WorldWideScience

Sample records for alkali metal salt

  1. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  2. Elucidation of transport mechanism and enhanced alkali ion transference numbers in mixed alkali metal-organic ionic molten salts.

    Science.gov (United States)

    Chen, Fangfang; Forsyth, Maria

    2016-07-28

    Mixed salts of Ionic Liquids (ILs) and alkali metal salts, developed as electrolytes for lithium and sodium batteries, have shown a remarkable ability to facilitate high rate capability for lithium and sodium electrochemical cycling. It has been suggested that this may be due to a high alkali metal ion transference number at concentrations approaching 50 mol% Li(+) or Na(+), relative to lower concentrations. Computational investigations for two IL systems illustrate the formation of extended alkali-anion aggregates as the alkali metal ion concentration increases. This tends to favor the diffusion of alkali metal ions compared with other ionic species in electrolyte solutions; behavior that has recently been reported for Li(+) in a phosphonium ionic liquid, thus an increasing alkali transference number. The mechanism of alkali metal ion diffusion via this extended coordination environment present at high concentrations is explained and compared to the dynamics at lower concentrations. Heterogeneous alkali metal ion dynamics are also evident and, somewhat counter-intuitively, it appears that the faster ions are those that are generally found clustered with the anions. Furthermore these fast alkali metal ions appear to correlate with fastest ionic liquid solvent ions. PMID:27375042

  3. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    Science.gov (United States)

    Cassano, Anthony A.

    1985-01-01

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs.

  4. Alkali Metal Complexes: Mixed Ligand Complexes of Some Alkali Metal Salts of Some Organic Acids with Isonitroso-PMethylace to phenone

    Directory of Open Access Journals (Sweden)

    O.P. Gupta

    2016-02-01

    Full Text Available A number of mixed ligand complexes of alkali metal salts of o-nitrophenol,2,4-dinitrophenol, 2,4,6,- trinitrophenol, 1-nitroso-2- naphthol and 8- hydroxyquinoline with Insoniroso–p methylacetopheone have been synthesized in absolute ethanol & characterized by elemental analysis and I .B. spectral data. Their I.R spectral data indicate the presence of hydrogen bonding in them, which many be one of the dominant factors of their stability. Further appreciable shift in 1650 cm-1 band (possibly vC=O and 1600 cm-1 band (possibly vC=NSuggests their coordination behavior in these mixed ligand complexes The reactions that take place in natural systems are highly specific and selective. Alkali metal ions actively participate in most of the reaction occurring in the biological systems, which are dominated by mixed ligand complexes. Studies of such mixed ligand complexes of alkali metals can threw light in understanding the role and mechanism of selective absorption of alkali metals ions by plants Coordinating ability of alkali metal with isonitrosoacetophenone1-2 and transition metals with isonitrosoacetophenone3 and isonitroso-p-methylacetophenone4 have been reported earlier. In the present paper we report the mixed ligand complexes of alkali metal salts having the general formula ML.HL, ‘ where M=Li, Na & K and L=deprotonated o- nitrophenol, 2,4 dinitrophenol, 2, 4, 6- trinitrophenol, 1-nitroso-2-naphthol or 8- hydroxquinoline; HL’= p -MeHINAP (isonitroso-p-methylacetophenone.

  5. Croconic acid and alkali metal croconate salts: some new insights into an old story.

    Science.gov (United States)

    Braga, Dario; Maini, Lucia; Grepioni, Fabrizia

    2002-04-15

    The solid-state structures of a series of alkali metal salts of the croconate dianion (C(5)O(5)(2-)) and of croconic acid (H(2)C(5)O(5)) have been determined. The alkali metal croconates were obtained by ring contraction of rhodizonic acid (H(2)C(6)O(6)), upon treatment with alkali metal hydroxides and recrystallisation from water. The novel species Na(2)C(5)O(5) x 2H(2)O, Rb(2)C(5)O(5) and Cs(2)C(5)O(5), as well as the mixed hydrogencroconate/croconate salt K(3)(HC(5)O(5))(C(5)O(5)) small middle dot2 H(2)O are described and compared with the Li(+), K(+) and NH(4)(+) salts. Single crystals of croconic acid were obtained by crystallisation of croconic acid in the presence of HCl. Crystal structure determinations showed that the C(5)O(5)(2-) ions tend to organize themselves in columns. The interplanar separations lie in the narrow range 3.12-3.42 A and do not necessarily reflect the presence of pi-stacking interactions. It is argued that the small interplanar separation is the result of a compromise between packing of flat croconate units and the spherical cations together with the water molecules that fill the coordination spheres of the alkali metal atoms. PMID:11933108

  6. Electrodeposition of alkali and alkali-earth metals on liquid lead cathodes in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Caravaca, C.; De Cordoba, G. [CIEMAT/DE/DFN/URAA. Avda. Complutense, 22. 28040 Madrid (Spain)

    2008-07-01

    Pyrochemical processing of spent nuclear fuel leads to the dissolution as chlorides of fission products (FPs) that have to be removed in order to recycle the salt. Precipitation technique have been tested for the removal of these FPs in the LiCl-KCl, salt selected as reference, with different results. Salt decontamination from lanthanides can be easily achieved as solid precipitates of oxychlorides or single phosphates; however, for the alkaline and alkaline-earth metals this technique is not suitable. Within the EUROPART project (VI FP of the EC), a new route that consist of the electrodeposition of these FP on a liquid lead cathode (LLC) has been considered, including the Li and K constituting the electrolyte. First results obtained with Sr and Cs are presented herein. Although according to the thermodynamic potential values, the electrodeposition order on LLC is Ba, Sr, Li, K and Cs, during our experiments it was not possible to distinguish the electrochemical signals corresponding to the individual elements. (authors)

  7. Alkali metal salts of formazanate ligands : diverse coordination modes as a result of the nitrogen-rich [NNCNN] ligand backbone

    NARCIS (Netherlands)

    Travieso-Puente, Raquel; Chang, Mu-Chieh; Otten, Edwin

    2014-01-01

    Alkali metal salts of redox-active formazanate ligands were prepared, and their structures in the solid-state and in solution are determined. The nitrogen-rich [NNCNN] backbone of formazanates results in a varied coordination chemistry, with both the internal and terminal nitrogen atoms available fo

  8. Synthesis and Selective Coloration of Monoaza Crown Ethers Bearing Picrylamino-type Side Arms for Alkali Metal Salts and Methylamine

    Institute of Scientific and Technical Information of China (English)

    Wei ZENG; Zhi Hua MAO; Mi GONG; Chun Chun ZHANG; Sheng Ying QIN; Jun SU

    2003-01-01

    N-pivot lariat ethers with picrylamino group as a chromophore (1, 2 and 3) have been prepared by reaction of N-(4-aminoaryl)monoaza crown ethers with picryl chrolide, and the selective coloration of 1, 2 and 3 for alkali metal salts and amines has been studied by UV-Vis spectra.

  9. Alkali metal salts of rutin - Synthesis, spectroscopic (FT-IR, FT-Raman, UV-VIS), antioxidant and antimicrobial studies.

    Science.gov (United States)

    Samsonowicz, M; Kamińska, I; Kalinowska, M; Lewandowski, W

    2015-12-01

    In this work several metal salts of rutin with lithium, sodium, potassium, rubidium and cesium were synthesized. Their molecular structures were discussed on the basis of spectroscopic (FT-IR, FT-Raman, UV-VIS) studies. Optimized geometrical structure of rutin was calculated by B3LYP/6-311++G(∗∗) method and sodium salt of rutin were calculated by B3LYP/LanL2DZ method. Metal chelation change the biological properties of ligand therefore the antioxidant (FRAP and DPPH) and antimicrobial activities (toward Escherichia coli, Staphylococcus aureus, Enterococcus faecium, Proteus vulgaris, Pseudomonas aeruginosa, Klebsiella pneumonia, Candida albicans and Saccharomyces cerevisiae) of alkali metal salts were evaluated and compared with the biological properties of rutin. PMID:26184478

  10. Alkali Metal Halide Salts as Interface Additives to Fabricate Hysteresis-Free Hybrid Perovskite-Based Photovoltaic Devices.

    Science.gov (United States)

    Wang, Lili; Moghe, Dhanashree; Hafezian, Soroush; Chen, Pei; Young, Margaret; Elinski, Mark; Martinu, Ludvik; Kéna-Cohen, Stéphane; Lunt, Richard R

    2016-09-01

    A new method was developed for doping and fabricating hysteresis-free hybrid perovskite-based photovoltaic devices by using alkali metal halide salts as interface layer additives. Such salt layers introduced at the perovskite interface can provide excessive halide ions to fill vacancies formed during the deposition and annealing process. A range of solution-processed halide salts were investigated. The highest performance of methylammonium lead mixed-halide perovskite device was achieved with a NaI interlayer and showed a power conversion efficiency of 12.6% and a hysteresis of less than 2%. This represents a 90% improvement compared to control devices without this salt layer. Through depth-resolved mass spectrometry, optical modeling, and photoluminescence spectroscopy, this enhancement is attributed to the reduction of iodide vacancies, passivation of grain boundaries, and improved hole extraction. Our approach ultimately provides an alternative and facile route to high-performance and hysteresis-free perovskite solar cells.

  11. Methods of recovering alkali metals

    Science.gov (United States)

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  12. Upgrading platform using alkali metals

    Science.gov (United States)

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  13. Alkali metal and alkali earth metal gadolinium halide scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  14. Corrosion by the Alkali Metals

    International Nuclear Information System (INIS)

    This is a review of the state of the art of corrosion testing of materials by the alkali metals, the models proposed to explain the observed corrosion results, and the status of materials selection for application in alkali metal-cooled systems. Corrosion of structural and fuel cladding materials by liquid Na and NaK has been studied intensively, but intermittently for the last 18 years. These studies and the liquid-metal-cooled reactors in operation demonstrate that stainless steels can be considered for structural and cladding applications below 650°C. Above this temperature increased corrosion and radiation-induced embrittlement make them unsatisfactory. Corrosion models are reviewed and their inability to explain all the experimental observations discussed. An alternate model is proposed which qualitatively is in agreement with experimental observations. In this model, the rate-controlling step is either the surface reaction of Fe with ''available oxygen'' (dissolved Na2O) to form an Fe-O-Na complex or the rate at which ''available oxygen'' can reach the surface to form the complex; which process is rate controlling depends on the temperature, Na velocity and oxygen concentration in the Na. The solution chemistry of oxygen, carbon and alkali metal-oxygen-transition metal complexes dissolved in the alkali metals is reviewed. ''Molecular'' complexes appear unlikely to exist in solution in the alkali metals, although the thermodynamic tendencies for them to form suggest that stable bonds exist in solution between oxygen, the transition and the alkali metals. The insolubility of carbon in ''oxygen-free'' sodium indicates that carbon transfer may be associated with oxygen in sodium down to very low oxygen levels, although experimental data do not generally confirm this postulate. Corrosion of refractory metals by boiling alkali metals at temperatures above 1000°C is markedly affected by impurities in either the liquid or refractory metal; the addition of Ti, Zr or

  15. Alkali and transition metal phospholides

    International Nuclear Information System (INIS)

    Major tendencies in modern chemistry of alkali and transition metal phospholides (phosphacyclopentadienides) are systematized, analyzed and generalized. Basic methods of synthesis of these compounds are presented. Their chemical properties are considered with a special focus on their complexing ability. Potential applications of phospholides and their derivatives are discussed. The bibliography includes 184 references

  16. Optical detection of sodium salts of fluoride, acetate and phosphate by a diacylhydrazine ligand by the formation of a colour alkali metal complex

    Indian Academy of Sciences (India)

    Purnandhu Bose; Ranjan Dutta; I Ravikumar; Pradyut Ghosh

    2011-11-01

    A solution of N, N'-diacylhydrazine ligand in organic solvent is potential for colourimetric detection of F−/AcO−/PO$^{3−}_{4}$ via -NH deprotonation, tautomerization and its stabilization as a colour alkali metal complex.

  17. Alkali and alkaline earth metal salts of boron anionic complexes with o-hydroxy-benzyl alcohols (saligenin)

    International Nuclear Information System (INIS)

    Salts of two anionic boron complexes with 2 hydroxy-benzyl alcohol-[BA2- and [B(OH)2A]- - were synthesized. The first complex was separated in the form of anhydrous potassium and cesium salts, the second one - in the form of sodium (dihydrate), calcium (dihydrate) and barium (tetrahydrate and anhydrous salt) salts. Conditions of formation are discussed. Solubility in water and organic solvents, interplanar distances of crystal lattice were determined. The compounds were studied by the methods of infrared spectroscopy, thermal analysis. Hypothetical composition of the compounds is given

  18. Process for recovering alkali metals and sulfur from alkali metal sulfides and polysulfides

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard; Alvare, Javier

    2016-10-25

    Alkali metals and sulfur may be recovered from alkali monosulfide and polysulfides in an electrolytic process that utilizes an electrolytic cell having an alkali ion conductive membrane. An anolyte solution includes an alkali monosulfide, an alkali polysulfide, or a mixture thereof and a solvent that dissolves elemental sulfur. A catholyte includes molten alkali metal. Applying an electric current oxidizes sulfide and polysulfide in the anolyte compartment, causes alkali metal ions to pass through the alkali ion conductive membrane to the catholyte compartment, and reduces the alkali metal ions in the catholyte compartment. Liquid sulfur separates from the anolyte solution and may be recovered. The electrolytic cell is operated at a temperature where the formed alkali metal and sulfur are molten.

  19. Properties of solvated electrons, alkali anions and other species in metal solutions and kinetics of cation and electron exchange reactions. Final report

    International Nuclear Information System (INIS)

    The properties of solutions of alkali metals in amine solvents were studied by optical, ETR, NMR and electrochemical methods. Complexation of the alkali cations by crown ethers and cryptands permitted the preparation of concentrated solutions of alkali metals in amine and ether solvents. Extensive alkali metal NMR studies of the exchange of M+ with crown-ethers and cryptands and of the alkali metal anion, M-, were made. The first crystalline salt of an alkali metal anion, Na+ Cryptand [2.2.2]Na- was synthesized and characterized and led to the preparation of other alkali metal anion salts. This research provided the foundation for continuing studies of crystalline alkalide salts

  20. Alkali-metal intercalation in carbon nanotubes

    Science.gov (United States)

    Béguin, F.; Duclaux, L.; Méténier, K.; Frackowiak, E.; Salvetat, J. P.; Conard, J.; Bonnamy, S.; Lauginie, P.

    1999-09-01

    We report on successful intercalation of multiwall (MWNT) and single wall (SWNT) carbon nanotubes with alkali metals by electrochemical and vapor phase reactions. A LiC10 compound was produced by full electrochemical reduction of MWNT. KC8 and CsC8-MWNT first stage derivatives were synthesized in conditions of alkali vapor saturation. Their identity periods and the 2×2 R 0° alkali superlattice are comparable to their parent graphite compounds. The dysonian shape of KC8 EPR line and the temperature-independent Pauli susceptibility are both characteristic of a metallic behavior, which was confirmed by 13C NMR anisotropic shifts. Exposure of SWNT bundles to alkali vapor led to an increase of the pristine triangular lattice from 1.67 nm to 1.85 nm and 1.87 nm for potassium and rubidium, respectively.

  1. Improved thermoelectric performance in polycrystalline p-type Bi2Te3 via an alkali metal salt hydrothermal nanocoating treatment approach

    Science.gov (United States)

    Ji, Xiaohua; He, Jian; Su, Zhe; Gothard, Nick; Tritt, Terry M.

    2008-08-01

    We report herein a proof-of-principle study of grain boundary engineering in the polycrystalline p-type Bi2Te3 system. Utilizing the recently developed hydrothermal nanocoating treatment technique, we fabricated an alkali-metal(s)-containing surface layer on the p-Bi2Te3 bulk grain, which in turn became part of the grain boundary upon hot pressing densification. Compared to the untreated bulk reference, the dimensionless figure of merit ZT has been improved by ˜30% in the Na-treated sample chiefly due to the reduced thermal conductivity, and ˜38% in the Rb-treated sample mainly owing to the improved power factor. The grain boundary phase provides a new avenue by which one can potentially decouple the otherwise inter-related electrical resistivity, Seebeck coefficient, and thermal conductivity within one thermoelectric material.

  2. Recovery of alkali metal constituents from catalytic coal conversion residues

    Science.gov (United States)

    Soung, W.Y.

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  3. Alkali metals in fungi of forest soil

    International Nuclear Information System (INIS)

    The high affinity of forest soil fungi for alkali metals such as potassium, rubidium, caesium as well as radiocaesium is shown and discussed. Good positive correlation was found between K: Rb concentration ratios in soil and in fungi, when correlation between K: Cs concentration ratios was less pronounced. (LN)

  4. Theoretical Investigation on Structures and Nonlinear Optical Properties of the Alkalis and Low Coordination Acenes Salt

    International Nuclear Information System (INIS)

    The alkalis and low coordination acenes salts alpha-M at the rate of n-acenes (M = Li, Na and K) salts (n = 1, 2 and 3) were designed to investigate the effect of the increasing atomic number of alkali metals and the number n of conjugated benzenoid rings on the nonlinear optical responses. Alkalis Li, Na and K were selected herein, and both DFT (M05-2X, M06-2X and PBE0) and MP2 methods and 6-311+G(D) basis set are employed to optimize geometrical structures and to calculate the polarizability (alpha/sub 0/) and first hyperpolarizability (beta/sub vec/) of the alpha-M at the rate of n-acenes (M = Li, Na and K) salts (n = 1, 2 and 3). Results show that the alpha/sub 0/ values of alpha-M at the rate of n-acenes (M = Li, Na and K) salts (n = 1, 2 and 3) increase with increasing number of n conjugated benzenoid rings and the atomic number of alkali metals and beta/sub vec/ values of alpha-M at the rate of n-acenes (M = Li, Na and K) salts (n = 1, 2 and 3) are opposite. The beta/sub vec/ values of alpha-M at the rate of n-acenes (M = Li, Na and K) salts (n = 1, 2 and 3) are increasing remarkably (397.6 au. for alpha-Li at the rate of benzene < 1196.5 au. for alpha-Na at the rate of benzene < 1608.6 au. for alpha-K at the rate of benzene and tending to decease with increasing number of n by M06-2X method. Our present research may be favorable to the development of excellent nonlinear optical (NLO) materials. (author)

  5. Modified PVA-CA blend ultrafiltration membrane by alkali metal chloride

    Institute of Scientific and Technical Information of China (English)

    张启修; 邱运仁

    2003-01-01

    The modified PVA-CA blend ultrafiltration membranes were prepared by phase inversion from the casting solutions consisting of polyvinyl alcohol(PVA), cellulose acetate(CA), acetic acid, alkali metal chloride and water. The effects of different concentration of alkali metal chloride on the properties of membranes were investigated. The results show that when the mass fraction of the salt in the casting solution is not greater than 1%, the property of rejection of the alkali metal salt modified ultrafiltration PVA-CA blend membrane has little change compared with that of the unmodified PVA-CA blend membrane, but the permeation flux is much greater than that of the unmodified membrane under the same operation condition. When the mass fraction of the salt is greater than 1.5%, the permeate flux increases much greater than that of the unmodified membrane, but the property of rejection of the modified ultrafiltration membrane decreases greatly. The results also show that the contact angle of the salt modified PVA-CA blend UF membrane decreases but the swelling in water increases with the increment of the mass fraction of alkali metal salts. Furthermore, the NaCl modified PVA-CA blend membrane has a slightly lower swelling and a little smaller contact angle of water than the KCl modified PVA-CA blend membrane does when the mass fraction of salts is the same.

  6. Cathode architectures for alkali metal / oxygen batteries

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  7. Electrodes For Alkali-Metal Thermoelectric Converters

    Science.gov (United States)

    Williams, Roger M.; Wheeler, Bob L.; Jeffries-Nakamura, Barbara; Lamb, James L.; Bankston, C. Perry; Cole, Terry

    1989-01-01

    Combination of thin, porous electrode and overlying collector grid reduces internal resistance of alkali-metal thermoelectric converter cell. Low resistance of new electrode and grid boosts power density nearly to 1 W/cm2 of electrode area at typical operating temperatures of 1,000 to 1,300 K. Conductive grid encircles electrode film on alumina tube. Bus wire runs along tube to collect electrical current from grid. Such converters used to transform solar, nuclear, and waste heat into electric power.

  8. Superconductivity in alkali metal intercalated iron selenides

    Science.gov (United States)

    Krzton-Maziopa, A.; Svitlyk, V.; Pomjakushina, E.; Puzniak, R.; Conder, K.

    2016-07-01

    Alkali metal intercalated iron selenide superconductors A x Fe2‑y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  9. COMPLEX FLUORIDES OF PLUTONIUM AND AN ALKALI METAL

    Science.gov (United States)

    Seaborg, G.T.

    1960-08-01

    A method is given for precipitating alkali metal plutonium fluorides. such as KPuF/sub 5/, KPu/sub 2/F/sub 9/, NaPuF/sub 5/, and RbPuF/sub 5/, from an aqueous plutonium(IV) solution by adding hydrogen fluoride and alkali-metal- fluoride.

  10. High-Order Dispersion Coefficients for Alkali-metal Atoms

    Institute of Scientific and Technical Information of China (English)

    KANG Shuai; DING Chi-Kun; CHEN Chang-Yong; WU Xue-Qing

    2013-01-01

    High-order dispersion coefficients C9,C11,C12,and C13 for the ground-state alkali-metals were calculated by combining the l-dependent model potential of alkali-metal atoms and linear variation method based on B-spline basis functions.The results were compared.

  11. Saturated vapor pressure over molten mixtures of GaCl3 and alkali metal chlorides

    International Nuclear Information System (INIS)

    Volatilities of GaCl3 and alkali metal chlorides over diluted (up to 3 mol %) solutions of GaCl3 in LiCl, NaCl, KCl, RbCl, and CsCl were measured at 1100 K by dynamic and indirect static methods. Chemical composition of saturated vapor over the mixed melts was determined. Partial pressures of the components were calculated. Their values depend essentially on specific alkali metal cation and on concentration of GaCl3; their variation permits altering parameters of GaCl3 distillation from the salt melt in a wide range

  12. A simple alkali-metal and noble gas ion source for SIMS equipments with mass separation of the primary ions

    International Nuclear Information System (INIS)

    An alkali-metal ion source working without a store of alkali-metals is described. The alkali-metal ions are produced by evaporation of alkali salts and ionization in a low-voltage arc discharge stabilized with a noble gas plasma or in the case of small alkali-metal ion currents on the base of the well known thermic ionization at a hot tungsten wire. The source is very simple in construction and produces a stable ion current of 0.3 μA for more than 100 h. It is possible to change the ion species in a short time. This source is applicable to all SIMS equipments using mass separation for primary ions. (author)

  13. Alkali cation specific adsorption onto fcc(111) transition metal electrodes.

    Science.gov (United States)

    Mills, J N; McCrum, I T; Janik, M J

    2014-07-21

    The presence of alkali cations in electrolyte solutions is known to impact the rate of electrocatalytic reactions, though the mechanism of such impact is not conclusively determined. We use density functional theory (DFT) to examine the specific adsorption of alkali cations to fcc(111) electrode surfaces, as specific adsorption may block catalyst sites or otherwise impact surface catalytic chemistry. Solvation of the cation-metal surface structure was investigated using explicit water models. Computed equilibrium potentials for alkali cation adsorption suggest that alkali and alkaline earth cations will specifically adsorb onto Pt(111) and Pd(111) surfaces in the potential range of hydrogen oxidation and hydrogen evolution catalysis in alkaline solutions.

  14. Electrohydrodynamic emission of positive and negative ions from alkali-metal halide melts

    International Nuclear Information System (INIS)

    The characteristics of electrohydrodynamic (EHD) emission of positive and negative ions from melts of alkali-metal metals are presented. The angular current density is 3-4 μA/sr with emission currents of 0.1-0.5 μA. The salt EHD sources which have been developed yield stable currents of K+, Rb+, Cs+, F-, Cl-, and I- ions for several tens of hours. 10 refs., 4 figs., 1 tab

  15. Hall Determination of Atomic Radii of Alkali Metals

    Science.gov (United States)

    Houari, Ahmed

    2008-01-01

    I will propose here an alternative method for determining atomic radii of alkali metals based on the Hall measurements of their free electron densities and the knowledge of their crystal structure. (Contains 2 figures.)

  16. Bioinorganic Chemistry of the Alkali Metal Ions.

    Science.gov (United States)

    Kim, Youngsam; Nguyen, Thuy-Tien T; Churchill, David G

    2016-01-01

    The common Group 1 alkali metals are indeed ubiquitous on earth, in the oceans and in biological systems. In this introductory chapter, concepts involving aqueous chemistry and aspects of general coordination chemistry and oxygen atom donor chemistry are introduced. Also, there are nuclear isotopes of importance. A general discussion of Group 1 begins from the prevalence of the ions, and from a comparison of their ionic radii and ionization energies. While oxygen and water molecule binding have the most relevance to biology and in forming a detailed understanding between the elements, there is a wide range of basic chemistry that is potentially important, especially with respect to biological chelation and synthetic multi-dentate ligand design. The elements are widely distributed in life forms, in the terrestrial environment and in the oceans. The details about the workings in animal, as well as plant life are presented in this volume. Important biometallic aspects of human health and medicine are introduced as well. Seeing as the elements are widely present in biology, various particular endogenous molecules and enzymatic systems can be studied. Sodium and potassium are by far the most important and central elements for consideration. Aspects of lithium, rubidium, cesium and francium chemistry are also included; they help in making important comparisons related to the coordination chemistry of Na(+) and K(+). Physical methods are also introduced. PMID:26860297

  17. Bioinorganic Chemistry of the Alkali Metal Ions.

    Science.gov (United States)

    Kim, Youngsam; Nguyen, Thuy-Tien T; Churchill, David G

    2016-01-01

    The common Group 1 alkali metals are indeed ubiquitous on earth, in the oceans and in biological systems. In this introductory chapter, concepts involving aqueous chemistry and aspects of general coordination chemistry and oxygen atom donor chemistry are introduced. Also, there are nuclear isotopes of importance. A general discussion of Group 1 begins from the prevalence of the ions, and from a comparison of their ionic radii and ionization energies. While oxygen and water molecule binding have the most relevance to biology and in forming a detailed understanding between the elements, there is a wide range of basic chemistry that is potentially important, especially with respect to biological chelation and synthetic multi-dentate ligand design. The elements are widely distributed in life forms, in the terrestrial environment and in the oceans. The details about the workings in animal, as well as plant life are presented in this volume. Important biometallic aspects of human health and medicine are introduced as well. Seeing as the elements are widely present in biology, various particular endogenous molecules and enzymatic systems can be studied. Sodium and potassium are by far the most important and central elements for consideration. Aspects of lithium, rubidium, cesium and francium chemistry are also included; they help in making important comparisons related to the coordination chemistry of Na(+) and K(+). Physical methods are also introduced.

  18. Ternary alkali-metal and transition metal or metalloid acetylides as alkali-metal intercalation electrodes for batteries

    Energy Technology Data Exchange (ETDEWEB)

    Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z

    2015-02-10

    Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.

  19. Two-phase alkali-metal experiments in reduced gravity

    Energy Technology Data Exchange (ETDEWEB)

    Antoniak, Z.I.

    1986-06-01

    Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity.

  20. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    Science.gov (United States)

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  1. Evidence for [18-Crown-6 Na]2[S2O4] in methanol and dissociation to Na2S2O4 and 18-Crown-6 in the solid state; accounting for the scarcity of simple oxy dianion salts of alkali metal crown ethers in the solid state.

    Science.gov (United States)

    Bruna, Pablo J; Greer, Scott; Passmore, Jack; Rautiainen, J Mikko

    2011-02-21

    [18-Crown-6 Na](2)S(2)O(4) complex was prepared in methanol solution but dissociates into 18-Crown-6 ((s)) and Na(2)S(2)O(4 (s)) on removal of the solvent. Evidence for complexation in methanol is supported by a quantitative mass analysis and the dissociation in the solid state by vibrational spectroscopy and powder X-ray diffraction. These observations are accounted for by investigating the energetics of complexation in solution and dissociation in the solid state using calculated density functional theory (DFT) gas phase binding enthalpies and free energies combined with conductor-like screening model (COSMO) solvation energies and lattice enthalpy and free energy terms derived from volume based thermodynamics (VBT). Our calculations show that complexation of alkali metal dianion salts to crown ethers are much less favorable than that of the corresponding monoanion salts in the solid state and that the formation of alkali metal crown complexes of stable simple oxy-dianion (e.g., CO(3)(2-), SO(4)(2-)) salts is unlikely. The roles of complexation with 18-Crown-6 and ion pair formation in the process of dissolution of Na(2)S(2)O(4) to methanol are discussed.

  2. Neuropsychiatric manifestations of alkali metal deficiency and excess

    Energy Technology Data Exchange (ETDEWEB)

    Yung, C.Y.

    1984-01-01

    The alkali metals from the Group IA of the periodic table (lithium, sodium, potassium, rubidium, cesium and francium) are reviewed. The neuropsychiatric aspects of alkali metal deficiencies and excesses (intoxications) are described. Emphasis was placed on lithium due to its clinical uses. The signs and symptoms of these conditions are characterized by features of an organic brain syndrome with delirium and encephalopathy prevailing. There are no clinically distinctive features that could be reliably used for diagnoses. Sodium and potassium are two essential alkali metals in man. Lithium is used as therapeutic agent in bipolar affective disorders. Rubidium has been investigated for its antidepressant effect in a group of psychiatric disorders. Cesium is under laboratory investigation for its role in carcinogenesis and in depressive illness. Very little is known of francium due to its great instability for experimental study.

  3. Transport properties of alkali metal doped fullerides

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Daluram, E-mail: daluramyadav@gmail.com; Yadav, Nishchhal, E-mail: somyadav@gmail.com [School of studies in Physics, Vikram University, Ujjain (M.P) India (India)

    2015-07-31

    We have studied the intercage interactions between the adjacent C{sub 60} cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C{sub 60} phonons. We considered a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. Coulomb repulsive parameter and the electron phonon coupling strength are obtained within the random phase approximation. Transition temperature, T{sub c}, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C{sub 60} phonons as 5 K, which is much lower as compared to reported T{sub c} (20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. The importance of the present study, the pressure effect and normal state transport properties are calculated within the same model leading superconductivity.

  4. [Oat growth and cation absorption characteristics under salt and alkali stress].

    Science.gov (United States)

    Fan, Yuan; Ren, Chang-Zhong; Li, Pin-Fang; Ren, Tu-Sheng

    2011-11-01

    This paper monitored the oat growth and cation absorption characteristics on a saline-alkali soil in the Baicheng region of Jilin Province under low, medium, and high levels of salt stress. No significant differences were observed in the shoot growth and yield components under the three levels of salt stress, but the root biomass and root/shoot ratio decreased significantly with increasing salt stress level. At maturing stage, the root/shoot ratio under medium and high salt stresses was 77.2% and 64.5% of that under low salt stress, respectively. Under the three levels of salt stress, the K+/Na+ and Ca2+/Na+ ratios in oat plant had significant differences at trefoil stage, but no significant differences at heading stage. With the increase of salt stress level, the cation absorption selectivity coefficient of oat at filling stage decreased significantly, but the transportation selectivity coefficient had no significant difference under the three levels of stress. It was concluded that oat could adapt to the salt and alkali stress of soda-alkaline soil to some extent, and the adaptation capability decreased with the increasing level of stress. The decrease of oat root biomass and the stronger ion selective absorption capacity at heading stage under salt and alkali stress could benefit the shoot growth and yield components of oat. PMID:22303664

  5. Aqueous alkali metal hydroxide insoluble cellulose ether membrane

    Science.gov (United States)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1969-01-01

    A membrane that is insoluble in an aqueous alkali metal hydroxide medium is described. The membrane is a resin which is a water-soluble C2-C4 hydroxyalkyl cellulose ether polymer and an insolubilizing agent for controlled water sorption, a dialytic and electrodialytic membrane. It is particularly useful as a separator between electrodes or plates in an alkaline storage battery.

  6. The influence of chlorine on the fate and activity of alkali metals during the gasification of wood

    Energy Technology Data Exchange (ETDEWEB)

    Struis, R.; Scala, C. von; Schuler, A.; Stucki, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Chlorine clearly inhibits the CO{sub 2}-gasification reaction of charcoal at 800{sup o}C. From this and other observations the picture emerges that the reduction in the gasification reactivity of the charcoal is intimately related to the deactivation of the catalytically active alkali metals residing in the wood due to the formation of the chloride salt. It is argued that the heavy metal chlorides will likely transfer the chlorine to the indigenous alkali metals during the pyrolysis stage of the wood. The fate of the thus formed alkali metal chlorides can then be either their removal from the sample (evaporation), or, when present at the gasification stage, re-activation (i.e., de-chlorination) under our gasification conditions. (author) 3 figs., 4 refs.

  7. Density functional study of ferromagnetism in alkali metal thin films

    Indian Academy of Sciences (India)

    Prasenjit Sen

    2010-04-01

    Electronic and magnetic structures of (1 0 0) films of K and Cs, having thicknesses of one to seven layers, are calculated within the plane-wave projector augmented wave (PAW) formalism of the density functional theory (DFT), using both local spin density approximation (LSDA) and the PW91 generalized gradient approximation (GGA). Only a six-layer Cs film is found to have a ferromagnetic (FM) state which is degenerate with a paramagnetic (PM) state within the accuracy of these calculations. These results are compared with those obtained from calculations on a finite-thickness uniform jellium model (UJM), and it is argued that within LSDA or GGA, alkali metal thin films cannot be claimed to have an FM ground state. Relevance of these results to the experiments on transition metal-doped alkali metal thin films and bulk hosts are also discussed.

  8. Alkali Metal Coolants. Proceedings of the Symposium on Alkali Metal Coolants - Corrosion Studies and System Operating Experience

    International Nuclear Information System (INIS)

    Proceedings of a Symposium organized by the IAEA and held in Vienna, 28 November - 2 December 1966. The meeting was attended by 107 participants from 16 countries and two international organizations. Contents: Review papers (2 papers); Corrosion of steels and metal alloys (6 papers); Mass transfer in alkali metal systems, behaviour of carbon (5 papers); Effects of sodium environment on mechanical properties of materials (3 papers); Effect of water leakage into sodium systems (2 papers); Design-and operation of testing apparatus (6 papers); Control, measurements and removal of impurities (13 papers); Corrosion by other alkali metals: NaK, K, Li, Cs (6 papers); Behaviour of fission products (3 papers). Each paper is in its original language (32 English, 6 French and 8 Russian) and is preceded by an abstract in English and one in the original language if this is not English. Discussions are in English. (author)

  9. Chemical compatibility of structural materials in alkali metals

    International Nuclear Information System (INIS)

    The objectives of this task are to (a) evaluate the chemical compatibility of structural alloys such as V-5 wt.%Cr-5 wt.%Ti alloy and Type 316 stainless steel for application in liquid alkali metals such as lithium and sodium-78 wt.% potassium (NaK) at temperatures in the range that are of interest for International Thermonuclear Experimental Reactor (ITER); (b) evaluate the transfer of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen between structural materials and liquid metals; and (c) evaluate the effects of such transfers on the mechanical and microstructural characteristics of the materials for long-term service in liquid-metal-environments

  10. Synthesis, structure peculiarities and electric conductivity of alkali metal-rare earth silicates (germanates)

    International Nuclear Information System (INIS)

    The process of obtaining of rare earth-alkali metal silicates (germanates) is studied. The analysis of possibilities of structural disordering of alkaline cations in these structures is given. The interaction of the structure of different by the composition alkali alkali metal - rare earth silicates with electric conductivity values is shown

  11. Synthesis and Structural Characterization of Alkali Metal Guanidinates

    Institute of Scientific and Technical Information of China (English)

    LUO,Yun-Jie; YAO,Ying-Ming; ZHANG,Yong; SHEN,Qi

    2007-01-01

    Reactions of 1,3-diisopropylcarbodiimide with alkali metal amides,MN(SiMe3)2(M=Li or Na)in hexane or THF produced the alkali metal guanidinates{(j-PrN)2C[N(SiMe3)2]Li}2(1)and{(i-PrN)2C[N(SiMe3)2]Na(THF)}2(2)in nearly quantitative yields.Both complexes 1 and 2 were well characterized by elemental analysis,IR spectra,1H and 13C NMR spectra,and X-ray diffraction.It was found that the guanidinates adopt different coordination modes in these complexes.

  12. Polarizabilities and hyperpolarizabilities of the alkali metal atoms

    Energy Technology Data Exchange (ETDEWEB)

    Fuentealba, P. (Chile Univ., Santiago (Chile). Departamento de Fisica and Centro de Mecanica Cuantica Aplicada (CMCA)); Reyes, O. (Chile Univ., Santiago (Chile). Dept. de Fisica)

    1993-08-14

    The electric static dipole polarizability [alpha], quadrupole polarizability C, dipole-quadrupole polarizability B, and the second dipole hyperpolarizability [gamma] have been calculated for the alkali metal atoms in the ground state. The results are based on a pseudopotential which is able to incorporate the very important core-valence correlation effect through a core polarization potential, and, in an empirical way, the main relativistic effects. The calculated properties compare very well with more elaborated calculations for the Li atom, excepting the second hyperpolarizability [gamma]. For the other atoms, there is neither theoretical nor experimental information about most of the higher polarizabilities. Hence, the results of this paper should be seen as a first attempt to give a complete account of the series expansion of the interaction energy of an alkali metal atom and a static electric field. (author).

  13. Inner-shell excitation of alkali-metal atoms

    International Nuclear Information System (INIS)

    Inner-shell excitation of alkali-metal atoms, which leads to auto-ionization, is reviewed. The validity of quantum mechanical approximation is analyzed and the importance of exchange and correlation is demonstrated. Basic difficulties in making accurate calculations for inner-shell excitation process are discussed. Suggestions are made for further study of inner-shell process in atoms and ions. (author). 26 refs, 4 figs, 1 tab

  14. The unexpected properties of alkali metal iron selenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Dagotto, Elbio R [ORNL

    2013-01-01

    The iron-based superconductors that contain FeAs layers as the fundamental building block in the crystal structures have been rationalized in the past using ideas based on the Fermi surface nesting of hole and electron pockets when in the presence of weak Hubbard U interactions. This approach seemed appropriate considering the small values of the magnetic moments in the parent compounds and the clear evidence based on photoemission experiments of the required electron and hole pockets. However, recent results in the context of alkali metal iron selenides, with generic chemical composition AxFe2ySe2 (A alkali metal element), have challenged those previous ideas since at particular compositions y the low-temperature ground states are insulating and display antiferromagnetic order with large iron magnetic moments. Moreover, angle-resolved photoemission studies have revealed the absence of hole pockets at the Fermi level in these materials. The present status of this exciting area of research, with the potential to alter conceptually our understanding of the ironbased superconductors, is here reviewed, covering both experimental and theoretical investigations. Other recent related developments are also briefly reviewed, such as the study of selenide two-leg ladders and the discovery of superconductivity in a single layer of FeSe. The conceptual issues considered established for the alkali metal iron selenides, as well as several issues that still require further work, are discussed.

  15. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    Science.gov (United States)

    Joshi, Ashok V.; Balagopal, Shekar; Pendelton, Justin

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  16. Process for carbonaceous material conversion and recovery of alkali metal catalyst constituents held by ion exchange sites in conversion residue

    Science.gov (United States)

    Sharp, David W.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  17. Metal salt catalysts for enhancing hydrogen spillover

    Science.gov (United States)

    Yang, Ralph T; Wang, Yuhe

    2013-04-23

    A composition for hydrogen storage includes a receptor, a hydrogen dissociating metal doped on the receptor, and a metal salt doped on the receptor. The hydrogen dissociating metal is configured to spill over hydrogen to the receptor, and the metal salt is configured to increase a rate of the spill over of the hydrogen to the receptor.

  18. Metal-mediated aminocatalysis provides mild conditions: Enantioselective Michael addition mediated by primary amino catalysts and alkali-metal ions

    Directory of Open Access Journals (Sweden)

    Matthias Leven

    2013-01-01

    Full Text Available Four catalysts based on new amides of chiral 1,2-diamines and 2-sulfobenzoic acid have been developed. The alkali-metal salts of these betaine-like amides are able to form imines with enones, which are activated by Lewis acid interaction for nucleophilic attack by 4-hydroxycoumarin. The addition of 4-hydroxycoumarin to enones gives ee’s up to 83% and almost quantitative yields in many cases. This novel type of catalysis provides an effective alternative to conventional primary amino catalysis were strong acid additives are essential components.

  19. Dirac Node Lines in Pure Alkali Earth Metals.

    Science.gov (United States)

    Li, Ronghan; Ma, Hui; Cheng, Xiyue; Wang, Shoulong; Li, Dianzhong; Zhang, Zhengyu; Li, Yiyi; Chen, Xing-Qiu

    2016-08-26

    Beryllium is a simple alkali earth metal, but has been the target of intensive studies for decades because of its unusual electron behavior at surfaces. The puzzling aspects include (i) severe deviations from the description of the nearly free-electron picture, (ii) an anomalously large electron-phonon coupling effect, and (iii) giant Friedel oscillations. The underlying origins for such anomalous surface electron behavior have been under active debate, but with no consensus. Here, by means of first-principles calculations, we discover that this pure metal system, surprisingly, harbors the Dirac node line (DNL) that in turn helps to rationalize many of the existing puzzles. The DNL is featured by a closed line consisting of linear band crossings, and its induced topological surface band agrees well with previous photoemission spectroscopy observations on the Be (0001) surface. We further reveal that each of the elemental alkali earth metals of Mg, Ca, and Sr also harbors the DNL and speculate that the fascinating topological property of the DNL might naturally exist in other elemental metals as well. PMID:27610865

  20. Construction of thermionic alkali-ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Ul Haq, F.

    1986-04-01

    A simple technique is described by which singly charged alkali ions of K, Na, Li, Rb and Cs are produced by heating ultra-pure chemical salts of different alkali metals on tungsten filaments without employing a temperature measuring device. The character of alkali-ion currents at different heating powers and the remarkably constant ion emission current for prolonged periods are discussed.

  1. A spectroscopic investigation of 12-tungstophosphoric acid alkali salts

    Directory of Open Access Journals (Sweden)

    NADA S BOSNJAKOVIC

    2000-06-01

    Full Text Available In this paper the latest results of our continuing investigation of heteropoly acids and their salts are reported. Specially attention was paid to the influence of cations on the dynamic equilibrium of protonic species, as well as on the structure of the host lattice itself, i.e., the Keggin anions. The investigations were done by IR and Raman spectroscopy within the range of 1200-40 cm-1.

  2. Efficient destruction of CF4 through in situ generation of alkali metals from heated alkali halide reducing mixtures.

    Science.gov (United States)

    Lee, Myung Churl; Choi, Wonyong

    2002-03-15

    Perfluorocarbons (PFCs) are the most potent green house gases that are very recalcitrant at destruction. An effective way of converting PFCs using hot solid reagents into safe products has been recently introduced. By investigating the thermal reductive destruction of tetrafluoromethane (CF4) we provided new insight and more physicochemical consideration on this novel process. The complete destruction of CF4was successfully achieved by flowing the gas through a heated reagent bed (400-950 degrees C) that contained powder mixtures of alkali halides, CaO, and Si. The silicon acted as a reducing agent of alkali halides for the in-situ production of alkali metals, and the calcium oxide played the role of a halide ion acceptor. The absence of any single component in this ternary mixture drastically reduced the destruction efficiency of CF4. The CF4 destruction efficiencies with the solid reagent containing the alkali halide, MX, increased in the order of Li approximately Na < K < Cs for alkali cations and I < Br < Cl < F for halide anions. This trend agreed with the endothermicity of the alkali metal generation reaction: the higher the endothermicity, the lower the destruction efficiency. Alkali metal generation was indirectly detected by monitoring H2 production from its reaction with water. The production of alkali metals increased with NaF, KF, and CsF in this order. The CsF/CaO/Si system exhibited the complete destruction of CF4 at as low as 600 degrees C. The solid product analysis by X-ray diffraction (XRD) showed the formation of CaF2 and the depletion of Si with black carbon particles formed in the solid reagent residue. No CO/CO2 and toxic HF and SiF4 formation were detected in the exhaust gas. PMID:11944694

  3. Method for preparation of melts of alkali metal chlorides with highly volatile polyvalent metal chlorides

    International Nuclear Information System (INIS)

    A method for production of alkali metal (Cs, Rb, K) chloride melts with highly volatile polyvalent metal chlorides is suggested. The method consists, in saturation of alkali metal chlorides, preheated to the melting point, by volatile component vapours (titanium tetrachloride, molybdenum or tantalum pentachloride) in proportion, corresponding to the composition reguired. The saturation is realized in an evacuated vessel with two heating areas for 1-1.5 h. After gradual levelling of temperature in both areas the product is rapidly cooled. 1 fig.; 1 tab

  4. Integrated oil production and upgrading using molten alkali metal

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard

    2016-10-04

    A method that combines the oil retorting process (or other process needed to obtain/extract heavy oil or bitumen) with the process for upgrading these materials using sodium or other alkali metals. Specifically, the shale gas or other gases that are obtained from the retorting/extraction process may be introduced into the upgrading reactor and used to upgrade the oil feedstock. Also, the solid materials obtained from the reactor may be used as a fuel source, thereby providing the heat necessary for the retorting/extraction process. Other forms of integration are also disclosed.

  5. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed

  6. Work function of alkali metal-adsorbed molybdenium dichalcogenides

    Science.gov (United States)

    Kim, Sol; Jhi, Seung-Hoon

    2015-03-01

    The lowest work function of materials, reported so far over the last few decades, is an order of 1eV experimentally and theoretically. Designing materials that has work-function less than 1eV is essential in the thermionic energy conversion. To explore new low work function materials, we study MoX2(X =S, Se, Te) adsorbed with alkali metals (Li, Na, K, Rb and Cs), and investigate the charge transfer, the formation of surface dipole, and the change in work function using first-principles calculations. It is found that the charge transfer from alkali metals to MoX2substrates decreases as the atomic number of adsorbates increases. Regardless of the amount of the charge transfer, K on MoTe2 exhibits the biggest surface dipole moment, which consequently makes the surface work function the lowest. We show that the formation of the surface dipole is a key in changing the work function. We find the trimerization of Mo atoms in the substrate with the lowest work-function, which may contribute to enhancement of the surface dipole.

  7. Evaluation of Alkali Bromide Salts for Potential Pyrochemical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Prabhat K. Tripathy; Steven D. Herrmann; Guy L. Fredrickson; Tedd E. Lister; Toni Y. Gutknecht

    2013-10-01

    Transient techniques were employed to study the electrochemical behavior, reduction mechanism and transport properties of REBr3 (RE - La, Nd and Gd) in pure LiBr, LiBr-KBr (eutectic) and LiBr-KBr-CsBr (eutectic) melts. Gd(III) showed a reversible single step soluble-insoluble exchange phenomenon in LiBr melt at 973K. Although La (III), Nd(III) and Gd(III) ions showed reversible behavior in eutectic LiBr-KBr melts, these ions showed a combination of temperature dependent reversible and pseudo-reversible behavior. While both La(III) and Gd(III) showed one step reduction, the reduction of Nd(III) was observed to be a two step process. La metal could be electrodeposited from the ternary electrolyte at a temperature of 673K. Various electrochemical measurements suggest that both binary and ternary bromide melts can potentially be used to electrodeposit high purity RE metals at comparatively lower operating temperatures.

  8. Metal Production by Molten Salt Electrolysis

    DEFF Research Database (Denmark)

    Grjotheim, K.; Kvande, H.; Qingfeng, Li;

    Chemistry and electrochemistry of molten salts are reviewed. Technological aspects of electrolytic production of aluminium, magnesium, and other metals are comprehensively surveyed.......Chemistry and electrochemistry of molten salts are reviewed. Technological aspects of electrolytic production of aluminium, magnesium, and other metals are comprehensively surveyed....

  9. Enthalpic Interaction for α-Amino Acid with Alkali Metal Halides in Water

    Institute of Scientific and Technical Information of China (English)

    LU,Yan(卢雁)

    2004-01-01

    The studies of the enthalpic interaction parameters, hxy, hxyy and hxxv, of alkali metal halides with glycine,α-alanine and α-aminobutyric acid were published. Synthetic considering of the results of the studies, some interesting behaviors of the interaction between alkali metal halides and the α-amino acids have been found. The values of hxy will increase with the increase of the number of carbon atoms in alkyl side chain of amino acid molecules and decrease with the increase of the radius of the ions. The increasing of the salt's effect on the hydrophobic hydration structure as the radii of anion is more obvious than as that of cation. The value of hxxy will regularly decrease with the increase of the number of carbon atoms in the alkyl chain of amino acids and linear increase with the increase of the radius. But the relation of hxxy with the radius of cations is not evident. The value of hxyy will increase with the increase of the radii of the ions. As the increase of the number of carbon atoms of amino acids, hxyy is decreas for the ions which have lager size and there is a maximum value at α-alanine for the ions which have small size. The behaviors of the interaction mentioned above were further discussed in view of electrostatic and structural interactions.

  10. Ion-exchange behavior of alkali metals on treated carbons

    International Nuclear Information System (INIS)

    The ion-exchange behavior of trace quantities of the alkali-metal ions sodium and cesium, on activated carbon impregnated with zirconium phosphate (referred to here as ZrP), was studied. Impregnated carbon had twice as much ion-exchange activity as unimpregnated, oxidized carbon, and 10 times as much as commercial activated carbons. The distribution coefficient of sodium increased with increasing pH; the distribution coefficient of cesium decreased with increasing pH. Sodium and cesium were separated with an electrolytic solution of 0.1 M HCl. Preliminary studies indicated that 0.2 M potassium and cesium can also be separated. Distribution coefficients of the supported ZrP were determined by the elution technique and agreed within 20% of the values for pure ZrP calculated from the literature

  11. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references

  12. Momentum densities and Compton profiles of alkali-metal atoms

    International Nuclear Information System (INIS)

    It is assumed that the dynamics of valence electrons of alkali-metal atoms can be well accounted for by a quantum-defect theoretic model while the core electrons may be supposed to move in a self-consistent field. This model is used to study the momentum properties of atoms from 3Li to 37Rb. The numerical results obtained for the momentum density, moments of momentum density and Compton profile are found to be in good agreement with the results of more detailed configuration-interaction calculations for the atom 3Li. Similar results for 11Na, 19K and 37Rb are compared with the corresponding Hartree-Fock-Roothan values only, for want of data from other realistic calculations. (author)

  13. Relativistic optimized effective potential method-application to alkali metals.

    Science.gov (United States)

    Ködderitzsch, D; Ebert, H; Akai, H; Engel, E

    2009-02-11

    We present a relativistic formulation of the optimized effective potential method (ROEP) and its implementation within the Korringa-Kohn-Rostoker multiple scattering formalism. The scheme is an all-electron approach, treating core and band states formally on the same footing. We use exact exchange (EXX) as an approximation to the exchange correlation functional. Numerical four-component wavefunctions for the description of core and valence electrons and the corresponding ingredients of the ROEP integral equation are employed. The exact exchange expression for the valence states is reformulated in terms of the electronic Green's function that in turn is evaluated by making use of multiple scattering formalism. We present and discuss the application of the formalism to non-magnetic alkali metals. PMID:21715911

  14. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references.

  15. Densities, viscosities, refractive indices, and electrical conductivities of aqueous alkali salts of α-alanine

    International Nuclear Information System (INIS)

    Highlights: • Thermophysical properties of aqueous Na and K salts of α-alanine were studied. • Properties are density, viscosity, refractive indices, and thermal conductivity. • The concentrations of amino acid salt ranges from (0.5 to 3.5) M. • The temperature range studied was (333.15 to 343.15) K. • The measured data were represented satisfactorily by using the applied correlations. - Abstract: In this work, physicochemical properties such as density, viscosity, refractive index, and electrical conductivity of aqueous alkali (potassium or sodium) salts of the amino acid α-alanine (ALA), were measured at temperatures from (303.15 to 343.15) K and concentrations ranging from (0.5 to 3.5) M. Density and viscosity measurements were performed using the vibrating tube and the falling ball techniques, respectively. The refractive index at the sodium D line was measured in an automatic refractometer, while the electrical conductivity was measured using a commercial conductivity meter. An empirical equation was applied to correlate the density, refractive index, and electrical conductivity of the amino acid salt solutions with temperature and amino acid salt concentration, which gave average absolute deviation values of 0.03%, 0.01%, and 0.6%, respectively. The variation of the viscosity as a function of temperature and amino acid salt concentration was accurately represented by a modified Vogel–Tamman–Fulcher equation at an average absolute deviation of 0.5%

  16. Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance.

    Science.gov (United States)

    Zhu, Dan; Cai, Hua; Luo, Xiao; Bai, Xi; Deyholos, Michael K; Chen, Qin; Chen, Chao; Ji, Wei; Zhu, Yanming

    2012-09-21

    Salt and alkali stress are two of the main environmental factors limiting crop production. Recent discoveries show that the JAZ family encodes plant-specific genes involved in jasmonate signaling. However, there is only limited information about this gene family in abiotic stress response, and in wild soybean (Glycine soja), which is a species noted for its tolerance to alkali and salinity. Here, we isolated and characterized a novel JAZ family gene, GsJAZ2, from G. soja. Transcript abundance of GsJAZ2 increased following exposure to salt, alkali, cold and drought. Over-expression of GsJAZ2 in Arabidopsis resulted in enhanced plant tolerance to salt and alkali stress. The expression levels of some alkali stress response and stress-inducible marker genes were significantly higher in the GsJAZ2 overexpression lines as compared to wild-type plants. Subcellular localization studies using a GFP fusion protein showed that GsJAZ2 was localized to the nucleus. These results suggest that the newly isolated wild soybean GsJAZ2 is a positive regulator of plant salt and alkali stress tolerance.

  17. Calculation of Interaction Parameters from Immiscible Phase Diagram of Alkali Metal or Alkali Earth Metal-Halide System by Means of Subregular Solution Model

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, the interaction parameters in the subregular solution model, λ1 and λ2, are regarded as a linear function of temperature, T. Therefore, the molar excess Gibbs energy of A-B binary system may be reexpressed as follows: The calculation of the model parameters, λ11, λ12, λ21 and λ22, was carried out numerically from the phase diagrams for 11 alkali metal-alkali halide or alkali earth metal-halide systems.In addition, artificial neural network trained by known data has been used to predict the values of these model parameters. The predicted results are in good agreement with the.calculated ones. The applicability of the subregular solution model to the alkali metal-alkali halide or alkali earth metal-halide systems were tested by comparing the available experimental composition along the boundary of miscibility gap with the calculated ones which were obtained by using genetic algorithm. The good agreement between the calculated and experimental results across the entire liquidus is valid evidence in support of the model.

  18. Metals in Metal Salts: A Copper Mirror Demonstration

    Science.gov (United States)

    Pike, Robert D.

    2010-01-01

    A simple lecture demonstration is described to show the latent presence of metal atoms in a metal salt. Copper(II) formate tetrahydrate is heated in a round-bottom flask forming a high-quality copper mirror.

  19. Structural properties of low-density liquid alkali metals

    Indian Academy of Sciences (India)

    A Akande; G A Adebayo; O Akinlade

    2005-12-01

    The static structure factors of liquid alkali metals have been modelled at temperatures close to their melting points and a few higher temperatures using the reverse Monte Carlo (RMC) method. The positions of 5000 atoms in a box, with full periodicity, were altered until the experimental diffraction data of the structure factor agrees with the associated model structure factor within the errors. The model generated is then analysed. The position of the first peak of the pair distribution function () does not show any significant temperature dependence and the mean bond lengths can be approximated within an interval of 3.6–5.3 Å, 4.5–6.6 Å, 4.8–6.7 Å and 5.1–7.3 Å for Na, K, Rb and Cs respectively. The cosine bond distributions show similar trend with the flattening up of the first peak with increase in temperature. In addition, the coordination numbers of these liquid metals are high due to the presence of non-covalent bonding between them. On the average, we surmise that the coordination number decreases with increase in temperature.

