WorldWideScience

Sample records for alkali silicate glasses

  1. Structure peculiarities of mixed alkali silicate glasses

    International Nuclear Information System (INIS)

    Bershtein, V.A.; Gorbachev, V.V.; Egorov, V.

    1980-01-01

    The thermal porperties and structure of alkali and mixed alkali (Li, Na, K) silicate glasses by means of differential scanning calorimetry (DSC), the positron annihilation method, X-ray fluorescence and infrared (300-30 cm -1 ) spectroscopy were studied. Introduction of different alkali cations in glass results in nonadditive change in their electron structure (bond covalence degree growth) and the thermal behaviour. The different manifestations of mixed alkali effect can be explained by the lessening of long distance Coulomb interactions and strengthening the short-range forces in the mixed alkali glasses. (orig.)

  2. New insight into atmospheric alteration of alkali-lime silicate glasses

    International Nuclear Information System (INIS)

    Alloteau, Fanny; Lehuédé, Patrice; Majérus, Odile; Biron, Isabelle; Dervanian, Anaïs; Charpentier, Thibault; Caurant, Daniel

    2017-01-01

    Highlights: •Glass silicate network hydrolysis is by far the predominant reaction at 80 °C. •Atmospheric conditions yield different altered layer structure than in immersion. •The altered layer bears about 10 wt% of water mainly as H-bonded SiOH groups. •Alkali ions stay embedded into the altered layer closed to SiOH and H 2 O species. -- Abstract: A mixed alkali lime silicate glass altered in atmospheric conditions (80 °C/85%RH, Relative Humidity) for various lengths of time was characterized at all scales. The altered glass forms a hydrated solid phase bearing about 10 wt% of H 2 O in the form of Si-OH groups and molecular water. No alkali depletion was observed after ageing tests. Structural results from 1 H, 23 Na and 29 Si MAS NMR point out the close proximity of Si-OH, H 2 O and Na + species. This study gives new insight into the mechanisms of the atmospheric alteration, essential to conservation strategies in industry and cultural heritage.

  3. Some regularities of halide adoption by alkali-silicate glasses with two glass-former

    International Nuclear Information System (INIS)

    Kiprianov, A.A.

    2006-01-01

    Results of synthesis and investigation of volume thermal and electrical properties of oxyhalide alkali-silicate glasses with two net-formers M 2 O-R 2 O 3 -SiO 2 +Hal (M - Li, Na, K; r - B, Al; Hal - F, Cl) are presented [ru

  4. Ab Initio Modeling of Structure and Properties of Single and Mixed Alkali Silicate Glasses.

    Science.gov (United States)

    Baral, Khagendra; Li, Aize; Ching, Wai-Yim

    2017-10-12

    A density functional theory (DFT)-based ab initio molecular dynamics (AIMD) has been applied to simulate models of single and mixed alkali silicate glasses with two different molar concentrations of alkali oxides. The structural environments and spatial distributions of alkali ions in the 10 simulated models with 20% and 30% of Li, Na, K and equal proportions of Li-Na and Na-K are studied in detail for subtle variations among the models. Quantum mechanical calculations of electronic structures, interatomic bonding, and mechanical and optical properties are carried out for each of the models, and the results are compared with available experimental observation and other simulations. The calculated results are in good agreement with the experimental data. We have used the novel concept of using the total bond order density (TBOD), a quantum mechanical metric, to characterize internal cohesion in these glass models. The mixed alkali effect (MAE) is visible in the bulk mechanical properties but not obvious in other physical properties studied in this paper. We show that Li doping deviates from expected trend due to the much stronger Li-O bonding than those of Na and K doping. The approach used in this study is in contrast with current studies in alkali-doped silicate glasses based only on geometric characterizations.

  5. On the origin of the mixed alkali effect on indentation in silicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, J. C.

    2014-01-01

    The compositional scaling of Vickers hardness (Hv) in mixed alkali oxide glasses manifests itself as a positive deviation from linearity as a function of the network modifier/modifier ratio, with a maximum deviation at the ratio of 1:1. In this work, we investigate the link between the indentation...... deformation processes (elastic deformation, plastic deformation, and densification) and Hv in two mixed sodium–potassium silicate glass series. We show that the mixed alkali effect in Hv originates from the nonlinear scaling of the resistance to plastic deformation. We thus confirm a direct relation between...... the resistance to plastic flow and Hv in mixed modifier glasses. Furthermore, we find that the mixed alkali effect also manifests itself as a positive deviation from linearity in the compositional scaling of density for glasses with high alumina content. This trend could be linked to a compaction of the network...

  6. The V3+-V5+ redox equilibrium reaction and magnetic properties of vanadium ions in binary alkali silicate glasses

    International Nuclear Information System (INIS)

    Singh, R.S.; Singh, S.P.

    2000-01-01

    The oxidation-reduction equilibrium in binary alkali silicate glasses containing V 3+ , V 4+ and V 5+ ions was studied at 1400 degC in air atmosphere. The ionic equation representing the V 3+ -V 5+ redox equilibrium reaction was used to represent the V 3+ -V 4+ -V 5+ redox reactions in glasses as V 4+ ion was an intermediate species. The V 3+ -V 5+ redox equilibrium was found to shift more towards the oxidized state with the increasing ionic radii of alkali ions or with the increasing concentration of alkali oxide in the same series of glasses. The slopes of the straight lines obtained on plotting log ([V 5+ ]/[V 3+ ][pO 2 ] 1/2 ) against mol% R 2 O (R + = Li + , Na + and K + ions) in binary alkali silicate glasses were approximately inversely proportional to the coulombic force between the alkali ions and nonbridging oxygen ions. This indicates the redox equilibrium shifted more towards oxidized state with increasing oxygen ion activity in the glass. The loss of vanadium from the glass melts with the duration of heat treatment was observed due to volatilization at high temperature, which did not influence the V 3+ -V 5+ redox equilibrium. Magnetic susceptibility of the present glasses, measured at room temperature, did not show any sign of paramagnetism which might be due to the presence of smaller concentration of V 3+ and V 4+ ions in the glass. Further, it indicated a strong diamagnetism because of the presence of higher proportion of vanadium in pentavalent state in the glasses. However, the optical absorption spectra or a silicate glass containing ions of vanadium indicated the presence of V 3+ , V 4+ and V 5+ ions. (author)

  7. Alkali depletion and ion-beam mixing in glasses

    International Nuclear Information System (INIS)

    Arnold, G.W.

    1983-01-01

    Ion-implantation-induced alkali depletion in simple alkali-silicate glasses (12M 2 O.88SiO 2 ) has been studied for implantations at room temperature and near 77K. Results are consistent with a mechanism for alkali removal, by heavy ion bombardment, based on radiation-enhanced migration and preferential removal of alkali from the outermost layers. Similar results were obtained for mixed-alkali glasses ((12-x)Cs 2 .O.xM 2 O.88SiO 2 ) where, in addition, a mixed-alkali effect may also be operative. Some preliminary experiments with ion implantation through thin Al films on SiO 2 glass and on a phosphate glass show that inter-diffusion takes place and suggest that this ion-mixing technique may be a useful method for altering the physical properties of glass surfaces

  8. Structural and volume changes and their correlation in electron irradiated alkali silicate glasses

    International Nuclear Information System (INIS)

    Gavenda, Tadeáš; Gedeon, Ondrej; Jurek, Karel

    2017-01-01

    Highlights: • Volume changes were correlated with both incubation dose and Raman spectra. • Irradiation decreases Si-O-Si angle and increases the amount of three-membered rings. • Levelling of the pits depends on the dose below and above incubation dose. • Restoration of the original structure was limited to low-frequency region. - Abstract: Two binary alkali silicate glasses (15K 2 O·85SiO 2 – denoted as K15 and 15Li 2 O·85SiO 2 – denoted as Li15) were irradiated by 50 keV electron beams with doses within the range of 2.1–15.9 kC/m 2 . Volume changes induced by electron irradiation were monitored by means of Atomic Force Microscopy (AFM). Raman spectra were taken from the irradiated spots to observe structural changes. Volume compaction observed at lower doses was correlated with the increase of the D2 peak. Volume expansion at higher doses was related to migration of alkali ions. Irradiated glasses were annealed at 400 °C and 500 °C for 60 min. After annealing irradiated spots were again examined by AFM and Raman spectroscopy in order to determine volume and structural relaxation of radiation induced changes. Annealing at higher temperatures resulted in the levelling of the pits created by irradiation, but only for doses below incubation dose. The pits created by doses above incubation dose were not levelled. Annealing caused decrease of D2 peak and shift of the Si-O-Si vibrations band in direction to original structure. Low-frequency region of annealed Li15 glass was undistinguishable from that of pristine glass, while annealing of K15 glass did not result in the full reversion to the original shape. The differences between glasses were attributed to higher T g of K15 glass. Q-motives bands of both glasses were not completely restored after annealing due to the absence of alkali ions.

  9. Structural and volume changes and their correlation in electron irradiated alkali silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Gavenda, Tadeáš, E-mail: gavendat@vscht.cz [Department of Glass and Ceramics, University of Chemical Technology, Technicka 5, CZ-166 28 Prague (Czech Republic); Gedeon, Ondrej [Department of Glass and Ceramics, University of Chemical Technology, Technicka 5, CZ-166 28 Prague (Czech Republic); Jurek, Karel [Institute of Physics, Academy of the Czech Republic, Na Slovance 2, CZ-182 21 Prague (Czech Republic)

    2017-04-15

    Highlights: • Volume changes were correlated with both incubation dose and Raman spectra. • Irradiation decreases Si-O-Si angle and increases the amount of three-membered rings. • Levelling of the pits depends on the dose below and above incubation dose. • Restoration of the original structure was limited to low-frequency region. - Abstract: Two binary alkali silicate glasses (15K{sub 2}O·85SiO{sub 2} – denoted as K15 and 15Li{sub 2}O·85SiO{sub 2} – denoted as Li15) were irradiated by 50 keV electron beams with doses within the range of 2.1–15.9 kC/m{sup 2}. Volume changes induced by electron irradiation were monitored by means of Atomic Force Microscopy (AFM). Raman spectra were taken from the irradiated spots to observe structural changes. Volume compaction observed at lower doses was correlated with the increase of the D2 peak. Volume expansion at higher doses was related to migration of alkali ions. Irradiated glasses were annealed at 400 °C and 500 °C for 60 min. After annealing irradiated spots were again examined by AFM and Raman spectroscopy in order to determine volume and structural relaxation of radiation induced changes. Annealing at higher temperatures resulted in the levelling of the pits created by irradiation, but only for doses below incubation dose. The pits created by doses above incubation dose were not levelled. Annealing caused decrease of D2 peak and shift of the Si-O-Si vibrations band in direction to original structure. Low-frequency region of annealed Li15 glass was undistinguishable from that of pristine glass, while annealing of K15 glass did not result in the full reversion to the original shape. The differences between glasses were attributed to higher T{sub g} of K15 glass. Q-motives bands of both glasses were not completely restored after annealing due to the absence of alkali ions.

  10. Comparative study on the change in index of refraction in ion-exchange interdiffusion in alkali-silicate glasses containing calcium, strontium, barium and titanium oxides

    International Nuclear Information System (INIS)

    Livshits, V.Ya.; Marchuk, E.A.

    1993-01-01

    Different ability to ion exchange from the salts of lithium-sodium-silicate glass melt containing calcium (or strontium, or barium) and titanium oxides in addition has been shown. CaO, SrO and BaO have negative effect, but TiO 2 -positive one on the fullness of ion exchange of lithium-sodium and on the rate of interdiffusion in alkali-silicate glass. The value of change in index of refraction of glass with TiO 2 is twice higher than glass with calcium oxide (or strontium, or barium) as the fourth component

  11. Local structure of alkalis in mixed-alkali borate glass to elucidate the origin of mixed-alkali effect

    Directory of Open Access Journals (Sweden)

    Yomei Tokuda

    2015-12-01

    Full Text Available We report the structural analysis of Na+ and Cs+ in sodium cesium borate crystals and glasses using 23Na and 133Cs magic-angle spinning nuclear magnetic resonance (MAS NMR spectroscopy. The composition dependence of NMR spectra of the borate was similar to that of the silicate: (1 the peak position of cesium borate crystals shifted to upfield for structures with larger Cs+ coordination numbers, (2 the MAS NMR spectra of xNa2O-yCs2O-3B2O3 (x = 0, 0.25, 0.5, 0.75, 1.0, x + y = 1 glass showed that the average coordination number (CN of both the alkali cations decreases with increasing Cs+/(Na+ + Cs+ ratio. However, the degree of decrement in borates is much smaller than that in silicates. We have considered that the small difference in CN is due to 4-coordinated B, because it is electrically compensated by the alkali metal ions resulting in the restriction of having various coordinations of O to alkali metal.

  12. Q-Speciation and Network Structure Evolution in Invert Calcium Silicate Glasses.

    Science.gov (United States)

    Kaseman, Derrick C; Retsinas, A; Kalampounias, A G; Papatheodorou, G N; Sen, S

    2015-07-02

    Binary silicate glasses in the system CaO-SiO2 are synthesized over an extended composition range (42 mol % ≤ CaO ≤ 61 mol %), using container-less aerodynamic levitation techniques and CO2-laser heating. The compositional evolution of Q speciation in these glasses is quantified using (29)Si and (17)O magic angle spinning nuclear magnetic resonance spectroscopy. The results indicate progressive depolymerization of the silicate network upon addition of CaO and significant deviation of the Q speciation from the binary model. The equilibrium constants for the various Q species disproportionation reactions for these glasses are found to be similar to (much smaller than) those characteristic of Li (Mg)-silicate glasses, consistent with the corresponding trends in the field strengths of these modifier cations. Increasing CaO concentration results in an increase in the packing density and structural rigidity of these glasses and consequently in their glass transition temperature Tg. This apparent role reversal of conventional network-modifying cations in invert alkaline-earth silicate glasses are compared and contrasted with that in their alkali silicate counterparts.

  13. Charge trapping and dielectric breakdown in lead silicate glasses

    International Nuclear Information System (INIS)

    Weeks, R.A.; Kinser, D.L.; Lee, J.M.

    1976-01-01

    When irradiated with beams of energetic electrons or gamma rays, many insulating glasses and plastics exhibit a spontaneous electrical discharge producing permanent patterns in the materials (Lichtenberg figures). In the case of inorganic glasses, this effect is not observed in pure silicate, germanate, or phosphate glasses nor in their crystalline forms and has only been reported in mixed-oxide glasses with low alkali content. In a series of lead silicate glasses of composition [PbO]/sub (x)/[SiO 2 ]/sub [1-(x)]/, the effect is observed only for 0 less than x less than or equal to 0.40. Changes in electrical properties are related to structural changes in these glasses. Electron microscopy of these glasses confirms the existence of microphase separation in the range 0.2 less than or equal to x less than or equal to 0.5

  14. X-ray absorption study of Ti-bearing silicate glasses

    OpenAIRE

    Dingwell, Donald B.; Paris, Eleonora; Seifert, Friedrich; Mottana, Annibale; Romano, Claudia

    1994-01-01

    Ti K-edge XANES spectra have been collected on a series of Ti-bearing silicate glasses with metasilicate and tetrasilicate compositions. The intensity of the preedge feature in these spectra has been found to change with glass composition and varies from 29 to 58% (normalized intensity) suggesting a variation in structural environent around the absorbing atom. The pre-edge peak intensity increases for the alkali titanium tetrasilicate glasses from 35% to 58% in the order Li < Na < K < Rb, Cs ...

  15. Photo-induced changes of silicate glasses optical parameters at multi-photon laser radiation absorption

    International Nuclear Information System (INIS)

    Efimov, O.M.; Glebov, L.B.; Mekryukov, A.M.

    1995-01-01

    In this paper the results of investigations of the mechanisms of photo-induced changes of alkali-silicate (crown) and lead-silicate (flint) glasses optical parameters upon the exposure to the intense laser radiation, and the basic regularities of these processes are reported. These investigations were performed in Research Center open-quotes S. I. Vavilov State Optical Instituteclose quotes during last 15 years. The kinetics of stable and unstable CC formation and decay, the effect of widely spread impurity ions on these processes, the characteristics of fundamental and impure luminescence, the kinetics of refractive index change under conditions of multi-photon glass matrix excitation, and other properties are considered. On the basis of analysis of received regularities it was shown that the nonlinear coloration of alkali-silicate glasses (the fundamental absorption edge is nearly 6 eV) takes place only as a result of two-photon absorption. Important efforts were aimed at the detection of three- or more photon matrix ionization of these glasses, but they were failed. However it was established that in the lead silicate glasses the long-wave carriers mobility boundary (> 5.6 eV) is placed considerably higher the fundamental absorption edge (∼ 3.5 eV) of material matrix. This results in that the linear color centers formation in the lead silicate glasses is not observed. The coloration of these glasses arises only from the two- or three-photon matrix ionization, and the excitation occurs through virtual states that are placed in the fundamental absorption region. In the report the available mechanisms of photo-induced changes of glasses optical parameters, and some applied aspects of this problem are discussed

  16. X-ray photoemission spectroscopy (XPS) and extended x-ray absorption fine structure (EXAFS) studies of silicate based glasses

    International Nuclear Information System (INIS)

    Karim, D.; Lam, D.J.

    1979-01-01

    The application of the x-ray photoemission spectroscopy (XPS) technique to study the electronic structure and bonding of heavy metal oxides in alkali- and alkali-earth-silicate glasses had been demonstrated. The bonding characteristics of the iron oxide and uranium oxide in sodium silicate glasses were deduced from the changes in the oxygen 1s levels and the heavy metal core levels. It is reasonable to expect that the effect of leaching on the heavy metal ions can be monitored using the appropriate core levels of these ions. To study the effect of leaching on the glass forming network, the valence band structure of the bridging and nonbridging oxygens in sodium silicate glasses were investigated. The measurement of extended x-ray absorption fine-structure (EXAFS) is a relatively new analytical technique for obtaining short range (<5 A) structural information around atoms of a selected species in both solid and fluid systems. Experiments have recently begun to establish the feasibility of using EXAFS to study the bonding of actinides in silicate glasses. Because of the ability of EXAFS to yield specific structural data even in complex multicomponent systems, it could prove to be an invaluable tool in understanding glass structure

  17. Silicate species of water glass and insights for alkali-activated green cement

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Helén, E-mail: helen.jansson@chalmers.se [Department of Civil and Environmental Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Bernin, Diana, E-mail: diana.bernin@nmr.gu.se [Swedish NMR Centre, Gothenburg University, Gothenburg, 41390 Sweden (Sweden); Ramser, Kerstin, E-mail: kerstin.ramser@ltu.se [Department of Engineering Sciences and Mathematics, Luleå University of Technology, 971 87 Luleå (Sweden)

    2015-06-15

    Despite that sodium silicate solutions of high pH are commonly used in industrial applications, most investigations are focused on low to medium values of pH. Therefore we have investigated such solutions in a broad modulus range and up to high pH values (∼14) by use of infrared (IR) spectroscopy and silicon nuclear magnetic resonance ({sup 29}Si-NMR). The results show that the modulus dependent pH value leads to more or less charged species, which affects the configurations of the silicate units. This in turn, influences the alkali-activation process of low CO{sub 2} footprint cements, i.e. materials based on industrial waste or by-products.

  18. REDOX BEHAVIOR AND DIFFUSIVITY OF ANTIMONY AND CERIUM ION IN ALKALI ALKALINE EARTH SILICATE GLASS MELTS

    Directory of Open Access Journals (Sweden)

    K. D. Kim

    2010-03-01

    Full Text Available Redox behavior and diffusivity of antimony and cerium ion in alkali alkaline earth silicate CRT (Cathode Ray Tube model glass melts were studied by means of square wave voltammetry under the frequency range of 5-1000 Hz and in the temperature range of 800-1400°C. According to voltammogram, peaks due to Sb³⁺/Sb⁰ were positioned in the negative potential region while peaks due to Sb⁵⁺/Sb³⁺ and Ce⁴⁺/Ce³⁺ were found in the positive potential region. By using some equations, correlation for peak potential versus temperature and peak current versus reciprocal frequency was examined, respectively. Their correlation showed a linear relation in the applied temperature and frequency range. Based on the linear relationship, thermodynamic and kinetic properties for each redox reaction were suggested.

  19. [Influence of cations on the laser Raman spectra of silicate glasses].

    Science.gov (United States)

    Xiong, Yi; Zhao, Hong-xia; Gan, Fu-xi

    2012-04-01

    Na2O(K2O)-CaO(MgO)-SiO2, Na2O(K2O)-Al2O3-SiO2, Na2O(K2O)-B2O3-SiO2, Na2O(K2O)-PbO-SiO2 and PbO-BaO-SiO2 glass systems were investigated using laser Raman spectroscopic technique. The modification of short-range structure of glass caused by network modifier cations will influence Raman signature. Alkali and alkali-earth ions can weaken the bridging oxygen bond, thus lower the frequency of Si-O(b)-Si anti-symmetric stretching vibration. When coordina ted by oxygen ions, B3+ can form [BO4] tetrahedron and enter the silicon-oxygen network, but this effect had little impact on the frequency of Raman peaks located in the high-frequency region. Al3+ can also be coordinated by oxygen ions to form [AlO4] tetrahedron. [AlO4] will increase the disorder degree of network while entering network. Ba2+ can increase the density of electron cloud along the Si-O(nb) bond when it bonds with non-bridging oxygen, which will lead to a higher peak intensity of O-Si-O stretching vibration. The Raman peaks of alkli- and alkali-earth silicate glasses are mainly distributed in the region of 400 - 1 200 cm(-1), while in the spectrum of Na2O(K2O)-PbO-SiO2 glass system a 131 cm(-1) peak existed. The authors assigned it to the Pb-O symmetric stretching vibration. Some of the samples were produced in the laboratory according to the average compositions of ancient glasses, so this research is very significant to discriminating ancient silicate glasses of different systems by Laser Raman spectroscopic technique.

  20. Boson peak of alkali and alkaline earth silicate glasses: influence of the nature and size of the network-modifying cation.

    Science.gov (United States)

    Richet, Nicolas F

    2012-01-21

    The influence of the size of the alkaline earth cation on the boson peak of binary metasilicate glasses, MSiO(3) (M = Mg, Ca, Sr, Ba), has been investigated from vibrational densities of states determined by inversion of low-temperature heat capacities. As given both by C(p)/T(3) and g(ω)/ω(2), the intensity of the boson peak undergoes a 7-fold increase from Mg to Ba, whereas its temperature and frequency correlatively decrease from 18 to 10 K and from 100 to 20 cm(-1), respectively. The boson peak results from a combination of librations of SiO(4) tetrahedra and localized vibrations of network-modifying cations with non-bridging oxygens whose contribution increases markedly with the ionic radius of the alkaline earth. As a function of ionic radii, the intensity for Sr and Ba varies in the same way as previously found for alkali metasilicate glasses. The localized vibrations involving alkali and heavy alkaline earth cations appear to be insensitive to the overall glass structure. Although the new data are coherent with an almost linear relationship between the temperature of the boson peak and transverse sound velocity, pure SiO(2) and SiO(2)-rich glasses make marked exceptions to this trend because of the weak transverse character of SiO(4) librations. Finally, the universality of the calorimetric boson peak is again borne out because all data for silicate glasses collapse on the same master curve when plotted in a reduced form (C(P)∕/T(3))/(C(P)/T(3))(b) vs. T/T(b). © 2012 American Institute of Physics

  1. Elastic modulus of the alkali-silica reaction rim in a simplified calcium-alkali-silicate system determined by nano-indentation

    NARCIS (Netherlands)

    Zheng, Kunpeng; Lukovic, M.; De Schutter, Geert; Ye, G.; Taerwe, Luc

    2016-01-01

    This work aims at providing a better understanding of the mechanical properties of the reaction rim in the alkali-silica reaction. The elastic modulus of the calcium alkali silicate constituting the reaction rim, which is formed at the interface between alkali silicate and Ca(OH)2 in a

  2. Structure, biodegradation behavior and cytotoxicity of alkali-containing alkaline-earth phosphosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kansal, Ishu; Reddy, AlluAmarnath [Department of Materials and Ceramics Engineering, University of Aveiro, CICECO, 3810-193 Aveiro (Portugal); Muñoz, Francisco [Ceramics and Glass Institute (CSIC), Kelsen 5, 28049 Madrid (Spain); Choi, Seong-Jun [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330714 (Korea, Republic of); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330714 (Korea, Republic of); Kim, Hae-Won [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330714 (Korea, Republic of); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330714 (Korea, Republic of); Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 330714 (Korea, Republic of); Tulyaganov, Dilshat U. [Turin Polytechnic University in Tashkent, 100095 Tashkent (Uzbekistan); Ferreira, José M.F., E-mail: jmf@ua.pt [Department of Materials and Ceramics Engineering, University of Aveiro, CICECO, 3810-193 Aveiro (Portugal)

    2014-11-01

    We report on the effect of sodium on the structure, chemical degradation and bioactivity of glasses in the CaO–MgO–SiO{sub 2}–P{sub 2}O{sub 5}–CaF{sub 2} system. The {sup 29}Si and {sup 31}P magic angle spinning-nuclear magnetic resonance spectroscopy of melt-quenched glasses with varying Na{sub 2}O/MgO ratios exhibit a silicate glass network with the dominance of Q{sup 2}(Si) units and phosphorus mainly forming orthophosphate species. Sodium incorporation in the glasses did not induce a significant structural change in the silicate network, while it did influence the phosphate environment due to its lower ionic field strength in comparison with that of magnesium. The apatite forming ability of glasses has been investigated by immersion of glass powders in simulated body fluid (SBF) for time durations varying between 1 h and 7 days while their chemical degradation has been studied in Tris–HCl in accordance with ISO-10993-14. Increasing Na{sup +}/Mg{sup 2+} ratio caused a decrease in the chemical durability of glasses and in the apatite forming ability especially during initial steps of interaction between glass and SBF solution. The cellular responses were observed in vitro on bulk glass samples using mouse-derived pre-osteoblastic MC3T3-E1 cell line. The preliminary study suggested that the increasing alkali-concentration in glasses led to cytotoxicity in the cell culture medium. - Highlights: • Na{sup +} did not induce significant structural changes in chemical Si environment. • Sodium is more prone to affect the chemical environment around P. • Increasing Na{sup +}/Mg{sup 2+} ratios hinder bio-mineralization and chemical durability. • Alkali-containing glasses confer cyto-toxicity to the cell culture medium.

  3. Structure, biodegradation behavior and cytotoxicity of alkali-containing alkaline-earth phosphosilicate glasses

    International Nuclear Information System (INIS)

    Kansal, Ishu; Reddy, AlluAmarnath; Muñoz, Francisco; Choi, Seong-Jun; Kim, Hae-Won; Tulyaganov, Dilshat U.; Ferreira, José M.F.

    2014-01-01

    We report on the effect of sodium on the structure, chemical degradation and bioactivity of glasses in the CaO–MgO–SiO 2 –P 2 O 5 –CaF 2 system. The 29 Si and 31 P magic angle spinning-nuclear magnetic resonance spectroscopy of melt-quenched glasses with varying Na 2 O/MgO ratios exhibit a silicate glass network with the dominance of Q 2 (Si) units and phosphorus mainly forming orthophosphate species. Sodium incorporation in the glasses did not induce a significant structural change in the silicate network, while it did influence the phosphate environment due to its lower ionic field strength in comparison with that of magnesium. The apatite forming ability of glasses has been investigated by immersion of glass powders in simulated body fluid (SBF) for time durations varying between 1 h and 7 days while their chemical degradation has been studied in Tris–HCl in accordance with ISO-10993-14. Increasing Na + /Mg 2+ ratio caused a decrease in the chemical durability of glasses and in the apatite forming ability especially during initial steps of interaction between glass and SBF solution. The cellular responses were observed in vitro on bulk glass samples using mouse-derived pre-osteoblastic MC3T3-E1 cell line. The preliminary study suggested that the increasing alkali-concentration in glasses led to cytotoxicity in the cell culture medium. - Highlights: • Na + did not induce significant structural changes in chemical Si environment. • Sodium is more prone to affect the chemical environment around P. • Increasing Na + /Mg 2+ ratios hinder bio-mineralization and chemical durability. • Alkali-containing glasses confer cyto-toxicity to the cell culture medium

  4. Effect of glass composition on the relaxation of the 4Isub(13/2) level of erbium ions in borate and silicate glasses

    International Nuclear Information System (INIS)

    Ryba-Romanowski, W.; Jezowska-Trzebiatowska, B.

    1979-01-01

    The effect of glass nerwork formers and glass modifiers on radiative transition probabilities and quantum efficiencies of the 4 Isub(13/2) level of Er +3 ions in ternary borate and silicate glasses was studied by both absorption and emission spectroscopy. It was found that the transition probabilities may be widely varied by changes glass network former and alkali ion substitution. The role of multiphonon emission and O-H vibration in the relaxation of the 4 Isub(13/2) level is discussed. (author)

  5. Bismuth silicate glass: A new choice for 2 μm fiber lasers

    Science.gov (United States)

    Ding, Jia; Zhao, Guoying; Tian, Ying; Chen, Wei; Hu, Lili

    2012-11-01

    We report on a new Yb3+/Tm3+/Ho3+ co-doped bismuth silicate glass: SiO2-Bi2O3-R2O (R = Li, Na, K) for 2 μm fiber lasers. Bi2O3 was introduced into alkali silicate glass to optimize 2 μm emission properties. Physical, chemical and spectroscopic properties of Yb3+/Tm3+/Ho3+ co-doped SiO2-Bi2O3-R2O (SBR) glass were presented. The Yb3+/Tm3+/Ho3+ co-doped SBR glass shows excellent thermal stability (ΔT = 162 °C), an intense 2.0 μm emission pumped by 980 nm LD with a lifetime of 1.33 ms and width of 168 nm, large maximum emission cross section of Ho3+ (5.3 × 10-21 cm2), thus large σemτ product (7.049 × 10-24 cm2 s), which suggest its application in 2 μm fiber lasers.

  6. Bismuth silicate glass containing heavy metal oxide as a promising radiation shielding material

    Science.gov (United States)

    Elalaily, Nagia A.; Abou-Hussien, Eman M.; Saad, Ebtisam A.

    2016-12-01

    Optical and FTIR spectroscopic measurements and electron paramagnetic resonance (EPR) properties have been utilized to investigate and characterize the given compositions of binary bismuth silicate glasses. In this work, it is aimed to study the possibility of using the prepared bismuth silicate glasses as a good shielding material for γ-rays in which adding bismuth oxide to silicate glasses causes distinguish increase in its density by an order of magnitude ranging from one to two more than mono divalent oxides. The good thermal stability and high density of the bismuth-based silicate glass encourage many studies to be undertaken to understand its radiation shielding efficiency. For this purpose a glass containing 20% bismuth oxide and 80% SiO2 was prepared using the melting-annealing technique. In addition the effects of adding some alkali heavy metal oxides to this glass, such as PbO, BaO or SrO, were also studied. EPR measurements show that the prepared glasses have good stability when exposed to γ-irradiation. The changes in the FTIR spectra due to the presence of metal oxides were referred to the different housing positions and physical properties of the respective divalent Sr2+, Ba2+ and Pb2+ ions. Calculations of optical band gap energies were presented for some selected glasses from the UV data to support the probability of using these glasses as a gamma radiation shielding material. The results showed stability of both optical and magnetic spectra of the studied glasses toward gamma irradiation, which validates their irradiation shielding behavior and suitability as the radiation shielding candidate materials.

  7. Crystallochemical characteristics of alkali calcium silicates from charoitites

    International Nuclear Information System (INIS)

    Rozhdestvenskaya, I.V.; Nikishova, L.V.

    2002-01-01

    The characteristic features of the crystal structures of alkali calcium silicates from various deposits are considered. The structures of these minerals, which were established by single-crystal X-ray diffraction methods, are described as the combinations of large construction modules, including the alternating layers of alkali cations and tubular silicate radicals (in canasite, frankamenite, miserite, and agrellite) and bent ribbons linked through hydrogen bonds in the layers (in tinaksite and tokkoite). The incorporation of impurities and the different ways of ordering them have different effects on the structures of these minerals and give rise to the formation of superstructures accompanied by a change of the space group (frankamenite-canasite), leading, in turn, to different mutual arrangements of the layers of silicate tubes and the formation of pseudopolytypes (agrellites), structure deformation, and changes in the unit-cell parameters (tinaksite-tokkoite)

  8. Studies on the alkali-silica reaction rim in a simplified calcium-alkali-silicate system

    NARCIS (Netherlands)

    Zheng, Kunpeng; Adriaensens, Peter; De Schutter, Geert; Ye, G.; Taerwe, Luc

    2016-01-01

    This work is intended to provide a better understanding about the properties and roles of the reaction rim in an alkali-silica reaction. A simplified calcium-alkali-silicate system was created to simulate the multiple interactions among reactive silica, alkaline solution and portlandite near the

  9. Density of mixed alkali borate glasses: A structural analysis

    International Nuclear Information System (INIS)

    Doweidar, H.; El-Damrawi, G.M.; Moustafa, Y.M.; Ramadan, R.M.

    2005-01-01

    Density of mixed alkali borate glasses has been correlated with the glass structure. It is assumed that in such glasses each alkali oxide associates with a proportional quantity of B 2 O 3 . The number of BO 3 and BO 4 units related to each type of alkali oxide depends on the total concentration of alkali oxide. It is concluded that in mixed alkali borate glasses the volumes of structural units related to an alkali ion are the same as in the corresponding binary alkali borate glass. This reveals that each type of alkali oxide forms its own borate matrix and behaves as if not affected with the presence of the other alkali oxide. Similar conclusions are valid for borate glasses with three types of alkali oxide

  10. Wear and chemistry of zirconium-silicate, aluminium-silicate and zirconium-aluminium-silicate glasses in alkaline medium

    International Nuclear Information System (INIS)

    Rouse, C.G.; Lemos Guenaga, C.M. de

    1984-01-01

    A study of the chemical durability, in alkaline solutions, of zirconium silicate, aluminium silicate, zirconium/aluminium silicate glasses as a function of glass composition is carried out. The glasses were tested using standard DIN-52322 method, where the glass samples are prepared in small polished pieces and attacked for 3 hours in a 800 ml solution of 1N (NaOH + NA 2 CO 3 ) at 97 0 C. The results show that the presence of ZrO 2 in the glass composition increases its chemical durability to alkaline attack. Glasses of the aluminium/zirconium silicate series were melted with and without TiO 2 . It was shown experimentally that for this series of glasses, the presence of both TiO 2 and ZrO 2 gave better chemical durability results. However, the best overall results were obtained from the simpler zirconium silicate glasses, where it was possible to make glasses with higher values of ZrO 2 . (Author) [pt

  11. Effect of Gamma Irradiation on Some Properties of Bismuth Silicate Glasses and Their Glass Derivatives

    International Nuclear Information System (INIS)

    Abo Hussein, E.M.K.

    2014-01-01

    Glasses containing bismuth oxide have attracted considerable attention, although it is non-conventional glass forming oxide, but it has wide applications. In this work, it is aimed to prove that bismuth silicate glass can act as a good shielding material for γ- rays. For this purpose glass containing 20% bismuth oxide and 80% SiO_2 was prepared using melting-annealing technique. Also effects of adding some alkali heavy metal oxides to this glass such as PbO, BaO or SrO were also studied. The formed glasses were also heat treated at 450 degree C for 4 hours to give the corresponding heat treated glasses. Electron Paramagnetic Resonance (EPR) measurements show that the prepared glasses and heat treated glasses have very good stability when exposed to γ- irradiation, which encourage the assumption of using these glasses as gamma ray shielding materials. Many properties have been investigated, such as density to understand the structural properties, also mechanical properties were verified by measuring microhardness, while the chemical resistance was identified by testing their durability in both acidic and basic solutions. The EPR results were supported by measuring electrical conductivity of the glass and heat treated glass samples at different temperatures ranging from 298 to 553 K, which proved that these glasses have very low conductivity even at high temperature. The formed phases of heat treated glass or glass ceramic samples were demonstrated by means of X-ray diffraction (XRD). Also studying the structure of glasses and heat treated glasses before and after irradiation was investigated by the Infrared transmitting spectra. Calculations of optical band gap energies were demonstrated for some selected glasses and heat treated glasses from the data of UV optical absorption spectra to support the probability of using these bismuth silicate glasses for gamma radiation shielding processing.

  12. Silicate glasses

    International Nuclear Information System (INIS)

    Lutze, W.

    1988-01-01

    Vitrification of liquid high-level radioactive wastes has received the greatest attention, world-wide, compared to any other HLW solidification process. The waste form is a borosilicate-based glass. The production of phosphate-based glass has been abandoned in the western world. Only in the Soviet Union are phosphate-based glasses still being developed. Vitrification techniques, equipment and processes and their remote operation have been developed and studied for almost thirty years and have reached a high degree of technical maturity. Industrial demonstration of the vitrification process has been in progress since 1978. This chapter is a survey of world-wide research and development efforts in nuclear waste glasses and its production technology. The principal glasses considered are silicate glasses which contain boron, i.e., borosilicate glasses

  13. Dependence of Hardness of Silicate Glasses on Composition and Thermal History

    DEFF Research Database (Denmark)

    Jensen, Martin; Smedskjær, Morten Mattrup; Yue, Yuanzheng

    composition on hardness of silicate glasses. E-glasses of different compositions are subjected to various degrees of annealing to obtain various fictive temperatures in the glasses. It is found that hardness decreases with the fictive temperature. Addition of Na2O to a SiO2-Al2O3-Na2O glass system causes......The prediction of hardness is possible for crystalline materials, but so far not possible for glasses. In this work, several important factors that should be used for predicting the hardness of glasses are discussed. To do so, we have studied the influences of thermal history and chemical...... a decrease in hardness. However, hardness cannot solely be determined from the degree of polymerisation of the glass network. It is also determined by the effect of ionic radius on hardness. However, this effect has opposite trend for alkali and alkaline earth ions. The hardness increases with ionic radius...

  14. Diffusion and ionic conduction in oxide glasses

    International Nuclear Information System (INIS)

    Mehrer, H; Imre, A W; Tanguep-Nijokep, E

    2008-01-01

    The ion transport properties of soda-lime silicate and alkali borate glasses have been studied with complimentary tracer diffusion and impedance spectroscopy techniques in order to investigate the ion dynamics and mixed-alkali effect (MAE). In soda-lime silicate glasses the tracer diffusivity of 22 Na alkali ions is more than six orders of magnitude faster than the diffusivity of earth alkali 45 Ca ions. This observation is attributed to a stronger binding of bivalent earth alkali ions to the glass network as compared to that of alkali ions. The conductivity of the investigated standard soda-lime silicate glasses is mostly due to the high mobility of sodium ions and a temperature independent Haven ratio of about 0.45 is obtained. For single alkali sodium-borate glasses, the Haven ratio is also temperature independent, however, it is decreases with decreasing temperature for rubidium-borate glass. The MAE was investigated for Na-Rb borate glasses and it was observed that the tracer diffusivities of 22 Na and 86 Rb ions cross, when plotted as function of the relative alkali content. This crossover occurs near the Na/(Na+Rb) ratio of the conductivity minimum due to MAE. The authors suggest that this crossover and the trend of diffusion coefficients is the key to an understanding of the MAE

  15. Structure, biodegradation behavior and cytotoxicity of alkali-containing alkaline-earth phosphosilicate glasses.

    Science.gov (United States)

    Kansal, Ishu; Reddy, AlluAmarnath; Muñoz, Francisco; Choi, Seong-Jun; Kim, Hae-Won; Tulyaganov, Dilshat U; Ferreira, José M F

    2014-11-01

    We report on the effect of sodium on the structure, chemical degradation and bioactivity of glasses in the CaO-MgO-SiO2-P2O5-CaF2 system. The (29)Si and (31)P magic angle spinning-nuclear magnetic resonance spectroscopy of melt-quenched glasses with varying Na2O/MgO ratios exhibit a silicate glass network with the dominance of Q(2)(Si) units and phosphorus mainly forming orthophosphate species. Sodium incorporation in the glasses did not induce a significant structural change in the silicate network, while it did influence the phosphate environment due to its lower ionic field strength in comparison with that of magnesium. The apatite forming ability of glasses has been investigated by immersion of glass powders in simulated body fluid (SBF) for time durations varying between 1h and 7 days while their chemical degradation has been studied in Tris-HCl in accordance with ISO-10993-14. Increasing Na(+)/Mg(2+) ratio caused a decrease in the chemical durability of glasses and in the apatite forming ability especially during initial steps of interaction between glass and SBF solution. The cellular responses were observed in vitro on bulk glass samples using mouse-derived pre-osteoblastic MC3T3-E1 cell line. The preliminary study suggested that the increasing alkali-concentration in glasses led to cytotoxicity in the cell culture medium. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Effects of solution chemistry and atmosphere on leaching of alkali borosilicate glass

    International Nuclear Information System (INIS)

    Hermansson, H.P.; Christensen, H.; Clark, D.E.; Werme, L.

    1983-01-01

    The leaching behavior of two alkali-borosilicate glasses containing 9 wt % simulated fission products and 1.6 wt % uranium oxide has been studied. Samples were exposed to one of eight types of leachants including doubly distilled water, simulated ground silicate water, a brine solution, and solutions containing various concentrations of iron, aluminum or sodium maintained at either 25 0 C, 40 0 C or 90 0 C for up to 182 days. The most aggressive leachants were the solutions containing sodium (excluding brine) and simulated ground silicate water. These solutions increased the extent of leaching by a factor of 2 to 3 over that for distilled water for one of the glasses. A partially protective surface film rich in magnesium, potassium, and chlorine was formed on the glasses exposed to the brine solution. In order to evaluate the effects of atmosphere on leaching, samples were also immersed in doubly distilled water over which the relative concentrations of oxygen, nitrogen and carbon dioxide were varied. Increasing the carbon dioxide concentration from 0 to 50% resulted in a factor of 3 increase in the leaching rate

  17. Radiation effects in silicate glasses

    International Nuclear Information System (INIS)

    Bibler, N.E.; Howitt, D.G.

    1988-01-01

    The study of radiation effects in complex silicate glasses has received renewed attention because of their use in special applications such as high level nuclear waste immobilization and fiber optics. Radiation changes the properties of these glasses by altering their electronic and atomic configurations. These alterations or defects may cause dilatations or microscopic phase changes along with absorption centers that limit the optical application of the glasses. Atomic displacements induced in the already disordered structure of the glasses may affect their use where heavy irradiating particles such as alpha particles, alpha recoils, fission fragments, or accelerated ions are present. Large changes (up to 1%) in density may result. In some cases the radiation damage may be severe enough to affect the durability of the glass in aqueous solutions. In the paper, the authors review the literature concerning radiation effects on density, durability, stored energy, microstructure and optical properties of silicate glasses. Both simple glasses and complex glasses used for immobilization of nuclear waste are considered

  18. Nanostructured silicate polymer concrete

    Directory of Open Access Journals (Sweden)

    Figovskiy Oleg L'vovich

    2014-03-01

    Full Text Available It has been known that acid-resistant concretes on the liquid glass basis have high porosity (up to 18~20 %, low strength and insufficient water resistance. Significant increasing of silicate matrix strength and density was carried out by incorporation of special liquid organic alkali-soluble silicate additives, which block superficial pores and reduce concrete shrinkage deformation. It was demonstrated that introduction of tetrafurfuryloxisilane additive sharply increases strength, durability and shock resistance of silicate polymer concrete in aggressive media. The experiments showed, that the strength and density of silicate polymer concrete increase in case of decreasing liquid glass content. The authors obtained optimal content of silicate polymer concrete, which possesses increased strength, durability, density and crack-resistance. Diffusive permeability of concrete and its chemical resistance has been investigated in various corroding media.

  19. The alkali-aggregate reaction - concrete microstructure evolution

    International Nuclear Information System (INIS)

    Regourd, M.; Hornain, H.; Poitevin, P.

    1981-01-01

    The alkali-aggregate reaction has been studied by scanning electron microscopy and energy dispersive X-ray analysis, electron probe microanalysis, and X-ray diffraction in concretes containing glass aggregates or hornfels and greywacke aggregates. The surface reaction of the natural aggregates in alkaline solutions has been analysed by X-ray photo-electron spectrometry. The study of concretes with glass aggregates stored at 20 degrees Celcius and 100 percent relative humidity has revealed, irrespective of alkali content and type of cement, the formation of a gel containing SiO 2 , Na 2 O, CaO, MgO and Al 2 O 3 . Under heat and pressure (210 degrees Celcius at MPa for 48 hours), the gel crystallizes and yields silicates not very different from tobermorite found in autoclaved normal concretes but cotaining Na and K in solid solutions. The alkali reaction in two natural aggregate concretes, is also shown by the formation of gels and silicate crystals. The progressive structuring of the gels in silicate crystals is promoted by an increase in temperature. Ettringite and Ca(OH) 2 reinforce the alkali-aggregate reaction which may be looked upon as a hydration reaction, partially of the pozzolanic type

  20. Physical and optical studies in mixed alkali borate glasses with three types of alkali ions

    International Nuclear Information System (INIS)

    Samee, M.A.; Awasthi, A.M.; Shripathi, T.; Bale, Shashidhar; Srinivasu, Ch.; Rahman, Syed

    2011-01-01

    Research highlights: → We report, for the first time, the mixed alkali effect in the (40-x)Li 2 O-xNa 2 O-10K 2 O-50B 2 O 3 glasses through optical properties, density and modulated DSC studies. → Optical band gap (E opt ) and Urbach energy (ΔE) have been evaluated. → The values of E opt and ΔE show non-linear behavior with compositional parameter showing the mixed alkali effect. → The glass stability S is observed to be less which may be important for the present glasses as promising material for non-optical applications. - Abstract: So far only a handful of publications have been concerned with the study of the mixed alkali effect in borate glasses containing three types of alkali ions. In the present work, the mixed alkali effect (MAE) has been investigated in the glass system (40-x)Li 2 O-xNa 2 O-10K 2 O-50B 2 O 3 . (0 ≤ x ≤ 40 mol%) through density and modulated DSC studies. The density and glass transition temperature of the present glasses varies non-linearly exhibiting mixed alkali effect. The glass stability is observed to be less which may be important for the present glasses as promising material for non-optical applications. We report, for the first time, the mixed alkali effect in the present glasses through optical properties. From the absorption edge studies, the values of indirect optical band gap (E opt ), direct optical band gap and Urbach energy (ΔE) have been evaluated. The values of E opt and ΔE show non-linear behavior with compositional parameter showing the mixed alkali effect. The average electronic polarizability of oxide ions α O 2- , optical basicity Λ, and Yamashita-Kurosawa's interaction parameter A have been examined to check the correlations among them and bonding character. Based on good correlation among electronic polarizability of oxide ions, optical basicity and interaction parameter, the present Li 2 O-Na 2 O-K 2 O-B 2 O 3 glasses are classified as normal ionic (basic) oxides.

  1. Glass as a waste form for the immobilization of plutonium

    International Nuclear Information System (INIS)

    Bates, J.K.; Ellison, A.J.G.; Emery, J.W.; Hoh, J.C.

    1995-01-01

    Several alternatives for disposal of surplus plutonium are being considered. One method is incorporating Pu into glass and in this paper we discuss the development and corrosion behavior of an alkali-tin-silicate glass and update results in testing Pu doped Defense Waste Processing Facility (DWPF) reference glasses. The alkali-tin-silicate glass was engineered to accommodate a high Pu loading and to be durable under conditions likely to accelerate glass reaction. The glass dissolves about 7 wt% Pu together with the neutron absorber Gd, and under test conditions expected to accelerate the glass reaction with water, is resistant to corrosion. The Pu and the Gd are released from the glass at nearly the same rate in static corrosion tests in water, and are not segregated into surface alteration phases when the glass is reacted in water vapor. Similar results for the behavior of Pu and Gd are found for the DWPF reference glasses, although the long-term rate of reaction for the reference glasses is more rapid than for the alkali-tin-silicate glass

  2. Preparation of β-belite using liquid alkali silicates

    International Nuclear Information System (INIS)

    Koutník, P.

    2017-01-01

    The aim of this study is the preparation of β-belite by a solid-state reaction using powdered limestone, amorphous silica and liquid alkali silicates. The raw materials were blended, the mixtures were agglomerated and then burnt. The resulting samples were characterized by X-ray diffraction analysis and scanning electron microscopy. Free lime content in the β-belite samples was also determined. The effects of CaO/SiO2 ratio (1.6–2.1), burning temperature (800–1400 °C), utilization of different raw materials (silica fume, synthetic silica, potassium silicate, sodium silicate, potassium hydroxide) and burning time (0.5–16 h) on free lime content and mineralogical composition were investigated. The purest ?-belite samples were prepared from a mixture of powdered limestone, silica fume and liquid potassium silicate with a ratio CaO/SiO2 = 2 by burning at temperatures between 1100 and 1300 °C for more than 2 h. Decreasing of the CaO/SiO2 ratio led to rankinite formation and lower a burning temperature led to the formation of wollastonite. [es

  3. Enzyme stabilization by glass-derived silicates in glass-exposed aqueous solutions

    Science.gov (United States)

    Ives, J.A.; Moffett, J.R.; Arun, P.; Lam, D.; Todorov, T.I.; Brothers, A.B.; Anick, D.J.; Centeno, J.; Namboodiri, M.A.A.; Jonas, W.B.

    2010-01-01

    Objectives: To analyze the solutes leaching from glass containers into aqueous solutions, and to show that these solutes have enzyme activity stabilizing effects in very dilute solutions. Methods: Enzyme assays with acetylcholine esterase were used to analyze serially succussed and diluted (SSD) solutions prepared in glass and plastic containers. Aqueous SSD preparations starting with various solutes, or water alone, were prepared under several conditions, and tested for their solute content and their ability to affect enzyme stability in dilute solution. Results: We confirm that water acts to dissolve constituents from glass vials, and show that the solutes derived from the glass have effects on enzymes in the resultant solutions. Enzyme assays demonstrated that enzyme stability in purified and deionized water was enhanced in SSD solutions that were prepared in glass containers, but not those prepared in plastic. The increased enzyme stability could be mimicked in a dose-dependent manner by the addition of silicates to the purified, deionized water that enzymes were dissolved in. Elemental analyses of SSD water preparations made in glass vials showed that boron, silicon, and sodium were present at micromolar concentrations. Conclusions: These results show that silicates and other solutes are present at micromolar levels in all glass-exposed solutions, whether pharmaceutical or homeopathic in nature. Even though silicates are known to have biological activity at higher concentrations, the silicate concentrations we measured in homeopathic preparations were too low to account for any purported in vivo efficacy, but could potentially influence in vitro biological assays reporting homeopathic effects. ?? 2009 The Faculty of Homeopathy.

  4. Effect of alkali ion on relaxation properties of binary alkali-borate glasses

    International Nuclear Information System (INIS)

    Lomovskoj, V.A.; Bartenev, G.M.

    1992-01-01

    Method of relaxation spectrometry were used to analyze the data on internal friction spectra of lithium, sodium, potassium and rubidium alkali-borate glasses in wide range of temperatures and frequencies. The nature of two relaxation processes was clarified: β m -process, related with mobility of alkaline metal cations, and α-process (vitrification), conditioned by system transformation from viscous-flow to vitreous state. It is shown that atomic-molecular mechanism of vitrification process changes when passing from vitreous B 2 O 3 to alkali-borate glasses

  5. Effects of ionization on silicate glasses

    International Nuclear Information System (INIS)

    Primak, W.

    1982-02-01

    This evaluation of radiation effects in silicate glasses caused by ionization is based on our own investigations, on material collected in our files (reports, articles, and notes), and on a computer literature search through recent issues of Physics Abstracts and Chemical Abstracts (and the apparently pertinent references which appeared). Some of our recent results, available heretofore only in internal correspondence, are presented in some detail. It is concluded that research into the behavior of silicate glasses generally will be required before the specific effects in the radioactive waste storage glasses can be properly understood and evaluated. Two particular neglected areas of investigation are targeted for immediate concern: a kinetic analysis of annealing data and the acquisition of data on effects of irradiation at controlled elevated temperatures

  6. Lead-silicate glass optical microbubble resonator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Pengfei, E-mail: pengfei.wang@dit.ie [Photonics Research Centre, Dublin Institute of Technology, Kevin Street, Dublin 8 (Ireland); Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Ward, Jonathan; Yang, Yong; Chormaic, Síle Nic [Light-Matter Interactions Unit, OIST Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 (Japan); Feng, Xian; Brambilla, Gilberto [Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Farrell, Gerald [Photonics Research Centre, Dublin Institute of Technology, Kevin Street, Dublin 8 (Ireland)

    2015-02-09

    Microbubble whispering gallery resonators have the potential to become key components in a variety of active and passive photonic circuit devices by offering a range of significant functionalities. Here, we report on the fabrication, optical characterization, and theoretical analysis of lead-silicate glass and optical microbubble resonators. Evanescent field coupling to the microbubbles was achieved using a 1 μm diameter, silica microfiber at a wavelength of circa 775 nm. High Q-factor modes were efficiently excited in both single-stem and two-stem, lead-silicate glass, and microbubble resonators, with bubble diameters of 38 μm (single-stem) and 48 μm (two-stem). Whispering gallery mode resonances with Q-factors as high as 2.3 × 10{sup 5} (single-stem) and 7 × 10{sup 6} (two-stem) were observed. By exploiting the high-nonlinearity of the lead-silicate glass, this work will act as a catalyst for studying a range of nonlinear optical effects in microbubbles, such as Raman scattering and four-wave mixing, at low optical powers.

  7. Modifier constraint in alkali borophosphate glasses using topological constraint theory

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zeng, Huidan, E-mail: hdzeng@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Jiang, Qi [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhao, Donghui [Unifrax Corporation, Niagara Falls, NY 14305 (United States); Chen, Guorong [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Wang, Zhaofeng; Sun, Luyi [Department of Chemical & Biomolecular Engineering and Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States); Chen, Jianding [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2016-12-01

    In recent years, composition-dependent properties of glasses have been successfully predicted using the topological constraint theory. The constraints of the glass network are derived from two main parts: network formers and network modifiers. The constraints of the network formers can be calculated on the basis of the topological structure of the glass. However, the latter cannot be accurately calculated in this way, because of the existing of ionic bonds. In this paper, the constraints of the modifier ions in phosphate glasses were thoroughly investigated using the topological constraint theory. The results show that the constraints of the modifier ions are gradually increased with the addition of alkali oxides. Furthermore, an improved topological constraint theory for borophosphate glasses is proposed by taking the composition-dependent constraints of the network modifiers into consideration. The proposed theory is subsequently evaluated by analyzing the composition dependence of the glass transition temperature in alkali borophosphate glasses. This method is supposed to be extended to other similar glass systems containing alkali ions.

  8. Ion exchange for glass strengthening

    International Nuclear Information System (INIS)

    Gy, Rene

    2008-01-01

    This paper presents a short overview of silicate glass strengthening by exchange of alkali ions in a molten salt, below the glass transition temperature (chemical tempering). The physics of alkali inter-diffusion is briefly explained and the main parameters of the process, which control the glass reinforcement, are reviewed. Methods for characterizing the obtained residual stress state and the strengthening are described, along with the simplified modelling of the stress build-up. The fragmentation of chemically tempered glass is discussed. The concept of engineered stress profile glass is presented, and finally, the effect of glass and salt compositions is overviewed

  9. Silicate glasses. Chapter 1

    International Nuclear Information System (INIS)

    Lutze, W.

    1988-01-01

    This chapter is a survey of world-wide research and development efforts in nuclear waste glasses and its production technology. The principal glasses considered are silicate glasses which contain boron, i.e. borosilicate glass. A historical overview of waste form development programs in nine countries is followed by a summary of the design criteria for borosilicate glass compositions glass compositions. In the sections on glass properties the waste form is characterized in terms of potential alterations under the influence of heat, thermal gradients, radiation, aqueous solutions and combinations thereof. The topics are phase transformations, mechanical properties, radiation effects and chemical durability. The results from studies of volcanic glasses, as natural analogues for borosilicate nuclear waste glasses in order to verify predictions obtained from short-term tests in the laboratory, have been compiled in a special section on natural analogues. A special section on advanced vitrification techniques summarizes the various actual and potential processing schemes and describes the facilities. The literature has been considered until 1985. (author). 430 refs.; 68 figs.; 29 tabs

  10. Influence of curing conditions on durability of alkali-resistant glass ...

    Indian Academy of Sciences (India)

    Glass fibres in concrete material often increase the flexural strength. However, these fibres when in contact with cement are altered by alkali reactions due to the presence of portlandite. This study presents the results of investigation to show the effect of curing conditions on the durability of alkali-resistant glass fibres in ...

  11. Insight into silicate-glass corrosion mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Cailleteau, C; Angeli, F; Gin, S; Jollivet, P [CEA VALRHO, DEN, Lab Etude Comportement Long Terme, F-30207 Bagnols Sur Ceze, (France); Devreux, F [Ecole Polytech, CNRS, Lab Phys Mat Condensee, F-91128 Palaiseau, (France); Jestin, J [CEA, CNRS, Lab Leon Brillouin, F-91191 Gif Sur Yvette, (France); Spalla, O [CEA, DSM, Lab Interdisciplinaire Org Nanometr et Supramol, F-91191 Gif Sur Yvette, (France)

    2008-07-01

    The remarkable chemical durability of silicate glass makes it suitable for a wide range of applications. The slowdown of the aqueous glass corrosion kinetics that is frequently observed at long time is generally attributed to chemical affinity effects (saturation of the solution with respect to silica). Here, we demonstrate a new mechanism and highlight the impact of morphological transformations in the alteration layer on the leaching kinetics. A direct correlation between structure and reactivity is revealed by coupling the results of several structure-sensitive experiments with numerical simulations at mesoscopic scale. The sharp drop in the corrosion rate is shown to arise from densification of the outer layers of the alteration film, leading to pore closure. The presence of insoluble elements in the glass can inhibit the film restructuring responsible for this effect. This mechanism may be more broadly applicable to silicate minerals. (authors)

  12. Decoring Behaviour of Chosen Moulding Materials with Alkali Silicate Based Inorganic Binders

    Directory of Open Access Journals (Sweden)

    Conev M.

    2017-06-01

    Full Text Available This paper contains basic information about new processes for cores for cylinder heads production with alkali silicate based inorganic binders. Inorganic binders are coming back to the foreground due to their ecologically friendly nature and new technologies for cores production and new binder systems were developed. Basically these binder systems are modified alkali silicates and therefore they carry some well-known unfavourable properties with their usage. To compensate these disadvantages, the binder systems are working with additives which are most often in powder form and are added in the moulding material. This paper deals with decoring behaviour of different moulding sands as well as the influence of chosen additives on knock-out properties in laboratory terms. For this purpose, specific methods of specimen production are described. Developed methods are then used to compare decoring behaviour of chosen sands and binder systems.

  13. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic.

    Science.gov (United States)

    Elsaka, Shaymaa E; Elnaghy, Amr M

    2016-07-01

    The aim of this study was to assess the mechanical properties of recently introduced zirconia reinforced lithium silicate glass-ceramic. Two types of CAD/CAM glass-ceramics (Vita Suprinity (VS); zirconia reinforced lithium silicate and IPS e.max CAD (IC); lithium disilicate) were used. Fracture toughness, flexural strength, elastic modulus, hardness, brittleness index, and microstructures were evaluated. Data were analyzed using independent t tests. Weibull analysis of flexural strength data was also performed. VS had significantly higher fracture toughness (2.31±0.17MPam(0.5)), flexural strength (443.63±38.90MPa), elastic modulus (70.44±1.97GPa), and hardness (6.53±0.49GPa) than IC (Pglass-ceramic revealed significantly a higher brittleness index (2.84±0.26μm(-1/2)) (lower machinability) than IC glass-ceramic (Pglass-ceramic revealed a lower probability of failure and a higher strength than IC glass-ceramic according to Weibull analysis. The VS zirconia reinforced lithium silicate glass-ceramic revealed higher mechanical properties compared with IC lithium disilicate glass-ceramic. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Alkali-free bioactive glasses for bone regeneration

    OpenAIRE

    Kapoor, Saurabh

    2014-01-01

    Bioactive glasses and glass-ceramics are a class of third generation biomaterials which elicit a special response on their surface when in contact with biological fluids, leading to strong bonding to living tissues. The purpose of the present study was to develop diopside based alkali-free bioactive glasses in order to achieve good sintering behaviour, high bioactivity, and a dissolution/ degradation rates compatible with the target applications in bone regeneration and tiss...

  15. Glass viscosity calculation based on a global statistical modelling approach

    Energy Technology Data Exchange (ETDEWEB)

    Fluegel, Alex

    2007-02-01

    A global statistical glass viscosity model was developed for predicting the complete viscosity curve, based on more than 2200 composition-property data of silicate glasses from the scientific literature, including soda-lime-silica container and float glasses, TV panel glasses, borosilicate fiber wool and E type glasses, low expansion borosilicate glasses, glasses for nuclear waste vitrification, lead crystal glasses, binary alkali silicates, and various further compositions from over half a century. It is shown that within a measurement series from a specific laboratory the reported viscosity values are often over-estimated at higher temperatures due to alkali and boron oxide evaporation during the measurement and glass preparation, including data by Lakatos et al. (1972) and the recently published High temperature glass melt property database for process modeling by Seward et al. (2005). Similarly, in the glass transition range many experimental data of borosilicate glasses are reported too high due to phase separation effects. The developed global model corrects those errors. The model standard error was 9-17°C, with R^2 = 0.985-0.989. The prediction 95% confidence interval for glass in mass production largely depends on the glass composition of interest, the composition uncertainty, and the viscosity level. New insights in the mixed-alkali effect are provided.

  16. Lattice thermal conductivity of silicate glasses at high pressures

    Science.gov (United States)

    Chang, Y. Y.; Hsieh, W. P.

    2016-12-01

    Knowledge of the thermodynamic and transport properties of magma holds the key to understanding the thermal evolution and chemical differentiation of Earth. The discovery of the remnant of a deep magma ocean above the core mantle boundary (CMB) from seismic observations suggest that the CMB heat flux would strongly depend on the thermal conductivity, including lattice (klat) and radiative (krad) components, of dense silicate melts and major constituent minerals around the region. Recent measurements on the krad of dense silicate glasses and lower-mantle minerals show that krad of dense silicate glasses could be significantly smaller than krad of the surrounding solid mantle phases, and therefore the dense silicate melts would act as a thermal insulator in deep lower mantle. This conclusion, however, remains uncertain due to the lack of direct measurements on the lattice thermal conductivity of silicate melts under relevant pressure-temperature conditions. Besides the CMB, magmas exist in different circumstances beneath the surface of the Earth. Chemical compositions of silicate melts vary with geological and geodynamic settings of the melts and have strong influences on their thermal properties. In order to have a better view of heat transport within the Earth, it is important to study compositional and pressure dependences of thermal properties of silicate melts. Here we report experimental results on lattice thermal conductivities of silicate glasses with basaltic and rhyolitic compositions up to Earth's lower mantle pressures using time-domain thermoreflectance coupled with diamond-anvil cell techniques. This study not only provides new data for the thermal conductivity of silicate melts in the Earth's deep interior, but is crucial for further understanding of the evolution of Earth's complex internal structure.

  17. Structure change of soda-silicate glass by mechanical milling

    International Nuclear Information System (INIS)

    Iwao, M; Okuno, M

    2010-01-01

    Structure change of ground soda-silicate glass (SiO 2 -Na 2 O binary systems) was investigated using X-ray diffraction (XRD) and infrared spectroscopy. The measurement results were discussed comparison to that of SiO 2 glass. With increasing Na 2 O concentrations, the XRD intensity around 2θ = 22 0 decreased and the intensity around 32 0 increased. The intensity around 22 0 and 32 0 maybe attributed to SiO 2 glass structure unit and soda-silicate glass unit, respectively. The peaks of Na 2 CO 3 crystal for 2SiO 2 -Na 2 O glass were observed with increasing milling time. This crystallization was suggested that Na + ion on 2SiO 2 -Na 2 O glass surface connected CO 2 in air. The intensity around 22 0 and 32 0 decreased and the intensity around 30 0 increased with increasing milling time. These may indicate that SiO 2 glass structure unit and soda-silicate glass structure unit were mixed by milling. In addition, IR absorption band near v = 1100 cm -1 was separated to two bands near 940 cm -1 and 1070 cm -1 with increasing Na 2 O concentrations. The band near 940 cm -1 decreased and the band near 1070 cm -1 increased with increasing milling time. These spectra changes were suggested due to decrease of Na 2 O concentrations in 2SiO 2 -Na 2 O glass with Na 2 CO 3 crystallization.

  18. Alkali ion migration between stacked glass plates by corona discharge treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Keiga [Research Institute for Electronic Science, Hokkaido University, N20 W10, Kita-ku, Sapporo, Hokkaido 001-0020 (Japan); Suzuki, Toshio [Research Center, Asahi Glass Co., Ltd., 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa 221-8755 (Japan); Ikeda, Hiroshi [Art, Science and Technology Center for Cooperative Research, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Sakai, Daisuke [Department of Electrical and Electronic Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507 (Japan); Funatsu, Shiro; Uraji, Keiichiro [Production Technology Center, Asahi Glass Co., Ltd., 1-1 Suehiro-cyo, Tsurumiku, Yokohama, Kanagawa 230-0045 (Japan); Yamamoto, Kiyoshi [Research Center, Asahi Glass Co., Ltd., 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa 221-8755 (Japan); Harada, Kenji [Department of Computer Science, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507 (Japan); Nishii, Junji, E-mail: nishii@es.hokudai.ac.jp [Research Institute for Electronic Science, Hokkaido University, N20 W10, Kita-ku, Sapporo, Hokkaido 001-0020 (Japan)

    2015-05-30

    Highlights: • Two stacked glass plates with a 1 mm gap were treated by corona discharge. • Spatial migration of alkali ion over the gap was demonstrated. • Hydrogen gas was necessary for uniform migration. • Surface modification was done with this process without high temperature or vacuum. - Abstract: Corona discharge reflects the spatial migration of alkali ions over a gap between two glass plates. This study examined stacked glass plates containing different alkali ions treated with the corona discharge plasma generated by applied voltage of 4.5 kV at 200 °C. Protons generated at the anode electrode penetrate into the potassium-ion-containing upper glass plate, which is located 5 mm below the anode electrode. Potassium ions intruded into the lower glass plate containing sodium ions placed on the cathode electrode, even over a 1 mm gap separating the plates. Finally, the sodium ion discharged on the cathode electrode. The hydrogen atmosphere was effective at inhibiting the potassium ion reaction with ambient gases during the spatial migration between the two glass plates.

  19. A-thermal elastic behavior of silicate glasses.

    Science.gov (United States)

    Rabia, Mohammed Kamel; Degioanni, Simon; Martinet, Christine; Le Brusq, Jacques; Champagnon, Bernard; Vouagner, Dominique

    2016-02-24

    Depending on the composition of silicate glasses, their elastic moduli can increase or decrease as function of the temperature. Studying the Brillouin frequency shift of these glasses versus temperature allows the a-thermal composition corresponding to an intermediate glass to be determined. In an intermediate glass, the elastic moduli are independent of the temperature over a large temperature range. For sodium alumino-silicate glasses, the a-thermal composition is close to the albite glass (NaAlSi3O8). The structural origin of this property is studied by in situ high temperature Raman scattering. The structure of the intermediate albite glass and of silica are compared at different temperatures between room temperature and 600 °C. When the temperature increases, it is shown that the high frequency shift of the main band at 440 cm(-1) in silica is a consequence of the cristobalite-like alpha-beta transformation of 6-membered rings. This effect is stronger in silica than bond elongation (anharmonic effects). As a consequence, the elastic moduli of silica increase as the temperature increases. In the albite glass, the substitution of 25% of Si(4+) ions by Al(3+) and Na(+) ions decreases the proportion of SiO2 6-membered rings responsible for the silica anomaly. The effects of the silica anomaly balance the anharmonicity in albite glass and give rise to an intermediate a-thermal glass. Different networks, formers or modifiers, can be added to produce different a-thermal glasses with useful mechanical or chemical properties.

  20. Conductivity in alkali doped CoO-B2O3 glasses

    International Nuclear Information System (INIS)

    Nagaraja, N; Sankarappa, T; Santoshkumar; Sadashivaiah, P J; Yenkayya

    2009-01-01

    Two series of cobalt-borate glasses doped with Li 2 O and K 2 O in single and mixed proportions have been synthesized by melt quenching method and investigated for ac conductivity in the frequency range of 50Hz to 5MHz and temperature range of 310K to 610K. From the measured total conductivity, the pure ac component and its frequency exponent, s were determined. In the single alkali doped glasses, for all the frequencies, the conductivity increased with increase of Li 2 O up to 0.4 mole fractions and decreased for further increase of Li 2 O. The temperature dependence of conductivity has been analyzed using Mott's small polaron hopping model and activation energy for ac conduction has been determined. Based on conductivity and activation behaviors, in single alkali glasses, a change over of conduction mechanism predominantly from ionic to electronic has been predicted. In mixed alkali doped glasses, the conductivity passed through minimum and activation energy passed through maximum for second alkali (K 2 O) content of 0.2 mole fractions. This result revealed the mixed alkali effect to be occurring at 0.2 mole fractions of K 2 O. The frequency exponent, s, was compared with theoretical models such as Quantum Mechanical Tunneling and Correlated Barrier Hopping models and found them to be inadequate to explain the experimental observations. Time-temperature superposition principle has been verified in both the sets of glasses.

  1. Eu-, Tb-, and Dy-Doped Oxyfluoride Silicate Glasses for LED Applications

    DEFF Research Database (Denmark)

    Zhu, C.F.; Wang, J.; Zhang, M.M.

    2014-01-01

    Luminescence glass is a potential candidate for the light-emitting diodes (LEDs) applications. Here, we study the structural and optical properties of the Eu-, Tb-, and Dy-doped oxyfluoride silicate glasses for LEDs by means of X-ray diffraction, photoluminescence spectra, Commission Internationale...... de L’Eclairage (CIE) chromaticity coordinates, and correlated color temperatures (CCTs). The results show that the white light emission can be achieved in Eu/Tb/Dy codoped oxyfluoride silicate glasses under excitation by near-ultraviolet light due to the simultaneous generation of blue, green, yellow......, and red-light wavelengths from Tb, Dy, and Eu ions. The optical performances can be tuned by varying the glass composition and excitation wavelength. Furthermore, we observed a remarkable emission spectral change for the Tb3+ single-doped oxyfluoride silicate glasses. The 5D3 emission of Tb3+ can...

  2. Study on the Effect of Different Fe2O3/ZrO2 Ratio on the Properties of Silicate Glass Fibers

    Directory of Open Access Journals (Sweden)

    Jianxun Liu

    2017-01-01

    Full Text Available A series of silicate glass fibers with different ratios of Fe2O3/ZrO2 were prepared, and their corrosion resistance, mass loss, and strength loss were characterized. The crystallization and melting properties of the fibers were analyzed by differential scanning calorimetry (DSC, high temperature viscometer, and high temperature microscope. The results show that the deformation temperature, sphere temperature, hemisphere temperature, and crystallization temperature of the fiber initially decrease and then increase with the increase of Fe2O3/ZrO2 ratio, while the molding temperature decreases with the increase of the ratio of Fe2O3/ZrO2. When the ratio is close to 1 : 1, its alkali resistance is almost same as that of AR-glass fiber, and the drawing process performance is better. However, with the increase of the ratio, its alkali resistance continues to decline and the poor wire drawing performance is not conducive to the drawing operation.

  3. Glass formation, properties, and structure of soda-yttria-silicate glasses

    Science.gov (United States)

    Angel, Paul W.; Hann, Raiford E.

