the effects of co-occurring drier soils on the measurement date. Regardless of the cause, these findings clearly suggest that modeling efforts that allow root respiration to increase exponentially with temperature, with Qt0 values of 2 or more, may over-predict root contributions to ecosystem CO2 efflux for future climates and underestimate the amount of C available for other uses,including net primary productivity.

  13. Combustion, respiration and intermittent exercise: a theoretical perspective on oxygen uptake and energy expenditure.

    Science.gov (United States)

    Scott, Christopher B

    2014-01-01

    While no doubt thought about for thousands of years, it was Antoine Lavoisier in the late 18th century who is largely credited with the first "modern" investigations of biological energy exchanges. From Lavoisier's work with combustion and respiration a scientific trend emerges that extends to the present day: the world gains a credible working hypothesis but validity goes missing, often for some time, until later confirmed using proper measures. This theme is applied to glucose/glycogen metabolism where energy exchanges are depicted as conversion from one form to another and, transfer from one place to another made by both the anaerobic and aerobic biochemical pathways within working skeletal muscle, and the hypothetical quantification of these components as part of an oxygen (O2) uptake measurement. The anaerobic and aerobic energy exchange components of metabolism are represented by two different interpretations of O2 uptake: one that contains a glycolytic component (1 L O2 = 21.1 kJ) and one that does not (1 L O2 = 19.6 kJ). When energy exchange transfer and oxygen-related expenditures are applied separately to exercise and recovery periods, an increased energy cost for intermittent as compared to continuous exercise is hypothesized to be a direct result. PMID:24833508

  14. Combustion, Respiration and Intermittent Exercise: A Theoretical Perspective on Oxygen Uptake and Energy Expenditure

    Directory of Open Access Journals (Sweden)

    Christopher B. Scott

    2014-03-01

    Full Text Available While no doubt thought about for thousands of years, it was Antoine Lavoisier in the late 18th century who is largely credited with the first “modern” investigations of biological energy exchanges. From Lavoisier’s work with combustion and respiration a scientific trend emerges that extends to the present day: the world gains a credible working hypothesis but validity goes missing, often for some time, until later confirmed using proper measures. This theme is applied to glucose/glycogen metabolism where energy exchanges are depicted as conversion from one form to another and, transfer from one place to another made by both the anaerobic and aerobic biochemical pathways within working skeletal muscle, and the hypothetical quantification of these components as part of an oxygen (O2 uptake measurement. The anaerobic and aerobic energy exchange components of metabolism are represented by two different interpretations of O2 uptake: one that contains a glycolytic component (1 L O2 = 21.1 kJ and one that does not (1 L O2 = 19.6 kJ. When energy exchange transfer and oxygen-related expenditures are applied separately to exercise and recovery periods, an increased energy cost for intermittent as compared to continuous exercise is hypothesized to be a direct result.

  15. Alkaline azide mutagenicity in cowpea

    International Nuclear Information System (INIS)

    Sodium azide is known as a potent mutagen in cereals and legumes. It is very effective in acidic medium in barley. Here an attempt is made to measure the effectiveness of sodium azide in alkaline medium (pH 7.4) on cowpea (Vigna unguiculata (L.) Walp., variety FS-68). Seeds pre-soaked in distilled water for 5 hours were treated with different concentrations (10-6, 10-5, 10-4 and 10-3M) of sodium azide (NaN3) for 4 hours at 28± 2 deg. C. Bottles were intermittently shaken, then the seeds were thoroughly washed in running tap water and subsequently planted in pots. The treatment caused significant biological damage such as reduction in seed germination, length of root and shoot, number of nodules and pods per plant and morphological leaf variations. Morphological, as well as chlorophyll mutants, were detected in M2

  16. Molecular ecology of anaerobic reactor systems

    DEFF Research Database (Denmark)

    Hofman-Bang, H. Jacob Peider; Zheng, D.; Westermann, Peter; Ahring, Birgitte Kiær; Raskin, L.

    2003-01-01

    Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible for these ...... specific nucleic acid probes are discussed and exemplified by studies of anaerobic granular sludge, biofilm and digester systems...... malfunctions of anaerobic digesters occasionally experienced, leading to sub-optimal methane production and wastewater treatment. Using a variety of molecular techniques, we are able to determine which microorganisms are active, where they are active, and when they are active, but we still need to determine...... abundance of each microbe in anaerobic reactor systems by rRNA probing. This chapter focuses on various molecular techniques employed and problems encountered when elucidating the microbial ecology of anaerobic reactor systems. Methods such as quantitative dot blot/fluorescence in-situ probing using various...

  17. Merging metabolism and power: development of a novel photobioelectric device driven by photosynthesis and respiration.

    Science.gov (United States)

    Powell, Ryan J; White, Ryan; Hill, Russell T

    2014-01-01

    Generation of renewable energy is one of the grand challenges facing our society. We present a new bio-electric technology driven by chemical gradients generated by photosynthesis and respiration. The system does not require pure cultures nor particular species as it works with the core metabolic principles that define phototrophs and heterotrophs. The biology is interfaced with electrochemistry with an alkaline aluminum oxide cell design. In field trials we show the system is robust and can work with an undefined natural microbial community. Power generated is light and photosynthesis dependent. It achieved a peak power output of 33 watts/m(2) electrode. The design is simple, low cost and works with the biological processes driving the system by removing waste products that can impede growth. This system is a new class of bio-electric device and may have practical implications for algal biofuel production and powering remote sensing devices. PMID:24466132

  18. Anaerobic digestion of onion residuals using a mesophilic Anaerobic Phased Solids Digester

    International Nuclear Information System (INIS)

    The anaerobic digestion of onion residual from an onion processing plant was studied under batch-fed and continuously-fed mesophilic (35 ± 2 oC) conditions in an Anaerobic Phased Solids (APS) Digester. The batch digestion tests were performed at an initial loading of 2.8 gVS L-1 and retention time of 14 days. The biogas and methane yields, and volatile solids reduction from the onion residual were determined to be 0.69 ± 0.06 L gVS-1, 0.38 ± 0.05 L CH4 gVS-1, and 64 ± 17%, respectively. Continuous digestion tests were carried out at organic loading rates (OLRs) of 0.5-2.0 gVS L-1 d-1. Hydrated lime (Ca(OH)2) was added to the APS-Digester along with the onion residual at 16 mg Ca(OH)2 gVS-1 to control the pH of the biogasification reactor above 7.0. At steady state the average biogas yields were 0.51, 0.56, and 0.62 L gVS-1 for the OLRs of 0.5, 1.0, and 2.0 gVS L-1 d-1 respectively. The methane yields at steady state were 0.29, 0.32, and 0.31 L CH4 gVS-1 for the OLRs of 0.5, 1.0, and 2.0 gVS L-1 d-1 respectively. The study shows that the digestion of onion residual required proper alkalinity and pH control, which was possible through the use of caustic chemicals. However, such chemicals will begin to have an inhibitory effect on the microbial population at high loading rates, and therefore alternative operational parameters are needed. -- Highlights: → An APS-Digester was used to study biogas production from onion solid residues. → Biogas and methane yields from onion solids were determined. → Study showed substantial findings for treating onion solid residues.

  19. Tillage Effects on Soil Properties & Respiration

    Science.gov (United States)

    Rusu, Teodor; Bogdan, Ileana; Moraru, Paula; Pop, Adrian; Duda, Bogdan; Cacovean, Horea; Coste, Camelia

    2015-04-01

    Soil tillage systems can be able to influence soil compaction, water dynamics, soil temperature and soil structural condition. These processes can be expressed as changes of soil microbiological activity, soil respiration and sustainability of agriculture. Objectives of this study were: 1) to assess the effects of tillage systems (Conventional System-CS, Minimum Tillage-MT, No-Tillage-NT) on soil compaction, soil temperature, soil moisture and soil respiration and 2) to establish the relationship that exists in changing soil properties. Three treatments were installed: CS-plough + disc; MT-paraplow + rotary grape; NT-direct sowing. The study was conducted on an Argic-Stagnic Faeoziom. The MT and NT applications reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first year of application. The degree of compaction is directly related to soil type and its state of degradation. The state of soil compaction diminished over time, tending toward a specific type of soil density. Soil moisture was higher in NT and MT at the time of sowing and in the early stages of vegetation and differences diminished over time. Moisture determinations showed statistically significant differences. The MT and NT applications reduced the thermal amplitude in the first 15 cm of soil depth and increased the soil temperature by 0.5-2.20C. The determinations confirm the effect of soil tillage system on soil respiration; the daily average was lower at NT (315-1914 mmoli m-2s-1) and followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Comparing with CS, all the two conservation tillage measures decreased soil respiration, with the best effects of no-tillage. An exceeding amount of CO2 produced in the soil and released into the atmosphere, resulting from aerobic processes of mineralization of organic matter (excessive loosening) is considered to be not only a way of increasing the CO2 in the atmosphere, but also a loss of

  20. In vitro susceptibility testing of anaerobic bacteria.

    Science.gov (United States)

    Washington, J A

    1979-01-01

    In vitro susceptibility testing of anaerobic bacteria should be limited to isolates from persistent or recurrent infections that have been treated adequately and appropriately with antimicrobial agents and, in reference centers, to collections of isolates in order to monitor alterations in susceptibility of species to various antimicrobial agents. An agar dilution reference method is being evaluated currently; however, practicality limits sporadic testing of single isolates to disk elution or broth dilution techniques. No single disk diffusion method has yet been found to be acceptable for testing anaerobic bacteria, and the results obtained with standardized procedures for aerobic and facultatively anaerobic bacteria are not applicable to anaerobic bacteria. PMID:288163

  1. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management

    OpenAIRE

    Zhen WANG; Ji, Lei; Hou, Xiangyang; Schellenberg, Michael P.

    2016-01-01

    Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures) on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17μmol.m−2.s−1) and clipping (2.06μ...

  2. Contributions of ectomycorrhizal fungal mats to forest soil respiration

    OpenAIRE

    Phillips, C. L.; L. A. Kluber; Martin, J. P.; B. A. Caldwell; B. J. Bond

    2012-01-01

    Distinct aggregations of fungal hyphae and rhizomorphs, or "mats", formed by some genera of ectomycorrhizal (EcM) fungi are common features of soils in coniferous forests of the Pacific Northwest. We measured in situ respiration rates of Piloderma mats and neighboring non-mat soils in an old-growth Douglas-fir forest in western Oregon to investigate whether there was higher respiration from mats, and to estimate mat contributions to total soil respiration. We found that are...

  3. Cadmium removal by Euglena gracilis is enhanced under anaerobic growth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Santiago-Martínez, M. Geovanni; Lira-Silva, Elizabeth; Encalada, Rusely; Pineda, Erika; Gallardo-Pérez, Juan Carlos [Departamento de Bioquímica, Instituto Nacional de Cardiología (Mexico); Zepeda-Rodriguez, Armando [Facultad de Medicina, UNAM, Mexico City (Mexico); Moreno-Sánchez, Rafael; Saavedra, Emma [Departamento de Bioquímica, Instituto Nacional de Cardiología (Mexico); Jasso-Chávez, Ricardo, E-mail: rjass_cardiol@yahoo.com.mx [Departamento de Bioquímica, Instituto Nacional de Cardiología (Mexico)

    2015-05-15

    Highlights: • The protist Euglena gracilis had the ability to grow and remove large amounts of Cd{sup 2+} under anaerobic conditions. • High biomass was attained by combination of glycolytic and mitochondrial carbon sources. • Routes of degradation of glucose, glutamate and malate under anaerobic conditions in E. gracilis are described. • Biosorption was the main mechanism of Cd{sup 2+} removal in anaerobiosis, whereas the Cd{sup 2+} intracellularly accumulated was inactivated by thiol-molecules and polyphosphate. - Abstract: The facultative protist Euglena gracilis, a heavy metal hyper-accumulator, was grown under photo-heterotrophic and extreme conditions (acidic pH, anaerobiosis and with Cd{sup 2+}) and biochemically characterized. High biomass (8.5 × 10{sup 6} cells mL{sup −1}) was reached after 10 days of culture. Under anaerobiosis, photosynthetic activity built up a microaerophilic environment of 0.7% O{sub 2}, which was sufficient to allow mitochondrial respiratory activity: glutamate and malate were fully consumed, whereas 25–33% of the added glucose was consumed. In anaerobic cells, photosynthesis but not respiration was activated by Cd{sup 2+} which induced higher oxidative stress. Malondialdehyde (MDA) levels were 20 times lower in control cells under anaerobiosis than in aerobiosis, although Cd{sup 2+} induced a higher MDA production. Cd{sup 2+} stress induced increased contents of chelating thiols (cysteine, glutathione and phytochelatins) and polyphosphate. Biosorption (90%) and intracellular accumulation (30%) were the mechanisms by which anaerobic cells removed Cd{sup 2+} from medium, which was 36% higher versus aerobic cells. The present study indicated that E. gracilis has the ability to remove Cd{sup 2+} under anaerobic conditions, which might be advantageous for metal removal in sediments from polluted water bodies or bioreactors, where the O{sub 2} concentration is particularly low.

  4. ESTIMATING ROOT RESPIRATION IN SPRUCE AND BEECH: DECREASES IN SOIL RESPIRATION FOLLOWING GIRDLING

    Science.gov (United States)

    A study was undertaken to follow seasonal fluxes of CO2 from soil and to estimate the contribution of autotrophic (root + mycorrhizal) to total soil respiration (SR) in a mixed stand of European beech (Fagus sylvatica) and Norway spruce (Picea abies) near Freising, Germany. Matu...

  5. Anaerobic digestion of kitchen wastes in a single-phased anaerobic sequencing batch reactor(ASBR) with gas-phased absorb of CO2

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bo; HE Zheng-guang; ZHANG Li-li; XU Jian-bo; SHI Hong-zhuan; CAI Wei-min

    2005-01-01

    The performance of the single-stage anaerobic digestion of kitchen wastes was investigated in an anaerobic sequencing batch reactor(ASBR) with gas-phased absorb of CO2. The ASBR was operated at four chemical oxygen demand(COD) loading rates, 2.8,respectively. The operation of the reactor with gas-phased absorb of CO2 was stable in spite of the low pH (2.6-3.9) and high concentration of TS(142 g/L) of input mixture. The output volatile fatty acid(VFA) concentration was between 2.7-4.7 g/L and had no inhibition on the methanogenic microorganism. The reactor without gas-phased absorb of CO2 became acidified when the total COD alkaline will be required to keep pH in the appropriate range for the methanogenic microorganism based on theoretical calculation. Gasphased absorb of CO2 effectively reduced the alkaline consumption, hence avoided excessive cation into the reactor.

  6. Effects of Dietary Acid Load on Exercise Metabolism and Anaerobic Exercise Performance

    Directory of Open Access Journals (Sweden)

    Susan L. Caciano, Cynthia L. Inman, Elizabeth E. Gockel-Blessing, Edward P. Weiss

    2015-06-01

    Full Text Available Dietary acid load, quantified as the potential renal acid load (PRAL of the diet, affects systemic pH and acid-base regulation. In a previous cross-sectional study, we reported that a low dietary PRAL (i.e. alkaline promoting diet is associated with higher respiratory exchange ratio (RER values during maximal exercise. The purpose of the present study was to confirm the previous findings with a short-term dietary intervention study. Additionally, we sought to determine if changes in PRAL affects submaximal exercise RER (as a reflection of substrate utilization and anaerobic exercise performance. Subjects underwent a graded treadmill exercise test (GXT to exhaustion and an anaerobic exercise performance test on two occasions, once after following a low-PRAL diet and on a separate occasion, after a high-PRAL diet. The diets were continued as long as needed to achieve an alkaline or acid fasted morning urine pH, respectively, with all being 4-9 days in duration. RER was measured during the GXT with indirect calorimetry. The anaerobic performance test was a running time-to-exhaustion test lasting 1-4 min. Maximal exercise RER was lower in the low-PRAL trial compared to the high-PRAL trial (1.10 ± 0.02 vs. 1.20 ± 0.05, p = 0.037. The low-PRAL diet also resulted in a 21% greater time to exhaustion during anaerobic exercise (2.56 ± 0.36 vs. 2.11 ± 0.31 sec, p = 0.044 and a strong tendency for lower RER values during submaximal exercise at 70% VO2max (0.88 ± 0.02 vs. 0.96 ± 0.04, p = 0.060. Contrary to our expectations, a short-term low-PRAL (alkaline promoting diet resulted in lower RER values during maximal-intensity exercise. However, the low-PRAL diet also increased anaerobic exercise time to exhaustion and appears to have shifted submaximal exercise substrate utilization to favor lipid oxidation and spare carbohydrate, both of which would be considered favorable effects in the context of exercise performance.

  7. Specific neural substrate linking respiration to locomotion.

    Science.gov (United States)

    Gariépy, Jean-François; Missaghi, Kianoush; Chevallier, Stéphanie; Chartré, Shannon; Robert, Maxime; Auclair, François; Lund, James P; Dubuc, Réjean

    2012-01-10

    When animals move, respiration increases to adapt for increased energy demands; the underlying mechanisms are still not understood. We investigated the neural substrates underlying the respiratory changes in relation to movement in lampreys. We showed that respiration increases following stimulation of the mesencephalic locomotor region (MLR) in an in vitro isolated preparation, an effect that persists in the absence of the spinal cord and caudal brainstem. By using electrophysiological and anatomical techniques, including whole-cell patch recordings, we identified a subset of neurons located in the dorsal MLR that send direct inputs to neurons in the respiratory generator. In semi-intact preparations, blockade of this region with 6-cyano-7-nitroquinoxaline-2,3-dione and (2R)-amino-5-phosphonovaleric acid greatly reduced the respiratory increases without affecting the locomotor movements. These results show that neurons in the respiratory generator receive direct glutamatergic connections from the MLR and that a subpopulation of MLR neurons plays a key role in the respiratory changes linked to movement. PMID:22160700

  8. Variations of the Respiration Signals for Respiratory-Gated Radiotherapy Using the Video Coached Respiration Guiding System

    OpenAIRE

    Lee, Hyun Jeong; Yea, Ji Woon; Oh, Se An

    2015-01-01

    Respiratory-gated radiation therapy (RGRT) has been used to minimize the dose to normal tissue in lung-cancer radiotherapy. The present research aims to improve the regularity of respiration in RGRT using a video coached respiration guiding system. In the study, 16 patients with lung cancer were evaluated. The respiration signals of the patients were measured by a real-time position management (RPM) Respiratory Gating System (Varian, USA) and the patients were trained using the video coached ...

  9. Can we distinguish autotrophic respiration from heterotrophic respiration in a field site using high temporal resolution CO2 flux measurements?

    Science.gov (United States)

    Biro, Beatrice; Berger, Sina; Praetzel, Leandra; Blodau, Christian

    2016-04-01

    The processes behind C-cycling in peatlands are important to understand for assessing the vulnerability of peatlands as carbon sinks under changing climate conditions. Especially boreal peatlands are likely to underlie strong alterations in the future. It is expected that C-pools that are directly influenced by vegetation and water table fluctuations can be easily destabilized. The CO2 efflux through respiration underlies autotrophic and heterotrophic processes that show different feedbacks on changing environmental conditions. In order to understand the respiration fluxes better for more accurate modelling and prognoses, the determination of the relative importance of different respiration sources is necessary. Earlier studies used e.g. exfoliation experiments, incubation experiments or modelling approaches to estimate the different respiration sources for the total ecosystem respiration (Reco). To further the understanding in this topic, I want to distinguish autotrophic and heterotrophic respiration using high temporal resolution measurements. The study site was selected along a hydrological gradient in a peatland in southern Ontario (Canada) and measurements were conducted from May to September 2015 once per month. Environmental controls (water table, soil temperature and soil moisture) that effect the respiration sources were recorded. In my study I used a Li-COR 6400XT and a Los Gatos greenhouse gas analyzer (GGA). Reco was determined by chamber flux measurements with the GGA, while simultaneously CO2 respiration measurements on different vegetation compartments like roots, leaves and mosses were conducted using the Li-COR 6400XT. The difference between Reco and autotrophic respiration equals heterotrophic respiration. After the measurements, the vegetation plots were harvested and separated for all compartments (leaves, roots, mosses, soil organic matter), dried and weighed. The weighted respiration rates from all vegetation compartments sum up to

  10. Respirator studies for the ERDA Division of Safety, Standards, and Compliance. Progress report, July 1, 1974--June 30, 1975

    International Nuclear Information System (INIS)

    Major accomplishments during FY 1975 were the initiation of a respirator research program to investigate the physiological effects of wearing a respirator under stress, assisting ERDA contractors by providing information and training concerning respirator programs, quality assurance of respirators, and respirator applications. A newsletter of respirator developments for ERDA contractor personnel was published, and a Respirator Symposium was conducted

  11. Anaerobic Capacities of Leaf Litter

    OpenAIRE

    Kusel, K.; Drake, H L

    1996-01-01

    Leaf litter displayed a capacity to spontaneously form organic acids, alcohols, phenolic compounds, H(inf2), and CO(inf2) when incubated anaerobically at 20(deg)C either as buffered suspensions or in a moistened condition in microcosms. Acetate was the predominant organic product formed regardless of the degree of litter decomposition. Initial rates of acetate formation in litter suspensions and microcosms approximated 2.6 and 0.53 (mu)mol of acetate per g (dry weight) of litter per h, respec...

  12. Anaerobic digestion of coffee waste

    OpenAIRE

    L. Neves; Ribeiro, R.; Oliveira, Rosário; Alves, M. M.

    2005-01-01

    The anaerobic co-digestion of five different by-products from instant coffee substitutes production was studied in mesophilic conditions. The co-substrate was the excess of sewage sludge from the wastewater treatment plant located in the same coffee factory. Four of the tested wastes produced methane in the range of 0.24-0.28 m³CH4(STP)/kgVSinitial . Reduction of 50-73% in total solids and 75-80% in volatile solids were obtained and the hydrolysis rate constants were in the ran...

  13. Alkaline sorbent injection for mercury control

    Science.gov (United States)

    Madden, Deborah A.; Holmes, Michael J.

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  14. Alkaline rocks and the occurrence of uranium

    International Nuclear Information System (INIS)

    Many alkaline complexes contain uranium and other minerals in low concentrations and are regarded as constituting valuable potential reserves. Certain complex metallurgical problems, however, remain to be solved. Alkaline rocks occur in a number of forms and environments and it is noted that they are generated during periods of geological quiescence emplaced mainly in stable aseismic areas. Many occur along the extensions of oceanic transform faults beneath the continental crust and the application of this concept to areas not currently known to host alkaline complexes may prove useful in identifying potential target areas for prospecting operations

  15. Influence of Alkaline Co-Contaminants on Technetium Mobility in Vadose Zone Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Szecsody, James E.; Jansik, Danielle P.; McKinley, James P.; Hess, Nancy J.

    2014-09-01

    Pertechnetate was slowly reduced in a natural, untreated arid sediment under anaerobic conditions (0.02 nmol g-1 h-1), which could occur in low permeability zones in the field, most of which was quickly oxidized. A small portion of the surface Tc may be incorporated into slowly dissolving surface phases, so was not readily oxidized/remobilized into pore water. In contrast, pertechnetate reduction in an anaerobic sediment containing adsorbed ferrous iron as the reductant was rapid (15 to 600 nmol g-1 h-1), and nearly all (96 - 98%) was rapidly oxidized/remobilized (2.6 to 6.8 nmol g-1 h-1) within hours. Tc reduction in an anaerobic sediment containing 0.5 to 10 mM sulfide showed a relatively slow reduction rate (0.01 to 0.03 nmol g-1 h-1) that was similar to observations in the natural sediment. Pertechnetate infiltration into sediment with a highly alkaline water resulted in rapid reduction (0.07 to 0.2 nmol g-1 h-1) from ferrous iron released during biotite or magnetite dissolution. Oxidation of NaOH-treated sediments resulted in slow Tc oxidation (~0.05 nmol g-1 h-1) of a small fraction of the surface Tc (13% to 23%). The Tc remaining on the surface was TcIV (by XANES), and autoradiography and elemental maps of Tc (by electron microprobe) showed Tc was present associated with specific minerals, rather than being evenly distributed on the surface. Dissolution of quartz, montmorillonite, muscovite, and kaolinite also occurred in the alkaline water, resulting in significant aqueous silica and aluminum. Over time, aluminosilicates cancrinite, zeolite and sodalite were precipitating. These precipitates may be coating surface Tc(IV) phases, limiting reoxidation.

  16. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye; Ahring, Birgitte Kiær

    2003-01-01

    role of the anaerobic digestion in the wastewater treatment plants from a pre-treatment method to the main biological treatment method. The application of staged high-rate anaerobic digesters has shown the larger potential among the recent developments in this direction. The most common high...

  17. Anaerobic Infections in Children with Neurological Impairments.

    Science.gov (United States)

    Brook, Itzhak

    1995-01-01

    Children with neurological impairments are prone to develop serious infection with anaerobic bacteria. The most common anaerobic infections are decubitus ulcers; gastrostomy site wound infections; pulmonary infections (aspiration pneumonia, lung abscesses, and tracheitis); and chronic suppurative otitis media. The unique microbiology of each of…

  18. Instrumentation in anaerobic treatment - research and practice

    NARCIS (Netherlands)

    Spanjers, H.; Lier, van J.B.

    2006-01-01

    High rate anaerobic treatment reactors are able to uncouple solids and liquid retention time, resulting in high biomass concentrations. Principal advantages of anaerobic treatment include: energy efficiency, low biomass yield, low nutrient requirement and high volumetric organic loadings. In order t

  19. Atrazine removal in Danish anaerobic aquifers

    DEFF Research Database (Denmark)

    Pedersen, Philip Grinder; Arildskov, N.P.; Albrechtsen, Hans-Jørgen

    2002-01-01

    The pesticide atrazine (6-chloro-N-2-ethyl-N-4-isopropyl-1,3,5-triazine -2,4-diamine) was removed from the water phase in anaerobic laboratory batch incubations with sediment and groundwater from a number of Danish anaerobic aquifers, but not in incubations from aerobic aquifers. The removal...

  20. Anaerobic degradation of linear alkylbenzene sulfonate

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Haagensen, Frank; Ahring, Birgitte Kiær

    2003-01-01

    increases during anaerobic stabilization due to transformation of easily degradable organic matter. Hence, LAS is regarded as resistant to biodegradation under anaerobic conditions. We present data from a lab-scale semi-continuously stirred tank reactor (CSTR) spiked with linear dodecylbenzene sulfonate (C...

  1. Interannual sedimentary effluxes of alkalinity in the southern North Sea: Model results compared with summer observations.

    Science.gov (United States)

    Paetsch, Johannes; Kuehn, Wilfried; Six, Katharina

    2016-04-01

    Alkalinity generation in the sediment of the southern North Sea is the focus of several recent studies. One motivation for these efforts is the potentially enhanced buffering capacity of anthropogenic CO2 invasion into the corresponding pelagic system. An adaptation of a global multilayer sediment model (Heinze et al., 1999) in combination with a pelagic ecosystem model for shelf sea dynamics was used to study the benthic reactions on very different annual cycles (2001 - 2009) including the River Elbe summer flooding in 2002. The focus of this study is the efflux of alkalinity, their different contributors (aerobic respiration, denitrification, net sulfate reduction, calcite dissolution, nitrification) and their seasonal and interannual cycles. Similar to the observations covering the southern North Sea (Brenner et al., 2015) the model results show large horizontal gradients from the near-shore high productive areas with benthic remineralization up to Rmin = 10.6 mol C m‑2 yr‑1 and TA generation RTA = 2 mol C m‑2 yr‑1 to off-shore moderate productive areas with mean Rmin = 2.5 mol C m‑2 yr‑1 and mean TA generation RTA = 0.4 mol C m‑2 yr‑1. Beside calcite dissolution, aerobic respiration (producing ammonium) and denitrification are the largest contributors to alkalinity generation. Nitrification is reducing alkalinity in the sediment. Due to low regenerated primary production in summer, the year 2001 exhibits the lowest input of particulate organic matter into the sediment (POCexp=2.3 mol C m‑2 yr‑1), while the year 2003 exhibits the highest export production (POCexp=2.6 mol C m‑2 yr‑1). The biogeochemical reactions and the effluxes from the sediment follow these pelagic amplitudes with a time lag of about one year with damped amplitudes. References Brenner, H., Braeckman, U., Le Guitton, M., Meysman, F.J.R., 2015. The impact of sedimentary alkalinity release on the water column CO2 system in the North Sea. Biogeosiences Discussion, 12

  2. Prospects of Anaerobic Digestion Technology in China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    As the world's largest developing country, China must face the problem of managing municipal solid waste, and the challenge of organic waste disposal is even more serious. Considering the characteristics of traditional waste disposal technologies and the subsequent secondary pollution, anaerobic digestion has various advantages such as reduction in the land needed for disposal and preservation of environmental quality. In light of the energy crisis, this paper focuses on the potential production of biogas from biowaste through anaerobic digestion processes, the problems incurred by the waste collection system, and the efficiency of the anaerobic digestion process. Use of biogas in a combined heat and power cogeneration system is also discussed. Finally, the advantages of anaerobic digestion technology for the Chinese market are summarized. The anaerobic digestion is suggested to be a promising treating technology for the organic wastes in China.

  3. Anaerobic biorefinery: Current status, challenges, and opportunities.

    Science.gov (United States)

    Sawatdeenarunat, Chayanon; Nguyen, Duc; Surendra, K C; Shrestha, Shilva; Rajendran, Karthik; Oechsner, Hans; Xie, Li; Khanal, Samir Kumar

    2016-09-01

    Anaerobic digestion (AD) has been in use for many decades. To date, it has been primarily aimed at treating organic wastes, mainly manures and wastewater sludge, and industrial wastewaters. However, with the current advancements, a more open mind is required to look beyond these somewhat restricted original applications of AD. Biorefineries are such concepts, where multiple products including chemicals, fuels, polymers etc. are produced from organic feedstocks. The anaerobic biorefinery concept is now gaining increased attention, utilizing AD as the final disposal step. This review aims at evaluating the potential significance of anaerobic biorefineries, including types of feedstocks, uses for the produced energy, as well as sustainable applications of the generated residual digestate. A comprehensive analysis of various types of anaerobic biorefineries has been developed, including both large-scale and household level applications. Finally, future directives are highlighted showing how anaerobic biorefinery concept could impact the bioeconomy in the near future. PMID:27005786

  4. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye;

    2003-01-01

    The long retention time of the active biomass in the high-rate anaerobic digesters is the key factor for the successful application of the high rate anaerobic wastewater treatment. The long solids retention time is achieved due to the specific reactor configuration and it is enhanced...... by the immobilization of the biomass, which forms static biofilms, particle-supported biofilms, or granules depending on the reactor's operational conditions. The advantages of the high-rate anaerobic digestion over the conventional aerobic wastewater treatment methods has created a clear trend for the change...... of the role of the anaerobic digestion in the wastewater treatment plants from a pre-treatment method to the main biological treatment method. The application of staged high-rate anaerobic digesters has shown the larger potential among the recent developments in this direction. The most common high...

