WorldWideScience

Sample records for alkali sulfate aerosol

  1. Formation of the natural sulfate aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Kerminen, V.M.; Hillamo, R.; Maekinen, M.; Virkkula, A.; Maekelae, T.; Pakkanen, T. [Helsinki Univ. (Finland). Dept. of Physics

    1996-12-31

    Anthropogenic sulfate aerosol, together with particles from biomass burning, may significantly reduce the climatic warming due to man-made greenhouse gases. The radiative forcing of aerosol particles is based on their ability to scatter and absorb solar radiation (direct effect), and on their influences on cloud albedos and lifetimes (indirect effect). The direct aerosol effect depends strongly on the size, number and chemical composition of particles, being greatest for particles of 0.1-1 {mu}m in diameter. The indirect aerosol effect is dictated by the number of particles being able to act as cloud condensation nuclei (CCN). For sulfate particles, the minimum CCN size in tropospheric clouds is of the order of 0.05-0.2 {mu}m. To improve aerosol parameterizations in future climate models, it is required that (1) both primary and secondary sources of various particle types will be characterized at a greater accuracy, and (2) the influences of various atmospheric processes on the spatial and temporal distribution of these particles and their physico-chemical properties are known much better than at the present. In estimating the climatic forcing due to the sulfate particles, one of the major problems is to distinguish between sulfur from anthropogenic sources and that of natural origin. Global emissions of biogenic and anthropogenic sulfate pre-cursors are comparable in magnitude, but over regional scales either of these two source types may dominate. The current presentation is devoted to discussing the natural sulfate aerosol, including the formation of sulfur-derived particles in the marine environment, and the use of particulate methanesulfonic acid (MSA) as a tracer for the natural sulfate

  2. Transient Sulfate Aerosols as a Signature of Exoplanet Volcanism

    OpenAIRE

    Misra, Amit; Krissansen-Totton, Joshua; Koehler, Matthew C.; Sholes, Steven

    2015-01-01

    Geological activity is thought to be important for the origin of life and for maintaining planetary habitability. We show that transient sulfate aerosols could be a signature of exoplanet volcanism, and therefore a geologically active world. A detection of transient aerosols, if linked to volcanism, could thus aid in habitability evaluations of the exoplanet. On Earth, subduction-induced explosive eruptions inject SO2 directly into the stratosphere, leading to the formation of sulfate aerosol...

  3. Why Is the Climate Forcing of Sulfate Aerosols So Uncertain?

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Sulfate aerosol particles have strong scattering effect on the solar radiation transfer which results in increasing the planet albedo and, hence, tend to cool the earth-atmosphere system. Also, aerosols can act as the cloud condensation nuclei (CCN) which tend to increase the albedo of clouds and cool the global warming. The ARPEGE-Climat version 3 AGCM with FMR radiation scheme is used to estimate the direct and indirect radiative forcing of sulfate aerosols. For minimizing the uncertainties in assessing this kind of cooling effect, all kinds of factors are analyzed which have been mixed in the assessment process and may lead to the different results of the radiative forcing of aerosols. It is noticed that one of the uncertainties to assess the climate forcing of aerosols by GCM results from the different definition of radiative forcing that was used. In order to clarify this vague idea, the off-line case for considering no feedbacks and on-line case for including all the feedbacks have been used for assessment. The direct forcing of sulfate aerosols in off-line case is -0.57 W/m2 and -0.38 W/m2 for the clear sky and all sky respectively. The value of on-line case appears to be a little larger than that in off-line case chiefly due to the feedback of clouds. The indirect forcing of sulfate aerosols in off-line case is -1.4 W / m2 and -1.0 W / m2 in on-line case. The radiative forcing of sulfate aerosols has obvious regional characteristics. There is a larger negative radiative forcing over North America, Europe and East Asia. If the direct and indirect forcing are added together, it is enough to offset the positive radiative forcing induced by the greenhouse gases in these regions.

  4. O-MIF signature in sulfate aerosols from Mexico City

    Science.gov (United States)

    Erwann, Legendre; Erwan, Martin; Slimane, Bekki; Armando, Retama; Pierre, Cartigny; Becky, Alexander; Aurora, Armienta Maria; Claus, Siebe

    2016-04-01

    Since the discovery of mass independent fractionation of sulfur and oxygen isotopes (S- and O-MIF) on Earth, the study of sulfate isotopic composition opened a new and wide field of investigation on the evolution of the atmospheric composition and its consequences for the climate. Sulfate aerosols that have a negative forcing on the climate can therefore be studied via their isotopic composition and leads to better constraints on their formation, fate and sinks, which is essential for our understanding of the sulfur cycle on Earth. In this study we focus on the interaction between anthropogenic and volcanic emissions that is necessary to figure out the climatic impact of volcanoes in large urban area. For the first time the O- composition of sulfate aerosols was monitored over the past 25 years in one of the world's largest megacities: Mexico City (MC). Sulfate aerosols from the megalopolis were sampled from 1989 to 2013 in different stations by high volume pumps and collected on glass filters. Additionally, fresh volcanic ash samples were collected during recent eruptions (from 1997 to 2013) of the Popocatepetl, which is only 70km from MC. After extraction and purification of sulfate from filters and volcanic ash, the isotopic composition is measured. The sulfate aerosols from MC show O-MIF composition with Δ17O of about 0.7‰ during the wet season and around 1.2‰ during the dry season and δ18O from -0.4‰ to 17.5‰. However, the volcanic sulfate aerosols from the Popocatepetl do not show O-MIF and δ18O vary from 7.0‰ to 12.2‰. The dataset allows us to discuss the seasonal variations in the SO2 oxidation pathways that lead to sulfate aerosol formation in the troposphere above MC during the last 25 years. Furthermore, since 1997 we are able to trace and quantify the influence of volcanic sulfate aerosols on the megalopolis, which is important for the sulfur budget in the region.

  5. Structural evolution of an alkali sulfate activated slag cement

    Science.gov (United States)

    Mobasher, Neda; Bernal, Susan A.; Provis, John L.

    2016-01-01

    In this study, the effect of sodium sulfate content and curing duration (from fresh paste up to 18 months) on the binder structure of sodium sulfate activated slag cements was evaluated. Isothermal calorimetry results showed an induction period spanning the first three days after mixing, followed by an acceleration-deceleration peak corresponding to the formation of bulk reaction products. Ettringite, a calcium aluminium silicate hydrate (C-A-S-H) phase, and a hydrotalcite-like Mg-Al layered double hydroxide have been identified as the main reaction products, independent of the Na2SO4 dose. No changes in the phase assemblage were detected in the samples with curing from 1 month up to 18 months, indicating a stable binder structure. The most significant changes upon curing at advanced ages observed were growth of the AFt phase and an increase in silicate chain length in the C-A-S-H, resulting in higher strength.

  6. Laboratory studies of thin films representative of atmospheric sulfate aerosol

    Science.gov (United States)

    Fortin, Tara Jean

    Sulfate aerosols are present globally in both the upper troposphere and lower stratosphere. These aerosols are of great interest because they have a profound influence on Earth's radiation balance, heterogeneous chemistry, and cloud formation mechanisms throughout the atmosphere. The magnitude of these effects is ultimately determined by the size, phase, and chemical composition of the aerosols themselves. This thesis explores some of the questions that remain concerning the phase of these aerosols under atmospheric conditions and the effects of their chemical composition on heterogeneous chemistry and cloud formation mechanisms. In the upper troposphere, cirrus clouds are thought to form via the homogeneous nucleation of ice out of dilute sulfate aerosols such as ammonium sulfate ((NH4)2SO4). To investigate this, the low-temperature phase behavior of ammonium sulfate films has been studied using Fourier transform infrared (FTIR) spectroscopy. Experiments performed as a function of increasing relative humidity demonstrate that a phase transition from crystalline (NH 4)2SO4 to a metastable aqueous solution can occur at temperatures below the eutectic at 254 K. However, on occasion, direct deposition of ice from the vapor phase was observed, possibly indicating selective heterogeneous nucleation. In addition to serving as nuclei for cirrus clouds, sulfate aerosols can participate in heterogeneous reactions. The interaction of HNO3 with ammonium sulfate has been investigated as a possible loss mechanism for gas-phase HNO3 using a Knudsen cell reactor coupled with transmission FTIR spectroscopy. The results show that HNO3 reacts with solid ammonium sulfate to produce ammonium nitrate and letovicite at 203 K. Furthermore, this reaction is enhanced as a function of relative humidity from 0 to 41%. In the lower stratosphere, polar stratospheric clouds (PSCs) are important for springtime ozone depletion. The vapor deposition of ice on sulfuric acid tetrahydrate (SAT) has

  7. Transient Sulfate Aerosols as a Signature of Exoplanet Volcanism

    CERN Document Server

    Misra, Amit; Koehler, Matthew C; Sholes, Steven

    2015-01-01

    Geological activity is thought to be important for the origin of life and for maintaining planetary habitability. We show that transient sulfate aerosols could be a signature of exoplanet volcanism, and therefore a geologically active world. A detection of transient aerosols, if linked to volcanism, could thus aid in habitability evaluations of the exoplanet. On Earth, subduction-induced explosive eruptions inject SO2 directly into the stratosphere, leading to the formation of sulfate aerosols with lifetimes of months to years. We demonstrate that the rapid increase and gradual decrease in sulfate aerosol loading associated with these eruptions may be detectable in transit transmission spectra with future large-aperture telescopes, such as the James Webb Space Telescope (JWST) and European Extremely-Large Telescope (E-ELT) for a planetary system at a distance of 10 pc, assuming an Earth-like atmosphere, bulk composition, and size. Specifically, we find that a S/N of 12.1 and 7.1 could be achieved with E-ELT (...

  8. African and marine contributions to sulfate aerosols of southern hemisphere

    International Nuclear Information System (INIS)

    From 1971 to 1973, during Gallieni and Marion Dufresne cruises relieving the scientific teams in the French Austral and Antarctic stations, systematic measurements of radon 222, sulfate aerosols and sulfur dioxide (SO2) atmospheric concentrations were made, carefully avoiding contaminations by ships exhausts. At sea level, South of 35 deg S, concentrations of sulfates are 1μg m-3. Bearing in mind the long distances from continental coasts and our data showing aerosols very short life-time in these areas, this value is only explainable if the marine source for aerosols is taken into account. Northward, between 5 deg and 25 deg S, the easterly circulation pattern requires to distinguish between the eastern and western African areas. Over the Indian Ocean, little higher sulfates concentration (1.3μg m-3) also characterizes an aerosol marine source, when we refer to the very low radon concentrations we observe. Over the Atlantic, radon concentrations ten times higher are related to sulphate concentrations greater than 2μg m-3, which are, for one half, from continental origin. The SO2 measurements support our interpretation of the data

  9. Transient Sulfate Aerosols as a Signature of Exoplanet Volcanism.

    Science.gov (United States)

    Misra, Amit; Krissansen-Totton, Joshua; Koehler, Matthew C; Sholes, Steven

    2015-06-01

    Geological activity is thought to be important for the origin of life and for maintaining planetary habitability. We show that transient sulfate aerosols could be a signature of exoplanet volcanism and therefore of a geologically active world. A detection of transient aerosols, if linked to volcanism, could thus aid in habitability evaluations of the exoplanet. On Earth, subduction-induced explosive eruptions inject SO2 directly into the stratosphere, leading to the formation of sulfate aerosols with lifetimes of months to years. We demonstrate that the rapid increase and gradual decrease in sulfate aerosol loading associated with these eruptions may be detectable in transit transmission spectra with future large-aperture telescopes, such as the James Webb Space Telescope (JWST) and European Extremely Large Telescope (E-ELT), for a planetary system at a distance of 10 pc, assuming an Earth-like atmosphere, bulk composition, and size. Specifically, we find that a signal-to-noise ratio of 12.1 and 7.1 could be achieved with E-ELT (assuming photon-limited noise) for an Earth analogue orbiting a Sun-like star and M5V star, respectively, even without multiple transits binned together. We propose that the detection of this transient signal would strongly suggest an exoplanet volcanic eruption, if potential false positives such as dust storms or bolide impacts can be ruled out. Furthermore, because scenarios exist in which O2 can form abiotically in the absence of volcanic activity, a detection of transient aerosols that can be linked to volcanism, along with a detection of O2, would be a more robust biosignature than O2 alone. PMID:26053611

  10. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols

    KAUST Repository

    Kravitz, Ben

    2009-07-28

    We used a general circulation model of Earth\\'s climate to conduct geoengineering experiments involving stratospheric injection of sulfur dioxide and analyzed the resulting deposition of sulfate. When sulfur dioxide is injected into the tropical or Arctic stratosphere, the main additional surface deposition of sulfate occurs in midlatitude bands, because of strong cross-tropopause flux in the jet stream regions. We used critical load studies to determine the effects of this increase in sulfate deposition on terrestrial ecosystems by assuming the upper limit of hydration of all sulfate aerosols into sulfuric acid. For annual injection of 5 Tg of SO2 into the tropical stratosphere or 3 Tg of SO2 into the Arctic stratosphere, neither the maximum point value of sulfate deposition of approximately 1.5 mEq m−2 a−1 nor the largest additional deposition that would result from geoengineering of approximately 0.05 mEq m−2 a−1 is enough to negatively impact most ecosystems.

  11. Testing the linearity of the response to combined greenhouse gas and sulfate aerosol forcing

    OpenAIRE

    Gillett, N.P.; Wehner, M.F.; S. F. B. Tett; Weaver, A. J.

    2004-01-01

    Detection and attribution studies of the temperature response to anthropogenic greenhouse gases and tropospheric sulfate aerosol have relied on the assumption that the responses to each of these forcings add linearly. Using surface temperature from three ensembles of integrations of the second Hadley Centre coupled model (HadCM2) forced with observed changes in greenhouse gases alone, the direct effect of sulfate aerosol alone, and combined changes in greenhouse gases and sulfate aerosol, we ...

  12. Uptake of Ambient Organic Gases to Acidic Sulfate Aerosols

    Science.gov (United States)

    Liggio, J.; Li, S.

    2009-05-01

    The formation of secondary organic aerosols (SOA) in the atmosphere has been an area of significant interest due to its climatic relevance, its effects on air quality and human health. Due largely to the underestimation of SOA by regional and global models, there has been an increasing number of studies focusing on alternate pathways leading to SOA. In this regard, recent work has shown that heterogeneous and liquid phase reactions, often leading to oligomeric material, may be a route to SOA via products of biogenic and anthropogenic origin. Although oligomer formation in chamber studies has been frequently observed, the applicability of these experiments to ambient conditions, and thus the overall importance of oligomerization reactions remain unclear. In the present study, ambient air is drawn into a Teflon smog chamber and exposed to acidic sulfate aerosols which have been formed in situ via the reaction of SO3 with water vapor. The aerosol composition is measured with a High Resolution Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS), and particle size distributions are monitored with a scanning mobility particle sizer (SMPS). The use of ambient air and relatively low inorganic particle loading potentially provides clearer insight into the importance of heterogeneous reactions. Results of experiments, with a range of sulfate loadings show that there are several competing processes occurring on different timescales. A significant uptake of ambient organic gases to the particles is observed immediately followed by a slow shift towards higher m/z over a period of several hours indicating that higher molecular weight products (possibly oligomers) are being formed through a reactive process. The results suggest that heterogeneous reactions can occur with ambient organic gases, even in the presence of ammonia, which may have significant implications to the ambient atmosphere where particles may be neutralized after their formation.

  13. Biogenic, anthropogenic and sea salt sulfate size-segregated aerosols in the Arctic summer

    Science.gov (United States)

    Ghahremaninezhad, Roghayeh; Norman, Ann-Lise; Abbatt, Jonathan P. D.; Levasseur, Maurice; Thomas, Jennie L.

    2016-04-01

    Size-segregated aerosol sulfate concentrations were measured on board the Canadian Coast Guard Ship (CCGS) Amundsen in the Arctic during July 2014. The objective of this study was to utilize the isotopic composition of sulfate to address the contribution of anthropogenic and biogenic sources of aerosols to the growth of the different aerosol size fractions in the Arctic atmosphere. Non-sea-salt sulfate is divided into biogenic and anthropogenic sulfate using stable isotope apportionment techniques. A considerable amount of the average sulfate concentration in the fine aerosols with a diameter 63 %), which is higher than in previous Arctic studies measuring above the ocean during fall ( 30 %) (Norman et al., 1999). The anthropogenic sulfate concentration was less than that of biogenic sulfate, with potential sources being long-range transport and, more locally, the Amundsen's emissions. Despite attempts to minimize the influence of ship stack emissions, evidence from larger-sized particles demonstrates a contribution from local pollution. A comparison of δ34S values for SO2 and fine aerosols was used to show that gas-to-particle conversion likely occurred during most sampling periods. δ34S values for SO2 and fine aerosols were similar, suggesting the same source for SO2 and aerosol sulfate, except for two samples with a relatively high anthropogenic fraction in particles Ocean during the productive summer months.

  14. Relative importance of nitrate and sulfate aerosol production mechanisms in urban atmospheres

    International Nuclear Information System (INIS)

    The relative importance of the various sulfate and nitrate aerosol production mechanisms is calculated for different atmospheric conditions. The calculation scheme used to determine the rates of nitrate and sulfate production, based on the concept that vapor transfer to the aerosols and nitrate and sulfate formation within the aerosols are coupled kinetic processes, considers sulfate formation by ozone and hydrogen peroxide oxidation and catalytic oxidation in the presence of soot, iron and manganese of sulfite solutions and sulfuric acid condensation and nitrate formation by the liquid-phase oxidation of dissolved nitrogen oxides for different initial gas concentrations and particle compositions and sizes. It is found that sulfate production is higher under daytime conditions, primarily proceeding by mechanisms involving sulfuric acid and hydrogen peroxide, while at night oxidation processes on the surface of the aerosol film are more important. Nitrate tends to decrease nighttime sulfate production due to an increase in aerosol acidity and nitrate production is found to be higher under nighttime conditions and in the winter

  15. Evaluation of sulfate aerosol optical depths over the North Atlantic and comparison with satellite observations

    International Nuclear Information System (INIS)

    It has been postulated that scattering of sunlight by aerosols can significantly reduce the amount of solar energy absorbed by the climate system. Aerosol measurement programs alone cannot provide all the information needed to evaluate the radiative forcing due to anthropogenic aerosols. Thus, comprehensive global-scale aerosol models, properly validated against surface-based and satellite measurements, are a fundamental tool for evaluating the impacts of aerosols on the planetary radiation balance. Analyzed meteorological fields from the European Centre for Medium-Range Weather Forecasts are used to drive a modified version of the PNL Global Chemistry Model, applied to the atmospheric sulfur cycle. The resulting sulfate fields are used to calculate aerosol optical depths, which in turn are compared to estimates of aerosol optical depth based on satellite observations

  16. Nucleation and growth of sulfate aerosol in coal-fired power plant plumes: sensitivity to background aerosol and meteorology

    OpenAIRE

    Stevens, R G; J. R. Pierce; Brock, C. A.; M. K. Reed; J. H. Crawford; J. S. Holloway; Ryerson, T. B.; L. G. Huey; Nowak, J. B.

    2012-01-01

    New-particle formation in the plumes of coal-fired power plants and other anthropogenic sulfur sources may be an important source of particles in the atmosphere. It remains unclear, however, how best to reproduce this formation in global and regional aerosol models with grid-box lengths that are 10s of kilometers and larger. The predictive power of these models is thus limited by the resultant uncertainties in aerosol size distributions. In this paper, we focus on sub-grid sulfate aerosol pro...

  17. High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years

    Science.gov (United States)

    Weber, Rodney J.; Guo, Hongyu; Russell, Armistead G.; Nenes, Athanasios

    2016-04-01

    Particle acidity affects aerosol concentrations, chemical composition and toxicity. Sulfate is often the main acid component of aerosols, and largely determines the acidity of fine particles under 2.5 μm in diameter, PM2.5. Over the past 15 years, atmospheric sulfate concentrations in the southeastern United States have decreased by 70%, whereas ammonia concentrations have been steady. Similar trends are occurring in many regions globally. Aerosol ammonium nitrate concentrations were assumed to increase to compensate for decreasing sulfate, which would result from increasing neutrality. Here we use observed gas and aerosol composition, humidity, and temperature data collected at a rural southeastern US site in June and July 2013 (ref. ), and a thermodynamic model that predicts pH and the gas-particle equilibrium concentrations of inorganic species from the observations to show that PM2.5 at the site is acidic. pH buffering by partitioning of ammonia between the gas and particle phases produced a relatively constant particle pH of 0-2 throughout the 15 years of decreasing atmospheric sulfate concentrations, and little change in particle ammonium nitrate concentrations. We conclude that the reductions in aerosol acidity widely anticipated from sulfur reductions, and expected acidity-related health and climate benefits, are unlikely to occur until atmospheric sulfate concentrations reach near pre-anthropogenic levels.

  18. On numerical simulation of the global distribution of sulfate aerosol produced by a large volcanic eruption

    Energy Technology Data Exchange (ETDEWEB)

    Pudykiewicz, J.A.; Dastoor, A.P. [Atmospheric Environment Service, Quebec (Canada)

    1994-12-31

    Volcanic eruptions play an important role in the global sulfur cycle of the Earth`s atmosphere and can significantly perturb the global atmospheric chemistry. The large amount of sulfate aerosol produced by the oxidation of SO{sub 2} injected into the atmosphere during volcanic eruptions also has a relatively big influence on the radiative equilibrium of the Earth`s climatic system. The submicron particles of the sulfate aerosol reflect solar radiation more effectively than they trap radiation in the infrared range. The effect of this is observed as cooling of the Earth`s surface. The modification of the global radiation budget following volcanic eruption can subsequently cause significant fluctuations of atmospheric variables on a subclimatic scale. The resulting perturbation of weather patterns has been observed and well documented since the eruptions of Mt. Krakatau and Mt. Tambora. The impact of the sulfate aerosol from volcanic eruptions on the radiative equilibrium of the Earth`s atmosphere was also confirmed by the studies done with Global Circulation Models designed to simulate climate. The objective of the present paper is to present a simple and effective method to estimate the global distribution of the sulfate aerosol produced as a consequence of volcanic eruptions. In this study we will present results of the simulation of global distribution of sulfate aerosol from the eruption of Mt Pinatubo.

  19. THE IMPACT OF RELATIVE HUMIDITY ON THE RADIATIVE PROPERTY AND RADIATIVE FORCING OF SULFATE AEROSOL

    Institute of Scientific and Technical Information of China (English)

    张立盛; 石广玉

    2001-01-01

    With the data of complex refractive index of sulfate aerosol, the radiative properties of the aerosol under 8 relative humidity conditions are calculated in this paper. By using the concentration distribution from two CTM models and LASG GOALS/AGCM, the radiative forcing due to hygroscopic sulfate aerosol is simulated. The results show that: (1) With the increase of relative humidity, the mass extinction coefficiency factor decreases in the shortwave spectrum: single scattering albedo keeps unchanged except for a little increase in longwave spectrum, and asymmetry factor increases in whole spectrum. (2) Larger differences occur in radiative forcing simulated by using two CTM data, and the global mean forcing is -0. 268 and -0. 816 W/m2,respectively. (3) When the impact of relative humidity on radiative property is taken into account,the distribution pattern of radiative forcing due to the wet particles is very similar to that of dry sulfate, but the forcing value decreases by 6%.

  20. The impact of dust on sulfate aerosol, CN and CCN during an East Asian dust storm

    Directory of Open Access Journals (Sweden)

    P. T. Manktelow

    2010-01-01

    Full Text Available A global model of aerosol microphysics is used to simulate a large East Asian dust storm during the ACE-Asia experiment. We use the model together with size resolved measurements of aerosol number concentration and composition to examine how dust modified the production of sulfate aerosol and the particle size distribution in East Asian outflow. Simulated size distributions and mass concentrations of dust, sub- and super-micron sulfate agree well with observations from the C-130 aircraft. Modeled mass concentrations of fine sulfate (Dp<1.3 μm decrease by ~10% due to uptake of sulfur species onto super-micron dust. We estimate that dust enhanced the mass concentration of coarse sulfate (Dp>1.0 μm by more than an order of magnitude, but total sulfate concentrations increase by less than 2% because decreases in fine sulfate have a compensating effect. Our analysis shows that the sulfate associated with dust can be explained largely by the uptake of H2SO4 rather than reaction of SO2 on the dust surface, which we assume is suppressed once the particles are coated in sulfate. We suggest that many previous model investigations significantly overestimated SO2 oxidation on East Asian dust, possibly due to the neglect of surface saturation effects. We extend previous model experiments by examining how dust modified existing particle concentrations in Asian outflow. Total particle concentrations (condensation nuclei, CN modeled in the dust-pollution plume are reduced by up to 20%, but we predict that dust led to less than 10% depletion in particles large enough to act as cloud condensation nuclei (CCN. Our analysis suggests that E. Asian dust storms have only a minor impact on sulfate particles present at climate-relevant sizes.

  1. The impact of dust on sulfate aerosol, CN and CCN during an East Asian dust storm

    Directory of Open Access Journals (Sweden)

    P. T. Manktelow

    2009-07-01

    Full Text Available A global model of aerosol microphysics is used to simulate a large East Asian dust storm during the ACE-Asia experiment. We use the model together with size resolved measurements of aerosol number concentration and composition to examine how dust modified the production of sulfate aerosol and the particle size distribution in East Asian outflow. Simulated size distributions and mass concentrations of dust, sub- and super-micron sulfate agree well with observations from the C-130 aircraft. Modelled mass concentrations of fine sulfate (Dp<1.3 μm decrease by ~10% due to uptake of sulfur species onto super-micron dust. We estimate that dust enhanced the mass concentration of coarse sulfate (Dp<1.0 μm by more than an order of magnitude, but total sulfate concentrations increase by less than 2% because decreases in fine sulfate have a compensating effect. Our analysis shows that the sulfate associated with dust can be explained largely by the uptake of H2SO4 rather than reaction of SO2 on the dust surface, which we assume is suppressed once the particles are coated in sulfate. We suggest that many previous model investigations significantly overestimated SO2 oxidation on East Asian dust, possibly due to the neglect of surface saturation effects. We extend previous model experiments by examining how dust modified existing particle concentrations in Asian outflow. Total particle concentrations modelled in the dust-pollution plume are reduced by up to 20%, but we predict that dust led to less than 10% depletion in particles large enough to act as cloud condensation nuclei. Our analysis suggests that E. Asian dust storms have only a minor impact on sulfate particles present at climate-relevant sizes.

  2. Comparison of normal and asthmatic subjects' responses to sulfate pollutant aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Utell, M.J.; Morrow, P.E.; Hyde, R.W.

    1980-01-01

    Epidemiological studies support an association between elevated levels of sulfates and acute respiratory disease. To determine if these pollutants produce airway hyperreactivity, 16 normal and 17 asthmatic subjects inhaled a control NaCl aerosol and the following sulfates: ammonium sulfate, sodium bisulfate, ammonium bisulfate, and sulfuric acid. A Lovelace generator produced particles with an average MMAD of approx. 1.0 ..mu..m (sigma/sub g/ approx. = 2.0) and concentrations of 0.1 and 1.0 mg/m/sup 3/. By double-blind randomization, all subjects breathed these aerosols for a 16-minute period. To determine if sulfate inhalation caused increased reactivity to a known bronchoconstrictor, all subjects inhaled carbachol following each 16-minute exposure. Before, during, and after exposure, pulmonary function studies were performed. When compared to NaCl, sulfate (1 mg/m/sup 3/) produced significant reductions in airway conductance and flow rates in asthmatics. The two most sensitive asthmatics demonstrated changes even at 0.1 mg/m/sup 3/ sulfate. To a far more significant degree, the bronchoconstrictor action of carbachol was potentiated by sulfates more or less in relation to their acidity in normals and asthmatics.

  3. Second organic aerosol formation from the ozonolysis of α-pinene in the presence of dry submicron ammonium sulfate aerosol

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhe; HAO Jiming; LI Junhua; WU Shan

    2008-01-01

    An indoor chamber facility is described for investigation of atmospheric aerosol chemistry. Two sets of α-pinene ozonolysisexperiments were conducted in the presence of dry ammonium sulfate seed particle: ozone limited experiments and α-pinene limitedexperiments. The concentration of gas phase and particle phase species was monitored continuously by on-line instruments andrecorded automatically by data sampling system. The evolution of size distribution was measured by a scanning mobility particlesizer (SMPS), and α-pinene consumed was measured using GC-FID. Secondary organic aerosol (SOA) produced for seed-free systemis 100% organic in content, resulting from a sufficient supersaturation of low volatility organics to produce homogeneous nucleationfollowed by condensation to the aerosol. Secondary organic aerosol produced in seeded system is a mixture of organic and inorganicconstituents, initially forms via condensation onto the inorganic particles, and subsequent growth occurs via absorption into the organicsurface coating the inorganic core. Although the formation process and the size distribution for seed-free system and seeded system isdifferent, the ultimate mass of SOA formed is equal, and SOA yield for the two system located in the same regression line when usingone-product model, suggesting that the presence of dry ammonium sulfate seed has no measurable effect on the total aerosol yield, and the dry seed particle acts solely as a site upon which organic deposition occurs.

  4. Nucleation and growth of sulfate aerosol in coal-fired power plant plumes: sensitivity to background aerosol and meteorology

    OpenAIRE

    Stevens, R G; J. R. Pierce; Brock, C. A.; M. K. Reed; J. H. Crawford; J. S. Holloway; Ryerson, T. B.; L. G. Huey; Nowak, J. B.

    2011-01-01

    New-particle formation in the plumes of coal-fired power plants and other anthropogenic sulfur sources may be an important source of particles in the atmosphere. It remains unclear, however, how best to reproduce this formation in global and regional aerosol models with grid-box lengths that are 10 s of kilometers and larger. The predictive power of these models is thus limited by the resultant uncertainties in aerosol size distributions. In this paper, we focus on sub-grid sulfate aer...

  5. Using stable isotopes to trace sources and formation processes of sulfate aerosols from Beijing, China

    Science.gov (United States)

    Han, Xiaokun; Guo, Qingjun; Liu, Congqiang; Fu, Pingqing; Strauss, Harald; Yang, Junxing; Hu, Jian; Wei, Lianfang; Ren, Hong; Peters, Marc; Wei, Rongfei; Tian, Liyan

    2016-01-01

    Particulate pollution from anthropogenic and natural sources is a severe problem in China. Sulfur and oxygen isotopes of aerosol sulfate (δ34Ssulfate and δ18Osulfate) and water-soluble ions in aerosols collected from 2012 to 2014 in Beijing are being utilized to identify their sources and assess seasonal trends. The mean δ34S value of aerosol sulfate is similar to that of coal from North China, indicating that coal combustion is a significant contributor to atmospheric sulfate. The δ34Ssulfate and δ18Osulfate values are positively correlated and display an obvious seasonality (high in winter and low in summer). Although an influence of meteorological conditions to this seasonality in isotopic composition cannot be ruled out, the isotopic evidence suggests that the observed seasonality reflects temporal variations in the two main contributions to Beijing aerosol sulfate, notably biogenic sulfur emissions in the summer and the increasing coal consumption in winter. Our results clearly reveal that a reduction in the use of fossil fuels and the application of desulfurization technology will be important for effectively reducing sulfur emissions to the Beijing atmosphere. PMID:27435991

  6. Using stable isotopes to trace sources and formation processes of sulfate aerosols from Beijing, China.

    Science.gov (United States)

    Han, Xiaokun; Guo, Qingjun; Liu, Congqiang; Fu, Pingqing; Strauss, Harald; Yang, Junxing; Hu, Jian; Wei, Lianfang; Ren, Hong; Peters, Marc; Wei, Rongfei; Tian, Liyan

    2016-01-01

    Particulate pollution from anthropogenic and natural sources is a severe problem in China. Sulfur and oxygen isotopes of aerosol sulfate (δ(34)Ssulfate and δ(18)Osulfate) and water-soluble ions in aerosols collected from 2012 to 2014 in Beijing are being utilized to identify their sources and assess seasonal trends. The mean δ(34)S value of aerosol sulfate is similar to that of coal from North China, indicating that coal combustion is a significant contributor to atmospheric sulfate. The δ(34)Ssulfate and δ(18)Osulfate values are positively correlated and display an obvious seasonality (high in winter and low in summer). Although an influence of meteorological conditions to this seasonality in isotopic composition cannot be ruled out, the isotopic evidence suggests that the observed seasonality reflects temporal variations in the two main contributions to Beijing aerosol sulfate, notably biogenic sulfur emissions in the summer and the increasing coal consumption in winter. Our results clearly reveal that a reduction in the use of fossil fuels and the application of desulfurization technology will be important for effectively reducing sulfur emissions to the Beijing atmosphere. PMID:27435991

  7. Effects of two transition metal sulfate salts on secondary organic aerosol formation in toluene/NOx photooxidation

    Institute of Scientific and Technical Information of China (English)

    Biwu CHU; Jiming HAO; Junhua LI; Hideto TAKEKAWA; Kun WANG; Jingkun JIANG

    2013-01-01

    Aerosol phase reactions play a very important role on secondary organic aerosol (SOA) formation, and metal-containing aerosols are important components in the atmosphere. In this study, we tested the effects of two transition metal sulfate salts, manganese sulfate (MnSO4) and zinc sulfate (ZnSO4), on the photochemical reactions of a toluene/NOx photooxidation system in a 2 m3 smog chamber. By comparing photochemical reaction products of experiments with and without transition metal sulfate seed aerosols, we evaluated the effects of transition metal sulfate seed aerosols on toluene consumption, NOx conversion and the formation of ozone and SOA. MnSO4 and ZnSO4 seed aerosols were found to have similar effects on photochemical reactions, both enhance the SOA production, while showing negligible effects on the gas phase compounds. These observations are consistent when varying metal sulfate aerosol concentrations. This is attributed to the catalytic effects of MnSO4 and ZnSO4 seed aerosols which may enhance the formation of condensable semivolatile compounds. Their subsequent partitioning into the aerosol phase leads to the observed SOA formation enhancement.

  8. Characteristics of Anthropogenic Sulfate and Carbonaceous Aerosols over East Asia: Regional Modeling and Observation

    Institute of Scientific and Technical Information of China (English)

    Yan HUANG; William L. CHAMEIDES; Qian TAN; Robert E. DICKINSON

    2008-01-01

    The authors present spatial and temporal characteristics of anthropogenic sulfate and carbonaceous aerosols over East Asia using a 3-D coupled regional climate-chemistry-aerosol model, and compare the simulation with the limited aerosol observations over the region. The aerosol module consists of SO2, SO42-, hydrophobic and hydrophilic black carbon (BC) and organic carbon compounds (OC), including emission, advections, dry and wet deposition, and chemical production and conversion. The simulated patterns of SO2 are closely tied to its emission rate, with sharp gradients between the highly polluted regions and more rural areas. Chemical conversion (especially in the aqueous phase) and dry deposition remove 60% and 30% of the total SO2 emission, respectively. The SO42- shows less horizontal gradient and seasonality than SO2, with wet deposition (60%) and export (27%) being two major sinks. Carbonaceous aerosols are spatially smoother than sulfur species. The aging process transforms more than 80% of hydrophobic BC and OC to hydrophilic components, which are removed by wet deposition (60%) and export (30%). The simulated spatial and seasonal SO42-, BC and OC aerosol concentrations and total aerosol optical depth are generally consistent with the observations in rural areas over East Asia, with lower bias in simulated OC aerosols, likely due to the underestimation of anthropogenic OC emissions and missing treatment of secondary organic carbon. The results suggest that our model is a useful tool for characterizing the anthropogenic aerosol cycle and for assessing its potential climatic and environmental effects in future studies.

  9. Association of non-marine sulfate aerosol with sea breeze circulation in Tampa bay

    International Nuclear Information System (INIS)

    Peak concentrations of aerosol sulfur in Tampa, Florida may be the result of either regional-scale transformation and transport processes or local-scale transport from nearby air pollution sources. The existence of the latter has been demonstrated in Tampa through correspondence of sulfur with sea breeze circulation patterns and the resulting chloride concentration maxima (which serve as indicators of the marine aerosol), vanadium concentration maxima (which indicate times of high concentrations of certain plume constituents), and the locations of sources favorable for high concentrations of air pollution-derived sulfate during occurrences of the sea breeze. The analysis indicates that locally derived sulfate in the Tampa atmosphere, which may be less abundant than sulfate due to regional-scale processes, can be identified by the use of combined meteorological and chemical tracer interpretation

  10. Nucleation and growth of sulfate aerosol in coal-fired power plant plumes: sensitivity to background aerosol and meteorology

    Directory of Open Access Journals (Sweden)

    R. G. Stevens

    2011-09-01

    Full Text Available New-particle formation in the plumes of coal-fired power plants and other anthropogenic sulfur sources may be an important source of particles in the atmosphere. It remains unclear, however, how best to reproduce this formation in global and regional aerosol models with grid-box lengths that are 10 s of kilometers and larger. The predictive power of these models is thus limited by the resultant uncertainties in aerosol size distributions. In this paper, we focus on sub-grid sulfate aerosol processes within coal-fired power plant plumes: the sub-grid oxidation of SO2 with condensation of H2SO4 onto newly-formed and pre-existing particles. We have developed a modeling framework with aerosol microphysics in the System for Atmospheric Modelling (SAM, a Large-Eddy Simulation/Cloud-Resolving Model (LES/CRM. The model is evaluated against aircraft observations of new-particle formation in two different power-plant plumes and reproduces the major features of the observations. We show how the downwind plume aerosols can be greatly modified by both meteorological and background aerosol conditions. In general, new-particle formation and growth is greatly reduced during polluted conditions due to the large pre-existing aerosol surface area for H2SO4 condensation and particle coagulation. The new-particle formation and growth rates are also a strong function of the amount of sunlight and NOx since both control OH concentrations. The results of this study highlight the importance for improved sub-grid particle formation schemes in regional and global aerosol models.

  11. Nucleation and growth of sulfate aerosol in coal-fired power plant plumes: sensitivity to background aerosol and meteorology

    Directory of Open Access Journals (Sweden)

    R. G. Stevens

    2012-01-01

    Full Text Available New-particle formation in the plumes of coal-fired power plants and other anthropogenic sulfur sources may be an important source of particles in the atmosphere. It remains unclear, however, how best to reproduce this formation in global and regional aerosol models with grid-box lengths that are 10s of kilometers and larger. The predictive power of these models is thus limited by the resultant uncertainties in aerosol size distributions. In this paper, we focus on sub-grid sulfate aerosol processes within coal-fired power plant plumes: the sub-grid oxidation of SO2 with condensation of H2SO4 onto newly-formed and pre-existing particles. We have developed a modeling framework with aerosol microphysics in the System for Atmospheric Modelling (SAM, a Large-Eddy Simulation/Cloud-Resolving Model (LES/CRM. The model is evaluated against aircraft observations of new-particle formation in two different power-plant plumes and reproduces the major features of the observations. We show how the downwind plume aerosols can be greatly modified by both meteorological and background aerosol conditions. In general, new-particle formation and growth is greatly reduced during polluted conditions due to the large pre-existing aerosol surface area for H2SO4 condensation and particle coagulation. The new-particle formation and growth rates are also a strong function of the amount of sunlight and NOx since both control OH concentrations. The results of this study highlight the importance for improved sub-grid particle formation schemes in regional and global aerosol models.

  12. Impacts of Sulfate Seed Acidity and Water Content on Isoprene Secondary Organic Aerosol Formation.

    Science.gov (United States)

    Wong, Jenny P S; Lee, Alex K Y; Abbatt, Jonathan P D

    2015-11-17

    The effects of particle-phase water and the acidity of pre-existing sulfate seed particles on the formation of isoprene secondary organic aerosol (SOA) was investigated. SOA was generated from the photo-oxidation of isoprene in a flow tube reactor at 70% relative humidity (RH) and room temperature in the presence of three different sulfate seeds (effloresced and deliquesced ammonium sulfate and ammonium bisulfate) under low NOx conditions. High OH exposure conditions lead to little isoprene epoxydiol (IEPOX) SOA being generated. The primary result is that particle-phase water had the largest effect on the amount of SOA formed, with 60% more SOA formation occurring with deliquesced ammonium sulfate seeds as compared to that on effloresced ones. The additional organic material was highly oxidized. Although the amount of SOA formed did not exhibit a dependence on the range of seed particle acidity examined, perhaps because of the low amount of IEPOX SOA, the levels of high-molecular-weight material increased with acidity. While the uptake of organics was partially reversible under drying, the results nevertheless indicate that particle-phase water enhanced the amount of organic aerosol material formed and that the RH cycling of sulfate particles may mediate the extent of isoprene SOA formation in the atmosphere. PMID:26460477

  13. Sulfated Zirconia as Alkali-Resistant Support for Catalytic NOx Removal

    DEFF Research Database (Denmark)

    The use of bio-fuels as alternatives to traditional fossil fuels has attracted much attention recent years since bio-fuels belong to a family of renewable types of energy sources and do not contribute to the green-house effect. Selective catalytic reduction (SCR) of NOx with ammonia as reductant ...... interact with potassium stronger than active metal species. Among potential carriers, sulfated zirconia is of high interest because its acidic and textural properties can be modified by varying preparation conditions....

  14. Source contributions of sulfate aerosol over East Asia estimated by CMAQ-DDM.

    Science.gov (United States)

    Itahashi, Syuichi; Uno, Itsushi; Kim, Soontae

    2012-06-19

    We applied the decoupled direct method (DDM), a sensitivity analysis technique for computing sensitivities accurately and efficiently, to determine the source-receptor relationships of anthropogenic SO(2) emissions to sulfate aerosol over East Asia. We assessed source contributions from East Asia being transported to Oki Island downwind from China and Korea during two air pollution episodes that occurred in July 2005. The contribution from China, particularly that from central eastern China (CEC), was found to dominate the sulfate aerosols. To study these contributions in more detail, CEC was divided into three regions, and the contributions from each region were examined. Source contributions exhibited both temporal and vertical variability, largely due to transport patterns imposed by the Asian summer monsoon. Our results are consistent with backward trajectory analyses. We found that anthropogenic SO(2) emissions from China produce significant quantities of summertime sulfate aerosols downwind of source areas. We used a parametric scaling method for estimating anthropogenic SO(2) emissions in China. Using column amounts of SO(2) derived from satellite data, and relationships between the column amounts of SO(2) and anthropogenic emissions, 2009 emissions were diagnosed. The results showed that 2009 emissions of SO(2) from China were equivalent to 2004 levels. PMID:22642816

  15. NUMERICAL SIMULATION WITH A COMPREHENSIVE CHEMICAL TRANSPORT MODEL OF NITRATE, SULFATE, AND AMMONIUM AEROSOL DISTRIBUTIONS OVER EAST ASIA

    Institute of Scientific and Technical Information of China (English)

    Meigen Zhang

    2005-01-01

    The transport and chemical production processes of nitrate, sulfate, and ammonium aerosols over East Asia were investigated by use of the Models-3 Community Multi-scale Air Quality (CMAQ) modeling system coupled with the Regional Atmospheric Modeling System (RAMS). For the evaluation of the model's ability in depicting their3-dimensional concentration distributions and temporal variations, modeled concentrations of nitrate, sulfate, and ammonium aerosols are compared with the observations obtained at a ground station in Japan in March 2001 and onboard of an aircraft DC-8 on 18 and 21 March 2001 during the Transport and Chemical Evolution over the Pacific (TRACE-P)field campaign. Comparison shows that simulated values of nitrate, sulfate, and ammonium aerosols are generally in good agreement with their observed data, and the model captures most important observed features, and reproduces temporal and spatial variations of nitrate, sulfate, and ammonium aerosol concentrations reasonably well, e.g., the timing and locations of the concentration spikes of nitrate, sulfate, and ammonium aerosols are well reproduced, but large discrepancies between observed and simulated values are also clearly seen at some points and some times due to the coarse grid resolution and uncertainties of the emissions used in this study. This comparison results indicate that CMAQ is able to simulate the distributions of nitrate, sulfate, and ammonium aerosols and their related species in the troposphere over East Asia reasonably well.

  16. Synchronous deposition of volcanic ash and sulfate aerosols over Greenland in 1783 from the Laki eruption (Iceland)

    Science.gov (United States)

    Wei, Lijia; Mosley-Thompson, Ellen; Gabrielli, Paolo; Thompson, Lonnie G.; Barbante, Carlo

    2008-08-01

    Sulfate aerosols from the 1783-1784 A.D. Laki eruption are widely used as a reference horizon for constraining Greenland ice core time scales, yet the timing of the arrival of the sulfate remains under discussion. Two ice cores from western Greenland, analyzed with high temporal resolution, confirm that sulfate aerosols arrived over Greenland late in 1783, concomitant with the tephra, elevated concentrations of Cd, Bi, and Tl, all indicators of volcanic emissions, and with a short-lived Rare Earth Elements anomaly. Thereafter sulfate deposition declined rapidly. Very modest concentrations of sulfate in 1784 snowfall, evident in six Greenland cores, suggest a relatively short (less than 1 year) atmospheric residence time and an injection height limited to the lower stratosphere. An improved estimate of the associated stratospheric sulfate burden is calculated and provides an important input for models assessing climatic impacts of this volcanic eruption.

  17. An aerosol formulation of R-salbutamol sulfate for pulmonary inhalation

    Directory of Open Access Journals (Sweden)

    Xuemei Zhang

    2014-02-01

    Full Text Available An aerosol formulation containing 7.5 mg of R-salbutamol sulfate was developed. The aerosol was nebulized with an air-jet nebulizer, and further assessed according to the new European Medicines Agency (EMA guidelines. A breath simulator was used for studies of delivery rate and total amount of the active ingredient at volume of 3 mL. A next generation impactor (NGI with a cooler was used for analysis of the particle size and in vitro lung deposition rate of the active ingredient at 5 °C. The anti-asthmatic efficacy of the aerosol formulation was assessed in guinea pigs with asthma evoked by intravenous injection of histamine compared with racemic salbutamol. Our results show that this aerosol formulation of R-salbutamol sulfate met all the requirements of the new EMA guidelines for nebulizer. The efficacy of a half-dose of R-salbutamol equaled that of a normal dose of racemic salbutamol.

  18. Exchange reactions in the systems of alkali metal, silver and thallium, sulfates, niobates and tantalates

    International Nuclear Information System (INIS)

    Investigated are exchange interactions in diagonal cross sections of twenty triple mutual systems with A and A' cations and SO4 and MO3 anions where A and A'-Li, Na, K, Ag, Tl, M-Nb, Ta using the methods of X-ray phase, chemical and differential thermal analyses. Exchange reaction between crystal complex oxide and melted salt are effective synthesis method. These reactions in particular permitted to obtain pure AgNbO3, AgTaO3 and their solid solutions at temperatures hundreds degrees lower than in displacement reactions. Equilibrium samples of AMO3-A'MO3 systems, continuous or discontinuous solid solutions, compounds (except NaMO3-KMO3, and also LiTaO3-KTaO3) are formed in exchange reactions when there is sulfate shortage. Thus, exchange reactions can be applied for solid solution synthesis, and also for phase diagram study

  19. Microphysical and compositional influences on shortwave radiative forcing of climate by sulfate aerosols

    International Nuclear Information System (INIS)

    Anthropogenic sulfate aerosols scatter shortwave (solar) radiation iincident upon the atmosphere, thereby exerting a cooling influence on climate relative to pre-industrial times. Previous estimates of this forcing place its global and annual average value at about -1 W M-2, uncertain to a factor of somewhat more than 2, comparable in magnitude to greenhouse gas forcing over the same period but opposite in sign and much more uncertain. Key sources of uncertainty are atmospheric chemistry factors (yield, residence time), and microphysical factors (scattering efficiency, upscatter fraction, and the dependence of these quantities on particle size and relative humidity, RH). This paper examines these microphysical influences to indentify properties required to obtain more a accurate description of this forcing. The mass scattering efficiency exhibits a maximum at a particle diameter (∼0.5 μm) roughly equal to the wavelength of maximum power in the solar spectrum and roughly equal to diameter typical of anthropogenic sulfate aerosols. Particle size, and hence mass scattering efficiency, increase with increasing on RH because of accretion of water by deliquescent salt aerosols

  20. Inability of stratospheric sulfate aerosol injections to preserve the West Antarctic Ice Sheet

    Science.gov (United States)

    McCusker, K. E.; Battisti, D. S.; Bitz, C. M.

    2015-06-01

    Injection of sulfate aerosols into the stratosphere has the potential to reduce the climate impacts of global warming, including sea level rise (SLR). However, changes in atmospheric and oceanic circulation that can significantly influence the rate of basal melting of Antarctic marine ice shelves and the associated SLR have not previously been considered. Here we use a fully coupled global climate model to investigate whether rapidly increasing stratospheric sulfate aerosol concentrations after a period of global warming could preserve Antarctic ice sheets by cooling subsurface ocean temperatures. We contrast this climate engineering method with an alternative strategy in which all greenhouse gases (GHG) are returned to preindustrial levels. We find that the rapid addition of a stratospheric aerosol layer does not effectively counteract surface and upper level atmospheric circulation changes caused by increasing GHGs, resulting in continued upwelling of warm water in proximity of ice shelves, especially in the vicinity of the already unstable Pine Island Glacier in West Antarctica. By contrast, removal of GHGs restores the circulation, yielding relatively cooler subsurface ocean temperatures to better preserve West Antarctica.

  1. The effect of anthropogenic sulfate aerosols on marine cloud droplet concentrations

    Science.gov (United States)

    Novakov, T.; Rivera-Carpio, C.; Penner, J. E.; Rogers, C. F.

    1994-04-01

    Nonseasalt sulfate (nss SO42-) mass concentrations, cloud condensation nuclei (CCN) number concentrations, and cloud droplet concentrations in warm cumulus and stratocumulus clouds were simultaneously measured in situ in marine air masses on El Yunque peak in Puerto Rico. Our results show that CNN number concentrations (measured at 0.5% supersaturation) and nss SO42- mass concentrations (in the range of ˜ 400 1700ng m-342- mass concentrations (in the range of ˜ 300 1400ng m-3). In stratocumulus clouds, a small increase in droplet concentration with nss SO42- mass concentrations in the range of ˜ 300 1100ng m-3 was observed. We attribute the low sensitivities of the droplet number concentrations to nss SO42- mass concentrations to the entrainment/mixing processes in these clouds. The magnitudes of the empirically derived sensitivities are considerably lower than those assumed in recent assessments of the effect of anthropogenic sulfate aerosols on cloud albedo.

  2. Effective Henry's Law constant measurements for glyoxal in model aerosols containing sulfate

    Science.gov (United States)

    Kampf, C.; Waxman, E.; Slowik, J.; Dommen, J.; Prevot, A.; Baltensperger, U.; Noziere, B.; Hoffmann, T.; Volkamer, R.

    2012-04-01

    Traditional models represent secondary organic aerosol (SOA) formation based on the gas-phase oxidation of a limited set of precursor molecules. However, these models tend to under-estimate the amounts and degree of oxygenation of actual SOA, indicating missing processes. One such source that has become increasingly important in recent years is glyoxal (CHOCHO, the smallest alpha-dicarbonyl). Unlike traditional SOA precursors, glyoxal forms SOA by partitioning to the aqueous phase according to Henry's Law. This work presents an analysis of Henry's Law constants for glyoxal uptake to laboratory-generated aerosols in a dynamically coupled gas-aerosol system. We combine CU LED-CE-DOAS measurements of gas-phase glyoxal with online HR-Tof-AMS and time-resolved HPLC ESI MS/MS particle-phase measurements to characterize the time resolved evolution of glyoxal partitioning, and relate molecular-specific measurements to AMS mass spectra. The experiments were performed in the simulation chamber facility at PSI, Switzerland, and investigate ammonium sulfate (AS), and mixed AS / fulvic acid seed aerosols under relative humidity conditions ranging from 50 to 85% RH. The Henry's Law and effective Henry's Law constants are compared with other values reported in the literature.

  3. Simulated responses of terrestrial aridity to black carbon and sulfate aerosols

    Science.gov (United States)

    Lin, L.; Gettelman, A.; Xu, Y.; Fu, Q.

    2016-01-01

    Aridity index (AI), defined as the ratio of precipitation to potential evapotranspiration (PET), is a measure of the dryness of terrestrial climate. Global climate models generally project future decreases of AI (drying) associated with global warming scenarios driven by increasing greenhouse gas and declining aerosols. Given their different effects in the climate system, scattering and absorbing aerosols may affect AI differently. Here we explore the terrestrial aridity responses to anthropogenic black carbon (BC) and sulfate (SO4) aerosols with Community Earth System Model simulations. Positive BC radiative forcing decreases precipitation averaged over global land at a rate of 0.9%/°C of global mean surface temperature increase (moderate drying), while BC radiative forcing increases PET by 1.0%/°C (also drying). BC leads to a global decrease of 1.9%/°C in AI (drying). SO4 forcing is negative and causes precipitation a decrease at a rate of 6.7%/°C cooling (strong drying). PET also decreases in response to SO4 aerosol cooling by 6.3%/°C cooling (contributing to moistening). Thus, SO4 cooling leads to a small decrease in AI (drying) by 0.4%/°C cooling. Despite the opposite effects on global mean temperature, BC and SO4 both contribute to the twentieth century drying (AI decrease). Sensitivity test indicates that surface temperature and surface available energy changes dominate BC- and SO4-induced PET changes.

  4. Hygroscopicity of organic compounds from biomass burning and their influence on the water uptake of mixed organic ammonium sulfate aerosols

    Science.gov (United States)

    Lei, T.; Zuend, A.; Wang, W. G.; Zhang, Y. H.; Ge, M. F.

    2014-10-01

    Hygroscopic behavior of organic compounds, including levoglucosan, 4-hydroxybenzoic acid, and humic acid, as well as their effects on the hygroscopic properties of ammonium sulfate (AS) in internally mixed particles are studied by a hygroscopicity tandem differential mobility analyzer (HTDMA). The organic compounds used represent pyrolysis products of wood that are emitted from biomass burning sources. It is found that humic acid aerosol particles only slightly take up water, starting at RH (relative humidity) above ~70%. This is contrasted by the continuous water absorption of levoglucosan aerosol particles in the range 5-90% RH. However, no hygroscopic growth is observed for 4-hydroxybenzoic acid aerosol particles. Predicted water uptake using the ideal solution theory, the AIOMFAC model and the E-AIM (with UNIFAC) model are consistent with measured hygroscopic growth factors of levoglucosan. However, the use of these models without consideration of crystalline organic phases is not appropriate to describe the hygroscopicity of organics that do not exhibit continuous water uptake, such as 4-hydroxybenzoic acid and humic acid. Mixed aerosol particles consisting of ammonium sulfate and levoglucosan, 4-hydroxybenzoic acid, or humic acid with different organic mass fractions, take up a reduced amount of water above 80% RH (above AS deliquescence) relative to pure ammonium sulfate aerosol particles of the same mass. Hygroscopic growth of mixtures of ammonium sulfate and levoglucosan with different organic mass fractions agree well with the predictions of the thermodynamic models. Use of the Zdanovskii-Stokes-Robinson (ZSR) relation and AIOMFAC model lead to good agreement with measured growth factors of mixtures of ammonium sulfate with 4-hydroxybenzoic acid assuming an insoluble organic phase. Deviations of model predictions from the HTDMA measurement are mainly due to the occurrence of a microscopical solid phase restructuring at increased humidity (morphology

  5. Simulation of nitrate, sulfate, and ammonium aerosols over the United States

    Directory of Open Access Journals (Sweden)

    J. M. Walker

    2012-11-01

    Full Text Available Atmospheric concentrations of inorganic gases and aerosols (nitrate, sulfate, and ammonium are simulated for 2009 over the United States using the chemical transport model GEOS-Chem. Predicted aerosol concentrations are compared with surface-level measurement data from the Interagency Monitoring of Protected Visual Environments (IMPROVE, the Clean Air Status and Trends Network (CASTNET, and the California Air Resources Board (CARB. Sulfate predictions nationwide are in reasonably good agreement with observations, while nitrate and ammonium are over-predicted in the East and Midwest, but under-predicted in California, where observed concentrations are the highest in the country. Over-prediction of nitrate in the East and Midwest is consistent with results of recent studies, which suggest that nighttime nitric acid formation by heterogeneous hydrolysis of N2O5 is over-predicted based on current values of the N2O5 uptake coefficient, γ, onto aerosols. After reducing the value of γ by a factor of 10, predicted nitrate levels in the US Midwest and East still remain higher than those measured, and over-prediction of nitrate in this region remains unexplained. Comparison of model predictions with satellite measurements of ammonia from the Tropospheric Emissions Spectrometer (TES indicates that ammonia emissions in GEOS-Chem are underestimated in California and that the nationwide seasonality applied to ammonia emissions in GEOS-Chem does not represent California very well, particularly underestimating winter emissions. An ammonia sensitivity study indicates that GEOS-Chem simulation of nitrate is ammonia-limited in southern California and much of the state, suggesting that an underestimate of ammonia emissions is likely the main cause for the under-prediction of nitrate aerosol in many areas of California. An approximate doubling of ammonia emissions is needed to reproduce observed nitrate concentrations in

  6. Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City

    Science.gov (United States)

    Adachi, K.; Buseck, P. R.

    2008-05-01

    Soot particles are major aerosol constituents that result from emissions of burning of fossil fuel and biomass. Because they both absorb sunlight and contribute to cloud formation, they are an influence on climate on local, regional, and global scales. It is therefore important to evaluate their optical and hygroscopic properties and those effects on the radiation budget. Those properties commonly change through reaction with other particles or gases, resulting in complex internal mixtures. Using transmission electron microscopy, we measured ~8000 particles (25 samples) with aerodynamic diameters from 0.05 to 0.3 μm that were collected in March 2006 from aircraft over Mexico City (MC) and adjacent areas. More than 50% of the particles consist of internally mixed soot, organic matter, and sulfate. Imaging combined with chemical analysis of individual particles show that many are coated, consist of aggregates, or both. Coatings on soot particles can amplify their light absorption, and coagulation with sulfates changes their hygroscopic properties, resulting in shorter lifetime. Our results suggest that a mixture of materials from multiple sources such as vehicles, power plants, and biomass burning occurs in individual particles, thereby increasing their complexity. Through changes in their optical and hygroscopic properties, internally mixed soot particles have a greater effect on the regional climate than uncoated soot particles. Moreover, soot occurs in more than 60% of all particles in the MC plumes, suggesting its important role in the formation of secondary aerosol particles.

  7. Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City

    Directory of Open Access Journals (Sweden)

    K. Adachi

    2008-05-01

    Full Text Available Soot particles are major aerosol constituents that result from emissions of burning of fossil fuel and biomass. Because they both absorb sunlight and contribute to cloud formation, they are an influence on climate on local, regional, and global scales. It is therefore important to evaluate their optical and hygroscopic properties and those effects on the radiation budget. Those properties commonly change through reaction with other particles or gases, resulting in complex internal mixtures. Using transmission electron microscopy, we measured ~8000 particles (25 samples with aerodynamic diameters from 0.05 to 0.3 μm that were collected in March 2006 from aircraft over Mexico City (MC and adjacent areas. More than 50% of the particles consist of internally mixed soot, organic matter, and sulfate. Imaging combined with chemical analysis of individual particles show that many are coated, consist of aggregates, or both. Coatings on soot particles can amplify their light absorption, and coagulation with sulfates changes their hygroscopic properties, resulting in shorter lifetime. Our results suggest that a mixture of materials from multiple sources such as vehicles, power plants, and biomass burning occurs in individual particles, thereby increasing their complexity. Through changes in their optical and hygroscopic properties, internally mixed soot particles have a greater effect on the regional climate than uncoated soot particles. Moreover, soot occurs in more than 60% of all particles in the MC plumes, suggesting its important role in the formation of secondary aerosol particles.

  8. Simulation of nitrate, sulfate, and ammonium aerosols over the United States

    Directory of Open Access Journals (Sweden)

    J. M. Walker

    2012-08-01

    Full Text Available Atmospheric concentrations of inorganic gases and aerosols (nitrate, sulfate, and ammonium are simulated for 2009 over the United States using the chemical transport model GEOS-Chem. This work is motivated, in part, by the inability of previous modeling studies to reproduce observed high nitrate aerosol concentrations in California. Nitrate aerosol concentrations over most of the US are over-predicted relative to Interagency Monitoring of Protected Visual Environments (IMPROVE and Clean Air Status and Trends Network (CASTNET data. In California, on the other hand, nitrate and ammonium are under-predicted as compared to California Air Resources Board (CARB measurements. Over-prediction of nitrate in the East and Midwest is consistent with results of recent studies, which have suggested that nighttime nitric acid formation by heterogeneous hydrolysis of N2O5 is over-predicted with current values of the N2O5 uptake coefficient, γ, onto aerosols. Accordingly, the value of γ is reduced here by a factor of 10. Despite this, predicted nitrate levels in the US Midwest remain higher than those measured and over-prediction of nitrate in this region remains to be explained. Data from the Infrared Atmospheric Sounding Interferometer (IASI onboard the MetOp-A satellite indicate the presence of a strong ammonia maximum in central and southern California that is not present in the simulations, which are based on the EPA National Emissions Inventory (NEI NH3 emission inventory. In order to predict ammonia columns similar to the satellite measurements in the San Joaquin Valley, CA and Riverside, CA, the current ammonia emission inventory in California would need to be increased substantially. Based on the sensitivity of ammonium nitrate formation to the availability of ammonia, the present results suggest that under-prediction of ammonia emissions is likely the main cause for the under-prediction of

  9. Potential influence of inter-continental transport of sulfate aerosols on air quality

    International Nuclear Information System (INIS)

    In this study, we compare the potential influence of inter-continental transport of sulfate aerosols on the air quality of (different) continental regions. We use a global chemical transport model, Model of Ozone and Related Tracers, version 2 (MOZART-2), to quantify the source-receptor relationships of inter-continental transport of sulfate aerosols among ten regions in 2000. In order to compare the importance of foreign with domestic emissions and to estimate the effect of future changes in emissions on human exposure, we define an 'influence potential' (IP). The IP quantifies the human exposure that occurs in a receptor region as a result of a unit of SO2 emissions from a source region. We find that due to the non-linear nature of sulfate production, regions with low SO2 emissions usually have large domestic IP, and vice versa. An exception is East Asia (EA), which has both high SO2 emissions and relatively large domestic IP, mostly caused by the spatial coincidence of emissions and population. We find that inter-continental IPs are usually less than domestic IPs by 1-3 orders of magnitude. SO2 emissions from the Middle East (ME) and Europe (EU) have the largest potential to influence populations in surrounding regions. By comparing the IP ratios (IPR) between foreign and domestic SO2 emissions, we find that the IPR values range from 0.000 01 to 0.16 and change with season. Therefore, if reducing human exposure to sulfate aerosols is the objective, all regions should first focus on reducing domestic SO2 emissions. In addition, we find that relatively high IPR values exist among the EU, ME, the former Soviet Union (FSU) and African (AF) regions. Therefore, on the basis of the IP and IPR values, we conclude that a regional agreement among EA countries, and an inter-regional agreement among EU, ME, FSU and (north) AF regions to control sulfur emissions could benefit public health in these regions

  10. Characterizing the influence of anthropogenic emissions and transport variability on sulfate aerosol concentrations at Mauna Loa Observatory

    Science.gov (United States)

    Potter, Lauren E.

    Sulfate aerosol in the atmosphere has substantial impacts on human health and environmental quality. Most notably, atmospheric sulfate has the potential to modify the earth's climate system through both direct and indirect radiative forcing mechanisms (Meehl et al., 2007). Emissions of sulfur dioxide, the primary precursor of sulfate aerosol, are now globally dominated by anthropogenic sources as a result of widespread fossil fuel combustion. Economic development in Asian countries since 1990 has contributed considerably to atmospheric sulfur loading, particularly China, which currently emits approximately 1/3 of global anthropogenic SO2 (Klimont et al., 2013). Observational and modeling studies have confirmed that anthropogenic pollutants from Asian sources can be transported long distances with important implications for future air quality and global climate change. Located in the remote Pacific Ocean (19.54°N, 155.58°W) at an elevation of 3.4 kilometers above sea level, Mauna Loa Observatory (MLO) is an ideal measurement site for ground-based, free tropospheric observations and is well situated to experience influence from springtime Asian outflow. This study makes use of a 14-year data set of aerosol ionic composition, obtained at MLO by the University of Hawaii at Manoa. Daily filter samples of total aerosol concentrations were made during nighttime downslope (free-tropospheric) transport conditions, from 1995 to 2008, and were analyzed for aerosol-phase concentrations of the following species: nitrate (NO3-), sulfate (SO42-), methanesulfonate (MSA), chloride (Cl-), oxalate, sodium (Na+), ammonium (NH 4+), potassium (K+), magnesium (Mg 2+), and calcium (Ca2+). An understanding of the factors controlling seasonal and interannual variations in aerosol speciation and concentrations at this site is complicated by the relatively short lifetimes of aerosols, compared with greenhouse gases which have also been sampled over long time periods at MLO. Aerosol filter

  11. The influence of alkali-free and alkaline shotcrete accelerators within cement systems Influence of the temperature on the sulfate attack mechanisms and damage

    International Nuclear Information System (INIS)

    The resistance to sulfate attack of mixtures accelerated with alkali-free and alkaline accelerators was found to be mainly influenced by the Al3+ and SO42- added via the admixtures. Microstructural observations showed decalcification and disintegration of the CSH gel, which acted as an additional Ca2+ supplier as compared to the CH for ettringite formation. The CSH decalcification was mainly observed with a homogeneous distribution of the alkali-free admixture. The disintegration of the CSH gel increased the porosity and allowed more sulfate solution to penetrate into the specimens. This process promoted the swelling of the specimens and directly contributed to the expansion, explaining the lack of a direct relationship between the ettringite formation and the expansion. Moreover, the CSH gel disintegration, typical for MgSO4 attack, also occurred with Na2SO4 solutions and depending on the aluminate-sulfate distribution and the extent of the CSH gel disintegration, different damage types were detected. At higher temperatures (65 deg. C) the damage was mainly controlled by the growth, the rearrangement and the thermal stability of ettringite

  12. Interactions between hydrophobically modified alkali-swellable emulsion polymers and sodium dodecyl sulfate probed by fluorescence and rheology.

    Science.gov (United States)

    Chen, Shaohua; Siu, Howard; Duhamel, Jean

    2014-01-01

    The interactions between a pyrene-labeled hydrophobically modified alkali-swellable emulsion (Py-HASE) polymer and the anionic surfactant sodium dodecyl sulfate (SDS) in aqueous solution were investigated with a fluorometer, a rheometer, and a combination of both instruments to probe the fluorescence of the polymer while the solution was being sheared. Different amounts of SDS were added to two solutions with Py-HASE concentrations of 8 and 57 g/L. The pyrene monomer and excimer decays of the Py-HASE solutions were acquired and globally fitted according to the fluorescence blob model (FBM) and the model free (MF) analysis. Both models yielded the same molar fractions of pyrenes that were isolated, aggregated, or forming excimer by diffusion. The average number of pyrenes per micelle, , was determined according to the FBM and found to equal 2.0 at the SDS concentration corresponding to a maximum in solution viscosity. For a Py-HASE concentration of 57 g/L, the solution viscosities at different SDS concentrations were measured from the Newtonian plateau regions and were found to peak at an SDS concentration of 11 mM. The steady-state fluorescence spectra were acquired at SDS concentrations of 0.1, 6.0, 11.1, and 17 mM while the 57 g/L Py-HASE solution was sheared. Although the solutions of Py-HASE and SDS were found to shear-thin substantially with the solution viscosity decreasing by up to 4 orders of magnitude, no change was observed in the fluorescence spectra acquired at shear rates ranging from 0.005 to 500 s(-1). The overlap of the fluorescence spectra under conditions where the solution viscosity decreased by 4 orders of magnitude suggested that the rearrangement of the hydrophobes from inter- to intramolecular associations that leads to shear-thinning occurs on a time scale that is much faster than that over which the rheology experiments are being conducted. PMID:24364758

  13. Importance of including ammonium sulfate ((NH42SO4 aerosols for ice cloud parameterization in GCMs

    Directory of Open Access Journals (Sweden)

    R. Yang

    2010-02-01

    Full Text Available A common deficiency of many cloud-physics parameterizations including the NASA's microphysics of clouds with aerosol-cloud interactions (hereafter called McRAS-AC is that they simulate lesser (larger than the observed ice cloud particle number (size. A single column model (SCM of McRAS-AC physics of the GEOS4 Global Circulation Model (GCM together with an adiabatic parcel model (APM for ice-cloud nucleation (IN of aerosols were used to systematically examine the influence of introducing ammonium sulfate (NH42SO4 aerosols in McRAS-AC and its influence on the optical properties of both liquid and ice clouds. First an (NH42SO4 parameterization was included in the APM to assess its effect on clouds vis-à-vis that of the other aerosols. Subsequently, several evaluation tests were conducted over the ARM Southern Great Plain (SGP and thirteen other locations (sorted into pristine and polluted conditions distributed over marine and continental sites with the SCM. The statistics of the simulated cloud climatology were evaluated against the available ground and satellite data. The results showed that inclusion of (NH42SO4 into McRAS-AC of the SCM made a remarkable improvement in the simulated effective radius of ice cloud particulates. However, the corresponding ice-cloud optical thickness increased even more than the observed. This can be caused by lack of horizontal cloud advection not performed in the SCM. Adjusting the other tunable parameters such as precipitation efficiency can mitigate this deficiency. Inclusion of ice cloud particle splintering invoked empirically further reduced simulation biases. Overall, these changes make a substantial improvement in simulated cloud optical properties and cloud distribution particularly over the Intertropical Convergence Zone (ITCZ in the GCM.