    1991-01-01

    The glass formation region of the soda yttria silicate system was determined. The glasses within this region were measured to have a density of 2.4 to 3.1 g/cu cm, a refractive index of 1.50 to 1.60, a coefficient of thermal expansion of 7 x 10(exp -6)/C, softening temperatures between 500 and 780 C, and Vickers hardness values of 3.7 to 5.8 GPa. Aqueous chemical durability measurements were made on select glass compositions while infrared transmission spectra were used to study the glass structure and its effect on glass properties. A compositional region was identified which exhibited high thermal expansion, high softening temperatures, and good chemical durability.

  4. Radiation Shielding Properties Comparison of Pb-Based Silicate, Borate, and Phosphate Glass Matrices

    Directory of Open Access Journals (Sweden)

    Suwimon Ruengsri

    2014-01-01

    Full Text Available Theoretical calculations of mass attenuation coefficients, partial interactions, atomic cross-section, and effective atomic numbers of PbO-based silicate, borate, and phosphate glass systems have been investigated at 662 keV. PbO-based silicate glass has been found with the highest total mass attenuation coefficient and then phosphate and borate glasses, respectively. Compton scattering has been the dominate interaction contributed to the different total attenuation coefficients in each of the glass matrices. The silicate and phosphate glass systems are more appropriate choices as lead-based radiation shielding glass than the borate glass system. Moreover, comparison of results has shown that the glasses possess better shielding properties than standard shielding concretes, suggesting a smaller size requirement in addition to transparency in the visible region.

  5. 6Li-doped silicate glass for thermal neutron shielding

    International Nuclear Information System (INIS)

    Stone, C.A.; Blackburn, D.H.; Kauffman, D.A.; Cranmer, D.C.; Olmez, I.

    1994-01-01

    Glass formulations are described that contain high concentrations of 6 Li and are suitable for use as thermal neutron shielding. One formulation contained 31 mol% of 6 Li 2 O and 69 mol% of SiO 2 . Studies were performed on a second formulation that contained as much as 37 mol% of 6 Li 2 O and 59 mol% of SiO 2 , with 4 mol% Al 2 O 3 added to prevent crystallization at such high 6 Li 2 O concentrations. These lithium silicate glasses can be formed into a variety of shapes using conventional glass fabrication techniques. Examples include flat plates, disks, hollow cylinders, and other more complex geometries. Both in-beam and in-core experiments have been performed to study the use and durability of Li silicate glasses. In-core experiments show the glass can withstand the intense radiation fields near the core of a reactor. The neutron attenuation of the glasses used in these studies was 90%/mm. In-beam studies show that the glass is effective for reducing the gamma-ray and neutron fields near experiments. ((orig.))

  6. Ion-Exchange Processes and Mechanisms in Glasses

    International Nuclear Information System (INIS)

    McGrail, B.P.; Icenhower, J.P.; Darab, J.G.; Shuh, D.K.; Baer, D.R.; Shutthanandan, V.; Thevuthasan, S.; Engelhard, M.H.; Steele, J.L.; Rodriguez, E.A.; Liu, P.; Ivanov, K.E.; Booth, C.H.; Nachimuthu, P.

    2001-01-01

    Leaching of alkalis from glass is widely recognized as an important mechanism in the initial stages of glass-water interactions. Pioneering experimental studies [1-3] nearly thirty-five years ago established that alkali (designated as M + ) are lost to solution more rapidly than network-forming cations. The overall chemical reaction describing the process can be written as: (triple b ond)Si-O-M + H + → (triple b ond)Si-OH + M + (1) or (triple b ond)Si-O-M + H 3 O + → (triple b ond)Si-OH + M + + H 2 O. (2) Doremus and coworkers [4-7] fashioned a quantitative model where M + ions in the glass are exchanged for counter-diffusing H 3 O + or H + . Subsequent investigations [8], which have relied heavily on reaction layer analysis, recognized the role of H 2 O molecules in the alkali-exchange process, without minimizing the importance of charged hydrogen species. Beginning in the 1980s, however, interest in M + -H + exchange reactions in silicate glasses diminished considerably because important experimental observations showed that network hydrolysis and dissolution rates were principally controlled by the chemical potential difference between the glass and solution (chemical affinity) [9]. For nuclear waste glasses, formation of alteration products or secondary phases that remove important elements from solution, particularly Si, was found to have very large impacts on glass dissolution rates [10,11]. Consequently, recent work on glass/water interactions has focused on understanding this process and incorporating it into models [12]. The ion-exchange process has been largely ignored because it has been thought to be a short duration, secondary or tertiary process that had little or no bearing on long-term corrosion or radionuclide release rates from glasses [13]. The only significant effect identified in the literature that is attributed to alkali ion exchange is an increase in solution pH in static laboratory tests conducted at high surface area-to-volume ratios

  7. Spectroscopic properties of 1.8 μm emission in Tm3+ doped bismuth silicate glass

    International Nuclear Information System (INIS)

    Zhao, Guoying; Tian, Ying; Wang, Xin; Fan, Huiyan; Hu, Lili

    2013-01-01

    The emission properties around 1.8 μm in Tm 3+ doped bismuth silicate glass have been investigated. Based on the obtained Raman spectroscopy and differential scanning calorimetry curves, it is found the introduced Bi 2 O 3 can efficiently reduce the phonon energy of silicate glass to 926 cm −1 . The energy gap between glass transition temperature and onset temperature of crystallization is 169 °C. The OH − content maintains lower in glass by bubbling dry O 2 during the melting process. The cut-off wavelength in mid-infrared range is as long as 5 μm. Bismuth silicate glass has high radiative transition probability of 238.80 s −1 corresponding to the Tm 3+ : 3 F 4 → 3 H 6 transition compared with conventional silicate glasses. The strongest emission at 1.8 μm with a large full width at half-maximum of 238 nm is achieved from this bismuth silicate glass doped with 0.9 mol% Tm 2 O 3 . Its fluorescence lifetime at 1.8 μm is 640 μs. - Highlights: ► The 1.8 μm fluorescence of Tm 3+ -doped bismuth silicate glass is investigated. ► The prepared glass has lower phonon energy than other typical silicate glasses. ► A broadband 1.8 μm emission with the FWHM of 238 nm is observed. ► The fluorescence lifetime of Tm 3+ : 3 F 4 level reaches 640 μs.

  8. Effect of silicate module of water glass on rheological parameters of poly(sodium acrylate)/sodium silicate hydrogels

    Science.gov (United States)

    Mastalska-Popiawska, J.; Izak, P.

    2017-01-01

    The poly(sodium acrylate)/sodium silicate hydrogels were synthesized in the presence of sodium thiosulphate and potassium persulphate as the redox initiators and N,N’-methylene-bisacrylamide as the cross-linking monomer. 20 wt% aqueous solution of sodium acrylate was polymerized together with water glass with different silicate modules (M) from 1.74 to 2.29, in three mass ratio of the monomer solution to the water glass 2:1, 1:1 and 1:2. Such obtained hybrid composites were rheologically tested using the oscillation method. It allowed to designate the crossover point during polymerization, as well as to define the viscoelastic properties of the casted hydrogel samples one week after the reaction. The obtained results of the oscillation measurements showed that cross-linking reaction proceeds very quickly and the lower the silicate module is, the process starts faster. After the completion of the reaction the silicate-polymer hydrogels are strongly elastic materials and the highest elasticity characterizes systems with the mass ratio 1:2, i.e. with the highest water glass content.

  9. Thermal, mechanical and Raman studies on mixed alkali borotungstate glasses

    Science.gov (United States)

    Edukondalu, A.; Sathe, Vasant; Rahman, Syed; Siva Kumar, K.

    2014-04-01

    Mixed alkali borotungstate glasses with xLi2O-(30-x)Na2O-10WO3-60B2O3 (0 ≤ x ≤ 30) composition were prepared by melt quench technique. The amorphous phase of the prepared glass samples was conformed from their X-ray diffraction and SEM studies. Differential scanning calorimetry and Raman spectroscopic studies were employed to investigate the structure of all the prepared glasses. The elastic moduli and Debye temperature were calculated in terms of Makishima-Mackenzie model. Acting as complementary techniques, Raman measurement revealed that the network structure of the present glasses is mainly based on BO3 and BO4 units placed in different structural groups. Raman spectra confirms the presence of tungsten ions mainly as WO6 groups. In the present work, the mixed alkali effect (MAE) has been investigated in the above glass system through modulated DSC studies.

  10. Modifier cation effects on (29)Si nuclear shielding anisotropies in silicate glasses.

    Science.gov (United States)

    Baltisberger, Jay H; Florian, Pierre; Keeler, Eric G; Phyo, Pyae A; Sanders, Kevin J; Grandinetti, Philip J

    2016-07-01

    We have examined variations in the (29)Si nuclear shielding tensor parameters of SiO4 tetrahedra in a series of seven alkali and alkaline earth silicate glass compositions, Cs2O·4.81 SiO2, Rb2O·3.96 SiO2, Rb2O·2.25 SiO2, K2O·4.48 SiO2, Na2O·4.74 SiO2, BaO·2.64 SiO2, and SrO·2.36 SiO2, using natural abundance (29)Si two-dimensional magic-angle flipping (MAF) experiments. Our analyses of these 2D spectra reveal a linear dependence of the (29)Si nuclear shielding anisotropy of Q((3)) sites on the Si-non-bridging oxygen bond length, which in turn depends on the cation potential and coordination of modifier cations to the non-bridging oxygen. We also demonstrate how a combination of Cu(2+) as a paramagnetic dopant combined with echo train acquisition can reduce the total experiment time of (29)Si 2D NMR measurements by two orders of magnitude, enabling higher throughput 2D NMR studies of glass structure. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Modifier cation effects on 29Si nuclear shielding anisotropies in silicate glasses

    Science.gov (United States)

    Baltisberger, Jay H.; Florian, Pierre; Keeler, Eric G.; Phyo, Pyae A.; Sanders, Kevin J.; Grandinetti, Philip J.

    2016-07-01

    We have examined variations in the 29Si nuclear shielding tensor parameters of SiO4 tetrahedra in a series of seven alkali and alkaline earth silicate glass compositions, Cs2O · 4.81 SiO2, Rb2O · 3.96 SiO2, Rb2O · 2.25 SiO2, K2O · 4.48 SiO2, Na2O · 4.74 SiO2, BaO · 2.64 SiO2, and SrO · 2.36 SiO2, using natural abundance 29Si two-dimensional magic-angle flipping (MAF) experiments. Our analyses of these 2D spectra reveal a linear dependence of the 29Si nuclear shielding anisotropy of Q(3) sites on the Si-non-bridging oxygen bond length, which in turn depends on the cation potential and coordination of modifier cations to the non-bridging oxygen. We also demonstrate how a combination of Cu2+ as a paramagnetic dopant combined with echo train acquisition can reduce the total experiment time of 29Si 2D NMR measurements by two orders of magnitude, enabling higher throughput 2D NMR studies of glass structure.

  12. Physical ageing of silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Nemilov, S.V. [S. I. Vavilov State Optical Inst., St. Petersburg (Russian Federation)

    2003-02-01

    The presented review has been devoted to the problem of volume-determined properties relaxation of silicate glasses at room temperature. It is shown that the experimental data are described by the simple Debye exponential law or by a superposition of two exponents. Their parameters are calculated and systematized. A molecular-kinetic model is proposed for these ageing processes. It proceeds from the possibility of volume relaxation due to the cooperative β-relaxation mechanism with no change in the system's topology. The characteristic ageing times can be calculated according to equations obtained based on the viscosity data in the glass transition range. The precision of the calculations is about {+-} 15% at the time variations from a few weeks up to about 15 years. The system of calculated parameters is proposed which characterizes the completeness of ageing and its rate at any glass age. Optical and thermometric glasses have been ranked by their tendency to ageing. The scheme of future investigations predetermined by practice is defined. (orig.)

  13. Canonical correlation of waste glass compositions and durability, including pH

    International Nuclear Information System (INIS)

    Oeksoy, D.; Pye, L.D.; Bickford, D.F.; Ramsey, W.G.

    1993-01-01

    Control of waste glass durability is a major concern in the immobilization of radioactive and mixed wastes. Leaching rate in standardized laboratory tests is being used as a demonstration of consistency of the response of waste glasses in the final disposal environment. The leaching of silicate and borosilicate glasses containing alkali or alkaline earth elements is known to be autocatalytic, in that the initial ion exchange of alkali in the glass for hydrogen ions in water results in the formation of OH and increases the pH of the leachate. The increased pH then increases the rate of silicate network attack, accelerating the leaching effect. In well formulated glasses this effect reaches a thermodynamic equilibrium when leachate saturation of a critical species, such as silica, or a dynamic equilibrium is reached when the pH shift caused by incremental leaching has negligible effect on pH. This report analyzes results of a seven leach test on waste glasses

  14. Thermal, mechanical and Raman studies on mixed alkali borotungstate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Edukondalu, A. [Department of Physics, Osmania University, Hyderabad 500007 (India); Sathe, Vasant [Consortium for Scientific Research, Khandwa Road, Indore 452017 (India); Rahman, Syed [Department of Physics, Osmania University, Hyderabad 500007 (India); Siva Kumar, K., E-mail: siva193ou@gmail.com [Department of Physics, Osmania University, Hyderabad 500007 (India)

    2014-04-01

    Mixed alkali borotungstate glasses with xLi{sub 2}O–(30−x)Na{sub 2}O–10WO{sub 3}–60B{sub 2}O{sub 3} (0 ≤ x ≤ 30) composition were prepared by melt quench technique. The amorphous phase of the prepared glass samples was conformed from their X-ray diffraction and SEM studies. Differential scanning calorimetry and Raman spectroscopic studies were employed to investigate the structure of all the prepared glasses. The elastic moduli and Debye temperature were calculated in terms of Makishima–Mackenzie model. Acting as complementary techniques, Raman measurement revealed that the network structure of the present glasses is mainly based on BO{sub 3} and BO{sub 4} units placed in different structural groups. Raman spectra confirms the presence of tungsten ions mainly as WO{sub 6} groups. In the present work, the mixed alkali effect (MAE) has been investigated in the above glass system through modulated DSC studies.

  15. Utilization of Mineral Wools as Alkali-Activated Material Precursor

    Directory of Open Access Journals (Sweden)

    Juho Yliniemi

    2016-04-01

    Full Text Available Mineral wools are the most common insulation materials in buildings worldwide. However, mineral wool waste is often considered unrecyclable because of its fibrous nature and low density. In this paper, rock wool (RW and glass wool (GW were studied as alkali-activated material precursors without any additional co-binders. Both mineral wools were pulverized by a vibratory disc mill in order to remove the fibrous nature of the material. The pulverized mineral wools were then alkali-activated with a sodium aluminate solution. Compressive strengths of up to 30.0 MPa and 48.7 MPa were measured for RW and GW, respectively, with high flexural strengths measured for both (20.1 MPa for RW and 13.2 MPa for GW. The resulting alkali-activated matrix was a composite-type in which partly-dissolved fibers were dispersed. In addition to the amorphous material, sodium aluminate silicate hydroxide hydrate and magnesium aluminum hydroxide carbonate phases were identified in the alkali-activated RW samples. The only crystalline phase in the GW samples was sodium aluminum silicate. The results of this study show that mineral wool is a very promising raw material for alkali activation.

  16. Glass laser discs with annular alkali lead borate coatings and use thereof

    International Nuclear Information System (INIS)

    Cooley, R.F.

    1975-01-01

    A laser assembly that includes a novel glass laser disc having an annular alkali lead borate glass coating for use in the assembly is disclosed. The annular coating has an index of refraction that is about 3 to 12 percent greater than the index of refraction of the laser disc, the thermal properties also being sufficiently matched with the glass laser disc so as to prevent the development of undesirable strains therein, the glass coating comprising a mixture of alkali metal oxides in which at least two different alkali metal oxides are present, and any K 2 O that is present is limited to an amount of not substantially more than about 1 percent by weight and an effective energy absorbing amount of heavy metal oxide that absorbs energy at a wavelength of about 1.06 microns to prevent parasitic oscillations. The heavy metal oxides include oxides of transition metals of the 3d, 4d, 4f, 5d and 5f orbital series. (auth)

  17. Laser ablation of silicate glasses doped with transuranic actinides

    International Nuclear Information System (INIS)

    Gibson, J.K.; Haire, R.G.

    1998-01-01

    Direct sampling laser ablation plasma mass spectrometry (DS-LAMS) was applied to silica glasses doped with 237 Np, 242 Pu or 241 Am using a unique instrument recently installed into a transuranic glovebox. The primary goal was to assess the utility of mass spectrometry of directly ablated ions for facile evaluation of actinide (An) constituents of silicate glass immobilization matrices used for encapsulation of radionuclides. The instrument and general procedures have been described elsewhere. Three high-purity silicate glasses prepared by a sol-gel process (SG) and one conventional high-temperature (HT; melting point ∼ 1,450 C) borosilicate glass were studied. These glasses comprised the following constituents, with compositions expressed in mass percentages: Np-HT ∼ 30% SiO 2 + 6% B 2 O 3 + 3% BaO + 13% Al 2 O 3 + 10% PbO + 30% La 2 O 3 + 8% 237 NpO 2 ; Np-SG ∼ 70% SiO 2 + 30% 237 NpO 2 ; Pu-SG ∼ 70% SiO 2 + 30% 242 PuO 2 ; Am-SG ∼ 85% SiO 2 + 15% 241 AmO 2

  18. Optical waveguides in fluoride lead silicate glasses fabricated by carbon ion implantation

    Science.gov (United States)

    Shen, Xiao-liang; Wang, Yue; Zhu, Qi-feng; Lü, Peng; Li, Wei-nan; Liu, Chun-xiao

    2018-03-01

    The carbon ion implantation with energy of 4.0 MeV and a dose of 4.0×1014 ions/cm2 is employed for fabricating the optical waveguide in fluoride lead silicate glasses. The optical modes as well as the effective refractive indices are measured by the prism coupling method. The refractive index distribution in the fluoride lead silicate glass waveguide is simulated by the reflectivity calculation method (RCM). The light intensity profile and the energy losses are calculated by the finite-difference beam propagation method (FD-BPM) and the program of stopping and range of ions in matter (SRIM), respectively. The propagation properties indicate that the C2+ ion-implanted fluoride lead silicate glass waveguide is a candidate for fabricating optical devices.

  19. Research on test of alkali-resistant glass fibre enhanced seawater coral aggregate concrete

    Science.gov (United States)

    Liu, Leiyang; Wang, Xingquan

    2017-12-01

    It is proposed in the 13th five-year plan that reefs of the south China sea should be constructed. In the paper, an innovative thinking was proposed for the first time in order to realize local material acquisition in island construction and life dependence on sea, namely alkali-resistant glass fibre is mixed in coralaggregate concrete as reinforcing material. The glass fibre is characterized by low price, low hardness, good dispersibility and convenient construction. Reliable guarantee is provided for widely applying the material in future projects. In the paper, an orthogonal test method is firstly applied to determine the mix proportion of grade C50 coral aggregate concrete. Then, the design plan ofmix proportion of alkali-resistant glass fibre enhanced seawater coral aggregate concrete is determined. Finally, the influence law of alkali-resistant glass fibre dosageon tensile compressiveflexture strength of seawatercoralaggregate concrete is made clear.

  20. Stress-corrosion mechanisms in silicate glasses

    International Nuclear Information System (INIS)

    Ciccotti, Matteo

    2009-01-01

    The present review is intended to revisit the advances and debates in the comprehension of the mechanisms of subcritical crack propagation in silicate glasses almost a century after its initial developments. Glass has inspired the initial insights of Griffith into the origin of brittleness and the ensuing development of modern fracture mechanics. Yet, through the decades the real nature of the fundamental mechanisms of crack propagation in glass has escaped a clear comprehension which could gather general agreement on subtle problems such as the role of plasticity, the role of the glass composition, the environmental condition at the crack tip and its relation to the complex mechanisms of corrosion and leaching. The different processes are analysed here with a special focus on their relevant space and time scales in order to question their domain of action and their contribution in both the kinetic laws and the energetic aspects.

  1. Spectroscopic study of silicate glass structure. Application to the case of iron and magnesium

    International Nuclear Information System (INIS)

    Rossano, Stephanie

    2008-01-01

    During the last 10 years, I focused my research topics on silicate glass structure. More specifically I have been interested by two main components of natural and technological silicate glasses, Fe and Mg. Using solid state spectroscopic methods adapted to the disordered nature of glass coupled to molecular dynamics simulation and modeling or ab initio calculation, I have studied the environment of iron and magnesium and their impact on glass properties. Information on the distribution of environments in glasses have been extracted. (author)

  2. Radiation Shielding Properties Comparison of Pb-Based Silicate, Borate, and Phosphate Glass Matrices

    OpenAIRE

    Ruengsri, Suwimon

    2014-01-01

    Theoretical calculations of mass attenuation coefficients, partial interactions, atomic cross-section, and effective atomic numbers of PbO-based silicate, borate, and phosphate glass systems have been investigated at 662 keV. PbO-based silicate glass has been found with the highest total mass attenuation coefficient and then phosphate and borate glasses, respectively. Compton scattering has been the dominate interaction contributed to the different total attenuation coefficients in each of th...

  3. Influence of alkali, silicate, and sulfate content of carbonated concrete pore solution on mild steel corrosion behavior

    International Nuclear Information System (INIS)

    L'Hostis, V.; Huet, B.; Tricheux, L.; Idrissi, H.

    2010-01-01

    The increase in the rebar corrosion rate due to the concrete carbonation is the major cause of reinforced concrete degradation. The aim of this study was to investigate the corrosion behavior of mild steel rebars in simulated carbonated concrete solution. For this purpose, thermodynamic calculations, electrochemical techniques, gravimetric measurements, and surface analyses were used. Thermodynamic investigations of the nature of the interstitial solution provides an estimation of the influence of sulfate (SO 4 2- ) and alkali (Na + , K + ) content on carbonate alkalinity of the CO 2 /H 2 O open system (pCO 2 =0. 3 mbar). in this system, calcium-silicate hydrates (C-S-H) remain thermodynamically unstable and amorphous silica controls silicate aqueous content at 100 ppm. Electrochemical results highlight a decrease in the corrosion rate with increasing carbonate alkalinity and the introduction of silicate. The introduction of sulfate at fixed carbonate alkalinity shows a dual effect: at high carbonate alkalinity, the corrosion rate is increased whereas at low carbonate alkalinity, corrosion rate is decreased. Those results are supported by surface analysis. Authors conclude that silicate and sulfate release from cement hydrates and fixation of alkali on carbonated hydrates are key parameters to estimate mild steel corrosion in carbonated concrete. (authors)

  4. The Durability and Performance of Short Fibers for a Newly Developed Alkali-Activated Binder

    Directory of Open Access Journals (Sweden)

    Henrik Funke

    2016-03-01

    Full Text Available This study reports the development of a fiber-reinforced alkali-activated binder (FRAAB with an emphasis on the performance and the durability of the fibers in the alkaline alkali-activated binder (AAB-matrix. For the development of the matrix, the reactive components granulated slag and coal fly ash were used, which were alkali-activated with a mixture of sodium hydroxide (2–10 mol/L and an aqueous sodium silicate solution (SiO2/Na2O molar ratio: 2.1 at ambient temperature. For the reinforcement of the matrix integral fibers of alkali-resistant glass (AR-glass, E-glass, basalt, and carbon with a fiber volume content of 0.5% were used. By the integration of these short fibers, the three-point bending tensile strength of the AAB increased strikingly from 4.6 MPa (no fibers up to 5.7 MPa (carbon after one day. As a result of the investigations of the alkali resistance, the AR-glass and the carbon fibers showed the highest durability of all fibers in the FRAAB-matrix. In contrast to that, the weight loss of E-glass and basalt fibers was significant under the alkaline condition. According to these results, only the AR-glass and the carbon fibers reveal sufficient durability in the alkaline AAB-matrix.

  5. Water speciation in sodium silicate glasses (quenched melts): A comprehensive NMR study

    Science.gov (United States)

    Xue, X.; Kanzaki, M.; Eguchi, J.

    2012-12-01

    Dissolution mechanism of water is an important factor governing how the dissolved water affects the physical and thermodynamic properties of silicate melts and glasses. Our previous studies have demonstrated that 1H MAS NMR in combination with 29Si-1H and 27Al-1H double-resonance NMR experiments is an effective approach for unambiguously differentiating and quantifying different water species in quenched silicate melts (glasses). Several contrasting dissolution mechanisms have been revealed depending on the melt composition: for relatively polymerized melts, the formation of SiOH/AlOH species (plus molecular H2O) and depolymerization of the network structure dominate; whereas for depolymerized Ca-Mg silicate melts, free OH (e.g. MgOH) become increasingly important (cf. [1]). The proportion of free OH species has been shown to decrease with both increasing melt polymerization (silica content) and decreasing field strength of the network modifying cations (from Mg to Ca). Our previous 1H and 29Si MAS NMR results for hydrous Na silicate glasses of limited compositions (Na2Si4O9 and Na2Si2O5) were consistent with negligible free OH (NaOH) species and depolymerizing effect of water dissolution [2]. On the other hand, there were also other studies that proposed the presence of significant NaOH species in hydrous glasses near the Na2Si2O5 composition. The purpose of this study is apply the approach of combined 1H MAS NMR and double-resonance (29Si-1H and 23Na-1H) NMR to gain unambiguous evidence for the OH speciation in Na silicate glasses (melts) as a function of composition. Hydrous Na silicate glasses containing mostly ≤ 1 wt% H2O for a range of Na/Si ratios from 0.33 to 1.33 have been synthesized by rapidly quenching melts either at 0.2 GPa using an internally heated gas pressure vessel or at 1 GPa using a piston cylinder high-pressure apparatus. NMR spectra have been acquired using a 9.4 T Varian Unity-Inova spectrometer. The 29Si and 1H chemical shifts are

  6. Sb/Mn co-doped oxyfluoride silicate glasses for potential applications in photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Chaofeng [Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics of Shandong Province, Qilu University of Technology, Jinan 250353 (China); Laboratoire des Verres et Céramiques, UMR-CNRS 6226, Université de Rennes 1, Rennes 35042 (France); Zhang, Xianghua, E-mail: xiang-hua.zhang@univ-rennes1.fr [Laboratoire des Verres et Céramiques, UMR-CNRS 6226, Université de Rennes 1, Rennes 35042 (France); Ma, Hongli [Laboratoire des Verres et Céramiques, UMR-CNRS 6226, Université de Rennes 1, Rennes 35042 (France)

    2016-03-15

    A series of Sb/Mn co-doped oxyfluoride silicate glasses were prepared via the melt-quenching method to explore red luminescent materials for potential applications in photosynthesis of green plants, and these glasses are investigated by means of luminescence decay curves, absorption, emission, and excitation spectra. We find that the as-prepared glasses are transparent in the visible region and can emit strong red light under ultraviolet, purple, and green light excitations. Furthermore, energy transfer from Sb{sup 3+} to Mn{sup 2+} ions occurs in Sb/Mn co-doped glasses. The results demonstrate that the as-prepared Sb/Mn co-doped oxyfluoride silicate glasses may serve as a potential candidate for developing glass greenhouse, which can enhance the utilization of solar energy for the photosynthesis of the green plants.

  7. Calcium titanium silicate based glass-ceramic for nuclear waste immobilisation

    Science.gov (United States)

    Sharma, K.; Srivastav, A. P.; Goswami, M.; Krishnan, Madangopal

    2018-04-01

    Titanate based ceramics (synroc) have been studied for immobilisation of nuclear wastes due to their high radiation and thermal stability. The aim of this study is to synthesis glass-ceramic with stable phases from alumino silicate glass composition and study the loading behavior of actinides in glass-ceramics. The effects of CaO and TiO2 addition on phase evolution and structural properties of alumino silicate based glasses with nominal composition x(10CaO-9TiO2)-y(10Na2O-5 Al2O3-56SiO2-10B2O3); where z = x/y = 1.4-1.8 are reported. The glasses are prepared by melt-quench technique and characterized for thermal and structural properties using DTA and Raman Spectroscopy. Glass transition and peak crystallization temperatures decrease with increase of CaO and TiO2 content, which implies the weakening of glass network and increased tendency of glasses towards crystallization. Sphene (CaTiSiO5) and perovskite (CaTiO3) crystalline phases are confirmed from XRD which are well known stable phase for conditioning of actinides. The microsturcture and elemental analysis indicate the presence of actinide in stable crystalline phases.

  8. Effect of the nature of alkali and alkaline-earth oxides on the structure and crystallization of an alumino-borosilicate glass developed to immobilize highly concentrated nuclear waste solutions

    International Nuclear Information System (INIS)

    Quintas, A.; Caurant, D.; Majerus, O.; Charpentier, T.; Dussossoy, J.L.

    2008-01-01

    A complex rare-earth rich alumino-borosilicate glass has been proved to be a good candidate for the immobilization of new high level radioactive wastes. A simplified seven-oxides composition of this glass was selected for this study. In this system, sodium and calcium cations were supposed in other works to simulate respectively all the other alkali (R + = Li + , Rb + , Cs + ) and alkaline-earth (R 2+ = Sr 2+ , Ba 2+ ) cations present in the complex glass composition. Moreover, neodymium or lanthanum are used here to simulate all the rare-earths and actinides occurring in waste solutions. In order to study the impact of the nature of R + and R 2+ cations on both glass structure and melt crystallization tendency during cooling, two glass series were prepared by replacing either Na + or Ca 2+ cations in the simplified glass by respectively (Li + , K + , Rb + , Cs + ) or (Mg 2+ , Sr 2+ , Ba 2+ ) cations. From these substitutions, it was established that alkali ions are preferentially involved in the charge compensation of (AlO 4 ) - entities in the glass network comparatively to alkaline-earth ions. The glass compositions containing calcium give way to the crystallization of an apatite silicate phase bearing calcium and rare-earth ions. The melt crystallization tendency during cooling strongly varies with the nature of the alkaline-earth. (authors)

  9. Conduction mechanism in bismuth silicate glasses containing titanium

    International Nuclear Information System (INIS)

    Dult, Meenakshi; Kundu, R.S.; Murugavel, S.; Punia, R.; Kishore, N.

    2014-01-01

    Bismuth silicate glasses mixed with different concentrations of titanium dioxide having compositions xTiO 2 –(60−x)Bi 2 O 3 –40SiO 2 with x=0, 5, 10, 15 and 20 were prepared by the normal melt quench technique. The frequency dependence of the ac electrical conductivity of different compositions of titanium bismuth silicate glasses has been studied in the frequency range 10 −1 Hz to 10 MHz and in the temperature range 623–703 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of titanium bismuth silicate glass system. The dc conductivity (σ dc ), so called crossover frequency (ω H ), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (H f ) and enthalpy of migration (H m ) have also been estimated. The conductivity data have been analyzed in terms of different theoretical models to determine the possible conduction mechanism. Analysis of the conductivity data and the frequency exponent shows that the correlated barrier hopping of electrons between Ti 3+ and Ti 4+ ions in the glasses is the most favorable mechanism for ac conduction. The temperature dependent dc conductivity has been analyzed in the framework of theoretical variable range hopping model (VRH) proposed by Mott which describe the hopping conduction in disordered semiconducting systems. The various polaron hopping parameters have also been deduced. Mott's VRH model is found to be in good agreement with experimental data and the values of inverse localization length of s-like wave function (α) obtained by this model with modifications suggested by Punia et al. are close to the ones reported for a number of oxide glasses

  10. X-ray fluorescence analysis with micro glass beads using milligram-scale siliceous samples for archeology and geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Shintaro, E-mail: sichi@meiji.ac.jp [Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, Kawasaki 214-8571 (Japan); Nakamura, Toshihiro [Department of Applied Chemistry, Meiji University, Kawasaki 214-8571 (Japan)

    2014-06-01

    A micro glass bead technique was developed to assay precious siliceous samples for geochemical and archeological analyses. The micro-sized (approximately 3.5 mm in diameter and 0.8 mm in height) glass beads were prepared by mixing and fusing 1.1 mg of the powdered sample and 11.0 mg of the alkali lithium tetraborate flux for wavelength-dispersive X-ray fluorescence determination of major oxides (Na{sub 2}O, MgO, Al{sub 2}O{sub 3}, SiO{sub 2}, P{sub 2}O{sub 5}, K{sub 2}O, CaO, TiO{sub 2}, MnO, and total Fe{sub 2}O{sub 3}). The preparation parameters, including temperature and agitation during the fusing process, were optimized for the use of a commercial platinum crucible rather than a custom-made crucible. The procedure allows preparation of minute sample amounts of siliceous samples using conventional fusing equipment. Synthetic calibration standards were prepared by compounding chemical reagents such as oxides, carbonates, and diphosphates. Calibration curves showed good linearity with r values > 0.997, and the lower limits of detection were in the 10s to 100s of μg g{sup −1} range (e.g., 140 μg g{sup −1} for Na{sub 2}O, 31 μg g{sup −1} for Al{sub 2}O{sub 3}, and 8.9 μg g{sup −1} for MnO). Using the present method, we determined ten major oxides in igneous rocks, stream sediments, ancient potteries, and obsidian. This was applicable to siliceous samples with various compositions, because of the excellent agreement between the analytical and recommended values of six geochemical references. This minimal-scale analysis may be available for precious and limited siliceous samples (e.g., rock, sand, soil, sediment, clay, and archeological ceramics) in many fields such as archeology and geochemistry. - Highlights: • X-ray fluorescence determination of major oxides was performed using 1.1 mg of sample. • Preparation and measurement techniques of the XRF micro glass bead specimen were optimized. • Calibration curves using synthetic standards showed good

  11. Effects of Mixed Alkaline Earth Oxides in Potash Silicate Glass ...

    African Journals Online (AJOL)

    The aim of this work is to investigate the effects of mixed alkaline earth oxide in potash silicate glasses with regards to their physical properties. More recently; there has been an increase in the demand for light weight glasses which retains their physical and chemical properties for both domestic and industrial applications.

  12. LUMINESCENT PROPERTIES OF SILICATE GLASSES WITH CERIUM IONS AND ANTIMONY

    Directory of Open Access Journals (Sweden)

    A. M. Klykova

    2014-05-01

    Full Text Available The paper deals with the results of an experimental study of luminescence excitation spectra and luminescence of silicate glasses containing cerium ions and antimony. The aim of this work was to study the features of the luminescence and the effect of UV irradiation and heat treatment on luminescence and the state of cerium ions and antimony in glass. We investigated glass system Na2O-ZnO-Al2O3-SiO2-NaF-NaBr with additives CeO2 and Sb2O3. Synthesis was carried out in platinum crucibles in the air at 14500C. The samples were polished glass plates with a thickness of 0.5-1 mm. UV irradiation was carried out with a mercury lamp having a wide range of radiation in the spectral range 240-390 nm. It was conducted in a Nabertherm muffle furnaces. Luminescence spectra and excitation spectra were measured using a spectrofluorimeter MPF-44A (PerkinElmer at the room temperature. Measured luminescence spectra were corrected in view of the spectral sensitivity of the photodetector for spectrofluorimeter. Adjustment of the excitation spectra for the spectral dependence of the intensity of the excitation source was not carried out. During the experiments it was found that in silicate glasses Sb3+ ions can exist in two energy states, which corresponds to a different environment with oxygen ions. Heat treatment of these glasses in an oxidizing atmosphere leads to an increase in ion concentration of Sb3+ ions with a greater amount of oxygen in the environment. In glasses containing antimony and cerium ions, ultraviolet irradiation causes a change in the valence of cerium ions and antimony, which is accompanied by luminescence quenching. Subsequent heat treatment of glass leads to the inverse processes and restore luminescence excitation spectra. The study of fluorescent properties of silicate glasses with cerium and antimony ions led to the conclusion of the practical significance of this work. Promising multifunctional materials can be created on the basis of

  13. Chemical bonding and structural ordering of cations in silicate glasses

    International Nuclear Information System (INIS)

    Calas, G.; Cormier, L.; Galoisy, L.; Ramos, A.; Rossano, St.

    1997-01-01

    The specific surrounding of cations in multicomponent silicate glasses is briefly presented. Information about interatomic distances and site geometry may be gained by using spectroscopic methods among which x-ray absorption spectroscopy may be used for the largest number of glass components. Scattering of x-rays and neutrons may also be used to determine the importance of medium range order around specific cations. All the existing data show that cations occur in sites with a well-defined geometry, which are in most cases connected to the silicate polymeric network. Medium range order has been detected around cations such as Ti, Ca and Ni, indicating that these elements have an heterogeneous distribution within the glassy matrix. (authors)

  14. Chemistry of glass corrosion in high saline brines

    International Nuclear Information System (INIS)

    Grambow, B.; Mueller, R.

    1990-01-01

    Corrosion data obtained in laboratory tests can be used for the performance assessment of nuclear waste glasses in a repository if the data are quantitatively described in the frame of a geochemical model. Experimental data were obtained for conventional pH values corrected for liquid junction, amorphous silica solubility and glass corrosion in concentrated salt brines. The data were interpreted with a geochemical model. The brine chemistry was described with the Pitzer formalism using a data base which allows calculation of brine compositions in equilibrium with salt minerals at temperatures up to 200C. In MgCl 2 dominated brines Mg silicates form and due to the consumption of Mg the pH decreases with proceeding reaction. A constant pH (about 4) and composition of alteration products is achieved, when the alkali release from the glass balances the Mg consumption. The low pH results in high release of rare earth elements REE (rare earth elements) and U from the glass. In the NaCl dominated brine MgCl 2 becomes exhausted by Mg silicate formation. As long as there is still Mg left in solution the pH decreases. After exhaustion of Mg the pH rises with the alkali release from the glass and analcime is formed

  15. Effects of beta/gamma radiation on nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Weber, W.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-07-01

    A key challenge in the disposal of high-level nuclear waste (HLW) in glass waste forms is the development of models of long-term performance based on sound scientific understanding of relevant phenomena. Beta decay of fission products is one source of radiation that can impact the performance of HLW glasses through the interactions of the emitted {beta}-particles and g-rays with the atoms in the glass by ionization processes. Fused silica, alkali silicate glasses, alkali borosilicate glasses, and nuclear waste glasses are all susceptible to radiation effects from ionization. In simple glasses, defects (e.g., non-bridging oxygen and interstitial molecular oxygen) are observed experimentally. In more complex glasses, including nuclear waste glasses, similar defects are expected, and changes in microstructure, such as the formation of bubbles, have been reported. The current state of knowledge regarding the effects of {beta}/{gamma} radiation on the properties and microstructure of nuclear waste glasses are reviewed. (author)

  16. Effects of beta/gamma radiation on nuclear waste glasses

    International Nuclear Information System (INIS)

    Weber, W.J.

    1997-01-01

    A key challenge in the disposal of high-level nuclear waste (HLW) in glass waste forms is the development of models of long-term performance based on sound scientific understanding of relevant phenomena. Beta decay of fission products is one source of radiation that can impact the performance of HLW glasses through the interactions of the emitted β-particles and g-rays with the atoms in the glass by ionization processes. Fused silica, alkali silicate glasses, alkali borosilicate glasses, and nuclear waste glasses are all susceptible to radiation effects from ionization. In simple glasses, defects (e.g., non-bridging oxygen and interstitial molecular oxygen) are observed experimentally. In more complex glasses, including nuclear waste glasses, similar defects are expected, and changes in microstructure, such as the formation of bubbles, have been reported. The current state of knowledge regarding the effects of β/γ radiation on the properties and microstructure of nuclear waste glasses are reviewed. (author)

  17. The structure of alkali silicate gel by total scattering methods

    KAUST Repository

    Benmore, C.J.; Monteiro, Paulo J.M.

    2010-01-01

    The structure of the alkali silicate gel (ASR) collected from the galleries of Furnas Dam in Brazil was determined by a pair distribution function (PDF) analysis of high energy X-ray diffraction data. Since this method is relatively new to concrete structure analysis a detailed introduction on the PDF method is given for glassy SiO2. The bulk amorphous structure of the dam material is confirmed as no Bragg peaks are observed in the scattered intensity. The real space results show that the local structure of the amorphous material is similar to kanemite (KHSi2O5:3H2O) however the long range layer structure of the crystal is broken up in the amorphous state, so that ordering only persists of the length scale of a few polyhedra. The silicate layer structure is a much more disordered than predicted by molecular dynamics models. The X-ray results are consistent with the molecular dynamics model of Kirkpatrick et al. (2005) [1] which predicts that most of the water resides in pores within the amorphous network rather than in layers. The total scattering data provide a rigorous basis against which other models may also be tested. © 2010.

  18. The structure of alkali silicate gel by total scattering methods

    KAUST Repository

    Benmore, C.J.

    2010-06-01

    The structure of the alkali silicate gel (ASR) collected from the galleries of Furnas Dam in Brazil was determined by a pair distribution function (PDF) analysis of high energy X-ray diffraction data. Since this method is relatively new to concrete structure analysis a detailed introduction on the PDF method is given for glassy SiO2. The bulk amorphous structure of the dam material is confirmed as no Bragg peaks are observed in the scattered intensity. The real space results show that the local structure of the amorphous material is similar to kanemite (KHSi2O5:3H2O) however the long range layer structure of the crystal is broken up in the amorphous state, so that ordering only persists of the length scale of a few polyhedra. The silicate layer structure is a much more disordered than predicted by molecular dynamics models. The X-ray results are consistent with the molecular dynamics model of Kirkpatrick et al. (2005) [1] which predicts that most of the water resides in pores within the amorphous network rather than in layers. The total scattering data provide a rigorous basis against which other models may also be tested. © 2010.

  19. Carbonation of metal silicates for long-term CO2 sequestration

    Science.gov (United States)

    Blencoe, James G; Palmer, Donald A; Anovitz, Lawrence M; Beard, James S

    2014-03-18

    In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).

  20. Alkali-silica reactivity of expanded glass granules in structure of lightweight concrete

    International Nuclear Information System (INIS)

    Bumanis, G; Bajare, D; Korjakins, A; Locs, J

    2013-01-01

    Main component in the lightweight concrete, which provides its properties, is aggregate. A lot of investigations on alkali silica reaction (ASR) between cement and lightweight aggregates have been done with their results published in the academic literature. Whereas expanded glass granules, which is relatively new product in the market of building materials, has not been a frequent research object. Therefore lightweight granules made from waste glass and eight types of cement with different chemical and mineralogical composition were examined in this research. Expanded glass granules used in this research is commercially available material produced by Penostek. Lightweight concrete mixtures were prepared by using commercial chemical additives to improve workability of concrete. The aim of the study is to identify effect of cement composition to the ASR reaction which occurs between expanded glass granules and binder. Expanded glass granules mechanical and physical properties were determined. In addition, properties of fresh and hardened concrete were determined. The ASR test was processed according to RILEM AAR-2 testing recommendation. Tests with scanning electron microscope and microstructural investigations were performed for expanded glass granules and hardened concrete specimens before and after exposing them in alkali solution

  1. Comparative investigation on the spectroscopic properties of Pr3+-doped boro-phosphate, boro-germo-silicate and tellurite glasses

    Science.gov (United States)

    Zhang, Liaolin; Dong, Guoping; Peng, Mingying; Qiu, Jianrong

    We report on the spectroscopic properties of Pr3+-doped boro-phosphate, boro-germo-silicate and tellurite glasses. The stimulated absorption and emission cross sections were estimated. Only one emission at 596 nm and 605 nm is observed in Pr3+-doped boro-phosphate and boro-germo-silicate glasses, respectively, while three emissions at 605 nm, 612 nm and 645 nm are observed in Pr3+-doped tellurite glass when excited at 467 nm. The fluorescence lifetime at 600 nm in Pr3+-doped boro-phosphate, boro-germo-silicate and tellurite glasses is 137 μs, 73 μs and 51 μs, respectively. The emissions from Pr3+-doped boro-phosphate, boro-germo-silicate and tellurite glasses show different decay behaviors and can be well explained by multiphonon relaxation theory.

  2. The influence of SrO and CaO in silicate and phosphate bioactive glasses on human gingival fibroblasts.

    Science.gov (United States)

    Massera, J; Kokkari, A; Närhi, T; Hupa, L

    2015-06-01

    In this paper, we investigate the effect of substituting SrO for CaO in silicate and phosphate bioactive glasses on the human gingival fibroblast activity. In both materials the presence of SrO led to the formation of a CaP layer with partial Sr substitution for Ca. The layer at the surface of the silicate glass consisted of HAP whereas at the phosphate glasses it was close to the DCPD composition. In silicate glasses, SrO gave a faster initial dissolution and a thinner reaction layer probably allowing for a continuous ion release into the solution. In phosphate glasses, SrO decreased the dissolution process and gave a more strongly bonded reaction layer. Overall, the SrO-containing silicate glass led to a slight enhancement in the activity of the gingival fibroblasts cells when compared to the SrO-free reference glass, S53P4. The cell activity decreased up to 3 days of culturing for all phosphate glasses containing SrO. Whereas culturing together with the SrO-free phosphate glass led to complete cell death at 7 days. The glasses containing SrO showed rapid cell proliferation and growth between 7 and 14 days, reaching similar activity than glass S53P4. The addition of SrO in both silicate and phosphate glasses was assumed beneficial for proliferation and growth of human gingival fibroblasts due to Sr incorporation in the reaction layer at the glass surface and released in the cell culture medium.

  3. X-ray photoemission spectroscopy (XPS) study of uranium, neptunium and plutonium oxides in silicate-based glasses

    International Nuclear Information System (INIS)

    Lam, D.J.; Veal, B.W.; Paulikas, A.P.

    1982-11-01

    Using XPS as the principal investigative tool, we are in the process of examining the bonding properties of selected metal oxides added to silicate glass. In this paper, we present results of XPS studies of uranium, neptunium, and plutonium in binary and multicomponent silicate-based glasses. Models are proposed to account for the very diverse bonding properties of 6+ and 4+ actinide ions in the glasses

  4. Optical Properties of Tm(3+) Ions in Alkali Germanate Glass

    Science.gov (United States)

    Walsh, Brian M.; Barnes, Norman P.; Reichle, Donald J.; Jiang, Shibin

    2006-01-01

    Tm-doped alkali germanate glass is investigated for use as a laser material. Spectroscopic investigations of bulk Tm-doped germanate glass are reported for the absorption, emission and luminescence decay. Tm:germanate shows promise as a fiber laser when pumped with 0.792 m diodes because of low phonon energies. Spectroscopic analysis indicates low nonradiative quenching and pulsed laser performance studies confirm this prediction by showing a quantum efficiency of 1.69.

  5. Carbonation of metal silicates for long-term CO.sub.2 sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Blencoe, James G.; Palmer, Donald A.; Anovitz, Lawrence M.; Beard, James S.

    2017-08-01

    In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).

  6. Carbonation of metal silicates for long-term CO.sub.2 sequestration

    Science.gov (United States)

    Blencoe, James G [Harriman, TN; Palmer, Donald A [Oliver Springs, TN; Anovitz, Lawrence M [Knoxville, TN; Beard, James S [Martinsville, VA

    2012-02-14

    In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).

  7. Encapsulation of TRISO particle fuel in durable soda-lime-silicate glasses

    International Nuclear Information System (INIS)

    Heath, Paul G.; Corkhill, Claire L.; Stennett, Martin C.; Hand, Russell J.; Meyer, Willem C.H.M.; Hyatt, Neil C.

    2013-01-01

    Tri-Structural Isotropic (TRISO) coated particle-fuel is a key component in designs for future high temperature nuclear reactors. This study investigated the suitability of three soda lime silicate glass compositions, for the encapsulation of simulant TRISO particle fuel. A cold press and sinter (CPS) methodology was employed to produce TRISO particle–glass composites. Composites produced were determined to have an aqueous durability, fracture toughness and Vickers’ hardness comparable to glasses currently employed for the disposal of high level nuclear wastes. Sintering at 700 °C for 30 min was found to remove all interconnected porosity from the composite bodies and oxidation of the outer pyrolytic carbon layer during sintering was prevented by processing under a 5% H 2 /N 2 atmosphere. However, the outer pyrolytic carbon layer was not effectively wetted by the encapsulating glass matrix. The aqueous durability of the TRISO particle–glass composites was investigated using PCT and MCC-1 tests combined with geochemical modelling. It was found that durability was dependent on silicate and calcium solution saturation. This study provides significant advancements in the preparation of TRISO particle encapsulant waste forms. The potential for the use of non-borosilicate sintered glass composites for TRISO particle encapsulation has been confirmed, although further refinements are required

  8. Encapsulation of TRISO particle fuel in durable soda-lime-silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Heath, Paul G.; Corkhill, Claire L.; Stennett, Martin C.; Hand, Russell J. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, Robert Hadfield Building, University of Sheffield, Sheffield S1 3JD (United Kingdom); Meyer, Willem C.H.M. [Necsa, South African Nuclear Energy Corporation, PO Box 582, Pretoria, Gauteng (South Africa); Hyatt, Neil C., E-mail: n.c.hyatt@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, Robert Hadfield Building, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2013-05-15

    Tri-Structural Isotropic (TRISO) coated particle-fuel is a key component in designs for future high temperature nuclear reactors. This study investigated the suitability of three soda lime silicate glass compositions, for the encapsulation of simulant TRISO particle fuel. A cold press and sinter (CPS) methodology was employed to produce TRISO particle–glass composites. Composites produced were determined to have an aqueous durability, fracture toughness and Vickers’ hardness comparable to glasses currently employed for the disposal of high level nuclear wastes. Sintering at 700 °C for 30 min was found to remove all interconnected porosity from the composite bodies and oxidation of the outer pyrolytic carbon layer during sintering was prevented by processing under a 5% H{sub 2}/N{sub 2} atmosphere. However, the outer pyrolytic carbon layer was not effectively wetted by the encapsulating glass matrix. The aqueous durability of the TRISO particle–glass composites was investigated using PCT and MCC-1 tests combined with geochemical modelling. It was found that durability was dependent on silicate and calcium solution saturation. This study provides significant advancements in the preparation of TRISO particle encapsulant waste forms. The potential for the use of non-borosilicate sintered glass composites for TRISO particle encapsulation has been confirmed, although further refinements are required.

  9. Radiation effects on lead silicate glass surfaces

    International Nuclear Information System (INIS)

    Wang, P.W.; Zhang, L.P.; Borgen, N.; Pannell, K.

    1996-01-01

    Radiation-induced changes in the microstructure of lead silicate glass were investigated in situ under Mg K α irradiation in an ultra-high vacuum (UHV) environment by X-ray photoelectron spectroscopy (XPS). Lead-oxygen bond breaking resulting in the formation of pure lead was observed. The segregation, growth kinetics and the structural relaxation of the lead, with corresponding changes in the oxygen and silicon on the glass surfaces were studied by measuring the time-dependent changes in concentration, binding energy shifts, and the full width at half maximum. A bimodal distribution of the oxygen XPS signal, caused by bridging and non-bridging oxygens, was found during the relaxation process. All experimental data indicate a reduction of the oxygen concentration, a phase separation of the lead from the glass matrix, and the metallization of the lead occurred during and after the X-ray irradiation. (author)

  10. Alkali-free bioactive glasses for bone regeneration =

    Science.gov (United States)

    Kapoor, Saurabh

    Bioactive glasses and glass-ceramics are a class of third generation biomaterials which elicit a special response on their surface when in contact with biological fluids, leading to strong bonding to living tissues. The purpose of the present study was to develop diopside based alkali-free bioactive glasses in order to achieve good sintering behaviour, high bioactivity, and a dissolution/ degradation rates compatible with the target applications in bone regeneration and tissue engineering. Another aim was to understand the structure-property relationships in the investigated bioactive glasses. In this quest, various glass compositions within the Diopside (CaMgSi2O6) - Fluorapatite (Ca5(PO4)3F) - Tricalcium phosphate (3CaO•P2O5) system have been investigated. All the glasses were prepared by melt-quenching technique and characterized by a wide array of complementary characterization techniques. The glass-ceramics were produced by sintering of glass powders compacts followed by a suitable heat treatment to promote the nucleation and crystallization phenomena. Furthermore, selected parent glass compositions were doped with several functional ions and an attempt to understand their effects on the glass structure, sintering ability and on the in vitro bio-degradation and biomineralization behaviours of the glasses was made. The effects of the same variables on the devitrification (nucleation and crystallization) behaviour of glasses to form bioactive glass-ceramics were also investigated. Some of the glasses exhibited high bio-mineralization rates, expressed by the formation of a surface hydroxyapatite layer within 1-12 h of immersion in a simulated body fluid (SBF) solution. All the glasses showed relatively lower degradation rates in comparison to that of 45S5 Bioglass. Some of the glasses showed very good in vitro behaviour and the glasses co-doped with zinc and strontium showed an in vitro dose dependent behaviour. The as-designed bioactive glasses and glass

  11. Composition-structure-property relation of oxide glasses

    DEFF Research Database (Denmark)

    Hermansen, Christian

    also increases such properties. Yet, these rules are not strictly followed even for the simplest binary oxide glasses, such as alkali silicates, borates and phosphates. In this thesis it is argued that the missing link between composition and properties is the glass structure. Structural models...... are proposed based on topological selection rules and experimentally verified. The relation between structure and properties is evaluated using topological constraint theory, which in its essence is a theory that quantifies the two intuitions of the glass scientist. The end result is a quantitative model...

  12. Waste glass as partial mineral precursor in alkali-activated slag/fly ash system

    NARCIS (Netherlands)

    Zhang, S.; Keulen, A.; Arbi, K.; Ye, G.

    2017-01-01

    The feasibility of a waste glass powder residue (GP) from glass recycling as partial mineral precursor to produce alkali-activated materials is investigated. GP served as powder coal fly ash (PCFA) replacement within a reference system composed of 50% PCFA and 50% ground granulated blast furnace

  13. Cracking phenomena in lithium-di-silicate glass ceramics

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Lithium-di-silicate glass ceramic (Li2O, SiO2) with uniformly oriented crystals was placed on a. Vickers indentation with extrusion axis horizontally parallel to the base axis. The material was rotated through. 0°– 90° and at each angle a 20 N load was applied to ascertain the crack path. It was observed that the crack.

  14. Fluorescence yield in rare-earth-doped sol-gel silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Silversmith, A.J., E-mail: asilvers@hamilton.ed [Physics Department, Hamilton College, 198 College Hill Road, Clinton, NY 13323 (United States); Nguyen, Nguyen T.T.; Campbell, D.L. [Physics Department, Hamilton College, 198 College Hill Road, Clinton, NY 13323 (United States); Boye, D.M.; Ortiz, C.P. [Davidson College, Davidson, NC 28035 (United States); Hoffman, K.R. [Whitman College, Walla Walla, WA 99362 (United States)

    2009-12-15

    We have used trivalent terbium to investigate the mechanism behind fluorescence enhancement by Al{sup 3+} co-doping. Our results indicate that rare-earth (RE) ions cluster together in aluminum-rich regions of the glass, and behave as if they were dispersed uniformly throughout these regions when the ratio of Al to RE is {approx}10 or greater. We also studied the effects of adding chemical drying agents to the precursor solution for the synthesis of sol-gel-derived silicate glasses. Such glasses can be treated at significantly higher annealing temperatures without degradation of optical quality, and have the density of melt glass. Fluorescence yield from doped RE ions improves markedly with the addition of the drying agents, and the denser glasses are not subject to rehydration.

  15. Calorimetric signature of structural heterogeneity in a ternary silicate glass

    DEFF Research Database (Denmark)

    Zhang, Yanfei; Yang, G.; Yue, Yuanzheng

    2013-01-01

    We investigate the structural heterogeneity in a silicate glass by hyperquenching–annealing–calorimetry approach. The results show a striking phenomenon: two separated sub-Tg relaxation peaks appear on the calorimetric curve of the hyperquenched CaO–MgO–SiO2 glass, implying the existence of two...... distinct structural domains of higher and lower potential energies, respectively. The higher energy domains in nanoscale are so unstable that they become ordered during hyperquenching. This is verified by the high-resolution transmission electron microscopy image exhibiting nanoordered domains in the glass...... matrix. The higher energy domains relax similar to a strong glass phase, whereas the lower energy domains do similar to a fragile one....

  16. Mixed alkali effect in glasses containing MnO2

    International Nuclear Information System (INIS)

    Reddy, M. Sudhakara; Rajiv, Asha; Veeranna Gowda, V. C.; Chakradhar, R. P. S.; Reddy, C. Narayana

    2013-01-01

    Glass systems of the composition xLi 2 O−(25−x)K 2 O−70(0.4ZnO+0.6P 2 O 5 )+5MnO 2 (x = 4,8,12,16 and 20 mol %) have been prepared by melt quenching technique. The thermal and mechanical properties of the glasses have been evaluated as a function of mixed alkali content. Glass transition temperature and Vickers’s hardness of the glasses show a pronounced deviation from linearity at 12 mol%Li 2 O. Theoretically estimated elastic moduli of the glasses show small positive deviations from linearity. MAE in these properties has been attributed to the localized changes in the glass network. The absorption spectra of Mn 2+ ions in these glasses showed strong broad absorption band at 514 nm corresponding to the transition 6 A 1g (S)→ 4 T 1g (G), characteristic of manganese ions in octahedral symmetry. The fundamental absorption edge in UV region is used to study the optical transitions and electronic band structure. From UV absorption edge, optical band gap energies have been evaluated. Band gap energies of the glasses have exhibited MAE and shows minimum value for 12 mol%Li 2 O glass.

  17. Fixation by ion exchange of toxic materials in a glass matrix

    International Nuclear Information System (INIS)

    Litovitz, T.A.; Simmons, C.J.; Simmons, J.H.; Macedo, P.B.

    1981-01-01

    A process for disposing of toxic materials such as radioactive waste comprises reacting a porous silicate glass or silica gel, having interconnected pores and alkali metal cations. Group 1b metal cations and/or ammonium cation bonded to silicon through divalent oxygen linkages on the internal surfaces of said pores, with a toxic material containing toxic cations as well as non-cationic portions. The toxic cations are capable of displacing the alkali metal cations, Group 1b metal cations and/or ammonium cations to provide a distribution of internal silicon-bonded toxic cation oxide groups within the pores of the glass or silica gel. (author)

  18. Use of fission track for deciphering the dissolution mechanism of silicates glasses

    International Nuclear Information System (INIS)

    Petit, J.C.; Brousse, C.

    1985-09-01

    Polished sections of silicate glasses containing latent or pre-etched fission tracks have been subjected to corrosion in deionized water or NaCl brines at 20, 50 and 100 0 C. The evolution of glass surface helps deciphering among reported dissolution models. We show that ion-exchange is dominant in simple glasses while in complex ones, dissolution involves several steps including an in-situ transformation of the pristine material and a reprecipitation of dissolved species

  19. Comparative investigation on the spectroscopic properties of Pr³⁺-doped boro-phosphate, boro-germo-silicate and tellurite glasses.

    Science.gov (United States)

    Zhang, Liaolin; Dong, Guoping; Peng, Mingying; Qiu, Jianrong

    2012-07-01

    We report on the spectroscopic properties of Pr(3+)-doped boro-phosphate, boro-germo-silicate and tellurite glasses. The stimulated absorption and emission cross sections were estimated. Only one emission at 596 nm and 605 nm is observed in Pr(3+)-doped boro-phosphate and boro-germo-silicate glasses, respectively, while three emissions at 605 nm, 612 nm and 645 nm are observed in Pr(3+)-doped tellurite glass when excited at 467 nm. The fluorescence lifetime at 600 nm in Pr(3+)-doped boro-phosphate, boro-germo-silicate and tellurite glasses is 137 μs, 73 μs and 51 μs, respectively. The emissions from Pr(3+)-doped boro-phosphate, boro-germo-silicate and tellurite glasses show different decay behaviors and can be well explained by multiphonon relaxation theory. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Bioactive Glass-Ceramic Scaffolds from Novel ‘Inorganic Gel Casting’ and Sinter-Crystallization

    Science.gov (United States)

    Elsayed, Hamada; Rincón Romero, Acacio; Ferroni, Letizia; Gardin, Chiara; Zavan, Barbara; Bernardo, Enrico

    2017-01-01

    Highly porous wollastonite-diopside glass-ceramics have been successfully obtained by a new gel-casting technique. The gelation of an aqueous slurry of glass powders was not achieved according to the polymerization of an organic monomer, but as the result of alkali activation. The alkali activation of a Ca-Mg silicate glass (with a composition close to 50 mol % wollastonite—50 mol % diopside, with minor amounts of Na2O and P2O5) allowed for the obtainment of well-dispersed concentrated suspensions, undergoing progressive hardening by curing at low temperature (40 °C), owing to the formation of a C–S–H (calcium silicate hydrate) gel. An extensive direct foaming was achieved by vigorous mechanical stirring of partially gelified suspensions, comprising also a surfactant. The open-celled structure resulting from mechanical foaming could be ‘frozen’ by the subsequent sintering treatment, at 900–1000 °C, causing substantial crystallization. A total porosity exceeding 80%, comprising both well-interconnected macro-pores and micro-pores on cell walls, was accompanied by an excellent compressive strength, even above 5 MPa. PMID:28772531

  1. Reduction-induced inward diffusion and crystal growth on the surfaces of iron-bearing silicate glasses

    DEFF Research Database (Denmark)

    Liu, S.J.; Tao, H.Z.; Zhang, Y.F.

    2015-01-01

    We investigate the sodium inward diffusion (i.e., sodium diffusion from surface toward interior) in iron containing alkaline earth silicate glasses under reducing conditions around Tg and the induced surface crystallization. The surface crystallization is caused by formation of a silicate-gel lay......+ ions have stronger bonds to oxygen and lower coordination number (4~5) than Ca2+, Sr2+ and Ba2+ ions. In contrast, a cristobalite layer forms in Ca-, Sr- and Ba-containing glasses....

  2. Long term mechanical properties of alkali activated slag

    Science.gov (United States)

    Zhu, J.; Zheng, W. Z.; Xu, Z. Z.; Leng, Y. F.; Qin, C. Z.

    2018-01-01

    This article reports a study on the microstructural and long-term mechanical properties of the alkali activated slag up to 180 days, and cement paste is studied as the comparison. The mechanical properties including compressive strength, flexural strength, axis tensile strength and splitting tensile strength are analyzed. The results showed that the alkali activated slag had higher compressive and tensile strength, Slag is activated by potassium silicate (K2SiO3) and sodium hydroxide (NaOH) solutions for attaining silicate modulus of 1 using 12 potassium silicate and 5.35% sodium hydroxide. The volume dosage of water is 35% and 42%. The results indicate that alkali activated slag is a kind of rapid hardening and early strength cementitious material with excellent long-term mechanical properties. Single row of holes block compressive strength, single-hole block compressive strength and standard solid brick compressive strength basically meet engineering requirements. The microstructures of alkali activated slag are studied by X-ray diffraction (XRD). The hydration products of alkali-activated slag are assured as hydrated calcium silicate and hydrated calcium aluminate.

  3. An optical fibre-type silicate glass thermoluminescent detector

    International Nuclear Information System (INIS)

    Zheng Zheng; Dai Honggui; Hu Shangze; Liu Jian; Fang Jie

    1991-01-01

    A description of dosimetric properties and the preparation method of an optical fibre-type silicate glass thermoluminescent detector (TLD) is presented. Results showed that this new phosphor is a good one which could be used as a routine dosimeter in the range 10 -1 -10 3 Gy. The preparation method is a new one which differs greatly from all previous ones. Furthermore this kind of detector is small and of low weight. (orig.)

  4. Calcium silicate hydrate: Crystallisation and alkali sorption

    International Nuclear Information System (INIS)

    Hong, S.

    2000-01-01

    Homogeneous single C-S-H gels has been prepared for the investigation of alkali binding potential and crystallisation. A distribution coefficient, R d , was introduced to express the partition of alkali between solid and aqueous phases at 25 deg. C. R d is independent of alkali hydroxide concentration and depends only on Ca:Si ratio over wide ranges of alkali concentration. The trend of numerical values of R d indicates that alkali bonding into the solid improves as its Ca:Si ratio decreases. Reversibility is demonstrated, indicating a possibility of constant R d value of the material. Al has been introduced to form C-A-S-H gels and their alkali sorption properties also determined. Al substituted into C-S-H markedly increases R d , indicating enhancement of alkali binding. However, the dependence of R d on alkali concentration is non-ideal with composition. A two-site model for bonding is presented. Crystallisation both under saturated steam and 1 bar vapour pressure has been investigated. It has been shown that heat treatment by saturated steam causes crystallisation of gels. The principal minerals obtained were (i) C-S-H gel and Ca(OH) 2 at -55 deg. C, (ii) 1.1 nm tobermorite, jennite and afwillite at 85 -130 deg. C, and (iii) xonotlite, foshagite and hillebrandite at 150-180 deg. C. Properties of crystalline C-S-H were also reported for reversible phase transformation, pH conditioning ability, seeding effect and solubility. At 1 bar pressure, crystallisation is slower than in saturated steam due to lower water activity. Tobermorite-like nanodomains develop during reaction at low Ca/Si ratios. In some Ca-rich compositions, Ca(OH) 2 is exsolved and occurs as nano-sized crystallites. (author)

  5. Study of the mixed alkali effect in lithium and sodium metaphosphate glass-forming liquids by photon correlation spectroscopy

    International Nuclear Information System (INIS)

    Changstrom, J R; Sidebottom, D L

    2008-01-01

    We report results of an extensive study of the structural relaxation occurring in mixed alkali metaphosphate liquids obtained by photon correlation spectroscopy. Values for the glass transition temperature, the fragility index, and the heterogeneity parameter (also known as the Kohlrausch exponent) are extracted from the measurements and are all shown to exhibit a mixed alkali effect wherein nonlinear variations with mixing occur. The depression in the glass transition temperature is shown to be the direct result of mechanical relaxations, present in the solid, which prematurely loosen the glass structure. A minimum in the fragility index is believed to be an artifact of the resulting depression of the glass transition temperature

  6. Experimental and theoretical investigation of the elastic moduli of silicate glasses and crystals

    Science.gov (United States)

    Philipps, Katharina; Stoffel, Ralf Peter; Dronskowski, Richard; Conradt, Reinhard

    2017-02-01

    A combined quantum-mechanical and thermodynamic approach to the mechanical properties of multicomponent silicate glasses is presented. Quantum chemical calculations based on density-functional theory (DFT) on various silicate systems were performed to explore the crystalline polymorphs existing for a given chemical composition. These calculations reproduced the properties of known polymorphs even in systems with extensive polymorphism, like MgSiO3. Properties resting on the atomic and electronic structure, i.e., molar volumes (densities) and bulk moduli were predicted correctly. The theoretical data (molar equilibrium volumes, bulk moduli) were then used to complement the available experimental data. In a phenomenological evaluation, experimental data of bulk moduli, a macroscopic property resting on phononic structure, were found to linearly scale with the ratios of atomic space demand to actual molar volume in a universal way. Silicates ranging from high-pressure polymorphs to glasses were represented by a single master line. This suggests that above the Debye limit (in practice: above room temperature), the elastic waves probe the short range order coordination polyhedra and their next-neighbor linkage only, while the presence or absence of an extended translational symmetry is irrelevant. As a result, glasses can be treated - with respect to the properties investigated - as commensurable members of polymorphic series. Binary glasses fit the very same line as their one-component end-members, again both in the crystalline and glassy state. Finally, it is shown that the macroscopic properties of multicomponent glasses also are linear superpositions of the properties of their constitutional phases (as determined from phase diagrams or by thermochemical calculations) taken in their respective glassy states. This is verified experimentally for heat capacities and Young’s moduli of industrial glass compositions. It can be concluded, that the combined quantum

  7. CHARACTERIZATION OF COMMERCIALLY AVAILABLE ALKALI RESISTANT GLASS FIBER FOR CONCRETE REINFORCEMENT AND CHEMICAL DURABILITY COMPARISON WITH SrO-Mn2O3-Fe2O3-MgO-ZrO2-SiO2 (SMFMZS SYSTEM GLASSES

    Directory of Open Access Journals (Sweden)

    Göktuğ GÜNKAYA

    2012-12-01

    Full Text Available According to the relevant literature, the utilization of different kind of glass fibers in concrete introduces positive effect on the mechanical behavior, especially toughness. There are many glassfibers available to reinforce concretes. Glass fiber composition is so important because it may change the properties such as strength, elastic modulus and alkali resistance. Its most important property to be used in concrete is the alkali resistance. Some glasses of SrO–MgO–ZrO2–SiO2 (SMZS quaternary system, such as 26SrO, 20MgO, 14ZrO2, 40SiO2 (Zrn glass, have been found to be highly alkali resistant thanks to their high ZrO2 and MgO contents. Previous researches on these glasses with MnO and/or Fe2O3 partially replacing SrO have been made with the aim of improving the chemical resistance and decreasing the production cost.The main target of the present study, first of all, was to characterize commercially available alkali resistant glass fiber for concrete reinforcement and then to compare its alkali durability with those of the SrO-Mn2O3-Fe2O3-MgO-ZrO2-SiO2 (SMFMZS system glasses. For such purposes, XRF, Tg-DTA, alkali resistance tests and SEM analysis conducted with EDX were employed. According tothe alkali endurance test results it was revealed that some of the SMFMZS system glass powders are 10 times resistant to alkali environments than the commercial glass fibers used in this study.Therefore, they can be considered as alternative filling materials on the evolution of chemically resistant concrete structures.

  8. High electric field conduction in low-alkali boroaluminosilicate glass

    Science.gov (United States)

    Dash, Priyanka; Yuan, Mengxue; Gao, Jun; Furman, Eugene; Lanagan, Michael T.

    2018-02-01

    Electrical conduction in silica-based glasses under a low electric field is dominated by high mobility ions such as sodium, and there is a transition from ionic transport to electronic transport as the electric field exceeds 108 V/m at low temperatures. Electrical conduction under a high electric field was investigated in thin low-alkali boroaluminosilicate glass samples, showing nonlinear conduction with the current density scaling approximately with E1/2, where E is the electric field. In addition, thermally stimulated depolarization current (TSDC) characterization was carried out on room-temperature electrically poled glass samples, and an anomalous discharging current flowing in the same direction as the charging current was observed. High electric field conduction and TSDC results led to the conclusion that Poole-Frenkel based electronic transport occurs in the mobile-cation-depleted region adjacent to the anode, and accounts for the observed anomalous current.

  9. Concrete alkali-silica reaction and nuclear radiation damage

    International Nuclear Information System (INIS)

    Ichikawa, Tsuneki

    2008-01-01

    The deterioration of concrete by alkali-silica reaction of aggregates (ASR) and the effect of nuclear radiations on the ASR have been reviewed based on our studies on the mechanism of ASR and the effect of nuclear radiations on the resistivity of minerals to alkaline solution. It has been found that the ASR is initiated by the attack of alkaline solution in concrete to silicious aggregates to convert them into hydrated alkali silicate. The consumption of alkali hydroxide by the aggregates induces the dissolution of Ca 2+ ions into the solution. The alkali silicate surrounding the aggregates then reacts with Ca 2+ ions to convert to insoluble tight and rigid reaction rims. The reaction rim allows the penetration of alkaline solution but prevents the leakage of viscous alkali silicate, so that alkali silicate generated afterward is accumulated in the aggregate to give an expansive pressure enough for cracking the aggregate and the surrounding concrete. The effect of nuclear radiation on the reactivity of quartz and plagioclase, a part of major minerals composing volcanic rocks as popular aggregates, to alkaline solution has been examined for clarifying whether nuclear radiations accelerates the ASR. It has been found that the irradiation of these minerals converts them into alkali-reactive amorphous ones. The radiation dose for plagioclase is as low as 10 8 Gy, which suggests that the ASR of concrete surrounding nuclear reactors is possible to be accelerated by nuclear radiation. (author)

  10. Synthesis, characterization of CaF2 doped silicate glass-ceramics.

    Science.gov (United States)

    Riaz, Madeeha; Zia, Rehana; Mirza, Ambreen; Hussain, Tousif; Bashir, Farooq; Anjum, Safia

    2017-06-01

    This paper reports the fabrication and characterization of silicate glass-ceramics doped with (0-12mol%) CaF 2 . TGA-DSC analysis was carried out to determine the crystallization temperature and stability of glass measured by two glass parameters; Hruby parameter K H =(T x -T g )/(T L -T x ) and Weinberg parameter K W =(T c -T g )/T L . It was found that with CaF 2 doping improved sinterability at low temperature and provided stability to the glass. The XRD pattern exhibits a single phase of combeite and doping of CaF 2 cause increase in crystallite size. Microstructure of samples was also improved with CaF 2 addition, pores were significantly reduced. After 15days immersion in simulated body fluid all samples developed apatite layer onto its surface. Hence, the addition of CaF 2 provided bioactive glass-ceramic material having a low processing temperature. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Structure and Chemical Durability of Lead Crystal Glass.