  20. Field emission properties of capped carbon nanotubes doped by alkali metals:a theoretical investigation

    Institute of Scientific and Technical Information of China (English)

    Jin Lei; Fu Hong-Gang; Xie Ying; Yu Hai-Tao

    2012-01-01

    The electronic structures and field emission properties of capped CNT55 systems with or without alkali metal atom adsorption were systematically investigated by density functional theory calculation.The results indicate that the adsorption of alkali metal on the center site of a CNT tip is energetically favorable.In addition,the adsorption energies increase with the introduction of the electric field.The excessive negative charges on CNT tips make electron emittance much easier and result in a decrease in work function.Furthermore,the inducing effect by positively charged alkali metal atoms can be reasonably considered as the dominant reason for the improvement in field emission properties.

  1. Thermodynamic analysis on the direct preparation of metallic vanadium from NaVO3 by molten salt electrolysis☆

    Institute of Scientific and Technical Information of China (English)

    Wei Weng; Mingyong Wang; Xuzhong Gong; Zhi Wang; Zhancheng Guo

    2016-01-01

    A novel and environmentally friendly route to directly prepare metallic vanadium from NaVO3 by molten salt electrolysis is proposed. The feasibility about the direct electro-reduction of NaVO3 to metallic vanadi-um is analyzed based on the thermodynamic calculations and experimental verifications. The theoretical decomposition voltage of NaVO3 to metallic vanadium is only 0.47 V at 800 °C and much lower than that of the alkali and alkali earth metal chloride salts. The value is slightly higher than that of low-valence vanadium oxides such as V2O3, V3O5 and VO. However, the low-valence vanadium oxides can be further electro-reduced to metallic vanadium thermodynamically. The thermodynamic analysis is verified by the experimental results. The direct preparation of metallic vanadium from NaVO3 by molten salt electrolysis is feasible.

  2. The alkali and alkaline earth metal doped ZnO nanotubes: DFT studies

    Science.gov (United States)

    Peyghan, Ali Ahmadi; Noei, Maziar

    2014-01-01

    Doping of several alkali and alkaline earth metals into sidewall of an armchair ZnO nanotube has been investigated by employing the density functional theory in terms of energetic, geometric, and electronic properties. It has been found that doping processes of the alkali and alkaline metals are endothermic and exothermic, respectively. Based on the results, contrary to the alkaline metal doping, the electronic properties of the tube are much more sensitive to alkali metal doping so that it is transformed from intrinsic semiconductor with HOMO-LUMO energy gap of 3.77 eV to an extrinsic semiconductor with the energy gap of ~1.11-1.95 eV. The doping of alkali and alkaline metals increases and decreases the work function of the tube, respectively, which may influence the electron emission from the tube surface.

  3. The alkali and alkaline earth metal doped ZnO nanotubes: DFT studies

    Energy Technology Data Exchange (ETDEWEB)

    Peyghan, Ali Ahmadi [Department of Chemistry, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Noei, Maziar, E-mail: noeimaziar@gmail.com [Department of Chemistry, Mahshahr Branch, Islamic Azad University, Mahshahr (Iran, Islamic Republic of)

    2014-01-01

    Doping of several alkali and alkaline earth metals into sidewall of an armchair ZnO nanotube has been investigated by employing the density functional theory in terms of energetic, geometric, and electronic properties. It has been found that doping processes of the alkali and alkaline metals are endothermic and exothermic, respectively. Based on the results, contrary to the alkaline metal doping, the electronic properties of the tube are much more sensitive to alkali metal doping so that it is transformed from intrinsic semiconductor with HOMO–LUMO energy gap of 3.77 eV to an extrinsic semiconductor with the energy gap of ∼1.11–1.95 eV. The doping of alkali and alkaline metals increases and decreases the work function of the tube, respectively, which may influence the electron emission from the tube surface.

  4. Method and composition for testing for the presence of an alkali metal

    International Nuclear Information System (INIS)

    A method and composition for detecting the presence of an alkali metal on the surface of a body such as a metal plate, tank, pipe or the like is provided. The method comprises contacting the surface with a thin film of a liquid composition comprising a light-colored pigment, an acid-base indicator, and a nonionic wetting agent dispersed in a liquid carrier comprising a minor amount of water and a major amount of an organic solvent selected from the group consisting of the lower aliphatic alcohols, ketones and ethers. Any alkali metal present on the surface in elemental form or as an alkali metal hydroxide or alkali metal carbonate will react with the acid-base indicator to produce a contrasting color change in the thin film, which is readily discernible by visual observation or automatic techniques

  5. A contribution to the surface characterization of alkali metal sulfates

    Energy Technology Data Exchange (ETDEWEB)

    Fantauzzi, Marzia; Rigoldi, Americo; Elsener, Bernhard; Atzei, Davide; Rossi, Antonella, E-mail: rossi@unica.it

    2014-03-01

    Highlights: • Full electronic characterization of alkali metals sulfates by X-ray photoelectron spectroscopy and X-ray induced Auger electron spectroscopy. • Curve-fitting of SKLL signals makes possible to clarify the role of the cation in the series of alkali metal sulfates. • Differences in the binding energies and Auger parameter are discussed in terms of the electronic properties and the polarizability of the cation. • The line intensities are analyzed and a thorough quantitative analysis is presented. - Abstract: The analytical characterization of surfaces of sulfur-bearing samples that present sulfides, polysulfides and/or elemental sulfur as reaction products can be difficult by simply relying on the binding energy of the S2p X-ray photoelectron signals, due to the small chemical shifts. In such cases the Auger parameter concept can be used to distinguish among different chemical states, but this requires a model to curve fit complex Auger SKLL signals in order to resolve the contributions arising from sulfur in different chemical states on the surface. With this scope a detailed X-ray photoelectron spectroscopy (XPS) and X-ray induced Auger electron spectroscopy (XAES) surface analytical study of the group IA sulfates is presented in this paper. Sulfates were chosen as model compounds for curve fitting the X-ray induced SKLL spectra since in these compounds sulfur is present in a unique chemical state. For the first time the multicomponent SKLL spectra are fitted with model functions consisting of an intense {sup 1}D and a low intensity {sup 1}S contribution with constant energy difference of 8 eV. It was found that the kinetic energy of the SK{sub 2,3}L{sub 2,3} ({sup 1}D) line increases from 2105.1 ± 0.1 to 2107.5 ± 0.2 eV whereas the corresponding S2p{sub 3/2} binding energy decreases from 169.5 ± 0.1 eV for Li{sub 2}SO{sub 4} to 167.8 ± 0.1 eV for Cs{sub 2}SO{sub 4}. Shifts to lower binding energy values are observed also for S2p, S2s and O1

  6. Modification of alkali metals on silicon-based nanoclusters: An enhanced nonlinear optical response

    Science.gov (United States)

    Li, Xiaojun; Han, Quan; Yang, Xiaohui; Song, Ruijuan; Song, Limei

    2016-08-01

    Structures, chemical stabilities and nonlinear optical properties of alkali metals-adsorbed niobium-doped silicon (M@SinNb+) clusters are investigated using the DFT methods. The alkali metals prefer energetically to be attached as bridged bond rather than M-Si single bond in most of optimized structures. Adsorption of alkali metals on doped silicon clusters gradually enhances their chemical stabilities with increasing cluster size. Noteworthily, the first hyperpolarizabilities (βtot) of the M@SinNb+ clusters, obtained by using the long-range corrected CAM-B3LYP functional, are large enough to establish their strong nonlinear optical behavior, especially for M@Si9Nb+ (M = Li, Na, and K), and the enhanced βtot ordering by alkali metals is Na > K > Li.

  7. Optical absorption of dilute solutions of metals in molten salts

    International Nuclear Information System (INIS)

    The F-centre model for the bound state and the first optical transition of an electron in a metal-molten salt solution is examined in the high dilution limit appropriate for comparison with optical absorption data. It is first argued that the model is consistent with recent neutron diffraction and computer simulation data on the structure of pure molten salts, and not incompatible with an Anderson localization model for the electronic conductivity of the solution at higher concentration of metal. A detailed evaluation of the model is presented for the case of a molten salt of equi-sized ions simulating molten KCl. The treatment of the electronic states is patterned after semicontinuum approximations previously applied to the F-centre in ionic crystals, but the equilibrium radius of the electronic cavity and its fluctuations are determined self-consistently from the free energy of the solution. The detailed analysis of this case and the agreement of the results with experiment allow the construction of a simple parametrization scheme, which is then applied to explore the trends of the optical absorption spectrum and of the volume of mixing through the whole family of M-MX solutions, where M is an alkali and X a halogen. Similarities and differences of the electronic bound state in the crystal and in the liquid are underlined. (author)

  8. Superconductivity of graphite intercalation compounds with alkali-metal amalgams

    International Nuclear Information System (INIS)

    Superconductivity of the alkali-metal amalgam graphite intercalation compounds of stage 1 (C4KHg, C4RbHg) and stage 2 (C8KHg, C8RbHg) has been studied as well as that of the pristine amalgams (KHg, RbHg). The transition temperatures are 0.73, 0.99, 1.90, and 1.40 K for C4KHg, C4RbHg, C8KHg, and C8RbHg, respectively. The critical-field anisotropy ratio H/sup parallel//sub c/2/H/sup perpendicular//sub c/2 is about 10 for the stage 1 and about 15 to 40 for the stage 2. It is argued that electrons in the intercalant bands rather than the graphitic bands play the main role in the superconductivity. An interesting feature is that the stage-2 compound, which has a lower density of states at the Fermi level, has a higher transition temperature than the corresponding state-1 compound

  9. Electrochemistry of ytterbium (III) in molten alkali metal chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Smolenski, V.; Novoselova, A. [Institute of High-Temperature Electrochemistry, Ural Division, Russian Academy of Science, Ekaterinburg, 620219 (Russian Federation); Osipenko, A. [Research Institute of Atomic Reactors, Dimitrovgrad-10, Ulyanovsk Region, 433010 (Russian Federation); Caravaca, C. [High Level Waste Unit, Nuclear Fission Division, CIEMAT, Madrid, 28040 (Spain); Cordoba, G. de [High Level Waste Unit, Nuclear Fission Division, CIEMAT, Madrid, 28040 (Spain)], E-mail: g.cordoba@ciemat.es

    2008-12-30

    This work presents the electrochemical study of Yb(III) ions in molten alkali metal chlorides in the temperature range 723-1073 K. Transient electrochemical techniques such as linear sweep, cyclic and square wave voltammetry, and potentiometry at zero current have been used to investigate the reduction mechanism, transport parameters and thermodynamic properties of the reaction YbCl{sub 2} + 1/2Cl{sub 2} = YbCl{sub 3} The results obtained show that the reduction reaction Yb(III) + e{sup -} {r_reversible} Yb(II) is reversible being controlled by the rate of the mass transfer. The diffusion coefficient of [YbCl{sub 6}]{sup 3-} complex ions has been determined at different temperatures in the fused eutectic LiCl-KCl, the equimolar NaCl-KCl and the CsCl media. The apparent standard potential of the soluble-soluble redox system Yb(III)/Yb(II) has been obtained by cyclic voltammetry. The influence of the nature of the solvent on the electrochemical and thermodynamic properties of ytterbium compounds is discussed.

  10. Corrosion in alkali metal/molybdenum heat pipes

    International Nuclear Information System (INIS)

    Molybdenum/sodium (Mo/Na) and molybdenum/lithium (Mo/Li) heat pipes have been operated for long periods of time in a study of their resistance to failure by alkali metal corrosion. Some Mo/Na heat pipes have operated over 20,600 h at 1400 K without failure, while at least one similar heat pipe failed in less than 14 hours at 1435 K. Detailed post-mortem analyses which have been performed on three failed Mo/Na heat pipes all indicated impurity controlled corrosion of their evaporators. Impurities observed to be transported included carbon, oxygen, and silicon. A Mo/Li heat pipe that failed after 25,216 h of operation at 1700 K was also examined in detail. This failure was due to nickel impurities being transported to the evaporator resulting in perforation of the container tube by the formation of a low melting Mo-Ni alloy. Theoretical thermochemical calculations were conducted for these systems with the objective of corroborating the corrosion mechanisms in both types of heat pipes. The results of these calculations are in general agreement with the observed corrosion a phenomena

  11. Properties of Hydrated Alkali Metals Aimed at the Ion Channel Selectivity

    Institute of Scientific and Technical Information of China (English)

    AN Hai-Long; LIU Yu-Zhi; ZHANG Su-Hua; ZHAN Yong; ZHANG Hai-Lin

    2008-01-01

    The hydration structure properties of different alkali metal ions with eight water molecules and potassium ions with different numbers of water molecules are studied using the mixed density functional theory, B3LYP, with 6-311G basis set. The hydration structures are obtained from structure optimization and the optimum numbers of water molecules in the innermost hydration shell for the alkali metal ions are found. Some useful information about the ion channel selectivity is presented.

  12. The effect of the alkali metal cation on the electrocatalytic oxidation of formate on platinum

    OpenAIRE

    Previdello, B.; E. Machado; Varela, H.

    2014-01-01

    Non-covalent interactions between hydrated alkali metal cations and adsorbed oxygenated species on platinum might considerably inhibit some electrocatalytic reactions. We report in this communication the effect exerted by electrolyte alkali metal cations on the electro-oxidation of formate ions on platinum. The system was investigated by means of cyclic voltammetry and chronoamperometry in the presence of an electrolyte containing Li+, Na+, or K+. As already observed for other systems, the ge...

  13. Design of low work function materials using alkali metal-doped transition metal dichalcogenides

    Science.gov (United States)

    Kim, Sol; Lee, Man Young; Lee, Seong; Jhi, Seung-Hoon

    Engineering the work function is a key issue in surface science. Particularly, discovering the materials that have work functions less than 1eV is essential for efficient thermionic energy conversion. The lowest work function of materials, reported so far, is in a range of about 1eV. To design low work function materials, we chose MX2 (M =Mo and W; X =S, Se and Te) as substrates and alkali metals (Li, Na, K, Rb and Cs) as dopants, and studied their electronic structures, charge transfer, induced surface dipole moment, and work function using first-principles calculations. We found that the charge transfer from alkali metals to MX2 substrates decreases as the atomic radius of alkali metals increases. Regardless of the amount of the charge transfer, K on WTe2 exhibits the biggest surface dipole moment, which consequently makes the surface work function the lowest. Also, we found a correlation between the binding distance and the work function.

  14. On the origin of alkali metals in Europa exosphere

    Science.gov (United States)

    Ozgurel, Ozge; Pauzat, Françoise; Ellinger, Yves; Markovits, Alexis; Mousis, Olivier; LCT, LAM

    2016-10-01

    At a time when Europa is considered as a plausible habitat for the development of an early form of life, of particular concern is the origin of neutral sodium and potassium atoms already detected in its exosphere (together with magnesium though in smaller abundance), since these atoms are known to be crucial for building the necessary bricks of prebiotic species. However their origin and history are still poorly understood. The most likely sources could be exogenous and result from the contamination produced by Io's intense volcanism and/or by meteoritic bombardment. These sources could also be endogenous if these volatile elements originate directly from Europa's icy mantle. Here we explore the possibility that neutral sodium and potassium atoms were delivered to the satellite's surface via the upwelling of ices formed in contact with the hidden ocean. These metallic elements would have been transferred as ions to the ocean at early epochs after Europa's formation, by direct contact of water with the rocky core. During Europa's subsequent cooling, the icy layers formed at the top of the ocean would have kept trapped the sodium and potassium, allowing their future progression to the surface and final identification in the exosphere of the satellite. To support this scenario, we have used chemistry numerical models based on first principle periodic density functional theory (DFT). These models are shown to be well adapted to the description of compact ice and are capable to describe the trapping and neutralization of the initial ions in the ice matrix. The process is found relevant for all the elements considered, alkali metals like Na and K, as well as for Mg and probably for Ca, their respective abundances depending essentially of their solubility and chemical capabilities to blend with water ices.

  15. Effects of Heavy Metals and Saline-alkali on Growth, Physiology and Biochemistry of Orychophragmus violaceus

    Institute of Scientific and Technical Information of China (English)

    Xiaoai ZHANG; Zhihui WANG; Xinquan ZHANG; Mingyang Ll; Jing ZUO

    2012-01-01

    Abstract [Oh.jective] The aim was to study on effects of heavy metals and saline-al- kali on growth, physiology and biochemistry of Orychophragmus violaceus. [Method] Taken Orychophragmus violaceus as materials, growth, physiology and biochemistry were explored under stress of saline-alkali and heavy metals (light, moderate and se- vere saline-alkali, Pb, Pb + Cd, light saline-alkali + Pb, moderate saline-alkali + Pb, severe saline-alkali + Pb, light saline-alkali + Pb + Cd, moderate saline-alkali + Pb + Cd and severe saline-alkali + Pb + Cd) with control group set. [Result] Light stress of saline-alkali had little effect on membrane permeability, as follows: MDA contents in leaves and root systems declined by 25.6% and 9.0% compared with control group; Pb (500 mg/L) stress promoted synthetization of photosynthetic pigments, as follows: chlorophyll a and b and carotenoid increased by 0.86%, 0.69% and 6.25% than those of control group; combined stresses of Pb and Cd destroyed synthetization of photosynthetic pigments, among which carotenoid was more sensitive; under com- bined stresses of saline-alkali, Pb and Cd, POD and SOD activities, soluble saccha- rides and Pro content all increased and activities of POD and SOD in root system were both higher than those in leaves. [Conclusion] Orychophragmus violaceus is with resistance against light combined stresses of saline-alkali and Pb (500 mg/L).

  16. Half metallic ferromagnetism in alkali metal nitrides MN (M = Rb, Cs): A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Murugan, A., E-mail: rrpalanichamy@gmail.com; Rajeswarapalanichamy, R., E-mail: rrpalanichamy@gmail.com; Santhosh, M., E-mail: rrpalanichamy@gmail.com; Sudhapriyanga, G., E-mail: rrpalanichamy@gmail.com [Department of Physics, N.M.S.S.V.N College, Madurai, Tamilnadu-625019 (India); Kanagaprabha, S. [Department of Physics, Kamaraj College, Tuticorin, Tamil Nadu-628003 (India)

    2014-04-24

    The structural, electronic and elastic properties of two alkali metal nitrides (MN: M= Rb, Cs) are investigated by the first principles calculations based on density functional theory using the Vienna ab-initio simulation package. At ambient pressure the two nitrides are stable in ferromagnetic state with CsCl structure. The calculated lattice parameters are in good agreement with the available results. The electronic structure reveals that these materials are half metallic in nature. A pressure-induced structural phase transition from CsCl to ZB phase is observed in RbN and CsN.

  17. Hydration number of alkali metal ions determined by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2008-01-01

    In aqueous solutions, the alkali metals ions are associated with a number of H2O molecules. A distinction is made between a primary solvent shell, (or inner solvation shell), consisting of H2O molecules directly coordinated to the metal ion, and a secondary (or outer) solvation shell, consisting....... The solvation of alkali metal ions has been discussed for many years without a clear consensus. This work presents a systematic study of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS......-). The technique of Electrochemical Quartz Crystal Microbalance (EQCM) has been used to simultaneously determine the mass entering a film of PPy(DBS), and the charge during the first reduction. The method determines the total mass of metal ions and H2O entering the film quite accurately. The charge inserted allows...

  18. Behavior of Alkali Metals and Ash in a Low-Temperature Circulating Fluidized Bed (LTCFB) Gasifier

    DEFF Research Database (Denmark)

    Narayan, Vikas; Jensen, Peter Arendt; Henriksen, Ulrik Birk;

    2016-01-01

    , the low reactor temperature ensures that high-alkali biomass fuels canbe used without risk of bed defluidization. This paper presents the first investigation of the fate of alkali metals and ash in lowtemperaturegasifiers. Measurements on bed material and product gas dust samples were made on a 100 k......A low-temperature circulating fluidized bed system (LTCFB) gasifier allows for pyrolysis and gasification to occurat low temperatures, thereby improving the retention of alkali and other inorganic elements within the system and minimizingthe amount of ash species in the product gas. In addition...

  19. Synthesis and X-ray Characterization of Alkali Metal 2-Acyl-1,1,3,3-tetracyanopropenides.

    Science.gov (United States)

    Karpov, Sergey V; Grigor'ev, Arthur A; Kayukov, Yakov S; Karpova, Irina V; Nasakin, Oleg E; Tafeenko, Victor A

    2016-08-01

    A novel route for synthesis of 2-acyl-1,1,3,3-tetracyanopropenides (ATCN) salts in high yields and excellent purities starting from readily available methyl ketones, malononitrile, bromine, and alkali metal acetates is reported. The starting aryl(heteroaryl) methyl ketones were oxidized to the corresponding α-ketoaldehydes by new a DMSO-NaBr-H2SO4 oxidation system in yields up to 90% within a short reaction time of 8-10 min. The subsequent stages of ATCN preparation are realized in aqueous media without use of any toxic solvents, in accordance with principle 5 of "green chemistry". Lithium, sodium, potassium, rubidium, and cesium 2-benzoyl-1,1,3,3-tetracyanopropenides were characterized by X-ray diffraction analysis. These salts show a good potential for synthesis of five- and six-membered heterocycles and may serve as potentially useful ligands in coordination and supramolecular chemistry. PMID:27384963

  20. Alkali and heavy metal emissions of the PCFB-process; Alkali- ja raskasmetallipaeaestoet PCFB-prosessista

    Energy Technology Data Exchange (ETDEWEB)

    Kuivalainen, R.; Eriksson, T.; Lehtonen, P. [Foster Wheeler Energia Oy, Karhula (Finland)

    1997-10-01

    Pressurized Circulating Fluidized Bed (PCFB) combustion technology has been developed in Karhula R and D Center since 1986. As part of the development, 10 MW PCFB test facility was built in 1989. The test facility has been used for performance testing with different coal types through the years 1990-1995 in order to gain data for design and commercialization of the high-efficiency low-emission PCFB combustion technology. The main object of the project was to measure vapor phase Na and K concentrations in the PCFB flue gas after hot gas filter and investigate the effects of process conditions and sorbents on alkali release. The measurements were performed using plasma assisted method of TUT Laboratory of Plasma Technology and wet absorption method of VTT Energy. The measurements were carried out during three test campaigns at PCFB Test Facility in Karhula. In autumn 1995 both VTT and TUT methods were used. The measurements of the following test period in spring 1996 were performed by VTT, and during the last test segment in autumn 1996 TUT method was in use. During the last test period, the TUT instrument was used as semi-continuous (3 values/minute) alkali analyzer for part of the time. The measured Na concentrations were below 30 ppb(w) in all measured data points. The results of K were below 10 ppb(w). The accuracies of the both methods are about +50 % at this concentration range. The scatter of the data covers the effects of different process variables on the alkali emission. The measured emissions are at the same order of magnitude as the guideline emission limits estimated by gas turbine manufacturers

  1. Lattice-gas model for alkali-metal fullerides: face-centered-cubic structure

    OpenAIRE

    Udvardi, Laszlo; Szabo, Gyorgy

    1995-01-01

    A lattice-gas model is suggested for describing the ordering phenomena in alkali-metal fullerides of face-centered-cubic structure assuming the electric charge of alkali ions residing in either octahedral or tetrahedral interstitial sites is completely screened by the first-neighbor C_60 molecules. This approximation allows us to derive an effective ion-ion interaction. The van der Waals interaction between the ion and C_60 molecule is characterized by introducing an additional energy at the ...

  2. Enrichment of hydrogen isotopes while decomposition of alkali metal amalgams (Preprint No. CA-11)

    International Nuclear Information System (INIS)

    Sodium amalgam was prepared by electrolyzing caustic soda solution in a cell with flowing mercury as cathode. On decomposition of amalgam with aqueous sodium hydroxide solution in a denuder column packed with graphite pieces, the resultant hydrogen gas was depleted in deuterium. The alkali solution was enriched in deuterium content. The separation of the isotopes of some amalgam forming metals while decomposition of the amalgam of these metals with water has already been described. The separation is due to differential reaction rates of alkali metal amalgams with water containing light and heavy isotopes of hydrogen. However in the present investigation, the separation factor obtained is considerably higher than earlier reported due to possible chemical exchange between resultant hydrogen and the alkali metal hydroxide in presence of graphite surface and/or exchange of water with nascent hydrogen catalysed by OH- ions. (author). 18 refs., 3 tabs., 1 fig

  3. Determination of membrane hydration numbers of alkali metal ions by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen; Junaid Mohamed Jafeen, Mohamed; Careem, M.A.

    2010-01-01

    In aqueous solutions, the alkali metals ions, Li+, Na+, K+, Rb+ and Cs+ are known to be associated with a number of H2O molecules. Traditionally, a distinction is made between a primary solvent shell, (or inner solvation shell), consisting of H2O molecules directly coordinated to the metal ion...... may depend on the details of ion hydration. Although the solvation of alkali metal ions in aqueous solution has been discussed for many years, there is still no clear consensus. Part of the discrepancy is simply that different methods measure over different time scales, and therefore do...... not necessarily define the same hydration shell. This work presents a systematic study of one special variant of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS-). The technique...

  4. Alkali Metal Backup Cooling for Stirling Systems - Experimental Results

    Science.gov (United States)

    Schwendeman, Carl; Tarau, Calin; Anderson, William G.; Cornell, Peggy A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  5. Saturated vapor pressure above the amalgam of alkali metals in discharge lamps

    Science.gov (United States)

    Gavrish, S. V.

    2011-12-01

    A theoretical and numerical analysis of the evaporation process of two-component compounds in vapors of alkali metals in discharge lamps is presented. Based on the developed mathematical model of calculation of saturated vapor pressure of the metal above the amalgam, dependences of mass fractions of the components in the discharge volume on design parameters and thermophysical characteristics of the lamp are obtained.

  6. Hyperfine-frequency shifts of alkali-metal atoms during long-range collisions

    CERN Document Server

    McGuyer, B H

    2013-01-01

    Collisions with chemically inert atoms or molecules change the hyperfine coupling of an alkali-metal atom through the hyperfine-shift interaction. This interaction is responsible for the pressure shifts of the microwave resonances of alkali-metal atoms in buffer gases, is an important spin interaction in alkali-metal--noble-gas van der Waals molecules, and is anticipated to enable the magnetoassociation of ultracold molecules such as RbSr. An improved estimate is presented for the long-range asymptote of this interaction for Na, K, Rb, and Cs. To test the results, the change in hyperfine coupling due to a static electric field is estimated and reasonable agreement is found.

  7. Ionic conduction in alkali metal doped ZnFe/sub 2/O/sub 4/ compound

    International Nuclear Information System (INIS)

    Zinc ferric oxide (ZnFe/sub 2/O/sub 4/) has been synthesized by liquid phase chemical reaction from aqueous mixture of zinc chloride and ferric chloride in sodium hydroxide (4N) solution and effect of alkali metal on electrical characteristics was explored. The well characterized powder was pressed into pellets and dried at 80 degree C. Samples with alkali metal concentrations 10-100 ppm have been investigated to I-V measurements. The conductivity of pure compound (10-/sub 2/omega-cm)/sup-1/) lies in the semiconductor range but due to alkali metal doping the compound shows ionic conduction at room temperature. The ionic conduction is found to be increased as the dopant concentration increases.(author)

  8. A hetero-alkali-metal version of the utility amide LDA: lithium-potassium diisopropylamide.

    Science.gov (United States)

    Armstrong, David R; Kennedy, Alan R; Mulvey, Robert E; Robertson, Stuart D

    2013-03-14

    Designed to extend the synthetically important alkali-metal diisopropylamide [N(i)Pr(2); DA] class of compounds, the first example of a hetero-alkali-metallic complex of DA has been prepared as a partial TMEDA solvate. Revealed by an X-ray crystallographic study, its structure exists as a discrete lithium-rich trinuclear Li(2)KN(3) heterocycle, with TMEDA only solvating the largest of the alkali-metals, with the two-coordinate lithium atoms being close to linearity [161.9(2)°]. A variety of NMR spectroscopic studies, including variable temperature and DOSY NMR experiments, suggests that this new form of LDA maintains its integrity in non-polar hydrocarbon solution. This complex thus represents a rare example of a KDA molecule which is soluble in non-polar medium without the need for excessive amounts of solubilizing Lewis donor being added.

  9. Electrical conduction in transition-metal salts

    International Nuclear Information System (INIS)

    We predict that a given transition-metal salt as, for example, a K2CuCl4.2H2O-type compound, can behave as an electrical conductor in the paramagnetic case. In fact, we determine the electrical conductance in a salt of this type. This conductance is found to be quantised in agreement with previous well-known results. Related mathematical expressions in the context of superexchange interaction are obtained. In addition, we determine the corresponding (macroscopically viewed) current density and the associated electron wave functions.

  10. Electrical conduction in transition-metal salts

    Energy Technology Data Exchange (ETDEWEB)

    Grado-Caffaro, M.A.; Grado-Caffaro, M. [Scientific Consultants, Madrid (Spain)

    2016-08-01

    We predict that a given transition-metal salt as, for example, a K{sub 2}CuCl{sub 4}.2H{sub 2}O-type compound, can behave as an electrical conductor in the paramagnetic case. In fact, we determine the electrical conductance in a salt of this type. This conductance is found to be quantised in agreement with previous well-known results. Related mathematical expressions in the context of superexchange interaction are obtained. In addition, we determine the corresponding (macroscopically viewed) current density and the associated electron wave functions.

  11. 40 CFR 721.10028 - Disubstituted benzene metal salts (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Disubstituted benzene metal salts... Specific Chemical Substances § 721.10028 Disubstituted benzene metal salts (generic). (a) Chemical... as disubstituted benzene metal salts (PMNs P-01-901 and P-01-902) are subject to reporting under...

  12. Multinuclear Alkali Metal Complexes of a Triphenylene-Based Hexamine and the Transmetalation to Tris(N-heterocyclic tetrylenes) (Ge, Sn, Pb).

    Science.gov (United States)

    Zhong, Fei; Yang, Xiaodong; Shen, Lingyi; Zhao, Yanxia; Ma, Hongwei; Wu, Biao; Yang, Xiao-Juan

    2016-09-01

    A C3-symmetric hexamine (LH6) based on the triphenylene and ortho-phenylenediamine (PDAH2) skeletons has been synthesized, and was partially or fully deprotonated upon treatment with alkali metal agents to afford amino-amido or diamido coordination sites. Four alkali metal complexes, the dinuclear [Na2(LH4)(DME)5] (1) and [K2(LH4)(DME)4] (2), trinuclear [K3(LH3)(DME)6] (3), and hexanuclear [Li6(L)(DME)6] (4), were obtained and used in transmetalation/ligand exchange with other metals. The hexalithium salt of the fully deprotonated ligand, [Li6L], reacted with heavier group 14 element halides to yield three tris(N-heterocyclic tetrylenes), the germylene [Ge3(L)] (5), stannylene [Sn3(L)] (6), and plumbylene [Pb3(L)] (7). The synthesis and crystal and electronic structures of these compounds are reported. PMID:27525542

  13. Ternary Amides Containing Transition Metals for Hydrogen Storage: A Case Study with Alkali Metal Amidozincates.

    Science.gov (United States)

    Cao, Hujun; Richter, Theresia M M; Pistidda, Claudio; Chaudhary, Anna-Lisa; Santoru, Antonio; Gizer, Gökhan; Niewa, Rainer; Chen, Ping; Klassen, Thomas; Dornheim, Martin

    2015-11-01

    The alkali metal amidozincates Li4 [Zn(NH2)4](NH2)2 and K2[Zn(NH2)4] were, to the best of our knowledge, studied for the first time as hydrogen storage media. Compared with the LiNH2-2 LiH system, both Li4 [Zn(NH2)4](NH2)2-12 LiH and K2[Zn(NH2)4]-8 LiH systems showed improved rehydrogenation performance, especially K2[Zn(NH2)4]-8 LiH, which can be fully hydrogenated within 30 s at approximately 230 °C. The absorption properties are stable upon cycling. This work shows that ternary amides containing transition metals have great potential as hydrogen storage materials.

  14. Thermochemistry of complex oxides of uranium(6), arsenic and alkali metals

    International Nuclear Information System (INIS)

    Standard reaction enthalpies for stoichiometric mixtures of mono-potassium orthoarsenate, uranium(6) and alkali metal nitrate oxides as well as mixtures of complex oxides of the M1AsUO6 (M1 = Li, Na, K, Rb, Cs) general formulas and potassium nitrate with hydrofluoric acid are determined in adiabatic calorimeter at the temperature of 298.15 K. Standard enthalpies for formation of complex oxides of uranium(6), arsenic and alkali metals at the temperature of 298.15 K are calculated by the obtained results. 8 refs., 1 tab

  15. Antiproton and proton collisions with the alkali-metal atoms Li, Na, and K

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Saenz, Alejandro

    2008-01-01

    Single-electron ionization and excitation cross sections as well as cross sections for excitation into the first excited p state of the alkali-metal atoms Li(2s), Na(3s), and K(4s) colliding with antiprotons and protons were calculated using a time-dependent channel-coupling approach. For antipro......Single-electron ionization and excitation cross sections as well as cross sections for excitation into the first excited p state of the alkali-metal atoms Li(2s), Na(3s), and K(4s) colliding with antiprotons and protons were calculated using a time-dependent channel-coupling approach...

  16. Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene

    Science.gov (United States)

    Sahin, H.; Peeters, F. M.

    2013-02-01

    The adsorption characteristics of alkali, alkaline-earth, and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, work function, and dipole moment of the metal adsorbed silicene sheets. Alkali metals, Li, Na, and K, adsorb to hollow sites without any lattice distortion. As a consequence of the significant charge transfer from alkalis to silicene, metalization of silicene takes place. Trends directly related to atomic size, adsorption height, work function, and dipole moment of the silicene/alkali adatom system are also revealed. We found that the adsorption of alkaline-earth metals on silicene is entirely different from their adsorption on graphene. The adsorption of Be, Mg, and Ca turns silicene into a narrow gap semiconductor. Adsorption characteristics of eight transition metals Ti, V, Cr, Mn, Fe, Co, Mo, and W are also investigated. As a result of their partially occupied d orbital, transition metals show diverse structural, electronic, and magnetic properties. Upon the adsorption of transition metals, depending on the adatom type and atomic radius, the system can exhibit metal, half-metal, and semiconducting behavior. For all metal adsorbates, the direction of the charge transfer is from adsorbate to silicene, because of its high surface reactivity. Our results indicate that the reactive crystal structure of silicene provides a rich playground for functionalization at nanoscale.

  17. Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project

    DEFF Research Database (Denmark)

    Hummelshøj, Jens Strabo; Landis, David; Voss, Johannes;

    2009-01-01

    We present a computational screening study of ternary metal borohydrides for reversible hydrogen storage based on density functional theory. We investigate the stability and decomposition of alloys containing 1 alkali metal atom, Li, Na, or K (M1); and 1 alkali, alkaline earth or 3d/4d transition...

  18. Molecular origin of high free energy barriers for alkali metal ion transfer through ionic liquid-graphene electrode interfaces.

    Science.gov (United States)

    Ivaništšev, Vladislav; Méndez-Morales, Trinidad; Lynden-Bell, Ruth M; Cabeza, Oscar; Gallego, Luis J; Varela, Luis M; Fedorov, Maxim V

    2016-01-14

    In this work we study mechanisms of solvent-mediated ion interactions with charged surfaces in ionic liquids by molecular dynamics simulations, in an attempt to reveal the main trends that determine ion-electrode interactions in ionic liquids. We compare the interfacial behaviour of Li(+) and K(+) at a charged graphene sheet in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, and its mixtures with lithium and potassium tetrafluoroborate salts. Our results show that there are dense interfacial solvation structures in these electrolytes that lead to the formation of high free energy barriers for these alkali metal cations between the bulk and direct contact with the negatively charged surface. We show that the stronger solvation of Li(+) in the ionic liquid leads to the formation of significantly higher interfacial free energy barriers for Li(+) than for K(+). The high free energy barriers observed in our simulations can explain the generally high interfacial resistance in electrochemical storage devices that use ionic liquid-based electrolytes. Overcoming these barriers is the rate-limiting step in the interfacial transport of alkali metal ions and, hence, appears to be a major drawback for a generalised application of ionic liquids in electrochemistry. Some plausible strategies for future theoretical and experimental work for tuning them are suggested.

  19. Molecular origin of high free energy barriers for alkali metal ion transfer through ionic liquid-graphene electrode interfaces.

    Science.gov (United States)

    Ivaništšev, Vladislav; Méndez-Morales, Trinidad; Lynden-Bell, Ruth M; Cabeza, Oscar; Gallego, Luis J; Varela, Luis M; Fedorov, Maxim V

    2016-01-14

    In this work we study mechanisms of solvent-mediated ion interactions with charged surfaces in ionic liquids by molecular dynamics simulations, in an attempt to reveal the main trends that determine ion-electrode interactions in ionic liquids. We compare the interfacial behaviour of Li(+) and K(+) at a charged graphene sheet in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, and its mixtures with lithium and potassium tetrafluoroborate salts. Our results show that there are dense interfacial solvation structures in these electrolytes that lead to the formation of high free energy barriers for these alkali metal cations between the bulk and direct contact with the negatively charged surface. We show that the stronger solvation of Li(+) in the ionic liquid leads to the formation of significantly higher interfacial free energy barriers for Li(+) than for K(+). The high free energy barriers observed in our simulations can explain the generally high interfacial resistance in electrochemical storage devices that use ionic liquid-based electrolytes. Overcoming these barriers is the rate-limiting step in the interfacial transport of alkali metal ions and, hence, appears to be a major drawback for a generalised application of ionic liquids in electrochemistry. Some plausible strategies for future theoretical and experimental work for tuning them are suggested. PMID:26661060

  20. Oxidative coal desulfurization using lime to regenerate alkali metal hydroxide from reaction product

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, S.

    1980-07-22

    A process for the removal of pyrite from coal comprises (A) preparing an aqueous slurry containing finely divided coal particles; (B) adding to the slurry an alkali metal hydroxide selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide, as well as mixtures thereof, in amounts sufficient to continuously maintain the pH of the slurry at a value of below about 8; (C) agitating the slurry while treating the slurry with oxygen or an oxygen-containing gas at substantially atmospheric pressuresand at a slightly elevated temperature of at least about 70/sup 0/C to convert the pyrite in the coal to a soluble alkali metal sulfate; (D) reacting lime with the so-formed alkali metal sulfate to regenerate the alkali metal hydroxide; and (E) recycling the hydroxide for further use in the process, whereby pyrite is effectively removed and the hydroxide conveniently regenerated with the inhibiting effect of calcium ions therein upon the oxygen leaching of said pyritic sulfur from coal being overcome at said pH, the reaction rate being enhanced by the use of said elevated temperature.

  1. Phonon dispersion in alkali metals and their equiatomic sodium-based binary alloys

    Institute of Scientific and Technical Information of China (English)

    Aditya M. VORA

    2008-01-01

    In the present article, the theoretical calcula-tions of the phonon dispersion curves (PDCs) of five alkali metals viz. Li, Na, K, Rb, Cs and their four equia-tomic sodium-based binary alloys viz. Na0.5Li0.5,Na0.5K0.5, Na0.5Rb0.5 and Na0.5Cs0.5 to second order in a local model potential is discussed in terms of the real-space sum of the Born yon Karman central force con-stants. Instead of the concentration average of the force constants of pure alkali metals, the pseudo-alloy-atom (PAA) is adopted to directly compute the force constants of the four equiatomic sodium based binary alloys and was successfully applied. The exchange and correlation functions due to the Hartree (H) and Ichimaru-Utsumi (IU) are used to investigate the influence of the screening effects. The phonon frequencies of alkali metals and their four equiatomic sodium-based binary alloys in the longit-udinal branch are more sensitive to the exchange and cor-relation effects in comparison with the transverse branches. The PDCs of pure alkali metals are found in qualitative agreement with the available experimental data. The frequencies in the longitudinal branch are sup-pressed rather due to IU-screening function than those due to static H-screening function.

  2. Alkali metal ion binding to glutamine and glutamine derivatives investigated by infrared action spectroscopy and theory

    NARCIS (Netherlands)

    Bush, M. F.; Oomens, J.; Saykally, R. J.; Williams, E. R.

    2008-01-01

    The gas-phase structures of alkali-metal cationized glutamine are investigated by using both infrared multiple photon dissociation (TRMPD) action spectroscopy, utilizing light generated by a free electron laser, and theory. The IRMPD spectra contain many similarities that are most consistent with gl

  3. Long-range interactions between excited helium and alkali-metal atoms

    KAUST Repository

    Zhang, J.-Y.

    2012-12-03

    The dispersion coefficients for the long-range interaction of the first four excited states of He, i.e., He(2 1,3S) and He(2 1,3P), with the low-lying states of the alkali-metal atoms Li, Na, K, and Rb are calculated by summing over the reduced matrix elements of the multipole transition operators. For the interaction between He and Li the uncertainty of the calculations is 0.1–0.5%. For interactions with other alkali-metal atoms the uncertainty is 1–3% in the coefficient C5, 1–5% in the coefficient C6, and 1–10% in the coefficients C8 and C10. The dispersion coefficients Cn for the interaction of He(2 1,3S) and He(2 1,3P) with the ground-state alkali-metal atoms and for the interaction of He(2 1,3S) with the alkali-metal atoms in their first 2P states are presented in this Brief Report. The coefficients for other pairs of atomic states are listed in the Supplemental Material.

  4. Unidirectional thermal expansion in KZnB3O6: role of alkali metals.

    Science.gov (United States)

    Lou, Yanfang; Li, Dandan; Li, Zhilin; Zhang, Han; Jin, Shifeng; Chen, Xiaolong

    2015-12-14

    The driving force of the unidirectional thermal expansion in KZnB3O6 has been studied experimentally and theoretically. Our results show that the low-energy vibrational modes of alkali metals play a crucial role in this unusual thermal behavior. PMID:26515521

  5. Alkali Metal Carbenoids: A Case of Higher Stability of the Heavier Congeners.

    Science.gov (United States)

    Molitor, Sebastian; Gessner, Viktoria H

    2016-06-27

    As a result of the increased polarity of the metal-carbon bond when going down the group of the periodic table, the heavier alkali metal organyl compounds are generally more reactive and less stable than their lithium congeners. We now report a reverse trend for alkali metal carbenoids. Simple substitution of lithium by the heavier metals (Na, K) results in a significant stabilization of these usually highly reactive compounds. This allows their isolation and handling at room temperature and the first structure elucidation of sodium and potassium carbenoids. The control of stability was used to control reactivity and selectivity. Hence, the Na and K carbenoids act as selective carbene-transfer reagents, whereas the more labile lithium systems give rise to product mixtures. Additional fine tuning of the M-C interaction by means of crown ether addition further allows for control of the stability and reactivity. PMID:27100278

  6. Characteristic thermoluminescence of gamma-irradiated alumina ceramics doped with some alkali metals

    Science.gov (United States)

    Henaish, B. A.; El-Agrami, A. M.; Abdel-Fattah, W. I.; Osiris, W. G.

    1994-07-01

    Thermoluminescence properties of pure Al2O3-ceramic discs doped with some oxides of alkali metals and B were investigated. Two groups of samples were studied: one with a low concentration of B and alkali oxides and the other with higher concentration. The first group shows a relatively higher stability and better reproducibility for γ-radiation and neutron-induced TL, which could be utilized in mixed radiation field dosimetry. The main disadvantage of these TL-materials is the relatively high rate of signal fading. A simple course of post irradiation heat annealing is proposed to overcome this drawback.

  7. Adsorption of Alkali, Alkaline Earth and Transition Metal Atoms on Silicene

    OpenAIRE

    Sahin, Hasan; Peeters, Francois M.

    2013-01-01

    The adsorption characteristics of alkali, alkaline earth and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon, are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, workfuncti...

  8. Alkali metal cation doping of metal-organic framework for enhancing carbon dioxide adsorption capacity

    Institute of Scientific and Technical Information of China (English)

    Yan Cao; Yunxia Zhao; Fujiao Song; Qin Zhong

    2014-01-01

    Metal-organic frameworks (MOFs) have attracted much attention as adsorbents for the separation of CO2 from flue gas or natural gas. Here, a typical metal-organic framework HKUST-1(also named Cu-BTC or MOF-199) was chemically reduced by doping it with alkali metals (Li, Na and K) and they were further used to investigate their CO2 adsorption capacities. The structural information, surface chemistry and thermal behavior of the prepared adsorbent samples were characterized by X-ray powder diffraction (XRD), thermo-gravimetric analysis (TGA) and nitrogen adsorption-desorption isotherm analysis. The results showed that the CO2 storage capacity of HKUST-1 doped with moderate quantities of Li+, Na+ and K+, individually, was greater than that of unmodified HKUST-1. The highest CO2 adsorption uptake of 8.64 mmol/g was obtained with 1K-HKUST-1, and it was ca. 11%increase in adsorption capacity at 298 K and 18 bar as compared with HKUST-1. Moreover, adsorption tests showed that HKUST-1 and 1K-HKUST-1 displayed much higher adsorption capacities of CO2 than those of N2. Finally, the adsorption/desorption cycle experiment revealed that the adsorption performance of 1K-HKUST-1 was fairly stable, without obvious deterioration in the adsorption capacity of CO2 after 10 cycles.

  9. Device and method for upgrading petroleum feedstocks and petroleum refinery streams using an alkali metal conductive membrane

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard; Alvare, Javier

    2016-09-13

    A reactor has two chambers, namely an oil feedstock chamber and a source chamber. An ion separator separates the oil feedstock chamber from the source chamber, wherein the ion separator allows alkali metal ions to pass from the source chamber, through the ion separator, and into the oil feedstock chamber. A cathode is at least partially housed within the oil feedstock chamber and an anode is at least partially housed within the source chamber. A quantity of an oil feedstock is within the oil feedstock chamber, the oil feedstock comprising at least one carbon atom and a heteroatom and/or one or more heavy metals, the oil feedstock further comprising naphthenic acid. When the alkali metal ion enters the oil feedstock chamber, the alkali metal reacts with the heteroatom, the heavy metals and/or the naphthenic acid, wherein the reaction with the alkali metal forms inorganic products.

  10. Synthesis and Characterization of Novel Ternary and Quaternary Alkali Metal Thiophosphates

    KAUST Repository

    Alahmary, Fatimah S.

    2014-05-01

    The ongoing development of nonlinear optical (NLO) crystals such as coherent mid-IR sources focuses on various classes of materials such as ternary and quaternary metal chalcophosphates. In case of thiophosphates, the connection between PS4-tetrahedral building blocks and metals gives rise to a broad structural variety where approximately one third of all known ternary (A/P/S) and quaternary (A/M/P/S) (A = alkali metal, M = metal) structures are acentric and potential nonlinear optical materials. The molten alkali metal polychalcophosphate fluxes are a well-established method for the synthesis of new ternary and quaternary thiophosphate and selenophosphate compounds. It has been a wide field of study and investigation through the last two decades. Here, the flux method is used for the synthesis of new quaternary phases containing Rb, Ag, P and S. Four new alkali metal thiophosphates, Rb4P2S10, RbAg5(PS4), Rb2AgPS4 and Rb3Ag9(PS4)4, have been synthesized successfully from high purity elements and binary starting materials. The new compounds were characterized by single crystal and powder X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), ultraviolet-visible (UV-VIS), Raman spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). These compounds show interesting structural variety and physical properties. The crystal structures feature 3D anionic framework built up of PS4 tetrahedral units and charge balanced by Ag and alkali metal cations. All prepared compounds are semiconductors with band gap between 2.3 eV to 2.6 eV and most of them are thermally stable up to 600ºC.

  11. Thermodynamic study of alkali metals release in pressurised fluidised-bed combustion and gasification of peat

    Energy Technology Data Exchange (ETDEWEB)

    Mojtahedi, W.; Backman, R.; Korhonen, M.

    1988-01-01

    A combined-cycle power generation system incorporating pressurised fluidised-bed combustion (PFBC) or gasification is considered a promising approach for electricity generation using solid fuels such as peat. In these systems, the high-pressure hot flue gas is expanded in a gas turbine. Peat contains sodium and potassium which are released in combustion and gasification. These are corrosive elements that can cause severe damage to the turbine blades if not suppressed. Multicomponent, multiphase equilibrium calculations were carried out for atmospheric and pressurised fluidised-bed operating conditions to determine the relative distribution of the two metals (Na and K) in the gas and condensed phases. Dependence of the alkali volatilisation on the operating temperature, pressure, the chlorine-content and the total alkali-content of the feedstock was studied. The results show that the alkali release in the vapour-phase could be much higher than acceptable to a gas turbine, particularly under gasification conditions. Hence the necessity to remove the volatilised alkali-metal compounds is more acute in gasification than in combustion. Both sodium and potassium are present as chlorides and to a lesser extent as hydroxides in the gas phase in both modes of operation (i.e. combustion and gasification). However, whereas under combustion conditions both metals seem to condense as sulphates (Na/sub 2/SO4 and K/sub 2/SO4), in gasification, chlorides and carbonates dominate in the condensed phase. The alkali-metals volatilisation shows strong dependence on the operating pressure of the system as well as on the chlorine-content of the feedstock. It decreases markedly with the former but increases sharply with the latter.

  12. N-alkyl pyrrolidone ether podands as versatile alkali metal ion chelants.

    Science.gov (United States)

    Perrin, Andrea; Myers, Dominic; Fucke, Katharina; Musa, Osama M; Steed, Jonathan W

    2014-02-28

    This work explores the coordination chemistry of a bis(pyrrolidone) ether ligand. Pyrrolidones are commercially important functional groups because of the high polarity and hence high hydrophilicity and surface affinity. An array of alkali metal ion complexes of a podand bearing two pendant pyrrolidone functionalities, namely 1-{2-[2-(2-oxo-pyrrolid-1-yl)-ethoxy]-ethyl}-pyrrolid-2-one (1) are reported. Reaction of this ligand with sodium hexafluorophosphate gives two discrete species of formulae [Na(1)2]PF6 (3) and [Na3(H2O)2(μ-1)2](PF6)3 (4), and a coordination polymer {[Na3(μ3-1)3(μ2-1)](PF6)3}n (5). The same reaction in methanol gives a 1 : 1 complex, namely [Na2(μ-1)2(MeOH)2](PF6)2 (6). Use of tetraphenyl borate as a less coordinating counter ion gives [Na2(1)2(H2O)4](BPh4)2 (7) and [Na2(1)4](BPh4)2 (8). Two potassium complexes have also been isolated, a monomer [K(1)2]PF6 (9) and a cyclic tetramer [K4(μ4-H2O)2(μ-1)4](PF6)4 (10). The structures illustrate the highly polar nature of the amide carbonyl moiety within bis(pyrrolidone) ethers with longer interactions to the ether oxygen atom. The zinc complex is also reported and {[ZnCl2(μ-1)]}n (11) exhibits bonding only to the carbonyl moieties. The ether oxygen atom is not necessary for Na(+) complexation as exemplified by the structure of the sodium complex of the analogue 1,3-bis(pyrrolid-2-on-1-yl)butane (2). Reaction of compound 1 with lithium salts results in isolation of the protonated ligand. PMID:24336897

  13. Effects of inherent alkali and alkaline earth metallic species on biomass pyrolysis at different temperatures.

    Science.gov (United States)

    Hu, Song; Jiang, Long; Wang, Yi; Su, Sheng; Sun, Lushi; Xu, Boyang; He, Limo; Xiang, Jun

    2015-09-01

    This work aimed to investigate effects of inherent alkali and alkaline earth metallic species (AAEMs) on biomass pyrolysis at different temperatures. The yield of CO, H2 and C2H4 was increased and that of CO2 was suppressed with increasing temperature. Increasing temperature could also promote depolymerization and aromatization reactions of active tars, forming heavier polycyclic aromatic hydrocarbons, leading to decrease of tar yields and species diversity. Diverse performance of inherent AAEMs at different temperatures significantly affected the distribution of pyrolysis products. The presence of inherent AAEMs promoted water-gas shift reaction, and enhanced the yield of H2 and CO2. Additionally, inherent AAEMs not only promoted breakage and decarboxylation/decarbonylation reaction of thermally labile hetero atoms of the tar but also enhanced thermal decomposing of heavier aromatics. Inherent AAEMs could also significantly enhance the decomposition of levoglucosan, and alkaline earth metals showed greater effect than alkali metals. PMID:26005925

  14. 40 CFR 721.640 - Amine substituted metal salts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amine substituted metal salts. 721.640... Substances § 721.640 Amine substituted metal salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as amine substituted metal...

  15. Alkali-crown ether complexes at metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Thontasen, Nicha; Deng, Zhitao; Rauschenbach, Stephan [Max Planck Institute for Solid State Research, Stuttgart (Germany); Levita, Giacomo [University of Trieste, Trieste (Italy); Malinowski, Nikola [Max Planck Institute for Solid State Research, Stuttgart (Germany); Bulgarian Academy of Sciences, Sofia (Bulgaria); Kern, Klaus [Max Planck Institute for Solid State Research, Stuttgart (Germany); EPFL, Lausanne (Switzerland)

    2010-07-01

    Crown ethers are polycyclic ethers which, in solution, selectively bind cations depending on the size of the ring cavity. The study of a single host-guest complex is highly desirable in order to reveal the characteristics of these specific interactions at the atomic scale. Such detailed investigation is possible at the surface where high resolution imaging tools like scanning tunneling microscopy (STM) can be applied. Here, electrospray ion beam deposition (ES-IBD) is employed for the deposition of Dibenzo-24-crown-8 (DB24C8)-H{sup +}, -Na{sup +} and -Cs{sup +} complexes on a solid surface in ultrahigh vacuum (UHV). Where other deposition techniques have not been successful, this deposition technique combines the advantages of solution based preparation of the complex ions with a highly clean and controlled deposition in UHV. Single molecular structures and the cation-binding of DB24C8 at the surface are studied in situ by STM and MALDI-MS (matrix assisted laser desorption ionization mass spectrometry). The internal structure of the complex, i.e. ring and cavity, is observable only when alkali cations are incorporated. The BD24C8-H{sup +} complex in contrast appears as a compact feature. This result is in good agreement with theoretical models based on density functional theory calculations.

  16. Intra-zoned luminescence in alkali earth metal carbonates

    International Nuclear Information System (INIS)

    Full text: The fundamental plasma luminescence of wide band alkali halide crystals has been found out by Vaisburd et al. This broadband luminescence with very short duration of attenuation (∼10-12 s) arises at an irradiations of crystals with electronic beam powerful pulses of nanosecond duration. It is related to radiating 'hot' electrons and holes in a conductivity zone and in a valent zone, accordingly and in later time began to refer to as an intra-zoned luminescence. The data set on revealing features of display of an intra-zoned luminescence in different classes of crystals now proceeds. We investigated a fast luminescence at excitation with pulse electrons (3 nanoseconds) in crystals CaCO3, SrCO3, BaCO3 and MgCO3. In spectra all investigated carbonates it is possible to allocate two areas: area concerning high intensity of a fast luminescence (from 2 eV down 3 eV) and area of low intensity (is higher 4 eV) with slow recession at increase in photon energy. Thus it is typical, that in area concerning high intensity at rise in temperature from 80 up to 300 K a sample intensity of luminescence falls down, whereas in area is higher 5 eV with rise in temperature of a sample increase of intensity is observed. This broadband fast (is shorter than the time sanction of the equipment) should be connected a luminescence poorly dependent on temperature and a modular status of a sample with intra zoned transitions This luminescence reaches from 2 eV down to 7 eV but as for carbonates while is absent the reliable data on structure of a valent zone, division of an intra-zoned luminescence into electronic and hole components is not obviously possible on the basis of spectra of a fast luminescence. The nature of other luminescence processes arising at excitation with pulse electrons is discussed

  17. Development and testing of on-line analytical instrumentation for alkali and heavy metal release in pressurised conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R.; Haeyrinen, V.; Oikari, R. [Tampere Univ. of Technology (Finland)

    1997-10-01

    The purpose of the project is to demonstrate in industrial conditions and further develop the continuous alkali measurement method plasma excited alkali resonance line spectroscopy (PEARLS) developed at Tampere University of Technology (TUT). The demonstration takes place in joint measuring campaigns, where two other continuous alkali measurement methods, ELIF and surface ionisation, are being simultaneously demonstrated. A modification of PEARLS will also be developed for the continuous measurement of heavy metal concentrations. A market study of continuous measuring techniques for alkali and heavy metals is further part of the project. The method will be demonstrated in two pressurised fluidised bed combustion facilities. One of these is the 10 MW PCFB of Foster Wheeler Energia Oy in Karhula. The second one is yet to be decided. The first measuring campaign is scheduled for the spring of 1997 in Karhula. In 1996 the group at TUT participated in the performance of a market study regarding continuous measuring techniques for alkali and heavy metal concentrations. A draft report was submitted to and approved by the EC. Development work on PEARLS in 1996 has centered around the construction of a calibration device for alkali measurements. The device can be used by all three measuring techniques in the project to check readings against a known alkali concentration at controlled and known conditions. In 1996 PEARLS was applied for alkali measurement at several pressurised combustion installations of laboratory and industrial pilot scale

  18. Reactions between cold methyl halide molecules and alkali-metal atoms

    CERN Document Server

    Lutz, Jesse J

    2013-01-01

    We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH$_{3}X$ ($X$ = F, Cl, Br, I) and alkali-metal atoms $A$ ($A$ = Li, Na, K, Rb) using high-level {\\it ab initio} calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, ${\\rm CH}_{3}X+A\\rightarrow{\\rm CH}_{3}+AX$. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow.