  14. Effects of the physical state of tropospheric ammonium-sulfate-nitrate particles on global aerosol direct radiative forcing

    Directory of Open Access Journals (Sweden)

    S. T. Martin

    2004-01-01

    Full Text Available The effect of aqueous versus crystalline sulfate-nitrate-ammonium tropospheric particles on global aerosol direct radiative forcing is assessed. A global three-dimensional chemical transport model predicts sulfate, nitrate, and ammonium aerosol mass. An aerosol thermodynamics model is called twice, once for the upper side (US and once for lower side (LS of the hysteresis loop of particle phase. On the LS, the sulfate mass budget is 40% solid ammonium sulfate, 12% letovicite, 11% ammonium bisulfate, and 37% aqueous. The LS nitrate mass budget is 26% solid ammonium nitrate, 7% aqueous, and 67% gas-phase nitric acid release due to increased volatility upon crystallization. The LS ammonium budget is 45% solid ammonium sulfate, 10% letovicite, 6% ammonium bisulfate, 4% ammonium nitrate, 7% ammonia release due to increased volatility, and 28% aqueous. LS aerosol water mass partitions as 22% effloresced to the gas-phase and 78% remaining as aerosol mass. The predicted US/LS global fields of aerosol mass are employed in a Mie scattering model to generate global US/LS aerosol optical properties, including scattering efficiency, single scattering albedo, and asymmetry parameter. Global annual average LS optical depth and mass scattering efficiency are, respectively, 0.023 and 10.7 m2 (g SO4-2-1, which compare to US values of 0.030 and 13.9 m2 (g SO4-2-1. Radiative transport is computed, first for a base case having no aerosol and then for the two global fields corresponding to the US and LS of the hysteresis loop. Regional, global, seasonal, and annual averages of top-of-the-atmosphere aerosol radiative forcing on the LS and US (FL and FU, respectively, in W m-2 are calculated. Including both anthropogenic and natural emissions, we obtain global annual averages of FL=-0.750, FU=-0.930, and DFU,L=24% for full sky calculations without clouds and FL=-0.485, FU=-0.605, and DFU,L=25% when clouds are included. Regionally, DFU,L=48% over the USA, 55% over Europe

  15. Direct shortwave forcing of climate by anthropogenic sulfate aerosol: Sensitivity to particle size, composition, and relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Nemesure, S.; Wagener, R.; Schwartz, S.E. [Brookhaven National Lab., Upton, New York (United States)

    1996-04-01

    Recent estimates of global or hemispheric average forcing of climate by anthropogenic sulfate aerosol due to scattering of shortwave radiation are uncertain by more than a factor of 2. This paper examines the sensitivity of forcing to these microphysical properties for the purposes of obtaining a better understanding of the properties required to reduce the uncertainty in the forcing.

  16. Laboratory studies of the deposition of alkali sulfate vapors from combustion gases using a flash-evaporation technique

    Science.gov (United States)

    Rosner, Daniel E.; Liang, Baishen

    1986-01-01

    A relatively simple experimental technique is proposed and demonstrated for making measurements of absolute dewpoints and relative deposition rates from flowing combustion gases containing condensible inorganic vapors. The method involves first accumulating condensate on a Pt ribbon target maintained below the dewpoint and then flash-evaporating the condensate into the filament wake, where its alkali content is monitored by alkali-atom emission spectroscopy. The advantages of the method over others are demonstrated; in particular, the method can detect liquid condensate inventories which are small enough to be negligibly influenced by surface runoff produced by gas-side shear stress and liquid condensate surface tension gradients. Illustrative Na2SO4 and K2SO4 deposition rate data and corresponding dewpoint data obtained in a series of alkali-seeded propane/air atmospheric flames are presented and discussed.

  17. Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for policy

    OpenAIRE

    Park, Rokjin J.; Jacob, Daniel James; Field, Brendan; Yantosca, Robert M.; Chin, Mian

    2004-01-01

    We use a global three-dimensional coupled oxidant-aerosol model (GEOS-CHEM) to estimate natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosol concentrations in the United States. This work is motivated in part by the Regional Haze Rule of the U.S. Environmental Protection Agency (EPA), which requires immediate action to improve visibility in U.S. wilderness areas along a linear trajectory toward an endpoint of “natural visibility conditions” by 2064. We present fu...

  18. Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for policy

    Science.gov (United States)

    Park, Rokjin J.; Jacob, Daniel J.; Field, Brendan D.; Yantosca, Robert M.; Chin, Mian

    2004-08-01

    We use a global three-dimensional coupled oxidant-aerosol model (GEOS-CHEM) to estimate natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosol concentrations in the United States. This work is motivated in part by the Regional Haze Rule of the U.S. Environmental Protection Agency (EPA), which requires immediate action to improve visibility in U.S. wilderness areas along a linear trajectory toward an endpoint of "natural visibility conditions" by 2064. We present full-year simulations for 1998 and 2001 and evaluate them with nationwide networks of observations in the United States and Europe (Interagency Monitoring of Protected Visual Environments (IMPROVE), Clean Air Status and Trends Network (CASTNET), National Atmospheric Deposition Program (NADP), European Monitoring and Evaluation Programme (EMEP)) and with Asian outflow observations from the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission. Shutting off U.S. anthropogenic emissions in the model defines "background" aerosol concentrations representing contributions from both natural and transboundary pollution sources. We find that transboundary transport of pollution from Canada, Mexico, and Asia dominates over natural influences for both sulfate and nitrate. Trans-Pacific transport of Asian pollution accounts for 30% of background sulfate in both the western and eastern United States. Our best estimates of natural concentrations for ammonium sulfate and ammonium nitrate in the United States are either consistent with or lower than the default values recommended by EPA for natural visibility calculations. However, the large transboundary pollution influence in our calculation suggests that a natural visibility objective cannot be approached without international emission controls.

  19. Morphological effects on the radiative properties of soot aerosols in different internally mixing states with sulfate

    International Nuclear Information System (INIS)

    The radiative properties of soot aerosols largely depend on their mixing state and morphology factors. In this paper, we generated soot aggregates in four mixing states with sulfate, including bare soot, partly coated soot, heavily coated soot and soot with inclusion. The number of monomers and fractal dimension of soot were varied in each mixing state while the radius of monomers was fixed at 0.025 μm. Using the discrete dipole approximation method (DDA), we calculated optical parameters relevant for climate forcing simulation at mid-visible wavelength (0.55 μm). Internal mixing results in enhanced absorption, scattering cross sections as well as the single scattering albedo. The enhancement ratio of the absorption is largest for heavily coated soot, which ranges from 1.5 to 1.65 with a soot volume fraction of 0.15 and is larger for soot with larger fractal dimension. The scattering cross section can be dramatically increased by factors larger than 10 when soot is heavily coated. The increasing of both the scattering cross section and the single scattering albedo is larger for soot aggregates with smaller number of monomers and fractal dimension. The asymmetry parameter is insensitive to the fractal dimension for heavily coated soot and soot with inclusion. Two simplified models including the homogeneous sphere model (HS) and the core shell sphere model (CS) were examined using the DDA results as references. The performance of the HS and CS model largely depends on the morphology factors and the mixing state of soot. For bare and partly coated soot, both the HS and CS model can introduce relative errors as large as several tens percent. For heavily coated soot, the HS model predicts the absorption with relative errors within 10%, while it overestimates the absorption with relative errors no larger than 20% for soot with inclusion. The HS model predicts the single scattering albedo and the asymmetry parameter with relative errors no larger than 10% for heavily

  20. Carboxylic acids, sulfates, and organosulfates in processed continental organic aerosol over the southeast Pacific Ocean during VOCALS-REx 2008

    Science.gov (United States)

    Hawkins, L. N.; Russell, L. M.; Covert, D. S.; Quinn, P. K.; Bates, T. S.

    2010-07-01

    Submicron particles were collected on board the NOAA R/V Ronald H. Brown during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) in the southeast Pacific marine boundary layer in October and November 2008. The aerosol in this region was characterized by low numbers of particles (150-700 cm-3) that were dominated by sulfate ions at concentrations of 0.9 ± 0.7 μg m-3 and organic mass at 0.6 ± 0.4 μg m-3, with no measurable nitrate and low ammonium ion concentrations. Measurements of submicron organic aerosol functional groups and trace elements show that continental outflow of anthropogenic emissions is the dominant source of organic mass (OM) to the southeast Pacific with an additional, smaller contribution of organic mass from primary marine sources. This continental source is supported by a correlation between OM and radon. Saturated aliphatic C-CH (alkane) composed 41 ± 27% of OM. Carboxylic acid COOH (32 ± 23% of OM) was observed in single particles internally mixed with ketonic carbonyl, carbonate, and potassium. Organosulfate COSO3 (4 ± 8% of OM) was observed only during the periods of highest organic and sulfate concentrations and lowest ammonium concentrations, consistent with a sulfuric acid epoxide hydrolysis for proposed surrogate compounds (e.g., isoprene oxidation products) or reactive glyoxal uptake mechanisms from laboratory studies. This correlation suggests that in high-sulfate, low-ammonium conditions, the formation of organosulfate compounds in the atmosphere contributes a significant fraction of aerosol OM (up to 13% in continental air masses). Organic hydroxyl C-OH composed 20 ± 12% of OM and up to 50% of remote marine OM and was inversely correlated with radon indicating a marine source. A two-factor solution of positive matrix factorization (PMF) analysis resulted in one factor dominated by organic hydroxyl (>70% by mass) and one factor dominated by saturated aliphatic C-CH (alkane) and carboxylic acid

  1. Sensitivity of thermal infrared nadir instruments to the chemical and microphysical properties of UTLS secondary sulfate aerosols

    Science.gov (United States)

    Sellitto, P.; Legras, B.

    2016-01-01

    Monitoring upper-tropospheric-lower-stratospheric (UTLS) secondary sulfate aerosols and their chemical and microphysical properties from satellite nadir observations is crucial to better understand their formation and evolution processes and then to estimate their impact on UTLS chemistry, and on regional and global radiative balance. Here we present a study aimed at the evaluation of the sensitivity of thermal infrared (TIR) satellite nadir observations to the chemical composition and the size distribution of idealised UTLS sulfate aerosol layers. The extinction properties of sulfuric acid/water droplets, for different sulfuric acid mixing ratios and temperatures, are systematically analysed. The extinction coefficients are derived by means of a Mie code, using refractive indices taken from the GEISA (Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. IASI (Infrared Atmospheric Sounding Interferometer) pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the extinction of idealised aerosol layers, at typical UTLS conditions, on the brightness temperature spectra observed by this satellite instrument. We found a marked and typical spectral signature of these aerosol layers between 700 and 1200 cm-1, due to the absorption bands of the sulfate and bisulfate ions and the undissociated sulfuric acid, with the main absorption peaks at 1170 and 905 cm-1. The dependence of the aerosol spectral signature to the sulfuric acid mixing ratio, and effective number concentration and radius, as well as the role of interfering parameters like the ozone, sulfur dioxide, carbon dioxide and ash absorption, and temperature and water vapour profile uncertainties

  2. Effects of stratospheric sulfate aerosol geo-engineering on cirrus clouds

    OpenAIRE

    M. Kuebbeler; U. Lohmann; J. Feichter

    2012-01-01

    Cooling the Earth through the injection of sulphate into the stratosphere is one of the most discussed geo-engineering (GE) schemes. Stratospheric aerosols can sediment into the troposphere, modify the aerosol composition and thus might impact cirrus clouds. We use a global climate model with a physically based parametrization for cirrus clouds in order to investigate possible microphysical and dynamical effects. We find that enhanced stratospheric aerosol loadings as proposed by several GE a...

  3. Characterization of particulate products for aging of ethylbenzene secondary organic aerosol in the presence of ammonium sulfate seed aerosol.

    Science.gov (United States)

    Huang, Mingqiang; Zhang, Jiahui; Cai, Shunyou; Liao, Yingmin; Zhao, Weixiong; Hu, Changjin; Gu, Xuejun; Fang, Li; Zhang, Weijun

    2016-09-01

    Aging of secondary organic aerosol (SOA) particles formed from OH- initiated oxidation of ethylbenzene in the presence of high mass (100-300μg/m(3)) concentrations of (NH4)2SO4 seed aerosol was investigated in a home-made smog chamber in this study. The chemical composition of aged ethylbenzene SOA particles was measured using an aerosol laser time-of-flight mass spectrometer (ALTOFMS) coupled with a Fuzzy C-Means (FCM) clustering algorithm. Experimental results showed that nitrophenol, ethyl-nitrophenol, 2,4-dinitrophenol, methyl glyoxylic acid, 5-ethyl-6-oxo-2,4-hexadienoic acid, 2-ethyl-2,4-hexadiendioic acid, 2,3-dihydroxy-5-ethyl-6-oxo-4-hexenoic acid, 1H-imidazole, hydrated N-glyoxal substituted 1H-imidazole, hydrated glyoxal dimer substituted imidazole, 1H-imidazole-2-carbaldehyde, N-glyoxal substituted hydrated 1H-imidazole-2-carbaldehyde and high-molecular-weight (HMW) components were the predominant products in the aged particles. Compared to the previous aromatic SOA aging studies, imidazole compounds, which can absorb solar radiation effectively, were newly detected in aged ethylbenzene SOA in the presence of high concentrations of (NH4)2SO4 seed aerosol. These findings provide new information for discussing aromatic SOA aging mechanisms. PMID:27593289

  4. Effects of stratospheric sulfate aerosol geo-engineering on cirrus clouds

    Science.gov (United States)

    Kuebbeler, Miriam; Lohmann, Ulrike; Feichter, Johann

    2012-12-01

    Cooling the Earth through the injection of sulphate into the stratosphere is one of the most discussed geo-engineering (GE) schemes. Stratospheric aerosols can sediment into the troposphere, modify the aerosol composition and thus might impact cirrus clouds. We use a global climate model with a physically based parametrization for cirrus clouds in order to investigate possible microphysical and dynamical effects. We find that enhanced stratospheric aerosol loadings as proposed by several GE approaches will likely lead to a reduced ice crystal nucleation rate and thus optically thinner cirrus clouds. These optically thinner cirrus clouds exert a strong negative cloud forcing in the long-wave which contributes by 60% to the overall net GE forcing. This shows that indirect effects of stratospheric aerosols on cirrus clouds may be important and need to be considered in order to estimate the maximum cooling derived from stratospheric GE.

  5. Arrival of Sulfate Aerosols from Iceland's Laki Eruption (1783-1784 AD) to the Greenland Ice Sheet: A Critical Ice Core Dating Tool

    Science.gov (United States)

    Wei, L.; Mosley-Thompson, E.

    2006-12-01

    The Laki (Iceland) volcanic event was a basaltic flood lava eruption lasting from June 8, 1783 to February 7, 1784. The timing of the arrival of the sulfate aerosols and volcanic fragments to the Greenland Ice Sheet (GIS) remains uncertain, but is important to confirm as the highly conductive sulfate layer has been consistently used as a time stratigraphic marker (1783 AD) in ice cores collected across Greenland. However, in the GISP2 ice core a few glass shards were found within the annual layer lying just below that containing the sulfate aerosols from Laki suggesting that the ash arrived first, in 1783, while the aerosols arrived the following year [Fiacco et al., 1994]. Additional published ice core results have neither confirmed nor refuted this observation. We have taken advantage of the accurately dated, high temporal resolution ice cores collected by PARCA (Program for Arctic Regional Climate Assessment) to (1) determine more precisely the timing of the arrival of Laki's sulfate aerosols and (2) assess the spatial variability of the excess sulfate contributed by Laki to the GIS. Our results indicate that the sulfate emitted from the Laki eruption most likely arrived on the GIS in the late summer or early fall of 1783 AD. This is also supported by contemporary weather logs and official reports of the appearance of Laki haze [Thordarson and Self, 2003]. The flux of Laki sulfate varies significantly over the GIS, largely as a function of the regional annual accumulation rate. Laki sulfate aerosols also arrived as a single pulse in most of the PARCA cores, suggesting that only a small fraction of the gases emitted from Laki reached the stratosphere. References: Fiacco, R.J.,et al., Atmospheric aerosol loading and transport due to the 1783-84 Laki eruption in Iceland, interpreted from ash particles and acidity in the GISP2 ice core, Quat. Res., 42, 231-240, 1994. Thordarson, T, and S. Self, Atmospheric and environmental effects of the 1783-1784 Laki eruption: A

  6. The effect of anthropogenic sulfate aerosols on marine cloud droplet concentrations

    OpenAIRE

    Novakov, T.; RIVERA-CARPIO, C.; Penner, J. E.; Rogers, C.F.

    2011-01-01

    Nonseasalt sulfate (nss SO42-) mass concentrations, cloud condensation nuclei (CCN) number concentrations, and cloud droplet concentrations in warm cumulus and stratocumulus clouds were simultaneously measured in situ in marine air masses on El Yunque peak in Puerto Rico. Our results show that CNN number concentrations (measured at 0.5% supersaturation) and nss SO42- mass concentrations (in the range of ∼ 400–1700 ng m-3) are significantly correlated at this site. Droplet concentrations in th...

  7. A study of uncertainties in the sulfate distribution and its radiative forcing associated with sulfur chemistry in a global aerosol model

    Directory of Open Access Journals (Sweden)

    D. Goto

    2011-11-01

    Full Text Available The direct radiative forcing by sulfate aerosols is still uncertain, mainly because the uncertainties are largely derived from differences in sulfate column burdens and its vertical distributions among global aerosol models. One possible reason for the large difference in the computed values is that the radiative forcing delicately depends on various simplifications of the sulfur processes made in the models. In this study, therefore, we investigated impacts of different parts of the sulfur chemistry module in a global aerosol model, SPRINTARS, on the sulfate distribution and its radiative forcing. Important studies were effects of simplified and more physical-based sulfur processes in terms of treatment of sulfur chemistry, oxidant chemistry, and dry deposition process of sulfur components. The results showed that the difference in the aqueous-phase sulfur chemistry among these treatments has the largest impact on the sulfate distribution. Introduction of all the improvements mentioned above brought the model values noticeably closer to in-situ measurements than those in the simplified methods used in the original SPRINTARS model. At the same time, these improvements also brought the computed sulfate column burdens and its vertical distributions into good agreement with other AEROCOM model values. The global annual mean radiative forcing due to the direct effect of anthropogenic sulfate aerosol was thus estimated to be −0.26 W m−2 (−0.30 W m−2 with a different SO2 inventory, whereas the original SPRINTARS model showed −0.18 W m−2 (−0.21 W m−2 with a different SO2 inventory. The magnitude of the difference between original and improved methods was approximately 50% of the uncertainty among estimates by the world's global aerosol models reported by the IPCC-AR4 assessment report. Findings in the present study, therefore, may suggest that the model differences in the

  8. Effects of NO{sub x} and SO{sub 2} injections by supersonic aviation on sulfate aerosol and ozone in the troposphere and stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Dyominov, I.G.; Zadorozhny, A.M. [Novosibirsk State Univ. (Russian Federation); Elansky, N.F. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Atmospheric Physics

    1997-12-31

    The impact of supersonic aviation on atmospheric ozone and sulfate aerosol is examined with the help of a two-dimensional dynamical/radiative/chemical model of ozonosphere including aerosol physics. For SO{sub 2} emissions from aircraft as gas, gas/particles (90%/10%) mix, and particles of 0.01 {mu}m radius the sulphate aerosol surface density at maximum of changes increases against its background value by {approx}50%, {approx}75%, and {approx}200%, respectively. This effect of SO{sub 2} emissions with insignificant NO{sub x} injection leads to a significant decrease of total ozone by 2015 in the entire atmosphere. For NO{sub x} emissions which are anticipated in future (EI(NO{sub x}) = 15) any kind of SO{sub 2} emission results in significant weakening of supersonic aviation impact on ozone layer in the Northern Hemisphere. (author) 14 refs.

  9. Alkali metal ionization detector

    Science.gov (United States)

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  10. Durability of Concrete Subjected to the Combined Action of Alkali-silica Reaction and Sulfate Attack%碱-硅酸反应和硫酸盐侵蚀复合作用下的混凝土耐久性

    Institute of Scientific and Technical Information of China (English)

    沈佳燕; 施韬; 杨杨

    2012-01-01

    碱-硅酸反应(ASR)和硫酸盐侵蚀是影响混凝土耐久性的两个重要因素.目前,对于单一因素作用下混凝土劣化过程的研究已有诸多报道,但关于混凝土在碱-硅酸反应和硫酸盐侵蚀复合作用下的损伤失效过程及机理研究却很少.本文介绍了近年来国内外在碱-硅酸反应和硫酸盐侵蚀方面的研究现状,主要阐述了它们各自的膨胀机理和抑制措施.在对Grattan等人试验中得到的膨胀数据、X射线衍射图和扫描电子显微镜图进行分析的基础上,讨论了混凝土在这两种因素复合作用下可能出现的膨胀值变化和强度变化,并提出有效的抑制措施.%Alkali-silica reaction (ASR) and sulfate attack are two of the most important problems on concrete durability. The deterioration of concrete under single destructive action have been broadly investigated, but the damage process and the corresponding mechanisms subjected to combined action of ASR and sulfate attack have rarely studied yet. This paper introduces the recent research progress in alkali-silica reaction and sulfate attack achieved home and abroad,and mainly describes the expanding mechanisms and inhibitive measures of each reaction. The probable changes of expansion and strength of concrete subjected to combined action of ASR and sulfate attack are discussed on the base of analyzing experimental results of expansion, X-Ray diffractogram and SEM micrograph by Grattan el al, and the effective inhibitive measures are also been proposed.

  11. Size distributions of aerosol sulfates and nitrates in Beijing during the 2008 Olympic Games: Impacts of pollution control measures and regional transport

    Science.gov (United States)

    Wang, Xinfeng; Wang, Tao; Pathak, Ravi Kant; Hallquist, Mattias; Gao, Xiaomei; Nie, Wei; Xue, Likun; Gao, Jian; Gao, Rui; Zhang, Qingzhu; Wang, Wenxing; Wang, Shulan; Chai, Fahe; Chen, Yizhen

    2013-03-01

    For the 2008 Olympic Games, drastic control measures were implemented on industrial and urban emissions of sulfur dioxide (SO2), nitrogen oxides (NO x ) and other pollutants to address the issues of poor air quality in Beijing. To investigate the effects of SO2 and NO x reductions on the particulate sulfate and nitrate concentrations as well as their size distributions, size-segregated aerosol samples were collected using micro-orifice uniform deposit impactors (MOUDIs) at urban and downwind rural sites in Beijing before and after full-scale controls. During the sampling period, the mass concentrations of fine particles (PM1.8) at the urban and rural sites were 94.0 and 85.9 μg m-3, respectively. More than 90% of the sulfates and ˜60% of nitrates formed as fine particles. Benefiting from the advantageous meteorological conditions and the source controls, sulfates were observed in rather low concentrations and primarily in condensation mode during the Olympics. The effects of the control measures were separately analyzed for the northerly and the southerly air-mass-dominated days to account for any bias. After the control measures were implemented, PM, sulfates, and nitrates were significantly reduced when the northerly air masses prevailed, with a higher percentage of reduction in larger particles. The droplet mode particles, which dominated the sulfates and nitrates before the controls were implemented, were remarkably reduced in mass concentration after the control measures were implemented. Nevertheless, when the polluted southerly air masses prevailed, the local source control measures in Beijing did not effectively reduce the ambient sulfate concentration due to the enormous regional contribution from the North China Plain.

  12. Size Distributions of Aerosol Sulfates and Nitrates in Beijing during the 2008 Olympic Games: Impacts of Pollution Control Measures and Regional Transport

    Institute of Scientific and Technical Information of China (English)

    WANG Xinfeng; WANG Tao; Ravi Kant PATHAK; Mattias HALLQUIST; GAO Xiaomei; NIE Wei; XUE Likun

    2013-01-01

    For the 2008 Olympic Games,drastic control measures were implemented on industrial and urban emissions of sulfur dioxide (SO2),nitrogen oxides (NOx) and other pollutants to address the issues of poor air quality in Beijing.To investigate the effects of SO2 and NOx reductions on the particulate sulfate and nitrate concentrations as well as their size distributions,size-segregated aerosol samples were collected using micro-orifice uniform deposit impactors (MOUDIs) at urban and downwind rural sites in Beijing before and after full-scale controls.During the sampling period,the mass concentrations of fine particles (PM1.8) at the urban and rural sites were 94.0 and 85.9 μg m-3,respectively.More than 90% of the sulfates and ~60%of nitrates formed as fine particles.Benefiting from the advantageous meteorological conditions and the source controls,sulfates were observed in rather low concentrations and primarily in condensation mode during the Olympics.The effects of the control measures were separately analyzed for the northerly and the southerly air-mass-dominated days to account for any bias.After the control measures were implemented,PM,sulfates,and nitrates were significantly reduced when the northerly air masses prevailed,with a higher percentage of reduction in larger particles.The droplet mode particles,which dominated the sulfates and nitrates before the controls were implemented,were remarkably reduced in mass concentration after the control measures were implemented.Nevertheless,when the polluted southerly air masses prevailed,the local source control measures in Beijing did not effectively reduce the ambient sulfate concentration due to the enormous regional contribution from the North China Plain.

  13. Organic aerosols

    International Nuclear Information System (INIS)

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN

  14. Utilization of sulfate additives in biomass combustion: fundamental and modeling aspects

    OpenAIRE

    Wu, Hao; Jespersen, Jacob Boll; Grell, Morten Nedergaard; Aho, Martti; Jappe Frandsen, Flemming; Glarborg, Peter

    2013-01-01

    Sulfates, such as ammonium sulfate, aluminum sulfate and ferric sulfate, are effective additives for converting the alkali chlorides released from biomass combustion to the less harmful alkali sulfates. Optimization of the use of these additives requires knowledge on their decomposition rate and product distribution under high temperature conditions. In the present work, the decomposition of ammonium sulfate, aluminum sulfate and ferric sulfate wasstudied respectively in a fast-heating rate t...

  15. Aerosol Formation during the Combustion of Straw with Addition of Sorbents

    DEFF Research Database (Denmark)

    Zeuthen, Frederik Jacob; Jensen, Peter Arendt; Jensen, Jørgen P.;

    2007-01-01

    experiments showed similar reductions to the ones found in full-scale. When feeding ammonium sulfate, the aerosol mass concentration increased as a result of the feeding method. The chemical compositions of the fine particles suggest that there is chemical equilibrium in the gas for the sulfation reaction at...... mixtures of clay minerals and consist mainly of the oxides from Fe, Al, and Si. The straw used was Danish wheat and seed grass. Measurements were also made with increased flow of primary air. The experiments showed between 46% and 70% reduction in particle mass concentrations when adding ammonium sulfate......, calcium phosphate, Bentonite, ICA5000, and clay. The addition of chalk increased the aerosol mass concentration by 24%. Experiments in a laminar flow aerosol condenser with the six sorbents were carried out in the laboratory using a synthetic flue gas to avoid fluctuations in the alkali feeding. These...

  16. Rare Isotope Insights into Supereruptions: Rare Sulfur and Triple Oxygen Isotope Geochemistry of Stratospheric Sulfate Aerosols Absorbed on Volcanic Ash Particles

    Science.gov (United States)

    Bindeman, I. N.; Eiler, J.; Wing, B.; Farquhar, J.

    2006-12-01

    We present analyses of stable isotopic ratios of 17O/16O, 18O/16O, 34S/32S, and 33S/32S, 36S/32S of sulfate leached from volcanic ash of a series of well-known volcanic eruptions. This list covers much of the diversity of sizes and the character of volcanic eruptions. Particular emphasis is paid to the Lava Creek Tuff of Yellowstone and we present wide geographic sample coverage for this unit. This global dataset spans a significant range in δ34S, δ18O, and Δ17O of sulfate (29, 30 and 3.3 permil respectively) with oxygen isotopes recording mass-independent fractionation and sulfur isotopes exhibiting mass-dependent behavior. These ranges are defined by the isotopic compositions of products of large caldera forming eruptions. Proximal ignimbrites and coarse ash typically do not contain sulfate. The presence of sulfate with Δ17O > 0.2 permil is characteristic of small distal ash particles, suggesting that sulfate aerosols were scavenged after they underwent atmospheric photochemical reactions. Additionally, sediments that embed ash layers either do not contain sulfate or contain minor sulfate with Δ17O near 0 permil, suggesting that the observed sulfate in ash is of volcanic origin. Mass-dependent sulfur isotopic compositions suggest that sulfate-forming reactions did not involve photolysis of SO2, unlike the situation inferred for some pre-2.3 Ga sulfates or hypothesized to occur during the formation of sulfate associated with plinian eruptions that pierce the ozone layer. However, sulfate in the products of caldera-forming eruptions display a large δ34S range and fractionation relationships that do not follow equilibrium slopes of 0.515 and 1.90 for 33S/32S vs. 34S/32S and 36S/32S vs. 34S/32S, respectively. This implies that the sulfur isotopic characteristics of these sulfates were not set by a single stage, high-temperature equilibrium process in the volcanic plum. The data presented here are consistent with a single stage kinetic fractionation of sulfur

  17. Stratospheric sulfate from the Gareloi eruption, 1980: Contribution to the ''ambient'' aerosol by a poorly documented volcanic eruption

    International Nuclear Information System (INIS)

    While sampling stratospheric aerosols during July--August 1980 a plume of ''fresh'' volcanic debris was observed in the Northern hemisphere. The origin of this material seems to be a poorly documented explosive eruption of Gareloi valcano in the Aleutian Islands. The debris was sampled at an altitude of 19.2 km: almost twice the height of observed eruption clouds. Such remote, unobserved or poorly documented eruptions may be a source that helps maintain the ''ambient'' stratospheric aerosol background

  18. Sulfate-nitrate-ammonium aerosols over China: response to 2000–2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2013-03-01

    Full Text Available We use a chemical transport model to examine the change of sulfate-nitrate-ammonium (SNA aerosols over China due to anthropogenic emission changes of their precursors (SO2, NOx and NH3 from 2000 to 2015. From 2000 to 2006, annual mean SNA concentrations increased by about 60% over China as a result of the 60% and 80% increases in SO2 and NOx emissions. During this period, sulfate is the dominant component of SNA over South China (SC and Sichuan Basin (SCB, while nitrate and sulfate contribute equally over North China (NC. Based on emission reduction targets in the 12th (2011–2015 Five-Year Plan (FYP, China's total SO2 and NOx emissions are projected to change by −16% and +16% from 2006 to 2015, respectively. The amount of NH3 emissions in 2015 is uncertain, given the lack of sufficient information on the past and present levels of NH3 emissions in China. With no change in NH3 emissions, SNA mass concentrations in 2015 will decrease over SCB and SC compared to their 2006 levels, but increase over NC where the magnitude of nitrate increase exceeds that of sulfate reduction. This suggests that the SO2 emission reduction target set by the 12th FYP, although effective in reducing SNA over SC and SCB, will not be successful over NC, for which NOx emission control needs to be strengthened. If NH3 emissions are allowed to keep their recent growth rate and increase by +16% from 2006 to 2015, the benefit of SO2 reduction will be completely offset over all of China due to the significant increase of nitrate, demonstrating the critical role of NH3 in regulating nitrate. The effective strategy to control SNA and hence PM2.5 pollution over China should thus be based on improving understanding of current NH3 emissions and putting more emphasis on controlling NH3 emissions in the future.

  19. Post-flame gas-phase sulfation of potassium chloride

    DEFF Research Database (Denmark)

    Li, Bo; Sun, Zhiwei; Li, Zhongshan;

    2013-01-01

    homogeneous systems are required to characterize the gas-phase formation of alkali sulfates. We have measured the temperature and gas-phase concentrations of KCl and HCl, and detected the presence of aerosols in the post-flame region of a range of hydrocarbon flames seeded with KCl, with and without the...... addition of SO2. Dilution of the flame products with different amounts of N2 ensured post-flame temperatures in the range 950–1400K. In the absence of SO2, KCl levels were constant in the post-flame zone and no aerosols were formed, even at the lowest temperatures. In the presence of SO2, KCl was consumed...... and HCl and aerosols formed, most pronounced in flames with the lowest post-flame temperatures. This shows that KCl is sulfated in the gas phase to K2SO4, and this is followed by homogeneous nucleation of K2SO4 to form aerosols. Predictions from a kinetic model of the S/Cl/K chemistry agreed well with...

  20. Simulations of Sulfate-Nitrate-Ammonium (SNA) aerosols during the extreme haze events over Northern China in 2014

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dan; Liu, Zhiquan; Fast, Jerome D.; Ban, Junmei

    2016-08-30

    Extreme haze events have occurred frequently over China in recent years. Although many studies have investigated the formation mechanisms associated with PM2.5 for heavily polluted regions in China based on observational data, adequately predicting peak PM2.5 concentrations is still challenging for regional air quality models. In this study, we evaluate the performance of one configuration of the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) and use the model to investigate the sensitivity of heterogeneous reactions on simulated peak sulfate, nitrate, and ammonium concentrations in the vicinity of Beijing during four extreme haze episodes in October 2014 over the North China Plain. The highest observed PM2.5 concentration of 469 μg m-3 occurred in Beijing. Comparisons with observations show that the model reproduced the temporal variability in PM2.5 with the highest PM2.5 values on polluted days (defined as days in which observed PM2.5 is greater than 75 μg m-3), but predictions of sulfate, nitrate, and ammonium were too low on days with the highest observed concentrations. Observational data indicate that the sulfur/nitric oxidation rates are strongly correlated with relative humidity during periods of peak PM2.5; however, the model failed to reproduce the highest PM2.5 concentrations due to missing heterogeneous reactions. As the parameterizations of those reactions is not well established yet, estimates of SO2-to-H2SO4 and NO2/NO3-to-HNO3 reaction rates that depend on relative humidity were applied which improved the simulation of sulfate, nitrate, and ammonium enhancement on polluted days in terms of both concentrations and partitioning among those species. Sensitivity simulations showed that the extremely high heterogeneous reaction rates and also higher emission rates than those reported in the emission inventory

  1. Ion partitioning at the liquid/vapor interface of a multicomponent alkali halide solution: A model for aqueous sea salt aerosols

    Czech Academy of Sciences Publication Activity Database

    Ghosal, S.; Brown, M. A.; Bluhm, H.; Krisch, M. J.; Salmeron, M.; Jungwirth, Pavel; Hemminger, J. C.

    2008-01-01

    Roč. 112, č. 48 (2008), s. 12378-12384. ISSN 1089-5639 R&D Projects: GA ČR GA203/07/1006; GA MŠk LC512 Grant ostatní: NSF(US) CHE0431312 Institutional research plan: CEZ:AV0Z40550506 Keywords : photoelectron spectroscopy * molecular dynamics * water surface * alkali halides Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.871, year: 2008

  2. Chemical composition and characteristics of ambient aerosols and rainwater residues during Indian summer monsoon: Insight from aerosol mass spectrometry

    Science.gov (United States)

    Chakraborty, Abhishek; Gupta, Tarun; Tripathi, Sachchida N.

    2016-07-01

    Real time composition of non-refractory submicron aerosol (NR-PM1) is measured via Aerosol mass spectrometer (AMS) for the first time during Indian summer monsoon at Kanpur, a polluted urban location located at the heart of Indo Gangetic Plain (IGP). Submicron aerosols are found to be dominated by organics followed by nitrate. Source apportionment of organic aerosols (OA) via positive matrix factorization (PMF) revealed several types of secondary/oxidized and primary organic aerosols. On average, OA are completely dominated by oxidized OA with a very little contribution from biomass burning OA. During rain events, PM1 concentration is decreased almost by 60%, but its composition remains nearly the same. Oxidized OA showed slightly more decrease than primary OAs, probably due to their higher hygroscopicity. The presence of organo nitrates (ON) is also detected in ambient aerosols. Apart from real-time sampling, collected fog and rainwater samples were also analyzed via AMS in offline mode and in the ICP-OES (Inductively coupled plasma - Optical emission spectrometry) for elements. The presence of sea salt, organo nitrates and sulfates has been observed. Rainwater residues are also dominated by organics but their O/C ratios are 15-20% lower than the observed values for ambient OA. Alkali metals such as Ca, Na, K are found to be most abundant in the rainwater followed by Zn. Rainwater residues are also found to be much less oxidized than the aerosols present inside the fog water, indicating presence of less oxidized organics. These findings indicate that rain can act as an effective scavenger of different types of pollutants even for submicron particle range. Rainwater residues also contain organo sulfates which indicate that some portion of the dissolved aerosols has undergone aqueous processing, possibly inside the cloud. Highly oxidized and possibly hygroscopic OA during monsoon period compared to other seasons (winter, post monsoon), indicates that they can act

  3. Chondroitin sulfate

    Science.gov (United States)

    ... in combination with glucosamine sulfate, shark cartilage, and camphor. Some people also inject chondroitin sulfate into the ... in combination with glucosamine sulfate, shark cartilage, and camphor seems to reduce arthritis symptoms. However, any symptom ...

  4. Fractionation of sulfur isotopes during heterogeneous oxidation of SO2 on sea salt aerosol: a new tool to investigate non-sea salt sulfate production in the marine boundary layer

    Directory of Open Access Journals (Sweden)

    S. Borrmann

    2012-05-01

    Full Text Available The oxidation of SO2 to sulfate on sea salt aerosols in the marine environment is highly important because of its effect on the size distribution of sulfate and the potential for new particle nucleation from H2SO4 (g. However, models of the sulfur cycle are not currently able to account for the complex relationship between particle size, alkalinity, oxidation pathway and rate – which is critical as SO2 oxidation by O3 and Cl catalysis are limited by aerosol alkalinity, whereas oxidation by hypohalous acids and transition metal ions can continue at low pH once alkalinity is titrated. We have measured 34S/32S fractionation factors for SO2 oxidation in sea salt, pure water and NaOCl aerosol, as well as the pH dependency of fractionation. Oxidation of SO2 by NaOCl aerosol was extremely efficient, with a reactive uptake coefficient of ≈0.5, and produced sulfate that was enriched in 32S with αOCl = 0.9882±0.0036 at 19 °C. Oxidation on sea salt aerosol was much less efficient than on NaOCl aerosol, suggesting alkalinity was already exhausted on the short timescale of the experiments. Measurements at pH = 2.1 and 7.2 were used to calculate fractionation factors for each step from SO2(g → multiple steps → SOOCl2−. Oxidation on sea salt aerosol resulted in a lower fractionation factor than expected for oxidation of SO32− by O3 (αseasalt = 1.0124±0.0017 at 19 °C. Comparison of the lower fractionation during oxidation on sea salt aerosol to the fractionation factor for high pH oxidation shows HOCl contributed 29% of S(IV oxidation on sea salt in the short experimental timescale, highlighting the potential importance of hypohalous acids in the marine environment. The sulfur isotope fractionation factors measured in this study allow differentiation between the alkalinity-limited pathways – oxidation by O3 and by Cl catalysis (α34 = 1.0163±0.0018 at 19 °C in pure water or 1.0199±0.0024 at pH = 7.2 – which favour the heavy isotope, and

  5. The healing of alkali-injured cornea is stimulated by a novel matrix regenerating agent (RGTA, CACICOL20) – a biopolymer mimicking heparan sulfates reducing proteolytic, oxidative and nitrosative damage

    Czech Academy of Sciences Publication Activity Database

    Čejková, Jitka; Olmiere, C.; Čejka, Čestmír; Trošan, Peter; Holáň, Vladimír

    2014-01-01

    Roč. 29, č. 4 (2014), s. 457-478. ISSN 0213-3911 R&D Projects: GA ČR GAP304/11/0653 Institutional research plan: CEZ:AV0Z50390512 Institutional support: RVO:68378041 Keywords : RGTA * alkali injury * corneal healing Subject RIV: FF - HEENT, Dentistry Impact factor: 2.236, year: 2013

  6. Development of a new corona discharge based ion source for high resolution time-of-flight chemical ionization mass spectrometer to measure gaseous H2SO4 and aerosol sulfate

    Science.gov (United States)

    Zheng, Jun; Yang, Dongsen; Ma, Yan; Chen, Mindong; Cheng, Jin; Li, Shizheng; Wang, Ming

    2015-10-01

    A new corona discharge (CD) based ion source was developed for a commercial high-resolution time-of-flight chemical ionization mass spectrometer (HRToF-CIMS) (Aerodyne Research Inc.) to measure both gaseous sulfuric acid (H2SO4) and aerosol sulfate after thermal desorption. Nitrate core ions (NO3-) were used as reagent ions and were generated by a negative discharge in zero air followed by addition of excess nitrogen dioxide (NO2) to convert primary ions and hydroxyl radicals (OH) into NO3- ions and nitric acid (HNO3). The CD-HRToF-CIMS showed no detectable interference from hundreds parts per billion by volume (ppbv) of sulfur dioxide (SO2). Unlike the atmospheric pressure ionization (API) ToF-CIMS, the CD ion source was integrated onto the ion-molecule reaction (IMR) chamber and which made it possible to measure aerosol sulfate by coupling to a filter inlet for gases and aerosols (FIGAERO). Moreover, compared with a quadrupole-based mass spectrometer, the desired HSO4- signal was detected by its exact mass of m/z 96.960, which was well resolved from the potential interferences of HCO3-ṡ(H2O)2 (m/z 97.014) and O-ṡH2OṡHNO3 (m/z 97.002). In this work, using laboratory-generated standards the CD-HRToF-CIMS was demonstrated to be able to detect as low as 3.1 × 105 molecules cm-3 gaseous H2SO4 and 0.5 μg m-3 ammonium sulfate based on 10-s integration time and two times of the baseline noise. The CD ion source had the advantages of low cost and a simple but robust structure. Since the system was non-radioactive and did not require corrosive HNO3 gas, it can be readily field deployed. The CD-HRToF-CIMS can be a powerful tool for both field and laboratory studies of aerosol formation mechanism and the chemical processes that were critical to understand the evolution of aerosols in the atmosphere.

  7. Milk-alkali syndrome

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000332.htm Milk-alkali syndrome To use the sharing features on this page, please enable JavaScript. Milk-alkali syndrome is a condition in which there ...

  8. Fine ash morphology and aerosol formation: A comparison of coal and biomass fuels

    Science.gov (United States)

    Chenevert, Blake Charles

    1998-12-01

    Modeling and experimental methods were used to investigate ash formation mechanisms of four industrially significant high-alkali biomass (sawdust/sanderdust) fuels. Alkali minerals tend to vaporize and recondense to form sub-micron aerosol, which poses health risks and causes special operational problems for industrial combustors. Sawdust/sanderdust was burned in a 15 kW natural gas-fired tunnel furnace. The resulting ash was collected by a water-cooled probe, and size sorted by cascade impaction and Electrical Aerosol Size Analysis. Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy techniques were used to determine morphology and composition by size cut. Three ash modes were present: (1) A residual mode composed primarily of porous calcium structures with a scale length of 8 microns and larger. This mode was likely the result of direct oxide and carbonate formation. (2) A secondary residual mode near 2 microns composed of fluxed and fragmented calcium, but also containing significant amounts of Si, Fe, Mn and Al. This mode appeared to be composed of eutectic melts separated from the parent ash particle. (3) An aerosol mode composed of Na and K with Cl anion, or sulfate anion when Cl was not present. The aerosol mode diameter was found to be a function of initial nucleate number density and coagulation time. Long coagulation time or high initial number density resulted in an aerosol mode diameter near 0.1 micron. Modeling was composed of three elements: (1) Equilibrium modeling---These calculations validated experimental evidence for alkali vaporization and condensation, predicting all alkali to enter the vapor phase as NaCl or KCl when Cl is available, or NaOH and KOH otherwise. (2) Condensation modeling---This model was used to determine the partitioning of alkali metal between homogeneous particulate matter formation (self-nucleation) and deposition on existing residual particles. It was shown that vaporized alkali can be collected on the

  9. Sensitivity of high-spectral resolution and broadband thermal infrared nadir instruments to the chemical and microphysical properties of secondary sulfate aerosols in the upper-troposphere/lower-stratosphere

    Science.gov (United States)

    Sellitto, Pasquale; Legras, Bernard

    2016-04-01

    The observation of upper-tropospheric/lower-stratospheric (UTLS) secondary sulfate aerosols (SSA) and their chemical and microphysical properties from satellite nadir observations (with better spatial resolution than limb observations) is a fundamental tool to better understand their formation and evolution processes and then to estimate their impact on UTLS chemistry, and on regional and global radiative balance. Thermal infrared (TIR) observations are sensitive to the chemical composition of the aerosols due to the strong spectral variations of the imaginary part of the refractive index in this band and, correspondingly, of the absorption, as a function of the composition Then, these observations are, in principle, well adapted to detect and characterize UTLS SSA. Unfortunately, the exploitation of nadir TIR observations for sulfate aerosol layer monitoring is today very limited. Here we present a study aimed at the evaluation of the sensitivity of TIR satellite nadir observations to the chemical composition and the size distribution of idealised UTLS SSA layers. The sulfate aerosol particles are assumed as binary systems of sulfuric acid/water solution droplets, with varying sulphuric acid mixing ratios. The extinction properties of the SSA, for different sulfuric acid mixing ratios and temperatures, are systematically analysed. The extinction coefficients are derived by means of a Mie code, using refractive indices taken from the GEISA (Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. High-spectral resolution pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the extinction of idealised aerosol layers, at typical UTLS conditions, on

  10. Effect of nitrate and sulfate relative abundance in PM2.5 on liquid water content explored through half-hourly observations of inorganic soluble aerosols at a polluted receptor site

    Science.gov (United States)

    Xue, Jian; Griffith, Stephen M.; Yu, Xin; Lau, Alexis K. H.; Yu, Jian Zhen

    2014-12-01

    Liquid water content (LWC) is the amount of liquid water on aerosols. It contributes to visibility degradation, provides a surface for gas condensation, and acts as a medium for heterogeneous gas/particle reactions. In this study, 520 half-hourly measurements of ionic chemical composition in PM2.5 at a receptor site in Hong Kong are used to investigate the dependence of LWC on ionic chemical composition, particularly on the relative abundance of sulfate and nitrate. LWC was estimated using a thermodynamic model (AIM-III). Within this data set of PM2.5 ionic compositions, LWC was highly correlated with the multivariate combination of sulfate and nitrate concentrations and RH (R2 = 0.90). The empirical linear regression result indicates that LWC is more sensitive to nitrate mass than sulfate. During a nitrate episode, the highest LWC (80.6 ± 17.9 μg m-3) was observed and the level was 70% higher than that during a sulfate episode despite a similar ionic PM2.5 mass concentration. A series of sensitivity tests were conducted to study LWC change as a function of the relative nitrate and sulfate abundance, the trend of which is expected to shift to more nitrate in China as a result of SO2 reduction and increase in NOx emission. Starting from a base case that uses the average of measured PM2.5 ionic chemical composition (63% SO42-, 11% NO3-, 19% NH4+, and 7% other ions) and an ionic equivalence ratio, [NH4+]/(2[SO42-] + [NO3-]), set constant to 0.72, the results show LWC would increase by 204% at RH = 40% when 50% of the SO42- is replaced by NO3- mass concentration. This is largely due to inhibition of (NH4)3H(SO4)2 crystallization while PM2.5 ionic species persist in the aqueous phase. At RH = 90%, LWC would increase by 12% when 50% of the SO42- is replaced by NO3- mass concentration. The results of this study highlight the important implications to aerosol chemistry and visibility degradation associated with LWC as a result of a shift in PM2.5 ionic chemical

  11. Barium Sulfate

    Science.gov (United States)

    Barium sulfate is used to help doctors examine the esophagus (tube that connects the mouth and stomach), ... dimensional pictures of the inside of the body). Barium sulfate is in a class of medications called ...

  12. Glucosamine sulfate

    Science.gov (United States)

    ... to control arthritis pain. These creams usually contain camphor and other ingredients in addition to glucosamine. Glucosamine ... in combination with chondroitin sulfate, shark cartilage, and camphor for up to 8 weeks. Glucosamine sulfate can ...

  13. Method of alkali solution concentration at electrochemical processing of eluates containing sodium salts

    OpenAIRE

    Трус, Інна Миколаївна; Гомеля, Микола Дмитрович; Радовенчик, Ярослав Вячеславович

    2013-01-01

    The paper gives the results of electrochemical concentration of alkali solutions, produced by electrolysis of sodium chloride or sodium sulfate. It was found that using two-chambered electrolyzer, the interelectrode space of which is separated by MK-40 membrane, allows increasing alkali concentration from 0.1-1.0D to 13D. It is shown that with anolyte alkalinity>0.1D alkali concentration in the anode region has little effect on electrolysis efficiency. Concentration is effective with alkal...

  14. Stratospheric sulfate from the Gareloi eruption, 1980: Contribution to the ''ambient'' aerosol by a poorly documented volcanic eruption

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, W.A.; Mroz, E.J.; Heiken, G.

    1981-07-01

    While sampling stratospheric aerosols during July--August 1980 a plume of ''fresh'' volcanic debris was observed in the Northern hemisphere. The origin of this material seems to be a poorly documented explosive eruption of Gareloi valcano in the Aleutian Islands. The debris was sampled at an altitude of 19.2 km: almost twice the height of observed eruption clouds. Such remote, unobserved or poorly documented eruptions may be a source that helps maintain the ''ambient'' stratospheric aerosol background.

  15. Lagrangian Sampling of 3-D Air Quality Model Results for Regional Transport Contributions to Sulfate Aerosol Concentrations at Baltimore, MD in Summer of 2004

    Science.gov (United States)

    The Lagrangian method provides estimates of the chemical and physical evolution of air arriving in the daytime boundary layer at Baltimore. Study results indicate a dominant role for regional transport contributions of those days when sulfate air pollution is highest in Baltimor...

  16. Utilization of sulfate additives in biomass combustion: fundamental and modeling aspects

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Grell, Morten Nedergaard;

    2013-01-01

    Sulfates, such as ammonium sulfate, aluminum sulfate and ferric sulfate, are effective additives for converting the alkali chlorides released from biomass combustion to the less harmful alkali sulfates. Optimization of the use of these additives requires knowledge on their decomposition rate and...... from the decomposition were investigated experimentally in a tube reactor under different conditions, revealing that the ratio of the SO3/SO2 released varied for different sulfate and the ratio could be influenced by the decomposition temperature. The proposed decomposition model of ferric sulfate was...... elemental sulfur were used as additives. The results indicated that the SO3 released from ferric sulfate decomposition was the main contributor to KCl sulfation and that the effectiveness of ferric sulfate addition was sensitive to the applied temperature conditions. Comparison of the effectiveness of...

  17. Observation of attachment ratio of fission products on solution aerosol

    International Nuclear Information System (INIS)

    Attachment behavior of fission products to solution aerosols has been observed to elucidate the role of chemical effects in the generation mechanism of fissionproduct aerosols. Primary aerosols generated from aqueous solution of sodium chloride or ammonium sulfate were passed through a fission-product chamber, and radioactive aerosols were generated by attaching fission products to the primary aerosol particles. Attachment ratios of the fission products on aerosols were estimated from activity measurements. It was found that the attachment ratio of the sodium chloride solution aerosol is larger than that of the ammonium sulfate solution aerosol. (author)

  18. The relationship between aerosol and cloud drop number concentrations in a global aerosol microphysics model

    OpenAIRE

    Pringle, K. J.; Carslaw, K. S.; D. V. Spracklen; Mann, G. M.; M. P. Chipperfield

    2009-01-01

    Empirical relationships that link cloud droplet number (CDN) to aerosol number or mass are commonly used to calculate global fields of CDN for climate forcing assessments. In this work we use a sectional global model of sulfate and sea-salt aerosol coupled to a mechanistic aerosol activation scheme to explore the limitations of this approach. We find that a given aerosol number concentration produces a wide range of CDN concentrations due to variations in the shape of the aerosol size distrib...

  19. Effect of magnesium sulfate aerosol inhalation on children asthma: a Meta-analysis%硫酸镁雾化吸入对儿童哮喘发作治疗作用的Meta分析

    Institute of Scientific and Technical Information of China (English)

    刘原虎; 韩书婧; 初平; 鲁洁; 金雅琼; 郭永丽

    2014-01-01

    Objective To assess the efficacy of magnesium sulfate for aerosol inhalation in treatment of children asthma exacerbations.Methods All relevant randomized eontrolled clinical trials (RCT) with isotonic magnesium sulphate and saline for inhaled salbutamol in treatment of children asthma exacerbations were searched with the key words of asthma,salbutamol and magnesium sulfate.A Meta-analysis was performed to evaluate the result of the magnesium sulfate.Results Four relevant RCTs from literatures were collected and totally 857 cases were included for analysis.The Meta-analysis indicated that the improvements were obtained from isotonic magnesium sulfate as a vehicle for nebulized salbutamol,in comparison with only magnesium sulfate[pooled standardized mean difference(SMD) =0.31,95% confidence interval:0.06-0.57,P < 0.05].The occurrence of adverse reactions of children asthma exacerbation were not statistically reduced among inpatients using magnesium sulfate as a vehicle for nebulized salbutamol and only using magnesium sulfate[pooled relative risk =0.97,95% CI:0.68-1.40,P > 0.05].Analysis of publication bias between the various research found that among the obvious publication bias (Z =2.47,P < 0.001).Conclusions Compared with only magnesium sulfate,the use of isotonic magnesium sulfate as an adjuvant to nebulize salbutamol is a good therapy with improving pulmonary function in the children asthma exacerbation.The safety of the therapy needs further research assessment.%目的 评价硫酸镁雾化吸入在儿童哮喘急性发作治疗中的疗效.方法 通过对中国期刊数据库(CNKI)、中国科技期刊数据库(VIP)、万方数据库进行系统检索,以“硫酸镁”“沙丁胺醇”和“哮喘”作为检索词,收集发表的所有硫酸镁雾化治疗儿童哮喘急性发作研究的文献.对已发表的比较单独硫酸镁溶液雾化和以硫酸镁溶液为溶媒吸入沙丁胺醇对儿童哮喘急性发作疗效的临床随机对照

  20. Alkalis and Skin.

    Science.gov (United States)

    Greenwood, John E; Tan, Jin Lin; Ming, Justin Choong Tzen; Abell, Andrew D

    2016-01-01

    The aim of this editorial is to provide an overview of the chemical interactions occurring in the skin of our patients on contact with alkaline agents. Strongly basic alkali is highly aggressive and will readily hydrolyze (or cleave) key biological molecules such as lipids and proteins. This phenomenon is known as saponification in the case of lipids and liquefactive denaturation for peptides and proteins. A short section on current first-aid concepts is included. A better understanding of the basic science behind alkali burns will make us better teachers and provide an insight into the urgency needed in treating these common and dangerous chemical injuries. PMID:26182072

  1. Methods of recovering alkali metals

    Science.gov (United States)

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  2. Spectra of alkali atoms

    International Nuclear Information System (INIS)

    Emission spectra of alkali atoms has been determined by using spectrometer at the ultraviolet to infra red waves range. The spectra emission can be obtained by absorption spectrophotometric analysis. Comparative evaluations between experimental data and data handbook obtained by spark method were also presented. (author tr.)

  3. Natural aerosol direct and indirect radiative effects

    OpenAIRE

    Rap, Alexandru; Scott, Catherine E.; Spracklen, Dominick V; Bellouin, Nicolas; Forster, Piers M.; Carslaw, Kenneth S.; Schmidt, Anja; Mann, Graham

    2013-01-01

    Natural aerosol plays a significant role in the Earth's system due to its ability to alter the radiative balance of the Earth. Here we use a global aerosol microphysics model together with a radiative transfer model to estimate radiative effects for five natural aerosol sources in the present-day atmosphere: dimethyl sulfide (DMS), sea-salt, volcanoes, monoterpenes, and wildfires. We calculate large annual global mean aerosol direct and cloud albedo effects especially for DMS-derived sulfate ...

  4. Barium Sulfate

    Science.gov (United States)

    ... using x-rays or computed tomography (CAT scan, CT scan; a type of body scan that uses ... be clearly seen by x-ray examination or CT scan. ... more times before an x-ray examination or CT scan.If you are using a barium sulfate ...

  5. Hydrothermal alkali metal recovery process

    Science.gov (United States)

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  6. Photophoretic levitation of engineered aerosols for geoengineering

    OpenAIRE

    Keith, David W.

    2010-01-01

    Aerosols could be injected into the upper atmosphere to engineer the climate by scattering incident sunlight so as to produce a cooling tendency that may mitigate the risks posed by the accumulation of greenhouse gases. Analysis of climate engineering has focused on sulfate aerosols. Here I examine the possibility that engineered nanoparticles could exploit photophoretic forces, enabling more control over particle distribution and lifetime than is possible with sulfates, perhaps allowing clim...

  7. Alkali Aggregate Reaction in Alkali Slag Cement Mortars

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By means of "Mortar Bar Method",the ratio of cement to aggregate was kept as a constant 1∶2.25,the water-cement ratio of the mixture was 0.40,and six prism specimens were prepared for each batch of mixing proportions with dimensions of 10×10×60mm3 at 38±2℃ and RH≥95%, the influences of content and particle size of active aggregate, sort and content of alkali component and type of slag on the expansion ratios of alkali-activated slag cement(ASC) mortars due to alkali aggregate reaction(AAR) were studied. According to atomic absorption spectrometry,the amount of free alkali was measured in ASC mortars at 90d.The results show above factors affect AAR remarkably,but no dangerous AAR will occur in ASC system when the amount of active aggregate is below 15% and the mass fraction of alkali is not more than 5% (Na2O).Alkali participated in reaction as an independent component, and some hydrates containing alkali cations were produced, free alkalis in ASC system can be reduced enormously.Moreover,slag is an effective inhibitor, the possibility of generating dangerous AAR in ASC system is much lower at same conditions than that in ordinary Portland cement system.

  8. Sulfation of Condensed Potassium Chloride by SO2

    DEFF Research Database (Denmark)

    Sengeløv, Louise With; Hansen, Troels Bruun; Bartolomé, Carmen; Wu, Hao; Pedersen, Kim H.; Jappe Frandsen, Flemming; Jensen, Anker Degn; Glarborg, Peter

    2013-01-01

    The interaction between alkali chloride and sulfur oxides has important implications for deposition and corrosion in combustion of biomass. In the present study, the sulfation of particulate KCl (90–125 μm) by SO2 was studied in a fixed bed reactor in the temperature range 673–1023 K and with rea...

  9. Natural Alkali Shifts to the Methanol Business

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Inner Mongolia Yuanxing Natural Alkali Co., Ltd. (Natural Alkali SZ: 000683) established in 1997 is a large chemical enterprise with new energy as its leading business and natural gas chemicals and natural alkali chemicals as the supplement business.

  10. Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC: CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment

    Directory of Open Access Journals (Sweden)

    D. Rose

    2007-06-01

    Full Text Available Experimental and theoretical uncertainties in the measurement of cloud condensation nuclei (CCN with a continuous-flow thermal-gradient CCN counter from Droplet Measurement Technologies (DMT-CCNC have been assessed by model calculations and calibration experiments with ammonium sulfate and sodium chloride aerosol particles in the diameter range of 20–220 nm. Experiments have been performed in the laboratory and during field measurement campaigns, extending over a period of more than one year and covering a wide range of operating conditions (650–1020 hPa ambient pressure, 0.5–1.0 L min−1 aerosol flow rate, 20–30°C inlet temperature, 4–34 K m−1 temperature gradient. For each set of conditions, the effective water vapor supersaturation (Seff in the CCNC was determined from the measured CCN activation spectra and Köhler model calculations.

    High measurement precision was achieved under stable laboratory conditions, where relative variations of Seff in the CCNC were generally less than ±2%. During field measurements, however, the relative variability increased up to ±5–7%, which can be mostly attributed to variations of the CCNC column top temperature with ambient temperature.

    To assess the accuracy of the Köhler models used to calculate Seff, we have performed a comprehensive comparison and uncertainty analysis of the various Köhler models and thermodynamic parameterizations commonly used in CCN studies. For the relevant supersaturation range (0.05–2%, the relative deviations between different modeling approaches were as high as 25% for (NH42SO4 and 16% for NaCl. The deviations were mostly caused by the different parameterizations for the activity of water in aqueous solutions of (NH42SO4 and NaCl (activity parameterization, osmotic coefficient, and van't Hoff

  11. Alkali metal and alkali earth metal gadolinium halide scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  12. Photothermal spectroscopy of aerosols

    International Nuclear Information System (INIS)

    In situ aerosol absorption spectroscopy was performed using two novel photothermal detection schemes. The first, based on a photorefractive effect and coherent detection, called phase fluctuation optical heterodyne (PFLOH) spectroscopy, could, depending on the geometry employed, yield particle specific or particle and gas absorption data. Single particles of graphite as small as 1 μm were detected in the particle specific mode. In another geometrical configuration, the total absorption (both gas and particle) of submicron sized aerosols of ammonium sulfate particles in equilibrium with gaseous ammonia and water vapor were measured at varying CO2 laser frequencies. The specific absorption coefficient for the sulfate ion was measured to be 0.5 m2/g at 1087 cm-1. The absorption coefficient sensitivity of this scheme was less than or equal to 10-8 cm-1. The second scheme is a hybrid visible Mie scattering scheme incorporating photothermal modulation. Particle specific data on ammonium sulfate droplets were obtained. For chemically identical species, the relative absorption spectrum versus laser frequency can be obtained for polydisperse aerosol distributions directly from the data without the need for complex inverse scattering calculations

  13. Susceptibility to bacterial pneumonia of animals exposed to sulfates

    Energy Technology Data Exchange (ETDEWEB)

    Ehrlich, R.; Findlay, J.C.; Gardner, D.E.

    1978-03-01

    Susceptibility of mice to respiratory infections caused by exposure to sulfate aerosols was investigated. Inhalation of zinc sulfate or zinc ammonium sulfate followed by a respiratory challenge with airborne Streptococcus pyogenes resulted in excess mortality and reduced survival time. Estimated concentration of ZnSO4 that caused 20% excess mortality was 1.45 mg/cu m, and of Zn(NH4)2(SO4)2 was 2.40 mg/cu m for the 3 h inhalation exposure. Studies were extended to include the effects of various sulfates emitted from mobile and stationary sources to streptococcal pneumonia. (2 graphs, 7 references, 1 table)

  14. Upgrading platform using alkali metals

    Science.gov (United States)

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  15. On the evaporation of ammonium sulfate solution

    Energy Technology Data Exchange (ETDEWEB)

    Drisdell, Walter S.; Saykally, Richard J.; Cohen, Ronald C.

    2009-07-16

    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 {+-} 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly.

  16. Chemical characterization of secondary organic aerosol constituents from isoprene ozonolysis in the presence of acidic aerosol

    Science.gov (United States)

    Riva, Matthieu; Budisulistiorini, Sri Hapsari; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.

    2016-04-01

    Isoprene is the most abundant non-methane hydrocarbon emitted into Earth's atmosphere and is predominantly derived from terrestrial vegetation. Prior studies have focused largely on the hydroxyl (OH) radical-initiated oxidation of isoprene and have demonstrated that highly oxidized compounds, such as isoprene-derived epoxides, enhance the formation of secondary organic aerosol (SOA) through heterogeneous (multiphase) reactions on acidified sulfate aerosol. However, studies on the impact of acidified sulfate aerosol on SOA formation from isoprene ozonolysis are lacking and the current work systematically examines this reaction. SOA was generated in an indoor smog chamber from isoprene ozonolysis under dark conditions in the presence of non-acidified or acidified sulfate seed aerosol. The effect of OH radicals on SOA chemical composition was investigated using diethyl ether as an OH radical scavenger. Aerosols were collected and chemically characterized by ultra performance liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS) and gas chromatography/electron impact ionization-mass spectrometry (GC/EI-MS). Analysis revealed the formation of highly oxidized compounds, including organosulfates (OSs) and 2-methylterols, which were significantly enhanced in the presence of acidified sulfate seed aerosol. OSs identified in the chamber experiments were also observed and quantified in summertime fine aerosol collected from two rural locations in the southeastern United States during the 2013 Southern Oxidant and Aerosol Study (SOAS).

  17. Effects of seed aerosols on the growth of secondary organic aerosols from the photooxidation of toluene

    Institute of Scientific and Technical Information of China (English)

    HAO Li-qing; WANG Zhen-ya; HUANG Ming-qiang; FANG Li; ZHANG Wei-jun

    2007-01-01

    Hydroxyl radical (·OH)-initiated photooxidation reaction of toluene was carried out in a self-made smog chamber. Four individual seed aerosols such as ammonium sulfate, ammonium nitrate, sodium silicate and calcium chloride, were introduced into the chamber to assess their influence on the growth of secondary organic aerosols (SOA). It was found that the low concentration of seed aerosols might lead to high concentration of SOA particles. Seed aerosols would promote rates of SOA formation at the start of the reaction and inhibit its formation rate with prolonging the reaction time. In the case of cv. 9000 pt/cm3 seed aerosol load, the addition of sodium silicate induced a same effect on the SOA formation as ammonium nitrate. The influence of the four individual seed aerosols on the generation of SOA increased in the order of calcium chloride>sodium silicate and ammonium nitrate> ammonium sulfate.

  18. Ultraviolet optical absorption of alkali cyanides and alkali halide cyanides

    International Nuclear Information System (INIS)

    The ultraviolet absorption spectra of alkali cyanide and mixed alkali halide cyanide crystals were measured at temperatures ranging from 300K down to 4.2K. A set of small absorption peaks was observed at energies near 6 eV and assigned to parity forbidden X1Σ+→a'3Σ+ transitions of the CN- molecular ions. It was observed that the peak position depends on the alkali atom while the absorption cross section strongly depends on the halogen and on the CN- concentration of the mixed crystals. These effects are explained in terms of an interaction between the triplet molecular excitons and charge transfer excitons. The experimental data were fit with a coupling energy of a few meV. The coupling mechanism is discussed and it is found to be due to the overlap between the wave functions of the two excitations. (Author)

  19. The boiling point of stratospheric aerosols.

    Science.gov (United States)

    Rosen, J. M.

    1971-01-01

    A photoelectric particle counter was used for the measurement of aerosol boiling points. The operational principle involves raising the temperature of the aerosol by vigorously heating a portion of the intake tube. At or above the boiling point, the particles disintegrate rather quickly, and a noticeable effect on the size distribution and concentration is observed. Stratospheric aerosols appear to have the same volatility as a solution of 75% sulfuric acid. Chemical analysis of the aerosols indicates that there are other substances present, but that the sulfate radical is apparently the major constituent.

  20. SYNTHESIS AND CHARACTERIZATION OF POLYSILOXANE CONTAINING OLIGO(OXYETHYLENE) SULFATE SALT

    Institute of Scientific and Technical Information of China (English)

    Shu-wen Hu; Zheng-cheng Zhang; Fan Yi; Shi-bi Fang; Xin-feng Zhang; Fu-mian Li

    2000-01-01

    Solvent-free polymeric alkali-metal ion conductors, consisting of a comb-like polysiloxane with oligo(oxyethylene) side chains and pendant sulfate groups were synthesized by the hydrosilylation of allyl oligo(oxyethylene) sulfate salt and allyl methoxy oligo(oxyethylene) with poly(methylhydrosiloxane). The factors influncing the ionic conductivity of the resulting polymer such as the electrolyte content and the nature of the alkali-metal were investigated. The temperature dependence of conductivity was determined, and the ionic conductivity of the polymer follows the Vogel-Tammann-Fulcher (VTF) equation.

  1. Corrosion by the Alkali Metals

    International Nuclear Information System (INIS)

    This is a review of the state of the art of corrosion testing of materials by the alkali metals, the models proposed to explain the observed corrosion results, and the status of materials selection for application in alkali metal-cooled systems. Corrosion of structural and fuel cladding materials by liquid Na and NaK has been studied intensively, but intermittently for the last 18 years. These studies and the liquid-metal-cooled reactors in operation demonstrate that stainless steels can be considered for structural and cladding applications below 650°C. Above this temperature increased corrosion and radiation-induced embrittlement make them unsatisfactory. Corrosion models are reviewed and their inability to explain all the experimental observations discussed. An alternate model is proposed which qualitatively is in agreement with experimental observations. In this model, the rate-controlling step is either the surface reaction of Fe with ''available oxygen'' (dissolved Na2O) to form an Fe-O-Na complex or the rate at which ''available oxygen'' can reach the surface to form the complex; which process is rate controlling depends on the temperature, Na velocity and oxygen concentration in the Na. The solution chemistry of oxygen, carbon and alkali metal-oxygen-transition metal complexes dissolved in the alkali metals is reviewed. ''Molecular'' complexes appear unlikely to exist in solution in the alkali metals, although the thermodynamic tendencies for them to form suggest that stable bonds exist in solution between oxygen, the transition and the alkali metals. The insolubility of carbon in ''oxygen-free'' sodium indicates that carbon transfer may be associated with oxygen in sodium down to very low oxygen levels, although experimental data do not generally confirm this postulate. Corrosion of refractory metals by boiling alkali metals at temperatures above 1000°C is markedly affected by impurities in either the liquid or refractory metal; the addition of Ti, Zr or

  2. Electron densities and alkali atoms in exoplanet atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Lavvas, P. [GSMA, Université de Reims Champagne Ardenne, CNRS UMR 7331, Reims, 51687 France (France); Koskinen, T.; Yelle, R. V., E-mail: panayotis.lavvas@univ-reims.fr [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85719 (United States)

    2014-11-20

    We describe a detailed study on the properties of alkali atoms in extrasolar giant planets, and specifically focus on their role in generating the atmospheric free electron densities, as well as their impact on the transit depth observations. We focus our study on the case of HD 209458b, and we show that photoionization produces a large electron density in the middle atmosphere that is about two orders of magnitude larger than the density anticipated from thermal ionization. Our purely photochemical calculations, though, result in a much larger transit depth for K than observed for this planet. This result does not change even if the roles of molecular chemistry and excited state chemistry are considered for the alkali atoms. In contrast, the model results for the case of exoplanet XO-2b are in good agreement with the available observations. Given these results we discuss other possible scenarios, such as changes in the elemental abundances, changes in the temperature profiles, and the possible presence of clouds, which could potentially explain the observed HD 209458b alkali properties. We find that most of these scenarios cannot explain the observations, with the exception of a heterogeneous source (i.e., clouds or aerosols) under specific conditions, but we also note the discrepancies among the available observations.

  3. Hydration and properties of sodium sulfate activated slag

    OpenAIRE

    A.M. Rashad; Bai, Y.(Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China); Basheer, P. A. M.; Milestone, N.B.; Collier, N.C.

    2013-01-01

    Interest in alkali-activated slag as a construction material is increasing, primarily due to its environmentally friendly nature. Although strong alkaline activators, such as sodium hydroxide and sodium silicate solution, are preferred for high strength, none of them exists naturally and their manufacturing process is quite energy intensive. Whilst sodium sulfate (NaSO ) can be obtained from natural resources, the early strength of NaSO activated slag is usually low. In this paper, the effect...

  4. Alkaline cement mortars. Chemical resistance to sulfate and seawater attack

    OpenAIRE

    Puertas, F.; Gutiérrez, R.; Fernández-Jiménez, A.; Delvasto, S.; Maldonado, J.

    2002-01-01

    The durability and chemical resistance of alkali activated slag and fly ash/slag mortars in contact with sulfates and seawater media have been studied. Two methods were used in the evaluation of such durability: Kock-Steinegger and ASTM C1012. A mineralogical and a microstructural characterization of mortars were done at different ages of their conservation in aggressive media through XRD, SEM/ EDX and mercury porosimetry. Results showed a high durability of activated cement mortars in s...