    Science.gov (United States)

    Angeli, Frédéric; Jollivet, Patrick; Charpentier, Thibault; Fournier, Maxime; Gin, Stéphane

    2016-11-01

    Silicate glasses containing lead, also called lead crystal glasses, are commonly used as food product containers, in particular for alcoholic beverages. Lead's health hazards require major attention, which can first be investigated through the understanding of Pb release mechanisms in solution. The behavior of a commercial crystal glass containing 10.6 mol % of PbO (28.3 wt %) was studied in a reference solution of 4% acetic acid at 22, 40, and 70 °C at early and advanced stages of reaction. High-resolution solid-state 17 O and 29 Si NMR was used to probe the local structure of the pristine and, for the first time, of the altered lead crystal glass. Inserted into the vitreous structure between the network formers as Si-O-Pb bonds, Pb does not form Pb-O-Pb clusters which are expected to be more easily leached. A part of K is located near Pb, forming mixed Si-O-(Pb,K) near the nonbridging oxygens. Pb is always released into the solution following a diffusion-controlled dissolution over various periods of time, at a rate between 1 and 2 orders of magnitude lower than the alkalis (K and Na). The preferential release of alkalis is followed by an in situ repolymerization of the silicate network. Pb is only depleted in the outermost part of the alteration layer. In the remaining part, it stays mainly surrounded by Si in a stable structural configuration similar to that of the pristine glass. A simple model is proposed to estimate the Pb concentration as a function of glass surface, solution volume, temperature, and contact time.

  12. Composition dependence of spontaneous crystallization of phosphosilicate glass melts during cooling

    DEFF Research Database (Denmark)

    Liu, S.J.; Zhu, C.F.; Zhang, Y.F.

    2012-01-01

    Crystallization behavior of alumino-phospho-silicate melts during cooling is studied by means of the differential scanning calorimetry, X-ray diffractometry and viscometry. The results show a pronounced impact of alkaline earth oxide, alkali oxide and fluoride on the crystal type and crystallizat......Crystallization behavior of alumino-phospho-silicate melts during cooling is studied by means of the differential scanning calorimetry, X-ray diffractometry and viscometry. The results show a pronounced impact of alkaline earth oxide, alkali oxide and fluoride on the crystal type...... and crystallization degree. It is found that adding NaF into the studied compositions slightly decreases melt fragility and improves both the glass-forming ability and melt workability. This effect is associated with the unique structural role of NaF compared to the other modifier oxides. It is also found...

  13. Structure of B2O3 and alkali borates in glass-like and melted states

    International Nuclear Information System (INIS)

    Golubkov, V.V.

    1992-01-01

    Structure of boron oxide and alkali-borate oxide and alkali-borate glasses and melts at temperatures up to 100 deg C was investigated using method of x-ray scattering at small angles (RSA). Specified and detailed concentration dependences were given for the main parameters of the structure: sizes of non-uniformity regions, values of surface interface, data of average square of difference of electron densities. Uppearance of ordered structures at sharp drop of temperature of B 2 O 3 sample was shown. Interference effects connected with this phenomenon significantly influence on value of RSA intensity in the field of small angles and correspondingly on light diffusion intensity. Conclusion on existence of structural differences between liquids and supercooled liquids was confirmed. Narrow temperature range of transition from one state to another esisted. Submicrononuniform structure of alkaliborate glasses wasn't connected with critical phenomenon. In the fields of non-uniformity 25-50% of alkali ions were concentrated

  14. Etching of fission tracks in silicate glasses by means of deionized water

    International Nuclear Information System (INIS)

    Dran, J.C.; Petit, J.C.

    1985-09-01

    Fission tracks have been revealed in silicate glasses with deionized water. Their sharp conical shape implies a marked enhancement of the dissolution rate along their core and consequently a cone angle and an etching efficiency (close to 100%) much higher than previously reported for glasses. We show that etching of fission tracks in natural environments has generally very limited geochemical implications except in specific cases such as that found in the Oklo uranium ores

  15. Thermodynamic properties of alkali borosilicate gasses and metaborates

    International Nuclear Information System (INIS)

    Asano, Mitsuru

    1992-01-01

    Borosilicate glasses are the proposed solidifying material for storing high level radioactive wastes in deep underground strata. Those have low melting point, and can contain relatively large amount of high level radioactive wastes. When borosilicate glasses are used for this purpose, they must be sufficiently stable and highly reliable in the vitrification process, engineered storage and the disposal in deep underground strata. The main vaporizing components from borosilicate glasses are alkali elements and boron. In this report, as for the vaporizing behavior of alkali borosilicate glasses, the research on thermodynamic standpoint carried out by the authors is explained, and the thermodynamic properties of alkali metaborates of monomer and dimer which are the main evaporation gases are reported. The evaporation and the activity of alkali borosilicate glasses, the thermodynamic properties of alkali borosilicate glasses, gaseous alkali metaborates and alkali metaborate system solid solution and so on are described. (K.I.)

  16. ∼2 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in silicate glass

    International Nuclear Information System (INIS)

    Li, Ming; Liu, Xueqiang; Guo, Yanyan; Hao, Wei; Hu, Lili; Zhang, Junjie

    2014-01-01

    Graphical abstract: - Highlights: • A Er 3+ /Tm 3+ co-doped silicate glass with good thermal stability (k gl = 0.402 for STE glass) is prepared. • Efficient ∼2 μm emission is observed under 808 nm and 980 nm laser excitation. • The glass structure and spectroscopic properties are confirmed by optical absorption, IR transmission, Raman and fluorescence studies. • The content of OH groups deceases efficiently after fluorine ions are introduced. • The energy transfer coefficient from Er 3+ to Tm 3+ in STFE glass is 13.39 × 10 −40 cm 6 /s. - Abstract: A Er 3+ /Tm 3+ co-doped silicate glass with good thermal stability is prepared by melt-quenching method. An efficient emission of ∼2 μm is observed under different selective laser excitations. The optical absorption and transmission spectra, Raman spectra, and emission spectra are tested to characterize ∼2 μm emission properties of Er 3+ /Tm 3+ co-doped silicate glasses and a reasonable energy transfer mechanism of ∼2 μm emission between Er 3+ and Tm 3+ ions is proposed. Based on the optical absorption spectra, the Judd–Ofelt parameters and radiative properties were calculated. Intense ∼2 μm emission is obtained from Er 3+ /Tm 3+ co-doped silicate glasses due to the efficient energy transfer from Er 3+ to Tm 3+ ions. The energy transfer coefficient from Er 3+ to Tm 3+ ions can reach as high as 13.39 × 10 −40 cm 6 /s. In addition, the population of the OH groups is decreased and the ∼2 μm emission is effectively enhanced with fluoride introduction. The emission property, together with good thermal property, indicates that Er 3+ /Tm 3+ co-doped silicate glass is a potential kind of laser glass for efficient ∼2 μm laser

  17. Cellular morphology of organic-inorganic hybrid foams based on alkali alumino-silicate matrix

    Science.gov (United States)

    Verdolotti, Letizia; Liguori, Barbara; Capasso, Ilaria; Caputo, Domenico; Lavorgna, Marino; Iannace, Salvatore

    2014-05-01

    Organic-inorganic hybrid foams based on an alkali alumino-silicate matrix were prepared by using different foaming methods. Initially, the synthesis of an inorganic matrix by using aluminosilicate particles, activated through a sodium silicate solution, was performed at room temperature. Subsequently the viscous paste was foamed by using three different methods. In the first method, gaseous hydrogen produced by the oxidization of Si powder in an alkaline media, was used as blowing agent to generate gas bubbles in the paste. In the second method, the porous structure was generated by mixing the paste with a "meringue" type of foam previously prepared by whipping, under vigorous stirring, a water solution containing vegetal proteins as surfactants. In the third method, a combination of these two methods was employed. The foamed systems were consolidated for 24 hours at 40°C and then characterized by FTIR, X-Ray diffraction, scanning electron microscopy (SEM) and compression tests. Low density foams (˜500 Kg/m3) with good cellular structure and mechanical properties were obtained by combining the "meringue" approach with the use of the chemical blowing agent based on Si.

  18. The role of residual cracks on alkali silica reactivity of recycled glass aggregates

    DEFF Research Database (Denmark)

    Maraghechi, Hamed; Shafaatian, Seyed-Mohammad-Hadi; Fischer, Gregor

    2012-01-01

    Despite its environmental and economical advantages, crushed recycled glass has limited application as concrete aggregates due to its deleterious alkali-silica reaction. To offer feasible mitigation strategies, the mechanism of ASR should be well understood. Recent research showed that unlike some...

  19. A micro-scale investigation of melt production and extraction in the upper mantle based on silicate melt pockets in ultramafic xenoliths from the Bakony-Balaton Highland Volcanic Field (Western Hungary)

    DEFF Research Database (Denmark)

    Bali, Eniko; Zanetti, A.; Szabo, C.

    2008-01-01

    Mantle xenoliths in Neogene alkali basalts of the Bakony-Balaton Highland Volcanic Field (Western Hungary) frequently have melt pockets that contain silicate minerals, glass, and often carbonate globules. Textural, geochemical and thermobarometric data indicate that the melt pockets formed at rel...

  20. Silicate glasses corrosion. Texture analysis of the corrosion layer

    International Nuclear Information System (INIS)

    Portal, Sabine

    2001-01-01

    We have studied the kinetic and the texture evolution of the corroded layer that forms on glass surfaces exposed to acidic solutions. The corroded layer is depleted in alkali cations and is produced by an ion exchange mechanism. It is porous and shows a lower refractive index than the one of the bulk glass. Spectroscopic ellipsometry allows determining the thickness of the layer and its refractive index. Several other techniques have been developed for characterizing the corrosion behaviour of glass surfaces: porosity is thus investigated by adsorption-desorption of nitrogen; the thickness and the composition of the layer are studied by secondary ion mass spectroscopy (S.I.M.S.); sodium concentration in the solution has been analyzed by atomic absorption. This study shows the importance of leaching conditions and glass preparation. The type of drying employed is susceptible to modify the texture and the structure of the layer. The layers produced in the early stages of the leaching process are not easily detectable. The different results lead however to the same conclusion: after a strong increase of porosity, a densification of the layer is observed with increasing time. The evolution of the layer texture could therefore modify the kinetic of the glass corrosion. (author) [fr

  1. Reduced Young modulus and hardness of electron irradiated binarypotassium-silicate glass

    Czech Academy of Sciences Publication Activity Database

    Gedeon, O.; Lukeš, J.; Jurek, Karel

    2012-01-01

    Roč. 275, MAR (2012), s. 7-10 ISSN 0168-583X R&D Projects: GA ČR GA104/09/1269 Institutional research plan: CEZ:AV0Z10100521 Keywords : electron radiation * silicate glass * mechanical properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.266, year: 2012

  2. XRD, lead equivalent and UV-VIS properties study of Ce and Pr lead silicate glasses

    International Nuclear Information System (INIS)

    Alias, Nor Hayati; Abdullah, Wan Shafie Wan; Isa, Norriza Mohd; Isa, Muhammad Jamal Md; Zali, Nurazila Mat; Abdullah, Nuhaslinda Ee; Muhammad, Azali

    2014-01-01

    In this work, Cerium (Ce) and Praseodymium (Pr) containing lead silicate glasses were produced with 2 different molar ratios low (0.2 wt%) and high (0.4wt%). These types of glasses can satisfy the characteristics required for radiation shielding glasses and minimize the lead composition in glass. The radiation shielding properties of the synthesized glasses is explained in the form of lead equivalent study. The XRD diffraction and UV-VIS analysis were performed to observe the structural changes of the synthesis glasses at 1.5 Gy gamma radiation exposures

  3. Crystal growth and optical properties of CdS-doped lead silicate glass

    International Nuclear Information System (INIS)

    Liu Hao; Liu Qiming; Zhao Xiujian

    2007-01-01

    The crystal growth and optical properties of CdS microcrystallite-doped lead silicate glass is investigated in this paper. The existence of CdS nanocrystals was confirmed via X-ray diffraction (XRD) and transmission electron microscopy (TEM). Results reveal that a two-stage heat-treat procedure can produce a better size distribution of CdS nanocrystals than a one-stage heat-treat procedure in glasses. The second harmonic generation (SHG) from the base glass and CdS microcrystallite doped glasses was observed, and the effects of the heat treatments and the thermal poling temperature on the crystallization of CdS and second-order harmonic (SH) intensity were discussed, respectively. It is indicated that samples doped with CdS microcrystallite showed larger SH intensity than that of the base glass. Use of a higher thermal poling temperature than the glass transformation temperature does not result in a good SH intensity in glasses

  4. Multilevel Tunnelling Systems and Fractal Clustering in the Low-Temperature Mixed Alkali-Silicate Glasses

    Science.gov (United States)

    2013-01-01

    The thermal and dielectric anomalies of window-type glasses at low temperatures (T glasses in recent times, magnetic effects in the organic glasses, and also some older data from mixed (SiO2)1−x(K2O)x and (SiO2)1−x(Na2O)x glasses indicate the need for a suitable extension of the 2LS-STM. We show that—not only for the magnetic effects, but also for the mixed glasses in the absence of a field—the right extension of the 2LS-STM is provided by the (anomalous) multilevel tunnelling systems (ATS) proposed by one of us for multicomponent amorphous solids. Though a secondary type of TS, different from the standard 2LS, was invoked long ago already, we clarify their physical origin and mathematical description and show that their contribution considerably improves the agreement with the experimental data. In spite of dealing with low-temperature properties, our work impinges on the structure and statistical physics of glasses at all temperatures. PMID:23861652

  5. Infrared Spectroscopic Study For Structural Investigation Of Lithium Lead Silicate Glasses

    International Nuclear Information System (INIS)

    Ahlawat, Navneet; Aghamkar, Praveen; Ahlawat, Neetu; Agarwal, Ashish; Monica

    2011-01-01

    Lithium lead silicate glasses with composition 30Li 2 O·(70-x)PbO·xSiO 2 (where, x = 10, 20, 30, 40, 50 mol %)(LPS glasses) were prepared by normal melt quench technique at 1373 K for half an hour in air to understand their structure. Compositional dependence of density, molar volume and glass transition temperature of these glasses indicates more compactness of the glass structure with increasing SiO 2 content. Fourier transform infrared (FTIR) spectroscopic data obtained for these glasses was used to investigate the changes induced in the local structure of samples as the ratio between PbO and SiO 2 content changes from 6.0 to 0.4. The observed absorption band around 450-510 cm -1 in IR spectra of these glasses indicates the presence of network forming PbO 4 tetrahedral units in glass structure. The increase in intensity with increasing SiO 2 content (upto x = 30 mol %) suggests superposition of Pb-O and Si-O bond vibrations in absorption band around 450-510 cm -1 . The values of optical basicity in these glasses were found to be dependent directly on PbO/SiO 2 ratio.

  6. Effect of MnO2 doped on physical, structure and optical properties of zinc silicate glasses from waste rice husk ash

    Directory of Open Access Journals (Sweden)

    Ali Jabbar Abed Al-Nidawi

    Full Text Available In this study, an investigation was conducted to explore and synthesize silicate (SiO2 glass from waste rice husk ash (RHA. MnO2 doped zinc silicate glasses with chemical formula [(ZnO55 + (WRHA45]100-X[MnO2]X, (where X = 0, 1, 3 and 5 wt% was prepared by conventional melt quenching technique. The glass samples were characterized using energy dispersive X-ray fluorescence (EDXRF, X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, Fourier transform infrared (FTIR spectroscopy, and ultraviolet–visible (UV–Vis spectroscopy. The results revealed that by increasing the concentration of MnO2, the color of glass samples changed from colorless to brown and the density of glass increased. XRD results showed that a broad halo peak which centered on the low angle (2θ = 30° indicated the amorphous nature of the glass. FTIR results showed basic structural units of Si-O-Si in non-bridging oxygen, Si-O and Mn-O in the glass network. FESEM result showed a decreasing porosity with an increasing MnO2 content, which was attributed to the Mn ions resort to occupy interstitial sites inside the pores of glass. Besides, the absorption intensity of glass increased and the band gap value decreased with increasing the MnO2 percentage. In this synthesized glass system of MnO2 doped zinc silicate glasses using RHA as a source of silica, the MnO2 affect most of the properties of the glass system under investigation. Keywords: Rice husk, Manganese dioxide, Glass, Zinc silicate, Sintering, Optical properties

  7. Crystallisation mechanism of a multicomponent lithium alumino-silicate glass

    International Nuclear Information System (INIS)

    Wurth, R.; Pascual, M.J.; Mather, G.C.; Pablos-Martín, A.; Muñoz, F.; Durán, A.; Cuello, G.J.; Rüssel, C.

    2012-01-01

    A base glass of composition 3.5 Li 2 O∙0.15 Na 2 O∙0.2 K 2 O∙1.15 MgO∙0.8 BaO∙1.5 ZnO∙20 Al 2 O 3 ∙67.2 SiO 2 ∙2.6 TiO 2 ∙1.7 ZrO 2 ∙1.2 As 2 O 3 (in wt.%), melted and provided by SCHOTT AG (Mainz), was used to study the crystallisation mechanism of lithium alumino-silicate glass employing X-ray diffraction combined with neutron diffraction and non-isothermal differential scanning calorimetry (DSC). A high-quartz solid solution of LiAlSi 2 O 6 with nanoscaled crystals forms at 750 °C. Quantitative Rietveld refinement of samples annealed at 750 °C for 8 h determined a crystallised fraction of around 59 wt.%. The room temperature crystallised phase adopts an ordered, β-eucryptite-like structure (2 × 2 × 2 cell) with Li ordered in the structural channels. The Avrami parameter (n ∼ 4), calculated from DSC data using different theoretical approaches, indicates that bulk crystallisation occurs and that the number of nuclei increases during annealing. The activation energy of the crystallisation is 531 ± 20 kJ mol −1 . - Highlights: ► Nanoscaled high-quartz crystals from a multicomponent lithium alumino-silicate glass. ► Combined X-ray and neutron diffraction structural refinement. ► β-Eucryptite-like structure (2 × 2×2 cell) with Li ordered in the structural channels. ► 3-Dimensional bulk crystallisation mechanism with an increasing number of nuclei. ► Usage and validation of an alternative approach to calculate the Avrami parameter.

  8. Barium oxide, calcium oxide, magnesia, and alkali oxide free glass

    Science.gov (United States)

    Lu, Peizhen Kathy; Mahapatra, Manoj Kumar

    2013-09-24

    A glass composition consisting essentially of about 10-45 mole percent of SrO; about 35-75 mole percent SiO.sub.2; one or more compounds from the group of compounds consisting of La.sub.2O.sub.3, Al.sub.2O.sub.3, B.sub.2O.sub.3, and Ni; the La.sub.2O.sub.3 less than about 20 mole percent; the Al.sub.2O.sub.3 less than about 25 mole percent; the B.sub.2O.sub.3 less than about 15 mole percent; and the Ni less than about 5 mole percent. Preferably, the glass is substantially free of barium oxide, calcium oxide, magnesia, and alkali oxide. Preferably, the glass is used as a seal in a solid oxide fuel/electrolyzer cell (SOFC) stack. The SOFC stack comprises a plurality of SOFCs connected by one or more interconnect and manifold materials and sealed by the glass. Preferably, each SOFC comprises an anode, a cathode, and a solid electrolyte.

  9. Multilevel Tunnelling Systems and Fractal Clustering in the Low-Temperature Mixed Alkali-Silicate Glasses

    Directory of Open Access Journals (Sweden)

    Giancarlo Jug

    2013-01-01

    Full Text Available The thermal and dielectric anomalies of window-type glasses at low temperatures (T<1 K are rather successfully explained by the two-level systems (2LS standard tunneling model (STM. However, the magnetic effects discovered in the multisilicate glasses in recent times, magnetic effects in the organic glasses, and also some older data from mixed (SiO21−x(K2Ox and (SiO21−x(Na2Ox glasses indicate the need for a suitable extension of the 2LS-STM. We show that—not only for the magnetic effects, but also for the mixed glasses in the absence of a field—the right extension of the 2LS-STM is provided by the (anomalous multilevel tunnelling systems (ATS proposed by one of us for multicomponent amorphous solids. Though a secondary type of TS, different from the standard 2LS, was invoked long ago already, we clarify their physical origin and mathematical description and show that their contribution considerably improves the agreement with the experimental data. In spite of dealing with low-temperature properties, our work impinges on the structure and statistical physics of glasses at all temperatures.

  10. Silicate Based Glass Formulations for Immobilization of U.S. Defense Wastes Using Cold Crucible Induction Melters

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L.; Kim, Dong-Sang; Schweiger, Michael J.; Marra, James C.; Lang, Jesse B.; Crum, Jarrod V.; Crawford, Charles L.; Vienna, John D.

    2014-05-22

    The cold crucible induction melter (CCIM) is an alternative technology to the currently deployed liquid-fed, ceramic-lined, Joule-heated melter for immobilizing of U.S. tank waste generated from defense related reprocessing. In order to accurately evaluate the potential benefits of deploying a CCIM, glasses must be developed specifically for that melting technology. Related glass formulation efforts have been conducted since the 1990s including a recent study that is first documented in this report. The purpose of this report is to summarize the silicate base glass formulation efforts for CCIM testing of U.S. tank wastes. Summaries of phosphate based glass formulation and phosphate and silicate based CCIM demonstration tests are reported separately (Day and Ray 2013 and Marra 2013, respectively). Combined these three reports summarize the current state of knowledge related to waste form development and process testing of CCIM technology for U.S. tank wastes.

  11. Fabrication of wound capacitors using flexible alkali-free glass

    International Nuclear Information System (INIS)

    Wilke, Rudeger H. T.; Baker, Amanda; Brown-Shaklee, Harlan; Johnson-Wilke, Raegan; Hettler, Chad

    2016-01-01

    Here, alkali-free glasses, which exhibit high energy storage densities (~35 J/cc), present a unique opportunity to couple high temperature stability with high breakdown strength, and thus provide an avenue for capacitor applications with stringent temperature and power requirements. Realizing the potential of these materials in kilovolt class capacitors with >1 J/cc recoverable energy density requires novel packaging strategies that incorporate these extremely fragile dielectrics. In this paper, we demonstrate the feasibility of fabricating wound capacitors using 50-μm-thick glass. Two capacitors were fabricated from 2.8-m-long ribbons of thin (50 μm) glass wound into 125-140-mm-diameter spools. The capacitors exhibit a capacitance of 70-75 nF with loss tangents below 1%. The wound capacitors can operate up to 1 kV and show excellent temperature stability to 150 °C. By improving the end terminations, the self-resonance can be shifted to above 1 MHz, indicating that these materials may be useful for pulsed power applications with microsecond discharge times.

  12. Effect of the addition of Na2O on the thermal stability of alumino silicated glasses rich in rare earths

    International Nuclear Information System (INIS)

    Lassalle-Herraud, Olivier; Matecki, Marc; Glorieux, Benoit; Sadiki, Najim; Montoullout, Valerie; Dussossoy, Jean-Luc

    2006-01-01

    Alumino silicated glasses rich in rare earths have been prepared by concentrated solar way. Their recrystallization, the structural and microstructural properties as well as the mechanical and thermal properties of these glasses have been studied. The results show the effect of sodium addition on the thermal stability of the materials, the vitreous transition temperature and the recrystallization temperature. A heat treatment has allowed to reveal the formation of sodium apatite micro-crystallites and of lanthanum silicate in the glasses. (O.M.)

  13. Irradiation of potassium-silicate glass surfaces: XPS and REELS study

    Czech Academy of Sciences Publication Activity Database

    Romanyuk, Olexandr; Jiříček, Petr; Zemek, Josef; Houdková, Jana; Jurek, Karel; Gedeon, O.

    2016-01-01

    Roč. 48, č. 7 (2016), s. 543-546 ISSN 0142-2421. [16th European Conference on Applications of Surface and Interface Analysis (ECASIA). Granada, 28.09.2015-01.10.2015] R&D Projects: GA ČR(CZ) GA15-12580S Institutional support: RVO:68378271 Keywords : electron spectroscopy * potassium silicate glass * x-ray irradiation * electron irradiation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.132, year: 2016

  14. Thermal, structural and spectroscopic properties of Pr3+-doped lead zinc borate glasses modified by alkali metal ions

    Directory of Open Access Journals (Sweden)

    M.V. Sasi kumar

    2017-07-01

    Full Text Available This paper offers a study on Pr3+-doped alkali and mixed-alkali borate glasses prepared by the melt quenching technique and characterized by thermal, structural and spectroscopic studies. The amorphous nature of the glassy systems was identified based on X-ray diffraction. The thermal behaviour of glasses was studied using differential thermal analysis (DTA. The functional groups contained in the glasses were identified by Fourier transform infrared spectroscopy (FTIR. Spectral intensities were evaluated from the absorption spectra and used for calculating J–O intensity parameters, Ωλ (λ = 2, 4 and 6. Further, these parameters were used for calculating different radiative properties. The best radiative state was identified as the laser transition state among the various states. Emission analysis was performed for this state by calculating the branching ratios and stimulated emission cross sections (σp for all the prepared glasses. These studies suggest that borate glasses are useful for visible fluorescence.

  15. Predicting the dissolution kinetics of silicate glasses using machine learning

    Science.gov (United States)

    Anoop Krishnan, N. M.; Mangalathu, Sujith; Smedskjaer, Morten M.; Tandia, Adama; Burton, Henry; Bauchy, Mathieu

    2018-05-01

    Predicting the dissolution rates of silicate glasses in aqueous conditions is a complex task as the underlying mechanism(s) remain poorly understood and the dissolution kinetics can depend on a large number of intrinsic and extrinsic factors. Here, we assess the potential of data-driven models based on machine learning to predict the dissolution rates of various aluminosilicate glasses exposed to a wide range of solution pH values, from acidic to caustic conditions. Four classes of machine learning methods are investigated, namely, linear regression, support vector machine regression, random forest, and artificial neural network. We observe that, although linear methods all fail to describe the dissolution kinetics, the artificial neural network approach offers excellent predictions, thanks to its inherent ability to handle non-linear data. Overall, we suggest that a more extensive use of machine learning approaches could significantly accelerate the design of novel glasses with tailored properties.

  16. Structural relaxation dynamics and annealing effects of sodium silicate glass.

    Science.gov (United States)

    Naji, Mohamed; Piazza, Francesco; Guimbretière, Guillaume; Canizarès, Aurélien; Vaills, Yann

    2013-05-09

    Here we report high-precision measurements of structural relaxation dynamics in the glass transition range at the intermediate and short length scale for a strong sodium silicate glass during long annealing times. We evidence for the first time the heterogeneous dynamics at the intermediate range order by probing the acoustic longitudinal frequency in the GHz region by Brillouin light scattering spectroscopy. Or, from in-situ Raman measurements, we show that relaxation is indeed homogeneous at the interatomic length scale. Our results show that the dynamics at the intermediate range order contains two distinct relaxation time scales, a fast and a slow component, differing by about a 10-fold factor below Tg and approaching to one another past the glass transition. The slow relaxation time agrees with the shear relaxation time, proving that Si-O bond breaking constitutes the primary control of structural relaxation at the intermediate range order.

  17. Viscosity properties of sodium borophosphate glasses

    International Nuclear Information System (INIS)

    Gaylord, S.; Tincher, B.; Petit, L.; Richardson, K.

    2009-01-01

    The viscosity behavior of (1 - x)NaPO 3 -xNa 2 B 4 O 7 glasses (x = 0.05-0.20) have been measured as a function of temperature using beam-bending and parallel-plate viscometry. The viscosity was found to shift to higher temperatures with increasing sodium borate content. The kinetic fragility parameter, m, estimated from the viscosity curve, decreases from 52 to 33 when x increases from 0.05 to 0.20 indicating that the glass network transforms from fragile to strong with the addition of Na 2 B 4 O 7 . The decrease in fragility with increasing x is due to the progressive depolymerization of the phosphate network by the preferred four-coordinated boron atoms present in the low alkali borate glasses. As confirmed by Raman spectroscopy increasing alkali borate leads to enhanced B-O-P linkages realized with the accompanying transition from solely four-coordinated boron (in BO 4 units) to mixed BO 4 /BO 3 structures. The glass viscosity characteristics of the investigated glasses were compared to those of P-SF67 and N-FK5 commercial glasses from SCHOTT. We showed that the dependence of the viscosity of P-SF67 was similar to the investigated glasses due to similar phosphate network organization confirmed by Raman spectroscopy, whereas N-FK5 exhibited a very different viscosity curve and fragility parameter due to its highly coordinated silicate network

  18. White light emission and color tunability of dysprosium doped barium silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Lokesh; Sharma, Anchal; Vishwakarma, Amit K.; Jha, Kaushal [Department of Applied Physics, Delhi Technological University, Delhi 110042 (India); Jayasimhadri, M., E-mail: jayaphysics@yahoo.com [Department of Applied Physics, Delhi Technological University, Delhi 110042 (India); Ratnam, B.V.; Jang, Kiwan [Department of Physics, Changwon National University, Changwon 641-77 (Korea, Republic of); Rao, A.S.; Sinha, R.K. [Department of Applied Physics, Delhi Technological University, Delhi 110042 (India)

    2016-01-15

    The present work elucidates the synthesis of Dy{sup 3+} doped barium silicate glasses, along with the subsequent studies performed to evaluate its viability in solid state lighting applications. The synthesized photonic glasses were investigated via X-Ray Diffraction, Scanning Electron Microscopy and Fourier Transform Infrared Spectroscopy. The photoluminescence properties were examined under ultraviolet (UV)/near UV (NUV) excitation. Photoluminescence spectrum exhibited characteristic emission bands at λ{sub em}=483 nm (blue) and λ{sub em}=576 nm (yellow) which are ascribed to the {sup 4}F{sub 9/2}→{sup 6}H{sub 15/2} and {sup 4}F{sub 9/2}→{sup 6}H{sub 13/2} transitions of Dy{sup 3+} ion, respectively. The chromaticity coordinates under excitation of λ{sub ex}=348 nm are (0.31, 0.34), which lies in the white region of CIE 1931 chromaticity diagram and are in excellent proximity with the standard equal energy white illuminant (0.333, 0.333). The calculated correlated color temperature and the yellow to blue (Y/B) ratio are found to be 6602 K and 1.12, respectively for the optimized sample. The synthesized photonic glass also offered the possibility of tuning the color as exemplified through the variation in CIE coordinates, correlated color temperature and the Y/B ratio. The results confirm the possibility of color tunability from the proposed glass and may be useful for various photonic device applications. - Highlights: • Successfully synthesized Dy{sup 3+} doped barium silicate glasses. • Structural properties thoroughly discussed by using XRD and FT-IR. • Photoluminescence and colorimetry properties have been investigated. • Y/B ratio and the reason for color tunability have been successfully explained. • CIE coordinates of Dy{sup 3+}:BBS glass confirm its suitability for w-LEDs.

  19. Alkali-Activated Natural Pozzolan/Slag Binder for Sustainable Concrete

    Science.gov (United States)

    Najimi, Meysam

    This study aimed to fully replace Portland cement (PC) with environmentally friendly binders capable of improving longevity of concrete. The new binders consisted of different proportions of natural Pozzolan and slag which were alkaline-activated with various combinations of sodium hydroxide and sodium silicate. A step-by-step research program was designed to (1) develop alkali-activated natural Pozzolan/slag pastes with adequate fresh and strength properties, (2) produce alkali-activated natural Pozzolan/slag mortars to assess the effects of dominant variables on their plastic and hardened properties, and (3) finally produce and assess fresh, mechanical, dimensional, transport and durability properties of alkali-activated natural Pozzolan/slag concretes. The major variables included in this study were binder combination (natural Pozzolan/slag combinations of 70/30, 50/50 and 30/70), activator combination (sodium silicate/sodium hydroxide combinations of 20/80, 25/75 and 30/70), and sodium hydroxide concentration (1, 1.75 and 2.5M). The experimental program assessed performance of alkali-activated natural Pozzolan/slag mixtures including fresh properties (flow and setting times), unit weights (fresh, demolded and oven-dry), mechanical properties (compressive and tensile strengths, and modulus of elasticity), transport properties (absorption, rapid chloride penetration, and rapid chloride migration), durability (frost resistance, chloride induced corrosion, and resistance to sulfuric acid attack), and dimensional stability (drying shrinkage). This study also compared the performance of alkali-activated natural Pozzolan/slag concretes with that of an equivalent reference Portland cement concrete having a similar flow and strength characteristics. The results of this study revealed that it was doable to find optimum binder proportions, activator combinations and sodium hydroxide concentrations to achieve adequate plastic and hardened properties. Nearly for all studied

  20. Local Structures around Si, Al and Na in Hydrated Silicate Glasses

    International Nuclear Information System (INIS)

    Farges, Francois; Wispelaere, Sidoine de; Rossano, Stephanie; Munos, Manuel; Wilke, Max; Flank, Anne-Marie; Lagarde, Pierre

    2007-01-01

    XANES spectra were collected at the Si-, Al-, and Na K-edge in hydrous silicate glasses to understand the effect of water on the local structure around these cations. Around network forming Si and Al, no drastic changes are observed. Around Na, the dissolution of water creates more ordered environments in Al-bearing glasses and less ordered environment in Al-free glasses. Ab-initio XANES calculations were undertaken to understand the structural origins for these features. Based on these results, a bond valence model was refined that considers not only the present XANES experiments and models but also NMR information. The double percolation model refined explains, among others, the explosive properties of water-bearing hydrous melts, at the origin of a number of cataclysmic eruptions in subduction zones

  1. Alkali-resistant glass fiber reinforced high strength concrete in simulated aggressive environment

    International Nuclear Information System (INIS)

    Kwan, W.H.; Cheah, C.B.; Ramli, M.; Chang, K.Y.

    2018-01-01

    The durability of the alkali-resistant (AR) glass fiber reinforced concrete (GFRC) in three simulated aggresive environments, namely tropical climate, cyclic air and seawater and seawater immersion was investigated. Durability examinations include chloride diffusion, gas permeability, X-ray diffraction (XRD) and scanning electron microscopy examination (SEM). The fiber content is in the range of 0.6 % to 2.4 %. Results reveal that the specimen containing highest AR glass fiber content suffered severe strength loss in seawater environment and relatively milder strength loss under cyclic conditions. The permeability property was found to be more inferior with the increase in the fiber content of the concrete. This suggests that the AR glass fiber is not suitable for use as the fiber reinforcement in concrete is exposed to seawater. However, in both the tropical climate and cyclic wetting and drying, the incorporation of AR glass fiber prevents a drastic increase in permeability. [es

  2. Use of depleted uranium silicate glass to minimize release of radionuclides from spent nuclear fuel waste packages

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1996-01-01

    A Depleted Uranium Silicate Container Backfill System (DUSCOBS) is proposed that would use small, isotopically-depleted uranium silicate glass beads as a backfill material inside repository waste packages containing spent nuclear fuel (SNF). The uranium silicate glass beads would fill the void space inside the package including the coolant channels inside SNF assemblies. Based on preliminary analysis, the following benefits have been identified. DUSCOBS improves repository waste package performance by three mechanisms. First, it reduces the radionuclide releases from SNF when water enters the waste package by creating a local uranium silicate saturated groundwater environment that suppresses (a) the dissolution and/or transformation of uranium dioxide fuel pellets and, hence, (b) the release of radionuclides incorporated into the SNF pellets. Second, the potential for long-term nuclear criticality is reduced by isotopic exchange of enriched uranium in SNF with the depleted uranium (DU) in the glass. Third, the backfill reduces radiation interactions between SNF and the local environment (package and local geology) and thus reduces generation of hydrogen, acids, and other chemicals that degrade the waste package system. Finally, DUSCOBS provides a potential method to dispose of significant quantities of excess DU from uranium enrichment plants at potential economic savings. DUSCOBS is a new concept. Consequently, the concept has not been optimized or demonstrated in laboratory experiments

  3. Quantification of the boron speciation in alkali borosilicate glasses by electron energy loss spectroscopy

    DEFF Research Database (Denmark)

    Cheng, D.S.; Yang, G.; Zhao, Y.Q.

    2015-01-01

    developed a method based on electron energy loss spectroscopy (EELS) data acquisition and analyses, which enables determination of the boron speciation in a series of ternary alkali borosilicate glasses with constant molar ratios. A script for the fast acquisition of EELS has been designed, from which...

  4. Silicates materials of high vacuum technology

    CERN Document Server

    Espe, Werner

    2013-01-01

    Materials of High Vacuum Technology, Volume 2: Silicates covers silicate insulators of special importance to vacuum technology. The book discusses the manufacture, composition, and physical and chemical properties of technical glasses, quartz glass, quartzware, vycor glass, ceramic materials, mica, and asbestos.

  5. Characterization of enameled glass excavated from Laem Pho, southern Thailand

    Science.gov (United States)

    Dhanmanonda, W.; Won-in, K.; Tancharakorn, S.; Tantanuch, W.; Thongleurm, C.; Kamwanna, T.; Dararutana, P.

    2012-07-01

    Laem Pho in Surat Thani, southern province of Thailand is one of the most important historic site on the eastern shore of the Gulf of Thailand. In this work, the enameled glass fragments which looked-like Islamic glass mainly excavated from this site were analyzed using SEM-EDS, PIXE and μ-XRF, in order to understand the chemical composition by comparing the archaeological data and topology. The structure of the enameled decoration was also studied. The resulting data indicated that high-magnesia alkali-lime silicate glass was produced. The presence of transition metals such as copper, iron and manganese were affected on the glass colorations. Typological classifications, technological observations and comparative studies serve to clarify the development and cultural inter-relationships of various glass objects along the trade and exchange networks in ancient maritime.

  6. Characterization of enameled glass excavated from Laem Pho, southern Thailand

    International Nuclear Information System (INIS)

    Dhanmanonda, W; Won-in, K; Tancharakorn, S; Tantanuch, W; Thongleurm, C; Kamwanna, T; Dararutana, P

    2012-01-01

    Laem Pho in Surat Thani, southern province of Thailand is one of the most important historic site on the eastern shore of the Gulf of Thailand. In this work, the enameled glass fragments which looked-like Islamic glass mainly excavated from this site were analyzed using SEM-EDS, PIXE and μ-XRF, in order to understand the chemical composition by comparing the archaeological data and topology. The structure of the enameled decoration was also studied. The resulting data indicated that high-magnesia alkali-lime silicate glass was produced. The presence of transition metals such as copper, iron and manganese were affected on the glass colorations. Typological classifications, technological observations and comparative studies serve to clarify the development and cultural inter-relationships of various glass objects along the trade and exchange networks in ancient maritime.

  7. Tin Valence and Local Environments in Silicate Glasses as Determined From X-ray Absorption Spectroscopy

    International Nuclear Information System (INIS)

    McKeown, D.; Buechele, A.; Gan, H.; Pegg, I.

    2008-01-01

    X-ray absorption spectroscopy (XAS) was used to characterize the tin (Sn) environments in four borosilicate glass nuclear waste formulations, two silicate float glasses, and three potassium aluminosilicate glasses. Sn K-edge XAS data of most glasses investigated indicate Sn4+O6 units with average Sn-O distances near 2.03 Angstroms. XAS data for a float glass fabricated under reducing conditions show a mixture of Sn4+O6 and Sn2+O4 sites. XAS data for three glasses indicate Sn-Sn distances ranging from 3.43 to 3.53 Angstroms, that suggest Sn4+O6 units linking with each other, while the 4.96 Angstroms Sn-Sn distance for one waste glass suggests clustering of unlinked Sn4+O6 units.

  8. Mixed Alkali Effect in (40-x)K2O-xLi2O-10Na2O-50B2O3 Glasses - Physical and Optical Absorption Studies

    Science.gov (United States)

    Samee, M. A.; Ahmmad, Shaikh Kareem; Taqiullah, Sair. Md.; Edukondalu, A.; Bale, Shashidhar; Rahman, Syed

    So far only a handful of publications have been concerned with the study of the mixed alkali effect in borate glasses containing three types of alkali ions. In the present work, the mixed alkali effect (MAE) has been investigated in the glass system (40-x) K2O-x Li2O -10Na2O-50B2O3.(0≤x≤40 mol%) through density and modulated DSC studies. The density and glass transition temperature of the present glasses varies non-linearly exhibiting mixed alkali effect. We report the mixed alkali effect in the present glasses through optical properties. From the absorption edge studies, the various values of optical band gap (Eo) and Urbach energy (ΔE) have been evaluated. The values of Eo and ΔE show non-linear behavior with compositional parameter showing the mixed alkali effect. The band gap energy based average electronic polarizability of oxide ions αO2-(Eo), optical basicity A(Eo), and Yamashita-Kurosawa’s interaction parameter A(Eo) have been examined to check the correlations among them and bonding character. Based on good correlation among electronic polarizability of oxide ions, optical basicity and interaction parameter, the present K2O- Li2O-Na2O-B2O3 glasses are classified as normal ionic (basic) oxides.

  9. Development of dense glass-ceramic from recycled soda-lime-silicate glass and fly ash for tiling

    Science.gov (United States)

    Mustaffar, Mohd Idham; Mahmud, Mohamad Haniza; Hassan, Mahadi Abu

    2017-12-01

    Dense glass-ceramics were prepared by sinter-crystallization process from a combination of soda-lime-silicate glass waste and fly ash. Bentonite clay that acted as a binder was also added in a prepared formulation. The powder mixture of soda-lime glass, fly ash and bentonite clay were compacted by using uniaxial hydraulic press machine and sintered at six (6) various temperatures namely 750, 800, 850, 900, 950 and 1000 °C. The heating rate and sintering time were set at 5 °C/min and 30 minutes respectively. The results revealed that modulus of rupture (MOR), density and linear shrinkage increase first from 750 to 800 °C but decrease later after 800 to 1000 °C. In the meantime, water absorption was showing completely an opposite trend. The glass-ceramic sintered at 800 °C was found to have the best combination of physical-mechanical properties and has the potential to be applied in the construction industry particularly as floor and wall tiles because of the simple manufacturing process at low temperature.

  10. Structural and optical study on antimony-silicate glasses doped with thulium ions.

    Science.gov (United States)

    Dorosz, D; Zmojda, J; Kochanowicz, M; Miluski, P; Jelen, P; Sitarz, M

    2015-01-05

    Structural, spectroscopic and thermal properties of SiO₂-Al₂O₃-Sb₂O₃-Na₂O glass system doped with 0.2 mol% Tm₂O₃ have been presented. Synthesis of antimony-silicate glasses with relatively low phonon energy (600 cm(-1), which implicates a small non-radiative decay rate) was performed by conventional high-temperature melt-quenching methods. The effect of SiO₂/Sb₂O₃ ratio in fabricated Tm(3+) doped glass on thermal, structural and luminescence properties was investigated. On the basis of structural investigations decomposition of absorption bands in the infrared FTIR region was performed, thus determining that antimony ions are the only glass-forming ions, setting up the lattice of fabricated glasses. Luminescence band at the wavelength of 1.8 μm corresponding to (3)F₄→(3)H₆ transition in thulium ions was obtained under 795 nm laser pumping. It was observed that combination of relatively low phonon energy and greater separation of optically active centers in the fabricated glasses influenced in decreasing the luminescence intensity at 1800 nm. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Infrared Spectroscopy and Stable Isotope Geochemistry of Hydrous Silicate Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Stolper, Edward

    2007-03-05

    The focus of this DOE-funded project has been the study of volatile components in magmas and the atmosphere. Over the twenty-one year period of this project, we have used experimental petrology and stable isotope geochemistry to study the behavior and properties of volatile components dissolved in silicate minerals and melts and glasses. More recently, we have also studied the concentration and isotopic composition of CO2 in the atmosphere, especially in relation to air quality issues in the Los Angeles basin.

  12. Effects of alkali ions on thermal stability and spectroscopic properties of Er{sup 3+}-doped gallogermanate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Shi, D.M.; Zhao, Y.G.; Wang, X.F.; Liao, G.H. [Department of Materials Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471023 (China); Zhao, C. [Department of Physics, South China University of Technology, Guangzhou 510641 (China); MOE Key Lab of Specially Functional Materials and Institute of Optical Communication Materials, South China University of Technology, Guangzhou 510641 (China); Peng, M.Y. [MOE Key Lab of Specially Functional Materials and Institute of Optical Communication Materials, South China University of Technology, Guangzhou 510641 (China); Zhang, Q.Y., E-mail: qyzhang@scut.edu.c [MOE Key Lab of Specially Functional Materials and Institute of Optical Communication Materials, South China University of Technology, Guangzhou 510641 (China)

    2011-02-01

    Since information transportation capacity of optical communication network increases rapidly, new optical materials are always demanded with gain bandwidth desirably much broader than traditional erbium-doped silica fiber amplifier (EDFA). We show here in this paper the erbium-doped gallogermanate glasses with a full-width at half-maximum (FWHM) more than 50 nm. Incorporation of alkali ions such as Li{sup +}, Na{sup +}, K{sup +} into the system can on the one hand improve the thermal stability of the glasses, and on the other hand enhance the emission at 1.5 {mu}m due to the {sup 4}I{sub 13/2{yields}}{sup 4}I{sub 15/2} transition of Er{sup 3+} and suppress the upconversion process at the same time. This particularly works best for the case of K{sup +} inclusion. This work might give a general idea on controlling the Er{sup 3+} luminescence by simply adjusting the glass component and find a potential laser glass applicable to developing new broadband fiber amplifier. -- Research highlights: {yields} We report on spectroscopic properties of Er{sup 3+}-doped Ga{sub 2}O{sub 3}-GeO{sub 2}-R{sub 2}O (GGR, R=Li, Na and K) glasses for 1.53 {mu}m fiber amplifier. Effects of alkali metal ions on the thermal stability and spectroscopic properties of Er{sup 3+}-doped GGR glasses have been investigated. {yields} Incorporation of alkali ions such as Li{sup +}, Na{sup +}, K{sup +} into the system can on the one hand improve the thermal stability of the glasses, and on the other hand enhance the emission at 1.5 {mu}m due to the {sup 4}I{sub 13/2{yields}}{sup 4}I{sub 15/2} transition of Er{sup 3+} and suppress the upconversion process at the same time. This particularly works best for the case of K{sup +} inclusion. This work might give a general idea on controlling the Er{sup 3+} luminescence by simply adjusting the glass component and find a potential laser glass applicable to developing new broadband fiber amplifier.

  13. Effect of MnO2 doped on physical, structure and optical properties of zinc silicate glasses from waste rice husk ash

    Science.gov (United States)

    Al-Nidawi, Ali Jabbar Abed; Matori, Khamirul Amin; Zakaria, Azmi; Mohd Zaid, Mohd Hafiz

    In this study, an investigation was conducted to explore and synthesize silicate (SiO2) glass from waste rice husk ash (RHA). MnO2 doped zinc silicate glasses with chemical formula [(ZnO)55 + (WRHA)45]100-X[MnO2]X, (where X = 0, 1, 3 and 5 wt%) was prepared by conventional melt quenching technique. The glass samples were characterized using energy dispersive X-ray fluorescence (EDXRF), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR) spectroscopy, and ultraviolet-visible (UV-Vis) spectroscopy. The results revealed that by increasing the concentration of MnO2, the color of glass samples changed from colorless to brown and the density of glass increased. XRD results showed that a broad halo peak which centered on the low angle (2θ = 30°) indicated the amorphous nature of the glass. FTIR results showed basic structural units of Si-O-Si in non-bridging oxygen, Si-O and Mn-O in the glass network. FESEM result showed a decreasing porosity with an increasing MnO2 content, which was attributed to the Mn ions resort to occupy interstitial sites inside the pores of glass. Besides, the absorption intensity of glass increased and the band gap value decreased with increasing the MnO2 percentage. In this synthesized glass system of MnO2 doped zinc silicate glasses using RHA as a source of silica, the MnO2 affect most of the properties of the glass system under investigation.

  14. Alkali passivation mechanism of sol-gel derived TiO2-SiO2 films coated on soda-lime-silica glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, A; Matsuno, Y; Katayama, S; Tsuno, T [Nippon Steel Glass Co. Ltd., Tokyo (Japan); Toge, N; Minami, T [University of Osaka Prefecture, Osaka (Japan). College of Engineering

    1992-09-01

    TiO2-SiO2 films prepared by the sol-gel method serves as an effective alkali passivation layer on a soda-lime-silica glass substrate and the film is superior to a sol-gel derived pure SiO2 film from the view point of weathering resistance improvement. To clarify the reason, alkali passivation mechanism of sol-gel derived TiO2-SiO2 glass films with different TiO2 contents coated on a soda-lime-silica glass substrate was studied by SIMS (secondary ion mass spectroscopy) and XPS (X-ray photoelectron spectroscopy) analyses, and compared with the results of a sol-gel derived pure SiO2 film. As a result, the following conclusions were obtained: An increase in TiO2 content in the TiO2 SiO2 film increases the sodium concentration in the film, which was induced by sodium migration from the glass substrate during the heat-treatment. Because of the presence of sodium the TiO2 -SiO2 films serve not as a barrier but as an effective getter of alkali ions and thereby effectively improve the weathering resistance Of the glass substrate. 10 refs., 6 figs.

  15. Crystallisation mechanism of a multicomponent lithium alumino-silicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Wurth, R. [Otto-Schott-Institut, Jena University, Fraunhoferstr. 6, 07743 Jena (Germany); Pascual, M.J., E-mail: mpascual@icv.csic.es [Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Mather, G.C.; Pablos-Martin, A.; Munoz, F.; Duran, A. [Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Cuello, G.J. [Institut Laue-Langevin, Boite Postale 156, 38042 Grenoble Cedex 9 (France); Ruessel, C. [Otto-Schott-Institut, Jena University, Fraunhoferstr. 6, 07743 Jena (Germany)

    2012-06-15

    A base glass of composition 3.5 Li{sub 2}O Bullet-Operator 0.15 Na{sub 2}O Bullet-Operator 0.2 K{sub 2}O Bullet-Operator 1.15 MgO Bullet-Operator 0.8 BaO Bullet-Operator 1.5 ZnO Bullet-Operator 20 Al{sub 2}O{sub 3} Bullet-Operator 67.2 SiO{sub 2} Bullet-Operator 2.6 TiO{sub 2} Bullet-Operator 1.7 ZrO{sub 2} Bullet-Operator 1.2 As{sub 2}O{sub 3} (in wt.%), melted and provided by SCHOTT AG (Mainz), was used to study the crystallisation mechanism of lithium alumino-silicate glass employing X-ray diffraction combined with neutron diffraction and non-isothermal differential scanning calorimetry (DSC). A high-quartz solid solution of LiAlSi{sub 2}O{sub 6} with nanoscaled crystals forms at 750 Degree-Sign C. Quantitative Rietveld refinement of samples annealed at 750 Degree-Sign C for 8 h determined a crystallised fraction of around 59 wt.%. The room temperature crystallised phase adopts an ordered, {beta}-eucryptite-like structure (2 Multiplication-Sign 2 Multiplication-Sign 2 cell) with Li ordered in the structural channels. The Avrami parameter (n {approx} 4), calculated from DSC data using different theoretical approaches, indicates that bulk crystallisation occurs and that the number of nuclei increases during annealing. The activation energy of the crystallisation is 531 {+-} 20 kJ mol{sup -1}. - Highlights: Black-Right-Pointing-Pointer Nanoscaled high-quartz crystals from a multicomponent lithium alumino-silicate glass. Black-Right-Pointing-Pointer Combined X-ray and neutron diffraction structural refinement. Black-Right-Pointing-Pointer {beta}-Eucryptite-like structure (2 Multiplication-Sign 2 Multiplication-Sign 2 cell) with Li ordered in the structural channels. Black-Right-Pointing-Pointer 3-Dimensional bulk crystallisation mechanism with an increasing number of nuclei. Black-Right-Pointing-Pointer Usage and validation of an alternative approach to calculate the Avrami parameter.

  16. A new glass option for parenteral packaging.

    Science.gov (United States)

    Schaut, Robert A; Peanasky, John S; DeMartino, Steven E; Schiefelbein, Susan L

    2014-01-01

    Glass is the ideal material for parenteral packaging because of its chemical durability, hermeticity, strength, cleanliness, and transparency. Alkali borosilicate glasses have been used successfully for a long time, but they do have some issues relating to breakage, delamination, and variation in hydrolytic performance. In this paper, alkali aluminosilicate glasses are introduced as a possible alternative to alkali borosilicate glasses. An example alkali aluminosilicate glass is shown to meet the compendial requirements, and to have similar thermal, optical, and mechanical attributes as the current alkali borosilicate glasses. In addition, the alkali aluminosilicate performed as well or better than the current alkali borosilicates in extractables tests and stability studies, which suggests that it would be suitable for use with the studied liquid product formulation. The physical, mechanical, and optical properties of glass make it an ideal material for packaging injectable drugs and biologics. Alkali borosilicate glasses have been used successfully for a long time for these applications, but there are some issues. In this paper, alkali aluminosilicate glasses are introduced as a possible alternative to alkali borosilicate glasses. An example alkali aluminosilicate glass is shown to meet the requirements for packaging injectable drugs and biologics, and to be suitable for use with a particular liquid drug. © PDA, Inc. 2014.

  17. Characterization of radiative properties of Nd{sub 2}O{sub 3} doped phosphate and silicate glasses for solid state laser

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, P., E-mail: pnandi@barc.gov.in; Shukla, R., E-mail: pnandi@barc.gov.in; Goswami, M., E-mail: pnandi@barc.gov.in [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Sudarsan, V. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India)

    2014-04-24

    Nd{sub 2}O{sub 3} doped calcium aluminium phosphate and calcium aluminium silicate glasses prepared to compare their absorption and emission properties. Radiative lifetime of the excited state {sup 4}F{sub 3/2} derived by Judd-Ofelt theory applied to the absorption spectra. Using the photoluminescence spectrometer the steady state emission and relaxation time from excited energy level recorded under green light excitation. Phosphate glass has higher emission cross-section, higher radiative lifetime but less quantum efficiency due to non-radiative quenching through hydroxyl ions compared to silicate glass for Nd{sup 3+}:{sup 4}F{sub 3/2}→{sup 4}I{sub 9/2} emission.

  18. Investigation of emulsified, acid and acid-alkali catalyzed mesoporous bioactive glass microspheres for bone regeneration and drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Guohou [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 China (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 China (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 China (China); Chen, Xiaofeng, E-mail: chenxf@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 China (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 China (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 China (China); Dong, Hua [National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 China (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 China (China); School of Biological Science and Engineering, South China University of Technology, Guangzhou 510006 (China); Fang, Liming; Mao, Cong; Li, Yuli; Li, Zhengmao; Hu, Qing [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 China (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 China (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 China (China)

    2013-10-15

    Acid-catalyzed mesoporous bioactive glass microspheres (MBGMs-A) and acid-alkali co-catalyzed mesoporous bioactive glass microspheres (MBGMs-B) were successfully synthesized via combination of sol-gel and water-in-oil (W/O) micro-emulsion methods. The structural, morphological and textural properties of mesoporous bioactive glass microspheres (MBGMs) were characterized by various techniques. Results show that both MBGMs-A and MBGMs-B exhibit regularly spherical shape but with different internal porous structures, i.e., a dense microstructure for MBGMs-A and internally porous structure for MBGMs-B. {sup 29}Si NMR data reveal that MGBMs have low polymerization degree of silica network. The in vitro bioactivity tests indicate that the apatite formation rate of MBGMs-B was faster than that of MBGMs-A after soaking in simulated body fluid (SBF) solution. Furthermore, the two kinds of MBGMs have similar storage capacity of alendronate (AL), and the release behaviors of AL could be controlled due to their unique porous structure. In conclusion, the microspheres are shown to be promising candidates as bone-related drug carriers and filling materials of composite scaffold for bone repair. - Graphical abstract: The morphologies and microstructures of acid-catalyzed mesoporous bioactive glass microspheres (MBGMs-A) and acid-alkali co-catalyzed mesoporous bioactive glass microspheres (MBGMs-B) were observed by scanning electron microscope and transmission electron microscope. MBGMs-A exhibits a dense structure and a porous can be observed in MBGMs-B. The microspheres have a quick inducing-apatite formation ability and show a sustained release of alendronate (AL). Highlights: • A rapid method was reported to prepare mesoporous bioactive glass microspheres. • The addition of ammonia significantly shortens the preparation time. • Acid and acid-alkali co-catalyzed microspheres were studied for the first time. • The materials exhibited excellent in vitro bioactivity and

  19. Radiation effects on transport and bubble formation in silicate glasses. 1998 annual progress report

    International Nuclear Information System (INIS)

    Trifunac, A.D.

    1998-01-01

    'To study the fundamental chemistry of radiation damage in silicate/borosilicate glasses and simulated high-level nuclear waste (HLW) forms. Special emphasis is on delineating molecular processes crucial for understanding the aggregation of defects and formation of oxygen bubbles. The knowledge obtained will provide the needed scientific basis for extrapolating long-term behavior of stored radiative waste glass forms. This report summarizes the first 6 months of a 3-year project. The following issues have been addressed: (i) the production of radiolytic oxygen, (ii) the chemistry of hydrogenous species, and (iii) the effect of glass composition and microstructure on the formation and accumulation of metastable point defects.'

  20. IRON REDOX EQUILIBRIUM AND DIFFUSIVITY IN MIXED ALKALI-ALKALINE EARTH-SILICA GLASS MELTS

    Directory of Open Access Journals (Sweden)

    KI-DONG KIM

    2011-03-01

    Full Text Available Dependence of redox behavior and diffusivity of iron on temperature and composition was studied in mixed alkali-alkaline earth-silica glass melts by means of square wave voltammetry (SWV. The voltammograms showed that irrespective of K2O/(Na2O+K2O the peak potential due to Fe3+/Fe2+ moved toward negative direction with temperature decrease and the peak current showed a strong dependence on frequency at constant temperature. Iron diffusion coefficient versus melt viscosity showed a good linearity. The compositional dependence showed that the peak potential shifted to the positive direction with increase of K2O but a typical mixed alkali effect occurred in iron diffusion either at constant temperature or at constant viscosity.

  1. High-Temperature Thermal Diffusivity Measurements of Silicate Glasses

    Science.gov (United States)

    Pertermann, M.; Hofmeister, A. M.; Whittington, A. G.; Spera, F. J.; Zayac, J.

    2005-12-01

    Transport of heat in geologically relevant materials is of great interest because of its key role in heat transport, magmatism and volcanic activity on Earth. To better understand the thermal properties of magmatic materials at high temperatures, we measured the thermal diffusivity of four synthetic end-member silicate glasses with the following compositions: albite (NaAlSi3O8), orthoclase (KAlSi3O8), anorthite (CaAl2Si2O8), and diopside (CaMgSi2O6). Thermal diffusivity measurements were conducted with the laser-flash technique and data were acquired from room temperature to a maximum temperature near 1100°C, depending on the glass transition temperature. The presence of sub-mm sized bubbles in one of the orthoclase samples had no discernable effect on measured diffusivities. At room temperature, the three feldspar-type glasses have thermal diffusivity (D) values of 0.58-0.61 mm2/s, whereas the diopside glass has 0.52 mm2/s. With increasing temperature, D decreases by 5-10% (relative) for all samples and becomes virtually constant at intermediate temperatures. At higher temperatures, the anorthite and diopside glasses exhibit significant drops in thermal diffusivity over a 50-100°C interval, correlating with previously published heat capacity changes near the glass transition for these compositions. For anorthite, D (in mm2/s) decreases from 0.48 at 750-860°C to 0.36 at 975-1075°C; for diopside, D changes from 0.42 at 630-750°C to 0.30 at 850-910°C, corresponding to relative drops of 24 and 29%, respectively. Albite and orthoclase glasses do not exhibit this change and also lack significant changes in heat capacity near the glass transition. Instead, D is constant at 400-800°C for albite, and for orthoclase values go through a minimum at 500-600°C before increasing slightly towards 1100°C but it never exceeds the room temperature D. Our data on thermal diffusivity correlate closely with other thermophysical properties. Thus, at least in case of simple

  2. The formation of silver metal nanoparticles by ion implantation in silicate glasses

    Czech Academy of Sciences Publication Activity Database

    Vytykačová, S.; Švecová, B.; Nekvindová, P.; Špirková, J.; Macková, Anna; Mikšová, Romana; Bottger, R.

    2016-01-01

    Roč. 371, MAR (2016), s. 245-255 ISSN 0168-583X. [22nd International conference on Ion Beam Analysis (IBA). Opatija, 14.06.2015-19.06.2015] R&D Projects: GA MŠk(CZ) LM2011019; GA ČR GA15-01602S Institutional support: RVO:61389005 Keywords : silicate glasses * silver nanoparticles * ion implantation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.109, year: 2016

  3. Near-infrared optical properties of Yb3+-doped silicate glass waveguides prepared by double-energy proton implantation

    Science.gov (United States)

    Shen, Xiao-Liang; Zhu, Qi-Feng; Zheng, Rui-Lin; Lv, Peng; Guo, Hai-Tao; Liu, Chun-Xiao

    2018-03-01

    We report on the preparation and properties of an optical planar waveguide structure operating at 1539 nm in the Yb3+-doped silicate glass. The waveguide was formed by using (470 + 500) keV proton implantation at fluences of (1.0 + 2.0) × 1016 ions/cm2. The waveguiding characteristics including the guided-mode spectrum and the near-field image were investigated by the m-line technique and the finite-difference beam propagation method. The energy distribution for implanted protons and the refractive index profile for the proton-implanted waveguide were simulated by the stopping and range of ions in matter and the reflectivity calculation method. The proton-implanted Yb3+-doped silicate glass waveguide is a candidate for optoelectronic elements in the near-infrared region.

  4. Study of Cu+, Ag+ and Au+ ion implantation into silicate glasses

    Czech Academy of Sciences Publication Activity Database

    Švecová, B.; Nekvindová, P.; Macková, Anna; Malinský, Petr; Kolitsch, A.; Machovič, V.; Stara, S.; Míka, M.; Špirková, J.

    2010-01-01

    Roč. 356, 44-49 (2010), s. 2468-2472 ISSN 0022-3093. [XII International Conference on the Physics of Non-Crystalline Solids. Foz do Iguaçu, PR, Brazil , 06.09.-09.09.2009] R&D Projects: GA MŠk(CZ) LC06041; GA ČR GA106/09/0125 Institutional research plan: CEZ:AV0Z10480505 Keywords : Ion implantation * Silicate glasses * Metal nanoparticles * RBS Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.483, year: 2010

  5. Vegetable ash as raw material in the production of glasses and enamels, for example the contemporary vegetable ashes from Burgundy, France

    OpenAIRE

    Colomban, Philippe; Tournié, Aurélie; De Montmollin, Frère Daniel; Krainhoefner, Frère Luc

    2010-01-01

    The powdery nature and high alkali content of vegetable ashes make them ideal raw materials to be used as modifiers of silicate compositions (glasses, enamels and ceramics). Their utilisation since ancient times is described in the literature of the history of glasses, but studies on the analyses of their composition are still limited. We discuss here the compositions of tree and shrub ashes (wattle, hawthorn, oak, green oak, olive wood, elm, poplar, apple tree, vine shoot), of plants (carex,...

  6. Effect of thermal annealing on the redistribution of alkali metals in Cu(In,Ga)Se2 solar cells on glass substrate

    Science.gov (United States)

    Kamikawa, Yukiko; Nishinaga, Jiro; Ishizuka, Shogo; Tayagaki, Takeshi; Guthrey, Harvey; Shibata, Hajime; Matsubara, Koji; Niki, Shigeru

    2018-03-01

    The precise control of alkali-metal concentrations in Cu(In,Ga)Se2 (CIGS) solar cells via post deposition treatment (PDT) has recently attracted attention. When PDT is performed at an elevated temperature, an accompanying annealing effect is expected. Here, we investigate how thermal annealing affects the redistribution of alkali metals in CIGS solar cells on glass substrates and the properties of the solar cells. In addition, we investigate the origin of non-homogeneous alkali-metal depth profiles that are typical of CIGS grown using a three-stage process. In particular, we use secondary-ion mass spectrometry measurements of the ion concentration as a function of distance from the CIGS surface to investigate the impact of thermal annealing on the distribution of alkali metals (Na, Ka, and Rb) and constituent elements (Ga and In) in the CIGS absorbers. We find that the depth profiles of the alkali metals strongly reflect the density of sites that tend to accommodate alkali metals, i.e., vacancies. Annealing at elevated temperature caused a redistribution of the alkali metals. The thermal-diffusion kinetics of alkali metals depends strongly on the species involved. We introduced low flux potassium fluoride (KF) to study a side effect of KF-PDT, i.e., Na removal from CIGS, separately from its predominant effects such as surface modification. When sufficient amounts of Na are supplied from the soda lime glass via annealing at an elevated temperature, the negative effect was not apparent. Conversely, when the Na supply was not sufficient, it caused a deterioration of the photovoltaic properties.

  7. Effect of Thermal Annealing on the Redistribution of Alkali Metals in Cu(In,Ga)Se2 Solar Cells on Glass Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Guthrey, Harvey L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kamikawa, Yukiko [National Institute of Advanced Industrial Science and Technology (AIST); Nishinaga, Jiro [National Institute of Advanced Industrial Science and Technology (AIST); Ishizuka, Shogo [National Institute of Advanced Industrial Science and Technology (AIST); Tayagaki, Takeshi [National Institute of Advanced Industrial Science and Technology (AIST); Shibata, Hajime [National Institute of Advanced Industrial Science and Technology (AIST); Matsubara, Koji [National Institute of Advanced Industrial Science and Technology (AIST); Niki, Shigeru [National Institute of Advanced Industrial Science and Technology (AIST)

    2018-03-02

    The precise control of alkali-metal concentrations in Cu(In,Ga)Se2 (CIGS) solar cells via post deposition treatment (PDT) has recently attracted attention. When PDT is performed at an elevated temperature, an accompanying annealing effect is expected. Here, we investigate how thermal annealing affects the redistribution of alkali metals in CIGS solar cells on glass substrates and the properties of the solar cells. In addition, we investigate the origin of non-homogeneous alkali-metal depth profiles that are typical of CIGS grown using a three-stage process. In particular, we use secondary-ion mass spectrometry measurements of the ion concentration as a function of distance from the CIGS surface to investigate the impact of thermal annealing on the distribution of alkali metals (Na, Ka, and Rb) and constituent elements (Ga and In) in the CIGS absorbers. We find that the depth profiles of the alkali metals strongly reflect the density of sites that tend to accommodate alkali metals, i.e., vacancies. Annealing at elevated temperature caused a redistribution of the alkali metals. The thermal-diffusion kinetics of alkali metals depends strongly on the species involved. We introduced low flux potassium fluoride (KF) to study a side effect of KF-PDT, i.e., Na removal from CIGS, separately from its predominant effects such as surface modification. When sufficient amounts of Na are supplied from the soda lime glass via annealing at an elevated temperature, the negative effect was not apparent. Conversely, when the Na supply was not sufficient, it caused a deterioration of the photovoltaic properties.

  8. Diopside-Fluorapatite-Wollastonite Based Bioactive Glasses and Glass-ceramics =

    Science.gov (United States)

    Kansal, Ishu

    Bioactive glasses and glass-ceramics are a class of biomaterials which elicit special response on their surface when in contact with biological fluids, leading to strong bonding to living tissue. This particular trait along with good sintering ability and high mechanical strength make them ideal materials for scaffold fabrication. The work presented in this thesis is directed towards understanding the composition-structure-property relationships in potentially bioactive glasses designed in CaO-MgO-P2O5-SiO2-F system, in some cases with added Na2O. The main emphasis has been on unearthing the influence of glass composition on molecular structure, sintering ability and bioactivity of phosphosilicate glasses. The parent glass compositions have been designed in the primary crystallization field of the pseudo-ternary system of diopside (CaO•MgO•2SiO2) - fluorapatite (9CaO•3P2O5•CaF2) - wollastonite (CaO•SiO2), followed by studying the impact of compositional variations on the structure-property relationships and sintering ability of these glasses. All the glasses investigated in this work have been synthesized via melt-quenching route and have been characterized for their molecular structure, sintering ability, chemical degradation and bioactivity using wide array of experimental tools and techniques. It has been shown that in all investigated glass compositions the silicate network was mainly dominated by Q2 units while phosphate in all the glasses was found to be coordinated in orthophosphate environment. The glass compositions designed in alkali-free region of diopside - fluorapatite system demonstrated excellent sintering ability and good bioactivity in order to qualify them as potential materials for scaffold fabrication while alkali-rich bioactive glasses not only hinder the densification during sintering but also induce cytotoxicity in vitro, thus, are not ideal candidates for in vitro tissue engineering. One of our bioglass compositions with low sodium

  9. Irradiations effects on the structure of boro-silicated glasses: long term behaviour of nuclear waste glassy matrices

    International Nuclear Information System (INIS)

    Bonfils, J. de

    2007-09-01

    This work deals with the long term behaviour of R7T7-type nuclear waste glasses and more particularly of non-active boro-silicated glasses made up of 3 or 5 oxides. Radioactivity of active glasses is simulated by multi energies ions implantations which reproduce the same defects. The damages due to the alpha particles are simulated by helium ions implantations and those corresponding to the recoil nucleus are obtained with gold ions ones. Minor actinides, stemming from the used fuel, is simulated by trivalent rare-earths (Eu 3+ and Nd 3+ ). In a first part, we have shown by macroscopic experiments (Vickers hardness - swelling) and optical spectroscopies (Raman - ATR-IR) that the structure of the glassy matrices is modified under implantations until a dose of 2,3.10 13 at.cm -2 , which corresponds to a R7T7 storage time estimated at 300 years. Beyond this dose, no additional modifications have been observed. The second part concerns the local environment of the rare-earth ions in glasses. Two different environments were found and identified as follows: one is a silicate rich one and the other is attributed to a borate rich one. (author)

  10. Investigation on Er{sup 3+}/Ho{sup 3+} co-doped silicate glass for ~2 µm fiber lasers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xueqiang; Huang, Feifei; Cheng, Jimeng; Fan, Xiaokang; Gao, Song [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Graduate School of Chinese Academy of Science, Beijing 100039 (China); Zhang, Junjie [College of Materials Science and Technology, China Jiliang University, Hangzhou 310018 (China); Hu, Lili [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Chen, Danping, E-mail: dpchen2008@aliyun.com [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2015-06-15

    A stable Er{sup 3+}/Ho{sup 3+} co-doped lead silicate glass is developed. Luminescent properties are recorded under pumping with 808 and 1550 nm lasers. Energy-transfer mechanism and efficiency are analyzed. Energy-transfer efficiency from Er{sup 3+}:{sup 4}I{sub 13/2} to Ho{sup 3+}:{sup 5}I{sub 7} reaches 93.8% at 3 mol% Ho{sub 2}O{sub 3} doping concentration. Strong luminescence is detected when pumped at 1550 nm because of efficient energy transfer from Er{sup 3+}:{sup 4}I{sub 13/2} to Ho{sup 3+}:{sup 5}I{sub 7}. Peak gain coefficient at 2056 nm is detected as 1.62 cm{sup −1}. The excellent luminescent property and high stability indicate that Er{sup 3+}/Ho{sup 3+} co-doped lead silicate glass can be applied in 2 µm fiber lasers. - Highlights: • Er{sup 3+}/Ho{sup 3+} co-doped silicate glasses with high stability are prepared. • Strong luminescence is detected under pump of 1550 nm lasers owing to efficient energy transfer from Er{sup 3+} to Ho{sup 3+}. • Transfer efficiency is calculated to be 93.8% when Ho{sub 2}O{sub 3} doping concentration is up to 3 mol%. • Gain coefficient peaks at 2056 nm to be 1.62 cm{sup −1}.