  19. X-ray Compton scattering experiments for fluid alkali metals at high temperatures and pressures

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, K., E-mail: kazuhiro-matsuda@scphys.kyoto-u.ac.jp; Fukumaru, T.; Kimura, K.; Yao, M. [Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Tamura, K. [Graduate School of Engineering, Kyoto University, Kyoto 606-8502 (Japan); Katoh, M. [A.L.M.T. Corp., Iwasekoshi-Machi 2, Toyama 931-8543 (Japan); Kajihara, Y.; Inui, M. [Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521 (Japan); Itou, M.; Sakurai, Y. [Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2015-08-17

    We have developed a high-pressure vessel and a cell for x-ray Compton scattering measurements of fluid alkali metals. Measurements have been successfully carried out for alkali metal rubidium at elevated temperatures and pressures using synchrotron radiation at SPring-8. The width of Compton profiles (CPs) of fluid rubidium becomes narrow with decreasing fluid density, which indicates that the CPs sensitively detect the effect of reduction in the valence electron density. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 10 September 2015. The original article supplied to AIP Publishing was not the final version and contained PDF conversion errors in Formulas (1) and (2). The errors have been corrected in the updated and re-published article.

  20. Emission Channeling Studies of the Lattice Site of Oversized Alkali Atoms Implanted in Metals

    CERN Document Server

    2002-01-01

    % IS340 \\\\ \\\\ As alkali atoms have the largest atomic radius of all elements, the determination of their lattice configuration following implantation into metals forms a critical test for the various models predicting the lattice site of implanted impurity atoms. The site determination of these large atoms will especially be a crucial check for the most recent model that relates the substitutional fraction of oversized elements to their solution enthalpy. Recent exploratory $^{213}$Fr and $^{221}$Fr $\\alpha$-emission channeling experiments at ISOLDE-CERN and hyperfine interaction measurements on Fr implanted in Fe gave an indication for anomalously large substitutional fractions. To investigate further the behaviour of Fr and other alkali atoms like Cs and Rb thoroughly, more on-line emission channeling experiments are needed. We propose a number of shifts for each element, where the temperature of the implanted metals will be varied between 50$^\\circ$ and 700$^\\circ$~K. Temperature dependent measurements wi...

  1. Reactions between cold methyl halide molecules and alkali-metal atoms

    International Nuclear Information System (INIS)

    We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH3X (X = F, Cl, Br, I) and alkali-metal atoms A (A = Li, Na, K, Rb) using high-level ab initio calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, CH3X + A → CH3 + AX. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow

  2. Equation of state for thermodynamic properties of pure and mixtures liquid alkali metals

    Energy Technology Data Exchange (ETDEWEB)

    Mousazadeh, M.H., E-mail: mmousazadeh@aeoi.org.ir [Department of Chemistry, Nuclear Science Research School, Nuclear Science and Technology Research Institute (NSTRI), End of North-Karegar Str., 11365-3486 Tehran (Iran, Islamic Republic of); Faramarzi, E. [Department of Physical Chemistry, School of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Maleki, Z. [Department of Chemistry, Nuclear Science Research School, Nuclear Science and Technology Research Institute (NSTRI), End of North-Karegar Str., 11365-3486 Tehran (Iran, Islamic Republic of)

    2010-11-20

    We developed an equation of state based on statistical-mechanical perturbation theory for pure and mixtures alkali metals. Thermodynamic properties were calculated by the equation of state, based on the perturbed-chain statistical associating fluid theory (PC-SAFT). The model uses two parameters for a monatomic system, segment size, {sigma}, and segment energy, {epsilon}. In this work, we calculate the saturation and compressed liquid density, heat capacity at constant pressure and constant volume, isobaric expansion coefficient, for which accurate experimental data exist in the literatures. Results on the density of binary and ternary alkali metal alloys of Cs-K, Na-K, Na-K-Cs, at temperatures from the freezing point up to several hundred degrees above the boiling point are presented. The calculated results are in good agreement with experimental data.

  3. An Aqueous Redox Flow Battery Based on Neutral Alkali Metal Ferri/ferrocyanide and Polysulfide Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiaoliang; Xia, Gordon; Kirby, Brent W.; Thomsen, Edwin C.; Li, Bin; Nie, Zimin; Graff, Gordon L.; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-11-13

    Aiming to explore low-cost redox flow battery systems, a novel iron-polysulfide (Fe/S) flow battery has been demonstrated in a laboratory cell. This system employs alkali metal ferri/ferrocyanide and alkali metal polysulfides as the redox electrolytes. When proper electrodes, such as pretreated graphite felts, are used, 78% energy efficiency and 99% columbic efficiency are achieved. The remarkable advantages of this system over current state-of-the-art redox flow batteries include: 1) less corrosive and relatively environmentally benign redox solutions used; 2) excellent energy and utilization efficiencies; 3) low cost for redox electrolytes and cell components. These attributes can lead to significantly reduced capital cost and make the Fe/S flow battery system a promising low-cost energy storage technology. The major drawbacks of the present cell design are relatively low power density and possible sulfur species crossover. Further work is underway to address these concerns.

  4. The 3-Dimensional q-Deformed Harmonic Oscillator and Magic Numbers of Alkali Metal Clusters

    CERN Document Server

    Bonatsos, Dennis; Raychev, P P; Roussev, R P; Terziev, P A; Bonatsos, Dennis

    1999-01-01

    Magic numbers predicted by a 3-dimensional q-deformed harmonic oscillator with Uq(3) > SOq(3) symmetry are compared to experimental data for alkali metal clusters, as well as to theoretical predictions of jellium models, Woods--Saxon and wine bottle potentials, and to the classification scheme using the 3n+l pseudo quantum number. The 3-dimensional q-deformed harmonic oscillator correctly predicts all experimentally observed magic numbers up to 1500 (which is the expected limit of validity for theories based on the filling of electronic shells), thus indicating that Uq(3), which is a nonlinear extension of the U(3) symmetry of the spherical (3-dimensional isotropic) harmonic oscillator, is a good candidate for being the symmetry of systems of alkali metal clusters.

  5. Alkali-doped metal-phthalocyanine and pentacene compounds

    NARCIS (Netherlands)

    Craciun, M.F.

    2006-01-01

    The ability to introduce charge carriers in organic molecular materials and control their concentration is of great relevance for both fundamental research and applications. In this thesis, it has been demonstrated that the electronic properties of Metal Phthalocyanines (MPc) and pentacene (PEN) mol

  6. Release of alkali salts and coal volatiles affecting internal components in fluidized bed combustion systems

    Directory of Open Access Journals (Sweden)

    Arias del Campo, E.

    2003-12-01

    Full Text Available In spite of the potential advantages of atmospheric fluidized bed systems, experience has proved that, under certain environments and operating conditions, a given material employed for internal components could lead to catastrophic events. In this study, an attempt is made to establish material selection and operational criteria that optimize performance and availability based on theoretical considerations of the bed hydrodynamics, thermodynamics and combustion process. The theoretical results may indicate that, for high-volatile coals with particle diameters (dc of 1-3 mm and sand particle size (ds of 0.674 mm, a considerable proportion of alkali chlorides may be transferred into the freeboard region of fluidized bed combustors as vapor phase, at bed temperatures (Tb < 840 °C, excess air (XSA ≤ 20 %, static bed height (Hs ≤ 0.2 m and fluidizing velocity (Uo < 1 m/s. Under these operating conditions, a high alkali deposition may be expected to occur in heat exchange tubes located above the bed. Conversely, when the combustors operate at Tb > 890 °C and XSA > 30 %, a high oxidation rate of the in-bed tubes may be present. Nevertheless, for these higher Tb values and XSA < 10 %, corrosion attack of metallic components, via sulfidation, would occur since the excessive gas-phase combustion within the bed induced a local oxygen depletion.

    A pesar de las ventajas potenciales de los sistemas atmosféricos de lecho fluidizado, la experiencia ha demostrado que, bajo ciertas atmósferas y condiciones de operación, un material que se emplea como componente interno podría experimentar una falla y conducir a eventos catastróficos. En este estudio, se intenta establecer un criterio tanto operativo como de selección del material que permita optimizar su disponibilidad y funcionalidad basados en consideraciones teóricas de la hidrodinámica del lecho, la termodin

  7. Conductometric determination of dissociation constants of alkali metal monopyrocatechinborates in alcohols

    International Nuclear Information System (INIS)

    Dissociation constants of alkali metal monopyrocatechinborates of Me[(C6H4O2)B(OH)2]xnH2O (Me = Na+, Li+) composition are determined using conductometric method based on equivalent electric conductivity values, in methanol and ethanol at 25 deg C. Dissociation constants of weak electrolytes are calculated by the Fuoss-Kraus method. Conditions of Valden raw action are determined which connects concentrations with permittivity of medium

  8. Alkali metal and simple gas atom adsorption and coadsorption on transition metal surfaces

    CERN Document Server

    Norris, A G

    2000-01-01

    system is formed by adsorption of potassium or cesium on the Ni(100)c(2x2)-O overlayer. The difficulty of the structural fit is compounded' by the size of the unit cell. In this study, Anomalous Scattering was used to investigate whether there is a contribution from the nickel substrate to the reconstruction. Measurements of the fractional order rods at 10 eV and 200 eV below the nickel K edge (8333 eV) showed no discernible differences and involvement of the nickel substrate in the reconstruction can be eliminated. Alkali metal coadsorption systems represent a step along the pathway from simple model adsorbate overlayers to more technologically relevant real systems. Such is their complexity, however, that very few systems have been solved structurally. Presented here are SXRD and STM investigations of two such systems. The first study involves potassium adsorption on the Ni(100)(2x2)p4g-N surface, where a clock reconstruction is present with the nickel substrate atoms rotated in alternate clockwise and anti...

  9. Equation of state for solid rare gases and alkali metals under pressure

    Science.gov (United States)

    Bonnet, Pierre

    2016-07-01

    This investigation is based on an atomic equation of state which takes into account the excluded volume of the atom being considered. Study of solid rare gases allows following the packing factor of the solid in equilibrium with the gas at different temperatures and of the solid and the liquid in the case of solid-liquid equilibria. The application of a pressure to the solid up to 9800 MPa allows determining the decrease in atomic volume and thus the compressibility. Such a study leads to proposing a new expression through dividing the pressure derivative (as a function of the excluded volume) by the pressure. This new coefficient is a pressure-independent constant but varies with the atom considered. Multiplied by the initial atomic volume, this coefficient has a unique value for all the rare gases. Furthermore, this is also true for the series of alkali metals with however a lower value of the coefficient. The atomic configurations of the two series are very different with one free electron for the alkali metals but closed shells for the rare gases. The alkali metals are therefore more complex than the rare gases. It is worthwhile to note that study of the equilibrium has not required the use of the principles of thermodynamics.

  10. Diffusion of alkali metals in the first stage graphite intercalation compounds by vdW-DFT calculations

    OpenAIRE

    Wang, Zhaohui; Ratvik, Arne Petter; Grande, Tor; Selbach, Sverre Magnus

    2015-01-01

    Diffusion of alkali metal cations in the first stage graphite intercalation compounds (GIC) LiC6, NaC6, NaC8 and KC8 has been investigated with density functional theory (DFT) calculations using the optPBE-vdW van der Waals functional. The formation energies of alkali vacancies, interstitials and Frenkel defects were calculated and vacancies were found to be the dominating point defects. The diffusion coefficients of the alkali metals in GIC were evaluated by a hopping model of point defects ...

  11. Tin-containing silicates: Alkali salts improve methyl lactate yield from sugars

    DEFF Research Database (Denmark)

    Tolborg, Søren; Sádaba, Irantzu; Osmundsen, Christian Mårup;

    2015-01-01

    This study focuses on increasing the selectivity to methyl lactate from sugars using stannosilicates as heterogeneous catalyst. All group I ions are found to have a promoting effect on the resulting methyl lactate yield. Besides, the alkali ions can be added both during the preparation of the cat......This study focuses on increasing the selectivity to methyl lactate from sugars using stannosilicates as heterogeneous catalyst. All group I ions are found to have a promoting effect on the resulting methyl lactate yield. Besides, the alkali ions can be added both during the preparation...

  12. 40 CFR 721.4620 - Dialkylamino alkanoate metal salt.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dialkylamino alkanoate metal salt. 721... Substances § 721.4620 Dialkylamino alkanoate metal salt. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as dialkylamino alkanoate...

  13. Catalytic Upgrading of Biomass-Derived Furfuryl Alcohol to Butyl Levulinate Biofuel over Common Metal Salts

    Directory of Open Access Journals (Sweden)

    Lincai Peng

    2016-09-01

    Full Text Available Levulinate ester has been identified as a promising renewable fuel additive and platform chemical. Here, the use of a wide range of common metal salts as acid catalysts for catalytic upgrading of biomass-derived furfuryl alcohol to butyl levulinate was explored by conventional heating. Both alkali and alkaline earth metal chlorides did not lead effectively to the conversion of furfuryl alcohol, while several transition metal chlorides (CrCl3, FeCl3, and CuCl2 and AlCl3 exhibited catalytic activity for the synthesis of butyl levulinate. For their sulfates (Cr(III, Fe(III, Cu(II, and Al(III, the catalytic activity was low. The reaction performance was correlated with the Brønsted acidity of the reaction system derived from the hydrolysis/alcoholysis of cations, but was more dependent on the Lewis acidity from the metal salts. Among these investigated metal salts, CuCl2 was found to be uniquely effective, leading to the conversion of furfuryl alcohol to butyl levulinate with an optimized yield of 95%. Moreover, CuCl2 could be recovered efficiently from the resulting reaction mixture and remained with almost unchanged catalytic activity in multiple recycling runs.

  14. Theory of alkali-metal-induced reconstructions of fcc(100) surfaces

    DEFF Research Database (Denmark)

    Christensen, Ole Bøssing; Jacobsen, Karsten Wedel

    1992-01-01

    Calculations of missing-row reconstruction energies of the fcc(100) surfaces of the metals Al, Ni, Pd, Pt, Cu, Ag, and Au have been performed with the effective-medium theory with and without the presence of a potassium overlayer. It is shown that the tendency to reconstruct in the presence...... of adsorbed K is largest for Ag. This is in accordance with recent experiments indicating a potassium-induced missing-row reconstruction for Ag, but not for other metals. The tendency is shown to be related to the relatively low bulk modulus of silver. Differences from the well-known alkali...

  15. Investigation of Anti-Relaxation Coatings for Alkali-Metal Vapor Cells Using Surface Science Techniques

    CERN Document Server

    Seltzer, S J; Donaldson, M H; Balabas, M V; Barber, S K; Bernasek, S L; Bouchiat, M -A; Hexemer, A; Hibberd, A M; Kimball, D F Jackson; Jaye, C; Karaulanov, T; Narducci, F A; Rangwala, S A; Robinson, H G; Voronov, D L; Yashchuk, V V; Pines, A; Budker, D

    2010-01-01

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of anti-relaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10,000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We present a survey of modern surface science techniques applied to the study of paraffin coatings, in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge X-ray absorption fine structure spectroscopy, and X-ray photoelectron spectroscopy. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present with...

  16. Structural and Dynamical Trends in Alkali-Metal Silanides Characterized by Neutron-Scattering Methods

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Wan Si; Dimitrievska, Mirjana; Chotard, Jean-Noel; Zhou, Wei; Janot, Raphael; Skripov, Alexander V.; Udovic, Terrence J.

    2016-09-29

    Structural, vibrational, and dynamical properties of the mono- and mixed-alkali silanides (MSiH3, where M = K, Rb, Cs, K0.5Rb0.5, K0.5Cs0.5, and Rb0.5Cs0.5) were investigated by various neutron experiments, including neutron powder diffraction (NPD), neutron vibrational spectroscopy (NVS), neutron-scattering fixed-window scans (FWSs), and quasielastic neutron scattering (QENS) measurements. Structural characterization showed that the mixed compounds exhibit disordered (..alpha..) and ordered (..beta..) phases for temperatures above and below about 200-250 K, respectively, in agreement with their monoalkali correspondents. Vibrational and dynamical properties are strongly influenced by the cation environment; in particular, there is a red shift in the band energies of the librational and bending modes with increasing lattice size as a result of changes in the bond lengths and force constants. Additionally, slightly broader spectral features are observed in the case of the mixed compounds, indicating the presence of structural disorder caused by the random distribution of the alkali-metal cations within the lattice. FWS measurements upon heating showed that there is a large increase in reorientational mobility as the systems go through the order-disorder (..beta..-..alpha..) phase transition, and measurements upon cooling of the ..alpha..-phase revealed the known strong hysteresis for reversion back to the ..beta..-phase. Interestingly, at a given temperature, among the different alkali silanide compounds, the relative reorientational mobilities of the SiH3- anions in the ..alpha..- and ..beta..-phases tended to decrease and increase, respectively, with increasing alkali-metal mass. This dynamical result might provide some insights concerning the enthalpy-entropy compensation effect previously observed for these potentially promising hydrogen storage materials.

  17. Studies on interfacial behavior and wettability change phenomena by ionic and nonionic surfactants in presence of alkalis and salt for enhanced oil recovery

    Science.gov (United States)

    Kumar, Sunil; Mandal, Ajay

    2016-05-01

    Surfactant flooding is one of the most promising method of enhanced oil recovery (EOR) used after the conventional water flooding. The addition of alkali improves the performance of surfactant flooding due to synergistic effect between alkali and surfactant on reduction of interfacial tension (IFT), wettability alteration and emulsification. In the present study the interfacial tension, contact angle, emulsification and emulsion properties of cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and polysorbate 80 (Tween 80) surfactants against crude oil have been investigated in presence of sodium chloride (NaCl) and alkalis viz. sodium hydroxide (NaOH), sodium carbonate (Na2CO3), ammonium hydroxide (NH4OH), sodium metaborate (SMB) and diethanolamine (DEA). All three surfactants significantly reduce the IFT values, which are further reduced to ultra-low value (∼10-4 mN/m) by addition of alkalis and salt. It has been found experimentally that alkali-surfactant systems change the wettability of an intermediate-wet quartz rock to water-wet. Emulsification of crude oil by surfactant and alkali has also been investigated in terms of the phase volume and stability of emulsion. A comparative FTIR analysis of crude oil and different emulsions were performed to investigate the interactions between crude oil and displacing water in presence of surfactant and alkali.

  18. Cloning of a Vacuolar H+-pyrophosphatase Gene from the Halophyte Suaeda corniculata whose Heterologous Overexpression Improves Salt,Saline-alkali and Drought Tolerance in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Liang Liu; Ying Wang; Nan Wana; Yuan-Yuan Dong; Xiu-Duo Fan; Xiu-Ming Liu; Jing Yang

    2011-01-01

    Salt,saline-alkali conditions,and drought are major environmental factors limiting plant growth and productivity.The vacuolar H+-translocating inorganic pyrophosphatase (V-H+-PPase) is an electrogenic proton pump that translocates protons into vacuoles in plant cells.Expression of V-H+-PPase increases in plants under a number of abiotic stresses,and is thought to have an important role in adaptation to abiotic stress.In this work,we report the isolation and characterization of the gene,ScVP,encoding a vacuolar inorganic pyrophosphatase (V-H+-PPase) from the halophyte,Suaeda corniculata.Semiquantitative reverse transcription-polymerase chain reaction analysis showed that ScVP was induced in roots,stems and leaves under treatment with salt,saline-alkali and drought.Compared with wild-type (WT) Arabidopsis,transgenic plants overexpressing ScVP accumulated more Na+ in leaves and roots,and showed increased tolerance to high salinity,saline-alkali and drought stresses.The germination percentage of transgenic Arabidopsis seeds was higher than that of WT seeds under the abiotic stresses.The root length of transgenic plants under salt stress was longer than that of WT plants.Furthermore,the rate of water loss during drought stress was higher in WT than in transgenic plants.Collectively,these results indicate that ScVP plays an important role in plant tolerance to salt,saline-alkali and drought stress.

  19. MgAl2O4 spinel refractory as containment liner for high-temperature alkali salt containing environments

    Science.gov (United States)

    Peascoe-Meisner, Roberta A [Knoxville, TN; Keiser, James R [Oak Ridge, TN; Hemric, James G [Knoxville, TN; Hubbard, Camden R [Oak Ridge, TN; Gorog, J Peter [Kent, WA; Gupta, Amul [Jamestown, NY

    2008-10-21

    A method includes containing a high-temperature alkali salt containing environment using a refractory containment liner containing MgAl.sub.2O.sub.4 spinel. A method, includes forming a refractory brick containing MgAl.sub.2O.sub.4 spinel having an exterior chill zone defined by substantially columnar crystallization and an interior zone defined by substantially equiaxed crystallization; and removing at least a portion of the exterior chill zone from the refractory brick containing MgAl.sub.2O.sub.4 spinel by scalping the refractory brick containing MgAl.sub.2O.sub.4 spinel to define at least one outer surface having an area of substantially equiaxed crystallization. A product of manufacture includes a refractory brick containing MgAl.sub.2O.sub.4 spinel including an interior zone defined by substantially equiaxed crystallization; and at least one outer surface having an area of substantially equiaxed crystallization.

  20. Alkali and heavy metal emissions of the PCFB-process; Alkalipaeaestoet PCFB-prosessissa

    Energy Technology Data Exchange (ETDEWEB)

    Kuivalainen, R.; Eriksson, T.; Lehtonen, P. [Foster Wheeler Energia Oy, Karhula (Finland)

    1996-12-01

    Pressurized Circulating Fluidized Bed (PCFB) combustion technology has been developed in Karhula R and D Center since 1986. As a part of the development, 10 MW PCFB Test Facility was built in 1989. The Test Facility has been used for performance testing with different coal types through the years 1990-1995 in order to gain data for design and commercialization of the high-efficiency low-emission PCFB combustion technology. The project Y44 `Alkali and heavy metal emissions of the PCFB-process` was part of national LIEKKI 2 research program. The main object of the project was to measure vapor phase Na and K concentrations in the PCFB flue gas after hot gas filter and investigate the effects of process conditions and sorbents on alkali release. The measurements were performed using plasma assisted method by TUT Laboratory of Plasma Technology and wet absorption method of VTT Energy. The measured Na concentrations were below 30 ppb(w) in all measured data points. The results of K were below 10 ppb(w). The accuracies of the both methods are about + 50 % at this concentration range. The scatter of the data covers the effects of different process variables on the alkali emission. The measured emissions are at the same order of magnitude as the guideline emission limits estimated by gas turbine manufacturers. The measurements and development of the analyses methods are planned to be continued during PCFB test runs in spring 1996 for example within Joule II research program. (author)

  1. Thermochemical ablation therapy of VX2 tumor using a permeable oil-packed liquid alkali metal.

    Directory of Open Access Journals (Sweden)

    Ziyi Guo

    Full Text Available Alkali metal appears to be a promising tool in thermochemical ablation, but, it requires additional data on safety is required. The objective of this study was to explore the effectiveness of permeable oil-packed liquid alkali metal in the thermochemical ablation of tumors.Permeable oil-packed sodium-potassium (NaK was prepared using ultrasonic mixing of different ratios of metal to oil. The thermal effect of the mixture during ablation of muscle tissue ex vivo was evaluated using the Fluke Ti400 Thermal Imager. The thermochemical effect of the NaK-oil mixture on VX2 tumors was evaluated by performing perfusion CT scans both before and after treatment in 10 VX2 rabbit model tumors. VX2 tumors were harvested from two rabbits immediately after treatment to assess their viability using trypan blue and hematoxylin and eosin (H.E. staining.The injection of the NaK-oil mixture resulted in significantly higher heat in the ablation areas. The permeable oil controlled the rate of heat released during the NaK reaction with water in the living tissue. Perfusion computed tomography and its parameter map confirmed that the NaK-oil mixture had curative effects on VX2 tumors. Both trypan blue and H.E. staining showed partial necrosis of the VX2 tumors.The NaK-oil mixture may be used successfully to ablate tumor tissue in vivo. With reference to the controlled thermal and chemical lethal injury to tumors, using a liquid alkali in ablation is potentially an effective and safe method to treat malignant tumors.

  2. Chemical perspectives on alkali and earth alkaline nitrate and nitrite salts for concentrated solar power applications

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, Joseph G. [Sandia National Labsoratories, Livermore, CA (United States)

    2013-04-01

    Molten salts have been widely considered as the leading candidate heat transfer fluids (HTF) used in high temperature, concentrated solar power plants. Specifically, nitrate and nitrite based salts have been investigated as a HTF and even deployed in pilot plants generating up to 19.9 MW of electricity at operating temperatures above 500 C. New plant designs requiring higher operating temperatures for better efficiencies are pushing the stability limit of HTF. This paper presents an overview of the thermophysical properties of nitrate and nitrite salts and discusses thermodynamic and kinetic stability limitations as they relate to concentrated solar power generation. (orig.)

  3. Intercalation of heavy alkali metals (K, Rb and Cs) in the bundles of single wall nanotubes

    Science.gov (United States)

    Duclaux, L.; Méténier, K.; Lauginie, P.; Salvetat, J. P.; Bonnamy, S.; Beguin, F.

    2000-11-01

    The electric-arc discharge carbon deposits (collaret) containing Single Wall Carbon Nanotubes (SWNTs) were heat treated at 1600 °C during 2 days under N2 flow in order to eliminate the Ni catalyst by sublimation, without modifications of the SWNTs ropes. Sorting this deposit by gravity enabled to obtain in the coarsest particles higher amount of SWNTs ropes than in other particle sizes. The coarser particles of the carbon deposits were reacted with the alkali metals vapor giving intercalated samples with a MC8 composition. The intercalation led to an expansion of the 2D lattice of the SWNTs so that the alkali metals were intercalated in between the tubes within the bundles. Disordered lattices were observed after intercalation of Rb and Cs. The simulations of the X-ray diffractograms of SWNTs reacted with K, gave the best fit for three K ions occupying the inter-tubes triangular cavities. The investigations by EPR, and 13C NMR, showed that doped carbon deposits are metallic.

  4. Effect of particle size on thermal decomposition of alkali metal picrates

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui; Zhang, Tonglai, E-mail: ztlbit@bit.edu.cn; Yang, Li; Zhou, Zunning

    2014-05-01

    Graphical abstract: The smaller-sized picrate has greater gas emission than do its larger counterpart. The small size effect reduces the thermal decomposition activation energy, accelerates the reaction rate, and promotes the reaction activity. - Highlights: • Picrates were prepared into three micron sizes by microemulsion synthesis. • Thermal decomposition kinetics and thermodynamics were studied by DPTA and DSC. • Smaller-sized picrate has higher activity and faster reaction rate. • Particle size effect on thermal decomposition kinetics and thermodynamics was revealed. - Abstract: Three alkali metal picrates, KPA, RbPA and CsPA, were prepared into three micron sizes by microemulsion synthesis, and their thermal decomposition behaviors were investigated by DPTA at different temperatures and by DSC at different heating rates. The smaller-sized picrate has greater gas emission and smaller kinetic and thermodynamic parameters than do its larger counterpart. It can be attributed to the decreasing particle size which leads to the high surface energy, the fast mass and heat transfer, and the increasing active sites on the reaction interface. The small size effect and surface effect cause the autocatalysis which reduces the activation energy and promotes the reaction activity. The particle size does not affect the reaction mechanism. However, the picrates with different central alkali metals exhibit different reaction mechanisms even though they are of the same size. This is because the central metal determines the bond energy and consequently affects the stability of picrate.

  5. Shortcuts for understanding rovibronic spectroscopy of ultracold alkali metal diatomic molecules

    Science.gov (United States)

    Stwalley, William C.; Bellos, Michael; Carollo, Ryan; Banerjee, Jayita; Bermudez, Matthew

    2012-08-01

    The high-resolution rovibronic spectroscopies of cold and ultracold molecules (e.g. supersonic molecular beam excitation spectra (MB), photoassociation spectra of ultracold atoms (PA), resonance-enhanced multiphoton ionization spectra (REMPI), stimulated Raman transfer (SRT) spectra) are of major current interest. This manuscript summarizes the significant level of understanding of these various spectroscopies, enabled by using simple graphical and semiclassical ideas and shortcuts. Physical realizations of these spectroscopies will be illustrated using the alkali metal diatomic molecules, both homonuclear (e.g. Rb2) and heteronuclear (e.g. KRb).

  6. Van der Waals coefficients for alkali metal clusters and their size dependence

    Indian Academy of Sciences (India)

    Arup Banerjee; Manoj K Harbola

    2006-02-01

    In this paper we employ the hydrodynamic formulation of time-dependent density functional theory to obtain the van der Waals coefficients 6 and 8 of alkali metal clusters of various sizes including very large clusters. Such calculations become computationally very demanding in the orbital-based Kohn-Sham formalism, but are quite simple in the hydrodynamic approach. We show that for interactions between the clusters of the same sizes, 6 and 8 scale as the sixth and the eighth power of the cluster radius, respectively, and approach their classically predicted values for the large size clusters.

  7. Surface tension of molten alkali metal halides as a function of ion sizes

    International Nuclear Information System (INIS)

    The analysis of the experimental data on the surface tension of the liquid/vapor interphase boundary of the molten alkali metal halides MX (M Li-Cs, X = F-I) near the melting temperature, accounting for the cation and anion dimensional differences, is presented. The main attention is focused at the manifestation of the effects of the interphase boundary of the effects of the interphase boundary thickness and twofold electric layer. It is shown, that the experimental data on the whole MX series may be represented in the form of the electrocapillary curve on the graph of the surface tension dependence on the degree of the halides dimensional asymmetry

  8. Electric dipole polarizabilities of Rydberg states of alkali-metal atoms

    Science.gov (United States)

    Yerokhin, V. A.; Buhmann, S. Y.; Fritzsche, S.; Surzhykov, A.

    2016-09-01

    Calculations of the static electric-dipole scalar and tensor polarizabilities are presented for two alkali-metal atoms, Rb and Cs, for the n S , n P½,3 /2 , and n D3 /2 ,5 /2 states with large principal quantum numbers up to n =50 . The calculations are performed within an effective one-electron approximation, based on the Dirac-Fock Hamiltonian with a semiempirical core-polarization potential. The obtained results are compared with those from a simpler semiempirical approach and with available experimental data.

  9. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals.

    Science.gov (United States)

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-08-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: ([3])Li(+), ([3])Na(+), ([4])K(+), ([4])Rb(+), ([6])Cs(+), ([3])Be(2+), ([4])Mg(2+), ([6])Ca(2+), ([6])Sr(2+) and ([6])Ba(2+), but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of ([6])Na(+), the ratio Ueq(Na)/Ueq(bonded anions) is partially correlated with 〈([6])Na(+)-O(2-)〉 (R(2) = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li(+) in

  10. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals.

    Science.gov (United States)

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-08-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: ([3])Li(+), ([3])Na(+), ([4])K(+), ([4])Rb(+), ([6])Cs(+), ([3])Be(2+), ([4])Mg(2+), ([6])Ca(2+), ([6])Sr(2+) and ([6])Ba(2+), but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of ([6])Na(+), the ratio Ueq(Na)/Ueq(bonded anions) is partially correlated with 〈([6])Na(+)-O(2-)〉 (R(2) = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li(+) in

  11. The effects of correlation, relativity, exchange, channels coupling and polarization in scattering of electrons by alkali-metal atoms and alkali-like ions

    International Nuclear Information System (INIS)

    The present review briefly presents the growing experimental as well as theoretical interest in recent years in the effects of correlation, relativity, exchange, channels coupling and polarization on the high precision scattering of electron by alkali-metal atoms and alkali-like ions. Many high precision experiments have been performed which need very high accurate theoretical prediction for correct interpretation and identification of different physical effects involved. Several sophisticated theoretical techniques have been developed for inclusion of the above mentioned effects which play an extremely important role in order to obtain results of high accuracy for understanding experimental observation of high precision. At present, we do not have a comprehensive and practical atomic scattering theory which accounts for all these effects on an equal footing. Future challenges and directions, in reliable electron-atom scattering calculations, have been discussed and suggested. (author). 136 refs, 16 figs

  12. Solubility of alkali metal halides in the ionic liquid [C4C1im][OTf].

    Science.gov (United States)

    Kuzmina, O; Bordes, E; Schmauck, J; Hunt, P A; Hallett, J P; Welton, T

    2016-06-28

    The solubilities of the metal halides LiF, LiCl, LiBr, LiI, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, KI, RbCl, CsCl, CsI, were measured at temperatures ranging from 298.15 to 378.15 K in the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([C4C1im][OTf]). Li(+), Na(+) and K(+) salts with anions matching the ionic liquid have also been investigated to determine how well these cations dissolve in [C4C1im][OTf]. This study compares the influence of metal cation and halide anion on the solubility of salts within this ionic liquid. The highest solubility found was for iodide salts, and the lowest solubility for the three fluoride salts. There is no outstanding difference in the solubility of salts with matching anions in comparison to halide salts. The experimental data were correlated employing several phase equilibria models, including ideal mixtures, van't Hoff, the λh (Buchowski) equation, the modified Apelblat equation, and the non-random two-liquid model (NRTL). It was found that the van't Hoff model gave the best correlation results. On the basis of the experimental data the thermodynamic dissolution parameters (ΔH, ΔS, and ΔG) were determined for the studied systems together with computed gas phase metathesis parameters. Dissolution depends on the energy difference between enthalpies of fusion and dissolution of the solute salt. This demonstrates that overcoming the lattice energy of the solid matrix is the key to the solubility of inorganic salts in ionic liquids. PMID:27264676

  13. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    Science.gov (United States)

    Hagedorn, Norman H. (Inventor)

    1993-01-01

    An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.

  14. Electrolytic systems and methods for making metal halides and refining metals

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Justin M.; Cecala, David M.

    2015-05-26

    Disclosed are electrochemical cells and methods for producing a halide of a non-alkali metal and for electrorefining the halide. The systems typically involve an electrochemical cell having a cathode structure configured for dissolving a hydrogen halide that forms the halide into a molten salt of the halogen and an alkali metal. Typically a direct current voltage is applied across the cathode and an anode that is fabricated with the non-alkali metal such that the halide of the non-alkali metal is formed adjacent the anode. Electrorefining cells and methods involve applying a direct current voltage across the anode where the halide of the non-alkali metal is formed and the cathode where the non-alkali metal is electro-deposited. In a representative embodiment the halogen is chlorine, the alkali metal is lithium and the non-alkali metal is uranium.

  15. [The Measuring Method of Atomic Polarization of Alkali Metal Vapor Based on Optical Rotation and the Analysis of the Influence Factors].

    Science.gov (United States)

    Shang, Hui-ning; Quan, Wei; Chen, Yao; Li, Yang; Li, Hong

    2016-02-01

    High sensitivity measurements of inertia and magnetic field could be achieved by utilizing a category of devices, which manipulate the atomic spins in the spin-exchange-relaxation-free regime. The alkali cell which contains the alkali metal vapor is used to sense magnetic field and inertia. The atomic number density of alkali vapor and the polarization of alkali metal vapor are two of the most important parameters of the cell. They play an important role in the research on atomic spins in the spin-exchange-relaxation-free regime. Besides, optical polarization plays an important role in quantum computing and atomic physics. We propose a measurement of alkali vapor polarization and alkali number density by detecting the optical rotation in one system. This method simplifies existing experimental equipment and processes. A constant bias magnetic field is applied and the Faraday rotation angle is detected by a bunch of the probe beam to deduce alkali-metal density. Then the magnetic field is closed and a bunch of the pump laser is utilized to polarize alkali-metal. Again, the probe beam is utilized to obtain the polarization of alkali metal. The alkali density obtained at first is used to deduce the polarization. This paper applies a numerical method to analyze the Faraday rotation and the polarization rotation. According to the numerical method, the optimal wavelength for the experiment is given. Finally, the fluctuation of magnetic field and wavelength on signal analysis are analyzed. PMID:27209720

  16. Understanding the insulating nature of alkali-metal/Si(111):B interfaces.

    Science.gov (United States)

    Fagot-Revurat, Y; Tournier-Colletta, C; Chaput, L; Tejeda, A; Cardenas, L; Kierren, B; Malterre, D; Le Fèvre, P; Bertran, F; Taleb-Ibrahimi, A

    2013-03-01

    We have recently revisited the phase diagram of alkali-metal/Si(111):B semiconducting interfaces previously suggested as the possible realization of a Mott-Hubbard insulator on a triangular lattice. The insulating character of the 2√[3] × 2√[3]R30 surface reconstruction observed at the saturation coverage, i.e. 0.5 ML, has been shown to find its origin in a giant alkali-metal-induced vertical distortion. Low energy electron diffraction, photoemission spectroscopy and scanning tunneling microscopy and spectroscopy experiments coupled with linear augmented plane-wave density functional theory calculations allow a full understanding of the k-resolved band structure, explaining both the inhomogeneous charge transfers into an Si-B hybridized surface state and the opening of a band gap larger than 1 eV. Moreover, √[3] × √[3]R30, 3 × 3 and 2√[3] × 2√[3]R30 surface reconstructions observed as a function of coverage may reveal a filling-controlled transition from a half-filled correlated magnetic material to a strongly distorted band insulator at saturation. PMID:23400003

  17. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-11-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed.

  18. Researches of the electrotechnical laboratory. No. 973: Study on alkali metal thermoelectric converter

    Science.gov (United States)

    Tanaka, K.; Negishi, A.; Honda, T.; Fujii, T.; Masuda, T.; Nozaki, K.

    1995-03-01

    The alkali metal thermoelectric converter (AMTEC) utilizing the sodium ion conducting Beta' '- alumina solid electrolyte (BASE) is a device to convert heat energy to electric energy directly. It is characterized by high conversion efficiencies (20 to 40 percent), high power densities (1 W/sq cm), no moving parts, low maintenance requirements, high durability, and efficiency independent of size. Because of these merits, AMTEC is one of the most promising candidate for dispersed small scale power station, remote power station and aerospace power systems. In this paper, the theoretical and experimental studies on the thin film electrodes characteristics, power generating characteristics, cell efficiency, integral electrode with large current lead, porous metal current lead, series connected cells power generation, potassium AMTEC, wick return AMTEC and system analysis for space and grand use are reported.

  19. First-principles study of d0 ferromagnetism in alkali-metal doped GaN

    Science.gov (United States)

    Zhang, Yong

    2016-08-01

    The d0 ferromagnetism in GaN has been studied based on density functional theory. Our results show that GaN with sufficient hole become spin-polarized. Alkali-metal doping can introduce holes in GaN. Among them, both of Li- and Na-doping induce ferromagnetism in GaN and Na-doped GaN behaves as half-metallic ferromagnet. Moreover, at a growth temperature of 2000 K under N-rich condition, both concentrations can exceed 18%, which is sufficient to produce detectable macroscopic magnetism in GaN. The Curie temperature of Li- and Na-doped GaN is estimated to be 304 and 740 K, respectively, which are well above room temperature.

  20. Adsorption of alkali metal atoms on germanene: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Qing, E-mail: pangqingjkd@163.com [College of Science, Xi’an University of Architecture and Technology, Xi’an 710055, Shaanxi (China); Zhang, Chun-ling; Li, Long; Fu, Zhi-qiang [College of Science, Xi’an University of Architecture and Technology, Xi’an 710055, Shaanxi (China); Wei, Xiu-mei [College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, Shaanxi (China); Song, Yu-ling [College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, Henan (China)

    2014-09-30

    Highlights: • All alkali metal (AM) atoms considered prefer to bind on the hexagonal hollow site of germanene. • AM adsorption makes the semimetallic germanene become to be metallic. • A small band gap opens at Dirac point for AM/germanene system without degrading of electronic properties. • The band gap and charge carriers for AM/germanene system can be tuned by changing the AM coverage. • AM/germanene systems show potential applications in germanene based field effect transistors. - Abstract: The structural, energetic and electronic properties of alkali metal (AM) atoms (including Li, Na and K) adsorbed germanene with a wide range of coverages are investigated by means of first-principles calculations. All AM atoms we considered prefer to bind on the hexagonal hollow site of germanene. In contrast to graphene, the interaction between adatom and germanene surface is quite strong due to its buckled hexagonal structure. As the increasing adatom coverage, the binding between AM atom and germanene sheet is weakened, due to the enhanced adatom–adatom repulsion while the decreased adatom-germanene attraction at high coverage. As a consequence of heavy charge transfer from AM to germanene, the formed adatom–Ge bonds perform mainly an ionic character. Through adsorption, the semimetallic germanene becomes to be metallic with its Dirac point moving below the Fermi level, thus making germanene behave as n-type doped. In addition, a small band gap can be opened at the Dirac point, and both the band gap and the concentration of charge carries of AM/germanene system can be tuned by controlling the adatom coverage. The strong binding of AM adatoms to germanene and the rich electronic properties of the AM/germanene systems suggest possible potential applications in germanene based field effect transistor (FET) devices.

  1. Ab initio interaction potentials and scattering lengths for ultracold mixtures of metastable helium and alkali-metal atoms

    Science.gov (United States)

    Kedziera, Dariusz; Mentel, Łukasz; Żuchowski, Piotr S.; Knoop, Steven

    2015-06-01

    We have obtained accurate ab initio +4Σ quartet potentials for the diatomic metastable triplet helium+alkali-metal (Li, Na, K, Rb) systems, using all-electron restricted open-shell coupled cluster singles and doubles with noniterative triples corrections CCSD(T) calculations and accurate calculations of the long-range C6 coefficients. These potentials provide accurate ab initio quartet scattering lengths, which for these many-electron systems is possible, because of the small reduced masses and shallow potentials that result in a small amount of bound states. Our results are relevant for ultracold metastable triplet helium+alkali-metal mixture experiments.

  2. Prospects for sympathetic cooling of polar molecules: NH with alkali-metal and alkaline-earth atoms - a new hope

    CERN Document Server

    Soldán, Pavel; Hutson, Jeremy M

    2009-01-01

    We explore the potential energy surfaces for NH molecules interacting with alkali-metal and alkaline-earth atoms using highly correlated ab-initio electronic structure calculations. The surfaces for interaction with alkali-metal atoms have deep wells dominated by covalent forces. The resulting strong anisotropies will produce strongly inelastic collisions. The surfaces for interaction with alkaline-earth atoms have shallower wells that are dominated by induction and dispersion forces. For Be and Mg the anisotropy is small compared to the rotational constant of NH, so that collisions will be relatively weakly inelastic. Be and Mg are thus promising coolants for sympathetic cooling of NH to the ultracold regime.

  3. New bonding configuration on Si(111) and Ge(111) surfaces induced by the adsorption of alkali metals

    DEFF Research Database (Denmark)

    Lottermoser, L.; Landemark, E.; Smilgies, D.M.;

    1998-01-01

    The structure of the (3×1) reconstructions of the Si(111) and Ge(111) surfaces induced by adsorption of alkali metals has been determined on the basis of surface x-ray diffraction and low-energy electron diffraction measurements and density functional theory. The (3×1) surface results primarily...... from the substrate reconstruction and shows a new bonding configuration consisting of consecutive fivefold and sixfold Si (Ge) rings in 〈11̅ 0〉 projection separated by channels containing the alkali metal atoms. © 1998 The American Physical Society...

  4. Nonmetal-metal transition in metal–molten-salt solutions

    NARCIS (Netherlands)

    Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.

    1996-01-01

    The method of ab initio molecular dynamics, based on finite-temperature density-functional theory, is used to study the nonmetal-metal transition in two different metal–molten-salt solutions, Kx(KCl)1-x and Nax(NaBr)1-x. As the excess metal concentration is increased the electronic density becomes d

  5. Determination and evaluation of the thermophysical properties of an alkali carbonate eutectic molten salt.

    Science.gov (United States)

    An, Xuehui; Cheng, Jinhui; Zhang, Peng; Tang, Zhongfeng; Wang, Jianqiang

    2016-08-15

    The thermal physical properties of Li2CO3-Na2CO3-K2CO3 eutectic molten salt were comprehensively investigated. It was found that the liquid salt can remain stable up to 658 °C (the onset temperature of decomposition) by thermal analysis, and so the investigations on its thermal physical parameters were undertaken from room temperature to 658 °C. The density was determined using a self-developed device, with an uncertainty of ±0.00712 g cm(-3). A cooling curve was obtained from the instrument, giving the liquidus temperature. For the first time, we report the obtainment of the thermal diffusivity using a laser flash method based on a special crucible design and establishment of a specific sample preparation method. Furthermore, the specific heat capacity was also obtained by use of DSC, and combined with thermal diffusivity and density, was used to calculate the thermal conductivity. We additionally built a rotating viscometer with high precision in order to determine the molten salt viscosity. All of these parameters play an important part in the energy storage and transfer calculation and safety evaluation for a system. PMID:27203821

  6. Investigation of anti-Relaxation coatings for alkali-metal vapor cells using surface science techniques

    Energy Technology Data Exchange (ETDEWEB)

    Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Balabas, M. V.; Barber, S. K.; Bernasek, S. L.; Bouchiat, M.-A.; Hexemer, A.; Hibberd, A. M.; Jackson Kimball, D. F.; Jaye, C.; Karaulanov, T.; Narducci, F. A.; Rangwala, S. A.; Robinson, H. G.; Shmakov, A. K.; Voronov, D. L.; Yashchuk, V. V.; Pines, A.; Budker, D.

    2010-10-11

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10?000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the study of paraffin coatings in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge x-ray absorption fine structure spectroscopy, and x-ray photoelectron spectroscopy. We also compare the light-induced atomic desorption yields of several different paraffin materials. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present within a particular class of effective paraffin coatings. Further study should lead to the development of more robust paraffin antirelaxation coatings, as well as the design and synthesis of new classes of coating materials.

  7. The role of alkali metal cations in the stabilization of guanine quadruplexes: why K(+) is the best.

    Science.gov (United States)

    Zaccaria, F; Paragi, G; Fonseca Guerra, C

    2016-08-21

    The alkali metal ion affinity of guanine quadruplexes has been studied using dispersion-corrected density functional theory (DFT-D). We have done computational investigations in aqueous solution that mimics artificial supramolecular conditions where guanine bases assemble into stacked quartets as well as biological environments in which telomeric quadruplexes are formed. In both cases, an alkali metal cation is needed to assist self-assembly. Our quantum chemical computations on these supramolecular systems are able to reproduce the experimental order of affinity of the guanine quadruplexes for the cations Li(+), Na(+), K(+), Rb(+), and Cs(+). The strongest binding is computed between the potassium cation and the quadruplex as it occurs in nature. The desolvation and the size of alkali metal cations are thought to be responsible for the order of affinity. Until now, the relative importance of these two factors has remained unclear and debated. By assessing the quantum chemical 'size' of the cation, determining the amount of deformation of the quadruplex needed to accommodate the cation and through the energy decomposition analysis (EDA) of the interaction energy between the cation and the guanines, we reveal that the desolvation and size of the alkali metal cation are both almost equally responsible for the order of affinity. PMID:27185388

  8. Electric dipole polarizabilities at imaginary frequencies for the alkali-metal, alkaline-earth, and inert gas atoms

    CERN Document Server

    Derevianko, Andrei; Babb, James F

    2009-01-01

    The electric dipole polarizabilities evaluated at imaginary frequencies for hydrogen, the alkali-metal atoms, the alkaline earth atoms, and the inert gases are tabulated along with the resulting values of the atomic static polarizabilities, the atom-surface interaction constants, and the dispersion (or van der Waals) constants for the homonuclear and the heteronuclear diatomic combinations of the atoms.

  9. LDA or GGA? A combined experimental inelastic neutron scattering and ab initio lattice dynamics study of alkali metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, G.D. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Departamento de Quimica, Universidad Nacional de la Patagonia SJB, Ciudad Universitaria, 9005 Comodoro Rivadavia (Argentina); Colognesi, D. [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del Piano s.n.c., 50019 Sesto Fiorentino (Finland) (Italy); Mitchell, P.C.H. [School of Chemistry, University of Reading, RG6 6AD (United Kingdom); Ramirez-Cuesta, A.J. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); School of Chemistry, University of Reading, RG6 6AD (United Kingdom)], E-mail: a.j.ramirez-cuesta@rl.ac.uk

    2005-10-31

    In a previous work, we carried out inelastic neutron scattering (INS) spectroscopy experiments and preliminary first principles calculations on alkali metal hydrides. The complete series of alkali metal hydrides, LiH, NaH, KH, RbH and CsH was measured in the high-resolution TOSCA INS spectrometer at ISIS. Here, we present the results of ab initio electronic structure calculations of the properties of the alkali metal hydrides using both the local density approximation (LDA) and the generalized gradient approximation (GGA), using the Perdew-Burke-Ernzerhof (PBE) parameterization. Properties calculated were lattice parameters, bulk moduli, dielectric constants, effective charges, electronic densities and inelastic neutron scattering (INS) spectra. We took advantage of the currently available computer power to use full lattice dynamics theory to calculate thermodynamic properties for these materials. For the alkali metal hydrides (LiH, NaH, KH, RbH and CsH) using lattice dynamics, we found that the INS spectra calculated using LDA agreed better with the experimental data than the spectra calculated using GGA. Both zero-point effects and thermal contributions to free energies had an important effect on INS and several thermodynamic properties.

  10. Separation of hafnium from zirconium in their tetrachloride solution in molten alkali metal chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, A.B.; Kudyakov, V.Ya.; Smirnov, M.V.; Moskalenko, N.I. (AN SSSR, Sverdlovsk. Inst. Ehlektrokhimii)

    1984-08-01

    The coefficient of HfCl/sub 4/ and ZrCl/sub 4/ separation in the process of vapour sublimation from their solutions in molten NaCl, KCl, CsCl, NaCl-KCl and NaCl-CsCl equimolar mixtures is found to vary in the series from approximately 1.10 to approximately 1.22 and practically not to depend on the temperature (in the 600-910 deg) range and concentration (2-25 mol.% ZrCl/sub 4/+HfCl/sub 4/). HfCl/sub 4/ and ZrCl/sub 4/ are shown to form almost perfect solutions with each other, which in their turn form imperfect solutions with molten alkali metal chlorides, with the strength of hafnium complex chloride anions increasing higher than that of zirconium in the series from NaCl to CsCl.

  11. Separation of hafnium from zirconium in their tetrachloride solution in molten alkali metal chlorides

    International Nuclear Information System (INIS)

    The coefficient of HfCl4 and ZrCl4 separation in the process of vapour sublimation from their solutions in molten NaCl, KCl, CsCl, NaCl-KCl and NaCl-CsCl equimolar mixtures is found to vary in the series from approximately 1.10 to approximately 1.22 and practically not to depend on the temperature (in the 600-910 deg) range and concentration (2-25 mol.% ZrCl4+HfCl4). HfCl4 and ZrCl4 are shown to form almost perfect solutions with each other, which in their turn form imperfect solutions with molten alkali metal chlorides, with the strength of hafnium complex chloride anions increasing higher than that of zirconium in the series from NaCl to CsCl

  12. The alkali metal thermoelectric converter /AMTEC/ - A new direct energy conversion technology for aerospace power

    Science.gov (United States)

    Bankston, C. P.; Cole, T.; Jones, R.; Ewell, R.

    1982-01-01

    A thermally regenerative electrochemical device for the direct conversion of heat to electrical energy, the alkali metal thermoelectric converter (AMTEC), is characterized by potential efficiencies on the order of 15-40% and possesses no moving parts, making it a candidate for space power system applications. Device conversion efficiency is projected on the basis of experimental voltage vs current curves exhibiting power densities of 0.7 W/sq cm and measured electrode efficiencies of up to 40%. Preliminary radiative heat transfer measurements presented may be used in an investigation of methods for the reduction of AMTEC parasitic radiation losses. AMTEC assumes heat input and rejection temperatures of 900-1300 K and 400-800 K, respectively. The working fluid is liquid sodium, and the porous electrode employed is of molybdenum.

  13. Secondary transformation mechanism of paramagnetic centers in irradiated alkali metal perchlorates

    International Nuclear Information System (INIS)

    The EPR method has been used to study thermal transformations of paramagnetic centres (PC) in X-ray irradiated potassium, rubidium and cesium perchlorates. Experimental data make it possible to suppose that diffusion coefficient of O- ion a rather high and this ion is freely diffused already at 262 K. Colliding with [MeClO4]+ centres it is transformed in a molecule of oxygen. Another part of O- is transformed in stable ozonide-ion at 300 K. About room temperature hole centres dissociate with formation of ClO2 radical. It is supposed that part of electron and hole centres is not stabilized but at 77 K it is transformed in stable radiolysis products. This process most effective proceeds in dislocations and on the surface of microcrystals. The suggested model of thermal transformations of primary PC in irradiated perchlorates of alkali metals explains formation of all the finite ion and paramagnetic radiolysis products

  14. Momentum densities and Compton profiles of alkali-metal atoms

    Indian Academy of Sciences (India)

    Pranab Sarkar; Anupam Sarkar; S N Roy; B Talukdar

    2003-03-01

    It is assumed that the dynamics of valence electrons of alkali-metal atoms can be well accounted for by a quantum-defect theoretic model while the core electrons may be supposed to move in a self-consistent field. This model is used to study the momentum properties of atoms from 3Li to 37Rb. The numerical results obtained for the momentum density, moments of momentum density and Compton profile are found to be in good agreement with the results of more detailed configuration-interaction calculations for the atom 3Li. Similar results for 11Na, 19K and 37Rb are compared with the corresponding Hartree–Fock–Roothaan values only, for want of data from other realistic calculations.

  15. Effects of salt-alkali stress on active oxygen metabolism in roots of Spiraea × bumalda ‘Gold Mound' and Spiraea × bumalda ‘Gold Flame'

    Institute of Scientific and Technical Information of China (English)

    YAN Yong-qing; CHE Dai-di; SHI Xi-chan; LIU Xing-liang

    2011-01-01

    Under artificially-simulated complex salt-alkali stress, the levels of active oxygen metabolism in roots were studied using three-year-old cutting seedlings of Spiraea × bumalda ‘Gold Mound' and Spiraea × bumalda ‘Gold Flame'. The present study aimed at exploring the antioxidant capacity in roots of spiraeas and revealing their adaptability to salt-alkali stress. Results indicate that the oxygen free radicals contents, electrolyte leakage rates and MDA contents in roots of Spiraea × buralda ‘Gold Mound' and Spiraea × bumalda ‘Gold Flame' show an increasing tendency with the increases of the salinity and pH value,whereas the activities of superoxide dismutase (SOD), peroxidase (POD)and catalase (CAT) all increased firstly and then decreased. With the increase in intensity of salt-alkali stress, the CAT activity in roots of Spiraea × bumalda ‘Gold Flame' is higher and the increasing extents in the oxygen free radicals contents, electrolyte leakage rates as well as MDA contents are lower compared with Spiraea × bumalda ‘Gold Mound', indicating that Spiraea × bumalda ‘Gold Flame' has a stronger antioxidant capacity.