  5. Construction of thermionic alkali-ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Ul Haq, F.

    1986-04-01

    A simple technique is described by which singly charged alkali ions of K, Na, Li, Rb and Cs are produced by heating ultra-pure chemical salts of different alkali metals on tungsten filaments without employing a temperature measuring device. The character of alkali-ion currents at different heating powers and the remarkably constant ion emission current for prolonged periods are discussed.

  6. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    Science.gov (United States)

    Joshi, Ashok V.; Balagopal, Shekar; Pendelton, Justin

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  7. Alkali and transition metal phospholides

    International Nuclear Information System (INIS)

    Major tendencies in modern chemistry of alkali and transition metal phospholides (phosphacyclopentadienides) are systematized, analyzed and generalized. Basic methods of synthesis of these compounds are presented. Their chemical properties are considered with a special focus on their complexing ability. Potential applications of phospholides and their derivatives are discussed. The bibliography includes 184 references

  8. Marine aerosols

    OpenAIRE

    Saltzman, Es

    2009-01-01

    The aerosol over the world oceans plays an important role in determining the physical and chemical characteristics of the Earth's atmosphere and its interactions with the climate system. The oceans contribute to the aerosols in the overlying atmosphere by the production and emission of aerosol particles and precursor gases. The marine aerosol, in turn, influences the biogeochemistry of the surface ocean through long distance transport and deposition of terrestrial and marine-derived nutrients...

  9. Influence of aerosol vertical distribution on radiative budget and climate

    Science.gov (United States)

    Nabat, Pierre; Michou, Martine; Saint-Martin, David; Watson, Laura

    2016-04-01

    Aerosols interact with shortwave and longwave radiation with ensuing consequences on radiative budget and climate. Aerosols are represented in climate models either using an interactive aerosol scheme including prognostic aerosol variables, or using climatologies, such as monthly aerosol optical depth (AOD) fields. In the first case, aerosol vertical distribution can vary rapidly, at a daily or even hourly scale, following the aerosol evolution calculated by the interactive scheme. On the contrary, in the second case, a fixed aerosol vertical distribution is generally imposed by climatological profiles. The objective of this work is to study the impact of aerosol vertical distribution on aerosol radiative forcing, with ensuing effects on climate. Simulations have thus been carried out using CNRM-CM, which is a global climate model including an interactive aerosol scheme representing the five main aerosol species (desert dust, sea-salt, sulfate, black carbon and organic matter). Several multi-annual simulations covering the past recent years are compared, including either the prognostic aerosol variables, or monthly AOD fields with different aerosol vertical distributions. In the second case, AOD fields directly come from the first simulation, so that all simulations have the same integrated aerosol loads. The results show that modifying the aerosol vertical distribution has a significant impact on radiative budget, with consequences on global climate. These differences, highlighting the importance of aerosol vertical distribution in climate models, probably come from the modification of atmospheric circulation induced by changes in the heights of the different aerosols. Besides, nonlinear effects in the superposition of aerosol and clouds reinforce the impact of aerosol vertical distribution, since aerosol radiative forcing depends highly upon the presence of clouds, and upon the relative vertical position of aerosols and clouds.

  10. Sulfated glycans in inflammation.

    Science.gov (United States)

    Pomin, Vitor H

    2015-03-01

    Sulfated glycans such as glycosaminoglycans on proteoglycans are key players in both molecular and cellular events of inflammation. They participate in leukocyte rolling along the endothelial surface of inflamed sites; chemokine regulation and its consequential functions in leukocyte guidance, migration and activation; leukocyte transendothelial migration; and structural assembly of the subendothelial basement membrane responsible to control tissue entry of cells. Due to these and other functions, exogenous sulfated glycans of various structures and origins can be used to interventionally down-regulate inflammation processes. In this review article, discussion is given primarily on the anti-inflammatory functions of mammalian heparins, heparan sulfate, chondroitin sulfate, dermatan sulfate and related compounds as well as the holothurian fucosylated chondroitin sulfate and the brown algal fucoidans. Understanding the underlying mechanisms of action of these sulfated glycans in inflammation, helps research programs involved in developing new carbohydrate-based drugs aimed to combat acute and chronic inflammatory disorders. PMID:25576741

  11. Removal of Mercury from chlor-alkali Industry Wastewater using Acetobacter xylinum Cellulose

    Directory of Open Access Journals (Sweden)

    A. Rezaee

    2005-01-01

    Full Text Available In this study, the removal of mercury ions by cellulose of Acetobacter xylinum was investigated in the synthetic and chlor-alkali wastewater. Biofilms of Acetobacter xylinum were grown in laboratory column bioreactors. The biofilms were continuously treated with sterile synthetic model wastewater or nonsterile, neutralized chloralkali wastewater.The extent of adsorption was studied as function of pH, adsorbent dose and contact time. Efficiency of mercury ion removal from chlor-alkali industry wastewater by aluminum sulfate and ferric chloride was also determined. Under acidic condition the adsorption of mercury by cellulose was quite low and increasing processing time more than 10min has no remarkably effect on the adsorption rate. Adsorption capacity of cellulose under dynamic condition for chlor-alkali wastewater was 65mg/µg which was less than the value (80mg/µg that obtained from batch adsorption experiments for synthetic wastewater.

  12. Sulfur mass loading of the atmosphere from volcanic eruptions: Calibration of the ice core record on basis of sulfate aerosol deposition in polar regions from the 1982 El Chichon eruption

    Science.gov (United States)

    Sigurdsson, Haraldur; Laj, Paolo

    1990-01-01

    Major volcanic eruptions disperse large quantities of sulfur compound throughout the Earth's atmosphere. The sulfuric acid aerosols resulting from such eruptions are scavenged by snow within the polar regions and appear in polar ice cores as elevated acidity layers. Glacio-chemical studies of ice cores can, thus, provide a record of past volcanism, as well as the means for understanding the fate of volcanic sulfur in the atmosphere. The primary objectives of this project are to study the chemistry and physical properties of volcanic fallout in a Greenland Ice Core in order to evaluate the impact of the volcanic gases on the atmospheric chemistry and the total atmospheric mass of volcanic aerosols emitted by major volcanic eruptions. We propose to compare the ice core record to other atmospheric records performed during the last 10 years to investigate transport and deposition of volcanic materials.

  13. Is Distant Pollution Contaminating Local Air? Analyzing the Origins of Atmospheric Aerosols

    OpenAIRE

    David Geng

    2012-01-01

    Understanding the origin of aerosols in the atmosphere is important because of visual pollution, climate impacts, and deleterious health effects due to the inhalation of fine particles. This research analyzed aerosols characterized by their chloride, sulfate, and nitrate content as a function of size over a 3-month period. Due to wind patterns over coal-burning power plants, a higher concentration of local sulfate pollution was expected. Aerosols were harvested on the Purdue University campus...

  14. Evaluating aerosol indirect effect through marine stratocumulus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Kogan, Z.N.; Kogan, Y.L.; Lilly, D.K. [Univ. of Oklahoma, Norman, OK (United States)

    1996-04-01

    During the last decade much attention has been focused on anthropogenic aerosols and their radiative influence on the global climate. Charlson et al. and Penner et al. have demonstrated that tropospheric aerosols and particularly anthropogenic sulfate aerosols may significantly contribute to the radiative forcing exerting a cooling influence on climate (-1 to -2 W/m{sup 2}) which is comparable in magnitude to greenhouse forcing, but opposite in sign. Aerosol particles affect the earth`s radiative budget either directly by scattering and absorption of solar radiation by themselves or indirectly by altering the cloud radiative properties through changes in cloud microstructure. Marine stratocumulus cloud layers and their possible cooling influence on the atmosphere as a result of pollution are of special interest because of their high reflectivity, durability, and large global cover. We present an estimate of thet aerosol indirect effect, or, forcing due to anthropogenic sulfate aerosols.

  15. Perturbation of the aerosol layer by aviation-produced aerosols: a parametrization of plume processes

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere; Meilinger, S. [Max-Planck-Institut fuer Chemie (Otto-Hahn-Institut), Mainz (Germany)

    1998-11-01

    The perturbation of the sulfate surface area density (SAD) in the tropopause region and the lower stratosphere by subsonic and supersonic aircraft fleets is examined. The background aerosol surface area, the conversion of fuel sulfur into new sulfate particles in aircraft plumes, and the plume mixing with ambient air control this perturbation. The background aerosol surface area is enhanced by the addition of ultrafine aerosol particles at cruise altitudes. The study includes recent findings concerning the formation and development of these particles in aircraft plumes. Large-scale SAD enhancements become relevant for background SAD levels below about 10 {mu}m{sup 2}/cm{sup 3}, even for moderate sulfate conversion fractions of 5%. Results from an analytic expression for the surface area changes are presented which contains the dependences on these parameters and can be employed in large-scale atmospheric models. (orig.) 11 refs.

  16. On-line alkali monitoring - Part 1

    International Nuclear Information System (INIS)

    As a consequence of the increased knowledge of the environmental impact of combustion based heat and power generation, the use of renewable biofuels will be increased. An obstacle associated to biofuel combustion compared to other fuels is the large release of alkali. Alkali compounds in flue gases are known to cause severe operational problems. Three of the major problems are; fouling of superheating tubes (causing reduced heat transfer and possibly corrosion), agglomeration of the bed material in fluidized beds, and poisoning of SCR catalysts. Yet another alkali related problem arises when, in order to increase the electric efficiency of combustion power plants, combined-cycle technology is used. Alkali vapour present in the fuel gas for the gas turbine is condensed to particles which increase corrosion and erosion of the turbine blades. The research on ash related operational problems has to be extended in order to ensure future use of biofuels in heat and power generation. In all successful research, adequate tools are necessary. To investigate ash related problems the key issue is to be able to perform continuous alkali measurements. This pilot study has investigated the need of continuous alkali measurements, which alkali species are harmful in the different applications and also available instrumentation capable of measuring the specific alkali species. The report gives a short summary presenting alkali related operational problems. In addition a schematic overview is given, showing the alkali species that possibly can exist in various parts of the power plant. 48 refs, 13 figs, 4 tabs

  17. Alkali metal sources for OLED devices

    Science.gov (United States)

    Cattaneo, Lorena; Longoni, Giorgio; Bonucci, Antonio; Tominetti, Stefano

    2005-07-01

    In OLED organic layers electron injection is improved by using alkali metals as cathodes, to lower work function or, as dopants of organic layer at cathode interface. The creation of an alkali metal layer can be accomplished through conventional physical vapor deposition from a heated dispenser. However alkali metals are very reactive and must be handled in inert atmosphere all through the entire process. If a contamination takes place, it reduces the lithium deposition rate and also the lithium total yield in a not controlled way. An innovative alkali metal dispensing technology has been developed to overcome these problems and ensure OLED alkali metal cathode reliability. The alkali Metal dispenser, called Alkamax, will be able to release up to a few grams of alkali metals (in particular Li and Cs) throughout the adoption of a very stable form of the alkali metal. Lithium, for example, can be evaporated "on demand": the evaporation could be stopped and re-activated without losing alkali metal yield because the metal not yet consumed remains in its stable form. A full characterization of dispensing material, dispenser configuration and dispensing process has been carried out in order to optimize the evaporation and deposition dynamics of alkali metals layers. The study has been performed applying also inside developed simulations tools.

  18. Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chen [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Now at R. J. Reynolds Tobacco Company, Winston-Salem North Carolina USA; Gyawali, Madhu [Department of Physics, University of Nevada Reno, Nevada System of Higher Education, Reno Nevada USA; Now at Desert Research Institute, Nevada System of Higher Education, Reno Nevada USA; Zaveri, Rahul A. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Shilling, John E. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Arnott, W. Patrick [Department of Physics, University of Nevada Reno, Nevada System of Higher Education, Reno Nevada USA

    2013-10-25

    It is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOAs) generated from dark α-pinene + O3 and α-pinene + NOx + O3 systems in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532, and 870 nm. Significant light absorption at 355 and 405 nm was observed for the SOA formed from α-pinene + O3 + NO3 system only in the presence of highly acidic sulfate seed aerosols under dry conditions. In contrast, no absorption was observed when the relative humidity was elevated to greater than 27% or in the presence of neutral sulfate seed aerosols. Organic nitrates in the SOA formed in the presence of neutral sulfate seed aerosols were found to be nonabsorbing, while the light-absorbing compounds are speculated to be aldol condensation oligomers with nitroxy organosulfate groups that are formed in highly acidic sulfate aerosols. Finally and overall, these results suggest that dark α-pinene + O3 and α-pinene + NOx + O3 systems do not form light-absorbing SOA under typical atmospheric conditions.

  19. Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity

    Science.gov (United States)

    Song, Chen; Gyawali, Madhu; Zaveri, Rahul A.; Shilling, John E.; Arnott, W. Patrick

    2013-10-01

    is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOAs) generated from dark α-pinene + O3 and α-pinene + NOx + O3 systems in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532, and 870 nm. Significant light absorption at 355 and 405 nm was observed for the SOA formed from α-pinene + O3 + NO3 system only in the presence of highly acidic sulfate seed aerosols under dry conditions. In contrast, no absorption was observed when the relative humidity was elevated to greater than 27% or in the presence of neutral sulfate seed aerosols. Organic nitrates in the SOA formed in the presence of neutral sulfate seed aerosols were found to be nonabsorbing, while the light-absorbing compounds are speculated to be aldol condensation oligomers with nitroxy organosulfate groups that are formed in highly acidic sulfate aerosols. Overall, these results suggest that dark α-pinene + O3 and α-pinene + NOx + O3 systems do not form light-absorbing SOA under typical atmospheric conditions.

  20. A comparison of aerosol chemical and optical properties from the 1st and 2nd Aerosol Characterization Experiments

    OpenAIRE

    P. K. Quinn; T. S. Bates; Coffman, D. J.; Miller, T L; J. E. Johnson; D. S. Covert; Putaud, J.-P.; Neusüß, C.; Novakov, T.

    2011-01-01

    Shipboard measurements of aerosol chemical composition and optical properties were made during both ACE-1 and ACE-2. ACE-1 focused on remote marine aerosol minimally perturbed by continental sources. ACE-2 studied the outflow of European aerosol into the NE Atlantic atmosphere. A variety of air masses were sampled during ACE-2 including Atlantic, polar, Iberian Peninsula, Mediterranean, and Western European. Reported here are mass size distributions of non-sea salt (nss) sulfate, sea salt, an...

  1. Performance characterization of rigid polyurethane foam with refined alkali lignin and modified alkali lignin

    Institute of Scientific and Technical Information of China (English)

    LIU Zhi-ming; YU Fei; FANG Gui-zhen; YANG Hui-jun

    2009-01-01

    The two kinds of rigid polyurethane (PU) foams were prepared with respectively adding the refined alkali lignin and alkali lignin modified by 3-chloro-1,2-epoxypropane to be instead of 15% of the polyether glycol in weight. The indexes of mechanical performance, apparent density, thermal stability and aging resistance were separately tested for the prepared PU foams. The results show that the mechanical property, thermal insulation and thermal stability for PU foam with modified alkali lignin are excellent among two kinds of PU foams and control samples. The additions of the refined alkali lignin and modified alkali lignin to PU foam have little effect on the natural aging or heat aging resistance except for decreasing hot alkali resistance apparently. Additionally, the thermal conductivity of modified alkali lignin PU foam is lowest among two kinds of PU foams and control samples. The alkali lignin PU foam modified by 3-chloro-1,2-epoxypropane could be applied in the heat preservation field.

  2. Sulfate metabolism in mycobacteria.

    Science.gov (United States)

    Schelle, Michael W; Bertozzi, Carolyn R

    2006-10-01

    Pathogenic bacteria have developed numerous mechanisms to survive inside a hostile host environment. The human pathogen Mycobacterium tuberculosis (M. tb) is thought to control the human immune response with diverse biomolecules, including a variety of exotic lipids. One prevalent M. tb-specific sulfated metabolite, termed sulfolipid-1 (SL-1), has been correlated with virulence though its specific biological function is not known. Recent advances in our understanding of SL-1 biosynthesis will help elucidate the role of this curious metabolite in M. tb infection. Furthermore, the study of SL-1 has led to questions regarding the significance of sulfation in mycobacteria. Examples of sulfated metabolites as mediators of interactions between bacteria and plants suggest that sulfation is a key modulator of extracellular signaling between prokaryotes and eukaryotes. The discovery of novel sulfated metabolites in M. tb and related mycobacteria strengthens this hypothesis. Finally, mechanistic and structural data from sulfate-assimilation enzymes have revealed how M. tb controls the flux of sulfate in the cell. Mutants with defects in sulfate assimilation indicate that the fate of sulfur in M. tb is a critical survival determinant for the bacteria during infection and suggest novel targets for tuberculosis drug therapy. PMID:16933356

  3. The ceric sulfate dosimeter

    DEFF Research Database (Denmark)

    Bjergbakke, Erling

    The process employed for the determination of absorbed dose is the reduction of ceric ions to cerous ions in a solution of ceric sulfate and cerous sulfate in 0.8N sulfuric acid: Ce4+→Ce 3+ The absorbed dose is derived from the difference in ceric ion concentration before and after irradiation. The...

  4. Sulfur isotope analyses of individual aerosol particles in the urban aerosol at a central European site (Mainz, Germany

    Directory of Open Access Journals (Sweden)

    B. Winterholler

    2008-05-01

    Full Text Available Sulfur isotope analysis of atmospheric aerosols is a well established tool for identifying sources of sulfur in the atmosphere, estimating emission factors, and tracing the spread of sulfur from anthropogenic sources through ecosystems. Conventional gas mass spectrometry averages the isotopic compositions of several different types of sulfur aerosol particles, and therefore masks the individual isotopic signatures. In contrast, the new single particle technique presented here determines the isotopic signature of the individual particles.

    Primary aerosol particles retain the original isotopic signature of their source. The isotopic composition of secondary sulfates depends on the isotopic composition of precursor SO2 and the oxidation process. The fractionation with respect to the source SO2 is −9‰ for homogeneous and +16.5‰ for heterogeneous oxidation. The sulfur isotope ratio of secondary sulfate particles can therefore be used to identify the oxidation pathway by which this sulfate was formed. With the new single particle technique, different types of primary and secondary sulfates were first identified based on their chemical composition, and then their individual isotopic signature was measured separately. Our samples were collected in Mainz, Germany, in an urban environment. Secondary sulfates (ammonium sulfate, gypsum, mixed sulfates and coatings on silicates or organic aerosol dominated sulfate loadings in our samples. Comparison of the chemical and isotopic composition of secondary sulfates showed that the isotopic composition was homogeneous, independent of the chemical composition. This is typical for particles that derive from in-cloud processing. The isotopic composition of the source SO2 of secondary sulfates was calculated based on the isotopic composition of particles with known oxidation pathway and showed a strong dependence on wind direction. The contribution of heterogeneous

  5. Personal exposures to acidic aerosols and ammonia

    International Nuclear Information System (INIS)

    Indoor, outdoor, and personal exposures to acidic aerosols, sulfates, and ammonia were monitored for twenty-four children living in Uniontown, Pennsylvania. Adolescent children, age 11, participated in an investigation of air pollution (PM10, sulfates, acid aerosols, ozone) and pulmonary performance during the Summer of 1990. 92% of the participants (all from non-smoking homes) volunteered to wear personal monitors and record daily activities over two twelve-hour daytime periods. Similar air pollution measurements were made inside and immediately outside their homes. Indoor and outdoor concentrations were measured using the Harvard-EPA annular denuder system (HEADS), while personal exposures were measured using the Personal Annular Denuder system (PADS). All exposure measurements were compared to measurements collected at a centrally located ambient monitoring site. The paper reports the relationships among personal, indoor home, outdoor home, and central site measurements of acidic aerosols, sulfate particles, and ammonia. During days where personal monitoring occurred, hydrogen ion concentrations range from 0 to 520 nmoles/m3 at the central site. There was not substantial spatial variation in ambient acidity over this Western Pennsylvania community. Indoor concentrations were substantially lower than outdoors, with a mean ratio of 0.14. Personal exposures were typically greater than indoor exposures, but averaged only 29% of the outdoor concentrations. Time activity, housing factors, sulfate particles, and ammonia concentrations are analyzed. The impact of this study on the characterization of population exposures to acidic aerosols in epidemiologic studies and modeling also are discussed

  6. The relationship between aerosol and cloud drop number concentrations in a global aerosol microphysics model

    Directory of Open Access Journals (Sweden)

    K. J. Pringle

    2009-06-01

    Full Text Available Empirical relationships that link cloud droplet number (CDN to aerosol number or mass are commonly used to calculate global fields of CDN for climate forcing assessments. In this work we use a sectional global model of sulfate and sea-salt aerosol coupled to a mechanistic aerosol activation scheme to explore the limitations of this approach. We find that a given aerosol number concentration produces a wide range of CDN concentrations due to variations in the shape of the aerosol size distribution. On a global scale, the dependence of CDN on the size distribution results in regional biases in predicted CDN (for a given aerosol number. Empirical relationships between aerosol number and CDN are often derived from regional data but applied to the entire globe. In an analogous process, we derive regional "correlation-relations" between aerosol number and CDN and apply these regional relations to calculations of CDN on the global scale. The global mean percentage error in CDN caused by using regionally derived CDN-aerosol relations is 20 to 26%, which is about half the global mean percentage change in CDN caused by doubling the updraft velocity. However, the error is as much as 25–75% in the Southern Ocean, the Arctic and regions of persistent stratocumulus when an aerosol-CDN correlation relation from the North Atlantic is used. These regions produce much higher CDN concentrations (for a given aerosol number than predicted by the globally uniform empirical relations. CDN-aerosol number relations from different regions also show very different sensitivity to changing aerosol. The magnitude of the rate of change of CDN with particle number, a measure of the aerosol efficacy, varies by a factor 4. CDN in cloud processed regions of persistent stratocumulus is particularly sensitive to changing aerosol number. It is therefore likely that the indirect effect will be underestimated in these important regions.

  7. The relationship between aerosol and cloud drop number concentrations in a global aerosol microphysics model

    Directory of Open Access Journals (Sweden)

    K. J. Pringle

    2009-01-01

    Full Text Available Empirical relationships that link cloud droplet number (CDN to aerosol number or mass are commonly used to calculate global fields of CDN for climate forcing assessments. In this work we use a sectional global model of sulfate and sea-salt aerosol coupled to a mechanistic aerosol activation scheme to explore the limitations of this approach. We find that a given aerosol number concentration produces a wide range of CDN concentrations due to variations in the shape of the aerosol size distribution. On a global scale, the dependence of CDN on the size distribution results in regional biases in predicted CDN (for a given aerosol number. Empirical relationships between aerosol number and CDN are often derived from regional data but applied to the entire globe. In an analogous process, we derive regional "correlation-relations" between aerosol number and CDN and apply these regional relations to calculations of CDN on the global scale. The global mean percentage error in CDN caused by using regionally derived CDN-aerosol relations is 20 to 26%, which is about half the global mean percentage change in CDN caused by doubling the updraft velocity. However, the error is as much as 25–75% in the Southern Ocean, the Arctic and regions of persistent stratocumulus when an aerosol-CDN correlation relation from the North Atlantic is used. These regions produce much higher CDN concentrations (for a given aerosol number than predicted by the globally uniform empirical relations. CDN-aerosol number relations from different regions also show very different sensitivity to changing aerosol. The magnitude of the rate of change of CDN with particle number, a measure of the aerosol efficacy, varies by a factor 4. CDN in cloud processed regions of persistent stratocumulus is particularly sensitive to changing aerosol number. It is therefore likely that the indirect effect will be underestimated in these important regions.

  8. Is aerosol formation in cirrus clouds possible?

    Directory of Open Access Journals (Sweden)

    J. Kazil

    2007-01-01

    Full Text Available The recent observation of ultrafine aerosol particles in cirrus clouds has raised the question whether aerosol formation within cirrus clouds is possible, and if so, what mechanisms are involved. We have developed an aerosol parcel model of neutral and charged H2SO4/H2O aerosol processes, including nucleation from the gas phase and loss onto cirrus ice particles. Laboratory thermodynamic data for sulfuric acid uptake and loss by small neutral and charged clusters are used, allowing for a reliable description of both neutral and charged nucleation down to the very low temperatures occurring in the upper troposphere and lower stratosphere. The model implements a first order scheme for resolving the aerosol size distribution within its geometric size sections, which efficiently suppresses numerical diffusion. We operate the model offline on trajectories generated with a detailed 1D cirrus model which describes ice crystal nucleation, deposition growth, vertical advection of ice crystals and water vapor, and ice crystal sedimentation. In this paper we explore the possibility of aerosol formation within non-convective cirrus clouds and draw conclusions for aerosol formation in anvil cirrus. We find that sulfate aerosol formation within cirrus clouds can proceed even at high ice surface area concentrations, and depends strongly on the size of the cirrus ice crystals and on the surface area concentration of preexisting aerosol particles.

  9. SCAM simuleringer av aerosolers effekt på skydråper : sammenligning med MODIS

    OpenAIRE

    2007-01-01

    Aerosol particles , such as sulfate aerosols, can act as cloud condensation nuclei (CCN). The CCN spectrum and water vapor supply in a cloud determine the cloud droplet number concentration (CDNC) and hence shortwave optical properties of liquid clouds. The capability of aerosols to increase cloud reflectivity and thereby cool the Earths surface is referred to as the indirect effect. The goal of this study is to compare different cases which relate aerosol mass concentration and cloud dr...

  10. The formation of aerosol particles during combustion of biomass and waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hjerrild Zeuthen, J.

    2007-05-15

    This thesis describes the formation of aerosol particles during combustion of biomass and waste. The formation of aerosol particles is investigated by studying condensation of alkali salts from synthetic flue gasses in a laboratory tubular furnace. In this so-called laminar flow aerosol condenser-furnace gaseous alkali chlorides are mixed with sulphur dioxide, water vapour and oxygen. At high temperatures the alkali chloride reacts with sulphur dioxide to form alkali sulphate. During subsequent cooling of the synthetic flue gas the chlorides and sulphates condense either as deposits on walls or on other particles or directly from the gas phase by homogenous nucleation. A previously developed computer code for simulation of one-component nucleation of particles in a cylindrical laminar flow is extended to include a homogeneous gas phase reaction to produce gaseous alkali sulphate. The formation of aerosol particles during full-scale combustion of wheat straw is investigated in a 100 MW grate-fired boiler. Finally, aerosols from incineration of waste are investigated during full-scale combustion of municipal waste in a 22 MW grate-fired unit. (BA)

  11. Aerosol studies

    International Nuclear Information System (INIS)

    As part of the continuing studies of the effects of very severe reactor accidents, an effort was made to develop, test, and improve simple, effective, and inexpensive methods by which the average citizen, using only materials readily available, could protect his residence, himself, and his family from injury by toxic aerosols. The methods for protection against radioactive aerosols should be equally effective against a clandestine biological attack by terrorists. The results of the tests to date are limited to showing that spores of the harmless bacterium, bacillus globegii (BG), can be used as a simulant for the radioactive aerosols. An aerosol generator of Lauterbach type was developed which will produce an essentially monodisperse aerosol at the rate of 109 spores/min. Analytical techniques have been established which give reproducible results. Preliminary field tests have been conducted to check out the components of the system. Preliminary tests of protective devices, such as ordinary vacuum sweepers, have given protection factors of over 1000

  12. Stratospheric aerosols

    International Nuclear Information System (INIS)

    Stratospheric aerosol measurements can provide both spatial and temporal data of sufficient resolution to be of use in climate models. Relatively recent results from a wide range of instrument techniques for measuring stratospheric aerosol parameters are described. Such techniques include impactor sampling, lidar system sensing, filter sampling, photoelectric particle counting, satellite extinction-sensing using the sun as a source, and optical depth probing, at sites mainly removed from tropospheric aerosol sources. Some of these techniques have also had correlative and intercomparison studies. The main methods for determining the vertical profiles of stratospheric aerosols are outlined: lidar extinction measurements from satellites; impactor measurements from balloons and aircraft; and photoelectric particle counter measurements from balloons, aircraft, and rockets. The conversion of the lidar backscatter to stratospheric aerosol mass loading is referred to. Absolute measurements of total solar extinction from satellite orbits can be used to extract the aerosol extinction, and several examples of vertical profiles of extinction obtained with the SAGE satellite are given. Stratospheric mass loading can be inferred from extinction using approximate linear relationships but under restrictive conditions. Impactor sampling is essentially the only method in which the physical nature of the stratospheric aerosol is observed visually. Vertical profiles of stratospheric aerosol number concentration using impactor data are presented. Typical profiles using a dual-size-range photoelectric dustsonde particle counter are given for volcanically disturbed and inactive periods. Some measurements of the global distribution of stratospheric aerosols are also presented. Volatility measurements are described, indicating that stratospheric aerosols are composed primarily of about 75% sulfuric acid and 25% water

  13. Simulation of secondary aerosols over North China in summer

    Institute of Scientific and Technical Information of China (English)

    LIU Yu; LI Weiliang; ZHOU Xiuji

    2005-01-01

    The comparisons of observed and simulated NOx, CO, O3, NH3, HNO3, SO2 and PM2.5 indicate that CMAQ model can simulate variations of pollutants over North China well.Moreover, the model results show that high NH3 is in Hebei, Henan and Shandong provinces,with average concentration of (30-35)×10-9. The results of the sensitive experiment indicate that high concentration of NH3 has the efficiency of the production of secondary sulfate aerosol increase by more than 30%, especially at the juncture of Handan, Anyang and Changzhi that increased by 50%. In addition, NH3 also produces secondary ammonia and nitrate aerosol, and the sum of them is approximately equal to sulfate aerosol. The height of planetary boundary layer (PBL) in Beijing is higher in daytime, with average height of 1500 m at noon. This makes SO2,NH3 and HNO3 transported into upper PBL of 850 hPa. The high secondary sulfate, and ammonia and nitrate aerosol happen in the upper and lower PBL, respectively. Because PM2.5 lifetime is relatively long, it can be transported into the middle troposphere to form a thick aerosol layer,which is the arched roof of aerosol. The model result suggests that if the aerosol concentration in North China would be controlled, the reduction of NH3 emission is one of efficient ways besides the reduction of primary SO2, NOx and aerosol emission.

  14. Heparan sulfate biosynthesis

    DEFF Research Database (Denmark)

    Multhaupt, Hinke A B; Couchman, John R

    2012-01-01

    Heparan sulfate is perhaps the most complex polysaccharide known from animals. The basic repeating disaccharide is extensively modified by sulfation and uronic acid epimerization. Despite this, the fine structure of heparan sulfate is remarkably consistent with a particular cell type. This suggests...... apparatus has not been carried out in a detailed way using high-resolution microscopy. We have begun this process, using well-known markers for the various Golgi compartments, coupled with the use of characterized antibodies and cDNA expression. Laser scanning confocal microscopy coupled with line scanning...

  15. Aged organic aerosol in the Eastern Mediterranean: the Finokalia Aerosol Measurement Experiment – 2008

    Directory of Open Access Journals (Sweden)

    L. Hildebrandt

    2010-05-01

    Full Text Available Aged organic aerosol (OA was measured at a remote coastal site on the island of Crete, Greece during the Finokalia Aerosol Measurement Experiment-2008 (FAME-2008, which was part of the EUCAARI intensive campaign of May 2008. The site at Finokalia is influenced by air masses from different source regions, including long-range transport of pollution from continental Europe. A quadrupole aerosol mass spectrometer (Q-AMS was employed to measure the size-resolved chemical composition of non-refractory submicron aerosol (NR-PM1, and to estimate the extent of oxidation of the organic aerosol. Factor analysis was used to gain insights into the processes and sources affecting the OA composition. The particles were internally mixed and liquid. The largest fraction of the dry NR-PM1 sampled was ammonium sulfate and ammonium bisulfate, followed by organics and a small amount of nitrate. The variability in OA composition could be explained with two factors of oxygenated organic aerosol (OOA with differing extents of oxidation but similar volatility. Hydrocarbon-like organic aerosol (HOA was not detected. There was no statistically significant diurnal variation in the bulk composition of NR-PM1 such as total sulfate or total organic aerosol concentrations. However, the OA composition exhibited statistically significant diurnal variation with more oxidized OA in the afternoon. The organic aerosol was highly oxidized, regardless of the source region. Total OA concentrations also varied little with source region, suggesting that local sources had only a small effect on OA concentrations measured at Finokalia. The aerosol was transported for about one day before arriving at the site, corresponding to an OH exposure of approximately 4×1011 molecules cm−3 s. The constant extent of oxidation suggests that atmospheric aging results in a highly oxidized OA at these OH exposures, regardless of the aerosol source.

  16. Aged organic aerosol in the Eastern Mediterranean: the Finokalia Aerosol Measurement Experiment - 2008

    Science.gov (United States)

    Hildebrandt, L.; Engelhart, G. J.; Mohr, C.; Kostenidou, E.; Lanz, V. A.; Bougiatioti, A.; Decarlo, P. F.; Prevot, A. S. H.; Baltensperger, U.; Mihalopoulos, N.; Donahue, N. M.; Pandis, S. N.

    2010-05-01

    Aged organic aerosol (OA) was measured at a remote coastal site on the island of Crete, Greece during the Finokalia Aerosol Measurement Experiment-2008 (FAME-2008), which was part of the EUCAARI intensive campaign of May 2008. The site at Finokalia is influenced by air masses from different source regions, including long-range transport of pollution from continental Europe. A quadrupole aerosol mass spectrometer (Q-AMS) was employed to measure the size-resolved chemical composition of non-refractory submicron aerosol (NR-PM1), and to estimate the extent of oxidation of the organic aerosol. Factor analysis was used to gain insights into the processes and sources affecting the OA composition. The particles were internally mixed and liquid. The largest fraction of the dry NR-PM1 sampled was ammonium sulfate and ammonium bisulfate, followed by organics and a small amount of nitrate. The variability in OA composition could be explained with two factors of oxygenated organic aerosol (OOA) with differing extents of oxidation but similar volatility. Hydrocarbon-like organic aerosol (HOA) was not detected. There was no statistically significant diurnal variation in the bulk composition of NR-PM1 such as total sulfate or total organic aerosol concentrations. However, the OA composition exhibited statistically significant diurnal variation with more oxidized OA in the afternoon. The organic aerosol was highly oxidized, regardless of the source region. Total OA concentrations also varied little with source region, suggesting that local sources had only a small effect on OA concentrations measured at Finokalia. The aerosol was transported for about one day before arriving at the site, corresponding to an OH exposure of approximately 4×1011 molecules cm-3 s. The constant extent of oxidation suggests that atmospheric aging results in a highly oxidized OA at these OH exposures, regardless of the aerosol source.

  17. Holothurian Fucosylated Chondroitin Sulfate

    Directory of Open Access Journals (Sweden)

    Vitor H. Pomin

    2014-01-01

    Full Text Available Fucosylated chondroitin sulfate (FucCS is a structurally distinct glycosaminoglycan found in sea cucumber species. It has the same backbone composition of alternating 4-linked glucuronic acid and 3-linked N-acetyl galactosamine residues within disaccharide repeating units as regularly found in mammalian chondroitin sulfates. However, FucCS has also sulfated fucosyl branching units 3-O-linked to the acid residues. The sulfation patterns of these branches vary accordingly with holothurian species and account for different biological actions and responses. FucCSs may exhibit anticoagulant, antithrombotic, anti-inflammatory, anticancer, antiviral, and pro-angiogenic activities, besides its beneficial effects in hemodialysis, cellular growth modulation, fibrosis and hyperglycemia. Through an historical overview, this document covers most of the science regarding the holothurian FucCS. Both structural and medical properties of this unique GAG, investigated during the last 25 years, are systematically discussed herein.

  18. Secondary Aerosol: Precursors and Formation Mechanisms. Technical Report on Grant

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein-Lloyd, Judith B

    2009-05-04

    This project focused on studying trace gases that participate in chemical reactions that form atmospheric aerosols. Ammonium sulfate is a major constituent of these tiny particles, and one important pathway to sulfate formation is oxidation of dissolved sulfur dioxide by hydrogen peroxide in cloud, fog and rainwater. Sulfate aerosols influence the number and size of cloud droplets, and since these factors determine cloud radiative properties, sulfate aerosols also influence climate. Peroxide measurements, in conjunction with those of other gaseous species, can used to distinguish the contribution of in-cloud reaction to new sulfate aerosol formation from gas-phase nucleation reactions. This will lead to more reliable global climate models. We constructed and tested a new 4-channel fluorescence detector for airborne detection of peroxides. We integrated the instrument on the G-1 in January, 2006 and took a test flight in anticipation of the MAX-Mex field program, where we planned to fly under pressurized conditions for the first time. We participated in the 2006 Megacity Initiative: Local and Global Research Observations (MILAGRO) - Megacity Aerosol EXperiment Mexico City (MAX-Mex) field measurement campaign. Peroxide instrumentation was deployed on the DOE G-1 research aircraft based in Veracruz, and at the surface site at Tecamac University.

  19. Direct Sulfation of Limestone

    DEFF Research Database (Denmark)

    Hu, Guilin; Dam-Johansen, Kim; Wedel, Stig

    2007-01-01

    %) becomes negligible. In the temperature interval from 723 K to 973 K, an apparent activation energy of about 104 kJ/mol is observed for the direct sulfation of limestone. At low temperatures and low conversions, the sulfation process is most likely under mixed control by chemical reaction and solid......The direct sulfation of limestone was studied in a laboratory fixed-bed reactor. It is found that the direct sulfation of limestone involves nucleation and crystal grain growth of the solid product (anhydrite). At 823 K and at low-conversions (less than about 0.5 %), the influences of SO2, O-2 and...... CO2 on the direct sulfation of limestone corresponds to apparent reaction orders of about 0.2, 0.2 and -0.5, respectively. Water is observed to promote the sulfation reaction and increase the apparent reaction orders of SO2 and O-2. The influence of O-2 at high O-2 concentrations (> about 15...

  20. Linkages between ozone depleting substances, tropospheric oxidation and aerosols

    Directory of Open Access Journals (Sweden)

    A. Voulgarakis

    2012-09-01

    Full Text Available Coupling between the stratosphere and the troposphere allows changes in stratospheric ozone abundances to affect tropospheric chemistry. Large-scale effects from such changes on chemically produced tropospheric aerosols have not been systematically examined in past studies. We use a composition-climate model to investigate potential past and future impacts of changes in stratospheric Ozone Depleting Substances (ODS on tropospheric oxidants and sulfate aerosols. In most experiments, we find significant responses in tropospheric photolysis and oxidants, with small but significant effects on methane radiative forcing. The response of sulfate aerosols is sizeable when examining the effect of increasing future nitrous oxide (N2O emissions. We also find that without the regulation of chlorofluorocarbons (CFCs through the Montreal Protocol, sulfate aerosols could have increased by 2050 by a comparable amount to the decreases predicted due to relatively stringent sulfur emissions controls. The historical radiative forcing of CFCs through their indirect effects on methane (−22.6 mW m−2 and sulfate aerosols (−3.0 mW m−2 discussed here is non-negligible when compared to known historical CFC forcing. Our results stress the importance of accounting for stratosphere-troposphere, gas-aerosol and composition-climate interactions when investigating the effects of changing emissions on atmospheric composition and climate.

  1. Evolution of aerosol chemistry in Xi'an, inland China during the dust storm period of 2013 – Part 1: Sources, chemical forms and formation mechanisms of nitrate and sulfate

    Directory of Open Access Journals (Sweden)

    G. H. Wang

    2014-06-01

    Full Text Available In the current work TSP sample was hourly collected in Xi'an, an inland mega-city of China near the Loess Plateau, during a dust storm event of 2013 (9 March 18:00–12 March 10:00 LT, along with a size-resolved aerosol sampling and an online measurement of PM2.5. The TSP and size-resolved samples were determined for EC, OC, water-soluble organic carbon (WSOC and nitrogen (WSON, inorganic ions and elements to investigate aerosol chemistry evolution. Hourly concentrations of Cl−, NO3−, SO42−, Na+ and Ca2+ in the TSP samples reached up to 34, 12, 180, 72 and 28 μg m−3, respectively, when dust peak arrived over Xi'an. Chemical compositions of the TSP samples showed that NH4+ and NO3− strongly correlated each other in the whole observation period (r2=0.76, while SO42− and Cl− well correlated with Na+, Ca2+, Mg2+ and K+ (r2>0.85. Size distributions of NH4+ and NO3− presented a same pattern, which dominated in the coarse mode (>2.1 μm during the event and predominated in the fine mode (42− and Cl− also dominated in the coarse mode during the event, but both exhibited two equivalent peaks in the fine and coarse modes during the non-event, respectively, due to the fine mode accumulations of secondarily produced SO42− and biomass burning emitted Cl− and the coarse mode enrichments of urban soil-derived SO42− and Cl−. Linear fit regression analysis further indicated that SO42− and Cl− in the dust samples possibly exist as Na2SO4, CaSO4 and NaCl, which directly originated from Gobi desert surface soil, while NH4+ and NO3− in the dust samples exist as NH4NO3. We propose a mechanism to explain these observations in which aqueous phase of dust particle surface is formed via uptake of water vapor by hygroscopic Na2SO4, CaSO4 and NaCl, followed by heterogeneous formation of nitrate on the liquid phase and subsequent absorption of ammonia. Our data indicate that 54 ± 20% and 60 ± 23% of NH4+ and NO3− during the dust period

  2. Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects

    Science.gov (United States)

    Jiang, Q.; Sun, Y. L.; Wang, Z.; Yin, Y.

    2015-06-01

    Aerosol particles were characterized by an Aerodyne aerosol chemical speciation monitor along with various collocated instruments in Beijing, China, to investigate the role of fireworks (FW) and secondary aerosol in particulate pollution during the Chinese Spring Festival of 2013. Three FW events, exerting significant and short-term impacts on fine particles (PM2.5), were observed on the days of Lunar New Year, Lunar Fifth Day, and Lantern Festival. The FW were shown to have a large impact on non-refractory potassium, chloride, sulfate, and organics in submicron aerosol (PM1), of which FW organics appeared to be emitted mainly in secondary, with its mass spectrum resembling that of secondary organic aerosol (SOA). Pollution events (PEs) and clean periods (CPs) alternated routinely throughout the study. Secondary particulate matter (SPM = SOA + sulfate + nitrate + ammonium) dominated the total PM1 mass on average, accounting for 63-82% during nine PEs in this study. The elevated contributions of secondary species during PEs resulted in a higher mass extinction efficiency of PM1 (6.4 m2 g-1) than during CPs (4.4 m2 g-1). The Chinese Spring Festival also provides a unique opportunity to study the impact of reduced anthropogenic emissions on aerosol chemistry in the city. Primary species showed ubiquitous reductions during the holiday period with the largest reduction being in cooking organic aerosol (OA; 69%), in nitrogen monoxide (54%), and in coal combustion OA (28%). Secondary sulfate, however, remained only slightly changed, and the SOA and the total PM2.5 even slightly increased. Our results have significant implications for controlling local primary source emissions during PEs, e.g., cooking and traffic activities. Controlling these factors might have a limited effect on improving air quality in the megacity of Beijing, due to the dominance of SPM from regional transport in aerosol particle composition.

  3. Potential climatic effects of anthropogenic aerosols

    International Nuclear Information System (INIS)

    Aerosols act as part of the climate system through their influence on solar and terrestrial radiation. The effect of anthropogenic aerosols on the reduction of visibility is explored in this chapter. Elemental carbon has been identified as the most effective visibility-reducing species. Most of the visibility reduction is due to particles with diameter smaller than 2.5 μm. Studies indicate that sulfate is also a very important aerosol species that results in low visibility and high turbidity. Radiative properties such as aerosol single-scattering albedo values and absorption-to-backscatter ratios purported to produce warming or cooling effects of aerosols are discussed. It is concluded that aerosol clouds have a tendency to cool when they are over a low-albedo surface and have a tendency to warm when they are over high-albedo surfaces such as snow. Anthropogenic aerosols have a tendency to warm the earth's atmospheric system, based on calculations and assumed aerosol optical properties. However, this effect is somewhat offset by the absorption and re-emission into space of infrared terrestrial radiation. The net effect depends on the ratio of the absorption coefficients in the visible and infrared and also on the surface albedo. The effects on infrared radiation are documented for two anthropogenic aerosol sources in the United States, the Denver metropolitan area and power plant plumes in New Mexico, through calculations and measurements. Measured cooling rates within an aerosol plume are not sufficient to offset the warming rate due to absorption of short-wave radiation. Research indicates that anthropogenic aerosols can possibly cause local-scale warming of the atmosphere, but global-scale climatic effects remain an open question

  4. Advancements in flowing diode pumped alkali lasers

    Science.gov (United States)

    Pitz, Greg A.; Stalnaker, Donald M.; Guild, Eric M.; Oliker, Benjamin Q.; Moran, Paul J.; Townsend, Steven W.; Hostutler, David A.

    2016-03-01

    Multiple variants of the Diode Pumped Alkali Laser (DPAL) have recently been demonstrated at the Air Force Research Laboratory (AFRL). Highlights of this ongoing research effort include: a) a 571W rubidium (Rb) based Master Oscillator Power Amplifier (MOPA) with a gain (2α) of 0.48 cm-1, b) a rubidium-cesium (Cs) Multi-Alkali Multi-Line (MAML) laser that simultaneously lases at both 795 nm and 895 nm, and c) a 1.5 kW resonantly pumped potassium (K) DPAL with a slope efficiency of 50%. The common factor among these experiments is the use of a flowing alkali test bed.

  5. High effective silica fume alkali activator

    Indian Academy of Sciences (India)

    Vladimír Živica

    2004-04-01

    Growing demands on the engineering properties of cement based materials and the urgency to decrease unsuitable ecologic impact of Portland cement manufacturing represent significant motivation for the development of new cement corresponding to these aspects. One category represents prospective alkali activated cements. A significant factor influencing their properties is alkali activator used. In this paper we present a new high effective alkali activator prepared from silica fume and its effectiveness. According to the results obtained this activator seems to be more effective than currently used activators like natrium hydroxide, natrium carbonate, and water glass.

  6. Humidity Dependent Extinction of Clay Aerosols

    Science.gov (United States)

    Greenslade, M. E.; Attwood, A. R.

    2010-12-01

    Aerosols play an important role in the Earth’s radiative balance by directly scattering and absorbing radiation. The magnitude of aerosol forcing can be altered by changes in relative humidity which cause aerosol size, shape and refractive index to vary. To quantify these effects, a custom cavity ring down instrument operated at 532 nm with two sample channels measures aerosols extinction under dry conditions and at elevated humidity. The optical growth, fRH(ext), is determined as a ratio of the extinction cross section at high relative humidity to that under dry conditions. Three key clay components of mineral dust and mixtures of clay components with ammonium sulfate are investigated using this method. Experimentally obtained optical growth is compared with physical growth factors from the literature and our work determined using several different techniques. Further, Mie theory calculations based on published optical constants are compared with experimental results. Differences between theory and experiment will be discussed.

  7. MATRIX (Multiconfiguration Aerosol TRacker of mIXing state: an aerosol microphysical module for global atmospheric models

    Directory of Open Access Journals (Sweden)

    S. E. Bauer

    2008-05-01

    Full Text Available A new aerosol microphysical module MATRIX, the Multiconfiguation Aerosol TRacker of mIXing state, and its application in the Goddard Institute for Space Studies (GISS climate model (ModelE is described. This module, which is based on the quadrature method of moments (QMOM, represents nucleation, condensation, coagulation, internal and external mixing, and cloud-drop activation and provides aerosol particle mass and number concentration and particle size information for up to 16 mixed-mode aerosol populations. Internal and external mixing among aerosol components sulfate, nitrate, ammonium, carbonaceous aerosols, dust and sea-salt particles are represented. The solubility of each aerosol mode, which is explicitly calculated based on its soluble and insoluble components, enables calculation of the dependence of cloud drop activation on the microphysical characterization of multiple soluble modes. A detailed model description and results of box-model simulations of various mode configurations are presented. The number concentration of aerosol particles activated to cloud drops depends on the mode configuration. Simulations on the global scale with the GISS climate model are evaluated against aircraft and station measurements of aerosol mass and number concentration and particle size. The model accurately captures the observed size distributions in the aitken and accumulation modes up to particle diameter 1 μm, in which sulfate, nitrate, black and organic carbon are predominantly located; however the model underestimates coarse-mode number concentration and size, especially in the marine environment.

  8. Tropospheric Aerosols

    Science.gov (United States)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  9. Direct effects of atmospheric sulfate deposition on vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Chevone, B.I.; Herzfeld, D.E.; Krupa, S.V.; Chappelka, A.H.

    1986-07-01

    Acid sulfate aerosol (500 ..mu..g/m/sup 3/) had no effect on soybean or pinto bean after a single 4-h exposure. However, visible injury and chlorophyl loss occurred when plants were sequentially exposed to acid aerosol and ozone (380 ..mu..g/m/sup 3/) for 4 h. In yellow poplar seedlings exposed to ozone (200 ..mu..g/m/sup 3/), sulfur dioxide (210 ..mu..g/m/sup 3/) and simulated rain solutions (pH 5.6, 4.3 and 3.0) for 6 weeks, root dry weight, leaf area increase, mean relative growth rate and unit leaf rate decreased linearly with pH in ozone-treated plants. However, unit leaf rate and mean relative growth rate increased linearly in response to sulfur dioxide as solution acidity increased. Ambient wet and dry sulfate concentrations appear insufficient to directly impact vegetation. (23 refs.)

  10. Leaching experiment of alkali-activated cementitious materials solidified forms of radioactive incineration ash

    International Nuclear Information System (INIS)

    In order to solidify safely radioactive incineration ash, the alkali-activated cementitious materials were prepared with slag, fly ash, cement and zeolite, with water glass or sodium silicate (sulfate) as the activator. The recommended formulation of solidification matrix is 65% (mass fraction, the same below) slag, 10% fly ash, 20% zeolite, 2% cement, 3% Ca (OH)2. Adding quantity of water glass is 5%, when addition of 30% radioactive incineration ash, with 0.34-0.35 of the ratio of water and ash, the mechanical property of solidification forms performs well. The leaching rate of U for the cement wastes forms is 6.0 x 10-6 cm/d in 35 d, and the long time leaching rate is very low. The results of diffusion coefficient of U in the solidification forms indicate that retention capability about U of alkali-activated cementitious materials si good. The leaching mechanisms of solidification forms are discussed. (authors)

  11. Sulfate attack expansion mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Müllauer, Wolfram, E-mail: wolf_m@gmx.at; Beddoe, Robin E.; Heinz, Detlef

    2013-10-15

    A specially constructed stress cell was used to measure the stress generated in thin-walled Portland cement mortar cylinders caused by external sulfate attack. The effects of sulfate concentration of the storage solution and C{sub 3}A content of the cement were studied. Changes in mineralogical composition and pore size distribution were investigated by X-ray diffraction and mercury intrusion porosimetry, respectively. Damage is due to the formation of ettringite in small pores (10–50 nm) which generates stresses up to 8 MPa exceeding the tensile strength of the binder matrix. Higher sulfate concentrations and C{sub 3}A contents result in higher stresses. The results can be understood in terms of the effect of crystal surface energy and size on supersaturation and crystal growth pressure.

  12. Density of mixed alkali borate glasses: A structural analysis

    International Nuclear Information System (INIS)

    Density of mixed alkali borate glasses has been correlated with the glass structure. It is assumed that in such glasses each alkali oxide associates with a proportional quantity of B2O3. The number of BO3 and BO4 units related to each type of alkali oxide depends on the total concentration of alkali oxide. It is concluded that in mixed alkali borate glasses the volumes of structural units related to an alkali ion are the same as in the corresponding binary alkali borate glass. This reveals that each type of alkali oxide forms its own borate matrix and behaves as if not affected with the presence of the other alkali oxide. Similar conclusions are valid for borate glasses with three types of alkali oxide

  13. Density of mixed alkali borate glasses: A structural analysis

    Energy Technology Data Exchange (ETDEWEB)

    Doweidar, H. [Glass Research Group, Physics Department, Faculty of Science, Mansoura University, P.O. Box 83, Mansoura 35516 (Egypt)]. E-mail: hdoweidar@mans.edu.eg; El-Damrawi, G.M. [Glass Research Group, Physics Department, Faculty of Science, Mansoura University, P.O. Box 83, Mansoura 35516 (Egypt); Moustafa, Y.M. [Glass Research Group, Physics Department, Faculty of Science, Mansoura University, P.O. Box 83, Mansoura 35516 (Egypt); Ramadan, R.M. [Glass Research Group, Physics Department, Faculty of Science, Mansoura University, P.O. Box 83, Mansoura 35516 (Egypt)

    2005-05-15

    Density of mixed alkali borate glasses has been correlated with the glass structure. It is assumed that in such glasses each alkali oxide associates with a proportional quantity of B{sub 2}O{sub 3}. The number of BO{sub 3} and BO{sub 4} units related to each type of alkali oxide depends on the total concentration of alkali oxide. It is concluded that in mixed alkali borate glasses the volumes of structural units related to an alkali ion are the same as in the corresponding binary alkali borate glass. This reveals that each type of alkali oxide forms its own borate matrix and behaves as if not affected with the presence of the other alkali oxide. Similar conclusions are valid for borate glasses with three types of alkali oxide.

  14. Alkali-metal intercalation in carbon nanotubes

    Science.gov (United States)

    Béguin, F.; Duclaux, L.; Méténier, K.; Frackowiak, E.; Salvetat, J. P.; Conard, J.; Bonnamy, S.; Lauginie, P.

    1999-09-01

    We report on successful intercalation of multiwall (MWNT) and single wall (SWNT) carbon nanotubes with alkali metals by electrochemical and vapor phase reactions. A LiC10 compound was produced by full electrochemical reduction of MWNT. KC8 and CsC8-MWNT first stage derivatives were synthesized in conditions of alkali vapor saturation. Their identity periods and the 2×2 R 0° alkali superlattice are comparable to their parent graphite compounds. The dysonian shape of KC8 EPR line and the temperature-independent Pauli susceptibility are both characteristic of a metallic behavior, which was confirmed by 13C NMR anisotropic shifts. Exposure of SWNT bundles to alkali vapor led to an increase of the pristine triangular lattice from 1.67 nm to 1.85 nm and 1.87 nm for potassium and rubidium, respectively.

  15. Studies on interfacial behavior and wettability change phenomena by ionic and nonionic surfactants in presence of alkalis and salt for enhanced oil recovery

    Science.gov (United States)

    Kumar, Sunil; Mandal, Ajay

    2016-05-01

    Surfactant flooding is one of the most promising method of enhanced oil recovery (EOR) used after the conventional water flooding. The addition of alkali improves the performance of surfactant flooding due to synergistic effect between alkali and surfactant on reduction of interfacial tension (IFT), wettability alteration and emulsification. In the present study the interfacial tension, contact angle, emulsification and emulsion properties of cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and polysorbate 80 (Tween 80) surfactants against crude oil have been investigated in presence of sodium chloride (NaCl) and alkalis viz. sodium hydroxide (NaOH), sodium carbonate (Na2CO3), ammonium hydroxide (NH4OH), sodium metaborate (SMB) and diethanolamine (DEA). All three surfactants significantly reduce the IFT values, which are further reduced to ultra-low value (∼10-4 mN/m) by addition of alkalis and salt. It has been found experimentally that alkali-surfactant systems change the wettability of an intermediate-wet quartz rock to water-wet. Emulsification of crude oil by surfactant and alkali has also been investigated in terms of the phase volume and stability of emulsion. A comparative FTIR analysis of crude oil and different emulsions were performed to investigate the interactions between crude oil and displacing water in presence of surfactant and alkali.

  16. Decade of stratospheric sulfate measurements compared with observations of volcanic eruptions

    International Nuclear Information System (INIS)

    Sulfate aerosol concentrations in the stratosphere have been measured for 11 years (1971--1981) using portions of filters collected by the Department of Energy's High Altitude Sampling Program. Data collected seasonally at altitudes between 13 km and 20 km spanning latitudes from 75 0N to 51 0S are reported. These data are compared with the reported altitudes of volcanic eruption plumes during the same decade. From this comparison it is concluded that (1) several unreported volcanic eruptions or eruptions to altitudes higher than reported did occur during the decade, (2) the e-fold removal time for sulfate aerosol from the stratosphere following the eruption of Volcan Fuego in 1974 was 11.2 +- 1.2 months, (3) the volcanic contribution to the average stratospheric sulfate concentration over the decade was greater than 50%, and (4) there may be evidence for an anthropogenic contribution to stratospheric sulfate that increases at the rate of 6 to 8% per year

  17. Calcium silicate hydrate: Crystallisation and alkali sorption

    International Nuclear Information System (INIS)

    Homogeneous single C-S-H gels has been prepared for the investigation of alkali binding potential and crystallisation. A distribution coefficient, Rd, was introduced to express the partition of alkali between solid and aqueous phases at 25 deg. C. Rd is independent of alkali hydroxide concentration and depends only on Ca:Si ratio over wide ranges of alkali concentration. The trend of numerical values of Rd indicates that alkali bonding into the solid improves as its Ca:Si ratio decreases. Reversibility is demonstrated, indicating a possibility of constant Rd value of the material. Al has been introduced to form C-A-S-H gels and their alkali sorption properties also determined. Al substituted into C-S-H markedly increases Rd, indicating enhancement of alkali binding. However, the dependence of Rd on alkali concentration is non-ideal with composition. A two-site model for bonding is presented. Crystallisation both under saturated steam and 1 bar vapour pressure has been investigated. It has been shown that heat treatment by saturated steam causes crystallisation of gels. The principal minerals obtained were (i) C-S-H gel and Ca(OH)2 at -55 deg. C, (ii) 1.1 nm tobermorite, jennite and afwillite at 85 -130 deg. C, and (iii) xonotlite, foshagite and hillebrandite at 150-180 deg. C. Properties of crystalline C-S-H were also reported for reversible phase transformation, pH conditioning ability, seeding effect and solubility. At 1 bar pressure, crystallisation is slower than in saturated steam due to lower water activity. Tobermorite-like nanodomains develop during reaction at low Ca/Si ratios. In some Ca-rich compositions, Ca(OH)2 is exsolved and occurs as nano-sized crystallites. (author)

  18. MODELING THE EFFECTS OF ANTHROPOGENIC SULFATE IN CLIMATE CHANGE BY USING A REGIONAL CLIMATE MODEL

    Institute of Scientific and Technical Information of China (English)

    高学杰; 林一骅; 赵宗慈

    2003-01-01

    Effects of aerosol with focus on the direct climate effect of anthropogenic sulfate aerosol under 2×CO2 condition were investigated by introducing aerosol distribution into the latest version of RegCM2. Two experiments, first run(2×CO2 + 0 aerosol concentration) and second run (2×CO2 + aerosol distribution), were made for 5 years respectively. Preliminary analysis shows that the direct climate effect of aerosol might cause a decrease of surface air temperature.The decrease might be larger in winter and in South China. The regional-averaged monthly precipitation might also decrease in most of the months due to the effect. The annual mean change of precipitation might be a decrease in East and an increase in West China. But the changes of both temperature and precipitation simulated were much smaller as compared to the greenhouse effect.

  19. Phase transformation and growth of hygroscopic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Tang, I.N.

    1995-09-01

    Ambient aerosols frequently contain large portions of hygroscopic inorganic salts such as chlorides, nitrates, and sulfates in either pure or mixed forms. Such inorganic salt aerosols exhibit the properties of deliquescence and efflorescence in air. The phase transformation from a solid particle to a saline droplet usually occurs spontaneously when the relative humidity of the atmosphere reaches a level specific to the chemical composition of the aerosol particle. Conversely, when the relative humidity decreases and becomes low enough, the saline droplet will evaporate and suddenly crystallize, expelling all its water content. The phase transformation and growth of aerosols play an important role in many atmospheric processes affecting air quality, visibility degradation, and climate changes. In this chapter, an exposition of the underlying thermodynamic principles is given, and recent advances in experimental methods utilizing single-particle levitation are discussed. In addition, pertinent and available thermodynamic data, which are needed for predicting the deliquescence properties of single and multi-component aerosols, are compiled. This chapter is useful to research scientists who are either interested in pursuing further studies of aerosol thermodynamics, or required to model the dynamic behavior of hygroscopic aerosols in a humid environment.

  20. Factors Affecting Aerosol Radiative Forcing

    Science.gov (United States)

    Wang, Jingxu; Lin, Jintai; Ni, Ruijing

    2016-04-01

    Rapid industrial and economic growth has meant a large amount of aerosols in the atmosphere with strong radiative forcing (RF) upon the climate system. Over parts of the globe, the negative forcing of aerosols has overcompensated for the positive forcing of greenhouse gases. Aerosol RF is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. In this study, we analyze the major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA), and black carbon (BC). We analyze the RF of aerosols produced by 11 major regions across the globe, including but not limited to East Asia, Southeast Asia, South Asia, North America, and Western Europe. Factors analyzed include population size, per capita gross domestic production (GDP), emission intensity (i.e., emissions per unit GDP), chemical efficiency (i.e., mass per unit emissions) and radiative efficiency (i.e., RF per unit mass). We find that among the 11 regions, East Asia produces the largest emissions and aerosol RF, due to relatively high emission intensity and a tremendous population size. South Asia produce the second largest RF of SIOA and BC and the highest RF of POA, in part due to its highest chemical efficiency among all regions. Although Southeast Asia also has large emissions, its aerosol RF is alleviated by its lowest chemical efficiency. The chemical efficiency and radiative efficiency of BC produced by the Middle East-North Africa are the highest across the regions, whereas its RF is lowered by a small per capita GDP. Both North America and Western Europe have low emission intensity, compensating for the effects on RF of large population sizes and per capita GDP. There has been a momentum to transfer industries to Southeast Asia and South Asia, and such transition is expected to continue in the coming years. The

  1. In-cloud sulfate addition to single particles resolved with sulfur isotope analysis during HCCT-2010

    Science.gov (United States)

    Harris, E.; Sinha, B.; van Pinxteren, D.; Schneider, J.; Poulain, L.; Collett, J.; D'Anna, B.; Fahlbusch, B.; Foley, S.; Fomba, K. W.; George, C.; Gnauk, T.; Henning, S.; Lee, T.; Mertes, S.; Roth, A.; Stratmann, F.; Borrmann, S.; Hoppe, P.; Herrmann, H.

    2014-04-01

    In-cloud production of sulfate modifies aerosol size distribution, with important implications for the magnitude of indirect and direct aerosol cooling and the impact of SO2 emissions on the environment. We investigate which sulfate sources dominate the in-cloud addition of sulfate to different particle classes as an air parcel passes through an orographic cloud. Sulfate aerosol, SO2 and H2SO4 were collected upwind, in-cloud and downwind of an orographic cloud for three cloud measurement events during the Hill Cap Cloud Thuringia campaign in autumn 2010 (HCCT-2010). Combined SEM and NanoSIMS analysis of single particles allowed the δ34S of particulate sulfate to be resolved for particle size and type. The most important in-cloud SO2 oxidation pathway at HCCT-2010 was aqueous oxidation catalysed by transition metal ions (TMI catalysis), which was shown with single particle isotope analyses to occur primarily in cloud droplets nucleated on coarse mineral dust. In contrast, direct uptake of H2SO4 (g) and ultrafine particulate were the most important sources modifying fine mineral dust, increasing its hygroscopicity and facilitating activation. Sulfate addition to "mixed" particles (secondary organic and inorganic aerosol) and coated soot was dominated by in-cloud aqueous SO2 oxidation by H2O2 and direct uptake of H2SO4 (g) and ultrafine particle sulfate, depending on particle size mode and time of day. These results provide new insight into in-cloud sulfate production mechanisms, and show the importance of single particle measurements and models to accurately assess the environmental effects of cloud processing.

  2. Water Uptake and Hygroscopic Growth of Organosulfate Aerosol.

    Science.gov (United States)

    Estillore, Armando D; Hettiyadura, Anusha P S; Qin, Zhen; Leckrone, Erin; Wombacher, Becky; Humphry, Tim; Stone, Elizabeth A; Grassian, Vicki H

    2016-04-19

    Organosulfates (OS) are important components of secondary organic aerosol (SOA) that have been identified in numerous field studies. This class of compounds within SOA can potentially affect aerosol physicochemical properties such as hygroscopicity because of their polar and hydrophilic nature as well as their low volatility. Currently, there is a dearth of information on how aerosol particles that contain OS interact with water vapor in the atmosphere. Herein we report a laboratory investigation on the hygroscopic properties of a structurally diverse set of OS salts at varying relative humidity (RH) using a Hygroscopicity-Tandem Differential Mobility Analyzer (H-TDMA). The OS studied include the potassium salts of glycolic acid sulfate, hydroxyacetone sulfate, 4-hydroxy-2,3-epoxybutane sulfate, and 2-butenediol sulfate and the sodium salts of benzyl sulfate, methyl sulfate, ethyl sulfate, and propyl sulfate. In addition, mixtures of OS and sodium chloride were also studied. The results showed gradual deliquescence of these aerosol particles characterized by continuous uptake and evaporation of water in both hydration and dehydration processes for the OS, while the mixture showed prompt deliquescence and effloresce transitions, albeit at a lower relative humidity relative to pure sodium chloride. Hygroscopic growth of these OS at 85% RH were also fit to parameterized functional forms. This new information provided here has important implications about the atmospheric lifetime, light scattering properties, and the role of OS in cloud formation. Moreover, results of these studies can ultimately serve as a basis for the development and evaluation of thermodynamic models for these compounds in order to consider their impact on the atmosphere. PMID:26967467

  3. Characterization of aerosol composition, concentrations, and sources at Baengnyeong Island, Korea using an aerosol mass spectrometer

    Science.gov (United States)

    Lee, Taehyoung; Choi, Jinsoo; Lee, Gangwoong; Ahn, Junyoung; Park, Jin Soo; Atwood, Samuel A.; Schurman, Misha; Choi, Yongjoo; Chung, Yoomi; Collett, Jeffrey L.

    2015-11-01

    To improve understanding of the sources and chemical properties of particulate pollutants on the western side of the Korean Peninsula, an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) measured non-refractory fine (PM1) particles from May to November, 2011 at Baengnyeong Island, South Korea. Organic matter and sulfate were generally the most abundant species and exhibited maximum concentrations of 36 μg/m3 and 39 μg/m3, respectively. Nitrate concentrations peaked at 32 μg/m3 but were typically much lower than sulfate and organic matter concentrations. May, September, October, and November featured the highest monthly average concentrations, with lower concentrations typically observed from June through August. Potential source contribution function (PSCF) analysis and individual case studies revealed that transport from eastern China, an area with high SO2 emissions, was associated with high particulate sulfate concentrations at the measurement site. Observed sulfate aerosol sometimes was fully neutralized by ammonium but often was acidic; the average ammonium to sulfate molar ratio was 1.49. Measured species size distributions revealed a range of sulfate particle size distributions with modes between 100 and 600 nm. Organic aerosol source regions were widespread, including contributions from eastern China and South Korea. Positive matrix factorization (PMF) analysis indicated three "factors," or types of organic aerosol, comprising one primary, hydrocarbon-like organic aerosol (HOA) and two oxidized organic aerosol (OOA) components, including a more oxidized (MO-OOA) and a less oxidized (LO-OOA) oxidized organic aerosol. On average, HOA and OOA contributed 21% and 79% of the organic mass (OM), respectively, with the MO-OOA fraction nearly three times as abundant as the LO-OOA fraction. Biomass burning contributions to observed OM were low during the late spring/early summer agricultural burning season in eastern China, since

  4. Crystal structure of tris­(piperidinium) hydrogen sulfate sulfate

    OpenAIRE

    Lukianova, Tamara J.; Kinzhybalo, Vasyl; Pietraszko, Adam

    2015-01-01

    A novel mixed hydrogen sulfate–sulfate piperidinium salt comprises three protonated piperidinium cations, one hydrogen sulfate anion and one sulfate anion in the asymmetric unit. Strong hydrogen bonds exist between the cations and the anions giving rise to a three-dimensional structure.

  5. Hydrazine Sulfate (PDQ)

    Science.gov (United States)

    ... use of hydrazine sulfate as a complementary or alternative treatment for cancer? It has been known since the early 1900s ... of CAM therapies originally considered to be purely alternative approaches are finding a place in cancer treatment—not as cures, but as complementary therapies that ...

  6. Aluminum Sulfate 18 Hydrate

    Science.gov (United States)

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  7. Secondary organic material formed by methylglyoxal in aqueous aerosol mimics - Part 2: Product identification using Aerosol-CIMS

    Science.gov (United States)

    Sareen, N.; Shapiro, E. L.; Schwier, A. N.; McNeill, V. F.

    2009-07-01

    We used chemical ionization mass spectrometry with a volatilization flow tube inlet (Aerosol-CIMS) to characterize secondary organic material formed by methylglyoxal with ammonium sulfate in aqueous aerosol mimics. Bulk reaction mixtures were diluted and atomized to form submicron aerosol particles. Organics were detected using Aerosol-CIMS in positive and negative ion mode using I- and H3O+·(H2O)n as reagent ions. The results are consistent with aldol condensation products, carbon-nitrogen species, sulfur-containing compounds, and oligomeric species up to 759 amu. These results support previous observations by us and others that ammonium sulfate plays a critical role in the SOA formation chemistry of dicarbonyl compounds.

  8. Secondary organic material formed by methylglyoxal in aqueous aerosol mimics – Part 2: Product identification using Aerosol-CIMS

    Directory of Open Access Journals (Sweden)

    V. F. McNeill

    2009-07-01

    Full Text Available We used chemical ionization mass spectrometry with a volatilization flow tube inlet (Aerosol-CIMS to characterize secondary organic material formed by methylglyoxal with ammonium sulfate in aqueous aerosol mimics. Bulk reaction mixtures were diluted and atomized to form submicron aerosol particles. Organics were detected using Aerosol-CIMS in positive and negative ion mode using I− and H3O+·(H2On as reagent ions. The results are consistent with aldol condensation products, carbon-nitrogen species, sulfur-containing compounds, and oligomeric species up to 759 amu. These results support previous observations by us and others that ammonium sulfate plays a critical role in the SOA formation chemistry of dicarbonyl compounds.