  11. Method of handling radioactive alkali metal waste

    Science.gov (United States)

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  12. Method of handling radioactive alkali metal waste

    International Nuclear Information System (INIS)

    Mcpheeters, C.C.; Wolson, R.D.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1

  13. A study of redox kinetic in silicate melt; Etude cinetique des reactions d'oxydoreduction dans les silicates

    Energy Technology Data Exchange (ETDEWEB)

    Magnien, V

    2005-12-15

    The aim of this thesis is to understand better iron redox reactions and mechanisms in silicate glasses and melts. Particular interest has been paid to the influence of temperature and chemical composition. For this purpose, the influence of alkali element content, iron content and network formers on the kinetics of redox reactions has been determined through XANES and Raman spectroscopy experiments performed either near the glass transition or above the liquidus temperature. As a complement, electrical conductivity and RBS spectroscopy experiments have been made to characterize the diffusivity of the species that transport electrical charges and the reaction morphology, respectively. Temperature and composition variations can induce changes in the dominating redox mechanism. At a given temperature, the parameters that exert the strongest influence on redox mechanisms are the presence or lack of divalent cations and the existing decoupling between the mobility of network former and modifier elements. Near Tg, the diffusion of divalent cations, when present in the melt, controls the kinetics of iron redox reactions along with a flux of electron holes. Composition, through the degree of polymerization and the silicate network structure, influences the kinetics and the nature of the involved cations, but not the mechanisms of the reaction. Without alkaline earth elements, the kinetics of redox reactions are controlled by the diffusion of oxygen species. With increasing temperatures, the diffusivities of all ionic species tend to become similar. The decoupling between ionic fluxes then is reduced so that several mechanisms become kinetically equivalent and can thus coexist. (author)

  14. Modifications in silver-doped silicate glasses induced by ns laser beams

    Energy Technology Data Exchange (ETDEWEB)

    Cattaruzza, E., E-mail: cattaruz@unive.it [Physical Chemistry Department, Universita Ca Foscari Venezia, via Torino 155/b, I-30172 Venezia-Mestre (Italy); Mardegan, M. [Physical Chemistry Department, Universita Ca Foscari Venezia, via Torino 155/b, I-30172 Venezia-Mestre (Italy); Trave, E. [Physical Chemistry Department, Universita Ca Foscari Venezia, Dorsoduro 2137, I-30123 Venezia (Italy); Battaglin, G. [Physical Chemistry Department, Universita Ca Foscari Venezia, via Torino 155/b, I-30172 Venezia-Mestre (Italy); Calvelli, P. [Physical Chemistry Department, Universita Ca' Foscari Venezia, Dorsoduro 2137, I-30123 Venezia (Italy); Enrichi, F. [Associazione CIVEN and Nanofab S.c.a.r.l., via delle Industrie 5, I-30175 Venezia-Marghera (Italy); Gonella, F. [Physical Chemistry Department, Universita Ca Foscari Venezia, Dorsoduro 2137, I-30123 Venezia (Italy)

    2011-04-01

    Glass layers for planar light waveguides prepared by Ag-Na ion exchange of different silicate glasses in molten salt baths are annealed and/or irradiated with a laser beam in the UV region, with different energy density values and total pulse numbers. The samples are mainly characterized by optical absorption spectroscopy, luminescence spectroscopy, and Rutherford backscattering spectrometry, in order to determine the role of irradiation parameters and of the host matrix structure in the aggregation phenomena. Photoluminescence spectroscopy gave information regarding the presence of Ag multimeric aggregates, the primal seeds for the growing (nano)crystals. The appearance of the plasmon resonance band in the optical absorption spectra proved the formation of Ag clusters and allowed the evolution steps of the clusterization process to be followed as a function of the energy deposited during the laser irradiation.

  15. A medium range order structural connection to the configurational heat capacity of borate-silicate mixed glasses.

    Science.gov (United States)

    Liu, Hao; Smedskjaer, Morten M; Tao, Haizheng; Jensen, Lars R; Zhao, Xiujian; Yue, Yuanzheng

    2016-04-28

    It has been reported that the configurational heat capacity (C(p,conf)) first increases and then becomes saturated with increasing B2O3/SiO2 ratio in borate-silicate mixed glasses. Through Raman spectroscopy measurements, we have, in this work, found an implication for the intermediate range order (IRO) structural connection to the composition dependence of the C(p,conf) of borate-silicate mixed glasses. In the silica-rich compositions, the C(p,conf) rapidly increases with increasing B2O3 content. This is attributed to the increase of the content of the B-O-Si network units ([B2Si2O8](2-)) and 6-membered borate rings with 1 or 2 B(4). In the boron-rich compositions, the C(p,conf) is almost constant, independent of the increase in the B2O3/SiO2 ratio. This is likely attributed to the counteraction between the decrease of the fraction of two types of metaborate groups and the increase of the fraction of other borate superstructural units (particularly 6-membered borate rings). The overall results suggest that the glasses containing more types of superstructural units have a larger C(p,conf).

  16. A study of redox kinetic in silicate melt; Etude cinetique des reactions d'oxydoreduction dans les silicates

    Energy Technology Data Exchange (ETDEWEB)

    Magnien, V

    2005-12-15

    The aim of this thesis is to understand better iron redox reactions and mechanisms in silicate glasses and melts. Particular interest has been paid to the influence of temperature and chemical composition. For this purpose, the influence of alkali element content, iron content and network formers on the kinetics of redox reactions has been determined through XANES and Raman spectroscopy experiments performed either near the glass transition or above the liquidus temperature. As a complement, electrical conductivity and RBS spectroscopy experiments have been made to characterize the diffusivity of the species that transport electrical charges and the reaction morphology, respectively. Temperature and composition variations can induce changes in the dominating redox mechanism. At a given temperature, the parameters that exert the strongest influence on redox mechanisms are the presence or lack of divalent cations and the existing decoupling between the mobility of network former and modifier elements. Near Tg, the diffusion of divalent cations, when present in the melt, controls the kinetics of iron redox reactions along with a flux of electron holes. Composition, through the degree of polymerization and the silicate network structure, influences the kinetics and the nature of the involved cations, but not the mechanisms of the reaction. Without alkaline earth elements, the kinetics of redox reactions are controlled by the diffusion of oxygen species. With increasing temperatures, the diffusivities of all ionic species tend to become similar. The decoupling between ionic fluxes then is reduced so that several mechanisms become kinetically equivalent and can thus coexist. (author)

  17. Internal friction of hydrated soda-lime-silicate glasses.

    Science.gov (United States)

    Reinsch, S; Müller, R; Deubener, J; Behrens, H

    2013-11-07

    The internal friction of hydrated soda-lime-silica glasses with total water content (C(W)) up to 1.9 wt. % was studied by dynamic mechanical analysis (DMA) using temperature-frequency sweeps from 723 K to 273 K and from 1 s(-1) to 50 s(-1). Total water content and concentrations of H2O molecules (C(H2O)) and OH groups (C(OH)) in the DMA specimens were determined by infrared spectroscopy. For low water contents (C(W) ≈ C(OH) friction peaks below the glass transition (α relaxation) were assigned to the low-temperature motion of alkali ions (γ relaxation) and cooperative movements of dissimilar mobile species under participation of OH at higher temperature (β(OH) relaxation). For large water contents (C(W) > 1 wt. %), where significant amounts of molecular water are evident (C(H2O) > 0.15 wt. %), however, internal friction spectra change unexpectedly: the β(OH) peak heights saturate and a low temperature shoulder appears on the β-relaxation peak. This emerging relaxation mode (β(H2O) relaxation) was assigned to the motions of H2O molecules. β(H2O) relaxation was found to be faster than β(OH) but slower than γ relaxation. Activation energy of the different relaxation modes increased in the order γ < β(H2O) < β(OH) < α.

  18. Chemical durability of alkali-borosilicate glasses studied by analytical SEM, IBA, isotopic-tracing and SIMS

    Science.gov (United States)

    Trocellier, P.; Djanarthany, S.; Chêne, J.; Haddi, A.; Brass, A. M.; Poissonnet, S.; Farges, F.

    2005-10-01

    Simple and complex alkali-borosilicate glasses were submitted to aqueous corrosion at room temperature, 60 and 90 °C in solutions with pH ranging between 0 and 12. Analytical scanning electron microscopy (SEM), ion beam analysis (IBA) techniques, isotopic tracing and secondary ion mass-depth profiling (SIMS) have been used to investigate the variations of the surface composition of glass. In acidic medium, the glass surface is generally covered by a thick hydrated silica layer, mobile elements like Li, Na and B and transition elements (Fe, Zr, Mo, etc.) are strongly depleted. Near pH 7, relative enrichments of aluminium, iron and rare earths are shown together with strong Li, Na and B depletions. In basic medium, the glass surface exhibits relative enrichments of the major part of transition metals (from Cr to U) whereas mobile elements seem to be kept close to their nominal concentration level at the glass surface and Si is severely impoverished. Hydrogen incorporated at the glass surface after leaching is much more immobile in neutral and basic media than in acid medium.

  19. Chemical durability of alkali-borosilicate glasses studied by analytical SEM, IBA, isotopic-tracing and SIMS

    International Nuclear Information System (INIS)

    Trocellier, P.; Djanarthany, S.; Chene, J.; Haddi, A.; Brass, A.M.; Poissonnet, S.; Farges, F.

    2005-01-01

    Simple and complex alkali-borosilicate glasses were submitted to aqueous corrosion at room temperature, 60 and 90 deg. C in solutions with pH ranging between 0 and 12. Analytical scanning electron microscopy (SEM), ion beam analysis (IBA) techniques, isotopic tracing and secondary ion mass-depth profiling (SIMS) have been used to investigate the variations of the surface composition of glass. In acidic medium, the glass surface is generally covered by a thick hydrated silica layer, mobile elements like Li, Na and B and transition elements (Fe, Zr, Mo, etc.) are strongly depleted. Near pH 7, relative enrichments of aluminium, iron and rare earths are shown together with strong Li, Na and B depletions. In basic medium, the glass surface exhibits relative enrichments of the major part of transition metals (from Cr to U) whereas mobile elements seem to be kept close to their nominal concentration level at the glass surface and Si is severely impoverished. Hydrogen incorporated at the glass surface after leaching is much more immobile in neutral and basic media than in acid medium

  20. The influence of Al2O3, MgO and ZnO on the crystallization characteristics and properties of lithium calcium silicate glasses and glass-ceramics

    International Nuclear Information System (INIS)

    Salman, S.M.; Darwish, H.; Mahdy, E.A.

    2008-01-01

    The crystallization characteristics of glasses based on the Li 2 O-CaO-SiO 2 eutectic (954 ± 4 deg. C) system containing Al 2 O 3 , MgO and ZnO has been investigated by differential thermal analysis (DTA), X-ray diffraction analysis (XRD), and scanning electron microscopy (SEM). The partial replacement of Li 2 O by Al 2 O 3 and CaO by MgO or ZnO in the studied glass-ceramics led to the development of different crystalline phase assemblages, including lithium meta- and di-silicates, lithium calcium silicates, α-quartz, diopside, clinoenstatite, wollastonite, β-eucryptite ss, β-spodumene, α-tridymite, lithium zinc orthosilicate, hardystonite and willemite using various heat-treatment processes. The dilatometric thermal expansion of the glasses and their corresponding glass-ceramics were determined. A wide range of thermal expansion coefficient values were obtained for the investigated glasses and their corresponding crystalline products. The thermal expansion coefficients of the investigated glasses were decreased by Al 2 O 3 , MgO or ZnO additions. The α-values of the investigated glasses were ranged from (+18) to (+108) x 10 -7 K -1 (25-300 deg. C), while those of the glass-ceramics were (+3) to (+135) x 10 -7 K -1 (25-700 deg. C). The chemical durability of the glass-ceramics, towards the attack of 0.1N HCl solution, was markedly improved by Al 2 O 3 with MgO replacements. The composition containing 11.5 mol% Al 2 O 3 and 6.00 mol% MgO exhibited low thermal expansion values and good chemical durability

  1. Applications of high resolution NMR to geochemistry: crystalline, glass, and molten silicates

    International Nuclear Information System (INIS)

    Schneider, E.

    1985-11-01

    The nuclear spin interactions and the associated quantum mechanical dynamics which are present in solid state NMR are introduced. A brief overview of aluminosilicate structure is presented and crystalline structure is then reviewed, with emphasis on the contributions made by 29 Si NMR spectroscopy. The local structure of glass aluminosilicates as observed by NMR, is presented with analysis of the information content of 29 Si spectra. A high-temperature (to 1300 0 C) NMR spectroscopic investigation of the local environment and dynamics of molecular motion in molten aluminosilicates is described. A comparison is made of silicate liquid, glass, and crystalline local structure. The atomic and molecular motions present in a melt are investigated through relaxation time (T 1 and T 2 ) measurements as a function of composition and temperature for 23 Na and 29 Si

  2. Calcium-borosilicate glass-ceramics wasteforms to immobilize rare-earth oxide wastes from pyro-processing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Miae [Department of Materials Science and Engineering and Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Heo, Jong, E-mail: jheo@postech.ac.kr [Department of Materials Science and Engineering and Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Department of Materials Engineering, Adama Science and Technology University (ASTU), PO Box 1888, Adama (Ethiopia)

    2015-12-15

    Glass-ceramics containing calcium neodymium(cerium) oxide silicate [Ca{sub 2}Nd{sub 8-x}Ce{sub x}(SiO{sub 4}){sub 6}O{sub 2}] crystals were fabricated for the immobilization of radioactive wastes that contain large portions of rare-earth ions. Controlled crystallization of alkali borosilicate glasses by heating at T ≥ 750 °C for 3 h formed hexagonal Ca–silicate crystals. Maximum lanthanide oxide waste loading was >26.8 wt.%. Ce and Nd ions were highly partitioned inside Ca–silicate crystals compared to the glass matrix; the rare-earth wastes are efficiently immobilized inside the crystalline phases. The concentrations of Ce and Nd ions released in a material characterization center-type 1 test were below the detection limit (0.1 ppb) of inductively coupled plasma mass spectroscopy. Normalized release values performed by a product consistency test were 2.64·10{sup −6} g m{sup −2} for Ce ion and 2.19·10{sup −6} g m{sup −2} for Nd ion. Results suggest that glass-ceramics containing calcium neodymium(cerium) silicate crystals are good candidate wasteforms for immobilization of lanthanide wastes generated by pyro-processing. - Highlights: • Glass-ceramic wasteforms containing Ca{sub 2}Nd{sub 8-x}Ce{sub x}(SiO{sub 4}){sub 6}O{sub 2} crystals were synthesized to immobilize lanthanide wastes. • Maximum lanthanide oxide waste loading was >26.8 wt.%. • Ce and Nd ions were highly partitioned inside Ca–Nd–silicate crystals compared to glass matrix. • Amounts of Ce and Nd ions released in the material characterization center-type 1 were below the detection limit (0.1 ppb). • Normalized release values performed by a PCT were 2.64• 10{sup −6} g m{sup −2} for Ce ions and 2.19• 10{sup −6} g m{sup −2} for Nd ions.

  3. Effect of magnesium aluminum silicate glass on the thermal shock resistance of BN matrix composite ceramics

    NARCIS (Netherlands)

    Cai, Delong; Jia, Dechang; Yang, Zhihua; Zhu, Qishuai; Ocelik, Vaclav; Vainchtein, Ilia D.; De Hosson, Jeff Th M.; Zhou, Yu

    The effects of magnesium aluminum silicate (MAS) glass on the thermal shock resistance and the oxidation behavior of h-BN matrix composites were systematically investigated at temperature differences from 600 degrees C up to 1400 degrees C. The retained strength rate of the composites rose with the

  4. Fixation by ion exchange of toxic materials in a glass matrix

    International Nuclear Information System (INIS)

    Simmons, C.J.; Simmons, J.H.; Macedo, P.B.; Litovitz, T.A.

    1982-01-01

    A process is reported for reacting a porous silicate or borosilicate glass or silica gel with alkali metal cations, Group lb cations and/or ammonium cations bonded to the silicon through divalent oxygen linkages on the internal surfaces of the pores. Ion exchange of the cations with toxic or radioactive cations was possible resulting in a distribution of internal silicon-bonded toxic cation oxide groups within the pores of the glass or silica gel. The ion exchange reaction may be done successfully with acidic, neutral or alkaline pH solutions. The aim of the immobilization is for permanent storage of hazardous materials such as Hg 2+ , Hg + , Cd 2+ , Tl + , Pb 2+ and radioactive cations

  5. Mixed mobile ion effect in fluorozincate glasses

    International Nuclear Information System (INIS)

    Ghosh, S; Ghosh, A

    2005-01-01

    The mixed mobile ion effect has been investigated for the first time in zinc fluoride glasses where in addition to alkali cations fluorine anions also participate in the diffusion process, unlike mixed alkali oxide glasses. The minimum in the conductivity, conductivity relaxation frequency, crossover frequency and decoupling index indicates the existence of the mixed mobile ion effect in these fluoride glasses. It has been observed that the non-exponential parameter and the frequency exponent are independent of temperature. It has been established that alkali ions and fluorine anions exhibit lower dimensionality of the conduction pathways in mixed alkali zinc fluoride glasses than that in the single alkali lithium based zinc fluoride glasses while they are migrating. From the scaling of the conductivity spectra, it has been established that the relaxation dynamics in mixed alkali zinc fluoride glasses is independent of temperature and composition

  6. Nuclear waste glasses of SON68 type and their weathering products, optical spectroscopy of uranium and rare earth elements

    International Nuclear Information System (INIS)

    Ollier, N.

    2002-09-01

    This study concerns the long-term behaviour of high-level waste glasses and more precisely lanthanides and uranium behaviour with weathering. The leaching was performed on glass powder at 90 deg. C in a pseudo-dynamic mode. Two weathering gels were obtained, with different renewal rate and leaching duration. In glass, we demonstrate that U(IV) and U(VI) species coexist. Time-resolved spectroscopy and XPS measurements show that hexavalent uranium is present under uranyl entities and UO 3 type environment. In weathering gels, U(VI) is still present under uranyl form as well as uranyl hydroxide. It means that U behaviour depends on renewal rate, moreover precipitation of crystallized phases like bauranolte BaU 2 O 7 .xH 2 O and uranyl silicate of uranophane type occur. Concerning lanthanides, Eu 3+ was used as a luminescent local probe. Two sites were found in glass and gels. In glass, the sites were attributed to a silicate and a borate one. In gels, the silicate site is conserved whereas the second one is supposed to correspond to an aluminate one. Photoluminescence and Moessbauer measurements show that the rare earth site symmetry increases in gel. This result confirms that order is higher in gels than in glass. The third part of the thesis concerns irradiation effect in glasses. The main result shows some behaviour differences between a 5 oxides borosilicate glass and a more complex one close to the SON68 glass. Presence of mixed alkali (Na, Li and Cs) seems to notably reduce the Na migration. (author)

  7. Investigation on lithium migration for treating alkali-silica reaction affected concrete

    NARCIS (Netherlands)

    Silva De Souza, L.M.; Polder, R.B.; Copuroglu, O.

    2014-01-01

    Alkali-silica reaction (ASR) is one of the major deterioration mechanisms that affect numerous concrete structures worldwide. During the reaction, hydroxyl and alkali (sodium and potassium ) ions react with certain siliceous compounds in the aggregate, forming a hygroscopic gel. The gel absorbs

  8. On-chip fabrication of alkali-metal vapor cells utilizing an alkali-metal source tablet

    International Nuclear Information System (INIS)

    Tsujimoto, K; Hirai, Y; Sugano, K; Tsuchiya, T; Tabata, O; Ban, K; Mizutani, N

    2013-01-01

    We describe a novel on-chip microfabrication technique for the alkali-metal vapor cell of an optically pumped atomic magnetometer (OPAM), utilizing an alkali-metal source tablet (AMST). The newly proposed AMST is a millimeter-sized piece of porous alumina whose considerable surface area holds deposited alkali-metal chloride (KCl) and barium azide (BaN 6 ), source materials that effectively produce alkali-metal vapor at less than 400 °C. Our experiments indicated that the most effective pore size of the AMST is between 60 and 170 µm. The thickness of an insulating glass spacer holding the AMST was designed to confine generated alkali metal to the interior of the vapor cell during its production, and an integrated silicon heater was designed to seal the device using a glass frit, melted at an optimum temperature range of 460–490 °C that was determined by finite element method thermal simulation. The proposed design and AMST were used to successfully fabricate a K cell that was then operated as an OPAM with a measured sensitivity of 50 pT. These results demonstrate that the proposed concept for on-chip microfabrication of alkali-metal vapor cells may lead to effective replacement of conventional glassworking approaches. (paper)

  9. Third-order optical nonlinearities in bulk and fs-laser inscribed waveguides in strengthened alkali aluminosilcate glass

    Science.gov (United States)

    Almeida, Gustavo F. B.; Almeida, Juliana M. P.; Martins, Renato J.; De Boni, Leonardo; Arnold, Craig B.; Mendonca, Cleber R.

    2018-01-01

    The development of advanced photonics devices requires materials with large optical nonlinearities, fast response times and high optical transparency, while at the same time allowing for the micro/nano-processing needed for integrated photonics. In this context, glasses have been receiving considerable attention given their relevant optical properties which can be specifically tailored by compositional control. Corning Gorilla® Glass (strengthened alkali aluminosilicate glass) is well-known for its use as a protective screen in mobile devices, and has attracted interest as a potential candidate for optical devices. Therefore, it is crucial not only to expand the knowledge on the fabrication of waveguides in Gorilla Glass under different regimes, but also to determine its nonlinear optical response, both using fs-laser pulses. Thus, this paper reports, for the first time, characterization of the third-order optical nonlinearities of Gorilla Glass, as well as linear and nonlinear characterization of waveguide written with femtosecond pulses under the low repetition rate regime (1 kHz).

  10. High-efficiency ytterbium-free erbium-doped all-glass double cladding silicate glass fiber for resonantly-pumped fiber lasers.

    Science.gov (United States)

    Qiang, Zexuan; Geng, Jihong; Luo, Tao; Zhang, Jun; Jiang, Shibin

    2014-02-01

    A highly efficient ytterbium-free erbium-doped silicate glass fiber has been developed for high-power fiber laser applications at an eye-safe wavelength near 1.55 μm. Our preliminary experiments show that high laser efficiency can be obtained from a relatively short length of the gain fiber when resonantly pumped at 1535 nm in both core- and cladding-pumping configurations. With a core-pumping configuration as high as 75%, optical-to-optical efficiency and 4 W output power were obtained at 1560 nm from a 1 m long gain fiber. When using a cladding-pumping configuration, approximately 13 W output power with 67.7% slope efficiency was demonstrated from a piece of 2 m long fiber. The lengths of silicate-based gain fiber are much shorter than their silica-based counterparts used in other experiments, which is significantly important for high-power narrow-band and/or pulsed laser applications.

  11. Muscle and plastic equivalent glass dosimeter for high-dose dosimetry

    International Nuclear Information System (INIS)

    Abdel-Rehim, F.; Maged, A.F.; Morsy, M.A.; Hashad, A.M.

    1990-01-01

    The alkali-silicate glass dosimeter is made up of 66.8% SiO 2 , 31.2% Li 2 O, 2% K 2 O. It is nearly colourless before irradiation and then takes on an amber colour with increasing doses of gamma radiation. This colouration is represented by the appearance of broad absorption bands at 405 nm and 600 nm wavelengths. The change in absorbance is linear with the absorbed dose in the range of 0.1-4.5 kGy, when measured at its 405 nm absorption band maximum. This glass dosimeter simulates low-z plastics and muscle tissue in terms of gamma-ray absorption properties over broad radiation spectra (0.1 MeV to 10 MeV). (author) 22 refs.; 4 figs.; 2 tabs

  12. Applications of high resolution NMR to geochemistry: crystalline, glass, and molten silicates

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E.

    1985-11-01

    The nuclear spin interactions and the associated quantum mechanical dynamics which are present in solid state NMR are introduced. A brief overview of aluminosilicate structure is presented and crystalline structure is then reviewed, with emphasis on the contributions made by /sup 29/Si NMR spectroscopy. The local structure of glass aluminosilicates as observed by NMR, is presented with analysis of the information content of /sup 29/Si spectra. A high-temperature (to 1300/sup 0/C) NMR spectroscopic investigation of the local environment and dynamics of molecular motion in molten aluminosilicates is described. A comparison is made of silicate liquid, glass, and crystalline local structure. The atomic and molecular motions present in a melt are investigated through relaxation time (T/sub 1/ and T/sub 2/) measurements as a function of composition and temperature for /sup 23/Na and /sup 29/Si.

  13. Structure and properties of alumino-boro-silicate glasses and melts

    Science.gov (United States)

    neuville, D. R.; Florian, P.; Cadars, S.; Massiot, D.

    2012-12-01

    The relationship between physical properties and structure of glasses and melts in the system MO-T2O3-SiO2 (with M= Na2, Ca and T= Al, B) are technologically and geologically important, in particular to understand the microscopic origin of the configurational thermodynamic properties. The connection of these network former is fundamental to understand the physical properties of magmatic liquids. The configurational properties of melts and glasses provide fundamental information needed to characterize magmatic processes. A principal difficulty, however is to link the "macroscopic" configurational entropy with the structure of melts. This has been done by combining viscometry with Raman and NMR spectroscopy studies. From the viscosity measurements at low and high temperatures, we have obtained the configurational entropy, Sconf (log η = Ae + Be/TSconf, were η is the viscosity, T the temperature and Ae, Be two constants). Silicon, aluminum, and boron are 3 network formers playing different role on the silicate network, whereas Si is the strongest network former in coordination 4, 5 or 6 as a function of T, P; Al can play different function as a network former in 4- or 5-fold coordination and probably as a network modifier in 6 fold coordination. Boron observed in 3 or 4 fold coordination is always a network former but for very "fragile" glasses. For the glass the Al/B substitution produce a small decrease of the molar volume while this substitution produced a strong decrease of viscosity and glass transition temperature while the fragility of the network is less affected by this chemical change. Raman spectra show significant change in the D1 and D2 bands. NMR spectroscopies show also significant change as a function of chemical change and temperature. All this observations will be discussed and interpreted in order to link microscopic versus macroscopic changes.

  14. Effect of compositional variations on charge compensation of AlO4 and BO4 entities and on crystallization tendency of a rare-earth-rich aluminoborosilicate glass

    International Nuclear Information System (INIS)

    Quintas, A.; Caurant, D.; Majerus, O.; Charpentier, T.; Dussossoy, J.-L.

    2009-01-01

    This paper presents the structural and crystallization study of a rare-earth-rich aluminoborosilicate glass that is a simplified version of a new nuclear glass proven to be a potential candidate for the immobilization of highly concentrated radioactive wastes that will be produced in the future. In this work, we studied the impact of changing the nature of alkali (Li + , Na + , K + , Rb + , Cs + ) or alkaline-earth (Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ ) cations present in glass composition on glass structure (by 27 Al and 11 B nuclear magnetic resonance spectroscopy) and on its crystallization tendency during melt cooling at 1 K/min (average cooling rate during industrial process). From these composition changes, it was established that alkali cations were preferentially involved in charge compensation of (AlO 4 ) - and (BO 4 ) - entities in the glassy network comparatively to alkaline-earth cations. Whatever the nature of alkali cations, glass compositions containing calcium gave way to the crystallization of an apatite silicate phase bearing calcium and rare-earth (RE) cations (Ca 2 RE 8 (SiO 4 ) 6 O 2 , RE = Nd or La) but melt crystallization tendency during cooling strongly varied with the nature of alkaline-earth cations.

  15. Lead-silicate glass surface sputtered by an argon cluster ion beam investigated by XPS

    Czech Academy of Sciences Publication Activity Database

    Zemek, Josef; Jiříček, Petr; Houdková, Jana; Jurek, Karel; Gedeon, O.

    2017-01-01

    Roč. 469, Aug (2017), s. 1-6 ISSN 0022-3093 R&D Projects: GA MŠk LM2015088; GA ČR(CZ) GA15-12580S Institutional support: RVO:68378271 Keywords : lead-silicate glass * XPS * BO * NBO * Argon duster ion beam sputtering * X-ray irradiation Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.124, year: 2016

  16. In situ alkali-silica reaction observed by x-ray microscopy

    International Nuclear Information System (INIS)

    Kurtis, K.E.; Monteiro, P.J.M.; Brown, J.T.; Meyer-Ilse, W.

    1997-01-01

    In concrete, alkali metal ions and hydroxyl ions contributed by the cement and reactive silicates present in aggregate can participate in a destructive alkali-silica reaction (ASR). This reaction of the alkalis with the silicates produces a gel that tends to imbibe water found in the concrete pores, leading to swelling of the gel and eventual cracking of the affected concrete member. Over 104 cases of alkali-aggregate reaction in dams and spillways have been reported around the world. At present, no method exists to arrest the expansive chemical reaction which generates significant distress in the affected structures. Most existing techniques available for the examination of concrete microstructure, including ASR products, demand that samples be dried and exposed to high pressure during the observation period. These sample preparation requirements present a major disadvantage for the study of alkali-silica reaction. Given the nature of the reaction and the affect of water on its products, it is likely that the removal of water will affect the morphology, creating artifacts in the sample. The purpose of this research is to observe and characterize the alkali-silica reaction, including each of the specific reactions identified previously, in situ without introducing sample artifacts. For observation of unconditioned samples, x-ray microscopy offers an opportunity for such an examination of the alkali-silica reaction. Currently, this investigation is focusing on the effect of calcium ions on the alkali-silica reaction

  17. In situ alkali-silica reaction observed by x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kurtis, K.E.; Monteiro, P.J.M. [Univ. of California, Berkeley, CA (United States); Brown, J.T.; Meyer-Ilse, W. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    In concrete, alkali metal ions and hydroxyl ions contributed by the cement and reactive silicates present in aggregate can participate in a destructive alkali-silica reaction (ASR). This reaction of the alkalis with the silicates produces a gel that tends to imbibe water found in the concrete pores, leading to swelling of the gel and eventual cracking of the affected concrete member. Over 104 cases of alkali-aggregate reaction in dams and spillways have been reported around the world. At present, no method exists to arrest the expansive chemical reaction which generates significant distress in the affected structures. Most existing techniques available for the examination of concrete microstructure, including ASR products, demand that samples be dried and exposed to high pressure during the observation period. These sample preparation requirements present a major disadvantage for the study of alkali-silica reaction. Given the nature of the reaction and the affect of water on its products, it is likely that the removal of water will affect the morphology, creating artifacts in the sample. The purpose of this research is to observe and characterize the alkali-silica reaction, including each of the specific reactions identified previously, in situ without introducing sample artifacts. For observation of unconditioned samples, x-ray microscopy offers an opportunity for such an examination of the alkali-silica reaction. Currently, this investigation is focusing on the effect of calcium ions on the alkali-silica reaction.

  18. An investigation of waste glass-based geopolymers supplemented with alumina

    Science.gov (United States)

    Christiansen, Mary U.

    An increased consideration of sustainability throughout society has resulted in a surge of research investigating sustainable alternatives to existing construction materials. A new binder system, called a geopolymer, is being investigated to supplement ordinary portland cement (OPC) concrete, which has come under scrutiny because of the CO2 emissions inherent in its production. Geopolymers are produced from the alkali activation of a powdered aluminosilicate source by an alkaline solution, which results in a dense three-dimensional matrix of tetrahedrally linked aluminosilicates. Geopolymers have shown great potential as a building construction material, offering similar mechanical and durability properties to OPC. Additionally, geopolymers have the added value of a considerably smaller carbon footprint than OPC. This research considered the compressive strength, microstructure and composition of geopolymers made from two types of waste glass with varying aluminum contents. Waste glass shows great potential for mainstream use in geopolymers due to its chemical and physical homogeneity as well as its high content of amorphous silica, which could eliminate the need for sodium silicate. However, the lack of aluminum is thought to negatively affect the mechanical performance and alkali stability of the geopolymer system. 39 Mortars were designed using various combinations of glass and metakaolin or fly ash to supplement the aluminum in the system. Mortar made from the high-Al glass (12% Al2O3) reached over 10,000 psi at six months. Mortar made from the low-Al glass (use in geopolymers, when care is given to consider the compositional and physical properties of the glass in mixture design.

  19. A study of redox kinetic in silicate melt

    International Nuclear Information System (INIS)

    Magnien, V.

    2005-12-01

    The aim of this thesis is to understand better iron redox reactions and mechanisms in silicate glasses and melts. Particular interest has been paid to the influence of temperature and chemical composition. For this purpose, the influence of alkali element content, iron content and network formers on the kinetics of redox reactions has been determined through XANES and Raman spectroscopy experiments performed either near the glass transition or above the liquidus temperature. As a complement, electrical conductivity and RBS spectroscopy experiments have been made to characterize the diffusivity of the species that transport electrical charges and the reaction morphology, respectively. Temperature and composition variations can induce changes in the dominating redox mechanism. At a given temperature, the parameters that exert the strongest influence on redox mechanisms are the presence or lack of divalent cations and the existing decoupling between the mobility of network former and modifier elements. Near Tg, the diffusion of divalent cations, when present in the melt, controls the kinetics of iron redox reactions along with a flux of electron holes. Composition, through the degree of polymerization and the silicate network structure, influences the kinetics and the nature of the involved cations, but not the mechanisms of the reaction. Without alkaline earth elements, the kinetics of redox reactions are controlled by the diffusion of oxygen species. With increasing temperatures, the diffusivities of all ionic species tend to become similar. The decoupling between ionic fluxes then is reduced so that several mechanisms become kinetically equivalent and can thus coexist. (author)

  20. Molar volume, excess enthalpy, and Prigogine-Defay ratio of some silicate glasses with different (P,T) histories.

    Science.gov (United States)

    Wondraczek, Lothar; Behrens, Harald

    2007-10-21

    Structural relaxation in silicate glasses with different (p,T) histories was experimentally examined by differential scanning calorimetry and measurements of molar volume under ambient pressure. Temperature and pressure-dependent rates of changes in molar volume and generation of excess enthalpy were determined for sodium trisilicate, soda lime silicate, and sodium borosilicate (NBS) compositions. From the derived data, Prigogine-Defay ratios are calculated and discussed. Changes of excess enthalpy are governed mainly by changes in short-range structure, as is shown for NBS where boron coordination is highly sensitive to pressure. For all three glasses, it is shown how the relaxation functions that underlie volume, enthalpy, and structural relaxation decouple for changes in cooling rates and pressure of freezing, respectively. The magnitude of the divergence between enthalpy and volume may be related to differences in structural sensitivity to changes in the (p,V,T,t) space on different length scales. The findings suggest that the Prigogine-Defay ratio is related to the magnitude of the discussed decoupling effect.

  1. Alteration of alkali reactive aggregates autoclaved in different alkali solutions and application to alkali-aggregate reaction in concrete (II) expansion and microstructure of concrete microbar

    International Nuclear Information System (INIS)

    Lu Duyou; Mei Laibao; Xu Zhongzi; Tang Mingshu; Mo Xiangyin; Fournier, Benoit

    2006-01-01

    The effect of the type of alkalis on the expansion behavior of concrete microbars containing typical aggregate with alkali-silica reactivity and alkali-carbonate reactivity was studied. The results verified that: (1) at the same molar concentration, sodium has the strongest contribution to expansion due to both ASR and ACR, followed by potassium and lithium; (2) sufficient LiOH can completely suppress expansion due to ASR whereas it can induce expansion due to ACR. It is possible to use the duplex effect of LiOH on ASR and ACR to clarify the ACR contribution when ASR and ACR may coexist. It has been shown that a small amount of dolomite in the fine-grained siliceous Spratt limestone, which has always been used as a reference aggregate for high alkali-silica reactivity, might dedolomitize in alkaline environment and contribute to the expansion. That is to say, Spratt limestone may exhibit both alkali-silica and alkali-carbonate reactivity, although alkali-silica reactivity is predominant. Microstructural study suggested that the mechanism in which lithium controls ASR expansion is mainly due to the favorable formation of lithium-containing less-expansive product around aggregate particles and the protection of the reactive aggregate from further attack by alkalis by the lithium-containing product layer

  2. Oriented color centres being formed in anisotropic action of optical radiation on sodium-silicate glass

    International Nuclear Information System (INIS)

    Barinova, N.A.; Glebov, L.B.; Dokuchaev, V.G.; Savel'ev, V.L.

    1992-01-01

    A study was made of anisotropy of absorption of hole colour centres appearing in sodium-silicate glass due to anisotropic action of UV radiation. In case of such action in the field of long-wave edge of their fundamental absorption oriented hole colour centres occurs with maximum of absorption bands to 2.0, 2.8, 4.1 eV. Principal direction of hole colour centres orientation in this case coincides with orientation of ionized glass matrix centres. Orientation of such kind is connected with selective ionization of disorderedly oriented centres forming edge of fundamental absorption. Value of guided dichroism of colour centres absorption is determined by hole migration

  3. Super ionic conductive glass

    Science.gov (United States)

    Susman, S.; Volin, K.J.

    Described is an ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A/sub 1 + x/D/sub 2-x/3/Si/sub x/P/sub 3 - x/O/sub 12 - 2x/3/, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  4. Use of long-term stable CsPbBr3 perovskite quantum dots in phospho-silicate glass for highly efficient white LEDs.

    Science.gov (United States)

    Di, Xiaoxuan; Hu, Zemin; Jiang, Jutao; He, Meiling; Zhou, Lei; Xiang, Weidong; Liang, Xiaojuan

    2017-10-05

    We report the synthesis of CsPbBr 3 QDs with great stability and high quantum yield in phospho-silicate glass, which was fabricated by using a heat-treatment approach, for white light emitting devices. QD glasses exhibited excellent photo- and thermal stability, and significantly prolonged the lifetime of light emitters under ambient air conditions.

  5. Alkali-ions diffusion, mullite formation, and crystals dissolution during sintering of porcelain bodies: Microstructural approach

    DEFF Research Database (Denmark)

    Leonelli, C.; Kamseu, E.; Boccaccini, Dino

    2009-01-01

    The effect of alkali-silicate glassy matrix as replacement for feldspar in soft and hard porcelain compositions was studied. SEM and X-ray diffraction analysis were used to evidence phase evolution. For each composition, the influence of soaking time was evaluated. The difference in chemical...... to hard porcelain. Replacing the feldspar by alkali-silicate glassy matrices with similar chemical composition, the amount of secondary mullite and mechanical properties increased in both soft and hard compositions....

  6. ION EXCHANGE IN GLASS-CERAMICS

    Directory of Open Access Journals (Sweden)

    George Halsey Beall

    2016-08-01

    Full Text Available In the past few years ion-exchange in glasses has found a renewed interest with a lot of new development and research in industrial and academic labs and the commercialization of materials with outstanding mechanical properties. These glasses are now widely used in many electronic devices including hand-held displays and tablets. The exchange is generally conducted in a bath of molten salt below the transition temperature of the glass. The exchange at the surface of an alkali ion by a bigger one brings compressive stress at the surface. The mechanical properties are dependent on the stress level at the surface and the depth of penetration of the bigger ion. As compared to glasses, glass-ceramics have the interest to display a wide range of aspects (transparent to opaque and different mechanical properties (especially higher modulus and toughness. There has been little research on ion-exchange in glass-ceramics. In these materials the mechanisms are much more complex than in glasses because of their polyphasic nature: ion-exchange generally takes place mostly in one phase (crystalline phase or residual glass. The mechanism can be similar to what is observed in glasses with the replacement of an ion by another in the structure. But in some cases this ion-exchange leads to microstructural modifications (for example amorphisation or phase change.This article reviews these ion-exchange mechanisms using several transparent and opaque alumino-silicate glass-ceramics as examples. The effect of the ion exchange in the various glass-ceramics will be described, with particular emphasis on flexural strength.

  7. Element specificity of ortho-positronium annihilation for alkali-metal loaded SiO2 glasses.

    Science.gov (United States)

    Sato, K; Hatta, T

    2015-03-07

    Momentum distributions associated with ortho-positronium (o-Ps) pick-off annihilation photon are often influenced by light elements, as, e.g., carbon, oxygen, and fluorine. This phenomenon, so-called element specificity of o-Ps pick-off annihilation, has been utilized for studying the elemental environment around the open spaces. To gain an insight into the element specificity of o-Ps pick-off annihilation, the chemical shift of oxygen 1s binding energy and the momentum distributions associated with o-Ps pick-off annihilation were systematically investigated for alkali-metal loaded SiO2 glasses by means of X-ray photoelectron spectroscopy and positron-age-momentum correlation spectroscopy, respectively. Alkali metals introduced into the open spaces surrounded by oxygen atoms cause charge transfer from alkali metals to oxygen atoms, leading to the lower chemical shift for the oxygen 1s binding energy. The momentum distribution of o-Ps localized into the open spaces is found to be closely correlated with the oxygen 1s chemical shift. This correlation with the deepest 1s energy level evidences that the element specificity of o-Ps originates from pick-off annihilation with orbital electrons, i.e., dominantly with oxygen 2p valence electrons and s electrons with lower probability.

  8. Characterization of alkali silica reaction gels using Raman spectroscopy

    International Nuclear Information System (INIS)

    Balachandran, C.; Muñoz, J.F.; Arnold, T.

    2017-01-01

    The ability of Raman spectroscopy to characterize amorphous materials makes this technique ideal to study alkali silica reaction (ASR) gels. The structure of several synthetic ASR gels was thoroughly characterized using Raman Spectroscopy. The results were validated with additional techniques such as Fourier transmission infrared spectroscopy, X-ray powder diffraction and thermogravimetric analysis. The Raman spectra were found to have two broad bands in the 800 to 1200 cm −1 range and the 400 to 700 cm −1 range indicating the amorphous nature of the gel. Important information regarding the silicate polymerization was deduced from both of these spectral regions. An increase in alkali content of the gels caused a depolymerization in the silicate framework which manifested in the Raman spectra as a gradual shift of predominant peaks in both regions. The trends in silicate depolymerization were in agreement with results from a NMR spectroscopy study on similar synthetic ASR gels.

  9. Bioactive Glass-Ceramic Foam Scaffolds from ‘Inorganic Gel Casting’ and Sinter-Crystallization

    Science.gov (United States)

    Molino, Giulia; Vitale Brovarone, Chiara

    2018-01-01

    Highly porous bioactive glass-ceramic scaffolds were effectively fabricated by an inorganic gel casting technique, based on alkali activation and gelification, followed by viscous flow sintering. Glass powders, already known to yield a bioactive sintered glass-ceramic (CEL2) were dispersed in an alkaline solution, with partial dissolution of glass powders. The obtained glass suspensions underwent progressive hardening, by curing at low temperature (40 °C), owing to the formation of a C–S–H (calcium silicate hydrate) gel. As successful direct foaming was achieved by vigorous mechanical stirring of gelified suspensions, comprising also a surfactant. The developed cellular structures were later heat-treated at 900–1000 °C, to form CEL2 glass-ceramic foams, featuring an abundant total porosity (from 60% to 80%) and well-interconnected macro- and micro-sized cells. The developed foams possessed a compressive strength from 2.5 to 5 MPa, which is in the range of human trabecular bone strength. Therefore, CEL2 glass-ceramics can be proposed for bone substitutions. PMID:29495498

  10. Bioactive Glass-Ceramic Foam Scaffolds from ‘Inorganic Gel Casting’ and Sinter-Crystallization

    Directory of Open Access Journals (Sweden)

    Hamada Elsayed

    2018-02-01

    Full Text Available Highly porous bioactive glass-ceramic scaffolds were effectively fabricated by an inorganic gel casting technique, based on alkali activation and gelification, followed by viscous flow sintering. Glass powders, already known to yield a bioactive sintered glass-ceramic (CEL2 were dispersed in an alkaline solution, with partial dissolution of glass powders. The obtained glass suspensions underwent progressive hardening, by curing at low temperature (40 °C, owing to the formation of a C–S–H (calcium silicate hydrate gel. As successful direct foaming was achieved by vigorous mechanical stirring of gelified suspensions, comprising also a surfactant. The developed cellular structures were later heat-treated at 900–1000 °C, to form CEL2 glass-ceramic foams, featuring an abundant total porosity (from 60% to 80% and well-interconnected macro- and micro-sized cells. The developed foams possessed a compressive strength from 2.5 to 5 MPa, which is in the range of human trabecular bone strength. Therefore, CEL2 glass-ceramics can be proposed for bone substitutions.

  11. Properties of Hooked Steel Fibers Reinforced Alkali Activated Material Concrete

    OpenAIRE

    Faris M. A.; Abdullah Mohd Mustafa Al Bakri; Ismail Khairul Nizar; Muniandy Ratnasamy; Mahmad Nor Aiman; Putra Jaya Ramadhansyah; Waried Wazien A. Z.

    2016-01-01

    In this study, alkali activated material was produced by using Class F fly ash from Manjung power station, Lumut, Perak, Malaysia. Fly ash then was activated by alkaline activator which is consisting of sodium silicate (Na2SiO3) and sodium hydroxide (NaOH). Hooked end steel fibers were added into the alkali activated material system with percentage vary from 0 % – 5 %. Chemical compositions of fly ash were first analyzed by using x-ray fluorescence (XRF). All hardened alkali activated materia...

  12. Microstructure and magnetic properties of yttrium alumina silicate glass microspheres containing iron oxide

    International Nuclear Information System (INIS)

    Sharma, K.; Basak, C.B.; Prajapat, C.L.; Singh, M.R.

    2015-01-01

    Yttrium alumino-silicate glass microspheres have been used for localized delivery of high radiation dose to tissues in the treatment of hepatocellular carcinoma (BCC) and synovitis. 90 Y is a pure beta emitter with beta emission energy of 0.9367 MeV, average penetration range in tissue 2.5 mm, physical half-life of 64.2 h, thus an effective radioisotope for delivering high radiation dose to the tumor. The efficacy of radiotherapy can further be improved if the glass microspheres are doped with magnetic particles for targeted delivery of high radiation dose. Magnetic glass microspheres can also be utilized for cancer treatment using the magnetic heating of tumor cell. The magnetic glass microspheres are obtained from the glasses with nominal composition (64-x) SiO 2 -17Y 2 O 3 -19 Al 2 O 3 -xFe 2 O 3 (x=4-16 mol %). Density of glasses increases from 3.5g/cc to 3.8g/cc as iron oxide content is increased from 4 to 16 mol %. The glass transition temperature and peak crystallization temperature decreases as the iron oxide content increases. T g values of glass samples decreases with increase of Fe 2 O 3 , while SiO 2 content is decreased. SiO 2 is a network forming oxide and a decrease in the network former in glass lead to decrease in thermo-physical properties like T g . The development of ferrimagnetic crystallites in glasses arise from the conversion of iron oxide into magnetite, magnemite and hematite, which is influenced by the structural and ordering of magnetic particles. The microstructure of glass-ceramic exhibited the formation of 50-100 nm size particles. The magnetite and hematite are formed as major crystalline phases. The magnetization values increased with an increase of iron oxide content and attributed to formation of magnetite phase. Results have shown that the glass microspheres with magnetic properties can be used as potential materials for cancer treatment. (author)

  13. Achievement report for fiscal 2000 on development of technology related to new recycled products. Research and development of simultaneous recovery of chlorine contained in waste plastics and alkali contained in waste glass bottles; 2000 nendo shinki recycle seihin nado kanren gijutsu kaihatsu seika hokokusho. Hai plastic gan'yu enso to hai glass bin gan'yu alkali no doji kaishu ni kakawaru kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Researches have been made on a technology to have alkali contained in waste glass bottles reacted with chlorine contained in waste plastics to separate and remove salt, and reuse the residues as a resource for cement raw material. This paper summarizes the achievements in fiscal 2000. In the research, glass powder pulverized to 5 to 10 {mu} m, calcium carbonate, iron oxide, and alumina were used to prepare raw material for the ordinary Portland cement. Vinyl chloride pulverized to 3 mm was added into this cement raw material so that chlorine-alkali equivalent ration will be 1.0, and the material was sintered in a rotary kiln at 800 to 1,400 degrees C. As a result, it was discovered that salt is produced from the alkali in glass and the chlorine in vinyl chloride, whereas the produced salt volatilizes when heated to 1,200 degrees C or higher, and clinker containing low chlorine and alkali can be produced. The test result reveals that the control range of the chlorine and alkali ratio is from 1.0 to 1.1. The remaining problems are measures against carbon monoxide and dioxin contained in the exhaust gas, and treatment of dust containing salt. (NEDO)

  14. Role of glass structure in defining the chemical dissolution behavior, bioactivity and antioxidant properties of zinc and strontium co-doped alkali-free phosphosilicate glasses.

    Science.gov (United States)

    Kapoor, Saurabh; Goel, Ashutosh; Tilocca, Antonio; Dhuna, Vikram; Bhatia, Gaurav; Dhuna, Kshitija; Ferreira, José M F

    2014-07-01

    We investigated the structure-property relationships in a series of alkali-free phosphosilicate glass compositions co-doped with Zn(2+) and Sr(2+). The emphasis was laid on understanding the structural role of Sr(2+) and Zn(2+) co-doping on the chemical dissolution behavior of glasses and its impact on their in vitro bioactivity. The structure of glasses was studied using molecular dynamics simulations in combination with solid state nuclear magnetic resonance spectroscopy. The relevant structural properties are then linked to the observed degradation behavior, in vitro bioactivity, osteoblast proliferation and oxidative stress levels. The apatite-forming ability of glasses has been investigated by X-ray diffraction, infrared spectroscopy and scanning electron microscopy-energy-dispersive spectroscopy after immersion of glass powders/bulk in simulated body fluid (SBF) for time durations varying between 1h and 14 days, while their chemical degradation has been studied in Tris-HCl in accordance with ISO 10993-14. All the glasses exhibit hydroxyapatite formation on their surface within 1-3h of their immersion in SBF. The cellular responses were observed in vitro on bulk glass samples using human osteosarcoma MG63 cell line. The dose-dependent cytoprotective effect of glasses with respect to the concentration of zinc and strontium released from the glasses is also discussed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Reaction and devitrification of a prototype nuclear-waste-storage glass with hot magnesium-rich brine

    International Nuclear Information System (INIS)

    Komarneni, S.; Freeborn, W.P.; Scheetz, B.E.; White, W.B.; McCarthy, G.J.

    1982-10-01

    PNL 76-68, a prototype nuclear waste storage glass, was reacted under hydrothermal conditions at 100, 200, and 300 C with NBT-6a (Ca-Mg-K-Na-Cl) brine. Reaction products were identified, the state of the residual glass determined, and the concentrations of various elements remaining in the solutions analyzed. Solid products formed by reaction of the glass and brine talc (hydrated magnesium silicate), powellite (CaMoO 4 ), hematite (Fe 2 O 3 ) and rarely an unidentified uranium-containing phase. Glass fragments were leached to depths of 300 to 500 μm, depending on time and temperature. Most elements were extracted, but the silicate framework remained intact. Distinct diffusion fronts due to K/Na exchange and Mg/Zn exchange were identified. A complex compositional layering develops in the outer reaction rind. The concentration of silica in brine solution was lower by an order of magnitude than the concentration of silica in deionized water reacted under similar conditions. The concentration of cesium, strontium, uranium, rare earths, and other alkali and alkaline earth elements in solution increases exponentially with temperature of reaction. Behavior of the transition metals is more complex. In general the extraction of elements from the glass by hydrothermal brine leads to concentrations in solution that are from 10 to 100 times higher than the concentrations obtained by deionized water extraction under similar conditions of temperature and pressure

  16. Structural Investigation of Alkali Activated Clay Minerals for Application in Water Treatment Systems

    Science.gov (United States)

    Bumanis, G.; Bajare, D.; Dembovska, L.

    2015-11-01

    Alkali activation technology can be applied for a wide range of alumo-silicates to produce innovative materials with various areas of application. Most researches focuse on the application of alumo-silicate materials in building industry as cement binder replacement to produce mortar and concrete [1]. However, alkali activation technology offers high potential also in biotechnologies [2]. In the processes where certain pH level, especially alkaline environment, must be ensured, alkali activated materials can be applied. One of such fields is water treatment systems where high level pH (up to pH 10.5) ensures efficient removal of water pollutants such as manganese [3]. Previous investigations had shown that alkali activation technology can be applied to calcined clay powder and aluminium scrap recycling waste as a foam forming agent to create porous alkali activated materials. This investigation focuses on the structural investigation of calcined kaolin and illite clay alkali activation processes. Chemical and mineralogical composition of both clays were determined and structural investigation of alkali activated materials was made by using XRD, DTA, FTIR analysis; the microstructure of hardened specimens was observed by SEM. Physical properties of the obtained material were determined. Investigation indicates the essential role of chemical composition of the clay used in the alkali activation process, and potential use of the obtained material in water treatment systems.

  17. FT-IR and 29 Si-NMR for evaluating aluminium silicate precursors for geopolymers

    NARCIS (Netherlands)

    Valcke, S.L.A.; Pipilikaki, P.; Fischer, H.R.; Verkuijlen, M.H.W.; Eck, E.R.H.

    2014-01-01

    Geopolymers are systems of inorganic binders that can be used for sustainable, cementless concrete and are formed by alkali activation of an aluminium–silicate precursor (often secondary resources like fly ash or slag). The type of aluminium– silicate precursor and its potential variations within

  18. Impact of Alkali Source on Vitrification of SRS High Level Waste

    International Nuclear Information System (INIS)

    LAMBERT, D. P.; MILLER, D. H.; PEELER, D. K.; SMITH, M. E.; STONE, M. E.

    2005-01-01

    The Defense Waste Processing Facility (DWPF) Savannah River Site is currently immobilizing high level nuclear waste sludge by vitrification in borosilicate glass. The processing strategy involves blending a large batch of sludge into a feed tank, washing the sludge to reduce the amount of soluble species, then processing the large ''sludge batch'' through the DWPF. Each sludge batch is tested by the Savannah River National Laboratory (SRNL) using simulants and tests with samples of the radioactive waste to ''qualify'' the batch prior to processing in the DWPF. The DWPF pretreats the sludge by first acidifying the sludge with nitric and formic acid. The ratio of nitric to formic acid is adjusted as required to target a final glass composition that is slightly reducing (the target is for ∼20% of the iron to have a valence of two in the glass). The formic acid reduces the mercury in the feed to elemental mercury which is steam stripped from the feed. After a concentration step, the glass former (glass frit) is added as a 50 wt% slurry and the batch is concentrated to approximately 50 wt% solids. The feed slurry is then fed to a joule heated melter maintained at 1150 C. The glass must meet both processing (e.g., viscosity and liquidus temperature) and product performance (e.g., durability) constraints The alkali content of the final waste glass is a critical parameter that affects key glass properties (such as durability) as well as the processing characteristics of the waste sludge during the pretreatment and vitrification processes. Increasing the alkali content of the glass has been shown to improve the production rate of the DWPF, but the total alkali in the final glass is limited by constraints on glass durability and viscosity. Two sources of alkali contribute to the final alkali content of the glass: sodium salts in the waste supernate and sodium and lithium oxides in the glass frit added during pretreatment processes. Sodium salts in the waste supernate can

  19. Na/Ca Intermixing around Silicate and Phosphate Groups in Bioactive Phosphosilicate Glasses Revealed by Heteronuclear Solid-State NMR and Molecular Dynamics Simulations.

    Science.gov (United States)

    Mathew, Renny; Stevensson, Baltzar; Edén, Mattias

    2015-04-30

    We characterize the intermixing of network-modifying Na(+)/Ca(2+) ions around the silicate (QSi(n)) and phosphate (QP(n)) tetrahedra in a series of 16 Na2O–CaO–SiO2–P2O5 glasses, whose P content and silicate network connectivity were varied independently. The set includes both bioactive and bioinactive compositions and also encompasses two soda-lime-silicate members devoid of P, as well as two CaO–SiO2 glasses and one Na2O–SiO2–P2O5 glass. The various Si/P↔Na/Ca contacts were probed by molecular dynamics (MD) simulations together with heteronuclear magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) experimentation utilizing (23)Na{(31)P} and (23)Na{(29)Si} REDOR, as well as (31)P{ (23)Na} and (29)Si{(23)Na} REAPDOR. We introduce an approach for quantifying the extent of Na(+)/Ca(2+) ordering around a given QP(n) or QSi(n) group, encoded by the preference factor 0⩽ PM ⩽ 1 conveying the relative weights of a random cation intermixing (PM = 0) and complete preference/ordering (PM = 1) for one of the species M, which represents either Na(+) or Ca(2+). The MD-derived preference factors reveal phosphate and silicate species surrounded by Na(+)/Ca(2+) ions intermixed nearly randomly (PM ≲ 0.15), except for the QSi(4) and QSi(1) groups, which manifest more significant cation ordering with preference for Na+ and Ca2+, respectively. The overall weak preferences are essentially independent of the Si and P contents of the glass, whereas PM primarily correlates with the total amount of network modifiers: as the latter is increased, the Na/Ca distribution around the {QP(0), QSi(1), QSi(2)} groups with preference for Ca2(+ )tend to randomize (i.e., PCa decreases), while the PNa-values grow slightly for the {QP(1), QSi(3), QSi(4)} species already preferring coordination of Na. The set of experimental preference factors {PCa} for the orthophosphate (QP(0)) groups extracted from (31)P{(23)Na} REAPDOR NMR-derived M2(P–Na) dipolar second moments agrees

  20. XRD, TEM, IR, Raman and NMR Spectroscopy of In Situ Crystallization of Lithium Disilicate Glass

    Science.gov (United States)

    Fuss, T.; Mogus-Milankovic, A.; Ray, C. S.; Lesher, C. E.; Youngman, R.; Day, D. E.

    2006-01-01

    The structure of a Li2O-2SiO2 (LS2) glass was investigated as a function of pressure and temperature up to 6 GPa and 750 C respectively, using XRD, TEM, IR, Raman and NMR spectroscopy. Glass densified at 6 GPa has an average Si-O-Si bond angle approx.7deg lower than that found in glass processed at 4.5 GPa. At 4.5 GPa, lithium disilicate crystallizes from the glass, while at 6 GPa a new high pressure form of lithium metasilicate crystallizes. The new phase, while having lithium metasilicate crystal symmetry, contains at least 4 different Si sites. NMR results for 6 GPa sample indicate the presence of Q4 species with (Q(sup 4))Si-O-Si(Q(sup 4)) bond angles of approx.157deg. This is the first reported occurrence of Q(sup 4) species with such large bond angles in alumina free alkali silicate glass. No five- or six- coordinated Si are found.

  1. Analysis of early medieval glass beads - Glass in the transition period

    Energy Technology Data Exchange (ETDEWEB)

    Smit, Ziga, E-mail: ziga.smit@ijs.si [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana (Slovenia); Jozef Stefan Institute, Jamova 39, P.O.B. 3000, SI-1001 Ljubljana (Slovenia); Knific, Timotej [National Museum of Slovenia, Presernova 20, SI-1000 Ljubljana (Slovenia); Jezersek, David [Jozef Stefan Institute, Jamova 39, P.O.B. 3000, SI-1001 Ljubljana (Slovenia); Istenic, Janka [National Museum of Slovenia, Presernova 20, SI-1000 Ljubljana (Slovenia)

    2012-05-01

    Glass beads from graves excavated in Slovenia and dated archaeologically to the 7th-10th century AD were analysed by the combined PIXE-PIGE method. The results indicate two groups of glass; natron glass made in the Roman tradition and glass made with alkalis from the ash of halophytic plants, which gradually replaced natron glass after c. 800 AD. The alkalis used in the second group of glass seem to be in close relation to a variant of the Venetian white glass that appeared several centuries later. The origin of this glass may be traced to glass production in Mesopotamia and around the Aral Sea. All the mosaic beads with eye decoration, as well as most of the drawn-segmented and drawn-cut beads analysed, are of plant-ash glass, which confirms their supposed oriental origin.

  2. Low energy and low dose electron irradiation of potassium-lime-silicate glass investigated by XPS. I. Surface composition

    Czech Academy of Sciences Publication Activity Database

    Gedeon, O.; Zemek, Josef

    2003-01-01

    Roč. 320, - (2003), s. 177-186 ISSN 0022-3093 R&D Projects: GA ČR GA104/99/1407 Institutional research plan: CEZ:AV0Z1010914 Keywords : x-ray photoelectron spectroscopy * potassium-lime-silicate glass * electron -solid interaction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.563, year: 2003

  3. Effect of ZnO on the Physical Properties and Optical Band Gap of Soda Lime Silicate Glass

    Science.gov (United States)

    Zaid, Mohd Hafiz Mohd; Matori, Khamirul Amin; Aziz, Sidek Hj. Abdul; Zakaria, Azmi; Ghazali, Mohd Sabri Mohd

    2012-01-01

    This manuscript reports on the physical properties and optical band gap of five samples of soda lime silicate (SLS) glass combined with zinc oxide (ZnO) that were prepared by a melting and quenching process. To understand the role of ZnO in this glass structure, the density, molar volume and optical band gaps were investigated. The density and absorption spectra in the Ultra-Violet-Visible (UV-Visible) region were recorded at room temperature. The results show that the densities of the glass samples increased as the ZnO weight percentage increased. The molar volume of the glasses shows the same trend as the density: the molar volume increased as the ZnO content increased. The optical band gaps were calculated from the absorption edge, and it was found that the optical band gap decreased from 3.20 to 2.32 eV as the ZnO concentration increased. PMID:22837711

  4. Mineralization dynamics of metakaolin-based alkali-activated cements

    International Nuclear Information System (INIS)

    Gevaudan, Juan Pablo; Campbell, Kate M.; Kane, Tyler J.; Shoemaker, Richard K.; Srubar, Wil V.

    2017-01-01

    This paper investigates the early-age dynamics of mineral formation in metakaolin-based alkali-activated cements. The effects of silica availability and alkali content on mineral formation were investigated via X-ray diffraction and solid-state 29 Si magic-angle spinning nuclear magnetic resonance spectroscopy at 2, 7, 14, and 28 days. Silica availability was controlled by using either liquid- (immediate) or solid-based (gradual) sodium silicate supplements. Mineral (zeolitic) and amorphous microstructural characteristics were correlated with observed changes in bulk physical properties, namely shrinkage, density, and porosity. Results demonstrate that, while alkali content controls the mineralization in immediately available silica systems, alkali content controls the silica availability in gradually available silica systems. Immediate silica availability generally leads to a more favorable mineral formation as demonstrated by correlated improvements in bulk physical properties.

  5. Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate

    International Nuclear Information System (INIS)

    Puertas, F.; Fernandez-Jimenez, A.; Blanco-Varela, M.T.

    2004-01-01

    In this work, the relationship between the composition of pore solution in alkali-activated slag cement (AAS) pastes activated with different alkaline activator, and the composition and structure of the main reaction products, has been studied. Pore solution was extracted from hardened AAS pastes. The analysis of the liquids was performed through different techniques: Na, Mg and Al by atomic absorption (AA), Ca ions by ionic chromatography (IC) and Si by colorimetry; pH was also determined. The solid phases were analysed by XRD, FTIR, solid-state 29 Si and 27 Al NMR and BSE/EDX. The most significant changes in the ionic composition of the pore solution of the AAS pastes activated with waterglass take place between 3 and 24 h of reaction. These changes are due to the decrease of the Na content and mainly to the Si content. Results of 29 Si MAS NMR and FTIR confirm that the activation process takes place with more intensity after 3 h (although at this age, Q 2 units already exist). The pore solution of the AAS pastes activated with NaOH shows a different evolution to this of pastes activated with waterglass. The decrease of Na and Si contents progresses with time. The nature of the alkaline activator influences the structure and composition of the calcium silicate hydrate formed as a consequence of the alkaline activation of the slag. The characteristic of calcium silicate hydrate in AAS pastes activated with waterglass is characterised by a low structural order with a low Ca/Si ratio. Besides, in this paste, Q 3 units are detected. The calcium silicate hydrate formed in the pastes activated with NaOH has a higher structural order (higher crystallinity) and contains more Al in its structure and a higher Ca/Si ratio than those obtained with waterglass

  6. Evidence of an Intermediate Phase in bulk alloy oxide glass sysem

    Science.gov (United States)

    Chakraborty, S.; Boolchand, P.

    2011-03-01

    Reversibility windows have been observed in modified oxides (alkali-silicates and -germanates) and identified with Intermediate Phases(IPs). Here we find preliminary evidence of an IP in a ternary oxide glass, (B2 O3)5 (Te O2)95-x (V2O5)x , which is composed of network formers. Bulk glasses are synthesized across the 18% x 35 % composition range, and examined in Raman scattering, modulated DSC and molar volume experiments. Glass transition temperatures Tg (x) steadily decrease with V2O5 content x, and reveal the enthalpy of relaxation at Tg to show a global minimum in the 24% x < 27 range, the reversibility window (IP). Molar volumes reveal a minimum in this window. Raman scattering reveals a Boson mode, and at least six other vibrational bands in the 100cm-1 < ν < 1700cm-1 range. Compositional trends in vibrational mode strengths and frequency are established. These results will be presented in relation to glass structure evolution with vanadia content and the underlying elastic phases. Supported by NSF grant DMR 08-53957.

  7. The utilization of waste by-products for removing silicate from mineral processing wastewater via chemical precipitation.

    Science.gov (United States)

    Kang, Jianhua; Sun, Wei; Hu, Yuehua; Gao, Zhiyong; Liu, Runqing; Zhang, Qingpeng; Liu, Hang; Meng, Xiangsong

    2017-11-15

    This study investigates an environmentally friendly technology that utilizes waste by-products (waste acid and waste alkali liquids) to treat mineral processing wastewater. Chemical precipitation is used to remove silicate from scheelite (CaWO 4 ) cleaning flotation wastewater and the waste by-products are used as a substitute for calcium chloride (CaCl 2 ). A series of laboratory experiments is conducted to explain the removal of silicate and the characterization and formation mechanism of calcium silicate. The results show that silicate removal reaches 90% when the Ca:Si molar ratio exceeds 1.0. The X-ray diffraction (XRD) results confirm the characterization and formation of calcium silicate. The pH is the key factor for silicate removal, and the formation of polysilicic acid with a reduction of pH can effectively improve the silicate removal and reduce the usage of calcium. The economic analysis shows that the treatment costs with waste acid (0.63 $/m 3 ) and waste alkali (1.54 $/m 3 ) are lower than that of calcium chloride (2.38 $/m 3 ). The efficient removal of silicate is confirmed by industrial testing at a plant. The results show that silicate removal reaches 85% in the recycled water from tailings dam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Silver nanocluster formation in ion-exchanged glasses by annealing, ion beam and laser beam irradiation: An EXAFS study

    International Nuclear Information System (INIS)

    Battaglin, G.; Cattaruzza, E.; Gonella, F.; Polloni, R.; D'Acapito, F.; Colonna, S.; Mattei, G.; Maurizio, C.; Mazzoldi, P.; Padovani, S.; Sada, C.; Quaranta, A.; Longo, A.

    2003-01-01

    Extended X-ray absorption fine structure analysis is used to determine the silver local environment in silicate glasses doped by the Ag-alkali ion-exchange process, followed by different treatments, namely, ion irradiation, thermal annealing in reducing atmosphere, laser irradiation. The obtained results indicate that metal nanocluster composites with different cluster structures may be formed with these multistep methodologies, pointing out the role of the preparation parameters in giving rise to different features. Lattice parameters and cluster diameter were determined by grazing incidence X-ray diffraction

  9. Spectroscopic study of biologically active glasses

    Science.gov (United States)

    Szumera, M.; Wacławska, I.; Mozgawa, W.; Sitarz, M.

    2005-06-01

    It is known that the chemical activity phenomenon is characteristic for some inorganic glasses and they are able to participate in biological processes of living organisms (plants, animals and human bodies). An example here is the selective removal of silicate-phosphate glass components under the influence of biological solutions, which has been applied in designing glasses acting as ecological fertilizers of controlled release rate of the nutrients for plants. The structure of model silicate-phosphate glasses containing the different amounts of the glass network formers, i.e. Ca 2+ and Mg 2+, as a binding components were studied. These elements besides other are indispensable of the normal growth of plants. In order to establish the function and position occupied by the particular components in the glass structure, the glasses were examined by FTIR spectroscopy (with spectra decomposition) and XRD methods. It has been found that the increasing amount of MgO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes systematically from a structure of the cristobalite type to a structure corresponding to forsterite type. Whilst the increasing content of CaO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes from a structure typical for cristobalite through one similar to the structure of calcium orthophosphate, to a structure corresponding to calcium silicates. The changing character of domains structure is the reason of different chemical activity of glasses.

  10. Mineralization dynamics of metakaolin-based alkali-activated cements

    Science.gov (United States)

    Gevaudan, Juan Pablo; Campbell, Kate M.; Kane, Tyler; Shoemaker, Richard K.; Srubar, Wil V.

    2017-01-01

    This paper investigates the early-age dynamics of mineral formation in metakaolin-based alkali-activated cements. The effects of silica availability and alkali content on mineral formation were investigated via X-ray diffraction and solid-state 29Si magic-angle spinning nuclear magnetic resonance spectroscopy at 2, 7, 14, and 28 days. Silica availability was controlled by using either liquid- (immediate) or solid-based (gradual) sodium silicate supplements. Mineral (zeolitic) and amorphous microstructural characteristics were correlated with observed changes in bulk physical properties, namely shrinkage, density, and porosity. Results demonstrate that, while alkali content controls the mineralization in immediately available silica systems, alkali content controls the silica availability in gradually available silica systems. Immediate silica availability generally leads to a more favorable mineral formation as demonstrated by correlated improvements in bulk physical properties.

  11. Potential benefits and impacts on the CRWMS transportation system of filling spent fuel shipping casks with depleted uranium silicate glass

    International Nuclear Information System (INIS)

    Pope, R.B.; Forsberg, C.W.; DeHart, M.D.; Childs, K.W.; Tang, J.S.

    1996-01-01

    A new technology, the Depleted Uranium Silicate COntainer Fill System (DUSCOFS), is proposed to improve the performance and reduce the uncertainties of geological disposal of spent nuclear fuel (SNF), thus reducing both radionuclide release rates from the waste package and the potential for repository nuclear criticality events. DUSCOFS may also provide benefits for SNF storage and transport if it is loaded into the container early in the waste management cycle. Assessments have been made of the benefits to be derived by placing depleted uranium silicate (DUS) glass into SNF containers for enhancing repository performance assessment and controlling criticality over geologic times in the repository. Also, the performance, benefits, and impacts which can be derived if the SNF is loaded into a multi-purpose canister with DUS glass at a reactor site have been assessed. The DUSCOFS concept and the benefits to the waste management cycle of implementing DUSCOFS early in the cycle are discussed in this paper

  12. Modeling the Onset of Phase Separation in CaO-SiO2-CaCl2 Chlorine-Containing Silicate Glasses.

    Science.gov (United States)

    Swansbury, Laura A; Mountjoy, Gavin; Chen, Xiaojing; Karpukhina, Natalia; Hill, Robert

    2017-06-08

    The addition of chlorine into a bioactive glass composition is expected to reduce its abrasiveness and increase its bioactivity, which is important for dental applications such as toothpastes. There is a lack of information and understanding regarding the structural role of chlorine in chlorine-containing bioactive silicate glasses. This has prompted classical core-shell model molecular dynamics simulations of (50 - x/2)CaO-(50 - x/2)SiO 2 -xCaCl 2 glasses to be performed, where x ranges from x = 0.0 to 43.1 mol % CaCl 2 . These ternary glasses are advantageous for a fundamental study because they do not have additional network formers (e.g., phosphorus pentoxide) or modifiers (e.g., sodium) typically found in bioactive glass compositions. The (50 - x/2)CaO-(50 - x/2)SiO 2 -xCaCl 2 glasses were seen to become phase-separated around the x = 16.1 mol % CaCl 2 composition, and chlorine predominantly coordinated with calcium. These findings provide a solid foundation for further computational modeling work on more complex chlorine-containing bioactive glass compositions.