  16. Ectopic Expression of a Bacterium NhaD-type Na+/H+Antiporter Leads to Increased Tolerance to Combined Salt/Alkali Stresses

    Institute of Scientific and Technical Information of China (English)

    Nai-Qin Zhong; Li-Bo Han; Xiao-Min Wu; Li-Li Wang; Fang Wang; Yan-He Ma; Gui-Xian Xia

    2012-01-01

    AaNhaD,a gene isolated from the soda lake alkaliphile Alkalimonas amylolytica,encodes a Na+/H+antiporter crucial for the bacterium's resistance to salt/alkali stresses.However,it remains unknown whether this type of bacterial gene may be able to increase the tolerance of flowering plants to salt/alkali stresses.To investigate the use of extremophile genetic resources in higher plants,transgenic tobacco BY-2 cells and plants harboring AaNhaD were generated and their stress tolerance was evaluated.Ectopic expression of AaNhaD enhanced the salt tolerance of the transgenic BY-2 cells in a pH-dependent manner.Compared to wild-type controls,the transgenic cells exhibited increased Na+ concentrations and pH levels in the vacuoles.Subcellular localization analysis indicated that AaNhaD-GFP fusion proteins were primarily localized in the tonoplasts.Similar to the transgenic BY-2 cells,AaNhaD-overexpressing tobacco plants displayed enhanced stress tolerance when grown in saline-alkali soil.These results indicate that AaNhaD functions as a pH-dependent tonoplast Na+/H+ antiporter in plant cells,thus presenting a new avenue for the genetic improvement of salinity/alkalinity tolerance.

  17. Interaction of the model alkyltrimethylammonium ions with alkali halide salts: an explicit water molecular dynamics study

    Directory of Open Access Journals (Sweden)

    M. Druchok

    2013-01-01

    Full Text Available We present an explicit water molecular dynamics simulation of dilute solutions of model alkyltrimethylammonium surfactant ions (number of methylene groups in the tail is 3, 5, 8, 10, and 12 in mixture with NaF, NaCl, NaBr, and NaI salts, respectively. The SPC/E model is used to describe water molecules. Results of the simulation at 298 K are presented in form of the radial distribution functions between nitrogen and carbon atoms of CH2 groups on the alkyltrimethylammonium ion, and the counterion species in the solution. The running coordination numbers between carbon atoms of surfactants and counterions are also calculated. We show that I- counterion exhibits the highest, and F- the lowest affinity to "bind" to the model surfactants. The results are discussed in view of the available experimental and simulation data for this and similar solutions.

  18. The effect of metal salts on quantification of elemental and organic carbon in diesel exhaust particles using thermal-optical evolved gas analysis

    OpenAIRE

    Wang, Y.; Chung, A.; S. E. Paulson

    2010-01-01

    Thermal-optical evolved gas analysis (TOEGA) is a conventional method for classifying carbonaceous aerosols as organic carbon (OC) and elemental carbon (EC). Its main source of uncertainty arises from accounting for pyrolized OC (char), which has similar behavior to the EC originally present on the filter. Sample composition can also cause error, at least partly by complicating the charred carbon correction. In this study, lab generated metal salt particles, including alkali...

  19. Castable cements to prevent corrosion of metals in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Vidal, J. C.; Morton, E.

    2016-08-01

    Castable cements on metals form a protective barrier that is able to prevent permeation of molten salts towards metallic surfaces. Silica-based castable cements are capable of protecting containment metallic alloys from the corrosive attack of molten chlorides at temperatures as high as 650 degrees C. Boron nitride (BN) blocking the pores in the cured cement prevents permeation of the molten chloride towards the metal surface. The cements tested are not chemically stable in molten carbonates, because the bonding components dissolved into molten carbonates salt. The corrosion rate is 7.72+/-0.32 mm/year for bare stainless steel 347 in molten eutectic NaCl - 65.58 wt% LiCl at 650 degrees C, which is the baseline used for determining how well the cement protects the metallic surfaces from corrosion. In particular the metal fully encapsulated with Aremco 645-N with pores filled with boron nitride immersed in molten eutectic NaCl - 65.58 wt% LiCl at 650 degrees C shows a corrosion rate of 9E-04 mm/year. The present study gives initial corrosion rates. Long-term tests are required to determine if Aremco 645-N with BN coating on metal has long term chemical stability for blocking salt permeation through coating pores.

  20. Effects of heavy metals and saline-alkali on seedlings growth,physiological-biochemical of Oryehophragmus violaeeus%重金属及盐碱对二月兰幼苗生长和生理生化的影响

    Institute of Scientific and Technical Information of China (English)

    张小艾; 李名扬; 汪志辉; 汤浩若; 张新全; 左静

    2013-01-01

    The aim was to study on effects of heavy metals and saline-alkali on seedlings growth, physiological-biochemical of Oryehophragmus violaeeus. The results showed that relative electrolyte leakage, the content of soluble sugar and the content of Pro all increased with increased heavy metals and saline-alkali conditions, the total biomass decreased with increased heavy metals and saline-alkali conditions, but the content of MDA initially increased and then decreased. The activities of superoxide dismutase, peroxidase increased with increased heavy metals and saline-alkali conditions, and evidently higher than the control. The effect of heavy metals and saline-alkali stress on photosynthetic pigment content, in the leaf was assessed. With an increase in heavy metals and saline-alkali concentration, the chlorophyll and carotenoid contents decreased gradually, but the carote-noid contents decreased morn. The seedlings of O. violaeeus is with resistance against light combined stresses of salt-alkali and Pb (500 mg/L), and the stress patience of vane is greater than the root.%以二月兰为试验材料,研究了在不同浓度的盐碱和重金属胁迫下,二月兰幼苗生长和生理生化特性.结果表明,盐碱及重金属胁迫均会对二月兰幼苗的生长发育造成影响,MDA含量呈先降后升趋势,生物量随着胁迫的加重而减少,相对电导率、渗透物质可溶性糖含量和Pro含量均呈上升趋势,抗氧化酶POD活性、SOD活性明显高于对照,胁迫对叶片光合色素的合成具有一定的破坏作用,其中类胡萝卜素更敏感.轻度盐碱及Pb(500 mg/L)的复合胁迫下,MDA含量下降,叶绿素a、叶绿素b、类胡萝卜素高于对照,说明二月兰幼苗对轻度盐碱及Pb胁迫具有一定耐性,且叶片对于胁迫的耐性大于根部.

  1. The effect of metal salts on quantification of elemental and organic carbon in diesel exhaust particles using thermal-optical evolved gas analysis

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2010-07-01

    Full Text Available Thermal-optical evolved gas analysis (TOEGA is a conventional method for classifying carbonaceous aerosols as organic carbon (OC and elemental carbon (EC. Its main source of uncertainty arises from accounting for pyrolyzed OC (char, which has similar behavior to the EC originally present on the filter. Sample composition can also cause error, at least partly by complicating the charred carbon correction. In this study, lab generated metal salt particles, including alkali (NaCl, KCl, Na2SO4, alkaline-earth (MgCl2, CaCl2 and transition metal salts (CuCl2, FeCl2, FeCl3, CuCl, ZnCl2, MnCl2, CuSO4, Fe2(SO43, were deposited on a layer of diesel particles to investigate their effect on EC and OC quantification with TOEGA. Measurements show that metals reduce the oxidation temperature of EC and enhance the charring of OC. The split point used to determine classification of EC vs. OC is more dependent on changes in EC oxidation temperature than it was on charring. The resulting EC/OC ratio is reduced by 0–80% in the presence of most of the salts, although some metal salts increased reported EC/OC at low metal to carbon ratios. In general, transition metals are more active than alkali and alkaline-earth metals; copper is the most active. Copper and iron chlorides are more active than sulfates. The melting point of metal salts is strongly correlated with the increase of OC charring, but not with the reduction of EC oxidation temperature. Other chemistry, such as redox reactions, may affect the EC oxidation. A brief discussion of possible catalytic mechanisms for the metals is provided.

  2. Study of complex amalgams containing alkali metals by method of broken thermometric titration

    International Nuclear Information System (INIS)

    Complex potassium-cadmium and sodium-cadmium amalgams containing different amounts of the alkali metal nad cadmium have been studied by thermometric titration with mercury. The experiments have been carried out in argon atmosphere at 25 deg C. As evidenced by the titration of sodium-cadmium amalgams, in the range of concentrations studied (Csub(Na)=0.71-2.95, Csub(Cd)=4.38-6.45 g-at/lHg) no solid phase is formed in them. Potassium-cadmium amalgams where the metals content is no higher than their individual solubility in mercury, display, when being mercury-titrated, negative heat effects due to solid phase formation. An estimation is made of the solid phase composition, its solubility in mercury and the heat of dissolution. The solid phase appearing in complex K-Cd amalgams is likely to contain K and Cd in a ratio 1:1 its conventional solubility product is 5.4 g-at/l Hg, and the heat of dissolution in mercury at 25 deg is -21 +-4 kJ/g-at

  3. Stability of alkali-metal hydrides: effects of n-type doping

    Science.gov (United States)

    Olea Amezcua, Monica Araceli; de La Peña Seaman, Omar; Rivas Silva, Juan Francisco; Heid, Rolf; Bohnen, Klaus-Peter

    Metal hydrides could be considered ideal solid-state hydrogen storage systems, they have light weight and high hydrogen volumetric densities, but the hydrogen desorption process requires excessively high temperatures due to their high stability. Efforts have been performed to improve their dehydrogenation properties, based on the introduction of defects, impurities and doping. We present a systematic study of the n-type (electronic) doping effects on the stability of two alkali-metal hydrides: Na1-xMgxH and Li1-xBexH. These systems have been studied within the framework of density functional perturbation theory, using a mixed-basis pseudopotential method and the self-consistent version of the virtual crystal approximation to model the doping. The full-phonon dispersions are analyzed for several doping content, paying special attention to the crystal stability. It is found a doping content threshold for each system, where they are close to dynamical instabilities, which are related to charge redistribution in interstitial zones. Applying the quasiharmonic approximation, the vibrational free energy, the linear thermal expansion and heat capacities are obtained for both hydrides systems and are analyzed as a function of the doping content. This work is partially supported by the VIEP-BUAP 2016 and CONACYT-México (No.221807) projects.

  4. Elucidating the magnetic and superconducting phases in the alkali metal intercalated iron chalcogenides

    Science.gov (United States)

    Wang, Meng; Yi, Ming; Tian, Wei; Bourret-Courchesne, Edith; Birgeneau, Robert J.

    2016-02-01

    The complex interdigitated phases have greatly frustrated attempts to document the basic features of the superconductivity in the alkali metal intercalated iron chalcogenides. Here, using elastic neutron scattering, energy-dispersive x-ray spectroscopy, and resistivity measurements, we elucidate the relations of these phases in RbxFeySe2 -zSz . We find (i) the iron content is crucial in stabilizing the stripe antiferromagnetic (AF) phase with rhombic iron vacancy order (y ≈1.5 ) , the block AF phase with √{5 }×√{5 } iron vacancy order (y ≈1.6 ) , and the iron vacancy-free phase (y ≈2 ) ; and (ii) the iron vacancy-free superconducting phase (z =0 ) evolves into an iron vacancy-free metallic phase with sulfur substitution (z >1.5 ) due to the progressive decrease of the electronic correlation strength. Both the stripe AF phase and the block AF phase are Mott insulators. The iron-rich compounds (y >1.6 ) undergo a first order transition from an iron vacancy disordered phase at high temperatures into the √{5 }×√{5 } iron vacancy ordered phase and the iron vacancy-free phase below Ts. Our data demonstrate that there are miscibility gaps between these three phases. The existence of the miscibility gaps in the iron content is a key to understanding the relationship between these complicated phases.

  5. Alkali metal pool boiler life tests for a 25 kWe advanced Stirling conversion system

    Science.gov (United States)

    Anderson, W. G.; Rosenfeld, J. H.; Noble, J.

    The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding an alkali metal pool boiler heat transport system to supply heat more uniformly to the heater head tubes. One issue with liquid metal pool boilers is unstable boiling. Stable boiling is obtained with an enhanced boiling surface containing nucleation sites that promote continuous boiling. Over longer time periods, it is possible that the boiling behavior of the system will change. An 800-h life test was conducted to verify that pool boiling with the chosen fluid/surface combination remains stable as the system ages. The apparatus uses NaK boiling on a - 100 + 140 stainless steel sintered porous layer, with the addition of a small amount of xenon. Pool boiling remained stable to the end of life test. The pool boiler life test included a total of 82 cold starts, to simulate startup each morning, and 60 warm restarts, to simulate cloud cover transients. The behavior of the cold and warm starts showed no significant changes during the life test. In the experiments, the fluid/surface combination provided stable, high-performance boiling at the operating temperature of 700 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.

  6. DETERMINATION OF POTASH ALKALI AND METAL CONTENTS OF ASHES OBTAINED FROM PEELS OF SOME VARIETIES OF NIGERIA GROWN MUSA SPECIES

    Directory of Open Access Journals (Sweden)

    Joshua Olajiire Babayemi

    2010-05-01

    Full Text Available Potash alkali and metal contents of ashes obtained from peels of six varieties of Nigeria Musa species were investigated. The varieties of Musa species – Musa paradisiaca (plantain, Musa ‘Gross Michel’ (Igbo banana, M.sapientum L. (paranta, Musa ‘Wild Banana’ (omini, Musa ‘Red’ (sweet banana, and Musa ‘Fugamo’ (somupeke, were investigated. The moisture, dry matter, ash and alkali contents; concentration of metals in the ashes and in the contents extracted with water from the ashes; and the ratio of potassium to other metals in the ashes and in the corresponding extracts were determined. Moisture contents ranged from 80.9 to 86.7%; dry matter content, 13.3 to 19.1%; ash content, 6.3 to 12.0%; alkali content, 69.0 to 81.9% of ash and 4.7 to 9.6% of dry sample. Samples ranged between 2.60 and 720mg/kg and in the corresponding extracts, BDL to 500.49mg/kg; ratio of concentration of potassium to other metals in the samples, 0.6 to 395; and in the extracts, 0.5 to 313. Gross michel showed the highest concentration of K (750mg/kg while omini banana gave the lowest average value (112.70mg/kg.

  7. Solid State Structures of Alkali Metal Ion Complexes Formed by Low-Molecular-Weight Ligands of Biological Relevance.

    Science.gov (United States)

    Aoki, Katsuyuki; Murayama, Kazutaka; Hu, Ning-Hai

    2016-01-01

    This chapter provides structural data, mainly metal binding sites/modes, observed in crystal structures of alkali metal ion complexes containing low-molecular-weight ligands of biological relevance, mostly obtained from the Cambridge Structural Database (the CSD version 5.35 updated to February 2014). These ligands include (i) amino acids and small peptides, (ii) nucleic acid constituents (excluding quadruplexes and other oligonucleotides), (iii) simple carbohydrates, and (iv) naturally occurring antibiotic ionophores. For some representative complexes of these ligands, some details on the environment of the metal coordination and structural characteristics are described. PMID:26860299

  8. Preparation of decarboxylic-functionalized weak cation exchanger and application for simultaneous separation of alkali, alkaline earth and transition metals.

    Science.gov (United States)

    Peng, Yahui; Gan, Yihui; He, Chengxia; Yang, Bingcheng; Guo, Zhimou; Liang, Xinmiao

    2016-06-01

    A novel weak cation exchanger (WCX) with dicarboxyl groups functionalized has been developed by clicking mercaptosuccinic acid onto silica gel. The simple synthesis starts with modification of silica gel with triethoxyvinylsilane, followed by efficient coupling vinyl-bonded silica with mercaptosuccinic acid via a "thiol-ene" click reaction. The obtained WCX demonstrated good separation and high selectivity towards common metals. Simultaneous separation of 10 alkali, alkaline earth and transition metals was achieved within 12min. Ion exchange and complex mechanism dominates the separation process. Its utility was demonstrated for determination of metals in tap water. PMID:27130093

  9. Response of a salt marsh microbial community to metal contamination

    Science.gov (United States)

    Mucha, Ana P.; Teixeira, Catarina; Reis, Izabela; Magalhães, Catarina; Bordalo, Adriano A.; Almeida, C. Marisa R.

    2013-09-01

    Salt marshes are important sinks for contaminants, namely metals that tend to accumulate around plant roots and could eventually be taken up in a process known as phytoremediation. On the other hand, microbial communities display important roles in the salt marsh ecosystems, such as recycling of nutrients and/or degradation of organic contaminants. Thus, plants can benefit from the microbial activity in the phytoremediation process. Nevertheless, above certain levels, metals are known to be toxic to microorganisms, fact that can eventually compromise their ecological functions. In this vein, the aim of present study was to investigate, in the laboratory, the effect of selected metals (Cd, Cu and Pb) on the microbial communities associated to the roots of two salt marsh plants. Sediments colonized by Juncus maritimus and Phragmites australis were collected in the River Lima estuary (NW Portugal), and spiked with each of the metals at three different Effects Range-Median (ERM) concentrations (1, 10×, 50×), being ERM the sediment quality guideline that indicates the concentration above which adverse biological effects may frequently occur. Spiked sediments were incubated with a nutritive saline solution, being left in the dark under constant agitation for 7 days. The results showed that, despite the initial sediments colonized by J. maritimus and P. australis displayed significant (p < 0.05) differences in terms of microbial community structure (evaluated by ARISA), they presented similar microbial abundances (estimated by DAPI). Also, in terms of microbial abundance, both sediments showed a similar response to metal addition, with a decrease in number of cells only observed for the higher addition of Cu. Nevertheless, both Cu and Pb, at intermediate metals levels promote a shift in the microbial community structure, with possibly effect on the ecological function of these microbial communities in salt marshes. These changes may affect plants phytoremediation

  10. The potential for using slags activated with near neutral salts as immobilisation matrices for nuclear wastes containing reactive metals

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Y. [Immobilisation Science Laboratory, Department of Engineering Materials, Sir Robert Hadfield Building, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Collier, N.C., E-mail: nick.collier@nnl.co.uk [Immobilisation Science Laboratory, Department of Engineering Materials, Sir Robert Hadfield Building, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Milestone, N.B. [Immobilisation Science Laboratory, Department of Engineering Materials, Sir Robert Hadfield Building, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Yang, C.H. [Department of Building Materials and Engineering, College of Materials and Engineering, Chongqing University, Chongqing 400045 (China)

    2011-06-30

    The UK currently uses composite blends of Portland cement and other inorganic cementitious material such as blastfurnace slag and pulverised fuel ash to encapsulate or immobilise intermediate and low level radioactive wastes. Typically levels up 9:1 blast furnace slag:Portland cement or 4:1 pulverised fuel ash:Portland cement are used. Whilst these systems offer many advantages, their high pH causes corrosion of various metallic intermediate level radioactive wastes. To address this issue, lower pH/weakly alkaline cementitious systems have to be explored. While the blast furnace slag:Portland cement system is referred to as a composite cement system, the underlying reaction is actually an indirect activation of the slag hydration by the calcium hydroxide generated by the cement hydration, and by the alkali ions and gypsum present in the cement. However, the slag also can be activated directly with activators, creating a system known as alkali-activated slag. Whilst these activators used are usually strongly alkaline, weakly alkaline and near neutral salts can also be used. In this paper, the potential for using weakly alkaline and near neutral salts to activate slag in this manner is reviewed and discussed, with particular emphasis placed on the immobilisation of reactive metallic nuclear wastes.

  11. Characterization of Adsorbed Alkali Metal Ions in 2:1 Type Clay Minerals from First-Principles Metadynamics.

    Science.gov (United States)

    Ikeda, Takashi; Suzuki, Shinichi; Yaita, Tsuyoshi

    2015-07-30

    Adsorption states of alkali metal ions in three kinds of 2:1 type clay minerals are systematically investigated via first-principles-based metadynamics. Our reconstructed free energy surfaces in a two-dimensional space of coordination numbers specifically employed as collective variables for describing the interlayer cations show that an inner-sphere (IS) complex is preferentially formed for Cs(+) in the 2:1 type trioctahedral clay minerals with saponite-like compositions, where lighter alkali metal ions show a tendency to form an outer-sphere one instead. The strong preference for an IS complex observed for Cs(+) is found to result partially from the capability of recognizing selectively Cs(+) ions at the basal O atoms with the Lewis basicity significantly enhanced by the isomorphic substitution in tetrahedral sheets.

  12. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  13. Hartree-Fock ground-state properties for the group 1 alkali metals and the group 11 noble metals

    International Nuclear Information System (INIS)

    In order to use wavefunction-based correlation methods in solids it is necessary to have reliable Hartree-Fock results for the infinite system of interest. Therefore we performed Hartree-Fock calculations for the group 1 alkali metals (Li to Cs) and group 11 noble metals (Cu, Ag and Au). We optimized a basis set of valence-double-ζ quality for the periodic system. For the lighter atoms all-electron basis sets are applied, whereas for the heavier atoms small-core pseudopotentials with the corresponding basis sets were used to deal with the scalar-relativistic effects. We determine the cohesive energy, the lattice constant and the bulk modulus of the systems at the Hartree-Fock level. We use the counterpoise correction for the free atom to minimize the basis set superposition error occurring for finite basis sets. The effects due to the counterpoise correction not only for the cohesive energy but also for the lattice structure and bulk modulus are discussed in detail

  14. Alkali Metal Ion Complexes with Phosphates, Nucleotides, Amino Acids, and Related Ligands of Biological Relevance. Their Properties in Solution.

    Science.gov (United States)

    Crea, Francesco; De Stefano, Concetta; Foti, Claudia; Lando, Gabriele; Milea, Demetrio; Sammartano, Silvio

    2016-01-01

    Alkali metal ions play very important roles in all biological systems, some of them are essential for life. Their concentration depends on several physiological factors and is very variable. For example, sodium concentrations in human fluids vary from quite low (e.g., 8.2 mmol dm(-3) in mature maternal milk) to high values (0.14 mol dm(-3) in blood plasma). While many data on the concentration of Na(+) and K(+) in various fluids are available, the information on other alkali metal cations is scarce. Since many vital functions depend on the network of interactions occurring in various biofluids, this chapter reviews their complex formation with phosphates, nucleotides, amino acids, and related ligands of biological relevance. Literature data on this topic are quite rare if compared to other cations. Generally, the stability of alkali metal ion complexes of organic and inorganic ligands is rather low (usually log K  Na(+) > K(+) > Rb(+) > Cs(+). For example, for citrate it is: log K ML = 0.88, 0.80, 0.48, 0.38, and 0.13 at 25 °C and infinite dilution. Some considerations are made on the main aspects related to the difficulties in the determination of weak complexes. The importance of the alkali metal ion complexes was also studied in the light of modelling natural fluids and in the use of these cations as probes for different processes. Some empirical relationships are proposed for the dependence of the stability constants of Na(+) complexes on the ligand charge, as well as for correlations among log K values of NaL, KL or LiL species (L = generic ligand). PMID:26860301

  15. Research Investigation Directed Toward Extending the Useful Range of the Electromagnetic Spectrum. [atomic spectra and electronic structure of alkali metals

    Science.gov (United States)

    Hartmann, S. R.; Happer, W.

    1974-01-01

    The report discusses completed and proposed research in atomic and molecular physics conducted at the Columbia Radiation Laboratory from July 1972 to June 1973. Central topics described include the atomic spectra and electronic structure of alkali metals and helium, molecular microwave spectroscopy, the resonance physics of photon echoes in some solid state systems (including Raman echoes, superradiance, and two photon absorption), and liquid helium superfluidity.

  16. Structure of the Alkali-metal-atom-Strontium molecular ions: towards photoassociation and formation of cold molecular ions

    OpenAIRE

    Aymar, Mireille; Guérout, Romain; Dulieu, Olivier

    2011-01-01

    The potential energy curves, permanent and transition dipole moments, and the static dipolar polarizability, of molecular ions composed of one alkali-metal atom and a Strontium ion are determined with a quantum chemistry approach. The molecular ions are treated as effective two-electron systems and are treated using effective core potentials including core polarization, large gaussian basis sets, and full configuration interaction. In the perspective of upcoming experiments aiming at merging ...

  17. An Alkali-Vapor Cell with Metal Coated Windows for Efficient Application of an Electric Field

    CERN Document Server

    Sarkisyan, D; Guena, J; Lintz, M; Bouchiat, M A; Sarkisyan, David; Gu\\'{e}na, Jocelyne; Lintz, Michel; Bouchiat, Marie-Anne

    2005-01-01

    We describe the implementation of a cylindrical T-shaped alkali-vapor cell for laser spectroscopy in the presence of a longitudinal electric field. The two windows are used as two electrodes of the high-voltage assembly, which is made possible by a metallic coating which entirely covers the inner and outer sides of the windows except for a central area to let the laser beams in and out of the cell. This allows very efficient application of the electric field, up to 2 kV/cm in a rather dense superheated vapor, even when significant photoemission takes place at the windows during pulsed laser irradiation. The body of the cell is made of sapphire or alumina ceramic to prevent large currents resulting from surface conduction observed in cesiated glass cells. The technique used to attach the monocrystalline sapphire windows to the cell body causes minimal stress birefringence in the windows. In addition, reflection losses at the windows can be made very small. The vapor cell operates with no buffer gas and has no ...

  18. Alkali-vapor cell with metal coated windows for efficient application of an electric field

    Science.gov (United States)

    Sarkisyan, D.; Sarkisyan, A. S.; Guéna, J.; Lintz, M.; Bouchiat, M.-A.

    2005-05-01

    We describe the implementation of a cylindrical T-shaped alkali-vapor cell for laser spectroscopy in the presence of a longitudinal electric field. The two windows are used as two electrodes of the high-voltage assembly, which is made possible by a metallic coating which entirely covers the inner and outer sides of the windows except for a central area to let the laser beams in and out of the cell. This allows very efficient application of the electric field, up to 2kV/cm in a rather dense superheated vapor, even when significant photoemission takes place at the windows during pulsed laser irradiation. The body of the cell is made of sapphire or alumina ceramic to prevent large currents resulting from surface conduction observed in cesiated glass cells. The technique used to attach the monocrystalline sapphire windows to the cell body causes minimal stress birefringence in the windows. In addition, reflection losses at the windows can be made very small. The vapor cell operates with no buffer gas and has no magnetic part. The use of this kind of cell has resulted in an improvement of the signal-to-noise ratio in the measurement of parity violation in cesium vapor underway at ENS, Paris. The technique can be applied to other situations where a brazed assembly would give rise to unacceptably large birefringence in the windows.

  19. Study of Spectral Character of Alkali Metals Using Microwave Plasma Torch Simultaneous Spectrometer

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A microwave plasma torch(MPT) simultaneous spectrometer was used to study the spectral character and the matrix effect on alkali metal ions in solution. The main parameters were optimized. The microwave forward power was 100 W. The argon flow rate that was used to sustain the Ar-MPT included the flow rate of carrier gas and the flow rate of support gas, which were 0.8 and 1.0 L/min, respectively. The HCl concentration in the solution was 0.02 mol/L. The observation height was 9.0 mm. The detection limits of Li, Na, K, Rb, and Cs were 0.0003, 0.0004, 0.009, 0.07 and2.4 mg/L, respectively, and the results obtained by the Ar-MPT were compared with those obtained by argon inductively coupled plasma(Ar-ICP) and argon microwave induced plasma(Ar-MIP). The interference effects of several matrix elements were also studied.

  20. Luminescence properties of alkali metal ions sensitized CaFCl:Tb3+ nanophosphors

    Institute of Scientific and Technical Information of China (English)

    林林; 林慧; 王哲哲; 郑标; 谌基兴; 徐森元; 冯卓宏; 郑志强

    2015-01-01

    A series of CaFCl:Tb3+ and CaFCl:Tb3+,A+ (A=Li, Na and K) nanophosphors were synthesized by the one-step sol-gel method, which were reported for the first time. The sample consisted of monodisperse particles, the average size of which was 37 nm. The emissions of Tb3+ ions and oxygen defects OF? were demonstrated in the CaFCl:Tb3+ samples. The former was made up of sev-eral peaks at 488, 545, 587 and 623 nm, ascribed to5D4→7FJ (J=6–3) transitions of Tb3+ ions. The latter was shown as a broad band peaked at about 450 nm. Alkali metal ions A+(A=Li, Na and K) were introduced asthe charge compensators to improve the lumines-cence of samples. The influence of charge compensators on the emissions of Tb3+ ions and oxygen defects OF? was investigated by the measurement of fluorescence spectra and luminescence decay curves. The results indicated that all the charge compensators weakened the defects emission. Furthermore, Li+ ion was the best charge compensator, because it not only reduced the defects emis-sion but also increased the emission intensity of Tb3+ significantly. Our results suggested that this nanophosphor sensitized by the charge compensator might broaden potential applications of rare-earth doped CaFCl.

  1. Second virial coefficients and viscosity property of monatomic alkali-metal gases

    International Nuclear Information System (INIS)

    In this work, we have calculated the second virial coefficients B2 of monatomic lithium, sodium, and potassium gases by using the most recent 1Σg+ and 3Σu+ Rydberg-Klein-Rees interatomic potentials. We have also determined the viscosity η and thermal conductivity λ coefficients of the alkali-metal vapors as a function of the temperature T. The results we have found of the collision integrals and of the coefficients η and λ agree quite well with some available experimental data. Besides, we have investigated the variation law with temperature T of the above thermophysical quantities. For temperatures ranging from 100 K to 3,000 K, the results can be reproduced by simple formulas η(T)=ATα and λ(T)=BTα, where for T in Kelvin, η in micropoise, and λ in 10-3 W·m-1·K-1, for lithium Li:A=0.314, B=0.1398, and α=0.863; for sodium Na:A=0.624, B=0.0846, and α=0.827; for potassium K:A=0.400, B=0.0320, and α=0.883. (author)

  2. Nano-baskets of Calix[4]-1,3-crown in Emulsion Membranes for Selective Extraction of Alkali Metal Cations

    Institute of Scientific and Technical Information of China (English)

    Bahram Mokhtari; Kobra Pourabdollah

    2013-01-01

    Nano-assisted inclusion separation of alkali metals from basic solutions was reported by inclu-sion-facilitated emulsion liquid membrane process. The novelty of this study is application of nano-baskets of calixcrown in the selective and efficient separation of alkali metals as both the carrier and the surfactant. For this aim, four derivatives of diacid calix[4]-1,3-crowns-4,5 were synthesized, and their inclusion-extraction parameters were optimized including the calixcrown scaffold (4.4%, by mass) as the carrier/demulsifier, the commercial kero-sene as diluent in membrane, sulphonic acid (0.2 mol·L-1) and ammonium carbonate (0.4 mol·L-1) as the strip and the feed phases, the phase and the treat ratios of 0.8 and 0.3, mixing speed (300 r·min-1), and initial solute concen-tration (100 mg·L-1). The selectivity of membrane over more than ten interfering cations was examined and the re-sults reveled that under the optimized operating condition, the degree of inclusion-extraction of alkali metals was as high as 98%-99%.

  3. Properties of alkali metal atoms deposited on a MgO surface: a systematic experimental and theoretical study.

    Science.gov (United States)

    Finazzi, Emanuele; Di Valentin, Cristiana; Pacchioni, Gianfranco; Chiesa, Mario; Giamello, Elio; Gao, Hongjun; Lian, Jichun; Risse, Thomas; Freund, Hans-Joachim

    2008-01-01

    The adsorption of small amounts of alkali metal atoms (Li, Na, K, Rb, and Cs) on the surface of MgO powders and thin films has been studied by means of EPR spectroscopy and DFT calculations. From a comparison of the measured and computed g values and hyperfine coupling constants (hfccs), a tentative assignment of the preferred adsorption sites is proposed. All atoms bind preferentially to surface oxide anions, but the location of these anions differs as a function of the deposition temperature and alkali metal. Lithium forms relatively strong bonds with MgO and can be stabilized at low temperatures on terrace sites. Potassium interacts very weakly with MgO and is stabilized only at specific sites, such as at reverse corners where it can interact simultaneously with three surface oxygen atoms (rubidium and cesium presumably behave in the same way). Sodium forms bonds of intermediate strength and could, in principle, populate more than a single site when deposited at room temperature. In all cases, large deviations of the hfccs from the gas-phase values are observed. These reductions in the hfccs are due to polarization effects and are not connected to ionization of the alkali metal, which would lead to the formation of an adsorbed cation and a trapped electron. In this respect, hydrogen atoms behave completely differently. Under similar conditions, they form (H(+))(e(-)) pairs. The reasons for this different behavior are discussed. PMID:18381711

  4. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals

    OpenAIRE

    Liu, Yuanyue; Merinov, Boris V.; Goddard III, William A.

    2016-01-01

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same...

  5. Fate and effects of heavy metals in salt marsh sediments

    Energy Technology Data Exchange (ETDEWEB)

    Suntornvongsagul, Kallaya [Department of Chemical Engineering, New Jersey Institute of Technology (NJIT), University Heights, Newark, NJ 07102 (United States); Environmental Research Institute, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330 (Thailand); Burke, David J. [Department of Biological Sciences, Rutgers University, 101 Warren Street, Smith Hall 135, Newark, NJ 07102 (United States); The Holden Arboretum, 9500 Sperry Road, Kirtland, OH 44094 (United States); Hamerlynck, Erik P. [Department of Biological Sciences, Rutgers University, 101 Warren Street, Smith Hall 135, Newark, NJ 07102 (United States); Hahn, Dittmar [Department of Chemical Engineering, New Jersey Institute of Technology (NJIT), University Heights, Newark, NJ 07102 (United States) and Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666 (United States)]. E-mail: dh49@txstate.edu

    2007-09-15

    The fate and effects of selected heavy metals were examined in sediment from a restored salt marsh. Sediment cores densely covered with Spartina patens were collected and kept either un-amended or artificially amended with nickel (Ni) under standardized greenhouse conditions. Ni-amendment had no significant effect on the fate of other metals in sediments, however, it increased root uptake of the metals. Metal translocation into the shoots was small for all metals. Higher Ni concentrations in plants from amended cores were accompanied by seasonal reductions in plant biomass, photosynthetic capacity and transfer efficiency of open photosystem II reaction centers; these effects, however, were no longer significant at the end of the growing season. Root colonization by arbuscular mycorrhizal fungi (AMF) resembled that of natural salt marshes with up to 20% root length colonized. Although Ni-amendment increased AMF colonization, especially during vegetative growth, in general AMF were largely unaffected. - Spartina patens accumulates heavy metals in roots without significant translocation into shoots, and with only small seasonal effects on plant growth performance and mycorrhizal colonization.

  6. UV and IR spectroscopy of cold 1,2-dimethoxybenzene complexes with alkali metal ions.

    Science.gov (United States)

    Inokuchi, Yoshiya; Boyarkin, Oleg V; Ebata, Takayuki; Rizzo, Thomas R

    2012-04-01

    We report UV photodissociation (UVPD) and IR-UV double-resonance spectra of 1,2-dimethoxybenzene (DMB) complexes with alkali metal ions, M(+)·DMB (M = Li, Na, K, Rb, and Cs), in a cold, 22-pole ion trap. The UVPD spectrum of the Li(+) complex shows a strong origin band. For the K(+)·DMB, Rb(+)·DMB, and Cs(+)·DMB complexes, the origin band is very weak and low-frequency progressions are much more extensive than that of the Li(+) ion. In the case of the Na(+)·DMB complex, spectral features are similar to those of the K(+), Rb(+), and Cs(+) complexes, but vibronic bands are not resolved. Geometry optimization with density functional theory indicates that the metal ions are bonded to the oxygen atoms in all the M(+)·DMB complexes. For the Li(+) complex in the S(0) state, the Li(+) ion is located in the same plane as the benzene ring, while the Na(+), K(+), Rb(+), and Cs(+) ions are located off the plane. In the S(1) state, the Li(+) complex has a structure similar to that in the S(0) state, providing the strong origin band in the UV spectrum. In contrast, the other complexes show a large structural change in the out-of-plane direction upon S(1)-S(0) excitation, which results in the extensive low-frequency progressions in the UVPD spectra. For the Na(+)·DMB complex, fast charge transfer occurs from Na(+) to DMB after the UV excitation, making the bandwidth of the UVPD spectrum much broader than that of the other complexes and producing the photofragment DMB(+) ion.

  7. Design and Test of Advanced Thermal Simulators for an Alkali Metal-Cooled Reactor Simulator

    Science.gov (United States)

    Garber, Anne E.; Dickens, Ricky E.

    2011-01-01

    The Early Flight Fission Test Facility (EFF-TF) at NASA Marshall Space Flight Center (MSFC) has as one of its primary missions the development and testing of fission reactor simulators for space applications. A key component in these simulated reactors is the thermal simulator, designed to closely mimic the form and function of a nuclear fuel pin using electric heating. Continuing effort has been made to design simple, robust, inexpensive thermal simulators that closely match the steady-state and transient performance of a nuclear fuel pin. A series of these simulators have been designed, developed, fabricated and tested individually and in a number of simulated reactor systems at the EFF-TF. The purpose of the thermal simulators developed under the Fission Surface Power (FSP) task is to ensure that non-nuclear testing can be performed at sufficiently high fidelity to allow a cost-effective qualification and acceptance strategy to be used. Prototype thermal simulator design is founded on the baseline Fission Surface Power reactor design. Recent efforts have been focused on the design, fabrication and test of a prototype thermal simulator appropriate for use in the Technology Demonstration Unit (TDU). While designing the thermal simulators described in this paper, effort were made to improve the axial power profile matching of the thermal simulators. Simultaneously, a search was conducted for graphite materials with higher resistivities than had been employed in the past. The combination of these two efforts resulted in the creation of thermal simulators with power capacities of 2300-3300 W per unit. Six of these elements were installed in a simulated core and tested in the alkali metal-cooled Fission Surface Power Primary Test Circuit (FSP-PTC) at a variety of liquid metal flow rates and temperatures. This paper documents the design of the thermal simulators, test program, and test results.

  8. On the teaching of acid, alkali and salt of junior middle school chemistry%初中化学酸碱盐教学刍议

    Institute of Scientific and Technical Information of China (English)

    付春香

    2012-01-01

    In the teaching of acid, alkali and salt of junior middle school chemistry, we should guide students to do induction and sum- marization for the sake of a good command of knowledge. Also we should carry out problem - based enquiry activities to foster students "innovative thinking and mine the effective teaching sources.%进行初中化学酸碱盐教学,要引导学生归纳总结、让知识融会贯通、开展问题探究、培养学生的创新思维和挖掘有效教学资源。

  9. New class of scorpionate: tris(tetrazolyl)-iron complex and its different coordination modes for alkali metal ions.

    Science.gov (United States)

    Park, Ka Hyun; Lee, Kang Mun; Go, Min Jeong; Choi, Sung Ho; Park, Hyoung-Ryun; Kim, Youngjo; Lee, Junseong

    2014-08-18

    We report formation of a new metallascorpionate ligand, [FeL3](3-) (IPtz), containing a Fe core and three 5-(2-hydroxyphenyl)-1H-tetrazole (LH2) ligands. It features two different binding sites, oxygen and nitrogen triangles, which consist of three oxygen or nitrogen donors from tetrazole. The binding affinities of the complex for three alkali metal ions were studied using UV spectrophotometry titrations. All three alkali metal ions show high affinities and binding constants (>3 × 10(6) M(-1)), based on the 1:1 binding isotherms to IPtz. The coordination modes of the alkali metals and IPtz in the solid were studied using X-ray crystallography; two different electron-donor sites show different coordination numbers for Li(+), Na(+), and K(+) ions. The oxygen triangles have the κ(2) coordination mode with Li(+) and κ(3) coordination mode with Na(+) and K(+) ions, whereas the nitrogen triangles show κ(3) coordination with K(+) only. The different binding affinities of IPtz in the solid were manipulated using multiple metal precursors. A Fe-K-Zn trimetallic complex was constructed by assembly of an IPtz ligand, K, and Zn precursors and characterized using X-ray crystallography. Oxygen donors are coordinated with the K ion via the κ(3) coordination mode, and nitrogen donors are coordinated with Zn metal by κ(3) coordination. The solid-state structure was confirmed to be a honeycomb coordination polymer with a one-dimensional infinite metallic array, i.e., -(K-K-Fe-Zn-Fe-K)n-.

  10. Synthesis and properties of alkali metal intercalated fullerene-like MS2 (M=W,Mo) nanoparticles

    International Nuclear Information System (INIS)

    Layered metal disulfides - MoS2 and WS2 in the form of fullerene-like (IF) nanoparticles and in the form of platelets (crystallites of the 2H polytype) have been intercalated by exposure to alkali metal (potassium and sodium) vapor using a two-zone transport method. The composition of the intercalated systems was established using X-ray energy dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS). X-ray powder diffraction (XRD) analysis and transmission electron microscopy (TEM) of the samples, which were not exposed to the ambient atmosphere, showed that they suffered little change in their lattice parameters. On the other hand, after exposure to ambient atmosphere, substantial increase in the interplanar spacing (3-5 Aa) was observed for the intercalated phases. Insertion of one to two water molecules per intercalated metal atom was suggested as a possible explanation for this large expansion along the c-axis. The modifications in magnetic and transport properties of the intercalated materials were investigated, and are believed to occur via charge transfer from the alkali metal to the conduction band of the host lattice. Restacking of the MS2 layers after prolonged exposure to the atmosphere and recovery of the pristine compound properties were observed as a result of deintercalation of the metal atoms

  11. METALLIC PHASE AND INSULATING CHARACTER OF ALKALI-EARTH METAL DOPED C60

    Institute of Scientific and Technical Information of China (English)

    曹阳; 陈良进; 陈波; 冯建文; 陈文建

    1995-01-01

    The three dimensional EHMO crystal orbital calculations for crystalline Ba6 C60,Ca3 C60 and Ca5 C60 are reported.The ground state of partially doped Ca3 C60 is found to be insulating with an indrect energy gap of 0.5eV.In contrast,the Ca5 C60 forms a metallic conducting phase with a set of three half-filled bands crossing the Fermi level which is Found to locate close to a peak of the density of state. The character of crystal orbitals near the Fermilevel for both Ca3 C60 and Ca5 C60 is completely carbon-like.In both cases the Ca3 atoms are almost fully ionized and C60 molecules form a stable negative charge state with six to ten additional electrons.The conductivity of Ba6 C60 is resuted from the incomplete charge tranfer.The valance charge of every Ba ion is about 0.33.The total charge tranfer of six Ba atoms is almost the same as that of five Ca atoms.

  12. Study on the Characteristics of an Alkali-Metal Thermoelectric Power Generation System

    Science.gov (United States)

    Lee, Wook-Hyun; Hwang, Hyun-Chang; Lee, Ji-Su; Kim, Pan-Jo; Lim, Sang-Hyuk; Rhi, Seok-Ho; Lee, Kye-Bock; Lee, Ki-Woo

    2015-10-01

    In the present study, a numerical simulation and experimental studies of an alkali-metal thermoelectric energy converter (AMTEC) system were carried out. The present, unique AMTEC model consists of an evaporator, a β-alumina solid electrolyte (BASE) tube, a condenser, and an artery cable wick. The key points for operation of the present AMTEC were 1100 K in the evaporator and 600 K in the condenser. A numerical model based on sodium-saturated porous wicks was developed and shown to be able to simulate the AMTEC system. The simulation results show that the AMTEC system can generate up to 100 W with a given design. The AMTEC system developed in the present work and used in the practical investigations could generate an electromotive force of 7 V. Artery wick and evaporator wick structures were simulated for the optimum design. Both sodium-saturated wicks were affected by numerous variables, such as the input heat power, cooling temperature, sodium mass flow rate, and capillary-driven fluid flow. Based on an effective thermal conductivity model, the presented simulation could successfully predict the system performance. Based on the numerical simulation, the AMTEC system operates with efficiency near 10% to 15%. In the case of an improved BASE design, the system could reach efficiency of over 30%. The system was designed for 0.6 V power, 25 A current, and 100 W power input. In addition, in this study, the temperature effects in each part of the AMTEC system were analyzed using a heat transfer model in porous media to apply to the computational fluid dynamics at a predetermined temperature condition for the design of a 100-W AMTEC prototype. It was found that a current density of 0.5 A/cm2 to 0.9 A/cm2 for the BASE is suitable when the temperatures of the evaporator section and condenser section are 1100 K and 600 K, respectively.

  13. Analysis of Organic Acids Accumulated in Kochia Scoparia Shoots and Roots by Reverse-phase High Performance Liquid Chromatography Under Salt and Alkali Stress

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Several organic acids accumulated in Kochia Scoparia shoots and roots were studied by means of reverse-phase high performance liquid chromatography with a C18 column. Five types of binary organic acids were separated. The organic acid concentrations were determined in K. Scoparia seedlings stressed by saline (NaCl) and alkaline(NaHCO3) at the same Na + concentration. Concentrations of organic acids are stimulated by alkaline because the cells will adjust their pH values through the accumulation of organic acids, when the environment is basic. The concentrations of oxalic acid and succinic acid are higher than those of other organic acids, including tartaric acid and malic acid, and the concentration of citric acid is the lowest. The concentrations of the organic acids in the roots are higher than those in the shoots under salt(NaCl) stress, but the results are opposite while the roots are under alkali (NaHCO3) stress. This indicates that there are different adaptive strategies for K. Scoparia seedlings in organic acid metabolism under salt and alkali stress.

  14. Catalytic Conversion of Dihydroxyacetone to Lactic Acid Using Metal Salts in Water

    NARCIS (Netherlands)

    Rasrendra, Carolus B.; Fachri, Boy A.; Makertihartha, I. Gusti B. N.; Adisasmito, Sanggono; Heeres, Hero J.

    2011-01-01

    We herein present a study on the application of homogeneous catalysts in the form of metal salts on the conversion of trioses, such as dihydroxyacetone (DHA), and glyceraldehyde (GLY) to lactic acid (LA) in water. A wide range of metal salts (26 in total) were examined. Al(III) salts were identified

  15. Tandem mass spectrometric study of ciprofloxacin-poly(ethylene glycol) conjugate in the presence of alkali metal ions

    Science.gov (United States)

    Kéki, Sándor; Nagy, Lajos; Kuki, Ákos; Pintér, Gábor; Herczegh, Pál; Zsuga, Miklós

    2008-08-01

    The fragmentation and fragmentation behaviors of singly, doubly, and triply charged adducts of ciprofloxacin-poly(ethylene glycol) conjugate (P_Cf) with alkali metal ions, including Li+, Na+ and K+ ions, generated by electrospray (ESI) were studied as a function of collision energy. The product ion spectra of adducts with charge states +1, +2, and +3 are dominated by product ions arising from the loss-neutral moiety (ciprofloxacin) and CO2, and ions formed by dissociation of the precursor ion ([P_Cf + xM]x+) into product ions [P + (x - 1)M](x-1)+ and [Cf + M]+ (where P_Cf, P and Cf represent the ciprofloxacin-poly(ethylene glycol) conjugate, the poly(ethylene glycol) backbone without the endgroups, and the ciprofloxacin moiety, respectively; M is the alkali metal ion and x is the charge). It was found that the metal ions do not significantly alter the fragmentation pattern of ciprofloxacin-poly(ethylene glycol) conjugate. It is also interesting that the run and the shape of the survival yield curves for the singly and doubly charged adduct ions are independent of the cation. However, in the case of triply charged adducts, survival yield curves follow each other in the order K+, Na+, and Li+. Based on the experimental results, a fragmentation mechanism for the singly and multiply charged adducts of P_Cf with alkali metal ions is given. In addition, a tentative description of the signal intensity variations of the product ions with the lab frame collision energy is also reported.

  16. Plasma assisted measurements of alkali metal concentrations in pressurised combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R.; Haeyrinen, V. [Tampere Univ. of Technology (Finland)

    1997-10-01

    In this project the continuous alkali measurement method plasma excited alkali resonance line spectroscopy (PEARLS) was developed, tested and demonstrated in pressurised combustion facilities. The PEARLS method has been developed at Tampere University of Technology (TUT). During 1994-1996 the PEARLS method was developed from the laboratory level to an industrial prototype. The alkali measuring instrument has been tested and used for regular measurements in four different pressurised combustion installations ranging up to industrial pilot scale. The installations are: (1) a pressurised entrained flow reactor (PEFR) at VTT Energy in Jyvaeskylae, Finland (2) a pressurised fluidised bed combustion facility, called FRED, at DMT in Essen, Germany. (3) a 10 MW pressurised circulating fluidised bed combustion pilot plant at Foster Wheeler Energia Oy in Karhula, Finland (4) PFBC Research Facility at ABB Carbon in Finspaang, Sweden

  17. Alkali-Metal-Ion-Functionalized Graphene Oxide as a Superior Anode Material for Sodium-Ion Batteries.

    Science.gov (United States)

    Wan, Fang; Li, Yu-Han; Liu, Dai-Huo; Guo, Jin-Zhi; Sun, Hai-Zhu; Zhang, Jing-Ping; Wu, Xing-Long

    2016-06-01

    Although graphene oxide (GO) has large interlayer spacing, it is still inappropriate to use it as an anode for sodium-ion batteries (SIBs) because of the existence of H-bonding between the layers and ultralow electrical conductivity which impedes the Na(+) and e(-) transformation. To solve these issues, chemical, thermal, and electrochemical procedures are traditionally employed to reduce GO nanosheets. However, these strategies are still unscalable, consume high amounts of energy, and are expensive for practical application. Here, for the first time, we describe the superior Na storage of unreduced GO by a simple and scalable alkali-metal-ion (Li(+) , Na(+) , K(+) )-functionalized process. The various alkali metals ions, connecting with the oxygen on GO, have played different effects on morphology, porosity, degree of disorder, and electrical conductivity, which are crucial for Na-storage capabilities. Electrochemical tests demonstrated that sodium-ion-functionalized GO (GNa) has shown outstanding Na-storage performance in terms of excellent rate capability and long-term cycle life (110 mAh g(-1) after 600 cycles at 1 A g(-1) ) owing to its high BET area, appropriate mesopore, high degree of disorder, and improved electrical conductivity. Theoretical calculations were performed using the generalized gradient approximation (GGA) to further study the Na-storage capabilities of functionalized GO. These calculations have indicated that the Na-O bond has the lowest binding energy, which is beneficial to insertion/extraction of the sodium ion, hence the GNa has shown the best Na-storage properties among all comparatives functionalized by other alkali metal ions. PMID:27136376

  18. Methane coupling reaction in an oxy-steam stream through an OH radical pathway by using supported alkali metal catalysts

    KAUST Repository

    Liang, Yin

    2014-03-24

    A universal reaction mechanism involved in the oxidative coupling of methane (OCM) is demonstrated under oxy-steam conditions using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH radical formation from a H 2O-O2 reaction followed by C-H activation in CH 4 with an OH radical. Thus, the presence of water enhances both the CH4 conversion rate and the C2 selectivity. This OH radical pathway that is selective for the OCM was observed for the catalyst without Mn, which suggests clearly that Mn is not the essential component in a selective OCM catalyst. The experiments with different catalyst compositions revealed that the OH.-mediated pathway proceeded in the presence of catalysts with different alkali metals (Na, K) and different oxo anions (W, Mo). This difference in catalytic activity for OH radical generation accounts for the different OCM selectivities. As a result, a high C2 yield is achievable by using Na2WO4/SiO2, which catalyzes the OH.-mediated pathway selectively. Make it methane: A universal reaction mechanism involved in the oxidative coupling of methane is demonstrated under oxy-stream conditions by using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH radical formation from an H2O-O2 reaction, followed by C-H activation in CH4 with an OH radical. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Third order nonlinear optical properties and optical limiting behavior of alkali metal complexes of p-nitrophenol

    Science.gov (United States)

    Thangaraj, M.; Vinitha, G.; Sabari Girisun, T. C.; Anandan, P.; Ravi, G.

    2015-10-01

    Optical nonlinearity of metal complexes of p-nitrophenolate (M=Li, Na and K) in ethanol is studied by using a continuous wave (cw) diode pumped Nd:YAG laser (532 nm, 50 mW). The predominant mechanism of observed nonlinearity is thermal in origin. The nonlinear refractive index and the nonlinear absorption coefficient of the samples were found to be in the order of 10-8 cm2/W and 10-3 cm/W respectively. Magnitude of third-order optical parameters varies according to the choice of alkali metal chosen for metal complex formation of p-nitrophenolate. The third-order nonlinear susceptibility was found to be in the order of 10-6 esu. The observed saturable absorption and the self-defocusing effect were used to demonstrate the optical limiting action at 532 nm by using the same cw laser beam.

  20. Crown-Ether Derived Graphene Hybrid Composite for Membrane-Free Potentiometric Sensing of Alkali Metal Ions

    DEFF Research Database (Denmark)

    Olsen, Gunnar; Ulstrup, Jens; Chi, Qijin

    2016-01-01

    surface coverage is achieved by the introduction of a flexible linking molecule. The resulting hybrid composite is highly stable and is capable of detecting potassium ions down to micromolar ranges with a selectivity over other cations (including Ca2+, Li+, Na+, NH4+) at concentrations up to 25 m......We report the design and synthesis of newly functionalized graphene hybrid material that can be used for selective membrane-free potentiometric detection of alkali metal ions, represented by potassium ions. Reduced graphene oxide (RGO) functionalized covalently by 18-crown[6] ether with a dense...

  1. Sensitive determination of the spin polarization of optically pumped alkali-metal atoms using near-resonant light.

    Science.gov (United States)

    Ding, Zhichao; Long, Xingwu; Yuan, Jie; Fan, Zhenfang; Luo, Hui

    2016-01-01

    A new method to measure the spin polarization of optically pumped alkali-metal atoms is demonstrated. Unlike the conventional method using far-detuned probe light, the near-resonant light with two specific frequencies was chosen. Because the Faraday rotation angle of this approach can be two orders of magnitude greater than that with the conventional method, this approach is more sensitive to the spin polarization. Based on the results of the experimental scheme, the spin polarization measurements are found to be in good agreement with the theoretical predictions, thereby demonstrating the feasibility of this approach. PMID:27595707

  2. Thermophysical properties of alkali metal vapours. Part II - assessment of experimental data on thermal conductivity and viscosity

    OpenAIRE

    Fialho, Paulo; Ramires, Maria de Lurdes V.; Nieto de Castro, Carlos A.; João M. N. A. Fareleira; Mardolcar, Umesh V.

    1994-01-01

    Copyright © 1994 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Article first published online: 8 MAY 2010. An analysis of the available data on the viscosity and thermal conductivity coefficients of the alkali metal vapours is presented. The analysis is based upon theoretical calculations of the properties of the monatomic systems, described in the preceding parts I and I.A of the present paper, and making use of the kinetic theory of a binary gas reacting mixture. A summary of the measur...

  3. Nuclear Wavepacket Dynamics of Alkali Adsorbates on Metal Surfaces Studied by Time-Resolved Second Harmonic Generation

    Directory of Open Access Journals (Sweden)

    Kazuya Watanabe

    2012-01-01

    Full Text Available This paper reviews recent efforts to understand the dynamics of coherent surface vibrations of alkali atoms adsorbed on metal surfaces. Time-resolved second harmonic generation is used for the coherent excitation and detection of the nuclear wavepacket dynamics of the surface modes. The principles of the measurement and the experimental details are described. The main focus is on coverage and excitation photon energy dependences of the coherent phonon dynamics for Na-, K-, and Cs-covered Cu(111. The excitation mechanism of the coherent phonon has been revealed by the ultrafast time-domain technique and theoretical modelings.

  4. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    International Nuclear Information System (INIS)

    We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of 87Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the 87Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the 87Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system

  5. Cooper minima in the transitions from low-excited and Rydberg states of alkali-metal atoms

    OpenAIRE

    Beterov, I. I.; Mansell, C. W.; Yakshina, E. A.; Ryabtsev, I. I.; Tretyakov, D. B.; Entin, V. M.; MacCormick, C.; Piotrowicz, M. J.; Kowalczyk, A.; S. Bergamini

    2012-01-01

    The structure of the Cooper minima in the transition probabilities and photoionization cross-sections for low-excited and Rydberg nS, nP, nD and nF states of alkali-metal atoms has been studied using a Coulomb approximation and a quasiclassical model. The range of applicability of the quasiclassical model has been defined from comparison with available experimental and theoretical data on dipole moments, oscillator strengths, and photoionization cross-sections. A new Cooper minimum for transi...