  5. Molecular ecology of anaerobic reactor systems

    DEFF Research Database (Denmark)

    Hofman-Bang, H. Jacob Peider; Zheng, D.; Westermann, Peter;

    2003-01-01

    Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible...... to the abundance of each microbe in anaerobic reactor systems by rRNA probing. This chapter focuses on various molecular techniques employed and problems encountered when elucidating the microbial ecology of anaerobic reactor systems. Methods such as quantitative dot blot/fluorescence in-situ probing using various...... and malfunctions of anaerobic digesters occasionally experienced, leading to sub-optimal methane production and wastewater treatment. Using a variety of molecular techniques, we are able to determine which microorganisms are active, where they are active, and when they are active, but we still need to determine...

  6. Lymphocyte respiration in children with Trisomy 21

    Directory of Open Access Journals (Sweden)

    Aburawi Elhadi H

    2012-12-01

    Full Text Available Abstract Background This study measured lymphocyte mitochondrial O2 consumption (cellular respiration in children with trisomy 21. Methods Peripheral blood mononuclear cells were isolated from whole blood of trisomy 21 and control children and these cells were immediately used to measure cellular respiration rate. [O2] was determined as a function of time from the phosphorescence decay rates (1/τ of Pd (II-meso-tetra-(4-sulfonatophenyl-tetrabenzoporphyrin. In sealed vials containing lymphocytes and glucose as a respiratory substrate, [O2] declined linearly with time, confirming the zero-order kinetics of O2 conversion to H2O by cytochrome oxidase. The rate of respiration (k, in μM O2 min-1, thus, was the negative of the slope of [O2] vs. time. Cyanide inhibited O2 consumption, confirming that oxidation occurred in the mitochondrial respiratory chain. Results For control children (age = 8.8 ± 5.6 years, n = 26, the mean (± SD value of kc (in μM O2 per min per 107 cells was 1.36 ± 0.79 (coefficient of variation, Cv = 58%; median = 1.17; range = 0.60 to 3.12; -2SD = 0.61. For children with trisomy 21 (age = 7.2 ± 4.6 years, n = 26, the values of kc were 0.82 ± 0.62 (Cv = 76%; median = 0.60; range = 0.20 to 2.80, pp6.1 mU/L. Fourteen of 26 (54% children with trisomy 21 had kc values of 0.20 to 0.60 (i.e., kc positively correlated with body-mass index (BMI, R >0.302, serum creatinine (R >0.507, blood urea nitrogen (BUN, R >0.535 and albumin (R >0.446. Conclusions Children with trisomy 21 in this study have reduced lymphocyte bioenergetics. The clinical importance of this finding requires further studies.

  7. Towards a Mechanistic Understanding of Anaerobic Nitrate Dependent Iron Oxidation: Balancing Electron Uptake and Detoxification

    Directory of Open Access Journals (Sweden)

    JohnDCoates

    2012-02-01

    Full Text Available The anaerobic oxidation of Fe(II by subsurface microorganisms is an important part of biogeochemical cycling in the environment, but the biochemical mechanisms used to couple iron oxidation to nitrate respiration are not well understood. Based on our own work and the evidence available in the literature, we propose a mechanistic model for anaerobic nitrate dependent iron oxidation. We suggest that anaerobic iron oxidizing microorganisms likely exist along a continuum including: 1 bacteria that inadvertently oxidize Fe(II by abiotic or biotic reactions with enzymes or chemical intermediates in their metabolic pathways (e.g. denitrification and suffer from toxicity or energetic penalty, 2 Fe(II tolerant bacteria that gain little or no growth benefit from iron oxidation but can manage the toxic reactions, and 3 bacteria that efficiently accept electrons from Fe(II to gain a growth advantage while preventing or mitigating the toxic reactions. Predictions of the proposed model are highlighted and experimental approaches are discussed.

  8. Cadmium removal by Euglena gracilis is enhanced under anaerobic growth conditions.

    Science.gov (United States)

    Santiago-Martínez, M Geovanni; Lira-Silva, Elizabeth; Encalada, Rusely; Pineda, Erika; Gallardo-Pérez, Juan Carlos; Zepeda-Rodriguez, Armando; Moreno-Sánchez, Rafael; Saavedra, Emma; Jasso-Chávez, Ricardo

    2015-05-15

    The facultative protist Euglena gracilis, a heavy metal hyper-accumulator, was grown under photo-heterotrophic and extreme conditions (acidic pH, anaerobiosis and with Cd(2+)) and biochemically characterized. High biomass (8.5×10(6)cellsmL(-1)) was reached after 10 days of culture. Under anaerobiosis, photosynthetic activity built up a microaerophilic environment of 0.7% O₂, which was sufficient to allow mitochondrial respiratory activity: glutamate and malate were fully consumed, whereas 25-33% of the added glucose was consumed. In anaerobic cells, photosynthesis but not respiration was activated by Cd(2+) which induced higher oxidative stress. Malondialdehyde (MDA) levels were 20 times lower in control cells under anaerobiosis than in aerobiosis, although Cd(2+) induced a higher MDA production. Cd(2+) stress induced increased contents of chelating thiols (cysteine, glutathione and phytochelatins) and polyphosphate. Biosorption (90%) and intracellular accumulation (30%) were the mechanisms by which anaerobic cells removed Cd(2+) from medium, which was 36% higher versus aerobic cells. The present study indicated that E. gracilis has the ability to remove Cd(2+) under anaerobic conditions, which might be advantageous for metal removal in sediments from polluted water bodies or bioreactors, where the O₂ concentration is particularly low. PMID:25698571

  9. Plasmodesmal-mediated cell-to-cell transport in wheat roots is modulated by anaerobic stress

    Science.gov (United States)

    Cleland, R. E.; Fujiwara, T.; Lucas, W. J.

    1994-01-01

    Cell-to-cell transport of small molecules and ions occurs in plants through plasmodesmata. Plant roots are frequently subjected to localized anaerobic stress, with a resultant decrease in ATP. In order to determine the effect of this stress on plasmodesmal transport, fluorescent dyes of increasing molecular weight (0.46 to 1OkDa) were injected into epidermal and cortical cells of 3-day-old wheat roots, and their movement into neighboring cells was determined by fluorescence microscopy. Anaerobiosis was generated by N2 gas or simulated by the presence of sodium azide, both of which reduced the ATP levels in the tissue by over 80%. In the absence of such stress, the upper limit for movement, or size exclusion limit (SEL), of cortical plasmodesmata was cells. Upon imposition of stress, the SEL rose to between 5 and 10 kDa. This response of plasmodesmata to a decrease in the level of ATP suggests that they are constricted by an ATP-dependent process so as to maintain a restricted SEL. When roots are subjected to anaerobic stress, an increase in SEL may permit enhanced delivery of sugars to the affected cells of the root where anaerobic respiration could regenerate the needed ATP.

  10. Anaerobic Biodegradation of Alternative Fuels and Associated Biocorrosion of Carbon Steel in Marine Environments.

    Science.gov (United States)

    Liang, Renxing; Aktas, Deniz F; Aydin, Egemen; Bonifay, Vincent; Sunner, Jan; Suflita, Joseph M

    2016-05-01

    Fuels that biodegrade too easily can exacerbate through-wall pitting corrosion of pipelines and tanks and result in unintentional environmental releases. We tested the biological stability of two emerging naval biofuels (camelina-JP5 and Fischer-Tropsch-F76) and their potential to exacerbate carbon steel corrosion in seawater incubations with and without a hydrocarbon-degrading sulfate-reducing bacterium. The inclusion of sediment or the positive control bacterium in the incubations stimulated a similar pattern of sulfate reduction with different inocula. However, the highest rates of sulfate reduction were found in incubations amended with camelina-JP5 [(57.2 ± 2.2)-(80.8 ± 8.1) μM/day] or its blend with petroleum-JP5 (76.7 ± 2.4 μM/day). The detection of a suite of metabolites only in the fuel-amended incubations confirmed that alkylated benzene hydrocarbons were metabolized via known anaerobic mechanisms. Most importantly, general (r(2) = 0.73) and pitting (r(2) = 0.69) corrosion were positively correlated with sulfate loss in the incubations. Thus, the anaerobic biodegradation of labile fuel components coupled with sulfate respiration greatly contributed to the biocorrosion of carbon steel. While all fuels were susceptible to anaerobic metabolism, special attention should be given to camelina-JP5 biofuel due to its relatively rapid biodegradation. We recommend that this biofuel be used with caution and that whenever possible extended storage periods should be avoided. PMID:27058258

  11. Alkalinity in oil field waters - what alkalinity is and how it is measured

    International Nuclear Information System (INIS)

    The alkalinity is an important parameter in the description of pH-behaviour, buffer capacity and scaling potentials in oil field waters. Although the alkalinity is widely used, it seems to be considerable confusion in connection with the concept. It is often used incorrectly and different authors define the concept in different ways. Several different methods for the determination of alkalinity can be found in the literature. This paper discusses the definition of alkalinity and how to use alkalinity in oil field waters to obtain data of importance for scale and pH predictions. There is also shown how a simple titration of oil field waters can give both the alkalinity and the content of organic acids in these waters. It is obvious from these findings that most of the methods used to day may give considerable errors when applied to oil field waters with high contents of organic acids. 8 refs., 8 figs., 5 tabs

  12. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen

    Science.gov (United States)

    Kane, E.S.; Chivers, M.R.; Turetsky, M.R.; Treat, C.C.; Petersen, D.G.; Waldrop, M.; Harden, J.W.; McGuire, A.D.

    2013-01-01

    To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2 production potential at 10 cm depth (14.1 ± 0.9 μmol C g−1 d−1) was as high as aerobic CO2 production potential (10.6 ± 1.5 μmol C g−1 d−1), while CH4 production was low (mean of 7.8 ± 1.5 nmol C g−1 d−1). Denitrification enzyme activity indicated a very high denitrification potential (197 ± 23 μg N g−1 d−1), but net NO-3 reduction suggested this was a relatively minor pathway for anaerobic CO2 production. Abundances of denitrifier genes (nirK and nosZ) did not change across water table treatments. SO2-4 reduction also did not appear to be an important pathway for anaerobic CO2 production. The net accumulation of acetate and formate as decomposition end products in the raised water table treatment suggested that fermentation was a significant pathway for carbon mineralization, even in the presence of NO-3. Dissolved organic carbon (DOC) concentrations were the strongest predictors of potential anaerobic and aerobic CO2 production. Across all water table treatments, the CO2:CH4 ratio increased with initial DOC leachate concentrations. While the field water table treatment did not have a significant effect on mean CO2 or CH4 production potential, the CO2:CH4 ratio was highest in shallow peat incubations from the drained treatment. These data suggest that with continued drying or with a more variable water table, anaerobic CO2 production may be favored over CH4 production in this rich fen. Future research examining the potential for dissolved organic substances to facilitate anaerobic respiration, or alternative redox processes that limit the effectiveness of organic acids as substrates in anaerobic metabolism, would help explain additional

  13. Soil Respiration and Student Inquiry: A Perfect Match

    Science.gov (United States)

    Hoyt, Catherine Marie; Wallenstein, Matthew David

    2011-01-01

    This activity explores the cycling of carbon between the atmosphere (primarily as CO[subscript 2]) and biomass in plants, animals, and microscopic organisms. Students design soil respiration experiments using a protocol that resembles current practice in soil ecology. Three methods for measuring soil respiration are presented. Student-derived…

  14. Simulation of Human Respiration with Breathing Thermal Manikin

    DEFF Research Database (Denmark)

    Bjørn, Erik

    The human respiration contains carbon dioxide, bioeffluents, and perhaps virus or bacteria. People may also indulge in activities that produce contaminants, as for example tobacco smoking. For these reasons, the human respiration remains one of the main contributors to contamination of the indoor...

  15. Measurements of photosynthesis and respiration in plants.

    Science.gov (United States)

    Hunt, Stephen

    2003-03-01

    Methods for measuring the rates of photosynthesis and respiration in plants are reviewed. Closed systems that involve manometric techniques, 14CO2 fixation, O2 electrodes and other methods for measuring dissolved and gas phase O2 are described. These methods typically provide time-integrated rate measurements, and limitations to their use are discussed. Open gas exchange systems that use infra-red CO2 gas analysers and differential O2 analysers for measuring instantaneous rates of CO2 and O2 exchange are described. Important features of the analysers, design features of gas exchange systems, and sources of potential error are considered. The analysis of chlorophyll fluorescence parameters for estimating the quantum yield for O2 evolution and CO2 fixation is described in relation to new fluorescence imaging systems for large scale screening of photosynthetic phenotypes, and the microimaging of individual chloroplasts. PMID:12654031

  16. Respiration in Heterotrophic Unicellular Eukaryotic Organisms

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2014-01-01

    -tensions. Available data do not contradict this and some evidence supports this interpretation. Cell size is ultimately limited because an increasing fraction of the mitochondria becomes exposed to near anoxic conditions with increasing cell size. The fact that mitochondria cluster close to the cell......Surface:volume quotient, mitochondrial volume fraction, and their distribution within cells were investigated and oxygen gradients within and outside cells were modelled. Cell surface increases allometrically with cell size. Mitochondrial volume fraction is invariant with cell size and constitutes...... about 10% and mitochondria are predominantly found close to the outer membrane. The results predict that for small and medium sized protozoa maximum respiration rates should be proportional to cell volume (scaling exponent ≈1) and access to intracellular O2 is not limiting except at very low ambient O2...

  17. Technetium recovery from high alkaline solution

    Science.gov (United States)

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  18. Alkaline tolerant dextranase from streptomyces anulatus

    Science.gov (United States)

    Decker, Stephen R.; Adney, William S.; Vinzant, Todd B.; Himmel, Michael E.

    2003-01-01

    A process for production of an alkaline tolerant dextranase enzyme comprises culturing a dextran-producing microorganism Streptomyces anulatus having accession no. ATCC PTA-3866 to produce an alkaline tolerant dextranase, Dex 1 wherein the protein in said enzyme is characterized by a MW of 63.3 kDa and Dex 2 wherein its protein is characterized by a MW of 81.8 kDa.

  19. Light-enhanced oxygen respiration in benthic phototrophic communities

    DEFF Research Database (Denmark)

    Epping, EHG; Jørgensen, BB

    Two microelectrode studies demonstrate the effect of Light intensity and photosynthesis on areal oxygen respiration in a hypersaline mat at Guerrero Negro, Mexico, and in an intertidal sediment at Texel, The Netherlands. The hypersaline mat was studied in the laboratory at light intensities of 0...... light intensities. Areal respiration, calculated from the difference between areal gross and areal net photosynthesis, increased from 3.9 to 14.4 nmol O-2 cm(2) min(-1) with increasing surface irradiance. This light-enhanced areal respiration was related to an increase in oxygen penetration depth from 0.......2 to 2.0 mm, thus expanding the volume of sediment involved in oxygen respiration beneath the mat surface. The mean rate of oxygen respiration per volume of mat remained constant at a rate of similar to 100 nmol O-2 cm(-3) min(-1). Oxygen profiles for the intertidal sediment were recorded in situ...

  20. Alkaline Water and Longevity: A Murine Study

    Science.gov (United States)

    Magro, Massimiliano; Corain, Livio; Ferro, Silvia; Baratella, Davide; Bonaiuto, Emanuela; Terzo, Milo; Corraducci, Vittorino; Salmaso, Luigi; Vianello, Fabio

    2016-01-01

    The biological effect of alkaline water consumption is object of controversy. The present paper presents a 3-year survival study on a population of 150 mice, and the data were analyzed with accelerated failure time (AFT) model. Starting from the second year of life, nonparametric survival plots suggest that mice watered with alkaline water showed a better survival than control mice. Interestingly, statistical analysis revealed that alkaline water provides higher longevity in terms of “deceleration aging factor” as it increases the survival functions when compared with control group; namely, animals belonging to the population treated with alkaline water resulted in a longer lifespan. Histological examination of mice kidneys, intestine, heart, liver, and brain revealed that no significant differences emerged among the three groups indicating that no specific pathology resulted correlated with the consumption of alkaline water. These results provide an informative and quantitative summary of survival data as a function of watering with alkaline water of long-lived mouse models. PMID:27340414

  1. Transcriptional regulation of the outer membrane porin gene ompW reveals its physiological role during the transition from the aerobic to the anaerobic lifestyle of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Minfeng eXiao

    2016-05-01

    Full Text Available Understanding bacterial physiology relies on elucidating the regulatory mechanisms and cellular functions of those differentially expressed genes in response to environmental changes. A widespread Gram-negative bacterial outer membrane protein OmpW has been implicated in the adaptation to stresses in various species. It is recently found to be present in the regulon of the global anaerobic transcription factor FNR and ArcA in E. coli. However, little is known about the physiological implications of this regulatory disposition. In this study, we demonstrate that transcription of ompW is indeed mediated by a series of global regulators involved in the anaerobiosis of E. coli. We show that FNR can both activate and repress the expression of ompW through its direct binding to two distinctive sites, -81.5 and -126.5 bp respectively, on ompW promoter. ArcA also participates in repression of ompW under anaerobic condition, but in an FNR dependent manner. Additionally, ompW is also subject to the regulation by CRP and NarL which senses the availability and types of carbon sources and respiration electron acceptors in the environment respectively, implying a role of OmpW in the carbon and energy metabolism of E. coli during its anaerobic adaptation. Molecular docking reveals that OmpW can bind fumarate, an alternative electron acceptor in anaerobic respiration, with sufficient affinity. Moreover, supplement of fumarate or succinate which belongs to the C4-dicarboxylates family of metabolite, to E. coli culture rescues OmpW-mediated colicin S4 killing. Taken together, we propose that OmpW is involved in anaerobic carbon and energy metabolism to mediate the transition from aerobic to anaerobic lifestyle in E. coli.

  2. Multi-Scale Modeling of Respiration: Linking External to Cellular Respiration during Exercise

    OpenAIRE

    Zhou, Haiying; Lai, Nicola; Saidel, Gerald M.; Cabrera, Marco E.

    2009-01-01

    In human studies investigating factors that control cellular respiration in working skeletal muscle, pulmonary VO2 dynamics (VO2p) measured at the mouth by indirect calorimetry is typically used to represent muscle O2 consumption (UO2m). Furthermore, measurement of muscle oxygenation using near-infrared spectroscopy has provided information on the dynamic balance between oxygen delivery and oxygen consumption at the microvascular level. To relate these measurements and gain quantitative under...

  3. Respirator Performance against Nanoparticles under Simulated Workplace Activities.

    Science.gov (United States)

    Vo, Evanly; Zhuang, Ziqing; Horvatin, Matthew; Liu, Yuewei; He, Xinjian; Rengasamy, Samy

    2015-10-01

    Filtering facepiece respirators (FFRs) and elastomeric half-mask respirators (EHRs) are commonly used by workers for protection against potentially hazardous particles, including engineered nanoparticles. The purpose of this study was to evaluate the performance of these types of respirators against 10-400 nm particles using human subjects exposed to NaCl aerosols under simulated workplace activities. Simulated workplace protection factors (SWPFs) were measured for eight combinations of respirator models (2 N95 FFRs, 2 P100 FFRs, 2 N95 EHRs, and 2 P100 EHRs) worn by 25 healthy test subjects (13 females and 12 males) with varying face sizes. Before beginning a SWPF test for a given respirator model, each subject had to pass a quantitative fit test. Each SWPF test was performed using a protocol of six exercises for 3 min each: (i) normal breathing, (ii) deep breathing, (iii) moving head side to side, (iv) moving head up and down, (v) bending at the waist, and (vi) a simulated laboratory-vessel cleaning motion. Two scanning mobility particle sizers were used simultaneously to measure the upstream (outside the respirator) and downstream (inside the respirator) test aerosol; SWPF was then calculated as a ratio of the upstream and downstream particle concentrations. In general, geometric mean SWPF (GM-SWPF) was highest for the P100 EHRs, followed by P100 FFRs, N95 EHRs, and N95 FFRs. This trend holds true for nanoparticles (10-100 nm), larger size particles (100-400 nm), and the 'all size' range (10-400 nm). All respirators provided better or similar performance levels for 10-100 nm particles as compared to larger 100-400 nm particles. This study found that class P100 respirators provided higher SWPFs compared to class N95 respirators (P 10) against all particle size ranges tested. PMID:26180261

  4. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover

    International Nuclear Information System (INIS)

    Highlights: ► Compared methane production of solid AD inoculated with different effluents. ► Food waste effluent (FWE) had the largest population of acetoclastic methanogens. ► Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. ► Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. ► Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVSfeed, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVSfeed. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO3/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.

  5. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover

    Energy Technology Data Exchange (ETDEWEB)

    Xu Fuqing; Shi Jian [Department of Food, Agricultural and Biological Engineering, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691 (United States); Lv Wen; Yu Zhongtang [Department of Animal Sciences, Ohio State University, Columbus, OH 43210 (United States); Li Yebo, E-mail: li.851@osu.edu [Department of Food, Agricultural and Biological Engineering, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691 (United States)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Compared methane production of solid AD inoculated with different effluents. Black-Right-Pointing-Pointer Food waste effluent (FWE) had the largest population of acetoclastic methanogens. Black-Right-Pointing-Pointer Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. Black-Right-Pointing-Pointer Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. Black-Right-Pointing-Pointer Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVS{sub feed}, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVS{sub feed}. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO{sub 3}/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.

  6. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Leukocyte alkaline phosphatase test. 864.7660... Leukocyte alkaline phosphatase test. (a) Identification. A leukocyte alkaline phosphatase test is a device used to identify the enzyme leukocyte alkaline phosphatase in neutrophilic granulocytes...

  7. Cultivable Anaerobic Microbiota of Infected Root Canals

    Directory of Open Access Journals (Sweden)

    Takuichi Sato

    2012-01-01

    Full Text Available Objective. Periapical periodontitis is an infectious and inflammatory disease of the periapical tissues caused by oral bacteria invading the root canal. In the present study, profiling of the microbiota in infected root canals was performed using anaerobic culture and molecular biological techniques for bacterial identification. Methods. Informed consent was obtained from all subjects (age ranges, 34–71 years. Nine infected root canals with periapical lesions from 7 subjects were included. Samples from infected root canals were collected, followed by anaerobic culture on CDC blood agar plates. After 7 days, colony forming units (CFU were counted and isolated bacteria were identified by 16S rRNA gene sequencing. Results. The mean bacterial count (CFU in root canals was (0.5±1.1×106 (range 8.0×101–3.1×106, and anaerobic bacteria were predominant (89.8%. The predominant isolates were Olsenella (25.4%, Mogibacterium (17.7%, Pseudoramibacter (17.7%, Propionibacterium (11.9% and Parvimonas (5.9%. Conclusion. The combination of anaerobic culture and molecular biological techniques makes it possible to analyze rapidly the microbiota in infected root canals. The overwhelming majority of the isolates from infected root canals were found to be anaerobic bacteria, suggesting that the environment in root canals is anaerobic and therefore support the growth of anaerobes.

  8. Y-12 Respirator Flow Cycle Time Reduction Project

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, C.T.; Rogers, P.E.

    2000-12-01

    In mid-July 2000, a Cycle Time Reduction (CTR) project was initiated by senior management to improve the flow and overall efficiency of the respirator distribution process at Y-12. A cross-functional team was formed to evaluate the current process and to propose necessary changes for improvement. Specifically, the team was challenged to make improvements that would eliminate production work stoppages due to the unavailability of respirators in Y-12 Stores. Prior to the team initiation, plant back orders for a specific model respirator were averaging above 600 and have been as high as 750+. The Cycle Time Reduction team segmented the respirator flow into detailed steps, with the focus and emphasis primarily being on the movement of dirty respirators out of work areas, transportation to Oak Ridge National Laboratory (ORNL) Laundry, and return back to Y-12 Stores inventory. The team selected a popular model respirator, size large, to track improvements. Despite a 30 percent increase in respirator usage for the same period of time in the previous year, the team has reduced the back orders by 89% with a steady trend downward. Summary of accomplishments: A 47 percent reduction in the average cycle time for dirty respirators to be laundered and stocked for reuse at the Y-12 Complex; A 73 percent reduction in the average cycle time for dirty respirators to be laundered and stocked for reuse specifically for major users: Enriched Uranium Operations (EUO) and Facilities Maintenance Organization (FMO); Development of a performance measure for tracking back orders; An 89 percent reduction in the number of laundered respirators on back order; Implementation of a tracking method to account for respirator loss; Achievement of an annual cost savings/avoidance of $800K with a one-time cost of $20K; Implementation of a routine pick-up schedule for EUO (major user of respirators); Elimination of activities no longer determined to be needed; Elimination of routine complaint calls to

  9. Y-12 Respirator Flow Cycle Time Reduction Project

    International Nuclear Information System (INIS)

    In mid-July 2000, a Cycle Time Reduction (CTR) project was initiated by senior management to improve the flow and overall efficiency of the respirator distribution process at Y-12. A cross-functional team was formed to evaluate the current process and to propose necessary changes for improvement. Specifically, the team was challenged to make improvements that would eliminate production work stoppages due to the unavailability of respirators in Y-12 Stores. Prior to the team initiation, plant back orders for a specific model respirator were averaging above 600 and have been as high as 750+. The Cycle Time Reduction team segmented the respirator flow into detailed steps, with the focus and emphasis primarily being on the movement of dirty respirators out of work areas, transportation to Oak Ridge National Laboratory (ORNL) Laundry, and return back to Y-12 Stores inventory. The team selected a popular model respirator, size large, to track improvements. Despite a 30 percent increase in respirator usage for the same period of time in the previous year, the team has reduced the back orders by 89% with a steady trend downward. Summary of accomplishments: A 47 percent reduction in the average cycle time for dirty respirators to be laundered and stocked for reuse at the Y-12 Complex; A 73 percent reduction in the average cycle time for dirty respirators to be laundered and stocked for reuse specifically for major users: Enriched Uranium Operations (EUO) and Facilities Maintenance Organization (FMO); Development of a performance measure for tracking back orders; An 89 percent reduction in the number of laundered respirators on back order; Implementation of a tracking method to account for respirator loss; Achievement of an annual cost savings/avoidance of $800K with a one-time cost of $20K; Implementation of a routine pick-up schedule for EUO (major user of respirators); Elimination of activities no longer determined to be needed; Elimination of routine complaint calls to

  10. Anaerobic Co-Digestion of Microalgae Scenedesmus sp. and TWAS for Biomethane Production.

    Science.gov (United States)

    Garoma, Temesgen; Nguyen, Don

    2016-01-01

    The paper investigated the feasibility of biomethane (bio-CH4) production from the anaerobic co-digestion of the microalgae Scenedesmus quadricauda (S. quadricauda) and thickened waste activated sludge (TWAS). The concept was tested in bench-scale anaerobic digesters by varying the proportions of volatile solids (VS) loading from S. quadricauda and TWAS and two critical operational parameters, temperature and alkalinity. The CH(4) production for the various S. quadricauda and TWAS proportions ranged from 234 to 318 mL/g of chemical oxygen demand (COD) digested and 329 to 530 mL/g of VS digested at 35 °C. The reductions in total solids (TS), COD, and VS ranged from 25 to 44%, 46 to 53%, and 40 to 53%, respectively. Temperature had a significant effect on CH(4) production, lower temperatures greatly reduced CH(4) production. No significant difference in CH(4) production was observed for experiments conducted at alkalinity levels of 70, 1630, and 3200 mg/L as CaCO(3). PMID:26803022

  11. Thermo-chemical pre-treatment to solubilize and improve anaerobic biodegradability of press mud.

    Science.gov (United States)

    López González, Lisbet Mailin; Vervaeren, Han; Pereda Reyes, Ileana; Dumoulin, Ann; Romero Romero, Osvaldo; Dewulf, Jo

    2013-03-01

    Different pre-treatment severities by thermo-alkaline conditions (100°C, Ca(OH)2) on press mud were evaluated for different pre-treatment time and lime loading. COD solubilization and the methane yield enhancement were assessed. The biochemical methane potential was determined in batch assays under mesophilic conditions (37±1°C). The best pre-treatment resulted in a surplus of 72% of methane yield, adding 10g Ca(OH)2 100g(-1)TS(-1) for 1h. Pre-treatment also increased the COD solubilization, but the optimal severity for COD solubilization as determined by response surface methodology did not ensure the highest methane production. Inhibitory effects on anaerobic digestion were noticed when the severity was increased. These results demonstrate the relevance of thermo-alkaline pre-treatment severity in terms of both lime loading and pre-treatment time to obtain optimal anaerobic biodegradability of lignocellulosic biomass from press mud. PMID:23353040

  12. Effects of lipid concentration on anaerobic co-digestion of municipal biomass wastes.

    Science.gov (United States)

    Sun, Yifei; Wang, Dian; Yan, Jiao; Qiao, Wei; Wang, Wei; Zhu, Tianle

    2014-06-01

    The influence of the lipid concentration on the anaerobic co-digestion of municipal biomass waste and waste-activated sludge was assessed by biochemical methane potential (BMP) tests and by bench-scale tests in a mesophilic semi-continuous stirred tank reactor. The effect of increasing the volatile solid (VS) concentration of lipid from 0% to 75% was investigated. BMP tests showed that lipids in municipal biomass waste could enhance the methane production. The results of bench-scale tests showed that a lipids concentration of 65% of total VS was the inhibition concentration. Methane yields increased with increasing lipid concentration when lipid concentrations were below 60%, but when lipid concentration was set as 65% or higher, methane yields decreased sharply. When lipid concentrations were below 60%, the pH values were in the optimum range for the growth of methanogenic bacteria and the ratios of volatile fatty acid (VFA)/alkalinity were in the range of 0.2-0.6. When lipid concentrations exceeded 65%, the pH values were below 5.2, the reactor was acidized and the values of VFA/alkalinity rose to 2.0. The amount of Brevibacterium decreased with increasing lipid content. Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process, thereby inhibiting anaerobic digestion. PMID:24075452

  13. Anaerobic xylose fermentation by Spathaspora passalidarum

    DEFF Research Database (Denmark)

    Hou, Xiaoru

    2012-01-01

    reductase (XR) and NAD+-dependent xylitol dehydrogenase (XDH). Thus, the capacity of S. passalidarum to utilize xylose under anaerobic conditions is possibly due to the balance between the cofactor’s supply and demand through this XR–XDH pathway. Only few XRs with NADH preference have been reported so far....... 2-Deoxy glucose completely inhibited the conversion of xylose by S. passalidarum under anaerobic conditions, but only partially did that under aerobic conditions. Thus, xylose uptake by S. passalidarum may be carried out by different xylose transport systems under anaerobic and aerobic conditions...