  13. Effect of γ-irradiation on the electrical conductivity of some soda lime silicate glass containing blast furnace slag

    International Nuclear Information System (INIS)

    Elalaily, N.A.; Khalil, Magda M.I.; Ahmed, L.S.

    2007-01-01

    The effect of electric field strength on conduction in soda lime silicate glass doped with blast furnace slag with different concentration was studied and the value of jump distance was calculated. The structure and the mixed anion effect in the conductivity have been examined by measuring the electrical conductivity of glass samples at temperature ranging between 20 and 250 deg. C. The results showed that the electrical conductivity of the examined glasses are divided into three ranges depending on the temperature range. The first is from room temperature to about 49.5 deg. C, the second is at a temperature range of 60.3-104 deg. C where the glass shows a decrease in its conductivity with the increase in temperature. This was followed by another increase in the electrical conductivity with the increase in temperature. The results also showed that the glass becomes more insulating as the slag content increased. The effect of irradiation was also studied by exposing glass samples to two different irradiation doses. It can be noticed that irradiation causes an increase in the electrical conductivity, especially at high temperature. The results were discussed and correlated according to the molecular structure of the prepared glass

  14. Oxygen isotope partitioning between rhyolitic glass/melt and CO2: An experimental study at 550-950 degrees C and 1 bar

    International Nuclear Information System (INIS)

    Palin, J.M.; Epstein, S.; Stolper, E.M.

    1996-01-01

    Oxygen isotope partitioning between gaseous CO 2 and a natural rhyolitic glass and melt (77.7 wt% SiO 2 , 0.16 wt% H 2 O total ) has been measured at 550-950 degrees C and approximately 1 bar. Equilibrium oxygen isotope fractionation factors (α CO2-rhyolite = ( 18 O/ 16 O) rhyolite ) determined in exchange experiments of 100-255 day duration. These values agree well with predictions based on experimentally determined oxygen isotope fractionation factors for CO 2 -silica glass and CO 2 -albitic glass/melt, if the rhyolitic glass is taken to be a simple mixture of normative silica and alkali feldspar components. The results indicate that oxygen isotope partitioning in felsic glasses and melts can be modeled by linear combinations of endmember silicate constituents. Rates of oxygen isotope exchange observed in the partitioning experiments are consistent with control by diffusion of molecular H 2 O dissolved in the glass/melt and are three orders of magnitude faster than predicted for rate control solely by diffusion of dissolved molecular CO 2 under the experimental conditions. Additional experiments using untreated and dehydrated (0.09 wt% H 2 O total ) rhyolitic glass quantatively support these interpretations. We conclude that diffusive oxygen isotope exchange in rhyolitic glass/melt, and probably other polymerized silicate materials, it controlled by the concentrations and diffusivities of dissolved oxygen-bearing volatile species rather than diffusion of network oxygen under all but the most volatile-poor conditions. 25 refs., 6 figs., 1 tab

  15. Effect of different glasses in glass bonded zeolite

    International Nuclear Information System (INIS)

    Lewis, M.A.; Ackerman, J.P.; Verma, S.

    1995-01-01

    A mineral waste form has been developed for chloride waste salt generated during the pyrochemical treatment of spent nuclear fuel. The waste form consists of salt-occluded zeolite powders bound within a glass matrix. The zeolite contains the salt and immobilizes the fission products. The zeolite powders are hot pressed to form a mechanically stable, durable glass bonded zeolite. Further development of glass bonded zeolite as a waste form requires an understanding of the interaction between the glass and the zeolite. Properties of the glass that enhance binding and durability of the glass bonded zeolite need to be identified. Three types of glass, boroaluminosilicate, soda-lime silicate, and high silica glasses, have a range of properties and are now being investigated. Each glass was hot pressed by itself and with an equal amount of zeolite. MCC-1 leach tests were run on both. Soda-lime silicate and high silica glasses did not give a durable glass bonded zeolite. Boroaluminosilicate glasses rich in alkaline earths did bind the zeolite and gave a durable glass bonded zeolite. Scanning electron micrographs suggest that the boroaluminosilicate glasses wetted the zeolite powders better than the other glasses. Development of the glass bonded zeolite as a waste form for chloride waste salt is continuing

  16. High alkali-resistant basalt fiber for reinforcing concrete

    International Nuclear Information System (INIS)

    Lipatov, Ya.V.; Gutnikov, S.I.; Manylov, M.S.; Zhukovskaya, E.S.; Lazoryak, B.I.

    2015-01-01

    Highlights: • Doping of basalt fiber with ZrSiO 4 increased its alkali resistance. • Alkali treatment results in formation of protective surface layer on fibers. • Morphology and chemical composition of surface layer were investigated. • Mechanical properties of fibers were analyzed by a Weibull distribution. • Zirconia doped basalt fibers demonstrate high performance in concrete. - Abstract: Basalt glasses and fibers with zirconia content in the range from 0 to 7 wt% were obtained using ZrSiO 4 as a zirconium source. Weight loss and tensile strength loss of fibers after refluxing in alkali solution were determined. Basalt fiber with 5.7 wt% ZrO 2 had the best alkali resistance properties. Alkali treatment results in formation of protective surface layer on fibers. Morphology and chemical composition of surface layer were investigated. It was shown that alkali resistance of zirconia doped basalt fibers is caused by insoluble compounds of Zr 4+ , Fe 3+ and Mg 2+ in corrosion layer. Mechanical properties of initial and leached fibers were evaluated by a Weibull distribution. The properties of basalt fibers with ZrSiO 4 were compared with AR-glass fibers. The performance of concrete with obtained fibers was investigated

  17. Effect of pressure on the short-range structure and speciation of carbon in alkali silicate and aluminosilicate glasses and melts at high pressure up to 8 GPa: 13C, 27Al, 17O and 29Si solid-state NMR study

    Science.gov (United States)

    Kim, Eun Jeong; Fei, Yingwei; Lee, Sung Keun

    2018-03-01

    Despite the pioneering efforts to explore the nature of carbon in carbon-bearing silicate melts under compression, experimental data for the speciation and the solubility of carbon in silicate melts above 4 GPa have not been reported. Here, we explore the speciation of carbon and pressure-induced changes in network structures of carbon-bearing silicate (Na2O-3SiO2, NS3) and sodium aluminosilicate (NaAlSi3O8, albite) glasses quenched from melts at high pressure up to 8 GPa using multi-nuclear solid-state NMR. The 27Al triple quantum (3Q) MAS NMR spectra for carbon-bearing albite melts revealed the pressure-induced increase in the topological disorder around 4 coordinated Al ([4]Al) without forming [5,6]Al. These structural changes are similar to those in volatile-free albite melts at high pressure, indicating that the addition of CO2 in silicate melts may not induce any additional increase in the topological disorder around Al at high pressure. 13C MAS NMR spectra for carbon-bearing albite melts show multiple carbonate species, including [4]Si(CO3)[4]Si, [4]Si(CO3)[4]Al, [4]Al(CO3)[4]Al, and free CO32-. The fraction of [4]Si(CO3)[4]Al increases with increasing pressure, while those of other bridging carbonate species decrease, indicating that the addition of CO2 may enhance mixing of Si and Al at high pressure. A noticeable change is not observed for 29Si NMR spectra for the carbon-bearing albite glasses with varying pressure at 1.5-6 GPa. These NMR results confirm that the densification mechanisms established for fluid-free, polymerized aluminosilicate melts can be applied to the carbon-bearing albite melts at high pressure. In contrast, the 29Si MAS NMR spectra for partially depolymerized, carbon-bearing NS3 glasses show that the fraction of [5,6]Si increases with increasing pressure at the expense of Q3 species ([4]Si species with one non-bridging oxygen as the nearest neighbor). The pressure-induced increase in topological disorder around Si is evident from an

  18. Porous alkali activated materials with slow alkali release dynamic. Role of composition

    International Nuclear Information System (INIS)

    Bumanis, G.; Bajare, D.

    2018-01-01

    Alkali activated materials (AAM) based on calcined metakaolin or illite clay together with waste by-products, such as waste glass or aluminium scrap recycling waste, were tested as value-added materials for pH stabilization in biogas technology where decrease of pH should be avoided. Porous materials with ability to slowly leach alkalis in the water media thus providing continuous control of the pH level were obtained. XRD, FTIR, SEM and titration methods were used to characterize AAM and their leaching properties. It is clear that composition of the material has an important effect on the diffusion of alkali from structure. Namely, higher Si/Al and Na/Al molar ratios may increase pore solution transfer to the leachate. The leaching rate of alkalis from the structure of AAM is high for the first few days, decreasing over time. It was possible to calculate the buffer capacity from the mixture design of AAM. [es

  19. A model for phosphate glass topology considering the modifying ion sub-network

    DEFF Research Database (Denmark)

    Hermansen, Christian; Mauro, J.C.; Yue, Yuanzheng

    2014-01-01

    In the present paper we establish a temperature dependent constraint model of alkali phosphate glasses considering the structural and topological role of the modifying ion sub-network constituted by alkali ions and their non-bonding oxygen coordination spheres. The model is consistent with availa......In the present paper we establish a temperature dependent constraint model of alkali phosphate glasses considering the structural and topological role of the modifying ion sub-network constituted by alkali ions and their non-bonding oxygen coordination spheres. The model is consistent...... with available structural data by NMR and molecular dynamics simulation and dynamic data such glass transition temperature (Tg) and liquid fragility (m). Alkali phosphate glasses are exemplary systems for developing constraint model since the modifying cation network plays an important role besides the primary...... phosphate network. The proposed topological model predicts the changing trend of the Tg and m with increasing alkali oxide content for alkali phosphate glasses, including an anomalous minimum at around 20 mol% alkali oxide content. We find that the minimum in Tg and m is caused by increased connectivity...

  20. Tin-containing silicates: Alkali salts improve methyl lactate yield from sugars

    DEFF Research Database (Denmark)

    Tolborg, Søren; Sádaba, Irantzu; Osmundsen, Christian Mårup

    2015-01-01

    This study focuses on increasing the selectivity to methyl lactate from sugars using stannosilicates as heterogeneous catalyst. All group I ions are found to have a promoting effect on the resulting methyl lactate yield. Besides, the alkali ions can be added both during the preparation of the cat......This study focuses on increasing the selectivity to methyl lactate from sugars using stannosilicates as heterogeneous catalyst. All group I ions are found to have a promoting effect on the resulting methyl lactate yield. Besides, the alkali ions can be added both during the preparation...

  1. Hydrolysis of R7T7 nuclear waste glass in dilute media: mechanisms and rate as a function of pH

    International Nuclear Information System (INIS)

    Advocat, T.; Vernaz, E.; Charpentier, H.; Crovisier, J.L.; Ehret, G.

    1990-01-01

    R7T7 nuclear waste glass dissolution in highly dilute aqueous media under static conditions at 90 0 C occurs according to two different mechanisms depending on the solution acidity. In acid media (pH 4.8 and 5.5), preferential extraction of glass network modifiers results in the formation of an alkali metal-depleted surface region on which amorphous and crystallized (phosphate) compounds rich in transition elements precipitate. Steady-state dissolution conditions are not reached, as attested by variable normalized Si, B and Na mass losses. Glass dissolution is stoichiometric in basic media (pH 7 to 10): the strong bonds of the silicated network are broken at a rate that increases with the pH: the glass dissolution rate increases by a factor of 15 between pH 7 and 10. Under these conditions, alteration products at the glass/solution interface do not constitute a short-term kinetic barrier against the release of the major glass components

  2. Structural and crystallisation study of a rare earth alumino borosilicate glass designed for nuclear waste confinement

    International Nuclear Information System (INIS)

    Quintas, A.

    2007-09-01

    This work is devoted to the study of a rare earth alumino borosilicate glass, which molar composition is 61,81 SiO 2 - 3,05 Al 2 O 3 - 8,94 B 2 O 3 - 14,41 Na 2 O - 6,33 CaO - 1,90 ZrO 2 - 3,56 Nd 2 O 3 , and envisaged for the immobilization of nuclear wastes originating from the reprocessing of high discharge burn up spent fuel. From a structural viewpoint, we investigated the role of the modifier cations on the arrangement of the glass network through different modifications of the glass composition: variation of the Na/Ca ratio and modification of the nature of the alkali and alkaline earth cations. The NMR and Raman spectroscopic techniques were useful to determine the distribution of modifier cations among the glass network and also to cast light on the competition phenomena occurring between alkali and alkaline earth cations for charge compensation of [AlO 4 ] - and [BO 4 ] - species. The neodymium local environment could be probed by optical absorption and EXAFS spectroscopies which enabled to better understand the insertion mode of Nd 3+ ions among the silicate domains of the glass network. Concerning the crystallization behavior we were interested in how the glass composition may influence the crystallization processes and especially the formation of the apatite phase of composition Ca 2 Nd 8 (SiO 4 ) 6 O 2 . In particular, this work underlined the important role of both alkaline earth and rare earth cations on the crystallization of the apatite phase. (author)

  3. A study of the behaviour of copper in different types of silicate glasses implanted with Cu+ and O+ ions

    Czech Academy of Sciences Publication Activity Database

    Švecová, B.; Vařák, P.; Vytykačová, S.; Nekvindová, P.; Macková, Anna; Malinský, Petr; Bottger, R.

    2017-01-01

    Roč. 406, SEP (2017), s. 193-198 ISSN 0168-583X R&D Projects: GA MŠk LM2015056; GA ČR GA15-01602S Institutional support: RVO:61389005 Keywords : silicate glasses * ion implantation * copper Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.109, year: 2016

  4. Pulse energy dependence of refractive index change in lithium niobium silicate glass during femtosecond laser direct writing.

    Science.gov (United States)

    Cao, Jing; Poumellec, Bertrand; Brisset, François; Lancry, Matthieu

    2018-03-19

    Femtosecond laser-induced refractive index changes in lithium niobium silicate glass were explored at high repetition rate (300 fs, 500 kHz) by polarized light microscopy, full-wave retardation plate, quantitative birefringence microscopy, and digital holographic microscopy. We found three regimes on energy increase. The first one corresponds to isotropic negative refractive index change (for pulse energy ranging 0.4-0.8 μJ/pulse, 0.6 NA, 5μm/s, 650μm focusing depth in the glass). The second one (0.8-1.2 μJ/pulse) corresponds to birefringence with well-defined slow axis orientation. The third one (above 1.2 μJ/pulse) is related to birefringence direction fluctuation. Interestingly, these regimes are consistent with crystallization ones. In addition, an asymmetric orientational writing effect has been detected on birefringence. These topics extend the possibility of controlling refractive index change in multi-component glasses.

  5. Low-Li2O Frits: Selecting Glasses that Support the Melt Rate Studies and Challenge the Current Durability Model

    International Nuclear Information System (INIS)

    Peeler, D. K.; Edwards, T. B.

    2005-01-01

    During the progressive development of the cold cap model (as it applies to a potential melt rate predictive tool), the formation of an Al-Li-silicate phase was identified as an intermediate reaction phase that could possibly hinder melt rate for SB4. To test this theory, six glasses were designed (using Frit 320's composition as the baseline) to maintain a constant 20 wt% sum of alkali content (in frit) by varying Na 2 O to Li 2 O ratios. The Li 2 O concentration ranged from 8 wt% down to 0% in either 2% or 1% increments with the differences being accounted for by an increase in Na 2 O concentration. Although the primary objective of the ''lower Li 2 O'' frits was to evaluate the potential for melt rate improvements, assessments of durability (as measured by the Product Consistency Test (PCT)) were also performed. The results suggest that durable glasses can be produced with these ''lower Li 2 O'' frits should it be necessary to pursue this option for improving melt rate. In addition to the series of glasses to support melt rate assessments, a series of frits were also developed to challenge the current durability model based on the limits proposed by Edwards et al. (2004). Although the ''new'' limits allow access into compositional regions of interest (i.e., higher alkali systems) which can improve melt rate and/or waste loading, there may still be ''additional'' conservatism. In this report, two series of glasses were developed to challenge the ''new'' durability limits for the SB4 system. In the first series, the total alkali of the Frit 320-based glasses (designed to support the melt rate program) was increased from 20 wt% to 21 wt% (in the frit), but the series also evaluated the possible impact of various Na 2 O and Li 2 O mass ratio differences. The second series pushed the alkali limit in the frit even further with frits containing either 22 or 24 wt% total alkali as well as various Na 2 O and Li 2 O mass ratios. The results of the PCT evaluation indicated

  6. Defluidization in fluidized bed gasifiers using high-alkali content fuels

    DEFF Research Database (Denmark)

    Narayan, Vikas; Jensen, Peter Arendt; Henriksen, Ulrik Birk

    2016-01-01

    samples,agglomeration could be attributed to viscous silicate melts formed from reaction of inorganic alkalineand alkali earth species with silica from the bed particles. A mathematical model that addresses the defluidization behavior of alkali-rich samples was developed based on the experiments performed...... and calcium, which may form viscous melts that adhere on the surface of the colliding bed particles and bind them to form agglomerates. In this paper, studies were made to understand the behavior of inorganic elements (mainly K, Si and Ca) on agglomeration and de-fluidization of alkali rich bed...... in the bench-scale fluidized bed reactor as well as on results from literature. The model was then used topredict the de-fluidization behavior of alkali-rich bed material in a large-scale LTCFB gasifier....

  7. Microstructure and Engineering Properties of Alkali Activated Fly Ash -as an environment friendly alternative to Portland cement

    NARCIS (Netherlands)

    Ma, Y.

    2013-01-01

    Alkali activated fly ash (AAFA), also named “geopolymer”, has emerged as a novel engineering material in the construction industry. This material is normally formed by the reaction between fly ash and aqueous hydroxide or alkali silicate solution. With proper mix design, AAFA can present comparable

  8. An on-line monitor for cation exchange elution chromatography using lithium silicate glass beads as solid scintillator

    International Nuclear Information System (INIS)

    Zhu Rongbao; Yang Liucheng; Wei Liansheng; Ji Liqiang; Zhang Zengrui

    1988-03-01

    A new type of on-line monitoring system used to monitor radioactive nuclides with α or soft β radiation in the effluent from a high pressure ion exchange column is described. The beads made of cerium-impregnated lithium silicate glass are used as scientillation material. They are filled into a quartz glass tube to form a flow cell. By reducing the diameter of glass beads to more closly approximate the average range of α or soft β radiation in solution, the absolute counting efficiency for 241 Am, 242 Cm α radiation have reached and 85.8% and 92.8% respectively, for 14 C, 90 Sr- 90 Y β radiation, 62.1% and 88.6% respectively. These values can be comparable to those achieved with on-line liquid scientillation technique. When the total amount of 241 Am added into column is decreased to 7.4 Bq it is still possible to obtain a clear chromatography peak (half peak width = 0.22 mL)

  9. Alkali aggregate reactivity in concrete structures in western Canada

    International Nuclear Information System (INIS)

    Morgan, D.R.; Empey, D.

    1989-01-01

    In several regions of Canada, particularly parts of Ontario, Quebec and the Maritime Provinces, research, testing and evaluation of aged concrete structures in the field has shown that alkali aggregate reactivity can give rise to pronounced concrete deterioration, particularly in hydraulic structures subjected to saturation or alternate wetting and drying such as locks, dams, canals, etc. Concrete deterioration is mainly caused by alkali-silica reactions and alkali-carbonate reactions, but a third type of deterioration involves slow/late expanding alkali-silicate/silica reactivity. The alkalies NaOH and KOH in the concrete pore solutions are mainly responsible for attack on expansive rocks and minerals in concrete. Methods for evaluating alkali-aggregate reaction potential in aggregates, and field and laboratory methods for detecting deterioration are discussed. Examples of alkali-aggregate reactions in structures is western Canada are detailed, including a water reservoir at Canadian Forces Base Chilliwack in British Columbia, the Oldman River diversion and flume, the Lundbreck Falls Bridge, and the St Mary's Reservoir spillway, all in southern Alberta. Mitigative measures include avoidance of use of suspect aggregates, but if this cannot be avoided it is recommended to keep the total alkalies in the concrete as low as possible and minimize opportunities for saturation of concrete by moisture. 16 refs., 19 figs., 1 tab

  10. Structure and aqueous reactivity of silicate glasses high-resolution nuclear magnetic resonance contribution; Structure et reactivite aqueuse des verres silicates apport de la resonance magnetique nucleaire haute-resolution

    Energy Technology Data Exchange (ETDEWEB)

    Angeli, F

    2000-10-25

    This research aims at getting a better understanding of the relations which may exist between the chemical composition of the oxide silicate glasses, the structure and the aqueous reactivity. We study the cations present in most glasses, more particularly the radioactive waste glasses, and those which are more liable to bring information both about structure and reactivity. Among the experimental methods used, the nuclear magnetic resonance of multi-quantum magic-angle spinning (NMR MQ-MAS) has been carried out for the structural characterization of the pristine and altered glasses. In the first part, we discuss the possibility of deducting a type of information from a quantitative approach of the {sup 23}Na, {sup 27}Al and {sup 17}O NMR MQ-MAS. In the second part, we apply this method to glasses containing between two and six oxides. The vitreous compositions studied permit to focus our attention on the influence of sodium, aluminum and calcium on their local structural environment. We point out an evolution of the distributions of bond distances and angles in relation to the glass chemical composition. We show the strong potentiality of the {sup 17}O used to probe the pristine and altered glasses. The influence of the different cations studied on the rate of glass dissolution is debated from the alterations made on short periods. On the basis of all these data, we discuss the importance of the structural effect which may influence the kinetic phenomena of alteration. (author)

  11. Incorporation of Fe2O3, FeO and Al2O3 in silicate glasses and its effect on their structure and chemical stability

    Energy Technology Data Exchange (ETDEWEB)

    Van Iseghem, P; De Grave, E; Peters, L; De Batist, R

    1983-09-01

    Large amounts of the glass intermediates Al2O3, Fe2O3 and FeO are present in the amorphous silicate slags developed at the S.C.K./C.E.N. for the conditioning of Pu contaminated radioactive waste. Strong ambiguity exists in literature about both the structural incorporation and the effect on the chemical stability of Fe2O3 and FeO. The chemical stability and its relationship to the glass structure therefore was investigated for a number of silicate base glasses, taking into consideration the following parameters (the amount of glass modifiers was kept constant at 16 mole %, equimolarly spread over Li2O, K2O, MgO and CaO): 1) Fe2Ox concentrations (x = 2 or 3) varying between 2.5 and 30 mole % (compensated by changes in SiO2 concentration); 2)Equimolar replacement of Fe2Ox by Al2O3 and Fe2Ox in all glasses listed in 1. The structural incorporation of Fe2Ox was investigated by 57 Fe Mossbauer Spectroscopy, the chemical stability by the Soxhlet corrosion test. The sample weight was measured after 14 days of corrosion, after drying and removal of the weakly bounded surface layer.

  12. Dynamic colour and utilizable white fluorescence from Eu/Tb ions codoped lithium-yttrium-aluminium-silicate glasses

    International Nuclear Information System (INIS)

    Shen Lifan; Liu Xiao; Chen Baojie; Lin Hai; Pun, Edwin Yue Bun

    2012-01-01

    A group of dynamic-colour white fluorescences with various colour temperatures that can be applied to circadian lighting are achieved in Eu/Tb-codoped lithium-yttrium-aluminium-silicate (LYAS) glasses, which can be attributed to the simultaneous generation of three primary colours emitting from Eu 3+ (red), Eu 2+ (blue) and Tb 3+ (green) by varying the ultraviolet (UV) radiation wavelength. Fluorescence colour coordinates pass through the whole white region of the CIE x, y chromaticity diagram when the UV excitation wavelength is increased from 300 to 370 nm. A favourable white light with colour coordinates (0.338, 0.298) close to the equal energy white is obtained under 360 nm excitation. These results indicate that the Eu/Tb-codoped LYAS glasses are a promising candidate to develop white lighting devices under the excitation of commercial UV light-emitting diodes, and a smart lighting system based on rare-earth doped glasses will be a potential illumination source offering controllability of the colour temperature that can adjust to specific environments and requirements, and benefit human health, well-being and productivity. (paper)

  13. Novel adaptations to zinc-silicate glass polyalkenoate cements: the unexpected influences of germanium based glasses on handling characteristics and mechanical properties.

    Science.gov (United States)

    Dickey, B T; Kehoe, S; Boyd, D

    2013-07-01

    Aluminum-free glass polyalkenoate cements (GPC) have been hindered for use as injectable bone cements by their inability to balance handling characteristics with mechanical integrity. Currently, zinc-based, aluminum-free GPCs demonstrate compression strengths in excess of 60MPa, but set in c. 1-2 min. Previous efforts to extend the setting reaction have remained clinically insufficient and are typically accompanied by a significant drop in strength. This work synthesized novel glasses based on a zinc silicate composition with the inclusion of GeO2, ZrO2, and Na2O, and evaluated the setting reaction and mechanical properties of the resultant GPCs. Germanium based GPCs were found to have working times between 5 and 10 min, setting times between 14 and 36 min, and compression strengths in excess of 30 MPa for the first 30 days. The results of this investigation have shown that the inclusion of GeO2, ZrO2, and Na2O into the glass network have produced, for the first time, an aluminum-free GPC that is clinically viable as injectable bone cements with regards to handling characteristics and mechanical properties. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  14. Optical band gap and spectroscopic study of lithium alumino silicate glass containing Y3+ ions.

    Science.gov (United States)

    Shakeri, M S; Rezvani, M

    2011-09-01

    The effect of different amounts of Y2O3 dopant on lithium alumino silicate (LAS) glass has been studied in this work. Glasses having 14.8Li2O-20Al2O3-65.2SiO2 (wt%) composition accompanied with Y2O3 dopant were prepared by normal melting process. In order to calculate the absorption coefficient of samples, transmittance and reflectance spectra of polished samples were measured in the room temperature. Optical properties i.e. Fermi energy level, direct and indirect optical band gaps and Urbach energy were calculated using functionality of extinction coefficient from Fermi-Dirac distribution function, Tauc's plot and the exponential part of absorption coefficient diagram, respectively. It has been clarified that variation in mentioned optical parameters is associated with the changes in physical properties of samples i.e. density or molar mass. On the other hand, increasing of Y3+ ions in the glassy microstructure of samples provides a semiconducting character to LAS glass by reducing the direct and indirect optical band gaps of glass samples from 1.97 to 1.67 and 3.46 to 2.1 (eV), respectively. These changes could be attributed to the role of Y3+ ions as the network former in the track of SiO4 tetrahedrals. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Evaluation of the effect of sodium silicate addition to mine backfill, Gelfill − Part 1

    Directory of Open Access Journals (Sweden)

    M. Kermani

    2015-06-01

    Full Text Available In this paper, the mechanical properties of sodium silicate-fortified backfill, called Gelfill, were investigated by conducting a series of laboratory experiments. Two configurations were tested, i.e. Gelfill and cemented hydraulic fill (CHF. The Gelfill has an alkali activator such as sodium silicate in its materials in addition to primary materials of mine backfill which are tailings, water and binders. Large numbers of samples of Gelfill and CHF with various mixture designs were cast and cured for over 28 d. The mechanical properties of samples were investigated using uniaxial compression test, and the results were compared with those of reference samples made without sodium silicate. The test results indicated that the addition of an appropriate amount of an alkali activator such as sodium silicate can enhance the mechanical (uniaxial compressive strength and physical (water retention properties of backfill. The microstructure analysis conducted by mercury intrusion porosimetry (MIP revealed that the addition of sodium silicate can modify the pore size distribution and total porosity of Gelfill, which can contribute to the better mechanical properties of Gelfill. It was also shown that the time and rate of drainage in the Gelfill specimens are less than those in CHF specimens made without sodium silicate. Finally, the study showed that the addition of sodium silicate can reduce the required setting time of mine backfill, which can contribute to increase mine production in accordance with the mine safety.

  16. Kinetics and mechanisms of iron redox reactions in silicate melts: The effects of temperature and alkali cations

    Energy Technology Data Exchange (ETDEWEB)

    Magnien, V.; Pinet, O. [CEA VALRHO, SCDV/LEBV, F-30207 Bagnols Sur Ceze, (France); Magnien, V.; Neuville, D. R.; Roux, J.; Richet, P. [IPGP, CNRS, Physique des Mineraux et Magmas, F-75252 Paris 05, (France); Cormier, L. [Univ Paris 06, IMPMC, F-75015 Paris, (France); Hazemann, J. L. [CNRS, Inst Neel, F-38043 Grenoble, (France); De Ligny, D. [Univ Lyon 1, LMLC, CNRS, UMR 5620, F-69622 Villeurbanne, (France); Pascarelli, S. [European Synchrotron Radiat Facil, F-38043 Grenoble, (France); Vickridge, I. [Univ Paris 06, INSP, F-75015 Paris, (France)

    2008-07-01

    The kinetics and the mechanisms of iron redox reactions in molten Fe-bearing pyroxene compositions have been investigated by Raman spectroscopy and X-ray absorption Near Edge Structure (XANES) experiments at the iron K-edge. The former experiments have been made only near the glass transition whereas the latter have also been performed from about 1300 to 2100 K. The same kinetics are observed with both techniques. They are described by characteristic times that depend primarily on temperature and not on the initial redox state. At high temperatures, where both kinds of reactions could be investigated, these times are similar for oxidation and reduction. From these characteristic times we have calculated as a function of temperature and composition a parameter termed effective redox diffusivity. For a given melt, the diffusivities follow two distinct Arrhenius laws, which indicate that the mechanisms of the redox reaction are not the same near the glass transition and at high temperatures. As is now well established, diffusion of divalent cations is the dominant mechanism at low temperatures but the enhanced kinetics observed for alkali-bearing melts indicate that Li{sup +} and Na{sup +} also participate in ionic transport. At super-liquidus temperatures, in contrast, diffusion of oxygen represents the dominant mechanism. (authors)

  17. Durability of Silicate Glasses: An Historical Approach

    International Nuclear Information System (INIS)

    Farges, Francois; Etcheverry, Marie-Pierre; Haddi, Amine; Trocellier, Patrick; Curti, Enzo; Brown, Gordon E. Jr.

    2007-01-01

    We present a short review of current theories of glass weathering, including glass dissolution, and hydrolysis of nuclear waste glasses, and leaching of historical glasses from an XAFS perspective. The results of various laboratory leaching experiments at different timescales (30 days to 12 years) are compared with results for historical glasses that were weathered by atmospheric gases and soil waters over 500 to 3000 years. Good agreement is found between laboratory experiments and slowly leached historical glasses, with a strong enrichment of metals at the water/gel interface. Depending on the nature of the transition elements originally dissolved in the melt, increasing elemental distributions are expected to increase with time for a given glass durability context

  18. Durability of Silicate Glasses: An Historical Approach

    Energy Technology Data Exchange (ETDEWEB)

    Farges, Francois; /Museum Natl. Hist. Natur. /Stanford U., Geo. Environ. Sci.; Etcheverry, Marie-Pierre; /Marne la Vallee U.; Haddi, Amine; /Marne la Valle U.; Trocellier,; /Saclay; Curti, Enzo; /PSI, Villigen; Brown, Gordon E., Jr.; /SLAC, SSRL

    2007-01-02

    We present a short review of current theories of glass weathering, including glass dissolution, and hydrolysis of nuclear waste glasses, and leaching of historical glasses from an XAFS perspective. The results of various laboratory leaching experiments at different timescales (30 days to 12 years) are compared with results for historical glasses that were weathered by atmospheric gases and soil waters over 500 to 3000 years. Good agreement is found between laboratory experiments and slowly leached historical glasses, with a strong enrichment of metals at the water/gel interface. Depending on the nature of the transition elements originally dissolved in the melt, increasing elemental distributions are expected to increase with time for a given glass durability context.

  19. Characterisation and properties of alkali activated pozzolanic materials

    Science.gov (United States)

    Bordeian, Georgeta Simona

    : density, water absorption, apparent porosity and coefficient of saturation, drying shrinkage, compressive creep, compressive, flexural and tensile splitting strength, dynamic modulus of elasticity, accelerated weathering (freeze-thaw cycle) resistance, fire resistance (temperatures up to 600°C), microstructure, macrostructure and investigation of hydration phases by SEM, ED AX, Digital-mapping and X-ray diffraction.The influence of key parameters e.g. slag content, curing method, water/binder ratio and water glass hardener content on the mechanical properties were determined. Optimisation of the alkali-activation of fly ash materials was achieved by blending this with other pozzolans such as silica fume and slags. Mechanical properties were further improved by using moulding pressures and by thermal treatment. The use of short fibre reinforcements was investigated to overcome microcracking, volumetric deformation and creep in the materials. The free shrinkage and creep of the materials agree with the model developed by Mangat and Azari for fibre reinforced Portland cement composites. Other additives were also investigated to improve workability, frost and water resistance and physical properties of the alkali activated materials. The fundamental relationships between chemical composition, hydration phases,microstructure and engineering properties (strength, durability and stability) of alkali activated materials were investigated. It is clear that strength development is a function of the hydration products developed and these are affected by the mix composition and the curing temperature. The current work found parameters such as the Si/Al ratio, the Ca/Si ratio and the Na20 content to be important. These chemical parameters decide the principal phases in the hydration products formed in alkali activated materials, between calcium silicate hydrate (C-S-H) and zeolite of the form (R[2]0 n Al[2]O[3] x SiO[2] r H[2]O).Overall the thesis shows the great potential of alkali

  20. Leaching behavior of glass ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Lokken, R.O.

    1981-11-01

    Glass ceramic waste forms have been investigated as alternatives to borosilicate glasses for the immobilization of high-level radioactive waste at Pacific Northwest Laboratory (PNL). Three glass ceramic systems were investigated, including basalt, celsian, and fresnoite, each containing 20 wt % simulated high-level waste calcine. Static leach tests were performed on seven glass ceramic materials and one parent glass (before recrystallization). Samples were leached at 90 0 C for 3 to 28 days in deionized water and silicate water. The results, expressed in normalized elemental mass loss, (g/m 2 ), show comparable releases from celsian and fresnoite glass ceramics. Basalt glass ceramics demonstrated the lowest normalized elemental losses with a nominal release less than 2 g/m 2 when leached in polypropylene containers. The releases from basalt glass ceramics when leached in silicate water were nearly identical with those in deionized water. The overall leachability of celsian and fresnoite glass ceramics was improved when silicate water was used as the leachant

  1. Hydration of a low-alkali CEM III/B–SiO2 cement (LAC)

    International Nuclear Information System (INIS)

    Lothenbach, Barbara; Le Saout, Gwenn; Ben Haha, Mohsen; Figi, Renato; Wieland, Erich

    2012-01-01

    The hydration of a low-alkali cement based on CEM III/B blended with 10 wt.% of nanosilica has been studied. The nanosilica reacted within the first days and 90% of the slag reacted within 3.5 years. C-S-H (Ca/Si ∼ 1.2, Al/Si ∼ 0.12), calcite, hydrotalcite, ettringite and possibly strätlingite were the main hydrates. The pore water composition revealed ten times lower alkali concentrations than in Portland cements. Reducing conditions (HS − ) and a pH value of 12.2 were observed. Between 1 month and 3.5 years of hydration more hydrates were formed due to the ongoing slag reaction but no significant differences in the composition of the pore solution or solid phase assemblage were observed. On the basis of thermodynamic calculations it is predicted that siliceous hydrogarnet could form in the long-term and, in the presence of siliceous hydrogarnet, also thaumasite. Nevertheless, even after 3.5 year hydration, neither siliceous hydrogarnet nor thaumasite have been observed.

  2. Shear-peel strength comparison of orthodontic band cements including novel calcium silicate

    DEFF Research Database (Denmark)

    Leo, Mariantonietta; Løvschall, Henrik

    calcium silicate with fluoride and fast-setting, Glass ionomer, and Zinc phosphate cement, used for luting of orthodontic bands on molars kept one month in phosphate buffering solution (PBS). Materials and methods: The roots of 35 extracted human molars were embedded in acryl. Three groups were allocated....... An orthodontic band (AO) was fitted on the free crown. Each group of the teeth (n>10) was cemented with novel calcium silicate (Protooth), Glass ionomer (Orthocem), or Zinc phosphate (DeTrey Zinc). The cements were mixed according to the manufacturers instructions. Samples were stored at 37ºC in humid chamber...... Silicate (Protooth) and Zinc phosphate cement (DeTrey Zinc) were significantly higher than Glass ionomer cement (Orthocem) when looking for the force (N, p

  3. Development of borosilicate glass compositions for the immobilisation of the UK's separated plutonium stocks

    International Nuclear Information System (INIS)

    Harrison, M. T.; Scales, C. R.

    2008-01-01

    The UK inventory of separated civil plutonium is expected to exceed 100 tonnes by 2010. Whilst the majority of this could be used in the manufacture of MOx (Mixed Oxide) fuel in future power generation scenarios, options for the disposal of surplus plutonium are currently being investigated by Nexia Solutions Ltd on behalf of the UK's Nuclear Decommissioning Authority (NDA). One of the options being considered is immobilisation in a durable glass matrix followed by long term storage and subsequent final repository disposal. A preliminary experimental survey assessed a selection of potential glass systems on the basis of Pu-surrogate (cerium) loading, durability, and ease of processing. Following this, a number of borosilicate compositions have been taken forward into a more detailed investigation in order to fully qualify their potential for Pu-immobilisation. The selected compositions are lanthanide borosilicate (LaBS), alkali tin silicate (ATS) and high-lanthanide alkali borosilicate (modified-MW). For this second series of experiments, hafnium was selected as the Pu surrogate, and a study of the potential waste loading as a function of temperature for the three selected compositions is described in this paper. Furthermore, several variations of the LaBS composition were fabricated in order to investigate the effect of total lanthanide content on melting temperature. The benchmark of 10 wt% HfO 2 incorporation is achievable for all three glasses with temperatures of 1200, 1300 and 1400 deg. C required for ATS, modified-MW and LaBS respectively. (authors)

  4. Comparative study of silicate glasses containing Bi2O3, PbO and BaO: Radiation shielding and optical properties

    International Nuclear Information System (INIS)

    Kirdsiri, K.; Kaewkhao, J.; Chanthima, N.; Limsuwan, P.

    2011-01-01

    Research highlights: → We change Bi 2 O 3 , PbO and BaO concentration in silicate glasses. → The densities of Bi 2 O 3 glasses more than PbO glasses and BaO glasses. → The Um of Bi 2 O 3 glasses and PbO glasses are comparable and more than BaO glasses. → This suggests that Bi 2 O 3 can replace PbO in radiation shielding glasses. - Abstract: The radiation shielding and optical properties of xBi 2 O 3 :(100-x)SiO 2 , xPbO:(100-x)SiO 2 and xBaO:(100-x)SiO 2 glass systems (where 30 ≤ x ≤ 70 is the composition by weight%) have been investigated. Total mass attenuation coefficients (μ m ) of glasses at 662 keV were improved by increasing their Bi 2 O 3 and PbO content, which raised the photoelectric absorption in glass matrices. Raising the BaO content to the same fraction range, however, brought no significant change to μ m . These results indicate that photon is strongly attenuated in Bi 2 O 3 and PbO containing glasses, and but not in BaO containing glass. The results from the optical absorption spectra show an edge that was not sharply defined; clearly indicating the amorphous nature of glass samples. It is observed that the cutoff wavelength for Bi 2 O 3 containing glass was longer than PbO and BaO containing glasses.

  5. The influence of silver-ion doping using ion implantation on the luminescence properties of Er–Yb silicate glasses

    Czech Academy of Sciences Publication Activity Database

    Staněk, S.; Nekvindová, P.; Švecová, B.; Vytykáčová, S.; Míka, M.; Oswald, Jiří; Macková, Anna; Malinský, Petr; Špirková, J.

    2016-01-01

    Roč. 371, Mar (2016), s. 350-354 ISSN 0168-583X. [22nd International conference on Ion Beam Analysis (IBA). Opatija, 14.06.2015-19.06.2015] R&D Projects: GA MŠk LM2015056; GA ČR GA15-01602S Institutional support: RVO:68378271 ; RVO:61389005 Keywords : ion implantation * silicate glass * silver * nanoparticles * erbium Subject RIV: BM - Solid Matter Physics ; Magnetism; BG - Nuclear, Atomic and Molecular Physics, Colliders (UJF-V) Impact factor: 1.109, year: 2016

  6. An Alkali Activated Binder for High Chemical Resistant Self-Leveling Mortar

    OpenAIRE

    Funke, Henrik L.; Gelbrich, Sandra; Kroll, Lothar

    2016-01-01

    This paper reports the development of an Alkali Activated Binder (AAB) with an emphasis on the performance and the durability of the AAB-matrix. For the development of the matrix, the reactive components granulated slag and coal fly ash were used, which were alkali activated with a mixture of sodium hydroxide (2 - 10 mol/l) and aqueous sodium silicate solution (SiO2/Na2O molar ratio: 2.1) at ambient temperature. A sodium hydroxide concentration of 5.5 mol/l revealed the best compromise betwee...

  7. Mixed-Alkali Effect in Li2O-Na2O-K2O-B2O3 Glasses: Infrared and Optical Absorption Studies

    Science.gov (United States)

    Samee, M. A.; Edukondalu, A.; Ahmmad, Shaik Kareem; Taqiullah, Sair Md.; Rahman, Syed

    2013-08-01

    The mixed-alkali effect (MAE) has been investigated in the glass system (40 - x)Li2O- xNa2O-10K2O-50B2O3 (0 mol% ≤ x ≤ 40 mol%) through density, modulated differential scanning calorimetry (DSC), and optical absorption studies. From the absorption studies, the values of the optical band gap ( E opt) for direct transition and Urbach energy (Δ E) have been evaluated. The values of E opt and Δ E show nonlinear behavior with the compositional parameter. The density and glass-transition temperature of the present glasses also show nonlinear variation, supporting the existence of MAE. The infrared (IR) spectra of the glasses reveal the presence of three- and four-coordinated boron atoms. The specific vibrations of Li-O, Na-O, and K-O bonds were observed in the present IR study.

  8. The kinetic fragility of natural silicate melts

    International Nuclear Information System (INIS)

    Giordano, Daniele; Dingwell, Donald B

    2003-01-01

    Newtonian viscosities of 19 multicomponent natural and synthetic silicate liquids, with variable contents of SiO 2 (41-79 wt%), Al 2 O 3 (10-19 wt%), TiO 2 (0-3 wt%), FeO tot (0-11 wt%); alkali oxides (5-17 wt%), alkaline-earth oxides (0-35 wt%), and minor oxides, obtained at ambient pressure using the high-temperature concentric cylinder, the low-temperature micropenetration, and the parallel plates techniques, have been analysed. For each silicate liquid, regression of the experimentally determined viscosities using the well known Vogel-Fulcher-Tammann (VFT) equation allowed the viscosity of all these silicates to be accurately described. The results of these fits, which provide the basis for the subsequent analysis here, permit qualitative and quantitative correlations to be made between the VFT adjustable parameters (A VFT , B VFT , and T 0 ). The values of B VFT and T 0 , calibrated via the VFT equation, are highly correlated. Kinetic fragility appears to be correlated with the number of non-bridging oxygens per tetrahedrally coordinated cation (NBO/T). This is taken to infer that melt polymerization controls melt fragility in liquid silicates. Thus NBO/T might form an useful ingredient of a structure-based model of non-Arrhenian viscosity in multicomponent silicate melts

  9. Hafnium in peralkaline and peraluminous boro-aluminosilicate glass, and glass subcomponents: a solubility study

    International Nuclear Information System (INIS)

    Davis, Linda L.; Darab, John G.; Qian, Maoxu; Zhao, Donggao; Palenik, Christopher S.; Li, Hong; Strachan, Denis M.; Li, Liyu

    2003-01-01

    A relationship between the solubility of hafnia (HfO2) and the host glass composition was explored by determining the solubility limits of HfO2 in peralkaline and peraluminous borosilicate glasses in the system SiO2-Al2O3-B2O3-Na2O, and in glasses in the system SiO2-Na2O-Al2O3 in air at 1450 C. The only Hf-bearing phase to crystallize in the peralkaline borosilicate melts is hafnia, while in the boron-free melts sodium-hafnium silicates crystallize. All peraluminous borosilicate melts crystallize hafnia, but the slightly peraluminous glasses also have sector-zoned hafnia crystals that contain Al and Si. The more peraluminous borosilicate glasses also crystallize a B-containing mullite. The general morphology of the hafnia crystals changes as peralkalinity (Na2O/(Na2O+Al2O3)) decreases, as expected in melts with increasing viscosity. In all of the glasses with Na2O > Al2O3, the solubility of hafnia is linearly and positively correlated with Na2O/(Na2O + Al2O3) or Na2O - Al2O3 (excess sodium), despite the presence of 5 to 16 mol% B2O3. The solubility of hafnia is higher in the sodium-aluminum borosilicate glasses than in the sodium-aluminosilicate glasses, suggesting that the boron is enhancing the effect that excess sodium has on the incorporation of Hf into the glass structure. The results of this solubility study are compared to other studies of high-valence cation solubility in B-free silicate melts. From this, for peralkaline B-bearing glasses, it is shown that, although the solubility limits are higher, the solution behavior of hafnia is the same as in B-free silicate melts previously studied. By comparison, also, it is shown that in peraluminous melts, there must be a different solution mechanism for hafnia: different than for peralkaline sodium-aluminum borosilicate glasses and different than for B-free silicate melts studied by others

  10. USE OF LOCAL NATURAL SILICEOUS RAW MATERIAL AND WASTES FOR PRODUCTION OF HEAT-INSULATING FOAMCONCRETE

    Directory of Open Access Journals (Sweden)

    V. U. Matsapulin

    2015-01-01

    Full Text Available The article analyzes the resource base, reserves and the use of siliceous rocks, their economic feasibility of the use for production of building materials of new generation with low-energy and other costs. Presented are the results of laboratory research and testing technology of production of insulating foam from a composition based on an aqueous solution of sodium silicate obtained from the local siliceous rocks (diatomite and the liquid alkali component - soapstock, hardener from ferrochrome slag and waste carbonate rock able to harden at a low temperature processing ( 100-110 ° C.

  11. Autoclave-hardening slag-alkali binder with high water content

    International Nuclear Information System (INIS)

    Korenevskij, V.V.; Kozyrin, N.A.; Melikhova, N.I.; Narkevich, N.K.; Ryabov, G.G.

    1987-01-01

    The results of investigations into properties of slag-alkali binder, that may be used for concretes of reactor radiation and thermal shieldings, are presented. These concretes have increased chemical stability and mechanical strength, high content of chemically bound water (approximately 14%), that is not lost under heating up to 550 deg C. Dumping and granulated slags of blast-furnace process, sodium-bicarbonate-alkali fusion cake formed at burning of adipic acid residues, technical sodium hydroxide and sodium liquid glass are used as raw material for slag-alkali binder

  12. Dissolution of lanthanide alumino-silicate oxynitride glasses

    Science.gov (United States)

    Bois, L.; Barré, N.; Guillopé, S.; Guittet, M. J.; Gautier-Soyer, M.; Duraud, J. P.; Trocellier, P.; Verdier, P.; Laurent, Y.

    2000-01-01

    The aqueous corrosion behavior of lanthanide aluminosilicate glasses has been studied under static conditions ( T=96°C, duration=1 and 3 months, glass surface area/leachate volume, S/ V=0.3 cm -1) by means of solution and solid analyses. It was found that these glasses exhibit a high chemical durability. The influence of yttrium, magnesium and nitrogen, which are supposed to improve the mechanical properties, on the chemical durability, has been investigated. After a one-month experiment, lanthanum and yttrium releases were found to be about 10 -7 mol l -1, while silicon and aluminum releases were about 10 -5 mol l -1. Yttrium seems to improve the chemical durability. The presence of nitrogen does not seem to modify the glass constituents releases, but seems to improve the surface state of the altered glass. XPS experiments reveal that lanthanum and yttrium are more concentrated near the surface (20-30 Å) of the glass after the leaching test.

  13. The chemical durability of alkali aluminosilicate glasses

    International Nuclear Information System (INIS)

    Tait, J.C.; Mandolesi, D.L.

    1983-09-01

    The aqueous durabilities of a series of glasses based on the sodium aluminosilicate system (Na 2 O-Al 2 O 3 -SiO 2 ) have been studied. The effects of molecular substitution of K 2 O or CaO for Na 2 O, and B 2 O 3 for Al 2 O 3 have been investigated. The temperature dependence of leaching in the Na 2 O-B 2 O 3 -Al 2 O 3 -SiO 2 system was studied with glasses containing 2 wt percent simulated UO 2 fuel recycle waste. The results confirm that aluminosilicate glasses are more durable than their borosilicate counterparts. The leaching results are explained in terms of glass structure and bonding, and a general leaching mechanism for aluminosilicate glasses is presented

  14. Cluster formation of network-modifier cations in cesium silicate glasses

    Science.gov (United States)

    Jardón-Álvarez, Daniel; Sanders, Kevin J.; Phyo, Pyae; Baltisberger, Jay H.; Grandinetti, Philip J.

    2018-03-01

    Natural abundance 29Si two-dimensional magic-angle flipping (2D MAF) NMR spectra were measured in a series of ten cesium silicate glass compositions xCs2O.(1 - x)SiO2, where x is 0.067, 0.113, 0.175, 0.179, 0.218, 0.234, 0.263, 0.298, 0.31, and 0.36. The Q3 shielding anisotropy decreases with increasing Cs content—interpreted as an increase in the non-bridging oxygen (NBO) bond length from increasing Cs coordination (clustering) around the NBO. The 29Si 2D MAF spectra for four glass compositions x = 0.218, 0.234, 0.263, 0.298 exhibit a second co-existing and distinctly smaller shielding anisotropy corresponding to a significantly longer Si-NBO length arising from a higher degree of Cs clustering around the NBO. This second Q3 site appears at a Cs2O mole fraction close to the critical mole fraction of x = 0.24 associated with the percolation threshold of non-bridging oxygen in random close packing of oxygen, thus suggesting that the longer Si-NBO length is associated with an infinite size spanning cluster while the sites with larger anisotropies are associated with shorter Si-NBO lengths and belong to finite size clusters. The equilibrium constant of the Q3 disproportionation reaction was determined as k3 = 0.005, indicating a Qn anionic species distribution close to a binary model as expected for a low field strength modifier such as cesium. It is also found that evolution of the isotropic Q4 and line shapes with increasing Cs content are consistent with a random connectivity model between Qn of differing number of bridging oxygen, n.

  15. CRYSTALLIZATION AND THERMAL EXPANSION CHARACTERISTICS OF In2O3-CONTAINING LITHIUM IRON SILICATE-DIOPSIDE GLASSES

    Directory of Open Access Journals (Sweden)

    S.M. SALMAN

    2011-06-01

    Full Text Available The crystallization characteristics of glasses based on lithium iron silicate (LiFeSi2O6-diopside (CaMgSi2O6 composition with addition of Al2O3 at the expense of Fe2O3 were described. The effect of LiInSi2O6/CaMgSi2O6 replacements was also investigated. The thermal treatment, the crystal phases, and the micro-structural properties of (LiFeSi2O6–CaMgSi2O6 glasses, replacing partial Fe2O3 with Al2O3 and partial CaMgSi2O6 with LiInSi2O6, have been studied by a differential thermal analysis, an X-ray diffraction, and a scanning electron microscopy. The glasses show the intense uniform bulkcrystallization with the fine grained microstructure by increasing the replacement of Al2O3/Fe2O3 and LiInSi2O6/CaMgSi2O6. The crystallizing phases of Ca(Fe,Mg(SiO32, a-LiFe5O8, Li2SiO3, a-SiO2 and CaMgSi2O6 are mostly formed together, in most case, with Li0.6Al0.6Si2.4O6, β-eucryptite solid solution, LiInSi2O6, In2Si2O7, and LiFeSi2O6. The Al2O3 partial replacement increases the transformation temperature (Tg and softening one (Ts for the glasses and the glass-ceramics, and decreases the thermal expansion coefficient (a-value for the glasses. The LiInSi2O6 partial replacement decreases Tg and Ts and increases the a-value for the glasses, while the Al2O3 and LiInSi2O6 partial replacements decrease the a-value for the glassceramics. The crystallization characters of the glasses are correlated to the internal structure, as well as role played by the glass-forming cations. However, the one of the glass-ceramics are mainly attributed to the crystalline phases formed in the material.

  16. A study of the local structure around Eu3+ ions in oxide glasses using Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Todoroki, S.; Hirao, K.; Soga, N.

    1993-01-01

    The local structure around Eu 3+ ions in several oxide glasses (silicate, germanate and borophosphate glasses) was investigated by using 151 Eu Moessbauer spectroscopy. It was found that the isomer shift (IS) of silicate and borophosphate glasses was independent of the sodium content, but that of germanate glasses was not. This means the first coordination sphere around Eu 3+ ions in silicate glasses is insensitive to the composition of the glass matrix. It is assumed that, regardless of the sodium content, Eu 3+ ions in silicate glasses attract a certain amount of nonbridging oxygen (NBO, Si-O direct difference ) when incorporated stably into silicate glass matrix, because NBO is the only species donating negative charge. For germanate glasses, the behavior of IS is considered to be related to the resence of GeO 6/2 octahedra. On the basis of experimental results, the coordination models of Eu 3+ in these systems are proposed. (orig.)

  17. Effect of antimony-oxide on the shielding properties of some sodium-boro-silicate glasses.

    Science.gov (United States)

    Zoulfakar, A M; Abdel-Ghany, A M; Abou-Elnasr, T Z; Mostafa, A G; Salem, S M; El-Bahnaswy, H H

    2017-09-01

    Some sodium-silicate-boro-antimonate glasses having the molecular composition [(20) Na 2 O - (20) SiO 2 - (60-x) B 2 O 3 - (x) Sb 2 O 3 (where x takes the values 0, 5 … or 20)] have been prepared by the melt quenching method. The melting and annealing temperatures were 1500 and 650K respectively. The amorphous nature of the prepared samples was confirmed by using X-ray diffraction analysis. Both the experimental and empirical density and molar volume values showed gradual increase with increasing Sb 2 O 3 content. The empirical densities showed higher values than those obtained experimentally, while the empirical molar volume values appeared lower than those obtained experimentally, which confirm the amorphous nature and randomness character of the studied samples. The experimentally obtained shielding parameters were approximately coincident with those obtained theoretically by applying WinXCom program. At low gamma-ray energies (0.356 and 0.662MeV) Sb 2 O 3 has approximately no effect on the total Mass Attenuation Coefficient, while at high energies it acts to increase the total Mass Attenuation Coefficient gradually. The obtained Half Value Layer and Mean Free Path values showed gradual decrease as Sb 2 O 3 was gradually increased. Also, the Total Mass Attenuation Coefficient values obtained between about 0.8 and 3.0MeV gamma-ray energy showed a slight decrease, as gamma-ray photon energy increased. This may be due to the differences between the Attenuation Coefficients of both antimony and boron oxides at various gamma-ray photon energies. However, it can be stated that the addition of Sb 2 O 3 into sodium-boro-silicate glasses increases the gamma-ray Attenuation Coefficient and the best sample is that contains 20 mol% of Sb 2 O 3 , which is operating well at 0.356 and 0.662MeV gamma-ray. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Glasses, ceramics, and composites from lunar materials

    Science.gov (United States)

    Beall, George H.

    1992-01-01

    A variety of useful silicate materials can be synthesized from lunar rocks and soils. The simplest to manufacture are glasses and glass-ceramics. Glass fibers can be drawn from a variety of basaltic glasses. Glass articles formed from titania-rich basalts are capable of fine-grained internal crystallization, with resulting strength and abrasion resistance allowing their wide application in construction. Specialty glass-ceramics and fiber-reinforced composites would rely on chemical separation of magnesium silicates and aluminosilicates as well as oxides titania and alumina. Polycrystalline enstatite with induced lamellar twinning has high fracture toughness, while cordierite glass-ceramics combine excellent thermal shock resistance with high flexural strengths. If sapphire or rutile whiskers can be made, composites of even better mechanical properties are envisioned.

  19. Energy transfer characteristics of silicate glass doped with Er{sup 3+}, Tm{sup 3+}, and Ho{sup 3+} for ∼2 μm emission

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ming; Liu, Xueqiang [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Guo, Yanyan [College of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Hu, Lili [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhang, Junjie [College of Materials Science and Engineering, China Jiliang University, Hangzhou 310 018 (China)

    2013-12-28

    A Er{sup 3+}/Tm{sup 3+}/Ho{sup 3+} tri-doped silicate glass with good thermal stability is prepared by melt-quenching method. Efficient ∼2 μm emission is observed under 808 nm laser excitation. It is found that the 2.0 μm emission of Ho{sup 3+} can be enhanced under the excitation at 808 nm by incorporating Er{sup 3+} and Tm{sup 3+}. Based on the measurement of absorption spectra, the Judd–Ofelt intensity parameters, radiation emission probability, and branching ratio are calculated to evaluate the spectroscopic properties simultaneously. The maximum value of emission cross section of Ho{sup 3+} is 3.54 × 10{sup −21} cm{sup 2} at 2008 nm. Additionally, the phonon assistance and the micro-parameters in the energy transfer process are quantitatively analyzed by using Dexter model. The energy transfer coefficient from Tm{sup 3+} to Ho{sup 3+} can reach as high as 21.44 × 10{sup −40} cm{sup 6}/s, respectively. The emission property together with good thermal property indicates that Er{sup 3+}/Tm{sup 3+}/Ho{sup 3+} tri-doped silicate glass is a potential kind of laser glass for efficient 2 μm laser.

  20. Detection of structural heterogeneity of glass melts

    DEFF Research Database (Denmark)

    Yue, Yuanzheng

    2004-01-01

    The structural heterogeneity of both supercooled liquid and molten states of silicate has been studied using calorimetric method. The objects of this study are basaltic glasses and liquids. Two experimental approaches are taken to detect the structural heterogeneity of the liquids. One is the hyp......The structural heterogeneity of both supercooled liquid and molten states of silicate has been studied using calorimetric method. The objects of this study are basaltic glasses and liquids. Two experimental approaches are taken to detect the structural heterogeneity of the liquids. One...... is the hyperquench-anneal-calorimetric scan approach, by which the structural information of a basaltic supercooled liquid and three binary silicate liquids is acquired. Another is the calorimetrically repeated up- and downscanning approach, by which the structural heterogeneity, the intermediate range order...... is discussed. The ordered structure of glass melts above the liquidus temperature is indirectly characterized by use of X-ray diffraction method. The new approaches are of importance for monitoring the glass melting and forming process and for improving the physical properties of glasses and glass fibers....

  1. A structural bond strength model for glass durability

    International Nuclear Information System (INIS)

    Feng, Xiangdong; Metzger, T.B.

    1996-01-01

    A glass durability model, structural bond strength (SBS) model was developed to correlate glass durability with its composition. This model assumes that the strengths of the bonds between cations and oxygens and the structural roles of the individual elements in the glass arc the predominant factors controlling the composition dependence of the chemical durability of glasses. The structural roles of oxides in glass are classified as network formers, network breakers, and intermediates. The structural roles of the oxides depend upon glass composition and the redox state of oxides. Al 2 O 3 , ZrO 2 , Fe 2 O 3 , and B 2 O 3 are assigned as network formers only when there are sufficient alkalis to bind with these oxides. CaO can also improve durability by sharing non-bridging oxygen with alkalis, relieving SiO 2 from alkalis. The percolation phenomenon in glass is also taken into account. The SBS model is applied to correlate the 7-day product consistency test durability of 42 low-level waste glasses with their composition with an R 2 of 0.87, which is better than 0.81 obtained with an eight-coefficient empirical first-order mixture model on the same data set

  2. Inhibitory Effect of Waste Glass Powder on ASR Expansion Induced by Waste Glass Aggregate

    Directory of Open Access Journals (Sweden)

    Shuhua Liu

    2015-10-01

    Full Text Available Detailed research is carried out to ascertain the inhibitory effect of waste glass powder (WGP on alkali-silica reaction (ASR expansion induced by waste glass aggregate in this paper. The alkali reactivity of waste glass aggregate is examined by two methods in accordance with the China Test Code SL352-2006. The potential of WGP to control the ASR expansion is determined in terms of mean diameter, specific surface area, content of WGP and curing temperature. Two mathematical models are developed to estimate the inhibitory efficiency of WGP. These studies show that there is ASR risk with an ASR expansion rate over 0.2% when the sand contains more than 30% glass aggregate. However, WGP can effectively control the ASR expansion and inhibit the expansion rate induced by the glass aggregate to be under 0.1%. The two mathematical models have good simulation results, which can be used to evaluate the inhibitory effect of WGP on ASR risk.

  3. Ionic conductivity of sodium silicate glasses grown within confined volume of mesoporous silica template

    Science.gov (United States)

    Chatterjee, Soumi; Saha, Shyamal Kumar; Chakravorty, Dipankar

    2018-04-01

    Nanodimensional sodium silicate glasses of composition 30Na2O.70SiO2 has been prepared within the pores of 5.5 nm of mesoporous silica as a template using the surfactant P123. The nanocomposite was characterized by X-ray diffraction, transmission electron microscope, and X-ray photoelectron spectroscopy. Electrical conductivity of the sample was studied by ac impedance spectroscopy. The activation energy for ionic conduction was found to be 0.13 eV with dc conductivity at room temperature of 10-6 S-cm-1. This is attributed to the creation of oxygen ion vacancies at the interface of mesoporous silica and nanoglass arising out of the presence of Si2+ species in the system. These nanocomposites are expected to be useful for applications in sodiumion battery for storage of renewable energy.

  4. Alkali metals effect on the diffusion mobility of fluorine base of GaF3 and IF3

    International Nuclear Information System (INIS)

    Bakhvalov, S.G.; Livshits, A.I.; Shubin, A.A.; Petrova, E.M.

    2000-01-01

    The structure of fluoride glasses on the basis of GaF 3 and InF 3 is studied. The glass lattice bond, i.e. its uniformity or nonuniformity, was analyzed through introduction of alkali metal (LiF, NaF, RbF, CsF) into the composition of fluoride glasses. The consecutive replacement of a modification by alkali metal fluorides made it possible to establish the nonuniformity of the glass-forming lattice by studying through the NMR 19 F method. It may be confirmed by comparing the fluorine ions dynamic behavior in the glasses, based on the indium and gallium trifluorides, that the glass fluorine subsystem on the In basis is more mobile [ru

  5. Structural role of molybdenum in nuclear glasses: an EXAFS study

    International Nuclear Information System (INIS)

    Calas, G.; Le Grand, M.; Galoisy, L.; Ghaleb, D.

    2003-01-01

    The Mo environment has been investigated in inactive nuclear glasses using extended X-ray absorption spectroscopy (XAS). Mo is present in a tetrahedron coordinated to oxygen in the form of molybdate groups [MoO 4 ] 2- (d(Mo-O)=1.78 A). This surrounding is not affected by the presence of noble metal phases in the nuclear glass. Relying on the XAS results, on the bond-valence model and on molecular dynamics simulations of a simplified borosilicate model glass, we show that these groups are not directly linked to the borosilicate network but rather located within alkali and alkaline-earth rich domains in the glass. This specific location in the glass network is a way to understand the low solubility of Mo in glasses melted under oxidizing conditions. It also explains the possible phase separation of a yellow phase enriched in alkali molybdates in molten nuclear glasses or the nucleation of calcium molybdates during thermal aging of these glasses. Boron coordination changes in the molten and the glassy states may explain the difference in the composition of the crystalline molybdates, as they exert a direct influence on the activity of alkalis in borosilicate glasses and melts

  6. Formation of silver colloids on ion exchanged soda lime silicate glasses by irradiation

    International Nuclear Information System (INIS)

    Yoshimura, E.M.; Okuno, E.

    1998-01-01

    The effect of ionizing radiation (gamma rays, X-rays and electrons) on soda lime silicate glasses, in which part of the Na + was substituted by Ag + by means of an ionic exchange process, was studied. The techniques of thermally stimulated depolarization current (TSDC) and transmission electron microscopy (TEM) were employed to follow the formation of silver colloids by irradiation. Also the thermoluminescence (TL) of the samples was measured and three peaks between room temperature and 450 C were observed. The TEM and TSDC results agree that, as expected, ionizing radiation promotes the formation of silver colloids on the ion exchanged surface of soda lime glasses. Soft X-rays are much more efficient in the process than gamma rays and electrons. The correlation with thermoluminescence glow curves indicates that the intensity of a TL peak at 230 C can provide a rapid means of evaluating the presence of silver colloids. TL sensitivities, measured as area under the glow curve per unit mass and unit dose, are very similar for ion exchanged and not exchanged samples submitted to X-ray irradiation, although the peak temperatures differ in about 40 C in the two cases. For both electron and gamma irradiated samples, the TL sensitivity drops about an order of magnitude when compared to the X-ray irradiated ones. (orig.)

  7. Visible light activated catalytic effect of iron containing soda-lime silicate glass characterized by 57Fe-Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Shiro Kubuki; Jun Iwanuma; Yusuke Takahashi; Kazuhiko Akiyama; Ernoe Kuzmann; Hungarian Academy of Sciences, Budapest; Tetsuaki Nishida

    2014-01-01

    A relationship between local structure and visible light activated catalytic effect of iron containing soda lime silicate glass with the composition of 15Na 2 O·15CaO·xFe 2 O 3 ·(70-x)SiO 2 , x = 5-50 mass %, abbreviated as NCFSx was investigated by means of 57 Fe-Moessbauer spectroscopy, X-ray diffractometry (XRD), small angle X-ray scattering (SAXS), electrospray ionization mass spectrometry (ESI-MS) and ultraviolet-visible light absorption spectroscopy (UV-Vis). Moessbauer spectra of NCFSx glass with 'x' being equal to or larger than 30 after isothermal annealing at 1,000 deg C for 100 min consisted of a paramagnetic doublet and a magnetic sextet. The former had isomer shift (δ) of 0.24 mm s -1 and quadrupole splitting (Δ) of 0.99 mm s -1 due to distorted Fe III O 4 tetrahedra, and the latter had δ of 0.36 mm s -1 and internal magnetic field (H int ) of 51.8 T due to hematite (α-Fe 2 O 3 ). The absorption area (A) of α-Fe 2 O 3 varied from 47.2 to 75.9, 93.1, 64.8 and 47.9 % with 'x' from 30 to 35, 40, 45 and 50, indicating that the amount of precipitated α-Fe 2 O 3 varied with the Fe 2 O 3 content of NCFSx glass. The precipitation of α-Fe 2 O 3 was also confirmed by XRD study of annealed NCFS glass with 'x' larger than 30. A relaxed sexted with δ, H int and Γ of 0.34 mm s -1 and 37.9 T and 1.32 mm s -1 was observed from the Moessbauer spectra of annealed NCFSx glass with 'x' of 45 and 50, implying that the precipitation of non-stoichiometric iron hydroxide oxide with the composition of Fe 1.833 (OH) 0.5 O 2.5 having the similar structure of α-Fe 2 O 3 and α-FeOOH. A remarkable decrease in the concentration of methylene blue (MB) from 10 to 0.0 μmol L -1 with the first-order rate constant (k) of 2.87 × 10 -2 h -1 was observed for 10-day leaching test using annealed NCFS50 glass under visible light irradiation. ESI-MS study indicated that existence of fragments with m/z value of 129, 117 and 207 etc. originating from MB having m/z of 284. This

  8. Affinity functions for modeling glass dissolution rates

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier, W.L. [Lawrence Livermore National Lab., CA (United States)

    1997-07-01

    Glass dissolution rates decrease dramatically as glass approach ''saturation'' with respect to the leachate solution. Most repository sites are chosen where water fluxes are minimal, and therefore the waste glass is most likely to dissolve under conditions close to ''saturation''. The key term in the rate expression used to predict glass dissolution rates close to ''saturation'' is the affinity term, which accounts for saturation effects on dissolution rates. Interpretations of recent experimental data on the dissolution behaviour of silicate glasses and silicate minerals indicate the following: 1) simple affinity control does not explain the observed dissolution rate for silicate minerals or glasses; 2) dissolution rates can be significantly modified by dissolved cations even under conditions far from saturation where the affinity term is near unity; 3) the effects of dissolved species such as Al and Si on the dissolution rate vary with pH, temperature, and saturation state; and 4) as temperature is increased, the effect of both pH and temperature on glass and mineral dissolution rates decrease, which strongly suggests a switch in rate control from surface reaction-based to diffusion control. Borosilicate glass dissolution models need to be upgraded to account for these recent experimental observations. (A.C.)

  9. Water Content of Lunar Alkali Fedlspar

    Science.gov (United States)

    Mills, R. D.; Simon, J. I.; Wang, J.; Alexander, C. M. O'D.; Hauri, E. H.

    2016-01-01

    Detection of indigenous hydrogen in a diversity of lunar materials, including volcanic glass, melt inclusions, apatite, and plagioclase suggests water may have played a role in the chemical differentiation of the Moon. Spectroscopic data from the Moon indicate a positive correlation between water and Th. Modeling of lunar magma ocean crystallization predicts a similar chemical differentiation with the highest levels of water in the K- and Th-rich melt residuum of the magma ocean (i.e. urKREEP). Until now, the only sample-based estimates of water content of KREEP-rich magmas come from measurements of OH, F, and Cl in lunar apatites, which suggest a water concentration of alkali feldspar, a common mineral in K-enriched rocks, can have approx. 20 ppm of water, which implies magmatic water contents of approx. 1 wt % in the high-silica magmas. This estimate is 2 to 3 orders of magnitude higher than that estimated from apatite in similar rocks. However, the Cl and F contents of apatite in chemically similar rocks suggest that these melts also had high Cl/F ratios, which leads to spuriously low water estimates from the apatite. We can only estimate the minimum water content of urKREEP (+ bulk Moon) from our alkali feldspar data because of the unknown amount of degassing that led to the formation of the granites. Assuming a reasonable 10 to 100 times enrichment of water from urKREEP into the granites produces an estimate of 100-1000 ppm of water for the urKREEP reservoir. Using the modeling of and the 100-1000 ppm of water in urKREEP suggests a minimum bulk silicate Moon water content between 2 and 20 ppm. However, hydrogen loss was likely very significant in the evolution of the lunar mantle. Conclusions: Lunar granites crystallized between 4.3-3.8 Ga from relatively wet melts that degassed upon crystallization. The formation of these granites likely removed significant amounts of water from some mantle source regions, e.g. later mare basalts predicting derivation from a

  10. Study of photon interactions and shielding properties of silicate glasses containing Bi2O3, BaO and PbO in the energy region of 1 keV to 100 GeV

    International Nuclear Information System (INIS)

    Chanthima, N.; Kaewkhao, J.; Limsuwan, P.