  6. Cooper minima in the transitions from low-excited and Rydberg states of alkali-metal atoms

    CERN Document Server

    Beterov, I I; Yakshina, E A; Ryabtsev, I I; Tretyakov, D B; Entin, V M; MacCormick, C; Piotrowicz, M J; Kowalczyk, A; Bergamini, S

    2012-01-01

    The structure of the Cooper minima in the transition probabilities and photoionization cross-sections for low-excited and Rydberg nS, nP, nD and nF states of alkali-metal atoms has been studied using a Coulomb approximation and a quasiclassical model. The range of applicability of the quasiclassical model has been defined from comparison with available experimental and theoretical data on dipole moments, oscillator strengths, and photoionization cross-sections. A new Cooper minimum for transitions between rubidium Rydberg states has been found.

  7. Elimination technique for alkali metal ion adducts from an electrospray ionization process using an on-line ion suppressor

    OpenAIRE

    NOZAKI, Kazuyoshi; TARUI, Akira; OSAKA, Issey; Kawasaki, Hideya; ARAKAWA, Ryuichi; 荒川, 隆一

    2010-01-01

    The effects of an on-line ion suppressor device on alkali metal ion adduct formations of the model compound tacrolimus were investigated. The base peak ion in the positive ion ESI-MS spectrum of tacrolimus was a sodium ion adduct, [M+Na]+. On the other hand, an ammonium ion adduct, [M+NH4]+, was the base peak ion in the full-scan mass spectrum of tacrolimus with a cation-exchange suppressor resin, and both [M+Na]+ and [M+K]+ were eliminated. These results indicate that the combination of an o...

  8. Electric-field-induced change of alkali-metal vapor density in paraffin-coated cells

    CERN Document Server

    Kimball, D F Jackson; Ravi, K; Sharma, Arijit; Prabhudesai, Vaibhav S; Rangwala, S A; Yashchuk, V V; Balabas, M V; Budker, D

    2008-01-01

    Alkali vapor cells with antirelaxation coating (especially paraffin-coated cells) have been a central tool in optical pumping and atomic spectroscopy experiments for 50 years. We have discovered a dramatic change of the alkali vapor density in a paraffin-coated cell upon application of an electric field to the cell. A systematic experimental characterization of the phenomenon is carried out for electric fields ranging in strength from 0-8 kV/cm for paraffin-coated cells containing rubidium and cells containing cesium. The typical response of the vapor density to a rapid (duration < 100 ms) change in electric field of sufficient magnitude includes (a) a rapid (duration of < 100 ms) and significant increase in alkali vapor density followed by (b) a less rapid (duration of ~ 1 s) and significant decrease in vapor density (below the equilibrium vapor density), and then (c) a slow (duration of ~ 100 s) recovery of the vapor density to its equilibrium value. Measurements conducted after the alkali vapor densi...

  9. Superconductivity and electrical resistivity in alkali metal doped fullerides: Phonon mechanism

    Indian Academy of Sciences (India)

    Dinesh Varshney; A Dube; K K Choudhary; R K Singh

    2005-04-01

    We consider a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. We first study the intercage interactions between the adjacent C60 cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C60 phonons. Electronic parameter as repulsive parameter and the attractive coupling strength are obtained within the random phase approximation. Transition temperature, c, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C60 phonons as 5 K, which is much lower as compared to reported c (≈ 20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. To illustrate the usefulness of the above approach, the carbon isotope exponent and the pressure effect are also estimated. Temperature dependence of electrical resistivity is then analysed within the same model phonon spectrum. It is inferred from the two-peak model for phonon density of states that high frequency intramolecular phonon modes play a major role in pairing mechanism with possibly some contribution from alkali-C60 phonon to describe most of the superconducting and normal state properties of doped fullerides.

  10. Alkali metal and ammonium chlorides in water and heavy water (binary systems)

    CERN Document Server

    Cohen-Adad, R

    1991-01-01

    This volume surveys the data available in the literature for solid-fluid solubility equilibria plus selected solid-liquid-vapour equilibria, for binary systems containing alkali and ammonium chlorides in water or heavy water. Solubilities covered are lithium chloride, sodium chloride, potassium chloride, rubidium chloride, caesium chloride and ammonium chloride in water and heavy water.

  11. Plasma assisted measurements of alkali metal concentrations in pressurized combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R.; Haeyrinen, V. [Tampere Univ. of Technology (Finland). Dept. of Physics

    1996-12-01

    The plasma assisted method for continuous measurement of alkali concentrations in product gas flows of pressurized energy processes will be tested and applied at the 1.6 MW PFBC/G facility at Delft University of Technology in the Netherlands. During the reporting period the alkali measuring device has been tested under pressurized conditions at VTT Energy, DMT, Foster-Wheeler Energia and ABB Carbon. Measurements in Delft will be performed during 1996 after installation of the hot gas filter. The original plan for measurements in Delft has been postponed due to schedule delays in Delft. The results are expected to give information about the influence of different process conditions on the generation of alkali vapours, the comparison of different methods for alkali measurement and the specific performance of our system. This will be the first test of the plasma assisted measurement method in a gasification process. The project belongs to the Joule II extension program under contract JOU2-CT93-0431. (author)

  12. Monitoring trace metal contamination in salt marshes of the Westerschelde estuary

    OpenAIRE

    Beeftink, W.G.; Nieuwenhuize, J.

    1986-01-01

    Problems in monitoring trace metals in the soil subsystem are due to variations in the input of these metals, the type of estuarine circulation and the distribution of physical and chemical conditions in the salt-marsh deposits. The degree of metal enrichment and the spectrum of chemical speciation of the metals by means of a sequential extraction procedure is shortly discussed. Problems in monitoring trace metals in salt-marsh plants are discussed with respect to the bioavailability of these...

  13. Distribution and uptake of {sup 137}Cs in relation to alkali metals in a perhumid montane forest ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Chao, J.H. [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 30013, Taiwan (China)], E-mail: jhchao@mx.nthu.edu.tw; Chiu, C.Y. [Research Center for Biodiversity, Academia Sinica, Taipei 11529, Taiwan (China); Lee, H.P. [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2008-10-15

    We determined the content of radiocesium ({sup 137}Cs) and alkali metals in soils, plants (2 ferns, a shrub and moss) and rainwater collected in an undisturbed forest ecosystem. The {sup 137}Cs activity and the isotopic ratio of {sup 137}Cs/Cs in the samples were used to interpret the distribution and uptake of {sup 137}Cs and the alkali metals in plants. As a whole, the {sup 137}Cs in plants was assimilated together with K but was not dependent on Cs. Different adaptations of fern species collected in ecological niches cause them to have different {sup 137}Cs/Cs ratios. Diplopterygium glaucum is distributed at the edges of the forest; it usually has shallow organic layers, and the root takes up more stable Cs from mineral layers, leading to lower {sup 137}Cs/Cs ratios than that in the understory Plagiogyria formosana and Rhododendron formosanum species. The steady supply of stable Cs through the uptake by D. glaucum from deep soils may gradually dilute the {sup 137}Cs concentration and thus explain the lower {sup 137}Cs/Cs ratio in the fern samples. The {sup 137}Cs is predicted to be proportional to the Cs content across plant species in the biological cycle once isotopic equilibrium is attained.

  14. Influence of alkali metal cations on the thermal, mechanical and morphological properties of rectorite/chitosan bio-nanocomposite films.

    Science.gov (United States)

    Babul Reddy, A; Jayaramudu, J; Siva Mohan Reddy, G; Manjula, B; Sadiku, E R

    2015-05-20

    The main theme of this work is to study the influence of ion-exchangeable alkali metal cations, such as: Li(+), Na(+), K(+), and Cs(+) on the thermal, mechanical and morphological properties. In this regard, a set of rectorite/chitosan (REC-CS) bio-nanocomposite films (BNCFs) was prepared by facile reaction of chitosan with ion-exchanged REC clay. The microstructure and morphology of BNCFs were investigated with XRD, TEM, SEM and AFM. Thermal and tensile properties of BNCFs were also investigated. As revealed from TEM and XRD results, the BNCFs featured a mixed morphology. Some intercalated clay sheets, together with nano-sized clay tactoids were obtained in LiREC/CS, NaREC/CS and KREC/CS of the BNCFs. From fractured surface study, via SEM, it was observed that the dispersion of chitosan polymer attaches to (and covers) the clay platelets. FTIR confirmed strong hydrogen bonds between clay and chitosan polymer. In addition, the thermal stabilities significantly varied when alkali metal cations varied from Li(+) to Cs(+). The BNCFs featured high tensile strengths (up to 84 MPa) and tensile moduli (up to 45 GPa). After evaluating these properties of BNCFs, we came to conclusion that these bio-nano composites can be used for packaging applications.

  15. Purification of diverse hemoglobins by metal salt precipitation.

    Science.gov (United States)

    Zimmerman, Devon; Dienes, Jack; Abdulmalik, Osheiza; Elmer, Jacob J

    2016-09-01

    Although donated blood is the preferred material for transfusion, its limited availability and stringent storage requirements have motivated the development of blood substitutes. The giant extracellular hemoglobin (aka erythrocruorin) of the earthworm Lumbricus terrestris (LtEc) has shown promise as a blood substitute, but an efficient purification method for LtEc must be developed to meet the potential large demand for blood substitutes. In this work, an optimized purification process that uses divalent and trivalent metal salts to selectively precipitate human, earthworm, and bloodworm hemoglobin (HbA, LtEc, and GdHb, respectively) from crude solutions was developed. Although several metal ions were able to selectively precipitate LtEc, Zn(2+) and Ni(2+) provided the lowest heme oxidation and highest overall yield of LtEc. In contrast, Zn(2+) was the only metal ion that completely precipitated HbA and GdHb. Polyacrylamide gel electrophoresis (PAGE) analysis shows that metal precipitation removes several impurities to provide highly pure hemoglobin samples. Heme oxidation levels were relatively low for Zn(2+)-purified HbA and LtEc (2.4±1.3% and 5.3±2.1%, respectively), but slightly higher for Ni(2+)-purified LtEc (8.4±1.2%). The oxygen affinity and cooperativity of the precipitated samples are also identical to samples purified with tangential flow filtration (TFF) alone, indicating the metal precipitation does not significantly affect the function of the hemoglobins. Overall, these results show that hemoglobins from several different species can be highly purified using a combination of metal (Zn(2+)) precipitation and tangential flow filtration. PMID:26363116

  16. Long-range interactions between the alkali-metal atoms and alkaline earth ions

    CERN Document Server

    Kaur, Jasmeet; Arora, Bindiya; Sahoo, B K

    2014-01-01

    Accurate knowledge of interaction potentials among the alkali atoms and alkaline earth ions is very useful in the studies of cold atom physics. Here we carry out theoretical studies of the long-range interactions among the Li, Na, K, and Rb alkali atoms with the Ca$^+$, Ba$^+$, Sr$^+$, and Ra$^+$ alkaline earth ions systematically which are largely motivated by their importance in a number of applications. These interactions are expressed as a power series in the inverse of the internuclear separation $R$. Both the dispersion and induction components of these interactions are determined accurately from the algebraic coefficients corresponding to each power combination in the series. Ultimately, these coefficients are expressed in terms of the electric multipole polarizabilities of the above mentioned systems which are calculated using the matrix elements obtained from a relativistic coupled-cluster method and core contributions to these quantities from the random phase approximation. We also compare our estim...

  17. Characterization of Alkali Metal Dispensers and Non-Evaporable Getter Pumps in Ultra-High Vacuum Systems for Cold Atomic Sensors

    OpenAIRE

    Scherer, David R.; Fenner, David B.; Hensley, Joel M.

    2012-01-01

    A glass ultrahigh vacuum chamber with rubidium alkali metal dispensers and non-evaporable getter pumps has been developed and used to create a cold atomic sample in a chamber that operates with only passive vacuum pumps. The ion-mass spectrum of evaporated gases from the alkali metal dispenser has been recorded as a function of dispenser current. The efficacy of the non-evaporable getter pumps in promoting and maintaining vacuum has been characterized by observation of the Rb vapor optical ab...

  18. Synthesis of monomeric and polymeric alkali and alkaline earth metal complexes using a phosphinoselenoic amide ligand in metal coordination sphere

    Indian Academy of Sciences (India)

    Jayeeta Bhattacharjee; Ravi K Kottalanka; Harinath Adimulam; Tarun K Panda

    2014-09-01

    We report the monomeric complexes of magnesium and calcium of composition [M(THF){2-Ph2P(Se)N(CMe3)}2] [M= Mg (3), n = 1 andM = Ca (4), n = 2)] and polymeric complexes of potassium and barium of composition [K(THF)2{Ph2P(Se)N(CMe3)}] (2) and [K(THF)Ba{Ph2P(Se)N(CMe3)}3](5) respectively. The potassium complex 2 was readily prepared by the reaction of potassium bis(trimethylsilyl)amide with phosphinoselenoic amide ligand (1) at ambient temperature. The calcium complex 4 was prepared by two synthetic routes: in the first method, commonly known as salt metathesis reaction, the potassium complex 2 was made to react with alkaline earth metal diiodide at room temperature to afford the corresponding calcium complex. The metal bis(trimethylsilyl)amides were made to react with protic ligand 1 in the second method to eliminate the volatile bis(trimethyl)silyl amine. The magnesium complex 3 and barium complex 5 were prepared only through the first method. Solid-state structures of all the new complexes were established by single crystal X-ray diffraction analysis. The smaller ionic radii of Mg2+ (0.72Å) and Ca2+ (0.99Å) ions form the monomeric complex, whereas the larger ions K+ (1.38Å) and Ba2+ (1.35Å) were found to form onedimensional polymeric complexes with monoanionic ligand 1. Compound 2 serves an example of magnesium complex with a Mg-Se direct bond.

  19. Release and sorption of alkali metals in coal fired combined cycle power systems; Freisetzung und Einbindung von Alkalimetallverbindungen in kohlebefeuerten Kombikraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Michael

    2009-07-01

    Coal fired combined cycle power systems will be a sufficient way to increase the efficiency of coal combustion. However, combined cycle power systems require a reliable hot gas cleanup. Especially alkali metals, such as sodium and potassium, can lead to hot corrosion of the gas turbine blading if they condensate as sulphates. The actual work deals with the release and sorption of alkali metals in coal fired combined cycle power systems. The influence of coal composition, temperature and pressure on the release of alkali species in coal combustion was investigated and the relevant release mechanisms identified. Alumosilicate sorbents have been found that reduce the alkali concentration in the hot flue gas of the Circulating Pressurized Fluidized Bed Combustion 2{sup nd} Generation (CPFBC 2{sup nd} Gen.) at 750 C to values sufficient for use in a gas turbine. Accordingly, alumosilicate sorbents working at 1400 C have been found for the Pressurized Pulverized Coal Combustion (PPCC). The sorption mechanisms have been identified. Thermodynamic calculations were performed to upscale the results of the laboratory experiments to conditions prevailing in power systems. According to these calculations, there is no risk of hot corrosion in both processes. Furthermore, thermodynamic calculations were performed to investigate the behaviour of alkali metals in an IGCC with integrated hot gas cleanup and H{sub 2} membrane for CO{sub 2} sequestration. (orig.)

  20. Comparisons between adsorption and diffusion of alkali, alkaline earth metal atoms on silicene and those on silicane: Insight from first-principles calculations

    Science.gov (United States)

    Bo, Xu; Huan-Sheng, Lu; Bo, Liu; Gang, Liu; Mu-Sheng, Wu; Chuying, Ouyang

    2016-06-01

    The adsorption and diffusion behaviors of alkali and alkaline-earth metal atoms on silicane and silicene are both investigated by using a first-principles method within the frame of density functional theory. Silicane is staler against the metal adatoms than silicene. Hydrogenation makes the adsorption energies of various metal atoms considered in our calculations on silicane significantly lower than those on silicene. Similar diffusion energy barriers of alkali metal atoms on silicane and silicene could be observed. However, the diffusion energy barriers of alkali-earth metal atoms on silicane are essentially lower than those on silicene due to the small structural distortion and weak interaction between metal atoms and silicane substrate. Combining the adsorption energy with the diffusion energy barriers, it is found that the clustering would occur when depositing metal atoms on perfect hydrogenated silicene with relative high coverage. In order to avoid forming a metal cluster, we need to remove the hydrogen atoms from the silicane substrate to achieve the defective silicane. Our results are helpful for understanding the interaction between metal atoms and silicene-based two-dimensional materials. Project supported by the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20152ACB21014, 20151BAB202006, and 20142BAB212002) and the Fund from the Jiangxi Provincial Educational Committee, China (Grant No. GJJ14254). Bo Xu is also supported by the Oversea Returned Project from the Ministry of Education, China.

  1. A curious interplay in the films of N-heterocyclic carbene PtII complexes upon deposition of alkali metals

    Science.gov (United States)

    Makarova, Anna A.; Grachova, Elena V.; Niedzialek, Dorota; Solomatina, Anastasia I.; Sonntag, Simon; Fedorov, Alexander V.; Vilkov, Oleg Yu.; Neudachina, Vera S.; Laubschat, Clemens; Tunik, Sergey P.; Vyalikh, Denis V.

    2016-05-01

    The recently synthesized series of PtII complexes containing cyclometallating (phenylpyridine or benzoquinoline) and N-heterocyclic carbene ligands possess intriguing structures, topologies, and light emitting properties. Here, we report curious physicochemical interactions between in situ PVD-grown films of a typical representative of the aforementioned PtII complex compounds and Li, Na, K and Cs atoms. Based on a combination of detailed core-level photoelectron spectroscopy and quantum-chemical calculations at the density functional theory level, we found that the deposition of alkali atoms onto the molecular film leads to unusual redistribution of electron density: essential modification of nitrogen sites, reduction of the coordination PtII centre to Pt0 and decrease of electron density on the bromine atoms. A possible explanation for this is formation of a supramolecular system “Pt complex-alkali metal ion” the latter is supported by restoration of the system to the initial state upon subsequent oxygen treatment. The discovered properties highlight a considerable potential of the PtII complexes for a variety of biomedical, sensing, chemical, and electronic applications.

  2. Equilibrium electrode U(4)-U and redox U(4)-U(3) potentials in molten alkali metal chlorides medium

    International Nuclear Information System (INIS)

    Conditional standard electrode potentials of uranium are determined for diluted solutions of its tetrachloride in alkali metal chloride melts (LiCl, NaCl, NaCl-KCl, KCl, RbCl and CsCl) when using U(4) ion activity coefficient values experimentally found by the tensimetric method. These potentials shift to the electronegative side at the temperature decrease and alkali cation radius increase rsub(Msup(+)) according to the empiric ratio E*U(4)-U= -3.06+6.87x10-4 T-(1.67-10-4T-0.44) 1/rsub(Msup(+)) +-0.01. The temperature dependences of formal conditional redox potentials of the U(4)-U(3) system for above melted chlorides are estimated. The E*U(4)-U(3) value also becomes more electronegative in the series LiCl, NaCl, NaCl-KCl, KCl, RbCl and CsCl. This alternation is satisfactorily described by the empiric expression E*U(4)-U(3)= -1.74+1.74x10-4T-(0.71x10-4T-0.20) 1rsub(Msup(+)) +-0.05. The calculated values Eu*(4)-U(3) are compared with those directly measured for the NaCl-KCl equimolar mixture and 3LiCl-2KCl eutectic mixture. A satisfactory confirmity has been observed

  3. Thermal and optical properties of Nd{sup 3+} doped lead zinc borate glasses—Influence of alkali metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Sasi Kumar, M.V.; Rajesh, D.; Balakrishna, A. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Ratnakaram, Y.C., E-mail: ratnakaramsvu@gmail.com [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India)

    2013-04-15

    In the present investigation a new series of six different Nd{sup 3+} doped alkali and mixed alkali (Li, Na, K, Li–Na, Li–K and Na–K) heavy metal (PbO and ZnO) borate glasses were prepared using the melt quenching technique. The amorphous nature of the glass systems has been identified based on the X-ray diffraction analysis. The glass transition studies were carried out using differential scanning calorimetry (DSC). Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra. The Judd–Ofelt (J–O) theory has been applied to calculate J–O intensity parameters, Ω{sub λ} (λ=2, 4 and 6) and in turn used to estimate radiative properties of certain transitions. Spectroscopic parameters such as transition probabilities (A{sub T}), branching ratios (β), radiative lifetimes (τ{sub R}) and integrated absorption cross-sections (Σ) were calculated using J–O intensity parameters for all transitions. Using emission spectra, experimental branching ratios and stimulated emission cross-sections (σ{sub P}) are obtained for all the observed emission transitions.

  4. Thermal and optical properties of Nd3+ doped lead zinc borate glasses—Influence of alkali metal ions

    Science.gov (United States)

    Sasi Kumar, M. V.; Rajesh, D.; Balakrishna, A.; Ratnakaram, Y. C.

    2013-04-01

    In the present investigation a new series of six different Nd3+ doped alkali and mixed alkali (Li, Na, K, Li-Na, Li-K and Na-K) heavy metal (PbO and ZnO) borate glasses were prepared using the melt quenching technique. The amorphous nature of the glass systems has been identified based on the X-ray diffraction analysis. The glass transition studies were carried out using differential scanning calorimetry (DSC). Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra. The Judd-Ofelt (J-O) theory has been applied to calculate J-O intensity parameters, Ωλ (λ=2, 4 and 6) and in turn used to estimate radiative properties of certain transitions. Spectroscopic parameters such as transition probabilities (AT), branching ratios (β), radiative lifetimes (τR) and integrated absorption cross-sections (Σ) were calculated using J-O intensity parameters for all transitions. Using emission spectra, experimental branching ratios and stimulated emission cross-sections (σP) are obtained for all the observed emission transitions.

  5. Thermal and optical properties of Nd3+ doped lead zinc borate glasses—Influence of alkali metal ions

    International Nuclear Information System (INIS)

    In the present investigation a new series of six different Nd3+ doped alkali and mixed alkali (Li, Na, K, Li–Na, Li–K and Na–K) heavy metal (PbO and ZnO) borate glasses were prepared using the melt quenching technique. The amorphous nature of the glass systems has been identified based on the X-ray diffraction analysis. The glass transition studies were carried out using differential scanning calorimetry (DSC). Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra. The Judd–Ofelt (J–O) theory has been applied to calculate J–O intensity parameters, Ωλ (λ=2, 4 and 6) and in turn used to estimate radiative properties of certain transitions. Spectroscopic parameters such as transition probabilities (AT), branching ratios (β), radiative lifetimes (τR) and integrated absorption cross-sections (Σ) were calculated using J–O intensity parameters for all transitions. Using emission spectra, experimental branching ratios and stimulated emission cross-sections (σP) are obtained for all the observed emission transitions

  6. Hydrothermal synthesis of mixed rare earth-alkali metal or ammonium fluorides

    Institute of Scientific and Technical Information of China (English)

    由芳田; 黄世华; 时秋峰

    2010-01-01

    The recent results on hydrothermal synthesis of mixed rare earth-alkali or ammonium fluorides were presented. The initial ratios of the starting materials, pH value and reaction temperature were the critical factors for obtaining the single-phase product. Four main types of complex rare earth fluorides, AREF4, A2REF5, ARE2F7 and ARE3F10 (A=Na+, K+, Rb+, NH4+), appeared in the primary hydrothermal reactions. The correlation between cation sizes and the formation of mixed rare earth fluorides under mild hydro...

  7. Fabrication of Metal Nanoparticles from Fungi and Metal Salts: Scope and Application.

    Science.gov (United States)

    Siddiqi, Khwaja Salahuddin; Husen, Azamal

    2016-12-01

    Fungi secrete enzymes and proteins as reducing agents which can be used for the synthesis of metal nanoparticles from metal salts. Large-scale production of nanoparticles from diverse fungal strains has great potential since they can be grown even in vitro. In recent years, various approaches have been made to maximize the yield of nanoparticles of varying shape, size, and stability. They have been characterized by thermogravimetric analysis, X-ray diffractometry, SEM/TEM, zeta potential measurements, UV-vis, and Fourier transform infrared (FTIR) spectroscopy. In this review, we focus on the biogenic synthesis of metal nanoparticles by fungi to explore the chemistry of their formation extracellularly and intracellularly. Emphasis has been given to the potential of metal nanoparticles as an antimicrobial agent to inhibit the growth of pathogenic fungi, and on other potential applications. PMID:26909778

  8. Molecular dynamics simulations of the structure of the graphene-ionic liquid/alkali salt mixtures interface.

    Science.gov (United States)

    Méndez-Morales, Trinidad; Carrete, Jesús; Pérez-Rodríguez, Martín; Cabeza, Óscar; Gallego, Luis J; Lynden-Bell, Ruth M; Varela, Luis M

    2014-07-14

    We performed molecular dynamics simulations of mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate with lithium tetrafluoroborate and potassium tetrafluoroborate between two charged and uncharged graphene walls, in order to analyze the structure of the well-known formation of layers that takes place on liquids under confinement. For this purpose, we studied the molecular density profiles, free energy profiles for bringing lithium and potassium cations from the bulk mixture to the graphene wall and the orientational distributions of imidazolium rings within the first adsorbed layer as a function of salt concentration and electrode potential. The charge densities in the electrodes were chosen to be zero and ±1 e nm(-2), and the salt molar percentages were %salt = 0, 10 and 25. We found that the layered structure extends up to 1-2 nm, where the bulk behaviour is recovered. In addition, whereas for the neutral surface the layers are composed of both ionic species, increasing the electrode potential, the structure changes to alternating cationic and anionic layers leading to an overcompensation of the charge of the previous layer. We also calculated the distribution of angles of imidazolium rings near neutral and charged graphene walls, finding a limited influence of the added salt. In addition, the average tilt of the imidazolium ring within the first layer goes from 36° with respect to a normal vector to the uncharged graphene wall to 62° in the presence of charged walls. The free energy profiles revealed that lithium and potassium ions are adsorbed on the negative surface only for the highest amount of salt, since the free energy barriers for approaching this electrode are considerably higher than kBT. PMID:24871696

  9. Viscometric and thermodynamic studies of interactions in ternary solutions containing sucrose and aqueous alkali metal halides at 293.15, 303.15 and 313.15 K

    Indian Academy of Sciences (India)

    Reena Gupta; Mukhtar Singh

    2005-05-01

    Viscosities and densities of sucrose in aqueous alkali metal halide solutions of different concentrations in the temperature range 293.15 to 313.15 K have been measured. Partial molar volumes at infinite dilution ($V_{2}^{0}$) of sucrose determined from apparent molar volume ($\\phi_v$) have been utilized to estimate partial molar volumes of transfer ($V^{0}_{2,tr}$) for sucrose from water to alkali metal halide solutions. The viscosity data of alkali metal halides in purely aqueous solutions and in the presence of sucrose at different temperatures (293.15, 303.15 and 313.5 K) have been analysed by the Jones-Dole equation. The nature and magnitude of solute-solvent and solute-solute interactions have been discussed in terms of the values of limiting apparent molar volume ($\\phi^{0}_{v}$), slope ($S_{v}$) and coefficients of the Jones-Dole equation. The structuremaking and structure-breaking capacities of alkali metal halides in pure aqueous solutions and in the presence of sucrose have been ascertained from temperature dependence of $\\phi^{0}_{v}$.

  10. Structural and electronic engineering of 3DOM WO3 by alkali metal doping for improved NO2 sensing performance

    Science.gov (United States)

    Wang, Zhihua; Fan, Xiaoxiao; Han, Dongmei; Gu, Fubo

    2016-05-01

    Novel alkali metal doped 3DOM WO3 materials were prepared using a simple colloidal crystal template method. Raman, XRD, SEM, TEM, XPS, PL, Hall and UV-Vis techniques were used to characterize the structural and electronic properties of all the products, while the corresponding sensing performances targeting ppb level NO2 were determined at different working temperatures. For the overall goal of structural and electronic engineering, the co-effect of structural and electronic properties on the improved NO2 sensing performance of alkali metal doped 3DOM WO3 was studied. The test results showed that the gas sensing properties of 3DOM WO3/Li improved the most, with the fast response-recovery time and excellent selectivity. More importantly, the response of 3DOM WO3/Li to 500 ppb NO2 was up to 55 at room temperature (25 °C). The especially high response to ppb level NO2 at room temperature (25 °C) in this work has a very important practical significance. The best sensing performance of 3DOM WO3/Li could be ascribed to the most structure defects and the highest carrier mobility. And the possible gas sensing mechanism based on the model of the depletion layer was proposed to demonstrate that both structural and electronic properties are responsible for the NO2 sensing behavior.Novel alkali metal doped 3DOM WO3 materials were prepared using a simple colloidal crystal template method. Raman, XRD, SEM, TEM, XPS, PL, Hall and UV-Vis techniques were used to characterize the structural and electronic properties of all the products, while the corresponding sensing performances targeting ppb level NO2 were determined at different working temperatures. For the overall goal of structural and electronic engineering, the co-effect of structural and electronic properties on the improved NO2 sensing performance of alkali metal doped 3DOM WO3 was studied. The test results showed that the gas sensing properties of 3DOM WO3/Li improved the most, with the fast response-recovery time and

  11. A stochastic optimization method based technique for finding out reaction paths in noble gas clusters perturbed by alkali metal ions

    International Nuclear Information System (INIS)

    Graphical abstract: The structure of a minimum in Ar19K+ cluster. Abstract: In this paper we explore the possibility of using stochastic optimizers, namely simulated annealing (SA) in locating critical points (global minima, local minima and first order saddle points) in Argon noble gas clusters perturbed by alkali metal ions namely sodium and potassium. The atomic interaction potential is the Lennard Jones potential. We also try to see if a continuous transformation in geometry during the search process can lead to a realization of a kind of minimum energy path (MEP) for transformation from one minimum geometry to another through a transition state (first order saddle point). We try our recipe for three sizes of clusters, namely (Ar)16M+, (Ar)19M+ and (Ar)24M+, where M+ is Na+ and K+.

  12. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    Directory of Open Access Journals (Sweden)

    X. H. Liu

    2015-10-01

    Full Text Available We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of 87Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the 87Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the 87Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system.

  13. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X. H.; Luo, H.; Qu, T. L., E-mail: qutianliang@nudt.edu.cn; Yang, K. Y.; Ding, Z. C. [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2015-10-15

    We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of {sup 87}Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the {sup 87}Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the {sup 87}Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system.

  14. Heavy main-group iodometallates hybridized by alkali metal via 1,10-Phenanthroline-5,6-dione

    Indian Academy of Sciences (India)

    Mengfan Yin; Gengxing Cai; Peng Wang; Xihui Chao; Jibo Liu; Haohong Li; Zhirong Chen

    2015-09-01

    Alkali metals were introduced into heavy main-group iodometallates to get two new IA/IVAheterometallic frameworks [PbI3K(pdon)(H2O)2] (1) and {[Pb3I9K2(pdon)2(H3O)]·H2O} (2) (pdon=1,10-phenanthroline-5,6-dione), which were obtained as single phases by hydrothermal method at different pH values. Compounds 1 and 2 are three-dimensional heterometallic frameworks constructed from the linkage of pdon ligand between iodometallate chains and potassium oxides/iodide clusters. Specially, these two heterometallic frameworks exhibit broadened absorption bands at 700 and 750 nm compared with those of bulk PbI2 and pdon ligand. The band gap of 2 is wider than that of 1, which is due to the absence of · · · interaction in 2. Their thermal stabilities are also discussed.

  15. Synthesis and Crystal Structure of A New Armed-tetraazacrown Ether and Its Liquid Membrane Transport of Alkali Metal Cations

    Institute of Scientific and Technical Information of China (English)

    马淑兰; 朱文祥; 董淑静; 郭倩玲; 佘远斌

    2003-01-01

    A new tetra-N-substituted tetraazacrown ether derivative, 4,7,13,16-tetra ( 2-cyanobenzyl)-1, 10-dioxa-4, 7, 13, 16-tetraazacy-dooctademne, C44H48N8O2, has been synthesized and struc-turally characterized. It crystallizes in the monoclinic system,Slmeegroup P21/c with a = 1.1176(3) nm, b =2.1906(7) nm,c=0.8430(3)nm, V=2.0132(10)nm3, β = 102.740(5)°,Z=4, Dc= 1.189 g/cm3, final R1=0.0460, wR2=0.0803.The liquid membrane transports of alkali metal cations using the new macrocyde as the ion-carrier were also studied. Com-pared with some macrocyclic ligands, our newly synthesized lig.and showed a good selectivity ratio for Na Na+/Li+.

  16. The Trapping and Cooling of Alkalis Metal Atoms%碱金属原子的囚禁与冷却

    Institute of Scientific and Technical Information of China (English)

    邓海明; 李璋

    2012-01-01

      描述了如何利用激光以及磁场构建光学粘胶、激光阱、磁阱、磁光阱等实现对碱金属的囚禁与冷却,旨在明晰的呈现BEC实验实现的关键技术、物理原理以及各种装置的优缺点。%  This essay describes how to use laser and magnetic field to construct optical molasses ,laser trap ,mag-netic trap and magneto -optical trap to trap and cool alkali-metal atoms .It presents clearly the key experimental technologies of Bose-Einstein condensate ,the physical principle and the relative advantages and disadvantages of different equipments .

  17. Hyperfine-induced quadrupole moments of alkali-metal atom ground states and their implications for atomic clocks

    CERN Document Server

    Derevianko, Andrei

    2016-01-01

    Spherically-symmetric ground states of alkali-metal atoms do not posses electric quadrupole moments. However, the hyperfine interaction between nuclear moments and atomic electrons distorts the spherical symmetry of electronic clouds and leads to non-vanishing atomic quadrupole moments. We evaluate these hyperfine-induced quadrupole moments using techniques of relativistic many-body theory and compile results for Li, Na, K, Rb, and Cs atoms. For heavy atoms we find that the hyperfine-induced quadrupole moments are strongly (two orders of magnitude) enhanced by correlation effects. We further apply the results of the calculation to microwave atomic clocks where the coupling of atomic quadrupole moments to gradients of electric fields leads to clock frequency uncertainties. We show that for $^{133}$Cs atomic clocks, the spatial gradients of electric fields must be smaller than $30 \\, \\mathrm{V}/\\mathrm{cm}^2$ to guarantee fractional inaccuracies below $10^{-16}$.

  18. Purification and characterization of an extracellular, thermo-alkali-stable, metal tolerant laccase from Bacillus tequilensis SN4.

    Directory of Open Access Journals (Sweden)

    Sonica Sondhi

    Full Text Available A novel extracellular thermo-alkali-stable laccase from Bacillus tequilensis SN4 (SN4LAC was purified to homogeneity. The laccase was a monomeric protein of molecular weight 32 KDa. UV-visible spectrum and peptide mass fingerprinting results showed that SN4LAC is a multicopper oxidase. Laccase was active in broad range of phenolic and non-phenolic substrates. Catalytic efficiency (kcat/Km showed that 2, 6-dimethoxyphenol was most efficiently oxidized by the enzyme. The enzyme was inhibited by conventional inhibitors of laccase like sodium azide, cysteine, dithiothreitol and β-mercaptoethanol. SN4LAC was found to be highly thermostable, having temperature optimum at 85°C and could retain more than 80% activity at 70°C for 24 h. The optimum pH of activity for 2, 6-dimethoxyphenol, 2, 2'-azino bis[3-ethylbenzthiazoline-6-sulfonate], syringaldazine and guaiacol was 8.0, 5.5, 6.5 and 8.0 respectively. Enzyme was alkali-stable as it retained more than 75% activity at pH 9.0 for 24 h. Activity of the enzyme was significantly enhanced by Cu2+, Co2+, SDS and CTAB, while it was stable in the presence of halides, most of the other metal ions and surfactants. The extracellular nature and stability of SN4LAC in extreme conditions such as high temperature, pH, heavy metals, halides and detergents makes it a highly suitable candidate for biotechnological and industrial applications.

  19. Dispersion coefficients for the interactions of the alkali-metal and alkaline-earth-metal ions and inert-gas atoms with a graphene layer

    Science.gov (United States)

    Kaur, Kiranpreet; Arora, Bindiya; Sahoo, B. K.

    2015-09-01

    Largely motivated by a number of applications, the van der Waals dispersion coefficients C3 of the alkali-metal ions Li+,Na+,K+, and Rb+, the alkaline-earth-metal ions Ca+,Sr+,Ba+, and Ra+, and the inert-gas atoms He, Ne, Ar, and Kr with a graphene layer are determined precisely within the framework of the Dirac model. For these calculations, we evaluate the dynamic polarizabilities of the above atomic systems very accurately by evaluating the transition matrix elements employing relativistic many-body methods and using the experimental values of the excitation energies. The dispersion coefficients are given as functions of the separation distance of an atomic system from the graphene layer and the ambiance temperature during the interactions. For easy extraction of these coefficients, we give a logistic fit to the functional forms of the dispersion coefficients in terms of the separation distances at room temperature.

  20. Partial Oxidation of Butane to Syngas over Nickel SupportedCatalysts Modified by Alkali Metal Oxide and Rare-Earth Metal Oxide

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The partial oxidation of butane (POB) to syngas over nickel supported catalysts was first investigated with a flow-reactor, TG and UVRRS. The NiO/g-Al2O3 is the most suitable for the POB among NiO/g-Al2O3, NiO/MgO and NiO/SiO2. And the reaction performance of the NiO/g-Al2O3 shows little difference from those of the nickel supported catalysts modified by alkali metal oxide and rare-earth metal oxide. However, modification with Li2O and La2O3 can suppress carbon-deposition of the NiO/g-Al2O3, which contains graphite-like species during the POB reaction.

  1. Al/Cl2 molten salt battery

    Science.gov (United States)

    Giner, J.

    1972-01-01

    Molten salt battery has been developed with theoretical energy density of 5.2 j/kg (650 W-h/lb). Battery, which operates at 150 C, can be used in primary mode or as rechargeable battery. Battery has aluminum anode and chlorine cathode. Electrolyte is mixture of AlCl3, NaCl, and some alkali metal halide such as KCl.

  2. [Characteristics of 'salt island' and 'fertile island' for Tamarix chinensis and soil carbon, nitrogen and phosphorus ecological stoichiometry in saline-alkali land].

    Science.gov (United States)

    Zhang, Li-hua; Chen, Xiao-bing

    2015-03-01

    To clarify the nutrient characteristics of 'salt island' and 'fertile island' effects in saline-alkali soil, the native Tamarix chinensis of the Yellow River Delta (YRD) was selected to measure its soil pH, electrical conductivity (EC), organic carbon (SOC), total nitrogen (N), total phosphorus (P) and their stoichiometry characteristics at different soil depths. The results showed that soil pH and EC increased with the increasing soil depth. Soil EC and P in the 0-20 cm layer decreased and increased from canopied area to interspace, respectively. SOC, N, N/P and C/P in the 20-40 cm soil layer decreased, and C/N increased from the shrub center to interspace. SOC and N contents between island and interspace both decreased but P content decreased firstly and then increased with the increasing soil depth. Soil pH correlated positively with EC. In addition, pH and EC correlated negatively with C, N, P contents and their ecological stoichiometry.

  3. The electronic properties of bare and alkali metal adsorbed two-dimensional GeSi alloy sheet

    Science.gov (United States)

    Qiu, Wenhao; Ye, Han; Yu, Zhongyuan; Liu, Yumin

    2016-09-01

    In this paper, the structural and electronic properties of both bare and alkali metal (AM) atoms adsorbed two-dimensional GeSi alloy sheet (GeSiAS) are investigated by means of first-principles calculations. The band gaps of bare GeSiAS are shown slightly opened at Dirac point with the energy dispersion remain linear due to the spin-orbit coupling effect at all concentrations of Ge atoms. For metal adsorption, AM atoms (including Li, Na and K) prefer to occupy the hexagonal hollow site of GeSiAS and the primary chemical bond between AM adatom and GeSiAS is ionic. The adsorption energy has an increase tendency with the increase of the Ge concentration in supercell. Besides, single-side adsorption of AM atoms introduces band gap at Dirac point, which can be tuned by the Ge concentration and the species of AM atoms. The strong relation between the band gaps and the distribution of Si and Ge atoms inside GeSiAS are also demonstrated. The opened band gaps of AM covered GeSiAS range from 14.8 to 269.1 meV along with the effective masses of electrons ranging from 0.013 to 0.109 me, indicating the high tunability of band gap as well as high mobility of carriers. These results provide a development in two-dimensional alloys and show potential applications in novel micro/nano-electronic devices.

  4. Atomic many-body effects and Lamb shifts in alkali metals

    CERN Document Server

    Ginges, J S M

    2016-01-01

    We present a detailed study of the Flambaum-Ginges radiative potential method which enables the accurate inclusion of quantum electrodynamics (QED) radiative corrections in a simple manner in atoms, ions, and molecules over the range 10<=Z<=120, where Z is the nuclear charge. Calculations are performed for binding energy shifts to the lowest valence s, p, and d waves over the series of alkali atoms Na to E119. The high accuracy of the radiative potential method is demonstrated by comparison with rigorous QED calculations in frozen atomic potentials, with deviations on the level of 1%. The many-body effects of core relaxation and second- and higher-order perturbation theory on the interaction of the valence electron with the core are calculated. The inclusion of many-body effects tends to increase the size of the shifts, with the enhancement particularly significant for d waves; for K to E119, the self-energy shifts for d waves are only an order of magnitude smaller than the s-wave shifts. It is shown th...

  5. ALKALI RESISTANT CATALYST

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention concerns the selective removal of nitrogen oxides (NOx) from gasses. In particular, the invention concerns a process, a catalyst and the use of a catalyst for the selective removal of nitrogen oxides in the presence of ammonia from gases containing a significant amount...... of alkali metal and/or alkali-earth compounds which process comprises using a catalyst combined of (i) a formed porous superacidic support, said superacidic support having an Hammett acidity stronger than Ho=-12, and (ii) a metal oxide catalytic component deposited on said superacidic support selected from...

  6. Alkali Metal Rankine Cycle Boiler Technology Challenges and Some Potential Solutions for Space Nuclear Power and Propulsion Applications

    Science.gov (United States)

    Stone, James R.

    1994-01-01

    Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently. This report is aimed at evaluating alkali metal boiler

  7. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals.

    Science.gov (United States)

    Liu, Yuanyue; Merinov, Boris V; Goddard, William A

    2016-04-01

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems. PMID:27001855

  8. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals

    Science.gov (United States)

    Liu, Yuanyue; Merinov, Boris V.; Goddard, William A., III

    2016-04-01

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.

  9. Optimized random phase approximation for the structure of liquid alkali metals as electron-ion plasmas

    International Nuclear Information System (INIS)

    The purpose of this letter is to stress that the way towards an unconventional optimized-random-phase-approximation (ORPA) approach to the structure of liquid metals is indicated, and in fact already a good first-order solution for such an approach is provided

  10. Evidence for alkali metal induced intermolecular acetylenic hydrogen atom transfer between hydrogen-bonded alkyne complexes in solid argon

    International Nuclear Information System (INIS)

    Condensation of acetylene, propyne, and 2-butyne/acetylene mixtures with heavy alkali metal atoms (Na, K, Cs) in an argon matrix at 15 K has led to the appearance of infrared absorptions due to ethylene, propylene, and trans-2-butene, respectively. These results stand in sharp contrast with the products obtained with lithium. Isotopic studies have shown that ethylene formation involved three different acetylene molecules and evidenced a difference in the product yield with hydrogen vs. deuterium as well as a preference for trans- vs. cis-C2H2D2 formation, which is discussed and rationalized by differences in the zero point energies for the different mixed deuterium isotopes of the intermediate vinyl radical. This trend is amplified by methyl substitution. Spectroscopic evidence was found in these experiments for cesium acetylide (Cs+C2H-) and a cesium-acetylene π complex, which are involved in the intermolecular acetylenic hydrogen atom transfer process. 26 references, 3 figures, 2 tables

  11. Effect of semicore banding on heavy-alkali-metal lattice constants: Corrections to the frozen-core approximation

    Science.gov (United States)

    Yang, L. H.; Smith, A. P.; Benedek, R.; Koelling, D. D.

    1993-06-01

    Equilibrium lattice constants and bulk moduli of the heavy alkali metals K, Rb, and Cs were calculated using the Troullier-Martins pseudopotentials and plane-wave basis functions. The treatment of the outermost p-shell electrons as Bloch states yielded lattice constants 2-3 % larger than those obtained within the frozen-core approximation (including the partial core correction of Louie, Froyen, and Cohen [Phys. Rev. B 26, 1738 (1982)]), which narrows a long-standing discrepancy between local-density functional theory and experiment. Predicted bulk moduli are 30-50 % larger than measured values, within either treatment. The band dispersion of the semicore states (with bandwidths 0.067, 0.14, and 0.25 eV for K, Rb, and Cs) is attributed primarily to core-electron-conduction-electron hybridization rather than direct core-core overlap. The semicore density of states has a flat line shape, rather than the peaked shape expected for an idealized tight-binding band.

  12. FP-APW+lo calculations of the electronic and optical properties of alkali metal sulfides under pressure

    International Nuclear Information System (INIS)

    The electronic and optical properties of M2S (M = Li, Na, K and Rb) compounds in the cubic antifluorite structure have been calculated, using a full relativistic version of the full-potential augmented plane-wave plus local orbitals method based on density functional theory, within both the local density approximation (LDA) and the generalized gradient approximation (GGA). Moreover, the Engel-Vosko GGA formalism (EV-GGA) is applied so as to optimize the corresponding potential for band structure calculations. The calculated equilibrium lattices and bulk moduli are in good agreement with the available data. Band structure, density of states, electron charge density and pressure coefficients of energy gaps are given. Results obtained for band structure using EV-GGA are larger than those with LDA and GGA. It is found that the spin-orbit coupling lifts the triple degeneracy at the Γ point and the double degeneracy at the X point. The analysis of the electron charge density shows that the M-S bonds have a significant ionic character. The complex dielectric functions ε2(ω) for alkali metal sulfides were calculated for radiation up to 30 eV and the assignment of the critical points to the band structure energy differences at various points of the Brillouin zone was made. The pressure and volume dependence of the static dielectric constant and the refractive index are calculated.

  13. Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS2

    Directory of Open Access Journals (Sweden)

    X. D. Li

    2015-05-01

    Full Text Available Single adsorption of different atoms on pristine two-dimensional monolayer MoS2 have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3d-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS2. Additionally, local or long-range magnetic moments of two-dimensional MoS2 sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS2 monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application.

  14. [Vascular-parenchymal ratio of testes under correction of exposure to combinations of heavy metals salts].

    Science.gov (United States)

    Romaniuk, A M; Moskalenko, Iu V; Sauliak, S V; Bonchev, S D; Moskalenko, R A

    2013-06-01

    The results of the study of testes' tissue of 128 immature rats, which get within 60 days drinking water with threshold concentration of salts of copper, zinc, iron, manganese, lead, chromium. It was found that morphological changes of microvasculature was nonspecific and lead to the secondary damage of blood-testis barrier and correlated with changes in testes' parenchymal structures. Fullest possible extent of testicular parenchymal damage occurs in the areas of intensive blood supply, as well as toxic substances in these areas have a longer exposure time. Under exposure combinations of heavy metals salts of organisme the reduction of the vascular streambed in the testes is influenced by intravascular, extravascular intrawall factors. The intensity of vasculature and parenchyma violations of gland depends on duration of exposure combinations of salts of heavy metals. Applying the L-carnitine on the background of intoxication of heavy metal salts partially reduces adverse changes in testes' microvasculature streambed and parenchyma of rats. PMID:25095698

  15. Magnetometry with millimeter-scale anti-relaxation-coated alkali-metal vapor cells

    CERN Document Server

    Balabas, M V; Kitching, J; Schwindt, P D D; Stalnaker, J E

    2005-01-01

    Dynamic nonlinear magneto-optical-rotation signals with frequency- and amplitude-modulated laser light have been observed and investigated with a spherical glass cell of 3-mm diameter containing Cs metal with inner walls coated with paraffin. Intrinsic Zeeman relaxation rates of $\\gamma/(2\\pi)\\approx 20 $Hz and lower have been observed. Favorable prospects of using millimeter-scale coated cells in portable magnetometers and secondary frequency references are discussed.

  16. X-ray and neutron diffraction studies of some liquid alkali metals and alloys

    International Nuclear Information System (INIS)

    Experimental techniques and correction procedures have been searched for, which allow a reliable and accurate determination of the structure factors of simple liquid metals, particularly in the small-angle region. A study of binary alloys was carried out and showed that clustering of like atoms (a tendency to phase separation) occurs, indicating special structural aspects. The densities of Na-K, Na-Cs, K-Rb alloys were also measured. (C.F.)

  17. Chemical state analysis of trace-level alkali metals sorbed in micaceous oxide by total reflection X-ray photoelectron spectroscopy

    Science.gov (United States)

    Baba, Y.; Shimoyama, I.; Hirao, N.

    2016-10-01

    In order to determine the chemical states of radioactive cesium (137Cs or 134Cs) sorbed in clay minerals, chemical states of cesium as well as the other alkali metals (sodium and rubidium) sorbed in micaceous oxides have been investigated by X-ray photoelectron spectroscopy (XPS). Since the number of atoms in radioactive cesium is extremely small, we specially focused on chemical states of trace-level alkali metals. For this purpose, we have measured XPS under X-ray total reflection (TR) condition. For cesium, it was shown that ultra-trace amount of cesium down to about 100 pg cm-2 can be detected by TR-XPS. This amount corresponds to about 200 Bq of 137Cs (t1/2 = 30.2 y). It was demonstrated that ultra-trace amount of cesium corresponding to radioactive cesium level can be measured by TR-XPS. As to the chemical states, it was found that core-level binding energy in TR-XPS for trace-level cesium shifted to lower-energy side compared with that for thicker layer. A reverse tendency is observed in sodium. Based on charge transfer within a simple point-charge model, it is concluded that chemical bond between alkali metal and micaceous oxide for ultra-thin layer is more polarized that for thick layer.

  18. Some metallic materials and fluoride salts for high temperature applications

    International Nuclear Information System (INIS)

    There has been a special Ni base alloy MONICR for high temperature applications in fluoride salt environments developed in the framework of the complex R and D program for the Molten Salt Reactor (MSR) - SPHINX (SPent Hot fuel Incinerator by Neutron fluX) concept development in the Czech Republic. Selected results of MONICR alloy tests and results of semi products fabrication from this alloy are discussed in the paper. The results of the structural materials tests are applied on semi-products and for the design of the testing devices as the autoclave in loop arrangement for high temperature fluoride salts applications. Material properties other Ni base alloys are compared to those of MONICR. Corrosion test results of the alloy A686 in the LiF - NaF - ZrF4 molten salt are provided and compared to the measured values of the polarizing resistance. (author)

  19. Alkali metal – yttrium borohydrides: The link between coordination of small and large rare-earth

    International Nuclear Information System (INIS)

    The system Li–A–Y–BH4 (A=K, Rb, Cs) is found to contain five new compounds and four further ones known from previous work on the homoleptic borohydrides. Crystal structures have been solved and refined from synchrotron X-ray powder diffraction, thermal stability of new compounds have been investigated and ionic conductivity measured for selected samples. Significant coordination flexibility for Y3+ is revealed, which allows the formation of both octahedral frameworks and tetrahedral complex anions with the tetrahydroborate anion BH4 both as a linker and terminal ligand. Bi- and trimetallic cubic double-perovskites c-A3Y(BH4)6 or c-A2LiY(BH4)6 (A=Rb, Cs) form in all the investigated systems, with the exception of the Li–K–Y system. The compounds with the stoichiometry AY(BH4)4 crystallize in all investigated systems with a great variety of structure types which find their analog amongst metal oxides. In-situ formation of a new borohydride – closo-borane is observed during decomposition of all double perovskites. - Graphical abstract: The system Li–A–Y–BH4 (A=K, Rb, Cs) is found to contain five novel compounds and four further ones previously reported. Significant coordination flexibility of Y3+ is revealed, which can be employed to form both octahedral frameworks and tetrahedral complex anions, very different structural topologies. Versatility is also manifested in three different simultaneously occurring coordination modes of borohydrides for one metal cation, as proposed by DFT optimization of the monoclinic KY(BH4)4 structural model observed by powder diffraction. - Highlights: • The system Li-A-Y-BH4 (A=K, Rb, Cs) contains nine compounds in total. • Y3+ forms octahedral frameworks and tetrahedral complex anions. • Bi- and trimetallic double-perovskites crystallize in most systems. • Various AY(BH4)4 crystallize with structure types analogous to metal oxides. • Double-perovskites decompose and form a novel borohydride-closo-borane

  20. Dipole Polarizability of Alkali-Metal (Na, K, Rb) - Alkaline-Earth-Metal (Ca,Sr) Polar molecules - Prospects of Alignment

    CERN Document Server

    Gopakumar, Geetha; Hada, Masahiko; Kajita, Masatoshi

    2014-01-01

    Electronic open-shell ground-state properties of selected alkali-metal (AM) - alkaline-earth-metal (AEM) polar molecules are investigated. We determine potential energy curves of the 2{\\Sigma}+ ground state at the coupled-cluster singles and doubles with partial triples (CCSD(T)) level of electron correlation. Calculated spectroscopic constants for the isotopes (23Na, 39K, 85Rb) - (40Ca, 88Sr) are compared with available theoretical and experimental results. The variation of the permanent dipole moment (PDM), average dipole polarizability, and polarizability anisotropy with internuclear distance is determined using finite-field perturbation theory at the CCSD(T) level. Owing to moderate PDM (KCa: 1.67 D, RbCa: 1.75 D, KSr: 1.27 D, RbSr: 1.41 D) and large polarizability anisotropy (KCa: 566 a.u., RbCa: 604 a.u., KSr: 574 a.u., RbSr: 615 a.u.), KCa, RbCa, KSr, and RbSr are potential candidates for alignment and orientation in combined intense laser and external static electric fields.

  1. Ab initio properties of the ground-state polar and paramagnetic europium-alkali-metal-atom and europium-alkaline-earth-metal-atom molecules

    CERN Document Server

    Tomza, Michał

    2014-01-01

    The properties of the electronic ground state of the polar and paramagnetic europium-$S$-state-atom molecules have been investigated. Ab initio techniques have been applied to compute the potential energy curves for the europium-alkali-metal-atom, Eu$X$ ($X$=Li, Na, K, Rb, Cs), europium-alkaline-earth-metal-atom, Eu$Y$ ($Y$=Be, Mg, Ca, Sr, Ba), and europium-ytterbium, EuYb, molecules in the Born-Oppenheimer approximation for the high-spin electronic ground state. The spin restricted open-shell coupled cluster method restricted to single, double, and noniterative triple excitations, RCCSD(T), was employed and the scalar relativistic effects within the small-core energy-consistent pseudopotentials were included. The permanent electric dipole moments and static electric dipole polarizabilities were computed. The leading long-range coefficients describing the dispersion interaction between atoms at large internuclear distances $C_6$ are also reported. The EuK, EuRb, and EuCs molecules are examples of species poss...

  2. Vanadium oxide based cpd. useful as a cathode active material - is used in lithium or alkali metal batteries to prolong life cycles

    DEFF Research Database (Denmark)

    1997-01-01

    A mixt. of metallic iron particles and vanadium pentoxide contg. V in its pentavalent state in a liq. is reacted to convert at least some of the pentavalent V to its tetravalent state and form a gel. The liq. phase is then sepd. from the oxide based gel to obtain a solid material(I) comprising Fe......, V and oxygen where at least some of the V is in the tetravalent state. USE-(I) is a cathode active material in electric current producing storage cells. ADVANTAGE-Use of (I) in Li or alkali metal batteries gives prolonged life cycles.Storage cells using (I) have improved capacity during charge and...