  9. Impacts of East Asian aerosols on the Asian monsoon

    Science.gov (United States)

    Bartlett, Rachel; Bollasina, Massimo; Booth, Ben; Dunstone, Nick; Marenco, Franco

    2016-04-01

    Over recent decades, aerosol emissions from Asia have increased rapidly. Aerosols are able to alter radiative forcing and regional hydroclimate through direct and indirect effects. Large emissions within the geographical region of the Asian monsoon have been found to impact upon this vital system and have been linked to observed drying trends. The interconnected nature of smaller regional monsoon components (e.g. the Indian monsoon and East Asian monsoon) presents the possibility that aerosol sources could have far-reaching impacts. Future aerosol emissions are uncertain and may continue to dominate regional impacts on the Asian monsoon. Standard IPCC future emissions scenarios do not take a broad sample of possible aerosol pathways. We investigate the sensitivity of the Asian monsoon to East Asian aerosol emissions. Experiments carried out with HadGEM2-ES use three time-evolving future anthropogenic aerosol emissions scenarios with similar time-evolving greenhouse gases. We find a wetter summer over southern China and the Indochina Peninsula associated with increased sulfate aerosol over China. The southern-flood-northern-drought pattern seen in observations is reflected in these results. India is found to be drier in the summer overall, although wetter in June. These precipitation changes are linked to the increase in sulfate through the alteration of large scale dynamics. Sub-seasonal changes are also seen, with an earlier withdrawal of the monsoon over East Asia.

  10. Characterization of urban aerosol using aerosol mass spectrometry and proton nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Cleveland, M. J.; Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Lefer, B.; Rappenglück, B.

    2012-07-01

    Particulate matter was measured during August and September of 2006 in Houston as part of the Texas Air Quality Study II Radical and Aerosol Measurement Project. Aerosol size and composition were determined using an Aerodyne quadrupole aerosol mass spectrometer. Aerosol was dominated by sulfate (4.1 ± 2.6 μg m-3) and organic material (5.5 ± 4.0 μg m-3), with contributions of organic material from both primary (˜32%) and secondary (˜68%) sources. Secondary organic aerosol appears to be formed locally. In addition, 29 aerosol filter samples were analyzed using proton nuclear magnetic resonance (1H NMR) spectroscopy to determine relative concentrations of organic functional groups. Houston aerosols are less oxidized than those observed elsewhere, with smaller relative contributions of carbon-oxygen double bonds. These particles do not fit 1H NMR source apportionment fingerprints for identification of secondary, marine, and biomass burning organic aerosol, suggesting that a new fingerprint for highly urbanized and industrially influenced locations be established.

  11. MATRIX (Multiconfiguration Aerosol TRacker of mIXing state: an aerosol microphysical module for global atmospheric models

    Directory of Open Access Journals (Sweden)

    S. E. Bauer

    2008-10-01

    Full Text Available A new aerosol microphysical module MATRIX, the Multiconfiguration Aerosol TRacker of mIXing state, and its application in the Goddard Institute for Space Studies (GISS climate model (ModelE are described. This module, which is based on the quadrature method of moments (QMOM, represents nucleation, condensation, coagulation, internal and external mixing, and cloud-drop activation and provides aerosol particle mass and number concentration and particle size information for up to 16 mixed-mode aerosol populations. Internal and external mixing among aerosol components sulfate, nitrate, ammonium, carbonaceous aerosols, dust and sea-salt particles are represented. The solubility of each aerosol population, which is explicitly calculated based on its soluble and insoluble components, enables calculation of the dependence of cloud drop activation on the microphysical characterization of multiple soluble aerosol populations.

    A detailed model description and results of box-model simulations of various aerosol population configurations are presented. The box model experiments demonstrate the dependence of cloud activating aerosol number concentration on the aerosol population configuration; comparisons to sectional models are quite favorable. MATRIX is incorporated into the GISS climate model and simulations are carried out primarily to assess its performance/efficiency for global-scale atmospheric model application. Simulation results were compared with aircraft and station measurements of aerosol mass and number concentration and particle size to assess the ability of the new method to yield data suitable for such comparison. The model accurately captures the observed size distributions in the Aitken and accumulation modes up to particle diameter 1 μm, in which sulfate, nitrate, black and organic carbon are predominantly located; however the model underestimates coarse-mode number concentration and size, especially in the marine environment

  12. Spatial distributions and seasonal cycles of aerosols in India and China seen in global climate-aerosol model

    Directory of Open Access Journals (Sweden)

    S. V. Henriksson

    2011-02-01

    Full Text Available A climate-aerosol model is employed to study spatial and temporal variability of aerosol properties over India and China for recent (year 2006 and future conditions (year 2020 under different emission pathways. We present results for aerosol mass concentration in different size classes and optical properties for the five different aerosol species treated by the model. Aerosol mass concentration and optical depth have significant contributions from both anthropogenic and natural aerosols. Different species have maxima in different regions, with the highest anthropogenic aerosol concentrations found in Kolkata and elsewhere in the Ganges basin in India and on the northern part of the east coast and in the Sichuan basin in China. In India natural aerosols have a maximum in the summer due to higher wind speeds and anthropogenic aerosols have a maximum in the winter due to less efficient wet removal. Surface concentrations are also higher in winter due to the additional reason of lower average boundary layer height. In China seasonal cycles are weaker with natural aerosols having a maximum in the spring and sulfate contribution to the aerosol optical depth (AOD being higher in the latter half of the year. MODIS AOD spatial distributions are reproduced well by the model, except for the Ganges valley with high absorption and for the Thar desert with high dust concentrations. Seasonal cycles compare well qualitatively with MODIS results. The larger AOD in China during the latter half of the year in the year 2006 simulation as compared to the MODIS data can be traced back to sulfate contribution with some contribution also from natural aerosols.

  13. A permanent aerosol layer at the tropical tropopause layer driven by the intertropical convergence zone

    Directory of Open Access Journals (Sweden)

    Q. Bourgeois

    2012-01-01

    Full Text Available We use observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP satellite instrument and a global aerosol-climate model to document an aerosol layer that forms in the vicinity of the tropical tropopause layer (TTL over the Southern Asian and Indian Ocean region. CALIOP observations suggest that the aerosol layer is present throughout the year and follows the migration of the Intertropical Convergence Zone (ITCZ. The layer is located at about 20° N during boreal summers and at about 15° S in boreal winters. The ECHAM5.5-HAM2 aerosol-climate model reproduces such an aerosol layer close to the TTL but overestimates the observed aerosol extinction. The mismatch between observed and simulated aerosols extinction are discussed in terms of uncertainties related to CALIOP and possible problems in the model. Sensitivity model simulations indicate that (i sulfate particles resulting from SO2 and DMS oxidation are the main contributors to the mean aerosol extinction in the layer throughout the year, and (ii transport of sulfate precursors by convection followed by nucleation is responsible for the formation of the aerosol layer. The reflection of shortwave radiations by aerosols in the TTL may be negligible, however, cloud droplets formed by these aerosols may reflect about 6 W m−2 back to space. Overall, this study provides new insights in term of composition of the tropical upper troposphere.

  14. Sulfate metabolism. I. Sulfate uptake and redistribution of acid rain sulfate by edible plants

    International Nuclear Information System (INIS)

    Sulfur is the major component of polluted air in industrialized societies. Atmospheric sulfur is converted to sulfuric acid through a series of chemical reactions which can eventually reenter many ecosystems. When edible plants are grown in soils containing varying amounts of sulfate, the roots take up and transport inorganic sulfate to the stems and leaves. The sulfate taken up by the roots and the amount transported to the stem and leaves was found to be a function of the concentration of sulfate in the soil. Inorganic sulfate taken up by a corn plant seedling can be rapidly converted to organic sulfate by the root system. Nine days after one of a pair of pea plants was inoculated with artificial acid rain sulfate (dilute H235SO4) it was found that the sulfate was translocated not only in the inoculated plant, but also to the uninoculated pea plant in the same container. Also, when the leaves of a mature potato plant were inoculated with artificial acid rain sulfate it was found that the sulfate was translocated into the edible potatoes. Fractionation of the potatoes showed that most of the sulfate was water soluble of which 30% was inorganic sulfate and 70% was in the form of organic sulfur. One third of the non-water soluble translocated acid rain sulfate was equally divided between lipid and non-lipid organic sulfur of the potato. 9 references, 2 figures, 5 tables

  15. Impact of Coal Fly Ash Addition on Combustion Aerosols (PM2.5) from Full-Scale Suspension-Firing of Pulverized Wood

    DEFF Research Database (Denmark)

    Damø, Anne Juul; Wu, Hao; Frandsen, Flemming;

    2014-01-01

    The formation of combustion aerosols was studied in an 800 MWth suspension-fired power plant boiler, during combustion of pulverized wood pellets with and without addition of coal fly ash as alkali capture additive. The aerosol particles were sampled and characterized by a low-pressure cascade...

  16. Composition and physical properties of the Asian Tropopause Aerosol Layer and the North American Tropospheric Aerosol Layer

    Science.gov (United States)

    Yu, Pengfei; Toon, Owen B.; Neely, Ryan R.; Martinsson, Bengt G.; Brenninkmeijer, Carl A. M.

    2015-04-01

    Recent studies revealed layers of enhanced aerosol scattering in the upper troposphere and lower stratosphere over Asia (Asian Tropopause Aerosol Layer (ATAL)) and North America (North American Tropospheric Aerosol Layer (NATAL)). We use a sectional aerosol model (Community Aerosol and Radiation Model for Atmospheres (CARMA)) coupled with the Community Earth System Model version 1 (CESM1) to explore the composition and optical properties of these aerosol layers. The observed aerosol extinction enhancement is reproduced by CESM1/CARMA. Both model and observations indicate a strong gradient of the sulfur-to-carbon ratio from Europe to the Asia on constant pressure surfaces. We found that the ATAL is mostly composed of sulfates, surface-emitted organics, and secondary organics; the NATAL is mostly composed of sulfates and secondary organics. The model also suggests that emission increases in Asia between 2000 and 2010 led to an increase of aerosol optical depth of the ATAL by 0.002 on average which is consistent with observations.

  17. Temporal Variation of Aerosol Properties at a Rural Continental Site and Study of Aerosol Evolution through Growth Law Analysis

    Science.gov (United States)

    Wang, Jian; Collins, Don; Covert, David; Elleman, Robert; Ferrare, Richard A.; Gasparini, Roberto; Jonsson, Haflidi; Ogren, John; Sheridan, Patrick; Tsay, Si-Chee

    2006-01-01

    Aerosol size distributions were measured by a Scanning Mobility Particle Sizer (SMPS) onboard the CIRPAS Twin Otter aircraft during 16 flights at the Southern Great Plains (SGP) site in northern central Oklahoma as part of the Aerosol Intensive Operation period in May, 2003. During the same period a second SMPS was deployed at a surface station and provided continuous measurements. Combined with trace gas measurements at the SGP site and back-trajectory analysis, the aerosol size distributions provided insights into the sources of aerosols observed at the SGP site. High particle concentrations, observed mostly during daytime, were well correlated with the sulfur dioxide (SO2) mixing ratios, suggesting nucleation involving sulfuric acid is likely the main source of newly formed particles at the SGP. Aerosols within plumes originating from wildfires in Central America were measured at the surface site. Vertically compact aerosol layers, which can be traced back to forest fires in East Asia, were intercepted at altitudes over 3000 meters. Analyses of size dependent particle growth rates for four periods during which high cloud coverage was observed indicate growth dominated by volume controlled reactions. Sulfate accounts for 50% to 72% of the increase in aerosol volume concentration; the rest of the volume concentration increase was likely due to secondary organic species. The growth law analyses and meteorological conditions indicate that the sulfate was produced mainly through aqueous oxidation of SO2 in clouds droplets and hydrated aerosol particles.

  18. Indoor aerosols

    DEFF Research Database (Denmark)

    Morawska, L.; Afshari, Alireza; N. Bae, G.;

    2013-01-01

    understanding of the risks posed by personal exposure to indoor aerosols. Limited studies assessing integrated daily residential exposure to just one particle size fraction, ultrafine particles, show that the contribution of indoor sources ranged from 19% to 76%. This indicates a strong dependence on resident...

  19. Synthesis of biodiesel from Neem oil using sulfated zirconia via tranesterification

    OpenAIRE

    H. Muthu; V. SathyaSelvabala; T. K. Varathachary; D. Kirupha Selvaraj; J. Nandagopal; Subramanian, S.

    2010-01-01

    Sulfated zirconia (SZ) is a widely used catalyst, which is synthesized by a solvent free method and the synthesized catalyst has been characterized. Neem Methyl Ester (Biodiesel) was prepared by a two-step process of esterification and transesterification from Neem oil with methanol in the presence of catalyst. Acid catalyst was used for the esterification and alkali catalyst (KOH) for the transesterification reaction. Optimal Free Fatty Acid (FFA) conversion was achieved using 1 wt% SZ as an...

  20. Aerosol activation and cloud processing in the global aerosol-climate model ECHAM5-HAM

    Directory of Open Access Journals (Sweden)

    G. J. Roelofs

    2006-01-01

    Full Text Available A parameterization for cloud processing is presented that calculates activation of aerosol particles to cloud drops, cloud drop size, and pH-dependent aqueous phase sulfur chemistry. The parameterization is implemented in the global aerosol-climate model ECHAM5-HAM. The cloud processing parameterization uses updraft speed, temperature, and aerosol size and chemical parameters simulated by ECHAM5-HAM to estimate the maximum supersaturation at the cloud base, and subsequently the cloud drop number concentration (CDNC due to activation. In-cloud sulfate production occurs through oxidation of dissolved SO2 by ozone and hydrogen peroxide. The model simulates realistic distributions for annually averaged CDNC although it is underestimated especially in remote marine regions. On average, CDNC is dominated by cloud droplets growing on particles from the accumulation mode, with smaller contributions from the Aitken and coarse modes. The simulations indicate that in-cloud sulfate production is a potentially important source of accumulation mode sized cloud condensation nuclei, due to chemical growth of activated Aitken particles and to enhanced coalescence of processed particles. The strength of this source depends on the distribution of produced sulfate over the activated modes. This distribution is affected by uncertainties in many parameters that play a direct role in particle activation, such as the updraft velocity, the aerosol chemical composition and the organic solubility, and the simulated CDNC is found to be relatively sensitive to these uncertainties.

  1. The Truth about Stratospheric Aerosols: Key Results from SPARC`s Assessment of Stratospheric Aerosol Properties

    Science.gov (United States)

    Thomason, L. W.; Peter, T.

    2005-12-01

    Given the critical role it plays in ozone chemistry, the Assessment of Stratospheric Aerosol Properties (ASAP) has been carried out by the WCRP project on Stratospheric Process and their Role in Climate (SPARC). The objective of this report was to present a systematic analysis of the state of knowledge of stratospheric aerosols including their precursors. It includes an examination of precursor concentrations and trends, measurements of stratospheric aerosol properties, trends in those properties, and modeling their formation, transport, and distribution in both background and volcanic conditions. The assessment found that the dominant nonvolcanic stratospheric aerosol precursor gases are OCS, SO2, and tropospheric aerosol. Therefore, though SO2, human-related activities play a significant role in the observed background stratospheric aerosol. There is general agreement between measured OCS and modeling of its transformation to sulfate aerosol, and observed aerosols. However, there is a significant dearth of SO2 measurements, and the role of tropospheric SO2 in the stratospheric aerosol budget - while significant - remains a matter of some guesswork. The assessment also found that there is basic agreement between the various data sets and models particularly during periods of elevated loading. However, at background levels significant differences were found that indicate that substantial questions remain regarding the nature of stratospheric aerosol during these periods particularly in the lower stratosphere. For instance, during periods of very low aerosol loading significant differences exist between systems for key parameters including aerosol surface area density and extinction. At the same time, comparisons of models and satellite observations of aerosol extinction found good agreement at visible wavelengths above 20-25 km altitude region but are less satisfactory for infrared wavelengths. While there are some model short-comings relative to observations in

  2. Silica enigma and ignorance in alkali

    International Nuclear Information System (INIS)

    Si migration and K, Na alterations are two key problems for understanding the whole process of hydrothermal metallogenesis, but they have not attracted sufficient attention of geologists for a long time. It is impossible for us to know hydrothermal metallogenetic regularity actually without studying dequartzfication and alkali-introduction. Being distinct from common habitual thinking, it is considered that ore-forming elements are micro-amount, passive subordinate components in the flow of hydrothermal matter movement, and there is no metallogenesis for a certain element in nature. Except that the ore source is controlled by the uneven distribution ore-forming elements in the mantle and crust the same metallogenesis may almost lead to the formation of deposits of all elements. Principal active components in the hydrothermal matter system include alkali, silica and acid volatiles. The ternary system has determined the fate of release, activation, migration, precipitaion and concentration of ore-forming elements. Each member of the ternary system plays a different role in metallogenesis, having marvellous functional division of work. of these three members main control factor is alkali metal, whereas silica and acid are constrained by alkali. Acidic matter (including silica) and ore-forming elements are derivatives from activities of alkali metals

  3. Radioimmunoassay of dehydroepiandrosterone sulfate

    International Nuclear Information System (INIS)

    The development of a radioimmunological method for the measurement of dehydroepiandrosterone sulfate in serum is described. For the immunization of rabbits, a DHA-3-hemissuccinate-bovine serum albumin conjugate was synthetized and a highly specific anti-serum was produced. The method developed requires only simple dilution prior to assay and the normal values for the different age groups were determined in 146 normal individuals. (Author)

  4. Sulfation of chondroitin. Specificity, degree of sulfation, and detergent effects with 4-sulfating and 6-sulfating microsomal systems

    International Nuclear Information System (INIS)

    Microsomal preparations from chondroitin 6-sulfate-producing chick embryo epiphyseal cartilage, and from chondroitin 4-sulfate-producing mouse mastocytoma cells, were incubated with UDP-[14C]glucuronic acid and UDP-N-acetylgalactosamine to form non-sulfated proteo[14C]chondroitin. Aliquots of the incubations were then incubated with 3'-phosphoadenylylphosphosulfate (PAPS) in the presence or absence of various detergents. In the absence of detergents, there was good sulfation of this endogenous proteo[14C]chondroitin by the original microsomes from both sources. Detergents, with the exception of Triton X-100, markedly inhibited sulfation in the mast cell system but not in the chick cartilage system. These results indicate that sulfation and polymerization are closely linked on cell membranes and that in some cases this organization can be disrupted by detergents. When aliquots of the original incubation were heat inactivated, and then reincubated with new microsomes from chick cartilage and/or mouse mastocytoma cells plus PAPS, there was no significant sulfation of this exogenous proteo[14C] chondroitin with either system unless Triton X-100 was added. Sulfation of exogenous chondroitin and chondroitin hexasaccharide was compared with sulfation of endogenous and exogenous proteo[14C]chondroitin. Sulfate incorporation into hexasaccharide and chondroitin decreased as their concentrations (based on uronic acid) approached that of the proteo[14C]chondroitin. At the same time, the degree of sulfation in percent of substituted hexosamine increased. However, the degree of sulfation did not reach that of the endogenous proteo[14C]chondroitin. Hexasaccharide and chondroitin sulfation were stimulated by the presence of Triton X-100. However, in contrast to the exogenous proteo[14C]chondroitin, there was some sulfation of hexasaccharide and chondroitin in the absence of this detergent

  5. Superconductivity in alkali-doped C60

    International Nuclear Information System (INIS)

    Highlight: • Superconductivity in alkali-doped C60 (A3C60) is well described by an s-wave state produced by phonon mediated pairing. • Moderate coupling of electrons to high-frequency shape-changing intra-molecular vibrational modes produces transition temperatures up to 33 K in single-phase material. • The good understanding of pairing in A3C60 offers a paradigm for the development of new superconducting materials. - Abstract: Superconductivity in alkali-doped C60 (A3C60, A = an alkali atom) is well described by an s-wave state produced by phonon mediated pairing. Moderate coupling of electrons to high-frequency shape-changing intra-molecular vibrational modes produces transition temperatures (Tc) up to 33 K in single-phase material. The good understanding of pairing in A3C60 offers a paradigm for the development of new superconducting materials

  6. Operational aerosol and dust storm forecasting

    International Nuclear Information System (INIS)

    The U. S. Navy now conducts operational forecasting of aerosols and dust storms on global and regional scales. The Navy Aerosol Analysis and Prediction System (NAAPS) is run four times per day and produces 6-day forecasts of sulfate, smoke, dust and sea salt aerosol concentrations and visibility for the entire globe. The Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS (registered) ) is run twice daily for Southwest Asia and produces 3-day forecasts of dust, smoke, and visibility. The graphical output from these models is available on the Internet (www.nrlmry.navy.mil/aerosol/). The aerosol optical properties are calculated for each specie for each forecast output time and used for sea surface temperature (SST) retrieval corrections, regional electro-optical (EO) propagation assessments, and the development of satellite algorithms. NAAPS daily aerosol optical depth (AOD) values are compared with the Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) AOD values. Visibility forecasts are compared quantitatively with surface synoptic reports.

  7. Study of photolytic aerosols at stratospheric pressures

    International Nuclear Information System (INIS)

    An experimental study of photolytic aerosol formation at stratospheric pressure (60 Torr) and laboratory temperature, was carried out previous to the exact simulation of photolytic aerosol formation in real stratospheric conditions. An experimental simulation device, techniques of generation of known mixtures of inert gases with SO2 and NOsub(x) traces at low concentration (below 1 ppm volume) and H2O traces (a few ppm), and techniques for the determination and counting of aerosol particles at low pressures were perfected. The following results were achieved: the rate of vapor condensation on nuclei was reduced when total pressure decreased. At low pressure the working of condensation nuclei counters and the formation of photolytic aerosols is influenced by this phenomenon. An explanation is proposed, as well as means to avoid this unpleasant effect on the working of nuclei counters at low pressure. No photolytic aerosol production was ascertained at 60 Torr when water concentration was below 100 ppm whatever the concentration of SO2 or NOsub(x) traces. With water concentration below 1200ppm and SO2 trace concentration below 1ppm, the aerosol particles produced could not consist of sulfuric acid drops but probably of nitrosyl sulfate acide crystals

  8. Linkages between ozone-depleting substances, tropospheric oxidation and aerosols

    Directory of Open Access Journals (Sweden)

    A. Voulgarakis

    2013-05-01

    Full Text Available Coupling between the stratosphere and the troposphere allows changes in stratospheric ozone abundances to affect tropospheric chemistry. Large-scale effects from such changes on chemically produced tropospheric aerosols have not been systematically examined in past studies. We use a composition-climate model to investigate potential past and future impacts of changes in stratospheric ozone depleting substances (ODS on tropospheric oxidants and sulfate aerosols. In most experiments, we find significant responses in tropospheric photolysis and oxidants, with small but significant effects on methane radiative forcing. The response of sulfate aerosols is sizeable when examining the effect of increasing future nitrous oxide (N2O emissions. We also find that without the regulation of chlorofluorocarbons (CFCs through the Montreal Protocol, sulfate aerosols could have increased by 2050 by a comparable amount to the decreases predicted due to relatively stringent sulfur emissions controls. The individual historical radiative forcings of CFCs and N2O through their indirect effects on methane (−22.6 mW m−2 for CFCs and −6.7 mW m−2 for N2O and sulfate aerosols (−3.0 mW m−2 for CFCs and +6.5 mW m−2 for N2O when considering the direct aerosol effect discussed here are non-negligible when compared to known historical ODS forcing. Our results stress the importance of accounting for stratosphere-troposphere, gas-aerosol and composition-climate interactions when investigating the effects of changing emissions on atmospheric composition and climate.

  9. Aerosol filtration

    International Nuclear Information System (INIS)

    This report summarizes the work on the development of fibre metallic prefilters to be placed upstream of HEPA filters for the exhaust gases of nuclear process plants. Investigations at ambient and high temperature were carried out. Measurements of the filtration performance of Bekipor porous webs and sintered mats were performed in the AFLT (aerosol filtration at low temperature) unit with a throughput of 15 m3/h. A parametric study on the influence of particle size, fibre diameter, number of layers and superficial velocity led to the optimum choice of the working parameters. Three selected filter types were then tested with polydisperse aerosols using a candle-type filter configuration or a flat-type filter configuration. The small-diameter candle type is not well suited for a spraying nozzles regeneration system so that only the flat-type filter was retained for high-temperature tests. A high-temperature test unit (AFHT) with a throughput of 8 to 10 m3/h at 4000C was used to test the three filter types with an aerosol generated by high-temperature calcination of a simulated nitric acid waste solution traced with 134Cs. The regeneration of the filter by spray washing and the effect of the regeneration on the filter performance was studied for the three filter types. The porous mats have a higher dust loading capacity than the sintered web which means that their regeneration frequency can be kept lower

  10. TOMS Absorbing Aerosol Index

    Data.gov (United States)

    Washington University St Louis — TOMS_AI_G is an aerosol related dataset derived from the Total Ozone Monitoring Satellite (TOMS) Sensor. The TOMS aerosol index arises from absorbing aerosols such...

  11. Phase transformation and growth of hygroscopic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Tang, I.N.

    1999-11-01

    Ambient aerosols play an important role in many atmospheric processes affecting air quality, visibility degradation, and climatic changes as well. Both natural and anthropogenic sources contribute to the formation of ambient aerosols, which are composed mostly of sulfates, nitrates, and chlorides in either pure or mixed forms. These inorganic salt aerosols are hygroscopic by nature and exhibit the properties of deliquescence and efflorescence in humid air. For pure inorganic salt particles with diameter larger than 0.1 micron, the phase transformation from a solid particle to a saline droplet occurs only when the relative humidity in the surrounding atmosphere reaches a certain critical level corresponding to the water activity of the saturated solution. The droplet size or mass in equilibrium with relative humidity can be calculated in a straightforward manner from thermodynamic considerations. For aqueous droplets 0.1 micron or smaller, the surface curvature effect on vapor pressure becomes important and the Kelvin equation must be used.

  12. Recovery of alkali metal constituents from catalytic coal conversion residues

    Science.gov (United States)

    Soung, W.Y.

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  13. Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Sulfate reduction in a continuous flow, acidogenic reactor using molasses wastewater as the carbon source was studied at varying chemical oxygen demand/sulfate (COD/SO42-) ratios. At a critical COD/SO42- ratio of 2.7, neither COD nor sulfate were in excess for extra production of ethanol or acetate in the reactor. An acetic-type microbial metabolism was established with sulfate-reducing bacteria (SRB) significantly consuming hydrogen and volatile fatty acids produced by acidogenic bacteria and hydrogen producing acetogens in degrading COD, thereby yielding sulfate removal rate >94.6%. A low critical COD/SO42- ratio of 1.6 was also observed with the enriched ASRB population in reactor which overcomes the barrier to the treatment capability of sulfate-laden wastewater treatment with limited COD supply

  14. Aerosol Observation System

    Data.gov (United States)

    Oak Ridge National Laboratory — The aerosol observation system (AOS) is the primary Atmospheric Radiation Measurement (ARM) platform for in situ aerosol measurements at the surface. The principal...

  15. Chromism of Model Organic Aerosol

    Science.gov (United States)

    Rincon, Angela; Guzman, Marcelo; Hoffmann, Michael; Colussi, Agustin

    2008-03-01

    The optical properties of the atmospheric aerosol play a fundamental role in the Earth's radiative balance. Since more than half of the aerosol mass consists of complex organic matter that absorbs in the ultraviolet and visible regions of the spectrum, it is important to establish the identity of the organic chromophores. Here we report studies on the chromism vs. chemical composition of photolyzed (lambda longer than 305 nm) solutions of pyruvic acid, a widespread aerosol component, under a variety of experimental conditions that include substrate concentration, temperature and the presence of relevant spectator solutes, such ammonium sulfate. We use high resolution mass- and 13C NMR-spectrometries to track chemical speciation in photolyzed solutions as they undergo thermochromic and photobleaching cycles. Since the chemical identity of the components of these mixtures does not change in these cycles, in which photobleached solutions gradually recover their yellow color in the dark with non-conventional kinetics typical of aggregation processes, we infer that visible absorptions likely involve the intermolecular coupling of carbonyl chromophores in supramolecular assemblies made possible by the polyfunctional nature of the products of pyruvic acid photolysis.

  16. Crystal structure of tris­(piperidinium) hydrogen sulfate sulfate

    OpenAIRE

    Tamara J. Lukianova; Vasyl Kinzhybalo; Adam Pietraszko

    2015-01-01

    In the title molecular salt, 3C5H12N+·HSO4−·SO42−, each cation adopts a chair conformation. In the crystal, the hydrogen sulfate ion is connected to the sulfate ion by a strong O—H...O hydrogen bond. The packing also features a number of N—H...O hydrogen bonds, which lead to a three-dimensional network structure. The hydrogen sulfate anion accepts four hydrogen bonds from two cations, whereas the sulfate ion, as an acceptor, binds to five separate piperidinium cations, forming seven hydrogen ...

  17. Overview of ACE-Asia Spring 2001 Investigations on Aerosol Radiative Effects and Related Aerosol Properties

    Science.gov (United States)

    Russell, Philip B.; Valero, F. P. J.; Flatau, P. J.; Bergin, M.; Holben, B.; Nakajima, T.; Pilewskie, P.; Bergstrom, R.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    depth gradient, with AOD(500 nm) extremes from 0.1 to 1.1. On the Pacific transit from Honolulu to Hachijo AOD(500 nm) averaged 0.2, including increases to 0.4 after several storms, suggesting the strong impact of wind-generated seasalt. The AOD maximum, found in the Sea of Japan, was influenced by dust and anthropogenic sources. (4) In Beijing, single scattering albedo retrieved from AERONET sun-sky radiometry yielded midvisible SSA=0.88 with strong wavelength dependence, suggesting a significant black carbon component. SSA retrieved during dust episodes was approx. 0.90 and variable but wavelength neutral reflecting the presence of urban haze with the dust. Downwind at Anmyon Island SSA was considerably higher, approx. 0.94, but wavelength neutral for dust episodes and spectrally dependent during non dust periods. (5) Satellite retrievals show major aerosol features moving from Asia over the Pacific; however, determining seasonal-average aerosol effects is hampered by sampling frequency and large-scale cloud systems that obscure key parts of aerosol patterns. Preliminary calculations using, satellite-retrieved AOD fields and initial ACE-Asia aerosol properties (including sulfates, soot, and dust) yield clear-sky aerosol radiative effects in the seasonal-average ACE-Asia plume exceeding those of manmade greenhouse gases. Quantifying all-sky direct aerosol radiative effects is complicated by the need to define the height of absorbing aerosols with respect to cloud decks.

  18. Alternative alkali resistant deNO{sub x} technologies. Appendix 1

    Energy Technology Data Exchange (ETDEWEB)

    Putluru, S.S.R.; Degn Jensen, A.

    2011-07-01

    The increased use of biomass as fuel has created some new challenges to establish SCR flue gas treatment technology. One of these challenges comes from biomass complex chemical composition, which includes potassium shown to have a negative impact on the SCR catalyst. Studies have shown that potassium deactivates SCR catalyst and reduces its ability to reduce NO to N{sub 2}. An attempt was made to protect the SCR catalyst from alkali poisoning by the imposition of a coating on the catalyst surface. Various compounds were coated on a commercial catalyst supplied by Haldor Topsoee A/S and tested for alkali poisoning resistance. These materials were broadly divided as metal oxides, zeolites and other materials. The coated catalysts were exposed to potassium chloride aerosols at 350 deg. C for 650-1200 h. SCR activity, SEM and EDX measurements were performed to analyze the coated catalysts resistance to potassium poisoning. Coated catalysts (Mg, Mg containing compounds and Zeolites) showed appreciable alkali resistivity compared to the uncoated reference catalyst. Coated catalysts showed high potassium concentration at the surface of the coating and low potassium concentration across the cross section when compared to the uncoated reference catalyst. Thus, it is assumed that the coating layer accumulates the potassium at the surface and prevents to penetrate through the catalyst. The overall assessment is that it is possible to protect an SCR catalyst from potassium poisoning by the imposition of coating layer. (Author)

  19. Evaluation of a global aerosol microphysics model against size-resolved particle statistics in the marine atmosphere

    OpenAIRE

    Spracklen, D. V.; Pringle, K. J.; K. S. Carslaw; G. W. Mann; P. Manktelow; Heintzenberg, J.

    2007-01-01

    A statistical synthesis of marine aerosol measurements from experiments in four different oceans is used to evaluate a global aerosol microphysics model (GLOMAP). We compare the model against observed size resolved particle concentrations, probability distributions, and the temporal persistence of different size particles. We attempt to explain the observed sub-micrometre size distributions in terms of sulfate and sea spray and quantify the possible contributions of anthropogenic sulfate and ...

  20. Binding of heparan sulfate to Staphylococcus aureus.

    OpenAIRE

    Liang, O D; Ascencio, F; Fransson, L A; Wadström, T

    1992-01-01

    Heparan sulfate binds to proteins present on the surface of Staphylococcus aureus cells. Binding of 125I-heparan sulfate to S. aureus was time dependent, saturable, and influenced by pH and ionic strength, and cell-bound 125I-heparan sulfate was displaced by unlabelled heparan sulfate or heparin. Other glycosaminoglycans of comparable size (chondroitin sulfate and dermatan sulfate), highly glycosylated glycoprotein (hog gastric mucin), and some anionic polysaccharides (dextran sulfate and RNA...

  1. The Additive Coloration of Alkali Halides

    Science.gov (United States)

    Jirgal, G. H.; and others

    1969-01-01

    Describes the construction and use of an inexpensive, vacuum furnace designed to produce F-centers in alkali halide crystals by additive coloration. The method described avoids corrosion or contamination during the coloration process. Examination of the resultant crystals is discussed and several experiments using additively colored crystals are…

  2. Alternative alkali resistant deNOx catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Kristensen, Steffen Buus; Due-Hansen, Johannes;

    2012-01-01

    Alternative alkali resistant deNOx catalysts were prepared using three different supports ZrO2, TiO2 and Mordenite zeolite. The majority of the catalysts were prepared by incipient wetness impregnation of a commercial support, with vanadium, copper or iron precursor, one catalyst was prepared by...

  3. Positronium impact ionization of Alkali atoms

    CERN Document Server

    Ghosh, D

    2015-01-01

    Target ionization processes of alkali atoms by Positronium impact are investigated. Calculations are performed in the frame work of model potential formalism using the Coulomb distorted eikonal approximation. Interesting qualitative features are noted both in the scattered Ps and the ejected electron distributions in differential as well as double differential levels of the collision cross sections.

  4. Alkali metals in fungi of forest soil

    International Nuclear Information System (INIS)

    The high affinity of forest soil fungi for alkali metals such as potassium, rubidium, caesium as well as radiocaesium is shown and discussed. Good positive correlation was found between K: Rb concentration ratios in soil and in fungi, when correlation between K: Cs concentration ratios was less pronounced. (LN)

  5. Contributions to the mixed-alkali effect in molecular dynamics simulations of alkali silicate glasses

    OpenAIRE

    Lammert, Heiko; Heuer, Andreas

    2005-01-01

    The mixed-alkali effect on the cation dynamics in silicate glasses is analyzed via molecular dynamics simulations. Observations suggest a description of the dynamics in terms of stable sites mostly specific to one ionic species. As main contributions to the mixed--alkali slowdown longer residence times and an increased probability of correlated backjumps are identified. The slowdown is related to the limited accessibility of foreign sites. The mismatch experienced in a foreign site is stronge...

  6. Influences of in-cloud aerosol scavenging parameterizations on aerosol concentrations and wet deposition in ECHAM5-HAM

    Directory of Open Access Journals (Sweden)

    B. Croft

    2009-10-01

    Full Text Available A diagnostic nucleation scavenging scheme, which determines stratiform cloud scavenging ratios for both aerosol mass and number distributions, based on cloud droplet, and ice crystal number concentrations, is introduced into the ECHAM5-HAM global climate model. This is coupled with a size-dependent in-cloud impaction scavenging parameterization for both cloud droplet-aerosol, and ice crystal-aerosol collisions. Sensitivity studies are presented, which compare aerosol concentrations, and deposition between a variety of in-cloud scavenging approaches, including prescribed fractions, several diagnostic schemes, and a prognostic aerosol cloud processing treatment that passes aerosol in-droplet and in-ice crystal concentrations between model time steps. For one sensitivity study, assuming 100% of the in-cloud aerosol is scavenged into the cloud droplets and ice crystals, the annual global mean accumulation mode number burden is decreased by 65%, relative to a simulation with prognostic aerosol cloud processing. Diagnosing separate nucleation scavenging ratios for aerosol number and mass distributions, as opposed to equating the aerosol mass scavenging to the number scavenging ratios, reduces the annual global mean sulfate burden by near to 10%. The annual global mean sea salt burden is 30% lower for the diagnostic approach, which does not carry aerosol in-droplet and in-crystal concentrations between model time-steps as compared to the prognostic scheme. Implementation of in-cloud impaction scavenging reduced the annual, global mean black carbon burden by 30% for the prognostic aerosol cloud processing scheme. Better agreement with observations of black carbon profiles from aircraft (changes near to one order of magnitude for mixed phase clouds, 210Pb surface layer concentrations and wet deposition, and the geographic distribution of aerosol optical depth are found for the new diagnostic scavenging as compared to prescribed ratio

  7. Mineralogical phase analysis of alkali and sulfate bearing belite rich laboratory clinkers

    International Nuclear Information System (INIS)

    The activation of laboratory belite clinkers has been carried out by adding variable amounts of alkaline salts (K2CO3, Na2CO3), and/or SO3 as gypsum in the raw materials but keeping almost constant the main elements ratios, Ca/Si/Al/Fe. Quantitative phase analyses by the Rietveld method using high resolution synchrotron and strictly monochromatic CuKα1 laboratory X-ray powder diffraction data has been performed. Quantitative phase analysis results have been compared to validate the protocol using laboratory X-ray data. The agreement in the results is noteworthy, which indicates that good quantitative phase analyses can be obtained from laboratory X-ray powder data. Qualitative studies have confirmed that the addition of alkaline salts to raw mixtures promotes the stabilization, at room temperature, of the highest temperature polymorphs: α'H-C2S and α-C2S. Quantitative studies gave the phase assemblage for ten different laboratory belite clinkers. As an example, an active belite clinker with 1.0 wt.% of K2O and 1.0 wt.% of Na2O (amounts added to the raw mixtures) contains 8.5(3) wt.% of β-C2S, 21.2(3) wt.% of α'H-C2S, 24.1(2) wt.% of α-C2S, 18.9(3) wt.% of total C3S, 17.3(2) wt.% of C3A and 10.0(2) wt.% of C4AF. A belite clinker with 0.8 wt.% SO3 (nominal loading) contains 60.7(1) wt.% of β-C2S, 6.7(2) wt.% of α'H-C2S, 12.3(7) wt.% of C3S, 9.1(2) wt.% of C3A and 11.2(2) wt.% of C4AF. Overall, quantitative phase analyses have shown that alkaline oxides stabilize α'H-C2S and α-C2S, sulfur stabilizes β-C2S, with a large unit cell volume, and the joint presence of alkaline oxides and sulfur promotes mainly the stabilization of the α'H-C2S polymorph

  8. Sulfate Promoted Zirconia as Promising Alkali-Resistant Support for Catalytic NOx Removal

    OpenAIRE

    Due-Hansen, Johannes; Kustov, Arkadii; Christensen, Claus H.; Fehrmann, Rasmus

    2007-01-01

    The use of bio-fuels as alternatives to traditional fossil fuels has attracted much attention recent years since bio-fuels belong to a family of renewable types of energy sources and do not contribute to the green-house effect. Selective catalytic reduction (SCR) of NOx with ammonia as reductant is the most efficient method to eliminate NOx from flue gases in stationary sources. The traditional SCR catalyst suffers significant deactivation with time due to the presence of relative large amoun...

  9. Sulfate Promoted Zirconia as Promising Alkali-Resistant Support for Catalytic NOx Removal

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes; Kustov, Arkadii; Christensen, Claus H.;

    The use of bio-fuels as alternatives to traditional fossil fuels has attracted much attention recent years since bio-fuels belong to a family of renewable types of energy sources and do not contribute to the green-house effect. Selective catalytic reduction (SCR) of NOx with ammonia as reductant ...

  10. Modelled and observed changes in aerosols and surface solar radiation over Europe between 1960 and 2009

    Directory of Open Access Journals (Sweden)

    S. T. Turnock

    2015-05-01

    Full Text Available Substantial changes in anthropogenic aerosols and precursor gas emissions have occurred over recent decades due to the implementation of air pollution control legislation and economic growth. The response of atmospheric aerosols to these changes and the impact on climate are poorly constrained, particularly in studies using detailed aerosol chemistry climate models. Here we compare the HadGEM3-UKCA coupled chemistry-climate model for the period 1960 to 2009 against extensive ground based observations of sulfate aerosol mass (1978–2009, total suspended particle matter (SPM, 1978–1998, PM10 (1997–2009, aerosol optical depth (AOD, 2000–2009 and surface solar radiation (SSR, 1960–2009 over Europe. The model underestimates observed sulfate aerosol mass (normalised mean bias factor (NMBF = −0.4, SPM (NMBF = −0.9, PM10 (NMBF = −0.2 and aerosol optical depth (AOD, NMBF = −0.01 but slightly overpredicts SSR (NMBF = 0.02. Trends in aerosol over the observational period are well simulated by the model, with observed (simulated changes in sulfate of −68% (−78%, SPM of −42% (−20%, PM10 of −9% (−8% and AOD of −11% (−14%. Discrepancies in the magnitude of simulated aerosol mass do not affect the ability of the model to reproduce the observed SSR trends. The positive change in observed European SSR (5% during 1990–2009 ("brightening" is better reproduced by the model when aerosol radiative effects (ARE are included (3%, compared to simulations where ARE are excluded (0.2%. The simulated top-of-the-atmosphere aerosol radiative forcing over Europe under all-sky conditions increased by 3 W m−2 during the period 1970–2009 in response to changes in anthropogenic emissions and aerosol concentrations.

  11. Developments in alkali-metal atomic magnetometry

    Science.gov (United States)

    Seltzer, Scott Jeffrey

    Alkali-metal magnetometers use the coherent precession of polarized atomic spins to detect and measure magnetic fields. Recent advances have enabled magnetometers to become competitive with SQUIDs as the most sensitive magnetic field detectors, and they now find use in a variety of areas ranging from medicine and NMR to explosives detection and fundamental physics research. In this thesis we discuss several developments in alkali-metal atomic magnetometry for both practical and fundamental applications. We present a new method of polarizing the alkali atoms by modulating the optical pumping rate at both the linear and quadratic Zeeman resonance frequencies. We demonstrate experimentally that this method enhances the sensitivity of a potassium magnetometer operating in the Earth's field by a factor of 4, and we calculate that it can reduce the orientation-dependent heading error to less than 0.1 nT. We discuss a radio-frequency magnetometer for detection of oscillating magnetic fields with sensitivity better than 0.2 fT/ Hz , which we apply to the observation of nuclear magnetic resonance (NMR) signals from polarized water, as well as nuclear quadrupole resonance (NQR) signals from ammonium nitrate. We demonstrate that a spin-exchange relaxation-free (SERF) magnetometer can measure all three vector components of the magnetic field in an unshielded environment with comparable sensitivity to other devices. We find that octadecyltrichlorosilane (OTS) acts as an anti-relaxation coating for alkali atoms at temperatures below 170°C, allowing them to collide with a glass surface up to 2,000 times before depolarizing, and we present the first demonstration of high-temperature magnetometry with a coated cell. We also describe a reusable alkali vapor cell intended for the study of interactions between alkali atoms and surface coatings. Finally, we explore the use of a cesium-xenon SERF comagnetometer for a proposed measurement of the permanent electric dipole moments (EDMs

  12. Computational study of the effect of glyoxal-sulfate clustering on the Henry's Law coefficient of glyoxal

    DEFF Research Database (Denmark)

    Kurtén, Theo; Elm, Jonas; Prisle, Nønne L.;

    2015-01-01

    -containing aerosol particles. This promotes the participation of glyoxal in reactions leading to secondary organic aerosol formation, especially in regions with high sulfate concentrations. We used our computed equilibrium constants for the complexation reactions to assess the magnitude of the Henry's law......We have used quantum chemical methods to investigate the molecular mechanism behind the recently reported ( Kampf , C. J. ; Environ. Sci. Technol . 2013 , 47 , 4236 - 4244 ) strong dependence of the Henry's law coefficient of glyoxal (C2O2H2) on the sulfate concentration of the aqueous phase...

  13. Weekly patterns of aerosol in the United States

    Directory of Open Access Journals (Sweden)

    D. M. Murphy

    2008-05-01

    Full Text Available Data from the Interagency Monitoring of Protected Visual Environments (IMPROVE network of aerosol samplers and NOAA monitoring sites are examined for weekly cycles. At remote and rural sites, fine particle elemental carbon, crustal elements, and coarse particle mass had pronounced (up to 20% weekly cycles with minima on Sunday or Monday. Fine particle organic carbon and mass had smaller amplitude cycles, also with Sunday or Monday minima. There was no statistically significant weekly cycle in fine particle sulfate despite a 5 to 15% weekly cycle in power plant SO2 emissions. Although results for nitrate may be more susceptible to sampling artifacts, nitrate also showed a pronounced weekly cycle with an amplitude similar to elemental carbon. The only species found with a weekend maximum was Pb, probably from general aviation on weekends. Aerosol optical properties at NOAA monitoring sites were consistent with the IMPROVE chemical data, with significant weekly cycles in aerosol light absorption but not light scattering. These results support a large role of diesel emissions in elemental carbon aerosol over the entire United States and suggest that a large fraction of the airborne soil dust is anthropogenic. They also suggest that studies of weekly cycles in temperature, cloudiness, precipitation, or other meteorological variables should look for causes more in light-absorbing particles and possible ice nucleation by dust rather than sulfate or total aerosol. There are also implications for personal exposure and epidemiological studies of aerosol health effects.

  14. Weekly patterns of aerosol in the United States

    Directory of Open Access Journals (Sweden)

    D. M. Murphy

    2008-01-01

    Full Text Available Data from the Interagency Monitoring of Protected Visual Environments (IMPROVE network of aerosol samplers and NOAA monitoring sites are examined for weekly cycles. Fine particle elemental carbon, crustal elements, and coarse particle mass had pronounced (up to 20% weekly cycles with minima on Sunday or Monday. Fine particle organic carbon and mass had smaller amplitude cycles, also with Sunday or Monday minima. There was no statistically significant weekly cycle in fine particle sulfate despite a 10 to 15% weekly cycle in power plant SO2 emissions. Although results for nitrate must be treated with caution, it showed a pronounced weekly cycle with an amplitude similar to elemental carbon. The only species found with a weekend maximum was Pb, probably from general aviation on weekends. Aerosol optical properties at NOAA monitoring sites were consistent with the IMPROVE chemical data, with significant weekly cycles in aerosol light absorption but not light scattering. These results support a large role of diesel emissions in elemental carbon aerosol over the entire United States and suggest that a large fraction of the airborne soil dust is anthropogenic. They also suggest that studies of weekly cycles in temperature, cloudiness, or precipitation should look for causes more in light-absorbing particles and dust rather than sulfate or total aerosol. There are also implications for personal exposure and epidemiological studies of aerosol health effects.

  15. Model analysis of aerosol optical depth distributions over East Asia

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on simulated major aerosol concentrations (e.g., sulfate, nitrate, ammonium, organic carbon, black carbon, and sea salt) over East Asia during the year 2005 by using the Multi-scale Air Quality modeling system (RAMS-CMAQ), the aerosol optical depth (AOD) was calculated by the reconstruction mass-extinction method and then analyzed to explore its characteristics in temporal-spatial distributions. For evaluating the model performances, simulated AOD values were compared against observations at stations of the Aerosol Robotic Network (AERONET) and the Chinese Sun Hazemeter Network (CSHNET). The comparison shows that the model can well reproduce observed temporal and spatial features of AOD, especially in natural en- vironment. However, the simulated AOD values are underestimated over urban and suburban regions with dense human activities. Analysis of simulation results indicates that AOD varies significantly in time and space, and generally, AOD values are lower in summer and higher in winter. Excluding the contribution from soil dust aerosols, high AOD values (over 0.8) are found over the Sichuan Basin, South China, and Central China in several months, while low values (less than 0.2) are over northern and western areas of East Asia and southern sea regions. Analysis also shows that aerosols such as sulfate, nitrate, and ammonium are main contributors to AOD in East Asia, and their contributions are over 80% in most high AOD areas, while black carbon aerosols play an important role in northern China where dense human activities exist, especially in the winter time.

  16. Local structure of alkalis in mixed-alkali borate glass to elucidate the origin of mixed-alkali effect

    Directory of Open Access Journals (Sweden)

    Yomei Tokuda

    2015-12-01

    Full Text Available We report the structural analysis of Na+ and Cs+ in sodium cesium borate crystals and glasses using 23Na and 133Cs magic-angle spinning nuclear magnetic resonance (MAS NMR spectroscopy. The composition dependence of NMR spectra of the borate was similar to that of the silicate: (1 the peak position of cesium borate crystals shifted to upfield for structures with larger Cs+ coordination numbers, (2 the MAS NMR spectra of xNa2O-yCs2O-3B2O3 (x = 0, 0.25, 0.5, 0.75, 1.0, x + y = 1 glass showed that the average coordination number (CN of both the alkali cations decreases with increasing Cs+/(Na+ + Cs+ ratio. However, the degree of decrement in borates is much smaller than that in silicates. We have considered that the small difference in CN is due to 4-coordinated B, because it is electrically compensated by the alkali metal ions resulting in the restriction of having various coordinations of O to alkali metal.

  17. Effect of alkali lignins with different molecular weights from alkali pretreated rice straw hydrolyzate on enzymatic hydrolysis.

    Science.gov (United States)

    Li, Yun; Qi, Benkun; Luo, Jianquan; Wan, Yinhua

    2016-01-01

    This study investigated the effect of alkali lignins with different molecular weights on enzymatic hydrolysis of lignocellulose. Different alkali lignins fractions, which were obtained from cascade ultrafiltration, were added into the dilute acid pretreated (DAP) and alkali pretreated (AP) rice straws respectively during enzymatic hydrolysis. The results showed that the addition of alkali lignins enhanced the hydrolysis and the enhancement for hydrolysis increased with increasing molecular weights of alkali lignins, with maximum enhancement being 28.69% for DAP and 20.05% for AP, respectively. The enhancement was partly attributed to the improved cellulase activity, and filter paper activity increased by 18.03% when adding lignin with highest molecular weight. It was found that the enhancement of enzymatic hydrolysis was correlated with the adsorption affinity of cellulase on alkali lignins, and the difference in surface charge and hydrophobicity of alkali lignins were responsible for the difference in affinity between cellulase and lignins. PMID:26496216

  18. Non-sea-salt sulfate in the marine boundary layer and its possible impact on chloride depletion

    Institute of Scientific and Technical Information of China (English)

    XIE Zhouqing; SUN Liguang; Cole-Dai Jihong

    2005-01-01

    Aerosol samples were collected on board the research vessel Xuelong during the Fifteenth Chinese Antarctic Research Expedition (CHINARE XV) in November 1998-April 1999 and the First Chinese Arctic Research Expedition in July-September 1999.The areas traversed by the expeditionary cruises include the Arctic Ocean, the western North Pacific Ocean and the eastern Indian Ocean,covering 75°N-69°S and 75°E-133°W. Aerosol samples were also taken at the Chinese Zhongshan Station in East Antarctica during the CHINARE XV. Analysis of the samples yielded concentrations of non-sea-salt sulfate and other soluble chemical species in the marine boundary layer. The data suggest that the chemical composition of the marine aerosols is influenced by three major sources:continental air masses, primary oceanic emissions, and secondary marine aerosols originated from oceanic emissions. The results show that, awing to strong anthropogenic sulfur emissions from the Asian continent, non-sea-salt sulfate concentrations in the Northern Hemisphere (the western North Pacific) marine aerosol are significantly higher than those in the Southern Hemisphere (the eastern Indian Ocean). Aerosol non-sea-salt sulfate concentrations appear to be inversely correlated with aerosol non-sea-salt chloride which shows significantly negative values, indicating the loss of chloride by sea salts, in most aerosol samples. Since gaseous HCl may be involved in chemical reactions that deplete atmospheric ozone in the marine boundary layer (MBL), high levels of acidic non-sea-salt-sulfate released by human activities in the low and mid-latitudes of the Northern Hemisphere may become an important potential contributor to the loss of atmospheric ozone in the MBL.

  19. Optical and Chemical Properties of Atmospheric Aerosols at Amami Oshima and Fukue Islands in Japan in Spring, 2001

    OpenAIRE

    Ohta,Sachio; Murao, Naoto; Yamagata,Sadamu

    2013-01-01

    The optical and chemical properties of atmospheric aerosols were determined from the ground-based measurements at Amami Oshima in April 2001 during the Asian Atmospheric Particle Environmental Change Studies (APEX) campaign and at Fukue Island in March 2001. At Amami Oshima from April 10 to 16, an aerosol event was observed in which the volume scattering coefficient and sulfate concentration of fine particles increased conspicuously. At the former term of the aerosol event, the single scatter...

  20. The effect of varying levels of surfactant on the reactive uptake of N2O5 to aqueous aerosol

    OpenAIRE

    V. F. McNeill; Patterson, J; Wolfe, G. M.; Thornton, J. A.

    2006-01-01

    Recent observations have detected surface active organics in atmospheric aerosols. We have studied the reaction of N2O5 on aqueous natural seawater and NaCl aerosols as a function of sodium dodecyl sulfate (SDS) concentration to test the effect of varying levels of surfactant on gas-aerosol reaction rates. SDS was chosen as a proxy for naturally occurring long chain monocarboxylic acid molecules, such as palmitic or stearic acid, because of its solubility in water and well-c...

  1. Decalcification resistance of alkali-activated slag

    Energy Technology Data Exchange (ETDEWEB)

    Komljenovic, Miroslav M., E-mail: miroslav.komljenovic@imsi.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade (Serbia); Bascarevic, Zvezdana, E-mail: zvezdana@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade (Serbia); Marjanovic, Natasa, E-mail: natasa@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade (Serbia); Nikolic, Violeta, E-mail: violeta@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade (Serbia)

    2012-09-30

    Highlights: Black-Right-Pointing-Pointer The effects of decalcification on properties of alkali-activated slag were studied. Black-Right-Pointing-Pointer Decalcification was performed by concentrated NH{sub 4}NO{sub 3} solution (accelerated test). Black-Right-Pointing-Pointer Portland-slag cement (CEM II/A-S 42.5 N) was used as a benchmark material. Black-Right-Pointing-Pointer Decalcification led to strength decrease and noticeable structural changes. Black-Right-Pointing-Pointer Alkali-activated slag showed significantly higher resistance to decalcification. - Abstract: This paper analyses the effects of decalcification in concentrated 6 M NH{sub 4}NO{sub 3} solution on mechanical and microstructural properties of alkali-activated slag (AAS). Portland-slag cement (CEM II/A-S 42.5 N) was used as a benchmark material. Decalcification process led to a decrease in strength, both in AAS and in CEM II, and this effect was more pronounced in CEM II. The decrease in strength was explicitly related to the decrease in Ca/Si atomic ratio of C-S-H gel. A very low ratio of Ca/Si {approx}0.3 in AAS was the consequence of coexistence of C-S-H(I) gel and silica gel. During decalcification of AAS almost complete leaching of sodium and tetrahedral aluminum from C-S-H(I) gel also took place. AAS showed significantly higher resistance to decalcification in relation to the benchmark CEM II due to the absence of portlandite, high level of polymerization of silicate chains, low level of aluminum for silicon substitution in the structure of C-S-H(I), and the formation of protective layer of polymerized silica gel during decalcification process. In stabilization/solidification processes alkali-activated slag represents a more promising solution than Portland-slag cement due to significantly higher resistance to decalcification.

  2. A new source of oxygenated organic aerosol and oligomers

    Directory of Open Access Journals (Sweden)

    J. Liggio

    2013-03-01

    Full Text Available A large oxygenated organic uptake to aerosols was observed when exposing ambient urban air to inorganic acidic and non-acidic sulfate seed aerosol. For non-acidic seed aerosol the uptake was attributed to the direct dissolution of primary vehicle exhaust gases into the aqueous aerosol fraction, and was correlated to the initial seed sulphate mass. The uptake of primary oxygenated organic gases to aerosols in this study represents a significant amount of organic aerosol (OA that may be considered primary when compared to that reported for primary organic aerosol (POA, but is considerably more oxygenated (O : C ~ 0.3 than traditional POA. Consequently, a fraction of measured ambient oxygenated OA, which correlates with secondary sulphate, may in fact be of a primary, rather than secondary source. These results represent a new source of oxygenated OA on neutral aerosol and imply that the uptake of primary organic gases will occur in the ambient atmosphere, under dilute conditions, and in the presence of pre-existing SO4 aerosols which contain water. Conversely, under acidic seed aerosol conditions, oligomer formation was observed with the uptake of organics being enhanced by a factor of three or more compared to neutral aerosols, and in less than 2 min, representing an additional source of SOA to the atmosphere. This resulted in a trajectory in Van Krevelen space towards higher O : C (slope ~ −1.5, despite a lack of continual gas-phase oxidation in this closed system. The results demonstrate that high molecular weight species will form on acidic aerosols at the ambient level and mixture of organic gases, but are otherwise unaffected by subsequent aerosol neutralization, and that aerosol acidity will affect the organic O : C via aerosol-phase reactions. These two processes, forming oxygenated POA under neutral conditions and SOA under acidic conditions can contribute to the total ambient OA mass and the evolution of ambient aerosol O : C ratios

  3. Long term aerosol and trace gas measurements in Central Amazonia

    Science.gov (United States)

    Artaxo, Paulo; Barbosa, Henrique M. J.; Ferreira de Brito, Joel; Carbone, Samara; Rizzo, Luciana V.; Andreae, Meinrat O.; Martin, Scot T.

    2016-04-01

    The central region of the Amazonian forest is a pristine region in terms of aerosol and trace gases concentrations. In the wet season, Amazonia is actually one of the cleanest continental region we can observe on Earth. A long term observational program started 20 years ago, and show important features of this pristine region. Several sites were used, between then ATTO (Amazon Tall Tower Observatory) and ZF2 ecological research site, both 70-150 Km North of Manaus, receiving air masses that traveled over 1500 km of pristine tropical forests. The sites are GAW regional monitoring stations. Aerosol chemical composition (OC/EC and trace elements) is being analysed using filters for fine (PM2.5) and coarse mode aerosol as well as Aerodyne ACSM (Aerosol Chemical Speciation Monitors). VOCs are measured using PTR-MS, while CO, O3 and CO2 are routinely measured. Aerosol absorption is being studied with AE33 aethalometers and MAAP (Multi Angle Absorption Photometers). Aerosol light scattering are being measured at several wavelengths using TSI and Ecotech nephelometers. Aerosol size distribution is determined using scanning mobility particle sizer at each site. Lidars measure the aerosol column up to 12 Km providing the vertical profile of aerosol extinction. The aerosol column is measures using AERONET sun photometers. In the wet season, organic aerosol comprises 75-85% of fine aerosol, and sulfate and nitrate concentrations are very low (1-3 percent). Aerosols are dominated by biogenic primary particles as well as SOA from biogenic precursors. Black carbon in the wet season accounts for 5-9% of fine mode aerosol. Ozone in the wet season peaks at 10-12 ppb at the middle of the day, while carbon monoxide averages at 50-80 ppb. Aerosol optical thickness (AOT) is a low 0.05 to 0.1 at 550 nm in the wet season. Sahara dust transport events sporadically enhance the concentration of soil dust aerosols and black carbon. In the dry season (August-December), long range transported

  4. Airborne Measurements of Coarse Mode Aerosol Composition and Abundance

    Science.gov (United States)

    Froyd, K. D.; Murphy, D. M.; Brock, C. A.; Ziemba, L. D.; Anderson, B. E.; Wilson, J. C.

    2015-12-01

    Coarse aerosol particles impact the earth's radiative balance by direct scattering and absorption of light and by promoting cloud formation. Modeling studies suggest that coarse mode mineral dust and sea salt aerosol are the dominant contributors to aerosol optical depth throughout much of the globe. Lab and field studies indicate that larger aerosol particles tend to be more efficient ice nuclei, and recent airborne measurements confirm the dominant role of mineral dust on cirrus cloud formation. However, our ability to simulate coarse mode particle abundance in large scale models is limited by a lack of validating measurements above the earth's surface. We present airborne measurements of coarse mode aerosol abundance and composition over several mid-latitude, sub-tropical, and tropical regions from the boundary layer to the stratosphere. In the free troposphere the coarse mode constitutes 10-50% of the total particulate mass over a wide range of environments. Above North America mineral dust typically dominates the coarse mode, but biomass burning particles and sea salt also contribute. In remote environments coarse mode aerosol mainly consists of internally mixed sulfate-organic particles. Both continental and marine convection can enhance coarse aerosol mass through direct lofting of primary particles and by secondary accumulation of aerosol material through cloud processing.

  5. Thermodynamic characterization of Mexico City aerosol during MILAGRO 2006

    Directory of Open Access Journals (Sweden)

    C. Fountoukis

    2009-03-01

    Full Text Available Fast measurements of aerosol and gas-phase constituents coupled with the ISORROPIA-II thermodynamic equilibrium model are used to study the partitioning of semivolatile inorganic species and phase state of Mexico City aerosol sampled at the T1 site during the MILAGRO 2006 campaign. Overall, predicted semivolatile partitioning agrees well with measurements. PM2.5 is insensitive to changes in ammonia but is to acidic semivolatile species. For particle sizes up to 1μm diameter, semi-volatile partitioning requires 15–30 min to equilibrate; longer time is typically required during the night and early morning hours. Aerosol and gas-phase speciation always exhibits substantial temporal variability, so that aerosol composition measurements (bulk or size-resolved obtained over large integration periods are not reflective of its true state. When the aerosol sulfate-to-nitrate molar ratio is less than unity, predictions improve substantially if the aerosol is assumed to follow the deliquescent phase diagram. Treating crustal species as "equivalent sodium" (rather than explicitly in the thermodynamic equilibrium calculations introduces important biases in predicted aerosol water uptake, nitrate and ammonium; neglecting crustals further increases errors dramatically. This suggests that explicitly considering crustals in the thermodynamic calculations is required to accurately predict the partitioning and phase state of aerosols.

  6. Atmospheric oxidation of isoprene and 1,3-butadiene: influence of aerosol acidity and relative humidity on secondary organic aerosol

    Directory of Open Access Journals (Sweden)

    M. Lewandowski

    2014-11-01

    Full Text Available The effects of acidic seed aerosols on the formation of secondary organic aerosol (SOA have been examined in a number of previous studies, several of which have observed strong linear correlations between the aerosol acidity (measured as nmol H+ per m3 air sample volume and the percent change of secondary organic carbon (SOC. The measurements have used several precursor compounds representative of different classes of biogenic hydrocarbons including isoprene, monoterpenes, and sesquiterpenes. To date, isoprene has displayed the most pronounced increase in SOC, although few measurements have been conducted with anthropogenic hydrocarbons. In the present study, we examine several aspects of the effect of aerosol acidity on the secondary organic carbon formation from the photooxidation of 1,3-butadiene, as well as extending the previous analysis of isoprene. The photooxidation products measured in the absence and presence of acidic sulfate aerosols were generated either through photochemical oxidation of SO2 or by nebulizing mixtures of ammonium sulfate and sulfuric acid into a 14.5 m3 smog chamber system. The results showed that, like isoprene and β-caryophyllene, 1,3-butadiene SOC yields linearly correlate with increasing acidic sulfate aerosol. The observed acid sensitivity of 0.11% SOC increase per nmol m−3 increase in H+ was approximately a factor of three less than that measured for isoprene. The results also showed that the aerosol yield decreased with increasing humidity for both isoprene and 1,3-butadiene, although to different degrees. Increasing the absolute humidity from 2 to 12 g m−3 reduced the 1,3-butadiene yield by 45% and the isoprene yield by 85%.

  7. Transport properties of alkali metal doped fullerides

    International Nuclear Information System (INIS)

    We have studied the intercage interactions between the adjacent C60 cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C60 phonons. We considered a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. Coulomb repulsive parameter and the electron phonon coupling strength are obtained within the random phase approximation. Transition temperature, Tc, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C60 phonons as 5 K, which is much lower as compared to reported Tc (20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. The importance of the present study, the pressure effect and normal state transport properties are calculated within the same model leading superconductivity

  8. Transport properties of alkali metal doped fullerides

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Daluram, E-mail: daluramyadav@gmail.com; Yadav, Nishchhal, E-mail: somyadav@gmail.com [School of studies in Physics, Vikram University, Ujjain (M.P) India (India)

    2015-07-31

    We have studied the intercage interactions between the adjacent C{sub 60} cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C{sub 60} phonons. We considered a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. Coulomb repulsive parameter and the electron phonon coupling strength are obtained within the random phase approximation. Transition temperature, T{sub c}, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C{sub 60} phonons as 5 K, which is much lower as compared to reported T{sub c} (20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. The importance of the present study, the pressure effect and normal state transport properties are calculated within the same model leading superconductivity.

  9. Effect of Mineral Admixtures on Alkali-Silica Reaction

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chengzhi; WANG Aiqin

    2008-01-01

    The influence of silica fume,slag and fly ash on alkali-silica reaction under the condition of 70℃ is studied.The results show that silica,slag and fly ash may inhibit alkali-silica reaction only under suitable content.When the content is less than 10%,silica fume does not markedly influence the expansion of alkali-silica reaction.When the content is 15%-20%,silica fume only may delay the expansion of alkali-silica reaction.When the content is 30%-70%,slag may only delay the expansion of alkali-silica reaction,but cannot inhibit the expansion of alkali-silica reaction.When the content is 10%,fly ash does not markedly influence the expansion of alkali-silica reaction.When the content is 20%-30%,fly ash may only delay the expansion of alkali-silica reaction,but cannot inhibit the expansion of alkali-silica reaction.When the content is over 50%,it is possible that fly ash can inhibit effectively alkali-silica reaction.

  10. Monthly Averages of Aerosol Properties: A Global Comparison Among Models, Satellite Data, and AERONET Ground Data

    Energy Technology Data Exchange (ETDEWEB)

    Kinne, S.; Lohmann, U; Feichter, J; Schulz, M.; Timmreck, C.; Ghan, Steven J.; Easter, Richard C.; Chin, M; Ginoux, P.; Takemura, T.; Tegen, I.; Koch, D; Herzog, M.; Penner, J.; Pitari, G.; Holben, B. N.; Eck, T.; Smirnov, A.; Dubovik, O.; Slutsker, I.; Tanre, D.; Torres, O.; Mishchenko, M.; Geogdzhayev, I.; Chu, D. A.; Kaufman, Yoram J.

    2003-10-21

    Aerosol introduces the largest uncertainties in model-based estimates of anthropogenic sources on the Earth's climate. A better representation of aerosol in climate models can be expected from an individual processing of aerosol type and new aerosol modules have been developed, that distinguish among at least five aerosol types: sulfate, organic carbon, black carbon, sea-salt and dust. In this study intermediate results of aerosol mass and aerosol optical depth of new aerosol modules from seven global models are evaluated. Among models, differences in predicted mass-fields are expected with differences to initialization and processing. Nonetheless, unusual discrepancies in source strength and in removal rates for particular aerosol types were identified. With simultaneous data for mass and optical depth, type conversion factors were compared. Differences among the tested models cover a factor of 2 for each, even hydrophobic, aerosol type. This is alarming and suggests that efforts of good mass-simulations could be wasted or that conversions are misused to cover for poor mass-simulations. An individual assessment, however, is difficult, as only part of the conversion determining factors (size assumption, permitted humidification and prescribed ambient relative humidity) were revealed. These differences need to be understood and minimized, if conclusions on aerosol processing in models can be drawn from comparisons to aerosol optical depth measurements.

  11. Effect of fly ash on the optimum sulfate of Portland Cement

    Science.gov (United States)

    Niemuth, Mark D.

    testing of the theories is done by characterization through isothermal calorimetry, semi-quantitative x-ray diffraction (XRD), and pore solution ion concentration. This provides data that can be used to evaluate the explanations of why some fly ashes influence optimum sulfate. The fly ash C3A and SO3 have strong correlations to the increase in optimum sulfate along with freelime and soluble alkalis. The effect of the fly ash C3A can be explained by the reactions that occur with sulfate to form ettringite or monosulfate, by the reaction with sulfate to form ettringite which contributes to strength at higher levels, or by retardation of the main alite hydration peak of the cement which requires additional sulfate to keep the sulfate depletion after the main alite hydration peak. The position of the sulfate depletion peak relative the main alite hydration peak has been correlated to optimum sulfate in the past and in this thesis.

  12. Aerosol typing - key information from aerosol studies

    Science.gov (United States)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  13. Evolution of Asian aerosols during transpacific transport in INTEX-B

    Directory of Open Access Journals (Sweden)

    E. J. Dunlea

    2008-08-01

    Full Text Available Measurements of aerosol composition were made with an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS on board the NSF/NCAR C-130 aircraft as part of the Intercontinental Chemical Transport Experiment Phase B (INTEX-B field campaign over the Eastern Pacific Ocean. The HR-ToF-AMS measurements of non-refractory submicron aerosol mass are shown to compare well with other aerosol instrumentation in the INTEX-B field study. Two case studies are described for pollution layers transported across the Pacific from the Asian continent, intercepted 3–4 days and 7–10 days downwind of Asia, respectively. Aerosol chemistry is shown to be a robust tracer for air masses originating in Asia, specifically the presence of sulfate dominated aerosol is a distinguishing feature of Asian pollution layers that have been transported to the Eastern Pacific. We examine the time scales of processing for sulfate and organic aerosol in the atmosphere and show that our observations confirm a conceptual model for transpacific transport from Asia proposed by Brock et al. (2004. Our observations of both sulfate and organic aerosol in aged Asian pollution layers are consistent with fast formation near the Asian continent, followed by washout during lofting and subsequent transformation during transport across the Pacific. Our observations are the first atmospheric measurements to indicate that although secondary organic aerosol (SOA formation from pollution happens on the timescale of one day, the oxidation of organic aerosol continues at longer timescales in the atmosphere. Comparisons with chemical transport models of data from the entire campaign reveal an under-prediction of SOA mass in the MOZART model, but much smaller discrepancies with the GEOS-Chem model than found in previous studies over the Western Pacific. No evidence is found to support a previous hypothesis for significant secondary organic aerosol formation in the free troposphere.