    2012-01-01

    Highlights: ► Interaction photon with of silicate glasses containing PbO, BaO and Bi 2 O 3 studied. ► All interactions were changed with energy and composition of glasses. ► Shielding properties of glasses are better than some standard shielding materials. - Abstract: The mass attenuation coefficient (μ/ρ), effective atomic number (Z eff ), effective electron density (N e,eff ) and half-value layer (HVL) of xR m O n :(1 − x)SiO 2 glass system (where R m O n are Bi 2 O 3 , PbO and BaO, with 0.3 ⩽ x ⩽ 0.7 is fraction by weight) have been calculated by theoretical approach using WinXCom program in the energy region from 1 keV to 100 GeV. Also, the HVL of these glass samples has been compared with some standard shielding concretes. The variations of μ/ρ, Z eff , N e,eff and HVL with energy are shown graphically only for total photon interaction. It has been observed that the value of these parameters has been changed with energy and composition of the silicate glasses. The better shielding properties of glass samples were obtained compared with some standard shielding concretes. These results indicated that glasses in the present study can be used as radiation shielding materials.

  11. Low Velocity Sphere Impact of a Borosilicate Glass

    Energy Technology Data Exchange (ETDEWEB)

    Morrissey, Timothy G [ORNL; Ferber, Mattison K [ORNL; Wereszczak, Andrew A [ORNL; Fox, Ethan E [ORNL

    2012-05-01

    This report summarizes US Army TARDEC sponsored work at Oak Ridge National Laboratory (ORNL) involving low velocity (< 30 m/s or < 65 mph) ball impact testing of Borofloat borosilicate glass, and is a follow-up to a similar study completed by the authors on Starphire soda-lime silicate glass last year. The response of the borosilicate glass to impact testing at different angles was also studied. The Borofloat glass was supplied by the US Army Research Laboratory and its tin-side was impacted or indented. The intent was to better understand low velocity impact response in the Borofloat. Seven sphere materials were used whose densities bracket that of rock: borosilicate glass, soda-lime silicate glass, silicon nitride, aluminum oxide, zirconium oxide, carbon steel, and a chrome steel. A gas gun or a ball-drop test setup was used to produce controlled velocity delivery of the spheres against the glass tile targets. Minimum impact velocities to initiate fracture in the Borofloat were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between the seven sphere-Borofloat-target combinations. The primary observations from this low velocity (< 30 m/s or < 65 mph) testing were: (1) BS glass responded similarly to soda-lime silicate glass when spherically indented but quite differently under sphere impact conditions; (2) Frictional effects contributed to fracture initiation in BS glass when it spherically indented. This effect was also observed with soda-lime silicate glass; (3) The force necessary to initiate fracture in BS glass under spherical impact decreases with increasing elastic modulus of the sphere material. This trend is opposite to what was observed with soda-lime silicate glass. Friction cannot explain this trend and the authors do not have a legitimate explanation for it yet; (4) The force necessary to initiate contact-induced fracture is higher under dynamic conditions than under quasi-static conditions. That

  12. Glass science tutorial: Lecture number-sign 2, Operating electric glass melters. James N. Edmonson, Lecturer

    International Nuclear Information System (INIS)

    Kruger, A.A.

    1994-10-01

    This report contains basic information on electric furnaces used for glass melting and on the properties of glass useful for the stabilization of radioactive wastes. Furnace nomenclature, furnace types, typical silicate glass composition and properties, thermal conductivity information, kinetics of the melting process, glass furnace refractory materials composition and thermal conductivity, and equations required for the operation of glass melters are included

  13. Li diffusion and the effect of local structure on Li mobility in Li2O-SiO2 glasses.

    Science.gov (United States)

    Bauer, Ute; Welsch, Anna-Maria; Behrens, Harald; Rahn, Johanna; Schmidt, Harald; Horn, Ingo

    2013-12-05

    Aimed to improve the understanding of lithium migration mechanisms in ion conductors, this study focuses on Li dynamics in binary Li silicate glasses. Isotope exchange experiments and conductivity measurements were carried out to determine self-diffusion coefficients and activation energies for Li migration in Li2Si3O7 and Li2Si6O13 glasses. Samples of identical composition but different isotope content were combined for diffusion experiments in couples or triples. Diffusion profiles developed between 511 and 664 K were analyzed by femtosecond laser ablation combined with multiple collector inductively coupled plasma mass spectrometry (fs LA-MC-ICP-MS) and secondary ion mass spectrometry (SIMS). Analyses of diffusion profiles and comparison of diffusion data reveal that the isotope effect of lithium diffusion in silicate glasses is rather small, consistent with classical diffusion behavior. Ionic conductivity of glasses was measured between 312 and 675 K. The experimentally obtained self-diffusion coefficient, D(IE), and ionic diffusion coefficient, D(σ), derived from specific DC conductivity provided information about correlation effects during Li diffusion. The D(IE)/D(σ) is higher for the trisilicate (0.27 ± 0.05) than that for the hexasilicate (0.17 ± 0.02), implying that increasing silica content reduces the efficiency of Li jumps in terms of long-range movement. This trend can be rationalized by structural concepts based on nuclear magnetic resonance (NMR) and Raman spectroscopy as well as molecular dynamic simulations, that is, lithium is percolating in low-dimensional, alkali-rich regions separated by a silica-rich matrix.

  14. Zoning and exsolution in cumulate alkali feldspars from the eruption (12.9 Ka) of Laacher see volcano (Western Germany) as an indicator of time-scales and dynamics of carbonate-silicate unmixing

    Science.gov (United States)

    Sourav Rout, Smruti; Wörner, Gerhard

    2017-04-01

    Time-scales extracted from the detailed analysis of chemically zoned minerals provide insights into crystal ages, magma storage and compositional evolution, including mixing and unmixing events. This allows having a better understanding of pre-eruptive history of large and potentially dangerous magma chambers. We present a comprehensive study of chemical diffusion across zoning and exsolution patterns of alkali feldspars in carbonatite-bearing cognate syenites from the 6.3 km3 (D.R.E) phonolitic Laacher See Tephra (LST) eruption 12.9 ka ago. The Laacher See volcano is located in the Quaternary East Eifel volcanic field of the Paleozoic Rhenish Massif in Western Germany and has produced a compositionally variable sequence in a single eruption from a magma chamber that was zoned from mafic phonolite at the base to highly evolved, actively degassing phonolite magma at the top. Diffusion chronometry is applied to major and trace element compositions obtained on alkali feldspars from carbonate-bearing syenitic cumulates. Methods used were laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) in combination with energy-dispersive and wavelength-dispersive electron microprobe analyses (EDS & WDS-EMPA). The grey scale values extracted from multiple accumulations of back-scattered electron images represent the K/Na ratio owing to the extremely low concentrations of Ba and Sr (transition and phase separation). A distinctive uphill diffusive analysis is used specifically for the phase separation in the case of exsolution features (comprising of albite- and orthoclase-rich phases) in sanidines. The error values are aggregates of propagated error through calculations and the uncertainty in temperature values. Trace element compositional data of distinct feldspar compositions that are assumed to have grown before and after silicate-carbonate unmixing are used to estimate partition coefficients between carbonate and silicate melt. The resulting values correlate

  15. Borosilicate glass for gamma irradiation fields

    Science.gov (United States)

    Baydogan, N.; Tugrul, A. B.

    2012-11-01

    Four different types of silicate glass specimens were irradiated with gamma radiation using a Co-60 radioisotope. Glass specimens, with four different chemical compositions, were exposed to neutron and mixed neutron/gamma doses in the central thimble and tangential beam tube of the nuclear research reactor. Optical variations were determined in accordance with standardisation concept. Changes in the direct solar absorbance (αe) of borosilicate glass were examined using the increase in gamma absorbed dose, and results were compared with the changes in the direct solar absorbance of the three different type silicate glass specimens. Solar absorption decreased due to decrease of penetration with absorbed dose. αe of borosilicate increased considerably when compared with other glass types. Changes in optical density were evaluated as an approach to create dose estimation. Mixed/thermal neutron irradiation on glass caused to increse αe.

  16. The dissolution rate of silicate glasses and minerals: an alternative model based on several activated complexes

    International Nuclear Information System (INIS)

    Berger, G.

    1997-01-01

    Most of the mineral reactions in natural water-rock systems progress at conditions close to the chemical equilibrium. The kinetics of these reactions, in particular the dissolution rate of the primary minerals, is a major constrain for the numerical modelling of diagenetic and hydrothermal processes. In the case of silicates, recent experimental studies have pointed out the necessity to better understand the elementary reactions which control the dissolution process. This article presents several models that have been proposed to account for the observed dissolution rate/chemical affinity relationships. The case of glasses (R7T7), feldspars and clays, in water, in near neutral pH aqueous solutions and in acid/basic media, are reviewed. (A.C.)

  17. Plutonium recovery from spent glass fiber paper fine air filter

    International Nuclear Information System (INIS)

    Rovnyj, S.I.; Guzhavin, V.I.; Pyatin, N.P.; Evlanov, D.S.

    2002-01-01

    Investigations into the realizing technology of plutonium recovery from waste glass paper filters of fine purification were conducted. Two process schemes involving the nitro-fluoro-acid treatment of glass paper in the mixture of nitric and hydrofluoric acids and the previous alkali treatment of glass paper with the following nitro-fluoro-acid leaching of plutonium from pulp by the mixture of nitric and hydrofluoric acids were developed. Alkali, nitrate solutions and insoluble precipitants were analyzed for plutonium content [ru

  18. Role of magnesium oxide and strontium oxide as modifiers in silicate-based bioactive glasses: Effects on thermal behaviour, mechanical properties and in-vitro bioactivity

    International Nuclear Information System (INIS)

    Bellucci, Devis; Sola, Antonella; Salvatori, Roberta; Anesi, Alexandre; Chiarini, Luigi; Cannillo, Valeria

    2017-01-01

    The composition of a CaO-rich silicate bioglass (BG-Ca-Mix, in mol%: 2.3 Na 2 O; 2.3 K 2 O; 45.6 CaO; 2.6 P 2 O 5 ; 47.2 SiO 2 ) was modified by replacing a fixed 10 mol% of CaO with MgO or SrO or fifty-fifty MgO-SrO. The thermal behaviour of the modified glasses was accurately evaluated via differential thermal analysis (DTA), heating microscopy and direct sintering tests. The presence of MgO and/or SrO didn't interfere with the thermal stability of the parent glass, since all the new glasses remained completely amorphous after sintering (treatment performed at 753 °C for the glass with MgO; at 750 °C with SrO; at 759 °C with MgO and SrO). The sintered samples achieved good mechanical properties, with a Young's modulus ranging between 57.9 ± 6.7 for the MgO-SrO modified composition and 112.6 ± 8.0 GPa for the MgO-modified one. If immersed in a simulated body fluid (SBF), the modified glasses after sintering retained the strong apatite forming ability of the parent glass, in spite of the presence of MgO and/or SrO. Moreover, the sintered glasses, tested with MLO-Y4 osteocytes by means of a multi-parametrical approach, showed a good bioactivity in vitro, since neither the glasses nor their extracts caused any negative effect on cell viability or any inhibition on cell growth. The best results were achieved by the MgO-modified glasses, both BGMIX-Mg and BGMIX-MgSr, which were able to exert a strong stimulating effect on the cell growth, thus confirming the beneficial effect of MgO on the glass bioactivity. - Highlights: • The composition of a CaO-rich, K 2 O-containing silicate bioglass was modified: • A fixed 10 mol% of CaO was replaced with MgO or SrO or fifty-fifty MgO-SrO. • The sintered glasses showed a strong volume shrinkage with low residual porosity. • The samples showed good mechanical performance and apatite-forming ability in vitro. • The presence of such oxides, especially MgO, improves the samples' bioactivity.

  19. Role of magnesium oxide and strontium oxide as modifiers in silicate-based bioactive glasses: Effects on thermal behaviour, mechanical properties and in-vitro bioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, Devis, E-mail: devis.bellucci@unimore.it [Department of Engineering “E. Ferrari”, University of Modena and Reggio Emilia, Via P. Vivarelli 10, 41125 Modena (Italy); Sola, Antonella [Department of Engineering “E. Ferrari”, University of Modena and Reggio Emilia, Via P. Vivarelli 10, 41125 Modena (Italy); Salvatori, Roberta; Anesi, Alexandre; Chiarini, Luigi [Lab. Biomaterials, Department of Medical and Surgical Sciences of Children & Adults, University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena (Italy); Cannillo, Valeria [Department of Engineering “E. Ferrari”, University of Modena and Reggio Emilia, Via P. Vivarelli 10, 41125 Modena (Italy)

    2017-03-01

    The composition of a CaO-rich silicate bioglass (BG-Ca-Mix, in mol%: 2.3 Na{sub 2}O; 2.3 K{sub 2}O; 45.6 CaO; 2.6 P{sub 2}O{sub 5}; 47.2 SiO{sub 2}) was modified by replacing a fixed 10 mol% of CaO with MgO or SrO or fifty-fifty MgO-SrO. The thermal behaviour of the modified glasses was accurately evaluated via differential thermal analysis (DTA), heating microscopy and direct sintering tests. The presence of MgO and/or SrO didn't interfere with the thermal stability of the parent glass, since all the new glasses remained completely amorphous after sintering (treatment performed at 753 °C for the glass with MgO; at 750 °C with SrO; at 759 °C with MgO and SrO). The sintered samples achieved good mechanical properties, with a Young's modulus ranging between 57.9 ± 6.7 for the MgO-SrO modified composition and 112.6 ± 8.0 GPa for the MgO-modified one. If immersed in a simulated body fluid (SBF), the modified glasses after sintering retained the strong apatite forming ability of the parent glass, in spite of the presence of MgO and/or SrO. Moreover, the sintered glasses, tested with MLO-Y4 osteocytes by means of a multi-parametrical approach, showed a good bioactivity in vitro, since neither the glasses nor their extracts caused any negative effect on cell viability or any inhibition on cell growth. The best results were achieved by the MgO-modified glasses, both BGMIX-Mg and BGMIX-MgSr, which were able to exert a strong stimulating effect on the cell growth, thus confirming the beneficial effect of MgO on the glass bioactivity. - Highlights: • The composition of a CaO-rich, K{sub 2}O-containing silicate bioglass was modified: • A fixed 10 mol% of CaO was replaced with MgO or SrO or fifty-fifty MgO-SrO. • The sintered glasses showed a strong volume shrinkage with low residual porosity. • The samples showed good mechanical performance and apatite-forming ability in vitro. • The presence of such oxides, especially MgO, improves the samples

  20. Properties of Hooked Steel Fibers Reinforced Alkali Activated Material Concrete

    Directory of Open Access Journals (Sweden)

    Faris M. A.

    2016-01-01

    Full Text Available In this study, alkali activated material was produced by using Class F fly ash from Manjung power station, Lumut, Perak, Malaysia. Fly ash then was activated by alkaline activator which is consisting of sodium silicate (Na2SiO3 and sodium hydroxide (NaOH. Hooked end steel fibers were added into the alkali activated material system with percentage vary from 0 % – 5 %. Chemical compositions of fly ash were first analyzed by using x-ray fluorescence (XRF. All hardened alkali activated material samples were tested for density, workability, and compression after 28 days. Results show a slight increase of density with the addition of steel fibers. However, the workability was reduced with the addition of steel fibers content. Meanwhile, the addition of steel fibers shows the improvement of compressive strength which is about 19 % obtained at 3 % of steel fibers addition.

  1. Kinetics of iron redox reaction in silicate melts: A high temperature Xanes study on an alkali basalt

    Energy Technology Data Exchange (ETDEWEB)

    Cochain, B; Neuville, D R; Roux, J; Strukelj, E; Richet, P [Physique des Mineraux et Magmas, Geochimie-Cosmochimie, CNRS-IPGP, 4 place Jussieu, 75005 Paris (France); Ligny, D de [Universite Claude Bernard Lyon 1, LPCML, F-69622 Villeurbanne (France); Baudelet, F, E-mail: cochain@ipgp.jussieu.f [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin (France)

    2009-11-15

    In Earth and Materials sciences, iron is the most important transition element. Glass and melt properties are strongly affected by iron content and redox state with the consequence that some properties (i.e. viscosity, heat capacity, crystallization...) depend not only on the amounts of Fe{sup 2+} and Fe{sup 3+}, but also on the coordination state of these ions. In this work we investigate iron redox reactions through XANES experiments at the K-edge of iron. Using a high-temperature heating device, pre-edge of XANES spectra exhibits definite advantages to make in-situ measurements and to determine the evolution of redox state with time, temperature and composition of synthetic silicate melts. In this study, new kinetics measurements are presented for a basalt melt from the 31,000-BC eruption of the Puy de Lemptegy Volcano in France. These measurements have been made between 773 K and at superliquidus temperatures up to 1923 K.

  2. Kinetics of iron redox reaction in silicate melts: A high temperature Xanes study on an alkali basalt

    International Nuclear Information System (INIS)

    Cochain, B; Neuville, D R; Roux, J; Strukelj, E; Richet, P; Ligny, D de; Baudelet, F

    2009-01-01

    In Earth and Materials sciences, iron is the most important transition element. Glass and melt properties are strongly affected by iron content and redox state with the consequence that some properties (i.e. viscosity, heat capacity, crystallization...) depend not only on the amounts of Fe 2+ and Fe 3+ , but also on the coordination state of these ions. In this work we investigate iron redox reactions through XANES experiments at the K-edge of iron. Using a high-temperature heating device, pre-edge of XANES spectra exhibits definite advantages to make in-situ measurements and to determine the evolution of redox state with time, temperature and composition of synthetic silicate melts. In this study, new kinetics measurements are presented for a basalt melt from the 31,000-BC eruption of the Puy de Lemptegy Volcano in France. These measurements have been made between 773 K and at superliquidus temperatures up to 1923 K.

  3. Thermogravimetric analysis of phase transitions in cement compositions mixed by sodium silicate solution

    Directory of Open Access Journals (Sweden)

    Fedosov Sergey Viktorovich

    2014-01-01

    Full Text Available This paper presents a study of the capability to modify cement by mechanical activation of sodium silicate water solution. Admixtures or blends of binding agents were employed for modifying concrete properties. The liquid glass is applied to protect from chemically or physically unfavorable environmental impacts, such as acidic medium and high temperature. The sodium silicate is a high-capacity setting accelerator. The increasing of the liquid glass proportion in the mix leads to the degradation of the cement paste plasticity and for this reason it is necessary to reduce the amount of liquid glass in the cement paste. The activation of dilute water solution of sodium silicate into rotary pulsating apparatus directly before tempering of the cement paste is an effective way to decrease mass fraction of liquid glass in the cement paste. The results of the combined influence of liquid glass and mechanical activation on physicochemical processes taking place in cement stone are represented in this research. Thermogravimetric analysis was used in order to study cement blends. Thermogravimetric analysis of modified cement stone assays was performed by thermo analyzer SETARAM TGA 92-24. The results of the analysis of phase transition taking place under high-temperature heating of cement stone modified by the mechanical activation of the water solution of the sodium silicate were introduced. Thermograms of cement stone assays were obtained at different hardening age. The comparison of these thermograms allows us to come to a conclusion on the formation and the retention during long time of a more dense structure of the composite matrix mixed by the mechanical activation of sodium silicate water solution. The relation between the concrete composition and its strength properties was stated. Perhaps, the capability of modified concrete to keep calcium ions in sparingly soluble hydrosilicates leads to the increase in its durability and corrosion resistance.

  4. Electrical properties of phosphate glasses

    International Nuclear Information System (INIS)

    Mogus-Milankovic, A; Santic, A; Reis, S T; Day, D E

    2009-01-01

    Investigation of the electrical properties of phosphate glasses where transition metal oxide such as iron oxide is the network former and network modifier is presented. Phosphate glasses containing iron are electronically conducting glasses where the polaronic conduction is due to the electron hopping from low to high iron valence state. The identification of structural defects caused by ion/polaron migration, the analysis of dipolar states and electrical conductivity in iron phosphate glasses containing various alkali and mixed alkali ions was performed on the basis of the impedance spectroscopy (IS). The changes in electrical conductivity from as-quenched phosphate glass to fully crystallized glass (glass-ceramics) by IS are analyzed. A change in the characteristic features of IS follows the changes in glass and crystallized glass network. Using IS, the contribution of glass matrix, crystallized grains and grain boundary to the total electrical conductivity for iron phosphate glasses was analyzed. It was shown that decrease in conductivity is caused by discontinuities in the conduction pathways as a result of the disruption of crystalline network where two or more crystalline phases are formed. Also, phosphate-based glasses offer a unique range of biomaterials, as they form direct chemical bonding with hard/soft tissue. The surface charges of bioactive glasses are recognized to be the most important factors in determining biological responses. The improved bioactivity of the bioactive glasses as a result of the effects of the surface charges generated by electrical polarization is discussed.

  5. Properties Of Soda/Yttria/Silica Glasses

    Science.gov (United States)

    Angel, Paul W.; Hann, Raiford E.

    1994-01-01

    Experimental study of glass-formation compositional region of soda/ yttria/silicate system and of selected physical properties of glasses within compositional region part of continuing effort to identify glasses with high coefficients of thermal expansion and high softening temperatures, for use as coatings on superalloys and as glass-to-metal seals.

  6. PLUTONIUM SOLUBILITY IN HIGH-LEVEL WASTE ALKALI BOROSILICATE GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J.; Crawford, C.; Fox, K.; Bibler, N.

    2011-01-04

    The solubility of plutonium in a Sludge Batch 6 (SB6) reference glass and the effect of incorporation of Pu in the glass on specific glass properties were evaluated. A Pu loading of 1 wt % in glass was studied. Prior to actual plutonium glass testing, surrogate testing (using Hf as a surrogate for Pu) was conducted to evaluate the homogeneity of significant quantities of Hf (Pu) in the glass, determine the most appropriate methods to evaluate homogeneity for Pu glass testing, and to evaluate the impact of Hf loading in the glass on select glass properties. Surrogate testing was conducted using Hf to represent between 0 and 1 wt % Pu in glass on an equivalent molar basis. A Pu loading of 1 wt % in glass translated to {approx}18 kg Pu per Defense Waste Processing Facility (DWPF) canister, or about 10X the current allowed limit per the Waste Acceptance Product Specifications (2500 g/m{sup 3} of glass or about 1700 g/canister) and about 30X the current allowable concentration based on the fissile material concentration limit referenced in the Yucca Mountain Project License Application (897 g/m{sup 3}3 of glass or about 600 g Pu/canister). Based on historical process throughput data, this level was considered to represent a reasonable upper bound for Pu loading based on the ability to provide Pu containing feed to the DWPF. The task elements included evaluating the distribution of Pu in the glass (e.g. homogeneity), evaluating crystallization within the glass, evaluating select glass properties (with surrogates), and evaluating durability using the Product Consistency Test -- Method A (PCT-A). The behavior of Pu in the melter was evaluated using paper studies and corresponding analyses of DWPF melter pour samples.The results of the testing indicated that at 1 wt % Pu in the glass, the Pu was homogeneously distributed and did not result in any formation of plutonium-containing crystalline phases as long as the glass was prepared under 'well-mixed' conditions

  7. Plutonium Solubility In High-Level Waste Alkali Borosilicate Glass

    International Nuclear Information System (INIS)

    Marra, J.; Crawford, C.; Fox, K.; Bibler, N.

    2011-01-01

    The solubility of plutonium in a Sludge Batch 6 (SB6) reference glass and the effect of incorporation of Pu in the glass on specific glass properties were evaluated. A Pu loading of 1 wt % in glass was studied. Prior to actual plutonium glass testing, surrogate testing (using Hf as a surrogate for Pu) was conducted to evaluate the homogeneity of significant quantities of Hf (Pu) in the glass, determine the most appropriate methods to evaluate homogeneity for Pu glass testing, and to evaluate the impact of Hf loading in the glass on select glass properties. Surrogate testing was conducted using Hf to represent between 0 and 1 wt % Pu in glass on an equivalent molar basis. A Pu loading of 1 wt % in glass translated to ∼18 kg Pu per Defense Waste Processing Facility (DWPF) canister, or about 10X the current allowed limit per the Waste Acceptance Product Specifications (2500 g/m 3 of glass or about 1700 g/canister) and about 30X the current allowable concentration based on the fissile material concentration limit referenced in the Yucca Mountain Project License Application (897 g/m 3 3 of glass or about 600 g Pu/canister). Based on historical process throughput data, this level was considered to represent a reasonable upper bound for Pu loading based on the ability to provide Pu containing feed to the DWPF. The task elements included evaluating the distribution of Pu in the glass (e.g. homogeneity), evaluating crystallization within the glass, evaluating select glass properties (with surrogates), and evaluating durability using the Product Consistency Test -- Method A (PCT-A). The behavior of Pu in the melter was evaluated using paper studies and corresponding analyses of DWPF melter pour samples.The results of the testing indicated that at 1 wt % Pu in the glass, the Pu was homogeneously distributed and did not result in any formation of plutonium-containing crystalline phases as long as the glass was prepared under 'well-mixed' conditions. The incorporation of 1 wt

  8. Potential Applications of Alkali-Activated Alumino-Silicate Binders in Military Operations

    Science.gov (United States)

    1985-11-01

    portland 14 cement clinker) are to be blended, they are generally not ground together. However, some plasticizers (such as alkali lignosulphonate ) have a...34--- 31. Activators may also contain wetting agents (plasticizers) to re- duce the amount of water needed and to assist in mixing. Lignosulphonates ...or sulphonated lignins, have proven to be more effective than melamine or naphthalene-based superplastiCizers (Forss 1981, 1982). Lignosulphonates can

  9. Nanostructured materials, production and application in construction

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2014-12-01

    Full Text Available The paper considers characteristics of water-soluble high module silicate systems: based on polysilicates of alkali element called liquid glasses and the chains of their transformations from the lowest oligomers into the highest ones with further formation colloid solutions – silica sol. The authors describe the potentialities of the use of such systems as binders or modifying additives to produce different nanostructured silicate polymer concretes. There are examples of prospective application of liquid glass and water solutions of high module silicates in industrial areas and construction. Quantum-chemical calculations of the structure and properties of tetraphenylarsonium are given and heterogeneity of its functional groups is shown.

  10. Influence of ZnO/MgO substitution on sintering, crystallisation, and bio-activity of alkali-free glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, Saurabh [Department of Materials and Ceramics Engineering, University of Aveiro, CICECO, 3810-193 Aveiro (Portugal); Goel, Ashutosh [Department of Materials Science and Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8065 (United States); Correia, Ana Filipa [Department of Materials and Ceramics Engineering, University of Aveiro, CICECO, 3810-193 Aveiro (Portugal); Pascual, Maria J. [Instituto de Cerámica y Vidrio (CSIC), Kelsen 5, Campus de Cantoblanco, 28049 Madrid (Spain); Lee, Hye-Young; Kim, Hae-Won [Institute of Tissue Regeneration Engineering (ITREN) & College of Dentistry, Dankook University, Cheonan 330714 (Korea, Republic of); Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan 330714 (Korea, Republic of); Ferreira, José M.F., E-mail: jmf@ua.pt [Department of Materials and Ceramics Engineering, University of Aveiro, CICECO, 3810-193 Aveiro (Portugal)

    2015-08-01

    The present study reports on the influence of partial replacement of MgO by ZnO on the structure, crystallisation behaviour and bioactivity of alkali-free bioactive glass-ceramics (GCs). A series of glass compositions (mol%): 36.07 CaO–(19.24 − x) MgO–x ZnO–5.61 P{sub 2}O{sub 5}–38.49 SiO{sub 2}–0.59 CaF{sub 2} (x = 2–10) have been synthesised by melt–quench technique. The structural changes were investigated by solid-state magic angle spinning nuclear magnetic resonance (MAS-NMR), X-ray diffraction and differential thermal analysis. The sintering and crystallisation behaviours of glass powders were studied by hot-stage microscopy and differential thermal analysis, respectively. All the glass compositions exhibited good densification ability resulting in well sintered and mechanically strong GCs. The crystallisation and mechanical behaviour were studied under non-isothermal heating conditions at 850 °C for 1 h. Diopside was the primary crystalline phase in all the GCs followed by fluorapatite and rankinite as secondary phases. Another phase named petedunnite was identified in GCs with ZnO content > 4 mol. The proliferation of mesenchymal stem cells (MSCs) and their alkaline phosphatase activity (ALP) on GCs was revealed to be Zn-dose dependent with the highest performance being observed for 4 mol% ZnO. - Highlights: • The addition of zinc to glasses decreased T{sub g} and promoted crystallisation. • Zinc enhanced the sintering ability and increased mechanical strength by 36%. • The apatite formation ability decreased with increasing Zn contents. • Zinc stimulated mesenchymal stem cell proliferation in a dose dependent manner.

  11. Influence of ZnO/MgO substitution on sintering, crystallisation, and bio-activity of alkali-free glass-ceramics

    International Nuclear Information System (INIS)

    Kapoor, Saurabh; Goel, Ashutosh; Correia, Ana Filipa; Pascual, Maria J.; Lee, Hye-Young; Kim, Hae-Won; Ferreira, José M.F.

    2015-01-01

    The present study reports on the influence of partial replacement of MgO by ZnO on the structure, crystallisation behaviour and bioactivity of alkali-free bioactive glass-ceramics (GCs). A series of glass compositions (mol%): 36.07 CaO–(19.24 − x) MgO–x ZnO–5.61 P 2 O 5 –38.49 SiO 2 –0.59 CaF 2 (x = 2–10) have been synthesised by melt–quench technique. The structural changes were investigated by solid-state magic angle spinning nuclear magnetic resonance (MAS-NMR), X-ray diffraction and differential thermal analysis. The sintering and crystallisation behaviours of glass powders were studied by hot-stage microscopy and differential thermal analysis, respectively. All the glass compositions exhibited good densification ability resulting in well sintered and mechanically strong GCs. The crystallisation and mechanical behaviour were studied under non-isothermal heating conditions at 850 °C for 1 h. Diopside was the primary crystalline phase in all the GCs followed by fluorapatite and rankinite as secondary phases. Another phase named petedunnite was identified in GCs with ZnO content > 4 mol. The proliferation of mesenchymal stem cells (MSCs) and their alkaline phosphatase activity (ALP) on GCs was revealed to be Zn-dose dependent with the highest performance being observed for 4 mol% ZnO. - Highlights: • The addition of zinc to glasses decreased T g and promoted crystallisation. • Zinc enhanced the sintering ability and increased mechanical strength by 36%. • The apatite formation ability decreased with increasing Zn contents. • Zinc stimulated mesenchymal stem cell proliferation in a dose dependent manner

  12. Optical Characterization of Nano- and Microcrystals of EuPO₄ Created by One-Step Synthesis of Antimony-Germanate-Silicate Glass Modified by P₂O₅.

    Science.gov (United States)

    Zmojda, Jacek; Kochanowicz, Marcin; Miluski, Piotr; Baranowska, Agata; Pisarski, Wojciech A; Pisarska, Joanna; Jadach, Renata; Sitarz, Maciej; Dorosz, Dominik

    2017-09-09

    Technology of active glass-ceramics (GC) is an important part of luminescent materials engineering. The classic method to obtain GC is based on annealing of parent glass in proper temperature and different time periods. Generally, only the bulk materials are investigated as a starting host for further applications. However, the effect of an additional heat-treatment process on emission and structural properties during GC processing is omitted. Here, we focus on the possibility of obtaining transparent glass-ceramic doped with europium ions directly with a melt-quenching method. The influence of phosphate concentration (up to 10 mol %) on the inversion symmetry of local environment of Eu 3+ ions in antimony-germanate-silicate (SGS) glass has been investigated. The Stark splitting of luminescence spectra and the local asymmetry ratio estimated by relation of (⁵D₀→⁷F₂)/(⁵D₀→⁷F₁) transitions in fabricated glass confirms higher local symmetry around Eu 3+ ions. Based on XRD and SEM/EDX measurements, the EuPO₄ nano- and microcrystals with monoclinic geometry were determined. Therefore, in our experiment, we confirmed possibility of one-step approach to fabricate crystalline structures (glass-ceramic) in Eu-doped SGS glass without additional annealing process.

  13. Analysis of H2O in silicate glass using attenuated total reflectance (ATR) micro-FTIR spectroscopy

    Science.gov (United States)

    Lowenstern, Jacob B.; Pitcher, Bradley W.

    2013-01-01

    We present a calibration for attenuated total reflectance (ATR) micro-FTIR for analysis of H2O in hydrous glass. A Ge ATR accessory was used to measure evanescent wave absorption by H2O within hydrous rhyolite and other standards. Absorbance at 3450 cm−1 (representing total H2O or H2Ot) and 1630 cm−1 (molecular H2O or H2Om) showed high correlation with measured H2O in the glasses as determined by transmission FTIR spectroscopy and manometry. For rhyolite, wt%H2O=245(±9)×A3450-0.22(±0.03) and wt%H2Om=235(±11)×A1630-0.20(±0.03) where A3450 and A1630 represent the ATR absorption at the relevant infrared wavelengths. The calibration permits determination of volatiles in singly polished glass samples with spot size down to ~5 μm (for H2O-rich samples) and detection limits of ~0.1 wt% H2O. Basaltic, basaltic andesite and dacitic glasses of known H2O concentrations fall along a density-adjusted calibration, indicating that ATR is relatively insensitive to glass composition, at least for calc-alkaline glasses. The following equation allows quantification of H2O in silicate glasses that range in composition from basalt to rhyolite: wt%H2O=(ω×A3450/ρ)+b where ω = 550 ± 21, b = −0.19 ± 0.03, ρ = density, in g/cm3, and A3450 is the ATR absorbance at 3450 cm−1. The ATR micro-FTIR technique is less sensitive than transmission FTIR, but requires only a singly polished sample for quantitative results, thus minimizing time for sample preparation. Compared with specular reflectance, it is more sensitive and better suited for imaging of H2O variations in heterogeneous samples such as melt inclusions. One drawback is that the technique can damage fragile samples and we therefore recommend mounting of unknowns in epoxy prior to polishing. Our calibration should hold for any Ge ATR crystals with the same incident angle (31°). Use of a different crystal type or geometry would require measurement of several H2O-bearing standards to provide a crystal

  14. Soda-Lime-Silicate Float Glass: A Property Comparison

    Science.gov (United States)

    2017-10-01

    temperature. West Conshohocken (PA): ASTM International; 2012. 4. Quinn GD, Swab JJ . Fracture toughness of glasses as measured by the SCF and SEPB methods...Swab JJ , Patel PJ, Tran X, Gilde L, Luoto E, Gaviola MH, Gott A, Paulson B, Kilczewski S. Equibiaxial flexure strength of glass: influence of glass

  15. Effect of Er{sub 2}O{sub 3} dopant on electrical and optical properties of potassium sodium niobate silicate glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Yongsiri, Ploypailin [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sirisoonthorn, Somnuk [National Metal and Materials Technology Center, Pathumthani 12120 (Thailand); Pengpat, Kamonpan, E-mail: kamonpan.p@cmu.ac.th [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-09-15

    Highlights: • The KNN–SiO{sub 2} doped Er{sub 2}O{sub 3} glass-ceramics was prepared by incorporation method. • High dielectric constant (458.41 at 100 kHz) and low loss (0.0005) could be obtained. • TEM and SEM confirmed the existence of KNN crystals embedded in glass matrix. • The Er{sub 2}O{sub 3} dopant causes insignificant effect on modifying E{sub g} value. - Abstract: In this study, transparent glass-ceramics from potassium sodium niobate (KNN)-silicate glass system doped with erbium oxide (Er{sub 2}O{sub 3}) were successfully prepared by incorporation method. KNN was added in glass batches as heterogeneous nucleating agent. The KNN powder was mixed with SiO{sub 2} and Er{sub 2}O{sub 3} dopant with KNN and Er{sub 2}O{sub 3} content varied between 70–80 and 0.5–1.0 mol%, respectively. Each batch was subsequently melted at 1300 °C for 15 min in a platinum crucible using an electric furnace. The quenched glasses were then subjected to heat treatment at various temperatures for 4 h. XRD results showed that the prepared glass ceramics contained crystals of KNN solid solution. In contrary, dielectric constant (ϵ{sub r}) and dielectric loss (tan δ) were found to increase with increasing heat treatment temperature. Additionally, optical properties such as absorbance and energy band gap have been investigated.

  16. Crystallization and chemical durability of glasses in the system Bi2O3-SiO2

    International Nuclear Information System (INIS)

    Fredericci, C.

    2011-01-01

    The crystallization of the Bi 2 O 3 -SiO 2 -TiO 2 -Al 2 O 3 -Na 2 O-K 2 O and Bi 2 O 3 -SiO 2 -ZnO-Al 2 O 3 -B 2 O 3 -Na 2 O glasses was studied using glass samples prepared by traditional melt-quench method. Differential thermal analysis (DTA) curves suggested that surface crystallization played a major role in the crystallization of the glass samples. X-ray diffraction (XRD) analysis revealed the crystallization of bismuth silicate for both glasses and bismuth silicate and zinc silicate for the glass containing ZnO. Through scanning electron microscopy (MEV) and energy dispersive spectroscopy (EDS), it was possible to observe that the crystals of zinc silicate (Zn 2 SiO 4 ) were readily attacked by hot 0,1 N sulfuric acid, whereas bismuth silicate crystals were more resistant to acidic attack etching. (author)

  17. On-site Raman analysis of ancient glasses and stained-glass windows: modeling, procedure, lixiviation and characterization

    International Nuclear Information System (INIS)

    Tournie, Aurelie

    2009-01-01

    The aim of this study is to estimate the possibilities of Raman spectrometry to identify on site old glasses (objects, stained-glass windows...) whatever been their preserving state. The efficiency of Raman analysis depends strongly of the structural organization of glasses and then of their technological history. In order to differentiate the great silicate family compounds from their Raman analysis, a methodology has been developed: data acquisition and spectrum processing, Raman parameters extraction and classification of these glasses. This approach has then been extended to crystalline phosphates and silicates. Beforehand, correlations between crystallo-chemical parameters and vibrational signatures have been considered. The old glasses are often recovered by a corrosion layer which induces important changes on the Raman signature. Four layers have been identified and characterized by a multi-scale study: leached porous layer, transition zone, cracked zone and sound glass. The results show that only an analytical chemistry approach (databases of Raman signatures) is not sufficient and that a solid chemistry and physics approach is required to explain the spectral answers and extract the relevant parameters from glasses preserving [fr

  18. Development of Li+ alumino-silicate ion source

    International Nuclear Information System (INIS)

    Roy, P.K.; Seidl, P.A.; Waldron, W.; Greenway, W.; Lidia, S.; Anders, A.; Kwan, J.

    2009-01-01

    To uniformly heat targets to electron-volt temperatures for the study of warm dense matter, one strategy is to deposit most of the ion energy at the peak of energy loss (dE/dx) with a low (E < 5 MeV) kinetic energy beam and a thin target. Lower mass ions have a peak dE/dx at a lower kinetic energy. To this end, a small lithium (Li+) alumino-silicate source has been fabricated, and its emission limit has been measured. These surface ionization sources are heated to 1000-1150 C where they preferentially emit singly ionized alkali ions. Alumino-silicates sources of K+ and Cs+ have been used extensively in beam experiments, but there are additional challenges for the preparation of high-quality Li+ sources: There are tighter tolerances in preparing and sintering the alumino-silicate to the substrate to produce an emitter that gives uniform ion emission, sufficient current density and low beam emittance. We report on recent measurements ofhigh ( up to 35 mA/cm2) current density from a Li+ source. Ion species identification of possible contaminants is being verified with a Wien (E x B) filter, and via time-of-flight.

  19. SUMMARY OF 2010 DOE EM INTERNATIONAL PROGRAM STUDIES OF WASTE GLASS STRUCTURE AND PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Choi, A.; Marra, J.; Billings, A.

    2011-02-07

    Collaborative work between the Savannah River National Laboratory (SRNL) and SIA Radon in Russia was divided among three tasks for calendar year 2010. The first task focused on the study of simplified high level waste glass compositions with the objective of identifying the compositional drivers that lead to crystallization and poor chemical durability. The second task focused on detailed characterization of more complex waste glass compositions with unexpectedly poor chemical durabilities. The third task focused on determining the structure of select high level waste glasses made with varying frit compositions in order to improve models under development for predicting the melt rate of the Defense Waste Processing Facility (DWPF) glasses. The majority of these tasks were carried out at SIA Radon. Selection and fabrication of the glass compositions, along with chemical composition measurements and evaluations of durability were carried out at SRNL and are described in this report. SIA Radon provided three summary reports based on the outcome of the three tasks. These reports are included as appendices to this document. Briefly, the result of characterization of the Task 1 glasses may indicate that glass compositions where iron is predominantly tetrahedrally coordinated have more of a tendency to crystallize nepheline or nepheline-like phases. For the Task 2 glasses, the results suggested that the relatively low fraction of tetrahedrally coordinated boron and the relatively low concentrations of Al{sub 2}O{sub 3} available to form [BO{sub 4/2}]{sup -}Me{sup +} and [AlO{sub 4/2}]{sup -}Me{sup +} tetrahedral units are not sufficient to consume all of the alkali ions, and thus these alkali ions are easily leached from the glasses. All of the twelve Task 3 glass compositions were determined to be mainly amorphous, with some minor spinel phases. Several key structural units such as metasilicate chains and rings were identified, which confirms the current modeling

  20. Structural investigations of borosilicate glasses containing MoO{sub 3} by MAS NMR and Raman spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Caurant, D., E-mail: daniel-caurant@enscp.f [Laboratoire de Chimie de la Matiere Condensee de Paris, UMR-CNRS 7574, Ecole Nationale Superieure de Chimie de Paris (ENSCP, ParisTech), 11 rue Pierre et Marie Curie, 75231 Paris (France); Majerus, O.; Fadel, E.; Quintas, A. [Laboratoire de Chimie de la Matiere Condensee de Paris, UMR-CNRS 7574, Ecole Nationale Superieure de Chimie de Paris (ENSCP, ParisTech), 11 rue Pierre et Marie Curie, 75231 Paris (France); Gervais, C. [Laboratoire de Chimie de la Matiere Condensee de Paris, UMR-CNRS 7574, Universite Pierre et Marie Curie, 75252 Paris (France); Charpentier, T. [CEA, IRAMIS, Service Interdisciplinaire sur les Systemes Moleculaires et Materiaux, CEA Saclay, 91191 Gif-sur-Yvette (France); Neuville, D. [Physique des Mineraux et des Magmas, UMR-CNRS 7047, Institut de Physique du Globe, place Jussieu, 75252 Paris (France)

    2010-01-01

    High molybdenum concentration in glass compositions may lead to alkali and alkaline-earth molybdates crystallization during melt cooling that must be controlled particularly during the preparation of highly radioactive nuclear glassy waste forms. To understand the effect of molybdenum addition on the structure of a simplified nuclear glass and to know how composition changes can affect molybdates crystallization tendency, the structure of two glass series belonging to the SiO{sub 2}-B{sub 2}O{sub 3}-Na{sub 2}O-CaO-MoO{sub 3} system was studied by {sup 29}Si, {sup 11}B, {sup 23}Na MAS NMR and Raman spectroscopies by increasing MoO{sub 3} or B{sub 2}O{sub 3} concentrations. Increasing MoO{sub 3} amount induced an increase of the silicate network reticulation but no significant effect was observed on the proportion of BO{sub 4}{sup -} units and on the distribution of Na{sup +} cations in glass structure. By increasing B{sub 2}O{sub 3} concentration, a strong evolution of the distribution of Na{sup +} cations was observed that could explain the evolution of the nature of molybdate crystals (CaMoO{sub 4} or Na{sub 2}MoO{sub 4}) formed during melt cooling.

  1. Modelling The Effects of Aggregate Size on Alkali Aggregate Reaction Expansion

    Directory of Open Access Journals (Sweden)

    N. Z. Sekrane

    2014-06-01

    Full Text Available This work aims at developing models to predict the potential expansion of concrete containing alkali-reactive aggregates. The paper gives measurements in order to provide experimental data concerning the effect of particle size of an alkali-reactive siliceous limestone on mortar expansion. Results show that no expansion was measured on the mortars using small particles (0.5-1.0 mm while the particles (1.0–2.0 mm gave the largest expansions (0.217%. Two models are proposed, the first one studies the correlations between the measured expansions and the size of aggregates, the second one calculates the thickness of the porous zone necessary to take again all the volume of the gel created.

  2. Fatigue failure load of two resin-bonded zirconia-reinforced lithium silicate glass-ceramics: Effect of ceramic thickness.

    Science.gov (United States)

    Monteiro, Jaiane Bandoli; Riquieri, Hilton; Prochnow, Catina; Guilardi, Luís Felipe; Pereira, Gabriel Kalil Rocha; Borges, Alexandre Luiz Souto; de Melo, Renata Marques; Valandro, Luiz Felipe

    2018-06-01

    To evaluate the effect of ceramic thickness on the fatigue failure load of two zirconia-reinforced lithium silicate (ZLS) glass-ceramics, adhesively cemented to a dentin analogue material. Disc-shaped specimens were allocated into 8 groups (n=25) considering two study factors: ZLS ceramic type (Vita Suprinity - VS; and Celtra Duo - CD), and ceramic thickness (1.0; 1.5; 2.0; and 2.5mm). A trilayer assembly (ϕ=10mm; thickness=3.5mm) was designed to mimic a bonded monolithic restoration. The ceramic discs were etched, silanized and luted (Variolink N) into a dentin analogue material. Fatigue failure load was determined using the Staircase method (100,000 cycles at 20Hz; initial fatigue load ∼60% of the mean monotonic load-to-failure; step size ∼5% of the initial fatigue load). A stainless-steel piston (ϕ=40mm) applied the load into the center of the specimens submerged in water. Fractographic analysis and Finite Element Analysis (FEA) were also performed. The ceramic thickness influenced the fatigue failure load for both ZLS materials: Suprinity (716N up to 1119N); Celtra (404N up to 1126N). FEA showed that decreasing ceramic thickness led to higher stress concentration on the cementing interface. Different ZLS glass-ceramic thicknesses influenced the fatigue failure load of the bonded system (i.e. the thicker the glass ceramic is, the higher the fatigue failure load will be). Different microstructures of the ZLS glass-ceramics might affect the fatigue behavior. FEA showed that the thicker the glass ceramic is, the lower the stress concentration at the tensile surface will be. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  3. Final report on the safety assessment of potassium silicate, sodium metasilicate, and sodium silicate.

    Science.gov (United States)

    Elmore, Amy R

    2005-01-01

    Potassium Silicate, Sodium Metasilicate, and Sodium Silicate combine metal cations with silica to form inorganic salts used as corrosion inhibitors in cosmetics. Sodium Metasilicate also functions as a chelating agent and Sodium Silicate as a buffering and pH adjuster. Sodium Metasilicate is currently used in 168 formulations at concentrations ranging from 13% to 18%. Sodium Silicate is currently used in 24 formulations at concentrations ranging from 0.3% to 55%. Potassium Silicate and Sodium Silicate have been reported as being used in industrial cleaners and detergents. Sodium Metasilicate is a GRAS (generally regarded as safe) food ingredient. Aqueous solutions of Sodium Silicate species are a part of a chemical continuum of silicates based on an equilibrium of alkali, water, and silica. pH determines the solubility of silica and, together with concentration, determines the degree of polymerization. Sodium Silicate administered orally is readily absorbed from the alimentary canal and excreted in the urine. The toxicity of these silicates has been related to the molar ratio of SiO2/Na2O and the concentration being used. The Sodium Metasilicate acute oral LD50 ranged from 847 mg/kg in male rats to 1349.3 mg/kg in female rats and from 770 mg/kg in female mice to 820 mg/kg in male mice. Gross lesions of variable severity were found in the oral cavity, pharynx, esophagus, stomach, larynx, lungs, and kidneys of dogs receiving 0.25 g/kg or more of a commercial detergent containing Sodium Metasilicate; similar lesions were also seen in pigs administered the same detergent and dose. Male rats orally administered 464 mg/kg of a 20% solution containing either 2.0 or 2.4 to 1.0 ratio of sodium oxide showed no signs of toxicity, whereas doses of 1000 and 2150 mg/kg produced gasping, dypsnea, and acute depression. Dogs fed 2.4 g/kg/day of Sodium Silicate for 4 weeks had gross renal lesions but no impairment of renal function. Dermal irritation of Potassium Silicate, Sodium

  4. Effect of the Callovian-Oxfordian clayey fraction on borosilicate glass alteration

    International Nuclear Information System (INIS)

    Debure, M.; Frugier, P.; GIN, S.; De Windt, L.; Michau, N.

    2012-01-01

    Document available in extended abstract form only. In France, high-level nuclear waste (HLW) is confined in a glass matrix packaged into stainless steel canister and carbon steel overpack. The HLW should be buried in a geological clay formation like, potentially, the Callovian-Oxfordian (COx) clay-stone located in the north-eastern Parisian basin. The COx clay-stone contains minerals that can feed the near-field with soluble Mg. Such minerals are carbonates (ankerite, dolomite) as well as clay minerals (chlorite, illite, interstratified illite/smectite). Previous laboratory experiments have proved that aqueous solutions of Mg salts could significantly increase the alteration rate of nuclear glass (Jollivet et al., 2012). This motivated to go a step further by studying the alteration of nuclear glass put in contact with Mg minerals. A first set of experiments have revealed that the rate of glass dissolution was increased with hydro-magnesite (4MgCO 3 .Mg(OH) 2 .4H 2 O, a chemically simple model mineral) and dolomite. In both cases, Mg coming from carbonate dissolution reacts with Si, provided by the glass, in order to form Mg silicates (Debure et al., 2012). In that case, Si consumption sustains glass alteration. Mg silicate precipitation also consumes protons; therefore the interdiffusion of alkali within the glass alteration layer eventually becomes a driving force that sustains Mg silicate precipitation. The second set of experiments, presented here, aimed at better characterizing the role of the COx clayey fraction. The separation of the clayey phases of the COx clay-stone has been made in collaboration with the LEM lab (Nancy, France) by a sequence of sieving, acidic dissolution of carbonates, NaCl washing and sedimentation (Rivard, 2011). According to XRD and infrared analyses, the clayey fraction was mainly composed of kaolinite, illite, interstratified illite/smectite and chlorite (plus a little residual amount of quartz). This first step aimed to remove

  5. Formation enthalpy of alkali-borosilicate glass

    International Nuclear Information System (INIS)

    Borisova, N.V.; Ushakov, V.M.

    1991-01-01

    Temperature dependence of formation enthalpy of glass of the composition 0.0438Na 2 O-0.0385K 2 O-0.3394B 2 O 3 -0.5783SiO 2 was determined using the method of high-temperature colorimetry-dissolution, mixing and differential scanning calorimetry. The glass considered has liquation nature-two-vitrification ranges at 713 K and 817 K are detected. The brightening point is 922 K. The calculation of formation enthalpy using the method of partial heat capacities is made in the temperature range of 973-1473 K. Formation enthalpy does not depend on temperature in the temperature range of 298-1273 K

  6. Thermal expansion at low temperatures of glass-ceramics and glasses

    Energy Technology Data Exchange (ETDEWEB)

    White, G K [National Measurement Lab., Sydney (Australia)

    1976-08-01

    The linear thermal expansion coefficient, ..cap alpha.., has been measured from 2 to 32 K and from 55 to 90 K for a machineable glass-ceramic, an 'ultra-low expansion' titanium silicate glass (Corning ULE), and ceramic glasses (Cer-Vit and Zerodur), and for glassy carbon. ..cap alpha.. is negative for the ultra-low expansion materials below 100 K, as for pure vitreous silica. Comparative data are reported for ..cap alpha..-quartz , ..cap alpha..-cristobalite, common opal, and vitreous silica.

  7. Dielectric properties of plasma sprayed silicates

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Sedláček, J.; Neufuss, Karel; Dubský, Jiří; Chráska, Pavel

    -, č. 31 (2005), s. 315-321 ISSN 0272-8842 R&D Projects: GA ČR(CZ) GA202/03/0708 Institutional research plan: CEZ:AV0Z20430508 Keywords : Optical microscopy * electrical properties * silicates * insulators * plasma spraying Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.702, year: 2005

  8. Sodium diffusion in boroaluminosilicate glasses

    DEFF Research Database (Denmark)

    Smedskjaer, Morten M.; Zheng, Qiuju; Mauro, John C.

    2011-01-01

    of isothermal sodium diffusion in BAS glasses by ion exchange, inward diffusion, and tracer diffusion experiments. By varying the [SiO2]/[Al2O3] ratio of the glasses, different structural regimes of sodium behavior are accessed. We show that the mobility of the sodium ions decreases with increasing [SiO2]/[Al2O......Understanding the fundamentals of alkali diffusion in boroaluminosilicate (BAS) glasses is of critical importance for advanced glass applications, e.g., the production of chemically strengthened glass covers for personal electronic devices. Here, we investigate the composition dependence...

  9. Glass microspheres for brachytherapy

    International Nuclear Information System (INIS)

    Prado, Miguel O.; Prastalo, Simon; Blaumann, Herman; Longhino, Juan M.; Repetto Llamazares, A.H.V.

    2007-01-01

    We developed the capacity to produce glass microspheres containing in their structure one or more radioactive isotopes useful for brachytherapy. We studied the various facts related with their production: (Rare earth) alumino silicate glass making, glass characterization, microspheres production, nuclear activation through (n,γ) nuclear reactions, mechanical characterization before and after irradiation. Corrosion tests in simulated human plasma and mechanical properties characterization were done before and after irradiation. (author) [es

  10. Preparation and characterization of magnesium–aluminium–silicate ...

    Indian Academy of Sciences (India)

    A three-stage heating schedule involving calcination, nucleation and crystallization, has been evolved for the preparation of magnesium aluminium silicate (MAS) glass ceramic with MgF2 as a nucleating agent. The effect of sintering temperature on the density of compacted material was studied. Microstructure and ...

  11. Amorphous Fast Ion Conducting Systems, Part 1. Structure and Properties of Mid and Far IR Transmitting Materials, Part 2

    Science.gov (United States)

    1991-10-31

    Glasses with high conductivities can also be formed with the Lewis acids GeO 2 (11 ) and no doubt Bi 20 3, TeO2 , etc., but these have been less...P age 3 1. Mechanical Relaxation and Relation to Electrical Relaxation in Fast Ion-Conducting Glasses ...relaxation although considerable information was available for the classical alkali silicate and borate glasses . Our program was to utilize the rheovibron

  12. Kinetic Rate Law Parameter Measurements on a Borosilicate Waste Glass: Effect of Temperature, pH, and Solution Composition on Alkali Ion Exchange

    International Nuclear Information System (INIS)

    Pierce, Eric M.; McGrail, B PETER.; Icenhower, J P.; Rodriguez, Elsa A.; Steele, Jackie L.; Baum, Steven R.

    2004-01-01

    The reaction kinetics of glass is controlled by matrix dissolution and ion exchange (IEX). Dissolution of an alkali-rich simulated borosilicate waste glass was investigated using single-pass flow-through (SPFT) experiments. Experiments were conducted as a function of temperature, pH, and solution composition by varying the SiO 2 (aq) activity in the influent solution. Results showed that under dilute conditions matrix dissolution increased with increasing pH and temperature, and decreased with increasing SiO 2 (aq) activity. IEX rates decreased with increasing pH and temperature, and increased with increasing SiO 2 (aq) activity. Over the solution composition range interrogated in this study the dominant dissolution mechanism changed from matrix dissolution to IEX. These results suggest that ''secondary'' reactions may become dominant under certain environmental conditions and emphasize the need to incorporate these reactions into dissolution rate models

  13. Na, Rb and Cs partitioning between metal, silicate and sulfide: Implications for volatile depletion in terrestrial planets

    Science.gov (United States)

    Boujibar, A.; Fei, Y.; Du, Z.; Righter, K.; Bullock, E. S.

    2017-12-01

    Inner Solar System materials are known for their depletion in volatile elements, including the moderately volatile alkalis: Na, K, Rb, and Cs. The origin of this depletion is still uncertain, as several processes could have been involved, during the nebular condensation or planetary accretion. Volatile depletion is commonly estimated through comparison of alkali concentrations relatively to those of chondrites, assuming they remain in planetary mantles during core segregation. However, experimental studies show that substantial K can partition into metals that are enriched in sulfur and oxygen. Several models have also suggested that sulfides may have played an important role during episodes of sulfide segregation from a crystallizing magma ocean (sulfide matte) or accretion of S-rich planetary embryos. For Mercury, a sulfide layer could be present between core and mantle, due to immiscibility between Si-rich and S-rich metals. Therefore, here we investigate whether alkali elements (Na, Cs and Rb) could be partly sequestered in planetary cores during their differentiation. We conducted experiments at high pressure and temperature (1 to 5 GPa and up to 1900 °C) to determine partition coefficients of Na, Rb and Cs between metal and silicate. Our results show that pressure, temperature, sulfur and oxygen in metals enhance the partitioning of Na, Rb and Cs into metals, as previously found for K. For all three investigated alkalis (Na, Rb and Cs), we found a maximum partition coefficient of 1 between sulfides containing 13 wt% O and silicate melt. Therefore, S-rich cores or sulfide layers formed due to immiscibility in Fe-S-O systems could have acted as important geochemical reservoirs for alkali elements. Using our experimental data and different assumptions on initial bulk abundances, we evaluate volatile depletion in terrestrial planets, by comparing resulting mantle alkali concentrations after core segregation, with actual concentrations in the Earth's mantle.

  14. Thermoluminescence properties of alkali borate glasses containing neodymium

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, A.F.; Henaish, B.A.; Kenaway, M.A.; Salem, L.R.

    1988-01-01

    The thermoluminescence properties of sodium borate glasses as a function of neodymium oxide content as well as the divalent metal oxides (RO = ZnO, MgO and CaO) in replacement of Na/sub 2/O have been investigated. It is observed that the addition of Nd/sub 2/O/sub 3/ imparts to the host glass a monopeak glow curve according to an active luminescent centre (E approx. = 0.97 eV to 1.232 eV). The gradual addition of neodymium oxide to the sodium borate glass causes gradual enhancement in the TL-intensity up to a quenching concentration value (4 g Nd/sub 2/O/sub 3/ added to 100 g of borate glass) above which a draw back in TL-intensity occurs. On the other hand the replacement of 5 wt% Na/sub 2/O by RO shows that CaO dominates the other two divalent metal oxides used, as it possesses a much deeper luminescent trap (1.232 eV). The results obtained suggest that these glasses can be used in radiation detection and dosimetry. The ..gamma..-induced Tl-signal of such type of glass is found to be reproducible within an acceptable error of not more than 3.5% in all individual and group scattering over the detector samples each of which is used 10 times for evaluating the same ..gamma..-dose.

  15. Leaching of glass

    International Nuclear Information System (INIS)

    Hench, L.L.

    1977-01-01

    Understanding surface compositional profiles of glasses over a range of 0-2000 A with a variety of analytical instruments shows that five general types of glass surfaces exist. The surface character of a glass article depends upon bulk composition and environmental history during which surface dealkalization, film formation, and network dissolution can occur. Environmental-surface interactions generally result in complex compositional profiles of all the constituents in a glass. Durable glasses almost always develop a stable surface film which has a higher concentration of network formers than the bulk composition. Compositional effects that are used to improve glass durability usually improve the stability of the surface films. Durability tests or service conditions that lead to film destruction are especially severe for the most silicate glasses. 43 references

  16. Fe++/Fe+++ concentration relationship and mechanical properties of phosphate glasses useful for wastes immobilization

    International Nuclear Information System (INIS)

    Garcia, D.A.; Prado, Miguel O.

    2007-01-01

    Under different melting conditions, glasses with different Fe(II)/Fe(III) concentration relationship were prepared within each type of glass 43Fe 2 O 3 -57P 2 O 5 and 33,33Fe 2 O 3 - 66,67P 2 O 5 . Using Moessbauer spectroscopy Fe(II)/Fe(III) concentration values were determined. Vickers and Knoop indentations were used for determining their hardness, toughness, Young modulus and brittleness. The same measurements were carried on some silicate and aluminosilicate glasses. Also Weibull statistics was done to determine the characteristics (Weibull modulus and and fracture probability) of glass fracture. We found that silicate glasses (SG) are harder than phosphate glasses (PG). Toughness values for PG, are in the same range than for SG, although for the same density exhibit larger values or smaller brittleness than silicate glasses. For one of the glasses it was found that the mechanical load P 0 needed for a fracture probability of 63% increases with the Fe(II) content. (author)

  17. A dynamic fatigue study of soda-lime silicate and borosilicate glasses using small scale indentation flaws

    International Nuclear Information System (INIS)

    Dabbs, T.P.; Lawn, B.R.; Kelly, P.L.

    1982-01-01

    The dynamic fatigue characteristics of two glasses, soda-lime silicate and borosilicate, in water have been studied using a controlled indentation flaw technique. It is argued that the indentation approach offers several advantages over more conventional fatigue testing procedures: (i) the reproducibility of data is relatively high, eliminating statistics as a basis of analysis: (ii) the flaw ultimately responsible for failure is well defined and may be conveniently characterised before and after (and during, if necessary) the strength test; (iii) via adjustment of the indentation load, the size of the flaw can be suitably predetermined. Particular attention is devoted to the third point because of the facility it provides for systematic investigation of the range of flaw sizes over which macroscopic crack behaviour remains applicable. The first part of the paper summarises the essential fracture mechanics theory of the extension of an indentation flaw to failure. In the next part of the paper the results of dynamic fatigue tests on glass rods in distilled water are described. Data are obtained for Vickers indentation loads in the range 0.05 to 100 N, corresponding to contact dimensions of 2 to 100 μm. Finally, the implications of the results in relation to the response of 'natural' flaws are discussed. (author)

  18. Influence of Glass Property Restrictions on Hanford HLW Glass Volume

    International Nuclear Information System (INIS)

    Kim, Dong-Sang; Vienna, John D.

    2001-01-01

    A systematic evaluation of Hanford High-Level Waste (HLW) loading in alkali-alumino-borosilicate glasses was performed. The waste feed compositions used were obtained from current tank waste composition estimates, Hanford's baseline retrieval sequence, and pretreatment processes. The waste feeds were sorted into groups of like composition by cluster analysis. Glass composition optimization was performed on each cluster to meet property and composition constraints while maximizing waste loading. Glass properties were estimated using property models developed for Hanford HLW glasses. The impacts of many constraints on the volume of HLW glass to be produced at Hanford were evaluated. The liquidus temperature, melting temperature, chromium concentration, formation of multiple phases on cooling, and product consistency test response requirements for the glass were varied one- or many-at-a-time and the resultant glass volume was calculated. This study shows clearly that the allowance of crystalline phases in the glass melter can significantly decrease the volume of HLW glass to be produced at Hanford.

  19. Glass formation, properties and structure of soda-yttria-silica glasses

    Science.gov (United States)

    Angel, Paul W.; Hann, Raiford E.

    1992-01-01

    The glass formation region of the soda yttria silicate system was determined. The glasses within this region were measured to have a density of 2.4 to 3.1 g/cu cm, a refractive index of 1.50 to 1.60, a coefficient of thermal expansion of 7 x 10(exp -6)/C, softening temperatures between 500 and 780 C, and Vickers hardness values of 3.7 to 5.8 GPa. Aqueous chemical durability measurements were made on select glass compositions while infrared transmission spectra were used to study the glass structure and its effect on glass properties. A compositional region was identified which exhibited high thermal expansion, high softening temperatures, and good chemical durability.

  20. Glass-ceramics: Their production from wastes - a review

    Energy Technology Data Exchange (ETDEWEB)

    Rawlings, R.D.; Wu, J.P.; Boccaccini, A.R. [University of London, London (United Kingdom). Imperial College of Science & Technology, Dept. of Medicine

    2006-02-15

    Glass-ceramics are polycrystalline materials of fine microstructure that are produced by the controlled crystallisation (devitrification) of a glass. Numerous silicate based wastes, such as coal combustion ash, slag from steel production, fly ash and filter dusts from waste incinerators, mud from metal hydrometallurgy, different types of sludge as well as glass cullet or mixtures of them have been considered for the production of glass-ceramics. Developments of glass-ceramics from waste using different processing methods are described comprehensively in this review, covering R&D work carried out worldwide in the last 40 years. Properties and applications of the different glass-ceramics produced are discussed. The review reveals that considerable knowledge and expertise has been accumulated on the process of transformation of silicate waste into useful glass-ceramic products. These glass-ceramics are attractive as building materials for usage as construction and architectural components or for other specialised technical applications requiring a combination of suitable thermo-mechanical properties. Previous attempts to commercialise glass-ceramics from waste and to scale-up production for industrial exploitation are also discussed.

  1. Can painted glass felt or glass fibre cloth be used as vapour barrier?

    DEFF Research Database (Denmark)

    El-Khattam, Amira; Andersen, Mie Them; Hansen, Kurt Kielsgaard

    2014-01-01

    In most Nordic homes the interior surfaces of walls and ceilings have some kind of surface treatment for aesthetical reasons. The treatments can for example be glass felt or glass fibre cloth which are painted afterwards. To evaluate the hygrothermal performance of walls and ceilings...... treatments. The surface treatments were glass felt or glass fibre cloth with different types of paints or just paint. The paint types were acrylic paint and silicate paint. The results show that the paint type has high influence on the water vapour resistance while the underlay i.e. glass felt or glass fibre...... acrylic paint on glass felt or glass fibre cloth cannot be used instead of a vapour barrier....

  2. Alkali-activated blast furnace slag-zeolite cements and concretes

    International Nuclear Information System (INIS)

    Rakhimov, R.; Rakhimova, N.

    2012-01-01

    The aim of this work has been the study of alkali-activated slag-zeolite cements and concretes based on them. Various compositions have been tested and some characteristics such as the compressive strength have been measured versus zeolite additions. A table lists the specific surface area and particle size distributions of different cements. The conclusions of the study are the following. First, alkali-activated slag cements and concretes based on them are effective for immobilization of radioactive wastes and the production of building structures, designed for high radiation load. Secondly, zeolite-containing mineral additions are able to increase the immobilization capacity and radiation resistance of alkali-activated blast furnace slag cements and concretes. Thirdly, the efficiency of different zeolite-containing additions - 10% to increase alkali-activated blast furnace slag-zeolite cement strength was established. It is with alkaline components of water-glass, sodium carbonate, sodium sulphate. Fourth, the effective way of introducing zeolite additions in alkali-activated blast furnace slag-zeolite cement is inter-grinding of the slag and addition. Increase in strength of alkali-activated blast furnace slag-zeolite cement stone is 40% higher than that of the stone of a mixture of separately milled components. Fifth, Alkali-activated blast furnace slag-zeolite cements with zeolite-containing additions with a compressive strength of 10.1 to 140 MPa; alkali-activated blast furnace slag-zeolite cements mortars with compressive strength from 35.2 to 97.7 MPa; alkali-activated blast furnace slag-zeolite cements concretes with compressive strength up to 84.5 MPa and frost resistant up to 800 cycles were obtained

  3. Laboratory testing of glasses for Lockheed Idaho Technology Company: Final report

    International Nuclear Information System (INIS)

    Ellison, A.J.G.; Buck, E.C.; Dietz, N.L.; Ebert, W.L.; Luo, J.S.; Wolf, S.F.; Bates, J.K.

    1997-06-01

    Tests have been conducted at Argonne National Laboratory (ANL) in support of the efforts of Lockheed Idaho Technology Company (LITCO) to vitrify high-level waste calcines. Tests were conducted with three classes of LITCO glass formulations: Formula 127 (fluorine-bearing), Formula 532 (fluorine-free), and 630 series (both single- and mixed-alkali) glasses. The test matrices included, as appropriate, the Product Consistency Test Method B (PCT-B), the Materials Characterization Center Test 1 (MCC-1), and the Argonne vapor hydration test (VHT). Test durations ranged from 7 to 183 d. In 7-d PCT-Bs, normalized mass losses of major glass-forming elements for the LITCO glasses are similar to, or lower than, normalized mass losses obtained for other domestic candidate waste glasses. Formula 532 glasses form zeolite alteration phases relatively early in their reaction with water. The formation of those phases increased the dissolution rate. In contrast, the Formula 127 glass is highly durable and forms alteration phases only after prolonged exposure to water in tests with very high surface area to volume ratios; these alteration phases have a relatively small effect on the rate of glass corrosion. No alteration phases formed within the maximum test duration of 183 d in PCT-Bs with the 630 series glasses. The corrosion behavior of the mixed-alkali 630 series glasses is similar to that of 630 series glasses containing sodium alone. In VHTs, both single- and mixed-alkali glasses form zeolite phases that increase the rate of glass reaction. The original 630 series glasses and those based on a revised surrogate calcine formulation react at the same rate in PCT-Bs and form the same major alteration phases in VHTs

  4. The role of different network modifying cations on the speciation of the Co2 + complex in silicates and implication in the investigation of historical glasses

    Science.gov (United States)

    Fornacelli, Cristina; Ceglia, Andrea; Bracci, Susanna; Vilarigues, Marcia

    2018-01-01

    In the last decades the speciation of the cobalt complex in a glass matrix has been extensively studied. Bivalent cobalt ions in glasses of different composition commonly adopt a tetrahedral coordination, though hexa- or penta-coordinated species are also possible. Changes in the absorbance spectrum of Co-doped glasses were attested in previous studies according to the introduction of different modifying cations. A shifting of the first sub-band characterizing the typical triplets of tetrahedral Co2 + ions in both the visible and near infrared regions was observed, but discrepancies in literature suggested a relevant role of glass composition on the definition of the optical signature of cobalt. Co-doped glasses with different composition (soda-lime, potash-lime, mixed alkali and ZnO-Na2O-CaO-SiO2) were studied via Fiber Optic Reflectance Spectroscopy (FORS). Pseudo-Voigt functions were used for the deconvolution of the absorbance spectra and the features of the bands characteristic of each cobalt complex were investigated. The structural role played by each modifying cation and the fundamental implications of glass basicity on the speciation of different Co-complexes were stressed. Changes in glass structure resulted in different equilibria between the three absorbing species whose specific optical signatures in the 480-530 nm region interact to determine the resulting absorbance spectrum.

  5. Environmental resistance and mechanical performance of basalt and glass fibers

    International Nuclear Information System (INIS)

    Wei Bin; Cao Hailin; Song Shenhua

    2010-01-01

    The treated basalt and glass fibers with sodium hydroxide and hydrochloric acid solutions for different times were analyzed, respectively. This paper summarized the mass loss ratio and the strength maintenance ratios of the fibers after treatment. The fibers' surface corrosion morphologies were characterized using scanning electron microscopy and their compositions were detected using energy dispersive X-ray spectroscopy. The acid resistance was much better than the alkali resistance for the basalt fibers. Nevertheless, for the glass fibers the situation is different: the acid resistance was almost the same as the alkali resistance. Among the two types of aqueous environments evaluated, the alkali solution is the most aggressive to the fibers' surface. The possible corrosion mechanisms are revealed.

  6. Cesium titanium silicate and method of making

    Science.gov (United States)

    Balmer, Mari L.

    1997-01-01

    The invention is the new material, a ternary compound of cesium, silica, and titania, together with a method of making the ternary compound, cesium titanium silicate pollucite. More specifically, the invention is Cs.sub.2 Ti.sub.2 Si.sub.4 O.sub.13 pollucite which is a new crystalline phase representing a novel class of Ti-containing zeolites. Compositions contain relatively high Cs.sub.2 O and TiO.sub.2 loadings and are durable glass and ceramic materials. The amount of TiO.sub.2 and Cs.sub.2 that can be incorporated into these glasses and crystalline ceramics far exceeds the limits set for the borosilicate high level waste glass.

  7. The borosilicate glass for 'PAMELA'

    International Nuclear Information System (INIS)

    Schiewer, E.

    1986-01-01

    The low enriched waste concentrate (LEWC) stored at Mol, Belgium, will be solidified in the vitrification plant 'PAMELA'. An alkali-borosilicate glass was developed by the Hahn-Meitner-Institut, Berlin, which dissolves (11 +- 3)wt% waste oxides while providing sufficient flexibility for changes in the process parameters. The development of the glass labelled SM513LW11 is described. Important properties of the glass melt (viscosity, resistivity, formation of yellow phase) and of the glass (corrosion in aqueous solutions, crystallization) are reported. The corrosion data of this glass are similar to those of other HLW-glasses. Less than five wt% of crystalline material are produced upon cooling of large glass blocks. Crystallization does not affect the chemical durability. (Auth.)