  3. Explorations of New SHG Materials in the Alkali-Metal-Nb(5+)-Selenite System.

    Science.gov (United States)

    Cao, Xue-Li; Hu, Chun-Li; Kong, Fang; Mao, Jiang-Gao

    2015-11-16

    Standard high-temperature solid-state reactions of NaCl, Nb2O5, and SeO2 resulted in two new sodium selenites containing a second-order Jahn-Teller (SOJT) distorted Nb(5+) cation, namely, Na2Nb4O7(SeO3)4 (P1̅; 1) and NaNbO(SeO3)2 (Cmc21; 2). Compound 1 exhibits an unusual 3D [Nb4O7(SeO3)4](2-) anionic network composed of 2D [Nb4O11(SeO3)2](6-) layers which are further bridged by additional SeO3(2-) anions via corner sharing; the 2D [Nb4O11(SeO3)2](6-) layer is formed by unusual quadruple [Nb4O17](14-) niobium oxide chains of corner-sharing NbO6 octahedra being further interconnected by selenite anions via Nb-O-Se bridges. The polar compound 2 features a 1D [NbO(SeO3)2](-) anionic chain in which two neighboring Nb(5+) cations are bridged by one oxo and two selenite anions. The alignments of the polarizations from the NbO6 octahedra in 2 led to a strong SHG response of ∼7.8 × KDP (∼360 × α-SiO2), which is the largest among all phases found in metal-Nb(5+)-Se(4+)/metal-Nb(5+)-Te(4+)-O systems. Furthermore, the material is also type I phase matchable. The above experimental results are consistent with those based on DFT theoretical calculations. Thermal stabilities and optical properties for both compounds are also reported. PMID:26513233

  4. Low temperature alkali metal-sulfur batteries. Final report, December 1, 1974-November 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Brummer, S.B.; Rauh, R.D.; Abraham, K.M.; Dampier, F.W.; Subrahmanyam, V.; Pearson, G.F.; Surprenant, J.K.; Buzby, J.M.

    1980-03-01

    Work on the development of rechargeable, ambient-temperature Li/sulfur and Li/metal sulfide batteries is reported. The Li/S system has the cathode material dissolved in the electrolyte, as Li/sub 2/S/sub n/. Tetrahydrofuran, 1M LiAsF/sub 6/, is one of the more attractive electrolytes discovered for this cell, since it can dissolve up to approx. 10M S as Li/sub 2/Sn. Despite the oxidative nature of the electrolyte, Li is stable in it and can be electrodeposited from it on battery charge. Cells of the configuration Li 5M S (as Li/sub 2/S/sub n/), THF, 1M LiAsF/sub 6//carbon can be discharged at 50/sup 0/C with a utilization of nearly 1.5e/sup -//S at the C/3 rate. This corresponds to the rate-capacity goal for this battery in its proposed vehicular or load-leveling applications. Further improvements in rate are possible. Rechargeability of 135 cycles of 0.1 e/sup -//S and approx. 45 cycles of 0.5 e/sup -//S was demonstrated. The self-discharge reaction keeps the Li electrode free of electrically isolated dendrites. Ultimate failure on cycling is due to cathode depletion via precipitation of Li/sub 2/S on the anode in a form insoluble in the electrolyte. Attempts to solubilize the Li/sub 2/S by the internal generation of an oxidizing scavenger (e.g., Br/sub 2/) or by addition of Lewis acids have met only with limited success. Cells of configuration Li/THF, 1M LiAsF/sub 6//insoluble metal sulfide were investigated, using the following cathodes: CuS, NiS, SiS/sub 2/, MnS/sub 2/, FeS, and Bi/sub 2/S/sub 3/. Of these, the most promising new material in terms of energy density and rechargeability is CuS. Well over 100 cycles for Li/CuS cells with moderate cathode loadings were demonstrated. CuS compares favorably with TiS/sub 2/ in terms of energy density and rechargeability and is superior in terms of economics. 39 figures, 19 tables.

  5. Complex formation during dissolution of metal oxides in molten alkali carbonates

    DEFF Research Database (Denmark)

    Li, Qingfeng; Borup, Flemming; Petrushina, Irina;

    1999-01-01

    as the partial pressure of carbon dioxide varies. By combination of solubility and electromotive force measurements, a model is constructed assuming the dissolution involves complex formation. The possible species for lead are proposed to be [Pb(CO3)(2)](-2) and/or [Pb(CO3)(3)](-4). A similar complex......Dissolution of metal oxides in molten carbonates relates directly to the stability of materials for electrodes and construction of molten carbonate fuel cells. In the present work the solubilities of PbO, NiO, Fe2O3,and Bi2O3 in molten Li/K carbonates have been measured at 650 degrees C under...... carbon dioxide atmosphere. It is found that the solubilities of NiO and PbO decrease while those of Fe2O3 and Bi2O3 remain approximately constant as the lithium mole fraction increases from 0.43 to 0.62 in the melt. At a fixed composition of the melt, NiO and PbO display both acidic and basic dissolution...

  6. Alkali metal Rankine cycle boiler technology challenges and some potential solutions for space nuclear power and propulsion applications

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J.R.

    1994-07-01

    Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently.

  7. Alkali metal ion induced cube shaped mesoporous hematite particles for improved magnetic properties and efficient degradation of water pollutants.

    Science.gov (United States)

    Roy, Mouni; Naskar, Milan Kanti

    2016-07-27

    Mesoporous cube shaped hematite (α-Fe2O3) particles were prepared using FeCl3 as an Fe(3+) precursor and 1-butyl-3-methylimidazolium bromide (ionic liquid) as a soft template in the presence of different alkali metal (lithium, sodium and potassium) acetates, under hydrothermal conditions at 150 °C/4 h followed by calcination at 350 °C. The formation of the α-Fe2O3 phase in the synthesized samples was confirmed by XRD, FTIR and Raman spectroscopy. Unlike K(+) ions, intercalation of Li(+) and Na(+) ions occurred in α-Fe2O3 crystal layers as evidenced by XRD and Raman spectroscopy. Electron microscopy (FESEM and TEM) images showed the formation of cube-like particles of different sizes in the presence of Li(+), Na(+) and K(+) ions. The mesoporosity of the products was confirmed by N2 adsorption-desorption studies, while their optical properties were analyzed by UV-DRS. Na(+) ion intercalated α-Fe2O3 microcubes showed improved coercivity (5.7 kOe) due to increased strain in crystals, and shape and magnetocrystalline anisotropy. Temperature dependent magnetization of the samples confirmed the existence of Morin temperature in the range of 199-260 K. Catalytic degradation of methylene blue (MB), a toxic water pollutant, was studied using the synthesized products via a heterogeneous photo-Fenton process. The degradation products were traced by electrospray ionization-mass spectrometry (ESI-MS). The α-Fe2O3 microcubes obtained in the presence of Na(+) ions exhibited a more efficient degradation of MB to non-toxic open chain products. PMID:27406648

  8. [Biological activity of selenorganic compounds at heavy metal salts intoxication].

    Science.gov (United States)

    Rusetskaya, N Y; Borodulin, V B

    2015-01-01

    Possible mechanisms of the antitoxic action of organoselenium compounds in heavy metal poisoning have been considered. Heavy metal toxicity associated with intensification of free radical oxidation, suppression of the antioxidant system, damage to macromolecules, mitochondria and the genetic material can cause apoptotic cell death or the development of carcinogenesis. Organic selenium compounds are effective antioxidants during heavy metal poisoning; they exhibit higher bioavailability in mammals than inorganic ones and they are able to activate antioxidant defense, bind heavy metal ions and reactive oxygen species formed during metal-induced oxidative stress. One of promising organoselenium compounds is diacetophenonyl selenide (DAPS-25), which is characterized by antioxidant and antitoxic activity, under conditions including heavy metal intoxication.

  9. [Spermatogenic function under the influence of heavy metal salts and its correction by preparation Tivortin].

    Science.gov (United States)

    Romaniuk, A M; Sauliak, S V; Moskalenko, R A; Moskalenko, Iu V

    2012-01-01

    Entrance of threshold concentrations of copper, zinc, iron, manganese, lead, chromium into the body of sexually mature male rats leads to secretory malfunction of the testicles, which manifests by a decrease of sperm concentration in the ejaculate, a decrease of percentage of motile gametes, an increase in the proportion of morphologically abnormal sperm forms. The evidence of disorders in spermatogram's parameters is directly depends on the duration of the influence of combination of heavy metal salts. The application of the drug Tivortin against intoxication of heavy metal salts decrease the adverse movement of quantitative and qualitative parameters of rat's spermatogramms, so far as Tivortin improves blood circulation, stimulates cell proliferation and cell differentiation, inhibits oxidative apoptosis. These explain beneficial effects of the drug on the growth and maturation of germ cells in case of the influence heavy metal salts combination on organ and the whole body. PMID:23035612

  10. CO2 Extraction from Ambient Air Using Alkali-Metal Hydroxide Solutions Derived from Concrete Waste and Steel Slag

    Science.gov (United States)

    Stolaroff, J. K.; Lowry, G. V.; Keith, D. W.

    2003-12-01

    To mitigate global climate change, deep reductions in CO2 emissions are required in the coming decades. Carbon sequestration will play a crucial role in this reduction. Early adoption of carbon sequestration in low-cost niche markets will help develop the technology and experience required for large-scale deployment. One such niche may be the use of alkali metals from industrial waste streams to form carbonate minerals, a safe and stable means of sequestering carbon. In this research, the potential of using two industrial waste streams---concrete and steel slag---for sequestering carbon is assessed. The scheme is outlined as follows: Ca and Mg are leached with water from a finely ground bed of steel slag or concrete. The resulting solution is sprayed through air, capturing CO2 and forming solid carbonates, and collected. The feasibility of this scheme is explored with a combination of experiments, theoretical calculations, cost accounting, and literature review. The dissolution kinetics of steel slag and concrete as a function of particle size and pH is examined. In stirred batch reactors, the majority of Ca which dissolved did so within the first hour, yielding between 50 and 250 (mg; Ca)/(g; slag) and between 10 and 30 (mg; Ca)/(g; concrete). The kinetics of dissolution are thus taken to be sufficiently fast to support the type of scheme described above. As proof-of-concept, further experiments were performed where water was dripped slowly through a stagnant column of slag or concrete and collected at the bottom. Leachate Ca concentrations in the range of 15 mM were achieved --- sufficient to support the scheme. Using basic physical principles and numerical methods, the quantity of CO2 captured by falling droplets is estimated. Proportion of water loss and required pumping energy is similarly estimated. The results indicate that sprays are capable of capturing CO2 from the air and that the water and energy requirements are tractable. An example system for

  11. Separation of stable isotopes of alkali and alkaline earth metals in chemical exchange systems with crown ethers

    International Nuclear Information System (INIS)

    Chemical isotope exchange in two-phase water - organic systems Men+ (water) - MeLn+ (org), where Me = Li, Ca, K, Mg; L = crown ethers with 5 to 6 oxygen atoms in macrocyclic ring; org = CHCl3, CH2Cl2 has been studied. The process of isotope separation has been realized by extraction chromatography. The chromatographic column contained a fixed aqueous phase. The organic solution of metal complex with crown ether was eluted through the column. On contact with the fixed aqueous phase in the course of chromatography, metal salt reextraction occurred and interphase isotope exchange between aqueous and organic phases resulted. Isotope separation factors in these systems were in the range of: 1.0032 - 1.020 (6Li/7Li), 1.0016 - 1.0038 (40Ca/44Ca), 1.0007 - 1.0011 (39K/41K), 1.0014 - 1.0044 (24Mg/26Mg). The theoretical model has been proposed to interpret the high separation factors in crown ether extraction systems. According to this model, the potential in such systems has a very flat bottom. This type of potential results in weakening the force field and decreasing of β-factor (i.e., (s/s')f) in spite of comparatively high energy of complexation. This model can interpret both high separation factors and their strong dependence on the type of crown ether. (author)

  12. Salt-Driven Deposition of Thermoresponsive Polymer-Coated Metal Nanoparticles on Solid Substrates.

    Science.gov (United States)

    Zhang, Zhiyue; Maji, Samarendra; da Fonseca Antunes, André B; De Rycke, Riet; Hoogenboom, Richard; De Geest, Bruno G

    2016-06-13

    Here we report on a simple, generally applicable method for depositing metal nanoparticles on a wide variety of solid surfaces under all aqueous conditions. Noble-metal nanoparticles obtained by citrate reduction followed by coating with thermoresponsive polymers spontaneously form a monolayer-like structure on a wide variety of substrates in presence of sodium chloride whereas this phenomenon does not occur in salt-free medium. Interestingly, this phenomenon occurs below the cloud point temperature of the polymers and we hypothesize that salt ion-induced screening of electrostatic charges on the nanoparticle surface entropically favors hydrophobic association between the polymer-coated nanoparticles and a hydrophobic substrate. PMID:27142455

  13. Activation analysis for measurements of silicon, phosphorus, alkali metals and other elements in high-purity metals

    International Nuclear Information System (INIS)

    In the present thesis, methods of activation analysis were developed for the determination of the elements silicon, phosphorus, potassium, sodium, i.a. in the high-purity metals vanadium, niobium, tantalum, tungsten, molybdenum and iron. The determination of silicon is based on the activation of samples with reactor neutrons, on a subsequent radiochemical separation of the tracer radionuclide 31Si resulting from the reaction 30Si(n,γ), and on the measurement of β activity with the help of a liquid scintillation measuring desk. Since the tracer radionuclide 31Si almost exclusively emits β rays which are not sufficiently nuclide-specific, silicon was selectively separated from the other sample elements by being distilled as silicon tetrafluoride. The processing of the residue following the separation of silicon permits a complementary gamma-spectroscopic determination of a whole lot of additional elements. Thus, the separation of the nuclide 182Ta with the anion exchanger Dowex 1X8 from HF/H2SO4 medium permits the determination of 22 elements in vanadium, niobium and tantalum. Phosphorus content is determined by activating the samples with rapid neutrons (cyclotrons) via the reaction 31P(n,p)31Si. (orig./MM)

  14. Susceptibilities of Mycobacterium fortuitum biovariant fortuitum and the unnamed third biovariant complex to heavy-metal salts.

    OpenAIRE

    Wallace, R. J.; Steele, L C; Forrester, G D; Swenson, J M; Hull, S I

    1984-01-01

    Fifty-three clinical isolates of Mycobacterium fortuitum were tested for susceptibility to heavy-metal salts and antimicrobial agents. The isolates exhibited a bimodal distribution for several heavy metals including mercury, whose resistance is often plasmid mediated. There was a biovariant difference in the incidence of resistance, and resistance to several metal ions was often observed together. There was no apparent relationship between resistance to heavy-metal salts and resistance to ant...

  15. Preparation and characterizations of heat storage material combining porous metal with molten salt

    Institute of Scientific and Technical Information of China (English)

    王华; 何方; 戴永年; 胡建杭

    2003-01-01

    A new type of heat storage materials combining high temperature molten salts phases change latent heat thermal storage materials, PCM with porous metals sensible heat thermal storage materials was developed. The process was expressed as following: firstly, it is necessary to heat up the molten salts phases change materials to molten; and then the porous metals are put into the molten bath; after being held for 1-3 h, the composite heat thermal storage materials lumps are taken out of the molten bath and cooled to atmospheric temperature; the last step is to electrodeposit a layer metal coat on the surface of the material lumps. The new type of heat storage material integrates the advantages of both solid sensible heat thermal storage materials and high temperature phases change latent heat thermal storage materials. The metal-base heat storage materials enjoy some favorable characteristics such as higher heat charge-discharge rate, higher heat storage density and better mechanical strength.

  16. Calculation of van der Walls coefficients of alkali metal clusters by hydrodynamic approach to time-dependent density-functional theory

    CERN Document Server

    Banerjee, A; Banerjee, Arup; Harbola, Manoj K.

    2004-01-01

    In this paper we employ the hydrodynamic formulation of time-dependent density functional theory to obtain the van der Waal coefficients $C_{6}$ and $C_{8}$ of alkali-metal clusters of various sizes including very large clusters. Such calculation becomes computationally very demanding in the orbital-based Kohn-Sham formalism, but quite simple in the hydrodynamic approach. We show that for interactions between the clusters of same sizes, $C_{6}$ and $C_{8}$ sale as the sixth and the eighth power of the cluster radius rsepectively, and approach the respective classically predicted values for the large size clusters.

  17. High-temperature, high-pressure hydrothermal synthesis, characterization, and structural relationships of mixed-alkali metals uranyl silicates

    Science.gov (United States)

    Chen, Yi-Hsin; Liu, Hsin-Kuan; Chang, Wen-Jung; Tzou, Der-Lii; Lii, Kwang-Hwa

    2016-04-01

    Three mixed-alkali metals uranyl silicates, Na3K3[(UO2)3(Si2O7)2]·2H2O (1), Na3Rb3[(UO2)3(Si2O7)2] (2), and Na6Rb4[(UO2)4Si12O33] (3), have been synthesized by high-temperature, high-pressure hydrothermal reactions at 550 °C and 1440 bar, and characterized by single-crystal X-ray diffraction, photoluminescence, and thermogravimetric analysis. Compound 1 and 2 are isostructural and contain layers of uranyl disilicate. The smaller cation, Na+, is located in the intralayer channels, whereas the larger cations, K+ and Rb+, and water molecule are located in the interlayer region. The absence of lattice water in 2 can be understood according to the valence-matching principle. The structure is related to that of a previously reported mixed-valence uranium(V,VI) silicate. Compound 3 adopts a 3D framework structure and contains a unique unbranched dreier fourfold silicate chain with the structural formula {uB,41∞}[3Si12O33] formed of Q2, Q3, and Q4 Si. The connectivity of the Si atoms in the Si12O3318- anion can be interpreted on the basis of Zintl-Klemm concept. Crystal data for compound 1: triclinic, P-1, a=5.7981(2) Å, b=7.5875(3) Å, c=12.8068(5) Å, α=103.593(2)°, β=102.879(2)°, γ=90.064(2)°, V=533.00(3) Å3, Z=1, R1=0.0278; compound 2: triclinic, P-1, a=5.7993(3) Å, b=7.5745(3) Å, c=12.9369(6) Å, α=78.265(2)°, β=79.137(2)°, γ=89.936(2)°, V=546.02(4) Å3, Z=1, R1=0.0287; compound 3: monoclinic, C2/m, a=23.748(1) Å, b=7.3301(3) Å, c=15.2556(7) Å, β=129.116(2)°, V=2060.4(2) Å3, Z=2, R1=0.0304.

  18. Spectrum, radial wave functions, and hyperfine splittings of the Rydberg states in heavy alkali-metal atoms

    Science.gov (United States)

    Sanayei, Ali; Schopohl, Nils

    2016-07-01

    We present numerically accurate calculations of the bound-state spectrum of the highly excited valence electron in the heavy alkali-metal atoms solving the radial Schrödinger eigenvalue problem with a modern spectral collocation method that applies also for a large principal quantum number n ≫1 . As an effective single-particle potential we favor the reputable potential of Marinescu et al. [Phys. Rev. A 49, 982 (1994)], 10.1103/PhysRevA.49.982. Recent quasiclassical calculations of the quantum defect of the valence electron agree for orbital angular momentum l =0 ,1 ,2 ,... overall remarkably well with the results of the numerical calculations, but for the Rydberg states of rubidium and also cesium with l =3 this agreement is less fair. The reason for this anomaly is that in rubidium and cesium the potential acquires for l =3 deep inside the ionic core a second classical region, thus invalidating a standard Wentzel-Kramers-Brillouin (WKB) calculation with two widely spaced turning points. Comparing then our numerical solutions of the radial Schrödinger eigenvalue problem with the uniform analytic WKB approximation of Langer constructed around the remote turning point rn,j ,l (" close=")n -δ0)">+ we observe everywhere a remarkable agreement, apart from a tiny region around the inner turning point rn,j ,l (-). For s states the centrifugal barrier is absent and no inner turning point exists: rn,j ,0 (-)=0 . With the help of an ansatz proposed by Fock we obtain for the s states a second uniform analytic approximation to the radial wave function complementary to the WKB approximation of Langer, which is exact for r →0+ . From the patching condition, that is, for l =0 the Langer and Fock solutions should agree in the intermediate region 0 application we consider recent spectroscopic data for the hyperfine splittings of the isotopes 85Rb and 87Rb and find a remarkable agreement with the predicted scaling relation An,j ,0 (HFS )=const .

  19. SIMULATION AND OPTIMIZATION OF TIMBER ALKALINE PULPING PROCESS IN PRESENCE OF SALTS OF SOME METALS HAVING MIXED VALENCE

    OpenAIRE

    I. Karpunin

    2012-01-01

    Process of alkaline pulping in the presence of salts of some metals having mixed valence has been simulated on the basis of the executed investigations. The paper reveals that optimization of alkaline (sulphate) pulping depends on chemical nature and metal and its amount which is introduced in the form of salt.

  20. SIMULATION AND OPTIMIZATION OF TIMBER ALKALINE PULPING PROCESS IN PRESENCE OF SALTS OF SOME METALS HAVING MIXED VALENCE

    Directory of Open Access Journals (Sweden)

    I. Karpunin

    2012-01-01

    Full Text Available Process of alkaline pulping in the presence of salts of some metals having mixed valence has been simulated on the basis of the executed investigations. The paper reveals that optimization of alkaline (sulphate pulping depends on chemical nature and metal and its amount which is introduced in the form of salt.

  1. Assessment of a 42 metal salts chemical library in mouse embryonic stem cells

    Science.gov (United States)

    The developmental effects of xenobiotics on differentiation can be profiled using mouse embryonic stem cells (mESCs). The adherent cell differentiation and cytotoxicity (ACDC) technique was used to evaluate a library of 42 metal and metaloid salts. Jl mESCs were allowed to prolif...

  2. The Catalytic Conversion of D-Glucose to 5-Hydroxymethylfurfural in DMSO Using Metal Salts

    NARCIS (Netherlands)

    Rasrendra, C. B.; Soetedjo, J. N. M.; Makertihartha, I. G. B. N.; Adisasmito, S.; Heeres, H. J.; Albrecht, Karl O.; Holladay, Johnathan E.

    2012-01-01

    A wide range of metal halides and triflates were examined for the conversion of d-glucose to HMF in DMSO. Chromium and aluminium salts were identified as the most promising catalysts. The effect of process variables like initial d-glucose concentration (0.1-1.5 M), reaction time (5-360 min) and reac

  3. Cytogenetic effects induced by heavy metals salts at Lens esculenta Moench.

    OpenAIRE

    Ioana Mihaela Balan; Iuliana Csilla Bara

    2009-01-01

    The aim of this paper, is to evaluate the cytogenetic effects induced by lead acetate, ferrous sulphate, copper sulphate (heavy metals salts), on meristematic root tips cells of Lens esculenta Moench. The different treatment variants, induced significant changes regarding cells division frequency (showing a decrease) and an increase of mitotic ana-telophases with aberrations.

  4. Transparent Metal-Salt-Filled Polymeric Radiation Shields

    Science.gov (United States)

    Edwards, David; Lennhoff, John; Harris, George

    2003-01-01

    "COR-RA" (colorless atomic oxygen resistant -- radiation shield) is the name of a transparent polymeric material filled with x-ray-absorbing salts of lead, bismuth, cesium, and thorium. COR-RA is suitable for use in shielding personnel against bremsstrahlung radiation from electron-beam welding and industrial and medical x-ray equipment. In comparison with lead-foil and leaded-glass shields that give equivalent protection against x-rays (see table), COR-RA shields are mechanically more durable. COR-RA absorbs not only x-rays but also neutrons and rays without adverse effects on optical or mechanical performance. The formulation of COR-RA with the most favorable mechanical-durability and optical properties contains 22 weight percent of bismuth to absorb x-rays, plus 45 atomic percent hydrogen for shielding against neutrons.

  5. 盐碱胁迫下燕麦生长及阳离子吸收特征%Oat growth and cation absorption characteristics under salt and alkali stress

    Institute of Scientific and Technical Information of China (English)

    范远; 任长忠; 李品芳; 任图生

    2011-01-01

    This paper monitored the oat growth and cation absorption characteristics on a saline-alkali soil in the Baicheng region of Jilin Province under low, medium, and high levels of salt stress. No significant differences were observed in the shoot growth and yield components under the three levels of salt stress, but the root biomass and root/shoot ratio decreased significantly with increasing salt stress level. At maturing stage, the root/shoot ratio under medium and high salt stressecs was 77.2% and 64.5% of that under low salt stress, respectively. Under the three levels of salt stress, the K+/Na+ and Ca2+/Na+ ratios in oat plant had significant differences at trefoil stage, but no significant differences at heading stage. With the increase of salt stress level, the cation absorption selectivity coefficient of oat at filling stage decreased significantly, but the transportation selectivity coefficient had no significant difference under the three levels of stress. It was concluded that oat could adapt to the salt and alkali stress of soda-alkaline soil to some extent, and the adaptation capability decreased with the increasing level of stress. The decrease of oat root biomass and the stronger ion selective absorption capacity at heading stage under salt and alkali stress could benefit the shoot growth and yield components of oat.%在吉林白城地区盐碱土上监测了3个盐分胁迫水平下燕麦的生长动态及对土壤阳离子的吸收特征.结果表明:在低度、中度和高度3个胁迫水平下燕麦地上部生长和产量构成因素没有显著差异,但根部干质量和根冠比随盐碱胁迫程度的加重而显著降低,在成熟期,中度和高度胁迫下的根冠比分别是低度胁迫下的77.2%和64.5%.3个胁迫水平下燕麦的K+/Na+和Ca2+/Na+在三叶期差异最大,而在抽穗期无显著差异.随着盐分胁迫程度的加重,燕麦的离子吸收选择性系数在灌浆期显著降低,而运输选择性系数无显著变

  6. Interactions between salt marsh plants and Cu nanoparticles - Effects on metal uptake and phytoremediation processes.

    Science.gov (United States)

    Andreotti, Federico; Mucha, Ana Paula; Caetano, Cátia; Rodrigues, Paula; Rocha Gomes, Carlos; Almeida, C Marisa R

    2015-10-01

    The increased use of metallic nanoparticles (NPs) raises the probability of finding NPs in the environment. A lot of information exists already regarding interactions between plants and metals, but information regarding interactions between metallic NPs and plants, including salt marsh plants, is still lacking. This work aimed to study interactions between CuO NPs and the salt marsh plants Halimione portulacoides and Phragmites australis. In addition, the potential of these plants for phytoremediation of Cu NPs was evaluated. Plants were exposed for 8 days to sediment elutriate solution doped either with CuO or with ionic Cu. Afterwards, total metal concentrations were determined in plant tissues. Both plants accumulated Cu in their roots, but this accumulation was 4 to 10 times lower when the metal was added in NP form. For P. australis, metal translocation occurred when the metal was added either in ionic or in NP form, but for H. portulacoides no metal translocation was observed when NPs were added to the medium. Therefore, interactions between plants and NPs differ with the plant species. These facts should be taken in consideration when applying these plants for phytoremediation of contaminated sediments in estuaries, as the environmental management of these very important ecological areas can be affected.

  7. Direct Observation of Formation Behavior of Metal Emulsion in Sn/Salt System

    Science.gov (United States)

    Yoshida, Hironori; Liu, Jiang; Kim, Sun-Joong; Gao, Xu; Ueda, Shigeru; Maruoka, Nobuhiro; Ono, Shinpei; Kitamura, Shin-ya

    2016-08-01

    Using two systems with different interfacial tensions, the behavior of metal emulsions during bottom blowing was observed directly with a high-speed camera. The interfacial tension between molten salt (KCl-LiCl-NaCl) and molten Sn was measured by a pendant drop method, and it decreased to about 100 mN/m when the Te content in Sn increased from 0 to 0.5 pct. In both systems, two types of metal emulsion behaviors were observed. In Mode A, fine metal droplets were formed after the metal film ruptured at the interface. In Mode B, the formation of coarse droplets was observed after the disintegration of the column generated by the rising bubble, and the number of droplets increased with the gas flow rate compared to that in Mode A. The generating frequency of each mode revealed that Mode B became dominant with increasing gas flow rate. In the pure Sn/salt system, the numbers of droplets of Mode B showed a local maximum at high gas flow rates, but the numbers of droplets in Sn-0.5 pctTe/salt increased continuously even in the same flow range. Regarding the size distribution, the percentage of coarse metal droplets in the Sn-0.5 pctTe alloy/salt was larger than that in the pure Sn/salt. Furthermore, the effect of interfacial tension on the variation in surface area and volume of the droplets showed a similar tendency for the column height. Therefore, a decrement of the interfacial tension led to an increment of the column height when Mode B occurred and finally resulted in a higher interfacial area.

  8. Phase diagrams of microemulsions containing reducing agents and metal salts as bases for the synthesis of metallic nanoparticles.

    Science.gov (United States)

    Najjar, Reza; Stubenrauch, Cosima

    2009-03-01

    We studied the phase diagrams of microemulsions with a view to using these systems for the synthesis of metallic Pt, Pb, and Bi nanoparticles as well as of intermetallic Pt/Pb and Pt/Bi nanoparticles. The microemulsions consisted of H(2)O/salt-n-decane-SDS-1-butanol. The salt was either one metal precursor (H(2)PtCl(6) x 6 H(2)O, Pb(NO(3))(2), or Bi(NO(3))(3) x 5 H(2)O), a mixture of two metal precursors (H(2)PtCl(6) x 6 H(2)O + Pb(NO(3))(2) or H(2)PtCl(6) x 6 H(2)O + Bi(NO(3))(3) x 5 H(2)O), or the reducing agent (NaBH(4)). In addition, other salts needed to be added in order to solubilize the metal precursors, to stabilize the reducing agent, and to adjust the ionic strength. Combining the microemulsion (mu e1) that contains the metal precursor(s) with the microemulsion (mu e2) that contains the reducing agent leads to metallic nanoparticles. To study systematically how the shape and size of the synthesized metallic nanoparticles depend on the size and shape of the respective microemulsion droplets, first of all one has to find those conditions under which mu e1 and mu e2 have the same structure. For that purpose we determined the water emulsification failure boundary (wefb) of each microemulsion as it is at the wefb where the water droplets are known to be spherical. We found that the ionic strength (I) of the aqueous phase as well as the hard acid and hard base properties of the ions are the key tuning parameters for the location of the wefb.

  9. The influence of temperature and salt on metal and sediment removal in stormwater biofilters.

    Science.gov (United States)

    Søberg, Laila C; Viklander, Maria; Blecken, Godecke-Tobias

    2014-01-01

    Stormwater biofilters are used to treat stormwater runoff. In countries with cold winter climates, biofilters are subject to low temperatures which, in some cases, are combined with potentially high salt concentrations from road de-icing, potentially affecting the biofilter's performance. Since stormwater biofilters have been developed without consideration of their critical winter use, a laboratory study was carried out to evaluate the performance of stormwater biofilters subjected to low and high temperatures, with and without salt. Both factors and their interaction had a significant effect on outflow concentrations and removal percentages. Salt had a negative impact on outflow concentrations, causing lower removal percentages for (especially dissolved) metals, this impact being most pronounced for Cu and Pb. The unrealistic combination of salt with high temperature seemed to further amplify the negative impacts of salt despite the fact that temperature alone did not cause significant differences in outflow concentrations and removal percentages. Still, biofilters showed the ability to treat stormwater efficiently under the simulated winter conditions; outflow concentrations for total metals as a minimum met the class 4 threshold value defined in the Swedish freshwater quality guidelines, while inflow concentrations clearly exceeded the threshold value for class 5. The relatively coarse filter material (which is recommended to facilitate infiltration during winter) did not seem to exacerbate biofilter performance.

  10. Production of Synthesis Gas via Methane Reforming with CO2 on Ni/SiO2 Catalysts Promoted by Alkali and Alkaline Earth Metals

    Institute of Scientific and Technical Information of China (English)

    陈平; 侯昭胤; 郑小明

    2005-01-01

    Ni/SiO2 catalysts promoted by alkali metals K and Cs or alkaline earth metals Mg, Ca, Sr and Ba were prepared, characterized by H2-TPR and XRD, and used for the production of synthesis gas via methane reforming with CO2. Though K and Cs promoted Ni catalysts could eliminate coke deposition, the reforming activity of these promoted catalysts was decreased heavily. Mg and Ca promoted Ni/SiO2 catalysts exhibited excellent coke resistance ability with minor loss of the reforming activity of Ni/SiO2. Ba showed poor coke resistance ability and small amount of Sr increased the formation of coke. The possible mechanism of these promoters was discussed.

  11. Electrodeposition of Ca Metal in CaCl2-CaO Molten Salt

    Institute of Scientific and Technical Information of China (English)

    GUO; Jun-kang; WANG; Chang-shui; CAO; Long-hao; OUYANG; Ying-gen

    2013-01-01

    To realize the continuouscalciothermic reduction in molten salts,the electrodeposition behavior of Ca metal in CaCl2-CaO molten salt was investigated by cylic voltammetry.The cyclic voltammograms at the scan rate of 100 mV/s are shown in Fig.1.As is shown,the electrodeposition potential of Ca deviated from-1.66 V to-0.97 V after CaO was added to molten CaCl2 and the decomposition of CaO

  12. Probing alkali metal–π interactions with the side chain residue of tryptophan

    OpenAIRE

    Hu, Jiaxin; Barbour, Leonard J.; Gokel, George W.

    2002-01-01

    Feeble forces play a significant role in the organization of proteins. These include hydrogen bonding, hydrophobic interactions, salt bridge formation, and steric interactions. The alkali metal cation-π interaction is a force of potentially profound importance but its consideration in biology has been limited by the lack of experimental evidence. Our previous studies of cation–π interactions with Na+ and K+ involved the side arms of tryptophan (indole), tyrosine (phenol),...

  13. Fragmentation study of rutin, a naturally occurring flavone glycoside cationized with different alkali metal ions, using post-source decay matrix-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Kéki, S; Deák, G; Zsuga, M

    2001-12-01

    A post-source decay matrix-assisted laser desorption/ionization mass spectrometric (PSD-MALDI-MS) study of rutin, a naturally occurring flavone glycoside cationized with different alkali metal ions, is reported. The fragmentations of rutin were performed by selecting the [R + Cat]+ peaks for PSD, where R represents a rutin molecule and Cat an alkali metal ion (Li+, Na+, K+). The PSD-MALDI mass spectra showed, depending on Cat, different fragmentation patterns with respect to both the quality and quantity of the fragment ions formed. The intensity of fragmentation decreased in the order Li+ > Na+ > K+. The fragmentation mechanism and an explanation for the observed differences are suggested.

  14. Development of electrolytic process in molten salt media for light rare-earth metals production. The metallic cerium electrodeposition

    International Nuclear Information System (INIS)

    The development of molten salt process and the respective equipment aiming rare-earth metals recovery was described. In the present case, the liquid cerium metal electrodeposition in a molten electrolytes of cerium chloride and an equimolar mixture of sodium and potassium chlorides in temperatures near 800C was studied. Due the high chemical reactivity of the rare-earth metals in the liquid state and their molten halides, an electrolytic cell was constructed with controlled atmosphere, graphite crucibles and anodes and a tungsten cathode. The electrolytic process variables and characteristics were evaluated upon the current efficiency and metallic product purity. Based on this evaluations, were suggested some alterations on the electrolytic reactor design and upon the process parameters. (author). 90 refs, 37 figs, 20 tabs

  15. Two-photon photoemission investigation of electronic and dynamical properties of alkali atoms adsorbed on noble metal surfaces

    Science.gov (United States)

    Sametoglu, Vahit

    We present a systematic time-resolved two-photon photoemission study of the electronic and dynamical properties of Li through Cs adsorbed on Cu(111) and Ag(111) surfaces. A fundamental problem in surface science is how to describe the electronic structure of a chemisorption interface based on the intrinsic properties of the interacting materials. Because of their simple s-electron structure, elements of the alkali atom group comprise paradigmatic adsorbates in many theories of chemisorption, whereas the complementary experimental studies are sparse and incomplete. Through a combination of spectroscopic and femtosecond time-resolved surface measurements, we are able to probe systematically the binding energies, symmetries, and electron and nuclear relaxation dynamics of the initially unoccupied alkali atom resonances. As a prelude, we study the two-photon photoemission process occurring at the bare Ag(111) surface. We develop a quantitative model for two-photon photoemission process, where the nonresonant and k-dependent two-photon absorption between the lower and upper sp-bands is modeled by the optical Bloch equations, and the angle-dependent intensities are described by the Fresnel equations. Our two-photon photoemission spectra of Li through Cs chemisorbed Cu(111) and Ag(111) surfaces reveal two resonances with the m = 0 and m = +/-1 symmetry ('m' is the projection of the orbital angular momentum 'l' onto the surface plane). For the m = 0 resonance, which is derived from the hybridization of the ns and npz orbitals of alkali atoms, we find a binding energy of 1.84--1.99 eV below the vacuum level, which is independent of the alkali atom period, and tunes with coverage in a universal manner. At 0.3--0.7 eV higher energy, we discover and identify the m = +/-1 resonance by its characteristic angular intensity distribution, which derives from the antisymmetry of the npx and npy orbitals. We implement a quantitative model for the alkali atom chemisorption based on the

  16. 微波辐照下麦草碱木质素三甲基季铵盐的合成%Synthesis of a trimethy quaternary ammonium salt of wheat-alkali-lignin under microwave irradiation.

    Institute of Scientific and Technical Information of China (English)

    任世学; 方桂珍; 王鹏; 姜贵全

    2012-01-01

    为研究微波辐照下碱木质素的反应活性,以造纸黑液中提取的麦草碱木质素为原料,在微波辐照下合成麦草碱木质素三甲基季铵盐,并研究了反应温度、反应时间及催化剂等因素对合成的影响。初步确定合成条件为:温度75℃,反应时间25min,不加催化剂(微波可替代催化剂)。并用酸性黑ATT染料溶液对麦草碱木质素三甲基季铵盐的絮凝性能进行了研究。结果表明:当麦草碱木质素三甲基季铵盐投加量为600mg/L、pH值在1-2.5之间时,苴对0.15g/L酚件里ATT的脯俪蜜招讨90%.%Alkali lignin has low reaction activity because of its chemical structure, but its reactivity can be improved under microwave irradiation. The trimethyl quaternary ammonium salt was synthesized under microwave irradiation with wheat-alkali-lignin as raw material, which was extracted from black liquor from the kraft process. Effects of reaction temperature, reaction time and catalyst on the synthesis were investigated. The optimal synthesis conditions were determined: reaction temperature 75℃, reaction time 25 min, and catalyst was not necessary because the microwave irradiation played a similar role as a catalyst. The flocculation of trimethy quaternary ammonium salt prepared from wheat-alkali-lignin was examined by acid black ATT dye in an aqueous solution, and the results showed that over 90% acid black ATT dye solution could be flocculated when the trimethyl quaternary ammonium salt at a concentration of 600 mg/L with pH values of 1-2.5 was added into the acid black ATT dye with a concentration of 0.15 g/L.

  17. Antimicrobial activities of pomegranate rind extracts: enhancement by addition of metal salts and vitamin C

    Directory of Open Access Journals (Sweden)

    Kelly Alison F

    2008-12-01

    Full Text Available Abstract Background Punica granatum L. or pomegranates, have been reported to have antimicrobial activity against a range of Gram positive and negative bacteria. Pomegranate formulations containing ferrous salts have enhanced although short-term, antibacteriophage activities which are rapidly diminished owing to instability of the ferrous combination. The aim of this study was to determine the antimicrobial activities of combinations of pomegranate rind extracts (PRE with a range of metals salts with the added stabiliser vitamin C. Methods PRE solutions, prepared by blending rind sections with distilled water prior to sterilisation by autoclaving or filtration, were screened with a disc diffusion assay using penicillin G as a control. Suspension assays were used to determine the antimicrobial activities of PRE alone and in combination with salts of the following metals; Fe (II, Cu (II, Mn (II or Zn (II, and vitamin C, against a panel of microbes following exposure for 30 mins. The test organisms included Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa and Proteus mirabilis. Results The screening assay demonstrated that PRE exhibited activity against the Gram positive organisms at 24 h with no observable effect on any of the Gram negative bacteria. However, after 12 h, zones of inhibition were only observed for Ps. aeruginosa. In contrast, using the suspension assay, addition of Cu (II salts to PRE solutions extended the activities resulting in no detectable growth being observed for the PRE/Cu (II combination against E. coli, Ps. aeruginosa and P. mirabilis. Minimal antimicrobial activity was observed following incubation with Fe (II, Mn (II or Zn (II salts alone or in combination with PRE against any of the organisms in the test panel. The addition of vitamin C markedly enhanced the activities of both PRE/Fe (II and PRE/Cu (II combinations against S. aureus. Conclusion This is the first report demonstrating

  18. Effect of Reeds on Salt Enrichment and Improvement of Saline-Alkali Land%芦苇对盐碱地盐分富集及改良效应的影响

    Institute of Scientific and Technical Information of China (English)

    孙博; 解建仓; 汪妮; 李双庆; 李春娇

    2012-01-01

    This paper studied the change of pH,conductivity and ion(Ca2+,Mg2+,SO2-4,CO2-3,HCO-3,Na+,Cl-) contents of saline-alkali soil in different growth stages of reed and salt content change of reed with growth.Meanwhile,it also researched the effect of the humus from reed stem on the pH,conductivity and organic matter of saline-alkali soil.The result reveals the ability of reeds when growing to enrich salt in soil,and the humus from reed can improve saline-alkali soil.The detail results are that:(1)pH and conductivity of saline-alkali soil were gradually decreased in different growth stages of reed.Average pH value in soil reduced to 8.79 from 9.22;average conductivity value was from 0.96 mS/cm down to 0.43 mS/cm.During maturity-brown period of reed,saline soil conductivity changed slightly and was basically in the stable state.(2)Ion contents of saline-alkali soil slowly reduced in different growth stages of reeds.And HCO-3,Cl-,SO2-4 and Ca2+ contents changed greatly.During maturity-brown period of reed,ion contents of soil changed slightly and was basically in the stable state.(3)At different growth stages of reed,the ability to absorb salt was different.During opening leaf and maturity period,the amount of salt absorbed by reed increased gradually and reached the maximum at the maturity period.After the maturity period,the salt amount decreased gradually,which showed the ability of reed to enrich salt varied with the growth stages.And it was bigger during the opening leaf and maturity period,smaller during maturity-brown period of reed.The amount of salt in root and stem of reed increased slowly,that in leaves increased fastest.And the amount of salt in leaves was more than that in stem.(4)Humus from reed can improve soil organic matter and reduce pH and conductivity according to experimental results.Therefore,the reed when growing can reduce the salt content of saline-alkali soil by absorbing salt in soil and the humus from reed also

  19. Promoting alkali and alkaline-earth metals on MgO for enhancing CO2 capture by first-principles calculations.

    Science.gov (United States)

    Kim, Kiwoong; Han, Jeong Woo; Lee, Kwang Soon; Lee, Won Bo

    2014-12-01

    Developing next-generation solid sorbents to improve the economy of pre- and post-combustion carbon capture processes has been challenging for many researchers. Magnesium oxide (MgO) is a promising sorbent because of its moderate sorption-desorption temperature and low heat of sorption. However, its low sorption capacity and thermal instability need to be improved. Various metal-promoted MgO sorbents have been experimentally developed to enhance the CO2 sorption capacities. Nevertheless, rigorous computational studies to screen an optimal metal promoter have been limited to date. We conducted first-principles calculations to select metal promoters of MgO sorbents. Five alkali (Li-, Na-, K-, Rb-, and Cs-) and 4 alkaline earth metals (Be-, Ca-, Sr-, and Ba-) were chosen as a set of promoters. Compared with the CO2 adsorption energy on pure MgO, the adsorption energy on the metal-promoted MgO sorbents is higher, except for the Na-promoter, which indicates that metal promotion on MgO is an efficient approach to enhance the sorption capacities. Based on the stabilized binding of promoters on the MgO surface and the regenerability of sorbents, Li, Ca, and Sr were identified as adequate promoters among the 9 metals on the basis of PW91/GGA augmented with DFT+D2. The adsorption energies of CO2 on metal-promoted MgO sorbents for Li, Ca, and Sr atoms are -1.13, -1.68, and -1.48 eV, respectively. PMID:25319405

  20. Salt effect on volume phase transition of a gel.

    Science.gov (United States)

    Annaka, Masahiko; Amo, Yuko; Sasaki, Shigeo; Tominaga, Yasunori; Motokawa, Keiko; Nakahira, Takayuki

    2002-03-01

    The salt effect on the phase transition of N-isopropylacrylamide (NIPA) gel was studied for alkali-metal chlorides (NaCl, KCl, and CsCl). Low-frequency Raman scattering experiment was conducted to know the dynamic state of water molecule under the presence of salt and its correlation to macroscopic phase behavior of the gel was investigated together with the thermodynamic activities of water molecule of aqueous alkali-metal chloride solutions. The series of swelling experiment reveal that the change in the gel volume phase transition strongly depends on the salt concentration and is related to the dehydration with respect to hydrophobic hydration. From the analysis of the reduced low-frequency Raman spectra in water and aqueous alkali-metal chlorides solutions by the use of the relaxation mode that takes into account the inertia and the non-white effects, the characteristic values of aqueous salt solutions (i.e., relaxation time and modulation speed) indicate that the addition of alkali-metal chloride to gel fluid affects the disruption of water molecules in the hydration shell around the NIPA gel and the formation of the hydrogen-bonded network structure of water around themselves, as a result of which the gel collapses. The chemical potential and the dynamic nature of water molecule at the transition points are well correlated: the chemical potentials at the transition points are almost constant whereas the structure of bulk water is changed by addition of alkali-metal chlorides or change in temperature. These results strongly suggest that the swelling ratio of N-isopropylacrylamide gel is a function of hydration degree, which is regulated by the chemical potential of water. PMID:11909100

  1. Electrodeposition of alloys or compounds in molten salts and applications

    OpenAIRE

    Taxil P.; Chamelot P.; Massot L.; Hamel C.

    2003-01-01

    This article deals with the different modes of preparation of alloys or intermetallic compounds using the electrodeposition in molten salts, more particularly molten alkali fluorides. The interest in this process is to obtain new materials for high technology, particularly the compounds of reactive components such as actinides, rare earth and refractory metals. Two ways of preparation are considered: (i) electrocoating of the more reactive metal on a cathode made of the noble one and reaction...

  2. Metals recovering from waste printed circuit boards (WPCBs) using molten salts

    International Nuclear Information System (INIS)

    Highlights: ► Recovering of valuable metals from WPCBs. ► Low temperature treatment, i.e., 300 °C. ► Copper, and precious metals are recovered, without dissolution or melting. ► Many hazardous gases are dissolved and trapped in the molten salt. ► Under operation without oxygen the flue gas contains large quantities of hydrogen. - Abstract: Recycling of waste electrical and electronic equipments (WEEE) has been taken into consideration in the literature due to the large quantity of concerned wastes and their hazardous contents. The situation is so critical that EU published European Directives imposing collection and recycling with a minimum of material recovery . Moreover, WEEEs contain precious metals, making the recycling of these wastes economically interesting, but also some critical metals and their recycling leads to resource conservation. This paper reports on a new approach for recycling waste printed circuit boards (WPCBs). Molten salts and specifically molten KOH–NaOH eutectic is used to dissolve glasses, oxides and to destruct plastics present in wastes without oxidizing the most valuable metals. This method is efficient for recovering a copper-rich metallic fraction, which is, moreover, cleared of plastics and glasses. In addition, analyses of gaseous emission show that this method is environmentally friendly since most of the process gases, such as carbon monoxide and dioxide and halogens, are trapped in the highly basic molten salt. In other respects, under operation without oxygen, a large quantity of hydrogen is produced and might be used as fuel gas or as synthesis gas, leading to a favourable energy balance for this new process.

  3. EVALUATION OF QUALITY OF PERMANENT TEETH RESTORATIONS IN CHILDREN OF AREAS CONTAMINATED BY HEAVY METAL SALTS

    OpenAIRE

    V. V. Avakov; N. N. Rozhko

    2014-01-01

    The influence of the environment on the child health is one of priority issues of the present time and it is of great social importance. Increased dental diseases associated with climatic and geographical characteristics of the area are widely discussed in the literature. The leading among them are environmentally determined dental diseases in children associated with geochemical and technogenic pollution of the area where they live. Increasing amounts of hard metal salts is the urgent hygien...

  4. Dyeing of Color Media Modified Pineapple Fiber/Cotton Blended Fabric without Salt and Alkali%色媒体改性菠萝纤维/棉混纺织物的无盐无碱染色

    Institute of Scientific and Technical Information of China (English)

    顾东雅; 张荣华; 鲍雨婷

    2016-01-01

    无盐无碱染色既可以提高染料利用率,又能减轻印染废水处理压力,有利于实现清洁化生产。采用色媒体对菠萝纤维/棉混纺织物进行改性,讨论了色媒体用量、改性温度和改性时间等因素对无盐无碱活性染料染色效果的影响,选择合适的改性方案,并通过正交试验选出最佳的色媒体改性工艺:色媒体用量5%( o.w.f),改性温度50℃,改性时间30min。%Dyeing without salt and alkali can not only improve the utilization rate of dye , but also can reduce the pressure of dyeing wastewater treatment, which is helpful to achieve clean production.Color media was used to modify Pineapple fibers/cotton blended fabric, the impact of dosage of color media, modified temperature and time on the effect of dyeing with reactive dye free from salt and alkali was discussed, the proper modification plan was selected and the optimal color media modified process was chosen through orthogonal experiments:dosage of color media was 5%( o.w.f) , modified temperature was 50℃and modified time was 30 mins.

  5. Thermal properties of complexes of amaranthus starch with selected metal salts

    Energy Technology Data Exchange (ETDEWEB)

    Ciesielski, Wojciech; Tomasik, Piotr

    2003-07-28

    Metal cations (Cu(II), Fe(III), Mn(II), and Ni(II)) are ligated by amaranthus starch as proven by EPR spectra and conductivity measurements. The hydroxyl groups of starch are the coordination sites. The acetate and nitrate anions of the metal salts behave as bidentate ligands and reside in the inner coordination sphere of resulting polycenter Werner complexes. There is only a weak degeneration of orbitals of central metal ions caused by a shift of unpaired spin from the central atom to the ligand. The ligation of the central metal atoms resulted in a variation of the thermal stability, pathway, and rate of thermal decomposition of starch as proven by thermogravimetric (TG) and differential scanning calorimetric (DSC) measurements.

  6. Thermal properties of complexes of amaranthus starch with selected metal salts

    International Nuclear Information System (INIS)

    Metal cations (Cu(II), Fe(III), Mn(II), and Ni(II)) are ligated by amaranthus starch as proven by EPR spectra and conductivity measurements. The hydroxyl groups of starch are the coordination sites. The acetate and nitrate anions of the metal salts behave as bidentate ligands and reside in the inner coordination sphere of resulting polycenter Werner complexes. There is only a weak degeneration of orbitals of central metal ions caused by a shift of unpaired spin from the central atom to the ligand. The ligation of the central metal atoms resulted in a variation of the thermal stability, pathway, and rate of thermal decomposition of starch as proven by thermogravimetric (TG) and differential scanning calorimetric (DSC) measurements

  7. Effect of basic alkali-pickling conditions on the production of lysinoalanine in preserved eggs.

    Science.gov (United States)

    Zhao, Yan; Luo, Xuying; Li, Jianke; Xu, Mingsheng; Tu, Yonggang

    2015-09-01

    During the pickling process, strong alkali causes significant lysinoalanine (LAL) formation in preserved eggs, which may reduce the nutritional value of the proteins and result in a potential hazard to human health. In this study, the impacts of the alkali treatment conditions on the production of LAL in preserved eggs were investigated. Preserved eggs were prepared using different times and temperatures, and alkali-pickling solutions with different types and concentrations of alkali and metal salts, and the corresponding LAL contents were measured. The results showed the following: during the pickling period of the preserved egg, the content of LAL in the egg white first rapidly increased and then slowly increased; the content of LAL in the egg yolk continued to increase significantly. During the aging period, the levels of LAL in both egg white and egg yolk slowly increased. The amounts of LAL in the preserved eggs were not significantly different at temperatures between 20 and 25ºC. At higher pickling temperatures, the LAL content in the preserved eggs increased. With the increase of alkali concentration in the alkali-pickling solution, the LAL content in the egg white and egg yolk showed an overall trend of an initial increase followed by a slight decrease. The content of LAL produced in preserved eggs treated with KOH was lower than in those treated with NaOH. NaCl and KCl produced no significant effects on the production of LAL in the preserved eggs. With increasing amounts of heavy metal salts, the LAL content in the preserved eggs first decreased and then increased. The LAL content generated in the CuSO4 group was lower than that in either the ZnSO4 or PbO groups. PMID:26188034

  8. Alkali metal non-stoichiometric effects in (K{sub 0.5}Na{sub 0.5})NbO{sub 3} based piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. C.; Yeo, H. G.; Cho, J. H.; Sung, Y. S.; Kim, M. H.; Song, T. K.; Kim, S. S. [Changwon National University, Changwon (Korea, Republic of); Choi, B. C. [Pukyung National University, Busan (Korea, Republic of); Choi, K. S. [Sunchon National University, Sunchon, Chonnam (Korea, Republic of)

    2010-01-15

    Alkali-metal-excess lead-free 0.93(K{sub 0.5}Na{sub 0.5}){sub (1+x)}NbO{sub 3}-0.07LiNbO{sub 3} (KNNL) piezoelectric ceramics were prepared by using a solid state reaction. The contents of both K and Na were simultaneously controlled to 4 mol% excess. From X-ray diffraction and temperature-dependent dielectric constant measurements, a polymorphic phase transition (PPT) between the tetragonal and orthorhombic phases was observed by changing the stoichiometry of x. With increasing (K+Na) content, the PPT temperature increased, but the Curie temperature decreased. The highest piezoelectric constant was 189 pC/N for x = 0.01, where the PPT temperature was around room temperature.

  9. Volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass: differences between sugar cane bagasse and cane trash.

    Science.gov (United States)

    Keown, Daniel M; Favas, George; Hayashi, Jun-ichiro; Li, Chun-Zhu

    2005-09-01

    Sugar cane bagasse and cane trash were pyrolysed in a novel quartz fluidised-bed/fixed-bed reactor. Quantification of the Na, K, Mg and Ca in chars revealed that pyrolysis temperature, heating rate, valence and biomass type were important factors influencing the volatilisation of these alkali and alkaline earth metallic (AAEM) species. Pyrolysis at a slow heating rate (approximately 10 K min(-1)) led to minimal (often biomass samples. Fast heating rates (>1000 K s(-1)), encouraging volatile-char interactions with the current reactor configuration, resulted in the volatilisation of around 80% of Na, K, Mg and Ca from bagasse during pyrolysis at 900 degrees C. Similar behaviour was observed for monovalent Na and K with cane trash, but the volatilisation of Mg and Ca from cane trash was always restricted. The difference in Cl content between bagasse and cane trash was not sufficient to fully explain the difference in the volatilisation of Mg and Ca.

  10. 热煤气中碱金属蒸气的脱除%Removal of Alkali Metal Vapor from Hot Coal Gas

    Institute of Scientific and Technical Information of China (English)

    申文琴; 豆彬林; 邢嵘; 沙兴中

    2000-01-01

    Seven adsorbents were screened for removal of alkali metal vapor from hot coal gas. It is found that five adsorbents present higher adsorption efficiency and activated almmina shows the highest adsorption capacity. The adsorption process of activated alumina is a physical process in experimental condition.%为了清除煤燃烧或气化产生的热气体中的碱金属蒸气,筛选了7种吸附剂,发现5种吸附剂的吸附效率都能达到80%以上,其中活性氧化铝的碱容量最高,对活性氧化铝吸附机理也进行了初步探讨。

  11. Alkali metal ions transfer across a water/1,2-dichloroethane interface facilitated by a novel monoaza-B15C5 derivative

    Energy Technology Data Exchange (ETDEWEB)

    Zhan Dongping; Yuan Yi; Xiao Yanjing; Wu Bingliang; Shao Yuanhua

    2002-10-30

    In this paper, a novel monoaza-B15C5 derivative, N-(2-tosylamino)-isopentyl-monoaza-15-crown-5 (L), is used as an ionophore to facilitate alkali metal cations transfer across a water/1,2-dichloroethane (W/DCE) interface. Well-defined voltammetric behaviors are observed at the polarized W/DCE interfaces supported at micro- and nano-pipets except Cs{sup +}. The diffusion coefficient of this ionophore in the DCE phase is calculated to be equal to (3.3{+-}0.2)x10{sup -6} cm{sup 2} s{sup -1}. The experimental results indicate that a 1:1 (metal:ionophore) complex is formed at the interface with a TIC/TID mechanism. The selectivity of this ionophore towards alkali ions follows the sequence Na{sup +}>Li{sup +}>K{sup +}>Rb{sup +}>Cs{sup +}. The logarithm of the association constants (log {beta}{sub 1}{sup o}) of the LiL{sup +}, NaL{sup +}, KL{sup +} and RbL{sup +} complexes in the DCE phase are calculated to be 10.6, 11.6, 9.0 and 7.1, respectively. The kinetic parameters are determined by steady-state voltammograms using nanopipets. The standard rate constants (k{sup 0}) for Li{sup +}, Na{sup +}, K{sup +} and Rb{sup +} transfers facilitated by L are 0.54{+-}0.05, 0.63{+-}0.09, 0.51{+-}0.04 and 0.46{+-}0.06 cm s{sup -1}, respectively. The pH values of aqueous solution have little effect on the electrochemical behaviors of these facilitated processes. The results predicate that this new type of ionophore might be useful to fabricate electrochemical sensor of sodium ion.