  14. Potential for anaerobic conversion of xenobiotics

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Dolfing, J.; Haagensen, Frank;

    2003-01-01

    This review covers the latest research on the anaerobic biodegradation of aromatic xenobiotic compounds, with emphasis on surfactants, polycyclic aromatic hydrocarbons, phthalate esters, polychlorinated biphenyls, halogenated phenols, and pesticides. The versatility of anaerobic reactor systems...... regarding the treatment of xenobiotics is shown with the focus on the UASB reactor, but the applicability of other reactor designs for treatment of hazardous waste is also included. Bioaugmentation has proved to be a viable technique to enhance a specific activity in anaerobic reactors and recent research...... on reactor and in situ bioaugmentation is reported....

  15. Effect of increasing nitrobenzene loading rates on the performance of anaerobic migrating blanket reactor and sequential anaerobic migrating blanket reactor/completely stirred tank reactor system

    International Nuclear Information System (INIS)

    A laboratory scale anaerobic migrating blanket reactor (AMBR) reactor was operated at nitrobenzene (NB) loading rates increasing from 3.33 to 66.67 g NB/m3 day and at a constant hydraulic retention time (HRT) of 6 days to observe the effects of increasing NB concentrations on chemical oxygen demand (COD), NB removal efficiencies, bicarbonate alkalinity, volatile fatty acid (VFA) accumulation and methane gas percentage. Moreover, the effect of an aerobic completely stirred tank reactor (CSTR) reactor, following the anaerobic reactor, on treatment efficiencies was also investigated. Approximately 91-94% COD removal efficiencies were observed up to a NB loading rate of 30.00 g/m3 day in the AMBR reactor. The COD removal efficiencies decreased from 91% to 85% at a NB loading rate of 66.67 g/m3 day. NB removal efficiencies were approximately 100% at all NB loading rates. The maximum total gas, methane gas productions and methane percentage were found to be 4.1, 2.6 l/day and 59%, respectively, at a NB loading rate of 30.00 g/m3 day. The optimum pH values were found to be between 7.2 and 8.4 for maximum methanogenesis. The total volatile fatty acid (TVFA) concentrations in the effluent were 110 and 70 mg/l in the first and second compartments at NB loading rates as high as 66.67 and 6.67 g/m3 day, respectively, while they were measured as zero in the effluent of the AMBR reactor. In this study, from 180 mg/l NB 66 mg/l aniline was produced in the anaerobic reactor while aniline was completely removed and transformed to 2 mg/l of cathechol in the aerobic CSTR reactor. Overall COD removal efficiencies were found to be 95% and 99% for NB loading rates of 3.33 and 66.67 g/m3 day in the sequential anaerobic AMBR/aerobic CSTR reactor system, respectively. The toxicity tests performed with Photobacterium phosphoreum (LCK 480, LUMIStox) and Daphnia magna showed that the toxicity decreased with anaerobic/aerobic sequential reactor system from the influent, anaerobic and to

  16. Two-stage high-rate biogas (H2 and CH4) production from food waste using anaerobic mixed microflora

    Science.gov (United States)

    Xu, K.; Lee, D.; Kobayashi, T.; Ebie, Y.; Li, Y.; Inamori, Y.

    2010-12-01

    To achieve the high-rate H2 and CH4 production from food waste using fermentative anaerobic microflora, the effects of carbonate-alkalinity in the recirculated digestion sludge on continuous two-stage fermentation were investigated. Higher H2 production rate of 2.9 L-H2/L/day was achieved at the recycle ratio of 1.0 in an alkalinity range of 9000 to 10000 mg-CaCO3/L. The maximum CH4 production rate was stably maintained at the range of 1.85 to 1.88 L-CH4/L/day without alkalinity change. Carbonate alkalinity in digestion sludge could reduce the H2 partial pressure in the headspace of the fermentation reactors, and improve a biogas production capacity in the two-stage fermentation process. The average volatile solids degradation rate in the overall process increased as the digestion sludge recycle increased from 0.5 to 1.0. These results show that the alkalinity in recycle of the digestion sludge is crucial factor in determining biogas (H2 and CH4) production capacity and reducing the total solids.

  17. [Spectral characteristics of soluble metabolites during endogenous respiration].

    Science.gov (United States)

    Li, Zhi-hua; Zhang, Qin; Bai, Xu-li; Liu, Yi

    2014-09-01

    Endogenous respiration phase plays an important role in the sewage treatment process. In order to clearly understand the endogenous respiration process of the activated sludge process, three-dimensional fluorescence spectroscopy, ultraviolet spectroscopy and respirogram were employed for the analysis of endogenous respiration process. Results showed that the three-dimensional fluorescence spectroscopy and UV spectroscopy could identify all stages significantly. The following conclusions could be drawn: (1) Rapid decline phase of endogenous respiration:the excitation wavelength (EX) and emission wavelength (Em) of humic peak showed blue shift of 5 nm and 6 nm, respectively, the fluorescence index f450/500 and HIX (humification index) were reduced by 9. 3% and 0.2%, respectively, UV253/203 and UV254 increased by 37.5% and 200%, respectively. These results indicated the presence of bioavailable organics; (2)Slow decline phase of endogenous respiration: f450/500 was increased by 0. 5% , HIX was reduced by 0. 2% , UV253/203 was reduced by 20% , UV254 was increased by 16. 7%. These results indicated that hydrolysis or autolysis of cells might occur; (3)Stable phase of endogenous respiration: humic acid peak remained unchanged, indicating the adaption of microorganisms to starving environment. The analysis of the endogenous respiration process from the perspective of metabolites provides a new way for control of microbial wastewater treatment process. PMID:25518670

  18. Root Zone Respiration on Hydroponically Grown Wheat Plant Systems

    Science.gov (United States)

    Soler-Crespo, R. A.; Monje, O. A.

    2010-01-01

    Root respiration is a biological phenomenon that controls plant growth and physiological development during a plant's lifespan. This process is dependent on the availability of oxygen in the system where the plant is located. In hydroponic systems, where plants are submerged in a solution containing vital nutrients but no type of soil, the availability of oxygen arises from the dissolved oxygen concentration in the solution. This oxygen concentration is dependent on the , gas-liquid interface formed on the upper surface of the liquid, as given by Henry's Law, depending on pressure and temperature conditions. Respiration rates of the plants rise as biomass and root zone increase with age. The respiration rate of Apogee wheat plants (Triticum aestivum) was measured as a function of light intensity (catalytic for photosynthesis) and CO2 concentration to determine their effect on respiration rates. To determine their effects on respiration rate and plant growth microbial communities were introduced into the system, by Innoculum. Surfactants were introduced, simulating gray-water usage in space, as another factor to determine their effect on chemical oxygen demand of microbials and on respiration rates of the plants. It is expected to see small effects from changes in CO2 concentration or light levels, and to see root respiration decrease in an exponential manner with plant age and microbial activity.

  19. Evaluation of dust respirators for elimination of mouse aeroallergens.

    Science.gov (United States)

    Sakaguchi, M; Inouye, S; Miyazawa, H; Kamimura, H; Kimura, M; Yamazaki, S

    1989-01-01

    The efficiency of various dust respirators for eliminating mouse allergens [mouse urine proteins (MUP), pelts proteins (MPP) and serum albumin (MSA)] were evaluated with use of low-volume air samplers and immunochemical methods. Three kinds of dust respirators from one manufacturer which have different efficacy in the exclusion of dust particles were put on the fiber glass filter in each air sampler. Then the air in a mouse housing room was sampled. The allergens passed through the respirators, were trapped in the fiber glass filters, and then extracted from the filters. The allergens of MUP and MPP in the extract were measured by an inhibition method of fluorometric enzyme-linked immunosorbent assay (ELISA) for IgE antibody and those of MSA measured by a fluorometric sandwich ELISA. The respirator with the lowest capability of exclusion was found to eliminate 65-86% of respective allergens. The other two respirators with higher powers eliminated 98% of MUP. MPP and MSA were eliminated to undetectable levels through these respirators. This study provided a means for the evaluation of dust respirators for animal aeroallergens. PMID:2918688

  20. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management

    Science.gov (United States)

    Hou, Xiangyang; Schellenberg, Michael P.

    2016-01-01

    Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures) on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17μmol.m−2.s−1) and clipping (2.06μmol.m−2.s−1) than under grazing (1.65μmol.m−2.s−1) over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP). Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP) and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content) and biotic (ANPP and BNPP) factors regulate soil respiration in the semiarid temperate grassland of northern China. PMID:26808376

  1. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management.

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    Full Text Available Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17 μmol.m(-2.s(-1 and clipping (2.06 μmol.m(-2.s(-1 than under grazing (1.65 μmol.m-(2.s(-1 over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP. Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content and biotic (ANPP and BNPP factors regulate soil respiration in the semiarid temperate grassland of northern China.

  2. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management.

    Science.gov (United States)

    Wang, Zhen; Ji, Lei; Hou, Xiangyang; Schellenberg, Michael P

    2016-01-01

    Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures) on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17 μmol.m(-2).s(-1)) and clipping (2.06 μmol.m(-2).s(-1)) than under grazing (1.65 μmol.m-(2).s(-1)) over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP). Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP) and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content) and biotic (ANPP and BNPP) factors regulate soil respiration in the semiarid temperate grassland of northern China. PMID:26808376

  3. Molecular Characterization of Bacterial Respiration on Minerals

    Energy Technology Data Exchange (ETDEWEB)

    Blake, Robert C.

    2013-04-26

    The overall aim of this project was to contribute to our fundamental understanding of proteins and biological processes under extreme environmental conditions. We sought to define the biochemical and physiological mechanisms that underlie biodegradative and other cellular processes in normal, extreme, and engineered environments. Toward that end, we sought to understand the substrate oxidation pathways, the electron transport mechanisms, and the modes of energy conservation employed during respiration by bacteria on soluble iron and insoluble sulfide minerals. In accordance with these general aims, the specific aims were two-fold: To identify, separate, and characterize the extracellular biomolecules necessary for aerobic respiration on iron under strongly acidic conditions; and to elucidate the molecular principles whereby these bacteria recognize and adhere to their insoluble mineral substrates under harsh environmental conditions. The results of these studies were described in a total of nineteen manuscripts. Highlights include the following: 1. The complete genome of Acidithiobacillus ferrooxidans ATCC 23270 (type strain) was sequenced in collaboration with the DOE Joint Genome Institute; 2. Genomic and mass spectrometry-based proteomic methods were used to evaluate gene expression and in situ microbial activity in a low-complexity natural acid mine drainage microbial biofilm community. This was the first effort to successfully analyze a natural community using these techniques; 3. Detailed functional and structural studies were conducted on rusticyanin, an acid-stable electron transfer protein purified from cell-free extracts of At. ferrooxidans. The three-dimensional structure of reduced rusticyanin was determined from a combination of homonuclear proton and heteronuclear 15N- and 13C-edited NMR spectra. Concomitantly, the three-dimensional structure of oxidized rusticyanin was determined by X-ray crystallography to a resolution of 1.9 A by multiwavelength

  4. Anaerobic co-digestion of canola straw and buffalo dung: optimization of methane production in batch experiments

    International Nuclear Information System (INIS)

    In several regions of the Pakistan, crop cultivation is leading to the production crop residues and its disposal problems. It has been suggested that the co-digestion of the crop residues with the buffalo dung might be a disposal way for the wasted portion of the crops residue. The objective of present study was to optimize the anaerobic co-digestion of canola straw and the buffalo dung through batch experiments in order to obtain maximum methane production. The optimization was carried out in three stages. In first stage, the best canola straw to buffalo dung ratio was evaluated. In second stage, the best concentration of sodium hydrogen carbonate was assessedas the alkaline pretreatment chemical, whereas in the third stage most suitable particle size of the canola strawwas evaluated. The assessment criteria for the optimization of a co-digestion were cumulative methane production and ABD (Anaerobic Biodegradability). The results yield that anaerobic co-digestibility of the canola straw and the buffalo dung is obviously influenced by all the three factors of optimization. The maximum methane production was obtained as 911 NmL from the canola straw to buffalo dung ratio of 40:60, the alkaline doze of 0.6 gNaHCO/sub 3/ gVS and canola straw particle size of 2mm. However, because of the higher shredding cost to produce 2mm sized canola straw, particle size 4mm could be the best canola straw particle size. (author)

  5. The impact of dissolved organic carbon and bacterial respiration on pCO2 in experimental sea ice

    Science.gov (United States)

    Zhou, J.; Kotovitch, M.; Kaartokallio, H.; Moreau, S.; Tison, J.-L.; Kattner, G.; Dieckmann, G.; Thomas, D. N.; Delille, B.

    2016-02-01

    Previous observations have shown that the partial pressure of carbon dioxide (pCO2) in sea ice brines is generally higher in Arctic sea ice compared to those from the Antarctic sea ice, especially in winter and early spring. We hypothesized that these differences result from the higher dissolved organic carbon (DOC) content in Arctic seawater: Higher concentrations of DOC in seawater would be reflected in a greater DOC incorporation into sea ice, enhancing bacterial respiration, which in turn would increase the pCO2 in the ice. To verify this hypothesis, we performed an experiment using two series of mesocosms: one was filled with seawater (SW) and the other one with seawater with an addition of filtered humic-rich river water (SWR). The addition of river water increased the DOC concentration of the water from a median of 142 μmol Lwater-1 in SW to 249 μmol Lwater-1 in SWR. Sea ice was grown in these mesocosms under the same physical conditions over 19 days. Microalgae and protists were absent, and only bacterial activity has been detected. We measured the DOC concentration, bacterial respiration, total alkalinity and pCO2 in sea ice and the underlying seawater, and we calculated the changes in dissolved inorganic carbon (DIC) in both media. We found that bacterial respiration in ice was higher in SWR: median bacterial respiration was 25 nmol C Lice-1 h-1 compared to 10 nmol C Lice-1 h-1 in SW. pCO2 in ice was also higher in SWR with a median of 430 ppm compared to 356 ppm in SW. However, the differences in pCO2 were larger within the ice interiors than at the surfaces or the bottom layers of the ice, where exchanges at the air-ice and ice-water interfaces might have reduced the differences. In addition, we used a model to simulate the differences of pCO2 and DIC based on bacterial respiration. The model simulations support the experimental findings and further suggest that bacterial growth efficiency in the ice might approach 0.15 and 0.2. It is thus credible

  6. Anaerobic respirometry as a tool for substrate characterisation aiming at modelling of manures anaerobic modelling of manures anaerobic digestion

    OpenAIRE

    Girault, R.; Sadowski, A.G.; Béline, F.

    2010-01-01

    Modelling of anaerobic digestion is more and more used as a tool for process optimization or interpreting observed phenomena within research projects. The most used model is the Anaerobic Digestion Model n°1 (ADM1) but some other models are also available (either simpler or more complex). Whatever the model, one of the major key issue is the fractionation and characterisation of the influent. For substrates like activated sludge from wastewater treatment plants, detailed influent characterisa...

  7. Anaerobe Tolerance to Oxygen and the Potentials of Anaerobic and Aerobic Cocultures for Wastewater Treatment

    OpenAIRE

    1997-01-01

    The anaerobic treatment processes are considered to be well-established methods for the elimination of easily biodegradable organic matter from wastewaters. Some difficulties concerning certain wastewaters are related to the possible presence of dissolved oxygen. The common belief is that anaerobes are oxygen intolerant. Therefore, the common practice is to use sequencing anaerobic and aerobic steps in separate tanks. Enhanced treatment by polishing off the residual biodegradable oxygen deman...

  8. Support for an anaerobic sulfur cycle in two Canadian peatland soils

    Science.gov (United States)

    Blodau, Christian; Mayer, Bernhard; Peiffer, Stefan; Moore, Tim R.

    2007-06-01

    Sulfur cycling in peatlands may affect global CH4 emissions by suppression of methanogenesis through bacterial sulfate reduction (BSR). We sought evidence for anaerobic sulfur cycling in four peat mesocosms irrigated with sulfate at a loading of 0.8 and 3.3 g S m-2 yr-1. To this end we obtained concentration profiles of dissolved O2, C, S, and Fe, and determined 34S/32S ratios of sulfate, reduced inorganic sulfur (TRIS), and total sulfur. To estimate the importance of BSR for anaerobic respiration, peat was incubated with molybdate as inhibitor of BSR. In the mesocosms, pore water concentrations of dissolved sulfate and H2S adjusted to 5-20 μmol L-1 and 0-9 μmol L-1, respectively, whereas concentrations of CO2, CH4, and DOC reached millimolar levels. CO2 production was not explained by methanogenesis and net reduction of inorganic electron acceptors. In the shallow peat, H2S was produced and 34S in sulfate enriched by 3.6 to 6‰, indicating occurrence of BSR. Sulfate reducers also accounted for much of the metabolic activity. Addition of molybdate suppressed CO2 production by 20 to 50%. Deeper into the peat, the sulfate pool was apparently replenished from the peat matrix as sulfate became enriched in 32S, likely stemming from TRIS or organic sulfur in the peat. Sulfur was thus anaerobically cycled between oxidized and reduced pools. An electron acceptor capable of driving this cycle could not be conclusively identified. Regardless of this uncertainty, the results suggest that anaerobic S cycling can maintain BSR and potentially contribute to low methane production in soils of ombrotrophic bogs.

  9. Prophylactic treatment with alkaline phosphatase in cardiac surgery induces endogenous alkaline phosphatase release

    NARCIS (Netherlands)

    Kats, Suzanne; Brands, Ruud; Hamad, Mohamed A. Soliman; Seinen, Willem; Schamhorst, Volkher; Wulkan, Raymond W.; Schoenberger, Jacques P.; van Oeveren, Wim

    2012-01-01

    Introduction: Laboratory and clinical data have implicated endotoxin as an important factor in the inflammatory response to cardiopulmonary bypass. We assessed the effects of the administration of bovine intestinal alkaline phosphatase (bIAP), an endotoxin detoxifier, on alkaline phosphatase levels

  10. Respirator Use in a Hospital Setting: Establishing Surveillance Metrics

    Science.gov (United States)

    Yarbrough, Mary I.; Ficken, Meredith E.; Lehmann, Christoph U.; Talbot, Thomas R.; Swift, Melanie D.; McGown, Paula W.; Wheaton, Robert F.; Bruer, Michele; Little, Steven W.; Oke, Charles A.

    2016-01-01

    Information that details use and supply of respirators in acute care hospitals is vital to prevent disease transmission, assure the safety of health care personnel, and inform national guidelines and regulations. Objective To develop measures of respirator use and supply in the acute care hospital setting to aid evaluation of respirator programs, allow benchmarking among hospitals, and serve as a foundation for national surveillance to enhance effective Personal Protective Equipment (PPE) use and management. Methods We identified existing regulations and guidelines that govern respirator use and supply at Vanderbilt University Medical Center (VUMC). Related routine and emergency hospital practices were documented through an investigation of hospital administrative policies, protocols, and programs. Respirator dependent practices were categorized based on hospital workflow: Prevention (preparation), patient care (response), and infection surveillance (outcomes). Associated data in information systems were extracted and their quality evaluated. Finally, measures representing major factors and components of respirator use and supply were developed. Results Various directives affecting multiple stakeholders govern respirator use and supply in hospitals. Forty-seven primary and secondary measures representing factors of respirator use and supply in the acute care hospital setting were derived from existing information systems associated with the implementation of these directives. Conclusion Adequate PPE supply and effective use that limit disease transmission and protect health care personnel are dependent on multiple factors associated with routine and emergency hospital practices. We developed forty-seven measures that may serve as the basis for a national PPE surveillance system, beginning with standardized measures of respirator use and supply for collection across different hospital types, sizes, and locations to inform hospitals, government agencies

  11. Influence of soil moisture on soil respiration

    Science.gov (United States)

    Fer, Miroslav; Kodesova, Radka; Nikodem, Antonin; Klement, Ales; Jelenova, Klara

    2015-04-01

    The aim of this work was to describe an impact of soil moisture on soil respiration. Study was performed on soil samples from morphologically diverse study site in loess region of Southern Moravia, Czech Republic. The original soil type is Haplic Chernozem, which was due to erosion changed into Regosol (steep parts) and Colluvial soil (base slope and the tributary valley). Soil samples were collected from topsoils at 5 points of the selected elevation transect and also from the parent material (loess). Grab soil samples, undisturbed soil samples (small - 100 cm3, and large - 713 cm3) and undisturbed soil blocks were taken. Basic soil properties were determined on grab soil samples. Small undisturbed soil samples were used to determine the soil water retention curves and the hydraulic conductivity functions using the multiple outflow tests in Tempe cells and a numerical inversion with HYDRUS 1-D. During experiments performed in greenhouse dry large undisturbed soil samples were wetted from below using a kaolin tank and cumulative water inflow due to capillary rise was measured. Simultaneously net CO2 exchange rate and net H2O exchange rate were measured using LCi-SD portable photosynthesis system with Soil Respiration Chamber. Numerical inversion of the measured cumulative capillary rise data using the HYDRUS-1D program was applied to modify selected soil hydraulic parameters for particular conditions and to simulate actual soil water distribution within each soil column in selected times. Undisturbed soil blocks were used to prepare thin soil sections to study soil-pore structure. Results for all soil samples showed that at the beginning of soil samples wetting the CO2 emission increased because of improving condition for microbes' activity. The maximum values were reached for soil column average soil water content between 0.10 and 0.15 cm3/cm3. Next CO2 emission decreased since the pore system starts filling by water (i.e. aggravated conditions for microbes

  12. Characterizing the Anaerobic Response of Chlamydomonas reinhardtii by Quantitative Proteomics

    OpenAIRE

    Terashima, Mia; Specht, Michael; Naumann, Bianca; Hippler, Michael

    2010-01-01

    The versatile metabolism of the green alga Chlamydomonas reinhardtii is reflected in its complex response to anaerobic conditions. The anaerobic response is also remarkable in the context of renewable energy because C. reinhardtii is able to produce hydrogen under anaerobic conditions. To identify proteins involved during anaerobic acclimation as well as to localize proteins and pathways to the powerhouses of the cell, chloroplasts and mitochondria from C. reinhardtii in aerobic and anaerobic...

  13. Complete genome sequence of Desulfurivibrio alkaliphilus strain AHT2(T), a haloalkaliphilic sulfidogen from Egyptian hypersaline alkaline lakes.

    Science.gov (United States)

    Melton, Emily Denise; Sorokin, Dimitry Y; Overmars, Lex; Chertkov, Olga; Clum, Alicia; Pillay, Manoj; Ivanova, Natalia; Shapiro, Nicole; Kyrpides, Nikos C; Woyke, Tanja; Lapidus, Alla L; Muyzer, Gerard

    2016-01-01

    Desulfurivibrio alkaliphilus strain AHT2(T) is a strictly anaerobic sulfidogenic haloalkaliphile isolated from a composite sediment sample of eight hypersaline alkaline lakes in the Wadi al Natrun valley in the Egyptian Libyan Desert. D. alkaliphilus AHT2(T) is Gram-negative and belongs to the family Desulfobulbaceae within the Deltaproteobacteria. Here we report its genome sequence, which contains a 3.10 Mbp chromosome. D. alkaliphilus AHT2(T) is adapted to survive under highly alkaline and moderately saline conditions and therefore, is relevant to the biotechnology industry and life under extreme conditions. For these reasons, D. alkaliphilus AHT2(T) was sequenced by the DOE Joint Genome Institute as part of the Community Science Program. PMID:27617057

  14. Anaerobe Tolerance to Oxygen and the Potentials of Anaerobic and Aerobic Cocultures for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    M.T. Kato

    1997-12-01

    Full Text Available The anaerobic treatment processes are considered to be well-established methods for the elimination of easily biodegradable organic matter from wastewaters. Some difficulties concerning certain wastewaters are related to the possible presence of dissolved oxygen. The common belief is that anaerobes are oxygen intolerant. Therefore, the common practice is to use sequencing anaerobic and aerobic steps in separate tanks. Enhanced treatment by polishing off the residual biodegradable oxygen demand from effluents of anaerobic reactors, or the biodegradation of recalcitrant wastewater pollutants, usually requires sequenced anaerobic and aerobic bacteria activities. However, the combined activity of both bacteria can also be obtained in a single reactor. Previous experiments with either pure or mixed cultures showed that anaerobes can tolerate oxygen to a certain extent. The oxygen toxicity to methanogens in anaerobic sludges was quantified in batch experiments, as well as in anaerobic reactors. The results showed that methanogens have a high tolerance to oxygen. In practice, it was confirmed that dissolved oxygen does not constitute any detrimental effect on reactor treatment performance. This means that the coexistence of anaerobic and aerobic bacteria in one single reactor is feasible and increases the potentials of new applications in wastewater treatment

  15. Oxygen and carbon isotopic compositions of gases respired by humans

    International Nuclear Information System (INIS)

    Oxygen-isotope fractionation associated with respiration in human individuals at rest is linearly related to the fraction of the O2 utilized in the respiration process. The slope of this relationship is affected by a history of smoking, by vigorous exercise, and by the N2/O2 ratio of the inhaled gas. For patients who suffer anemia-related diseases, the slope of this relationship is directly proportional to their level of hemoglobin. These results introduce a new approach for studying the mechanisms of O2 consumption in human respiration and how they are affected by related diseases

  16. Estimating daytime ecosystem respiration from eddy-flux data

    DEFF Research Database (Denmark)

    Bruhn, Dan; Mikkelsen, Teis Nørgaard; Herbst, Mathias;

    2011-01-01

    To understand what governs the patterns of net ecosystem exchange of CO2, an understanding of factors influencing the component fluxes, ecosystem respiration and gross primary production is needed. In the present paper, we introduce an alternative method for estimating daytime ecosystem respiration...... based on whole ecosystem fluxes from a linear regression of photosynthetic photon flux density data vs. daytime net ecosystem exchange data at forest ecosystem level. This method is based on the principles of the Kok-method applied at leaf level for estimating daytime respiration. We demonstrate the...

  17. Respirator studies for the Nuclear Regulatory Commission (NRC)

    International Nuclear Information System (INIS)

    A project of the Health, Safety and Environment Division is described. The project provides the NRC with information of respiratory protective devices and programs for their licensee personnel. The following activities were performed during FY 1983: selection of alternate test aerosols for quality assurance testing of high-efficiency particulate air respirator filters; evaluation of MAG-1 spectacles for use with positive and negative-pressure respirators; development of a Manual of Respiratory Protection in Emergencies Involving Airborne Radioactive Materials, and technical assistance to NRC licensees regarding respirator applications. 2 references, 1 figure

  18. Ammonium excretion and oxygen respiration of tropical copepods and euphausiids exposed to oxygen minimum zone conditions

    Science.gov (United States)

    Kiko, R.; Hauss, H.; Buchholz, F.; Melzner, F.

    2015-10-01

    Calanoid copepods and euphausiids are key components of marine zooplankton communities worldwide. Most euphausiids and several copepod species perform diel vertical migrations (DVMs) that contribute to the export of particulate and dissolved matter to midwater depths. In vast areas of the global ocean, and in particular in the eastern tropical Atlantic and Pacific, the daytime distribution depth of many migrating organisms corresponds to the core of the oxygen minimum zone (OMZ). At depth, the animals experience reduced temperature and oxygen partial pressure (pO2) and an increased carbon dioxide partial pressure (pCO2) compared to their near-surface nighttime habitat. Although it is well known that low oxygen levels can inhibit respiratory activity, the respiration response of tropical copepods and euphausiids to relevant pCO2, pO2 and temperature conditions remains poorly parameterized. Further, the regulation of ammonium excretion at OMZ conditions is generally not well understood. It was recently estimated that DVM-mediated ammonium supply considerably fuels bacterial anaerobic ammonium oxidation - a major loss process for fixed nitrogen in the ocean. These estimates were based on the implicit assumption that hypoxia or anoxia in combination with hypercapnia (elevated pCO2) does not result in a downregulation of ammonium excretion. Here we show that exposure to OMZ conditions can result in strong depression of respiration and ammonium excretion in calanoid copepods and euphausiids from the Eastern Tropical North Atlantic and the Eastern Tropical South Pacific. These physiological responses need to be taken into account when estimating DVM-mediated fluxes of carbon and nitrogen into OMZs.

  19. Performance of anaerobic sequencing batch reactors (pilot-scale in domestic sewage treatment

    Directory of Open Access Journals (Sweden)

    Eugenio Foresti

    2005-02-01

    Full Text Available This study shows the results obtained during 70 days using four pilot scale anaerobic sequencing batch reactors, for sewage system treatment of the campus of the University of São Paulo in São Carlos – SP. Each reactor system with 1.2 m³ of total volume, was designed for the treatment of 1.95 m³d³ of domestic sewage, with geometrical conceptions (ratio H-height/D-diameter, mechanical conceptions (mechanical mixing or liquid re-circulation and different biomass retention type. Three of them were ASBR (AnaerobicSequencing Batch Reactor with granular biomass and another one was an ASBBR (Anaerobic Sequencing Batch Biofilm Reactor with biomass consisting of cubic matrices of polyurethane foam. The reactors were inoculated and operated within an 8-hour batch cycle. The reactors monitoring included the oxygen chemical demand (OCD, pH, total suspended solids (TSS and volatile suspended solids, volatile fatty acids, alkalinity to bicarbonate and methane concentration. Both ASBR reactors with liquid re-circulation did not show a satisfactory performance. The average values of OCD and TSS removal were close to 40% and 60% respectively. In the ASBR reactors with mechanical mixing and ASBBR with immobilized biomass, showed better results. The ASBBR reactor reached average efficiency of 61% and 75% in OCD and TSS removal, while in the ASBR with mechanical mixing, it reached 60% and 79%, respectively.

  20. Effects of lipid concentration on anaerobic co-digestion of municipal biomass wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yifei, E-mail: sunif@buaa.edu.cn [School of Chemistry and Environment, Beihang University, Beijing 100191 (China); Wang, Dian; Yan, Jiao [School of Chemistry and Environment, Beihang University, Beijing 100191 (China); Qiao, Wei [College of Chemical Science and Engineering, China University of Petroleum, Beijing 102249 (China); Wang, Wei [School of Environment, Tsinghua University, Beijing 100084 (China); Zhu, Tianle [School of Chemistry and Environment, Beihang University, Beijing 100191 (China)

    2014-06-01

    Highlights: • Lipid in municipal biomass would not inhibited the anaerobic digestion process. • A lipid concentration of 65% of total VS was the inhibition concentration. • The amount of Brevibacterium decreased with the increasing of the lipid contents. • Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process. - Abstract: The influence of the lipid concentration on the anaerobic co-digestion of municipal biomass waste and waste-activated sludge was assessed by biochemical methane potential (BMP) tests and by bench-scale tests in a mesophilic semi-continuous stirred tank reactor. The effect of increasing the volatile solid (VS) concentration of lipid from 0% to 75% was investigated. BMP tests showed that lipids in municipal biomass waste could enhance the methane production. The results of bench-scale tests showed that a lipids concentration of 65% of total VS was the inhibition concentration. Methane yields increased with increasing lipid concentration when lipid concentrations were below 60%, but when lipid concentration was set as 65% or higher, methane yields decreased sharply. When lipid concentrations were below 60%, the pH values were in the optimum range for the growth of methanogenic bacteria and the ratios of volatile fatty acid (VFA)/alkalinity were in the range of 0.2–0.6. When lipid concentrations exceeded 65%, the pH values were below 5.2, the reactor was acidized and the values of VFA/alkalinity rose to 2.0. The amount of Brevibacterium decreased with increasing lipid content. Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process, thereby inhibiting anaerobic digestion.