  8. An evaluation of the processing conditions, structure, and properties (biaxial flexural strength and antibacterial efficacy) of sintered strontium-zinc-silicate glass ceramics.

    Science.gov (United States)

    Looney, Mark; Shea, Helen O'; Gunn, Lynda; Crowley, Dolores; Boyd, Daniel

    2013-05-01

    The use of artificial bone grafts has increased in order to satisfy a growing demand for bone replacement materials. Initial mechanical stability of synthetic bone grafts is very advantageous for certain clinical applications. Coupled with the advantage of mechanical strength, a material with inherent antibacterial properties would be very beneficial. A series of strontium-doped zinc silicate (Ca-Sr-Na-Zn-Si) glass ceramics have been characterized in terms of their crystalline structure, biaxial flexural strength and antibacterial efficacy based on the identification of optimum sintering conditions. All three glass ceramics, namely, BT110, BT111, and BT112 were found to be fully crystalline, with BT111 and BT112 comprising of biocompatible crystalline phases. The biaxial flexural strengths of the three glass ceramics ranged from 70 to 149 MPa and were shown to be superior to those of clinically established ceramics in dry conditions and following incubation in simulated physiological conditions. The bacteriostatic effect for each glass ceramic was also established, where BT112 showed an inhibitory effect against three of the most common bacteria found at implantation sites, namely, Enterococcus faecalis, methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa. The results of the evaluation suggest that the materials studied offer advantages over current clinical materials and indicate the potential suitability of the glass ceramics as therapeutic bone grafts.

  9. Characterization of the Rheological and Swelling Properties of Synthetic Alkali Silicate Gels in Order to Predict Their Behavior in ASR Damaged Concrete

    Science.gov (United States)

    Vayghan, Asghar Gholizadeh

    Alkali-silica reaction (ASR) is a major concrete durability concern that is responsible for the deterioration of concrete infrastructure in the world. The resultant of the reaction between the cement alkali hydroxides and the metastable silicates in the aggregates is a hygroscopic and expansive alkali-silicate gel (referred to as ASR gel in this document). The swelling behavior of ASR gels determines the extent of damage to concrete structures and, as such, mitigation of ASR relies on understanding these gels and finding ways to prevent them either from formation, or from swelling after formation. This dissertation focuses on the synthesis and characterization of ASR gels with wide ranges of compositions similar to what has been reported for the filed ASR gels in the literature. The experimental work consisted of three phases as follow. Phase I: Investigation of rheology, chemistry and physics of ASR gels produced through sol-method. Inspired from the existing literature, two sol-gel methods have been developed for the synthesis of ASR gels. The rheological (primarily gelation time, yield stress, and equilibrium stress), chemical (pore solution pH, pore solution composition, osmotic pressure, solid phase composition, stoichiometry of gelation reactions) and physical (evaporable water, solid content, etc.) properties of synthetic ASR gels have been extensively investigated in this phase. Ca/Si, Na/Si and K/Si, and water content were considered as the main chemical composition variables. In order to investigate the suppressing effects of lithium on the swelling properties of ASR gels, the gels were added with lithium in a part of the experimental program. The results strongly suggested that Ca/Si has a positive effect on the yield stress of the gels and their rate of gelation. Na/Si was found to have a decreasing effect on the yield stress and gelation rate (especially at low Ca/Si levels). K/Si and Li/Si had second-order (i.e., polynomial) effects on the yield

  10. Nickel-iron spherules from aouelloul glass

    Science.gov (United States)

    Chao, E.C.T.; Dwornik, E.J.; Merrill, C.W.

    1966-01-01

    Nickel-iron spherules, ranging from less than 0.2 to 50 microns in diameter and containing 1.7 to 9.0 percent Ni by weight, occur in glass associated with the Aouelloul crater. They occur in discrete bands of siliceous glass enriched in dissolved iron. Their discovery is significant tangible evidence that both crater and glass originated from terrestrial impact.

  11. Structural and topological aspects of borophosphate glasses and their relation to physical properties

    DEFF Research Database (Denmark)

    Hermansen, Christian; Youngman, R.E.; Wang, J.

    2015-01-01

    We establish a topological model of alkali borophosphate and calcium borophosphate glasses that describes both the effect of the network formers and network modifiers on physical properties. We show that the glass transition temperature (Tg), Vickers hardness (HV), liquid fragility (m) and isobaric....... The origin of the effect of the type of network modifying oxide on Tg, HV, m and ΔCp of calcium borophosphate glasses is revealed in terms of the modifying ion sub-network. The same topological principles quantitatively explain the significant differences in physical properties between the alkali...... and the calcium borophosphate glasses. This work has implications for quantifying structure-property relations in complex glass forming systems containing several types of network forming and modifying oxides....

  12. Properties of ambient cured blended alkali activated cement concrete

    Science.gov (United States)

    Talha Junaid, M.

    2017-11-01

    This paper presents results of the development and strength properties of ambient-cured alkali activated geopolymer concrete (GPC). The study looks at the strength properties, such as compressive strength, splitting tensile strength, and elastic modulus of such concretes and its dependency on various parameters. The parameters studied in this work are the type and proportions of pre-cursor materials, type of activator and their respective ratios and the curing time. Two types of pre-cursor material; low calcium fly ash (FA) and ground granulated blast furnace slag (GGBFS) were activated using different proportions of sodium silicate and sodium hydroxide solutions. The results indicate that ambient cured geopolymer concrete can be manufactured to match strength properties of ordinary Portland cement concrete (OPC). The strength properties of GPC are dependent on the type and ratio of activator and the proportion of GGBFS used. Increasing the percentage of GGBFS increased the compressive and tensile strengths, while reducing the setting time of the mix. The effect of GGBFS on strength was more pronounced in mixes that contained sodium silicate as activator solution. Unlike OPC, ambient-cured GPC containing sodium silicate gain most of their strength in the first 7 days and there is no change in strength thereafter. However, GPC mixes not containing sodium silicate only achieve a fraction of their strength at 7 days and extended curing is required for such concretes to gain full strength. The results also indicate that the elastic modulus values of GPC mixes without sodium silicate are comparable to OPC while mixes with sodium silicate have elastic modulus values much lower than ordinary concrete.

  13. Optical Characterization of Zinc Modified Bismuth Silicate Glasses

    Directory of Open Access Journals (Sweden)

    Rajesh Parmar

    2015-01-01

    Full Text Available The optical characterization of glass samples in the system 40SiO2 · xZnO · (60-xBi2O3 with x=0, 5, 10, 15, 20, 25, 30, 35, and 40 prepared by conventional melt-quench technique has been carried out in the light of Hydrogenic Excitonic Model (HEM. The absorption coefficient spectra show good agreement with theoretical HEM for the present glass system and the values of different parameters like Eg, R, Γ1, Γc, and Co have been estimated from fitting of this model. The values of energy band gap estimated from fitting of HEM with experimental data are in good agreement with those obtained from Tauc’s plot for direct transitions. The band gap energy is found to increase with increase of ZnO content. The decrease in values of Urbach energy with increase in ZnO content indicates a decrease in defect concentration in the glass matrix on addition of ZnO content. Optical constants n and k obey k-k consistency and the dielectric response of the studied glass system is similar to that obtained for Classical Electron Theory of Dielectric Materials. The calculated values of the metallization criterion (M show that the synthesized glasses may be good candidates for new nonlinear optical materials.

  14. Glass enamel and glass-ceramic coatings for chemical apparatus

    International Nuclear Information System (INIS)

    Es'kov, A.S.; Oleinik, M.I.; Shabrova, E.A.

    1984-01-01

    Among the known anticorrosion coatings used in chemical engineering, glass enamel base coatings are distinguished by such advantages as a high degree of continuity and chemical resistance. The paper describes basic principles for the creation of acid and alkali resistant glass enamel and ceramic coatings for chemical apparatus. As the result of investgations, glass enamel coatings with increased electrical conductivity and also experimental production compositions of chemical, temperature and radiation resistant coatings for protection of chemical equipment of 12Kh18N10T stainless steel have been developed. The coatings have successfully passed testing under service conditions. A new type of coating is short-term glass enamel, which may be recommended for use in chemical machinery manufacturing and other branches of industry in oxidation-free heating and forming of stainless steels

  15. The application of silicon and silicates in dentistry: a review.

    Science.gov (United States)

    Lührs, A-K; Geurtsen, Werner

    2009-01-01

    Silicates and silicate-based compounds are frequently used materials in dentistry. One of their major applications is their use as fillers in different dental filling materials such as glass-ionomer cements, compomers, composites, and adhesive systems. In these materials, the fillers react with acids during the setting process or they improve the mechanical properties by increasing physical resistance, thermal expansion coefficient and radiopacity in acrylic filling materials. They also reduce polymerization shrinkage, and increase esthetics as well as handling properties. Furthermore, silicates are used for the tribochemical silication of different surfaces such as ceramics or alloys. The silicate layer formed in this process is the chemical basis for silanes that form a bond between this layer and the organic composite matrix. It also provides a micromechanical bond between the surface of the material and the composite matrix. Silicates are also a component of dental ceramics, which are frequently used in dentistry, for instance for veneers, inlays, and onlays, for denture teeth, and for full-ceramic crowns or as crown veneering materials.

  16. Development of glass/glass-ceramics materials and devices and their micro-structural studies

    International Nuclear Information System (INIS)

    Goswami, Madhumita; Sarkar, Arjun; Shingarvelan, Shobha; Kumar, Rakesh; Ananathanarayan, Arvind; Shrikhande, V.K.; Kothiyal, G.P.

    2009-01-01

    Materials and devices based on glass and glass-ceramics (GCs) find applications in various high pressure and vacuum applications. We have prepared different glasses/glass-ceramics with requisite thermal expansion coefficient, electrical, vacuum and wetting characteristics to fabricate hermetic seals with different metals/alloys as well as components for these applications. Some of these are, SiO 2 -Na 2 O-K 2 O-Al 2 O 3 -B 2O3 (BS) for matched type of seal fabricated with Kovar alloy, SiO 2 -Na 2 O-K 2 O-BaO-PbO(LS) for fabrication of compressive type seals with stainless steel and SS 446 alloys, P 2 O 5 -Na 2 O-B 2 O 3 -BaO-PbO(NAP) for fabrication of matched type of seal with relatively low melting metals/alloys like AI/Cu-Be and Li 2 O-ZnO-SiO 2 -P 2 O 5 -B 2 O 3 -Na 2 O (LZS) and Lithium aluminium silicate (LAS) glass-ceramics to fabricate matched and compression types feedtroughs/conductivity probes Magnesium aluminium silicate (MAS) machinable glass-ceramics is another development for high voltage and ultra high vacuum applications. Micro-structural studies have been carried out on these materials to understand the mechanism of their behaviour and have also been deployed in various systems and plants in DAE. (author)

  17. NEW ERBIUM DOPED ANTIMONY GLASSES FOR LASER AND GLASS AMPLIFICATION

    Directory of Open Access Journals (Sweden)

    B. Tioua

    2015-07-01

    Full Text Available Because of the special spectroscopic properties of the rare earth ions, rare earth doped glasses are widely used in bulk and fiber lasers or amplifiers. The modelling of lasers and searching for new laser transitions require a precise knowledge of the spectroscopic properties of rare earth ions in different host glasses. In this poster will offer new doped erbium glasses synthesized in silicate crucibles were obtained in the combination Sb2O3-WO3-Na2O. Several properties are measured and correlated with glass compositions. The absorption spectral studies have been performed for erbium doped glasses. The intensities of various absorption bands of the doped glasses are measured and the Judd-Ofelt parameters have been computed. From the theory of Judd-Ofelt, various radiative properties, such as transition probability, branching ratio and radiative life time for various emission levels of these doped glasses have been determined and reported. These results confirm the ability of antimony glasses for glass amplification.

  18. The influence of silver-ion doping using ion implantation on the luminescence properties of Er–Yb silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Stanek, S., E-mail: stanislav.stanek@vscht.cz [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technicka 5, 16628 Prague (Czech Republic); Nekvindova, P.; Svecova, B.; Vytykacova, S.; Mika, M. [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technicka 5, 16628 Prague (Czech Republic); Oswald, J. [Institute of Physics, Academy of Science of the Czech Republic, Cukrovarnicka 10/112, 162 00 Prague (Czech Republic); Mackova, A.; Malinsky, P. [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 25068 Rez (Czech Republic); Department of Physics, Faculty of Science, J.E. Purkinje University, Ceske mladeze 8, 40096 Usti nad Labem (Czech Republic); Spirkova, J. [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technicka 5, 16628 Prague (Czech Republic)

    2016-03-15

    A set of zinc-silicate glasses with different ratios of erbium and ytterbium was fabricated. To achieve Ag-rich thin films in a sub-surface layer, ion-implantation technique at an energy of 1.2 MeV and 1.7 MeV with a fluence of 1 × 10{sup 16} cm{sup −2} was used. Post-implantation annealing was also applied. Changes in the spectroscopic and lasing properties of erbium ions as a function of implantation fluence of silver were studied with the aim to assess the positive effect of silver as a sensitiser of erbium luminescence. Therefore, absorption spectra in the visible range as well as luminescence spectra in the near-infrared range were measured and partially also the {sup 4}I{sub 11/2}–{sup 4}I{sub 15/2} transition of the erbium ion was studied. The results showed that silver positively influenced luminescence intensity at 1530 nm by increasing it almost three times. The biggest increase was achieved in glass with the highest concentration of erbium. Luminescence lifetime was not significantly influenced by the presence of silver and still remained around 10 ms.

  19. Aqueous corrosion of silicate glasses. Analogy between volcanic glasses and the French nuclear waste glass R7T7

    International Nuclear Information System (INIS)

    Goldschmidt, F.

    1991-01-01

    The behaviour of borosilicate glasses upon aqueous corrosion is controlled for long periods of time (>10,000 years) by processes which are not directly accessible by means of laboratory experiments. The analogical approach consists here to compare leaching performances between the french nuclear waste glass R7T7 and natural volcanic glasses, basaltic and rhyolitic ones. The three glasses were leached in the same conditions; open system, 90 deg C, initial pH of 9.7. Basaltic and R7T7 glasses having the same kinetic of dissolution, the basaltic glass was chosen as the best analogue. (author). refs., figs., tabs

  20. Mixed alkaline earth effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.

    2013-01-01

    While the mixed alkali effect has received significant attention in the glass literature, the mixed alkaline earth effect has not been thoroughly studied. Here, we investigate the latter effect by partial substitution of magnesium for calcium in sodium aluminosilicate glasses. We use Raman and NMR...

  1. Results of testing the Grambow rate law for use in HWVP glass durability correlations

    International Nuclear Information System (INIS)

    Kuhn, W.L.; Bunnell, L.R.

    1996-03-01

    A theory based on Grambow's work on hydration of glass as linear function of solution composition was evaluated. Use of Grambow's linear rate law for correlation of durability with glass composition is not recommended. Dissolution rate of the glass was determined using the rate of release of sodium with an ion selective electrode. This method was tested first applying it to initial dissolution rate of several glasses at several temperatures with zero initial concentration of silicic acid. HW39-2, HW39-4, and SRL-202 from Savannah River were tested; there was significant scatter in the data, with the dissolution rates of HW39 glasses and the SRL glass being comparable within this scatter. The dissolution rate of SRL-202 at 80 C and pH 7 for silicic acid concentrations 0, 25, 50, and 100% saturation, was found to decrease dramatically at only 25% of the saturated silicic acid concentration, which does not conform to the linear theory

  2. Decalcification resistance of alkali-activated slag

    Energy Technology Data Exchange (ETDEWEB)

    Komljenovic, Miroslav M., E-mail: miroslav.komljenovic@imsi.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade (Serbia); Bascarevic, Zvezdana, E-mail: zvezdana@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade (Serbia); Marjanovic, Natasa, E-mail: natasa@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade (Serbia); Nikolic, Violeta, E-mail: violeta@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade (Serbia)

    2012-09-30

    Highlights: Black-Right-Pointing-Pointer The effects of decalcification on properties of alkali-activated slag were studied. Black-Right-Pointing-Pointer Decalcification was performed by concentrated NH{sub 4}NO{sub 3} solution (accelerated test). Black-Right-Pointing-Pointer Portland-slag cement (CEM II/A-S 42.5 N) was used as a benchmark material. Black-Right-Pointing-Pointer Decalcification led to strength decrease and noticeable structural changes. Black-Right-Pointing-Pointer Alkali-activated slag showed significantly higher resistance to decalcification. - Abstract: This paper analyses the effects of decalcification in concentrated 6 M NH{sub 4}NO{sub 3} solution on mechanical and microstructural properties of alkali-activated slag (AAS). Portland-slag cement (CEM II/A-S 42.5 N) was used as a benchmark material. Decalcification process led to a decrease in strength, both in AAS and in CEM II, and this effect was more pronounced in CEM II. The decrease in strength was explicitly related to the decrease in Ca/Si atomic ratio of C-S-H gel. A very low ratio of Ca/Si {approx}0.3 in AAS was the consequence of coexistence of C-S-H(I) gel and silica gel. During decalcification of AAS almost complete leaching of sodium and tetrahedral aluminum from C-S-H(I) gel also took place. AAS showed significantly higher resistance to decalcification in relation to the benchmark CEM II due to the absence of portlandite, high level of polymerization of silicate chains, low level of aluminum for silicon substitution in the structure of C-S-H(I), and the formation of protective layer of polymerized silica gel during decalcification process. In stabilization/solidification processes alkali-activated slag represents a more promising solution than Portland-slag cement due to significantly higher resistance to decalcification.

  3. A new viscosity model for waste glass formulations

    International Nuclear Information System (INIS)

    Sadler, A.L.K.

    1996-01-01

    Waste glass formulation requires prediction, with reasonable accuracy, of properties over much wider ranges of composition than are typically encountered in any single industrial application. Melt viscosity is one such property whose behavior must be predicted in formulating new waste glasses. A model was developed for silicate glasses which relates the Arrhenius activation energy for flow to an open-quotes effectiveclose quotes measure of non-bridging oxygen content in the melt, NBO eff . The NBO eff parameter incorporates the differing effects of modifying cations on the depolymerization of the silicate network. The activation energy-composition relationship implied by the model is in accordance with experimental behavior. The model was validated against two different databases, with satisfactory results

  4. Automated Detection of Alkali-silica Reaction in Concrete using Linear Array Ultrasound Data

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Villalobos, Hector J [ORNL; Clayton, Dwight A [ORNL; Ezell, N Dianne Bull [ORNL; Clayton, Joseph A [ORNL; Baba, Justin S [ORNL

    2017-01-01

    Alkali-silica reaction (ASR) is a chemical reaction in either concrete or mortar between hydroxyl ions of the alkalis (sodium and potassium) from hydraulic cement (or other sources), and certain siliceous minerals present in some aggregates. The reaction product, an alkali-silica gel, is hygroscopic having a tendency to absorb water and swell, which under certain circumstances, leads to abnormal expansion and cracking of the concrete. This phenomenon affects the durability and performance of concrete structures severely since it can cause significant loss of mechanical properties. Developing reliable methods and tools that can evaluate the degree of the ASR damage in existing structures, so that informed decisions can be made toward mitigating ASR progression and damage, is important to the long term operation of nuclear power plants especially if licenses are extended beyond 60 years. This paper examines an automated method of determining the extent of ASR damage in fabricated concrete specimens.

  5. The viscosity window of the silicate glass foam production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    2017-01-01

    which can offer a practical starting point for the optimisation procedure. The melt viscosity might be the most important parameter for controlling the foaming process and the glass foam density. In this work, we attempt to define a viscosity range in which foaming of different glasses results...... in a maximum of foam expansion. The expansion maximum is obtained for different glasses (labware, E-glass, CRT panel, soda-lime-silica) by foaming with CaCO3 at isokom temperature and from literature data. In general, the viscosity window was found to be within 104–106 Pa s when foaming with MnO2 or metal...... carbonates (CaCO3, Na2CO3, MgCO3, SrCO3, dolomite) whereas SiC requires higher temperatures and correspondingly lower viscosities (103.3–104.0 Pa s). These findings can help assessing the implementation of new resources in the glass foam production....

  6. PREPARATION AND PROPERTIES OF ALKALI-ACTIVATED CEMENT CONTAINING PHOSPHOROUS SLAG AND FLY ASH

    Directory of Open Access Journals (Sweden)

    Duo You

    2016-03-01

    Full Text Available Phosphorous slag is an industrial waste which potentially pollutes environments. The aim of the present work is to use phosphorous slag as a raw material to produce alkali-activated cement. The influence of mix proportion of phosphorous slag and fly ash, alkali content and modulus of water glass on the properties of alkali-activated phosphorous slag and fly ash cement (AA-PS-FA-C was studied. The results show that AA-PS-FA-C with normal setting performance and desirable mechanical properties can be prepared using water glass as the activator. Changing the fly ash content in the range of 0-40 wt% has only a small influence on the setting time of AA-PS-FA-C. The strengths significantly decrease when the fly ash content exceeds 30 wt%. The carbonation resistance of AA-PS-FA-C is similar to that of ordinary Portland cement (OPC, while the frost resistance is much better. The hardened paste of AA-PS-FA-C is much more compact than OPC paste.

  7. High-fluence implantation in insulators. 1

    International Nuclear Information System (INIS)

    Mazzoldi, P.

    1989-01-01

    The defects which can be formed by ion implantation depend upon the insulator structure and composition. Thus, for glasses and ceramics, different changes are expected in mechanical and tribological properties, network dilatation, induced optical absorption and luminescence, compositional changes and modifications in the chemical behaviour. The modifications induced by ion implantation in the composition of glasses, with particular reference to alkali silicate glasses, the mechanical and tribological properties of ion implanted insulators, in particular glasses and ceramics, and the optical properties are discussed. 56 refs.; 20 figs

  8. Redox kinetics and mechanism in silicate melts

    International Nuclear Information System (INIS)

    Cochain, B.

    2009-12-01

    This work contributes to better understand iron redox reactions and mechanisms in silicate melts. It was conducted on compositions in both Na 2 O-B 2 O 3 -SiO 2 -FeO and Na 2 O-Al 2 O 3 -SiO 2 -FeO systems. The influence of boron-sodium and aluminum-sodium substitutions and iron content on properties and structure of glasses and on the iron redox kinetics has been studied by Raman, Moessbauer and XANES spectroscopies at the B and Fe K-edges. In borosilicate glasses, an increase in iron content or in the Fe 3+ /ΣFe redox state implies a structural rearrangement of the BO 4 species in the glass network whereas the BO 3 and BO 4 relative proportions remain nearly constant. In all studied glasses and melts, Fe 3+ is a network former in tetrahedral coordination, unless for aluminosilicates of ratio Al/Na≥1 where Fe 3+ is a network modifier in five-fold coordination. Near Tg, diffusion of network modifying cations controls the iron redox kinetics along with a flux of electron holes. At liquidus temperatures, oxygen diffusion is considered to be the mechanism that governs redox reactions. This study shows the role played by the silicate network polymerization on the redox kinetics. In borosilicate melts, iron redox kinetics depends on the boron speciation between BO 3 and BO 4 that depends itself on the sodium content. Furthermore, an increase in the network-former/network-modifier ratio implies a decrease in oxygen diffusion that results in a slowing down of the redox kinetics. The obtained results allow a description of the iron redox kinetics for more complex compositions as natural lavas or nuclear waste model glasses. (author)

  9. Structural and crystallisation study of a rare earth alumino borosilicate glass designed for nuclear waste confinement; Etude de la structure et du comportement en cristallisation d'un verre nucleaire d'aluminoborosilicate de terre rare

    Energy Technology Data Exchange (ETDEWEB)

    Quintas, A

    2007-09-15

    This work is devoted to the study of a rare earth alumino borosilicate glass, which molar composition is 61,81 SiO{sub 2} - 3,05 Al{sub 2}O{sub 3} - 8,94 B{sub 2}O{sub 3} - 14,41 Na{sub 2}O - 6,33 CaO - 1,90 ZrO{sub 2} - 3,56 Nd{sub 2}O{sub 3}, and envisaged for the immobilization of nuclear wastes originating from the reprocessing of high discharge burn up spent fuel. From a structural viewpoint, we investigated the role of the modifier cations on the arrangement of the glass network through different modifications of the glass composition: variation of the Na/Ca ratio and modification of the nature of the alkali and alkaline earth cations. The NMR and Raman spectroscopic techniques were useful to determine the distribution of modifier cations among the glass network and also to cast light on the competition phenomena occurring between alkali and alkaline earth cations for charge compensation of [AlO{sub 4}]{sup -} and [BO{sub 4}]{sup -} species. The neodymium local environment could be probed by optical absorption and EXAFS spectroscopies which enabled to better understand the insertion mode of Nd{sup 3+} ions among the silicate domains of the glass network. Concerning the crystallization behavior we were interested in how the glass composition may influence the crystallization processes and especially the formation of the apatite phase of composition Ca{sub 2}Nd{sub 8}(SiO{sub 4}){sub 6}O{sub 2}. In particular, this work underlined the important role of both alkaline earth and rare earth cations on the crystallization of the apatite phase. (author)

  10. Analysis of leachants from strontium chlorapatite glass ceramics

    International Nuclear Information System (INIS)

    Vijayalakshmi, S.; Ushalakshmi, K.; Annapoorani, S.; Sriram, S.; Uma Maheshwari, R.; Deivanayaki, R.; Sekar, J.K.; Sankaran, K.

    2013-01-01

    Strontium chlorapatite glass ceramics is being tried out as one of the candidate matrices for immobilizing pyrochemical salt waste produced in the nuclear industry. To find-out the suitability of such material for immobilising the waste, leaching of various constituents of the ceramics in water is required. Therefore, in Chemistry Group of IGCAR experiments are being carried out with simulated salt waste (chlorides of Li, Na, K, Cs, Ba, Nd and Ce) of pyrochemical reprocessing method for studying the utilisation of strontium chlorapatite glass ceramics towards the immobilization of radioactive waste. Leaching behaviour study requires the determination of alkali, alkaline earth and rare earth elements in the leachant solutions of the glass ceramic material. Apart from cations, leaching study of anions especially chloride is required as the chloride salts are used in pyrochemical experiments. Considering the good sensitivity of alkali elements in Flame-AES method, all the alkali elements were determined by flame-AES. Ba, Sr and rare earth elements in the leachant solutions were determined using ICP-OES. Chloride was determined using ISE and IC. Standardisation of instrumental techniques and the application of various techniques for the sample analysis will be discussed in the paper. (author)

  11. Are the dynamics of silicate glasses and glass-forming liquids embedded in their elastic properties?

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Mauro, John C.

    According to the elastic theory of the glass transition, the dynamics of glasses and glass-forming liquids are controlled by the evolution of shear modulus. In particular, the elastic shoving model expresses dynamics in terms of an activation energy required to shove aside the surrounding atoms......, which is determined by the shear modulus. First, we here present an in situ high-temperature Brillouin spectroscopy test of the shoving model near the glass transition of eight aluminosilicate glass-forming systems. We find that the measured viscosity data agree qualitatively with the measured...... temperature dependence of shear moduli, as predicted by the shoving model. However, the model systematically underpredicts the values of fragility. Second, we also present a thorough test of the shoving model for predicting the low temperature dynamics of an aluminosilicate glass system. This is done...

  12. Attenuation of glass dissolution in the presence of natural additives

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Jing C.; Barkatt, Aaron [Department of Chemistry, The Catholic University of America, Washington, DC (United States); O`Keefe, John A. [National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD (United States)

    1996-11-01

    The dissolution kinetics of silicate glasses in aqueous environments in systems which included a variety of natural crystalline solids in addition to the glass itself and the aqueous phase are reported. The results demonstrate the possibility of a dramatic decrease in the rate of dissolution of silicate glass in the presence of certain varieties of olivine-based materials. This decrease in dissolution rate was shown to be due to the fact that these additives consist mostly of Mg-based material but also contain minor amounts of Al and Ca. The combined presence of Mg with these minor species affected the corrosion rate of the glass as a whole, including its most soluble components such as boron. This study has potentially important implications to the durability of glasses exposed to natural environments. The results may be relevant to the use of active backfill materials in burial sites for nuclear waste glasses, as well as to better understanding of the environmental degradation of natural and ancient glasses.

  13. High-temperature Brillouin scattering study of haplogranitic glasses and liquids: Effects of F, K, Na and Li on Tg and elastic properties

    Science.gov (United States)

    Manghnani, M. H.; Hushur, A.; Williams, Q. C.; Dingwell, D. B.

    2010-12-01

    The density, compressibility and viscosity of silicate melts are important in understanding the thermodynamic and fluid dynamic properties of magmatic systems. Knowledge of the compressibility of silicate melts at 1 bar is an important component in the construction of accurate pressure-volume-temperature equations of state. In light of this, the velocity (nVp, Vp, Vs) and refractive index n of four anhydrous haplogranitic glasses and liquids with similar alkali abundances, but different cations, are measured at high temperature by Brillouin scattering spectroscopy through the glass transition temperature (Tg) in both platelet and back scattering geometry. The compositions of four haplogranites are 5 wt% of the components Li2O, Na2O, K2O and F each added to a base of haplogranitic (HPG8) composition. The glass transition temperature Tg of different haplogranite samples at the GHz frequency of the Brillouin probe are determined from the change in slope of the temperature-dependent longitudinal or transverse sound velocity. HPG8-Li5 has the lowest glass transition temperature (466°C), while HPG8-K5 has the highest glass transition temperature (575°C). Our Brillouin results, when compared with DSC measurements, show lower Tg values. This raises the possibility of a role of either heating rates or a frequency dependence of the glass transition in explaining the discrepancies in Tg values derived from the two methods. The sound velocity (nVp, Vp, Vs) shows markedly different temperature dependences (including differences in sign) below Tg depending on their different alkali contents. The unrelaxed elastic moduli of three haplogranitic glasses with added Li2O, Na2O and F components have been obtained as a function of temperature. The unrelaxed bulk modulus, shear modulus and Poisson’s ratio show strong compositional dependences at ambient temperature. On heating, The K initially decreases with increasing temperature up to ~ 135°C, then increases up to Tg, and then

  14. Effect of Zn- and Ca-oxides on the structure and chemical durability of simulant alkali borosilicate glasses for immobilisation of UK high level wastes

    International Nuclear Information System (INIS)

    Zhang, Hua; Corkhill, Claire L.; Heath, Paul G.; Hand, Russell J.; Stennett, Martin C.; Hyatt, Neil C.

    2015-01-01

    Highlights: • Spinel crystallization incorporates ZnO from base glass, displacing Mg and Ni. • Raman spectroscopy demonstrates significant impact on glass structure by addition of ZnO to base glass. • Addition of ZnO reduces glass dissolution rate at early time periods (up to 28 days). - Abstract: Compositional modification of United Kingdom high level nuclear waste (HLW) glasses was investigated with the aim of understanding the impact of adopting a ZnO/CaO modified base glass on the vitrified product phase assemblage, glass structure, processing characteristics and dissolution kinetics. Crystalline spinel phases were identified in the vitrified products derived from the Na 2 O/Li 2 O and the ZnO/CaO modified base glass compositions; the volume fraction of the spinel crystallites increased with increasing waste loading from 15 to 20 wt%. The spinel composition was influenced by the base glass components; in the vitrified product obtained with the ZnO/CaO modified base glass, the spinel phase contained a greater proportion of Zn, with a nominal composition of (Zn 0.60 Ni 0.20 Mg 0.20 )(Cr 1.37 Fe 0.63 )O 4 . The addition of ZnO and CaO to the base glass was also found to significantly alter the glass structure, with changes identified in both borate and silicate glass networks using Raman spectroscopy. In particular, these glasses were characterised by a significantly higher Q 3 species, which we attribute to Si–O–Zn linkages; addition of ZnO and CaO to the glass composition therefore enhanced glass network polymerisation. The increase in network polymerisation, and the presence of spinel crystallites, were found to increase the glass viscosity of the ZnO/CaO modified base glass; however, the viscosities were within the accepted range for nuclear waste glass processing. The ZnO/CaO modified glass compositions were observed to be significantly more durable than the Na 2 O/Li 2 O base glass up to 28 days, due to a combination of the enhanced network

  15. Reuse of ground waste glass as aggregate for mortars.

    Science.gov (United States)

    Corinaldesi, V; Gnappi, G; Moriconi, G; Montenero, A

    2005-01-01

    This work was aimed at studying the possibility of reusing waste glass from crushed containers and building demolition as aggregate for preparing mortars and concrete. At present, this kind of reuse is still not common due to the risk of alkali-silica reaction between the alkalis of cement and silica of the waste glass. This expansive reaction can cause great problems of cracking and, consequently, it can be extremely deleterious for the durability of mortar and concrete. However, data reported in the literature show that if the waste glass is finely ground, under 75mum, this effect does not occur and mortar durability is guaranteed. Therefore, in this work the possible reactivity of waste glass with the cement paste in mortars was verified, by varying the particle size of the finely ground waste glass. No reaction has been detected with particle size up to 100mum thus indicating the feasibility of the waste glass reuse as fine aggregate in mortars and concrete. In addition, waste glass seems to positively contribute to the mortar micro-structural properties resulting in an evident improvement of its mechanical performance.

  16. Characterization of leached surface layers on simulated high-level waste glasses by sputter-induced optical emission

    International Nuclear Information System (INIS)

    Houser, C.; Tsong, I.S.T.; White, W.B.

    1979-01-01

    The leaching process in simulated waste encapsulant glasses was studied by measuring the compositional depth-profiles of H (from water), the glass framework formers Si and B, the alkalis Na and Cs, the alkaline earths Ca and Sr, the transition metals Mo and Fe, the rare-earths La, Ce, and Nd, using the technique of sputter-induced optical emission. The leaching process of these glasses is highly complex. In addition to alkali/hydrogen exchange, there is breakdown of the glass framework, build-up of barrier layers on the surface, and formation of layered reaction zones of distinctly different chemistry all within the outer micrometer of the glass

  17. Lead recovery and high silica glass powder synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced glass phase separation process

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Mingfei [Henan Key Laboratory Cultivation Base of Mine Environmental Protection and Ecological Remediation, Henan Polytechnic University, Jiaozuo 454000 Henan China (China); Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000 Henan China (China); Fu, Zegang [Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000 Henan China (China); Wang, Yaping, E-mail: wangyp326@163.com [School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan China (China); Wang, Jingyu [Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000 Henan China (China); Zhang, Zhiyuan [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2017-01-15

    Highlights: • CRT funnel glass was remelted with B{sub 2}O{sub 3} in reducing atmosphere. • A part of PbO was reduced into Pb and detached from the glass phase. • The rest of PbO and other metal oxides were mainly concentrated in the B{sub 2}O{sub 3} phase. • PbO enriched in the interconnected B{sub 2}O{sub 3} phase can be completely leached out by HNO{sub 3}. • High silica glass powder(SiO{sub 2} purity >95%) was obtained after the leaching process. - Abstract: In this study, a novel process for the removal of toxic lead from the CRT funnel glass and synchronous preparation of high silica glass powder was developed by a carbon-thermal reduction enhanced glass phase separation process. CRT funnel glass was remelted with B{sub 2}O{sub 3} in reducing atmosphere. In the thermal process, a part of PbO contained in the funnel glass was reduced into metallic Pb and detached from the glass phase. The rest of PbO and other metal oxides (including Na{sub 2}O, K{sub 2}O, Al{sub 2}O{sub 3,} BaO and CaO) were mainly concentrated in the boric oxide phase. The metallic Pb phase and boric oxide phase were completely leached out by 5 mol/L HNO{sub 3}. The lead removal rate was 99.80% and high silica glass powder (SiO{sub 2} purity >95 wt%) was obtained by setting the temperature, B{sub 2}O{sub 3} added amount and holding time at 1000 °C, 20% and 30 mins, respectively. The prepared high silicate glass powders can be used as catalyst carrier, semipermeable membranes, adsorbents or be remelted into high silicate glass as an ideal substitute for quartz glass. Thus this study proposed an eco-friendly and economical process for recycling Pb-rich electronic glass waste.

  18. Initial Examination of Low Velocity Sphere Impact of Glass Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Morrissey, Timothy G [ORNL; Fox, Ethan E [ORNL; Wereszczak, Andrew A [ORNL; Ferber, Mattison K [ORNL

    2012-06-01

    This report summarizes US Army TARDEC sponsored work at Oak Ridge National Laboratory (ORNL) involving low velocity (< 30 m/s or < 65 mph) sphere impact testing of two materials from the lithium aluminosilicate family reinforced with different amounts of ceramic particulate, i.e., glass-ceramic materials, SCHOTT Resistan{trademark}-G1 and SCHOTT Resistan{trademark}-L. Both materials are provided by SCHOTT Glass (Duryea, PA). This work is a follow-up to similar sphere impact studies completed by the authors on PPG's Starphire{reg_sign} soda-lime silicate glass and SCHOTT BOROFLOAT{reg_sign} borosilicate glass. A gas gun or a sphere-drop test setup was used to produce controlled velocity delivery of silicon nitride (Si{sub 3}N{sub 4}) spheres against the glass ceramic tile targets. Minimum impact velocities to initiate fracture in the glass-ceramics were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between sphere and target material. Quasistatic spherical indentation was also performed on both glass ceramics and their contact damage responses were compared to those of soda-lime silicate and borosilicate glasses. Lastly, variability of contact damage response was assessed by performing spherical indentation testing across the area of an entire glass ceramic tile. The primary observations from this low velocity (< 30 m/s or < 65 mph) testing were: (1) Resistan{trademark}-L glass ceramic required the highest velocity of sphere impact for damage to initiate. Starphire{reg_sign} soda-lime silicate glass was second best, then Resistan{trademark}-G1 glass ceramic, and then BOROFLOAT{reg_sign} borosilicate glass. (2) Glass-ceramic Resistan{trademark}-L also required the largest force to initiate ring crack from quasi-static indentation. That ranking was followed, in descending order, by Starphire{reg_sign} soda-lime silicate glass, Resistan{trademark}-G1 glass ceramic, and BOROFLOAT{reg_sign} borosilicate glass

  19. Effect of nano-scale morphology on micro-channel wall surface and electrical characterization in lead silicate glass micro-channel plate

    Science.gov (United States)

    Cai, Hua; Li, Fangjun; Xu, Yanglei; Bo, Tiezhu; Zhou, Dongzhan; Lian, Jiao; Li, Qing; Cao, Zhenbo; Xu, Tao; Wang, Caili; Liu, Hui; Li, Guoen; Jia, Jinsheng

    2017-10-01

    Micro-channel plate (MCP) is a two dimensional arrays of microscopic channel charge particle multiplier. Silicate composition and hydrogen reduction are keys to determine surface morphology of micro-channel wall in MCP. In this paper, lead silicate glass micro-channel plates in two different cesium contents (0at%, 0.5at%) and two different hydrogen reduction temperatures (400°C,450°C) were present. The nano-scale morphology, elements content and chemical states of microporous wall surface treated under different alkaline compositions and reduction conditions was investigated by Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS), respectively. Meanwhile, the electrical characterizations of MCP, including the bulk resistance, electron gain and the density of dark current, were measured in a Vacuum Photoelectron Imaging Test Facility (VPIT).The results indicated that the granular phase occurred on the surface of microporous wall and diffuses in bulk glass is an aggregate of Pb atom derived from the reduction of Pb2+. In micro-channel plate, the electron gain and bulk resistance were mainly correlated to particle size and distribution, the density of dark current (DDC) went up with the increasing root-mean-square roughness (RMS) on the microporous wall surface. Adding cesiums improved the size of Pb atomic aggregation, lowered the relative concentration of [Pb] reduced from Pb2+ and decreased the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a less dark current. Increasing hydrogen reduction temperature also improved the size of Pb atomic aggregation, but enhanced the relative concentration of [Pb] and enlarged the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a larger dark current. The reasons for the difference of electrical characteristics were discussed.

  20. Deformation, Stress Relaxation, and Crystallization of Lithium Silicate Glass Fibers Below the Glass Transition Temperature

    Science.gov (United States)

    Ray, Chandra S.; Brow, Richard K.; Kim, Cheol W.; Reis, Signo T.

    2004-01-01

    The deformation and crystallization of Li(sub 2)O (center dot) 2SiO2 and Li(sub 2)O (center dot) 1.6SiO2 glass fibers subjected to a bending stress were measured as a function of time over the temperature range -50 to -150 C below the glass transition temperature (Tg). The glass fibers can be permanently deformed at temperatures about 100 C below T (sub)g, and they crystallize significantly at temperatures close to, but below T,, about 150 C lower than the onset temperature for crystallization for these glasses in the no-stress condition. The crystallization was found to occur only on the surface of the glass fibers with no detectable difference in the extent of crystallization in tensile and compressive stress regions. The relaxation mechanism for fiber deformation can be best described by a stretched exponential (Kohlrausch-Williams-Watt (KWW) approximation), rather than a single exponential model.The activation energy for stress relaxation, Es, for the glass fibers ranges between 175 and 195 kJ/mol, which is considerably smaller than the activation energy for viscous flow, E, (about 400 kJ/mol) near T, for these glasses at normal, stress-free condition. It is suspected that a viscosity relaxation mechanism could be responsible for permanent deformation and crystallization of the glass fibers below T,

  1. Oxynitride glasses: a review

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.R.; Clausell, C.; Barba, A.

    2016-07-01

    Oxynitride glasses are special types of silicates or silicoaluminates which have been the object of many studies over the last forty years. They can be prepared by means of various complex methods, leading to variable levels of nitrogen incorporation, though in all cases giving limited transparency in the visible range. More recently, a new family of oxynitride glasses incorporating fluorine has been investigated. This paper outlines the effect of composition, in particular nitrogen and fluorine content, on properties such as glass transition temperature, hardness, Young's modulus, compactness and molar volume. (Author)

  2. Modifier constraints in alkali ultraphosphate glasses

    DEFF Research Database (Denmark)

    Rodrigues, B.P.; Mauro, J.C.; Yue, Yuanzheng

    2014-01-01

    In applying the recently introduced concept of cationic constraint strength [J. Chem. Phys. 140, 214501 (2014)] to bond constraint theory (BCT) of binary phosphate glasses in the ultraphosphate region of xR2O-(1-x)P2O5 (with x ≤ 0.5 and R = {Li, Na, Cs}), we demonstrate that a fundamental limitat...

  3. Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Aldo R. Boccaccini

    2010-07-01

    Full Text Available Traditionally, bioactive glasses have been used to fill and restore bone defects. More recently, this category of biomaterials has become an emerging research field for bone tissue engineering applications. Here, we review and discuss current knowledge on porous bone tissue engineering scaffolds on the basis of melt-derived bioactive silicate glass compositions and relevant composite structures. Starting with an excerpt on the history of bioactive glasses, as well as on fundamental requirements for bone tissue engineering scaffolds, a detailed overview on recent developments of bioactive glass and glass-ceramic scaffolds will be given, including a summary of common fabrication methods and a discussion on the microstructural-mechanical properties of scaffolds in relation to human bone (structure-property and structure-function relationship. In addition, ion release effects of bioactive glasses concerning osteogenic and angiogenic responses are addressed. Finally, areas of future research are highlighted in this review.

  4. Theoretical and practical aspects of aqueous solution sodium silicate modifying

    Directory of Open Access Journals (Sweden)

    Mizuryaev Sergey

    2016-01-01

    Full Text Available This research deals with the use of liquid glass in industry particularly for porous filler production. The aim of this paper is to show the necessity liquid glass modification for the purpose of its rheological characteristics change for raw granules formation and providing given structure after porization. Data on chemical liquid glass modification are provided by adding sodium chloride. Moreover, inert mineral additives influence on porous filler properties are shown in this paper. The basic principles of light concrete composition selection are specified. Test results of light concrete on the developed porous sodium silicate filler are given.

  5. NMR studies of the structure of glasses

    International Nuclear Information System (INIS)

    Bray, P.J.; Gravina, S.J.; Stallworth, P.E.; Szu, S.P.; Jianhui Zhong

    1988-01-01

    Earlier continuous wave (CW) NMR studies of chemical bonding and structure in glasses are summarized. Examples are given of this use of the quadrupolar interaction and chemical shift to obtain structural information. New NMR data and analyses are presented for alkali borate and gallate glasses. Extensions to other elements (e.g. molybdenum, lanthanum) are suggested. 44 refs. (author)

  6. Development of Biomedical Polymer-Silicate Nanocomposites: A Materials Science Perspective

    Directory of Open Access Journals (Sweden)

    Chia-Jung Wu

    2010-04-01

    Full Text Available Biomedical polymer-silicate nanocomposites have potential to become critically important to the development of biomedical applications, ranging from diagnostic and therapeutic devices, tissue regeneration and drug delivery matrixes to various bio-technologies that are inspired by biology but have only indirect biomedical relation. The fundamental understanding of polymer-nanoparticle interactions is absolutely necessary to control structure-property relationships of materials that need to work within the chemical, physical and biological constraints required by an application. This review summarizes the most recent published strategies to design and develop polymer-silicate nanocomposites (including clay based silicate nanoparticles and bioactive glass nanoparticles for a variety of biomedical applications. Emerging trends in bio-technological and biomedical nanocomposites are highlighted and potential new fields of applications are examined.

  7. Physical and chemical characterization of borosilicate glasses containing Hanford high-level wastes

    International Nuclear Information System (INIS)

    Kupfer, M.J.; Palmer, R.A.

    1980-10-01

    Scouting studies are being performed to develop and evaluate silicate glass forms for immobilization of Hanford high-level wastes. Detailed knowledge of the physical and chemical properties of these glasses is required to assess their suitability for long-term storage or disposal. Some key properties to be considered in selecting a glass waste form include leach resistance, resistance to radiation, microstructure (includes devitrification behavior or crystallinity), homogeneity, viscosity, electrical resistivity, mechanical ruggedness, thermal expansion, thermal conductivity, density, softening point, annealing point, strain point, glass transformation temperature, and refractive index. Other properties that are important during processing of the glass include volatilization of glass and waste components, and corrosivity of the glass on melter components. Experimental procedures used to characterize silicate waste glass forms and typical properties of selected glass compositions containing simulated Hanford sludge and residual liquid wastes are presented. A discussion of the significance and use of each measured property is also presented

  8. Mixed alkali effect in borate glasses - electron paramagnetic resonance and optical absorption studies in Cu sup 2 sup + doped xNa sub 2 O- (30 - x)K sub 2 O- 70B sub 2 O sub 3 glasses

    CERN Document Server

    Chakradhar, R P S; Rao, J L; Ramakrishna, J

    2003-01-01

    The mixed alkali borate glasses xNa sub 2 O-(30 - x)K sub 2 O-70B sub 2 O sub 3 (5 sup sup 2 B sub 2 sub g) and a weak band on the higher energy side at 22 115 cm sup - sup 1 corresponding to the transition ( sup 2 B sub 1 sub g -> sup 2 E sub g). With x > 5, the higher energy band disappears and the lower energy band shifts slightly to the lower energy side. By correlating the EPR and optical absorption data, the molecular orbital coefficients alpha sup 2 and beta sub 1 sup 2 are evaluated for the different glasses investigated. The values indicate that the in-plane sigma bonding is moderately covalent while the in-plane pi bonding is significantly ionic in nature; these exhibit a minimum with x = 15, showing the MAE. The theoretical values of optical basicity of the glasses have also been evaluated. From optical absorption edges, the optical bandgap energies have been calculated and are found to lie in the range 3.00-3.40 eV. The physical properties of the glasses studied have also been evaluated with respe...

  9. Glass corrosion in natural environments

    Science.gov (United States)

    Thorpe, Arthur N.; Barkatt, Aaron

    1992-01-01

    Experiments carried out during the progress period are summarized. Experiments carried out involving glass samples exposed to solutions of Tris have shown the appearance of 'spikes' upon monitoring glass dissolution as a function of time. The periodic 'spikes' observed in Tris-based media were interpreted in terms of cracking due to excessive stress in the surface region of the glass. Studies of the interactions of silicate glasses with metal ions in buffered media were extended to systems containing Al. Caps buffer was used to establish the pH. The procedures used are described and the results are given. Preliminary studies were initiated as to the feasibility of adding a slowly dissolving solid compound of the additive to the glass-water system to maintain a supply of dissolved additive. It appears that several magnesium compounds have a suitable combination of solubility and affinity towards silicate glass surfaces to have a pronounced retarding effect on the extraction of uranium from the glass. These preliminary findings raise the possibility that introducing a magnesium source into geologic repositories for nuclear waste glass in the form of a sparingly soluble Mg-based backfill material may cause a substantial reduction in the extent of long-term glass corrosion. The studies described also provide mechanistic understanding of the roles of various metal solutes in the leachant. Such understanding forms the basis for developing long-term predictions of nuclear waste glass durability under repository conditions. From what is known about natural highly reduced glasses such as tektites, it is clear that iron is dissolved as ferrous iron with little or no ferric iron. The reducing conditions were high enough to cause metallic iron to exsolve out of the glass in the form of submicroscopic spherules. As the nuclear waste glass is much less reduced, a study was initiated on other natural glasses in addition to the nuclear waste glass. Extensive measurements were

  10. Epitaxial Growth of a Methoxy-Functionalized Quaterphenylene on Alkali Halide Surfaces

    DEFF Research Database (Denmark)

    Balzer, Frank; Sun, Rong; Parisi, Jürgen

    2015-01-01

    The epitaxial growth of the methoxy functionalized para-quaterphenylene (MOP4) on the (001) faces of the alkali halides NaCl and KCl and on glass is investigated by a combination of lowenergy electron diffraction (LEED), polarized light microscopy (PLM), atomic force microscopy (AFM), and X...

  11. The applicability of alkaline-resistant glass fiber in cement mortar of road pavement: Corrosion mechanism and performance analysis

    Directory of Open Access Journals (Sweden)

    Qin Xiaochun

    2017-11-01

    Full Text Available The main technical requirements of road pavement concrete are high flexural strength and fatigue durability. Adding glass fiber into concrete could greatly increase flexural strength and wearing resistance of concrete. However, glass fiber has the great potential of corrosion during the cement hydration, which will directly affect the long-term performance and strength stability. In this paper, accelerated corrosion experiments have been done to find out the corrosion mechanism and property of alkali-resistant glass fiber in cement mortar. The applicability and practicability of alkaline-resistant glass fiber in road concrete have been illustrated in the analysis of flexural strength changing trend of cement mortar mixed with different proportions of activated additives to protect the corrosion of glass fiber by cement mortar. The results have shown that a 30% addition of fly ash or 10% addition of silica fume to cement matrix could effectively improve the corrosion resistance of alkali-resistant glass fiber. The optimal mixing amount of alkali-resistant glass fiber should be about 1.0 kg/m3 in consideration of ensuring the compressive strength of reinforced concrete in road pavement. The closest-packing method has been adopted in the mixture ratio design of alkali-resistant glass fiber reinforced concrete, not only to reduce the alkalinity of the cement matrix through large amount addition of activated additives but also to greatly enhance the flexural performance of concrete with the split pressure ratio improvement of 12.5–16.7%. The results suggested a prosperous application prospect for alkaline-resistant glass fiber reinforced concrete in road pavement.

  12. Experimental and Theoretical Investigations of Glass Surface Charging Phenomena

    Science.gov (United States)

    Agnello, Gabriel

    Charging behavior of multi-component display-type (i.e. low alkali) glass surfaces has been studied using a combination of experimental and theoretical methods. Data obtained by way of a Rolling Sphere Test (RST), streaming/zeta potential and surface energy measurements from commercially available display glass surfaces (Corning EAGLE XGRTM and Lotus(TM) XT) suggest that charge accumulation is highly dependent on surface treatment (chemical and/or physical modification) and measurement environment, presumably through reactionary mechanisms at the surface with atmospheric moisture. It has been hypothesized that water dissociation, along with the corresponding hydroxylation of the glass surface, are important processes related to charging in glass-metal contact systems. Classical Molecular Dynamics (MD) simulations, in conjunction with various laboratory based measurements (RST, a newly developed ElectroStatic Gauge (ESG) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS)) on simpler Calcium AluminoSilicate (CAS) glass surfaces were used to further explore these phenomena. Analysis of simulated high-silica content (≥50%) (CAS) glass structures suggest that controlled variation of bulk chemistry can directly affect surface defect concentrations, such as non-bridging oxygen (NBO), which can be suitable high-energy sites for hydrolysis-type reactions to occur. Calculated NBO surface concentrations correlate well with charge based measurements on laboratory fabricated CAS surfaces. The data suggest that a directional/polar shift in contact-charge transfer occurs at low silica content (≤50%) where the highest concentrations of NBOs are observed. Surface charging sensitivity with respect to NBO concentration decreases as the relative humidity of the measurement environment increases; which should be expected as the highly reactive sites are progressively covered by liquid water layers. DRIFTS analysis of CAS powders expand on this analysis showing

  13. Preliminary assessment of modified borosilicate glasses for chromium and ruthenium immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Farid, Osama M. [Reactors Department, Nuclear Research Center, Atomic Energy Authority of Egypt, P.O. 13759, Inshas, Cairo (Egypt); Centre of Nuclear Engineering (CNE), Department of Materials, Imperial College London, London, SW7 2BP (United Kingdom); Abdel Rahman, R.O., E-mail: alaarehab@yahoo.com [Hot Laboratory Center, Atomic Energy Authority of Egypt, P.O. 13759, Inshas, Cairo (Egypt)

    2017-01-15

    The feasibility of using modified alkali borosilicate glasses for ruthenium and chromium immobilization is preliminary assessed by investigating the immobilization system structure under normal conditions. Within this context, reference alkali borosilicate, and simulated Magnox-modified glasses were prepared and studied. The results indicate that ruthenium is immobilized in the vitreous structure as encapsulated RuO{sub 2} crystallites that act as seeds for heterogeneous nucleation of other crystalline phases. The presence of Zn, as modifier, has contributed to chromium immobilization in zincochromite spinel structure, whereas Ca is accommodated in the vitreous structure. Immobilization performance was evaluated by conducting conservative static leach test and studying the leached glass. Leached glass morphology was altered, where near surface reference glass is leached over 400 nm and simulated Magnox-modified sample is altered over 300 nm. Normalized release rates are within normal range for borosilicate material. For simulated Magnox-modified sample, Ca and alkali structural element, i.e. Na and Li, are leached via ion-exchange reaction. The ion-exchanged fraction equals 1.06 × 10{sup −8} mol/m{sup 2} s and chromium has slightly lower normalized release rate value than ruthenium. - Highlights: • The presence of modifiers and waste oxides led to localized de-vitrification. • Ruthenium is encapsulated within the vitreous glass network as RuO{sub 2} crystals. • Chromium is immobilized within the zincochromite spinel structure. • Pitting and cracks induced by leaching did not affect the immobilization performance.

  14. Photoluminescence properties of LiF bismuth silicate glass

    Science.gov (United States)

    Krishnan, M. Laya; Kumar, V. V. Ravi Kanth

    2018-04-01

    The sample (60-X) Bi2O3-30SiO2-XLiF where X=10, 15, 25 were prepared by conventional melt quenching method. X-ray diffraction pattern conformed the amorphous nature of the prepared sample and a broad peak at 2θ=30°. The Raman spectra confirmed that the Bi can exist both network former (BiO3 pyramidal) and network modifier (BiO6 octahedral)in the glass matrix. The samples showing broad absorption at 470nm is due to the presence of Bi2+ ions, because of increasing optical basicity the absorption edge of the sample is blue shifted. The photoluminescence spectra of the glass under 350nm excitation are showing two main peaks at 430nm and 630 nm due to Bi3+ and Bi2+ respectively and 25 LBS glass showing yellow, 15LBS showing near bluish white and 10LBS showing blue luminescence. The color purity and correlated color temperature are also calculated.

  15. Fabrication of highly nonlinear germano-silicate glass optical fiber incorporated with PbTe semiconductor quantum dots using atomization doping process and its optical nonlinearity.

    Science.gov (United States)

    Ju, Seongmin; Watekar, Pramod R; Han, Won-Taek

    2011-01-31

    Germano-silicate glass optical fiber incorporated with PbTe semiconductor quantum dots (SQDs) in the core was fabricated by using the atomization process in modified chemical vapor deposition (MCVD) process. The absorption bands attributed to PbTe semiconductor quantum dots in the fiber core were found to appear at around 687 nm and 1055 nm. The nonlinear refractive index measured by the long-period fiber grating (LPG) pair method upon pumping with laser diode at 976.4 nm was estimated to be ~1.5 × 10(-16) m2/W.

  16. Evolution of the local environment of lanthanum during simplified SON68 glass leaching

    International Nuclear Information System (INIS)

    Jollivet, P.; Delaye, J.M.; Den Auwer, C.; Simoni, E.

    2007-01-01

    The evolution of the short- and medium-range local environment of lanthanum was determined by L-III-edge X-ray absorption spectroscopy (XAS) during leaching of simplified SON68-type glasses. In glass without phosphorus, lanthanum is found in a silicate environment, and its first coordination sphere comprises eight oxygen atoms at a mean distance of 2.51 angstrom. When this glass was leached at a high renewal rate, the lanthanum local environment was significantly modified: it was present at hydroxy-carbonate and silicate sites with a mean La-O distance of 2.56 angstrom, and the second neighbors consisted of La atoms instead of Si for the glass. Conversely, in the gel formed at low renewal rates, lanthanum was found in a silicate environment similar to that of the glass. In phosphorus-doped glass, lanthanum is found in a phosphate environment, although the Si/P atomic ratio is 20:1. Lanthanum is surrounded by seven oxygen atoms at a mean distance of 2.37 angstrom. When phosphorus-doped glass is leached, regardless of the leaching solution flow rate, the short- and medium-range lanthanum local environment remains almost constant; the most significant change is a 0.05 angstrom increase in the La-O distance. (authors)

  17. Wastewater reuse in liquid sodium silicate manufacturing in alexandria, egypt.

    Science.gov (United States)

    Ismail, Gaber A; Abd El-Salam, Magda M; Arafa, Anwar K

    2009-01-01

    Soluble sodium silicates (waterglass) are liquids containing dissolved glass which have some water like properties. They are widely used in industry as sealants, binders, deflocculants, emulsifiers and buffers. Their most common applications in Egypt are in the pulp and paper industry (where they improve the brightness and efficiency of peroxide bleaching) and the detergent industry, in which they improve the action of the detergent and lower the viscosity of liquid soaps. The survey results showed that the production was carried out batch-wise, in an autoclave (dissolver). Sodium silicate in the state of crushed glass was charged in an autoclave (dissolver) with sodium hydroxide and water. The product is filtered through a press. The left over sludge (mud and silicates impurities) is emptied into the local sewer system. Also, sludge (silica gel) was discharged from the neutralization process of the generated alkaline wastewater and consequently clogging the sewerage system. So this study was carried out to modify the current wastewater management system which eliminates sludge formation, the discharge of higher pH wastewater to the sewer system, and to assess its environmental and economic benefits. To assess the characteristics of wastewater to be reused, physico-chemical parameters of 12 samples were tested using standard methods. The survey results showed that a total capacity of the selected enterprise was 540 tons of liquid sodium silicates monthly. The total amount of wastewater being discharged was 335 m3/month. Reusing of wastewater as feed autoclave water reduced water consumption of 32.1% and reduced wastewater discharge/month that constitutes 89.6% as well as saving in final product of 6 ton/month. It was concluded that reusing of wastewater generated from liquid sodium silicate manufacturing process resulted in cheaper and environmental-friendly product.

  18. [Isotope tracer studies of diffusion in silicates and of geological transport processes using actinide elements

    International Nuclear Information System (INIS)

    Wasserburg, G.J.

    1991-01-01

    This report consists of sections entitled resonance ionization mass spectrometry of Os, Mg self-diffusion in spinel and silicate melts, neotectonics: U-Th ages of solitary corals from the California coast, uranium-series evidence on diagenesis and hydrology of carbonates of Barbados, diffusion of H 2 O molecules in silicate glasses, and development of an extremely high abundance sensitivity mass spectrometer

  19. Short and medium range order in two-component silica glasses by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Inoue, K.; Kataoka, H.; Nagai, Y.; Hasegawa, M.; Kobayashi, Y.

    2014-01-01

    The dependence of chemical composition on the average sizes of subnanometer-scale intrinsic structural open spaces surrounded by glass random networks in two-component silica-based glasses was investigated systematically using positronium (Ps) confined in the open spaces. The average sizes of the open spaces for SiO 2 -B 2 O 3 and SiO 2 -GeO 2 glasses are only slightly dependent on the chemical compositions because the B 2 O 3 and GeO 2 are glass network formers that are incorporated into the glass network of the base SiO 2 . However, the open space sizes for all SiO 2 -R 2 O (R = Li, Na, K) glasses, where R 2 O is a glass network modifier that occupies the open spaces, decrease rapidly with an increase in the R 2 O concentration. Despite the large difference in the ionic radii of the alkali metal (R) atoms, the open space sizes decrease similarly for all the alkali metal atoms studied. This dependence of the chemical composition on the open space sizes in SiO 2 -R 2 O observed by Ps shows that the alkali metal atoms do not randomly occupy the structural open spaces, but filling of the open spaces by R 2 O proceeds selectively from the larger to the smaller open spaces as the R 2 O concentrations are increased.

  20. Development of alkali activated cements and concrete mixture design with high volumes of red mud

    OpenAIRE

    Krivenko, Pavel; Kovalchuk, Oleksandr; Pasko, Anton; Croymans, Tom; Hutt, Mikael; Lutter, Guillaume; Vandevenne, Niels; Schreurs, Sonja; Schroeyers, Wouter

    2017-01-01

    Dedicated cement compositions were formulated to enable the incorporation of large volume fractions of red mud in alkali activated cements, taking into account the role of the aluminosilicate phase in the processes of hydration and hardening. High volume red mud alkali activated cements were synthesized using a proper combination of red mud, low basic aluminosilicate compounds with a glass phase (blast-furnace slag) and additives selected from high-basic Ca-containing cements with a crystalli...

  1. Evidence of denser MgSiO3 glass above 133 gigapascal (GPa) and implications for remnants of ultradense silicate melt from a deep magma ocean.

    Science.gov (United States)

    Murakami, Motohiko; Bass, Jay D

    2011-10-18

    Ultralow velocity zones are the largest seismic anomalies in the mantle, with 10-30% seismic velocity reduction observed in thin layers less than 20-40 km thick, just above the Earth's core-mantle boundary (CMB). The presence of silicate melts, possibly a remnant of a deep magma ocean in the early Earth, have been proposed to explain ultralow velocity zones. It is, however, still an open question as to whether such silicate melts are gravitationally stable at the pressure conditions above the CMB. Fe enrichment is usually invoked to explain why melts would remain at the CMB, but this has not been substantiated experimentally. Here we report in situ high-pressure acoustic velocity measurements that suggest a new transformation to a denser structure of MgSiO(3) glass at pressures close to those of the CMB. The result suggests that MgSiO(3) melt is likely to become denser than crystalline MgSiO(3) above the CMB. The presence of negatively buoyant and gravitationally stable silicate melts at the bottom of the mantle, would provide a mechanism for observed ultralow seismic velocities above the CMB without enrichment of Fe in the melt. An ultradense melt phase and its geochemical inventory would be isolated from overlying convective flow over geologic time.

  2. Low melting high lithia glass compositions and methods

    Science.gov (United States)

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2000-01-01

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  3. Influence of glass furnace operational conditions on the evaporation from soda-lime and borosilicate glass melts.

    NARCIS (Netherlands)

    Beerkens, R.G.C.

    2000-01-01

    The evaporation of sodium and boron species from the melts in industrial glass furnaces leads to emissions of particulates (dust) and to furnace atmospheres containing reactive evaporation products. These reactive species, especially alkali vapors, can react with the superstructure refractories

  4. Topological Principles of Borosilicate Glass Chemistry - An Invited Talk

    DEFF Research Database (Denmark)

    Mauro, J.C.; Smedskjær, Morten Mattrup; Youngman, R. E.

    Borosilicate glasses display a rich complexity of chemical behavior depending on the details of their composition and thermal history. We investigate the topological principles of borosilicate glass chemistry covering the extremes from pure borate to pure silicate end members. Based on NMR...

  5. Synthesis of recent investigations on corrosion behaviour of radioactive waste glasses

    International Nuclear Information System (INIS)

    Grauer, R.

    1985-03-01

    Work which has appeared since the earlier report (EIR--477) on the corrosion behaviour of borosilicate glasses as a solidification matrix for high-level radioactive waste has been evaluated. Many works have confirmed that for a particular glass, besides temperature and pH-value, the silicate concentration of the solution exerts the strongest influence on corrosion rate. The effect of silicate can be described in terms of simple reaction kinetics models which provides a more sound basis for prediction of long-term behaviour of glasses than previously existed. Meanwhile, the effects of backfill- and canister-materials and their corrosion products have been given the attention they merit. These materials affect glass corrosion primarily through regulation of silicic acid concentration. A particular finding which is of interest is the strong inhibition of glass corrosion by lead ions. Stationary corrosion rates in the order of magnitude of 10 -5 g/cm 2 .d can be derived from long-term corrosion experiments in stagnant water at 90 0 C. At the envisaged repository temperature of 55 0 C they will be one to two orders of magnitude less. The effects of radioactive decay on corrosion rate are either very small or not detectable at all. (Auth.)

  6. Impact of Zn, Mg, Ni and Co elements on glass alteration: Additive effects

    Energy Technology Data Exchange (ETDEWEB)

    Aréna, H., E-mail: helene.arena@cea.fr [CEA, DEN, DTCD, LCLT, Centre de Marcoule, F-30207 Bagnols sur Cèze Cedex (France); Godon, N. [CEA, DEN, DTCD, LCLT, Centre de Marcoule, F-30207 Bagnols sur Cèze Cedex (France); Rébiscoul, D.; Podor, R. [ICSM-UMR5257 CNRS/CEA/UM2/ENCSM, Site de Marcoule, Bat. 426, 30207 Bagnols/Cèze (France); Garcès, E. [CEA, DEN, DTCD, LCLT, Centre de Marcoule, F-30207 Bagnols sur Cèze Cedex (France); Cabie, M. [Aix-Marseille Université, CP2M, F-13397 Marseille (France); Mestre, J.-P. [CEA, DEN, DTCD, LCLT, Centre de Marcoule, F-30207 Bagnols sur Cèze Cedex (France)

    2016-03-15

    The minor elements present in the nuclear glass composition or coming from the groundwater of the future repository may impact glass alteration. In this study, the effects of Zn, Mg, Ni and Co on the International Simple Glass (ISG) alteration were studied throughout 511 days of aqueous leaching experiments. The aim was to determine their additive or competitive effect on glass alteration and the nature of the alteration products. The four elements were introduced separately or altogether in solution as XCl{sub 2} chloride salts (X = Zn, Mg, Ni or Co) with monthly additions to compensate for their consumption. The alteration kinetics were determined by leachate analyses (ICP-AES) and alteration products were characterized in terms of composition, morphology and microstructure (SEM, TEM-EDX, ToF-SIMS and XRD). Results indicate that when they are introduced separately, Zn, Mg, Ni and Co have the same qualitative and quantitative effect on glass alteration kinetics and on pH: they form secondary phases leading to a pH decrease and a significant increase in glass alteration. The secondary phases were identified as silicates of the added X element: trioctahedral smectites with a stoichiometry of[(Si{sub (4-a)} Al{sub a}) (X{sub (3-b)} Al{sub b}) O{sub 10} (OH){sub 2}]{sup (a+b)−} [X{sub c} Na{sub d} Ca{sub e}] {sup (2c+d+2e) +} with a = 0.11 to 0.45, b = 0.00 to 0.29, c = 0, d = 0.19 to 0.74 and e = 0.10 to 0.14. . It was shown that as pH stabilizes at a minimum value, X-silicates no longer precipitate, thus leading to a significant drop in the glass alteration rate. This pH value depends on X and it has been identified as being 8 for Mg-silicates, probably around 7.3 for Ni and Co-silicates and less than 6.2 for Zn-silicates. When tested together, the effects of these four elements on glass alteration are additive and lead to the formation of a mix of X-silicates that precipitate as long as their constitutive elements are available and the pH is above

  7. Chemical durability of borosilicate glasses containing simulated high-level nuclear wastes, 1

    International Nuclear Information System (INIS)

    Hara, Shigeo; Terai, Ryohei; Yamanaka, Hiroshi

    1983-01-01

    The Soxhlet-type leaching test apparatus has been developed to evaluate the chemical durability of some borosilicate glasses containing simulated High-Level nuclear Wastes, HLW. After the leaching over the temperature range of 50 0 -95 0 C, the weight loss of specimens with time was determined on both the samples of blocks and grains, and various components dissolved into water were analyzed by atomic absorption and colorimetry technique. It was found that Soxhlet-type test method was more useful than JIS test method, because the specimens in Soxhlet type apparatus were forced always to react with pure water and the mechanism of leaching could be evaluate accurately. The chemical durability of commercial glasses decreases generally with increasing of alkali contents in glasses. In the case of these borosilicate glasses containing HLW, however, the leachability was apparently independent on the alkali contents because of the complexity of these glass compositions. The variation of leaching rate with temperature suggests that dissolution mechanism changes with temperature. (author)

  8. Viscosity and Softening Behavior of Alkali Zinc Sulfophosphate Glasses

    DEFF Research Database (Denmark)

    Da, Ning; Krolikowski, Sebastian; Nielsen, Karsten Hansgaard

    2010-01-01

    We report on the softening properties and viscosity of glasses from the system ZnO-Na2O-SO3-P2O5 for low-temperature sealing applications. Up to a ratio of network-forming ions PO(4)3-:SO(4)2- of about 2:1, a gradual substitution of P2O5 by SO3 results in decreasing glass transition and softening...

  9. Use of Slag/Sugar Cane Bagasse Ash (SCBA) Blends in the Production of Alkali-Activated Materials.

    Science.gov (United States)

    Castaldelli, Vinícius N; Akasaki, Jorge L; Melges, José L P; Tashima, Mauro M; Soriano, Lourdes; Borrachero, María V; Monzó, José; Payá, Jordi

    2013-07-25

    Blast furnace slag (BFS)/sugar cane bagasse ash (SCBA) blends were assessed for the production of alkali-activated pastes and mortars. SCBA was collected from a lagoon in which wastes from a sugar cane industry were poured. After previous dry and grinding processes, SCBA was chemically characterized: it had a large percentage of organic matter ( ca. 25%). Solutions of sodium hydroxide and sodium silicate were used as activating reagents. Different BFS/SCBA mixtures were studied, replacing part of the BFS by SCBA from 0 to 40% by weight. The mechanical strength of mortar was measured, obtaining values about 60 MPa of compressive strength for BFS/SCBA systems after 270 days of curing at 20 °C. Also, microstructural properties were assessed by means of SEM, TGA, XRD, pH, electrical conductivity, FTIR spectroscopy and MIP. Results showed a good stability of matrices developed by means of alkali-activation. It was demonstrated that sugar cane bagasse ash is an interesting source for preparing alkali-activated binders.