  12. Design study of a 200 MW(e) alkali metal/steam binary power plant using a coal-fired fluidized bed furnace

    Energy Technology Data Exchange (ETDEWEB)

    Samuels, G.; Graves, R. L.; Lackey, M. E.; Tudor, J. J.; Zimmerman, G. P.

    1978-04-01

    The results of a study of 200 MW(e) alkali metal/steam binary power plant using a coal-fired fluidized bed furnace are described. Both cesium and potassium were evaluated for the topping cycle working fluid and cesium was selected. The fuel used was Illinois No. 6 coal, and limestone was used as the bed sorbent material. For the reference design, the furnace operated at atmospheric pressure and the cycle conditions for the power conversion system were 1500/sup 0/F to 900/sup 0/F for the topping cycle and 2400 psi 1000/sup 0/F to 1/sup 1///sub 2/ in. Hg for the steam system. Several variations of the plant were briefly evaluated. These variations included using a supercritical steam system and using a pressurized furnace. The principal conclusions of the study are as follows: a satisfactory design of an atmospheric pressure fluidized bed furnace binary power plant was evolved which uses a variation of the conventional binary cycle which permits utilizing the full potential of the alkali metal topping cycle; the net plant efficiency (coal to busbar) of the reference system was 44.6%; the net plant efficiency of a larger system with a 3500 psi 1000/sup 0/F steam system was 46.8%; an intermediate pressure turbocharged system with a furnace pressure of 4 atm (0.4 MPa) would have many advantages in comparison to the atmospheric pressure system, including a plant efficiency about one percentage point higher than the reference design, reduced limestone requirement and potential capital cost saving; and although cost estimates were not a part of the design study, a comparison of the design of this study to that of the Energy Conversion Alternative Study (ECAS) indicates plant costs 20 to 25% less than that of the final ECAS design.

  13. Reclamation of reactive metal oxides from complex minerals using alkali roasting and leaching- an improved approach to process engineering

    OpenAIRE

    Sanchez Segado, S; Makanyire, T; Escudero-Castejon, L; Hara, Y.; Jha, A.

    2015-01-01

    In nature, the commonly occurring reactive metal oxides of titanium, chromium, aluminium, and vanadium often chemically combine with the transition metal oxides such as iron oxides and form complex minerals. Physico-chemical separation of transition metal oxides from the remaining reactive metal oxides is therefore an important step in the purification of reactive oxide constituents. Each purification step has quite a high energy requirement at present. Current practice in industry yields sul...

  14. New organometallic salts as precursors for the functionalization of carbon nanotubes with metallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Nunez, G., E-mail: galonso@cnyn.unam.mx; Garza, L. Morales de la; Rogel-Hernandez, E.; Reynoso, E. [Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia (Mexico); Licea-Claverie, A.; Felix-Navarro, R. M. [Instituto Tecnologico de Tijuana, Centro de Graduados e Investigacion (Mexico); Berhault, G. [UMR 5256 CNRS-Universite de Lyon, Institut de Recherches sur la Catalyse et l' Environnement de Lyon (France); Paraguay-Delgado, F. [Centro de Investigacion en Materiales Avanzados S. C. (Mexico)

    2011-09-15

    New organometallic salts were synthesized in aqueous solution and were used as precursors for the functionalization of carbon nanotubes (CNT) by metallic nanoparticles. The precursors were obtained by reaction between HAuCl{sub 4}, (NH{sub 4}){sub 2}PtCl{sub 6}, (NH{sub 4}){sub 2}PdCl{sub 6}, or (NH{sub 4}){sub 3}RhCl{sub 6} with cetyltrimethylammonium bromide (CTAB). The as-obtained (CTA){sub n}Me{sub x}Cl{sub y} salts (with Me = Au, Pt, Pd, Rh) were characterized by Fourier-transform infra-red (FTIR) spectroscopy, {sup 1}H nuclear magnetic resonance (NMR) spectroscopy, and thermogravimetric analysis. These precursors were then used to synthesize metallic nanoparticles of Au, Pt, Pd, and Rh over multiwalled carbon nanotubes (MWCNT). Characterization by scanning transmission electron microscopy (STEM) and thermogravimetric analysis under air reveals that the CNT-supported catalysts exhibit high loading and good dispersion of the metallic nanoparticles with small average particle sizes. The present preparation procedure therefore allows obtaining high densities of small metallic nanoparticles at the surface of MWCNT.

  15. Structural phase stability, electronic structure and mechanical properties of alkali metal hydrides AMH4 (A=Li, Na; M=B, AL)

    Science.gov (United States)

    Santhosh, M.; Rajeswarapalanichamy, R.

    2016-01-01

    The structural stability of Alkali metal hydrides AMH4 (A=Li, Na; M=B, Al) is analyzed among the various crystal structures, namely hexagonal (P63mc), tetragonal (P42/nmc), tetragonal (P-421c), tetragonal (I41/a), orthorhombic (Pnma) and monoclinic (P21/c). It is observed that, orthorhombic (Pnma) phase is the most stable structure for LiBH4, monoclinic (P21/c) for LiAlH4, tetragonal (P42/nmc) for NaBH4 and tetragonal (I41/a) for NaAlH4 at normal pressure. Pressure induced structural phase transitions are observed in LiBH4, LiAlH4, NaBH4 and NaAlH4 at the pressures of 4 GPa, 36.1 GPa, 26.5 GPa and 46 GPa respectively. The electronic structure reveals that these metal hydrides are wide band gap insulators. The calculated elastic constants indicate that these metal hydrides are mechanically stable at normal pressure.

  16. Electrolytic decontamination of the dismantled metallic wastes contaminated with uranium compounds in neutral salt solutions

    International Nuclear Information System (INIS)

    Electrolytic dissolution study was carried out to evaluate the applicability of electrochemical decontamination process using a neutral salt electrolyte as a decontamination technology for the recycle or self disposal with authorization of large amount of metallic wastes contaminated with uranium compounds generated by dismantling a retired uranium conversion plant using SUS-304 and Inconel-600 specimen as the main materials of internal system components of the plant. The effects of type of neutral salt as an electrolyte, current density, and concentration of electrolyte on the dissolution of the materials were evaluated. On the basis of the results obtained through the basic inactive experiments, electrochemical decontamination tests using the specimens contaminated with uranium compounds such as UO2, AUC (ammonium uranyl carbonate) and ADU (ammonium diuranate) taken from an uranium conversion plant were performed in Na2SO4 and NaNO3 solution. It was verified that the electrochemical decontamination of the dismantled metallic wastes was quite successful in Na2SO4 and NaNO3 neutral salt electrolyte by reducing β radioactivities below the level of self disposal with authorization within 10 minutes regardless of the type of contaminants and the degree of contamination

  17. Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S

    DEFF Research Database (Denmark)

    Younesi, Reza; Veith, Gabriel M.; Johansson, Patrik;

    2015-01-01

    Presently lithium hexafluorophosphate (LiPF6) is the dominant Li-salt used in commercial rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3–4 V cathode material. While LiPF6 is not the ideal Li-salt for every important electrolyte property, it has a uniquely suitable...... combination of properties (temperature range, passivation, conductivity, etc.) rendering it the overall best Li-salt for LIBs. However, this may not necessarily be true for other types of Li-based batteries. Indeed, next generation batteries, for example lithium–metal (Li–metal), lithium–oxygen (Li–O2......), and lithium–sulfur (Li–S), require a re-evaluation of Li-salts due to the different electrochemical and chemical reactions and conditions within such cells. This review explores the critical role Li-salts play in ensuring in these batteries viability....

  18. Structural changes of polyacids initiated by their neutralization with various alkali metal hydroxides. Diffusion studies in poly(acrylic acid)s.

    Science.gov (United States)

    Masiak, Michal; Hyk, Wojciech; Stojek, Zbigniew; Ciszkowska, Malgorzata

    2007-09-27

    The changes in the three-dimensional structure of the poly(acrylic acid), PAA, induced by incorporation of various alkali-metal counterions have been evaluated by studying diffusion of an uncharged probe (1,1'-ferrocenedimethanol) in the polymeric media. The studies are supported by the measurements of conductivity and viscosity of the polymeric media. Solutions of linear PAA of four different sizes (molecular weights: 450,000, 750,000, 1,250,000, 4,000,000) were neutralized with hydroxides of alkali metals of group 1 of the periodic table (Li, Na, K, Rb, Cs) to the desired neutralization degree. The transport properties of the obtained polyacrylates were monitored by measuring the changes in the probe diffusion coefficient during the titration of the polyacids. The probe diffusivity was determined from the steady-state current of the probe voltammetric oxidation at disk microelectrodes. Diffusivity of the probe increases with the increase in the degree of neutralization and with the increase in viscosity. It reaches the maximum value at about 60-80% of the polyacid neutralization. The way the probe diffusion coefficients change is similar in all polyacid solutions and gels. The increase in the size of a metal cation causes, in general, an enhancement in the transport of probe molecules. The biggest differences in the probe diffusivities are between lithium and cesium polyacrylates. The differences between the results obtained for cesium and rubidium are not statistically significant due to lack of good precision of the voltammetric measurements. The measurements of the electric conductivity of polyacrylates and the theoretical predictions supplemented the picture of electrostatic interactions between the polyanionic chains and the metal cations of increasing size. In all instances of the PAAs, the viscosity of the solutions rapidly increases in the 0-60% range of neutralization and then becomes constant in the 60-100% region. With the exception of the shortest

  19. EXAFS study into the speciation of metal salts dissolved in ionic liquids and deep eutectic solvents.

    Science.gov (United States)

    Hartley, Jennifer M; Ip, Chung-Man; Forrest, Gregory C H; Singh, Kuldip; Gurman, Stephen J; Ryder, Karl S; Abbott, Andrew P; Frisch, Gero

    2014-06-16

    The speciation of metals in solution controls their reactivity, and this is extremely pertinent in the area of metal salts dissolved in ionic liquids. In the current study, the speciation of 25 metal salts is investigated in four deep eutectic solvents (DESs) and five imidazolium-based ionic liquids using extended X-ray absorption fine structure. It is shown that in diol-based DESs M(I) ions form [MCl2](-) and [MCl3](2-) complexes, while all M(II) ions form [MCl4](2-) complexes, with the exception of Ni(II), which exhibits a very unusual coordination by glycol molecules. This was also found in the X-ray crystal structure of the compound [Ni(phen)2(eg)]Cl2·2eg (eg = ethylene glycol). In a urea-based DES, either pure chloro or chloro-oxo coordination is observed. In [C6mim][Cl] pure chloro complexation is also observed, but coordination numbers are smaller (typically 3), which can be explained by the long alkyl chain of the cation. In [C2mim][SCN] metal ions are entirely coordinated by thiocyanate, either through the N or the S atom, depending on the hardness of the metal ion according to the hard-soft acid-base principle. With weaker coordinating anions, mixed coordination between solvent and solute anions is observed. The effect of hydrate or added water on speciation is insignificant for the diol-based DESs and small in other liquids with intermediate or strong ligands. One of the main findings of this study is that, with respect to metal speciation, there is no fundamental difference between deep eutectic solvents and classic ionic liquids. PMID:24897923

  20. Separation of matrix alloy and reinforcement from aluminum metal matrix composites scrap by salt flux addition

    Indian Academy of Sciences (India)

    K R Ravi; R M Pillai; B C Pai; M Chakraborty

    2007-08-01

    Separation of matrix alloy and reinforcements from pure Al–SiCp composite scrap by salt flux addition has been theoretically predicted using interface free energies. Experiments performed confirm the theoretical prediction. Complete separation of matrix aluminum and reinforcement from metal matrix composites (MMCs) scrap has been achieved by addition of 2.05 wt% of equimolar mixture of NaCl–KCl salt flux with a metal and particle yield of 84 and 50%, respectively. By adding 5 wt% of NaF to equimolar mixture of NaCl–KCl, metal and particle yield improved to 91 and 73%, respectively. Reusability of both the matrix aluminum and the SiC separated from Al–SiCp scraps has been analysed using XRD, SEM and DTA techniques. The matrix alloy separated from Al–SiCp scraps can be used possibly as a low Si content Al–Si alloy. However, the interfacial reaction that occurred during the fabrication of the composites had degraded the SiC particles.

  1. Influence of alkali metals (Na, Li, Rb) on the performance of electrostatic spray-assisted vapor deposited Cu2ZnSn(S,Se)4 solar cells

    Science.gov (United States)

    Altamura, Giovanni; Wang, Mingqing; Choy, Kwang-Leong

    2016-02-01

    Electrostatic Spray-Assisted Vapor Deposition (ESAVD) is a non-vacuum and cost-effective method to deposit metal oxide, various sulphide and chalcogenide at large scale. In this work, ESAVD was used to deposit Cu2ZnSn(S1-xSex)4 (CZTSSe) absorber. Different alkali metals like Na, Li and Rb were incorporated in CZTSSe compounds to further improve the photovoltaic performances of related devices. In addition, to the best of our knowledge, no experimental study has been carried out to test the effect of Li and Rb incorporation in CZTSSe solar cells. X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and glow discharge spectroscopy have been used to characterize the phase purity, morphology and composition of as-deposited CZTSSe thin films. Photovoltaic properties of the resulting devices were determined by completing the solar cells as follows: Mo/CZTSSe/CdS/i-ZnO/Al:ZnO/Ni/Al. The results showed that Li, Na and Rb incorporation can increase power conversion efficiency of CZTS devices up to 5.5%. The introduction of a thiourea treatment, has improved the quality of the absorber|buffer interface, pushed the device efficiency up to 6.3% which is at the moment the best reported result for ESAVD deposited CZTSSe solar cells.

  2. Theoretical study on the ground state of the polar alkali-metal-barium molecules: potential energy curve and permanent dipole moment.

    Science.gov (United States)

    Gou, Dezhi; Kuang, Xiaoyu; Gao, Yufeng; Huo, Dongming

    2015-01-21

    In this paper, we systematically investigate the electronic structure for the (2)Σ(+) ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Å and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained. PMID:25612710

  3. Theoretical study on the ground state of the polar alkali-metal-barium molecules: Potential energy curve and permanent dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Dezhi; Kuang, Xiaoyu, E-mail: scu-kuang@163.com; Gao, Yufeng; Huo, Dongming [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China)

    2015-01-21

    In this paper, we systematically investigate the electronic structure for the {sup 2}Σ{sup +} ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Å and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained.

  4. Towards new molecular superconductors: a first study of alkali metal reduced aromatic cryptands as 'pseudo-fullerides'

    International Nuclear Information System (INIS)

    The search for new molecular superconductors based upon concepts derived from the interpretation of alkali fullerides superconductivity led to the study of an aromatic cryptand (IHIC) considered as 'pseudo-fullerene'. New solids made of IHIC mono or di-reduced by potassium, rubidium and cesium were investigated. Low field microwave absorption (LFMA) signals appeared at 20 K for IHIC-Rb and IHIC-K (1:1), although these observations could not be confirmed by AC susceptibility or SQUID magnetometry. IR spectroscopy was used to probe the integrity of the final solid. EPR spectra consisted of a single symmetric line, combination of a Gaussian and of a Lorentzian lineshape, down to 4.2 K. However, the paramagnetic contribution of the reduced molecular species was too high to allow the observation of any transition at low temperature. Although two samples had a semiconductor like conductivity behavior as a function of temperature at high temperature, no indication of the presence of conduction electrons could be observed on the EPR spectrum. The LFMA measurements obtained can be considered as hints of superconductivity, thus opening the route towards new materials. (orig.)

  5. Heavy metal resistance in Arthrobacter ramosus strain G2 isolated from mercuric salt-contaminated soil

    International Nuclear Information System (INIS)

    Present study describes isolation of a multiple metal-resistant Arthrobacter ramosus strain from mercuric salt-contaminated soil. The isolate was found to resist and bioaccumulate several metals, such as cadmium, cobalt, zinc, chromium and mercury. Maximum tolerated concentrations for above metals were found to be 37, 525, 348, 1530 and 369 μM, respectively. The isolate could also reduce and detoxify redox-active metals like chromium and mercury, indicating that it has great potential in bioremediation of heavy metal-contaminated sites. Chromate reductase and mercuric reductase (MerA) activities in protein extract of the culture were found to be 2.3 and 0.17 units mg-1 protein, respectively. MerA enzyme was isolated from the culture by (NH4)2SO4 precipitation followed by dye affinity chromatography and its identity was confirmed by nano-LC-MS/MS. Its monomeric molecular weight, and optimum pH and temperature were 57 kDa, 7.4 and 55 deg. C, respectively. Thus, the enzyme was mildly thermophilic as compared to other MerA enzymes. Km and Vmax of the enzyme were 16.9 μM HgCl2 and 6.2 μmol min-1 mg-1 enzyme, respectively. The enzyme was found to be NADPH-specific. To our knowledge this is the first report on characterization of MerA enzyme from an Arthrobacter sp.

  6. A study of metallic coatings obtained by electrolysis of molten salts

    International Nuclear Information System (INIS)

    An appropriate technique has been developed for obtaining compact metallic coatings from electrolysis of molten salts. Through the use of this method, it has been possible to produce pure metal deposits which, until now, has been extremely difficult to do. The apparatus used and the main steps of the process such as dehydration of the solvant, degassing of the equipment, and starting of the electrolytic process, are first described. This is followed by a discussion of the deposits of the metals beryllium, uranium, tantalum and tungsten obtained from electrolysis of molten fluorides at temperatures between 600 and 8000C. The metal coatings so obtained are homogeneous and show continuity, their thicknesses varying from a few microns to a millimeter or more. They have been studied by measurements. As potential applications of this new technique, one can mention the growth of diffusion barriers and the production of cathodes for thermoionic emission. The method can also be used for electroforming. An intermetallic diffusion between the deposit and the substrate has been observed in some cases. The advantage of the technique of melt electrolysis in obtaining metal coatings of enhanced thicknesses is illustrated by taking the beryllium-nickel system as an example. It is shown that the thickness obtained is proportional to the square root of growth time and is about 6 to 8 times larger than that obtained by conventional techniques

  7. Solute accumulation and distribution traits of an alkali resistant forage plant Kochia sieversiana and physiological contribution of organic acid under salt and alkali stresses%盐碱胁迫下抗碱牧草碱地肤溶质积累、分布特点及有机酸的生理贡献

    Institute of Scientific and Technical Information of China (English)

    麻莹; 郭立泉; 张淑芳; 王晓苹; 石德成

    2013-01-01

    对碱地肤幼苗进行盐、碱胁迫处理,通过测定各种溶质积累及分布特点,探讨碱地肤适应盐碱生境生理机制的部位差异,明确有机酸对其适应盐碱生境的贡献.结果表明,各种溶质在幼叶、成熟叶、幼茎、老茎及根等不同部位的分布存在明显差异,其中无论胁迫与否,有机酸均主要分布在茎叶之中,特别是在决定光合生产力的成熟叶片中.Na+、K+、Ca2+在不同部位的分布规律基本一致,表明Na+对K+、Ca2+的吸收与转运不存在拮抗竞争作用.实验证明了K+、Ca2+特殊的吸收机制及各溶质的分布特点对碱地肤抗盐碱生理是至关重要的;不论在盐胁迫还是碱胁迫下,有机酸在碱地肤不同部位特别是成熟叶中,均是参与渗透调节、离子平衡及pH调节的主导成分,是决定碱地肤适应盐碱生境的关键物质之一.实验同时也证明了碱地肤的不同部位对盐碱胁迫的适应机制有所不同.%The accumulation and distribution characteristics of various solutes from Kochia sieversiana seedlings stressed by salt and alkali were measured to study the physiological mechanisms in different parts of K. sieversiana and their role in adaptability to salt-alkalinized soil, and to identify the contribution of organic acid to salt-alkalinized habitat adaptability. There were considerable differences in the distribution of various solutes from different plant parts such as young leaves, mature leaves, young stems, old stems and roots. Organic acid was distributed mainly in stems and leaves, especially in mature and functional leaves on which photosynthetic productivity was dependent. Distributions of Na+ , K+ and Ca2+ in different plant parts were uniform on the whole indicating that there was no competition for Na+ , K+ and Ca2+ for absorption and transportation. Special absorption mechanisms of K+ and Ca2+ and distribution characteristics of various solutes from K. sieversiana were very important

  8. Technical research on preparation of NaF with alkali in by-produced salt slag from hydrazine hydrate production%用水合肼副产盐渣中碱制备氟化钠工艺研究

    Institute of Scientific and Technical Information of China (English)

    梁美东; 周国娥; 喻文凯

    2011-01-01

    尿素法生产水合肼副产大量盐碱渣,由于盐碱渣中杂质较多一直未得到有效利用.介绍了一种合理利用水合肼副产盐碱渣的方法,即:将盐碱渣进行盐碱洗涤分离,得到含碱的洗涤母液和固体氯化钠,利用洗涤母液中的碳酸钠和氢氧化钠生产氟化钠.该工艺既回收了盐碱渣中的氯化钠和碱、副产了白炭黑,同时还解决了环境污染问题.研究了各种因索对氟化钠产品质量和收率的影响,得到较佳工艺条件:1)加料方式为先将氟硅酸钠制成悬浊液,加热至60℃左右,再向其中慢慢滴加洗涤母液,滴加速度控制在15~20 L/min;2)洗涤母液中碳酸钠质量分数控制在20%~25%,反应温度控制在85~90℃;3)母液中杂质氯化钠质量分数控制在15%~20%.%There will be a lot of by-product salt slag when producing hydrazine hydrate by urea method. However,the salt slag contains lots of impurities, which have not been effectively utilized. A new reasonable way of utilizing hydrazine hydrate by-product salt slag was introduced, i. e. seperate the salt and alkali in the by-product by saline wash, and alkaline liquor and solid sodium chloride could be obtained; and then utilizing Na2CO3 and NaOH in the liquor to produce sodium fluoride ( NaF ). This process not only recycled the sodium chloride and alkali in the salt slag and by-produced white carbon black,but also solved the problem of environmental pollution. Influences of various factors on product quality and recovery were also studied and the optimum processing conditions were obtained as follows: 1 ) make sodium fluosilicate into a suspension and heated to about 60 ℃ ,then gradually dropping the liquor at the speed of 15 ~20 L/min;2) mass fraction of sodium carbonate in the hquor should be controlled at 20% ~ 25% with a reaction temperature at 85 - 90 ℃ ;3 ) mass fraction of sodium chloride impurity in the liquor should be controlled at 15% ~ 20%.

  9. Concentrated dual-salt electrolytes for improving the cycling stability of lithium metal anodes

    Science.gov (United States)

    Pin, Liu; Qiang, Ma; Zheng, Fang; Jie, Ma; Yong-Sheng, Hu; Zhi-Bin, Zhou; Hong, Li; Xue-Jie, Huang; Li-Quan, Chen

    2016-07-01

    Lithium (Li) metal is an ideal anode material for rechargeable Li batteries, due to its high theoretical specific capacity (3860 mAh/g), low density (0.534 g/cm3), and low negative electrochemical potential (-3.040 V vs. standard hydrogen electrode). In this work, the concentrated electrolytes with dual salts, composed of Li[N(SO2F)2] (LiFSI) and Li[N(SO2CF3)2] (LiTFSI) were studied. In this dual-salt system, the capacity retention can even be maintained at 95.7% after 100 cycles in Li|LiFePO4 cells. A Li|Li cell can be cycled at 0.5 mA/cm2 for more than 600 h, and a Li|Cu cell can be cycled at 0.5 mA/cm2 for more than 200 cycles with a high average Coulombi efficiency of 99%. These results show that the concentrated dual-salt electrolytes exhibit superior electrochemical performance and would be a promising candidate for application in rechargeable Li batteries. Project supported by the National Nature Science Foundation of China (Grant Nos. 51222210, 51472268, 51421002, and 11234013) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09010300).

  10. Sorption of rare earth ions by alkylammonium salts of transition metal polyacids

    International Nuclear Information System (INIS)

    Consideration is given to results of investigations into gadolinium extraction from aqueous solutions by coprecipitation with hydrophobic compounds, formed during direct interaction of 12-tungstophosphoric acid (HPA) with surfactants (SA), depending on aqueous phase acidity, as well as SA nature and content. It was established that degree of gadolinium extraction increased with growth of pH value of the medium: gadolinium is concentrated in strong-acid media, as compared to yttrium. The process of gadolinium coprecipitation with HPA salts is also affected by the nature of precipitant: degree of metal extraction growth with increase of SA molecular mass. Gadolinium interaction with HPA salts takes place in result of ion exchange with salt-forming HPA protons. Data of IR spectroscopic investigations of the composition of hydrophobic precipitates, prepared under different conditions, are presented. Their content is not changed at different initial concentrations of HPA and gadolinium and depends only on pH of aqueous medium. Data of potentiometric titration of the compounds, supporting differences in interaction of gadolinium and yttrium with HPA, are presented

  11. Porous graphitic materials obtained from carbonization of organic xerogels doped with transition metal salts

    Indian Academy of Sciences (India)

    W Kiciński; M Bystrzejewski; M H Rümmeli; T Gemming

    2014-02-01

    Porous carbons with a well developed graphitic phase were obtained via the pyrolysis of FeCl3-, NiCl2-, and CoCl2-doped organic xerogels. Doping was realized through salt solubilization in a water/methanol solution of resorcinol and furfural. Carbon xerogels with tailored particles, porous morphology and various degrees of graphitization were obtained depending of the water/methanol ratio and the salt content and type in the starting solution of substrates. When obtained via pyrolysis, carbon xerogels retain the overall open-celled structure exhibiting depleted microporosity and a well-developed mesoporic region that expands into macropores. The removal of metal leads to carbon xerogels with specific surface areas between 170 and 585 m2/g and pore volume up to 0.76 cm3/g. The possibility of enhancing the porosity of xerogels via templating with colloidal silica was also investigated. It was assumed that from the three investigated salts, FeCl3 makes the best choice for graphitization catalyst precursor to obtain uniformly graphitized mesoporous carbon xerogels. The obtained carbon samples were characterized by means of SEM, TEM, X-ray diffraction, Raman spectroscopy, N2 physisorption and thermogravimetric analysis.

  12. Concentrated dual-salt electrolytes for improving the cycling stability of lithium metal anodes

    Institute of Scientific and Technical Information of China (English)

    刘品; 马强; 方铮; 马洁; 胡勇胜; 周志彬; 李泓; 黄学杰; 陈立泉

    2016-01-01

    Lithium (Li) metal is an ideal anode material for rechargeable Li batteries, due to its high theoretical specific ca-pacity (3860 mAh/g), low density (0.534 g/cm3), and low negative electrochemical potential (−3.040 V vs. standard hydrogen electrode). In this work, the concentrated electrolytes with dual salts, composed of Li[N(SO2F)2] (LiFSI) and Li[N(SO2CF3)2] (LiTFSI) were studied. In this dual-salt system, the capacity retention can even be maintained at 95.7%after 100 cycles in Li|LiFePO4 cells. A Li|Li cell can be cycled at 0.5 mA/cm2 for more than 600 h, and a Li|Cu cell can be cycled at 0.5 mA/cm2 for more than 200 cycles with a high average Coulombi efficiency of 99%. These results show that the concentrated dual-salt electrolytes exhibit superior electrochemical performance and would be a promising candidate for application in rechargeable Li batteries.

  13. Concentrated dual-salt electrolytes for improving the cycling stability of lithium metal anodes

    Science.gov (United States)

    Pin, Liu; Qiang, Ma; Zheng, Fang; Jie, Ma; Yong-Sheng, Hu; Zhi-Bin, Zhou; Hong, Li; Xue-Jie, Huang; Li-Quan, Chen

    2016-07-01

    Lithium (Li) metal is an ideal anode material for rechargeable Li batteries, due to its high theoretical specific capacity (3860 mAh/g), low density (0.534 g/cm3), and low negative electrochemical potential (‑3.040 V vs. standard hydrogen electrode). In this work, the concentrated electrolytes with dual salts, composed of Li[N(SO2F)2] (LiFSI) and Li[N(SO2CF3)2] (LiTFSI) were studied. In this dual-salt system, the capacity retention can even be maintained at 95.7% after 100 cycles in Li|LiFePO4 cells. A Li|Li cell can be cycled at 0.5 mA/cm2 for more than 600 h, and a Li|Cu cell can be cycled at 0.5 mA/cm2 for more than 200 cycles with a high average Coulombi efficiency of 99%. These results show that the concentrated dual-salt electrolytes exhibit superior electrochemical performance and would be a promising candidate for application in rechargeable Li batteries. Project supported by the National Nature Science Foundation of China (Grant Nos. 51222210, 51472268, 51421002, and 11234013) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09010300).

  14. Artificial sweeteners and salts producing a metallic taste sensation activate TRPV1 receptors.

    Science.gov (United States)

    Riera, Céline E; Vogel, Horst; Simon, Sidney A; le Coutre, Johannes

    2007-08-01

    Throughout the world many people use artificial sweeteners (AS) for the purpose of reducing caloric intake. The most prominently used of these molecules include saccharin, aspartame (Nutrasweet), acesulfame-K, and cyclamate. Despite the caloric advantage they provide, one key concern in their use is their aversive aftertaste that has been characterized on a sensory level as bitter and/or metallic. Recently, it has been shown that the activation of particular T2R bitter taste receptors is partially involved with the bitter aftertaste sensation of saccharin and acesulfame-K. To more fully understand the biology behind these phenomena we have addressed the question of whether AS could stimulate transient receptor potential vanilloid-1 (TRPV1) receptors, as these receptors are activated by a large range of structurally different chemicals. Moreover, TRPV1 receptors and/or their variants are found in taste receptor cells and in nerve terminals throughout the oral cavity. Hence, TRPV1 activation could be involved in the AS aftertaste or even contribute to the poorly understood metallic taste sensation. Using Ca(2+) imaging on TRPV1 receptors heterologously expressed in the human embryonic kidney (HEK) 293 cells and on dissociated primary sensory neurons, we find that in both systems, AS activate TRPV1 receptors, and, moreover, they sensitize these channels to acid and heat. We also found that TRPV1 receptors are activated by CuSO(4), ZnSO(4), and FeSO(4), three salts known to produce a metallic taste sensation. In summary, our results identify a novel group of compounds that activate TRPV1 and, consequently, provide a molecular mechanism that may account for off tastes of sweeteners and metallic tasting salts. PMID:17567713

  15. Binding energy referencing for XPS in alkali metal-based battery materials research (I): Basic model investigations

    Energy Technology Data Exchange (ETDEWEB)

    Oswald, S., E-mail: s.oswald@ifw-dresden.de

    2015-10-01

    Highlights: • We point to a not seriously solved conflict in energy scale referencing of Li metal samples in XPS. • Model experiments at Li-, Na-metal and Li-doped HOPG samples were used to classify the effects. • Binding energy shifts up to 3 eV are observed when the alkaline metal is present in metallic state. • A phenomenological explanation based on an electrostatic interaction is suggested. • Consequences for energy scale correction depending on the kind of surface species are followed. - Abstract: For the investigation of chemical changes in Li- and Na-ion battery electrode systems, X-ray photoelectron spectroscopy (XPS) is a well-accepted method. Charge compensation and referencing of the binding energy (BE) scale is necessary to account for the involved mostly non-conducting species. Motivated by a conflict in energy scale referencing of Li-metal samples discussed earlier by several authors, further clarifying experimental results on several Li containing reference materials are presented and extended by similar experiments for Na. When correlating the peak positions of characteristic chemical species in all the different prepared model sample states, there seems to be a systematic deviation in characteristic binding energies of several eV if lithium is present in its metallic state. Similar results were found for sodium. The observations are furthermore confirmed by the implementation of inert artificial energy reference material, such as implanted argon or deposited gold. The behavior is associated with the high reactivity of metallic lithium and a phenomenological explanation is proposed for the understanding of the observations. Consequences for data interpretation in Li-ion battery research will be discussed for various applications in part (II)

  16. SYNTHESIS AND CHARACTERIZATION OF POLYSILOXANE CONTAINING OLIGO(OXYETHYLENE) SULFATE SALT

    Institute of Scientific and Technical Information of China (English)

    Shu-wen Hu; Zheng-cheng Zhang; Fan Yi; Shi-bi Fang; Xin-feng Zhang; Fu-mian Li

    2000-01-01

    Solvent-free polymeric alkali-metal ion conductors, consisting of a comb-like polysiloxane with oligo(oxyethylene) side chains and pendant sulfate groups were synthesized by the hydrosilylation of allyl oligo(oxyethylene) sulfate salt and allyl methoxy oligo(oxyethylene) with poly(methylhydrosiloxane). The factors influncing the ionic conductivity of the resulting polymer such as the electrolyte content and the nature of the alkali-metal were investigated. The temperature dependence of conductivity was determined, and the ionic conductivity of the polymer follows the Vogel-Tammann-Fulcher (VTF) equation.

  17. Evaluation of quality of permanent teeth restorations in children of areas contaminated by heavy metal salts

    Directory of Open Access Journals (Sweden)

    V. V. Avakov

    2014-04-01

    Full Text Available The influence of the environment on the child health is one of priority issues of the present time and it is of great social importance. Increased dental diseases associated with climatic and geographical characteristics of the area are widely discussed in the literature. The leading among them are environmentally determined dental diseases in children associated with geochemical and technogenic pollution of the area where they live. Increasing amounts of hard metal salts is the urgent hygienic problem, due to severity of their multi-element analysis in microsubjects, and negative influence on health of the children population, due to tropism, ability to cumulation, long biological life in the body and antagonism of heavy metal salts to the number of microelements. Influence of hard metal salts on dental diseases development is undeniable. Particular attention is paid to their influence on caries process and treatment peculiarities. Despite the fact that modern аdhesive dentistry in recent years has made a significant breakthrough in improving adhesive systems, correct choice of adhesive system depending on changes in the structure of hard tissue under geochemical contaminants (like heavy metal salts is the most important step. It is the decisive factor for adaptation and connection of restoration with the restoration base. We should remember that on the way of adhesive system there is an altered structure preventing from deep penetration of such system and, consequently, leading to violation of restoration tightness. Therefore, early detection of complications by clinical evaluation of quality of the restorations is of great interest. Multi-vector approach to treatment of dental caries in children living in conditions of technogenic pollution by heavy metal salts is extremely urgent and important issue. Significant niche in this approach is given to adhesive preparation methods combined with local fluoridation, using fluoride medication of the

  18. Development of salt and metal waste treatment technology for pyroprocess in CRIEPI

    International Nuclear Information System (INIS)

    For the decontamination of the electrorefiner salt, a 'zeolite column' system is under development. Column tests using cesium as a simulating fission product (FP) were performed and high decontamination factor was attained at the beginning of the column operation. A new equipment of zeolite column system was also installed to obtain design bases for engineering scale development. On the other hand, noble metal (NM) FPs will remain as residue of the anode in the electrorefining step. A metal waste treatment process to deal with zirconium and used stainless steel (SS) cladding together is under development. SS-Zr-NM alloys were prepared using a metal waste furnace with addition of molybdenum, ruthenium, rhodium, palladium, and rhenium (a surrogate of technetium) as simulating NM FPs. By the observation of the micro structures and homogeneity of the alloys, a favourable condition to obtain excellent metal waste ingots was revealed. The normalized leaching rates of the major constituents from the alloy samples were much lower than those from the glass waste forms. These results indicated an excellent potential of the SS-Zr-NM alloy as a stable waste form. (author)

  19. Diode laser spectroscopy of NaD, KD, RbD, and CsD: determination of the mass independent parameters and mass scaling coefficients of the alkali metal hydrides

    International Nuclear Information System (INIS)

    The infrared spectrum of the monodeuterides of the alkali metals, sodium, potassium, rubidium, and cesium have been measured with a nominal accuracy of ±0.001 cm-1 using a diode laser spectrometer. Spectral lines of both the fundamental and the first hot band were observed for all the deuterides except RbD where only the fundamental was measured. The accuracy of previously published data on KH was also improved. Combination of these new data with similar results obtained previously for the equivalent monohydrides allowed the determination of a set of mass-independent parameters and mass-scaling coefficients for the hydrides of all of the alkali metals. This has allowed the relative magnitudes of the parameters to be compared for the first time. The results indicate that non-adiabatic effects are most prevalent in CsH. (orig.)

  20. Ion chromatography with the indirect ultraviolet detection of alkali metal ions and ammonium using imidazolium ionic liquid as ultraviolet absorption reagent and eluent.

    Science.gov (United States)

    Liu, Yong-Qiang; Yu, Hong

    2016-08-01

    Indirect ultraviolet detection was conducted in ultraviolet-absorption-agent-added mobile phase to complete the detection of the absence of ultraviolet absorption functional group in analytes. Compared with precolumn derivatization or postcolumn derivatization, this method can be widely used, has the advantages of simple operation and good linear relationship. Chromatographic separation of Li(+) , Na(+) , K(+) , and NH4 (+) was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid/organic solvent as the mobile phase, in which imidazolium ionic liquids acted as ultraviolet absorption reagent and eluting agent. The retention behaviors of four kinds of cations are discussed, and the mechanism of separation and detection are described. The main factors influencing the separation and detection were the background ultraviolet absorption reagent and the concentration of hydrogen ion in the ion chromatography-indirect ultraviolet detection. The successful separation and detection of Li(+) , Na(+) , K(+) , and NH4 (+) within 13 min was achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.02, 0.11, 0.30, and 0.06 mg/L, respectively. A new separation and analysis method of alkali metal ions and ammonium by ion chromatography with indirect ultraviolet detection method was developed, and the application range of ionic liquid was expanded.

  1. I3-/I- Redox Behavior of Alkali-metal Iodide Complexes with Crown Ether/Cryptand Macrocycles and Their Applications to Dye-sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    史成武; 戴松元; 王孔嘉; 潘旭; 郭力; 胡林华; 孔凡太

    2005-01-01

    In this article, the I3-/I- redox behavior in 3-methoxypropionitrile (MePN) containing alkali-metal iodide complexes with crown ether and crypt,and macrocycles was studied by cyclic voltammetry. It was found that the apparent diffusion coefficient D values of triiodide and iodide ions correlate with cations. D values of triiodide follow the order: 1,2-dimethyl-3-propylimidazolium cation (DMPI+)>[Na belong to 15-C-5]+ (the mathematical symbol of inclus ions belong to, was used to indicate Na+ included in 15-C-5)> [K belong to 18-C-6]+> [Na belog to 2.2.1-cryptand]+ and those of iodide ionsfollow the order: [Na belong to 2.2.1-cryptand]+ > [Na belong to 15-C-5]+≈[K belong to 18-C-6]+ > DMPI+. The photovoltaic performances of dye-sensitized solar cells (DSC) with these complexes were compared with those containing 1,2-dimethyl-3-propylimidazolium iodide (DMPII) in MePN. It shows that DSC with these complexes gave a little higher short photocurrent intensity and lower fill factor than those with DMPII, which is consistent with D values of triiodide and iodide ions. Moreover, solvents played an important role for the photo-electric conversion efficiency of DSC. The photo-electric conversion efficiency of DSC with DMPII is higher than that with [K belong to 18-C-6]I in MePN, while in ACN, it shows a little difference.

  2. Uranium Metalla-Allenes with Carbene Imido R2 C=U(IV) =NR' Units (R=Ph2 PNSiMe3 ; R'=CPh3 ): Alkali-Metal-Mediated Push-Pull Effects with an Amido Auxiliary.

    Science.gov (United States)

    Lu, Erli; Tuna, Floriana; Lewis, William; Kaltsoyannis, Nikolas; Liddle, Stephen T

    2016-08-01

    We report uranium(IV)-carbene-imido-amide metalla-allene complexes [U(BIPM(TMS) )(NCPh3 )(NHCPh3 )(M)] (BIPM(TMS) =C(PPh2 NSiMe3 )2 ; M=Li or K) that can be described as R2 C=U=NR' push-pull metalla-allene units, as organometallic counterparts of the well-known push-pull organic allenes. The solid-state structures reveal that the R2 C=U=NR' units adopt highly unusual cis-arrangements, which are also reproduced by gas-phase theoretical studies conducted without the alkali metals to remove their potential structure-directing roles. Computational studies confirm the double-bond nature of the U=NR' and U=CR2 interactions, the latter increasingly attenuated by potassium then lithium when compared to the hypothetical alkali-metal-free anion. Combined experimental and theoretical data show that the push-pull effect induced by the alkali metal cations and amide auxiliary gives a fundamental and tunable structural influence over the C=U(IV) =N units. PMID:27403746

  3. Milk-alkali syndrome

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000332.htm Milk-alkali syndrome To use the sharing features on this page, please enable JavaScript. Milk-alkali syndrome is a condition in which there ...

  4. Effect of Anti-freezing Admixtures on Alkali-silica Reaction in Mortars

    Institute of Scientific and Technical Information of China (English)

    LIU Junzhe; LI Yushun; LV Lihua

    2005-01-01

    The influence of anti-freezing admixture on the alkali aggregate reaction in mortar was analyzed with accelerated methods. It is confirmed that the addition of sodium salt ingredients of anti-freezing admixture accelerates the alkali silica reaction to some extent, whereas calcium salt ingredient of anti-freezing admixture reduces the expansion of alkali silica reaction caused by high alkali cement. It is found that the addition of the fly ash considerably suppresses the expansion of alkali silica reaction induced by the anti-freezing admixtures.

  5. Sub-0.5 V Highly Stable Aqueous Salt Gated Metal Oxide Electronics.

    Science.gov (United States)

    Park, Sungjun; Lee, SeYeong; Kim, Chang-Hyun; Lee, Ilseop; Lee, Won-June; Kim, Sohee; Lee, Byung-Geun; Jang, Jae-Hyung; Yoon, Myung-Han

    2015-01-01

    Recently, growing interest in implantable bionics and biochemical sensors spurred the research for developing non-conventional electronics with excellent device characteristics at low operation voltages and prolonged device stability under physiological conditions. Herein, we report high-performance aqueous electrolyte-gated thin-film transistors using a sol-gel amorphous metal oxide semiconductor and aqueous electrolyte dielectrics based on small ionic salts. The proper selection of channel material (i.e., indium-gallium-zinc-oxide) and precautious passivation of non-channel areas enabled the development of simple but highly stable metal oxide transistors manifested by low operation voltages within 0.5 V, high transconductance of ~1.0 mS, large current on-off ratios over 10(7), and fast inverter responses up to several hundred hertz without device degradation even in physiologically-relevant ionic solutions. In conjunction with excellent transistor characteristics, investigation of the electrochemical nature of the metal oxide-electrolyte interface may contribute to the development of a viable bio-electronic platform directly interfacing with biological entities in vivo. PMID:26271456

  6. Geochemistry of metal-rich brines from central Mississippi Salt Dome basin, U.S.A.

    Science.gov (United States)

    Kharaka, Y.K.; Maest, A.S.; Carothers, W.W.; Law, L.M.; Lamothe, P.J.; Fries, T.L.

    1987-01-01

    Oil-field brines are the most favored ore-forming solutions for the sediment-hosted Mississippi Valley-type ore deposits. Detailed inorganic and organic chemical and isotope analyses of water and gas samples from six oil fields in central Mississippi, one of the very few areas with high metal brines, were conducted to study the inorganic and organic complexes responsible for the high concentrations of these metals. The samples were obtained from production zones consisting of sandstone and limestone that range in depth from 1900 to 4000 m (70-120??C) and in age from Late Cretaceous to Late Jurassic. Results show that the waters are dominantly bittern brines related to the Louann Salt. The brines have extremely high salinities that range from 160,000 to 320,000 mg/l total dissolved solids and are NaCaCl-type waters with very high concentrations of Ca (up to 48,000 mg/l) and other alkaline-earth metals, but with low concentrations of aliphatic acid anions. The concentrations of metals in many water samples are very high, reaching values of 70 mg/l for Pb, 245 mg/l for Zn, 465 mg/l for Fe and 210 mg/l for Mn. The samples with high metal contents have extremely low concentrations (<0.02 mg/l) of H2S. Samples obtained from the Smackover Formation (limestone) have low metal contents that are more typical of oil-field waters, but have very high concentrations (up to 85 mg/l) of H2S. Computations with the geochemical code SOLMINEQ.87 give the following results: (1) both Pb and Zn are present predominantly as aqueous chloride complexes (mainly as PbCl42- and ZnCl42-, respectively); (2) the concentrations of metals complexed with short-chained aliphatic acid anions and reduced S species are minor; (3) organic acid anions are important in controlling the concentrations of metals because they affect the pH and buffer capacity of the waters at subsurface conditions; and (4) galena and sphalerite solubilities control the concentrations of Pb and Zn in these waters. ?? 1988.

  7. Development of an immobilization method by encapsulating inorganic metal salts forming hollow microcapsules

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Hong-Bing; Kuang, Jin-Gao; Qian, Yu [School of Chemical and Energy Engineering, South China University of Technology, Guangzhou 510640 (China)

    2005-08-15

    In the present paper, a facile and cost effective method was developed to fabricate micrometer-sized hollow polyurea microcapsule via W/O emulsion, with the inorganic metal salts as encapsulated materials. The size of porosities and non-porous parts were uniform with diameter ranging from 20 to 40nm for both interior and exterior surfaces. The immobilized nickel nanoparticle was well dispersed with diameter under 30nm. Polyurea hollow microcapsules encapsulated with NiCl{sub 2} presented better thermal stability than polyurea itself. The immobilization of NiCl{sub 2} was rather effective, and no leaching could be observed under ethanol, toluene and water at 110{sup o}C while stirring for 5h. This heterogeneous microcapsule with NiCl{sub 2} could be reused for benzaldehyde reduction with no loss of activity or selectivity, meaning that it is an effective immobilization method.

  8. Effect of different salt concentration on total Bacterial count and heavy metal Composition of the Fish Hydrocynus spp.

    Directory of Open Access Journals (Sweden)

    H.H. ABBAS BAKHIET

    2013-03-01

    Full Text Available This piece of work was done in an attempt to evaluate the issue of the traditional fish salting practice in the Sudan. Fassiekh was selected as one of the widely consumed salted fish product, of great preference among Sudanese consumers. The study was directed towards the study of the heavy metal concentration and the microbiological analysis of fresh fish and fassiekh to compare the effect of the different salt concentrations. One kind of fish species preferable by Sudanese consumers in fasseikh making was selected for this study namely hydrocynus spp (kass. Samples were taken from Elmawrada fish market, and subjected to three salt concentration levels (15%, 20%and 25% by weight to achieve the goals of the study. Fresh fish were carefully handled throughout the preparation process; they were eviscerated and cleaned up and divided in to two groups then three sup groups to be treated with different salt concentration. After the fermentation process sample were taken to do the heavy metal concentration analysis and microbiological analysis. It was observed that the heavy metal (Arsenic, Cadmium and lead concentration were not significant. But the microbiological analysis result showed significant decrease in total bacterial count in all concentrations.

  9. Analysis on Alkali Metal Migration Law in Process of Eucalyptus Branches Direct Combustion%桉树枝直燃利用过程中碱金属迁移规律分析

    Institute of Scientific and Technical Information of China (English)

    韦威; 廖艳芬; 陈拓; 马晓茜; 杨云金; 余勇强

    2014-01-01

    For knowing alkali metal migration law in eucalyptus branches burned in some biomass power plant,this paper studies it by combustion experiment.The experimental sample is eucalyptus branch particle with grain size of 1 80μm which is used for repeat combustion experiment in pipe burner in order to get residual samples under different temperatures and with different combustion time.By proximate analysis on residual samples,it is able to get combustion laws of volatiles and fixed carbon.The experimental result shows that volatility of alkali metal in eucalyptus branches is very strong and there is 87%potassium released into gas phase in process of high temperature burning.Meanwhile,precipitation of alkali metal is speeding up with increase of temperature and precipitation volume dose is increasing with temperature and stop time.In addition,tak-ing kaolin as additive,it conducts quantitative analysis on its impact on retention rate of alkali metal in ash.The analysis re-sult indicates that kaolin has very good retention role for alkali metal in eucalyptus branches and retention effect of 5% kao-lin is the best.%为了解某生物质电厂燃用的桉树枝的碱金属迁移规律,对其进行了燃烧实验研究。实验样品为粒径180μm的桉树枝颗粒,在管式燃烧器中进行燃烧重复实验,获得不同温度和燃烧时间下的残留物样品,然后对残留物进行工业分析,获得挥发分、固定碳的燃烧规律;实验结果表明桉树枝碱金属挥发性很强,高温燃尽时有87%的钾释放进入气相,碱金属的析出随温度的增高而加快,析出总量也随温度和停留时间而增加。另外,以高岭土作为添加剂,定量分析了其对桉树枝碱金属在灰渣中的固留率的影响,分析结果表明高岭土对桉树枝的碱金属有很好固留作用,5%的高岭土添加量固留效果最佳。

  10. Experimental and Modeling Studies on the Conversion of Inulin to 5-Hydroxymethylfurfural Using Metal Salts in Water

    NARCIS (Netherlands)

    Fachri, Boy Arief; Rasrendra, Carolus Borromeus; Heeres, Hero Jan

    2015-01-01

    Inulin, a plant polysaccharide consisting of mainly d-fructose units, is considered an interesting feed for 5-hydroxymethylfurfural (HMF), a top 12 bio-based chemical. We here report an exploratory experimental study on the use of a wide range of homogeneous metal salts as catalysts for the conversi

  11. Ion Pairing in Alkali Nitrate Electrolyte Solutions.

    Science.gov (United States)

    Xie, Wen Jun; Zhang, Zhen; Gao, Yi Qin

    2016-03-10

    In this study, we investigate the thermodynamics of alkali nitrate salt solutions, especially the formation of contact ion pairs between alkali cation and nitrate anion. The ion-pairing propensity shows an order of LiNO3 law of matching water affinity" is followed by these alkali nitrate salt solutions. The spatial patterns of contact ion pairs are different in the three salt solutions studied here: Li(+) forms the contact ion pair with only one oxygen of the nitrate while Na(+) and K(+) can also be shared by two oxygens of the nitrate. In reproducing the salt activity coefficient using Kirkwood-Buff theory, we find that it is essential to include electronic polarization for Li(+) which has a high charge density. The electronic continuum correction for nonpolarizable force field significantly improves the agreement between the calculated activity coefficients and their experimental values. This approach also improves the performance of the force field on salt solubility. From these two aspects, this study suggests that electronic continuum correction can be a promising approach to force-field development for ions with high charge densities. PMID:26901167

  12. Ion Pairing in Alkali Nitrate Electrolyte Solutions.

    Science.gov (United States)

    Xie, Wen Jun; Zhang, Zhen; Gao, Yi Qin

    2016-03-10

    In this study, we investigate the thermodynamics of alkali nitrate salt solutions, especially the formation of contact ion pairs between alkali cation and nitrate anion. The ion-pairing propensity shows an order of LiNO3 activity coefficients and suggest that the empirical "law of matching water affinity" is followed by these alkali nitrate salt solutions. The spatial patterns of contact ion pairs are different in the three salt solutions studied here: Li(+) forms the contact ion pair with only one oxygen of the nitrate while Na(+) and K(+) can also be shared by two oxygens of the nitrate. In reproducing the salt activity coefficient using Kirkwood-Buff theory, we find that it is essential to include electronic polarization for Li(+) which has a high charge density. The electronic continuum correction for nonpolarizable force field significantly improves the agreement between the calculated activity coefficients and their experimental values. This approach also improves the performance of the force field on salt solubility. From these two aspects, this study suggests that electronic continuum correction can be a promising approach to force-field development for ions with high charge densities.

  13. A structural investigation of the alkali metal site distribution within bioactive glass using neutron diffraction and multinuclear solid state NMR.

    Science.gov (United States)

    Martin, Richard A; Twyman, Helen L; Rees, Gregory J; Smith, Jodie M; Barney, Emma R; Smith, Mark E; Hanna, John V; Newport, Robert J

    2012-09-21

    The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective isomorphic substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a similar manner within the glassy matrix and do not disrupt the short range order of the network former. Residual differences are attributed solely to the variation in ionic radius between the two species. Successful simplification of the 2 bioactive glasses, and an analogous splitting of the Li-O correlations. The observed correlations are attributed to the metal ions bonded either to bridging or to non-bridging oxygen atoms. (23)Na triple quantum MAS (3QMAS) NMR data corroborates the split Na-O correlations. The structural sites present will be intimately related to the release properties of the glass system in physiological fluids such as plasma and saliva, and hence to the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimizing material design. PMID:22868255

  14. Factors controlling alkali salt deposition in recovery boilers - particle formation and deposition; Soodakattilan likaantuminen ja siihen vaikuttavien tekijoeiden hallinta - hiukkasten muodostuminen ja depositio

    Energy Technology Data Exchange (ETDEWEB)

    Kauppinen, E.I.; Mikkanen, P.; Ylaetalo, S. [VTT Chemistry, Espoo (Finland); Jokiniemi, J.K.; Lyyraenen, J.; Pyykoenen, J.; Saastamoinen, J. [VTT Energy, Espoo (Finland)

    1996-12-01

    In this project, the aim was to find out those critical factors that control the deposit formation in the recovery boilers. We focus on the particle formation, growth and deposition as well as the single black liquor particle combustion behaviour. The final goal is the development of the predictive model to be used to describe deposit growth and subsequent behaviour as well as the dependence of deposition on black liquor characteristics and boiler operation conditions. During year 1995 an experimental study on the aerosol particle formation within the recovery boiler furnace and a sensitivity study with the Aerosol Behaviour in Combustion (ABC) code were carried out. The experimental study confirmed the fact that the particles are already formed in the recovery boiler furnace. The particle formation is initiated in the boundary layer of the burning droplet or smelt bed, where metals are vaporised and oxidised to form tiny seed particles. Trace amounts of metals were measured in all particle sizes and the sensitivity study with the ABC model gave further evidence of the seed formation was necessary primary step in the particle formation. At the furnace outlet the sintration ratio and the sulfation ratio of the particles were dependent on the furnace temperature and the residence time in the furnace. At ESP inlet three types of particles were observed (1) fine particles with the major mass mode at about 1-2 {mu}m, (2) large agglomerates in sizes larger than 8 {mu}m, and (3) spherical particles about 2-4 {mu}m in size. The fine particles were formed from vapours and the large agglomerates were formed from fine particles agglomerated on heat exchanger surfaces and re-entrained back to flue gas flow. The large agglomerates also contain vapours that have directly condensed to surfaces. The large spherical particles contain silicon and pass the process almost unchanged. (Abstract Truncated)

  15. Molten salt extraction (MSE) of americium from plutonium metal in CaCl2-KCl-PuCl3 and CaCl2-PuCl3 salt systems

    International Nuclear Information System (INIS)

    Molten salt extraction (MSE) of americium-241 from reactor-grade plutonium has been developed using plutonium trichloride salt in stationary furnaces. Batch runs with oxidized and oxide-free metal have been conducted at temperature ranges between 750 and 945C, and plutonium trichloride concentrations from one to one hundred mole percent. Salt-to-metal ratios of 0.10, 0.15, and 0 30 were examined. The solvent salt was either eutectic 74 mole percent CaCl2 endash 26 mole percent KCl or pure CaCl2. Evidence of trivalent product americium, and effects of temperature, salt-to-metal ratio, and oxide contamination on the americium extraction efficiency are given. 24 refs, 20 figs, 13 tabs

  16. Syntheses, structure and properties of Alkaline-earth metal salts of 4-Nitrophenylacetic acid

    Indian Academy of Sciences (India)

    BIKSHANDARKOIL R SRINIVASAN; KIRAN T DHAVSKAR; CHRISTIAN NÄTHER

    2016-11-01

    The synthesis, crystal structure, spectral characteristics and thermal properties of alkaline-earth metal salts of 4-nitrophenylacetic acid (4-npaH) namely, [Mg(H₂O)₆](4-npa)₂·4H₂O (4-npa = 4-nitrophenylacetate) (1), [Ca(H₂O)₂(4-npa)₂] (2) and [Sr(H₂O)₃(4-npa)₂]·4.5H₂O(3) are reported. In 1, the 4-npa ion functions as a charge balancing counter anion for the octahedral [Mg(H₂O)6]²⁺ unit with the Mg(II) ion situated on a centre of inversion. The two unique lattice water molecules link the [Mg(H₂O)₆]²⁺ cations and 4-npa anions with the aid of O-H· · ·O interactions. Compounds 2 and 3 are one-dimensional (1-D) coordination polymers containing an eight coordinated Ca(II) situated in a general position and a nine coordinated Sr(II) located on a twofold axis. The μ₂-bridging tridentate binding modes of the crystallographically independent 4-npa ligands in 2 and the unique 4-npa ligand in 3 link the bivalent metal ions into an infinite chain with alternating Ca· · · Ca separations of 3.989 and 4.009 Å, respectively, and a single Sr· · · Sr separation of 4.194Å in the 1-D chain.