  1. Anaerobic degradation of linear alkylbenzene sulfonate

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Haagensen, Frank; Ahring, Birgitte Kiær

    2003-01-01

    increases during anaerobic stabilization due to transformation of easily degradable organic matter. Hence, LAS is regarded as resistant to biodegradation under anaerobic conditions. We present data from a lab-scale semi-continuously stirred tank reactor (CSTR) spiked with linear dodecylbenzene sulfonate (C......% of the added C-12 LAS was bioavailable and 20% was biotransformed when spiking with 100 mg/L of C-12 LAS and a TS concentration of 14.2 mg/L. Enhanced bioavailability of C-12 LAS was obtained in an upflow anaerobic sludge blanket (UASB) reactor inoculated with granular sludge and sewage sludge. Biodegradation......Linear alkylbenzene sulfonate (LAS) found in wastewater is removed in the wastewater treatment facilities by sorption and aerobic biodegradation. The anaerobic digestion of sewage sludge has not been shown to contribute to the removal. The concentration of LAS based on dry matter typically...

  2. Occupational Exposure to Respirable Dust, Respirable Crystalline Silica and Diesel Engine Exhaust Emissions in the London Tunnelling Environment.

    Science.gov (United States)

    Galea, Karen S; Mair, Craig; Alexander, Carla; de Vocht, Frank; van Tongeren, Martie

    2016-03-01

    Personal 8-h shift exposure to respirable dust, diesel engine exhaust emissions (DEEE) (as respirable elemental carbon), and respirable crystalline silica of workers involved in constructing an underground metro railway tunnel was assessed. Black carbon (BC) concentrations were also assessed using a MicroAeth AE51. During sprayed concrete lining (SCL) activities in the tunnel, the geometric mean (GM) respirable dust exposure level was 0.91mg m(-3), with the highest exposure measured on a back-up sprayer (3.20mg m(-3)). The GM respirable crystalline silica concentration for SCL workers was 0.03mg m(-3), with the highest measurement also for the back-up sprayer (0.24mg m(-3)). During tunnel boring machine (TBM) activities, the GM respirable dust concentration was 0.54mg m(-3). The GM respirable elemental carbon concentration for all the TBM operators was 18 µg m(-3); with the highest concentration measured on a segment lifter. The BC concentrations were higher in the SCL environment in comparison to the TBM environment (daily GM 18-54 µg m(-3) versus 3-6 µg m(-3)). This small-scale monitoring campaign provides additional personal data on exposures experienced by underground tunnel construction workers. PMID:26403363

  3. Anaerobic membrane bioreactor under extreme conditions (poster)

    OpenAIRE

    Munoz Sierra, J.D.; De Kreuk, M.K.; Spanjers, H.; van Lier, J B

    2013-01-01

    Membrane bioreactors ensure biomass retention by the application of micro or ultrafiltration processes. This allows operation at high sludge concentrations. Previous studies have shown that anaerobic membrane bioreactors is an efficient way to retain specialist microorganisms for treating wastewaters from different industries such as coke, textile, food, and chemical. However, few research has been found into the use of membrane bioreactors for anaerobic treatment of wastewater under extreme ...

  4. Anaerobic Biodegradability of Agricultural Renewable Fibers

    OpenAIRE

    Shi, Bo; Lortscher, Peter; Palfery, Doris

    2013-01-01

    Natural fiber-based paper and paperboard products are likely disposed of in municipal wastewater, composting, or landfill after an intended usage. However, there are few studies reporting anaerobic sludge digestion and biodegradability of agricultural fibers although the soiled sanitary products, containing agricultural fibers, are increasingly disposed of in municipal wastewater or conventional landfill treatment systems, in which one or more unit operations are anaerobic digestion. We condu...

  5. Psychrophilic anaerobic treatment of low strength wastewaters.

    OpenAIRE

    Rebac, S.

    1998-01-01

    The main objective of this thesis was to design a high-rate anaerobic system for the treatment low strength wastewaters under psychrophilic conditions.Psychrophilic (3 to 20 °C) anaerobic treatment of low strength synthetic and malting wastewater was investigated using a single and two stage expanded granular sludge bed (EGSB) reactor system. The chemical oxygen demand (COD) removal efficiencies found in the experiments with synthetic wastewater exceeded 90 % in the single stage reactor at im...

  6. Anaerober Abbau von Kresolen und Monohydroxybenzoaten

    OpenAIRE

    Müller, Jochen A.

    2000-01-01

    All aromatic compounds are potential substrates for microorganisms. Hence, microorganisms play an eminent role in the global carbon cycle. The present work describes the anaerobic degradation of cresols and toluene, both bulk chemicals of the petroleum industry, and the anaerobic degradation of 3-hydroxybenzoate, a model compound for degradation of lignin-monomers. Degradation pathways for these aromatic substrates are postulated on the basis of in vitro measurements of key enzymes in various...

  7. Anaerobic digester for treatment of organic waste

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, V. K. [Indian Insitute of Technology, Delhi (India)]|[ENEA, Centro Ricerche Trisaia, Matera (Italy); Fortuna, F.; Canditelli, M.; Cornacchia, G. [ENEA, Centro Ricerche Trisaia, Matera (Italy). Dipt. Ambiente; Farina, R. [ENEA, centro Ricerche ``Ezio Clementel``, Bologna (Italy). Dipt. Ambiente

    1997-09-01

    The essential features of both new and more efficient reactor systems and their appropriate applications for various organic waste management situations, description of several working plants are discussed in the present communication. It is hoped that significant development reported here would be useful in opening a new vista to the application of anaerobic biotechnology for the waste treatment of both low/high organic strength and specialized treatment for toxic substances, using appropriate anaerobic methods.

  8. Anaerobic Digestion of Paper Mill Wastewater

    OpenAIRE

    Shreeshivadasan Chelliapan; Siti Baizura Mahat; Md. Fadjil Md. Din; A. Yuzir; Othman, N.

    2012-01-01

    In general, paper mill wastewater contains complex organic substances which could not be treated completely using conventional treatment processes, e.g. aerobic processes. As a result, anaerobic technology is a promising alternative for paper mill wastewater treatment due to its ability to degrade hard organic compounds. In the present study, treatment of paper mill wastewater using a stage anaerobic reactor was investigated. The more specific objectives of this study were to confirm whether ...

  9. Sleep Deprivation Induced Anxiety and Anaerobic Performance

    OpenAIRE

    Selma Arzu Vardar; Levent Öztürk; Cem Kurt; Erdogan Bulut; Necdet Sut; Erdal Vardar

    2007-01-01

    The aim of this study was to investigate the effects of sleep deprivation induced anxiety on anaerobic performance. Thirteen volunteer male physical education students completed the Turkish version of State Anxiety Inventory and performed Wingate anaerobic test for three times: (1) following a full-night of habitual sleep (baseline measurements), (2) following 30 hours of sleep deprivation, and (3) following partial-night sleep deprivation. Baseline measurements were performed the day before ...

  10. EFFECT OF MUSIC ON ANAEROBIC EXERCISE PERFORMANCE

    OpenAIRE

    Atan, T.

    2013-01-01

    For years, mostly the effects of music on cardiorespiratory exercise performance have been studied, but a few studies have examined the effect of music on anaerobic exercise. The purpose of this study was to assess the effect of listening to music and its rhythm on anaerobic exercise: on power output, heart rate and the concentration of blood lactate. 28 male subjects were required to visit the laboratory on 6 occasions, each separated by 48 hours. Firstly, each subject performed the Running-...

  11. Comparative Studies of Alternative Anaerobic Digestion Technologies

    OpenAIRE

    Inman, David C.

    2004-01-01

    Washington D.C. Water and Sewage Authority is planning to construct a new anaerobic digestion facility at its Blue Plains WWTP by 2008. The research conducted in this study is to aid the designers of this facility by evaluating alternative digestion technologies. Alternative anaerobic digestion technologies include thermophilic, acid/gas phased, and temperature phased digestion. In order to evaluate the relative merits of each, a year long study evaluated the performance of bench scale dig...

  12. SLEEP DEPRIVATION INDUCED ANXIETY AND ANAEROBIC PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Selma Arzu Vardar

    2007-12-01

    Full Text Available The aim of this study was to investigate the effects of sleep deprivation induced anxiety on anaerobic performance. Thirteen volunteer male physical education students completed the Turkish version of State Anxiety Inventory and performed Wingate anaerobic test for three times: (1 following a full-night of habitual sleep (baseline measurements, (2 following 30 hours of sleep deprivation, and (3 following partial-night sleep deprivation. Baseline measurements were performed the day before total sleep deprivation. Measurements following partial sleep deprivation were made 2 weeks later than total sleep deprivation measurements. State anxiety was measured prior to each Wingate test. The mean state anxiety following total sleep deprivation was higher than the baseline measurement (44.9 ± 12.9 vs. 27.6 ± 4.2, respectively, p = 0.02 whereas anaerobic performance parameters remained unchanged. Neither anaerobic parameters nor state anxiety levels were affected by one night partial sleep deprivation. Our results suggest that 30 hours continuous wakefulness may increase anxiety level without impairing anaerobic performance, whereas one night of partial sleep deprivation was ineffective on both state anxiety and anaerobic performance

  13. DNA-based determination of microbial biomass suitable for frozen and alkaline soil samples

    Science.gov (United States)

    Semenov, Mikhail; Blagodatskaya, Evgeniya; Kogut, Boris; Kuzyakov, Yakov

    2015-04-01

    Microbial biomass is a sensitive indicator of changes due to soil management, long before other basic soil measures such as Corg or Ntot. Improvement of methods for determination of microbial biomass still remains relevant, and these methods should be correctly applicable for the soil samples being in various state. This study was designed to demonstrate the applicability of DNA-based determination of microbial biomass under conditions when the common basic approaches, namely chloroform fumigation-extraction (CFE) and substrate-induced respiration (SIR), are restricted by certain soil properties, experimental designs or research needs, e.g. in frozen, alkaline or carbonaceous soils. We compared microbial biomass determined by CFE, SIR and by DNA approaches in the range of neutral and slightly alkaline Chernozem and alkaline Calcisol of semi-arid climate. The samples of natural and agricultural ecosystems were taken throughout the soil profile from long-term static field experiments in the European part of Russia. Extraction and subsequent quantification of dsDNA revealed a strong agreement with SIR and CFE when analyzing the microbial biomass content in soils with pH below 8. The conversion factors (FDNA) from dsDNA to SIR-Cmic (5.10) and CFE-Cmic (4.41) were obtained by testing a range of the soil samples down to 1.5 m depth and indicated a good reproducibility of DNA-based estimations. In alkaline soils (pH > 8), CO2 retention due to alkaline pH and exchange with carbonates resulted in a strong underestimation of soil microbial biomass by SIR or even in the absence of any CO2 emission, especially at low absolute values of microbial biomass in subsoil. Correction of CO2 efflux by theoretical retention pH-dependent factors caused overestimation of SIR-biomass. In alkaline conditions, DNA extraction proved to be a reliable alternative for microbial biomass determination. Moreover, the DNA-based approach can serve as an excellent alternative enabling correct

  14. Quantifying rhizosphere respiration for two cool-season perennial forages

    Science.gov (United States)

    Understanding the regulation of ecosystem carbon dioxide flux from forage production systems requires knowledge of component fluxes, including photosynthetic uptake and respiratory loss. Experimental separation of soil respiration into its heterotrophic (free-living soil organisms) and rhizosphere c...

  15. Specific Examples of Hybrid Alkaline Cement

    OpenAIRE

    Fernández-Jiménez Ana; García-Lodeiro Inés; Donatello Shane; Maltseva Olga; Palomo Ángel

    2014-01-01

    Hybrid alkaline cements are obtained by alkali-activating cementitious blends in the Na2O-CaO-SiO2-Al2O3-H2O system. The present paper discusses the results of activating different cementitious blends containing a low OPC clinker content ( 15MPa a 2 days) different alkaline activators were used (liquid and solid). The reaction products obtained were also characterised by XRD, SEM/EDX and 27Al and 29Si NMRMAS. The results showed that the main reaction product was a mix of cementitious gels C-A...

  16. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    Science.gov (United States)

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  17. Alkaline Capacitors Based on Nitride Nanoparticles

    Science.gov (United States)

    Aldissi, Matt

    2003-01-01

    High-energy-density alkaline electrochemical capacitors based on electrodes made of transition-metal nitride nanoparticles are undergoing development. Transition- metal nitrides (in particular, Fe3N and TiN) offer a desirable combination of high electrical conductivity and electrochemical stability in aqueous alkaline electrolytes like KOH. The high energy densities of these capacitors are attributable mainly to their high capacitance densities, which, in turn, are attributable mainly to the large specific surface areas of the electrode nanoparticles. Capacitors of this type could be useful as energy-storage components in such diverse equipment as digital communication systems, implanted medical devices, computers, portable consumer electronic devices, and electric vehicles.

  18. Electrochemical behaviour of alkaline copper complexes

    Indian Academy of Sciences (India)

    C L Aravinda; S M Mayanna; V R Muralidharan

    2000-10-01

    A search for non-cyanide plating baths for copper resulted in the development of alkaline copper complex baths containing trisodium citrate [TSC] and triethanolamine [TEA]. Voltammetric studies were carried out on platinum to understand the electrochemical behaviour of these complexes. In TSC solutions, the deposition of copper involves the slow formation of a monovalent species. Adsorption of this species obeys Langmuir isotherm. In TEA solutions the deposition involves the formation of monovalent ions obeying the non-activated Temkin isotherm. Conversion of divalent to monovalent copper is also slow. In TEA and TSC alkaline copper solutions, the predominant species that undergo stepwise reduction contain only TEA ligands

  19. Effect of low-intensity superhigh-frequency energy on respiration and oxidative phosphorylation of organ mitochondria and activity of some blood enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Rudnev, M.I.; Tarasyuk, N.E.; Kulikova, A.D.

    1982-11-01

    Respiration and oxidative phosphorylation of hepatic and cerebral mitochondria, as well as enzymatic activity of rat blood serum, in particular, transaminases was investigated on 180 mongrel white rats. The results indicated increased activity of the mitochondrial enzyme, asparate aminotransferase, in blood serum of tested animals. This enzyme could serve as a marker of functional activity of cells after 7-h exposure to electric fields of 50 ..mu..W/cm/sup 2/. In addition to these changes, reliability depression of alanine transferase and alkaline phosphatase was observed, which is indicative of change in cell membranes.

  20. The Effect of Alkaline Material Particle Size on Adjustment Ability of Buffer Capacity

    Directory of Open Access Journals (Sweden)

    Girts Bumanis

    2015-09-01

    Full Text Available The pH control in biotechnological processes like anaerobic digestion is one of the key factors to ensure high efficiency in the biogas production process. The decrease of pH level in the digestion process occurs due to the rapid acid formation during metabolic processes of bacteria which leads to the inhibition of the methane producing bacteria; therefore further digestion process is limited. The efficiency of anaerobic digestion reactor decreases dramatically if the pH level falls under pH 6.6. This problem is common for single-stage continuous digesters with a high organic solid content; therefore the active pH controlling method is commonly used. By creating inorganic alkaline material, the passive pH controlling system could be created. Soluble alkalis are enclosed in the matrix of material during the activation process thus providing slow leaching of free alkalis from the material structure in water medium and ensuring pH increase. In this research a porous alkaline composite material was developed as a pH controlling agent for the biogas production. Two mixture compositions with a different Si/Al and Si/Na ratio were created. The effect of particle size of the material was investigated in order to provide different leaching rates for the described material. Granular material with particle fractions 1/2 mm, 2/4 mm and 4/8 mm and a cubical specimen with dimensions 20×20×20 mm were tested. The pH level of water medium increased up to pH 11.6 during the first day and final pH value decreased to 7.8 after 20-day leaching. Alkali leaching can be increased by 19-32% changing the mixture composition by adding glass powder to the alkaline material. The particle size factor was negligible for leaching rate of alkaline material due to the high porosity of material. Research results show that this composite material has a potential to be applied in pH control for biotechnological purposes.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7325

  1. Mild alkaline pre-treatments loosen fibre structure enhancing methane production from biomass crops and residues

    International Nuclear Information System (INIS)

    Three ligno-cellulosic substrates representing varying levels of biodegradability (giant reed, GR; fibre sorghum, FS; barley straw, BS) were combined with mild alkaline pre-treatments (NaOH 0.05, 0.10 and 0.15 N at 25 °C for 24 h) plus untreated controls, to study pre-treatment effects on physical-chemical structure, anaerobic digestibility and methane output of the three substrates. In a batch anaerobic digestion (AD) assay (58 days; 35 °C; 4 g VS l−1), the most recalcitrant substrate (GR) staged the highest increase in cumulative methane yield: +30% with NaOH 0.15 N over 190 ml CH4 g−1 VS in untreated GR. Conversely, the least recalcitrant substrate (FS) exhibited the lowest gain (+10% over 248 ml CH4 g−1 VS), while an intermediate behaviour was shown by BS (+15% over 232 ml CH4 g−1 VS). Pre-treatments speeded AD kinetics and reduced technical digestion time (i.e., the time needed to achieve 80% methane potential), which are the premises for increased production capacity of full scale AD plants. Fibre components (cellulose, hemicellulose and acid insoluble lignin determined after acid hydrolysis) and substrate structure (Fourier transform infra-red spectroscopy and scanning electron microscopy) outlined reductions of the three fibre components after pre-treatments, supporting claims of loosened binding of lignin with cellulose and hemicellulose. Hence, mild alkaline pre-treatments were shown to improve the biodegradability of ligno-cellulosic substrates to an extent proportional to their recalcitrance. In turn, this contributes to mitigate the food vs. fuel controversy raised by the use of whole plant cereals (namely, maize) as feedstocks for biogas production. - Highlights: • Three ligno-cellulosic substrates were pre-treated with mild alkaline methods. • Giant reed pre-treated with NaOH 0.15 N showed highest increase in CH4 yield (30%). • Alkaline pre-treatments speeded process kinetics, cutting technical digestion time. • Changes

  2. Fuzzy Control of Tidal volume, Respiration number and Pressure value

    OpenAIRE

    Hasan Guler; Fikret Ata

    2010-01-01

    In this study, control of tidal volume, respiration number and pressure value which are arrived to patient at mechanical ventilator device which is used in intensive care units were performed with fuzzy logic controller. The aim of this system is to reduce workload of aneshesiologist. By calculating tidal volume, respiration number and pressure value, the error Pe(k) between reference pressure value (Pref) and pressure of gas given ill person (Phasta) and error change rate ;#948;Pe(k) were co...

  3. Fuzzy Control of Tidal volume, Respiration number and Pressure value

    OpenAIRE

    Guler, Hasan; ATA, Fikret

    2000-01-01

    In this study, control of tidal volume, respiration number and pressure value which are arrived to patient at mechanical ventilator device which is used in intensive care units were performed with fuzzy logic controller. The aim of this system is to reduce workload of aneshesiologist. By calculating tidal volume, respiration number and pressure value, the error Pe(k) between reference pressure value (Pref) and pressure of gas given ill person (Phasta) and error change rate δPe(k) wer...

  4. Contributions of ectomycorrhizal fungal mats to forest soil respiration

    Directory of Open Access Journals (Sweden)

    C. L. Phillips

    2012-06-01

    Full Text Available Distinct aggregations of fungal hyphae and rhizomorphs, or "mats", formed by some genera of ectomycorrhizal (EcM fungi are common features of soils in coniferous forests of the Pacific Northwest. We measured in situ respiration rates of Piloderma mats and neighboring non-mat soils in an old-growth Douglas-fir forest in western Oregon to investigate whether there was higher respiration from mats, and to estimate mat contributions to total soil respiration. We found that areas where Piloderma mats colonized the organic horizon often had higher soil surface flux than non-mats, with the relative increase in respiration averaging 16% across two growing seasons. Both soil physical factors and biochemistry were related to the higher surface flux of mat soils. When soil moisture was high, soil CO2 production was concentrated into near-surface soil horizons where mats tend to colonize, resulting in greater apparent differences in respiration between mat and non-mat soils. Respiration rates were also correlated with the activity of chitin-degrading soil enzymes. This finding supports the notion that the abundance of fungal biomass in EcM mats is an important driver of C and N cycling. We found Piloderma mats present across 57% of the exposed soil, and use this value to estimate a respiratory contribution from mats at the stand-scale of about 9% of total soil respiration. The activity of EcM mats, which includes both EcM fungi and microbial associates, appeared to constitute a substantial portion of total soil respiration in this old-growth Douglas-fir forest.

  5. Contributions of ectomycorrhizal fungal mats to forest soil respiration

    Directory of Open Access Journals (Sweden)

    C. L. Phillips

    2012-02-01

    Full Text Available Distinct aggregations of fungal hyphae and rhizomorphs, or "mats" formed by some genera of ectomycorrhizal (EcM fungi are common features of soils in coniferous forests of the Pacific Northwest. We measured in situ respiration rates of Piloderma mats and neighboring non-mat soils in an old-growth Douglas-fir forest in Western Oregon to investigate whether there was an incremental increase in respiration from mat soils, and to estimate mat contributions to total soil respiration. We found that areas where Piloderma mats colonized the organic horizon often had higher soil surface flux than non-mats, with the incremental increase in respiration averaging 16 % across two growing seasons. Both soil physical factors and biochemistry were related to the higher surface flux of mat soils. When air-filled pore space was low (high soil moisture, soil CO2 production was concentrated into near-surface soil horizons where mats tend to colonize, resulting in greater apparent differences in respiration between mat and non-mat soils. Respiration rates were also correlated with the activity of chitin-degrading soil enzymes. This suggests that the elevated activity of fungal mats may be related to consumption or turnover of chitinous fungal cell-wall materials. We found Piloderma mats present across 57 % of the soil surface in the study area, and use this value to estimate a respiratory contribution from mats at the stand-scale of about 9 % of total soil respiration. The activity of EcM mats, which includes both EcM fungi and microbial associates, was estimated to constitute a substantial portion of total soil respiration in this old-growth Douglas-fir forest.

  6. Small ecosystem engineers as important regulators of lake's sediment respiration.

    Science.gov (United States)

    Baranov, Victor; Lewandowski, Joerg; Krause, Stefan; Romeijn, Paul

    2016-04-01

    Although shallow lakes are covering only about 1.5% of the land surface of the Earth, they are responsible for sequestration of carbon amounts similar or even larger than those sequestered in all marine sediments. One of the most important drivers of the carbon sequestration in lakes is sediment respiration. Especially in shallow lakes, bioturbation, i.e. the biogenic reworking of the sediment matrix and the transport of fluids within the sediment, severely impacts on sediment respiration. Widespread freshwater bioturbators such as chironomid larvae (Diptera, Chironomidae) are building tubes in the sediment and actively pump water through their burrows (ventilation). In the present work we study how different organism densities and temperatures (5-30°C) impact on respiration rates. In a microcosm experiment the bioreactive resazurin/resorufin smart tracer system was applied for quantifying the impacts of different densities of Chironomidae (Diptera) larvae (0, 1000, 2000 larvae/m2) on sediment respiration. Tracer transformation rates (and sediment respiration) were correlated with larval densities with highest transformation rates occurring in microcosms with highest larval densities. Respiration differences between defaunated sediment and sediment with 1000 and 2000 larvae per m2 was insignificant at 5 °C, and was progressively increasing with rising temperatures. At 30 °C respiration rates of sediment with 2000 larvae per m2 was 4.8 times higher than those of defaunated sediment. We interpret this as an effect of temperature on larval metabolic and locomotory activity. Furthermore, bacterial communities are benefiting from the combination of the high water temperatures and bioirrigation as bacterial community are able to maintain high metabolic rates due to oxygen supplied by bioirrigation. In the context of global climate change that means that chironomid ecosystem engineering activity will have a profound and increasing impact on lake sediment respiration

  7. Anaerobic digestion of cellulosic wastes

    International Nuclear Information System (INIS)

    Anaerobic digestion is a potentially attractive technology for volume reduction of low-level radioactive cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work has been completed using a 75-L digester to verify rates and conversions obtained at the bench scale. Start-up and operating procedures have been developed, and effluent was generated for characterization and disposal studies. Three runs using batch and fed-batch conditions were made lasting 36, 90, and 423 d. Solids solubilization rates and gas production rates averaged approximately 1.8 g cellulose per L of reactor per d and 1.2 L of off-gas per L reactor per d. Greater than 80% destruction of the volatile suspended solids was obtained. A simple dynamic process model was constructed to aid in process design and for use in process monitoring and control of a large-scale digester

  8. Anaerobic digestion of cellulosic wastes

    International Nuclear Information System (INIS)

    Anaerobic digestion is a potentially attractive technology for volume reduction of cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work is underway using a 75-L digester to verify rates and conversions obtained at the bench scale, to develop start-up and operating procedures, and to generate effluent for characterization and disposal studies. Three runs using batch and batch-fed conditions have been made lasting 36, 90, and over 200 days. Solids solubilization and gas production rates and total solids destruction have met or exceeded the target values of 0.6 g cellulose per L of reactor per day, 0.5 L off-gas per L of reactor per day, and 80% destruction of solids, respectively. Successful start-up procedures have been developed, and preliminary effluent characterization and disposal studies have been done. A simple dynamic process model has been constructed to aid in further process development and for use in process monitoring and control of a large-scale digester. 7 references, 5 figures, 1 table

  9. Anaerobic Nitrogen Fixers on Mars

    Science.gov (United States)

    Lewis, B. G.

    2000-07-01

    The conversion of atmospheric nitrogen gas to the protein of living systems is an amazing process of nature. The first step in the process is biological nitrogen fixation, the transformation of N2 to NH3. The phenomenon is crucial for feeding the billions of our species on Earth. On Mars, the same process may allow us to discover how life can adapt to a hostile environment, and render it habitable. Hostile environments also exist on Earth. For example, nothing grows in coal refuse piles due to the oxidation of pyrite and marcasite to sulfuric acid. Yet, when the acidity is neutralized, alfalfa and soybean plants develop root nodules typical of symbiotic nitrogen fixation with Rhizobium species possibly living in the pyritic material. When split open, these nodules exhibited the pinkish color of leghemoglobin, a protein in the nodule protecting the active nitrogen-fixing enzyme nitrogenase against the toxic effects of oxygen. Although we have not yet obtained direct evidence of nitrogenase activity in these nodules (reduction of acetylene to ethylene, for example), these findings suggested the possibility that nitrogen fixation was taking place in this hostile, non-soil material. This immediately raises the possibility that freeliving anaerobic bacteria which fix atmospheric nitrogen on Earth, could do the same on Mars.

  10. Arsenophilic Bacterial Processes in Searles Lake: A Salt-saturated, Arsenic-rich, Alkaline Soda Lake.

    Science.gov (United States)

    Oremland, R. S.; Kulp, T. R.; Hoeft, S. E.; Miller, L. G.; Swizer Blum, J.; Stolz, J. F.

    2005-12-01

    Searles Lake, located in the Mojave Desert of California, is essentially a chemically-similar, concentrated version of Mono Lake, but having a much higher salinity (e.g., 340 vs. 90 g/L) and a greater dissolved inorganic arsenic content in its brine (e.g., 3.9 vs. 0.2 mM). The source of all this arsenic ultimately comes from hydrothermal spring inputs, thereby underscoring the importance of volcanic and fluvial processes in transporting this toxic element into these closed basin lakes. Nonetheless, the presence of microbial activities with regard to respiration of arsenate oxyanions under anaerobic conditions and the oxidation of arsenite oxyanions under aerobic conditions can be inferred from porewater profiles taken from handcores retrieved beneath Searles Lake's salt crust. Sediment slurry incubations confirmed biological arsenate respiration and arsenite oxidation, with the former processes notably enhanced by provision of the inorganic electron donor sulfide or H2. Hence, arsenic-linked chemo-autotrophy appears to be an important means of carbon fixation in this system. Subsequent efforts using 73As-arsenate as radiotracer detected dissimilatory arsenate reduction activity down the length of the core, but we were unable to detect any evidence for sulfate-reduction using 35S-sulfate. An extremely halophilic anaerobic bacterium of the order Haloanaerobiales [strain SLAS-1] was isolated from the sediments that grew via arsenate respiration using lactate or sulfide as its electron donors. These results show that, unlike sulfate-reduction, arsenic metabolism (i.e., both oxidation of arsenite and dissimilatory reduction of arsenate) is operative and even vigorous under the extreme conditions of salt-saturation and high pH. The occurrence of arsenophilic microbial processes in Searles Lake is relevant to the search for extant or extinct microbial life on Mars. It is evident from surface imagery that Mars had past episodes of volcanism, fluvial transport, and most

  11. Two proximal skin electrodes--a respiration rate body sensor.

    Science.gov (United States)

    Trobec, Roman; Rashkovska, Aleksandra; Avbelj, Viktor

    2012-01-01

    We propose a new body sensor for extracting the respiration rate based on the amplitude changes in the body surface potential differences between two proximal body electrodes. The sensor could be designed as a plaster-like reusable unit that can be easily fixed onto the surface of the body. It could be equipped either with a sufficiently large memory for storing the measured data or with a low-power radio system that can transmit the measured data to a gateway for further processing. We explore the influence of the sensor’s position on the quality of the extracted results using multi-channel ECG measurements and considering all the pairs of two neighboring electrodes as potential respiration-rate sensors. The analysis of the clinical measurements, which also include reference thermistor-based respiration signals, shows that the proposed approach is a viable option for monitoring the respiration frequency and for a rough classification of breathing types. The obtained results were evaluated on a wireless prototype of a respiration body sensor. We indicate the best positions for the respiration body sensor and prove that a single sensor for body surface potential difference on proximal skin electrodes can be used for combined measurements of respiratory and cardiac activities. PMID:23202022

  12. Improvement of ballistocardiogram processing by inclusion of respiration information

    International Nuclear Information System (INIS)

    In this paper a novel methodology for processing of a ballistocardiogram (BCG) is proposed in which the respiration signal is utilized to improve the averaging of the BCG signal and ultimately the annotation and interpretation of the signal. Previous research works filtered out the respiration signal while the novelty of the current research is that, rather than removing the respiration effect from the signal, we utilize the respiration information to improve the averaging and thus analysis and interpretation of the BCG signal in diagnosis of cardiac malfunctions. This methodology is based on our investigation that BCG cycles corresponding to the inspiration and expiration phases of the respiration cycle are different in morphology. BCG cycles corresponding to the expiration phase of respiration have been proved to be more closely related to each other when compared to cycles corresponding to inspiration, and therefore expiration cycles are better candidates to be selected for the calculation of the averaged BCG signal. The new BCG average calculated based on this methodology is then considered as the representative and a template of the BCG signal for further processing. This template can be considered as the output of a clinical BCG instrument with higher reliability and accuracy compared to the previous processing methods

  13. Quantitative evaluation of the protective effect of respirators

    International Nuclear Information System (INIS)

    The present status and related problems of the quantitative evaluation method for respirator efficiency are generally reviewed. As the introduction, the special features of various types of respirators are summarized, and the basic concept of leakage and the protection factor are explained. As for the quantitative measurement of the protective efficiency, the features of various existing man-test methods such as NaCl aerosol man-test, DOP (dioctyl phthalate) man-test, and SF6 gas man-test are reviewed and discussed. As the important problems associated with those man-tests, the following aspects are discussed. The measurement of the aerosol concentration within masks; the calculation method for the protection factor; the effect of beards. The examples of measuring the protection factor are also explained for the following respirator systems: half mask respirator with a high efficiency filter; full face mask respirator with a high efficiency filter; demand mode and pressure-demand mode respirators; and mound suit with suspenders. Finally, the outline of the manual of respiratory protection published by NRC in 1976 is briefly reviewed. (Aoki, K.)