  14. Climate implications of carbonaceous aerosols: An aerosol microphysical study using the GISS/MATRIX climate model

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Susanne E.; Menon, Surabi; Koch, Dorothy; Bond, Tami; Tsigaridis, Kostas

    2010-04-09

    Recently, attention has been drawn towards black carbon aerosols as a likely short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and its climate interactions. Black carbon is directly released as particle into the atmosphere, but then interacts with other gases and particles through condensation and coagulation processes leading to further aerosol growth, aging and internal mixing. A detailed aerosol microphysical scheme, MATRIX, embedded within the global GISS modelE includes the above processes that determine the lifecycle and climate impact of aerosols. This study presents a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing change is -0.56 W/m{sup 2} between 1750 and 2000. However, the direct and indirect aerosol effects are very sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing change can vary between -0.32 to -0.75 W/m{sup 2} depending on these carbonaceous particle properties. Assuming that sulfates, nitrates and secondary organics form a coating shell around a black carbon core, rather than forming a uniformly mixed particles, changes the overall net radiative forcing from a negative to a positive number. Black carbon mitigation scenarios showed generally a benefit when mainly black carbon sources such as diesel emissions are reduced, reducing organic and black carbon sources such as bio-fuels, does not lead to reduced warming.

  15. Multistage Tandem Mass Spectrometry of Chondroitin Sulfate and Dermatan Sulfate

    OpenAIRE

    Bielik, Alicia M.; Zaia, Joseph

    2011-01-01

    Chondroitin/dermatan sulfate (CS/DS) is a glycosaminoglycan (GAG) found in abundance in extracellular matrices. In connective tissue, CS/DS proteoglycans play structural roles in maintaining viscoelasticity through the large number of immobilized sulfate groups on CS/DS chains. CS/DS chains also bind protein families including growth factors and growth factor receptors. Through such interactions, CS/DS chains play important roles in neurobiochemical processes, connective tissue homeostasis, c...

  16. An interfacial mechanism for cloud droplet formation on organic aerosols.

    Science.gov (United States)

    Ruehl, Christopher R; Davies, James F; Wilson, Kevin R

    2016-03-25

    Accurate predictions of aerosol/cloud interactions require simple, physically accurate parameterizations of the cloud condensation nuclei (CCN) activity of aerosols. Current models assume that organic aerosol species contribute to CCN activity by lowering water activity. We measured droplet diameters at the point of CCN activation for particles composed of dicarboxylic acids or secondary organic aerosol and ammonium sulfate. Droplet activation diameters were 40 to 60% larger than predicted if the organic was assumed to be dissolved within the bulk droplet, suggesting that a new mechanism is needed to explain cloud droplet formation. A compressed film model explains how surface tension depression by interfacial organic molecules can alter the relationship between water vapor supersaturation and droplet size (i.e., the Köhler curve), leading to the larger diameters observed at activation. PMID:27013731

  17. Single-parameter estimates of aerosol water content

    International Nuclear Information System (INIS)

    Water can represent a substantial fraction of the mass of tropospheric non-cloud particulate matter, and can also serve as a medium for aqueous-phase reactions in such particles. Aerosol water contents are highly dependent upon aerosol hygroscopicity and ambient relative humidities (RH). In this work we evaluate a recently proposed parameterization of composition-dependent aerosol hygroscopicity that predicts the volume of liquid water associated with a unit volume of dry aerosol. The predictions over the range 10%85%) expected to have the most significant effects on tropospheric chemistry and radiation balance. Water contents for most of the compounds studied are generally represented within experimental uncertainties over the entire range of relative humidity examined, with the exception of marine-type particles dominated by sodium chloride and sodium sulfate

  18. Field and Laboratory Studies of Atmospheric Organic Aerosol

    Science.gov (United States)

    Coggon, Matthew Mitchell

    conditions, nucleated particles composed of oxidized organic compounds contributed nearly an order of magnitude more cloud condensation nuclei (CCN) than less oxidized particles formed under cloudy conditions. The processing time necessary for particles to become CCN active was short ( 4 hr). Laboratory chamber experiments were also conducted to evaluate particle-phase processes influencing aerosol phase and composition. In one study, ammonium sulfate seed was coated with a layer of secondary organic aerosol (SOA) from toluene oxidation followed by a layer of SOA from α-pinene oxidation. The system exhibited different evaporative properties than ammonium sulfate seed initially coated with α-pinene SOA followed by a layer of toluene SOA. This behavior is consistent with a shell-and-core model and suggests limited mixing among different SOA types. Another study investigated the reactive uptake of isoprene epoxy diols (IEPOX) onto non-acidified aerosol. It was demonstrated that particle acidity has limited influence on organic aerosol formation onto ammonium sulfate seed, and that the chemical system is limited by the availability of nucleophiles such as sulfate. Flow tube experiments were conducted to examine the role of iron in the reactive uptake and chemical oxidation of glycolaldehyde. Aerosol particles doped with iron and hydrogen peroxide were mixed with gas-phase glycolaldehyde and photochemically aged in a custom-built flow reactor. Compared to particles free of iron, iron-doped aerosols significantly enhanced the oxygen to carbon (O/C) ratio of accumulated organic mass. The primary oxidation mechanism is suggested to be a combination of Fent

  19. Quantitative assessment of organosulfates in size-segregated rural fine aerosol

    Directory of Open Access Journals (Sweden)

    H. Lukács

    2008-04-01

    Full Text Available Organosulfates have recently come into the focus of organic aerosol research as potentially important components of water-soluble secondary organic aerosol (SOA which now dominate tropospheric fine aerosol. Their presence has been confirmed by the identification of sulfate esters of abundant biogenic carbonyl compounds in both smog chamber and continental aerosol. However, none of the studies have been able to determine the mass contribution of organosulfates to SOA.

    In this paper, as possibly the very first attempt to quantify organosulfates in ambient aerosol, we inferred the mass concentrations of organosulfates by concurrently determining mass concentrations of total sulfur, sulfate and methanesulfonate in rural fine aerosol using two highly sensitive analytical techniques. Although uncertainties were relatively large, we found that mass concentrations of organosulfates in water-soluble fine aerosol ranged from 0.02 μgS m−3 to 0.09 μgS m−3 yielding a mass contribution of 6–12% to bulk sulfur concentrations (or 6–14% to sulfate concentrations. The inferred size distribution of organosulfates suggested that they possibly form in heterogeneous reactions from semi-volatile carbonyl compounds with subsequent or concurrent condensation of gaseous sulfuric acid producing a refractory organic film on particle surfaces.

  20. The influence of different black carbon and sulfate mixing methods on their optical and radiative properties

    Science.gov (United States)

    Zhang, Hua; Zhou, Chen; Wang, Zhili; Zhao, Shuyun; Li, Jiangnan

    2015-08-01

    Three different internal mixing methods (Core-Shell, Maxwell-Garnett, and Bruggeman) and one external mixing method are used to study the impact of mixing methods of black carbon (BC) with sulfate aerosol on their optical properties, radiative flux, and heating rate. The optical properties of a mixture of BC and sulfate aerosol particles are considered for three typical bands. The results show that mixing methods, the volume ratio of BC to sulfate, and relative humidity have a strong influence on the optical properties of mixed aerosols. Compared to internal mixing, external mixing underestimates the particle mass absorption coefficient by 20-70% and the particle mass scattering coefficient by up to 50%, whereas it overestimates the particle single scattering albedo by 20-50% in most cases. However, the asymmetry parameter is strongly sensitive to the equivalent particle radius, but is only weakly sensitive to the different mixing methods. Of the internal methods, there is less than 2% difference in all optical properties between the Maxwell-Garnett and Bruggeman methods in all bands; however, the differences between the Core-Shell and Maxwell-Garnett/Bruggeman methods are usually larger than 15% in the ultraviolet and visible bands. A sensitivity test is conducted with the Beijing Climate Center Radiation transfer model (BCC-RAD) using a simulated BC concentration that is typical of east-central China and a sulfate volume ratio of 75%. The results show that the internal mixing methods could reduce the radiative flux more effectively because they produce a higher absorption. The annual mean instantaneous radiative force due to BC-sulfate aerosol is about -3.18 W/m2 for the external method and -6.91 W/m2 for the internal methods at the surface, and -3.03/-1.56/-1.85 W/m2 for the external/Core-Shell/(Maxwell-Garnett/Bruggeman) methods, respectively, at the tropopause.

  1. Could aerosol emissions be used for regional heat wave mitigation?

    Directory of Open Access Journals (Sweden)

    D. N. Bernstein

    2013-07-01

    Full Text Available Geoengineering applications by injection of sulfate aerosols into the stratosphere are under consideration as a measure of last resort to counter global warming. Here a potential regional-scale application to offset the impacts of heat waves is critically examined. Using the Weather Research and Forecasting model with fully coupled chemistry (WRF-Chem, the effect of regional-scale sulfate aerosol emission over California in each of two days of the July 2006 heat wave is used to quantify potential reductions in surface temperature as a function of emission rates in a layer at 12 km altitude. Local meteorological factors yield geographical differences in surface air temperature sensitivity. For emission rates of approximately 30 μg m−2 s−1 of sulfate aerosols (with standard WRF-Chem size distribution over the region, temperature decreases of around 7 °C result during the middle part of the day over the Central Valley, one of the areas hardest hit by the heat wave. Regions more ventilated with oceanic air such as Los Angeles have slightly smaller reductions. The length of the hottest part of the day is also reduced. Advection effects on the aerosol cloud must be more carefully forecast for smaller injection regions. Verification of the impacts could be done via measurements of differences in reflected and surface downward shortwave. Such regional geoengineering applications with specific near-term target effects but smaller cost and side effects could potentially provide a means of testing larger scale applications. However, design considerations for regional applications, such as a preference for injection at a level of relatively low wind speed, differ from those for global applications. The size of the required injections and the necessity of injection close to the target region raise substantial concerns. The evaluation of this regional-scale application is thus consistent with global model evaluations, emphasizing that mitigation via

  2. CONTRIBUTION TO THE STUDY OF HYDROXYMETYLATION REACTION OF ALKALI LIGNIN

    OpenAIRE

    Teodor Malutan; Raluca Nicu; Valentin I. Popa

    2008-01-01

    The hydroxymethylation of alkali lignin with formaldehyde in alkaline solution was studied. The influence of reaction conditions of the hydroxymethylation of alkali lignin was followed by modifying the temperature, time, and the ratios of NaOH to lignin and CH2O to lignin. Three different types of alkali lignin were utilized. The reaction was followed by total consumption of formaldehyde, and the resulting products were characterized through FTIR-spectra, thermogravimetry analysis, ash and mo...

  3. Broadband measurements of aerosol extinction in the ultraviolet spectral region

    Science.gov (United States)

    Washenfelder, R. A.; Flores, J. M.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2013-04-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross sections and complex refractive indices. We describe a new laboratory instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We determined aerosol extinction cross sections and directly observed Mie scattering resonances for aerosols that are purely scattering (polystyrene latex spheres and ammonium sulfate), slightly absorbing (Suwannee River fulvic acid), and strongly absorbing (nigrosin dye). We describe an approach for retrieving refractive indices as a function of wavelength from the measured extinction cross sections over the 360-420 nm wavelength region. The retrieved refractive indices for PSL and ammonium sulfate agree within uncertainty with the literature values for this spectral region. The refractive index determined for nigrosin is 1.78 (± 0.03) + 0.19 (± 0.08)i at 360 nm and 1.63 (± 0.03) + 0.21 (± 0.05)i at 420 nm. The refractive index determined for Suwannee River fulvic acid is 1.71 (± 0.02) + 0.07 (± 0.06)i at 360 nm and 1.66 (± 0.02) + 0.06 (± 0.04)i at 420 nm. These laboratory results support the potential for a field instrument capable of determining ambient aerosol optical extinction, average aerosol extinction cross section, and complex refractive index as a function of wavelength.

  4. Broadband measurements of aerosol extinction in the ultraviolet spectral region

    Directory of Open Access Journals (Sweden)

    R. A. Washenfelder

    2013-01-01

    Full Text Available Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross-sections and complex refractive indices. We describe a new laboratory instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360–390 and 385–420 nm spectral regions using two light emitting diodes (LED and a grating spectrometer with charge-coupled device (CCD detector. We determined aerosol extinction cross-sections and directly observed Mie scattering resonances for aerosols that are purely scattering (polystyrene latex spheres and ammonium sulfate, slightly absorbing (Suwannee River fulvic acid, and strongly absorbing (nigrosin dye. We describe an approach for retrieving refractive indices as a function of wavelength from the measured extinction cross-sections over the 360–420 nm wavelength region. The retrieved refractive indices for PSL and ammonium sulfate agree within uncertainty with literature values for this spectral region. The refractive index determined for nigrosin is 1.78 (±0.03 + 0.19 (±0.08 i at 360 nm and 1.53 (±0.03 + 0.21 (±0.05 i at 420 nm. The refractive index determined for Suwannee River fulvic acid is 1.71 (±0.02 + 0.07 (±0.06 i at 360 nm and 1.66 (±0.02 + 0.06 (±0.04 i at 420 nm. These laboratory results support the potential for a field instrument capable of determining ambient aerosol optical extinction, average aerosol extinction cross-section, and complex refractive index as a function of wavelength.

  5. Broadband measurements of aerosol extinction in the ultraviolet spectral region

    Directory of Open Access Journals (Sweden)

    R. A. Washenfelder

    2013-04-01

    Full Text Available Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross sections and complex refractive indices. We describe a new laboratory instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360–390 and 385–420 nm spectral regions using two light emitting diodes (LED and a grating spectrometer with charge-coupled device (CCD detector. We determined aerosol extinction cross sections and directly observed Mie scattering resonances for aerosols that are purely scattering (polystyrene latex spheres and ammonium sulfate, slightly absorbing (Suwannee River fulvic acid, and strongly absorbing (nigrosin dye. We describe an approach for retrieving refractive indices as a function of wavelength from the measured extinction cross sections over the 360–420 nm wavelength region. The retrieved refractive indices for PSL and ammonium sulfate agree within uncertainty with the literature values for this spectral region. The refractive index determined for nigrosin is 1.78 (± 0.03 + 0.19 (± 0.08i at 360 nm and 1.63 (± 0.03 + 0.21 (± 0.05i at 420 nm. The refractive index determined for Suwannee River fulvic acid is 1.71 (± 0.02 + 0.07 (± 0.06i at 360 nm and 1.66 (± 0.02 + 0.06 (± 0.04i at 420 nm. These laboratory results support the potential for a field instrument capable of determining ambient aerosol optical extinction, average aerosol extinction cross section, and complex refractive index as a function of wavelength.

  6. Aerosol mobility size spectrometer

    Science.gov (United States)

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  7. Modeling the Sulfate Deposition to the Greenland Ice Sheet From the Laki Eruption

    Science.gov (United States)

    Oman, L.; Robock, A.; Stenchikov, G.; Thordarson, T.; Gao, C.

    2005-12-01

    Using the state of the art Goddard Institute for Space Studies (GISS) modelE general circulation model, simulations were conducted of the chemistry and transport of aerosols resulting from the 1783-84 Laki (64°N) flood lava eruption. A set of 3 ensemble simulations from different initial conditions were conducted by injecting our estimate of the SO2 gas into the atmosphere by the 10 episodes of the eruption and allowing the sulfur chemistry model to convert this gas into sulfate aerosol. The SO2 gas and sulfate aerosol is transported by the model and wet and dry deposition is calculated over each grid box during the simulation. We compare the resulting sulfate deposition to the Greenland Ice Sheet in the model to 23 ice core measurements and find very good agreement. The model simulation deposits a range of 169 to over 300 kg/km2 over interior Greenland with much higher values along the coastal areas. This compares to a range of 62 to 324 kg/km2 for the 23 ice core measurements with an average value of 158 kg/km2. This comparison is one important model validation tool. Modeling and observations show fairly large spatial variations in the deposition of sulfate across the Greenland Ice Sheet for the Laki eruption, but the patterns are similar to those we modeled for the 1912 Katmai and 1991 Pinatubo eruptions. Estimates of sulfate loading based on single ice cores can show significant differences, so ideally several ice cores should be combined in reconstructing the sulfate loading of past volcanic eruptions, taking into account the characteristic spatial variations in the deposition pattern.

  8. Sulfated compounds from marine organisms.

    Science.gov (United States)

    Kornprobst, J M; Sallenave, C; Barnathan, G

    1998-01-01

    More than 500 sulfated compounds have been isolated from marine organisms so far but most of them originate from two phyla only, Spongia and Echinodermata. The sulfated compounds are presented according to the phyla they have been identified from and to their chemical structures. Biological activities, when available, are also given. Macromolecules have also been included in this review but without structural details. PMID:9530808

  9. Coprecipitation of alkali metal ions with calcium carbonate

    International Nuclear Information System (INIS)

    The coprecipitation of alkali metal ions Li+, Na+, K+ and Rb+ with calcium carbonate has been studied experimentally and the following results have been obtained: (1) Alkali metal ions are more easily coprecipitated with aragonite than with calcite. (2) The relationship between the amounts of alkali metal ions coprecipitated with aragonite and their ionic radii shows a parabolic curve with a peak located at Na+ which has approximately the same ionic radius as Ca2+. (3) However, the amounts of alkali metal ions coprecipitated with calcite decrease with increasing ionic radius of alkali metals. (4) Our results support the hypothesis that (a) alkali metals are in interstitial positions in the crystal structure of calcite and do not substitute for Ca2+ in the lattice, but (b) in aragonite, alkali metals substitute for Ca2+ in the crystal structure. (5) Magnesium ions in the parent solution increase the amounts of alkali metal ions (Li+, Na+, K+ and Rb+) coprecipitated with calcite but decrease those with aragonite. (6) Sodium-bearing aragonite decreases the incorporation of other alkali metal ions (Li+, K+ and Rb+) into the aragonite. (author)

  10. Composite receptor method applied to Philadelphia aerosol

    International Nuclear Information System (INIS)

    A composite of chemical mass balances, multiple linear regression, and wind trajectory receptor models was developed to apportion particulate mass into source categories. It was applied to 156 aerosol samples collected in dichotomous samplers at three sites in the Philadelphia area and analyzed by X-ray fluorescence, instrumental neutron activation, ion chromatography, and pyrolysis. The largest component accounted for 49-55% of the mass of ≤ 10μm diameter particles and consisted of sulfate plus related ions and water. Other components were crustal matter (17-24% of the mass) and vehicle exhaust (4-6% of the mass). Less than 5% of the mass was attributed to primary emissions from five types of stationary sources. Wind-stratified data indicated that 80 +/- 20% of the sulfate was from a regional background. Multiple linear regression attributed 72 +/- 8 and 16 +/- 5% of S to coal- and oil-fired power plants, respectively

  11. Is Distant Pollution Contaminating Local Air? Analyzing the Origins of Atmospheric Aerosols

    Directory of Open Access Journals (Sweden)

    David Geng

    2012-01-01

    Full Text Available Understanding the origin of aerosols in the atmosphere is important because of visual pollution, climate impacts, and deleterious health effects due to the inhalation of fine particles. This research analyzed aerosols characterized by their chloride, sulfate, and nitrate content as a function of size over a 3-month period. Due to wind patterns over coal-burning power plants, a higher concentration of local sulfate pollution was expected. Aerosols were harvested on the Purdue University campus using a high-volume air sampler with glass fiber filters and a five-stage impactor that separates the aerosols into five sizes. The filters were extracted in water to dissolve anions and the solution was analyzed using high-pressure liquid ion chromatography. Only trace amounts of chloride with no distinct patterns in size were detected. In total, nitrate content ranged from 0.12 to 2.10 μg/m3 and sulfate content ranged from 0.44 to 6.45 μg/m3 over a 3-month period. As for fine particles, a higher concentration of sulfate was observed. The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT model determines air mass origin, and in this study, higher total sulfate content was observed when the air mass moved out of the southwest, and higher total nitrate content was observed when the air mass originated from the southeast. The author concluded that small particles resulted in sulfate from sulfur dioxide, typically from gas to particle conversion. High sulfur dioxide levels are directly correlated with coal-burning power plant density. Small particulate sulfate found in West Lafayette, Indiana, was determined to originate primarily from power plants in southwest Indiana. Though the results do show a significant amount of potentially harmful aerosols in West Lafayette, there is still further research to be done concerning isotopic composition of those particles in attempts to better explain the chemical pathways.

  12. The role of aerosols in cloud drop parameterizations and its applications in global climate models

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, C.C.; Penner, J.E. [Lawrence Livermore National Lab., CA (United States)

    1996-04-01

    The characteristics of the cloud drop size distribution near cloud base are initially determined by aerosols that serve as cloud condensation nuclei and the updraft velocity. We have developed parameterizations relating cloud drop number concentration to aerosol number and sulfate mass concentrations and used them in a coupled global aerosol/general circulation model (GCM) to estimate the indirect aerosol forcing. The global aerosol model made use of our detailed emissions inventories for the amount of particulate matter from biomass burning sources and from fossil fuel sources as well as emissions inventories of the gas-phase anthropogenic SO{sub 2}. This work is aimed at validating the coupled model with the Atmospheric Radiation Measurement (ARM) Program measurements and assessing the possible magnitude of the aerosol-induced cloud effects on climate.

  13. Facility of aerosol filtration

    International Nuclear Information System (INIS)

    Said invention relates to a facility of aerosol filtration, particularly of sodium aerosols. Said facility is of special interest for fast reactors where sodium fires involve the possibility of high concentrations of sodium aerosols which soon clog up conventional filters. The facility intended for continuous operation, includes at the pre-filtering stage, means for increasing the size of the aerosol particles and separating clustered particles (cyclone separator)

  14. Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model

    Science.gov (United States)

    Fast, Jerome D.; Gustafson, William I.; Easter, Richard C.; Zaveri, Rahul A.; Barnard, James C.; Chapman, Elaine G.; Grell, Georg A.; Peckham, Steven E.

    2006-11-01

    A new fully coupled meteorology-chemistry-aerosol model is used to simulate the urban- to regional-scale variations in trace gases, particulates, and aerosol direct radiative forcing in the vicinity of Houston over a 5 day summer period. Model performance is evaluated using a wide range of meteorological, chemistry, and particulate measurements obtained during the 2000 Texas Air Quality Study. The predicted trace gas and particulate distributions were qualitatively similar to the surface and aircraft measurements with considerable spatial variations resulting from urban, power plant, and industrial sources of primary pollutants. Sulfate, organic carbon, and other inorganics were the largest constituents of the predicted particulates. The predicted shortwave radiation was 30 to 40 W m-2 closer to the observations when the aerosol optical properties were incorporated into the shortwave radiation scheme; however, the predicted hourly aerosol radiative forcing was still underestimated by 10 to 50 W m-2. The predicted aerosol radiative forcing was larger over Houston and the industrial ship channel than over the rural areas, consistent with surface measurements. The differences between the observed and simulated aerosol radiative forcing resulted from transport errors, relative humidity errors in the upper convective boundary layer that affect aerosol water content, secondary organic aerosols that were not yet included in the model, and uncertainties in the primary particulate emission rates. The current model was run in a predictive mode and demonstrates the challenges of accurately simulating all of the meteorological, chemical, and aerosol parameters over urban to regional scales that can affect aerosol radiative forcing.

  15. Two hundred fifty years of aerosols and climate: the end of the age of aerosols

    Directory of Open Access Journals (Sweden)

    S. J. Smith

    2013-03-01

    Full Text Available Carbonaceous and sulfur aerosols have a substantial global and regional influence on climate, resulting in a net cooling to date, in addition to their impact on health and ecosystems. The magnitude of this influence has changed substantially over the past and is expected to continue to change into the future. An integrated picture of the changing climatic influence of black carbon, organic carbon and sulfate over the period 1850 through 2100, focusing on uncertainty, is presented using updated historical inventories and a coordinated set of emission projections. We describe, in detail, the aerosol emissions from the Representative Concentration Pathway (RCP 4.5 scenario and its associated reference scenario. While aerosols have had a substantial impact on climate over the past century, we show that, by the end of the 21st century aerosols will likely be only a minor contributor to radiative forcing due to increases in greenhouse gas forcing and a net global decrease in pollutant emissions. This outcome is even more certain under a successful implementation of a policy to limit greenhouse gas emissions as low-carbon energy technologies that do not emit appreciable aerosol or SO2 are deployed.

  16. Size-Resolved Volatility and Chemical Composition of Aged European Aerosol Measured During FAME-2008

    Science.gov (United States)

    Hildebrandt, L.; Mohr, C.; Lee, B.; Engelhart, G. J.; Decarlo, P. F.; Prevot, A. S.; Baltensperger, U.; Donahue, N. M.; Pandis, S. N.

    2008-12-01

    We present first results on the volatility and chemical composition of aged organic aerosol measured during the Finokalia Aerosol Measurement Experiment - 2008 (FAME-2008). Finokalia is located in the Southeast of Crete, Greece, and this remote site allows for the measurement of aged European aerosol as it is transported from Central to Southeastern Europe. We measured the volatility of the aerosol at Finokalia as a function of its size by combining several instruments. We used an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS) to measure the size-resolved chemical composition of the particles, a scanning mobility particle sizer (SMPS) to measure the volume distribution of particles, and a thermodenuder system to induce changes in size and composition via moderate heating of the particles. The largest fraction of the non-refractory material in the aerosol sampled was ammonium sulfate and ammonium bisulfate, followed by organic material and a small contribution from nitrate. Most of the organic aerosol was highly oxidized, even after only a few days of transport over continental Europe. These highly oxidized organics had lower volatility than fresh primary or secondary aerosol measured in the laboratory. Significant changes in air-parcel trajectories and wind direction led to changes in the chemical composition of the sampled aerosol and corresponding changes of the volatility. These results allow the quantification of the effect of atmospheric processing on organic aerosol volatility and can be used as constraints for atmospheric Chemical Transport Models that predict the aerosol volatility.

  17. Cathode architectures for alkali metal / oxygen batteries

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  18. Elucidation of transport mechanism and enhanced alkali ion transference numbers in mixed alkali metal-organic ionic molten salts.

    Science.gov (United States)

    Chen, Fangfang; Forsyth, Maria

    2016-07-28

    Mixed salts of Ionic Liquids (ILs) and alkali metal salts, developed as electrolytes for lithium and sodium batteries, have shown a remarkable ability to facilitate high rate capability for lithium and sodium electrochemical cycling. It has been suggested that this may be due to a high alkali metal ion transference number at concentrations approaching 50 mol% Li(+) or Na(+), relative to lower concentrations. Computational investigations for two IL systems illustrate the formation of extended alkali-anion aggregates as the alkali metal ion concentration increases. This tends to favor the diffusion of alkali metal ions compared with other ionic species in electrolyte solutions; behavior that has recently been reported for Li(+) in a phosphonium ionic liquid, thus an increasing alkali transference number. The mechanism of alkali metal ion diffusion via this extended coordination environment present at high concentrations is explained and compared to the dynamics at lower concentrations. Heterogeneous alkali metal ion dynamics are also evident and, somewhat counter-intuitively, it appears that the faster ions are those that are generally found clustered with the anions. Furthermore these fast alkali metal ions appear to correlate with fastest ionic liquid solvent ions. PMID:27375042

  19. The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore-Washington, D.C. region

    Science.gov (United States)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.

    2016-01-01

    In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites) and mass measurements of aerosol loading (PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type - such as composition, size, and hygroscopicity - and to the surrounding atmosphere, such as temperature, relative humidity (RH), and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project, extensive in situ atmospheric profiling in the Baltimore, MD-Washington, D.C. region was performed during 14 flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties, and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 %) and organics (57 %). A distinct difference in composition was observed, with high-loading days having a proportionally larger percentage of sulfate due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity) such that higher relative contributions of inorganics increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity, causing an increase in the water content of the aerosol. Conversely, low-aerosol-loading days had lower sulfate and higher black carbon contributions, causing lower single-scattering albedos (SSAs). The average black carbon concentrations were 240 ng m-3 in the lowest 1 km, decreasing to 35 ng m-3 in the free troposphere (above

  20. Aerosol satellite remote sensing

    NARCIS (Netherlands)

    Veefkind, Joris Pepijn

    2001-01-01

    Aerosols are inportant for many processes in the atmosphere. Aerosols are a leading uncertainty in predicting global climate change, To a large extent this uncertainty is caused by a lack of knowledge on the occurrence and concentration of aerosols. On global scale, this information can only be o

  1. EVALUATION OF OPTICAL PROPERTIES OF ATMOSPHERIC AEROSOLS BASED ON CHEMICAL CHARACTERIZATION

    OpenAIRE

    Ohta,Sachio; Murao, Naoto

    1998-01-01

    研究概要:Atmospheric fine particles, aerosols less than 2μm in diameter, were collected on filters and chemically analyzed in Sapporo, Okinawa island in Japan and Ester-Dome, Alaska in U. S. A. They were made up of nine components such as elemental carbon, organics, sulfate, nitrate, ammonium, sea-salt cations, soil and water. Based on the chemical characterization, it was assumed that atmospheric aerosols comprise seven species of particles such as elemental carbon, organics, ammonium sulfate, a...

  2. Measurements of Hygroscopicity- and Size-Resolved Sea Spray Aerosol

    Science.gov (United States)

    Phillips, B.; Dawson, K. W.; Royalty, T. M.; Reed, R. E.; Petters, M.; Meskhidze, N.

    2015-12-01

    Atmospheric aerosols play a central role in many environmental processes by influencing the Earth's radiative balance, tropospheric chemistry, clouds, biogeochemical cycles, and visibility as well as adversely impacting human health. Based on their origin, atmospheric aerosols can be defined as anthropogenic or natural. Recent studies have shown that a large fraction of uncertainty in the radiative effects of anthropogenic aerosols is related to uncertainty in natural—background—aerosols. Marine aerosols are of particular interest due to the abundance of oceans covering the Earth's surface. Despite their importance, limited information is currently available for size- and composition-resolved marine aerosol emission fluxes. Our group has designed and built an instrument for measuring the size- and hygroscopicity-resolved sea spray aerosol fluxes. The instrument was first deployed during spring 2015 at the end of the 560 m pier of the US Army Corps of Engineers' Field Research Facility in Duck, NC. Measurements include 200 nm-sized diameter growth factor (hygroscopicity) distributions, sea spray particle flux measurements, and total sub-micron sized aerosol concentration. Ancillary ocean data includes salinity, pH, sea surface temperature, dissolved oxygen content, and relative fluorescence (proxy for [Chl-a]). Hygroscopicity distribution measurements show two broad peaks, one indicative of organics and sulfates and another suggestive of sea salt. The fraction of 200 nm-sized salt particles having hygroscopicity similar to that of sea-spray aerosol contributes up to ~24% of the distribution on days with high-speed onshore winds and up to ~3% on calm days with winds blowing from the continent. However, the total concentration of sea-spray-like particles originating from offshore versus onshore winds was relatively similar. Changes in the relative contribution of sea-salt to number concentration were caused by a concomitant changes in total aerosol concentration

  3. Evidence and quantitation of aromatic organosulfates in ambient aerosols in Lahore, Pakistan

    Directory of Open Access Journals (Sweden)

    S. Kundu

    2013-05-01

    Full Text Available Organosulfates are important components of atmospheric organic aerosols, yet their structures, abundances, sources and formation processes are not adequately understood. This study presents the identification and quantitation of benzyl sulfate in atmospheric aerosols, which is the first confirmed atmospheric organosulfate with aromatic carbon backbone. Benzyl sulfate was identified and quantified in fine particulate matter (PM2.5 collected in Lahore, Pakistan, during 2007–2008. An authentic standard of benzyl sulfate was synthesized, standardized, and identified in atmospheric aerosols with quadrupole time-of-flight (Q-ToF mass spectrometry (MS. Benzyl sulfate was quantified in aerosol samples using ultra performance liquid chromatography (UPLC coupled to negative electrospray ionization triple quadrupole (TQ MS. The highest benzyl sulfate concentrations were recorded in November and January 2007 (0.50 ± 0.11 ng m−3 whereas the lowest concentration was observed in July (0.05 ± 0.02 ng m−3. To evaluate matrix effects, benzyl sulfate concentrations were determined using external calibration and the method of standard addition; comparable concentrations were detected by the two methods, which ruled out significant matrix effects in benzyl sulfate quantitation. Three additional organosulfates with m/z 187, 201 and 215 were qualitatively identified as aromatic organosulfates with additional methyl substituents by high-resolution mass measurements and tandem MS. The observed aromatic organosulfates form a homologous series analogous to toluene, xylene, and trimethylbenzene, which are abundant anthropogenic volatile organic compounds (VOC, suggesting that aromatic organosulfates may be formed by secondary reactions. However, stronger statistical correlations of benzyl sulfate with combustion tracers (EC and levoglucosan than with secondary tracers (SO42− and α-pinene-derived nitrooxy organosulfates suggest that aromatic organosulfates may be

  4. Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols

    Directory of Open Access Journals (Sweden)

    X. Y. Zhang

    2012-01-01

    Full Text Available From 2006 to 2007, the daily concentrations of major inorganic water-soluble constituents, mineral aerosol, organic carbon (OC and elemental carbon (EC in ambient PM10 samples were investigated from 16 urban, rural and remote sites in various regions of China, and were compared with global aerosol measurements. A large difference between urban and rural chemical species was found, normally with 1.5 to 2.5 factors higher in urban than in rural sites. Optically-scattering aerosols, such as sulfate (~16%, OC (~15%, nitrate (~7%, ammonium (~5% and mineral aerosol (~35% in most circumstance, are majorities of the total aerosols, indicating a dominant scattering feature of aerosols in China. Of the total OC, ~55%–60% can be attributed to the formation of the secondary organic carbon (SOC. The absorbing aerosol EC only accounts for ~3.5% of the total PM10. Seasonally, maximum concentrations of most aerosol species were found in winter while mineral aerosol peaks in spring. In addition to the regular seasonal maximum, secondary peaks were found for sulfate and ammonium in summer and for OC and EC in May and June. This can be considered as a typical seasonal pattern in various aerosol components in China. Aerosol acidity was normally neutral in most of urban areas, but becomes some acidic in rural areas. Based on the surface visibility observations from 681 meteorological stations in China between 1957 and 2005, four major haze areas are identified with similar visibility changes, namely, (1 Hua Bei Plain in N. China, and the Guanzhong Plain; (2 E. China with the main body in the Yangtze River Delta area; (3 S. China with most areas of Guangdong and the Pearl River Delta area; (4 The Si Chuan Basin in S.W. China. The degradation of visibility in these areas is linked with the emission changes and high PM concentrations. Such quantitative chemical characterization of aerosols is essential in assessing their role in atmospheric

  5. In situ Measurements of Absorbing Aerosols from Urban Sources, in Maritime Environments and during Biomass Combustion

    Science.gov (United States)

    Mazzoleni, C.; Manvendra, D.; Chylek, P.; Arnott, P.

    2006-12-01

    Absorbing aerosols have important but still ill quantified effects on climate, visibility, cloud processes, and air quality. The compilation of aerosol scattering and absorption databases from reliable measurements is essential to reduce uncertainties in these inter-linked research areas. The atmospheric radiative balance for example, is modeled using the aerosol single scattering albedo (ratio of scattering to scattering plus absorption, SSA) as a fundamental input parameter in climate models. Sulfate aerosols with SSA values close to 1 scatter solar radiation resulting in a negative radiative forcing. However aerosol SSA values less than 1 are common when combustion processes are contributing to the aerosol sources. Absorbing aerosols directly heat the atmosphere and reduce the solar radiation at the surface. Currently, the net global anthropogenic aerosol direct radiative forcing is estimated to be around -0.5W m-2 with uncertainty of about 80% largely due to lack of understanding of SSA of sulfate-organic-soot aerosols. We present a rapidly expanding data set of direct in situ aerosol absorption and scattering measurements performed since June 2005 by photoacoustic instrument (at 781 and 870 nm), with integrated a total scattering sensor, during numerous field campaigns. Data have been collected over a wide range of aerosol sources, local environments and anthropogenic activities. Airborne measurements were performed in marine stratus off shore of the California coast and in cumulus clouds and clear air in the Houston, TX area; ground-based measurements have been performed in many locations in Mexico City; while laboratory measurements have been collected during a controlled combustion experiment of many different biomass fuels. The large dynamic range of aerosol types and conditions from these different field campaigns will be integrated to help quantify the SSA values, their variability, and their implications on the radiative forcing of climate.

  6. Investigations of Global Chemistry-Climate Interactions and Organic Aerosol Using Atmospheric Modeling

    Science.gov (United States)

    Pye, Havala Olson Taylor

    Aerosol, or particulate matter (PM), is an important component of the atmosphere responsible for negative health impacts, environmental degradation, reductions in visibility, and climate change. In this work, the global chemical transport model, GEOS-Chem, is used as a tool to examine chemistry-climate interactions and organic aerosols. GEOS-Chem is used to simulate present-day (year 2000) and future (year 2050) sulfate, nitrate, and ammonium aerosols and investigate the potential effects of changes in climate and emissions on global budgets and U.S. air quality. Changes in a number of meteorological parameters, such as temperature and precipitation, are potentially important for aerosols and could lead to increases or decreases in PM concentrations. Although projected changes in sulfate and nitrate precursor emissions favor lower PM concentrations over the U.S., projected increases in ammonia emissions could result in higher nitrate concentrations. The organic aerosol simulation in GEOS-Chem is updated to include aerosol from primary semivolatile organic compounds (SVOCS), intermediate volatility compounds (IVOCs), NOx dependent terpene aerosol, and aerosol from isoprene + NO3 reaction. SVOCs are identified as the largest global source of organic aerosol even though their atmospheric transformation is highly uncertain and emissions are probably underestimated. As a result of significant nighttime terpene emissions, fast reaction of monoterpenes with the nitrate radical, and high aerosol yields from NO3 oxidation, biogenic hydrocarbons reacting with the nitrate radical are expected to be a major contributor to surface level aerosol concentrations in anthropogenically influenced areas such as the United States. Globally, 69 to 88 Tg/yr of aerosol is predicted to be produced annually, approximately 22 to 24 Tg/yr of which is from biogenic hydrocarbons.

  7. Sensitivity studies of different aerosol indirect effects in mixed-phase clouds

    Directory of Open Access Journals (Sweden)

    C. Hoose

    2009-11-01

    Full Text Available Aerosols affect the climate system by changing cloud characteristics. Using the global climate model ECHAM5-HAM, we investigate different aerosol effects on mixed-phase clouds: The glaciation effect, which refers to a more frequent glaciation due to anthropogenic aerosols, versus the de-activation effect, which suggests that ice nuclei become less effective because of an anthropogenic sulfate coating. The glaciation effect can partly offset the indirect aerosol effect on warm clouds and thus causes the total anthropogenic aerosol effect to be smaller. It is investigated by varying the parameterization for the Bergeron-Findeisen process and the threshold coating thickness of sulfate (SO4-crit, which is required to convert an externally mixed aerosol particle into an internally mixed particle. Differences in the net radiation at the top-of-the-atmosphere due to anthropogenic aerosols between the different sensitivity studies amount up to 0.5 W m−2. This suggests that the investigated mixed-phase processes have a major effect on the total anthropogenic aerosol effect.

  8. Sensitivity studies of different aerosol indirect effects in mixed-phase clouds

    Directory of Open Access Journals (Sweden)

    U. Lohmann

    2009-07-01

    Full Text Available Aerosols affect the climate system by changing cloud characteristics. Using the global climate model ECHAM5-HAM, we investigate different aerosol effects on mixed-phase clouds: The glaciation effect, which refers to a more frequent glaciation due to anthropogenic aerosols, versus the de-activation effect, which suggests that ice nuclei become less effective because of an anthropogenic sulfate coating. The glaciation effect can partly offset the indirect aerosol effect on warm clouds and thus causes the total anthropogenic aerosol effect to be smaller. It is investigated by varying the parameterization for the Bergeron-Findeisen process and the threshold coating thickness of sulfate (SO4-crit, which is required to convert an externally mixed aerosol particle into an internally mixed particle. Differences in the net radiation at the top-of-the-atmosphere due to anthropogenic aerosols between the different sensitivity studies amount up to 0.5 W m−2. This suggests that the investigated mixed-phase processes have a major effect on the total anthropogenic aerosol effect.

  9. Global fine-mode aerosol radiative effect, as constrained by comprehensive observations

    Science.gov (United States)

    Chung, Chul E.; Chu, Jung-Eun; Lee, Yunha; van Noije, Twan; Jeoung, Hwayoung; Ha, Kyung-Ja; Marks, Marguerite

    2016-07-01

    Aerosols directly affect the radiative balance of the Earth through the absorption and scattering of solar radiation. Although the contributions of absorption (heating) and scattering (cooling) of sunlight have proved difficult to quantify, the consensus is that anthropogenic aerosols cool the climate, partially offsetting the warming by rising greenhouse gas concentrations. Recent estimates of global direct anthropogenic aerosol radiative forcing (i.e., global radiative forcing due to aerosol-radiation interactions) are -0.35 ± 0.5 W m-2, and these estimates depend heavily on aerosol simulation. Here, we integrate a comprehensive suite of satellite and ground-based observations to constrain total aerosol optical depth (AOD), its fine-mode fraction, the vertical distribution of aerosols and clouds, and the collocation of clouds and overlying aerosols. We find that the direct fine-mode aerosol radiative effect is -0.46 W m-2 (-0.54 to -0.39 W m-2). Fine-mode aerosols include sea salt and dust aerosols, and we find that these natural aerosols result in a very large cooling (-0.44 to -0.26 W m-2) when constrained by observations. When the contribution of these natural aerosols is subtracted from the fine-mode radiative effect, the net becomes -0.11 (-0.28 to +0.05) W m-2. This net arises from total (natural + anthropogenic) carbonaceous, sulfate and nitrate aerosols, which suggests that global direct anthropogenic aerosol radiative forcing is less negative than -0.35 W m-2.

  10. Retrieval of aerosol composition using ground-based remote sensing measurements

    Science.gov (United States)

    Xie, Yisong; Li, Zhengqiang; Zhang, Ying; Li, Donghui; Li, Kaitao

    2016-04-01

    The chemical composition and mixing states of ambient aerosol are the main factors deciding aerosol microphysical and optical properties, and thus have significant impacts on regional or global climate change and air quality. Traditional approaches to detect atmospheric aerosol composition include sampling with laboratory analysis and in-situ measurements. They can accurately acquire aerosol components, however, the sampling or air exhausting could change the status of ambient aerosol or lead to some mass loss. Additionally, aerosol is usually sampled at the surface level so that it is difficult to detect the columnar aerosol properties. Remote sensing technology, however, can overcome these problems because it is able to detect aerosol information of entire atmosphere by optical and microphysical properties without destructing the natural status of ambient aerosol. This paper introduces a method to acquire aerosol composition by the remote sensing measurements of CIMEL CE318 ground-based sun-sky radiometer. A six component aerosol model is used in this study, including one strong absorbing component Black Carbon (BC), two partly absorbing components Brown Carbon (BrC) and Mineral Dust (MD), two scattering components Ammonia Sulfate-like (AS) and Sea Salt (SS), and Aerosol Water uptake (AW). Sensitivity analysis are performed to find the most sensitive parameters to each component and retrieval method for each component is accordingly developed. Different mixing models such as Maxwell-Garnett (MG), Bruggeman (BR) and Volume Average (VA) are also studied. The residual minimization method is used by comparing remote sensing measurements and simulation outputs to find the optimization of aerosol composition (including volume fraction and mass concentration of each component). This method is applied to measurements obtained from Beijing site under different weather conditions, including polluted haze, dust storm and clean days, to investigate the impacts of mixing

  11. Aerosol composition and variability in the Baltimore-Washington, DC region

    Science.gov (United States)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.

    2015-08-01

    In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites) and mass measurements of aerosol loading (PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type, such as composition, size and hygroscopicity, and to the surrounding atmosphere, such as temperature, relative humidity (RH) and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project, extensive in-situ atmospheric profiling in the Baltimore, MD-Washington, DC region was performed during fourteen flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 %) and organics (57 %). A distinct difference in composition was observed with high-loading days having a proportionally larger percentage of ammonium sulfate (up to 49 %) due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity) such that higher relative contributions of ammonium sulfate increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity causing an increase in the water content of the aerosol. Conversely, low aerosol loading days had lower ammonium sulfate and higher black carbon contributions causing lower single scattering albedos (SSAs). The average black carbon concentrations were 240 ng m-3 in the lowest 1 km decreasing to 35 ng m-3

  12. Aerosol composition and variability in the Baltimore–Washington, DC region

    Directory of Open Access Journals (Sweden)

    A. J. Beyersdorf

    2015-08-01

    Full Text Available In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites and mass measurements of aerosol loading (PM2.5 used for air quality monitoring must be understood. This connection varies with many factors including those specific to the aerosol type, such as composition, size and hygroscopicity, and to the surrounding atmosphere, such as temperature, relative humidity (RH and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality project, extensive in-situ atmospheric profiling in the Baltimore, MD–Washington, DC region was performed during fourteen flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 % and organics (57 %. A distinct difference in composition was observed with high-loading days having a proportionally larger percentage of ammonium sulfate (up to 49 % due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity such that higher relative contributions of ammonium sulfate increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity causing an increase in the water content of the aerosol. Conversely, low aerosol loading days had lower ammonium sulfate and higher black carbon contributions causing lower single scattering albedos (SSAs. The average black carbon concentrations were 240 ng m−3 in the lowest 1 km

  13. Impacts of aerosol indirect effect on past and future changes in tropospheric composition

    Directory of Open Access Journals (Sweden)

    N. Unger

    2009-02-01

    Full Text Available The development of effective emissions control policies that are beneficial to both climate and air quality requires a detailed understanding of all the feedbacks in the atmospheric composition and climate system. We perform sensitivity studies with a global atmospheric composition-climate model to assess the impact of aerosols on tropospheric chemistry through their modification on clouds, the aerosol indirect effect (AIE. The model includes coupling between both tropospheric gas-phase and aerosol chemistry and aerosols and liquid-phase clouds. We investigate past impacts from preindustrial (PI to present day (PD and future impacts from PD to 2050 (for the moderate IPCC A1B scenario that embrace a wide spectrum of precursor emission changes and consequential aerosol-cloud interactions. The AIE is estimated to be −2.0 W m−2 for PD–PI and −0.6 W m−2 for 2050–PD, at the high end of current estimates. Inclusion of aerosol-cloud interactions substantially impacts changes in global mean methane lifetime across both time periods, enhancing the past and future increases by 10% and 30%, respectively. In regions where pollution emissions increase, inclusion of aerosol-cloud effects leads to 20% enhancements in in-cloud sulfate production and ~10% enhancements in sulfate wet deposition that is displaced away from the immediate source regions. The enhanced in-cloud sulfate formation leads to larger increases in surface sulfate across polluted regions (~10–30%. Nitric acid wet deposition is dampened by 15–20% across the industrialized regions due to AIE allowing additional re-release of reactive nitrogen that contributes to 1–2 ppbv increases in surface ozone in outflow regions. Our model findings indicate that aerosol-cloud interactions must be considered in studies of methane trends and projections of future changes to particulate matter air quality.

  14. Superconductivity in alkali metal intercalated iron selenides.

    Science.gov (United States)

    Krzton-Maziopa, A; Svitlyk, V; Pomjakushina, E; Puzniak, R; Conder, K

    2016-07-27

    Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations. PMID:27248118

  15. Durability of Alkali Activated Blast Furnace Slag

    Science.gov (United States)

    Ellis, K.; Alharbi, N.; Matheu, P. S.; Varela, B.; Hailstone, R.

    2015-11-01

    The alkali activation of blast furnace slag has the potential to reduce the environmental impact of cementitious materials and to be applied in geographic zones where weather is a factor that negatively affects performance of materials based on Ordinary Portland Cement. The scientific literature provides many examples of alkali activated slag with high compressive strengths; however research into the durability and resistance to aggressive environments is still necessary for applications in harsh weather conditions. In this study two design mixes of blast furnace slag with mine tailings were activated with a potassium based solution. The design mixes were characterized by scanning electron microscopy, BET analysis and compressive strength testing. Freeze-thaw testing up to 100 freeze-thaw cycles was performed in 10% road salt solution. Our findings included compressive strength of up to 100 MPa after 28 days of curing and 120 MPa after freeze-thaw testing. The relationship between pore size, compressive strength, and compressive strength after freeze-thaw was explored.

  16. Superconductivity in alkali metal intercalated iron selenides

    Science.gov (United States)

    Krzton-Maziopa, A.; Svitlyk, V.; Pomjakushina, E.; Puzniak, R.; Conder, K.

    2016-07-01

    Alkali metal intercalated iron selenide superconductors A x Fe2‑y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  17. Pathways of birnessite formation in alkali medium

    Institute of Scientific and Technical Information of China (English)

    FENG Xionghan; TAN Wenfeng; LIU Fan; HUANG Qiaoyun; LIU Xiangwen

    2005-01-01

    Birnessite is a common weathering and oxidation product of manganese-bearing rocks. An O2 oxidation procedure of Mn(OH)2 in the alkali medium has been used to synthesize birnessite. Fast and powder X-ray diffraction (XRD), transmission electron microscopy (TEM), electron diffraction (ED), energy dispersed X-ray analysis (EDAX), infrared spectroscopy (IR) techniques and chemical composition analysis, Eh-pH equilibrium diagram approaches were employed to investigate the reaction process and pathways of birnessite formation. Results showed that the process of the birnessite formation could be divided into four stages: (1) formation stage for hausmannite and feitknechtite, (2) stage of transformation of hausmannite and feitknechtite to buserite, (3) buserite crystal growing stage, and (4) stage of conversion of buserite into birnessite. Mn(OH)2 was mainly present as amorphous state only for a short initial time of oxidation reaction. In the oxidation process, buserite formed following two pathways by recrystallization after dissolution of the intermediates, and the transformations of the minerals depended on the Eh determined by the dissolved O2 concentration on their surfaces. The results are fundamental in further exploration on the mechanism of birnessite formation in the alkali medium. A great practical significance would also be expected with respect to the areas of material sciences.

  18. Atmospheric black carbon and sulfate concentrations in Northeast Greenland

    Directory of Open Access Journals (Sweden)

    A. Massling

    2015-04-01

    Full Text Available Measurements of Black Carbon (BC in aerosols at the high Arctic field site Villum Research Station (VRS at Station Nord in North Greenland showed a seasonal variation in BC concentrations with a maximum in winter and spring at ground level. The data was obtained using a Multi Angle Absorption Photometer (MAAP. A similar seasonal pattern was found for sulfate concentrations with a maximum level during winter and spring analyzed by ion chromatography. A correlation between BC and sulfate concentrations was observed over the years 2011 to 2013. This finding gives the hint that most likely transport of primary emitted BC particles to the Arctic was accompanied by aging of the aerosols through condensational processes. This process may have led to the formation of secondary inorganic matter and further transport of BC particles as cloud processing and further washout of particles is less likely based on the typically observed transport patterns of air masses arriving at VRS. Additionally, concentrations of EC (elemental carbon based on a thermo-optical method were determined and compared to BC measurements. Model estimates of the climate forcing due to BC in the Arctic are based on contributions of long-range transported BC during spring and summer. The measured concentrations were here compared with model results obtained by the Danish Hemispheric Model, DEHM. Good agreement between measured and modeled concentrations of both BC and sulfate was observed. The dominant source is found to be combustion of fossil fuel with biomass burning as a minor though significant source. During winter and spring the Arctic atmosphere is known to be impacted by long-range transport of BC and associated with the Arctic haze phenomenon.

  19. Aerosol quantification with the Aerodyne Aerosol Mass Spectrometer: detection limits and ionizer background effects

    Directory of Open Access Journals (Sweden)

    F. Drewnick

    2008-10-01

    Full Text Available Systematic laboratory experiments were performed to investigate quantification of various species with two versions of the Aerodyne Aerosol Mass Spectrometer, a Q-AMS and a c-ToF-AMS. Here we present a new method to continuously determine the detection limits of the AMS analyzers during regular measurements, yielding DL information under various measurement conditions. Minimum detection limits range from 0.03 μg m−3 (nitrate, sulfate, and chloride up to 0.5 μg m−3 (organics for the Q-AMS. Those of the c-ToF-AMS are found between 0.003 μg m−3 (nitrate, sulfate and 0.03 μg m−3 (ammonium, organics. The DL values found for the c-ToF-AMS were ~10 times lower than those of the Q-AMS, mainly due to differences in ion duty cycle. Effects causing an increase of the detection limits include long-term instrument contamination, measurement of high aerosol mass concentrations and short-term instrument history. The self-cleaning processes which reduce the instrument background after measurement of large aerosol concentrations as well as the influences of increased instrument background on mass concentration measurements are discussed. Finally, improvement of detection limits by extension of averaging time intervals, selected or reduced ion monitoring, and variation of particle-to-background measurement ratio are investigated.

  20. High-Order Dispersion Coefficients for Alkali-metal Atoms

    Institute of Scientific and Technical Information of China (English)

    KANG Shuai; DING Chi-Kun; CHEN Chang-Yong; WU Xue-Qing

    2013-01-01

    High-order dispersion coefficients C9,C11,C12,and C13 for the ground-state alkali-metals were calculated by combining the l-dependent model potential of alkali-metal atoms and linear variation method based on B-spline basis functions.The results were compared.

  1. Comparative study of the thermal and redox behaviour of alkali-promoted V2O5 catalysts

    International Nuclear Information System (INIS)

    Alkali-promoted V2O5 catalysts M-V2O5 (M=Li, Na, K, Rb and Cs) synthesised by impregnation of V2O5 with alkali sulfate solution have been investigated under inert and reducing atmosphere using thermoanalytical methods (TG/DTA, differential scanning calorimetry (DSC) and temperature-programmed reduction (TPR)). Pure V2O5 was used for comparison. Whereas in Li- and Na-promoted catalysts only V2O5 as crystalline phase could be detected by X-ray diffraction (XRD), the K-, Rb-, and Cs-promoted catalysts additionally contain the vanadate phase MV3O8. The surface acidity (Broensted- and Lewis-sites) as well as the starting temperature of the hydrogen consumption decrease with increasing size of the alkali cation. The reduction of the K-, Rb-, and Cs-promoted catalysts leads to the formation of bronze-like phases besides V2O5 at relative low temperatures. The bronze phases stabilise the V4+ oxidation state and improve the redox properties. A characteristic splitting and shifting of the ν(V=O) mode in the FTIR spectrum indicates the formation of V4+ in the different bronze phases. The favoured formation of bronze-like phases especially under reducing conditions enhances the release of SO2 at lower temperatures, the formation of H2S can be neglected

  2. Bioengineered heparins and heparan sulfates.

    Science.gov (United States)

    Fu, Li; Suflita, Matthew; Linhardt, Robert J

    2016-02-01

    Heparin and heparan sulfates are closely related linear anionic polysaccharides, called glycosaminoglycans, which exhibit a number of important biological and pharmacological activities. These polysaccharides, having complex structures and polydispersity, are biosynthesized in the Golgi of animal cells. While heparan sulfate is a widely distributed membrane and extracellular glycosaminoglycan, heparin is found primarily intracellularly in the granules of mast cells. While heparin has historically received most of the scientific attention for its anticoagulant activity, interest has steadily grown in the multi-faceted role heparan sulfate plays in normal and pathophysiology. The chemical synthesis of these glycosaminoglycans is largely precluded by their structural complexity. Today, we depend on livestock animal tissues for the isolation and the annual commercial production of hundred ton quantities of heparin used in the manufacture of anticoagulant drugs and medical device coatings. The variability of animal-sourced heparin and heparan sulfates, their inherent impurities, the limited availability of source tissues, the poor control of these source materials and their manufacturing processes, suggest a need for new approaches for their production. Over the past decade there have been major efforts in the biotechnological production of these glycosaminoglycans, driven by both therapeutic applications and as probes to study their natural functions. This review focuses on the complex biology of these glycosaminoglycans in human health and disease, and the use of recombinant technology in the chemoenzymatic synthesis and metabolic engineering of heparin and heparan sulfates. PMID:26555370

  3. Hygroscopic and phase separation properties of ammonium sulfate/organic/water ternary solutions

    Directory of Open Access Journals (Sweden)

    M. A. Zawadowicz

    2015-03-01

    Full Text Available Atmospheric aerosol particles are often partially or completely composed of inorganic salts, such as ammonium sulfate and sodium chloride, and therefore exhibit hygroscopic properties. Many inorganic salts have well-defined deliquescence and efflorescence points at which they take up and lose water, respectively. Deliquescence and efflorescence of simple inorganic salt particles have been investigated by a variety of methods, such as IR spectroscopy, tandem mobility analysis and electrodynamic balance. Field measurements have shown that atmospheric aerosols are not typically pure inorganic salt, instead they often also contain organic species. There is ample evidence from laboratory studies that suggests that mixed particles exist in a phase-separated state, with an aqueous inorganic core and organic shell. Although phase separation has not been measured in situ, there is no reason it would not also take place in the atmosphere. Many recent studies have focused on microscopy techniques that require deposition of the aerosol on a glass slide, possibly changing its surface properties. Here, we investigate the deliquescence and efflorescence points, phase separation and ability to exchange gas-phase components of mixed organic and inorganic aerosol using a flow tube coupled with FTIR spectroscopy. Ammonium sulfate aerosol mixed with organic polyols with different O : C ratios, including 1,4-butanediol, glycerol, 1,2,6-hexanetriol, 1,2-hexanediol, and 1,5-pentanediol have been investigated. Those constituents correspond to materials found in the atmosphere in great abundance, and therefore, particles prepared in this study should mimic atmospheric mixed phase aerosol particles. The results of this study tend to be in agreement with previous microscopy experiments, with several key differences, which possibly reveal a size-dependent effect on phase separation in organic/inorganic aerosol particles.

  4. Effects of alkali treatments on Ag nanowire transparent conductive films

    Science.gov (United States)

    Kim, Sunho; Kang, Jun-gu; Eom, Tae-yil; Moon, Bongjin; Lee, Hoo-Jeong

    2016-06-01

    In this study, we employ various alkali materials (alkali metals with different base strengths, and ammonia gas and solution) to improve the conductivity of silver nanowire (Ag NW)-networked films. The alkali treatment appears to remove the surface oxide and improve the conductivity. When applied with TiO2 nanoparticles, the treatment appears more effective as the alkalis gather around wire junctions and help them weld to each other via heat emitted from the reduction reaction. The ammonia solution treatment is found to be quick and aggressive, damaging the wires severely in the case of excessive treatment. On the other hand, the ammonia gas treatment seems much less aggressive and does not damage the wires even after a long exposure. The results of this study highlight the effectiveness of the alkali treatment in improving of the conductivity of Ag NW-networked transparent conductive films.

  5. Alkali absorption and citrate excretion in calcium nephrolithiasis

    Science.gov (United States)

    Sakhaee, K.; Williams, R. H.; Oh, M. S.; Padalino, P.; Adams-Huet, B.; Whitson, P.; Pak, C. Y.

    1993-01-01

    The role of net gastrointestinal (GI) alkali absorption in the development of hypocitraturia was investigated. The net GI absorption of alkali was estimated from the difference between simple urinary cations (Ca, Mg, Na, and K) and anions (Cl and P). In 131 normal subjects, the 24 h urinary citrate was positively correlated with the net GI absorption of alkali (r = 0.49, p mEq/day). Both urinary citrate and net GI alkali absorption increased, yielding a significantly positive correlation (r = 0.62, p reduced citrate excretion was largely dietary in origin as a result of low net alkali absorption (from a probable relative deficiency of vegetables and fruits or a relative excess of animal proteins).

  6. Performance of Straight Steel Fibres Reinforced Alkali Activated Concrete

    Science.gov (United States)

    Faris, Meor Ahmad; Bakri Abdullah, Mohd Mustafa Al; Nizar Ismail, Khairul; Muniandy, Ratnasamy; Putra Jaya, Ramadhansyah

    2016-06-01

    This paper focus on the performance of alkali activated concrete produced by using fly ash activated by sodium silicate and sodium hydroxide solutions. These alkali activated concrete were reinforced with straight steel fibres with different weight percentage starting from 0 % up to 5 %. Chemical composition of raw material in the production alkali activated concrete which is fly ash was first identified by using X-ray fluorescence. Results reveal there have an effect of straight steel fibres inclusion to the alkali activated concrete. Highest compressive strength of alkali activated concrete which is 67.72 MPa was obtained when 3 % of straight fibres were added. As well as flexural strength, highest flexural strength which is 6.78 MPa was obtained at 3 % of straight steel fibres inclusions.

  7. Tris(diisopropylammonium hydrogensulfate sulfate

    Directory of Open Access Journals (Sweden)

    Gholamhossein Sh. Mohammadnezhad

    2008-08-01

    Full Text Available The cations and anions of the title salt, 3C6H16N+·HSO4−·SO42−, are linked by N—H...O and O—H...O hydrogen bonds into a three-dimensional network. The hydrogensulfate ion, with a single S—O(H bond of 1.563 (2 Å, forms a short O—H...O hydrogen bond [O...O = 2.609 (2 Å] to the sulfate ion. The hydrogensulfate ion accepts two hydrogen bonds from two cations, whereas the sulfate ion, as an acceptor, binds to four cations. The sulfate ion is disordered approximately equally over two sites related by rotation around one of the O—S bonds.

  8. Influences of external vs. core-shell mixing on aerosol optical properties at various relative humidities.

    Science.gov (United States)

    Ramachandran, S; Srivastava, Rohit

    2013-05-01

    Aerosol optical properties of external and core-shell mixtures of aerosol species present in the atmosphere are calculated in this study for different relative humidities. Core-shell Mie calculations are performed using the values of radii, refractive indices and densities of aerosol species that act as core and shell, and the core-shell radius ratio. The single scattering albedo (SSA) is higher when the absorbing species (black carbon, BC) is the core, while for a sulfate core SSA does not vary significantly as the BC in the shell dominates the absorption. Absorption gets enhanced in core-shell mixing of absorbing and scattering aerosols when compared to their external mixture. Thus, SSA is significantly lower for a core-shell mixture than their external mixture. SSA is more sensitive to core-shell ratio than mode radius when BC is the core. The extinction coefficient, SSA and asymmetry parameter are higher for external mixing when compared to BC (core)-water soluble aerosol (shell), and water soluble aerosol (core)-BC (shell) mixtures in the relative humidity range of 0 to 90%. Spectral SSA exhibits the behaviour of the species which acts as a shell in core-shell mixing. The asymmetry parameter for an external mixture of water soluble aerosol and BC is higher than BC (core)-water soluble aerosol (shell) mixing and increases as function of relative humidity. The asymmetry parameter for the water soluble aerosol (core)-BC (shell) is independent of relative humidity as BC is hydrophobic. The asymmetry parameter of the core-shell mixture decreases when BC aerosols are involved in mixing, as the asymmetry parameter of BC is lower. Aerosol optical depth (AOD) of core-shell mixtures increases at a higher rate when the relative humidity exceeds 70% in continental clean and urban aerosol models, whereas AOD remains the same when the relative humidity exceeds 50% in maritime aerosol models. The SSA for continental aerosols varies for core-shell mixing of water soluble

  9. Sulfate reduction in freshwater peatlands

    International Nuclear Information System (INIS)

    This text consist of two parts: Part A is a literature review on microbial sulfate reduction with emphasis on freshwater peatlands, and part B presents the results from a study of the relative importance of sulfate reduction and methane formation for the anaerobic decomposition in a boreal peatland. The relative importance of sulfate reduction and methane production for the anaerobic decomposition was studied in a small raised bog situated in the boreal zone of southern Sweden. Depth distribution of sulfate reduction- and methane production rates were measured in peat sampled from three sites (A, B, and C) forming an minerotrophic-ombrotrophic gradient. SO42- concentrations in the three profiles were of equal magnitude and ranged from 50 to 150 μM. In contrast, rates of sulfate reduction were vastly different: Maximum rates in the three profiles were obtained at a depth of ca. 20 cm below the water table. In A it was 8 μM h-1 while in B and C they were 1 and 0.05 μM h-1, respectively. Methane production rates, however, were more uniform across the three nutrient regimes. Maximum rates in A (ca. 1.5 μg d-1 g-1) were found 10 cm below the water table, in B (ca. 1.0 μg d-1 g-1) in the vicinity of the water table, and in C (0.75 μg d-1 g-1) 20 cm below the water table. In all profiles both sulfate reduction and methane production rates were negligible above the water table. The areal estimates of methane production for the profiles were 22.4, 9.0 and 6.4 mmol m-2 d-1, while the estimates for sulfate reduction were 26.4, 2.5, and 0.1 mmol m-2 d-1, respectively. The calculated turnover times at the sites were 1.2, 14.2, and 198.7 days, respectively. The study shows that sulfate reducing bacteria are important for the anaerobic degradation in the studied peatland, especially in the minerotrophic sites, while methanogenic bacteria dominate in ombrotrophic sites Examination paper. 67 refs, 6 figs, 3 tabs

  10. Acid Sulfate Alteration on Mars

    Science.gov (United States)

    Ming, D. W.; Morris, R. V.

    2016-01-01

    A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Acid sulfate alteration has been identified at all three landing sites visited by NASA rover missions (Spirit, Opportunity, and Curiosity). Spirit landed in Gusev crater in 2004 and discovered Fe-sulfates and materials that have been extensively leached by acid sulfate solutions. Opportunity landing on the plains of Meridiani Planum also in 2004 where the rover encountered large abundances of jarosite and hematite in sedimentary rocks. Curiosity landed in Gale crater in 2012 and has characterized fluvial, deltaic, and lacustrine sediments. Jarosite and hematite were discovered in some of the lacustrine sediments. The high elemental abundance of sulfur in surface materials is obvious evidence that sulfate has played a major role in aqueous processes at all landing sites on Mars. The sulfate-rich outcrop at Meridiani Planum has an SO3 content of up to 25 wt.%. The interiors of rocks and outcrops on the Columbia Hills within Gusev crater have up to 8 wt.% SO3. Soils at both sites generally have between 5 to 14 wt.% SO3, and several soils in Gusev crater contain around 30 wt.% SO3. After normalization of major element compositions to a SO3-free basis, the bulk compositions of these materials are basaltic, with a few exceptions in Gusev crater and in lacustrine mudstones in Gale crater. These observations suggest that materials encountered by the rovers were derived from basaltic precursors by acid sulfate alteration under nearly isochemical conditions (i.e., minimal leaching). There are several cases, however, where acid sulfate alteration minerals (jarosite and hematite) formed in open hydrologic systems, e.g., in Gale crater lacustrine mudstones. Several hypotheses have been suggested for the

  11. Aerosol Mass Scattering Efficiency: Generalized Treatment of the Organic Fraction

    Science.gov (United States)

    Garland, R. M.; Ravishankara, A. R.; Lovejoy, E. R.; Tolbert, M. A.; Baynard, T.

    2005-12-01

    Atmospheric aerosols are complex mixtures of organic and inorganic compounds. Current efforts to provide a simplified parameterization to describe the RH dependence of water uptake and associated optical properties lack the capability to include any dependence on the composition of the organic fraction. Using laboratory generated aerosol we have investigated the validity of such simplified treatment of organic fraction and estimated potential biases. In this study, we use cavity ring-down aerosol extinction photometry (CRD-AEP) to study the relative humidity (RH) dependence of the light extinction of aerosols, σep, simultaneously considering the influence of particle size, chemical composition, and mixing state (internal and external mixtures). We have produced internally mixed aerosol systems including; ammonium sulfate, ammonium nitrate, sodium chloride, dicarboxylic acids, sugars, amino acids and humic acid. These aerosols are produced with an atomizer and size-selected with a Differential Mobility Analyzer (DMA). The particles then enter into a CRD-AEP to measure dry extinction, σep(Dry), after which they travel into a RH conditioner and another CRD-AEP to measure the humidified aerosol extinction, fσ(ep)RH. The ratio of the humidified extinction to the dry extinction is fσ(ep)RH. Representative organic compounds were found to have fσ(ep)RH values that are much smaller than pure salts; though the fσ(ep)RH values vary little within the organic compounds studied. In addition, we have found that treating the inorganic/organic aerosols as external mixtures is generally correct to within ~10%, indicating appropriate simplified treatment of the RH dependence of atmospheric aerosol according to inorganic/organic fraction. In this presentation, we include recommendations for the generalized treatment of the organic fraction, exceptions to this generalized behavior, and estimates of the potential bias caused by generalized treatment.

  12. The Seasonal Variations of Aerosols over East Asia as Jointly Inferred from MODIS and OMI

    Institute of Scientific and Technical Information of China (English)

    LIU Qi; DING Wei-Dong; FU Yun-Fei

    2011-01-01

    Data on aerosol optical thickness (AOT) and single scattering albedo (SSA) derived from Moderate Resolution Imaging Spectrometer (MODIS) and Ozone Monitoring Instrument (OMI) measurements, respectively, are used jointly to examine the seasonal variations of aerosols over East Asia. The seasonal signals of the total AOT are well defined and nearly similar over the land and over the ocean. These findings indicate a natural cycle of aerosols that originate primarily from natural emissions. In contrast, the small-sized aerosols represented by the fine-mode AOT, which are primarily generated over the land by human activities, do not have evident seasonalscale fluctuations. A persistent maximum of aerosol load- ings centered over the Sichuan basin is associated with considerable amounts of fine-mode aerosols throughout the year. Most regions exhibit a general spring maximum. During the summer, however, the aerosol loadings are the most marked over north central China. This occurrence may result from anthropogenic fine particles, such as sulfate and nitrate. Four typical regions were selected to perform a covariation analysis of the monthly gridded AOT and SSA. Over southwestern and southeastern China, if the aerosol loadings are small to moderate they are composed primarily of the highly absorptive aerosols. However, more substantial aerosol loadings probably represent less-absorptive aerosols. The opposite covaria- tion pattern occurring over the coastal-adjacent oceans suggests that the polluted oceanic atmosphere is closely correlated with the windward terrestrial aerosols. North central China is strongly affected by dust aerosols that show moderate absorption. This finding may explain the lower variability in the SSA that accompanies increasing aerosol loadings in this region.