  10. SON68 glass alteration enhanced by magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Godon, Nicole; Gin, Stephane; Rebiscoul, Diane; Frugier, Pierre [CEA, DEN-Marcoule, F30207, Bagnols-sur-Ceze (France)

    2013-07-01

    This paper reports experimental and modeling results of SON68 glass / magnetite interactions while in contact with synthetic groundwater from a clay environment. It is shown that magnetite enhances glass alteration, first by the sorption of Si released from the glass onto magnetite surfaces, then by a second process that could be the precipitation of an iron silicate mineral or the transformation of magnetite into a more reactive phase like hematite or goethite. This study globally suggests a detrimental effect of magnetite on the long-term durability of nuclear glass in geological disposal conditions. (authors)

  11. Influence of granitic aggregates from Northeast Brazil on the alkali-aggregate reaction

    Energy Technology Data Exchange (ETDEWEB)

    Gomes Neto, David de Paiva; Santana, Rodrigo Soares de; Barreto, Ledjane Silva, E-mail: pvgomes@uol.com.br [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Dept. de Ciencias dos Materiais e Engenharia; Conceicao, Herbert; Lisboa, Vinicios Anselmo Carvalho [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Dept. de Geologia

    2014-08-15

    The alkali-aggregate reaction (AAR) in concrete structures is a problem that has concerned engineers and researchers for decades. This reaction occurs when silicates in the aggregates react with the alkalis, forming an expanded gel that can cause cracks in the concrete and reduce its lifespan. The aim of this study was to characterize three coarse granitic aggregates employed in concrete production in northeastern Brazil, correlating petrographic analysis with the kinetics of silica dissolution and the evolution of expansions in mortar bars, assisted by SEM/EDS, XRD, and EDX. The presence of grains showing recrystallization into individual microcrystalline quartz subgrains was associated with faster dissolution of silica and greater expansion in mortar bars. Aggregates showing substantial deformation, such as stretched grains of quartz with strong undulatory extinction, experienced slower dissolution, with reaction and expansion occurring over longer periods that could not be detected using accelerated tests with mortar bars. (author)

  12. DUSCOBS - a depleted-uranium silicate backfill for transport, storage, and disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Pope, R.B.; Ashline, R.C.; DeHart, M.D.; Childs, K.W.; Tang, J.S.

    1995-01-01

    A Depleted Uranium Silicate COntainer Backfill System (DUSCOBS) is proposed that would use small, isotopically-depleted uranium silicate glass beads as a backfill material inside storage, transport, and repository waste packages containing spent nuclear fuel (SNF). The uranium silicate glass beads would fill all void space inside the package including the coolant channels inside SNF assemblies. Based on preliminary analysis, the following benefits have been identified. DUSCOBS improves repository waste package performance by three mechanisms. First, it reduces the radionuclide releases from SNF when water enters the waste package by creating a local uranium silicate saturated groundwater environment that suppresses (1) the dissolution and/or transformation of uranium dioxide fuel pellets and, hence, (2) the release of radionuclides incorporated into the SNF pellets. Second, the potential for long-term nuclear criticality is reduced by isotopic exchange of enriched uranium in SNF with the depleted uranium (DU) in the glass. Third, the backfill reduces radiation interactions between SNF and the local environment (package and local geology) and thus reduces generation of hydrogen, acids, and other chemicals that degrade the waste package system. In addition, the DUSCOBS improves the integrity of the package by acting as a packing material and ensures criticality control for the package during SNF storage and transport. Finally, DUSCOBS provides a potential method to dispose of significant quantities of excess DU from uranium enrichment plants at potential economic savings. DUSCOBS is a new concept. Consequently, the concept has not been optimized or demonstrated in laboratory experiments

  13. Feed Preparation for Source of Alkali Melt Rate Tests

    International Nuclear Information System (INIS)

    Stone, M. E.; Lambert, D. P.

    2005-01-01

    The purpose of the Source of Alkali testing was to prepare feed for melt rate testing in order to determine the maximum melt-rate for a series of batches where the alkali was increased from 0% Na 2 O in the frit (low washed sludge) to 16% Na 2 O in the frit (highly washed sludge). This document summarizes the feed preparation for the Source of Alkali melt rate testing. The Source of Alkali melt rate results will be issued in a separate report. Five batches of Sludge Receipt and Adjustment Tank (SRAT) product and four batches of Slurry Mix Evaporator (SME) product were produced to support Source of Alkali (SOA) melt rate testing. Sludge Batch 3 (SB3) simulant and frit 418 were used as targets for the 8% Na 2 O baseline run. For the other four cases (0% Na 2 O, 4% Na 2 O, 12% Na 2 O, and 16% Na 2 O in frit), special sludge and frit preparations were necessary. The sludge preparations mimicked washing of the SB3 baseline composition, while frit adjustments consisted of increasing or decreasing Na and then re-normalizing the remaining frit components. For all batches, the target glass compositions were identical. The five SRAT products were prepared for testing in the dry fed melt-rate furnace and the four SME products were prepared for the Slurry-fed Melt-Rate Furnace (SMRF). At the same time, the impacts of washing on a baseline composition from a Chemical Process Cell (CPC) perspective could also be investigated. Five process simulations (0% Na 2 O in frit, 4% Na 2 O in frit, 8% Na 2 O in frit or baseline, 12% Na 2 O in frit, and 16% Na 2 O in frit) were completed in three identical 4-L apparatus to produce the five SRAT products. The SRAT products were later dried and combined with the complementary frits to produce identical glass compositions. All five batches were produced with identical processing steps, including off-gas measurement using online gas chromatographs. Two slurry-fed melter feed batches, a 4% Na 2 O in frit run (less washed sludge combined with

  14. Influence of Na diffusion on thermochromism of vanadium oxide films and suppression through mixed-alkali effect

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Mark J.; Wang, Junlan, E-mail: junlan@u.washington.edu

    2015-10-15

    Highlights: • Vanadium oxide films were reactively sputtered on three types of glass substrates. • Na diffusion from soda-lime glass undesirably inhibited thermochromism. • Na diffusion was suppressed by replacing half of sodium in glass with potassium. • Mixed-alkali effect promotes thermochromic VO{sub 2} films on glass substrates. - Abstract: Vanadium(IV) oxide possesses a reversible first-order phase transformation near 68 °C. Potential applications of the material include advanced optical devices and thermochromic smart windows. In this study, vanadium oxide films were grown on three types of glass substrates using reactive DC magnetron sputtering and were then annealed in air. The substrates were characterized with energy-dispersive X-ray spectroscopy, and the films were characterized with X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and UV-Vis-NIR spectrophotometry. The results show that the composition of the substrate has a major impact on the microstructure and optical properties of the deposited films. Sodium (Na) in the glass can undesirably inhibit thermochromism; however, replacing half of the Na with potassium (K) suppresses the Na diffusion and promotes the nucleation of pure VO{sub 2} with superior thermochromic functionality. The improved performance is attributed to the mixed-alkali effect between Na and K. These findings are both scientifically and technologically important since soda (Na{sub 2}O) is an essential flux material in glass products such as windows.

  15. Mineralogy and trace element chemistry of the Siliceous Earth of ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    We report the presence of a 3–5 cm thick loose fragmental layer in the Siliceous Earth at Matti ka. Gol in the Barmer basin of Rajasthan. Petrographic, chemical and mineralogical study reveals the presence of abundant volcanic debris such as glass shards, agglutinates, hollow spheroids, kinked biotites, feldspars showing ...

  16. A new paramagnetic center of copper ion γ-irradiated phosphate glasses

    International Nuclear Information System (INIS)

    Bogomolova, L.D.; Fedorov, A.G.; Jachkin, V.A.; Lazukin, V.N.; Pavlushkina, T.K.

    1981-01-01

    In the present paper are shown the results of EPR and optical absorption investigations of copper ions in γ-irradiated sodium-phosphate glasses and in MO-P 2 O 5 glasses (M = MG,Ca, Sr, Zn, Ba) containing copper and comparisons are made with the data for sodium-silicate glasses. (orig./HOF)

  17. Physical Properties of AR-Glass Fibers in Continuous Fiber Spinning Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji-Sun; Lee, MiJai; Lim, Tae-Young; Lee, Youngjin; Jeon, Dae-Woo; Kim, Jin-Ho [Korea Institute of Ceramic Engineering and Technology, Jinju (Korea, Republic of); Hyun, Soong-Keun [Inha University, Incheon (Korea, Republic of)

    2017-04-15

    In this study, a glass fiber is fabricated using a continuous spinning process from alkali resistant (AR) glass with 4 wt%zirconia. In order to confirm the melting properties of the marble glass, the raw material is placed into a Pt crucible and melted at 1650 ℃ for 2 h, and then annealed. In order to confirm the transparency of the clear marble glass, the visible transmittance is measured and the fiber spinning condition is investigated by using high temperature viscosity measurements. A change in the diameter is observed according to the winding speed in the range of 100–900 rpm; it is also verified as a function of the fiberizing temperature in the range of 1200–1260 ℃. The optimum winding speed and spinning temperature are 500 rpm and 1240 ℃, respectively. The properties of the prepared spinning fiber are confirmed using optical microscope, tensile strength, modulus, and alkali-resistant tests.

  18. Irradiations effects on the structure of boro-silicated glasses: long term behaviour of nuclear waste glassy matrices; Effets d'irradiations sur la structure de verres borosilicates - comportement a long terme des matrices vitreuses de stockage des dechets nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Bonfils, J. de

    2007-09-15

    This work deals with the long term behaviour of R7T7-type nuclear waste glasses and more particularly of non-active boro-silicated glasses made up of 3 or 5 oxides. Radioactivity of active glasses is simulated by multi energies ions implantations which reproduce the same defects. The damages due to the alpha particles are simulated by helium ions implantations and those corresponding to the recoil nucleus are obtained with gold ions ones. Minor actinides, stemming from the used fuel, is simulated by trivalent rare-earths (Eu{sup 3+} and Nd{sup 3+}). In a first part, we have shown by macroscopic experiments (Vickers hardness - swelling) and optical spectroscopies (Raman - ATR-IR) that the structure of the glassy matrices is modified under implantations until a dose of 2,3.10{sup 13} at.cm{sup -2}, which corresponds to a R7T7 storage time estimated at 300 years. Beyond this dose, no additional modifications have been observed. The second part concerns the local environment of the rare-earth ions in glasses. Two different environments were found and identified as follows: one is a silicate rich one and the other is attributed to a borate rich one. (author)

  19. Understanding the defect chemistry of alkali metal strontium silicate solid solutions: insights from experiment and theory

    KAUST Repository

    Bayliss, Ryan D.; Cook, Stuart N.; Scanlon, David O.; Fearn, Sarah; Cabana, Jordi; Greaves, Colin; Kilner, John A.; Skinner, Stephen J.

    2014-01-01

    © the Partner Organisations 2014. Recent reports of remarkably high oxide ion conduction in a new family of strontium silicates have been challenged. It has recently been demonstrated that, in the nominally potassium substituted strontium germanium silicate material, the dominant charge carrier was not the oxygen ion, and furthermore that the material was not single phase (R. D. Bayliss et. al., Energy Environ. Sci., 2014, DOI: 10.1039/c4ee00734d). In this work we re-investigate the sodium-doped strontium silicate material that was reported to exhibit the highest oxide ion conductivity in the solid solution, nominally Sr0.55Na0.45SiO2.775. The results show lower levels of total conductivity than previously reported and sub-micron elemental mapping demonstrates, in a similar manner to that reported for the Sr0.8K0.2Si0.5Ge0.5O2.9 composition, an inhomogeneous chemical distribution correlating with a multiphase material. It is also shown that the conductivity is not related to protonic mobility. A density functional theory computational approach provides a theoretical justification for these new results, related to the high energetic costs associated with oxygen vacancy formation. This journal is

  20. Understanding the defect chemistry of alkali metal strontium silicate solid solutions: insights from experiment and theory

    KAUST Repository

    Bayliss, Ryan D.

    2014-09-24

    © the Partner Organisations 2014. Recent reports of remarkably high oxide ion conduction in a new family of strontium silicates have been challenged. It has recently been demonstrated that, in the nominally potassium substituted strontium germanium silicate material, the dominant charge carrier was not the oxygen ion, and furthermore that the material was not single phase (R. D. Bayliss et. al., Energy Environ. Sci., 2014, DOI: 10.1039/c4ee00734d). In this work we re-investigate the sodium-doped strontium silicate material that was reported to exhibit the highest oxide ion conductivity in the solid solution, nominally Sr0.55Na0.45SiO2.775. The results show lower levels of total conductivity than previously reported and sub-micron elemental mapping demonstrates, in a similar manner to that reported for the Sr0.8K0.2Si0.5Ge0.5O2.9 composition, an inhomogeneous chemical distribution correlating with a multiphase material. It is also shown that the conductivity is not related to protonic mobility. A density functional theory computational approach provides a theoretical justification for these new results, related to the high energetic costs associated with oxygen vacancy formation. This journal is

  1. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    Science.gov (United States)

    Joshi, Ashok V [Salt Lake City, UT; Balagopal, Shekar [Sandy, UT; Pendelton, Justin [Salt Lake City, UT

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  2. Immobilization of Uranium Silicides in Sintered Glass

    International Nuclear Information System (INIS)

    Mateos, P.; Russo, D.O.; Heredia, A.D.; Sanfilippo, M.

    2003-01-01

    High activity nuclear spent fuels vitrification by fusion is a well known technology which has industrial scale in France, England, Japan, EEUU. Borosilicates glasses are used in this process.Sintered glasses are an alternative to the immobilization task in which there is also a wide experience around the world.The available technics are: cold pressing and sintering , hot-pressing and hot isostatic pressing.This work compares Borosilicates and Iron silicates sintered glasses behaviour when different ammounts of nuclear simulated waste is added

  3. Lead-iron phosophate glass

    International Nuclear Information System (INIS)

    Sales, B.C.; Boatner, L.A.

    1988-01-01

    The lead-iron phosphate nuclear waste glasses (LIPNWG) are the subject of the present chapter. They were discovered in 1984 while the authors were attempting to find a sintering aid for certain types of crystalline monazite ceramic high-level nuclear waste forms. In the present chapter, the term waste glass is synonymous with nuclear waste glass (NWG), and the acronym LIP is often used for lead-iron phosphate. Lead-iron phosphate glasses, like many of the previously studied phosphate glasses, are corrosion resistant in aqueous solutions at temperatures below 100 degrees C, and they can be melted and poured at temperatures that are relatively low in comparison with the processing temperatures required for current silicate glass compositions. Unlike the phosphate glasses investigated previously, however, LIPNWGs do not suffer from alteration due to devitrification during realistic and readily, achievable cooling periods. Additionally, lead-iron phosphate glass melts are not nearly as corrosive as the sodium phosphate melts investigated during the 1960s; and, therefore, they can be melted and processed using crucibles made from a variety of materials

  4. Composition Dependence of the Na(+) Ion Conductivity in 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] Mixed Glass Former Glasses: A Structural Interpretation of a Negative Mixed Glass Former Effect.

    Science.gov (United States)

    Martin, Steve W; Bischoff, Christian; Schuller, Katherine

    2015-12-24

    A negative mixed glass former effect (MGFE) in the Na(+) ion conductivity of glass has been found in 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] glasses where the Na(+) ion conductivity is significantly smaller for all of the ternary glasses than either of the binary end-member glasses. The minimum conductivity of ∼0.4 × 10(-6) (Ω cm)(-1) at 25 °C occurs for the x = 0.7 glass. Prior to this observation, the alkali ion conductivity of sulfide glasses at constant alkali concentration, but variable ratio of one glass former for another (x) ternary mixed glass former (MGF) glasses, has always produced a positive MGFE in the alkali ion conductivity; that is, the ternary glasses have always had higher ion conductivities that either of the end-member binary glasses. While the Na(+) ion conductivity exhibits a single global minimum value, the conductivity activation energy exhibits a bimodal double maximum at x ≈ 0.4 and x ≈ 0.7. The modified Christensen-Martin-Anderson-Stuart (CMAS) model of the activation energies reveals the origin of the negative MGFE to be due to an increase in the dielectric stiffness (a decrease in relative dielectric permittivity) of these glasses. When coupled with an increase in the average Na(+) ion jump distance and a slight increase in the mechanical stiffness of the glass, this causes the activation energy to go through maximum values and thereby produce the negative MGFE. The double maximum in the conductivity activation energy is coincident with double maximums in CMAS calculated strain, ΔES, and Coulombic, ΔEC, activation energies. In these ternary glasses, the increase in the dielectric stiffness of the glass arises from a negative deviation of the limiting high frequency dielectric permittivity as compared to the binary end-member glasses. While the CMAS calculated total activation energies ΔEact = ΔES + ΔEC are found to reproduce the overall shape of the composition dependence of the measured ΔEact values, they are consistently

  5. Physical properties and chemical durability of selected zirconia containing silicate glasses

    Directory of Open Access Journals (Sweden)

    ELEONÓRA GAŠPÁREKOVÁ

    2011-12-01

    Full Text Available Density, thermal expansion, glass transition temperature, refractive index, molar refractivity and chemical durability of five- and six-component glasses with as weighted composition xNa2O·(15-xK2O·yCaO∙(10-yZnO∙zZrO2∙(75-zSiO2 (x = 0, 7.5, 15; y = 0, 5, 10; z = 5, 7 were measured. The obtained experimental data were merged together with the previous results obtained for analogous glasses with lower zirconia content. The full set of glasses enabled the quantitative statistical estimation of possible mixed-oxide effects. The results of the multilinear regression analysis pointed out the ideal behavior of molar volume and molar refractivity. The strongest influence of mutual oxide interactions was found for chemical durability and glass transition temperature. The regression analysis of compositional dependence of metastable melt thermal expansion coefficient practically failed. The need of property-composition study based on the thermodynamic model was pointed out. Qualitatively the obtained results confirmed those previously obtained for the analogous glasses with zirconia content reaching up to 3 mol. %.

  6. Modification of the glass surface induced by redox reactions and internal diffusion processes

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Deubener, Joachim; Yue, Yuanzheng

    In this paper we report a novel way to modify the glass surface in favor of some physical performances. The main step is to perform iso-thermal treatments on the selected silicate glasses containing transition metal at temperatures near the glass transition temperature for various durations under...

  7. Effect of clayey groundwater on the dissolution rate of SON68 simulated nuclear waste glass at 70 °C

    Science.gov (United States)

    De Echave, T.; Tribet, M.; Jollivet, P.; Marques, C.; Gin, S.; Jégou, C.

    2018-05-01

    To predict the long-term behavior of high-level radioactive waste glass, it is necessary to study aqueous dissolution of the glass matrix under geological repository conditions. The present article focuses on SON68 (an inactive surrogate of the R7T7 glass) glass alteration in synthetic clayey groundwater at 70 °C. Experiments in deionized water as reference were also performed in the same conditions. Results are in agreement with those of previous studies showing that magnesium present in the solution is responsible for higher glass alteration. This effect is transient and pH-dependent: Once all the magnesium is consumed, the glass alteration rate diminishes. Precipitation of magnesium silicate of the smectite group seems to be the main factor for the increased glass alteration. A pH threshold of 7.5-7.8 was found, above which precipitation of these magnesium silicates at 70 °C is possible. TEM observations reveal that magnesium silicates grow at the expense of the passivating gel, which partly dissolves, forming large pores which increase mass transfer between the reacting glass surface and the bulk solution.

  8. The Interfacial Transition Zone in Alkali-Activated Slag Mortars

    Directory of Open Access Journals (Sweden)

    Rackel eSan Nicolas

    2015-12-01

    Full Text Available The interfacial transition zone (ITZ is known to strongly influence the mechanical and transport properties of mortars and concretes. This paper studies the ITZ between siliceous (quartz aggregates and alkali activated slag binders in the context of mortar specimens. Backscattered electron images (BSE generated in an environmental scanning electron microscope (ESEM are used to identify unreacted binder components, reaction products and porosity in the zone surrounding aggregate particles, by composition and density contrast. X-ray mapping is used to exclude the regions corresponding to the aggregates from the BSE image of the ITZ, thus enabling analysis of only the binder phases, which are segmented into binary images by grey level discrimination. A distinct yet dense ITZ region is present in the alkali-activated slag mortars, containing a reduced content of unreacted slag particles compared to the bulk binder. The elemental analysis of this region shows that it contains a (C,N-A-S-H gel which seems to have a higher content of Na (potentially deposited through desiccation of the pore solution and a lower content of Ca than the bulk inner and outer products forming in the main binding region. These differences are potentially important in terms of long-term concrete performance, as the absence of a highly porous interfacial transition zone region is expected to provide a positive influence on the mechanical and transport properties of alkali-activated slag concretes.

  9. Green synthesis of water-glass from municipal solid waste incineration bottom ash

    NARCIS (Netherlands)

    Hendrix, Y.; Alam, Q.; Thijs, L.; Lazaro Garcia, A.; Brouwers, H.J.H.

    2017-01-01

    Water-glass is extensively used as a silica precursor in different chemical applications such as alkali activated binders and nano-silica. The current production of water-glass involves the fusion of sand with soda ash at temperatures above 1000 ºC, which makes the production expensive and

  10. Tin-Containing Silicates: Identification of a Glycolytic Pathway via 3-Deoxyglucosone

    DEFF Research Database (Denmark)

    Tolborg, Søren; Meier, Sebastian; Sádaba, I.

    2016-01-01

    a cascade of four to five sequential steps. Currently, there is a limited understanding of the competing glycolytic pathways within these systems. Here we identify dehydration of glucose to 3-deoxyglucosone as an important pathway that occurs in addition to retro-aldol reaction of hexoses when using tin......-containing silicates. It is possible to influence the relative carbon flux through these pathways by controlling the amount of alkali metal salts present in the reaction mixture. In the absence of added potassium carbonate, at least 15–30% carbon flux via 3-deoxyglucosone is observed. Addition of just a few ppm...

  11. The role of silicate surfaces on calcite precipitation kinetics

    DEFF Research Database (Denmark)

    Stockmann, Gabrielle J.; Wolff-Boenisch, Domenik; Bovet, Nicolas Emile

    2014-01-01

    The aim of this study is to illuminate how calcite precipitation depends on the identity and structure of the growth substrate. Calcite was precipitated at 25°C from supersaturated aqueous solutions in the presence of seeds of either calcite or one of six silicate materials: augite, enstatite......, labradorite, olivine, basaltic glass and peridotite rock. Calcite saturation was achieved by mixing a CaCl2-rich aqueous solution with a NaHCO3-Na2CO3 aqueous buffer in mixed-flow reactors containing 0.5-2g of mineral, rock, or glass seeds. This led to an inlet fluid calcite saturation index of 0.6 and a p...

  12. Formation of CdS/Cd{sub 1−x}Zn{sub x}S sandwich-structured quantum dots with high quantum efficiency in silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Mengling; Liu, Chao, E-mail: hite@whut.edu.cn; Han, Jianjun; Zhao, Xiujian

    2017-06-15

    CdS/Cd{sub 1−x}Zn{sub x}S sandwich-structured quantum dots (QDs) were precipitated in silicate glasses with high quantum efficiency up to 53%. The QDs were composed by a CdS core with a Cd{sub 1−x}Zn{sub x}S shell of about 1–3 nm in thickness through heat-treatment at 550 °C for 10 h. With the increased heat-treatment temperature, the intensity ratio between the intrinsic emission and the defects emission increased and the Stokes shift decreased from 84 to 4 meV, which was caused by both the increased size and passivated surface defects of the QDs.

  13. Reduction experiment of FeO-bearing amorphous silicate: application to origin of metallic iron in GEMS

    Energy Technology Data Exchange (ETDEWEB)

    Matsuno, Junya; Tsuchiyama, Akira; Miyake, Akira [Department of Geology and Mineralogy, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502 (Japan); Noguchi, Ryo [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Ichikawa, Satoshi, E-mail: jmatsuno@kueps.kyoto-u.ac.jp [Institute for Nano-science Design, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)

    2014-09-10

    Glass with embedded metal and sulfides (GEMS) are amorphous silicates included in anhydrous interplanetary dust particles (IDPs) and can provide information about material evolution in our early solar system. Several formation processes for GEMS have been proposed so far, but these theories are still being debated. To investigate a possible GEMS origin by reduction of interstellar silicates, we synthesized amorphous silicates with a mean GEMS composition and performed heating experiments in a reducing atmosphere. FeO-bearing amorphous silicates were heated at 923 K and 973 K for 3 hr, and at 1023 K for 1-48 hr at ambient pressure in a reducing atmosphere. Fe grains formed at the interface between the silicate and the reducing gas through a reduction. In contrast, TEM observations of natural GEMS show that metallic grains are uniformly embedded in amorphous silicates. Therefore, the present study suggests that metallic inclusions in GEMS could not form as reduction products and that other formation process such as condensation or irradiation are more likely.

  14. Composite Biomaterials Based on Sol-Gel Mesoporous Silicate Glasses: A Review

    Science.gov (United States)

    Baino, Francesco; Fiorilli, Sonia; Vitale-Brovarone, Chiara

    2017-01-01

    Bioactive glasses are able to bond to bone and stimulate the growth of new tissue while dissolving over time, which makes them ideal materials for regenerative medicine. The advent of mesoporous glasses, which are typically synthesized via sol-gel routes, allowed researchers to develop a broad and versatile class of novel biomaterials that combine superior bone regenerative potential (compared to traditional melt-derived glasses) with the ability of incorporating drugs and various biomolecules for targeted therapy in situ. Mesoporous glass particles can be directly embedded as a bioactive phase within a non-porous (e.g., microspheres), porous (3D scaffolds) or injectable matrix, or be processed to manufacture a surface coating on inorganic or organic (macro)porous substrates, thereby obtaining hierarchical structures with multiscale porosity. This review provides a picture of composite systems and coatings based on mesoporous glasses and highlights the challenges for the future, including the great potential of inorganic–organic hybrid sol-gel biomaterials. PMID:28952496

  15. Visible and near infrared up-conversion luminescence in Yb3+/Tm3+ co-doped yttria-alumino-silicate glass based optical fibers

    International Nuclear Information System (INIS)

    Halder, Arindam; Chandra Paul, Mukul; Wadi Harun, Sulaiman; Kumar Bhadra, Shyamal; Bysakh, Sandip; Das, Shyamal; Pal, Mrinmay

    2013-01-01

    We report blue light up-conversion (UC) emission in Yb–Tm co-doped nano-phase separated yttria-alumino-silicate (YAS) glass based D-shaped with low-index cladding optical fibers. Y 2 O 3 creates an environment of nano structured YAS glass phases with Yb and Tm rich zone into the core glass which confirmed from TEM analyses. This kind of glass host assists in distributing of Yb and Tm rich zone uniformly throughout the core region. Yb and Tm doped regions exist mainly into nano YAS phases, defined as RE rich nano YAS-RE phases. All samples exhibit UC luminescence peaks at 483 nm, 650 nm and 817 nm for Tm 3+ and 1044 nm for Yb 3+ under excitation by 975 nm laser light. In such type of nano-engineered glass–ceramic based host, almost all the Yb ions transferred its energy to the nearer Tm ions. In particular 483 nm emission is attributed to 1 G 4 → 3 H 6 transition through a three step resonance energy transfer (ET) from excited Yb 3+ . The highest emission intensity is obtained with a concentration of 0.5 wt% Tm 3+ and 2.0 wt% Yb 3+ . The ET between Yb 3+ and Tm 3+ is increased with increase of Yb 3+ concentration with respect to Tm 3+ . The experimental fluorescence life-times of Tm 3+ upconversion emission at visible wavelengths into such kind of fiber is reported under 975 nm pump excitation. The present study is important for development of an efficient tunable 483 nm fluorescence light source. -- Highlights: • We report nano-phase separated YAS glass host based Yb–Tm co-doped optical fibers. • Almost all the Yb transferred its energy to the neighboring Tm ions. • We report strong UC luminescence peaks at 483 nm and 817 nm wavelengths. • We report third ET coefficient as 1.6723 Hz for such kind of Yb–Tm codoped fiber. • We report suitable fiber as an efficient tunable 483 nm fluorescence light source

  16. Rb-Sr Isotopic Systematics of Alkali-Rich Fragments in the Yamato-74442 LL-Chondritic Breccia

    Science.gov (United States)

    Yokoyama, T.; Misawa, K.; Okano, O.; Shih, C.-Y.; Nyquist, L. E.; Simo, J. I.; Tappa, M. J.; Yoneda, S.

    2012-01-01

    Alkali-rich igneous fragments were identified in the brecciated LL-chondrites, Kr henberg (LL5)], Bhola (LL3-6) and Yamato (Y)-74442 (LL4), and show characteristic fractionation patterns of alkaline elements. The K-Rb-Cs-rich fragments in Kr henberg, Bhola, and Y-74442 are very similar in mineralogy and petrography (olivine + pyroxene + glass), suggesting that they could have come from related precursor materials. We have undertaken Rb-Sr isotopic studies on alkali-rich fragments in Y-74442 to precisely determine their crystallization ages and the isotopic signatures of their precursor material(s).

  17. Analytical electron microscopy examination of solid reaction products in long-term test of SRL 200 waste glasses

    International Nuclear Information System (INIS)

    Buck, E.C.; Fortner, J.A.; Bates, J.K.; Feng, X.; Dietz, N.L.; Bradley, C.R.; Tani, B.S.

    1993-01-01

    Alteration phases, found on the leached surfaces and present as colloids in the leachates of 200-based frit (fully active and simulated) nuclear waste glass, reacted under static test conditions, at a surface area to leachate volume ratio of 20,000 m -1 for 15 days to 728 days, have been examined by analytical electron microscopy. The compositions of the secondary phases were determined using x-ray energy dispersive spectroscopy and electron energy loss spectroscopy, and structural analysis was accomplished by electron diffraction. Long-term samples of simulated glass, which had undergone an acceleration of reaction after 182 days, possessed a number of silicate secondary phases, including; smectite (iron silicate and potassium iron alumina-silicate, weeksite (uranium silicate), zeolite (calcium potassium alumino-silicate), tobermorite (calcium silicate), and a pure silica phase. However, uranium silicates and smectite have also been observed in tests, which have not undergone the acceleration of reaction, in both the leachate and leached layer, suggesting that these phases are not responsible for the acceleration of reaction

  18. The effect of sample preparation methods on glass performance

    International Nuclear Information System (INIS)

    Oh, M.S.; Oversby, V.M.

    1990-01-01

    A series of experiments was conducted using SRL 165 synthetic waste glass to investigate the effects of surface preparation and leaching solution composition on the alteration of the glass. Samples of glass with as-cast surfaces produced smooth reaction layers and some evidence for precipitation of secondary phases from solution. Secondary phases were more abundant in samples reacted in deionized water than for those reacted in a silicate solution. Samples with saw-cut surfaces showed a large reduction in surface roughness after 7 days of reaction in either solution. Reaction in silicate solution for up to 91 days produced no further change in surface morphology, while reaction in DIW produced a spongy surface that formed the substrate for further surface layer development. The differences in the surface morphology of the samples may create microclimates that control the details of development of alteration layers on the glass; however, the concentrations of elements in leaching solutions show differences of 50% or less between samples prepared with different surface conditions for tests of a few months duration. 6 refs., 7 figs., 1 tab

  19. Polymer/Silicate Nanocomposites Developed for Improved Thermal Stability and Barrier Properties

    Science.gov (United States)

    Campbell, Sandi G.

    2001-01-01

    The nanoscale reinforcement of polymers is becoming an attractive means of improving the properties and stability of polymers. Polymer-silicate nanocomposites are a relatively new class of materials with phase dimensions typically on the order of a few nanometers. Because of their nanometer-size features, nanocomposites possess unique properties typically not shared by more conventional composites. Polymer-layered silicate nanocomposites can attain a certain degree of stiffness, strength, and barrier properties with far less ceramic content than comparable glass- or mineral-reinforced polymers. Reinforcement of existing and new polyimides by this method offers an opportunity to greatly improve existing polymer properties without altering current synthetic or processing procedures.

  20. Chemical durability of simulated nuclear glasses containing water

    International Nuclear Information System (INIS)

    Li, H.; Tomozawa, M.

    1995-04-01

    The chemical durability of simulated nuclear waste glasses having different water contents was studied. Results from the product consistency test (PCT) showed that glass dissolution increased with water content in the glass. This trend was not observed during MCC-1 testing. This difference was attributed to the differences in reactions between glass and water. In the PCT, the glass network dissolution controlled the elemental releases, and water in the glass accelerated the reaction rate. On the other hand, alkali ion exchange with hydronium played an important role in the MCC-1. For the latter, the amount of water introduced into a leached layer from ion-exchange was found to be much greater than that of initially incorporated water in the glass. Hence, the initial water content has no effect on glass dissolution as measured by the MCC-1 test

  1. Summary report on microstructure and composition of silicate melts containing simulated Hanford waste

    International Nuclear Information System (INIS)

    Daniel, J.L.

    1975-04-01

    Specimens of silicate melt es containing simulated Hanford waste were studied by microscopy and microprobe methods to determine microstructural and compositional characteristics. The two glass specimens were representative of glasses prepared with Hanford basalt and with sea sand as the source of SiO 2 . Samples of both glasses were studied in detail at locations near the top, bottom, center, and sides of the melts. Both glasses were of a highly uniform microstructure and composition. The basalt glass contained metallic iron inclusions around the periphery near the glass/crucible interface, and small increases in Si content adjacent to the pores occurring throughout the glass. The sand glass contained no iron, its Si composition was uniform, and the average pore size was somewhat smaller (about 2 μm) than in the basalt glass. The Ca nominally added to the sand glass could not be detected. Both glasses contained a random scattering of a micron-sized ''bright'' phase whose composition was identical to the matrix or containing elements not detectable by microprobe methods. (U.S.)

  2. Low-frequency Raman scattering in alkali tellurite glasses

    Indian Academy of Sciences (India)

    Wintec

    utilization of these glasses for non-linear optical materials. (Shioya et al 1995) and ... laser–vertical analysis of scattered light) and depolarized (VH: vertical polarization .... data as described in the text and (b) exponent of power law vs. 1/ R. 2.

  3. Thermodynamic stability of ternary compounds of Rb-Si-O System using Knudsen Effusion Quadrupole Mass Spectrometer (KEQMS)

    International Nuclear Information System (INIS)

    Ginishkumar, P.; Samui, Pradeep; Sebastian, Nijith; Shukla, N.K.; Rakshit, S.K.; Mukerjee, S.K.

    2014-01-01

    Recently, economical and environment friendly closed nuclear fuel cycle option has gained more importance in nuclear industry. For waste immobilization, silicate based glasses are mostly favored among the various matrix-options available. Rubidium is one of the fission products, which remains in waste form after spent fuel reprocessing. Rubidium can replace the alkali metal inside the glass matrix. The stability of glass matrix in presence of rubidium has not been studied so far. In the present study, the thermal stability of the compounds formed due to interaction between Silica and Rubidium oxide have been investigated out

  4. Paramagnetic centers in ternary coordinated oxygen in beryllium aluminosilicate glasses

    International Nuclear Information System (INIS)

    Blaginina, L.A.; Zatsepin, A.F.; Dmitriev, I.A.

    1988-01-01

    Glasses of the composition 3BeO-Al 2 O 3 -6SiO 2 containing a homogenizing additive of MgF 2 were synthesized. The ESR spectra of x-ray and gamma irradiated specimens were determined. A complex ESR spectrum arose in the original glass. The ESR spectrum of the gamma-irradiated polycrystalline Be 2 SiO 4 glass was almost identical to the crystallized glass. It was shown that the presence of beryllium atoms in the composition of silicate glasses created the conditions for the formation of structural fragments with ternary coordinated oxygen

  5. Giant siliceous spicules from the deep-sea glass sponge Monorhaphis chuni.

    Science.gov (United States)

    Wang, Xiaohong; Schröder, Heinz C; Müller, Werner E G

    2009-01-01

    Only 13 years after realizing, during a repair of a telegraph cable pulled out from the deep sea, that the depth of the ocean is plentifully populated with a highly diverse fauna and flora, the Challenger expedition (1873-1876) treasured up a rich collection of vitreous sponges (Hexactinellida). They had been described by Schulze and represent the phylogenetically oldest class of siliceous sponges (phylum Porifera); they are eye-catching because of their distinct body plan, which relies on a filigree skeleton. It is constructed by an array of morphologically determined elements, the spicules. Soon after, during the German Deep Sea Expedition "Valdivia" (1898-1899), Schulze could describe the largest siliceous hexactinellid sponge on Earth, the up to 3-m high Monorhaphis chuni, which develops the equally largest bio-silica structure, the giant basal spicules (3 mx10 mm). Using these spicules as a model, basic knowledge on the morphology, formation, and development of the skeletal elements could be achieved. They are formed by a proteinaceous scaffold (composed of a 27-kDa protein), which mediates the formation of the siliceous lamellae, into which the proteins are encased. The high number of 800 of 5-10 microm thick lamellae is concentrically arranged around the axial canal. The silica matrix is composed of almost pure silicon oxide, providing it with unusually optophysical properties, which are superior to those of man-made waveguides. Experiments might suggest that the spicules function in vivo as a nonocular photoreception system. In addition, the spicules have exceptional mechanical properties, combining mechanical stability with strength and stiffness. Like demosponges, also the hexactinellids synthesize their silica enzymatically, via the enzyme silicatein (27-kDa protein). It is suggested that these basic insights will surely contribute to a further applied utilization and exploration of silica in bio-material/biomedical science.

  6. Sol-Gel Glasses

    Science.gov (United States)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  7. Effect of alumina on the dissolution rate of glasses

    International Nuclear Information System (INIS)

    Palavit, G.; Montagne, L.

    1997-01-01

    Small alumina addition to silicate glasses improves their chemical durability, but a large amount of alumina can also be beneficial to obtain a high dissolution rate. This paper describes the effect of Al 3+ on the early stage of glass alteration, in relation with its coordination in the glass and also with the reactions involved (hydrolysis and ionic exchange). We describe briefly nuclear magnetic resonance tools available to characterize the aluminum environments in the glasses. The rote of alumina on the dissolution rate of phosphate glasses is also discussed in order to show that the effect of Al 3+ is dependant upon the nature of the glass matrix. (author)

  8. Spectroscopic studies of irradiated glasses: Application in nuclear dosimetry

    International Nuclear Information System (INIS)

    Farah, Khaled

    2010-01-01

    The present work aims to study the effects of ionizing radiation on silicate glasses in order to develop a new dosimetry system simple, precise, stable and inexpensive. Indeed, changes in mechanical properties, optical and paramagnetic glasses when subjected to ionizing radiation. The prediction of long-term behavior, physical aging under irradiation, the glass is paramount. many studies have brought many ways to avoid obscuring glass windows used in nuclear reactors or hot cells and optical devices. Recently, much work has concentrated on the application of the color induced by irradiation for developing a recyclable glass in the glass industry is of great interest economically and environmentally.

  9. THERMODYNAMIC MODEL AND VISCOSITY OF SELECTED ZIRCONIA CONTAINING SILICATE GLASSES

    Directory of Open Access Journals (Sweden)

    MÁRIA CHROMČÍKOVÁ

    2013-03-01

    Full Text Available The compositional dependence of viscosity, and viscous flow activation energy of glasses with composition xNa2O∙(15-x K2O∙yCaO∙(10-yZnO∙zZrO2∙(75-zSiO2 (x = 0, 7.5, 15; y = 0, 5, 10; z = 0, 1, 3, 5, 7 was analyzed. The studied glasses were described by the thermodynamic model of Shakhmatkin and Vedishcheva considering the glass as an equilibrium ideal solution of species with stoichiometry given by the composition of stable crystalline phases of respective glass forming system. Viscosity-composition relationships were described by the regression approach considering the viscous flow activation energy and the particular isokome temperature as multilinear function of equilibrium molar amounts of system components. The classical approach where the mole fractions of individual oxides are considered as independent variables was compared with the thermodynamic model. On the basis of statistical analysis there was proved that the thermodynamic model is able to describe the composition property relationships with higher reliability. Moreover, due its better physical justification, thermodynamic model can be even used for predictive purposes.

  10. Methods of vitrifying waste with low melting high lithia glass compositions

    Science.gov (United States)

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2001-01-01

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  11. Phase separation in an ionomer glass

    DEFF Research Database (Denmark)

    Pedersen, Malene Thostrup; Tian, K.V.; Dobó-Nagy, C.

    2015-01-01

    The G338 ionomer glass is a fluoro-alumino-silicate system, which is used as the powder component of glass ionomer cements (GICs) in dental applications. However, despite progress in understanding the nature of this glass, chemical identity of its separated amorphous phases has not yet been...... amorphous phases in G388 are Ca/Na-Al-Si-O, Ca-Al-F and Ca-P-O-F phases, respectively. However, the exact chemical compositions of the three phases still require further exploration. The results of this work are important for understanding the impact of phase separation within ionomer glasses on the setting...... conclusively determined. In this work, we identify these phases by performing differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analyses on both the as-received glass and heat-treated samples. We detected three glass transitions in the as-received G338 glass during DSC upscaning, implying...

  12. Sol-gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics.

    Science.gov (United States)

    Bejarano, Julian; Caviedes, Pablo; Palza, Humberto

    2015-03-11

    Metal doping of bioactive glasses based on ternary 60SiO2-36CaO-4P2O5 (58S) and quaternary 60SiO2-25CaO-11Na2O-4P2O5 (NaBG) mol% compositions synthesized using a sol-gel process was analyzed. In particular, the effect of incorporating 1, 5 and 10 mol% of CuO and ZnO (replacing equivalent quantities of CaO) on the texture, in vitro bioactivity, and cytocompatibility of these materials was evaluated. Our results showed that the addition of metal ions can modulate the textural property of the matrix and its crystal structure. Regarding the bioactivity, after soaking in simulated body fluid (SBF) undoped 58S and NaBG glasses developed an apatite surface layer that was reduced in the doped glasses depending on the type of metal and its concentration with Zn displaying the largest inhibitions. Both the ion release from samples and the ion adsorption from the medium depended on the type of matrix with 58S glasses showing the highest values. Pure NaBG glass was more cytocompatible to osteoblast-like cells (SaOS-2) than pure 58S glass as tested by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The incorporation of metal ions decreased the cytocompatibility of the glasses depending on their concentration and on the glass matrix doped. Our results show that by changing the glass composition and by adding Cu or Zn, bioactive materials with different textures, bioactivity and cytocompatibility can be synthesized.

  13. Topological Principles of Borosilicate Glass Chemistry

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Mauro, J. C.; Youngman, R. E.

    2011-01-01

    and laboratory glassware to high-tech applications such as liquid crystal displays. In this paper, we investigate the topological principles of borosilicate glass chemistry covering the extremes from pure borate to pure silicate end members. Based on NMR measurements, we present a two-state statistical...

  14. Hydrogen speciation in hydrated layers on nuclear waste glass

    International Nuclear Information System (INIS)

    Aines, R.D.; Weed, H.C.; Bates, J.K.

    1987-01-01

    The hydration of an outer layer on nuclear waste glasses is known to occur during leaching, but the actual speciation of hydrogen (as water or hydroxyl groups) in these layers has not been determined. As part of the Nevada Nuclear Waste Storage Investigations Project, we have used infrared spectroscopy to determine hydrogen speciations in three nuclear waste glass compositions (SRL-131 and 165, and PNL 76-68), which were leached at 90 0 C (all glasses) or hydrated in a vapor-saturated atmosphere at 202 0 C (SRL-131 only). Hydroxyl groups were found in the surface layers of all the glasses. Molecular water was found in the surface of SRL-131 and PNL 76-68 glasses that had been leached for several months in deionized water, and in the vapor-hydrated sample. The water/hydroxyl ratio increases with increasing reaction time; molecular water makes up most of the hydrogen in the thick reaction layers on vapor-phase hydrated glass while only hydroxyl occurs in the least reacted samples. Using the known molar absorptivities of water and hydroxyl in silica-rich glass the vapor-phase layer contained 4.8 moles/liter of molecular water, and 0.6 moles water in the form hydroxyl. A 15 μm layer on SRL-131 glass formed by leaching at 90 0 C contained a total of 4.9 moles/liter of water, 2/3 of which was as hydroxyl. The unreacted bulk glass contains about 0.018 moles/liter water, all as hydroxyl. The amount of hydrogen added to the SRL-131 glass was about 70% of the original Na + Li content, not the 300% that would result from alkali=hydronium ion interdiffusion. If all the hydrogen is then assumed to be added as the result of alkali-H + interdiffusion, the molecular water observed may have formed from condensation of the original hydroxyl groups

  15. Glass Ceramics Composites Fabricated from Coal Fly Ash and Waste Glass

    International Nuclear Information System (INIS)

    Angjusheva, B.; Jovanov, V.; Srebrenkoska, V.; Fidancevska, E.

    2014-01-01

    Great quantities of coal ash are produced in thermal power plants which present a double problem to the society: economical and environmental. This waste is a result of burning of coal at temperatures between 1100-14500C. Fly ash available as fine powder presents a source of important oxides SiO2, Al2O3, Fe2O3, MgO, Na2O, but also consist of small amount of ecologically hazardous oxides such as Cr2O3, NiO, MnO. The combination of the fly ash with waste glass under controlled sintering procedure gave bulk glass-ceramics composite material. The principle of this procedure is presented as a multi barrier concept. Many researches have been conducted the investigations for utilization of fly ash as starting material for various glass–ceramics production. Using waste glass ecologically hazardous components are fixed at the molecular level in the silicate phase and the fabricated new glass-ceramic composites possess significantly higher mechanical properties. The aim of this investigation was to fabricate dense glass ceramic composites using fly ash and waste glass with the potential for its utilization as building material

  16. Synthesis of recent investigations on corrosion behaviour of radioactive waste glasses

    International Nuclear Information System (INIS)

    Grauer, R.

    1985-03-01

    By way of a supplement to an earlier report (NTB 83-01, EIR-Report Nr. 477), work which has appeared in the meantime on the corrosion behaviour of borosilicate glasses as a solidification matrix for high-level radioactive waste has been evaluated. Many works have confirmed that for a particular glass, besides temperature and pH-value, the silicate concentration of the solution exerts the strongest influence on corrosion rate. The effect of silicate can be described in terms of simple reaction kinetic models which provides a more sound basis for prediction of longterm behaviour of glasses than previously existed. Meanwhile, the effects of backfill- and canister-materials and their corrosion products have been given the attention they merit. These materials affect glass corrosion primarily through regulation of silicic acid concentration. A particular finding which is of interest is the strong inhibition of glass corrosion by lead ions. Stationary corrosion rates in the order of magnitude of 10 -5 g/cm 2 ·d can be derived from long-term corrosion experiments in stagnant water at 90 C. At the envisaged repository temperature of 55 C they will be one to two orders of magnitude less. The effects of radioactive decay on corrosion rate are either very small or not detectable at all. No further new viewpoints have been put forward with regard to a possible thermal re-structuring of glasses under repository conditions: re-crystallisation (devitrification) is not to be feared. With regard to future experiments, further work on quantification of the effects of canister- and backfill-materials and experiments with corrosion inhibitors would be of primary interest. (author)

  17. Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material

    Science.gov (United States)

    Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)

    1994-01-01

    A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.

  18. Characterization of low concentration uranium glass working materials

    Energy Technology Data Exchange (ETDEWEB)

    Eppich, G. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wimpenny, J. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Leever, M. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Knight, K. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hutcheon, I. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ryerson, F. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-22

    A series of uranium-doped silicate glasses were created at (Lawrence Livermore National Laboratory) LLNL, to be used as working reference material analogs for low uranium concentration research. Specifically, the aim of this effort was the generation of well-characterized glasses spanning a range of concentrations and compositions, and of sufficient homogeneity in uranium concentration and isotopic composition, for instrumentation research and development purposes. While the glasses produced here are not intended to replace or become standard materials for uranium concentration or uranium isotopic composition, it is hoped that they will help fill a current gap, providing low-level uranium glasses sufficient for methods development and method comparisons within the limitations of the produced glass suite. Glasses are available for research use by request.

  19. Au implantation into various types of silicate glasses

    Czech Academy of Sciences Publication Activity Database

    Malinský, Petr; Macková, Anna; Bočan, Jiří; Švecová, B.; Nekvindová, P.

    2009-01-01

    Roč. 267, - (2009), s. 1575-1578 ISSN 0168-583X R&D Projects: GA MŠk(CZ) LC06041 Institutional research plan: CEZ:AV0Z10480505 Keywords : Au+ ion implantation * Glass es * RBS Depth profiling Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.156, year: 2009

  20. Crystallization and properties of a spodumene-willemite glass ceramic

    International Nuclear Information System (INIS)

    Hu, A.M.; Li, M.; Dali, D.L. Mao; Liang, K.M.

    2005-01-01

    Spodumene-willemite glass ceramics were produced by replacement of Al 2 O 3 in lithium aluminium silicate by ZnO. With replacement of Al 2 O 3 by ZnO, the batch melting temperature, glass transition temperature (T g ) and crystallization temperature (T p ) all decreased. The main crystalline phases precipitated were eucriptite, β-spodumene and willemite (Zn 2 SiO 4 ). All compositions of glass ceramics showed bulk crystallization. As ZnO content increased, the grain sizes and thermal expansion coefficients increased, while the flexural strength and fracture toughness of the glass-ceramics increased first, and then decreased. The mechanical properties were correlated with crystallization and morphology of glass ceramics

  1. Phase formation during corrosion experiments with two simulated borosilicate nuclear waste glasses

    International Nuclear Information System (INIS)

    Haaker, R.F.

    1985-10-01

    Corrosion products resulting from the reaction of simulated high-level radioactive waste glasses with various solutions have been identified. At 200degC, in saturated NaCl, a degree of reaction of 10 g C31-3 glass or 2.6 g SON 68 glass per liter of solution was obtained. Analcime, vermiculite (a phyllosilicate) and a 2:1 zinc silicate are the major silica containing alteration products for the C31-3 glass. Analcime was the only silicate alteration product which could be identified for SON 68 glass. C31-3 glass appeared to be less reactive with a quinary brine containing Mg ++ than with NaCl. With the quinary brine, montmorillonite (a phyllosilicate) was the predominant silica containing alteration product. Hydrotalcite (a Mg-Al hydroxysulfate) and montmorillonite were the major Al-containing phases. A phyllosilicate, probably montmorillonite, was observed to form during the reaction of SON 68 glass with quinary brine. With either glass, modified NaCl brines which contained small amounts of MgCl 2 seem to have the effect of decreasing the amount of analcime and increasing the amount of phyllosilicate which is formed. In the case of C31-3 glass, there is approximately enough Mg, Al and Zn to precipitate most of the leached Si; measured Si concentrations remain well below that expected for amorphous silica. SON 68 glass has less Zn, Al and Mg than C31-3 glass and much higher Si concentrations of the leachates. (orig./RB)

  2. Iron metal production in silicate melts through the direct reduction of Fe/II/ by Ti/III/, Cr/II/, and Eu/II/. [in lunar basalts

    Science.gov (United States)

    Schreiber, H. D.; Balazs, G. B.; Shaffer, A. P.; Jamison, P. L.

    1982-01-01

    The production of metallic iron in silicate melts by chemical reactions of Ti(3+), Cr(2+), and Eu(2+) with Fe(2+) is demonstrated under experimental conditions in a simplified basaltic liquid. These reactions form a basis for interpreting the role of isochemical valency exchange models in explanations for the reduced nature of lunar basalts. The redox couples are individually investigated in the silicate melt to ascertain reference redox ratios that are independent of mutual interactions. These studies also provide calibrations of spectral absorptions of the Fe(2+) and Ti(2+) species in these glasses. Subsequent spectrophotometric analyses of Fe(2+) and Ti(2+) in glasses doped with both iron and titanium and of Fe(2+) in glasses doped with either iron and chromium or iron and europium ascertain the degree of mutual interactions in these dual-doped glasses.

  3. Structure, ionic Conductivity and mobile Carrier Density in Fast Ionic Conducting Chalcogenide Glasses

    International Nuclear Information System (INIS)

    Wenlong Yao

    2006-01-01

    This thesis consists of six sections. The first section gives the basic research background on the ionic conduction mechanism in glass, polarization in the glass, and the method of determining the mobile carrier density in glass. The proposed work is also included in this section. The second section is a paper that characterizes the structure of MI + M 2 S + (0.1 Ga 2 S 3 + 0.9 GeS 2 ) (M = Li, Na, K and Cs) glasses using Raman and IR spectroscopy. Since the ionic radius plays an important role in determining the ionic conductivity in glasses, the glass forming range for the addition of different alkalis into the basic glass forming system 0.1 Ga 2 S 3 + 0.9 GeS 2 was studied. The study found that the change of the alkali radius for the same nominal composition causes significant structure change to the glasses. The third section is a paper that investigates the ionic conductivity of MI + M 2 S + (0.1Ga 2 S 3 + 0.9 GeS 2 ) (M = Li, Na, K and Cs) glasses system. Corresponding to the compositional changes in these fast ionic conducting glasses, the ionic conductivity shows changes due to the induced structural changes. The ionic radius effect on the ionic conductivity in these glasses was investigated. The fourth section is a paper that examines the mobile carrier density based upon the measurements of space charge polarization. For the first time, the charge carrier number density in fast ionic conducting chalcogenide glasses was determined. The experimental impedance data were fitted using equivalent circuits and the obtained parameters were used to determine the mobile carrier density. The influence of mobile carrier density and mobility on the ionic conductivity was separated. The fifth section is a paper that studies the structures of low-alkali-content Na 2 S + B 2 S 3 (x (le) 0.2) glasses by neutron and synchrotron x-ray diffraction. Similar results were obtained both in neutron and synchrotron x-ray diffraction experiments. The results provide direct

  4. Physical, structural and optical characterizations of borate modified bismuth-silicate-tellurite glasses

    Science.gov (United States)

    Berwal, Neelam; Kundu, R. S.; Nanda, Kirti; Punia, R.; Kishore, N.

    2015-10-01

    Quaternary bismuthate glasses with compositions xB2O3-(80 - x) Bi2O3-15SiO2-5TeO2 have been prepared by melt-quench technique. X-ray diffraction studies were performed to ascertain the amorphous nature of samples. The density, molar volume and crystalline volume decrease with increase in B2O3 content whereas the glass transition temperature shows the reverse trend. The Raman and FTIR spectra of the studied glasses indicate that B2O3 has been found to exist in the form of BO3 trigonal and BO4 tetrahedral structural units and vibrations corresponding to these structural units increase with increase in B2O3 content. SiO2 is present in the form of SiO4 tetrahedral structural units and TeO2 in the form of TeO3 structural units. Bismuth plays the role of network modifier [BiO6 octahedra] as well as network former [BiO3 pyramids] for all the glass compositions. The optical band gap energy has been calculated from the fitting of both Mott and Davis's model and Hydrogenic excitonic model with the experimentally observed absorption spectra. A good fitting of experimental data with HEM indicates the excitonic formation in the studies glass system. The values of optical band gap energy show nonlinear behavior due to the structural changes that take place in the present glass samples. The Urbach energy calculated using Urbach empirical formula for studied glass samples suggest the possibility of reduction in defect concentrations. The metallization criterion of the presently studied samples suggests that the prepared glasses may be potential candidates for nonlinear optical applications.

  5. Alkali silica reaction (ASR) in cement free alkali activated sustainable concrete.

    Science.gov (United States)

    2016-12-19

    This report summarizes the findings of an experimental evaluation into alkali silica : reaction (ASR) in cement free alkali-activated slag and fly ash binder concrete. The : susceptibility of alkali-activated fly ash and slag concrete binders to dele...

  6. Process to separate alkali metal salts from alkali metal reacted hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard; Alvare, Javier; Larsen, Dennis; Killpack, Jeff

    2017-06-27

    A process to facilitate gravimetric separation of alkali metal salts, such as alkali metal sulfides and polysulfides, from alkali metal reacted hydrocarbons. The disclosed process is part of a method of upgrading a hydrocarbon feedstock by removing heteroatoms and/or one or more heavy metals from the hydrocarbon feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase containing alkali metal salts and reduced heavy metals, and an upgraded hydrocarbon feedstock. The inorganic phase may be gravimetrically separated from the upgraded hydrocarbon feedstock after mixing at a temperature between about 350.degree. C. to 400.degree. C. for a time period between about 15 minutes and 2 hours.

  7. Platinoids and molybdenum in nuclear waste containment glasses: a structural study

    International Nuclear Information System (INIS)

    Le Grand, M.

    2000-01-01

    This work deals with the structure of borosilicate nuclear glasses and with some relationships between structure and macroscopic properties. Two types of elements which may disturb the industrial process - platinoids (Ru and Pd) and molybdenum - are central to this work. Platinoids induce weak modifications on the structure of the glass, causing a depolymerization of the glassy network, an increase of the [3] B/ [4] B ratio and a modification of the medium range order around Si between 3.3 and 4.5 angstrom. The modifications of viscosity and density induced by platinoids in the glass are not due to the structural effect of the platinoids. The increase of viscosity is attributed to needle shaped RuO 2 . It can be moderated by imposing reducing conditions during the elaboration of the glass. The slight difference between experimental and calculated densities is due to the increase of the volume percentage of bubbles in the glass with increasing platinoid content. Mo is either present in the glass as molybdic groupings, or mobilized in chemically complex molybdic crystalline phases. The chemical composition and mineralogy of these phases has been obtained using electronic microprobe data and XRD with Rietveld analysis. The distribution of the different elements between the crystalline phases and the glass is strongly influenced by the structural role of the various cations in the glass. The Mo present in the glass appears as MoO 4 tetrahedra, independent of the borosilicate network. The formation of the crystalline phases can be explained by the existence of a precursor in which the MoO 4 tetrahedra are concentrated in rich alkali and earth-alkali bearing areas of the glass. (author)

  8. Bioactive Glasses in Dentistry: A Review

    Directory of Open Access Journals (Sweden)

    Abbasi Z

    2015-03-01

    Full Text Available Bioactive glasses are silicate-based and can form a strong chemical bond with the tissues. These biomaterials are highly biocompatible and can form a hydroxyapatite layer when implanted in the body or soaked in the simulated body fluid. Due to several disadvantages, conventional glass processing method including melting of glass components, is replaced by sol-gel method with a large number of benefits such as low processing temperature, higher purity and homogeneity and therefore better control of bioactivity. Bioactive glasses have a wide range of applications, particularly in dentistry. These glasses can be used as particulates or monolithic shapes and porous or dense constructs in different applications such as remineralization or hypersensitivity treatment. Some properties of bioactive glasses such as antibacterial properties can be promoted by adding different elements into the glass. Bioactive glasses can also be used to modify different biocompatible materials that need to be bioactive. This study reviews the significant developments of bioactive glasses in clinical application, especially dentistry. Furthermore, we will discuss the field of bioactive glasses from beginning to the current developments, which includes processing methods, applications, and properties of these glasses.

  9. Investigation into structure of berylliumaluminium silicate glasses and crystals by X-ray spectroscopy

    International Nuclear Information System (INIS)

    Tykachinskij, I.D.; Gorbachev, V.V.; Petrakov, V.N.; Varshal, B.G.; Bystrakov, A.S.; Dmitriev, I.D.; Zatsepin, A.F.; Blaginina, L.A.

    1983-01-01

    For the purpose of elucidating the structural state of Be 2+ and Al 3+ ions as well as the nature of Be-O bond the investigation of glasses obtained from BeO, Al 2 O 3 and SiO 2 with different component composition is undertaken by X-ray spectroscopy. In three-component beryllium alumosilicate glasses at the ratio γ=Al 2 O 3 /BeO=0.34-1.92 the main part of Al 3+ cations forms AlO 4 groups. Be 2+ cations probably occupy several non-equivalent states. At the ''crystal-glass'' transition the reorganization of near structure of beryllium alumosilicate frame with appearance in a glass in contrast to crystal analog of beryllium cations playing the role of a glass former (being a part of glass net) as well as a modifier role occurs. For compositions with γ=1 the degree of ionic character of the Be-O bond is the greatest. The increase of Be 2+ cations fraction being a part of the glass net is characteristic feature of the glasses with parameter values γ not equal to 1

  10. Surface charges and Np(V) sorption on amorphous Al- and Fe- silicates

    International Nuclear Information System (INIS)

    Del Nero, M.; Assada, A.; Barillon, R.; Duplatre, G.; Made, B.

    2005-01-01

    Full text of publication follows: Sorption onto Si-rich alteration layers of crystalline minerals and nuclear glasses, and onto amorphous secondary silicates of rocks and soils, are expected to retard the migration of actinides in the near- and far-field of HLW repositories. We present experimental and modeling studies on the effects of silicate structure and bulk chemistry, and of solution chemistry, on charges and adsorption of neptunyl ions at surfaces of synthetic, amorphous or poorly ordered silica, Al-silicates and Fe-silicates. The Al-silicates display similar pH-dependent surface charges characterized by predominant Si-O - Si sites, and similar surface affinities for neptunyl ions, irrespective to their Si/Al molar ratio (varying from 10 to 4.3). Such experimental features are explained by incorporation of Al atoms in tetrahedral position in the silicate lattice, leading to only trace amounts of high-affinity Al-OH surface groups due to octahedral Al. By contrast, the structure of the Fe-silicates ensures the occurrence of high-affinity Fe-OH surface groups, whose concentration is shown by proton adsorption measurements to increase with decreasing of the silicate Si/Fe molar ratio (from 10 to 2.3). Nevertheless, experimental data of the adsorption of neptunyl and electrolyte ions show unexpectedly weak effect of the Si/Fe ratio, and suggest predominant Si-OH surface groups. A possible explanation is that aqueous silicate anions, released by dissolution, adsorb at OH Fe - surface groups and / or precipitate as silica gel coatings, because experimental solutions were found at near-equilibrium with respect to amorphous silica. Therefore, the environmental sorption of Np(V) onto Si-rich, amorphous or poorly ordered Al-silicates may primarily depend on pH and silicate specific surface areas, given the low overall chemical affinity of such phases for dissolved metals. By contrast, the sorption of Np(V) on natural, amorphous or poorly ordered Fe-silicates may be a

  11. Characterization of damage created by alpha disintegrations in radionuclear waste glass

    International Nuclear Information System (INIS)

    Jacquet-Francillon, N.; Mueller, P.

    1990-01-01

    Study of thermostimulated luminescence of an alpha irradiated glass used as radionuclear waste glass has revealed the formation of a structural defect induced by alpha irradiation. To detect this structural modification the thermostimulated signal of an alpha irradiated sample is recorded under certain conditions. The nature of generated defects has been established using synthetic glasses of more simple composition such as silica or boro-silicate glasses. Results obtained with these simple glasses are transposed to alpha irradiated radionuclear waste glass. The problem is to see how autoirradiated glass could evolve in time. For this purpose actinide-doped glasses are now being fabricated and specific thermostimulated luminescence equipment has been developed for this purpose

  12. Immobilization of Uranium Silicide in Sintered Iron-Phosphate Glass

    International Nuclear Information System (INIS)

    Mateos, Patricia; Russo, Diego; Rodriguez, Diego; Heredia, A; Sanfilippo, M.; Sterba, Mario

    2003-01-01

    This work is a continuation of a previous one performed in vitrification of uranium silicide in borosilicate and iron-silicate glasses, by sintering.We present the results obtained with an iron-phosphate glass developed at our laboratory and we compare this results with those obtained with the above mentioned glasses. The main objective was to develop a method as simple as possible, so as to get a monolithic glass block with the appropriate properties to be disposed in a deep geological repository.The thermal transformation of the uranium silicide was characterized by DTA/TG analysis and X-ray diffraction.We determined the evolution of the crystalline phases and the change in weight.Calcined uranium silicide was mixed with natural U 3 O 8 , the amount of U 3 O 8 was calculated to simulate an isotopic dilution of 4%.This material was mixed with powdered iron-phosphate glass (in wt.%: 64,9 P 2 O 5 ; 22,7 Fe 2 O 3 ; 8,1 Al 2 O 3 ; 4,3 Na 2 O) in different proportions (in wt%): 7%, 10% y 15%.The powders were pressed and sintered at temperatures between 585 y 670 °C. Samples of the sintered pellet were prepared for the lixiviation tests (MCC-1P: monolithic samples; deionised water; 90° C; 7, 14 and 28 days).The samples showed a quite good durability (0,6 g.m -2 .day -1 ), similar to borosilicate glasses.The microstructure of the glass samples showed that the uranium particles are much better integrated to the glass matrix in the iron-phosphate glasses than in the borosilicate or iron-silicate glasses.We can conclude that the sintered product obtained could be a good alternative for the immobilization of nuclear wastes with high content of uranium, as the ones arising from the conditioning of research reactors spent fuels

  13. Monte Carlo Simulations of Phosphate Polyhedron Connectivity in Glasses

    Energy Technology Data Exchange (ETDEWEB)

    ALAM,TODD M.

    1999-12-21

    Monte Carlo simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional exchange and double-quantum NMR experiments of phosphate glasses. These Monte Carlo simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.

  14. Bioactive glass-based scaffolds for bone tissue engineering

    NARCIS (Netherlands)

    Will, J.; Gerhardt, L.C.; Boccaccini, A.R.

    2012-01-01

    Originally developed to fill and restore bone defects, bioactive glasses are currently also being intensively investigated for bone tissue engineering applications. In this chapter, we review and discuss current knowledge on porous bone tissue engineering scaffolds made from bioactive silicate

  15. Investigation of crystallization in glasses containing fission products

    International Nuclear Information System (INIS)

    Malow, G.

    1979-01-01

    Five potential solidification products for high-level waste (four borosilicate glasses and one celsian glass ceramic) have been investigated in terms of crystallization. In all glasses and in the glass ceramic, crystallization, and recrystallization, respectively, were observed by heating above 773 0 K, however, at very different periods of time (0.1d greater than or equal to 100d). The noble metals precipitated into various phases. Crystal growth proceeded at the phase boundary glass-noble metal. In all products rare earth phases crystallized. Silicate phases rarely formed. The leach resistance (by the grain titration and Soxhlet tests) decreased after heat treatment in all cases. The changes were found to be within one order of magnitude for all products. 2 figures, 4 tables

  16. Indentation size effect and the plastic compressibility of glass

    Energy Technology Data Exchange (ETDEWEB)

    Smedskjaer, Morten M., E-mail: mos@bio.aau.dk [Section of Chemistry, Aalborg University, 9000 Aalborg (Denmark)

    2014-06-23

    Oxide glasses exhibit significant densification under an applied isostatic pressure at the glass transition temperature. The glass compressibility is correlated with the chemical composition and atomic packing density, e.g., borate glasses with planar triangular BO{sub 3} units are more disposed for densification than silicate glasses with tetrahedral units. We here show that there is a direct relation between the plastic compressibility following hot isostatic compression and the extent of the indentation size effect (ISE), which is the decrease of hardness with indentation load exhibited by most materials. This could suggest that the ISE is correlated with indentation-induced shear bands, which should form in greater density when the glass network is more adaptable to volume changes through structural and topological rearrangements under an applied pressure.

  17. Effect of glass composition on waste form durability: A critical review

    International Nuclear Information System (INIS)

    Ellison, A.J.G.; Mazer, J.J.; Ebert, W.L.

    1994-11-01

    This report reviews literature concerning the relationship between the composition and durability of silicate glasses, particularly glasses proposed for immobilization of radioactive waste. Standard procedures used to perform durability tests are reviewed. It is shown that tests in which a low-surface area sample is brought into contact with a very large volume of solution provide the most accurate measure of the intrinsic durability of a glass composition, whereas high-surface area/low-solution volume tests are a better measure of the response of a glass to changes in solution chemistry induced by a buildup of glass corrosion products. The structural chemistry of silicate and borosilicate glasses is reviewed to identify those components with the strongest cation-anion bonds. A number of examples are discussed in which two or more cations engage in mutual bonding interactions that result in minima or maxima in the rheologic and thermodynamic properties of the glasses at or near particular optimal compositions. It is shown that in simple glass-forming systems such interactions generally enhance the durability of glasses. Moreover, it is shown that experimental results obtained for simple systems can be used to account for durability rankings of much more complex waste glass compositions. Models that purport to predict the rate of corrosion of glasses in short-term durability tests are evaluated using a database of short-term durability test results for a large set of glass compositions. The predictions of these models correlate with the measured durabilities of the glasses when considered in large groupings, but no model evaluated in this review provides accurate estimates of durability for individual glass compositions. Use of these models in long-term durability models is discussed. 230 refs

  18. Impact of crystallization on the structure and chemical durability of borosilicate glass

    International Nuclear Information System (INIS)

    Nicoleau, Elodie

    2016-01-01

    This work describes a new approach to help understand the chemical durability of partially crystallized nuclear waste conditioning matrices. Among the studies carried out on nuclear waste deep geological disposal, long term behavior studies have so far been conducted on homogeneous glassy matrices. However, as the crystalline phases may generate modifications in the chemical composition and properties of such matrices, the description and a better understanding of their effects on the chemical durability of waste packages are of primary importance. A protocol to study the durability of heterogeneous model matrices of nuclear interest containing different types of crystalline phases was developed. It is based on a detailed description of the morphology, microstructure and structure of the glassy matrix and crystalline phases, and on the study of various alteration regimes. Three crystal phases that may form when higher concentrations of waste are immobilized in Uranium Oxide type conditioning glasses were studied: alkali and alkaline earth molybdates, rare earth silicates and ruthenium oxide. The results highlight the roles of the composition and the structure of the surrounding glassy matrix as the parameters piloting the alteration kinetics of the partially crystallized glassy matrices. This behavior is identical whatever the nature of the crystalline phases, as long as these phases do not lead to a composition gradient and do not percolate within the glassy matrix. Given these results, a methodology to study partially crystallized matrices with no composition gradient is then suggested. Its key development lies firstly in the evaluation of the behavior of partially crystallized matrices through the experimental study of the residual glassy matrix in various alteration regimes. This methodology may be adapted to the case of new glass formulations with more complex compositions (e.g. highly waste-loaded glass), which may contain crystals formed during cooling

  19. Development and radiation stability of glasses for highly radioactive wastes

    International Nuclear Information System (INIS)

    Hall, A.R.; Dalton, J.T.; Hudson, B.; Marples, J.A.C.

    1976-01-01

    The variation of formation temperature, crystallizing behaviour and leach resistance with composition changes for sodium-lithium borosilicate glasses suitable for vitrifying Magnox waste are discussed. Viscosities have been measured between 400 and 1050 0 C. The principal crystal phases which occur have been identified as magnesium silicate, magnesium borate and ceria. The leach rate of polished discs in pure water at 100 0 C does not decrease with time if account is taken of the fragile siliceous layer that is observed to occur. The effect of 100 years' equivalent α- and β-irradiation on glass properties is discussed. Stored energy release experiments demonstrated that energy is released over a wide temperature range so that it cannot be triggered catastrophically. Temperatures required to release energy are dependent upon the original storage temperature. Helium release is by Fick's diffusion law up to at least 30% of the total inventory, with diffusion coefficients similar to those for comparable borosilicate glasses. Leach rates were not measurably affected by α-radiation. β-radiation in a Van de Graaff accelerator did not change physical properties, but irradiation in an electron microscope caused minute bubbles in lithium-containing glasses above 200 0 C. (author)

  20. Effect of various lead species on the leaching behavior of borosilicate waste glass

    International Nuclear Information System (INIS)

    Lehman, R.L.; Kuchinski, F.A.

    1984-01-01

    A borosilicate nuclear waste glass was static leached in pure water, silicate water, and brine solution. Three different forms of lead were included in specified corrosion cells to assess the extent to which various lead species alter the leaching behavior of the glass. Weight loss data indicated that Pb/sub m/ amd PbO greatly reduce the weight loss of glass when leached in pure water, and similar effects were noted in silicate and brine. Si concentrations, which were substantial in the glass-alone leachate, were reduced to below detection limits in all pure water cells containing a lead form. Lead concentration levels in the leachate were controlled by lead form solubility and appeared to be a significant factor in influencing apparent leaching behavior. Surface analysis revealed surface crystals, which probably formed when soluble lead in the leachate reacted with dissolved or activated silica at the glass surface. The net effect was to reduce the lease of some glass constituents to the leachate, although it was not clear whether the actual corrosion of the glass surface was reduced. Significantly different corrosion inhibiting effects were noted among lead metal and two forms of lead oxide. 9 refs., 7 figs., 3 tabs