  14. Two Proximal Skin Electrodes — A Respiration Rate Body Sensor

    Directory of Open Access Journals (Sweden)

    Viktor Avbelj

    2012-10-01

    Full Text Available We propose a new body sensor for extracting the respiration rate based on the amplitude changes in the body surface potential differences between two proximal body electrodes. The sensor could be designed as a plaster-like reusable unit that can be easily fixed onto the surface of the body. It could be equipped either with a sufficiently large memory for storing the measured data or with a low-power radio system that can transmit the measured data to a gateway for further processing. We explore the influence of the sensor’s position on the quality of the extracted results using multi-channel ECG measurements and considering all the pairs of two neighboring electrodes as potential respiration-rate sensors. The analysis of the clinical measurements, which also include reference thermistor-based respiration signals, shows that the proposed approach is a viable option for monitoring the respiration frequency and for a rough classification of breathing types. The obtained results were evaluated on a wireless prototype of a respiration body sensor. We indicate the best positions for the respiration body sensor and prove that a single sensor for body surface potential difference on proximal skin electrodes can be used for combined measurements of respiratory and cardiac activities.

  15. Plankton community respiration during a coccolithophore bloom

    Science.gov (United States)

    Robinson, Carol; Widdicombe, Claire E.; Zubkov, Mikhail V.; Tarran, Glen A.; Miller, Axel E. J.; Rees, Andrew P.

    Plankton dark community respiration (DCR), gross production (GP), bacterial production, protozoan herbivory, and phytoplankton, microzooplankton and heterotrophic bacterial abundance were measured during a bloom of the coccolithophore Emiliania huxleyi. The study, which was conducted in the northern North Sea during June 1999, included a spatial survey and a 6-day Lagrangian time series informed by a sulphur hexafluoride (SF 6) tracer-release experiment. E. huxleyi abundance in surface waters ranged from 380 to 3000 cells ml -1, while DCR varied between 2 and 4 mmol O 2 m -3 d -1 and GP between 2 and 5 mmol O 2 m -3 d -1. Euphotic zone integrated DCR and GP were in approximate balance, with a mean (±SD) P:R ratio of 0.9±0.4 ( n=9). However, highest GP occurred at the surface alongside maxima of E. huxleyi, whereas highest rates of DCR occurred at depths of 25-30 m associated with maxima in chlorophyll a and bacterial biomass. DCR was positively correlated with bacterial biomass, microzooplankton biomass, attenuance, particulate organic carbon, and chlorophyll a concentration; and negatively correlated with apparent oxygen utilisation. DCR was not correlated with in situ temperature, dissolved organic carbon concentration or E. huxleyi abundance. A˜100 h incubation of 0.8 μm filtered seawater enabled the estimation of a bacterial respiratory quotient (RQ) and growth efficiency (BGE) from the slopes of the linear regressions of the decrease in dissolved oxygen and increase in dissolved inorganic carbon (DIC) and bacterial carbon with time. During this experiment the bacterial RQ was 0.69 and the growth efficiency was 18%. This measured BGE was used in comparison with literature values to apportion DCR to that associated with bacterial (13-71%), microzooplankton (10-50%), and algal (11-28%) activity. This accounting exercise compared well with measured DCR (to within ±50%), the exact calculation being highly dependent on the BGE used.

  16. Influences of Quinclorac on Culturable Microorganisms and Soil Respiration in Flooded Paddy Soil

    Institute of Scientific and Technical Information of China (English)

    ZHEN-MEI LU; HANG MIN; YANG-FANG YE

    2003-01-01

    Objective To investigate the potential effects of herbicide quinclorac (3,7-dichloro-8-quinoline-carboxylic) on the culturable microorganisms in flooded paddy soil. Methods Total soil aerobic bacteria, actinomycetes and fungi were counted by a 10-fold serial dilution plate technique. Numbers of anaerobic fermentative bacteria (AFB), denitrifying bacteria (DNB) and hydrogen-producing acetogenic bacteria (HPAB) were numerated by three-tube anaerobic most-probable-number (MPN)methods with anaerobic liquid enrichment media. The number of methanogenic bacteria (MB) and nitrogen-fixing bacteria (NFB) was determined by the rolling tube method in triplicate. Soil respiration was monitored by a 102G-type gas chromatography with a stainless steel column filled with GDX-104 and a thermal conductivity detector. Results Quinclorac concentration was an important factor affecting the populations of various culturable microorganisms. There were some significant differences in the aerobic heterotrophic bacteria. AFB and DNB between soils were supplemented with quinclorac and non-quinclorac at the early stage of incubation, but none of them was persistent. The number of fungi and DNB was increased in soil samples treated by lower than1.33 μg·g-1 dried soil, while the CFU of fungi and HPAB was inhibited in soil samples treated by higher than 1.33 μg·g-1 dried soil. The population of actinomycete declined in negative proportion to the concentrations of quinclorac applied after 4 days. However, application of quinclorac greatly stimulated the growth of AFB and NFB. MB was more sensitive to quinclorac than the others, and the three soil samples with concentrations higher than 1 μg·g-1 dried soil declined significantly to less than 40% of that in the control, but the number of samples with lower concentrations of quinclorac was nearly equal to that in the control at the end of experiments. Conclusion Quinclorac is safe to the soil microorganisms when applied at normal

  17. The Alkaline Diet: Is There Evidence That an Alkaline pH Diet Benefits Health?

    Directory of Open Access Journals (Sweden)

    Gerry K. Schwalfenberg

    2012-01-01

    Full Text Available This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine.

  18. The Alkaline Diet: Is There Evidence That an Alkaline ph Diet Benefits Health?

    International Nuclear Information System (INIS)

    This review looks at the role of an alkaline diet in health. Pub med was searched looking for articles on ph, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine

  19. Influence of initial pH on thermophilic anaerobic co-digestion of swine manure and maize stalk.

    Science.gov (United States)

    Zhang, Tong; Mao, Chunlan; Zhai, Ningning; Wang, Xiaojiao; Yang, Gaihe

    2015-01-01

    The contradictions between the increasing energy demand and decreasing fossil fuels are making the use of renewable energy the key to the sustainable development of energy in the future. Biogas, a renewable clean energy, can be obtained by the anaerobic fermentation of manure waste and agricultural straw. This study examined the initial pH value had obvious effect on methane production and the process in the thermophilic anaerobic co-digestion. Five different initial pH levels with three different manure ratios were tested. All digesters in different initial pH showed a diverse methane production after 35 days. The VFA/alkalinity ratio of the optimum reaction condition for methanogens activity was in the range of 0.1-0.3 and the optimal condition that at the 70% dung ratio and initial pH 6.81, was expected to achieve maximum total biogas production (146.32 mL/g VS). PMID:25442104

  20. Effect of vegetation of transgenic Bt rice lines and their straw amendment on soil enzymes, respiration, functional diversity and community structure of soil microorganisms under field conditions

    Institute of Scientific and Technical Information of China (English)

    Hua Fang; Bin Dong; Hu Yan; Feifan Tang; Baichuan Wang; Yunlong Yu

    2012-01-01

    With the development of transgenic crops,there is an increasing concern about the possible adverse effects of their vegetation and residues on soil environmental quality.This study was carried out to evaluate the possible effects of the vegetation of transgenic Bt rice lines Huachi B6 (HC) and TT51 (TT) followed by the return of their straw to the soil on soil enzymes (catalase,arease,neutral phosphatase and invertase),anaerobic respiration activity,microbial utilization of carbon substrates and community structure,under field conditions.The results indicated that the vegetation of the two transgenic rice lines (HC and TT) and return of their straw had few adverse effects on soil enzymes and anaerobic respiration activity compared to their parent and distant parent,although some transient differences were observed.The vegetation and subsequent straw amendment of Bt rice HC and TT did not appear to have a harmful effect on the richness,evenness and community structure of soil microorganisms.No different pattern of impact due to plant species was found between HC and TT.It could be concluded that the vegetation of transgenic Bt rice lines and the return of their straw as organic fertilizer may not alter soil microbe-mediated functions.

  1. Global regulation of photosynthesis and respiration by FnrL: the first two targets in the tetrapyrrole pathway.

    Science.gov (United States)

    Ouchane, Soufian; Picaud, Martine; Therizols, Pierre; Reiss-Husson, Françoise; Astier, Chantal

    2007-03-01

    Fnr is a regulator that controls the expression of a variety of genes in response to oxygen limitation in bacteria. To assess the role of Fnr in photosynthesis in Rubrivivax gelatinosus, a strain carrying a null mutation in fnrL was constructed. It was unable to grow anaerobically in the light, but, intriguingly, it was able to produce photosynthetic complexes under high oxygenation conditions. The mutant lacked all c-type cytochromes normally detectable in microaerobically-grown wild type cells and accumulated coproporphyrin III. These data suggested that the pleiotropic phenotype observed in FNR is primarily due to the control at the level of the HemN oxygen-independent coproporphyrinogen III dehydrogenase. hemN expression in trans partially suppressed the FNR phenotype, as it rescued heme and cytochrome syntheses. Nevertheless, these cells were photosynthetically deficient, and pigment analyses showed that they were blocked at the level of Mg(2+)-protoporphyrin monomethyl ester. Expression of both hemN and bchE in the FNR mutant restored synthesis of Mg(2+)-protochlorophyllide. We, therefore, conclude that FnrL controls respiration by regulating hemN expression and controls photosynthesis by regulating both hemN and bchE expression. A comprehensive picture of the control points of microaerobic respiration and photosynthesis by FnrL is provided, and the prominent role of this factor in activating alternative gene programs after reduction of oxygen tension in facultative aerobes is discussed. PMID:17178720

  2. Improving anaerobic biodigestion of manioc wastewater with human urine as co-substrate

    Directory of Open Access Journals (Sweden)

    Kpata-Konan Nazo Edith

    2013-03-01

    Full Text Available This study investigated anaerobic co-digestion of cassava liquid waste (very acid and poor in nitrogen and human urine. Three experimental digesters were used: manioc effluent; manioc effluent + urine; manioc effluent + urine + cow dung. All digesters have functioned with mesophilic temperatures between 24.0 and 35.6°C. Digesters without urine have a pH varying between 3 and 4 during experimentation. In reactors containing urine, the pH oscillated between 6.46 and 10.29. The COD/TKN ratios recorded in digesters buffered with human urine are lower than those observed in digester without human urine. Volume of gas produced by the two digesters containing human urine was significantly higher than that of the digester without urine. The additions of human urine and cow dung improve highly the methane potential during anaerobic co-digestion of manioc effluent. The flammability test is positive except for the digester without urine. Using human urine as a co-substrate for anaerobic digestion of cassava wastewater requires a large quantity of urine (40% in terms of proportion for a best productivity. As well as allowing biogas production as a source of renewable energy, this system of co-digestion could help to resolve the sensitive problem of human excreta management in poor area. Indeed, human urine with an alkaline pH and richness in nitrogen can substitute chemicals commonly used to correct the pH during anaerobic biodigestion, in particular for the treatment of cassava wastewater which is very acid.

  3. Acetate biodegradation by anaerobic microorganisms at high pH and high calcium concentration

    International Nuclear Information System (INIS)

    Acetate biodegradation at a high pH and a high calcium concentration was examined to clarify the effect of bacterial activity on the migration of organic 14C compounds in cementitious repositories. Tamagawa river sediment or Teganuma pond sediment was anaerobically cultured with 5 mM acetate and 10 mM nitrate at pH 9.5-12 at 30 oC. After 20 and 90 days, the acetate concentration of the culture medium was analyzed and found to have decreased below 5 mM at pH ≤ 11. On the other hand, it did not decrease when either sediment was incubated in the absence of nitrate. These results suggest that nitrate-reducing bacteria can biodegrade acetate under more alkaline conditions than the reported pH range in which nitrate-reducing bacteria can exhibit activity. Acetate biodegradation was also examined at a high calcium concentration. Sediments were anaerobically cultured at pH 9.5 with 5 mM acetate and 10 mM nitrate in solution, equilibrated with ordinary Portland cement hydrate, in which the Ca concentration was 14.6 mM. No decrease in acetate concentration after incubation of the sediments was observed, nor was it lower than in the absence of cementitious composition, suggesting that kinetics of acetate biodegradation by anaerobic microorganisms is lowered by a high Ca concentration. - Research highlights: → Acetate biodegradation at a high pH and a high calcium concentration was examined to clarify the effect of bacterial activity on the migration of organic 14C compounds in cementitious repositories. → Nitrate-reducing bacteria can biodegrade acetate at pH ≤ 11. → Kinetics of acetate biodegradation by anaerobic microorganisms might be lowered by a high Ca concentration.

  4. Potentiometric assay for acid and alkaline phosphatase

    International Nuclear Information System (INIS)

    Simple potentiometric kinetic assay for evaluation of acid and alkaline phosphatase activity has been developed. Enzymatically catalyzed hydrolysis of monofluorophosphate, the simplest inorganic compound containing P-F bond, has been investigated as the basis of the assays. Fluoride ions formed in the course of the hydrolysis of this specific substrate have been detected using conventional fluoride ion-selective electrode based on membrane made of lanthanum fluoride. The key analytical parameters necessary for sensitive and selective detection of both enzymes have been assessed. Maximal sensitivity of the assays was observed at monofluorophosphate concentration near 10-3 M. Maximal sensitivity of acid phosphatase assay was found at pH 6.0, but pH of 4.8 is recommended to eliminate effects from alkaline phosphatase. Optimal pH for alkaline phosphatase assay is 9.0. The utility of the developed substrate-sensor system for determination of acid and alkaline phosphatase activity in human serum has been demonstrated

  5. Persistently increased intestinal fraction of alkaline phosphatase

    DEFF Research Database (Denmark)

    Nathan, E; Baatrup, G; Berg, H;

    1984-01-01

    Persistent elevation of the intestinal fraction of the alkaline phosphatase (API) as an isolated finding has to our knowledge not been reported previously. It was found in a boy followed during a period of 5.5 years. The only symptom was transient periodic fatigue observed at home, but not apparent...

  6. Anaerobic metabolism in Brassica seedlings

    Science.gov (United States)

    Park, Myoung-Ryoul; Hasenstein, Karl H.

    Germination typically depends on oxidative respiration. The lack of convection under space conditions may create hypoxic or conditions during seed germination. We investigated the effect of reduced oxygen on seed germination and metabolism to understand how metabolic constraints affect seed growth and responsiveness to reorientation. Germination was completely inhibited when seeds were imbibed in the absence of oxygen; germination occurred at 5% oxygen and higher levels. Adding oxygen after 72 h resulted in immediate germination (protrusion of the radicle). Hypoxia typically activates alcohol dehydrogenase (ADH, EC 1.1.1.1) and lactate dehydrogenase (LDH, EC 1.1.1.27) which produce ethanol and/or L-lactate, respectively. We report on the expression of ADH1 and LDH1, and changes in total soluble sugars, starch, pH, and L-lactate in seedlings grown at 28°C in 0, 2.5, 5, 10% and ambient (21%) oxygen conditions as controls. The highest consumption (lowest level) of sugars was seen at 0% oxygen but the lowest level of starch occurred 24 h after imbibition under ambient condition. Expression levels of ADH1 in ambient oxygen condition increased within 24 h but increased threefold under hypoxic conditions; LDH1 increased up to 8-fold under hypoxia compared to controls but ADH1 and LDH1 were less expressed as the oxygen levels increased. The intracellular pH of seeds decreased as the content of L-lactate increased for all oxygen concentrations. These results indicate that germination of Brassica is sensitive to oxygen levels and that oxygen availability during germination is an important factor for metabolic activities. (Supported by NASA grant NNX10AP91G)

  7. The effect of outside conditions on anaerobic ammonia oxidation reaction

    Institute of Scientific and Technical Information of China (English)

    YANG Min; WANG Shu-bo

    2016-01-01

    Organic carbon, inorganic carbon, temperature, pH and ORP are all to have a certain influence on the anaerobic ammonia oxidation reaction. We can draw some conclusions on the optimum conditions of anaerobic ammonia oxidation reaction. The optimum temperature of the anaerobic ammonia oxidation reaction is 30-35℃. And the optimum pH of the anaerobic ammonia reaction is 7.5-8.3. The presence of organic matters can affect the anaerobic ammonia reaction, and different organic matters have different influence on it. The concentration of the inorganic carbon also exist great influence on the reaction. High inorganic carbon concentration also can inhibit anaerobic ammonia oxidation reaction.

  8. Parameters affecting the stability of the digestate from a two-stage anaerobic process treating the organic fraction of municipal solid waste

    International Nuclear Information System (INIS)

    This paper focused on the factors affecting the respiration rate of the digestate taken from a continuous anaerobic two-stage process treating the organic fraction of municipal solid waste (OFMSW). The process involved a hydrolytic reactor (HR) that produced a leachate fed to a submerged anaerobic membrane bioreactor (SAMBR). It was found that a volatile solids (VS) removal in the range 40-75% and an operating temperature in the HR between 21 and 35 oC resulted in digestates with similar respiration rates, with all digestates requiring 17 days of aeration before satisfying the British Standard Institution stability threshold of 16 mg CO2 g VS-1 day-1. Sanitization of the digestate at 65 oC for 7 days allowed a mature digestate to be obtained. At 4 g VS L-1 d-1 and Solid Retention Times (SRT) greater than 70 days, all the digestates emitted CO2 at a rate lower than 25 mg CO2 g VS-1 d-1 after 3 days of aeration, while at SRT lower than 20 days all the digestates displayed a respiration rate greater than 25 mg CO2 g VS-1 d-1. The compliance criteria for Class I digestate set by the European Commission (EC) and British Standard Institution (BSI) could not be met because of nickel and chromium contamination, which was probably due to attrition of the stainless steel stirrer in the HR.

  9. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    John R. Gallagher

    2001-07-31

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  10. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER; TOPICAL

    International Nuclear Information System (INIS)

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  11. Consequences of ccmR deletion on respiration, fermentation and H2 metabolism in cyanobacterium Synechococcus sp. PCC 7002.

    Science.gov (United States)

    Krishnan, Anagha; Zhang, Shuyi; Liu, Yang; Tadmori, Kinan A; Bryant, Donald A; Dismukes, Charles G

    2016-07-01

    CcmR, a LysR-type transcriptional regulator, represses the genes encoding components of the high-affinity carbon concentration mechanism in cyanobacteria. Unexpectedly, deletion of the ccmR gene was found to alter the expression of the terminal oxidase and fermentative genes, especially the hydrogenase operon in the cyanobacterium Synechococcus sp. PCC 7002. Consistent with the transcriptomic data, the deletion strain exhibits flux increases (30-50%) in both aerobic O2 respiration and anaerobic H2 evolution. To understand how CcmR influences anaerobic metabolism, the kinetics of autofermentation were investigated following photoautotrophic growth. The autofermentative H2 yield increased by 50% in the CcmR deletion strain compared to the wild-type strain, and increased to 160% (within 20 h) upon continuous removal of H2 from the medium ("milking") to suppress H2 uptake. Consistent with this greater reductant flux to H2 , the mutant excreted less lactate during autofermentation (NAD(P)H consuming pathway). To enhance the rate of NADH production during anaerobic metabolism, the ccmR mutant was engineered to introduce GAPDH overexpression (more NADH production) and LDH deletion (less NADH consumption). The triple mutant (ccmR deletion + GAPDH overexpression + LDH deletion) showed 6-8-fold greater H2 yield than the WT strain, achieving conversion rates of 17 nmol 10(8)  cells(-1)  h(-1) and yield of 0.87 H2 per glucose equivalent (8.9% theoretical maximum). Simultaneous monitoring of the intracellular NAD(P)H concentration and H2 production rate by these mutants reveals an inverse correspondence between these variables indicating hydrogenase-dependent H2 production as a major sink for consuming NAD(P)H in preference to excretion of reduced carbon as lactate during fermentation. Biotechnol. Bioeng. 2016;113: 1448-1459. © 2015 Wiley Periodicals, Inc. PMID:26704377

  12. Improved electrodes and gas impurity investigations on alkaline electrolysers

    DEFF Research Database (Denmark)

    Reissner, R.; Schiller, G.; Knoeri, T.;

    Alkaline water electrolysis for hydrogenproduction is a well-established techniquebut some technological issues regarding thecoupling of alkaline water electrolysis andRenewable Energy Sources (RES) remain tobe improved....

  13. Alkaline magmatism in the eastern of Paraguay.Generals characteristics

    International Nuclear Information System (INIS)

    This paper deals with the distribution of alkaline occurrences in Paraguayan territory and their assemblage into different provinces. Also draws the attention to the petrographic and geochemical characteristics showed by the alkaline rock-types. (author)

  14. Sequence and Genetic Characterization of etrA, an fnr Analog that Regulates Anaerobic Respiration in Shewanella putrefaciens MR-1

    Science.gov (United States)

    Saffarini, Daad A.; Nelson, Kenneth H.

    1993-01-01

    An electron transport regulatory gene, etrA, has been isolated and characterized from the obligate respiratory bacterium Shewanella putrefaciens MR-l. The deduced amino acid sequence of etrA (EtrA) shows a high degree of identity to both the Fnr of Escherichia coli (73.6%) and the analogous protein (ANR) of Pseudomonas aeruginosa (50.8%). The four active cysteine residues of Fnr are conserved in EtrA, and the amino acid sequence of the DNA-binding domains of the two proteins are identical. Further, S.putrefaciens etrA is able to complement an fnr mutant of E.coli. In contrast to fnr, there is no recognizable Fnr box upstream of the etrA sequence. Gene replacement etr.A mutants of MR-1 were deficient in growth on nitrite, thiosulfate, sulfite, trimethylamine-N-oxide, dimethyl sulfoxide, Fe(III), and fumarate, suggesting that EtrA is involved in the regulation of the corresponding reductase genes. However, the mutants were all positive for reduction of and growth on nitrate and Mn(IV), indicating that EtrA is not involved in the regulation of these two systems. Southern blots of S.putrefaciens DNA with use of etrA as a probe revealed the expected etrA bands and a second set of hybridization signals whose genetic and functional properties remain to be determined.

  15. Neural Network Modeling of Respiration Rate of Litchi

    Directory of Open Access Journals (Sweden)

    S. Mangaraj, T. K. Goswami, MK Tripathi, SK Giri and RK Pajnoo

    2013-05-01

    Full Text Available Litchi is one of the most environmentally sensitive tropical fruits crop. It is popular export cultivar due to its attractive red color and high fruits quality. Pericarp browning, desiccations, loss of quality and post harvest decay have been identified as major problems restricting expansion of the industries in litchi exporting countries. Modified atmosphere packaging (MAP has been considered to be beneficial to maintain high humidity essential for prevention of water loss and browning of litchi pericarp. Accurate measurement of respiration rate and its modeling is an important aspect to the success of design and operational features of techniques like modified atmosphere storage. The respiration data generated at temperatures 0-30 oC in the step of 5 for litchi using the closed system method was used for modeling respiration rate using neural network technique. Here O2, CO2, temperature and time are considered as independent parameters and respiration rate as the dependent parameters. To establish a specific relationship between these parameter using neural network modeling three layers are taken i.e. input layer, output layer and a hidden layer. In this method first of all the experimental values are coded in between -1 to +1. Then by use of mathematical formulations in MATLAB programming the out put response (respiration rate with respect to O2 and CO2 was found out at any specific temperature. This respiration rate provides the basis for modeling of modified atmospheric packaging system. In the MATLAB program using neural network the respiration rate can be obtained by giving the storage period and concentration of O2 and CO2 at specified temperature. The relative deviation at different storage temperature was found out and it is in good agreement with that of experimental values.

  16. Occurrence of trace elements in respirable coal dust

    International Nuclear Information System (INIS)

    Inhalation of fine particles of coal dust contributes significantly to the occurrence of the disease, pneumoconiosis, prevailing in coal mining community. It is not presently known whether only the coal dust or specific chemical compounds or synergistic effects of several compounds associated with respirable coal dust is responsible for the disease, pneumoconiosis. The present paper describes the quantitative determination of ten minor and trace elements in respirable coal dust particles by atomic absorption spectrophotometric methods. The respirable coal dust samples are collected at the mine atmosphere during drilling in coal scams by using Messrs. Casella's Hexlet apparatus specially designed and fitted with horizontal elutriator to collect the respirable coal dust fraction simulating as near as possible to the lung's retention of the coal miners. After destruction of organic matter by wet oxidation and filtering off clay and silica, Fe, Ca, Mg, Na, K, Mn, Cu, Zn, Cd, and Ni were determined directly in the resulting solution by atomic absorption spectrophotometric procedures. The results show that the trace metals are more acute in lower range of size spectrum. Correlation coefficient, enrichment factor and linear regression values and their inverse relationship between the slope and EF values suggest that, in general, the trace metals in respirable particulates are likely to be from coal derived source if their concentrations are likewise high in the coal. The trace metal analytical data of respirable particulates fitted well to the linear regressive equation. The results of the studies are of importance as it may throw some light on the respirable lung disease 'pneumoconiosis' which are predominant in coal mining community. (author). 13 refs., 6 tabs

  17. Temporal changes of soil respiration under different tree species.

    Science.gov (United States)

    Akburak, Serdar; Makineci, Ender

    2013-04-01

    Soil respiration rates were measured monthly (from April 2007 to March 2008) under four adjacent coniferous plantation sites [Oriental spruce (Picea orientalis L.), Austrian pine (Pinus nigra Arnold), Turkish fir (Abies bornmulleriana L.), and Scots pine (Pinus sylvestris L.)] and adjacent natural Sessile oak forest (Quercus petraea L.) in Belgrad Forest-Istanbul/Turkey. Also, soil moisture, soil temperature, and fine root biomass were determined to identify the underlying environmental variables among sites which are most likely causing differences in soil respiration. Mean annual soil moisture was determined to be between 6.3 % and 8.1 %, and mean annual temperature ranged from 13.0°C to 14.2°C under all species. Mean annual fine root biomass changed between 368.09 g/m(2) and 883.71 g/m(2) indicating significant differences among species. Except May 2007, monthly soil respiration rates show significantly difference among species. However, focusing on tree species, differences of mean annual respiration rates did not differ significantly. Mean annual soil respiration ranged from 0.56 to 1.09 g C/m(2)/day. The highest rates of soil respiration reached on autumn months and the lowest rates were determined on summer season. Soil temperature, soil moisture, and fine root biomass explain mean annual soil respiration rates at the highest under Austrian pine (R (2) = 0.562) and the lowest (R (2) = 0.223) under Turkish fir. PMID:22828980

  18. Seasonality of temperate forest photosynthesis and daytime respiration.

    Science.gov (United States)

    Wehr, R; Munger, J W; McManus, J B; Nelson, D D; Zahniser, M S; Davidson, E A; Wofsy, S C; Saleska, S R

    2016-06-30

    Terrestrial ecosystems currently offset one-quarter of anthropogenic carbon dioxide (CO2) emissions because of a slight imbalance between global terrestrial photosynthesis and respiration. Understanding what controls these two biological fluxes is therefore crucial to predicting climate change. Yet there is no way of directly measuring the photosynthesis or daytime respiration of a whole ecosystem of interacting organisms; instead, these fluxes are generally inferred from measurements of net ecosystem-atmosphere CO2 exchange (NEE), in a way that is based on assumed ecosystem-scale responses to the environment. The consequent view of temperate deciduous forests (an important CO2 sink) is that, first, ecosystem respiration is greater during the day than at night; and second, ecosystem photosynthetic light-use efficiency peaks after leaf expansion in spring and then declines, presumably because of leaf ageing or water stress. This view has underlain the development of terrestrial biosphere models used in climate prediction and of remote sensing indices of global biosphere productivity. Here, we use new isotopic instrumentation to determine ecosystem photosynthesis and daytime respiration in a temperate deciduous forest over a three-year period. We find that ecosystem respiration is lower during the day than at night-the first robust evidence of the inhibition of leaf respiration by light at the ecosystem scale. Because they do not capture this effect, standard approaches overestimate ecosystem photosynthesis and daytime respiration in the first half of the growing season at our site, and inaccurately portray ecosystem photosynthetic light-use efficiency. These findings revise our understanding of forest-atmosphere carbon exchange, and provide a basis for investigating how leaf-level physiological dynamics manifest at the canopy scale in other ecosystems. PMID:27357794

  19. Seasonality of temperate forest photosynthesis and daytime respiration

    Science.gov (United States)

    Wehr, R.; Munger, J. W.; McManus, J. B.; Nelson, D. D.; Zahniser, M. S.; Davidson, E. A.; Wofsy, S. C.; Saleska, S. R.

    2016-06-01

    Terrestrial ecosystems currently offset one-quarter of anthropogenic carbon dioxide (CO2) emissions because of a slight imbalance between global terrestrial photosynthesis and respiration. Understanding what controls these two biological fluxes is therefore crucial to predicting climate change. Yet there is no way of directly measuring the photosynthesis or daytime respiration of a whole ecosystem of interacting organisms; instead, these fluxes are generally inferred from measurements of net ecosystem–atmosphere CO2 exchange (NEE), in a way that is based on assumed ecosystem-scale responses to the environment. The consequent view of temperate deciduous forests (an important CO2 sink) is that, first, ecosystem respiration is greater during the day than at night; and second, ecosystem photosynthetic light-use efficiency peaks after leaf expansion in spring and then declines, presumably because of leaf ageing or water stress. This view has underlain the development of terrestrial biosphere models used in climate prediction and of remote sensing indices of global biosphere productivity. Here, we use new isotopic instrumentation to determine ecosystem photosynthesis and daytime respiration in a temperate deciduous forest over a three-year period. We find that ecosystem respiration is lower during the day than at night—the first robust evidence of the inhibition of leaf respiration by light at the ecosystem scale. Because they do not capture this effect, standard approaches overestimate ecosystem photosynthesis and daytime respiration in the first half of the growing season at our site, and inaccurately portray ecosystem photosynthetic light-use efficiency. These findings revise our understanding of forest–atmosphere carbon exchange, and provide a basis for investigating how leaf-level physiological dynamics manifest at the canopy scale in other ecosystems.