  13. SUMMARY OF FY11 SULFATE RETENTION STUDIES FOR DEFENSE WASTE PROCESSING FACILITY GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2012-05-08

    This report describes the results of studies related to the incorporation of sulfate in high level waste (HLW) borosilicate glass produced at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). A group of simulated HLW glasses produced for earlier sulfate retention studies was selected for full chemical composition measurements to determine whether there is any clear link between composition and sulfate retention over the compositional region evaluated. In addition, the viscosity of several glasses was measured to support future efforts in modeling sulfate solubility as a function of predicted viscosity. The intent of these studies was to develop a better understanding of sulfate retention in borosilicate HLW glass to allow for higher loadings of sulfate containing waste. Based on the results of these and other studies, the ability to improve sulfate solubility in DWPF borosilicate glasses lies in reducing the connectivity of the glass network structure. This can be achieved, as an example, by increasing the concentration of alkali species in the glass. However, this must be balanced with other effects of reduced network connectivity, such as reduced viscosity, potentially lower chemical durability, and in the case of higher sodium and aluminum concentrations, the propensity for nepheline crystallization. Future DWPF processing is likely to target higher waste loadings and higher sludge sodium concentrations, meaning that alkali concentrations in the glass will already be relatively high. It is therefore unlikely that there will be the ability to target significantly higher total alkali concentrations in the glass solely to support increased sulfate solubility without the increased alkali concentration causing failure of other Product Composition Control System (PCCS) constraints, such as low viscosity and durability. No individual components were found to provide a significant improvement in sulfate retention (i.e., an increase of the magnitude

  14. Summary Of FY11 Sulfate Retention Studies For Defense Waste Processing Facility Glass

    International Nuclear Information System (INIS)

    This report describes the results of studies related to the incorporation of sulfate in high level waste (HLW) borosilicate glass produced at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). A group of simulated HLW glasses produced for earlier sulfate retention studies was selected for full chemical composition measurements to determine whether there is any clear link between composition and sulfate retention over the compositional region evaluated. In addition, the viscosity of several glasses was measured to support future efforts in modeling sulfate solubility as a function of predicted viscosity. The intent of these studies was to develop a better understanding of sulfate retention in borosilicate HLW glass to allow for higher loadings of sulfate containing waste. Based on the results of these and other studies, the ability to improve sulfate solubility in DWPF borosilicate glasses lies in reducing the connectivity of the glass network structure. This can be achieved, as an example, by increasing the concentration of alkali species in the glass. However, this must be balanced with other effects of reduced network connectivity, such as reduced viscosity, potentially lower chemical durability, and in the case of higher sodium and aluminum concentrations, the propensity for nepheline crystallization. Future DWPF processing is likely to target higher waste loadings and higher sludge sodium concentrations, meaning that alkali concentrations in the glass will already be relatively high. It is therefore unlikely that there will be the ability to target significantly higher total alkali concentrations in the glass solely to support increased sulfate solubility without the increased alkali concentration causing failure of other Product Composition Control System (PCCS) constraints, such as low viscosity and durability. No individual components were found to provide a significant improvement in sulfate retention (i.e., an increase of the magnitude

  15. Modeling of growth and evaporation effects on the extinction of 1.0-micron solar radiation traversing stratospheric sulfuric acid aerosols

    Science.gov (United States)

    Yue, G. K.; Deepak, A.

    1981-01-01

    The effects of growth and evaporation of stratospheric sulfuric acid aerosols on the extinction of solar radiation traversing such an aerosol medium are reported for the case of 1.0-micron solar radiation. Modeling results show that aerosol extinction is not very sensitive to the change of ambient water vapor concentration, but is sensitive to ambient temperature changes, especially at low ambient temperatures and high ambient water vapor concentration. A clarification is given of the effects of initial aerosol size distribution and composition on the change of aerosol extinction due to growth and evaporation processes. It is shown that experiments designed to observe solar radiation extinction of aerosols may also be applied to the determination of observed changes in aerosol optical properties, environmental parameters, or the physical and optical characteristics of sulfate aerosols.

  16. Volcanic Origin of Alkali Halides on Io

    Science.gov (United States)

    Schaefer, L.; Fegley, B., Jr.

    2003-01-01

    The recent observation of NaCl (gas) on Io confirms our earlier prediction that NaCl is produced volcanically. Here we extend our calculations by modeling thermochemical equilibrium of O, S, Li, Na, K, Rb, Cs, F, Cl, Br, and I as a function of temperature and pressure in a Pele-like volcanic gas with O/S/Na/Cl/K = 1.518/1/0.05/0.04/0.005 and CI chondritic ratios of the other (as yet unobserved) alkalis and halogens. For reference, the nominal temperature and pressure for Pele is 1760 plus or minus 210 K and 0.01 bars based on Galileo data and modeling.

  17. Study on alkali metal thermoelectric converter

    International Nuclear Information System (INIS)

    The alkali metal thermoelectric converter (AMTEC) utilizing the sodium ion conducting β''-alumina solid electrolyte (BASE) is a device to convert heat energy to electric energy directly. It is characterized by high conversion efficiencies (20-40%), high power densities (1 W/cm2), no moving parts, low maintenance requirements, high durability, and efficiency independent of size. Because of these merits, AMTEC is one of the most promising candidate for dispersed small scale power station, remote power station and aerospace power systems. In this paper, the theoretical and experimental studies on the thin film electrodes characteristics, power generating characteristics, cell efficiency, integral electrode with large current lead, porous metal current lead, series connected cells power generation, potassium AMTEC, wick return AMTEC and system analysis for space and grand use are reported. (J.P.N.) 79 refs

  18. Thermoluminescence of alkali halides and its implications

    Science.gov (United States)

    Gartia, R. K.; Rey, L.; Tejkumar Singh, Th.; Basanta Singh, Th.

    2012-03-01

    Trapping levels present in some alkali halides namely NaCl, KCl, KBr, and KI are determined by deconvolution of the thermoluminescence (TL) curves. Unlike most of the studies undertaken over the last few decades, we have presented a comprehensive picture of the phenomenon of TL as an analytical technique capable of revealing the position of the trapping levels present in the materials. We show that for all practical purposes, TL can be described involving only the three key trapping parameters, namely, the activation energy (E), the frequency factor (s), and the order of kinetics (b) even for complex glow curves having a number of TL peaks. Finally, based on these, we logically infer the importance of TL in development and characterization of materials used in dosimetry, dating and scintillation.

  19. Modeling the distribution of the volcanic aerosol cloud from the 1783-1784 Laki eruption

    Science.gov (United States)

    Oman, Luke; Robock, Alan; Stenchikov, Georgiy L.; Thordarson, Thorvaldur; Koch, Dorothy; Shindell, Drew T.; Gao, Chaochao

    2006-06-01

    We conducted simulations of the atmospheric transformation and transport of the emissions of the 1783-1784 Laki basaltic flood lava eruption (64.10°N, 17.15°W) using the NASA Goddard Institute for Space Studies modelE climate model coupled to a sulfur cycle chemistry model. The model simulations successfully reproduced the aerosol clouds of the 1912 Katmai and 1991 Mount Pinatubo eruptions, giving us confidence in the Laki simulations. Simulations of the Laki eruption produce peak zonal mean sulfate (SO4) concentrations of over 70 ppbv during August and into September 1783 in the upper troposphere and lower stratosphere at high latitudes. While the majority of the sulfate aerosol was removed during the fall and early winter, a significant aerosol perturbation remained into 1784. The peak SO2 gas loading was just over 37 megatons (Mt) in late June with the sulfate loading peaking in late August 1783 at 60 Mt over the average of 3 runs. This yielded a peak sulfate aerosol (75% H2SO4, 25% H2O) loading of over 80 Mt with the total aerosol produced during the entire eruption being about 165 Mt. The resulting sulfate deposition compares well with ice cores taken across Greenland. The top of atmosphere net radiative forcing peaks at -27 W/m2 over the high latitudes during late summer 1783 and produces a global mean forcing of -4 W/m2. The model results confirm that Northern Hemisphere high-latitude volcanic eruptions produce aerosols that remain mostly confined north of 30°N latitude.

  20. Investigation of the relative fine and coarse mode aerosol loadings and properties in the Southern Arabian Gulf region

    Science.gov (United States)

    Kaku, Kathleen C.; Reid, Jeffrey S.; Reid, Elizabeth A.; Ross-Langerman, Kristy; Piketh, Stuart; Cliff, Steven; Al Mandoos, Abdulla; Broccardo, Stephen; Zhao, Yongjing; Zhang, Jianglong; Perry, Kevin D.

    2016-03-01

    The aerosol chemistry environment of the Arabian Gulf region is extraordinarily complex, with high concentrations of dust aerosols from surrounding deserts mixed with anthropogenic aerosols originating from a large petrochemical industry and pockets of highly urbanized areas. Despite the high levels of aerosols experienced by this region, little research has been done to explore the chemical composition of both the anthropogenic and mineral dust portion of the aerosol burden. The intensive portion of the United Arab Emirates Unified Aerosol Experiment (UAE2), conducted during August and September 2004 was designed in part to resolve the aerosol chemistry through the use of multiple size-segregated aerosol samplers. The coarse mode mass (derived by subtracting the PM2.5 aerosol mass from the PM10 mass) is largely dust at 76% ± 7% of the total coarse mode mass, but is significantly impacted by anthropogenic pollution, primarily sulfate and nitrate. The PM2.5 aerosol mass also contains a large dust burden, at 38% ± 26%, but the anthropogenic component dominates. The total aerosol burden has significant impact not only on the atmosphere, but also the local population, as the air quality levels for both the PM10 and PM2.5 aerosol masses reached unhealthy levels for 24% of the days sampled.

  1. Multiple sulfur-isotope signatures in Archean sulfates and their implications for the chemistry and dynamics of the early atmosphere

    Science.gov (United States)

    Muller, Élodie; Philippot, Pascal; Rollion-Bard, Claire; Cartigny, Pierre

    2016-07-01

    Sulfur isotopic anomalies (∆33S and ∆36S) have been used to trace the redox evolution of the Precambrian atmosphere and to document the photochemistry and transport properties of the modern atmosphere. Recently, it was shown that modern sulfate aerosols formed in an oxidizing atmosphere can display important isotopic anomalies, thus questioning the significance of Archean sulfate deposits. Here, we performed in situ 4S-isotope measurements of 3.2- and 3.5-billion-year (Ga)-old sulfates. This in situ approach allows us to investigate the diversity of Archean sulfate texture and mineralogy with unprecedented resolution and from then on to deconvolute the ocean and atmosphere Archean sulfur cycle. A striking feature of our data is a bimodal distribution of δ34S values at ˜+5‰ and +9‰, which is matched by modern sulfate aerosols. The peak at +5‰ represents barite of different ages and host-rock lithology showing a wide range of ∆33S between ‑1.77‰ and +0.24‰. These barites are interpreted as primary volcanic emissions formed by SO2 photochemical processes with variable contribution of carbonyl sulfide (OCS) shielding in an evolving volcanic plume. The δ34S peak at +9‰ is associated with non–33S-anomalous barites displaying negative ∆36S values, which are best interpreted as volcanic sulfate aerosols formed from OCS photolysis. Our findings confirm the occurrence of a volcanic photochemical pathway specific to the early reduced atmosphere but identify variability within the Archean sulfate isotope record that suggests persistence throughout Earth history of photochemical reactions characteristic of the present-day stratosphere.

  2. Multiple sulfur-isotope signatures in Archean sulfates and their implications for the chemistry and dynamics of the early atmosphere.

    Science.gov (United States)

    Muller, Élodie; Philippot, Pascal; Rollion-Bard, Claire; Cartigny, Pierre

    2016-07-01

    Sulfur isotopic anomalies (∆(33)S and ∆(36)S) have been used to trace the redox evolution of the Precambrian atmosphere and to document the photochemistry and transport properties of the modern atmosphere. Recently, it was shown that modern sulfate aerosols formed in an oxidizing atmosphere can display important isotopic anomalies, thus questioning the significance of Archean sulfate deposits. Here, we performed in situ 4S-isotope measurements of 3.2- and 3.5-billion-year (Ga)-old sulfates. This in situ approach allows us to investigate the diversity of Archean sulfate texture and mineralogy with unprecedented resolution and from then on to deconvolute the ocean and atmosphere Archean sulfur cycle. A striking feature of our data is a bimodal distribution of δ(34)S values at ∼+5‰ and +9‰, which is matched by modern sulfate aerosols. The peak at +5‰ represents barite of different ages and host-rock lithology showing a wide range of ∆(33)S between -1.77‰ and +0.24‰. These barites are interpreted as primary volcanic emissions formed by SO2 photochemical processes with variable contribution of carbonyl sulfide (OCS) shielding in an evolving volcanic plume. The δ(34)S peak at +9‰ is associated with non-(33)S-anomalous barites displaying negative ∆(36)S values, which are best interpreted as volcanic sulfate aerosols formed from OCS photolysis. Our findings confirm the occurrence of a volcanic photochemical pathway specific to the early reduced atmosphere but identify variability within the Archean sulfate isotope record that suggests persistence throughout Earth history of photochemical reactions characteristic of the present-day stratosphere. PMID:27330111

  3. Maternal exposure to alkali, alkali earth, transition and other metals: Concentrations and predictors of exposure

    International Nuclear Information System (INIS)

    Most studies of metals exposure focus on the heavy metals. There are many other metals (the transition, alkali and alkaline earth metals in particular) in common use in electronics, defense industries, emitted via combustion and which are naturally present in the environment, that have received limited attention in terms of human exposure. We analysed samples of whole blood (172), urine (173) and drinking water (172) for antimony, beryllium, bismuth, cesium, gallium, rubidium, silver, strontium, thallium, thorium and vanadium using ICPMS. In general most metals concentrations were low and below the analytical limit of detection with some high concentrations observed. Few factors examined in regression models were shown to influence biological metals concentrations and explained little of the variation. Further study is required to establish the source of metals exposures at the high end of the ranges of concentrations measured and the potential for any adverse health impacts in children. - This study has demonstrated exposure to alkali, alkali earth and transition metals in pregnant women with factors such as breastfeeding, fish oil use and diet affecting exposures

  4. Sources and composition of urban aerosol particles

    Science.gov (United States)

    Vogt, M.; Johansson, C.; Mårtensson, M.; Struthers, H.; Ahlm, L.; Nilsson, D.

    2011-09-01

    From May 2008 to March 2009 aerosol emissions were measured using the eddy covariance method covering the size range 0.25 to 2.5 μm diameter (Dp) from a 105 m tower, in central Stockholm, Sweden. Supporting chemical aerosol data were collected at roof and street level. Results show that the inorganic fraction of sulfate, nitrate, ammonium and sea salt accounts for approximately 15% of the total aerosol mass water soluble soil contributing 11% and water insoluble soil 47%. Carbonaceous compounds were at the most 27% of PM1 mass. It was found that heating the air from the tower to 200 °C resulted in the loss of approximately 60% of the aerosol volume at 0.25 μm Dp whereas only 40% of the aerosol volume was removed at 0.6 μm Dp. Further heating to 300 °C caused very little additional losses roof level in the city, supporting the assumption that the non-volatile material consists of carbonaceous compounds. The average diurnal cycles of the BC emissions from road traffic (as inferred from the ratio of the incremental concentrations of nitrogen oxides (NOx) and BC measured on a densely trafficked street) and the fluxes of non-volatile material at tower level are in close agreement, suggesting a traffic source of BC. We have estimated the emission factors (EFs) for non-volatile particles <0.6 μm Dp to be 2.4±1.4 mg veh-1 km-1 based on either CO2 fluxes or traffic activity data. Light (LDV) and heavy duty vehicle (HDV) EFs were estimated using multiple linear regression and reveal that for non-volatile particulate matter in the 0.25 to 0.6 μm Dp range, the EFHDV is approximately twice as high as the EFLDV, the difference not being statistically significant.

  5. Aerosol Chemistry Between Two Oceans: Auckland’s Urban Aerosol

    Czech Academy of Sciences Publication Activity Database

    Coulson, G.; Olivares, G.; Salmond, J.; Talbot, Nicholas

    -: Italian Aerosol Society, 2015. ISBN N. [European Aerosol Conference EAC 2015. Milano (IT), 06.09.2015-11.09.2015] Institutional support: RVO:67985858 Keywords : urban pollution * aerosol processing * New Zealand Subject RIV: CF - Physical ; Theoretical Chemistry

  6. Brittlestars contain highly sulfated chondroitin sulfates/dermatan sulfates that promote fibroblast growth factor 2-induced cell signaling

    OpenAIRE

    Ramachandra, Rashmi; Namburi, Ramesh B; Ortega-Martinez, Olga; Shi, Xiaofeng; Zaia, Joseph; Dupont, Sam T.; Thorndyke, Michael C; Lindahl, Ulf; Spillmann, Dorothe

    2013-01-01

    Glycosaminoglycans (GAGs) isolated from brittlestars, Echinodermata class Ophiuroidea, were characterized, as part of attempts to understand the evolutionary development of these polysaccharides. A population of chondroitin sulfate/dermatan sulfate (CS/DS) chains with a high overall degree of sulfation and hexuronate epimerization was the major GAG found, whereas heparan sulfate (HS) was below detection level. Enzymatic digestion with different chondroitin lyases revealed exceptionally high p...

  7. Reduced Sulfation of Chondroitin Sulfate but Not Heparan Sulfate in Kidneys of Diabetic db/db Mice

    OpenAIRE

    Reine, Trine M.; Grøndahl, Frøy; Jenssen, Trond G.; Hadler-Olsen, Elin; Prydz, Kristian; Kolset, Svein O.

    2013-01-01

    Heparan sulfate proteoglycans are hypothesized to contribute to the filtration barrier in kidney glomeruli and the glycocalyx of endothelial cells. To investigate potential changes in proteoglycans in diabetic kidney, we isolated glycosaminoglycans from kidney cortex from healthy db/+ and diabetic db/db mice. Disaccharide analysis of chondroitin sulfate revealed a significant decrease in the 4-O-sulfated disaccharides (D0a4) from 65% to 40%, whereas 6-O-sulfated disaccharides (D0a6) were redu...

  8. Evidence and quantitation of aromatic organosulfates in ambient aerosols in Lahore, Pakistan

    Directory of Open Access Journals (Sweden)

    S. Kundu

    2012-12-01

    Full Text Available Organosulfates are important components of atmospheric organic aerosols, yet their structures, abundances, sources and formation processes are not adequately understood. This study presents the identification and quantitation of benzyl sulfate in atmospheric aerosols, which is the first reported atmospheric organosulfate with aromatic carbon backbone. Benzyl sulfate was identified and quantified in fine particulate matter (PM2.5 collected in Lahore, Pakistan during 2007–2008. An authentic standard of benzyl sulfate was synthesized, standardized, and identified in atmospheric aerosols using ultra-performance liquid chromatography (UPLC coupled with quadrupole time-of-flight (Q-ToF mass spectrometry (MS. Benzyl sulfate was quantified in aerosol samples using UPLC coupled to negative electrospray ionization triple quadrupole (TQ MS. The highest benzyl sulfate concentrations were recorded in November and January 2007 (0.50 ± 0.11 ng m−3 whereas the lowest concentration was observed in July (0.05 ± 0.02 ng m−3. To evaluate matrix effects, benzyl sulfate concentrations were determined using external calibration and the method of standard addition; comparable concentrations were detected by the two methods, which ruled out significant matrix effects in benzyl sulfate quantitation. Three additional organosulfates with m/z 187, 201 and 215 were qualitatively identified as aromatic organosulfates with additional methyl substituents by high-resolution mass measurements and tandem MS. The observed aromatic organosulfates form a homologous series analogous to toluene, xylene, and trimethylbenzene, which are abundant anthropogenic volatile organic compounds (VOC, suggesting that aromatic organosulfates may be formed by secondary reactions. Further studies are needed to elucidate the sources and formation pathways of aromatic organosulfates in the atmosphere.

  9. Seasonal variations in the physico-chemical characteristics of aerosols in North Taiwan

    Science.gov (United States)

    Chou, Charles

    2014-05-01

    From 2007 to 2012, this study investigated the mass concentration and chemical composition of ambient aerosols (i.e. PM10, PM2.5, and PMc = PM10-PM2.5) at Cape Fuguei, Yangminshan, and NTU (National Taiwan University) stations in northern Taiwan. It was found that the concentration and composition of aerosols exhibited significant seasonal variations but without an inter-annual trend during the study period. Moderate correlations (R2 = 0.4-0.6) were observed among the aerosol concentrations at the respective stations, indicating that the aerosol concentrations were dominated by factors on regional scales. During the seasons of northeasterly winter monsoons, long range transport of dust and particulate air pollutants from the Asia Continent had negatively impacted the atmospheric environment in this area. On the other hand, as a highly developed urban area, Taipei has substantial local emissions of air pollutants that should have transported to the surrounding areas of Taipei basin and caused deterioration of air quality and visibility in Cape Fuguei and Yangminshan. The results indicated that the major components of aerosols in Taipei include sulfate, sea salts, dust, and organic matters. In addition, contributions from nitrate, ammonium, and elemental carbon were also significant. In terms of mass concentration, most of the sea salts and dust particles existed in the coarse mode of aerosols, whereas sulfate and EC were confined within PM2.5. This suggests that the dust and sea salts particles were externally mixed with EC and sulfate in the aerosols over Taipei area. Further, it was found that nitrate were closely associated with sea salts in aerosols, suggesting the reaction between nitric acid and sea salt particles. Different seasonality was observed for sea salt and dust: sea salts peaked in fall and dust reached the maximal level in springtime, implying their sources were regulated by independent seasonal factors. Particulate pollutants (i.e. sulfate, nitrate

  10. Infrared remote sensing of atmospheric aerosols; Apports du sondage infrarouge a l'etude des aerosols atmospheriques

    Energy Technology Data Exchange (ETDEWEB)

    Pierangelo, C.

    2005-09-15

    The 2001 report from the Intergovernmental Panel on Climate Change emphasized the very low level of understanding of atmospheric aerosol effects on climate. These particles originate either from natural sources (dust, volcanic aerosols...) or from anthropogenic sources (sulfates, soot...). They are one of the main sources of uncertainty on climate change, partly because they show a very high spatio-temporal variability. Observation from space, being global and quasi-continuous, is therefore a first importance tool for aerosol studies. Remote sensing in the visible domain has been widely used to obtain a better characterization of these particles and their effect on solar radiation. On the opposite, remote sensing of aerosols in the infrared domain still remains marginal. Yet, not only the knowledge of the effect of aerosols on terrestrial radiation is needed for the evaluation of their total radiative forcing, but also infrared remote sensing provides a way to retrieve other aerosol characteristics (observations are possible at night and day, over land and sea). In this PhD dissertation, we show that aerosol optical depth, altitude and size can be retrieved from infrared sounder observations. We first study the sensitivity of aerosol optical properties to their micro-physical properties, we then develop a radiative transfer code for scattering medium adapted to the very high spectral resolution of the new generation sounder NASA-Aqua/AIRS, and we finally focus on the inverse problem. The applications shown here deal with Pinatubo stratospheric volcanic aerosol, observed with NOAA/HIRS, and with the building of an 8 year climatology of dust over sea and land from this sounder. Finally, from AIRS observations, we retrieve the optical depth at 10 {mu}m, the average altitude and the coarse mode effective radius of mineral dust over sea. (author)

  11. Alkali element background reduction in laser ICP-MS

    Directory of Open Access Journals (Sweden)

    C. W. Magee Jr.

    2014-11-01

    Full Text Available Alkali backgrounds in laser ablation ICP-MS analyses can be enhanced by electron-induced ionization of alkali contamination on the skimmer cone, reducing effective detection limits for these elements. Traditionally, this problem is addressed by isolating analyses of high alkali materials onto a designated cone set, or by operating the ICP-MS in a "soft extraction" mode, which reduces the energy of electrons repelled into the potentially contaminated sampling cone by the extraction field. Here we present a novel approach, where we replace the traditional alkali glass tuning standards with synthetic low-alkali glass reference materials. Using this vitreous tuning solution, we find that this approach reduces the amount of alkali contamination produced, halving backgrounds for the heavy alkali elements without any change to analytical procedures. Using segregated cones is still the most effective method for reducing lithium backgrounds, but since the procedures are complimentary both can easily be applied to the routine operations of an analytical lab.

  12. Concrete alkali-silica reaction and nuclear radiation damage

    International Nuclear Information System (INIS)

    The deterioration of concrete by alkali-silica reaction of aggregates (ASR) and the effect of nuclear radiations on the ASR have been reviewed based on our studies on the mechanism of ASR and the effect of nuclear radiations on the resistivity of minerals to alkaline solution. It has been found that the ASR is initiated by the attack of alkaline solution in concrete to silicious aggregates to convert them into hydrated alkali silicate. The consumption of alkali hydroxide by the aggregates induces the dissolution of Ca2+ ions into the solution. The alkali silicate surrounding the aggregates then reacts with Ca2+ ions to convert to insoluble tight and rigid reaction rims. The reaction rim allows the penetration of alkaline solution but prevents the leakage of viscous alkali silicate, so that alkali silicate generated afterward is accumulated in the aggregate to give an expansive pressure enough for cracking the aggregate and the surrounding concrete. The effect of nuclear radiation on the reactivity of quartz and plagioclase, a part of major minerals composing volcanic rocks as popular aggregates, to alkaline solution has been examined for clarifying whether nuclear radiations accelerates the ASR. It has been found that the irradiation of these minerals converts them into alkali-reactive amorphous ones. The radiation dose for plagioclase is as low as 108 Gy, which suggests that the ASR of concrete surrounding nuclear reactors is possible to be accelerated by nuclear radiation. (author)

  13. Status of copper sulfate - 2008

    Science.gov (United States)

    This is brief overview of the Technical Sections completed and being worked on for the New Animal Drug Application (NADA) for copper sulfate. Initial Label Claim (Ich on catfish): 1) Human Food Safety - Complete for all fin fish – February 2004. This includes human intestinal microflora issues,...

  14. Sulfate transport in toad skin

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Simonsen, K

    1988-01-01

    1. In short-circuited toad skin preparations exposed bilaterally to NaCl-Ringer's containing 1 mM SO2(-4), influx of sulfate was larger than efflux showing that the skin is capable of transporting sulfate actively in an inward direction. 2. This active transport was not abolished by substituting...... apical Na+ for K+. 3. Following voltage activation of the passive Cl- permeability of the mitochondria-rich (m.r.) cells sulfate flux-ratio increased to a value predicted from the Ussing flux-ratio equation for a monovalent anion. 4. In such skins, which were shown to exhibit vanishingly small leakage...... conductances, the variation of the rate coefficient for sulfate influx (y) was positively correlated with the rate coefficient for Cl- influx (x), y = 0.035 x - 0.0077 cm/sec (r = 0.9935, n = 15). 5. Addition of the phosphodiesterase inhibitor, 3-isobutyl-1-methyl-xanthine to the serosal bath of short...

  15. Two-Column Aerosol Project (TCAP) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Larry K [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-01

    This study included the deployment of the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Mobile Facility (AMF), ARM Mobile Aerosol Observing System (MAOS) and the ARM Aerial Facility (AAF). The study was a collaborative effort involving scientists from DOE national laboratories, NOAA, NASA, and universities. The AAF and MAOS were deployed for two approximately month-long Intensive Operational Periods (IOPs) conducted in June 2012 and February 2013. Seasonal differences in the aerosol chemical and optical properties observed using the AMF, AAF, and MAOS are presented in this report. The total mass loading of aerosol is found to be much greater in the summer than in the winter, with the difference associated with greater amounts of organic aerosol. The mass fraction of organic aerosol is much reduced in the winter, when sulfate is the dominant aerosol type. Surprisingly, very little sea-salt aerosol was observed in the summer. In contrast, much more sea salt aerosol was observed in the winter. The mass loading of black carbon is nearly the same in both seasons. These differences lead to a relative increase in the aerosol light absorption in the winter and an associated decrease in observed single-scattering albedo. Measurements of aerosol mixing state were made using a single-particle mass spectrometer, which showed that the majority of the summertime aerosol consisted of organic compounds mixed with various amounts of sulfate. A number of other findings are also summarized in the report, including: impact of aerosol layers aloft on the column aerosol optical depth; documentation of the aerosol properties at the AMF; differences in the aerosol properties associated with both columns, which are not systematic but reflect the complicated meteorological and chemical processes that impact aerosol as it is advected away from North America; and new instruments and data-processing techniques for measuring both aerosol and

  16. Secondary organic material formed by methylglyoxal in aqueous aerosol mimics

    Directory of Open Access Journals (Sweden)

    N. Sareen

    2010-02-01

    Full Text Available We show that methylglyoxal forms light-absorbing secondary organic material in aqueous ammonium sulfate and ammonium nitrate solutions mimicking tropospheric aerosol particles. The kinetics were characterized using UV-Vis spectrophotometry. The results suggest that the bimolecular reaction of methylglyoxal with an ammonium or hydronium ion is the rate-limiting step for the formation of light-absorbing species, with kNH4+II=5×10−6 M−1 min−1 and kH3O+II≤10−3 M−1 min−1. Evidence of aldol condensation products and oligomeric species up to 759 amu was found using chemical ionization mass spectrometry with a volatilization flow tube inlet (Aerosol-CIMS. Tentative identifications of carbon-nitrogen species and a sulfur-containing compound were also made using Aerosol-CIMS. Aqueous solutions of methylglyoxal, with and without inorganic salts, exhibit significant surface tension depression. These observations add to the growing body of evidence that dicarbonyl compounds may form secondary organic material in the aerosol aqueous phase, and that secondary organic aerosol formation via heterogeneous processes may affect seed aerosol properties.

  17. Secondary organic material formed by methylglyoxal in aqueous aerosol mimics

    Science.gov (United States)

    Sareen, N.; Schwier, A. N.; Shapiro, E. L.; Mitroo, D.; McNeill, V. F.

    2010-02-01

    We show that methylglyoxal forms light-absorbing secondary organic material in aqueous ammonium sulfate and ammonium nitrate solutions mimicking tropospheric aerosol particles. The kinetics were characterized using UV-Vis spectrophotometry. The results suggest that the bimolecular reaction of methylglyoxal with an ammonium or hydronium ion is the rate-limiting step for the formation of light-absorbing species, with kNH4+II=5×10-6 M-1 min-1 and kH3O+II≤10-3 M-1 min-1. Evidence of aldol condensation products and oligomeric species up to 759 amu was found using chemical ionization mass spectrometry with a volatilization flow tube inlet (Aerosol-CIMS). Tentative identifications of carbon-nitrogen species and a sulfur-containing compound were also made using Aerosol-CIMS. Aqueous solutions of methylglyoxal, with and without inorganic salts, exhibit significant surface tension depression. These observations add to the growing body of evidence that dicarbonyl compounds may form secondary organic material in the aerosol aqueous phase, and that secondary organic aerosol formation via heterogeneous processes may affect seed aerosol properties.

  18. Thermodynamic Characterization of Mexico City Aerosol during MILAGRO 2006

    Energy Technology Data Exchange (ETDEWEB)

    Fountoukis, C.; Nenes, A.; Sullivan, A.; Weber, R.; VanReken, T.; Fischer, M.; Matias, E.; Moya, M.; Farmer, D.; Cohen, R.C.

    2008-12-05

    Fast measurements of aerosol and gas-phase constituents coupled with the ISORROPIA-II thermodynamic equilibrium model are used to study the partitioning of semivolatile inorganic species and phase state of Mexico City aerosol sampled at the T1 site during the MILAGRO 2006 campaign. Overall, predicted semivolatile partitioning agrees well with measurements. PM{sub 2.5} is insensitive to changes in ammonia but is to acidic semivolatile species. For particle sizes up to 1 {micro}m diameter, semi-volatile partitioning requires 30-60 min to equilibrate; longer time is typically required during the night and early morning hours. When the aerosol sulfate-to-nitrate molar ratio is less than unity, predictions improve substantially if the aerosol is assumed to follow the deliquescent phase diagram. Treating crustal species as 'equivalent sodium' (rather than explicitly) in the thermodynamic equilibrium calculations introduces important biases in predicted aerosol water uptake, nitrate and ammonium; neglecting crustals further increases errors dramatically. This suggests that explicitly considering crustals in the thermodynamic calculations is required to accurately predict the partitioning and phase state of aerosols.

  19. FTIR Analysis of Functional Groups in Aerosol Particles

    Science.gov (United States)

    Shokri, S. M.; McKenzie, G.; Dransfield, T. J.

    2012-12-01

    Secondary organic aerosols (SOA) are suspensions of particulate matter composed of compounds formed from chemical reactions of organic species in the atmosphere. Atmospheric particulate matter can have impacts on climate, the environment and human health. Standardized techniques to analyze the characteristics and composition of complex secondary organic aerosols are necessary to further investigate the formation of SOA and provide a better understanding of the reaction pathways of organic species in the atmosphere. While Aerosol Mass Spectrometry (AMS) can provide detailed information about the elemental composition of a sample, it reveals little about the chemical moieties which make up the particles. This work probes aerosol particles deposited on Teflon filters using FTIR, based on the protocols of Russell, et al. (Journal of Geophysical Research - Atmospheres, 114, 2009) and the spectral fitting algorithm of Takahama, et al (submitted, 2012). To validate the necessary calibration curves for the analysis of complex samples, primary aerosols of key compounds (e.g., citric acid, ammonium sulfate, sodium benzoate) were generated, and the accumulated masses of the aerosol samples were related to their IR absorption intensity. These validated calibration curves were then used to classify and quantify functional groups in SOA samples generated in chamber studies by MIT's Kroll group. The fitting algorithm currently quantifies the following functionalities: alcohols, alkanes, alkenes, amines, aromatics, carbonyls and carboxylic acids.

  20. Technical Report Series on Global Modeling and Data Assimilation. Volume 32; Estimates of AOD Trends (2002 - 2012) Over the World's Major Cities Based on the MERRA Aerosol Reanalysis

    Science.gov (United States)

    Provencal, Simon; Kishcha, Pavel; Elhacham, Emily; daSilva, Arlindo M.; Alpert, Pinhas; Suarez, Max J.

    2014-01-01

    NASA's Global Modeling and Assimilation Office has extended the Modern-Era Retrospective Analysis for Research and Application (MERRA) tool with five atmospheric aerosol species (sulfates, organic carbon, black carbon, mineral dust and sea salt). This inclusion of aerosol reanalysis data is now known as MERRAero. This study analyses a ten-year period (July 2002 - June 2012) MERRAero aerosol reanalysis applied to the study of aerosol optical depth (AOD) and its trends for the aforementioned aerosol species over the world's major cities (with a population of over 2 million inhabitants). We found that a proportion of various aerosol species in total AOD exhibited a geographical dependence. Cities in industrialized regions (North America, Europe, central and eastern Asia) are characterized by a strong proportion of sulfate aerosols. Organic carbon aerosols are dominant over cities which are located in regions where biomass burning frequently occurs (South America and southern Africa). Mineral dust dominates other aerosol species in cities located in proximity to the major deserts (northern Africa and western Asia). Sea salt aerosols are prominent in coastal cities but are dominant aerosol species in very few of them. AOD trends are declining over cities in North America, Europe and Japan, as a result of effective air quality regulation. By contrast, the economic boom in China and India has led to increasing AOD trends over most cities in these two highly-populated countries. Increasing AOD trends over cities in the Middle East are caused by increasing desert dust.

  1. Season - dependent and source-influenced aerosol in Northern Siberia

    Science.gov (United States)

    Popovicheva, Olga; Makshtas, Alexander; Bogorodsky, Peter; Eleftheriadis, Kostantinos; Diapouli, Evangelia; Shonia, Natalia; Uttal, Taneil

    2016-04-01

    Aerosol may serve as a tracer of arctic pollution, allowing a link to climate response if its major characteristics relating to natural and anthropogeneous sources are defined. It has been shown that BC and sulfates are the most important aerosol constituents measured in the Arctic boundary layer; these species demonstrate similar seasonal variations with a peak during winter to early spring and a minimum in summer. Long - time gap in consistent aerosol observations in the Russian Arctic strongly limits the assessment of air pollution and climate impacts. On-line monitoring, sampling, and analyses of atmospheric aerosols were carried out at the Tiksi Hydrometeorological Observatory, Northern Siberia, during one year from September 2014 to 2015. Physico-chemical characterization combining aethalometry, thermo-optical analysis, and analytical chemistry was used in order to identify the seasonal variability of aerosols and to link their composition to possible sources, as well as to characterize the differences in aerosol chemical composition between natural background conditions and BC-pollution episodes. The present study reports the first results from the Tiksi Observatory on season-dependent and source-influenced characteristics of aerosol species, such as carbon fractions (OC, EC), inorganic and organic functionalities of chemical compounds, sulfates, nitrates and other ion components, and elements. In addition, data obtained by individual particles analysis provide insight into micromarkers of combustion sources. Aerosol at the Tiksi Observatory is found to be originated from natural marine, biogenic, and continental sources as well as influenced by local residential activity and regional pollution. Characterization of aerosols during OC and BC-pollution episodes, combined with analysis of the wind direction, atmosphere stability, and air mass trajectories, allows for the identification of the sources which are responsible for the emission of hazardous compounds

  2. Sensitivity of aerosol direct radiative forcing to aerosol vertical profile

    OpenAIRE

    Chung, Chul E.; Choi, Jung-Ok

    2014-01-01

    Aerosol vertical profile significantly affects the aerosol direct radiative forcing at the TOA level. The degree to which the aerosol profile impacts the aerosol forcing depends on many factors such as presence of cloud, surface albedo and aerosol single scattering albedo (SSA). Using a radiation model, we show that for absorbing aerosols (with an SSA of 0.7–0.8) whether aerosols are located above cloud or below induces at least one order of magnitude larger changes of the aerosol forcing tha...

  3. Minocycline Inhibits Alkali Burn-Induced Corneal Neovascularization in Mice

    OpenAIRE

    Ou Xiao; Zhao-lian Xie; Bin-wu Lin; Xiao-fang Yin; Rong-biao Pi; Shi-you Zhou

    2012-01-01

    The purpose of this study was to investigate the effects of minocycline on alkali burn-induced corneal neovascularization (CNV). A total of 105 mice treated with alkali burns were randomly divided into three groups to receive intraperitoneal injections of either phosphate buffered saline (PBS) or minocycline twice a day (60 mg/kg or 30 mg/kg) for 14 consecutive days. The area of CNV and corneal epithelial defects was measured on day 4, 7, 10, and14 after alkali burns. On day 14, a histopathol...

  4. Comparison of Multi-angle Imaging SpectroRadiometer (MISR) joint aerosol product with high-resolution model output

    Science.gov (United States)

    Kalashnikova, O.; Lee, H.; Suzuki, K.; Braverman, A. J.

    2014-12-01

    The Multi-angle Imaging SpectroRadiometer (MISR) Level 3 Joint Aerosol product (JOINT_AS) provides global, descriptive summary of MISR Level 2 aerosol optical thickness (AOT) for eight different types of aerosols at 5 x 5 degrees of horizontal resolution in each month between March 2000 and present. Using Version 22 JOINT_AS, this study analyzed characteristics of the observed AOT distributions and compared various statistical moments of aerosol optical thickness derived from JOINT_AS with the results from Nonhydrostatic Icosahedral Atmospheric Model (NICAM) simulation. Overall, marginal distributions of AOT show highly positive skewness at many grid points. Some of the large skewness values are related to the problems in MISR's retrieval algorithm. For example, the positive skewness in AOT for strongly absorbing aerosols at mid- and high latitudes in winter results from few outlier values is due to cloud contamination over a wide area. Combined AOT for multiple MISR aerosol types is comparable to the AOT for carbonaceous, sulfate aerosols and dust particles from the NICAM simulation implemented with aerosol transport processes. NICAM's carbonaceous aerosols in the Southwest Africa show good agreement with MISR's strongly absorbing aerosols. The AOT of dust particles in MISR and NICAM exhibit similar spatial patterns over the Sahara desert. The AOT of nonabsorbing aerosols in MISR well represents spatial distributions of the sulfate aerosols originating from industrial complex over the Shandong Peninsula in China. Our results indicate that MISR's AOT for each aerosol type may be useful for monitoring biomass burning, dust storms and air pollution and evaluating chemistry climate models.

  5. Metabolic Flexibility of Sulfate-Reducing Bacteria

    OpenAIRE

    Plugge, Caroline M.; Zhang, Weiwen; Scholten, Johannes C. M.; Stams, Alfons J. M.

    2011-01-01

    Dissimilatory sulfate-reducing prokaryotes (SRB) are a very diverse group of anaerobic bacteria that are omnipresent in nature and play an imperative role in the global cycling of carbon and sulfur. In anoxic marine sediments sulfate reduction accounts for up to 50% of the entire organic mineralization in coastal and shelf ecosystems where sulfate diffuses several meters deep into the sediment. As a consequence, SRB would be expected in the sulfate-containing upper sediment layers, whereas me...

  6. Sulfate reduction and methanogenesis in marine sediments

    Science.gov (United States)

    Oremland, R. S.; Taylor, B. F.

    1978-01-01

    Methanogenesis and sulfate-reduction were followed in laboratory incubations of sediments taken from tropical seagrass beds. Methanogenesis and sulfate-reduction occurred simultaneously in sediments incubated under N2, thereby indicating that the two processes are not mutually exclusive. Sediments incubated under an atmosphere of H2 developed negative pressures due to the oxidation of H2 by sulfate-respiring bacteria. H2 also stimulated methanogenesis, but methanogenic bacteria could not compete for H2 with the sulfate-respiring bacteria.

  7. Aerosols Science and Technology

    CERN Document Server

    Agranovski, Igor

    2011-01-01

    This self-contained handbook and ready reference examines aerosol science and technology in depth, providing a detailed insight into this progressive field. As such, it covers fundamental concepts, experimental methods, and a wide variety of applications, ranging from aerosol filtration to biological aerosols, and from the synthesis of carbon nanotubes to aerosol reactors.Written by a host of internationally renowned experts in the field, this is an essential resource for chemists and engineers in the chemical and materials disciplines across multiple industries, as well as ideal supplementary

  8. 21 CFR 182.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...

  9. 21 CFR 582.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...

  10. 21 CFR 186.1797 - Sodium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b)...

  11. Sulfate-reducing prokaryotes in river floodplains

    NARCIS (Netherlands)

    Miletto, M.

    2007-01-01

    This thesis constitutes a pioneer attempt at elucidating the ecology of sulfate-reducing prokaryotes in river floodplains. These are non-typical sulfate-reducing environmental settings, given the generally low sulfate concentration that characterize freshwater habitats, and river flow regulation tha

  12. 21 CFR 582.5461 - Manganese sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese sulfate. 582.5461 Section 582.5461 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use....

  13. 21 CFR 184.1461 - Manganese sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Manganese sulfate. 184.1461 Section 184.1461 Food... Specific Substances Affirmed as GRAS § 184.1461 Manganese sulfate. (a) Manganese sulfate (MnSO4·H2O, CAS... manganese compounds with sulfuric acid. It is also obtained as a byproduct in the manufacture...

  14. 21 CFR 184.1443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to...

  15. 21 CFR 582.5443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use....

  16. Characterization and source apportionment of submicron aerosol with aerosol mass spectrometer during the PRIDE-PRD 2006 campaign

    Science.gov (United States)

    Xiao, R.; Takegawa, N.; Zheng, M.; Kondo, Y.; Miyazaki, Y.; Miyakawa, T.; Hu, M.; Shao, M.; Zeng, L.; Gong, Y.; Lu, K.; Deng, Z.; Zhao, Y.; Zhang, Y. H.

    2011-07-01

    Size-resolved chemical compositions of non-refractory submicron aerosol were measured using an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS) at the rural site Back Garden (BG), located ~50 km northwest of Guangzhou in July 2006. This paper characterized the submicron aerosol particles of regional air pollution in Pearl River Delta (PRD) in the southern China. Organics and sulfate dominated the submicron aerosol compositions, with average mass concentrations of 11.8 ± 8.4 μg m-3 and 13.5 ± 8.7 μg m-3, respectively. Unlike other air masses, the air masses originated from Southeast-South and passing through the PRD urban areas exhibited distinct bimodal size distribution characteristics for both organics and sulfate: the first mode peaked at vacuum aerodynamic diameters (Dva) ∼200 nm and the second mode occurred at Dva from 300-700 nm. With the information from AMS, it was found from this study that the first mode of organics in PRD regional air masses was contributed by both secondary organic aerosol formation and combustion-related emissions, which is different from most findings in other urban areas (first mode of organics primarily from combustion-related emissions). The analysis of AMS mass spectra data by positive matrix factorization (PMF) model identified three sources of submicron organic aerosol including hydrocarbon-like organic aerosol (HOA), low volatility oxygenated organic aerosol (LV-OOA) and semi-volatile oxygenated organic aerosol (SV-OOA). The strong correlation between HOA and EC indicated primary combustion emissions as the major source of HOA while a close correlation between SV-OOA and semi-volatile secondary species nitrate as well as between LV-OOA and nonvolatile secondary species sulfate suggested secondary aerosol formation as the major source of SV-OOA and LV-OOA at the BG site. However, LV-OOA was more aged than SV-OOA as its spectra was highly correlated with the reference spectra of fulvic acid, an indicator of aged and

  17. The influence of different black carbon and sulfate mixing methods on their optical and radiative properties

    International Nuclear Information System (INIS)

    Three different internal mixing methods (Core–Shell, Maxwell-Garnett, and Bruggeman) and one external mixing method are used to study the impact of mixing methods of black carbon (BC) with sulfate aerosol on their optical properties, radiative flux, and heating rate. The optical properties of a mixture of BC and sulfate aerosol particles are considered for three typical bands. The results show that mixing methods, the volume ratio of BC to sulfate, and relative humidity have a strong influence on the optical properties of mixed aerosols. Compared to internal mixing, external mixing underestimates the particle mass absorption coefficient by 20–70% and the particle mass scattering coefficient by up to 50%, whereas it overestimates the particle single scattering albedo by 20–50% in most cases. However, the asymmetry parameter is strongly sensitive to the equivalent particle radius, but is only weakly sensitive to the different mixing methods. Of the internal methods, there is less than 2% difference in all optical properties between the Maxwell-Garnett and Bruggeman methods in all bands; however, the differences between the Core–Shell and Maxwell-Garnett/Bruggeman methods are usually larger than 15% in the ultraviolet and visible bands. A sensitivity test is conducted with the Beijing Climate Center Radiation transfer model (BCC-RAD) using a simulated BC concentration that is typical of east-central China and a sulfate volume ratio of 75%. The results show that the internal mixing methods could reduce the radiative flux more effectively because they produce a higher absorption. The annual mean instantaneous radiative force due to BC–sulfate aerosol is about –3.18 W/m2 for the external method and –6.91 W/m2 for the internal methods at the surface, and –3.03/–1.56/–1.85 W/m2 for the external/Core–Shell/(Maxwell-Garnett/Bruggeman) methods, respectively, at the tropopause. - Highlights: • The aerosol optical properties with different mixing methods

  18. Sub-Antarctic marine aerosol: significant contributions from biogenic sources

    Directory of Open Access Journals (Sweden)

    J. Schmale

    2013-03-01

    Full Text Available Biogenic influences on the composition and characteristics of aerosol were investigated on Bird Island (54°00' S, 38°03' W in the South Atlantic during November and December 2010. This remote marine environment is characterised by large seabird and seal colonies. The chemical composition of the submicron particles, measured by an aerosol mass spectrometer (AMS, was 21% non-sea salt sulfate 2% nitrate, 7% ammonium, 22% organics and 47% sea salt including sea salt sulfate. A new method to isolate the sea salt signature from the high-resolution AMS data was applied. Generally, the aerosol was found to be less acidic than in other marine environments due to the high availability of ammonia, from local fauna emissions. By positive matrix factorisation five different organic aerosol (OA profiles could be isolated: an amino acids/amine factor (AA-OA, 18% of OA mass, a methanesulfonic acid OA factor (MSA-OA, 25%, a marine oxygenated OA factor (M-OOA, 40%, a sea salt OA fraction (SS-OA, 7% and locally produced hydrocarbon-like OA (HOA, 9%. The AA-OA was dominant during the first two weeks of November and found to be related with the hatching of penguins in a nearby colony. This factor, rich in nitrogen (C : N ratio = 0.13, has implications for the biogeochemical cycling of nitrogen in the area as particulate matter is often transported over longer distances than gaseous N-rich compounds. The MSA-OA was mainly transported from more southerly latitudes where phytoplankton bloomed. The bloom was identified as one of three sources for particulate sulfate on Bird Island, next to sea salt sulfate and sulfate transported from South America. M-OOA was the dominant organic factor and found to be similar to marine OA observed at Mace Head, Ireland. An additional OA factor highly correlated with sea salt aerosol was identified (SS-OA. However, based on the available data the type of mixture, internal or external, could not be determined. Potassium was not

  19. Sub-Antarctic marine aerosol: dominant contributions from biogenic sources

    Directory of Open Access Journals (Sweden)

    J. Schmale

    2013-09-01

    Full Text Available Biogenic influences on the composition and characteristics of aerosol were investigated on Bird Island (54°00' S, 38°03' W in the South Atlantic during November and December 2010. This remote marine environment is characterised by large seabird and seal colonies. The chemical composition of the submicron particles, measured by an aerosol mass spectrometer (AMS, was 21% non-sea-salt sulfate, 2% nitrate, 8% ammonium, 22% organics and 47% sea salt including sea salt sulfate. A new method to isolate the sea spray signature from the high-resolution AMS data was applied. Generally, the aerosol was found to be less acidic than in other marine environments due to the high availability of ammonia, from local fauna emissions. By positive matrix factorisation five different organic aerosol (OA profiles could be isolated: an amino acid/amine factor (AA-OA, 18% of OA mass, a methanesulfonic acid OA factor (MSA-OA, 25%, a marine oxygenated OA factor (M-OOA, 41%, a sea spray OA fraction (SS-OA, 7% and locally produced hydrocarbon-like OA (HOA, 9%. The AA-OA was dominant during the first two weeks of November and found to be related with the hatching of penguins in a nearby colony. This factor, rich in nitrogen (N : C ratio = 0.13, has implications for the biogeochemical cycling of nitrogen in the area as particulate matter is often transported over longer distances than gaseous N-rich compounds. The MSA-OA was mainly transported from more southerly latitudes where phytoplankton bloomed. The bloom was identified as one of three sources for particulate sulfate on Bird Island, next to sea salt sulfate and sulfate transported from South America. M-OOA was the dominant organic factor and found to be similar to marine OA observed at Mace Head, Ireland. An additional OA factor highly correlated with sea spray aerosol was identified (SS-OA. However, based on the available data the type of mixture, internal or external, could not be determined. Potassium was not

  20. Sub-Antarctic marine aerosol: significant contributions from biogenic sources

    Science.gov (United States)

    Schmale, J.; Schneider, J.; Nemitz, E.; Tang, Y. S.; Dragosits, U.; Blackall, T. D.; Trathan, P. N.; Phillips, G. J.; Sutton, M.; Braban, C. F.

    2013-03-01

    Biogenic influences on the composition and characteristics of aerosol were investigated on Bird Island (54°00' S, 38°03' W) in the South Atlantic during November and December 2010. This remote marine environment is characterised by large seabird and seal colonies. The chemical composition of the submicron particles, measured by an aerosol mass spectrometer (AMS), was 21% non-sea salt sulfate 2% nitrate, 7% ammonium, 22% organics and 47% sea salt including sea salt sulfate. A new method to isolate the sea salt signature from the high-resolution AMS data was applied. Generally, the aerosol was found to be less acidic than in other marine environments due to the high availability of ammonia, from local fauna emissions. By positive matrix factorisation five different organic aerosol (OA) profiles could be isolated: an amino acids/amine factor (AA-OA, 18% of OA mass), a methanesulfonic acid OA factor (MSA-OA, 25%), a marine oxygenated OA factor (M-OOA, 40%), a sea salt OA fraction (SS-OA, 7%) and locally produced hydrocarbon-like OA (HOA, 9%). The AA-OA was dominant during the first two weeks of November and found to be related with the hatching of penguins in a nearby colony. This factor, rich in nitrogen (C : N ratio = 0.13), has implications for the biogeochemical cycling of nitrogen in the area as particulate matter is often transported over longer distances than gaseous N-rich compounds. The MSA-OA was mainly transported from more southerly latitudes where phytoplankton bloomed. The bloom was identified as one of three sources for particulate sulfate on Bird Island, next to sea salt sulfate and sulfate transported from South America. M-OOA was the dominant organic factor and found to be similar to marine OA observed at Mace Head, Ireland. An additional OA factor highly correlated with sea salt aerosol was identified (SS-OA). However, based on the available data the type of mixture, internal or external, could not be determined. Potassium was not associated to sea

  1. Sub-Antarctic marine aerosol: dominant contributions from biogenic sources

    Science.gov (United States)

    Schmale, J.; Schneider, J.; Nemitz, E.; Tang, Y. S.; Dragosits, U.; Blackall, T. D.; Trathan, P. N.; Phillips, G. J.; Sutton, M.; Braban, C. F.

    2013-09-01

    Biogenic influences on the composition and characteristics of aerosol were investigated on Bird Island (54°00' S, 38°03' W) in the South Atlantic during November and December 2010. This remote marine environment is characterised by large seabird and seal colonies. The chemical composition of the submicron particles, measured by an aerosol mass spectrometer (AMS), was 21% non-sea-salt sulfate, 2% nitrate, 8% ammonium, 22% organics and 47% sea salt including sea salt sulfate. A new method to isolate the sea spray signature from the high-resolution AMS data was applied. Generally, the aerosol was found to be less acidic than in other marine environments due to the high availability of ammonia, from local fauna emissions. By positive matrix factorisation five different organic aerosol (OA) profiles could be isolated: an amino acid/amine factor (AA-OA, 18% of OA mass), a methanesulfonic acid OA factor (MSA-OA, 25%), a marine oxygenated OA factor (M-OOA, 41%), a sea spray OA fraction (SS-OA, 7%) and locally produced hydrocarbon-like OA (HOA, 9%). The AA-OA was dominant during the first two weeks of November and found to be related with the hatching of penguins in a nearby colony. This factor, rich in nitrogen (N : C ratio = 0.13), has implications for the biogeochemical cycling of nitrogen in the area as particulate matter is often transported over longer distances than gaseous N-rich compounds. The MSA-OA was mainly transported from more southerly latitudes where phytoplankton bloomed. The bloom was identified as one of three sources for particulate sulfate on Bird Island, next to sea salt sulfate and sulfate transported from South America. M-OOA was the dominant organic factor and found to be similar to marine OA observed at Mace Head, Ireland. An additional OA factor highly correlated with sea spray aerosol was identified (SS-OA). However, based on the available data the type of mixture, internal or external, could not be determined. Potassium was not associated

  2. Estimation of aerosol water and chemical composition from AERONET at Cabauw, the Netherlands

    Directory of Open Access Journals (Sweden)

    A. J. van Beelen

    2013-06-01

    Full Text Available Remote sensing of aerosols provides important information on the atmospheric aerosol abundance. However, due to the hygroscopic nature of aerosol particles observed aerosol optical properties are influenced by atmospheric humidity, and the measurements do not unambiguously characterize the aerosol dry mass and composition which complicates the comparison with aerosol models. In this study we derive aerosol water and chemical composition by a modeling approach that combines individual measurements of remotely sensed aerosol properties (e.g. optical thickness, single scattering albedo, refractive index and size distribution from an AERONET (Aerosol Robotic Network sun-photometer with radiosonde measurements of relative humidity. The model simulates water uptake by aerosols based on the chemical composition and size distribution. A minimization method is used to calculate aerosol composition and concentration, which are then compared to in situ measurements from the Intensive Measurement Campaign At the Cabauw Tower (IMPACT, May 2008, the Netherlands. Computed concentrations show reasonable agreement with surface observations and follow the day-to-day variability in observations. Total dry mass (33 ± 12 μg m−3 and black carbon concentrations (0.7 ± 0.3 μg m−3 are generally accurately computed. The uncertainty in the AERONET (real refractive index (0.025–0.05 introduces larger uncertainty in the modeled aerosol composition (e.g. sulfates, ammonium nitrate or organic matter and leads to an uncertainty of 0.1–0.25 in aerosol water volume fraction. Water volume fraction is highly variable depending on composition, up to >0.5 at 70–80% and <0.1 at 40% relative humidity.

  3. A lidar study of the spatial and temporal variability of aerosol pollution over New Haven, CT

    Science.gov (United States)

    Smyth, J. E.; Storelvmo, T.

    2013-12-01

    Aerosol particles and clouds are key components of the climate system, but their complex interactions and net effects are currently poorly understood. Anthropogenic aerosols, including sulfate, black carbon, nitrate and dust, have been shown to have cooling effects on climate, but the magnitude of this cooling is unclear (IPCC, 2007). Determining how aerosols and clouds are distributed vertically in the atmosphere is crucial for their integration in climate models and also for understanding aerosol effects on air quality. This study evaluates spatial and temporal patterns of aerosol and cloud variability over an urban environment, New Haven, in the summer and fall of 2013. Boundary layer dynamics and aerosol optical depths (AOD) are analyzed based on vertical profiles retrieved with a ground-based lidar that emits pulses of UV light (wavelength 355nm) into the atmosphere. Aerosol optical depth statistics and patterns of aerosol accumulation will be presented. Mean daily aerosol optical depth from June-July 2013 was 0.268, with a peak daily mean of 0.495. Aerosol spatial distributions are found to depend on meteorological conditions, but three characteristic regimes were observed and will be described: one of diurnal peaks in particle loading, one of midday lifting of aerosols accumulated in the boundary layer, and one marked by the presence of lofted, nonlocal aerosols. The study identifies high-pollution events for further study based on rapid increases in AOD, such as from a mean value of 0.225 to 0.393 on consecutive days July 8-9. The origins of polluted, nonlocal air parcels, which are often lofted and distinct from an underlying boundary layer, will be discussed based on data from local weather stations. The present study characterizes the typical aerosol concentrations and distributions over New Haven in summer and fall, enhancing our understanding of urban atmospheric impacts.

  4. Sources and evolution of cloud-active aerosol in California's Sierra Nevada Mountains

    Science.gov (United States)

    Roberts, G. C.; Corrigan, C.; Noblitt, S.; Creamean, J.; Collins, D. B.; Cahill, J. F.; Prather, K. A.; Collett, J. L.; Henry, C.

    2011-12-01

    To assess the sources of cloud-active aerosol and their influence on the hydrological cycle in California, the CalWater Experiment took place in winter 2011 in the foothills of the Sierra Nevada Mountains. During this experiment, we coupled the capabilities of demonstrated miniaturized instrumentation - cloud condensation nuclei (CCN), water condensation nuclei (WCN) and microchip capillary electrophoresis (MCE) - to provide direct chemical measurements of cloud active aerosols. Ion concentrations of CCN droplets attribute the anthropogenic, marine and secondary organic contributions to cloud-active aerosols. Detailed spectra from an Aerosol-Time-of-Flight Mass Spectrometer provide additional information on the sources of aerosol. Storm fronts and changes in atmospheric boundary layer brought aerosol and anions associated with Central Valley pollution to the field site with CCN concentrations reaching several thousand cm-3. Hygroscopicity parameters indicate aging of the organic fraction during aerosol transport from the Central Valley to the mountains. Otherwise, CCN concentrations were low when high pressure systems prevented boundary layer development and intrusion of the Central Valley pollution to the site. MCE results show that nitrates and sulfates comprise most of the fraction of the aerosol anion mass (PM1). During the passage of storm fronts, which transported pollution from the Central Valley upslope, nitrate concentrations peaked at several μ g m-3. Low supersaturation CCN concentrations coincide with increases in aerosol nitrate, which suggests that nitrate has a role in cloud formation of giant CCN and, furthermore, in precipitation processes in the Sierra Nevada. CCN spectra show large variations depending on the aerosol sources and sometimes exhibit bi-modal distributions with minima at 0.3% Sc -- similar to the so-called 'Hoppel minima' associated to number size distributions. During these bi-modal events, sulfate also increases supporting the

  5. Fine aerosol bulk composition measured on WP-3D research aircraft in vicinity of the Northeastern United States – results from NEAQS

    Directory of Open Access Journals (Sweden)

    C. Warneke

    2007-02-01

    Full Text Available During the New England Air Quality Study (NEAQS in the summer of 2004, airborne measurements were made of the major inorganic ions and the water-soluble organic carbon (WSOC of the submicron (PM1.0 aerosol. These and ancillary data are used to describe the overall aerosol chemical characteristics encountered during the study. Fine particle mass was estimated from particle volume and a calculated density based on measured particle composition. Fine particle organic matter (OM was estimated from WSOC and a mass balance analysis. The aerosol over the northeastern United States (U.S. and Canada was predominately sulfate and associated ammonium, and organic components, although in unique plumes additional ionic components were also periodically above detection limits. In power generation regions, and especially in the Ohio River Valley region, the aerosol tended to be predominantly sulfate (~60% μg μg−1 and apparently acidic, based on an excess of measured anions compared to cations. In all other regions where sulfate concentrations were lower and a smaller fraction of overall mass, the cations and anions were balanced suggesting a more neutral aerosol. In contrast, the WSOC and estimated OM were more spatially uniform and the fraction of OM relative to PM mass largely influenced by sources of sulfate. The study median OM mass fraction was 40%. Throughout the study region, sulfate and organic aerosol mass were highest near the surface and decreased rapidly with increasing altitude. The relative fraction of organic mass to sulfate was similar within the boundary layer (altitude less than ~2.5 km, but was significantly higher in the free troposphere (above ~2.5 km. A number of distinct biomass burning plumes from fires in Alaska and the Yukon were periodically intercepted, mostly at altitudes between 3 and 4 km. These plumes were associated with highest aerosol concentrations of the study and were largely comprised of organic aerosol components

  6. The 4843 Alkali Metal Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    The 4843 AMSF has been used primarily to provide a centralized building to receive and store dangerous and mixed alkali metal waste, including sodium and lithium, which has been generated at the Fast Flux Test Facility and at various other Hanford Site operations that used alkali metals. Most of the dangerous and mixed alkali metal waste received consists of retired equipment from liquid sodium processes. The unit continues to store material. In general, only solid alkali metal waste that is water reactive is stored at the 4843 AMSF. The 4843 AMSF will be closed in a manner consistent with Ecology guidelines and regulations (WAC 173-303-610). The general closure procedure is detailed as follows

  7. Electric field-induced softening of alkali silicate glasses

    International Nuclear Information System (INIS)

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown

  8. Kinetics of molybdenite oxidizing leaching in alkali medium by ozone

    International Nuclear Information System (INIS)

    On the basis of investigation of the process kinetics proposed is a model of oxidizing leaching of molybdenite in alkali medium while ozonization of the solution by ozoneair mixture. A kinetic equation is derived, that describes experimental data satisfactorily

  9. Alkali-bonded ceramics with hierarchical tailored porosity

    Czech Academy of Sciences Publication Activity Database

    Landi, E.; Medri, V.; Papa, E.; Dědeček, Jiří; Klein, Petr; Benito, P.; Vaccari, A.

    2013-01-01

    Roč. 73, SI (2013), s. 56-64. ISSN 0169-1317 Institutional support: RVO:61388955 Keywords : alkali-bonded ceramics * metalcaolin * geopolymerization parameters Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.703, year: 2013

  10. Electric field-induced softening of alkali silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, C.; Heffner, W.; Jain, H. [Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Tessarollo, R.; Raj, R. [Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309 (United States)

    2015-11-02

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown.

  11. The Alkali Metal Interactions with MgO Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Beheshtian, Javad [Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of); Peyghan, Ali Ahmadi; Bagheri, Zargham [Islamic Azad University, Islamshahr Branch, Tehran (Iran, Islamic Republic of); Kamfiroozi, M. [Islamic Azad University, Shiraz Branch, Shiraz (Iran, Islamic Republic of)

    2012-06-15

    Adsorption of alkali metals (Li, Na, and K) on the surface of magnesium oxide nanotubes (MgONTs) with different diameters was investigated using density functional theory. According to the obtained results, the most stable adsorption site was found to be atop the oxygen atom of the tube surface with adsorption energies in the range of .0.25 to .0.74 eV. HOMO-LUMO gap (E{sub g}) of the tubes dramatically decreases upon the adsorption of the alkali metals, resulting in enhancement of their electrical conductivity enhancement. The order of E{sub g} decrement caused by the metal adsorption is as follows: K > Na > Li. The results suggest that the MgONTs were transformed from semi-insulator to semiconductor upon the alkali metal adsorption. Increasing the tube diameter, the HOMO/LUMO gap of the pristine tube is enhanced and adsorption energies of the alkali metals are decreased

  12. Hall Determination of Atomic Radii of Alkali Metals

    Science.gov (United States)

    Houari, Ahmed

    2008-01-01

    I will propose here an alternative method for determining atomic radii of alkali metals based on the Hall measurements of their free electron densities and the knowledge of their crystal structure. (Contains 2 figures.)

  13. Water Content of Lunar Alkali Fedlspar

    Science.gov (United States)

    Mills, R. D.; Simon, J. I.; Wang, J.; Alexander, C. M. O'D.; Hauri, E. H.

    2016-01-01

    Detection of indigenous hydrogen in a diversity of lunar materials, including volcanic glass, melt inclusions, apatite, and plagioclase suggests water may have played a role in the chemical differentiation of the Moon. Spectroscopic data from the Moon indicate a positive correlation between water and Th. Modeling of lunar magma ocean crystallization predicts a similar chemical differentiation with the highest levels of water in the K- and Th-rich melt residuum of the magma ocean (i.e. urKREEP). Until now, the only sample-based estimates of water content of KREEP-rich magmas come from measurements of OH, F, and Cl in lunar apatites, which suggest a water concentration of water content of the magma ocean would have water contents of 320 ppm for the bulk Moon and 1.4 wt % for urKREEP from plagioclase in ferroan anorthosites. Results and interpretation: NanoSIMS data from granitic clasts from Apollo sample 15405,78 show that alkali feldspar, a common mineral in K-enriched rocks, can have approx. 20 ppm of water, which implies magmatic water contents of approx. 1 wt % in the high-silica magmas. This estimate is 2 to 3 orders of magnitude higher than that estimated from apatite in similar rocks. However, the Cl and F contents of apatite in chemically similar rocks suggest that these melts also had high Cl/F ratios, which leads to spuriously low water estimates from the apatite. We can only estimate the minimum water content of urKREEP (+ bulk Moon) from our alkali feldspar data because of the unknown amount of degassing that led to the formation of the granites. Assuming a reasonable 10 to 100 times enrichment of water from urKREEP into the granites produces an estimate of 100-1000 ppm of water for the urKREEP reservoir. Using the modeling of and the 100-1000 ppm of water in urKREEP suggests a minimum bulk silicate Moon water content between 2 and 20 ppm. However, hydrogen loss was likely very significant in the evolution of the lunar mantle. Conclusions: Lunar granites

  14. Natural Aerosols Explain Seasonal and Spatial Patterns of Southern Ocean Cloud Albedo

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, Daniel; Burrows, Susannah M.; Wood, R.; Grosvenor, Daniel P.; Elliott, Scott; Ma, Po-Lun; Rasch, Philip J.; Hartmann, Dennis L.

    2015-07-17

    Small particles called aerosols act as nucleation sites for cloud drop formation, affecting clouds and cloud properties – ultimately influencing the cloud dynamics, lifetime, water path and areal extent that determine the reflectivity (albedo) of clouds. The concentration Nd of droplets in clouds that influences planetary albedo is sensitive to the availability of aerosol particles on which the droplets form. Natural aerosol concentrations not only affect cloud properties themselves, but also modulate the sensitivity of clouds to changes in anthropogenic aerosols. Here, it is shown that modeled natural aerosols, principally marine biogenic primary and secondary aerosol sources, explain more than half of the spatiotemporal variability in satellite-observed Nd. Enhanced Nd over regions of high biological activity is found to be driven primarily by high concentrations of sulfate aerosol at lower Southern Ocean latitudes (35-45°S) and by organic matter in sea spray aerosol at higher latitudes (45-55°S). Biogenic sources are estimated to increase the summertime mean reflected solar radiation in excess of 10 W m-2 over parts of the Southern Ocean, which is comparable to the annual mean increases expected from anthropogenic aerosols over heavily polluted regions of the Northern Hemisphere.

  15. Natural aerosols explain seasonal and spatial patterns of Southern Ocean cloud albedo.

    Science.gov (United States)

    McCoy, Daniel T; Burrows, Susannah M; Wood, Robert; Grosvenor, Daniel P; Elliott, Scott M; Ma, Po-Lun; Rasch, Phillip J; Hartmann, Dennis L

    2015-07-01

    Atmospheric aerosols, suspended solid and liquid particles, act as nucleation sites for cloud drop formation, affecting clouds and cloud properties-ultimately influencing the cloud dynamics, lifetime, water path, and areal extent that determine the reflectivity (albedo) of clouds. The concentration N d of droplets in clouds that influences planetary albedo is sensitive to the availability of aerosol particles on which the droplets form. Natural aerosol concentrations affect not only cloud properties themselves but also modulate the sensitivity of clouds to changes in anthropogenic aerosols. It is shown that modeled natural aerosols, principally marine biogenic primary and secondary aerosol sources, explain more than half of the spatiotemporal variability in satellite-observed N d. Enhanced N d is spatially correlated with regions of high chlorophyll a, and the spatiotemporal variability in N d is found to be driven primarily by high concentrations of sulfate aerosol at lower Southern Ocean latitudes (35(o) to 45(o)S) and by organic matter in sea spray aerosol at higher latitudes (45(o) to 55(o)S). Biogenic sources are estimated to increase the summertime mean reflected solar radiation in excess of 10 W m(-2) over parts of the Southern Ocean, which is comparable to the annual mean increases expected from anthropogenic aerosols over heavily polluted regions of the Northern Hemisphere. PMID:26601216

  16. The Finokalia Aerosol Measurement Experiment - 2008 (FAME-08): an overview

    Science.gov (United States)

    Pikridas, M.; Bougiatioti, A.; Hildebrandt, L.; Engelhart, G. J.; Kostenidou, E.; Mohr, C.; Prévôt, A. S. H.; Kouvarakis, G.; Zarmpas, P.; Burkhart, J. F.; Lee, B.-H.; Psichoudaki, M.; Mihalopoulos, N.; Pilinis, C.; Stohl, A.; Baltensperger, U.; Kulmala, M.; Pandis, S. N.

    2010-07-01

    A month (4 May to 8 June 2008) of ambient aerosol, air ion and gas phase sampling (Finokalia Aerosol Measurement Experiment 2008, FAME-08) was conducted at Finokalia, on the island of Crete, Greece. The purpose of the study was to characterize the physical and chemical properties of aged aerosol and to investigate new particle formation. Measurements included aerosol and air ion size distributions, size-resolved chemical composition, organic aerosol thermal volatility, water uptake and particle optical properties (light scattering and absorption). Statistical analysis of the aerosol mass concentration variations revealed the absence of diurnal patterns suggesting the lack of strong local sources. Sulfates accounted for approximately half of the particulate matter less than 1 micrometer in diameter (PM1) and organics for 28%. The PM1 organic aerosol fraction was highly oxidized with 80% water soluble. The supermicrometer particles were dominated by crustal components (50%), sea salt (24%) and nitrates (16%). The organic carbon to elemental carbon (OC/EC) ratio correlated with ozone measurements but with a one-day lag. The average OC/EC ratio for the study period was equal to 5.4. For three days air masses from North Africa resulted in a 6-fold increase of particulate matter less than 10 micrometers in diameter (PM10) and a decrease of the OC/EC ratio by a factor of 2. Back trajectory analysis, based on FLEXPART footprint plots, identified five source regions (Athens, Greece, Africa, other continental and marine), each of which influenced the PM1 aerosol composition and properties. Marine air masses had the lowest PM1 concentrations and air masses from the Balkans, Turkey and Eastern Europe the highest.