  20. A global database of soil respiration data

    Directory of Open Access Journals (Sweden)

    B. Bond-Lamberty

    2010-02-01

    Full Text Available Soil respirationRS, the flux of autotropically- and heterotrophically-generated CO2 from the soil to the atmosphere – remains the least well-constrained component of the terrestrial C cycle. Here we introduce the SRDB database, a near-universal compendium of published RS data, and make it available to the scientific community both as a traditional static archive and as a dynamic community database that will be updated over time by interested users. The database encompasses all published studies that report one of the following data measured in the field (not laboratory: annual RS, mean seasonal RS, a seasonal or annual partitioning of RS into its sources fluxes, RS temperature response (Q10, or RS at 10 °C. Its orientation is thus to seasonal and annual fluxes, not shorter-term or chamber-specific measurements. To date, data from 818 studies have been entered into the database, constituting 3379 records. The data span the measurement years 1961–2007 and are dominated by temperate, well-drained forests. We briefly examine some aspects of the SRDB data – mean annual RS fluxes and their correlation with other carbon fluxes, RS variability, temperature sensitivities, and the partitioning of RS source flux – and suggest some potential lines of research that could be explored using these data. The SRDB database described here is available online in a permanent archive as well as via a project-hosting repository; the latter source leverages open-source software technologies to encourage wider participation in the database's future development. Ultimately, we hope that the updating of, and corrections to, the SRDB will become a shared project, managed by the users of these data in the scientific community.

  1. Pyrogenic effect of respirable road dust particles

    Energy Technology Data Exchange (ETDEWEB)

    Jayawardena, Umesh; Tollemark, Linda; Tagesson, Christer; Leanderson, Per, E-mail: per.leanderson@lio.s [Occupational and Environmental Medicine, University Hospital, S-581 85 Linkoeping (Sweden)

    2009-02-01

    Because pyrogenic (fever-inducing) compounds on ambient particles may play an important role for particle toxicity, simple methods to measure pyrogens on particles are needed. Here we have used a modified in vitro pyrogen test (IPT) to study the release of interleukin 1beta (IL-1beta) in whole human blood exposed to respirable road-dust particles (RRDP). Road dusts were collected from the roadside at six different streets in three Swedish cities and particles with a diameter less than 10 mum (RRDP) were prepared by a water sedimentation procedure followed by lyophilisation. RRDP (200 mul of 1 - 10{sup 6} ng/ml) were mixed with 50 mul whole blood and incubated at 37 deg. C overnight before IL-1beta was analysed with chemiluminescence ELISA in 384-well plates. Endotoxin (lipopolysaccharide from Salmonella minnesota), zymosan B and Curdlan (P-1,3-glucan) were used as positive controls. All RRDP samples had a pyrogenic effect and the most active sample produced 1.6 times more IL-1beta than the least active. This formation was of the same magnitude as in samples with 10 ng LPS/ml and was larger than that evoked by zymosan B and Curdlan (by mass basis). The method was sensitive enough to determine formation of IL-1beta in mixtures with 10 ng RRDP/ml or 0.01 ng LPS/ml. The endotoxin inhibitor, polymyxin B (10 mug/ml), strongly reduced the RRDP-induced formation of IL-1beta at 1mug RRDP/ml (around 80 % inhibition), but had only marginal or no effects at higher RRDP-concentrations (10 and 100 mug /ml). In summary, all RRDP tested had a clear pyrogen effect in this in vitro model. Endotoxin on the particles but also other factors contributed to the pyrogenic effect. As opposed to the limulus amebocyte lysate (LAL) assay (which measures endotoxin alone), IPT measures a broad range of pyrogens that may be present on particulate matter. The IPT method thus affords a simple, sensitive and quantitative determination of the total pyrogenic potential of ambient particles.

  2. A Diverse Community of Metal(loid) Oxide Respiring Bacteria Is Associated with Tube Worms in the Vicinity of the Juan de Fuca Ridge Black Smoker Field.

    Science.gov (United States)

    Maltman, Chris; Walter, Graham; Yurkov, Vladimir

    2016-01-01

    Epibiotic bacteria associated with tube worms living in the vicinity of deep sea hydrothermal vents of the Juan de Fuca Ridge in the Pacific Ocean were investigated for the ability to respire anaerobically on tellurite, tellurate, selenite, selenate, metavanadate and orthovanadate as terminal electron acceptors. Out of 107 isolates tested, 106 were capable of respiration on one or more of these oxides, indicating that metal(loid) oxide based respiration is not only much more prevalent in nature than is generally believed, but also is an important mode of energy generation in the habitat. Partial 16S rRNA gene sequencing revealed the bacterial community to be rich and highly diverse, containing many potentially new species. Furthermore, it appears that the worms not only possess a close symbiotic relationship with chemolithotrophic sulfide-oxidizing bacteria, but also with the metal(loid) oxide transformers. Possibly they protect the worms through reduction of the toxic compounds that would otherwise be harmful to the host. PMID:26914590

  3. In vitro effect of X radiation on respiration and glycolysis of Ehrlich ascites carcinoma cells of the mouse - an experimental comparison with the mouse tumortetanus assay

    International Nuclear Information System (INIS)

    Depending on the dose of X-rays, in vitro irradiation of Ehrlich ascites carcinoma cells of the mouse affected both respiration and glycolysis. 38.7 C/kg irradiation suppressed the aerobic and anaerobic energy metabolism rather strongly followed by a reduction of the 'take' and growth of the subcutaneously injected tumour cells, as opposed to the growth behavior of non-irradiated cells. In analogy, tetanus mortality rates were reduced in the mouse tumor-tetanus assay with 38.7 C/kg irradiated cells. On the other hand, irradiation with 5.16 C/kg of Ehrlich carcinoma cells resulted in unchanged rates of respiration and glycolysis, in spite of the strongly limited growth capacity of the tumor cells. The tumor-tetanus assay of the mouse showed good correlation with subcutaneous tumor growth; no such correlation was found in the tetanus assay and the manometric values of respiration and glycolysis with 5.16 C/kg irradiated tumor cells. After subcutaneous injection of mixed cell suspensions consisting of 1 x 105 viable and 1 x 106 38.7 C/kg irradiated Ehrlich ascites carcinoma cells as well as of 3 x 102 tetanus spores per single dose, we observed similar rates of tumor growth and tetanus mortality, respectively, if 1 x 105 viable tumor cells alone were administered together with 3 x 102 tetanus spores, without addition of irradiated tumor cells. (author)

  4. Kinetics and modeling of anaerobic digestion process

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Angelidaki, Irini; Ahring, Birgitte Kiær

    Anaerobic digestion modeling started in the early 1970s when the need for design and efficient operation of anaerobic systems became evident. At that time not only was the knowledge about the complex process of anaerobic digestion inadequate but also there were computational limitations. Thus, the...... first models were very simple and consisted of a limited number of equations. During the past thirty years much research has been conducted on the peculiarities of the process and on the factors that influence it on the one hand while an enormous progress took place in computer science on the other. The...... combination of both parameters resulted in the development of more and more concise and complex models. In this chapter the most important models found in the literature are described starting from the simplest and oldest to the more recent and complex ones....

  5. [Anaerobic-aerobic infection in acute appendicitis].

    Science.gov (United States)

    Mamchich, V I; Ulitovskiĭ, I V; Savich, E I; Znamenskiĭ, V A; Beliaeva, O A

    1998-01-01

    362 patients with acute appendicitis (AA) were examined. For microbiological diagnosis of aerobic and anaerobic nonclostridial microflora we used complex accelerated methods (including evaluation of gram-negative microorganisms in comparison with tinctorial-fermentative method of differential staining according to oxygen sensitivity of catalasopositive together with aerobic and cathalasonegative anaerobic microorganisms) as well as complete bacteriologic examination with determination of sensitivity of the above microorganism to antimicrobial remedies. High rate of aerobic-anaerobic microbial associations and substantial identity of microflora from appendicis and exudate from abdominal cavity was revealed, which evidenced the leading role of endogenous microorganisms in etiology and pathogenesis of AA and peritonitis i. e. autoinfection. In patients with destructive forms of AA, complicated by peritonitis it is recommended to use the accelerated method of examination of pathologic material as well as the complete scheme of examination with the identification of the isolated microorganisms and the correction of antibiotic treatment. PMID:9511291

  6. Anaerobic lipid degradation through acidification and methanization.

    Science.gov (United States)

    Kim, Ijung; Kim, Sang-Hyoun; Shin, Hang-Sik; Jung, Jin-Young

    2010-01-01

    In biological wastewater treatment high lipid concentration is known to inhibit microorganisms and cause active biomass flotation. To reduce lipid inhibition, a two-phase anaerobic system, consisting of an anaerobic sequencing batch reactor (ASBR) and an upflow anaerobic sludge blanket (UASB) reactor, was applied to synthetic dairy wastewater. During 153 days of operation, the two-phase system showed stable performance in lipid degradation. In the ASBR, a 13% lipid removal efficiency and 10% double bond removal efficiency were maintained. In the UASB, the chemical oxygen demand (COD), lipid and volatile fatty acid (VFA) removal efficiencies were more than 80%, 70% and 95%, respectively, up to organic loading rate 6.5 g COD/L/day. There were no operational problems such as serious scum formation or sludge washout. Protein degradation occurred prior to degradation during acidogenesis. PMID:20134250

  7. Biochemistry and physiology of anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-18

    We welcome you to The Power of Anaerobes. This conference serves two purposes. One is to celebrate the life of Harry D. Peck, Jr.,who was born May 18, 1927 and would have celebrated his 73rd birthday at this conference. He died November 20, 1998. The second is to gather investigators to exchange views within the realm of anaerobic microbiology, an area in which tremendous progress has been seen during recent years. It is sufficient to mention discoveries of a new form of life (the archaea), hyper or extreme thermophiles, thermophilic alkaliphiles and anaerobic fungi. With these discoveries has come a new realization about physiological and metabolic properties of microorganisms, and this in turn has demonstrated their importance for the development, maintenance and sustenance of life on Earth.

  8. Biochar from anaerobically digested sugarcane bagasse.

    Science.gov (United States)

    Inyang, Mandu; Gao, Bin; Pullammanappallil, Pratap; Ding, Wenchuan; Zimmerman, Andrew R

    2010-11-01

    This study was designed to investigate the effect of anaerobic digestion on biochar produced from sugarcane bagasse. Sugarcane bagasse was anaerobically digested to produce methane. The digested residue and fresh bagasse was pyrolyzed separately into biochar at 600 degrees C in nitrogen environment. The digested bagasse biochar (DBC) and undigested bagasse biochar (BC) were characterized to determine their physicochemical properties. Although biochar was produced from the digested residue (18% by weight) and the raw bagasse (23%) at a similar rate, there were many physiochemical differences between them. Compared to BC, DBC had higher pH, surface area, cation exchange capacity (CEC), anion exchange capacity (AEC), hydrophobicity and more negative surface charge, all properties that are generally desirable for soil amelioration, contaminant remediation or wastewater treatment. Thus, these results suggest that the pyrolysis of anaerobic digestion residues to produce biochar may be an economically and environmentally beneficial use of agricultural wastes. PMID:20634061

  9. Automatic respiration tracking for radiotherapy using optical 3D camera

    Science.gov (United States)

    Li, Tuotuo; Geng, Jason; Li, Shidong

    2013-03-01

    Rapid optical three-dimensional (O3D) imaging systems provide accurate digitized 3D surface data in real-time, with no patient contact nor radiation. The accurate 3D surface images offer crucial information in image-guided radiation therapy (IGRT) treatments for accurate patient repositioning and respiration management. However, applications of O3D imaging techniques to image-guided radiotherapy have been clinically challenged by body deformation, pathological and anatomical variations among individual patients, extremely high dimensionality of the 3D surface data, and irregular respiration motion. In existing clinical radiation therapy (RT) procedures target displacements are caused by (1) inter-fractional anatomy changes due to weight, swell, food/water intake; (2) intra-fractional variations from anatomy changes within any treatment session due to voluntary/involuntary physiologic processes (e.g. respiration, muscle relaxation); (3) patient setup misalignment in daily reposition due to user errors; and (4) changes of marker or positioning device, etc. Presently, viable solution is lacking for in-vivo tracking of target motion and anatomy changes during the beam-on time without exposing patient with additional ionized radiation or high magnet field. Current O3D-guided radiotherapy systems relay on selected points or areas in the 3D surface to track surface motion. The configuration of the marks or areas may change with time that makes it inconsistent in quantifying and interpreting the respiration patterns. To meet the challenge of performing real-time respiration tracking using O3D imaging technology in IGRT, we propose a new approach to automatic respiration motion analysis based on linear dimensionality reduction technique based on PCA (principle component analysis). Optical 3D image sequence is decomposed with principle component analysis into a limited number of independent (orthogonal) motion patterns (a low dimension eigen-space span by eigen-vectors). New

  10. The effect of tannic compounds on anaerobic wastewater treatment.

    NARCIS (Netherlands)

    Field, J.A.

    1989-01-01

    Anaerobic wastewater treatment is an alternative to the conventional aerobic treatment processes for the removal of easily biodegradable organic matter in medium to high strength industrial wastestreams. Anaerobic treatment has several advantages, however one important disadvantage is the high sensi

  11. ANAEROBIC AND AEROBIC TREATMENT OF CHLORINATED ALIPHATIC COMPOUNDS

    Science.gov (United States)

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). Glucose,...

  12. Succession of lignocellulolytic bacterial consortia bred anaerobically from lake sediment

    NARCIS (Netherlands)

    Korenblum, Elisa; Jiménez Avella, Diego; van Elsas, Jan

    2016-01-01

    Anaerobic bacteria degrade lignocellulose in various anoxic and organically rich environments, often in a syntrophic process. Anaerobic enrichments of bacterial communities on a recalcitrant lignocellulose source were studied combining polymerase chain reaction–denaturing gradient gel electrophoresi

  13. Bundvands respiration i Kattegat og Bælthavet

    DEFF Research Database (Denmark)

    Hansen, Jørgen L. S.; Bendtsen, Jørgen

    Der findes generelt meget få direkte målinger af den pelagiske respiration, og det har ikke været muligt at finde repræsentative målinger af den pelagiske respiration for de åbne danske farvande. Her præsenteres et sæsonstudie af bundvandets respiration fra 5 stationer i et transekt gående fra det....... Temperaturfølsomheden af respirationsraten udtrykt som en Q10 var 3,01 ± 1.07 for alle forsøg og uafhængigt af om prøverne blev kølet eller opvarmet under inkubationerne. Den labile pulje af organisk stof blev bestemt og de observerede respirations rater svarede til specifikke kulstof omsætningsrater på mellem 0...... målbar reduktion i det partikulære materiale under inkubationerne, tyder overraskende på,at opløst organisk materiale (DOM) er den vigtigste kulstofkilde for bundvandet respiration....

  14. Effect of Hyperglycemia on Mitochondrial Respiration in Type 2 Diabetes

    DEFF Research Database (Denmark)

    Rabøl, Rasmus; Højberg, Patricia M V; Almdal, Thomas; Boushel, Robert; Haugaard, Steen B; Madsbad, Sten; Dela, Flemming

    2009-01-01

    DM. PATIENTS AND METHODS: Eleven patients with T2DM [9 males, 2 females; age, 52.8 +/- 2.5 yr (mean +/- se); body mass index, 30.2 +/- 1.1 kg/m(2)] in poor glycemic control were treated with insulin aspart and NPH insulin for a median period of 46 d (range, 31-59). Mitochondrial respiration and...... glucose (12.7 +/- 1.1 to 6.5 +/- 0.3 mmol/liter; P < 0.001) were reduced after treatment. Mitochondrial respiration per milligram muscle was lower in T2DM compared to controls [substrates for complex I, 24% lower (P < 0.05); substrates for complex I+II, 17% lower (P < 0.05)]. Mitochondrial respiration and...... citrate synthase activity did not differ before and after improvements in glycemic control, but mitochondrial respiration correlated with fasting plasma glucose before (r(2) = 0.53; P < 0.05) but not after treatment [r(2) = 0.0024; not significant (NS)]. Mitochondrial respiration normalized to...

  15. Multivariate monitoring of anaerobic co-digestion

    DEFF Research Database (Denmark)

    Madsen, Michael; Holm-Nielsen, Jens Bo

    warming and environmental concerns. Anaerobic digestion applied in agriculture can simultaneously convert heterogeneous biomasses and wastes from the primary agricultural sector and from the bio processing industries, for instance food processing, pharma, and biofuel production, into valuable organic...... fertiliser and renewable energy. Meanwhile, in order for the biogas sector to become a significant player in the energy supply chain, the anaerobic digestion process has to be controlled to a greater extent than what is implemented as state-of-the-art today. Through application of the philosophy behind...

  16. Susceptibility of anaerobic bacteria to carbenicillin.

    Science.gov (United States)

    Blazevic, D J; Matsen, J M

    1974-05-01

    One hundred and seventy-one strains of anaerobes were tested for susceptibility to carbenicillin by using agar dilution, broth dilution, and two disk diffusion methods. The minimal inhibitory concentration (MIC) for 67% of 51 strains of Bacteroides fragilis, 7 of 9 strains of Bacteroides melaninogenicus, and all of 8 strains of Eubacterium was 100 mug or less per ml. The MICs of the remaining anaerobes were 50 mug or less per ml. The broth dilution results were felt to be the most accurate of the four methods utilized. PMID:4462461

  17. Startup and stabilization of anaerobic membrane bioreactors at ambient temperature

    OpenAIRE

    Benito Peña, Carlos

    2015-01-01

    There has been an increasing interest in wastewater treatment in last decades to reduce human footprint. Primarily, anaerobic technology focused on treatment and stabilization of sludge, but now the tendency is to give it a major role in low cost treatment of high/low strength wastewaters, since anaerobic digestion offers energy generation through gas production. Anaerobic membrane bioreactors (AnMBR) combine anaerobic digestion with membrane filtration. They are becoming a feasible opti...

  18. The Financial Feasibility of Anaerobic Digestion for Ontario's Livestock Industries

    OpenAIRE

    Weersink, Alfons; Mallon, Shawn

    2007-01-01

    This report is an investigation of the financial feasibility of farm based anaerobic digestion investments under Ontario's Standard Offer Contract electricity prices. Using Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) Agricultural Anaerobic Digestion Calculation Spreadsheet (AADCS) anaerobic digestion inputs, outputs, cost and revenues were estimated and used to conduct a financial analysis on the feasibility of four sized farm base anaerobic digestion investments. The res...

  19. The effect of tannic compounds on anaerobic wastewater treatment.

    OpenAIRE

    Field, J. A.

    1989-01-01

    Anaerobic wastewater treatment is an alternative to the conventional aerobic treatment processes for the removal of easily biodegradable organic matter in medium to high strength industrial wastestreams. Anaerobic treatment has several advantages, however one important disadvantage is the high sensitivity of the anaerobic bacteria (ie. methanogenic bacteria) to toxic compounds. The anaerobic technologies were initially developed for the treatment of non-toxic organic wastewaters. As the techn...

  20. Specific Examples of Hybrid Alkaline Cement

    Directory of Open Access Journals (Sweden)

    Fernández-Jiménez Ana

    2014-04-01

    Full Text Available Hybrid alkaline cements are obtained by alkali-activating cementitious blends in the Na2O-CaO-SiO2-Al2O3-H2O system. The present paper discusses the results of activating different cementitious blends containing a low OPC clinker content ( 15MPa a 2 days different alkaline activators were used (liquid and solid. The reaction products obtained were also characterised by XRD, SEM/EDX and 27Al and 29Si NMRMAS. The results showed that the main reaction product was a mix of cementitious gels C-A-S-H and (N,C-A-S-H, and that their relative proportions were strongly influenced by the calcium content in the initial binder

  1. Study of niobium corrosion in alkaline medium

    International Nuclear Information System (INIS)

    A comparative study of niobium electrochemical behaviour in NaOH and KOH solution, with concentrations between 0,5 and 6,1M is presented. The studies were done through electrochemicals assays, consisting in the corrosion potential and anodic and cathodic polarization curves, complemented by loss of mass experiments. The niobium anodic behaviour in alkaline medium is characterized by passivation occurrence, with a stable film formation. The Na oH solution in alkaline medium are more corrosible to niobium than the KOH solution. The loss of mass assays showed that the corrosion velocit is more dependente of hydroxide concentration in KOH medium than the NaOH medium. (C.G.C.)

  2. High temperature and pressure alkaline electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2013-01-01

    Alkaline electrolyzers have proven to operate reliable for decades on a large scale, but in order to become commercially attractive and compete against conventional technologies for hydrogen production, the production and investment costs have to be reduced. This may occur by increasing the...... operational temperature and pressure to produce pressurized hydrogen at high rate (m3 H2·h-1·m-2 cell area) and high electrical efficiency. This work describes an exploratory technical study of the possibility to produce hydrogen and oxygen with a new type of alkaline electrolysis cell at high temperatures...... SrTiO3 was used for immobilization of aqueous KOH solutions. Electrolysis cells with this electrolyte and metal foam based gas diffusion electrodes were successfully demonstrated at temperatures up to 250 °C at 40 bar. Different electro-catalysts were tested in order to reduce the oxygen and hydrogen...

  3. High Temperature and Pressure Alkaline Electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank

    radiation raises the necessity to store the produced energy. Hydrogen production by water electrolysis is one of the most promising ways to do so. Alkaline electrolyzers have proven to operate reliable for decades on a large scale (up to 160 MW), but in order to become commercially attractive and compete...... and oxygen with a new type of alkaline electrolysis cell at high temperatures and pressures. To perform measurements under high pressure and at elevated temperatures it was necessary to build a measurement system around an autoclave which could stand high temperatures up to 250 °C and pressures up to...... 200 bar as well as extremely caustic environments. Based on a literature study to identify resistant materials for these conditions, Inconel 600 was selected among the metals which are available for autoclave construction. An initial single atmosphere high temperature and pressure measurement setup...

  4. Effect of carbonate chemistry manipulations on calcification, respiration, and excretion of a Mediterranean pteropod

    Directory of Open Access Journals (Sweden)

    S. Comeau

    2012-05-01

    Full Text Available Although shelled pteropods are expected to be particularly sensitive to ocean acidification, the few available studies have mostly focused on polar species and have not allowed determining which parameter of the carbonate system controls their calcification. Specimens of the temperate Mediterranean species Creseis acicula were maintained under seven different conditions of the carbonate chemistry, obtained by manipulating pH and total alkalinity, with the goal to disentangle the effects of the pH and the saturation state with respect to aragonite (Ωa. Our results tend to show that respiration, excretion as well as rates of net and gross calcification were not directly affected by a decrease in pH but decreased significantly with a decrease in Ωa. Due to the difficulties in maintaining pteropods in the laboratory and the important variability in their abundances in our study site, long-term acclimation as well as replication of the experiment was not possible. However, we strongly believe that these results represent an important step in the mechanistic understanding of the effect of ocean acidification on pteropods physiology.

  5. A Novel Electrophototrophic Bacterium Rhodopseudomonas palustris Strain RP2, Exhibits Hydrocarbonoclastic Potential in Anaerobic Environments.

    Science.gov (United States)

    Venkidusamy, Krishnaveni; Megharaj, Mallavarapu

    2016-01-01

    An electrophototrophic, hydrocarbonoclastic bacterium Rhodopseudomonas palustris stain RP2 was isolated from the anodic biofilms of hydrocarbon fed microbial electrochemical remediation systems (MERS). Salient properties of the strain RP2 were direct electrode respiration, dissimilatory metal oxide reduction, spore formation, anaerobic nitrate reduction, free living diazotrophy and the ability to degrade n-alkane components of petroleum hydrocarbons (PH) in anoxic, photic environments. In acetate fed microbial electrochemical cells, a maximum current density of 305 ± 10 mA/m(2) (1000Ω) was generated (power density 131.65 ± 10 mW/m(2)) by strain RP2 with a coulombic efficiency of 46.7 ± 1.3%. Cyclic voltammetry studies showed that anaerobically grown cells of strain RP2 is electrochemically active and likely to transfer electrons extracellularly to solid electron acceptors through membrane bound compounds, however, aerobically grown cells lacked the electrochemical activity. The ability of strain RP2 to produce current (maximum current density 21 ± 3 mA/m(2); power density 720 ± 7 μW/m(2), 1000 Ω) using PH as a sole energy source was also examined using an initial concentration of 800 mg l(-1) of diesel range hydrocarbons (C9-C36) with a concomitant removal of 47.4 ± 2.7% hydrocarbons in MERS. Here, we also report the first study that shows an initial evidence for the existence of a hydrocarbonoclastic behavior in the strain RP2 when grown in different electron accepting and illuminated conditions (anaerobic and MERS degradation). Such observations reveal the importance of photoorganotrophic growth in the utilization of hydrocarbons from contaminated environments. Identification of such novel petrochemical hydrocarbon degrading electricigens, not only expands the knowledge on the range of bacteria known for the hydrocarbon bioremediation but also shows a biotechnological potential that goes well beyond its applications to MERS. PMID:27462307

  6. Treatment of domestic sewage in a two-step system anaerobic filter/anaerobic hybrid reactor at low temperature

    NARCIS (Netherlands)

    Elmitwalli, T.A.; Zeeman, G.; Oahn, K.L.T.; Lettinga, G.

    2002-01-01

    The treatment of domestic sewage at low temperature of 13 degrees Celsius was investigated in a two-step system consisting of an anaerobic filter (AF) + an anaerobic hybrid (AH) reactor operated at different hydraulic retention times (HRTs)

  7. The IWA Anaerobic digestion model no 1. (ADM1)

    DEFF Research Database (Denmark)

    Batstone, Damien J.; Keller, J.; Angelidaki, Irini;

    2002-01-01

    The IWA Anaerobic Digestion Modelling Task Group was established in 1997 at the 8th World Congress on Anaerobic Digestion (Sendai, Japan) with the goal of developing a generalised anaerobic digestion model. The structured model includes multiple steps describing biochemical as well...

  8. Stability of anaerobic reactors under micro-aeration conditions

    International Nuclear Information System (INIS)

    Oxidation of sulphide in anaerobic bioreactors by introducing limited amounts of oxygen provides a relatively simple strategy for reducing the levels of sulphite in anaerobic digesters (biogas and effluent). The introduction of limited amounts of air is a general practice in agricultural anaerobic digesters, it is estimated that worldwide over 3.000 units are operated under such conditions. (Author)

  9. Anaerobic Digestion. Student Manual. Biological Treatment Process Control.

    Science.gov (United States)

    Carnegie, John W., Ed.

    This student manual contains the textual material for a four-lesson unit on anaerobic digestion control. Areas addressed include: (1) anaerobic sludge digestion (considering the nature of raw sludge, purposes of anaerobic digestion, the results of digestion, types of equipment, and other topics); (2) digester process control (considering feeding…

  10. CARINA alkalinity data in the Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    A. Velo

    2009-08-01

    Full Text Available Data on carbon and carbon-relevant hydrographic and hydrochemical parameters from previously non-publicly available cruise data sets in the Arctic, Atlantic and Southern Ocean have been retrieved and merged to a new database: CARINA (CARbon IN the Atlantic.

    These data have gone through rigorous quality control (QC procedures to assure the highest possible quality and consistency. The data for most of the measured parameters in the CARINA data base were objectively examined in order to quantify systematic differences in the reported values, i.e. secondary quality control. Systematic biases found in the data have been corrected in the data products, i.e. three merged data files with measured, calculated and interpolated data for each of the three CARINA regions; Arctic, Atlantic and Southern Ocean. Out of a total of 188 cruise entries in the CARINA database, 98 were conducted in the Atlantic Ocean and of these, 75 cruises report alkalinity values.

    Here we present details of the secondary QC on alkalinity for the Atlantic Ocean part of CARINA. Procedures of quality control, including crossover analysis between cruises and inversion analysis of all crossover data are briefly described. Adjustments were applied to the alkalinity values for 16 of the cruises in the Atlantic Ocean region. With these adjustments the CARINA database is consistent both internally as well as with GLODAP data, an oceanographic data set based on the World Hydrographic Program in the 1990s. Based on our analysis we estimate the internal accuracy of the CARINA-ATL alkalinity data to be 3.3 μmol kg−1. The CARINA data are now suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation.

  11. Alkaline leaching of iron and steelmaking dust

    OpenAIRE

    Stafanova, Anna; Aromaa, Jari

    2012-01-01

    Steel production generates significant quantities of dust and sludge in blast furnaces (BF),basic oxygen furnaces (BOF), and electric arc furnaces (EAF). These dusts contain toxicelements, such as heavy metals, and are thus classified as harmful waste making the disposalof them expensive. In addition, direct recycling of dust back to steel production is hindered dueto the presence of zinc. In this literature survey the alkaline leaching of zinc from iron and steelmaking dusts isreviewed. T...

  12. Alkaline earth cation extraction from acid solution

    Science.gov (United States)

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  13. Bifunctional Catalysts for Alkaline Fuel Cells

    Czech Academy of Sciences Publication Activity Database

    Klápště, Břetislav; Vondrák, Jiří; Velická, Jana

    Vol. 1. Brno : Akademické nakladatelství CERM, 2000 - (Vondrák, J.; Sedlaříková, M.), s. 24.1-24.4 ISBN 80-214-1614-9. [Advanced Batteries and Accumulators /1./. Brno (CZ), 28.08.2000-01.09.2000] R&D Projects: GA MŠk ME 216 Institutional research plan: CEZ:AV0Z4032918; CEZ:MSM 262200010 Keywords : alkaline * catalysts * electrochemistry Subject RIV: CG - Electrochemistry

  14. Chemical reactivity of {alpha}-isosaccharinic acid in heterogeneous alkaline systems

    Energy Technology Data Exchange (ETDEWEB)

    Glaus, M. A.; Loon, L. R. Van

    2008-11-15

    Cellulose degradation under alkaline conditions is of relevance for the mobility of many radionuclides in the near-field of a cementitious repository for radioactive waste, because metal-binding degradation products may be formed. Among these, {alpha}-isosaccharinic acid ({alpha}-ISA) is the strongest complexant. The prediction of the equilibrium concentration of {alpha}-ISA in cement pore water is therefore an important step in the assessment of the influence of cellulose degradation products on the speciation of radionuclides in such environments. The present report focuses on possible chemical transformation reactions of {alpha}-ISA in heterogeneous alkaline model systems containing either Ca(OH){sub 2} or crushed hardened cement paste. The transformation reactions were monitored by measuring the concentration of {alpha}-ISA by high performance anion exchange chromatography and the formation of reaction products by high performance ion exclusion chromatography. The overall loss of organic species from solution was monitored by measuring the concentration of non-purgeable organic carbon. The reactions were examined in diluted and compacted suspensions, either at 25 {sup o}C or 90 {sup o}C, and under anaerobic atmospheres obtained by various methods. It was found that {alpha}-ISA was transformed under all conditions tested to some extent. Reaction products, such as glycolate, formate, lactate and acetate, all compounds with less complexing strength than {alpha}-ISA, were detected. The amount of reaction products identified by the chromatographic technique applied was {approx}50 % of the amount of {alpha}-ISA reacted. Sorption of {alpha}-ISA to Ca(OH){sub 2} contributed only to a minor extent to the loss of {alpha}-ISA from the solution phase. As the most important conclusion of the present work it was demonstrated that the presence of oxidising agents had a distinctive influence on the turnover of {alpha}-ISA. Under aerobic conditions {alpha}-ISA was

  15. Influence of alkaline co-contaminants on technetium mobility in vadose zone sediments

    International Nuclear Information System (INIS)

    Pertechnetate was slowly reduced in a natural, untreated arid sediment under anaerobic conditions (0.02 nmol g−1 h−1), which could occur in low permeability zones in the field, most of which was quickly oxidized. A small portion of the surface Tc may be incorporated into slowly dissolving surface phases, so was not readily oxidized/remobilized into pore water. In contrast, pertechnetate reduction in an anaerobic sediment containing adsorbed ferrous iron as the reductant was rapid (15–600 nmol g−1 h−1), and nearly all (96–98%) was rapidly oxidized/remobilized (2.6–6.8 nmol g−1 h−1) within hours. Tc reduction in an anaerobic sediment containing 0.5–10 mM sulfide showed a relatively slow reduction rate (0.01–0.03 nmol g−1 h−1) that was similar to observations in the natural sediment. Pertechnetate infiltration into sediment with a highly alkaline water resulted in rapid reduction (0.07–0.2 nmol g−1 h−1) from ferrous iron released during biotite or magnetite dissolution. Oxidation of NaOH-treated sediments resulted in slow Tc oxidation (∼0.05 nmol g−1 h−1) of a small fraction of the surface Tc (13–23%). The Tc remaining on the surface was TcIV (by XANES), and autoradiography and elemental maps of Tc (by electron microprobe) showed Tc was present associated with specific minerals, rather than being evenly distributed on the surface. Dissolution of quartz, montmorillonite, muscovite, and kaolinite also occurred in the alkaline water, resulting in significant aqueous silica and aluminum. Over time, aluminosilicates, cancrinite, zeolite and sodalite were precipitating. These precipitates may be coating surface Tc(IV) phases, limiting reoxidation. - Highlights: • Pertechnetate was slowly reduced in natural arid sediment, and rapidly oxidized. • Sediment with added Fe2+ rapidly reduced pertechnetate, and was rapidly oxidized. • In 4 M NaOH, pertechnetate was rapidly reduced by Fe2+ from biotite dissolution. • In the Na

  16. Chemical reactivity of {alpha}-isosaccharinic acid in heterogeneous alkaline systems

    Energy Technology Data Exchange (ETDEWEB)

    Glaus, M. A.; Loon, L. R. Van

    2009-05-15

    Cellulose degradation under alkaline conditions is of relevance for the mobility of many radionuclides in the near-field of a cementitious repository for radioactive waste, because metal-binding degradation products may be formed. Among these, {alpha}- isosaccharinic acid ({alpha}-ISA) is the strongest complexant. The prediction of the equilibrium concentration of {alpha}-ISA in cement pore water is therefore an important step in the assessment of the influence of cellulose degradation products on the speciation of radionuclides in such environments. The present report focuses on possible chemical transformation reactions of {alpha}-ISA in heterogeneous alkaline model systems containing either Ca(OH){sub 2} or crushed hardened cement paste. The transformation reactions were monitored by measuring the concentration of {alpha}-ISA by high performance anion exchange chromatography and the formation of reaction products by high performance ion exclusion chromatography. The overall loss of organic species from solution was monitored by measuring the concentration of non-purgeable organic carbon. The reactions were examined in diluted and compacted suspensions, at either 25 {sup o}C or 90 {sup o}C, and under anaerobic atmospheres obtained by various methods. It was found that {alpha}-ISA was transformed under all conditions tested to some extent. Reaction products, such as glycolate, formate, lactate and acetate, all compounds with less complexing strength than {alpha}-ISA, were detected. The amount of reaction products identified by the chromatographic technique applied was {approx} 50 % of the amount of {alpha}-ISA reacted. Sorption of {alpha}-ISA to Ca(OH){sub 2} contributed only to a minor extent to the loss of {alpha}-ISA from the solution phase. As the most important conclusion of the present work it was demonstrated that the presence of oxidising agents had a distinctive influence on the turnover of {alpha}-ISA. Under aerobic conditions {alpha}-ISA was

  17. Chemical reactivity of α-isosaccharinic acid in heterogeneous alkaline systems

    International Nuclear Information System (INIS)

    Cellulose degradation under alkaline conditions is of relevance for the mobility of many radionuclides in the near-field of a cementitious repository for radioactive waste, because metal-binding degradation products may be formed. Among these, α- isosaccharinic acid (α-ISA) is the strongest complexant. The prediction of the equilibrium concentration of α-ISA in cement pore water is therefore an important step in the assessment of the influence of cellulose degradation products on the speciation of radionuclides in such environments. The present report focuses on possible chemical transformation reactions of α-ISA in heterogeneous alkaline model systems containing either Ca(OH)2 or crushed hardened cement paste. The transformation reactions were monitored by measuring the concentration of α-ISA by high performance anion exchange chromatography and the formation of reaction products by high performance ion exclusion chromatography. The overall loss of organic species from solution was monitored by measuring the concentration of non-purgeable organic carbon. The reactions were examined in diluted and compacted suspensions, at either 25 oC or 90 oC, and under anaerobic atmospheres obtained by various methods. It was found that α-ISA was transformed under all conditions tested to some extent. Reaction products, such as glycolate, formate, lactate and acetate, all compounds with less complexing strength than α-ISA, were detected. The amount of reaction products identified by the chromatographic technique applied was ∼ 50 % of the amount of α-ISA reacted. Sorption of α-ISA to Ca(OH)2 contributed only to a minor extent to the loss of α-ISA from the solution phase. As the most important conclusion of the present work it was demonstrated that the presence of oxidising agents had a distinctive influence on the turnover of α-ISA. Under aerobic conditions α-ISA was quantitatively converted to reaction products, whereas under strict anaerobic conditions, only small

  18. Chemical reactivity of α-isosaccharinic acid in heterogeneous alkaline systems

    International Nuclear Information System (INIS)

    Cellulose degradation under alkaline conditions is of relevance for the mobility of many radionuclides in the near-field of a cementitious repository for radioactive waste, because metal-binding degradation products may be formed. Among these, α-isosaccharinic acid (α-ISA) is the strongest complexant. The prediction of the equilibrium concentration of α-ISA in cement pore water is therefore an important step in the assessment of the influence of cellulose degradation products on the speciation of radionuclides in such environments. The present report focuses on possible chemical transformation reactions of α-ISA in heterogeneous alkaline model systems containing either Ca(OH)2 or crushed hardened cement paste. The transformation reactions were monitored by measuring the concentration of α-ISA by high performance anion exchange chromatography and the formation of reaction products by high performance ion exclusion chromatography. The overall loss of organic species from solution was monitored by measuring the concentration of non-purgeable organic carbon. The reactions were examined in diluted and compacted suspensions, either at 25 oC or 90 oC, and under anaerobic atmospheres obtained by various methods. It was found that α-ISA was transformed under all conditions tested to some extent. Reaction products, such as glycolate, formate, lactate and acetate, all compounds with less complexing strength than α-ISA, were detected. The amount of reaction products identified by the chromatographic technique applied was ∼50 % of the amount of α-ISA reacted. Sorption of α-ISA to Ca(OH)2 contributed only to a minor extent to the loss of α-ISA from the solution phase. As the most important conclusion of the present work it was demonstrated that the presence of oxidising agents had a distinctive influence on the turnover of α-ISA. Under aerobic conditions α-ISA was quantitatively converted to reaction products, whereas under strict anaerobic conditions, only small

  19. Nitrogen-induced reduction in soil respiration of European forests

    Science.gov (United States)

    Berridge, Callum; Fleischer, Katrin; Bistinas, Ioannis; Ekici, Altug; Dolman, Albertus

    2014-05-01

    Soil heterotrophic respiration is parameterized in vegetation models as a temperature-dependent decay function, and is usually spatially constant. We test this fundamental assumption with chamber-based observations of the soil carbon efflux along a >1,100km transect throughout European forests, where the latitude is kept constant to control for insolation. We find a modest, but significant, inter-site linear correlation between air temperature and carbon efflux (r2 = 0.32, p=0.02), but not at 5cm depth soil temperature (r2 = -0.02, p=0.4). Average midday respiration increased West-East and correlates well with distance from the coast (r2 = 0.55, pgrid-size scale than temperature. We explain the reduction in soil respiration as a result of nitrogen inhibition of decomposition.

  20. Soil microbial respiration from observations and Earth System Models

    International Nuclear Information System (INIS)

    Soil microbial respiration (Rh) is a large but uncertain component of the terrestrial carbon cycle. Carbon–climate feedbacks associated with changes to Rh are likely, but Rh parameterization in Earth System Models (ESMs) has not been rigorously evaluated largely due to a lack of appropriate measurements. Here we assess, for the first time, Rh estimates from eight ESMs and their environmental drivers across several biomes against a comprehensive soil respiration database (SRDB-V2). Climatic, vegetation, and edaphic factors exert strong controls on annual Rh in ESMs, but these simple controls are not as apparent in the observations. This raises questions regarding the robustness of ESM projections of Rh in response to future climate change. Since there are many more soil respiration (Rs) observations than Rh data, two ‘reality checks’ for ESMs are also created using the Rs data. Guidance is also provided on the Rh improvement in ESMs. (letter)

  1. Evaluation of Respirable Crystalline Silica in High School Ceramics Classrooms

    Directory of Open Access Journals (Sweden)

    Matthew Fechser

    2014-01-01

    Full Text Available Air concentrations of respirable crystalline silica were measured in eleven (11 high school ceramics classrooms located in Salt Lake County, UT, USA. Respirable dust was collected on PVC filters using precision flow pumps and cyclone samplers (n = 44. Filters were subsequently analyzed for respirable dust and percent crystalline silica content. The geometric mean of the silica concentrations was 0.009 mg/m3 near the teacher’s work station and 0.008 mg/m3 near the kilns. The number of students in the classroom was correlated to the silica concentration in the ceramics classroom, but no correlation was found between the silica concentrations and either the size of the classroom or the age of the building. Results from this study indicate that ceramics teachers may be at an increased risk of exposure to crystalline silica based on the ACGIH TLV of 0.025 mg/m3, with an exceedance of 21%.

  2. The Path of Carbon in Photosynthesis VII. Respiration and Photosynthesis

    Science.gov (United States)

    Benson, A. A.; Calvin, M.

    1949-07-21

    The relationship of respiration to photosynthesis in barley seedling leaves and the algae, Chlorella and Scenedesmus, has been investigated using radioactive carbon dioxide and the techniques of paper chromatography and radioautography. The plants are allowed to photosynthesize normally for thirty seconds in c{sup 14}O{sub 2} after which they are allowed to respire in air or helium in the light or dark. Respiration of photosynthetic intermediates as evidenced by the appearance of labeled glutomic, isocitric, fumaric and succinic acids is slower in the light than in the dark. Labeled glycolic acid is observed in barley and algae. It disappears rapidly in the dark and is maintained and increased in quantity in the light in C0{sub 2}-free air.

  3. Heavy water production by alkaline water electrolysis

    International Nuclear Information System (INIS)

    Several heavy water isotope production processes are reported in literature. Water electrolysis in combination with catalytic exchange CECE process is considered as a futuristic process to increase the throughput and reduce the cryogenic distillation load but the application is limited due to the high cost of electricity. Any improvement in the efficiency of electrolyzers would make this process more attractive. The efficiency of alkaline water electrolysis is governed by various phenomena such as activation polarization, ohmic polarization and concentration polarization in the cell. A systematic study on the effect of these factors can lead to methods for improving the efficiency of the electrolyzer. A bipolar and compact type arrangement of the alkaline water electrolyzer leads to increased efficiency and reduced inventory in comparison to uni-polar tank type electrolyzers. The bipolar type arrangement is formed when a number of single cells are stacked together. Although a few experimental studies have been reported in the open literature, CFD simulation of a bipolar compact alkaline water electrolyzer with porous electrodes is not readily available.The principal aim of this study is to simulate the characteristics of a single cell compact electrolyzer unit. The simulation can be used to predict the Voltage-Current Density (V-I) characteristics, which is a measure of the efficiency of the process.The model equations were solved using COMSOL multi-physics software. The simulated V-I characteristic is compared with the experimental data

  4. The fate of added alkalinity in model scenarios of ocean alkalinization

    Science.gov (United States)

    Ferrer González, Miriam; Ilyina, Tatiana

    2014-05-01

    The deliberate large-scale manipulation of the Earth's climate (geo-engineering) has been proposed to mitigate climate change and ocean acidification. Whilst the mitigation potential of these technologies could sound promising, they may also pose many environmental risks. Our research aims at exploring the ocean-based carbon dioxide removal method of alkalinity enhancement. Its mitigation potential to reduce atmospheric CO2 and counteract the consequences of ocean acidification, risks and unintended consequences are studied. In order to tackle these questions, different scenarios are implemented in the state-of-the-art Earth system model of the Max Planck Institute for Meteorology. The model configuration is based on the 5th phase of the coupled model intercomparison project following a high CO2 future climate change scenario RCP8.5 (in which radiative forcing rises to 8.5 W/m² in 2100). Two different scenarios are performed where the alkalinity is artificially added globally uniformly in the upper ocean. In the first scenario, alkalinity is increased as a pulse by doubling natural values of the first 12 meters. In the second scenario we add alkalinity into the same ocean layer such that the atmospheric CO2 concentration is reduced from RCP8.5 to RCP4.5 levels (with the radiative forcing of 4.5 W/m² in 2100). We investigate the fate of the added alkalinity in these two scenarios and compare the differences in alkalinity budgets. In order to increase oceanic CO2 uptake from the atmosphere, enhanced alkalinity has to stay in the upper ocean. Once the alkalinity is added, it will become part of the biogeochemical cycles and it will be distributed with the ocean currents. Therefore, we are particularly interested in the residence time of the added alkalinity at the surface. Variations in CO2 partial pressure, seawater pH and saturation state of carbonate minerals produced in the implemented scenarios will be presented. Collateral changes in ocean biogeochemistry and

  5. Proceedings of the 10. world congress on anaerobic digestion 2004 : anaerobic bioconversion, answer for sustainability

    International Nuclear Information System (INIS)

    This conference reviewed the broad scope of anaerobic process-related activities taking place globally and confirmed the possibilities of using anaerobic processes to add value to industrial wastewaters, municipal solid wastes and organic wastes while minimizing pollution and greenhouse gases. It focused on biomolecular tools, instrumentation of anaerobic digestion processes, anaerobic bioremediation of chlorinated organics, and thermophilic and mesophilic digestion. Several papers focused on the feasibility of using waste products to produce hydrogen and methane for electricity generation. The sessions of the conference were entitled acidogenesis; microbial ecology; process control; sulfur content; technical development; domestic wastewater; agricultural waste; organic municipal solid wastes; instrumentation; molecular biology; sludges; agricultural feedstock; bioremediation; industrial wastewater; hydrogen production; pretreatments; sustainability; and integrated systems. The conference featured 387 posters and 192 oral presentations, of which 111 have been indexed separately for inclusion in this database. refs., tabs., figs

  6. Environmental impacts of anaerobic digestion and the use of anaerobic residues as soil amendment

    Energy Technology Data Exchange (ETDEWEB)

    Mosey, F.E. [VFA Services Ltd., Herts (United Kingdom)

    1996-01-01

    This paper defines the environmental role of anaerobic digestion within the overall objective of recovering energy from renewable biomass resources. Examples and opportunities for incorporating anaerobic digestion into biomass-to-energy schemes are discussed, together with environmental aspects of anaerobic digestion plants. These include visual, public amenity, pathogens and public health, odor control, and gaseous emissions. Digestate disposal and the benefits of restrictions on recycling organic wastes and biomass residues back to the land are discussed, particularly as they relate to American and European codes of practice and environmental legislation. The paper concludes that anaerobic digestion, if performed in purpose-designed reactors that efficiently recover and use biogas, is an environmentally benign process that can enhance energy recovery and aid the beneficial land use of plant residues in many biomass-to-energy schemes.

  7. Antoine Lavoisier and the study of respiration: 200 years old.

    Science.gov (United States)

    Stokes, M A

    1991-03-01

    Antoine Lavoisier has been called the father of modern chemistry. From a medical point of view, he introduced the study of respiration and metabolism and so founded biochemistry. With his experiments, our knowledge of how the body works made immense strides forward. Two hundred years ago, he wrote his last authentic and untouched account of his views on respiration, in a letter to Joseph Black in Edinburgh. This opportunity has been taken to briefly review this work and the life of a man who did much to improve our understanding of ourselves. PMID:2003841

  8. Fundamental Medical and Engineering Investigations on Protective Artificial Respiration

    CERN Document Server

    Klaas, Michael; Schroder, Wolfgang

    2011-01-01

    This volume contains a collection of papers from the research program 'Protective Artificial Respiration (PAR)'. In 2005 the German Research Association DFG launched the research program PAR which is a joint initiative of medicine and fluid mechanics. The main long-term objective of this program is the development of a more protective artificial respiratory system to reduce the physical stress of patients undergoing artificial respiration. To satisfy this goal 11 projects have been defined. In each of these projects scientists from medicine and fluid mechanics do collaborate in several experim

  9. Oxygen and carbon isotopic compositions of gases respired by humans

    OpenAIRE

    Epstein, S.; Zeiri, L.

    1988-01-01

    Oxygen-isotope fractionation associated with respiration in human individuals at rest is linearly related to the fraction of the O2 utilized in the respiration process. The slope of this relationship is affected by a history of smoking, by vigorous exercise, and by the N2/O2 ratio of the inhaled gas. For patients who suffer anemia-related diseases, the slope of this relationship is directly proportional to their level of hemoglobin. These results introduce a new approach for studying the mech...

  10. Effects of the lampricide 3-trifluoromethyl-4-nitrophenol (TFM) on pH, net oxygen production, and respiration by algae

    Science.gov (United States)

    Scholefield, Ronald J.; Fredricks, Kim T.; Slaght, Karen S.; Seelye, James G.

    1999-01-01

    The lampricide 3-trifluoromethyl-4-nitrophenol (TFM) has been used in the United States and Canada for more than 35 years to control larval sea lampreys (Petromyzon marinus) in tributaries of the Great Lakes. Occasionally, during stream treatments with TFM, nontarget-fish mortality reaches unacceptable levels. These losses could be due to the presence of sensitive fish species, excess TFM, or a combination of factors that influence the toxicity of TFM, such as delays in daily stream reaeration by algae resulting in extended periods of low pH and low dissolved oxygen (DO). We determined the effects of a broad range of TFM concentrations on net DO production and respiration by two species of algae, in two culture media (high alkalinity and low alkalinity). The pH and DO in cultures of Chlorella pyrenoidosa and Selenastrum capricornutum were recorded at time zero and again after a 9-h exposure to TFM under either lighted or dark conditions. Algal cultures exposed to TFM concentrations typical of those used to control sea lampreys in streams showed only small changes in pH (<0.1) and small reductions in DO (about 8% in lighted conditions and 11% in dark conditions). Changes in pH and DO of this magnitude probably do not change the efficacy of TFM or cause nontarget fish mortality if algae are the predominant photosynthetic organisms in the stream.

  11. A simple and sensitive quality control method of the anaerobic atmosphere for identification and antimicrobial susceptibility testing of anaerobic bacteria

    DEFF Research Database (Denmark)

    Justesen, Tage; Justesen, Ulrik Stenz

    2013-01-01

    The maintenance of a strict anaerobic atmosphere is essential for the culture of strict anaerobic bacteria. We describe a simple and sensitive quality control method of the anaerobic atmosphere, based on the measurement of the zone diameter around a 5-μg metronidazole disk when testing an...

  12. Anaerobic membrane bioreactors: Are membranes really necessary?

    NARCIS (Netherlands)

    Davila, M.; Kassab, G.; Klapwijk, A.; Lier, van J.B.

    2008-01-01

    Membranes themselves represent a significant cost for the full scale application of anaerobic membrane bioreactors (AnMBR). The possibility of operating an AnMBR with a self-forming dynamic membrane generated by the substances present in the reactor liquor would translate into an important saving. A

  13. Applications of the anaerobic digestion process

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Ellegaard, L.; Ahring, Birgitte Kiær

    2003-01-01

    and resource/energy recovery have been developed. Treatment of biowastes by anaerobic digestion processes is in many cases the optimal way to convert organic waste into useful products such as energy (in the form of biogas) and a fertilizer product. Other waste management options, such as land filling...

  14. Analysis of denitrification in swine anaerobic lagoons

    Science.gov (United States)

    Anaerobic lagoons are a common management practice for the treatment of swine wastewater. Although these lagoons were once thought to be relatively simple; their physical, chemical, and biological processes are actually very sophisticated. To get a better understanding of the processes which occur i...

  15. Anaerobic work capacity in elite wheelchair athletes

    NARCIS (Netherlands)

    van der Woude, L H; Bakker, W H; Elkhuizen, J W; Veeger, DirkJan (H. E. J.); Gwinn, T

    1997-01-01

    To study the anaerobic work capacity in wheelchair athletes, 67 elite wheelchair athletes (50 male) were studied in a 30-second sprint test on a computer-controlled wheelchair ergometer during the World Championships and Games for the Disabled in Assen (1990). The experimental set-up (ergometer, pro

  16. Anaerobic effluent disinfection using ozone: Byproducts formation

    NARCIS (Netherlands)

    Silva, G.H.R.; Daniel, L.A.; Bruning, H.; Rulkens, W.H.

    2010-01-01

    This research was aimed at studying oxidation processes, coliform inactivation effectiveness and disinfection byproducts (DBPs) associated with the disinfection of anaerobic sanitary wastewater effluent with ozone applied at doses of 5.0, 8.0 and 10.0mg O(3)L(-1) for contact times of 5, 10 and 15 mi

  17. Anaerobic hydrolysis during digestion of complex substrates

    NARCIS (Netherlands)

    Sanders, W.T.M.

    2001-01-01

    Complex waste(water) such as, raw sewage, dairy wastewater, slaughterhouse wastewater, fish processing wastewater, primary sludge and the organic fraction of municipal solid waste have been proven to be degradable under anaerobic conditions. However, during the digestion process the conversion of th

  18. Sulfate-reducing bacteria in anaerobic bioreactors.

    NARCIS (Netherlands)

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the occurrenc

  19. Anaerobic digestion in sustainable biomass chains

    NARCIS (Netherlands)

    Pabon Pereira, C.P.

    2009-01-01

    This thesis evaluates the potential contribution of anaerobic digestion (AD) to the sustainability of biomass chains. Results provide insights in the technological potential to recover energy and valuable by-products from energy crops and residues, and evaluate biomass cascades involving AD technolo

  20. Anaerobic digestion of slaughterhouse by-products

    DEFF Research Database (Denmark)

    Hejnfelt, Anette; Angelidaki, Irini

    2009-01-01

    Anaerobic digestion of animal by-products was investigated in batch and semi-continuously fed, reactor experiments at 55 degrees C and for some experiments also at 37 degrees C. Separate or mixed by-products from pigs were tested. The methane potential measured by batch assays for meat- and bone...

  1. Can Anaerobic Fungi Improve Biogas Production?

    Czech Academy of Sciences Publication Activity Database

    Fliegerová, Kateřina; Mrázek, Jakub; Štrosová, Lenka; Procházka, J.

    Edinburgh : Elsevier, 2010. s. 1-1. [IMC9 (9th International mycological congress): The biology of Fungi. 01.08.2010 - 06.08.2010, Edinburgh] Institutional research plan: CEZ:AV0Z50450515 Keywords : anaerobic fungi * biogas production Subject RIV: EH - Ecology, Behaviour

  2. Biodegradability of leathers through anaerobic pathway.

    Science.gov (United States)

    Dhayalan, K; Fathima, N Nishad; Gnanamani, A; Rao, J Raghava; Nair, B Unni; Ramasami, T

    2007-01-01

    Leather processing generates huge amounts of both solid and liquid wastes. The management of solid wastes, especially tanned leather waste, is a challenging problem faced by tanners. Hence, studies on biodegradability of leather become imperative. In this present work, biodegradability of untanned, chrome tanned and vegetable tanned leather under anaerobic conditions has been addressed. Two different sources of anaerobes have been used for this purpose. The effect of detanning as a pretreatment method before subjecting the leather to biodegradation has also been studied. It has been found that vegetable tanned leather leads to more gas production than chrome tanned leather. Mixed anaerobic isolates when employed as an inoculum are able to degrade the soluble organics of vegetable tanned material and thus exhibit an increased level of gas production during the initial days, compared to the results of the treatments that received the anaerobic sludge. With chrome tanned materials, there was not much change in the volume of the gas produced from the two different sources. It has been found that detanning tends to improve the biodegradability of both types of leathers. PMID:16740383

  3. Enrichment of denitrifying anaerobic methane oxidizing microorganisms.

    Science.gov (United States)

    Hu, Shihu; Zeng, Raymond J; Burow, Luke C; Lant, Paul; Keller, Jurg; Yuan, Zhiguo

    2009-10-01

    The microorganisms responsible for anaerobic oxidation of methane (AOM) coupled to denitrification have not been clearly elucidated. Three recent publications suggested it can be achieved by a denitrifying bacterium with or without the involvement of anaerobic methanotrophic archaea. A key factor limiting the progress in this research field is the shortage of enrichment cultures performing denitrifying anaerobic methane oxidation (DAMO). In this study, DAMO cultures were enriched from mixed inoculum including sediment from a freshwater lake, anaerobic digester sludge and return activated sludge from a sewage treatment plant. Two reactors, operated at 35°C and at 22°C, respectively, showed simultaneous methane oxidation and nitrate reduction after several months of operation. Analysis of 16S rRNA gene clone libraries from the 35°C enrichment showed the presence of an archaeon closely related to other DAMO archaea and a dominated bacterium belonging to the yet uncultivated NC10 phylum. This culture preferred nitrite to nitrate as the electron acceptor. The present study suggests that the archaea are rather methanotrophs than methanogens. The highest denitrification rate achieved was 2.35 mmol NO3 (-) -N gVSS(-1)  day(-1) . The culture enriched at 22°C contained the same NC10 bacterium observed in the culture enriched at 35°C but no archaea. PMID:23765890

  4. Anaerobic Toxicity of Cationic Silver Nanoparticles

    Science.gov (United States)

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged p...

  5. Anaerobic Digestion of Paper Mill Wastewater

    Directory of Open Access Journals (Sweden)

    Shreeshivadasan Chelliapan

    2012-01-01

    Full Text Available In general, paper mill wastewater contains complex organic substances which could not be treated completely using conventional treatment processes, e.g. aerobic processes. As a result, anaerobic technology is a promising alternative for paper mill wastewater treatment due to its ability to degrade hard organic compounds. In the present study, treatment of paper mill wastewater using a stage anaerobic reactor was investigated. The more specific objectives of this study were to confirm whether paper mill wastewater can be tolerated by methanogenic sludge and to assess the stability of reactor for measured parameters (e.g. COD removal, and methane composition. Results showed up to 98% COD removal efficiency in the anaerobic reactor when the reactor was operated at an OLR of 1.560 kg COD/m3.d. Anaerobic digestion can provide high treatment efficiency for recalcitrant substrates, which generates robust microorganism (acidogenesis and methanogenesis, for the degradation of recalcitrant compounds such as in the paper mill wastewater.

  6. Anaerobic Digestion: Mass Balances and Products

    DEFF Research Database (Denmark)

    Møller, Jacob; Christensen, Thomas Højlund; Jansen, Jes la Cour

    2011-01-01

    While the basic processes involved in anaerobic digestion of waste are described in Chapter 9.4 and the main digestion technologies are presented in Chapter 9.5, this chapter focuses on mass balances, gas production and energy aspects, environmental emissions and unit process inventories...

  7. Anaerobic Digestion in a Flooded Densified Leachbed

    Science.gov (United States)

    Chynoweth, David P.; Teixeira, Arthur A.; Owens, John M.; Haley, Patrick J.

    2009-01-01

    A document discusses the adaptation of a patented biomass-digesting process, denoted sequential batch anaerobic composting (SEBAC), to recycling of wastes aboard a spacecraft. In SEBAC, high-solids-content biomass wastes are converted into methane, carbon dioxide, and compost.

  8. Comparative activity of ciprofloxacin against anaerobic bacteria.

    OpenAIRE

    Sutter, V L; Kwok, Y Y; Bulkacz, J

    1985-01-01

    The in vitro activity of ciprofloxacin was assessed against 362 strains of anaerobic bacteria and compared with that of cefoxitin, clindamycin, metronidazole, and mezlocillin. Only 31% of the strains tested were susceptible to ciprofloxacin. The other agents were active against most of the strains tested.

  9. Pectinase Activity of Anaerobic and Facultatively Anaerobic Bacteria Associated with Soft Rot of Yam (Diascorea rotundata)

    OpenAIRE

    Obi, Samuel K. C.

    1981-01-01

    Anaerobic and facultatively anaerobic bacteria associated with soft rot of yam (Diascorea rotundata) were isolated by the looping-out method and found to consist of Clostridium (three isolates), Corynebacterium (three isolates), Vibrio (one isolate), and Bacillus lentus (one isolate). Enzyme assay for hydrolase, lyase, and pectinesterase activities by the cup-plate method showed that except for Vibrio sp., B. lentus, and two isolates of Corynebacterium no pectinase activity could be detected ...

  10. Isolation and characterization of Caldicellulosiruptor lactoaceticus sp. nov., an extremely thermophilic, cellulolytic, anaerobic bacterium

    DEFF Research Database (Denmark)

    Mladenovska, Zuzana; Mathrani, Indra M.; Ahring, Birgitte Kiær

    1995-01-01

    An anaerobic, extremely thermophilic, cellulolytic, non-spore-forming bacterium, strain 6A, was isolated from an alkaline hot spring in Hverageroi, Iceland. The bacterium was non-motile, rod-shaped (1.5-3.5 x 0.7 mu m) and occurred singly, in pairs or in chains and stained gram-negative. The growth...... temperature was between 50 and 78 degrees C with a temperature optimum near 68 degrees C. Growth occurred between pH 5.8 and 8.2 with an optimum mum near 7.0. The bacterium fermented microcrystalline cellulose (Avicel) and produced lactate, acetate and H-2 as the major fermentation products, and CO2...... and ethanol occurred as minor fermentation products. Only a restricted number of carbon sources (cellulose, xylan, starch, pectin, cellobiose, xylose, maltose and lactose) were used as substrates. During growth on Avicel, the bacterium produced free cellulases with carboxymethylcellulase and avicelase...