  17. Theory of the late stage of radiolysis of alkali halides

    OpenAIRE

    Dubinko, V. I.; Turkin, A.A.; Vainshtein, D.I.; Hartog, H.W. den

    2000-01-01

    Recent results on heavily irradiated natural and synthetic NaCl crystals give evidence for the formation of large vacancy voids, which were not addressed by the conventional Jain-Lidiard model of radiation damage ill alkali halides. This model was constructed to describe metal colloids and dislocation loops formed in alkali halides during earlier stages of irradiation. We present a theory based on a new mechanism of dislocation climb, which involves the production of Vt centers (self-trapped ...

  18. Alkali absorption and citrate excretion in calcium nephrolithiasis

    Science.gov (United States)

    Sakhaee, K.; Williams, R. H.; Oh, M. S.; Padalino, P.; Adams-Huet, B.; Whitson, P.; Pak, C. Y.

    1993-01-01

    The role of net gastrointestinal (GI) alkali absorption in the development of hypocitraturia was investigated. The net GI absorption of alkali was estimated from the difference between simple urinary cations (Ca, Mg, Na, and K) and anions (Cl and P). In 131 normal subjects, the 24 h urinary citrate was positively correlated with the net GI absorption of alkali (r = 0.49, p < 0.001). In 11 patients with distal renal tubular acidosis (RTA), urinary citrate excretion was subnormal relative to net GI alkali absorption, with data from most patients residing outside the 95% confidence ellipse described for normal subjects. However, the normal relationship between urinary citrate and net absorbed alkali was maintained in 11 patients with chronic diarrheal syndrome (CDS) and in 124 stone-forming patients devoid of RTA or CDS, half of whom had "idiopathic" hypocitraturia. The 18 stone-forming patients without RTA or CDS received potassium citrate (30-60 mEq/day). Both urinary citrate and net GI alkali absorption increased, yielding a significantly positive correlation (r = 0.62, p < 0.0001), with the slope indistinguishable from that of normal subjects. Thus, urinary citrate was normally dependent on the net GI absorption of alkali. This dependence was less marked in RTA, confirming the renal origin of hypocitraturia. However, the normal dependence was maintained in CDS and in idiopathic hypocitraturia, suggesting that reduced citrate excretion was largely dietary in origin as a result of low net alkali absorption (from a probable relative deficiency of vegetables and fruits or a relative excess of animal proteins).

  19. Hypercalcemia in Pregnancy: A Case of Milk-Alkali Syndrome

    OpenAIRE

    Kolnick, Leanne; Harris, Bryan D.; Choma, David P.; Choma, Neesha N.

    2011-01-01

    Milk-alkali syndrome is a rare cause of hypercalcemia characterized by the triad of hypercalcemia, renal insufficiency, and metabolic alkalosis that results from the overconsumption of calcium containing products. In the setting of pregnancy where there is a physiologic increase in calcium absorption, milk-alkali syndrome can be potentially life threatening. We report a case of a 26-year-old woman in her second trimester of pregnancy who presented with 2 weeks of flank pain, nausea, vomiting,...

  20. Alkali promotion of N-2 dissociation over Ru(0001)

    DEFF Research Database (Denmark)

    Mortensen, Jens Jørgen; Hammer, Bjørk; Nørskov, Jens Kehlet

    1998-01-01

    Using self-consistent density functional calculations, we show that adsorbed Na and Cs lower the barrier for dissociation of N2 on Ru(0001). Since N2 dissociation is a crucial step in the ammonia synthesis reaction, we explain in this way the experimental observation that alkali metals promote th...... the ammonia synthesis reaction over Ru catalysts. We also show that the origin of this effect is predominantly a direct electrostatic attraction between the adsorbed alkali atoms and the dissociating molecule....

  1. Utilization of Mineral Wools as Alkali-Activated Material Precursor

    OpenAIRE

    Juho Yliniemi; Paivo Kinnunen; Pasi Karinkanta; Mirja Illikainen

    2016-01-01

    Mineral wools are the most common insulation materials in buildings worldwide. However, mineral wool waste is often considered unrecyclable because of its fibrous nature and low density. In this paper, rock wool (RW) and glass wool (GW) were studied as alkali-activated material precursors without any additional co-binders. Both mineral wools were pulverized by a vibratory disc mill in order to remove the fibrous nature of the material. The pulverized mineral wools were then alkali-activated w...

  2. Aerosols-Cloud-Microphysics Interactions in Tropical Cyclone Earl

    Science.gov (United States)

    Luna-Cruz, Yaitza

    Aerosols-cloud-microphysical processes are largely unknown in their influence on tropical cyclone evolution and intensification; aerosols possess the largest uncertainty. For example: What is the link between aerosols and cloud microphysics quantities? How efficient are the aerosols (i.e. dust from the Saharan Air Layer -SAL) as cloud condensation nuclei (CCN) and ice nuclei (IN)? Does aerosols affect the vertical velocity, precipitation rates, cloud structure and lifetime? What are the dominant factors and in which sectors of the tropical cyclone? To address some of the questions in-situ microphysics measurements from the NASA DC-8 aircraft were obtained during the Genesis and Rapid Intensification Processes (GRIP) 2010 field campaign. A total of four named storms (Earl, Gaston, Karl and Mathew) were sampled. Earl presented the excellent opportunity to study aerosols-cloud-microphysics interactions because Saharan dust was present and it underwent rapid intensification. This thesis seeks to explore hurricane Earl to develop a better understanding of the relationship between the SAL aerosols and cloud microphysics evolution. To assist in the interpretation of the microphysics observations, high resolution numerical simulations of hurricane Earl were performed using the Weather Research and Forecasting (WRF-ARW) model with the new Aerosol-Aware bulk microphysics scheme. This new version of Thompson scheme includes explicit activation of cloud condensation nuclei (CCN) from a major CCN source (i.e. sulfates and sea salt) and explicit ice nucleation (IN) from mineral dust. Three simulations are performed: (1) the Control case with the old Thompson scheme and initial conditions from GFS model, (2) the Aerosol-Aware first baseline case with GOCART aerosol module as an input conditions, and (3) the Aerosol-Aware increase case in which the GOCART aerosols concentrations were increased significantly. Overall, results of model simulations along with aircraft observations

  3. Alkali and heavy metal emissions of the PCFB-process; Alkali- ja raskasmetallipaeaestoet PCFB-prosessista

    Energy Technology Data Exchange (ETDEWEB)

    Kuivalainen, R.; Eriksson, T.; Lehtonen, P. [Foster Wheeler Energia Oy, Karhula (Finland)

    1997-10-01

    Pressurized Circulating Fluidized Bed (PCFB) combustion technology has been developed in Karhula R and D Center since 1986. As part of the development, 10 MW PCFB test facility was built in 1989. The test facility has been used for performance testing with different coal types through the years 1990-1995 in order to gain data for design and commercialization of the high-efficiency low-emission PCFB combustion technology. The main object of the project was to measure vapor phase Na and K concentrations in the PCFB flue gas after hot gas filter and investigate the effects of process conditions and sorbents on alkali release. The measurements were performed using plasma assisted method of TUT Laboratory of Plasma Technology and wet absorption method of VTT Energy. The measurements were carried out during three test campaigns at PCFB Test Facility in Karhula. In autumn 1995 both VTT and TUT methods were used. The measurements of the following test period in spring 1996 were performed by VTT, and during the last test segment in autumn 1996 TUT method was in use. During the last test period, the TUT instrument was used as semi-continuous (3 values/minute) alkali analyzer for part of the time. The measured Na concentrations were below 30 ppb(w) in all measured data points. The results of K were below 10 ppb(w). The accuracies of the both methods are about +50 % at this concentration range. The scatter of the data covers the effects of different process variables on the alkali emission. The measured emissions are at the same order of magnitude as the guideline emission limits estimated by gas turbine manufacturers

  4. Sulfates on Mars: Indicators of Aqueous Processes

    Science.gov (United States)

    Bishop, Janice L.; Lane, Melissa D.; Dyar, M. Darby; Brown, Adrian J.

    2006-01-01

    Recent analyses by MER instruments at Meridiani Planum and Gusev crater and the OMEGA instrument on Mars Express have provided detailed information about the presence of sulfates on Mars [1,2,3]. We are evaluating these recent data in an integrated multi-disciplinary study of visible-near-infrared, mid-IR and Mossbauer spectra of several sulfate minerals and sulfate-rich analog sites. Our analyses suggest that hydrated iron sulfates may account for features observed in Mossbauer and mid-IR spectra of Martian soils [4]. The sulfate minerals kieserite, gypsum and other hydrated sulfates have been identified in OMEGA spectra in the layered terrains in Valles Marineris and Terra Meridiani [2]. These recent discoveries emphasize the importance of studying sulfate minerals as tracers of aqueous processes. The sulfate-rich rock outcrops observed in Meridiani Planum may have formed in an acidic environment similar to acid rock drainage environments on Earth [5]. Because microorganisms typically are involved in the oxidation of sulfides to sulfates in terrestrial sites, sulfate-rich rock outcrops on Mars may be a good location to search for evidence of past life on that planet. Whether or not life evolved on Mars, following the trail of sulfate minerals will lead to a better understanding of aqueous processes and chemical weathering.

  5. High alkali-resistant basalt fiber for reinforcing concrete

    International Nuclear Information System (INIS)

    Highlights: • Doping of basalt fiber with ZrSiO4 increased its alkali resistance. • Alkali treatment results in formation of protective surface layer on fibers. • Morphology and chemical composition of surface layer were investigated. • Mechanical properties of fibers were analyzed by a Weibull distribution. • Zirconia doped basalt fibers demonstrate high performance in concrete. - Abstract: Basalt glasses and fibers with zirconia content in the range from 0 to 7 wt% were obtained using ZrSiO4 as a zirconium source. Weight loss and tensile strength loss of fibers after refluxing in alkali solution were determined. Basalt fiber with 5.7 wt% ZrO2 had the best alkali resistance properties. Alkali treatment results in formation of protective surface layer on fibers. Morphology and chemical composition of surface layer were investigated. It was shown that alkali resistance of zirconia doped basalt fibers is caused by insoluble compounds of Zr4+, Fe3+ and Mg2+ in corrosion layer. Mechanical properties of initial and leached fibers were evaluated by a Weibull distribution. The properties of basalt fibers with ZrSiO4 were compared with AR-glass fibers. The performance of concrete with obtained fibers was investigated

  6. CHEMICAL AND THERMAL STABILITY OF RICE HUSKS AGAINST ALKALI TREATMENT

    Directory of Open Access Journals (Sweden)

    Bwire S. Ndazi

    2008-11-01

    Full Text Available Chemical and thermal stability of rice husks against alkali treatment with 2 to 8% w/v NaOH are presented and discussed in this paper. The thermal stability of the rice husks was examined by using a thermal gravimetric analysis instrument. Chemical stability was evaluated by examining the organic components of rice husks using proximate analysis. The results indicated that the proportion of lignin and hemicellulose in rice husks treated with NaOH ranging from 4 to 8% decreased significantly by 96% and 74%, respectively. The thermal stability and final degradation temperatures of the alkali-treated rice husks were also lowered by 24-26°C due to degradation of hemicellulose and lignin during alkali treatment. Absence of the onset degradation zones in the alkali-treated rice husks was a further indication that hemicellulose and other volatile substances degraded during alkali treatment. This leads to a conclusion that alkali treatment of rice husks with more than 4% NaOH causes a substantial chemical degradation of rice husks, which subsequently decreases their thermal stability.

  7. Preparation and Properties of Alkali Activated Metakaolin-Based Geopolymer

    Directory of Open Access Journals (Sweden)

    Liang Chen

    2016-09-01

    Full Text Available The effective activation and utilization of metakaolin as an alkali activated geopolymer precursor and its use in concrete surface protection is of great interest. In this paper, the formula of alkali activated metakaolin-based geopolymers was studied using an orthogonal experimental design. It was found that the optimal geopolymer was prepared with metakaolin, sodium hydroxide, sodium silicate and water, with the molar ratio of SiO2:Al2O3:Na2O:NaOH:H2O being 3.4:1.1:0.5:1.0:11.8. X-ray diffraction (XRD and Fourier transform infrared spectroscopy (FT-IR were adopted to investigate the influence of curing conditions on the mechanical properties and microstructures of the geopolymers. The best curing condition was 60 °C for 168 h, and this alkali activated metakaolin-based geopolymer showed the highest compression strength at 52.26 MPa. In addition, hollow micro-sphere glass beads were mixed with metakaolin particles to improve the thermal insulation properties of the alkali activated metakaolin-based geopolymer. These results suggest that a suitable volume ratio of metakaolin to hollow micro-sphere glass beads in alkali activated metakaolin-based geopolymers was 6:1, which achieved a thermal conductivity of 0.37 W/mK and compressive strength of 50 MPa. By adjusting to a milder curing condition, as-prepared alkali activated metakaolin-based geopolymers could find widespread applications in concrete thermal protection.

  8. Aerosol in the containment

    International Nuclear Information System (INIS)

    The US program LACE (LWR Aerosol Containment Experiments), in which Italy participates together with several European countries, Canada and Japan, aims at evaluating by means of a large scale experimental activity at HEDL the retention in the pipings and primary container of the radioactive aerosol released following severe accidents in light water reactors. At the same time these experiences will make available data through which the codes used to analyse the behaviour of the aerosol in the containment and to verify whether by means of the codes of thermohydraulic computation it is possible to evaluate with sufficient accuracy variable influencing the aerosol behaviour, can be validated. This report shows and compares the results obtained by the participants in the LACE program with the aerosol containment codes NAVA 5 and CONTAIN for the pre-test computations of the test LA 1, in which an accident called containment by pass is simulated

  9. Sea Spray Aerosols

    DEFF Research Database (Denmark)

    Butcher, Andrew Charles

    Aerosols are important climactically. Their specific emissions are key to reducing the uncertainty in global climate models. Marine aerosols make up the largest source of primary aerosols to the Earth's atmosphere. Uncertainty in marine aerosol mass and number flux lies in separating primary...... emissions produced directly from bubble bursting as the result of air entrainment from breaking waves and particles generated from secondary emissions of volatile organic compounds. In the first paper, we study the chemical properties of particles produced from several sea water proxies with the use of a...... cloud condensation nuclei ounter. Proxy solutions with high inorganic salt concentrations and some organics produce sea spray aerosol particles with little change in cloud condensation activity relative to pure salts. Comparison is made between a frit based method for bubble production and a plunging...

  10. Fundamental study on alkali metal thermoelectric converter

    International Nuclear Information System (INIS)

    The alkali metal thermoelectric converter (AMTEC) utilizing the sodium ion conducting β''-alumina is a device to convert heat energy to electric energy directly. In this paper, the results of theoretical and experimental studies on AMTEC power generating characteristics, internal electrical resistances of single cell, and system analysis of AMTEC power generating systems are reported. This paper consists of 5 chapters, which are summarized as follows: In chapter 1, a theoretical explanation of AMTEC, a brief survey of the research and development history of AMTEC and a purpose of this paper are reported. In chapter 2, the properties of β''-alumina, preparations of thin film electrodes, and special attention points to be paid in handling of β''-alumina and film electrodes are reported. The AMTEC power generating characteristics of the tubular cells are also reported. In chapter 3, the experimental results of the disk type cells and the theoretical considerations about internal resistances are reported. The causes of electrode erosion are also reported. In chapter 4, the system analysis on AMTEC steam-turbine combined cycle for a dispersed power station and AMTEC power system for a aerospace power are reported. Chapter 5 summarizes major results achieved in the preceding four chapters as a concluding remark. (J.P.N.) 62 refs

  11. Superconductivity in alkali-doped fullerene nanowhiskers.

    Science.gov (United States)

    Takeya, Hiroyuki; Konno, Toshio; Hirata, Chika; Wakahara, Takatsugu; Miyazawa, Kun'ichi; Yamaguchi, Takahide; Tanaka, Masashi; Takano, Yoshihiko

    2016-09-01

    Superconductivity in alkali metal-doped fullerene nanowhiskers (C60NWs) was observed in K3.3C60NWs, Rb3.0C60NWs and Cs2.0Rb1.0C60NWs with transition temperatures at 17, 25 and 26 K, respectively. Almost full shielding volume fraction (~80%) was observed in K3.3C60NWs when subjected to thermal treatment at 200 °C for a duration of 24 h. In contrast, the shielding fraction of Rb3.0C60NWs and Cs2.0Rb1.0C60NWs were calculated to be 8% and 6%, respectively. Here we report on an extensive investigation of the superconducting properties of these AC60NWs (A  =  K3.3, Rb3.0 and Cs2.0Rb1.0). These properties are compared to the ones reported on the corresponding conventional (single-crystal or powder) K-doped fullerene. We also evaluated the critical current densities of these C60NWs using the Bean model under an applied magnetic field up to 50 kOe. PMID:27385220

  12. Bioinorganic Chemistry of the Alkali Metal Ions.

    Science.gov (United States)

    Kim, Youngsam; Nguyen, Thuy-Tien T; Churchill, David G

    2016-01-01

    The common Group 1 alkali metals are indeed ubiquitous on earth, in the oceans and in biological systems. In this introductory chapter, concepts involving aqueous chemistry and aspects of general coordination chemistry and oxygen atom donor chemistry are introduced. Also, there are nuclear isotopes of importance. A general discussion of Group 1 begins from the prevalence of the ions, and from a comparison of their ionic radii and ionization energies. While oxygen and water molecule binding have the most relevance to biology and in forming a detailed understanding between the elements, there is a wide range of basic chemistry that is potentially important, especially with respect to biological chelation and synthetic multi-dentate ligand design. The elements are widely distributed in life forms, in the terrestrial environment and in the oceans. The details about the workings in animal, as well as plant life are presented in this volume. Important biometallic aspects of human health and medicine are introduced as well. Seeing as the elements are widely present in biology, various particular endogenous molecules and enzymatic systems can be studied. Sodium and potassium are by far the most important and central elements for consideration. Aspects of lithium, rubidium, cesium and francium chemistry are also included; they help in making important comparisons related to the coordination chemistry of Na(+) and K(+). Physical methods are also introduced. PMID:26860297

  13. Efficient destruction of CF4 through in situ generation of alkali metals from heated alkali halide reducing mixtures.

    Science.gov (United States)

    Lee, Myung Churl; Choi, Wonyong

    2002-03-15

    Perfluorocarbons (PFCs) are the most potent green house gases that are very recalcitrant at destruction. An effective way of converting PFCs using hot solid reagents into safe products has been recently introduced. By investigating the thermal reductive destruction of tetrafluoromethane (CF4) we provided new insight and more physicochemical consideration on this novel process. The complete destruction of CF4was successfully achieved by flowing the gas through a heated reagent bed (400-950 degrees C) that contained powder mixtures of alkali halides, CaO, and Si. The silicon acted as a reducing agent of alkali halides for the in-situ production of alkali metals, and the calcium oxide played the role of a halide ion acceptor. The absence of any single component in this ternary mixture drastically reduced the destruction efficiency of CF4. The CF4 destruction efficiencies with the solid reagent containing the alkali halide, MX, increased in the order of Li approximately Na < K < Cs for alkali cations and I < Br < Cl < F for halide anions. This trend agreed with the endothermicity of the alkali metal generation reaction: the higher the endothermicity, the lower the destruction efficiency. Alkali metal generation was indirectly detected by monitoring H2 production from its reaction with water. The production of alkali metals increased with NaF, KF, and CsF in this order. The CsF/CaO/Si system exhibited the complete destruction of CF4 at as low as 600 degrees C. The solid product analysis by X-ray diffraction (XRD) showed the formation of CaF2 and the depletion of Si with black carbon particles formed in the solid reagent residue. No CO/CO2 and toxic HF and SiF4 formation were detected in the exhaust gas. PMID:11944694

  14. Identification of source contributions to visibility-reducing organic aerosols in the vicinity of Grand Canyon National Park. Interim final report

    Energy Technology Data Exchange (ETDEWEB)

    Mazurek, M.A.; Hallock, K.A.; Leach, M. [Brookhaven National Lab., Upton, NY (United States); Mason-Jones, M.; Mason-Jones, H.; Salmon, L.G.; Winner, D.A.; Cass, G.R. [California Inst. of Tech., Pasadena, CA (United States). Dept. of Environmental Engineering Science

    1993-06-01

    Sulfates and carbonaceous aerosols are the largest contributors to the fine particle burden in the atmosphere near Grand Canyon National Park. While the effects of sulfate particles on visibility at the Grand Canyon has been extensively studied, much less is known about the nature and origin of the carbonaceous aerosols that are present. This disparity in understanding arises from at least two causes: aerosol carbon data for the region are less plentiful and many of the sources that could contribute to that organic aerosol are both diverse and not well characterized. The objective of this present study is to examine the origin of the carbonaceous aerosol at Grand Canyon National Park during the summer season based on molecular tracer techniques applied to source and ambient samples collected specifically for this purpose.

  15. Chemical composition of the atmospheric aerosol in the troposphere over the Hudson Bay lowlands and Quebec-Labrador regions of Canada

    Science.gov (United States)

    Gorzelska, K.; Talbot, R. W.; Klemm, K.; Lefer, B.; Klemm, O.; Gregory, G. L.; Anderson, B.; Barrie, L. A.

    1994-01-01

    Atmospheric aerosols were collected in the boundary layer and free troposphere over continental and coastal subarctic regions of Canada during the July - August 1990 joint U.S.-Canadian Arctic Boundary Layer Expedition (ABLE) 3B/Northern Wetlands Study (NOWES). The samples were analyzed for the following water soluble species: sulfate, nitrate, ammonium, potassium, sodium, chloride, oxalate, methylsulfonate, and total amine nitrogen. Ammonium and sulfate were the major water soluble components of these aerosols. The nearly neutral (overall) chemical composition of summertime aerosol particles contrasts their strongly acidic wintertime composition. Aerosol samples were separated into several air mass categories and characterized in terms of chemical composition, associated mixing ratios of gaseous compounds, and meteorological parameters. The fundamental category represented particles associated with 'background' air masses. The summertime atmospheric aerosols in background air over the North American subarctic and Arctic regions were characterized by relatively small and spatially uniform mixing ratios of the measured species. These aerosol particles were aged to the extent that they had lost their primary source signature. The chemical profile of the background air aerosols was frequently modified by additions from biomass fire plumes, aged tropical marine air, and intrusions of upper tropospheric/lower stratospheric air. Aerosols in boundary layer background air over the boreal forest region of Quebec-Labrador had significantly larger mixing ratios of ammonium and sulfate relative to the Hudson Bay region. This may reflect infiltration of anthropogenic pollution or be due to natural emissions from this region.

  16. Visibility-reducing organic aerosols in the vicinity of Grand Canyon National Park: Properties observed by high resolution gas chromatography

    OpenAIRE

    Mazurek, Monica A; Masonjones, Michael C.; Salmon, Lynn G.; Cass, Glen R.; Hallock, Kristen A.; Leach, Martin

    1997-01-01

    Fine particle and total airborne particle samples were collected during August 1989 within the Grand Canyon (Indian Gardens (IG)) and on its south rim (Hopi Point (HP)) to define summertime organic aerosol concentration and composition as a function of elevation at Grand Canyon National Park. Inorganic chemical constituents were analyzed also to help place the relative importance of organics in perspective. Fine particle organic aerosols were approximately equal in concentration to sulfate ae...

  17. Alkaline cement mortars. Chemical resistance to sulfate and seawater attack

    Directory of Open Access Journals (Sweden)

    Puertas, F.

    2002-09-01

    Full Text Available The durability and chemical resistance of alkali activated slag and fly ash/slag mortars in contact with sulfates and seawater media have been studied. Two methods were used in the evaluation of such durability: Kock-Steinegger and ASTM C1012. A mineralogical and a microstructural characterization of mortars were done at different ages of their conservation in aggressive media through XRD, SEM/ EDX and mercury porosimetry. Results showed a high durability of activated cement mortars in sulfates and seawater media. NaOH activated mortars are the most sensitive to environment attack with formation of expansive products as gypsum and ettringite, although in very low proportion.

    Se ha estudiado la estabilidad química en medios sulfáticos y de agua de mar de morteros de escorias activadas alcalinamente y morteros de mezclas de escoria y cenizas volantes activadas alcalinamente. Se han empleado dos métodos para evaluar dicha estabilidad: Kock-Steinegger y la norma ASTM C1012. Se ha realizado una caracterización mineralógica y micro estructural de los morteros (a diferentes edades de permanencia en los medios agresivos a través de DRX, SEM/EDX y porosimetría de mercurio. Los resultados obtenidos han demostrado la elevada durabilidad de todos los morteros de cementos activados estudiados frente a la agresividad de los sulfatos y del agua de mar Los morteros de escoria activada con NaOH son los más susceptibles al ataque por esos medios, conformación de productos expansivos como el yeso y la etringita, aunque en proporciones muy bajas.

  18. On-chip fabrication of alkali-metal vapor cells utilizing an alkali-metal source tablet

    International Nuclear Information System (INIS)

    We describe a novel on-chip microfabrication technique for the alkali-metal vapor cell of an optically pumped atomic magnetometer (OPAM), utilizing an alkali-metal source tablet (AMST). The newly proposed AMST is a millimeter-sized piece of porous alumina whose considerable surface area holds deposited alkali-metal chloride (KCl) and barium azide (BaN6), source materials that effectively produce alkali-metal vapor at less than 400 °C. Our experiments indicated that the most effective pore size of the AMST is between 60 and 170 µm. The thickness of an insulating glass spacer holding the AMST was designed to confine generated alkali metal to the interior of the vapor cell during its production, and an integrated silicon heater was designed to seal the device using a glass frit, melted at an optimum temperature range of 460–490 °C that was determined by finite element method thermal simulation. The proposed design and AMST were used to successfully fabricate a K cell that was then operated as an OPAM with a measured sensitivity of 50 pT. These results demonstrate that the proposed concept for on-chip microfabrication of alkali-metal vapor cells may lead to effective replacement of conventional glassworking approaches. (paper)

  19. Heparin cofactor II is degraded by heparan sulfate and dextran sulfate.

    Science.gov (United States)

    Saito, Akio

    2015-02-20

    Heparan sulfate normally binds to heparin cofactor II and modulates the coagulation pathway by inhibiting thrombin. However, when human heparin cofactor II was incubated with heparan sulfate, heparin cofactor II became degraded. Other glycosaminoglycans were tested, including hyaluronic acid, chondroitin sulfates, dermatan sulfate, and heparin, but only dextran sulfate also degraded heparin cofactor II. Pretreatment of heparan sulfate with heparinase reduced its heparin cofactor II-degrading activity. Heparan sulfate and dextran sulfate diminished the thrombin inhibitory activity of heparin cofactor II. Other serpins, including antithrombin III and pigment epithelium-derived factor, were also degraded by heparan sulfate. This is the first evidence of acidic polysaccharides exhibiting protein-degrading activity without the aid of other proteins. PMID:25600805

  20. Modeling of ferric sulfate decomposition and sulfation of potassium chloride during grate‐firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Jappe Frandsen, Flemming;

    2013-01-01

    Ferric sulfate is used as an additive in biomass combustion to convert the released potassium chloride to the less harmful potassium sulfate. The decomposition of ferric sulfate is studied in a fast heating rate thermogravimetric analyzer and a volumetric reaction model is proposed to describe the...... process. The yields of sulfur oxides from ferric sulfate decomposition under boiler conditions are investigated experimentally, revealing a distribution of approximately 40% SO3 and 60% SO2. The ferric sulfate decomposition model is combined with a detailed kinetic model of gas‐phase KCl sulfation and a...... model of K2SO4 condensation to simulate the sulfation of KCl by ferric sulfate addition. The simulation results show good agreements with experiments conducted in a biomass grate‐firing reactor. The results indicate that the SO3 released from ferric sulfate decomposition is the main contributor to KCl...

  1. The reaction dynamics of alkali dimer molecules and electronically excited alkali atoms with simple molecules

    Energy Technology Data Exchange (ETDEWEB)

    Hou, H [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1995-12-01

    This dissertation presents the results from the crossed molecular beam studies on the dynamics of bimolecular collisions in the gas phase. The primary subjects include the interactions of alkali dimer molecules with simple molecules, and the inelastic scattering of electronically excited alkali atoms with O2. The reaction of the sodium dimers with oxygen molecules is described in Chapter 2. Two reaction pathways were observed for this four-center molecule-molecule reaction, i.e. the formations of NaO2 + Na and NaO + NaO. NaO2 products exhibit a very anisotropic angular distribution, indicating a direct spectator stripping mechanism for this reaction channel. The NaO formation follows the bond breaking of O2, which is likely a result of a charge transfer from Na2 to the excited state orbital of O2-. The scattering of sodium dimers from ammonium and methanol produced novel molecules, NaNH3 and Na(CH3OH), respectively. These experimental observations, as well as the discussions on the reaction dynamics and the chemical bonding within these molecules, will be presented in Chapter 3. The lower limits for the bond dissociation energies of these molecules are also obtained. Finally, Chapter 4 describes the energy transfer between oxygen molecules and electronically excited sodium atoms.

  2. Mixed alkali effect on the spectroscopic properties of alkali-alkaline earth oxide borate glasses

    Science.gov (United States)

    Srinivas, G.; Ramesh, B.; Shareefuddin, Md.; Chary, M. N.; Sayanna, R.

    2016-05-01

    The mixed alkali and alkaline earth oxide borate glass with the composition xK2O - (25-x) Li2O-12.5BaO-12.5MgO-50B2O3 (x = 0, 5, 10, 15, 20 and 25mol %) and doped with 1mol% CuO were prepared by the melt quenching technique. From the optical absorption spectra the optical band gap, electronic polarizability(α02-), interaction parameter (A), theoretical and experimental optical basicity (Λ) values were evaluated. From the Electron Paramagnetic Resonance (EPR) spectral data the number of spins (N) and susceptibility (χ) were evaluated. The values of (α02-), and (Λ) increases with increasing of K2O content and electronic polarizability and interaction parameter show opposite behaviuor which may be due to the creation of non-bridging oxygens and expansion of borate network. The reciprocal of susceptibility (1/χ) and spin concentration (N) as a function of K2O content, varied nonlinearly which may be due to creation of non-bridging oxygens in the present glass system. This may be attributed to mixed alkali effect (MAE).

  3. The nucleation of aerosols in flue gases with a high content of alkali - a laboratory study

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer; Schultz-Møller, Christina; Wedel, Stig;

    2000-01-01

    determined from the measurements. The homogeneous nucleation of the pure chlorides is suppressed by even relatively small concentrations of foreign seed particles and is therefore unlikely to contribute to the creation of new particles in real flue gases. The addition of SO2 to the chloride vapor feed, in...... the presence of oxygen and water vapor, increases the number concentration of effluent particles significantly and affects their composition to include sulphate in addition to chloride. The sulphate content is independent of the peak temperatures of the flue gas but increases with increasing content...

  4. Organic Aerosols in Rural and Remote Atmospheric Environments: Insights from Aerosol Mass Spectrometry

    Science.gov (United States)

    Zhang, Q.; Jimenez, J.; Ulbrich, I.; Dunlea, E.; Decarlo, P.; Huffman, A.; Allan, J.; Coe, H.; Alfarra, R.; Canagaratna, M.; Onasch, T.; Jayne, J.; Worsnop, D.; Takami, A.; Miyoshi, T.; Shimono, A.; Hatakeyama, S.; Weimer, S.; Demerjian, K.; Drewnick, F.; Schneider, J.; Middlebrook, A.; Bahreini, R.; Cotrell, L.; Griffin, R.; Leaitch, R.; Li, S.; Hayden, K.; Rautiainen, J.

    2006-12-01

    Organic matter usually accounts for a large fraction of the fine particle mass in rural and remote atmospheres. However, little is known about the sources and properties of this material. Here we report findings on the characteristics and the major types of organic aerosols (OA) in urban downwind, high elevation, forested, and marine atmospheres based on analyses of more than 20 highly time resolved AMS datasets sampled from various locations in the mid-latitude Northern Hemisphere. Organic aerosol components are extracted from these datasets using a custom multiple component mass spectral analysis technique and the Positive Matrix Factorization (PMF) method. These components are evaluated according to their extracted mass spectra and correlations to aerosol species, such as sulfate, nitrate, and elemental carbon, and gas-phase tracer compounds, such as CO and NOx. We have identified a hydrocarbon-like organic aerosol (HOA) component similar in mass spectra to the hydrocarbon substances observed at urban locations. We have also identified several oxygenated OA (OOA) components that show different fragmentation patterns and oxygen to carbon ratios in their mass spectra. Two OOA components a highly oxygenated that has mass spectrum resembling that of fulvic acid (a model compound representative for highly processed/oxidized organics in the environment) and a less oxygenated OOA component, whose spectrum is dominated with ions that are mainly associated with carbonyls and alcohols, are very frequently observed at various rural/remote sites. The oxygenated OOA component is more prevalent at downwind sites influenced by urban transport and the less oxygenated shows correlation to biogenic chamber OA at some locations. Compared to the total OOA concentration, HOA is generally very small and accounts for high elevation site (the Whistler Mountain Summit, Canada) of North America. Finally, an attempt will be made to address the relative importance of secondary vs. primary

  5. Stratospheric sulfate geoengineering could enhance the terrestrial photosynthesis rate

    Science.gov (United States)

    Xia, L.; Robock, A.; Tilmes, S.; Neely, R. R., III

    2016-02-01

    Stratospheric sulfate geoengineering could impact the terrestrial carbon cycle by enhancing the carbon sink. With an 8 Tg yr-1 injection of SO2 to produce a stratospheric aerosol cloud to balance anthropogenic radiative forcing from the Representative Concentration Pathway 6.0 (RCP6.0) scenario, we conducted climate model simulations with the Community Earth System Model - the Community Atmospheric Model 4 fully coupled to tropospheric and stratospheric chemistry (CAM4-chem). During the geoengineering period, as compared to RCP6.0, land-averaged downward visible (300-700 nm) diffuse radiation increased 3.2 W m-2 (11 %). The enhanced diffuse radiation combined with the cooling increased plant photosynthesis by 0.07 ± 0.02 µmol C m-2 s-1, which could contribute to an additional 3.8 ± 1.1 Gt C yr-1 global gross primary productivity without explicit nutrient limitation. This increase could potentially increase the land carbon sink. Suppressed plant and soil respiration due to the cooling would reduce natural land carbon emission and therefore further enhance the terrestrial carbon sink during the geoengineering period. This potentially beneficial impact of stratospheric sulfate geoengineering would need to be balanced by a large number of potential risks in any future decisions about the implementation of geoengineering.

  6. Effects of Aerosol on Atmospheric Dynamics and Hydrologic Processes During Boreal Spring and Summer

    Science.gov (United States)

    Lau, William K. M.; Kim, M. K.; Kim, K. M.; Chin, Mian

    2005-01-01

    Global and regional climate impacts of present-day aerosol loading during boreal spring are investigated using the NASA finite volume General Circulation Model (fvGCM). Three-dimensional distributions of loadings of five species of tropospheric aerosols, i.e., sulfate, black carbon, organic carbon, soil dust, and sea salt are prescribed from outputs of the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The aerosol loadings are used to calculate the extinction coefficient, single scattering albedo, and asymmetric factor at eleven spectral wavelengths in the radiative transfer code. We find that aerosol-radiative forcing during boreal spring excites a wavetrain-like pattern in tropospheric temperature and geopotential height that emanates from Northern Africa, through Eurasia, to northeastern Pacific. Associated with the teleconnection is strong surface cooling over regions with large aerosol loading, i.e., China, India, and Africa. Low-to-mid tropospheric heating due to shortwave absorption is found in regions with large loading of dust (Northern Africa, and central East Asia), and black carbon (South and East Asia). In addition pronounced surface cooling is found over the Caspian Sea and warming over Eurasian and northeastern Asia, where aerosol loadings are relatively low. These warming and cooling are components of teleconnection pattern produced primarily by atmospheric heating from absorbing aerosols, i.e., dust from North Africa and black carbon from South and East Asia. Effects of aerosols on atmospheric hydrologic cycle in the Asian monsoon region are also investigated. Results show that absorbing aerosols, i.e., black carbon and dust, induce large-scale upper-level heating anomaly over the Tibetan Plateau in April and May, ushering in an early onset of the Indian summer monsoon. Absorbing aerosols also enhance lower-level heating and anomalous ascent over northern India, intensifying the Indian monsoon. Overall, the aerosol

  7. Size-segregated aerosol mass closure and chemical composition in Monte Cimone (I during MINATROC

    Directory of Open Access Journals (Sweden)

    J.-P. Putaud

    2003-07-01

    Full Text Available Physical and chemical characterizations of the atmospheric aerosol was carried out at Mt. Cimone (Italy during the 4 June–4 July 2000 period. Particle size distributions in the size range 6 nm–10 μm were measured with a differential mobility analyzer (DMA and a optical particle counter (OPC. Size-segregated aerosol was sampled using a 6-stage low pressure impactor. Aerosol samples were submitted to gravimetric and chemical analyses. Ionic, carbonaceous and refractory components of the aerosol were quantified. We compared the sub- and super-μm aerosol mass concentrations determined by gravimetric measurements (mGM, chemical analyses (mCA, and by converting particle size distribution to aerosol mass concentrations (mSC. Mean random uncertainties associated with the determination of mGM, mCA, and mSD were assessed. The three estimates of the sub-μm aerosol mass concentration agreed, which shows that within experimental uncertainty, the sub-μm aerosol was composed of the quantified components. The three estimates of the super-mm aerosol mass concentration did not agree, which indicates that random uncertainties and/or possible systematic errors in aerosol sampling, sizing or analyses were not adequately accounted for. Aerosol chemical composition in air masses from different origins showed differences, which were significant in regard to experimental uncertainties. During the Saharan dust advection period, coarse dust and fine anthropogenic particles were externally mixed. No anthropogenic sulfate could be found in the super-μm dust particles. In contrast, nitrate was shifted towards the aerosol super-μm fraction in presence of desert dust.

  8. Model Analysis of Influences of Aerosol Mixing State upon Its Optical Properties in East Asia

    Institute of Scientific and Technical Information of China (English)

    HAN Xiao; ZHANG Meigen; ZHU Lingyun; XU Liren

    2013-01-01

    The air quality model system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multi-scale Air Quality) coupled with an aerosol optical/radiative module was applied to investigate the impact of different aerosol mixing states (i.e.,externally mixed,half externally and half internally mixed,and internally mixed) on radiative forcing in East Asia.The simulation results show that the aerosol optical depth (AOD) generally increased when the aerosol mixing state changed from externally mixed to internally mixed,while the single scattering albedo (SSA) decreased.Therefore,the scattering and absorption properties of aerosols can be significantly affected by the change of aerosol mixing states.Comparison of simulated and observed SSAs at five AERONET (Aerosol Robotic Network) sites suggests that SSA could be better estimated by considering aerosol particles to be internally mixed.Model analysis indicates that the impact of aerosol mixing state upon aerosol direct radiative forcing (DRF) is complex.Generally,the cooling effect of aerosols over East Asia are enhanced in the northern part of East Asia (Northern China,Korean peninsula,and the surrounding area of Japan) and are reduced in the southern part of East Asia (Sichuan Basin and Southeast China) by internal mixing process,and the variation range can reach ±5 W m-2.The analysis shows that the internal mixing between inorganic salt and dust is likely the main reason that the cooling effect strengthens.Conversely,the internal mixture of anthropogenic aerosols,including sulfate,nitrate,ammonium,black carbon,and organic carbon,could obviously weaken the cooling effect.

  9. Model analysis of influences of aerosol mixing state upon its optical properties in East Asia

    Science.gov (United States)

    Han, Xiao; Zhang, Meigen; Zhu, Lingyun; Xu, Liren

    2013-07-01

    The air quality model system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multi-scale Air Quality) coupled with an aerosol optical/radiative module was applied to investigate the impact of different aerosol mixing states (i.e., externally mixed, half externally and half internally mixed, and internally mixed) on radiative forcing in East Asia. The simulation results show that the aerosol optical depth (AOD) generally increased when the aerosol mixing state changed from externally mixed to internally mixed, while the single scattering albedo (SSA) decreased. Therefore, the scattering and absorption properties of aerosols can be significantly affected by the change of aerosol mixing states. Comparison of simulated and observed SSAs at five AERONET (Aerosol Robotic Network) sites suggests that SSA could be better estimated by considering aerosol particles to be internally mixed. Model analysis indicates that the impact of aerosol mixing state upon aerosol direct radiative forcing (DRF) is complex. Generally, the cooling effect of aerosols over East Asia are enhanced in the northern part of East Asia (Northern China, Korean peninsula, and the surrounding area of Japan) and are reduced in the southern part of East Asia (Sichuan Basin and Southeast China) by internal mixing process, and the variation range can reach ±5 W m-2. The analysis shows that the internal mixing between inorganic salt and dust is likely the main reason that the cooling effect strengthens. Conversely, the internal mixture of anthropogenic aerosols, including sulfate, nitrate, ammonium, black carbon, and organic carbon, could obviously weaken the cooling effect.

  10. Using the Aerosol Single Scattering Albedo and Angstrom Exponent from AERONET to Determine Aerosol Origins and Mixing States over the Indo-Gangetic Plain

    Science.gov (United States)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Slutsker, I.; Smirnov, A.; Schafer, J. S.; Dickerson, R. R.; Thompson, A. M.; Tripathi, S. N.; Singh, R. P.; Ghauri, B.

    2012-12-01

    Aerosol mixtures—whether dominated by dust, carbon, sulfates, nitrates, sea salt, or mixtures of them—complicate the retrieval of remotely sensed aerosol properties from satellites and possibly increase the uncertainty of the aerosol radiative impact on climate. Major aerosol source regions in South Asia include the Thar Desert as well as agricultural lands, Himalayan foothills, and large urban centers in and near the Indo-Gangetic Plain (IGP). Over India and Pakistan, seasonal changes in meteorology, including the monsoon (June-September), significantly affect the transport, lifetime, and type of aerosols. Strong monsoonal winds can promote long range transport of dust resulting in mixtures of dust and carbonaceous aerosols, while more stagnant synoptic conditions (e.g., November-January) can prolong the occurrence of urban/industrial pollution, biomass burning smoke, or mixtures of them over the IGP. Aerosol Robotic Network (AERONET) Sun/sky radiometer data are analyzed to show the aerosol optical depth (AOD) seasonality and aerosol dominant mixing states. The Single Scattering Albedo (SSA) and extinction Angstrom exponent (EAE) relationship has been shown to provide sound clustering of dominant aerosol types using long term AERONET site data near known source regions [Giles et al., 2012]. In this study, aerosol type partitioning using the SSA (440 nm) and EAE (440-870 nm) relationship is further developed to quantify the occurrence of Dust, Mixed (e.g., dust and carbonaceous aerosols), Urban/Industrial (U/I) pollution, and Biomass Burning (BB) smoke. Based on EAE thresholds derived from the cluster analysis (for AOD440nm>0.4), preliminary results (2001-2010) for Kanpur, India, show the overall contributions of each dominant particle type (rounded to the nearest 10%): 10% for Dust (EAE≤0.25), 60% for Mixed (0.251.25). In the IGP, BB aerosols may have varying sizes (e.g., corresponding to 1.2agricultural waste, forest, or dung burning), combustion phases, or

  11. Sugars in Antarctic aerosol

    Science.gov (United States)

    Barbaro, Elena; Kirchgeorg, Torben; Zangrando, Roberta; Vecchiato, Marco; Piazza, Rossano; Barbante, Carlo; Gambaro, Andrea

    2015-10-01

    The processes and transformations occurring in the Antarctic aerosol during atmospheric transport were described using selected sugars as source tracers. Monosaccharides (arabinose, fructose, galactose, glucose, mannose, ribose, xylose), disaccharides (sucrose, lactose, maltose, lactulose), alcohol-sugars (erythritol, mannitol, ribitol, sorbitol, xylitol, maltitol, galactitol) and anhydrosugars (levoglucosan, mannosan and galactosan) were measured in the Antarctic aerosol collected during four different sampling campaigns. For quantification, a sensitive high-pressure anion exchange chromatography was coupled with a single quadrupole mass spectrometer. The method was validated, showing good accuracy and low method quantification limits. This study describes the first determination of sugars in the Antarctic aerosol. The total mean concentration of sugars in the aerosol collected at the "Mario Zucchelli" coastal station was 140 pg m-3; as for the aerosol collected over the Antarctic plateau during two consecutive sampling campaigns, the concentration amounted to 440 and 438 pg m-3. The study of particle-size distribution allowed us to identify the natural emission from spores or from sea-spray as the main sources of sugars in the coastal area. The enrichment of sugars in the fine fraction of the aerosol collected on the Antarctic plateau is due to the degradation of particles during long-range atmospheric transport. The composition of sugars in the coarse fraction was also investigated in the aerosol collected during the oceanographic cruise.

  12. A case study of aerosol processing and evolution in summer in New York City

    Directory of Open Access Journals (Sweden)

    Y. L. Sun

    2011-09-01

    Full Text Available We have investigated an aerosol processing and evolution event from 21–22 July during the summer 2009 Field Intensive Study at Queens College in New York City (NYC. The evolution processes are characterized by three consecutive stages: (1 aerosol wet scavenging, (2 nighttime nitrate formation, and (3 photochemical production and evolution of secondary aerosol species. Our results suggest that wet scavenging of aerosol species tends to be strongly related to their hygroscopicities and also mixing states. The scavenging leads to a significant change in bulk aerosol composition and average carbon oxidation state because of scavenging efficiencies in the following order: sulfate > low-volatility oxygenated organic aerosol (LV-OOA > semi-volatile OOA (SV-OOA > hydrocarbon-like OA (HOA. The second stage involves a quick formation of nitrate from heterogeneous reactions at nighttime. During the third stage, simultaneous increases of sulfate and SV-OOA were observed shortly after sunrise, indicating secondary aerosol formation. Organic aerosol particles become highly oxidized in ~half day as the result of photochemical processing, consistent with previously reported results from the CO-tracer method (OA/ΔCO. The photochemical reactions appear to progress gradually associated with a transformation of semi-volatile OOA to low-volatility species based on the evolution trends of oxygen-to-carbon (O/C ratio, relationship between f44 (fraction of m/z 44 in OA and f43 (fraction of m/z 43 in OA, and size evolution of OOA and HOA. Aerosols appear to become more internally mixed during the processing. Our results suggest that functionalization by incorporation of both C and O plays a major role in the early period of OA oxidation (O/C <0.5. Our results also show that photochemical production of LV-OOA during this event is approximately a few hours behind of sulfate production, which might explain the sometimes lack of correlations between LV

  13. Phonon Dispersion Relations in Alkali Metals

    International Nuclear Information System (INIS)

    It has been shown in this paper that the phonon dispersion curves of sodium in the [100], [110] and [111] symmetry directions can be explained well on the basis of a simple model, where one has to consider only central force constants between nearest and next nearest neighbours. The tangential force constant between the nearest neighbours is very much smaller as compared to the radial force constant, while for the next nearest neighbours the radial and tangential force constants are comparable. The calculation is carried out on the basis of the model suggested by de Launay, where it is shown that the conduction electrons exert a volume force for longitudinal modes. The stiffness constant of the electron gas is its bulk modulus which in de Launay's model is equal to the Cauchy discrepancy (C12-C14) for the cubic crystals. The three force constants α1, α2 and α1' can be determined from the measured elastic constants and the secular equation can be solved to give the dispersion curves. The dispersion curves have also been obtained using the calculated values of the bulk modulus of the electron gas after considering not only the exchange and correlation energies but also the Fermi kinetic energy. These also agree fairly well with experiment. The measured elastic constants as well as calculated bulk modulus of the electron gas indicate that the Cauchy relation C12 = C44 holds good approximately in alkali metals. This result is rather surprising as it requires that the interaction between the atoms be central in nature in spite of the metallic binding. A justification for this has been given by Cochran. A model with four force constants is being worked out. They can be determined from the three elastic constants and calculated bulk modulus of the electron gas. (author)

  14. Secondary Organic Aerosol Formation from Glyoxal: photochemical versus dark uptake and reversible versus irreversible SOA formation

    Science.gov (United States)

    Waxman, E.; Slowik, J.; Kampf, C.; Timkovsky, J.; Noziere, B.; Praplan, A.; Pffafenberger, L.; Holzinger, R.; Hoffmann, T.; Dommen, J.; Prevot, A.; Baltensperger, U.; Volkamer, R.

    2012-04-01

    Glyoxal forms secondary organic aerosol (SOA) by partitioning to the aerosol aqueous phase according to Henry's law. The subsequent processing by heterogeneous and multiphase reactions shifts the partitioning towards aerosols. Currently it is not well understood whether these reactions result in reversible or irreversible SOA formation, and what parameters influence the rate limiting step of multiphase processing. We conducted a series of simulation chamber experiments at PSI in April and May 2011 to investigate processing under dark conditions, UV and/or visible light irradiated conditions, and in the presence and absence of OH radicals. Experiments used ammonium sulfate or ammonium sulfate/fulvic acid mixtures as seed aerosols, and were conducted between 50% and 85% relative humidity at approximately constant RH over the course of any given experiment. Glyoxal was produced photochemically from acetylene, using HONO photolysis as the OH radical source. Gas-phase glyoxal was measured by the CU LED-Cavity Enhanced-DOAS. The Thermal-Desorption Proton-Transfer-Reaction Mass Spectrometer (TD-PTR-MS) and Ion Chromatography Mass Spectrometer (IC-MS) monitored both gas and aerosol-phase organic reaction products. Particle composition was monitored by High-Resolution Time-of-Flight Aerosol Mass Spectrometry (HR-ToF-AMS), and HPLC-ESI MS/MS and LC-MS analysis of filter samples.

  15. Lipid organics in background aerosols, cloudwater, and snow and implication for organic scavenging

    International Nuclear Information System (INIS)

    During three years free tropospheric snow, aerosol, and cloudwater samples were collected at Mount Sonnblick, Austria, at an elevation of 3106 m a.s.l. The samples were analyzed for their lipid organic trace components using extraction with n-hexane as sample pretreatment and gas chromatography-mass spectrometry-flame ionization detection for identification and quantification of the substances. The main components identified in all the samples were the phthalic acid esters which are of anthropogenic origin. Of further interest were aliphatic alcohols (not detected in aerosols) and phenols. They are of biogenic origin. The concentrations were found to be higher in spring than in the fall season. To compare the concentrations of aerosol, cloudwater and snow samples scavenging ratios (aerosol to snow), scavenging efficiencies (aerosol to cloud) and cloud to snow ratios were calculated for the first time for organic compounds. Scavenging ratios were 10 to 100 times lower, scavenging efficiencies 2 to 10 times lower than sulfate. This can result from the poor watersolubility of the compounds or from gas phase sorptions on the filter surface (overestimation of aerosol concentrations). The cloud to snow ratios were generally higher than for sulfate. However, a few components exhibited very low cloud to snow ratios which might be due to additional sources in snow for these substances (alcohols). (author)

  16. Aerosol Simulation in the Mexico City Metropolitan Area during MCMA2003 using CMAQ/Models3

    Science.gov (United States)

    Bei, N.; Zavala, M.; Lei, W.; de Foy, B.; Molina, L.

    2007-12-01

    CMAQ/Models3 has been employed to simulate the aerosol distribution and variation during the period from 13 to 16 April 2003 over the Mexico City Metropolitan Area as part of MCMA-2003 campaign. The meteorological fields are simulated using MM5, with three one-way nested grids with horizontal resolutions of 36, 12 and 3 km and 23 sigma levels in the vertical. MM5 3DVAR system has also been incorporated into the meteorological simulations. Chemical initial and boundary conditions are interpolated from the MOZART output. The SAPRC emission inventory is developed based on the official emission inventory for MCMA in 2004. The simulated mass concentrations of different aerosol compositions, such as elemental carbon (EC), primary organic aerosol (POA), secondary organic aerosol (SOA), nitrate, ammonium, and sulfate have been compared to the measurements taken at the National Center for Environmental Research and Training (Centro Nacional de Investigacion y Capacitacion Ambiental, CENICA) super-site. Hydrocarbon-like organic aerosol (HOA) and oxygenated organic aerosol (OOA) are used as observations of POA and SOA, respectively in this study. The preliminary model results show that the temporal evolutions of EC and POA are reasonable compared with measurements. The peak time of EC and POA are basically reproduced, thus validating the emission inventory and its processing through CMAQ/Models3. But the magnitude of EC and POA are underestimated over the entire episode. The modeled nitrate and ammonium concentrations are overestimated on most of the days. There is 1-2 hour difference between the simulated peak time of nitrate and ammonium aerosols compared to observations at CENICA. The simulated mass concentrations of SOA and sulfate are significantly underestimated. The reasons of the discrepancy between simulations and measurements are due to the uncertainties existing in the emission inventory, meteorological fields, and as well as aerosol formation mechanism in the case

  17. Simulation of aerosol direct radiative forcing with RAMS-CMAQ in East Asia

    Science.gov (United States)

    Zhang, M.; Han, X.; Liu, X.

    2011-12-01

    The air quality modeling system RAMS-CMAQ is developed to assess aerosol direct radiative forcing by linking simulated meteorological parameters and aerosol mass concentration with the aerosol optical properties/radiative transfer module in this study. The module is capable of accounting for important factors that affect aerosol optical properties and radiative effect, such as incident wave length, aerosol size distribution, water uptake, and internal mixture. Subsequently, the modeling system is applied to simulate the temporal and spatial variations in mass burden, optical properties, and direct radiative forcing of diverse aerosols, including sulfate, nitrate, ammonium, black carbon, organic carbon, dust, and sea salt over East Asia throughout 2005. Model performance is fully evaluated using various observational data, including satellite monitoring of MODIS and surface measurements of EANET (Acid Deposition Monitoring Network), AERONET (Aerosol Robotic Network), and CSHNET (Chinese Sun Hazemeter Network). The correlation coefficients of the comparisons of daily average mass concentrations of sulfate, PM2.5, and PM10 between simulations and EANET measurements are 0.70, 0.61, and 0.64, respectively. It is also determined that the modeled aerosol optical depth (AOD) is in congruence with the observed results from the AERONET, the CSHNET, and the MODIS. The model results suggest that the high AOD values ranging from 0.8 to 1.2 are mainly distributed over the Sichuan Basin as well as over central and southeastern China, in East Asia. The aerosol direct radiative forcing patterns generally followed the AOD patterns. The strongest forcing effect ranging from -12 to -8 W/m2 was mainly distributed over the Sichuan Basin and the eastern China's coastal regions in the all-sky case at TOA, and the forcing effect ranging from -8 to -4 W/m2 could be found over entire eastern China, Korea, Japan, East China Sea, and the sea areas of Japan.

  18. Submicron aerosols: a review

    International Nuclear Information System (INIS)

    Submicron aerosols, ranging in particle diameter from 0.1 μm to 0.001 μm, and in number concentration from 10,000 to 100,000 per cm3, are more or less continuously suspended in the atmosphere we breathe. They usually require in situ measurement of concentration and size distribution with instruments such as diffusion batteries and condensation nucleus counters. Laboratory measurements require the development of submicron aerosol generators. The development of several of these devices and their use in the laboratory and field to measure radioactive as well as inactive aerosols is described

  19. Collaborative research. Study of aerosol sources and processing at the GVAX Pantnagar Supersite

    Energy Technology Data Exchange (ETDEWEB)

    Worsnop, Doug [Univ. of Colorado, Boulder, CO (United States); Volkamer, Rainer [Univ. of Colorado, Boulder, CO (United States)

    2012-08-13

    during TCAP, and conducted laboratory experiments to quantify for the first time the Setschenow salting constant, KS, of glyoxal in sulfate aerosols. Knowledge about KS is prerequisite to predict how increasing sulfate concentrations since pre-industrial times have modified the formation of SOA from biogenic gases in atmospheric models.

  20. Small molecules as tracers in atmospheric secondary organic aerosol

    Science.gov (United States)

    Yu, Ge

    Secondary organic aerosol (SOA), formed from in-air oxidation of volatile organic compounds, greatly affects human health and climate. Although substantial research has been devoted to SOA formation and evolution, the modeled and lab-generated SOA are still low in mass and degree of oxidation compared to ambient measurements. In order to compensate for these discrepancies, the aqueous processing pathway has been brought to attention. The atmospheric waters serve as aqueous reaction media for dissolved organics to undergo further oxidation, oligomerization, or other functionalization reactions, which decreases the vapor pressure while increasing the oxidation state of carbon atoms. Field evidence for aqueous processing requires the identification of tracer products such as organosulfates. We synthesized the standards for two organosulfates, glycolic acid sulfate and lactic acid sulfate, in order to measure their aerosol-state concentration from five distinct locations via filter samples. The water-extracted filter samples were analyzed by LC-MS. Lactic acid sulfate and glycolic acid sulfate were detected in urban locations in the United States, Mexico City, and Pakistan with varied concentrations, indicating their potential as tracers. We studied the aqueous processing reaction between glyoxal and nitrogen-containing species such as ammonium and amines exclusively by NMR spectrometry. The reaction products formic acid and several imidazoles along with the quantified kinetics were reported. The brown carbon generated from these reactions were quantified optically by UV-Vis spectroscopy. The organic-phase reaction between oxygen molecule and alkenes photosensitized by alpha-dicarbonyls were studied in the same manner. We observed the fast kinetics transferring alkenes to epoxides under simulated sunlight. Statistical estimations indicate a very effective conversion of aerosol-phase alkenes to epoxides, potentially forming organosulfates in a deliquescence event and

  1. Development of an accelerated test for Internal Sulfate Attack study

    Directory of Open Access Journals (Sweden)

    Khelil Nacim

    2014-04-01

    Full Text Available Internal Sulfate Attack (ISA is a pathology that occurs under certain conditions in concrete having undergone heating above 70 °C at early age (through heating in pre-casting industry or due to hydration in large concrete parts. This reaction deemed very slow, numerous methods to speed up reactions leading to delayed ettringite formation have been developed. These methods are all based on the material damage. Another type of test is currently under development. It is based on rehabilitation techniques such as electrochemical chloride extraction (ECE in order to accelerate the leaching of alkalis that could be one of the triggers of the pathology. The study presented in this paper focused on concrete specimens prepared from cement (CEM I 52.5 N enriched with Na2SO4. These concretes have undergone a heat treatment typical of those used in precast plants (up to 24 hours with a maximum temperature of 80 °C. Various paths were explored for the development of the accelerated test. The first results showed that it was necessary to use a removable titanium anode ruthenium anode instead of stainless steel embedded in the concrete. Then tests with de-ionized water as the solute to the cathode did not accelerate the onset of expansions. The experiment has been modified and potassium carbonate was added to the solution. This modification didn’t show any significant improvement, and other experiments are being carried out to explain this result.

  2. Aerosol Observability and Predictability: From Research to Operations for Chemical Weather Forecasting. Lagrangian Displacement Ensembles for Aerosol Data Assimilation

    Science.gov (United States)

    da Silva, Arlindo

    2010-01-01

    A challenge common to many constituent data assimilation applications is the fact that one observes a much smaller fraction of the phase space that one wishes to estimate. For example, remotely sensed estimates of the column average concentrations are available, while one is faced with the problem of estimating 3D concentrations for initializing a prognostic model. This problem is exacerbated in the case of aerosols because the observable Aerosol Optical Depth (AOD) is not only a column integrated quantity, but it also sums over a large number of species (dust, sea-salt, carbonaceous and sulfate aerosols. An aerosol transport model when driven by high-resolution, state-of-the-art analysis of meteorological fields and realistic emissions can produce skillful forecasts even when no aerosol data is assimilated. The main task of aerosol data assimilation is to address the bias arising from inaccurate emissions, and Lagrangian misplacement of plumes induced by errors in the driving meteorological fields. As long as one decouples the meteorological and aerosol assimilation as we do here, the classic baroclinic growth of error is no longer the main order of business. We will describe an aerosol data assimilation scheme in which the analysis update step is conducted in observation space, using an adaptive maximum-likelihood scheme for estimating background errors in AOD space. This scheme includes e explicit sequential bias estimation as in Dee and da Silva. Unlikely existing aerosol data assimilation schemes we do not obtain analysis increments of the 3D concentrations by scaling the background profiles. Instead we explore the Lagrangian characteristics of the problem for generating local displacement ensembles. These high-resolution state-dependent ensembles are then used to parameterize the background errors and generate 3D aerosol increments. The algorithm has computational complexity running at a resolution of 1/4 degree, globally. We will present the result of

  3. Evaluating Deterioration of Concrete by Sulfate Attack

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Effects of factors such as water to cement ratio, fly ash and silica fume on the resistance of concrete to sulfate attack were investigated by dry-wet cycles and immersion method. The index of the resistance to sulfate attack was used to evaluate the deterioration degree of concrete damaged by sulfate. The relationship between the resistance of concrete to sulfate attack and its permeability/porosity were analyzed as well as its responding mechanism. Results show that the depth of sulfate crystal attack from surface to inner of concrete can be reduced by decreasing w/c and addition of combining fly ash with silica fume. The variation of relative elastic modulus ratio and relative flexural strength ratio of various specimens before and after being subjected to sulfate attack was compared.

  4. Chondroitin Sulfate Perlecan Enhances Collagen Fibril Formation

    DEFF Research Database (Denmark)

    Kvist, A. J.; Johnson, A. E.; Mörgelin, M.;

    2006-01-01

    disaccharides typical for chondroitin sulfate E. Indeed, purified glycosaminoglycans from perlecan-enriched fractions of cartilage extracts contain elevated levels of 4,6-disulfated chondroitin sulfate disaccharides and enhance collagen fibril formation. The effect on collagen assembly is proportional to the...... content of the 4,6-disulfated disaccharide in the different cartilage extracts, with growth plate cartilage glycosaminoglycan being the most efficient enhancer. These findings demonstrate a role for perlecan chondroitin sulfate side chains in cartilage extracellular matrix assembly and provide an...... collagen type II fibril assembly by perlecan-null chondrocytes. Cartilage perlecan is a heparin sulfate or a mixed heparan sulfate/chondroitin sulfate proteoglycan. The latter form binds collagen and accelerates fibril formation in vitro, with more defined fibril morphology and increased fibril diameters...

  5. The global impact of the transport sectors on atmospheric aerosol in 2030 – Part 1: Land transport and shipping

    Directory of Open Access Journals (Sweden)

    M. Righi

    2015-01-01

    Full Text Available Using the EMAC (ECHAM/MESSy Atmospheric Chemistry global climate-chemistry model coupled to the aerosol module MADE (Modal Aerosol Dynamics model for Europe, adapted for global applications, we simulate the impact of land transport and shipping emissions on global atmospheric aerosol and climate in 2030. Future emissions of short-lived gas and aerosol species follow the four Representative Concentration Pathways (RCPs designed in support of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. We compare the resulting 2030 land-transport- and shipping-induced aerosol concentrations to the ones obtained for the year 2000 in a previous study with the same model configuration. The simulations suggest that black carbon and aerosol nitrate are the most relevant pollutants from land transport in 2000 and 2030 and their impacts are characterized by very strong regional variations during this time period. Europe and North America experience a decrease in the land-transport-induced particle pollution, although in these regions this sector remains a major source of surface-level pollution in 2030 under all RCPs. In Southeast Asia, however, a significant increase is simulated, but in this region the surface-level pollution is still controlled by other sources than land transport. Shipping-induced air pollution is mostly due to aerosol sulfate and nitrate, which show opposite trends towards 2030. Sulfate is strongly reduced as a consequence of sulfur reduction policies in ship fuels in force since 2010, while nitrate tends to increase due to the excess of ammonia following the reduction in ammonium sulfate. The aerosol-induced climate impact of both sectors is dominated by aerosol-cloud effects and is projected to decrease between 2000 and 2030, nevertheless still contributing a significant radiative forcing to Earth's radiation budget.

  6. Evaluation of Present-day Aerosols over China Simulated from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    Science.gov (United States)

    Liao, H.; Chang, W.

    2014-12-01

    High concentrations of aerosols over China lead to strong radiative forcing that is important for both regional and global climate. To understand the representation of aerosols in China in current global climate models, we evaluate extensively the simulated present-day aerosol concentrations and aerosol optical depth (AOD) over China from the 12 models that participated in Atmospheric Chemistry & Climate Model Intercomparison Project (ACCMIP), by using ground-based measurements and satellite remote sensing. Ground-based measurements of aerosol concentrations used in this work include those from the China Meteorological Administration (CMA) Atmosphere Watch Network (CAWNET) and the observed fine-mode aerosol concentrations collected from the literature. The ground-based measurements of AOD in China are taken from the AErosol RObotic NETwork (AERONET), the sites with CIMEL sun photometer operated by Institute of Atmospheric Physics, Chinese Academy of Sciences, and from Chinese Sun Hazemeter Network (CSHNET). We find that the ACCMIP models generally underestimate concentrations of all major aerosol species in China. On an annual mean basis, the multi-model mean concentrations of sulfate, nitrate, ammonium, black carbon, and organic carbon are underestimated by 63%, 73%, 54%, 53%, and 59%, respectively. The multi-model mean AOD values show low biases of 20-40% at studied sites in China. The ACCMIP models can reproduce seasonal variation of nitrate but cannot capture well the seasonal variations of other aerosol species. Our analyses indicate that current global models generally underestimate the role of aerosols in China in climate simulations.

  7. A multi-model evaluation of aerosols over South Asia: common problems and possible causes

    Science.gov (United States)

    Pan, X.; Chin, M.; Gautam, R.; Bian, H.; Kim, D.; Colarco, P. R.; Diehl, T. L.; Takemura, T.; Pozzoli, L.; Tsigaridis, K.; Bauer, S.; Bellouin, N.

    2015-05-01

    Atmospheric pollution over South Asia attracts special attention due to its effects on regional climate, water cycle and human health. These effects are potentially growing owing to rising trends of anthropogenic aerosol emissions. In this study, the spatio-temporal aerosol distributions over South Asia from seven global aerosol models are evaluated against aerosol retrievals from NASA satellite sensors and ground-based measurements for the period of 2000-2007. Overall, substantial underestimations of aerosol loading over South Asia are found systematically in most model simulations. Averaged over the entire South Asia, the annual mean aerosol optical depth (AOD) is underestimated by a range 15 to 44% across models compared to MISR (Multi-angle Imaging SpectroRadiometer), which is the lowest bound among various satellite AOD retrievals (from MISR, SeaWiFS (Sea-Viewing Wide Field-of-View Sensor), MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra). In particular during the post-monsoon and wintertime periods (i.e., October-January), when agricultural waste burning and anthropogenic emissions dominate, models fail to capture AOD and aerosol absorption optical depth (AAOD) over the Indo-Gangetic Plain (IGP) compared to ground-based Aerosol Robotic Network (AERONET) sunphotometer measurements. The underestimations of aerosol loading in models generally occur in the lower troposphere (below 2 km) based on the comparisons of aerosol extinction profiles calculated by the models with those from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data. Furthermore, surface concentrations of all aerosol components (sulfate, nitrate, organic aerosol (OA) and black carbon (BC)) from the models are found much lower than in situ measurements in winter. Several possible causes for these common problems of underestimating aerosols in models during the post-monsoon and wintertime periods are identified: the aerosol hygroscopic growth and formation of

  8. Sulfate-reducing bacteria in anaerobic bioreactors.

    OpenAIRE

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the occurrence of sulfate reduction was considered to be undesired. However, there are some recent developments in which sulfate reduction is optimized for the removal of sulfur compounds from waste streams. In...

  9. CLIMATE CHANGE ADAPTATION IN ACID SULFATE LANDSCAPES

    OpenAIRE

    Chuxia Lin

    2012-01-01

    Oxidation of sulfide minerals produces sulfuric acid and consequently creates Acid Sulfate Landscapes (ASLs), which represent one of the most degraded types of land-surface environments. Although acid sulfate-producing weathering is a naturally occurring process, it is markedly facilitated by human intervention. Mining is by far the dominant anthropogenic cause for the creation of inland acid sulfate footprints while land reclamation in coastal lowlands is the driver for the formation of coas...

  10. Methods for sulfate air quality management

    OpenAIRE

    Cass, Glen R.; McMurry, Pamela S.; Houseworth, James E

    1980-01-01

    Executive Summary Abstract: A study of methods for sulfate air quality control strategy design has been conducted. Analytical tools developed were tested within a case study of the nature and causes of the high sulfate concentrations observed in the Los Angeles area. A principal objective was to investigate the least costly means for sulfate air quality improvement in that locale. A long-run average emissions to air quality model was derived which computes pollutant concentrations fr...

  11. Utilization of Mineral Wools as Alkali-Activated Material Precursor

    Directory of Open Access Journals (Sweden)

    Juho Yliniemi

    2016-04-01

    Full Text Available Mineral wools are the most common insulation materials in buildings worldwide. However, mineral wool waste is often considered unrecyclable because of its fibrous nature and low density. In this paper, rock wool (RW and glass wool (GW were studied as alkali-activated material precursors without any additional co-binders. Both mineral wools were pulverized by a vibratory disc mill in order to remove the fibrous nature of the material. The pulverized mineral wools were then alkali-activated with a sodium aluminate solution. Compressive strengths of up to 30.0 MPa and 48.7 MPa were measured for RW and GW, respectively, with high flexural strengths measured for both (20.1 MPa for RW and 13.2 MPa for GW. The resulting alkali-activated matrix was a composite-type in which partly-dissolved fibers were dispersed. In addition to the amorphous material, sodium aluminate silicate hydroxide hydrate and magnesium aluminum hydroxide carbonate phases were identified in the alkali-activated RW samples. The only crystalline phase in the GW samples was sodium aluminum silicate. The results of this study show that mineral wool is a very promising raw material for alkali activation.

  12. Unraveling the Complexity of Atmospheric Aerosol: Insights from Ultrahigh Resolution Mass Spectrometry

    Science.gov (United States)

    Mazzoleni, Lynn R.; Zhao, Yunzhu; Samburova, Vera; Gannet Hallar, A.; Lowenthal, Douglas

    2016-04-01

    Atmospheric aerosol organic matter (AOM) is a complex mixture of thousands of organic compounds, which may have significant influence on the climate-relevant properties of atmospheric aerosols. An improved understanding of the molecular composition of AOM is needed to evaluate the effect of aerosol composition upon aerosol physical properties. Products of gas, aqueous and particle phase reactions contribute to the aerosol organic mass. Thus, ambient aerosols carry a complex array of AOM components with variable chemical signatures depending upon its origin and aerosol life-cycle processes. In this work, ultrahigh-resolution Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to characterize ambient aerosol AOM collected at the Storm Peak Laboratory (3210 m a.s.l.) near Steamboat Springs, CO. Thousands of molecular formulas were assigned in the mass range of m/z 100-800 after negative-ion electrospray ionization. Using multivariate statistical analysis, correlations between the site meteorological conditions and specific molecular compositions were identified. For example, days with strong UV radiation and high temperature were found to contain large numbers of biogenic SOA molecular formulas. Similarly, days with high relative humidity and high sulfate concentrations were found to contain many sulfur-containing compounds, suggesting their aqueous phase formation.

  13. Aerosol Effects on Radiation and Climate: Column Closure Experiments with Towers, Aircraft, and Satellites

    Science.gov (United States)

    Russell, Philip B.

    1994-01-01

    Many theoretical studies have shown that anthropogenic aerosol particles can change the radiation balance in an atmospheric column and might thereby exert a significant effect on the Earth's climate. In particular, recent calculations have shown that sulfate particles from anthropogenic combustion may already exert a cooling influence on the Earth that partially offsets the warming caused by the greenhouse gases from the same combustion. Despite the potential climatic importance of anthropogenic aerosols, simultaneous measurements of anthropogenic aerosol properties and their effect on atmospheric radiation have been very rare. Successful comparisons of measured radiation fields with those calculated from aerosol measurements - now referred to as column closure comparisons - are required to improve the accuracy and credibility of climate predictions. This paper reviews the column closure experiment performed at the Mt. Sutro Tower in San Francisco in 1975, in which elevated radiometers measured the change in Earth-plus-atmosphere albedo caused by an aerosol layer, while a lidar, sunphotometer, nephelometer, and other radiometers measured properties of the responsible aerosol. The time-dependent albedo calculated from the measured aerosol properties agreed with that measured by the tower radiometers. Also presented are designs for future column closure studies using radiometers and aerosol instruments on the ground, aircraft, and satellites. These designs draw upon algorithms and experience developed in the Sutro Tower study, as well as more recent experience with current measurement and analysis capabilities.

  14. Aerosol chemistry above an extended Archipelago of the Eastern Mediterranean basin during strong northern winds

    Directory of Open Access Journals (Sweden)

    E. Athanasopoulou

    2015-03-01

    Full Text Available Detailed aerosol chemical predictions by a carefully designed model system (i.e. PMCAMx, WRF, GEOS-CHEM, along with airborne and ground-based observations, are presented and analyzed over a wide domain covering the Aegean Archipelago. The studied period is ten successive days during the summer of 2011, characterized by the most frequent prevailing wind conditions (Etesian regime. The submicron aerosol load in the lower troposphere above the Archipelago (< 2.2 km altitude is homogenously enriched in sulfate (average modeled and measured submicron sulfate of 5.5 and 5.8 μg m−3, respectively, followed by organics (2.3 and 4.4 μg m−3 and ammonium (1.5 and 1.7 μg m−3. Aerosol concentrations smoothly decline aloft, reaching lower values (< 1 μg m−3 above 4.2 km altitude. Model performance is found good (according the selected evaluation criteria for sulfate, ammonium, chloride, elemental carbon, organic carbon and total PM10 mass concentration, indicating a satisfactory representation of the aerosol chemistry and precursors. Higher model discrepancies are confined to the highest (e.g. peak sulfate values and lowest ends (e.g. nitrate of the airborne aerosol mass size distribution, as well as in airborne organic concentrations (model underestimation around 50%. The latter is most probably related to the intense fire activity upwind the Archipelago (i.e. Balkan area and Black Sea coastline, which is not represented in the current model application. Overall, the model system shows the best agreement with observations under strong northeastern winds over the Archipelago and up to 2.2 km altitude. The activation of the chemical ageing of biogenic particles is suggested to be used for the aerosol chemistry module, when treating organics in a sufficient nitrogen and sulfate-rich environment, such as that over the Aegean basin. More than 70% of the predicted aerosol mass over the Aegean Archipelago during a representative Etesian episode is

  15. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  16. Sodium oxide aerosol filtration

    International Nuclear Information System (INIS)

    In the scope of the sodium aerosol trapping research effort by the CEA/DSN, the retention capacity and yield were measured for very high efficiency fiberglass filters and several types of prefilters (cyclone agglomerator, fabric prefilters, water scrubbers). (author)

  17. Simulating aerosol microphysics with the ECHAM4/MADE GCM – Part II: Results from a first multiannual simulation of the submicrometer aerosol

    Directory of Open Access Journals (Sweden)

    A. Lauer

    2006-01-01

    Full Text Available First results of a multiannual integration with the new global aerosol model system ECHAM4/MADE are presented. This model system enables simulations of the particle number concentration and size-distribution, which is a fundamental innovation compared to previous global model studies considering aerosol mass cycles only. The data calculated by the model provide detailed insights into the properties of the global submicrometer aerosol regarding global burden, chemical composition, atmospheric residence time, particle number concentration and size-distribution. The aerosol components considered by the model are sulfate (SO4, nitrate (NO3, ammonium (NH4, black carbon (BC, organic matter (OM, mineral dust, sea salt and aerosol water. The simulated climatological annual mean global atmospheric burdens (residence times of the dominant submicrometer aerosol components are 2.25 Tg (4.5 d for SO4, 0.46 Tg (4.5 d for NH4, 0.26 Tg (6.6 d for BC, and 1.77 Tg (6.5 d for OM. The contributions of individual processes such as emission, nucleation, condensation or dry and wet deposition to the global sources and sinks of specific aerosol components and particle number concentration are quantified. Based on this analysis, the significance of aerosol microphysical processes (nucleation, condensation, coagulation is evaluated by comparison to the importance of other processes relevant for the submicrometer aerosol on the global scale. The results reveal that aerosol microphysics are essential for the simulation of the particle number concentration and important but not vital for the simulation of particle mass concentration. Hence aerosol microphysics should be taken into account in simulations of atmospheric processes showing a significant dependence on aerosol particle number concentration. The analysis of the vertical variation of the microphysical net production and net depletion rates performed for particle number concentration, sulfate mass and black carbon

  18. Multiple oxygen and sulfur isotopic analyses on water-soluble sulfate in bulk atmospheric deposition from the southwestern United States

    Science.gov (United States)

    Bao, H.; Reheis, M.C.

    2003-01-01

    Sulfate is a major component of bulk atmospheric deposition (including dust, aerosol, fog, and rain). We analyzed sulfur and oxygen isotopic compositions of water-soluble sulfate from 40 sites where year-round dust traps collect bulk atmospheric deposition in the southwestern United States. Average sulfur and oxygen isotopic compositions (??34S and ??18O) are 5.8 ?? 1.4 (CDT) and 11.2 ?? 1.9 (SMOW) (n = 47), respectively. Samples have an oxygen 17 anomaly (?? 17O), with an average value of 1.0 ?? 0.6???. Except for a weak positive correlation between ??18O and ??17O values (r2 ??? 0.4), no correlation exists for ??18O versus ??34S, ?? 17O versus ??34S, or any of the three isotopic compositions versus elevation of the sample site. Exceptional positive ?? 17O values (up to 4.23???) are found in samples from sites in the vicinity of large cities or major highways, and near-zero ?? 17O values are found in samples close to dry lakes. Comparison of isotopic values of dust trap sulfate and desert varnish sulfate from the region reveals that varnish sulfate has average isotopic values that are ???4.8??? lower for ??18O, ???2.1??? higher for ??34S , and ???0.3??? lower for ?? 17O than those of the present-day bulk deposition sulfate. Although other factors could cause the disparity, this observation suggests a possibility that varnish sulfate may have recorded a long-term atmospheric sulfate deposition during the Holocene or Pleistocene, as well as the differences between sulfur and oxygen isotopic compositions of the preindustrial bulk deposition sulfate and those of the industrial era.

  19. Organic aerosol formation photo-enhanced by the formation of secondary photosensitizers in aerosols.

    Science.gov (United States)

    Aregahegn, Kifle Z; Nozière, Barbara; George, Christian

    2013-01-01

    Secondary organic aerosols (SOA), which are produced by the transformations of volatile organic compounds in the atmosphere, play a central role in air quality, public health, visibility and climate, but their formation and aging remain poorly characterized. This study evidences a new mechanism for SOA formation based on photosensitized particulate-phase chemistry. Experiments were performed with a horizontal aerosol flow reactor where the diameter growth of the particles was determined as a function of various parameters. In the absence of gas-phase oxidant, experiments in which ammonium sulfate seeds containing glyoxal were exposed to gas-phase limonene and UV light exhibited a photo-induced SOA growth. Further experiments showed that this growth was due to traces of imidazole-2-carboxaldehyde (IC) in the seeds, a condensation product of glyoxal acting as an efficient photosensitizer. Over a 19 min irradiation time, 50 nm seed particles containing this compound were observed to grow between 3.5 and 30 +/- 3% in the presence of either limonene, isoprene, alpha-pinene, beta-pinene, or toluene in concentrations between 1.8 and 352 ppmv. The other condensation products of glyoxal, imidazole (IM) and 2,2-bi1H-imidazole (BI), also acted as photosensitizer but with much less efficiency under the same conditions. In the atmosphere, glyoxal and potentially other gas precursors would thus produce efficient photosensitizers in aerosol and autophotocatalyze SOA growth. PMID:24601000

  20. The Influence of Tropical Air-Sea Interaction on the Climate Impact of Aerosols: A Hierarchical Modeling Approach

    Science.gov (United States)

    Hsieh, W. C.; Saravanan, R.; Chang, P.; Mahajan, S.

    2014-12-01

    In this study, we use a hierarchical modeling approach to investigate the influence of tropical air-sea feedbacks on climate impacts of aerosols in the Community Earth System Model (CESM). We construct four different models by coupling the atmospheric component of CESM, the Community Atmospheric Model (CAM), to four different ocean models: (i) the Data Ocean Model (DOM; prescribed SST), (i) Slab Ocean Model (SOM; thermodynamic coupling), (iii) Reduced Gravity Ocean Model (RGOM; dynamic coupling), and (iv) the Parallel Ocean Program (POP; full ocean model). These four models represent progressively increasing degree of coupling between the atmosphere and the ocean. The RGOM model, in particular, is tuned to produce a good simulation of ENSO and the associated tropical air-sea interaction, without being impacted by the climate drifts exhibited by fully-coupled GCMs. For each method of coupling, a pair of numerical experiments, including present day (year 2000) and preindustrial (year 1850) sulfate aerosol loading, were carried out. Our results indicate that the inclusion of air-sea interaction has large impacts on the spatial structure of the climate response induced by aerosols. In response to sulfate aerosol forcing, ITCZ shifts southwards as a result of the anomalous clockwise MMC change which transports moisture southwardly across the Equator. We present analyses of the regional response to sulfate aerosol forcing in the equatorial Pacific as well as the zonally-averaged response. The decomposition of the change in the net surface energy flux shows the most dominant terms are net shortwave radiative flux at the surface and latent heat flux. Further analyses show all ocean model simulations simulate a positive change of northward atmospheric energy transport across the Equator in response to the perturbed radiative sulfate forcing. This positive northward atmospheric energy transport change plays a role in compensating partially cooling caused by sulfate aerosols.

  1. Emergency protection from aerosols

    International Nuclear Information System (INIS)

    Expedient methods were developed that could be used by an average person, using only materials readily available, to protect himself and his family from injury by toxic (e.g., radioactive) aerosols. The most effective means of protection was the use of a household vacuum cleaner to maintain a small positive pressure on a closed house during passage of the aerosol cloud. Protection factors of 800 and above were achieved

  2. Emergency Protection from Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Cristy, G.A.

    2001-11-13

    Expedient methods were developed that could be used by an average person, using only materials readily available, to protect himself and his family from injury by toxic (e.g., radioactive) aerosols. The most effective means of protection was the use of a household vacuum cleaner to maintain a small positive pressure on a closed house during passage of the aerosol cloud. Protection factors of 800 and above were achieved.

  3. MISR Aerosol Typing

    Science.gov (United States)

    Kahn, Ralph A.

    2014-01-01

    AeroCom is an open international initiative of scientists interested in the advancement of the understanding of global aerosol properties and aerosol impacts on climate. A central goal is to more strongly tie and constrain modeling efforts to observational data. A major element for exchanges between data and modeling groups are annual meetings. The meeting was held September 20 through October 2, 1014 and the organizers would like to post the presentations.

  4. Low-frequency Raman scattering in alkali tellurite glasses

    Indian Academy of Sciences (India)

    Angelos G Kalampounias

    2008-10-01

    Raman scattering has been employed to study the alkali-cation size dependence and the polarization characteristics of the low-frequency modes for the glass-forming tellurite mixtures, 0.1M2O–0.9TeO2 (M = Na, K, Rb and Cs). The analysis has shown that the Raman coupling coefficient alters by varying the type of the alkali cation. The addition of alkali modifier in the tellurite network leads to the conversion of the TeO4 units to TeO3 units with a varying number of non-bridging oxygen atoms. Emphasis has also been given to the lowfrequency modes and particular points related to the low-frequency Raman phenomenology are discussed in view of the experimental findings.

  5. Oscillation Frequencies for Simultaneous Trapping of Heteronuclear Alkali Atoms

    CERN Document Server

    Kaur, Kiranpreet; Arora, Bindiya

    2016-01-01

    We investigate oscillation frequencies for simultaneous trapping of more than one type of alkali atoms in a common optical lattice. For this purpose, we present numerical results for magic trapping conditions, where the oscillation frequencies for two different kind of alkali atoms using laser lights in the wavelength range 500-1200 nm are same. These wavelengths will be of immense interest for studying static and dynamic properties of boson-boson, boson-fermion, fermion-fermion, and boson-boson-boson mixtures involving different isotopes of Li, Na, K, Rb, Cs and Fr alkali atoms. In addition to this, we were also able to locate a magic wavelength around 808.1 nm where all the three Li, K, and Rb atoms are found to be suitable for oscillating at the same frequency in a common optical trap.

  6. Characterization of alkali-modified soy protein concentrate

    Directory of Open Access Journals (Sweden)

    Barać Miroljub B.

    2005-01-01

    Full Text Available To study the influence of the preparation mode, including mild alkali modification, of soy protein concentrate on soluble protein content and composition, some of its nutritive and functional properties were investigated. Soy protein concentrate prepared by aqueous alcohol leaching was modified in mild alkaline solutions (pH 8.0 at 40, 50 and 60° C for 60 minutes and compared with two principal types of commercial soy protein concentrate. Soluble protein content, composition and properties of soy protein concentrate, as well as their potential use are essentially determined by the preparation mode. Limited mild alkali hydrolysis increased protein solubility by 40-71%, while emulsion stability was increased by 18-56%. Major storage soybean proteins exhibited different stability to alcohol denaturation and mild alkali modification. The most susceptible were acidic -A3 - and -A5- subunits of glycinin.

  7. Expanding the 3-O-Sulfate Proteome-Enhanced Binding of Neuropilin-1 to 3-O-Sulfated Heparan Sulfate Modulates Its Activity.

    Science.gov (United States)

    Thacker, Bryan E; Seamen, Emylie; Lawrence, Roger; Parker, Matthew W; Xu, Yongmei; Liu, Jian; Vander Kooi, Craig W; Esko, Jeffrey D

    2016-04-15

    Binding of proteins to heparan sulfate is driven predominantly by electrostatic interactions between positively charged amino acid residues in the protein and negatively charged sulfate groups located at various positions along the polysaccharide chain. Although many heparin/heparan-sulfate-binding proteins have been described, few exhibit preferential binding for heparan sulfates containing relatively rare 3-O-sulfated glucosamine residues. To expand the "3-O-sulfate proteome," affinity matrices were created from Chinese hamster ovary (CHO) cell heparan sulfate engineered in vitro with and without 3-O-sulfate groups. Fractionation of different animal sera yielded several proteins that bound specifically to columns containing 3-O-sulfated heparan sulfate modified by two members of the heparan sulfate 3-O-sulfotransferase superfamily, Hs3st1 and Hs3st2. Neuropilin-1 was analyzed in detail because it has been implicated in angiogenesis and axon guidance. We show that 3-O-sulfation enhanced the binding of neuropilin-1 to heparan sulfate immobilized on plastic plates and to heparan sulfate present on cultured cells. Chemoenzymatically synthesized 3-O-sulfated heparan sulfate dodecamers protected neuropilin-1 from thermal denaturation and inhibited neuropilin-1-dependent, semaphorin-3a-induced growth cone collapse of neurons derived from murine dorsal root ganglia. The effect of 3-O-sulfation was cell autonomous and specific to Hs3st2 based on collapse assays of neurons derived from Hs3st1- and Hs3st2-deficient mice. Finally, 3-O-sulfated heparan sulfate enhanced the inhibition of endothelial cell sprouting by exogenous heparan sulfate. These findings demonstrate a reliable method to identify members of the 3-O-sulfate proteome and that 3-O-sulfation of heparan sulfate can modulate axonal growth cone collapse and endothelial cell sprouting. PMID:26731579

  8. Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1)

    Science.gov (United States)

    Pringle, K. J.; Tost, H.; Message, S.; Steil, B.; Giannadaki, D.; Nenes, A.; Fountoukis, C.; Stier, P.; Vignati, E.; Lelieveld, J.

    2010-09-01

    We present a new aerosol microphysics and gas aerosol partitioning submodel (Global Modal-aerosol eXtension, GMXe) implemented within the ECHAM/MESSy Atmospheric Chemistry model (EMAC, version 1.8). The submodel is computationally efficient and is suitable for medium to long term simulations with global and regional models. The aerosol size distribution is treated using 7 log-normal modes and has the same microphysical core as the M7 submodel (Vignati et al., 2004). The main developments in this work are: (i) the extension of the aerosol emission routines and the M7 microphysics, so that an increased (and variable) number of aerosol species can be treated (new species include sodium and chloride, and potentially magnesium, calcium, and potassium), (ii) the coupling of the aerosol microphysics to a choice of treatments of gas/aerosol partitioning to allow the treatment of semi-volatile aerosol, and, (iii) the implementation and evaluation of the developed submodel within the EMAC model of atmospheric chemistry. Simulated concentrations of black carbon, particulate organic matter, dust, sea spray, sulfate and ammonium aerosol are shown to be in good agreement with observations (for all species at least 40% of modeled values are within a factor of 2 of the observations). The distribution of nitrate aerosol is compared to observations in both clean and polluted regions. Concentrations in polluted continental regions are simulated quite well, but there is a general tendency to overestimate nitrate, particularly in coastal regions (geometric mean of modelled values/geometric mean of observed data ≈2). In all regions considered more than 40% of nitrate concentrations are within a factor of two of the observations. Marine nitrate concentrations are well captured with 96% of modeled values within a factor of 2 of the observations.

  9. Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1

    Directory of Open Access Journals (Sweden)

    K. J. Pringle

    2010-05-01

    Full Text Available We present a new aerosol microphysics and gas aerosol partitioning submodel (Global Modal-aerosol eXtension, GMXe implemented within the ECHAM/MESSy Atmospheric Chemistry model (EMAC, version 1.8. The submodel is computationally efficient and is suitable for medium to long term simulations with global and regional models. The aerosol size distribution is treated using 7 log-normal modes and has the same microphysical core as the M7 submodel (Vignati et al., 2004.

    The main developments in this work are: (i the extension of the aerosol emission routines and the M7 microphysics, so that an increased (and variable number of aerosol species can be treated (new species include sodium and chloride, and potentially magnesium, calcium, and potassium, (ii the coupling of the aerosol microphysics to a choice of treatments of gas/aerosol partitioning to allow the treatment of semi-volatile aerosol, and, (iii the implementation and evaluation of the developed submodel within the EMAC model of atmospheric chemistry.

    Simulated concentrations of black carbon, particulate organic matter, dust, sea spray, sulfate and ammonium aerosol are shown to be in good agreement with observations (for all species at least 40% of modeled values are within a factor of 2 of the observations. The distribution of nitrate aerosol is compared to observations in both clean and polluted regions. Concentrations in polluted continental regions are simulated quite well, but there is a general tendency to overestimate nitrate, particularly in coastal regions (geometric mean of modelled values/geometric mean of observed data ≈2. In all regions considered more than 40% of nitrate concentrations are within a factor of two of the observations. Marine nitrate concentrations are well captured with 96% of modeled values within a factor of 2 of the observations.

  10. A comprehensive climatology of Arctic aerosol properties on the North Slope of Alaska

    Science.gov (United States)

    Creamean, Jessie; de Boer, Gijs; Shupe, Matthew; McComiskey, Allison

    2016-04-01

    Evaluating aerosol properties has implications for the formation of Arctic clouds, resulting in impacts on cloud lifetime, precipitation processes, and radiative forcing. There are many remaining uncertainties and large discrepancies regarding modeled and observed Arctic aerosol properties, illustrating the need for more detailed observations to improve simulations of Arctic aerosol and more generally, projections of the components of the aerosol-driven processes that impact sea ice loss/gain. In particular, the sources and climatic effects of Arctic aerosol particles are severely understudied. Here, we present a comprehensive, long-term record of aerosol observations from the North Slope of Alaska baseline site at Barrow. These measurements include sub- and supermicron (up to 10 μm) total mass and number concentrations, sub- and supermicron soluble inorganic and organic ion concentrations, submicron metal concentrations, submicron particle size distributions, and sub- and supermicron absorption and scattering properties. Aerosol extinction and number concentration measurements extend back to 1976, while the remaining measurements were implemented since. Corroboration between the chemical, physical, and optical property measurements is evident during periods of overlapping observations, demonstrating the reliability of the measurements. During the Arctic Haze in the winter/spring, high concentrations of long-range transported submicron sea salt, mineral dust, industrial metals, pollution (non-sea salt sulfate, nitrate, ammonium), and biomass burning species are observed concurrent with higher concentrations of particles with sizes that span the submicron range, enhanced absorption and scattering coefficients, and largest Ångström exponents. The summer is characterized by high concentrations of small biogenic aerosols (extinction coefficients. Fall is characterized by clean conditions, with supermicron sea salt representing the dominant aerosol type supporting

  11. A comprehensive climatology of Arctic aerosol properties on the North Slope of Alaska

    Science.gov (United States)

    Creamean, Jessie; de Boer, Gijs; Shupe, Matthew; McComiskey, Allison

    2016-04-01

    Evaluating aerosol properties has implications for the formation of Arctic clouds, resulting in impacts on cloud lifetime, precipitation processes, and radiative forcing. There are many remaining uncertainties and large discrepancies regarding modeled and observed Arctic aerosol properties, illustrating the need for more detailed observations to improve simulations of Arctic aerosol and more generally, projections of the components of the aerosol-driven processes that impact sea ice loss/gain. In particular, the sources and climatic effects of Arctic aerosol particles are severely understudied. Here, we present a comprehensive, long-term record of aerosol observations from the North Slope of Alaska baseline site at Barrow. These measurements include sub- and supermicron (up to 10 μm) total mass and number concentrations, sub- and supermicron soluble inorganic and organic ion concentrations, submicron metal concentrations, submicron particle size distributions, and sub- and supermicron absorption and scattering properties. Aerosol extinction and number concentration measurements extend back to 1976, while the remaining measurements were implemented since. Corroboration between the chemical, physical, and optical property measurements is evident during periods of overlapping observations, demonstrating the reliability of the measurements. During the Arctic Haze in the winter/spring, high concentrations of long-range transported submicron sea salt, mineral dust, industrial metals, pollution (non-sea salt sulfate, nitrate, ammonium), and biomass burning species are observed concurrent with higher concentrations of particles with sizes that span the submicron range, enhanced absorption and scattering coefficients, and largest Ångström exponents. The summer is characterized by high concentrations of small biogenic aerosols (coefficients. Fall is characterized by clean conditions, with supermicron sea salt representing the dominant aerosol type supporting the highest

  12. Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1

    Directory of Open Access Journals (Sweden)

    K. J. Pringle

    2010-09-01

    Full Text Available We present a new aerosol microphysics and gas aerosol partitioning submodel (Global Modal-aerosol eXtension, GMXe implemented within the ECHAM/MESSy Atmospheric Chemistry model (EMAC, version 1.8. The submodel is computationally efficient and is suitable for medium to long term simulations with global and regional models. The aerosol size distribution is treated using 7 log-normal modes and has the same microphysical core as the M7 submodel (Vignati et al., 2004.

    The main developments in this work are: (i the extension of the aerosol emission routines and the M7 microphysics, so that an increased (and variable number of aerosol species can be treated (new species include sodium and chloride, and potentially magnesium, calcium, and potassium, (ii the coupling of the aerosol microphysics to a choice of treatments of gas/aerosol partitioning to allow the treatment of semi-volatile aerosol, and, (iii the implementation and evaluation of the developed submodel within the EMAC model of atmospheric chemistry.

    Simulated concentrations of black carbon, particulate organic matter, dust, sea spray, sulfate and ammonium aerosol are shown to be in good agreement with observations (for all species at least 40% of modeled values are within a factor of 2 of the observations. The distribution of nitrate aerosol is compared to observations in both clean and polluted regions. Concentrations in polluted continental regions are simulated quite well, but there is a general tendency to overestimate nitrate, particularly in coastal regions (geometric mean of modelled values/geometric mean of observed data ≈2. In all regions considered more than 40% of nitrate concentrations are within a factor of two of the observations. Marine nitrate concentrations are well captured with 96% of modeled values within a factor of 2 of the observations.

  13. The "Parade Blue": effects of short-term emission control on aerosol chemistry.

    Science.gov (United States)

    Li, Haiyan; Zhang, Qiang; Duan, Fengkui; Zheng, Bo; He, Kebin

    2016-07-18

    The strict control on emissions implemented in Beijing, China, during the 2015 China Victory Day Parade (V-day Parade) to commemorate the 70(th) Anniversary of Victory in World War II, provided a good opportunity to investigate the relationship between emission sources and aerosol chemistry in a heavily polluted megacity. From August 11 to September 3, 2015, an Aerosol Chemical Speciation Monitor was deployed in urban Beijing, together with other collocated instruments, for the real-time measurement of submicron aerosol characteristics. The average PM1 mass concentration was 11.3 (±6.7) μg m(-3) during the V-day Parade, 63.5% lower than that before the V-day Parade. Differently to the relatively smaller decrease of organics (53%), secondary inorganic aerosols (sulfate, nitrate and ammonium) showed significant reductions of 65-78% during the V-day Parade. According to the positive matrix factorization results, primary organic aerosol (POA) from traffic and cooking emissions decreased by 41.5% during the parade, whereas secondary organic aerosol (SOA) presented a much greater reduction (59%). The net effectiveness of emission control measures was investigated further under comparable weather conditions before and during the parade. By excluding the effects of meteorological parameters, the total PM1 mass was reduced by 52-57% because of the emission controls. Although the mass concentrations of aerosol species were reduced substantially, the PM1 bulk composition was similar before and during the control period as a consequence of synergetic control of various precursors. The emission restrictions also suppressed the secondary formation processes of sulfate and nitrate, indicated by the substantially reduced SOR and NOR (molar ratios of sulfate or nitrate to the sums of the sulfate and SO2 or nitrate and NO2) during the event. The study also explored the influence of emission controls on the evolution of organic aerosol using the mass ratios of SOA/POA and oxygen

  14. Chemical composition, main sources and temporal variability of PM1 aerosols in southern African grassland

    Directory of Open Access Journals (Sweden)

    P. Tiitta

    2013-06-01

    Full Text Available Southern Africa is a significant source region of atmospheric pollution, yet long-term data on pollutant concentrations and properties from this region are rather limited. A recently established atmospheric measurement station in South Africa, Welgegund, is strategically situated to capture regional background emissions, as well as emissions from the major source regions in the interior of South Africa. We measured non-refractive submicron aerosols (NR-PM1 and black carbon over a one year period in Welgegund, and investigated the seasonal and diurnal patterns of aerosol concentration levels, chemical composition, acidity and oxidation level. Based on air mass back trajectories, four distinct source regions were determined for NR-PM1. Supporting data utilized in our analysis included particle number size distributions, aerosol absorption, trace gas concentrations, meteorological variables and the flux of carbon dioxide. The dominant submicron aerosol constituent during the dry season was organic aerosol, reflecting high contribution from savannah fires and other combustion sources. Organic aerosol concentrations were lower during the wet season, presumably due to wet deposition as well as reduced emissions from combustion sources. Sulfate concentrations were usually high and exceeded organic aerosol concentrations when air-masses were transported over regions containing major point sources. Sulfate and nitrate concentrations peaked when air masses passed over the industrial Highveld (iHV area. In contrast, concentrations were much lower when air masses passed over the cleaner background (BG areas. Air masses associated with the anti-cyclonic recirculation (ACBIC source region contained largely aged OA. Positive Matrix Factorization (PMF analysis of aerosol mass spectra was used to characterize the organic aerosol (OA properties. The factors identified were oxidized organic aerosols (OOA and biomass burning organic aerosols (BBOA in the dry season

  15. Thermodynamic modelling of alkali-activated slag cements

    International Nuclear Information System (INIS)

    Highlights: • A thermodynamic modelling analysis of alkali-activated slag cements is presented. • Thermodynamic database describes zeolites, alkali carbonates, C–(N–)A–S–H gel. • Updated thermodynamic model for Mg–Al layered double hydroxides. • Description of phase assemblages in Na2SiO3- and Na2CO3-activated slag cements. • Phase diagrams for NaOH-activated and Na2SiO3-activated slag cements are simulated. - Abstract: This paper presents a thermodynamic modelling analysis of alkali-activated slag-based cements, which are high performance and potentially low-CO2 binders relative to Portland cement. The thermodynamic database used here contains a calcium (alkali) aluminosilicate hydrate ideal solid solution model (CNASH-ss), alkali carbonate and zeolite phases, and an ideal solid solution model for a hydrotalcite-like Mg–Al layered double hydroxide phase. Simulated phase diagrams for NaOH- and Na2SiO3-activated slag-based cements demonstrate the high stability of zeolites and other solid phases in these materials. Thermodynamic modelling provides a good description of the chemical compositions and types of phases formed in Na2SiO3-activated slag cements over the most relevant bulk chemical composition range for these cements, and the simulated volumetric properties of the cement paste are consistent with previously measured and estimated values. Experimentally determined and simulated solid phase assemblages for Na2CO3-activated slag cements were also found to be in good agreement. These results can be used to design the chemistry of alkali-activated slag-based cements, to further promote the uptake of this technology and valorisation of metallurgical slags

  16. A perspective on SOA generated in aerosol water from glyoxal and methylglyoxal and its impacts on climate-relevant aerosol properties

    Science.gov (United States)

    Sareen, N.; McNeill, V. F.

    2011-12-01

    In recent years, glyoxal and methylglyoxal have emerged to be potentially important SOA precursors with significant implications for climate-related aerosol properties. Here we will discuss how the chemistry of these and similar organic compounds in aerosol water can affect the aerosol optical and cloud formation properties. Aqueous-phase SOA production from glyoxal and methylglyoxal is a potential source of strongly light-absorbing organics, or "brown carbon". We characterized the kinetics of brown carbon formation from these precursors in mixtures of ammonium sulfate and water using UV-Vis spectrophotometry. This mechanism has been incorporated into a photochemical box model with coupled gas phase-aqueous aerosol chemistry. Methylglyoxal and related compounds also may impact an aerosol's ability to act as a cloud condensation nucleus. We recently showed via pendant drop tensiometry and aerosol chamber studies that uptake of methylglyoxal from the gas phase driven by aqueous-phase oligomerization chemistry is a potentially significant, previously unidentified source of surface-active organic material in aerosols. Results from pendant drop tensiometry showed significantly depressed surface tension in methylglyoxal-ammonium sulfate solutions. We further found that ammonium sulfate particles exposed to gas-phase methylglyoxal in a 3.5 m3 aerosol reaction chamber activate into cloud droplets at sizes up to 15% lower at a given supersaturation than do pure ammonium sulfate particles. The observed enhancement exceeds that predicted based on Henry's Law and our measurements of surface tension depression in bulk solutions, suggesting that surface adsorption of methylglyoxal plays a role in determining CCN activity. Methylglyoxal and similar gas-phase surfactants may be an important and overlooked source of enhanced CCN activity in the atmosphere. To characterize the SOA products formed in these solutions, an Aerosol Chemical Ionization Mass Spectrometer (CIMS) was used

  17. Heat transfer characteristics of alkali metals flowing across tube banks

    International Nuclear Information System (INIS)

    For the purpose of getting heat transfer coefficients of alkali metals flowing across tube banks at an acceptable level, we propose to use an inviscid-irrotational flow model, which is based on our flow visualization experiment. We show that the heat transfer coefficients obtained for the condition where only the test rod is heated in tube banks considerably differ from those obtained for the condition where all the rods are heated, because of interference between thick thermal boundary layers of alkali metals. We also confirm that the analytical values obtained by this flow model are in a reasonable agreement with experimental values. (author)

  18. Stability analysis for complexes in calcium-alkali bromide solutions

    International Nuclear Information System (INIS)

    We discuss the dependence of the stability of tetrahedral complexes in molten halide mixtures on the halogen species. This is done by calculating the equilibrium concentration of (CaBr4)2- complexes in calcium-alkali bromide solutions as a function of composition, in comparison with earlier calculations on the calcium-alkali chloride systems. The comparison supports a possible trend of increasing stability from chlorides to bromides, provided that halogen polarizability or chemical bonding contribute appreciably to the binding of a complex. Supporting evidence is noted and further experiments are suggested. (author). 10 refs, 2 figs

  19. Investigation of solid surfaces by nuclear spin polarized alkali atoms

    International Nuclear Information System (INIS)

    Nuclear spin polarized alkali atom beams are used to investigate metal surfaces. The surface diffusion of the alkali atoms on the surface results in a randomly fluctuating electric field gradient. The relaxation is measured in dependence of the surface temperature. Using an additional external RF field, also NMR measurement can be performed. Besides some fluctuating components of the EFG which cause the relaxation process, there is also a static part of the EFG. This results in an energy splitting of the nuclear spin states and can be detected by the NMR experiments. (Auth.)

  20. Electron Mean-Free Paths in the Alkali Metals

    OpenAIRE

    Wertheim, G.K.; Riffe, D. Mark; Smith, N.V.; Citrin, P. H.

    1992-01-01

    Photoemission data in which the signal from the first atomic layer is well resolved from that of the bulk are used to determine accurately the kinetic-energy dependence of the inelastic-electron mean free path in the alkali metals. At the higher kinetic energies, the data are in very good agreement with the theory of Penn. Below about 10 eV, the mean free path in the heavier alkali metals drops markedly below the theoretical values. This is attributed to electron decay processes involvi...

  1. MINERALOGICAL FEATURES OF ULTRAMAFIC HYPOXENOLITHS IN ALKALI-RICH PORPHYRY

    Institute of Scientific and Technical Information of China (English)

    LIU Xianfan; YANG Zhengxi; LIU Jiaduo; ZHANG Chengjiang; WU Dechao; LI Youguo

    2003-01-01

    Ultramafic hypoxenoliths found in the alkali-rich porphyry in the Liuhe Village, Heqing, Yunnan,China, are of great significance in understanding the origin and evolution of the porphyry. This paper discusses the mineralogical features of the hypoxenoliths. It shows that the xenoliths are characterized by the upper mantle rocks modified to certain extent by the enriched mantle fluid metasomatism in the mantle environment, with the enriched mantle property of Iow-degree partial melting. This constitutes the important mineralogical evidence for the petrogenesis and mineralization of alkali-rich porphyry.

  2. Reactive processing of formaldehyde and acetaldehyde in aqueous aerosol mimics: surface tension depression and secondary organic products

    Directory of Open Access Journals (Sweden)

    Z. Li

    2011-07-01

    Full Text Available The reactive uptake of carbonyl-containing volatile organic compounds (cVOCs by aqueous atmospheric aerosols is a likely source of particulate organic material. The aqueous-phase secondary organic products of some cVOCs are surface-active. Therefore, cVOC uptake can lead to organic film formation at the gas-aerosol interface and changes in aerosol surface tension. We examined the chemical reactions of two abundant cVOCs, formaldehyde and acetaldehyde, in water and aqueous ammonium sulfate (AS solutions mimicking tropospheric aerosols. Secondary organic products were identified using Aerosol Chemical Ionization Mass Spectrometry (Aerosol-CIMS, and changes in surface tension were monitored using pendant drop tensiometry. Hemiacetal oligomers and aldol condensation products were identified using Aerosol-CIMS. A hemiacetal sulfate ester was tentatively identified in the formaldehyde-AS system. Acetaldehyde depresses surface tension to 65(±2 dyn cm−1 in pure water and 62(±1 dyn cm−1 in AS solutions. Surface tension depression by formaldehyde in pure water is negligible; in AS solutions, a 9 % reduction in surface tension is observed. Mixtures of these species were also studied in combination with methylglyoxal in order to evaluate the influence of cross-reactions on surface tension depression and product formation in these systems. We find that surface tension depression in the solutions containing mixed cVOCs exceeds that predicted by an additive model based on the single-species isotherms.

  3. Reactive processing of formaldehyde and acetaldehyde in aqueous aerosol mimics: Surface tension depression and secondary organic products

    CERN Document Server

    Li, Zhi; Sareen, Neha; McNeill, V Faye

    2011-01-01

    The reactive uptake of carbonyl-containing volatile organic compounds (cVOCs) by aqueous atmospheric aerosols is a likely source of particulate organic material. The aqueous-phase secondary organic products of some cVOCs are surface-active. Therefore, cVOC uptake can lead to organic film formation at the gas-aerosol interface and changes in aerosol surface tension. We examined the chemical reactions of two abundant cVOCs, formaldehyde and acetaldehyde, in water and aqueous ammonium sulfate (AS) solutions mimicking tropospheric aerosols. Secondary organic products were identified using Aerosol Chemical Ionization Mass Spectrometry (Aerosol-CIMS), and changes in surface tension were monitored using pendant drop tensiometry. Hemiacetal oligomers and aldol condensation products were identified using Aerosol-CIMS. A hemiacetal sulfate ester was tentatively identified in the formaldehyde-AS system. Acetaldehyde depresses surface tension to 65(\\pm2) dyn/cm in pure water and 62(\\pm1) dyn/cm in AS solutions. Surface t...

  4. Microanalysis of the aerosol collected over south-central New Mexico during the alive field experiment, May-December 1989

    Science.gov (United States)

    Sheridan, Patrick J.; Schnell, Russel C.; Kahl, Jonathan D.; Boatman, Joe F.; Garvey, Dennis M.

    Thirty-eight size-segregated aerosol samples were collected in the lower troposphere over the high desert of south-central New Mexico, using cascade impactors mounted onboard two research aircraft. Four of these samples were collected in early May, sixteen in mid-July, and the remaining ones in December 1989, during three segments of the ALIVE field initiative. Analytical electron microscope analyses of aerosol deposits and individual particles from these samples were performed to physically and chemically characterize the major particulate species present in the aerosol. Air-mass trajectories arriving at the sampling area in the May program were quite different from those calculated for the July period. In general, the May trajectories showed strong westerly winds, while the July winds were weaker and southerly, consistently passing over or very near the border cities of El Paso, Texas, and Ciudad Juarez, Mexico. Aerosol samples collected during the May period were predominantly fine (0.1-0.5 μm dia.), liquid H 2SO 4 droplets. Samples from the July experiment were comprised mostly of fine, solid (NH 4) 2SO 4 or mostly neutralized sulfate particles. In both sampling periods, numerous other particle classes were observed, including many types with probable terrestrial or anthropogenic sources. The numbers of these particles, however, were small when compared with the sulfates. Composite particle types, including sulfate/crustal and sulfate/carbonaceous, were also found to be present. The major differences in aerosol composition between the May and July samples (i.e. the extensive neutralization of sulfates in the July samples) can be explained by considering the different aerosol transport pathways and the proximity of the July aerosol to the El Paso/Juarez urban plume. Winds during the December experiment were quite variable, and may have contributed to the widely varying aerosol compositions observed in these samples. When the aircraft sampled the El Paso

  5. The Influence of 1-Butanol and Trisodium Citrate Ion on Morphology and Chemical Properties of Chitosan-Based Microcapsules during Rigidification by Alkali Treatment

    Directory of Open Access Journals (Sweden)

    Sudipta Chatterjee

    2014-12-01

    Full Text Available Linseed oil which has various biomedical applications was encapsulated by chitosan (Chi-based microcapsules in the development of a suitable carrier. Oil droplets formed in oil-in-water emulsion using sodium dodecyl sulfate (SDS as emulsifier was stabilized by Chi, and microcapsules with multilayers were formed by alternate additions of SDS and Chi solutions in an emulsion through electrostatic interaction. No chemical cross-linker was used in the study and the multilayer shell membrane was formed by ionic gelation using Chi and SDS. The rigidification of the shell membrane of microcapsules was achieved by alkali treatment in the presence of a small amount of 1-butanol to reduce aggregation. A trisodium citrate solution was used to stabilize the charge of microcapsules by ionic cross-linking. Effects of butanol during alkali treatment and citrate in post alkali treatment were monitored in terms of morphology and the chemical properties of microcapsules. Various characterization techniques revealed that the aggregation was decreased and surface roughness was increased with layer formation.

  6. Assessment of Aerosol Distributions from GEOS-5 Using the CALIPSO Feature Mask

    Science.gov (United States)

    Welton, Ellsworth

    2010-01-01

    A-train sensors such as MODIS, MISR, and CALIPSO are used to determine aerosol properties, and in the process a means of estimating aerosol type (e.g. smoke vs. dust). Correct classification of aerosol type is important for climate assessment, air quality applications, and for comparisons and analysis with aerosol transport models. The Aerosols-Clouds-Ecosystems (ACE) satellite mission proposed in the NRC Decadal Survey describes a next generation aerosol and cloud suite similar to the current A-train, including a lidar. The future ACE lidar must be able to determine aerosol type effectively in conjunction with modeling activities to achieve ACE objectives. Here we examine the current capabilities of CALIPSO and the NASA Goddard Earth Observing System general circulation model and data assimilation system (GEOS-5), to place future ACE needs in context. The CALIPSO level 2 feature mask includes vertical profiles of aerosol layers classified by type. GEOS-5 provides global 3D aerosol mass for sulfate, sea salt, dust, and black and organic carbon. A GEOS aerosol scene classification algorithm has been developed to provide estimates of aerosol mixtures and extinction profiles along the CALIPSO orbit track. In previous work, initial comparisons between GEOS-5 derived aerosol mixtures and CALIPSO derived aerosol types were presented for July 2007. In general, the results showed that model and lidar derived aerosol types did not agree well in the boundary layer. Agreement was poor over Europe, where CALIPSO indicated the presence of dust and pollution mixtures yet GEOS-5 was dominated by pollution with little dust. Over the ocean in the tropics, the model appeared to contain less sea salt than detected by CALIPSO, yet at high latitudes the situation was reserved. Agreement between CALIPSO and GEOS-5, aerosol types improved above the boundary layer, primarily in dust and smoke dominated regions. At higher altitudes (> 5 km), the model contained aerosol layers not detected

  7. Impacts of aerosol-cloud interactions on past and future changes in tropospheric composition

    Directory of Open Access Journals (Sweden)

    N. Unger

    2009-06-01

    Full Text Available The development of effective emissions control policies that are beneficial to both climate and air quality requires a detailed understanding of all the feedbacks in the atmospheric composition and climate system. We perform sensitivity studies with a global atmospheric composition-climate model to assess the impact of aerosols on tropospheric chemistry through their modification on clouds, aerosol-cloud interactions (ACI. The model includes coupling between both tropospheric gas-phase and aerosol chemistry and aerosols and liquid-phase clouds. We investigate past impacts from preindustrial (PI to present day (PD and future impacts from PD to 2050 (for the moderate IPCC A1B scenario that embrace a wide spectrum of precursor emission changes and consequential ACI. The aerosol indirect effect (AIE is estimated to be −2.0 Wm−2 for PD-PI and −0.6 Wm−2 for 2050-PD, at the high end of current estimates. Inclusion of ACI substantially impacts changes in global mean methane lifetime across both time periods, enhancing the past and future increases by 10% and 30%, respectively. In regions where pollution emissions increase, inclusion of ACI leads to 20% enhancements in in-cloud sulfate production and ~10% enhancements in sulfate wet deposition that is displaced away from the immediate source regions. The enhanced in-cloud sulfate formation leads to larger increases in surface sulfate across polluted regions (~10–30%. Nitric acid wet deposition is dampened by 15–20% across the industrialized regions due to ACI allowing additional re-release of reactive nitrogen that contributes to 1–2 ppbv increases in surface ozone in outflow regions. Our model findings indicate that ACI must be considered in studies of methane trends and projections of future changes to particulate matter air quality.

  8. CLIMATE CHANGE ADAPTATION IN ACID SULFATE LANDSCAPES

    Directory of Open Access Journals (Sweden)

    Chuxia Lin

    2012-01-01

    Full Text Available Oxidation of sulfide minerals produces sulfuric acid and consequently creates Acid Sulfate Landscapes (ASLs, which represent one of the most degraded types of land-surface environments. Although acid sulfate-producing weathering is a naturally occurring process, it is markedly facilitated by human intervention. Mining is by far the dominant anthropogenic cause for the creation of inland acid sulfate footprints while land reclamation in coastal lowlands is the driver for the formation of coastal ASLs. The projected climate change highlights the possibility of an increase in the frequency and severity of extreme weather events such as droughts and heavy rains, which is likely to accelerate the acid generation in some circumstances and increase the frequency and magnitude of acid discharge. Sea level rise as a result of global warming will cause additional problems with the coastal ASLs. This is a review article. The following aspects are covered: (a the overriding biogeochemical processes leading to acid sulfate-producing weathering, (b a brief introduction to the inland acid sulfate landscapes, (c a brief introduction to the coastal acid sulfate landscapes, (d the likely impacts of climate change on ASLs and (e the possible measures to combat climate change-induced environmental degradation in the identified key acid sulfate footprints. The projected climate change is like to significantly affect the acid sulfate landscapes in different ways. Appropriate management strategies and cost-effective technologies need to be developed in order to minimize the climate change-induced ecological degradation.

  9. Rat pro-opiomelanocortin contains sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Hoshina, H.; Hortin, G.; Boime, I.

    1982-07-02

    Intermediate lobes isolated from rat pituitary glands incorporated (/sup 35/S)sulfate into pro-opiomelanocortin and other adrenocorticotropic hormone-containing peptides. Incubation of intermediate lobes in medium containing the arginine analog canavanine inhibited the cleavage of pro-opiomelanocortin into smaller products. Pro-opiomelanocortin that accumulated in the presence of canavanine was also sulfated.

  10. Heterologous Expression of an Alkali and Thermotolerant Lipase from Talaromyces thermophilus in Trichoderma reesei.

    Science.gov (United States)

    Zhang, Xu; Li, Xueqi; Xia, Liming

    2015-07-01

    To heterologously express a Talaromyces thermophilus lipase gene in Trichoderma reesei, an efficient binary vector pChph-pCBH1sigpro-ttl which includes a newly designed cbh1 promoter and hygromycin-resistant marker was constructed. This plasmid was then transformed into T. reesei via improved Agrobacterium EHA 105-mediated transformation. After modification of co-culture conditions and enzymolysis treatment of conidia, 258 transformants were produced. A two-step screening method based on antibiotic resistance and capacity to utilize lactose and tributyrin was introduced to further select promising candidates, which would be additionally verified by PCR analysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and lipase activity assay. Lipase production was carried out in shaking flasks, and the activity reached 241 IU/mL (7415.4 IU/mg) after 84-h fermentation. It was found that this lipase performed high alkali and thermostable tolerance with the optimal pH 9.5 and temperature 60 °C, and it could retain more than 70 % activity after being disposed in pH 11 or 70 °C for 1 h. This study herein would benefit the genetic engineering of T. reesei and the industrial application of this important fungal lipase. PMID:26077681

  11. Aerosol Types using Passive Remote Sensing: Global Distribution, Consistency Check, Total-Column Investigation and Translation into Composition Derived from Climate and Chemical Transport Model

    Science.gov (United States)

    Kacenelenbogen, M. S.; Dawson, K. W.; Johnson, M. S.; Burton, S. P.; Redemann, J.; Hasekamp, O. P.; Hair, J. W.; Ferrare, R. A.; Butler, C. F.; Holben, B. N.; Beyersdorf, A. J.; Ziemba, L. D.; Froyd, K. D.; Dibb, J. E.; Shingler, T.; Sorooshian, A.; Jimenez, J. L.; Campuzano Jost, P.; Jacob, D. J.

    2015-12-01

    To improve the predictions of aerosol composition in chemical transport models (CTMs) and global climate models (GCMs), we have developed an aerosol classification algorithm (called Specified Clustering and Mahalanobis Classification, SCMC) that assigns an aerosol type to multi-parameter retrievals by spaceborne, airborne or ground based passive remote sensing instruments [Russell et al., 2014]. The aerosol types identified by our scheme are pure dust, polluted dust, urban-industrial/developed economy, urban-industrial/developing economy, dark biomass smoke, light biomass smoke and pure marine. We apply the SCMC method to two different total-column datasets of aerosol optical properties: inversions from the ground-based AErosol RObotic NETwork (AERONET) and retrievals from the space-borne POLDER (Polarization and Directionality of Earth's Reflectances) instrument. The POLDER retrievals that we use differ from the standard POLDER retrievals [Deuzé et al., 2001] as they make full use of multi-angle, multispectral polarimetric data [Hasekamp et al., 2011]. We analyze agreement in the aerosol types inferred from both AERONET and POLDER globally. Then, we investigate how our total-column "effective" SCMC aerosol types relate to different aerosol types within the column (i.e. either a mixture of different types within one layer in the vertical or the stacking of different aerosol types within the vertical column). For that, we compare AERONET-SCMC aerosol types to collocated NASA LaRC HSRL vertically resolved aerosol types [Burton et al., 2012] during the SEAC4RS and DISCOVER-AQ airborne field experiments, mostly over Texas in Aug-Sept 2013. Finally, in order to evaluate the GEOS-Chem CTM aerosol types, we translate each of our SCMC aerosol type into a unique distribution of GEOS-Chem aerosol composition (e.g. biomass burning, dust, sulfate, sea salt). We bridge the gap between remote sensing and model-inferred aerosol types by using multiple years of collocated AERONET

  12. Scintillation properties of lead sulfate

    International Nuclear Information System (INIS)

    We report on the scintillation properties of lead sulfate (PbSO4), a scintillator that show promise as a high energy photon detector. It physical properties are well suited for gamma detection, as its has a density of 6.4 gm/cm3, a 1/e attenuation length for 511 keV photons of 1.2 cm, is not affected by air or moisture, and is cut and polished easily. In 99.998% pure PbSO4 crystals at room temperature excited by 511 keV annihilation photons, the fluorescence decay lifetime contains significant fast components having 1.8 ns (5%) and 19 ns (36%) decay times, but with longer components having 95 ns (36%) and 425 ns (23%) decays times. The peak emission wavelength is 335 nm, which is transmitted by borosilicate glass windowed photomultiplier tubes. The total scintillation light output increases with decreasing temperature fro 3,200 photons/MeV at +45 degrees C to 4, 900 photons/MeV at room temperature (+25 degrees C) and 68,500 photons/MeV at -145 degrees C. In an imperfect, 3 mm cube of a naturally occurring mineral form of PbSO4 (anglesite) at room temperature, a 511 keV photopeak is seen with a total light output of 60% that BGO. There are significant sample to sample variations of the light output among anglesite samples, so the light output of lead sulfate may improve when large synthetic crystals become available. 10 refs

  13. Physical metrology of aerosols; Metrologie physique des aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Boulaud, D.; Vendel, J. [CEA Saclay, 91 - Gif-sur-Yvette (France). Inst. de Protection et de Surete Nucleaire

    1996-12-31

    The various detection and measuring methods for aerosols are presented, and their selection is related to aerosol characteristics (size range, concentration or mass range), thermo-hydraulic conditions (carrier fluid temperature, pressure and flow rate) and to the measuring system conditions (measuring frequency, data collection speed, cost...). Methods based on aerosol dynamic properties (inertial, diffusional and electrical methods) and aerosol optical properties (localized and integral methods) are described and their performances and applications are compared

  14. Structure of xanthan gum and cell ultrastructure at different times of alkali stress

    OpenAIRE

    Márcia de Mello Luvielmo; Caroline Dellinghausen Borges; Daniela de Oliveira Toyama; Claire Tondo Vendruscolo; Adilma Regina Pippa Scamparini

    2016-01-01

    Abstract The effect of alkali stress on the yield, viscosity, gum structure, and cell ultrastructure of xanthan gum was evaluated at the end of fermentation process of xanthan production by Xanthomonas campestris pv. manihotis 280-95. Although greater xanthan production was observed after a 24 h-alkali stress process, a lower viscosity was observed when compared to the alkali stress-free gum, regardless of the alkali stress time. However, this outcome is not conclusive as further studies on g...

  15. Analysis of tyrosine-O-sulfation

    DEFF Research Database (Denmark)

    Bundgaard, J.R.; Sen, J.W.; Johnsen, A.H.; Rehfeld, Jens Frederik

    2008-01-01

    Tyrosine O-sulfation was first described about 50 years ago as a post-translational modification of fibrinogen. In the following 30 years it was considered to be a rare modification affecting only a few proteins and peptides. However, in the beginning of the 1980s tyrosine (Tyr) sulfation was shown...... to be a common modification and since then an increasing number of proteins have been identified as sulfated. The target proteins belong to the classes of secretory, plasma membrane, and lysosomal proteins, which reflects the intracellular localization of the enzymes catalyzing Tyr sulfation, the...... to demonstrate the presence of radioactively labeled tyrosine. These techniques have been described in detail previously. The aim of this chapter is to present alternative analytical methods of Tyr sulfation than radioisotope incorporation before analysis Udgivelsesdato: 2008...

  16. Gaseous Sulfate Solubility in Glass: Experimental Method

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, Mary

    2013-11-30

    Sulfate solubility in glass is a key parameter in many commercial glasses and nuclear waste glasses. This report summarizes key publications specific to sulfate solubility experimental methods and the underlying physical chemistry calculations. The published methods and experimental data are used to verify the calculations in this report and are expanded to a range of current technical interest. The calculations and experimental methods described in this report will guide several experiments on sulfate solubility and saturation for the Hanford Waste Treatment Plant Enhanced Waste Glass Models effort. There are several tables of sulfate gas equilibrium values at high temperature to guide experimental gas mixing and to achieve desired SO3 levels. This report also describes the necessary equipment and best practices to perform sulfate saturation experiments for molten glasses. Results and findings will be published when experimental work is finished and this report is validated from the data obtained.

  17. Modeling of sulfation of potassium chloride by ferric sulfate addition during grate-firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Aho, Martti;

    2013-01-01

    Potassium chloride, KCl, formed from critical ash-forming elements released during combustion may lead to severe ash deposition and corrosion problems in biomass-fired boilers. Ferric sulfate, Fe2(SO4)3 is an effective additive, which produces sulfur oxides (SO2 and SO3) to convert KCl to the less...... order to simulate the sulfation of KCl by ferric sulfate addition during grate-firing of biomass. The simulation results show good agreements with the experimental data obtained in a pilot-scale biomass grate-firing reactor, where different amounts of ferric sulfate was injected on the grate or into the...... freeboard. In addition, the simulations of elemental sulfur addition on the grate fit well with the experimental data. The results suggest that the SO3 released from ferric sulfate decomposition is the main contributor to KCl sulfation, and that the effectiveness of the ferric sulfate addition is sensitive...

  18. Metabolic Flexibility of Sulfate Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Caroline M. Plugge

    2011-05-01

    Full Text Available Dissimilatory sulfate-reducing prokaryotes (SRB are a very diverse group of anaerobic bacteria that are omnipresent in nature and play an imperative role in the global cycling of carbon and sulfur. In anoxic marine sediments sulfate reduction accounts for up to 50% of the entire organic mineralization in coastal and shelf ecosystems where sulfate diffuses several meters deep into the sediment. As a consequence, SRB would be expected in the sulfate-containing upper sediment layers, whereas methanogenic Archaea would be expected to succeed in the deeper sulfate-depleted layers of the sediment. Where sediments are high in organic matter, sulfate is depleted at shallow sediment depths, and biogenic methane production will occur. In the absence of sulfate, many SRB ferment organic acids and alcohols, producing hydrogen, acetate, and carbon dioxide, and may even rely on hydrogen- and acetate-scavenging methanogens to convert organic compounds to methane. SRB can establish two different life styles, and these can be termed as sulfidogenic and acetogenic, hydrogenogenic metabolism. The advantage of having different metabolic capabilities is that it raises the chance of survival in environments when electron acceptors become depleted. In marine sediments, SRB and methanogens do not compete but rather complement each other in the degradation of organic matter.Also in freshwater ecosystems with sulfate concentrations of only 10-200 μM, sulfate is consumed efficiently within the top several cm of the sediments. Here, many of the δ-Proteobacteria present have the genetic machinery to perform dissimilatory sulfate reduction, yet they have an acetogenic, hydrogenogenic way of life.In this review we evaluate the physiology and metabolic mode of SRB in relation with their environment.

  19. Prediction of the fate of Hg and other contaminants in soil around a former chlor-alkali plant using Fuzzy Hierarchical Cross-Clustering approach.

    Science.gov (United States)

    Frenţiu, Tiberiu; Ponta, Michaela; Sârbu, Costel

    2015-11-01

    An associative simultaneous fuzzy divisive hierarchical algorithm was used to predict the fate of Hg and other contaminants in soil around a former chlor-alkali plant. The algorithm was applied on several natural and anthropogenic characteristics of soil including water leachable, mobile, semi-mobile, non-mobile fractions and total Hg, Al, Ba, Ca, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Sr, Zn, water leachable fraction of Cl(-), NO3(-) and SO4(2)(-), pH and total organic carbon. The cross-classification algorithm provided a divisive fuzzy partition of the soil samples and associated characteristics. Soils outside the perimeter of the former chlor-alkali plant were clustered based on the natural characteristics and total Hg. In contaminated zones Hg speciation becomes relevant and the assessment of species distribution is necessary. The descending order of concentration of Hg species in the test site was semi-mobile>mobile>non-mobile>water-leachable. Physico-chemical features responsible for similarities or differences between uncontaminated soil samples or contaminated with Hg, Cu, Zn, Ba and NO3(-) were also highlighted. Other characteristics of the contaminated soil were found to be Ca, sulfate, Na and chloride, some of which with influence on Hg fate. The presence of Ca and sulfate in soil induced a higher water leachability of Hg, while Cu had an opposite effect by forming amalgam. The used algorithm provided an in-deep understanding of processes involving Hg species and allowed to make prediction of the fate of Hg and contaminants linked to chlor-alkali-industry. PMID:26057390

  20. Aerosolization Characteristics of Dry Powder Inhaler Formulations for the Excipient Enhanced Growth (EEG) Application: Effect of Spray Drying Process Conditions on Aerosol Performance

    OpenAIRE

    Son, Yoen-Ju; Longest, P. Worth; Hindle, Michael

    2013-01-01

    The aim of this study was to develop a spray dried submicrometer powder formulation suitable for the excipient enhanced growth (EEG) application. Combination particles were prepared using the Buchi Nano spray dryer B-90. A number of spray drying and formulation variables were investigated with the aims of producing dry powder formulations that were readily dispersed upon aerosolization and maximizing the fraction of submicrometer particles. Albuterol sulfate, mannitol, L-leucine, and poloxame...

  1. Activation and transfer of sulfate in biological systems (1960)

    International Nuclear Information System (INIS)

    It examines in this review the successive stages of active sulfate formation and its role in biological synthesis of sulfuric esters. The possible role of active sulfate as intermediary in sulfate reduction is also discussed. (author)

  2. Biological aerosol background characterization

    Science.gov (United States)

    Blatny, Janet; Fountain, Augustus W., III

    2011-05-01

    To provide useful information during military operations, or as part of other security situations, a biological aerosol detector has to respond within seconds or minutes to an attack by virulent biological agents, and with low false alarms. Within this time frame, measuring virulence of a known microorganism is extremely difficult, especially if the microorganism is of unknown antigenic or nucleic acid properties. Measuring "live" characteristics of an organism directly is not generally an option, yet only viable organisms are potentially infectious. Fluorescence based instruments have been designed to optically determine if aerosol particles have viability characteristics. Still, such commercially available biological aerosol detection equipment needs to be improved for their use in military and civil applications. Air has an endogenous population of microorganisms that may interfere with alarm software technologies. To design robust algorithms, a comprehensive knowledge of the airborne biological background content is essential. For this reason, there is a need to study ambient live bacterial populations in as many locations as possible. Doing so will permit collection of data to define diverse biological characteristics that in turn can be used to fine tune alarm algorithms. To avoid false alarms, improving software technologies for biological detectors is a crucial feature requiring considerations of various parameters that can be applied to suppress alarm triggers. This NATO Task Group will aim for developing reference methods for monitoring biological aerosol characteristics to improve alarm algorithms for biological detection. Additionally, they will focus on developing reference standard methodology for monitoring biological aerosol characteristics to reduce false alarm rates.

  3. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fluorinated carboxylic acid alkali... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under...

  4. Synthesis, structure peculiarities and electric conductivity of alkali metal-rare earth silicates (germanates)

    International Nuclear Information System (INIS)

    The process of obtaining of rare earth-alkali metal silicates (germanates) is studied. The analysis of possibilities of structural disordering of alkaline cations in these structures is given. The interaction of the structure of different by the composition alkali alkali metal - rare earth silicates with electric conductivity values is shown

  5. Aerosol composition and properties variation at the ground and over the column under different air masses advection in South Italy.

    Science.gov (United States)

    Pavese, G; Lettino, A; Calvello, M; Esposito, F; Fiore, S

    2016-04-01

    Aerosol composition and properties variation under the advection of different air masses were investigated, as case studies, by contemporary measurements over the atmospheric column and at the ground in a semi-rural site in South Italy. The absence of local strong sources in this area allowed to characterize background aerosol and to compare particle mixing effects under various atmospheric circulation conditions. Aerosol optical depth (AOD) and Ǻngström parameters from radiometric measurements allowed the detection and identification of polluted, dust, and volcanic atmospheric conditions. AODs were the input for a suitable model to evaluate the columnar aerosol composition, according to six main atmospheric components (water-soluble, soot, sea salt accumulation, sea salt coarse, mineral dus,t and biological). Scanning electron microscope (SEM) analysis of particulate sampled with a 13-stage impactor at the ground showed not only fingerprints typical of the different air masses but also the effects of transport and aging on atmospheric particles, suggesting processes that changed their chemical and optical properties. Background columnar aerosol was characterized by 72% of water-soluble and soot, in agreement with ground-based findings that highlighted 60% of contribution from anthropogenic carbonate particles and soot. In general, a good agreement between ground-based and columnar results was observed. Under the advection of trans-boundary air masses, water-soluble and soot were always present in columnar aerosol, whereas, in variable percentages, sea salt and mineral particles characterized both dust and volcanic conditions. At the ground, sulfates characterized the amorphous matrix produced in finer stages by the evaporation of solutions of organic and inorganic aerosols. Sulfates were also one of the key players involved in heterogeneous chemical reactions, producing complex secondary aerosol, as such clay-sulfate internally mixed particle externally mixed

  6. Aqueous greenhouse species in clouds, fogs, and aerosols

    International Nuclear Information System (INIS)

    Greenhouse effects from fossil fuel combustion leading to increased concentrations of primary and secondary greenhouse gases (e.g., CO-2, ozone, etc.) have received considerable attention. More recently, it has been suggested that clouds, aerosols, and fogs can play opposing roles in climate forcing by scattering or absorbing incoming solar radiation as well as by absorbing long-wave radiation as it escapes into space. The total effect on the radiation balance depends on the relative magnitude of these opposing forces, which in turn will depend on the composition of the aqueous phase. This work describes the measurement of water-soluble infrared absorbers which can contribute to the long-wave radiative forcing of clouds, fogs, and aerosols. Aqueous species which have been characterized include sulfate, nitrate, formate, acetate, oxalate, phenol, p-nitrophenol, ammonium, bicarbonate, formaldehyde, methanol, and ethanol. Infrared absorption band positions and band strengths have been determined, and their relative effects on radiative forcing are discussed

  7. Characterization of submicron aerosols at a suburban site in central China

    Science.gov (United States)

    Wang, Qingqing; Zhao, Jian; Du, Wei; Ana, Godson; Wang, Zhenzhu; Sun, Lu; Wang, Yuying; Zhang, Fang; Li, Zhanqing; Ye, Xingnan; Sun, Yele

    2016-04-01

    We have characterized the chemical composition and sources of submicron aerosol (PM1) at a suburban site in Xinzhou in central China using an Aerosol Chemical Speciation Monitor from July 17 to September 5, 2014. The average (±1σ) PM1 concentration was 35.4 (±20.8) μg/m3 for the entire study period, indicating that Xinzhou was less polluted compared to the megacities in the North China Plain (NCP). The PM1 was mainly composed of organic aerosol and sulfate, on average accounting for 33.1% and 32.4%, respectively, followed by nitrate (14.4%) and ammonium (11.8%). Higher sulfate and lower nitrate contributions than those in megacities in the NCP elucidated an important emission source of coal combustion in central China. Three organic aerosol (OA) factors, i.e., hydrocarbon-like OA (HOA), semi-volatile oxygenated OA (SV-OOA) and low-volatility OOA (LV-OOA), were identified using positive matrix factorization. Secondary OA (=SV-OOA + LV-OOA) dominated OA, on average accounting for 82%, indicating that OA at the Xinzhou site was overall oxidized. We also observed relatively similar aerosol bulk composition and OA composition at low and high mass loading periods, and also from the different source areas, indicating that aerosol species were homogeneously distributed over a regional scale near the site for most of the time during this study. Slightly higher mass concentrations and sulfate contributions from the southern air masses were likely due to the transport from the polluted cities, such as Taiyuan to the south. In addition, the daily variation of PM1 in Xinzhou resembled that observed in Beijing, indicating that the wide-scale regional haze pollution often influences both the NCP and the central China.

  8. Sulfur isotope analysis of aerosol particles by NanoSIMS

    OpenAIRE

    Winterholler, Bärbel

    2007-01-01

    A new method to measure the sulfur isotopic composition of individual aerosol particles by NanoSIMS has been developed and tested on several standards such as barite (BaSO4), anhydrite (CaSO4), gypsum (CaSO4·2H2O), mascagnite ((NH4)2SO4), epsomite (MgSO4·7H2O), magnesium sulfate (MgSO4·xH2O), thenardite (Na2SO4), boetite (K2SO4) and cysteine (an amino acid). This ion microprobe technique employs a Cs+ primary ion beam and measures negative secondary ions permitting the analysis of sulfur isot...

  9. Water-soluble Organic Components in Aerosols Associated with Savanna Fires in Southern Africa: Identification, Evolution and Distribution

    Science.gov (United States)

    Gao, Song; Hegg, Dean A.; Hobbs, Peter V.; Kirchstetter, Thomas W.; Magi, Brian I.; Sadilek, Martin

    2003-01-01

    During the SAFARI 2000 field campaign, both smoke aerosols from savanna fires and haze aerosols in the boundary layer and in the free troposphere were collected from an aircraft in southern Africa. These aerosol samples were analyzed for their water-soluble chemical components, particularly the organic species. A novel technique, electrospray ionization-ion trap mass spectrometry, was used concurrently with an ion chromatography system to analyze for carbohydrate species. Seven carbohydrates, seven organic acids, five metallic elements, and three inorganic anions were identified and quantified. On the average, these 22 species comprised 36% and 27% of the total aerosol mass in haze and smoke aerosols, respectively. For the smoke aerosols, levoglucosan was the most abundant carbohydrate species, while gluconic acid was tentatively identified as the most abundant organic acid. The mass abundance and possible source of each class of identified species are discussed, along with their possible formation pathways. The combustion phase of a fire had an impact on the chemical composition of the emitted aerosols. Secondary formation of sulfate, nitrate, levoglucosan, and several organic acids occurred during the initial aging of smoke aerosols. It is likely that under certain conditions, some carbohydrate species in smoke aerosols, such as levoglucosan, were converted to organic acids during upward transport.

  10. Contemporaneous deposition of phyllosilicates and sulfates: Using Australian acidic saline lake deposits to describe geochemical variability on Mars

    Science.gov (United States)

    Baldridge, A.M.; Hook, S.J.; Crowley, J.K.; Marion, G.M.; Kargel, J.S.; Michalski, J.L.; Thomson, B.J.; de Souza, Filho C.R.; Bridges, N.T.; Brown, A.J.

    2009-01-01

    Studies of the origin of the Martian sulfate and phyllosilicate deposits have led to the hypothesis that there was a marked, global-scale change in the Mars environment from circum-neutral pH aqueous alteration in the Noachian to an acidic evaporitic system in the late Noachian to Hesperian. However, terrestrial studies suggest that two different geochemical systems need not be invoked to explain such geochemical variation.Western Australian acidic playa lakes have large pH differences separated vertically and laterally by only a few tens of meters, demonstrating how highly variable chemistries can coexist over short distances in natural environments. We suggest diverse and variable Martian aqueous environments where the coetaneous formation of phyllosilicates and sulfates at the Australian sites are analogs for regions where phyllosilicates and sulfates coexist on Mars. In these systems, Fe and alkali earth phyllosilicates represent deep facies associated with upwelling neutral to alkaline groundwater, whereas aluminous phyllosilicates and sulfates represent near-surface evaporitic facies formed from more acidic brines. Copyright 2009 by the American Geophysical Union.

  11. A new mechanism for radiation damage processes in alkali halides

    NARCIS (Netherlands)

    Dubinko, V.I.; Turkin, A.A.; Vainshtein, D.I.; Hartog, H.W. den

    1999-01-01

    We present a theory of radiation damage formation in alkali halides based on a new mechanism of dislocation climb, which involves the production of VF centers (self-trapped hole neighboring a cation vacancy) as a result of the absorption of H centers of dislocation lines. We consider the evolution o

  12. Assessment of concrete bridge decks with alkali silica reactions