  11. Innovative microbial fuel cell for electricity production from anaerobic reactors

    DEFF Research Database (Denmark)

    Min, Booki; Angelidaki, Irini

    2008-01-01

    A submersible microbial fuel cell (SMFC) was developed by immersing an anode electrode and a cathode chamber in an anaerobic reactor. Domestic wastewater was used as the medium and the inoculum in the experiments. The SMFC could successfully generate a stable voltage of 0.428 ± 0.003 V with a fixed...... for electricity production from existing anaerobic reactors or other anaerobic environments such as sediments. The advantage of the SMFC is that no special anaerobic chamber (anode chamber) is needed, as existing anaerobic reactors can be used, where the cathode chamber and anode electrode are immersed....

  12. Hf-Nd isotopic and trace element constraints on the genesis of alkaline and calc-alkaline lamprophyres

    International Nuclear Information System (INIS)

    Major and trace element, Nd and for the first time Hf isotopic compositions of Central European Hercynian and Alpine alkaline (nephelinites) and calc-alkaline (minettes) lamprophyres are reported. The alkaline dikes have significantly higher initial εNd values (+3.9 to +5.2) than the calc-alkaline dikes (-1 to -7). Their initial εHf values range between +1.9 and +6.0. Both groups show the typical high level of incompatible-element enrichment. In addition the calc-alkaline lamprophyres are characterized by an overabundance of Cs relative to Rb, high Ba/La and Ba/Sr ratios as well as depletion in Nb, Ti and Ta. Covariations between initial εHf-εNd and trace elements suggest that crust-mantle mixing processes were involved in the formation of the calc-alkaline mafic magmas. These data give way to a general, refined model of lamprophyre genesis and provide information about enrichment processes in the subcontinental lithospheric mantle. It is suggested that alkaline and calc-alkaline lamprophyres originate from similar mantle segments. Alkaline lamprophyres can be generated by 10% partial melting of a metasomatically enriched garnet peridotite. Calc-alkaline lamprophyres, however, can be generated in subduction related environments by mixing of 5-15% sedimentary melts, strongly enriched in K, Rb, Zr, Hf, Y and REE, produced by partial melting of subducted oceanic sediments, with a metasomatically enriched mantle source similar to that suggested for the ultramafic alkaline dikes. (orig.)

  13. Post-treatment of anaerobically degraded azo dye Acid Red 18 using aerobic moving bed biofilm process: Enhanced removal of aromatic amines

    International Nuclear Information System (INIS)

    Highlights: → Biofilm process was applied as post-treatment of anaerobically degraded an azo dye. → More than 65% of the dye total metabolites was completely mineralized. → Based on HPLC analysis, more than 80% of 1-naphthylamine-4-sulfonate was removed. → Inhibition of biofilm growth was increased with increasing the initial dye concentration. → Considerable porous morphology was observed in the SEM photographs of the biofilm. - Abstract: The application of aerobic moving bed biofilm process as post-treatment of anaerobically degraded azo dye Acid Red 18 was investigated in this study. The main objective of this work was to enhance removal of anaerobically formed the dye aromatic metabolites. Three separate sequential treatment systems were operated with different initial dye concentrations of 100, 500 and 1000 mg/L. Each treatment system consisted of an anaerobic sequencing batch reactor (An-SBR) followed by an aerobic moving bed sequencing batch biofilm reactor (MB-SBBR). Up to 98% of the dye decolorization and more than 80% of the COD removal occurred anaerobically. The obtained results suggested no significant difference in COD removal as well as the dye decolorization efficiency using three An-SBRs receiving different initial dye concentrations. Monitoring the dye metabolites through HPLC suggested that more than 80% of anaerobically formed 1-naphthylamine-4-sulfonate was completely removed in the aerobic biofilm reactors. Based on COD analysis results, at least 65-72% of the dye total metabolites were mineralized during the applied treatment systems. According to the measured biofilm mass and also based on respiration-inhibition test results, increasing the initial dye concentration inhibited the growth and final mass of the attached-growth biofilm in MB-SBBRs.

  14. Enhancement of sludge anaerobic biodegradability by combined microwave-H2O2 pretreatment in acidic conditions.

    Science.gov (United States)

    Eswari, Parvathy; Kavitha, S; Kaliappan, S; Yeom, Ick-Tae; Banu, J Rajesh

    2016-07-01

    The aim of this study was to increase the sludge disintegration and reduce the cost of microwave (MW) pretreatment. Thermodynamic analysis of MW hydrolysis revealed the best fit with a first-order kinetic model at a specific energy of 18,600 kJ/kg total solids (TS). Combining H2O2 with MW resulted in a significant increment in solubilization from 30 to 50 % at 18,600 kJ/kg TS. The pH of H2O2-assisted MW-pretreated sludge (MW + H2O2) was in the alkaline range (pH 9-10), and it made the sludge unfavorable for subsequent anaerobic digestion and inhibits methane production. In order to nullify the alkaline effect caused by the MW + H2O2 combination, the addition of acid was considered for pH adjustment. H2O2-assisted MW-pretreated sludge in acidic conditions (MW + H2O2 + acid) showed a maximum methane production of 323 mL/g volatile solids (VS) than others during anaerobic biodegradability. A cost analysis of this study reveals that MW + H2O2 + acid was the most economical method with a net profit of 59.90 €/t of sludge. PMID:27026550

  15. Effect of ammoniacal nitrogen on one-stage and two-stage anaerobic digestion of food waste.

    Science.gov (United States)

    Ariunbaatar, Javkhlan; Scotto Di Perta, Ester; Panico, Antonio; Frunzo, Luigi; Esposito, Giovanni; Lens, Piet N L; Pirozzi, Francesco

    2015-04-01

    This research compares the operation of one-stage and two-stage anaerobic continuously stirred tank reactor (CSTR) systems fed semi-continuously with food waste. The main purpose was to investigate the effects of ammoniacal nitrogen on the anaerobic digestion process. The two-stage system gave more reliable operation compared to one-stage due to: (i) a better pH self-adjusting capacity; (ii) a higher resistance to organic loading shocks; and (iii) a higher conversion rate of organic substrate to biomethane. Also a small amount of biohydrogen was detected from the first stage of the two-stage reactor making this system attractive for biohythane production. As the digestate contains ammoniacal nitrogen, re-circulating it provided the necessary alkalinity in the systems, thus preventing an eventual failure by volatile fatty acids (VFA) accumulation. However, re-circulation also resulted in an ammonium accumulation, yielding a lower biomethane production. Based on the batch experimental results the 50% inhibitory concentration of total ammoniacal nitrogen on the methanogenic activities was calculated as 3.8 g/L, corresponding to 146 mg/L free ammonia for the inoculum used for this research. The two-stage system was affected by the inhibition more than the one-stage system, as it requires less alkalinity and the physically separated methanogens are more sensitive to inhibitory factors, such as ammonium and propionic acid. PMID:25613216

  16. ISOLATION OF ANAEROBES IN DEEP SEATED PRESSURE ULCERS USING A NOVEL INNOVATIVE TECHNIQUE OF ANAEROBE ISOLATION

    Directory of Open Access Journals (Sweden)

    Lalbiaktluangi

    2015-12-01

    Full Text Available BACKGROUND Isolation of an anaerobe is usually neglected in hospitals with limited resources due to the expensive and complicated technique of anaerobic isolation methods, which is difficult to arrange in such resource poor settings. Conventionally adopted anaerobic culture methods such as Anaerobic jar, Gas-Pak, Anoxomat or Automated glove-box systems are extremely costly and cumbersome for single unit testing, but not suitable for small scale laboratories. However, anaerobic bacteria are not to be overlooked as they have made a comeback in clinical settings and are even showing resistance to Metronidazole, once thought to be the gold standard bullet against anaerobes. Deep seated pressure ulcers are usually the site where anaerobe causes an infection in synergy with aerobes. AIMS AND OBJECTIVES Isolation of anaerobes in deep seated pressure ulcers using a novel innovative technique and to study their antibiogram profile. MATERIALS AND METHODS Swabs taken from depth of deep seated pressure ulcers were immediately inoculated in Brucella blood agar at bedside and placed in polycarbonate airtight jar for anaerobic incubation using a novel innovative Modified Candle Jar technique. In this technique five grams of grease-free grade zero steel wool were dipped in 50ml freshly prepared acidified copper sulphate solution until the copper colour appeared. Excess solution was drained and the steel wool was moulded into a loose pad to fit on an open Petri plate placed on top of the inoculated Brucella blood agar plates. A white-wax candle was placed at the centre of this plate. A small test tube containing mixture of 0.5g sodium-bicarbonate and 0.5g magnesium carbonate was kept ready to be placed inside the jar, just after placing the inoculated plate and incubated for 48 hours. RESULTS Peptostreptococcus anaerobius and Bacteroides fragilis were successfully isolated from deep seated pressure ulcers by this method. Antibiogram studies were done using the

  17. Estimating autotrophic respiration in streams using daily metabolism data

    Science.gov (United States)

    Knowing the fraction of gross primary production (GPP) that is immediately respired by autotrophs and their closely associated heterotrophs (ARf) is necessary to understand the trophic base and carbon spiraling in streams. We show a means to estimate ARf from daily metabolism da...

  18. Impact of some selected insecticides application on soil microbial respiration.

    Science.gov (United States)

    Latif, M A; Razzaque, M A; Rahman, M M

    2008-08-15

    The aim of present study was to investigate the impact of selected insecticides used for controlling brinjal shoot and fruit borer on soil microorganisms and to find out the insecticides or nontoxic to soil microorganism the impact of nine selected insecticides on soil microbial respiration was studied in the laboratory. After injection of different insecticides solutions, the soil was incubated in the laboratory at room temperature for 32 days. The amount of CO2 evolved due to soil microbial respiration was determined at 2, 4, 8, 16, 24 and 32 days of incubation. Flubendiamide, nimbicidine, lambda-cyhalothrin, abamectin and thiodicarb had stimulatory effect on microbial respiration during the initial period of incubation. Chlorpyriphos, cartap and carbosulfan had inhibitory effect on microbial respiration and cypermethrin had no remarkable effect during the early stage of incubation. The negative effect of chlorpyriphos, cartap and carbosulfan was temporary, which was disappeared after 4 days of insecticides application. No effect of the selected insecticides on soil microorganisms was observed after 24 or 32 days of incubation. PMID:19266909

  19. Photosynthesis and "Inverse Respiration" in Plants: An Inevitable Misconception?

    Science.gov (United States)

    Canal, Pedro

    1999-01-01

    Reflects on the origin of the misconception of inverse respiration in green plants. Proposes a series of conceptual schemes that could form the basis for teaching the subject of green plants in a way that prevents or substantially reduces the appearance of this misconception in primary- and secondary-school students. Contains 33 references.…

  20. Understanding Cellular Respiration in Terms of Matter & Energy within Ecosystems

    Science.gov (United States)

    White, Joshua S.; Maskiewicz, April C.

    2014-01-01

    Using a design-based research approach, we developed a data-rich problem (DRP) set to improve student understanding of cellular respiration at the ecosystem level. The problem tasks engage students in data analysis to develop biological explanations. Several of the tasks and their implementation are described. Quantitative results suggest that…

  1. Precision of personal sampling of respirable dust in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Breslin, J.A.; Page, S.J.; Jankowski, R.A.

    1983-02-01

    The Bureau of Mines measured respirable dust in coal mines by means of multiple dust samplers worn by persons moving about the mines. The measurements were made primarily to evaluate the effectiveness of certain dust-control techniques; however, for this report, the data have been analyzed to determine the precision of the personal dust-sampling measurements.

  2. A flow cytometric approach to assess phytoplankton respiration.

    Science.gov (United States)

    Grégori, Gérald; Denis, Michel; Lefèvre, Dominique; Beker, Beatriz

    2002-01-01

    Microbial respiration in the ocean is considered as the major process representative of the organic matter biological oxidation. The corresponding metabolic CO2 production was estimated to be about 22 Pg C y(-1). However, the in situ respiration rate is generally too low (by several orders of magnitude) to be accessible to the available direct measurement methods. Some fluorescent probes, such as DiOC6(3) (Molecular Probes, USA) have been shown to be very sensitive to changes in the proton electrochemical potential difference (DeltamuH+), characterising mitochondrial and plasmic membranes bearing the cell respiratory system in eukaryotic and prokaryotic cells respectively. In mitochondria, DeltamuH+ is linked to the flux of oxygen uptake by a linear relationship. To our knowledge, no such relationship has been established in the case of whole marine cells. In the present work, we addressed the dark respiration rate of the Chlorophyceae Dunaliella tertiolecta (Butcher) in axenic cultures, both directly by using a highly sensitive oxygraph (Oroboros) and by staining cells with DiOC6(3). We found and standardized a linear relationship between oxygen uptake by D. tertiolecta and its green fluorescence induced by DiOC6(3), enabling the determination by flow cytometry of the respiration rate of D. tertiolecta. PMID:12815298

  3. Size Resolved Penetration of Filters from Respirator Masks

    Czech Academy of Sciences Publication Activity Database

    Serfozo, N.; Ondráček, Jakub; Ždímal, Vladimír; Lazaridis, M.

    -: Italian Aerosol Society, 2015. ISBN N. [European Aerosol Conference EAC 2015. Milano (IT), 06.09.2015-11.09.2015] EU Projects: European Commission(XE) 315760 Institutional support: RVO:67985858 Keywords : size resolved penetration * filter * respirator mask Subject RIV: CF - Physical ; Theoretical Chemistry

  4. Connecting Photosynthesis and Cellular Respiration: Preservice Teachers' Conceptions

    Science.gov (United States)

    Brown, Mary H.; Schwartz, Renee S.

    2009-01-01

    The biological processes of photosynthesis and plant cellular respiration include multiple biochemical steps, occur simultaneously within plant cells, and share common molecular components. Yet, learners often compartmentalize functions and specialization of cell organelles relevant to these two processes, without considering the interconnections…

  5. Occupational Exposure to Respirable Crystalline Silica. Final rule.

    Science.gov (United States)

    2016-03-25

    The Occupational Safety and Health Administration (OSHA) is amending its existing standards for occupational exposure to respirable crystalline silica. OSHA has determined that employees exposed to respirable crystalline silica at the previous permissible exposure limits face a significant risk of material impairment to their health. The evidence in the record for this rulemaking indicates that workers exposed to respirable crystalline silica are at increased risk of developing silicosis and other non-malignant respiratory diseases, lung cancer, and kidney disease. This final rule establishes a new permissible exposure limit of 50 micrograms of respirable crystalline silica per cubic meter of air (50 [mu]g/m\\3\\) as an 8-hour time-weighted average in all industries covered by the rule. It also includes other provisions to protect employees, such as requirements for exposure assessment, methods for controlling exposure, respiratory protection, medical surveillance, hazard communication, and recordkeeping. OSHA is issuing two separate standards--one for general industry and maritime, and the other for construction--in order to tailor requirements to the circumstances found in these sectors. PMID:27017634

  6. Divergent apparent temperature sensitivity of terrestrial ecosystem respiration

    Czech Academy of Sciences Publication Activity Database

    Song, B.; Niu, S.; Luo, R.; Chen, J.; Yu, G.; Olejnik, Janusz; Wohlfahrt, G.; Kiely, G.; Noormels, A.; Montagnani, L.; Cescatti, A.; Magliulo, V.; Law, B. E.; Lund, M.; Varlagin, A.; Raschi, A.; Peichl, M.; Nilsson, M.; Merbold, L.

    2014-01-01

    Roč. 7, č. 5 (2014), s. 419-428. ISSN 1752-9921 Institutional support: RVO:67179843 Keywords : activation energy * ecosystem respiration * index of water availability * gross primary productivity Subject RIV: EH - Ecology, Behaviour Impact factor: 2.646, year: 2014

  7. Links between deep-sea respiration and community dynamics.

    Science.gov (United States)

    Ruhl, Henry A; Bett, Brian J; Hughes, Sarah J M; Alt, Claudia H S; Ross, Elizabeth J; Lampitt, Richard S; Pebody, Corinne A; Smith, Kenneth L; Billett, David S M

    2014-06-01

    It has been challenging to establish the mechanisms that link ecosystem functioning to environmental and resource variation, as well as community structure, composition, and compensatory dynamics. A compelling hypothesis of compensatory dynamics, known as "zero-sum" dynamics, is framed in terms of energy resource and demand units, where there is an inverse link between the number of individuals in a community and the mean individual metabolic rate. However, body size energy distributions that are nonuniform suggest a niche advantage at a particular size class, which suggests a limit to which metabolism can explain community structuring. Since 1989, the composition and structure of abyssal seafloor communities in the northeast Pacific and northeast Atlantic have varied interannually with links to climate and resource variation. Here, for the first time, class and mass-specific individual respiration rates were examined along with resource supply and time series of density and biomass data of the dominant abyssal megafauna, echinoderms. Both sites had inverse relationships between density and mean individual metabolic rate. We found fourfold variation in echinoderm respiration over interannual timescales at both sites, which were linked to shifts in species composition and structure. In the northeastern Pacific, the respiration of mobile surface deposit feeding echinoderms was positively linked to climate-driven particulate organic carbon fluxes with a temporal lag of about one year, respiring - 1-6% of the annual particulate organic carbon flux. PMID:25039229

  8. Novel method for detection of Sleep Apnoea using respiration signals

    DEFF Research Database (Denmark)

    Nielsen, Kristine Carmes; Kempfner, Lykke; Sørensen, Helge Bjarup Dissing; Jennum, Poul

    2014-01-01

    desaturations > 3%, extracted from the thorax and abdomen respiration effort belts, and the oxyhemoglobin saturation (SaO2), fed to an Elastic Net classifier and validated according to American Academy of Sleep Medicine (AASM) using the patients' AHI value. The method was applied to 109 patient recordings and...

  9. Teaching Aerobic Cell Respiration Using the 5Es

    Science.gov (United States)

    Patro, Edward T.

    2008-01-01

    The 5E teaching model provides a five step method for teaching science. While the sequence of the model is strictly linear, it does provide opportunities for the teacher to "revisit" prior learning before moving on. The 5E method is described as it relates to the teaching of aerobic cell respiration.

  10. 42 CFR 84.190 - Chemical cartridge respirators: description.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Chemical cartridge respirators: description. 84.190 Section 84.190 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL... vapor) or those which generate high heats of reaction with sorbent material in the cartridge. 2...

  11. Respiratory protection: Associated factors and effectiveness of respirator use among underground coal miners

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.F.; Wang, M.L.; Seixas, N.; Ducatman, A.; Petsonk, E.L. [NIOSH, Morgantown, WV (United States)

    2002-07-01

    The authors investigated factors associated with the use of respiratory protection and explored the effectiveness of respirators among coal miners. Methods Between 1987 and 1992, respiratory symptoms, smoking, lung function, and dust exposures were assessed longitudinally among 185 underground bituminous coal miners. Self-reported use of respiratory protection was expressed as mean percent time wearing a respirator. Miners' respirator use increased with mean dust concentration, but decreased with tobacco consumption. Increasing age was associated with greater respirator use. Miners who had respiratory symptoms at the initial survey subsequently reported greater use of respirators. A significant protective association was found between the miners' respirator use and FEV1 levels at both the initial and follow-up surveys. These results provide additional evidence that respirator use is protective of lung health. When respiratory protection programs are developed, factors that may affect respirator use behavior, such as age, smoking, and respiratory symptoms, should be considered.

  12. Anaerobic acidification of sugar-beet processing wastes: Effect of operational parameters

    International Nuclear Information System (INIS)

    The objective of this study was to maximize the hydrolysis and acidification of sugar-beet processing wastewater and beet pulp for volatile fatty acid (VFA) production through acidogenic anaerobic metabolism. Experiments were conducted to determine the optimum operational conditions (HRT, waste-mixing ratio and pH) for effective acidification in daily-fed, continuously mixed anaerobic reactors. For this purpose, reactors were operated at 35 ± 1 C with different combinations of HRT (2-4 days), wastewater-pulp mixing ratios (1:0-1:1, in terms of COD) and pH ranges (5.7-7.5). Increased OLRs, resulting from pulp addition, increased the amount of acidification products (VFAs) which led to relatively low operational pH values (5.7-6.8). In this pH range, methanogenic activity was successfully inhibited and the lowest methane percentages (5.6-16.3%) were observed in the produced biogas. The optimum operational conditions were determined to be 2-day HRT and 1:1 waste mixing ratio (in terms of COD) without external alkalinity addition. These operational conditions led to the highest tVFA concentration (3635 ± 209 mg/L as H-Ac) with the acidification degree of 46.9 ± 2.1%. (author)

  13. Enhancement of Anaerobic Digestion to Treat Saline Sludge from Recirculating Aquaculture Systems

    Directory of Open Access Journals (Sweden)

    Guo-zhi Luo

    2015-01-01

    Full Text Available The effectiveness of carbohydrate addition and the use of ultrasonication as a pretreatment for the mesophilic anaerobic digestion of saline aquacultural sludge was assessed. Analyses were conducted using an anaerobic sequencing batch reactor (ASBR, which included stopped gas production attributed to the saline inhibition. After increasing the C : N ratio, gas production was observed, and the total chemical oxygen demand (TCOD removal efficiency increased from 75% to 80%. The TCOD removal efficiency of the sonication period was approximately 85%, compared to 75% for the untreated waste. Ultrasonication of aquaculture sludge was also found to enhance the gas production rate and the TCOD removal efficiency. The average volatile fatty acid (VFA to alkalinity ratios ranged from 0.1 to 0.05, confirming the stability of the digesters. Furthermore, soluble chemical oxygen demand (SCOD, VFA, and PO43- concentrations increased in the effluents. There was a 114% greater gas generation during the ultrasonication period, with an average production of 0.08 g COD/L·day−1.

  14. Anaerobic digestion of food waste stabilized by lime mud from papermaking process.

    Science.gov (United States)

    Zhang, Jishi; Wang, Qinqing; Zheng, Pengwei; Wang, Yusong

    2014-10-01

    The effects of lime mud from papermaking process (LMP) addition as buffer agent and inorganic nutrient on the anaerobic digestion stability of food waste (FW) were investigated under mesophilic conditions with the aim of avoiding volatile fatty acids accumulation, and inorganic elements deficiency. When LMP concentration ranged from 6.0 to 10g/L, the FW anaerobic digestion could maintain efficient and stable state. These advantages are attributed to the existence of Ca, Na, Mg, K, Fe, and alkaline substances that favor the methanogenic process. The highest CH4 yield of 272.8mL/g-VS was obtained at LMP and VS concentrations of 10.0 and 19.8g/L, respectively, with the corresponding lag-phase time of 3.84d and final pH of 8.4. The methanogens from residue digestates mainly consisted of Methanobrevibacter, coccus-type and sarcina-type methanogens with LMP addition compared to Methanobacteria in control. However, higher concentration of LMP inhibited methanogenic activities and methane production. PMID:25151070

  15. Comparative evaluation of anaerobic digestion for sewage sludge and various organic wastes with simple modeling.

    Science.gov (United States)

    Hidaka, Taira; Wang, Feng; Tsumori, Jun

    2015-09-01

    Anaerobic co-digestion of sewage sludge and other organic wastes, such as kitchen garbage, food waste, and agricultural waste, at a wastewater treatment plant (WWTP) is a promising method for both energy and material recovery. Substrate characteristics and the anaerobic digestion performance of sewage sludge and various organic wastes were compared using experiments and modeling. Co-digestion improved the value of digested sewage sludge as a fertilizer. The relationship between total and soluble elemental concentrations was correlated with the periodic table: most Na and K (alkali metals) were soluble, and around 20-40% of Mg and around 10-20% of Ca (alkaline earth metals) were soluble. The ratio of biodegradable chemical oxygen demand of organic wastes was 65-90%. The methane conversion ratio and methane production rate under mesophilic conditions were evaluated using a simplified mathematical model. There was reasonably close agreement between the model simulations and the experimental results in terms of methane production and nitrogen concentration. These results provide valuable information and indicate that the model can be used as a pre-evaluation tool to facilitate the introduction of co-digestion at WWTPs. PMID:26031329

  16. Thermophilic degradation of phenolic compounds in lab scale hybrid up flow anaerobic sludge blanket reactors

    International Nuclear Information System (INIS)

    This Study describes the feasibility of anaerobic degradation of United States Environmental Protection Agency (USEPA) listed 4-chloro-2-nitrophenol (4C-2-NP), 2-chloro-4-nitrophenol (2C-4-NP), 2-chloro-5-methylphenol (2C-5-MP) from a simulated wastewater using four identical 7L bench scale hybrid up flow anaerobic sludge blankets (HUASBs) at five different hydraulic retention times (HRTs) under thermophilic condition (55 ± 3 deg. C). The substrate to co-substrate ratios were maintained between 1:33.3 and 1:166.6. Continuous monitoring of parameters like pH, volatile fatty acids (VFAs) accumulation, oxidation reduction potential, chemical oxygen demand (COD), alkalinity, gas productions, methane percentages were carried out along with compound reduction to asses the efficiency of biodegradation. The compound reduction was estimated by using spectrophotometric methods and further validated with high-performance liquid chromatography (HPLC). Optimum HRT values were observed at 24 h. Optimum ratio of substrate (phenolic compounds) to co-substrate (glucose) was 1:100. Scanning electron micrographs show that the granules were composed of thermophilic Methanobrevibacter and thermophilic Methanothrix like bacteria.

  17. Anaerobic acidification of sugar-beet processing wastes: Effect of operational parameters

    International Nuclear Information System (INIS)

    The objective of this study was to maximize the hydrolysis and acidification of sugar-beet processing wastewater and beet pulp for volatile fatty acid (VFA) production through acidogenic anaerobic metabolism. Experiments were conducted to determine the optimum operational conditions (HRT, waste-mixing ratio and pH) for effective acidification in daily-fed, continuously mixed anaerobic reactors. For this purpose, reactors were operated at 35 ± 1 oC with different combinations of HRT (2-4 days), wastewater-pulp mixing ratios (1:0-1:1, in terms of COD) and pH ranges (5.7-7.5). Increased OLRs, resulting from pulp addition, increased the amount of acidification products (VFAs) which led to relatively low operational pH values (5.7-6.8). In this pH range, methanogenic activity was successfully inhibited and the lowest methane percentages (5.6-16.3%) were observed in the produced biogas. The optimum operational conditions were determined to be 2-day HRT and 1:1 waste mixing ratio (in terms of COD) without external alkalinity addition. These operational conditions led to the highest tVFA concentration (3635 ± 209 mg/L as H-Ac) with the acidification degree of 46.9 ± 2.1%.

  18. Anaerobic acidification of sugar-beet processing wastes: Effect of operational parameters

    Energy Technology Data Exchange (ETDEWEB)

    Alkaya, Emrah; Demirer, Goeksel N. [Department of Environmental Engineering, Middle East Technical University, Inonu Bulvari, 06531 Ankara (Turkey)

    2011-01-15

    The objective of this study was to maximize the hydrolysis and acidification of sugar-beet processing wastewater and beet pulp for volatile fatty acid (VFA) production through acidogenic anaerobic metabolism. Experiments were conducted to determine the optimum operational conditions (HRT, waste-mixing ratio and pH) for effective acidification in daily-fed, continuously mixed anaerobic reactors. For this purpose, reactors were operated at 35 {+-} 1 C with different combinations of HRT (2-4 days), wastewater-pulp mixing ratios (1:0-1:1, in terms of COD) and pH ranges (5.7-7.5). Increased OLRs, resulting from pulp addition, increased the amount of acidification products (VFAs) which led to relatively low operational pH values (5.7-6.8). In this pH range, methanogenic activity was successfully inhibited and the lowest methane percentages (5.6-16.3%) were observed in the produced biogas. The optimum operational conditions were determined to be 2-day HRT and 1:1 waste mixing ratio (in terms of COD) without external alkalinity addition. These operational conditions led to the highest tVFA concentration (3635 {+-} 209 mg/L as H-Ac) with the acidification degree of 46.9 {+-} 2.1%. (author)

  19. Anaerobic digestion of raw and thermally hydrolyzed wastewater solids under various operational conditions.

    Science.gov (United States)

    Wilson, Christopher A; Tanneru, Charan T; Banjade, Sarita; Murthy, Sudhir N; Novak, John T

    2011-09-01

    In this study, high-solids anaerobic digestion of thermally pretreated wastewater solids (THD) was compared with conventional mesophilic anaerobic digestion (MAD). Operational conditions, such as pretreatment temperature (150 to 170 degrees C), solids retention time (15 to 20 days), and digestion temperature (37 to 42 degrees C), were varied for the seven THD systems operated. Volatile solids reduction (VSR) by THD ranged from 56 to 62%, compared with approximately 50% for MAD. Higher VSR contributed to 24 to 59% increased biogas production (m3/kg VSR-d) from THD relative to MAD. The high-solids conditions of the THD feed resulted in high total ammonia-nitrogen (proportional to solids loading) and total alkalinity concentrations in excess of 14 g/L as calcium carbonate (CaCO3). Increased pH in THD reactors caused 5 to 8 times more un-ionized ammonia to be present than in MAD, and this likely led to inhibition of aceticlastic methanogens, resulting in accumulation of residual volatile fatty acids between 2 and 6 g/L as acetic acid. The THD produced biosolids cake that possessed low organic sulfur-based biosolids odor and dewatered to between 33 and 39% total solids. Dual conditioning with cationic polymer and ferric chloride was shown to be an effective strategy for mitigating dissolved organic nitrogen and UV-quenching compounds in the return stream following centrifugal dewatering of THD biosolids. PMID:22073729

  20. Enhancement of Anaerobic Digestion to Treat Saline Sludge from Recirculating Aquaculture Systems

    Science.gov (United States)

    Luo, Guo-zhi; Ma, Niannian; Li, Ping; Tan, Hong-xin; Liu, Wenchang

    2015-01-01

    The effectiveness of carbohydrate addition and the use of ultrasonication as a pretreatment for the mesophilic anaerobic digestion of saline aquacultural sludge was assessed. Analyses were conducted using an anaerobic sequencing batch reactor (ASBR), which included stopped gas production attributed to the saline inhibition. After increasing the C : N ratio, gas production was observed, and the total chemical oxygen demand (TCOD) removal efficiency increased from 75% to 80%. The TCOD removal efficiency of the sonication period was approximately 85%, compared to 75% for the untreated waste. Ultrasonication of aquaculture sludge was also found to enhance the gas production rate and the TCOD removal efficiency. The average volatile fatty acid (VFA) to alkalinity ratios ranged from 0.1 to 0.05, confirming the stability of the digesters. Furthermore, soluble chemical oxygen demand (SCOD), VFA, and PO43− concentrations increased in the effluents. There was a 114% greater gas generation during the ultrasonication period, with an average production of 0.08 g COD/L·day−1. PMID:26301258