  17. Test of electrodialytic upgrading of MSWI APC residue in pilot scale: focus on reduced metal and salt leaching

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Jensen, Pernille Erland; Villumsen, Arne;

    2010-01-01

    that is adapted from conventional electrodialysis, e.g. used in desalination of solutions. The APC residue was treated in a suspension (8 kg APC residue and 80 L tap water) and circulated through an electrodialytic (ED) stack consisting of 50 cell pairs separated by ion exchange membranes. A direct current...... was applied to the ED stack for removal of heavy metals (As, Ba, Cd, Cr, Cu, Mn, Ni, Pb, Zn) and salts (Cl, Na, SO4) from the APC residue suspension. Different tank designs for mixing the APC residue suspension were tested as well as changing experimental conditions. A part of the raw experimental APC residue...... was carbonated by reaction with CO2 under moist conditions prior to electrodialytic treatment. The carbonation alone reduced the leaching of some heavy metals. However, it was not sufficient to reduce the heavy metal or salt leaching to meet the Danish Category 3 guideline levels for waste material reuse...

  18. Controllable formation of heterotrimetallic coordination compounds: systematically incorporating lanthanide and alkali metal ions into the manganese 12-metallacrown-4 framework.

    Science.gov (United States)

    Azar, Michael R; Boron, Thaddeus T; Lutter, Jacob C; Daly, Connor I; Zegalia, Kelcie A; Nimthong, Ruthairat; Ferrence, Gregory M; Zeller, Matthias; Kampf, Jeff W; Pecoraro, Vincent L; Zaleski, Curtis M

    2014-02-01

    structures available through the metallacrown analogy, these complexes allow for the mixing and matching of a diverse range of metals that might permit the fine-tuning of molecular properties where one day they may be exploited as magnetic materials or luminescent agents.

  19. 麦草碱木质素三甲基季铵盐对酸性染料溶液的絮凝性能影响%Flocculability of Trimethy Quaternary Ammonium Salt of Wheat-alkali-lignin for Acid Dye Solution

    Institute of Scientific and Technical Information of China (English)

    姜贵全; 任世学; 丁志刚

    2012-01-01

    The trimethyl quaternary ammonium salt of wheat-alkali-lignin was synthesized in the Mannich reaction using wheat straw alkali lignin as raw material which is extracted from black liquo of paper and pulp industry. The decolorization rate of the trimethy quaternary ammonium salt of wheat-alkali-lignin was detected by Acid Black ATr dye, Acid red B, and Orange G in aqueous solu- tion to evaluate flocculation function. The results showed that decolorization rate of 0. 15g/L Acid Black ATY dye with pH values of 2 in aqueous solution increased with increasing concentration of the trimethyl quaternary ammonium salt of wheat-alkali-lignin between 0 -3500 mg/L; the decolorization rate of 0. 15g/L Acid Black ATr dye increased with decreasing pH value between 1 -4 when the concentration is 2884 mg/L. There were similar results for Orange GG and Acid Red B dye. According to the above conclusions and the structure of the trimethyl quaternary ammonium salt of wheat-alkali-lignin and the acid dye, the flocculation mechanism was that there was hydrogen bonds to attract the ammonium ion from the trimethyl quaternary ammonium salt of wheat-alkali-lignin and sulfonate from the acid dye, and acid dye particles played a "bridging" role, then acid dye was netted and swept by alkali lignin with the three- dimensional network structure.%以从造纸黑液中提取的麦草碱木质素为原料,通过曼尼希反应合成麦草碱木质素三甲基季铵盐,以脱色率为指标检测其对酸性黑ATT、酸性橙GG和酸性红B的絮凝性能。实验结果表明:对于0.1g/l酸性黑ATT溶液,pH为2,麦草碱木质素三甲基季铵盐使用浓度在O-3500mg/l范围内时,脱色率随浓度增大而升高;麦草碱木质素三甲基季铵盐使用浓度为2884mg/l时,在pH为1~4范围内,脱色率随pH降低而增加。酸性橙GG和酸性红B也有类似的规律。由上述结论结合麦草碱木质素三甲基季铵盐和酸性染料的结构特点

  20. The Influence of Nitrate Salts and Complex Metal Ion to Regio-Selective Synthesis of 2-Nitro-5,10,15,20-Tetra-(4-Methoxyphenyl)Porphyrinato Metal

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A series of 2-nitro-5,10,15,20-tetra(4-methoxyphenyl) porphyrinato metals were regioselectively synthesized with nitrate salts as nitrating reagent in acetic acid/acetic anhydride for preparation of 2-substituted porphyrin. The influence of nitrate salts and complex metal ion to the reaction were investigated. The extent of 2-nitration increased with the electronegativity of the central metal. When Cu(NO3)2·3H2O was used as nitrating reagent, almost quantitative yields of 2 nitro porphyrin were obtained in the case of Cu(Ⅱ) or Ni(Ⅱ) chelates, while Zn(Ⅱ) or Mn(Ⅲ) chelates gave 50% and 30% yields respectively. If Zn(NO3)2·10H2O was used as nitrating agent, no product was found for Cu(Ⅱ) or Ni(Ⅱ) chelates, 12% was found for Zn(Ⅱ) chelates. The other metal ion and nitrate salts were also found in quite different influence.

  1. Solid oxide membrane-assisted controllable electrolytic fabrication of metal carbides in molten salt.

    Science.gov (United States)

    Zou, Xingli; Zheng, Kai; Lu, Xionggang; Xu, Qian; Zhou, Zhongfu

    2016-08-15

    Silicon carbide (SiC), titanium carbide (TiC), zirconium carbide (ZrC), and tantalum carbide (TaC) have been electrochemically produced directly from their corresponding stoichiometric metal oxides/carbon (MOx/C) precursors by electrodeoxidation in molten calcium chloride (CaCl2). An assembled yttria stabilized zirconia solid oxide membrane (SOM)-based anode was employed to control the electrodeoxidation process. The SOM-assisted controllable electrochemical process was carried out in molten CaCl2 at 1000 °C with a potential of 3.5 to 4.0 V. The reaction mechanism of the electrochemical production process and the characteristics of these produced metal carbides (MCs) were systematically investigated. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy analyses clearly identify that SiC, TiC, ZrC, and TaC carbides can be facilely fabricated. SiC carbide can be controlled to form a homogeneous nanowire structure, while the morphologies of TiC, ZrC, and TaC carbides exhibit porous nodular structures with micro/nanoscale particles. The complex chemical/electrochemical reaction processes including the compounding, electrodeoxidation, dissolution-electrodeposition, and in situ carbonization processes in molten CaCl2 are also discussed. The present results preliminarily demonstrate that the molten salt-based SOM-assisted electrodeoxidation process has the potential to be used for the facile and controllable electrodeoxidation of MOx/C precursors to micro/nanostructured MCs, which can potentially be used for various applications. PMID:27195950

  2. Solid oxide membrane-assisted controllable electrolytic fabrication of metal carbides in molten salt.

    Science.gov (United States)

    Zou, Xingli; Zheng, Kai; Lu, Xionggang; Xu, Qian; Zhou, Zhongfu

    2016-08-15

    Silicon carbide (SiC), titanium carbide (TiC), zirconium carbide (ZrC), and tantalum carbide (TaC) have been electrochemically produced directly from their corresponding stoichiometric metal oxides/carbon (MOx/C) precursors by electrodeoxidation in molten calcium chloride (CaCl2). An assembled yttria stabilized zirconia solid oxide membrane (SOM)-based anode was employed to control the electrodeoxidation process. The SOM-assisted controllable electrochemical process was carried out in molten CaCl2 at 1000 °C with a potential of 3.5 to 4.0 V. The reaction mechanism of the electrochemical production process and the characteristics of these produced metal carbides (MCs) were systematically investigated. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy analyses clearly identify that SiC, TiC, ZrC, and TaC carbides can be facilely fabricated. SiC carbide can be controlled to form a homogeneous nanowire structure, while the morphologies of TiC, ZrC, and TaC carbides exhibit porous nodular structures with micro/nanoscale particles. The complex chemical/electrochemical reaction processes including the compounding, electrodeoxidation, dissolution-electrodeposition, and in situ carbonization processes in molten CaCl2 are also discussed. The present results preliminarily demonstrate that the molten salt-based SOM-assisted electrodeoxidation process has the potential to be used for the facile and controllable electrodeoxidation of MOx/C precursors to micro/nanostructured MCs, which can potentially be used for various applications.

  3. Electrodeposition of metallic tungsten coating from binary oxide molten salt on low activation steel substrate

    International Nuclear Information System (INIS)

    Tungsten is considered a promising plasma facing armor material for future fusion devices. An electrodeposited metallic tungsten coating from Na2WO4–WO3 binary oxide molten salt on low activation steel (LAS) substrate was investigated in this paper. Tungsten coatings were deposited under various pulsed currents conditions at 1173 K in atmosphere. Cathodic current density and pulsed duty cycle were investigated for pulsed current electrolysis. The crystal structure and microstructure of tungsten coatings were characterized by X-ray diffractometry, scanning electron microscopy, and energy X-ray dispersive analysis techniques. The results indicated that pulsed current density and duty cycle significantly influence tungsten nucleation and electro-crystallization phenomena. The average grain size of the coating becomes much larger with increasing cathodic current density, which demonstrates that appropriate high cathodic current density can accelerate the growth of grains on the surface of the substrate. The micro-hardness of tungsten coatings increases with the increasing thickness of coatings; the maximum micro-hardness is 482 HV. The prepared tungsten coatings have a smooth surface, a porosity of less than 1%, and an oxygen content of 0.024 wt%

  4. Further studies on the ability of different metal salts to influence the DNA synthesis of human lymphoid cells.

    Science.gov (United States)

    Nordlind, K

    1986-01-01

    In a further study on the ability of different metal salts to influence the DNA synthesis of human lymphoid cells, aluminum chloride, beryllium chloride, cadmium chloride, cupric sulfate, ferric chloride, manganese chloride, palladium chloride, platinum chloride and silver nitrate, were tested regarding effect on thymocytes and peripheral blood lymphocytes in children. At certain concentrations in the range of 10(-4)-10(-5)M, all tested compounds but aluminum chloride and ferric chloride, were inhibitory, the latter compounds inhibited at 4.8 X 10(-3)M. A slight stimulation mainly on the thymocytes was obtained with beryllium chloride, cadmium chloride, palladium chloride, platinum chloride and silver nitrate, at certain concentrations in the range of 10(-5)-10(-6)M, while ferric chloride gave a slight stimulation at 1.2 X 10(-3)M. Thus, the tested metal salts should be suitable for use in lymphocyte transformation tests for diagnosis of contact allergy.

  5. Uptake and distribution of N, P and heavy metals in three dominant salt marsh macrophytes from Yangtze River estuary, China.

    Science.gov (United States)

    Quan, W M; Han, J D; Shen, A L; Ping, X Y; Qian, P L; Li, C J; Shi, L Y; Chen, Y Q

    2007-07-01

    We examined the variation in aboveground biomass accumulation and tissue concentrations of nitrogen (N), phosphorus (P), copper (Cu), zinc (Zn) and lead (Pb) in Phragmites australis (common reed), Spartina alterniflora (salt cordgrass), and Scirpus mariqueter throughout the growing season (April-October 2005), in order to determine the differences in net element accumulation and distribution between the three salt marsh macrophytes in the Yangtze River estuary, China. The aboveground biomass was significantly greater in the plots of S. alterniflora than in the plots of P. australis and S. mariqueter throughout the growing season (Pbiomass was 1246+/-89 gDW/m(2), 2759+/-250 gDW/m(2) and 548+/-54 gDW/m(2) for P. australis, S. alterniflora and S. mariqueter, respectively. The concentrations of nutrients and heavy metals in plant tissues showed similar seasonal patterns. There was a steady decline in element concentrations of the aboveground tissues from April to October. Relative element concentrations in aboveground tissues were at a peak during the spring sampling intervals with minimum levels during the fall. But the concentrations of total nitrogen and total phosphorus in the belowground tissues were relatively constant throughout growing season. Generally, trace metal concentrations in the aboveground tissues of S. mariqueter was the highest throughout the growing season, and the metal concentrations of S. alterniflora tissues (aboveground and belowground) were greater than those of P. australis. Furthermore, the aboveground pools of nutrients and metals were consistently greater for S. alterniflora than for P. australis and S. mariqueter, which suggested that the rapid replacement of native P. australis and S. mariqueter with invasive S. alterniflora would significantly improve the magnitude of nutrient cycling and bioavailability of trace metals in the salt marsh and maybe transport more toxic metals into the water column and the detrital food web in the

  6. Uptake and distribution of N, P and heavy metals in three dominant salt marsh macrophytes from Yangtze River estuary, China

    OpenAIRE

    Quan, W.M.; Han, J.D.; Shen, A.L.; Ping, X.Y.; Qian, P.L.; Li, C.J.; Shi, L.Y.; Chen, Y. Q.

    2007-01-01

    Uptake and distribution of N, P and heavy metals in three dominant salt marsh macrophytes from Yangtze River estuary, China correspondence: Corresponding author. Tel.: +86 21 6568 0293; fax: +86 21 6568 0293. (Chen, Y.Q.) (Quan, W.M.) (Chen, Y.Q.) Key and Open Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sci...

  7. Bioleaching of incineration fly ash by Aspergillus niger – precipitation of metallic salt crystals and morphological alteration of the fungus

    OpenAIRE

    Tong-Jiang Xu; Thulasya Ramanathan; Yen-Peng Ting

    2014-01-01

    This study examines the bioleaching of municipal solid waste incineration fly ash by Aspergillus niger, and its effect on the fungal morphology, the fate of the ash particles, and the precipitation of metallic salt crystals during bioleaching. The fungal morphology was significantly affected during one-step and two-step bioleaching; scanning electron microscopy revealed that bioleaching caused distortion of the fungal hyphae (with up to 10 μm hyphae diameter) and a swollen pellet structure. I...

  8. Synthesis and infrared spectra of alkaline earth metal carbonates formed by the reaction of metal salts with urea at high temperature

    Indian Academy of Sciences (India)

    S M Teleb; D El-Sayed Nassr; E M Nour

    2004-12-01

    The metal carbonate, MCO3 (M = Ca, Sr and Ba), was synthesized by a novel method of reacting aqueous solution of each of Ca2+, Sr2+ and Ba2+ salts with urea at high temperature, ∼ 80°C. The reaction products were characterized through elemental analysis and infrared spectra. The infrared spectra of the products are the same as those of the corresponding commercially obtained carbonates. A general reaction describing the formation of MCO3 is proposed.

  9. Modification of radiation sensitivity by salts of the metals beryllium and indium and the rare earths cerium, lanthanum and scandium.

    Science.gov (United States)

    Floersheim, G L

    1995-03-01

    The LD50 of 46 salts of metals and rare earths (lanthanoids) was determined in mice. Half the LD50 of the compounds was then combined with lethal radiation (10.5 Gy) and the modification of survival time was scored. Only the metals beryllium and indium and the rare earths cerium, lanthanum and scandium displayed activity in our assay. They were then tested at a wider range of lower doses and reduced survival time in a dose-dependent fashion. This appears to be compatible with enhancement of radiation sensitivity. The interaction of these metals and rare earths with radiation adds a new facet to their toxicological spectrum and, by enhancing radiation effects, may influence estimates of risk. On the other hand, the radiosensitizing properties of the metals may be useful for further development of compounds to be used as adjuncts in specific situations of cancer radiotherapy.

  10. Dynamic chiral-at-metal stability of tetrakis(d/l-hfc)Ln(III) complexes capped with an alkali metal cation in solution.

    Science.gov (United States)

    Lin, Yiji; Zou, Fang; Wan, Shigang; Ouyang, Jie; Lin, Lirong; Zhang, Hui

    2012-06-14

    Chiral tetrakis(β-diketonate) Ln(III) complexes Δ-[NaLa(d-hfc)(4)(CH(3)CN)] (1) and Λ-[NaLa(l-hfc)(4) (CH(3)CN)] (2) (d/l-hfc(-) = 3-heptafluo-robutylryl-(+)/(-)-camphorate) are a pair of enantiomers and crystallize in the same Sohncke space group (P2(1)2(1)2(1)) with dodecahedral (DD) geometry. Typically positive and negative exciton splitting patterns around 320 nm were observed in the solid-state circular dichroism (CD) spectra of complexes 1 and 2, which indicate that their shell configurational chiralities are Δ and Λ, respectively. The apparent bisignate couplets in the solid-state CD spectra of [CsLn(d-hfc)(4)(H(2)O)] [Ln = La (3), Yb (5)] and [CsLn(l-hfc)(4)(H(2)O)] [Ln = La (4), Yb (6)] show that they are a pair of enantiomers and their absolute configurations are denoted Δ and Λ, respectively. The crystallographic data of 5 reveals that its coordination polyhedron is the square antiprism (SAP) geometry and it undergoes a phase transition from triclinic (α phase, P1) to monoclinic (β phase, C2) upon cooling. The difference between the two phases is brought about by the temperature dependent behaviour of the coordination water molecules, but this did not affect the configurational chirality of the Δ-SAP-[Yb(d-hfc)(4)](-) moiety. Furthermore, time-dependent CD, UV-vis and (19)F NMR were applied to study the solution behavior of these complexes. It was found that the chiral-at-metal stability of the three pairs of complexes is different and affected by both the Ln(3+) and M(+) ion size. The results show that the Cs(+) cation can retain the metal center chirality and stablize the structures of [Ln(d/l-hfc)(4)](-) or the dissociated tris(d/l-hfc)Ln(III) species in solution for a longer time than that of the Na(+) cation, and it is important that the Cs(+) ion successfully lock the configurational chirality around the Yb(3+) center of the complex species in solution. This is reasoned by the short Cs(+)···FC, Cs(+)···O-Yb and Cs(+)···Yb(3

  11. Metal and acidity fluxes controlled by precipitation/dissolution cycles of sulfate salts in an anthropogenic mine aquifer

    Science.gov (United States)

    Cánovas, C. R.; Macías, F.; Pérez-López, R.

    2016-05-01

    Underground mine drainages are extremely difficult to study due to the lack of information about the flow path and source proximity in relation to the outflow adit. Geochemical processes controlling metals and acidity fluxes in a complex anthropogenic mine aquifer in SW Spain during the dry and rainy season were investigated by geochemical and statistical tools. High concentrations of acidity, sulfate, metals and metalloids (e.g. Fe, Cu, Zn, As, Cd, Ni, Co) were observed due to intense sulfide oxidation processes. The high residence time inside the anthropogenic aquifer, around 40 days, caused the release of significant quantities of metals linked to host rocks (e.g. Al, Ca, Ge, Li, Mg, REE). The most outstanding characteristic of the acid mine drainage (AMD) outflows is the existence of higher Fe/SO4 molar ratios than those theoretical of pyrite (0.50) during most of the monitored period, due to a fire which occurred in 1949 and remained active for decades. Permanent and temporal retention mechanisms of acidity and metals were observed in the galleries. Once released from sulfide oxidation, Pb and As are sorbed on Fe oxyhydroxysulfate or precipitated as low solubility minerals (i.e. anglesite) inside the galleries. The precipitation of evaporitic sulfate salts during the dry season and the subsequent re-dissolution after rainfall control the fluxes of acidity and main metals (i.e. Fe, Mg, Al) from this anthropogenic aquifer. Some elements, such as Cd, Cu, Ni, REE and Zn, are retained in highly soluble sulfate salts while other elements, such as Ge, Pb and Sc, have a lower response to washout processes due to its incorporation in less soluble sulfate salts. In this way, metal concentration during the washout processes would be controlled by the proportion and solubility of each type of evaporitic sulfate salt stored during the dry season. The recovery of metals of economic interest contained in the AMD could help to self-finance the remediation of these waters in

  12. Heavy metal removal mechanisms of sorptive filter materials for road runoff treatment and remobilization under de-icing salt applications.

    Science.gov (United States)

    Huber, Maximilian; Hilbig, Harald; Badenberg, Sophia C; Fassnacht, Julius; Drewes, Jörg E; Helmreich, Brigitte

    2016-10-01

    The objective of this research study was to elucidate the removal and remobilization behaviors of five heavy metals (i.e., Cd, Cu, Ni, Pb, and Zn) that had been fixed onto sorptive filter materials used in decentralized stormwater treatment systems receiving traffic area runoff. Six filter materials (i.e., granular activated carbon, a mixture of granular activated alumina and porous concrete, granular activated lignite, half-burnt dolomite, and two granular ferric hydroxides) were evaluated in column experiments. First, a simultaneous preloading with the heavy metals was performed for each filter material. Subsequently, the remobilization effect was tested by three de-icing salt experiments in duplicate using pure NaCl, a mixture of NaCl and CaCl2, and a mixture of NaCl and MgCl2. Three layers of each column were separated to specify the attenuation of heavy metals as a function of depth. Cu and Pb were retained best by most of the selected filter materials, and Cu was often released the least of all metals by the three de-icing salts. The mixture of NaCl and CaCl2 resulted in a stronger effect upon remobilization than the other two de-icing salts. For the material with the highest retention, the effect of the preloading level upon remobilization was measured. The removal mechanisms of all filter materials were determined by advanced laboratory methods. For example, the different intrusions of heavy metals into the particles were determined. Findings of this study can result in improved filter materials used in decentralized stormwater treatment systems. PMID:27423405

  13. Heavy metal removal mechanisms of sorptive filter materials for road runoff treatment and remobilization under de-icing salt applications.

    Science.gov (United States)

    Huber, Maximilian; Hilbig, Harald; Badenberg, Sophia C; Fassnacht, Julius; Drewes, Jörg E; Helmreich, Brigitte

    2016-10-01

    The objective of this research study was to elucidate the removal and remobilization behaviors of five heavy metals (i.e., Cd, Cu, Ni, Pb, and Zn) that had been fixed onto sorptive filter materials used in decentralized stormwater treatment systems receiving traffic area runoff. Six filter materials (i.e., granular activated carbon, a mixture of granular activated alumina and porous concrete, granular activated lignite, half-burnt dolomite, and two granular ferric hydroxides) were evaluated in column experiments. First, a simultaneous preloading with the heavy metals was performed for each filter material. Subsequently, the remobilization effect was tested by three de-icing salt experiments in duplicate using pure NaCl, a mixture of NaCl and CaCl2, and a mixture of NaCl and MgCl2. Three layers of each column were separated to specify the attenuation of heavy metals as a function of depth. Cu and Pb were retained best by most of the selected filter materials, and Cu was often released the least of all metals by the three de-icing salts. The mixture of NaCl and CaCl2 resulted in a stronger effect upon remobilization than the other two de-icing salts. For the material with the highest retention, the effect of the preloading level upon remobilization was measured. The removal mechanisms of all filter materials were determined by advanced laboratory methods. For example, the different intrusions of heavy metals into the particles were determined. Findings of this study can result in improved filter materials used in decentralized stormwater treatment systems.

  14. Crystal growth and evaluation of scintillation properties of Eu and alkali-metal co-doped LiSrAlF{sub 6} single crystals for thermal neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Wakahara, Shingo; Yokota, Yuui; Yamaji, Akihiro; Fujimoto, Yutaka; Sugiyama, Makoto; Kurosawa, Shunsuke [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yanagida, Takayuki [New Industry Creation Hatchery Center (NICHe), 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Pejchal, Jan [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Institute of Physics AS CR, Cukrovarnicka 10, Prague 16253 (Czech Republic); Kawaguchi, Noriaki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Tokuyama, Co. Ltd., Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Fukuda, Kentaro [Tokuyama, Co. Ltd., Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Yoshikawa, Akira [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan)

    2012-12-15

    In recent work, Na co-doping have found to improve the light output of Eu doped LiCaAlF{sub 6} (Eu:LiCAF) for thermal neutron scintillator. We grew Eu 2% and alkali metal 1% co-doped LiSAF crystals by Micro-Pulling down method to understand the effect of alkali metal co-doping on scintillation properties and mechanism compared with LiCAF. In photo- and {alpha}-ray induced radio-luminescence spectra of the all grown crystals, the emissions from d-f transition of Eu{sup 2+} were observed. Without relation to excitation source, decay times of co-doped LiSAF were longer than Eu only doped one. The light yield of Na, K and Cs co-doped LiSAF under {sup 252}Cf neutron excitation were improved. Especially, K co-doped Eu:LiSAF reached 33200 ph/n, which outperformed Eu only doped one by approximately 20% (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Clay mineralogy, grain size distribution and their correlations with trace metals in the salt marsh sediments of the Skallingen barrier spit, Danish Wadden Sea

    DEFF Research Database (Denmark)

    He, Changling; Bartholdy, Jesper; Christiansen, Christian

    2012-01-01

    metals. The clay assembly of the sediment consists of illite, kaolinite and much less chlorite and smectite. The major clay minerals of illite, kaolinite as well as chlorite correlate very poorly with all the trace metals investigated, due probably to the weak competing strength of these clays compared...... with the other adsorbents and to low availability of the mobile trace metals in the system. Correlation between trace metals and clay minerals may therefore be used as an indicator in environmental assessment. Fine grain fractions of the sediment increased markedly after salt marsh invasion in about 1931......To understand the behavior of trace metals in the salt marsh at Skallingen, Danish Wadden Sea, we investigated a profile from surface to 25 cm depth of the salt marsh sediment, focusing primarily on clay mineralogy and grain size distribution of the sediments and their relationship with trace...

  16. Simultaneous Synthesis of Dimethyl Carbonate and Poly(ethylene terephthalate) Using Alkali Metals as Catalysts%碱金属化合物催化同时合成碳酸二甲酯和聚对苯二甲酸乙二醇酯

    Institute of Scientific and Technical Information of China (English)

    张丹; 王庆印; 姚洁; 王越; 曾毅; 王公应

    2007-01-01

    Dimethyl carbonate (DMC) and poly(ethylene terephthalate) was simultaneously synthesized by the transesterification of ethylene carbonate (EC) with dimethyl terephthalate (DMT) in this paper. This reaction is an excellent green chemical process without poisonous substance. Various alkali metals were used as the catalysts. The results showed alkali metals had catalytic activity in a certain extent. The effect of reaction condition was also studied. When the reaction was carried out under the following conditions: the reaction temperature 250℃, molar ratio of EC to DMT 3: 1, reaction time 3h, and catalyst amount 0.004 (molar ratio to DMT), the yield of DMC was 68.9%.

  17. Directed reflectivity, long life AMTEC condenser (DRC). Final report of Phase II SBIR program[Alkali Metal ThermoElectric Converter

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, Thomas K.

    2001-09-10

    The Alkali Metal Thermal to Electric Converter (AMTEC) is a static energy conversion device that operates at high thermal to electric conversion efficiencies that are essentially independent of size, have reached 19% and are expected to reach 25% to 30% in 1997. AMTEC systems have been chosen by NASA and DOE for spacecraft applications and have considerable promise for a wide variety of terrestrial applications. Reduction of parasitic heat losses in AMTEC systems related to radiative heat transfer from the hot side to the condenser can make a substantial contribution to system efficiency. Through design, analysis and the fabrication and testing of cells and systems, the proposed program to develop a Directed Reflectivity Condenser (DRC) has investigated the feasibility of an improved AMTEC condenser component. Phase 1 work showed the potential for adding from 4% to 7% to overall system efficiency for identical operating conditions using the concept. A detailed thermal analysis of several DRC capped cell designs was carried out and some of the conditions under which a DRC, used as the condenser at an end cap of a cylindrical converter, can reduce thermal radiation related losses were determined. A model experimental converter was built and tested to compare DRC and planar condenser surfaces. The results of both analysis and experiment indicate that for moderate aspect ratios of a cylindrical, end condensed converter, the DRC can reduce overall thermal losses by up to 4%. The initial effort in Phase 2 extended the analysis to a novel 150 watt radial AMTEC cell design. This analysis indicated that for the effective aspect ratio of this new converter design, the system performance at the 100+ watt level was not significantly improved by use of a DRC type condenser surface. Further analyses however showed that for cylindrical, end-condensed converters, optimized for use with internal radiation shields, the use of DRC surfaces on the side walls of the converter could be

  18. Study of interaction of uranium, plutonium and rare earth fluorides with some metal oxides in fluoric salt melts

    International Nuclear Information System (INIS)

    Interaction of plutonium, uranium, and rare-earth elements (REE) fluorides with aluminium and calcium oxides in melts of eutectic mixture LiF-NaF has been studied at 800 deg C by X-ray diffraction method. It has been shown that tetravalent uranium and plutonium are coprecipitated by oxides as a solid solution UO2-PuO2. Trivalent plutonium in fluorides melts in not precipitated in the presence of tetravalent uranium which can be used for their separation. REE are precipitated from a salt melt by calcium oxide and are not precipitated by aluminium oxide. Thus, aluminium oxide in a selective precipitator for uranium and plutonium in presence of REE. Addition of aluminium fluoride retains trivalent plutonium and REE in a salt melt in presence of Ca and Al oxides. The mechanism of interacting plutonium and REE trifluorides with metal oxides in fluoride melts has been considered

  19. Molten salts in nuclear reactors

    International Nuclear Information System (INIS)

    Collection of references dealing with the physicochemical studies of fused salts, in particular the alkali and alkali earth halides. Numerous binary, ternary and quaternary systems of these halides with those of uranium and thorium are examined, and the physical properties, density, viscosity, vapour pressure etc... going from the halides to the mixtures are also considered. References relating to the corrosion of materials by these salts are included and the treatment of the salts with a view to recuperation after irradiation in a nuclear reactor is discussed. (author)

  20. Co-selection of antibiotic and metal(loid) resistance in gram-negative epiphytic bacteria from contaminated salt marshes.

    Science.gov (United States)

    Henriques, Isabel; Tacão, Marta; Leite, Laura; Fidalgo, Cátia; Araújo, Susana; Oliveira, Cláudia; Alves, Artur

    2016-08-15

    The goal of this study was to investigate co-selection of antibiotic resistance in gram-negative epiphytic bacteria. Halimione portulacoides samples were collected from metal(loid)-contaminated and non-contaminated salt marshes. Bacterial isolates (n=137) affiliated with Vibrio, Pseudomonas, Shewanella, Comamonas, Aeromonas and with Enterobacteriaceae. Vibrio isolates were more frequent in control site while Pseudomonas was common in contaminated sites. Metal(loid) and antibiotic resistance phenotypes varied significantly according to site contamination, and multiresistance was more frequent in contaminated sites. However, differences among sites were not observed in terms of prevalence or diversity of acquired antibiotic resistance genes, integrons and plasmids. Gene merA, encoding mercury resistance, was only detected in isolates from contaminated sites, most of which were multiresistant to antibiotics. Results indicate that metal(loid) contamination selects for antibiotic resistance in plant surfaces. In salt marshes, antibiotic resistance may be subsequently transferred to other environmental compartments, such as estuarine water or animals, with potential human health risks. PMID:27210560

  1. Co-selection of antibiotic and metal(loid) resistance in gram-negative epiphytic bacteria from contaminated salt marshes.

    Science.gov (United States)

    Henriques, Isabel; Tacão, Marta; Leite, Laura; Fidalgo, Cátia; Araújo, Susana; Oliveira, Cláudia; Alves, Artur

    2016-08-15

    The goal of this study was to investigate co-selection of antibiotic resistance in gram-negative epiphytic bacteria. Halimione portulacoides samples were collected from metal(loid)-contaminated and non-contaminated salt marshes. Bacterial isolates (n=137) affiliated with Vibrio, Pseudomonas, Shewanella, Comamonas, Aeromonas and with Enterobacteriaceae. Vibrio isolates were more frequent in control site while Pseudomonas was common in contaminated sites. Metal(loid) and antibiotic resistance phenotypes varied significantly according to site contamination, and multiresistance was more frequent in contaminated sites. However, differences among sites were not observed in terms of prevalence or diversity of acquired antibiotic resistance genes, integrons and plasmids. Gene merA, encoding mercury resistance, was only detected in isolates from contaminated sites, most of which were multiresistant to antibiotics. Results indicate that metal(loid) contamination selects for antibiotic resistance in plant surfaces. In salt marshes, antibiotic resistance may be subsequently transferred to other environmental compartments, such as estuarine water or animals, with potential human health risks.

  2. Thermal Analysis of Surrogate Simulated Molten Salts with Metal Chloride Impurities for Electrorefining Used Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Toni Y. Gutknecht; Guy L. Fredrickson; Vivek Utgikar

    2012-04-01

    This project is a fundamental study to measure thermal properties (liquidus, solidus, phase transformation, and enthalpy) of molten salt systems of interest to electrorefining operations, which are used in both the fuel cycle research & development mission and the spent fuel treatment mission of the Department of Energy. During electrorefining operations the electrolyte accumulates elements more active than uranium (transuranics, fission products and bond sodium). The accumulation needs to be closely monitored because the thermal properties of the electrolyte will change as the concentration of the impurities increases. During electrorefining (processing techniques used at the Idaho National Laboratory to separate uranium from spent nuclear fuel) it is important for the electrolyte to remain in a homogeneous liquid phase for operational safeguard and criticality reasons. The phase stability of molten salts in an electrorefiner may be adversely affected by the buildup of fission products in the electrolyte. Potential situations that need to be avoided are: (i) build up of fissile elements in the salt approaching the criticality limits specified for the vessel (ii) freezing of the salts due to change in the liquidus temperature and (iii) phase separation (non-homogenous solution) of elements. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This work describes the experimental results of typical salts compositions, consisting of chlorides of strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium (as a surrogate for both uranium and plutonium), used in the processing of used nuclear fuels. Differential scanning calorimetry was used to analyze numerous salt samples providing results on the thermal properties. The property of most interest to pyroprocessing is the liquidus temperature. It was

  3. Mechanistic study on ultrasound assisted pretreatment of sugarcane bagasse using metal salt with hydrogen peroxide for bioethanol production.

    Science.gov (United States)

    Ramadoss, Govindarajan; Muthukumar, Karuppan

    2016-01-01

    This study presents the ultrasound assisted pretreatment of sugarcane bagasse (SCB) using metal salt with hydrogen peroxide for bioethanol production. Among the different metal salts used, maximum holocellulose recovery and delignification were achieved with ultrasound assisted titanium dioxide (TiO2) pretreatment (UATP) system. At optimum conditions (1% H2O2, 4 g SCB dosage, 60 min sonication time, 2:100 M ratio of metal salt and H2O2, 75°C, 50% ultrasound amplitude and 70% ultrasound duty cycle), 94.98 ± 1.11% holocellulose recovery and 78.72 ± 0.86% delignification were observed. The pretreated SCB was subjected to dilute acid hydrolysis using 0.25% H2SO4 and maximum xylose, glucose and arabinose concentration obtained were 10.94 ± 0.35 g/L, 14.86 ± 0.12 g/L and 2.52 ± 0.27 g/L, respectively. The inhibitors production was found to be very less (0.93 ± 0.11 g/L furfural and 0.76 ± 0.62 g/L acetic acid) and the maximum theoretical yield of glucose and hemicellulose conversion attained were 85.8% and 77%, respectively. The fermentation was carried out using Saccharomyces cerevisiae and at the end of 72 h, 0.468 g bioethanol/g holocellulose was achieved. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis of pretreated SCB was made and its morphology was studied using scanning electron microscopy (SEM). The compounds formed during the pretreatment were identified using gas chromatography-mass spectrometry (GC-MS) analysis. PMID:26384901

  4. Antibacterial, anthelmintic and antioxidant activity of Argyreia elliptica extracts: Activity enhancement by the addition of metal salts

    Directory of Open Access Journals (Sweden)

    M K Prashanth

    2013-05-01

    Full Text Available Summary. Argyreia elliptica extracts were prepared with solvents at different polarity (petroleum ether, chloroform, ethyl acetate and methanol and evaluate their antibacterial, anthelmintic and antioxidant properties first time. An antioxidant activity was analyzed using different in vitro tests namely 2,2-diphenyl-1-picrylhydrazyl (DPPH and superoxide radical scavenging methods. Quantitative determination of phenols was carried out using spectrophotometric methods. In addition, the extracts were screened for their biological activity in absence and in presence of metal salts [Fe(III and Zn(II] ions. Results indicate that, the tested bacterial strains were most sensitive to the chloroform (CE and methanol extract (ME. Ethyl acetate (EA, CE and ME extracts showed potent radical scavenging activity. CE and ME extracts showed the highest total phenolic content and its enhanced anthelmintic and antioxidant activities were found in Fe(III combination. The extracts-Zn(II ion combination showed enhanced antibacterial activity against tested bacterial strains compare to the extracts alone.Industrial relevance. Herbal medicines have gained increasing attention worldwide for the treatment of various diseases because of their effectiveness and small side effects as compared to synthetic drugs. In general, the essential trace elements have been found to possess a very important role in biological system and also therapeutic activity depends on some trace elements. The present research reports the phytochemical screening of Argyrea elliptica leaves extracts. The antibacterial, anthilmentic and in vitro antioxidant activity activity of extracts and its metal salt combination was studied. The results scientifically establish the efficacy of the plant extracts and its metal salt combination as antibacterial, anthilmentic and antioxidant agents.Keywords. Argyreia elliptica; Antioxidant; Antibacterial activity; Total phenolic content.

  5. Solubility of 1 : 1 Alkali Nitrates and Chlorides in Near-Critical and Supercritical Water

    NARCIS (Netherlands)

    Leusbrock, Ingo; Metz, Sybrand J.; Rexwinkel, Glenn; Versteeg, Geert F.

    2009-01-01

    To increase the available data oil systems containing supercritical water and inorganic compounds, all experimental setup was designed to investigate the solubilities of inorganic compounds Ill supercritical water, In this work, three alkali chloride salts (LiCl, NaCl, KCl) and three alkali nitrate

  6. The deleterious effect of inorganic salts on hydrocarbon yields from catalytic pyrolysis of lignocellulosic biomass and its mitigation

    International Nuclear Information System (INIS)

    Highlights: • Alkali and alkali earth metals decreased hydrocarbon yields during catalytic pyrolysis of biomass. • The effect on reducing hydrocarbon yields followed the order: K+ > Na+ > Ca2+ > Mg2+. • Metals enhanced cracking and dehydration reactions increasing thermally-derived COx. • Both acid-infusion and acid-washing increased yields of aromatic hydrocarbons. - Abstract: The effect of alkali and alkali earth metals (AAEMs) on yields of hydrocarbons from catalytic pyrolysis of biomass was investigated. Experiments were performed in a tandem micro-reactor that segregates the biomass from the zeolite catalyst (ex-situ catalytic pyrolysis). It was found that even trace amounts of AAEMs added to cellulose as acetate salts dramatically reduced the yields of hydrocarbons. Both the concentration and types of AAEM salts impacted product distribution. The yield of aromatics and olefins decreased monotonically with increasing concentration of AAEMs. The effect of AAEMs on reducing hydrocarbon yields followed the order: K+ > Na+ > Ca2+ > Mg2+. Two pretreatments of biomass were investigated to alleviate the catalytic effects of AAEMs that naturally occurs in biomass: acid-washing and acid-infusion. It was found that pretreated biomass increased yields of hydrocarbons apparently by suppressing reactions that would otherwise convert carbohydrate to non-condensable gases and char

  7. Effects of two transition metal sulfate salts on secondary organic aerosol formation in toluene/NOx photooxidation

    Institute of Scientific and Technical Information of China (English)

    Biwu CHU; Jiming HAO; Junhua LI; Hideto TAKEKAWA; Kun WANG; Jingkun JIANG

    2013-01-01

    Aerosol phase reactions play a very important role on secondary organic aerosol (SOA) formation, and metal-containing aerosols are important components in the atmosphere. In this study, we tested the effects of two transition metal sulfate salts, manganese sulfate (MnSO4) and zinc sulfate (ZnSO4), on the photochemical reactions of a toluene/NOx photooxidation system in a 2 m3 smog chamber. By comparing photochemical reaction products of experiments with and without transition metal sulfate seed aerosols, we evaluated the effects of transition metal sulfate seed aerosols on toluene consumption, NOx conversion and the formation of ozone and SOA. MnSO4 and ZnSO4 seed aerosols were found to have similar effects on photochemical reactions, both enhance the SOA production, while showing negligible effects on the gas phase compounds. These observations are consistent when varying metal sulfate aerosol concentrations. This is attributed to the catalytic effects of MnSO4 and ZnSO4 seed aerosols which may enhance the formation of condensable semivolatile compounds. Their subsequent partitioning into the aerosol phase leads to the observed SOA formation enhancement.

  8. Electronic Tongue for Qualitative Analysis of Aqueous Solutions of Salts Using Thick-film Technology and Metal Electrodes

    Directory of Open Access Journals (Sweden)

    Juan Soto

    2006-09-01

    Full Text Available An electronic tongue for the qualitative analysis of aqueous solutions of salts hasbeen developed. The following set of electrodes was used: RuO2, Ag, and Cu in thick-filmtechnology and Au, Pb, Zn and Ni as small bars of the corresponding metal. The response ofthe designed “electronic tongue” was tested on a family of samples containing pure salt andcomplex mixtures. The electrodes were used as potentiometric un-specific sensors and thee.m.f. of each electrode in contact with a certain aqueous solution was used as input signalfor a PCA analysis. The study showed that the set of electrodes were capable to discriminatebetween aqueous solutions of salts basically by their different content in anions and cations(the anions SO42-, Cl-, PO4H2-, CO3H-, NO3- and cations Na+ and K+ were studied. In orderto better analyze the basis for the discrimination power shown by the electronic tongue, aquantitative analysis was also envisaged. A fair estimation of the concentrations of thedifferent ions in the solutions studied appeared to be possible using this electronic tonguedesign.Keywords:

  9. The chemistry of molten salt mixtures: application to the reductive extraction of lanthanides and actinides by a liquid metal

    International Nuclear Information System (INIS)

    The design of a process of An/Ln separation by liquid - liquid extraction can be used for on-line purification of the molten salt in a molten salt nuclear reactor (Generation IV) as well as reprocessing various spent fuels. In order to establish the chemical properties of An and Ln in molten salt mediums, E - pO2 - diagrams were established for the relevant chemical elements. With the purpose of checking the possibilities of separating the An from Ln, the real activity coefficients in liquid metals were measured. An experimental protocol was developed and validated on the Gd/Ga system. It was then transferred to radioactive environment to measure the activity coefficient of Pu in Ga. The results made it possible to estimate the effectiveness of the Pu extraction and its separation from Gd and Ce. The selectivity was shown to decrease with the temperature and Al and Ga showed a good selectivity between Pu and the Ce in fluoride medium. (author)

  10. [Influences of the mobile phase constitution, salt concentration and pH value on retention characters of proteins on the metal chelate column].

    Science.gov (United States)

    Li, R; Di, Z M; Chen, G L

    2001-09-01

    The effects of the nature and concentration of salts, pH value and competitive eluent in the mobile phase on the protein retention have been systematically investigated. A mathematical expression describing the protein retention in metal chelate chromatography has been derived. It is proposed that the eluting power of the salt solution can be expressed by the eluent strength exponent epsilon. According to the retention characters of protein under different chromatographic conditions, the interaction between the various metal chelate ligands and proteins is discussed. The protein retention on the metal chelate column is a cooperative interactions of coordination, electrostatic and hydrophobic interaction. For the strong combined metal column with proteins such as IDA-Cu, the coordination is the most important, and the electrostatic interaction is secondary in chromatographic process. However, for the weak combined metal columns with proteins such as IDA-Ni, IDA-Co and IDA-Zn, the electrostatic interaction between the metal chelate ligands and proteins is the chief one, while the coordination is the next in importance. When the mobile phase contains high concentration of salt which can't form complex with the immobilized metal, the hydrophobic interaction between the protein and stationary phase will be increased. As the interaction between the metal chelate ligand and proteins relates to chromatographic operating conditions closely, different elution processes may be selected for different metal chelate columns. The gradient elution is generally performed by the low concentration of salt or different pH for weakly combined columns with proteins, however the competitive elution procedure is commonly utilized for strongly combined column. The experiment showed that NH3 is an excellent competitive eluent. It isn't only give the efficient separation of proteins, but also has the advantages of cheapness, less bleeding of the immobilized metals and ease of controlling NH3

  11. Record of the accumulation of sediment and trace metals in a Connecticut, U. S. A. , salt marsh. [Dating deposition of trace metals from polluted air masses

    Energy Technology Data Exchange (ETDEWEB)

    McCaffrey, R.J.

    1977-01-01

    The nonlinear rate of accretion of a Connecticut salt marsh during the past century was estimated from the /sup 210/Pb distribution with depth by assuming a constant flux of /sup 210/Pb to the surface. This rate was found to be in general agreement with the smoothed record of relative mean sea level rise measured independently by the New York City tide gage since 1893. The rate of deposition of Mn, Fe, Cu, Zn, Pb and total inorganic matter on the surface of the salt marsh may be calculated from the age and sediment properties measured at small depth increments. Changes in the inorganic matter content are attributed to variations in land use on the watershed since it was cleared for agriculture. Fe, Mn, and inorganic matter are principally derived from stream transport of eroding soil, while the observed increases in the fluxes of Cu, Zn, and Pb are largely explained as increased supply via the atmosphere during the period of industrialization since the Civil War. Salt marshes thus may supply a refined record of the deposition of trace metals from polluted air masses over long periods of time.

  12. Effects of alkali treatments on Ag nanowire transparent conductive films

    Science.gov (United States)

    Kim, Sunho; Kang, Jun-gu; Eom, Tae-yil; Moon, Bongjin; Lee, Hoo-Jeong

    2016-06-01

    In this study, we employ various alkali materials (alkali metals with different base strengths, and ammonia gas and solution) to improve the conductivity of silver nanowire (Ag NW)-networked films. The alkali treatment appears to remove the surface oxide and improve the conductivity. When applied with TiO2 nanoparticles, the treatment appears more effective as the alkalis gather around wire junctions and help them weld to each other via heat emitted from the reduction reaction. The ammonia solution treatment is found to be quick and aggressive, damaging the wires severely in the case of excessive treatment. On the other hand, the ammonia gas treatment seems much less aggressive and does not damage the wires even after a long exposure. The results of this study highlight the effectiveness of the alkali treatment in improving of the conductivity of Ag NW-networked transparent conductive films.

  13. Ab initio study of the adsorption, diffusion, and intercalation of alkali metal atoms on the (0001) surface of the topological insulator Bi{sub 2}Se{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Ryabishchenkova, A. G., E-mail: ryaange@gmail.com; Otrokov, M. M.; Kuznetsov, V. M.; Chulkov, E. V. [Tomsk State University (Russian Federation)

    2015-09-15

    Ab initio study of the adsorption, diffusion, and intercalation of alkali metal adatoms on the (0001) step surface of the topological insulator Bi{sub 2}Se{sub 3} has been performed for the case of low coverage. The calculations of the activation energies of diffusion of adatoms on the surface and in van der Waals gaps near steps, as well as the estimate of diffusion lengths, have shown that efficient intercalation through steps is possible only for Li and Na. Data obtained for K, Rb, and Cs atoms indicate that their thermal desorption at high temperatures can occur before intercalation. The results have been discussed in the context of existing experimental data.

  14. Electrohydrodynamic emission of both sign ions from alkali halogenide melts

    International Nuclear Information System (INIS)

    Characteristics of electrohydrodynamic (EHD) emission of both sign ions from alkali halogenide melts are presented. Angular current density at emission current of 0.1 - 0.5 μA is equal to 3 - 4 μA/sr. The developed EHD salt sources allow to obtain stable current of K+, Rb+, Cs+, F-, Cl-, I- ions during few tens of hours

  15. Rydberg Matter clusters of alkali metal atoms: the link between meteoritic matter, polar mesosphere summer echoes (PMSE), sporadic sodium layers, polar mesospheric clouds (PMCs, NLCs), and ion chemistry

    CERN Document Server

    Olofson, Frans; Holmlid, Leif

    2010-01-01

    A material exists which links together the influx of meteoritic matter from interplanetary space, the polar mesosphere summer echoes (PMSE), the sporadic sodium layers, the polar mesospheric clouds (PMCs, NLCs), and the observed ion chemistry in the mesosphere. The evidence in these research fields is here analyzed and found to agree well with the properties of Rydberg Matter (RM). This material has been studied with numerous methods in the laboratory. Alkali atoms, mainly Na, reach the mesosphere in the form of interplanetary (meteoritic, cometary) dust. The planar RM clusters NaN usually contain N = 19, 37 or 61 atoms, and have the density of air at 90 km altitude where they float. The diameters of the clusters are 10-100 nm from laboratory high precision radio frequency spectroscopic studies. Such experiments show that RM clusters interact strongly with radar frequencies: this explains the radio frequency heating and reflection studies of PMSE layers. The clusters give the low temperature in the mesosphere...

  16. Fused salt processing of impure plutonium dioxide to high-purity plutonium metal

    International Nuclear Information System (INIS)

    A process for converting impure plutonium dioxide (approx. 96% pure) to high-purity plutonium metal (>99.9%) was developed. The process consists of reducing the oxide to an impure plutonium metal intermediate with calcium metal in molten calcium chloride. The impure intermediate metal is cast into an anode and electrorefined to produce high-purity plutonium metal. The oxide reduction step is being done now on a 0.6-kg scale with the resulting yield being >99.5%. The electrorefining is being done on a 4.0-kg scale with the resulting yield being 80 to 85%. The purity of the product, which averages 99.98%, is essentially insensitive to the purity of the feed metal. The yield, however, is directly dependent on the chemical composition of the feed. To date, approximately 250 kg of impure oxide has been converted to pure metal by this processing sequence. The availability of impure plutonium dioxide, together with the need for pure plutonium metal, makes this sequence a valuable plutonium processing tool

  17. Spectra of alkali atoms

    International Nuclear Information System (INIS)

    Emission spectra of alkali atoms has been determined by using spectrometer at the ultraviolet to infra red waves range. The spectra emission can be obtained by absorption spectrophotometric analysis. Comparative evaluations between experimental data and data handbook obtained by spark method were also presented. (author tr.)

  18. Effects of salt and alkali stresses on photosynthesis in Avena nuda seedlings%盐、碱胁迫对燕麦幼苗光合作用的影响

    Institute of Scientific and Technical Information of China (English)

    刘建新; 王金成; 王瑞娟; 贾海燕

    2015-01-01

    -tents,net photosynthetic rate (Pn),stomatal conductance (Gs),transpiration rate (Tr),PSⅡ maximum photochemi-cal efficiency (Fv /Fm),actual photochemical efficiency (ΦPSⅡ),photochemical quenching (qP),and Hill reaction activity were decreased significantly with increasing concentration of NaCl,whereas the non-photochemical quenching (NPQ),regulated energy dissipation Y(NPQ),non-regulated energy dissipation Y(NO),the relative deviation(β/α-1)from full balance between two photosystems,and the de-epoxidation extent of xanthophyll cycle (A +Z)/(V +A +Z)were increased significantly,as well as the carotenoid content and stomatal limited value (Ls)exhibited a humped-curve,the intercellular CO2 concentration (Ci)decreased and then increased.(2)When oat seedling were treated with NaHCO3,the chlorophyll contents,Pn,Gs,Tr,Ls,Fv /Fm,ΦPSⅡ,qP and Hill reaction activity significantly de-creased,and the Ci,NPQ,Y(NPQ),Y(NO),(β/α -1),(A +Z)/(V +A +Z)increased obviously except an humped-curve of carotenoid content with the increasing of NaHCO3 concentration.(3)At the same concentration of Na +, the degree of decrease in chlorophyll content,Pn,Gs,Tr,Fv /Fm,ΦPSⅡ,qP and Hill reaction activity and increase in NPQ,Y(NPQ),Y(NO),(β/α-1),(A +Z)/(V +A +Z)were higher in NaHCO3 tress than in NaCl stress.These findings indicate that the injury by alkali stress to photosynthetic system of oat seedlings was greater than that by salt stress.

  19. Mapping the Microstructural Location of Salts and Metals in Sea Ice with X-Ray Micro-Fluorescence Spectroscopy

    Science.gov (United States)

    Lieb-Lappen, R.; Leonard, J.; Obbard, R. W.

    2015-12-01

    Sea ice forms a permeable boundary between the ocean and the atmosphere, mediating chemical, physical, and transport processes that can have large impacts on a changing climate. It is a complex media composed of ice, brine, air pockets, and salt precipitates whose fine microstructure is constantly evolving with time and temperature. To gain insight of the processes occurring within the sea ice, it is key to have an understanding of how the different phases interact. Using synchrotron x-ray micro-fluorescence (XRF) at Argonne National Laboratory's Advanced Photon Source (APS), we examined the microstructural location of different salts and metals in Antarctic sea ice. In particular, we sought to determine whether these elements are found solely in brine channels and at grain boundaries or exist ubiquitously throughout the crystal lattice of ice. Further, we also investigated the spatial distribution of each impurity to determine how microstructure may vary within the sea ice column. Although it is well known that salts are expelled from the ice matrix during the freezing process and the bulk of impurities lies in brine inclusions and channels, providing quantitative and visual evidence with high resolution remains an ongoing process. XRF enables us to detect and map the precise microstructural and stratigraphic location of the constituent salts in sea ice. Cores were cut into 0.5 cm-thick slices every ten cm along the length of the core. At APS, a 2 mm x 2 mm region of each sample was scanned by an 18 kV X-ray beam and the resulting fluorescence signal detected using a silicon drift detector. By integrating the detected signal for the respective characteristic energy, we were able to obtain two-dimensional elemental maps with ten micron resolution for bromide, chloride, potassium, calcium, strontium, iron, copper, and zinc. Maps were compared to thin sections obtained under cross-polarizing lenses to identify particular features. We were able to show that salts

  20. Low-dimensional coordination polymeric structures in alkali metal complex salts of the herbicide (2,4-dichlorophenoxy)acetic acid (2,4-D).

    Science.gov (United States)

    Smith, Graham

    2015-02-01

    The Li, Rb and Cs complexes with the herbicide (2,4-dichlorophenoxy)acetic acid (2,4-D), namely poly[[aqua[μ3-(2,4-dichlorophenoxy)acetato-κ(3)O(1):O(1):O(1')]lithium(I)] dihydrate], {[Li(C8H5Cl2O3)(H2O)]·2H2O}n, (I), poly[μ-aqua-bis[μ3-(2,4-dichlorophenoxy)acetato-κ(4)O(1):O(1'):O(1'),Cl(2)]dirubidium(I)], [Rb2(C8H5Cl2O3)2(H2O)]n, (II), and poly[μ-aqua-bis[μ3-(2,4-dichlorophenoxy)acetato-κ(5)O(1):O(1'):O(1'),O(2),Cl(2)]dicaesium(I)], [Cs2(C8H5Cl2O3)2(H2O)]n, (III), respectively, have been determined and their two-dimensional polymeric structures are described. In (I), the slightly distorted tetrahedral LiO4 coordination involves three carboxylate O-atom donors, of which two are bridging, and a monodentate aqua ligand, together with two water molecules of solvation. Conjoined six-membered ring systems generate a one-dimensional coordination polymeric chain which extends along b and interspecies water O-H...O hydrogen-bonding interactions give the overall two-dimensional layers which lie parallel to (001). In hemihydrate complex (II), the irregular octahedral RbO5Cl coordination about Rb(+) comprises a single bridging water molecule which lies on a twofold rotation axis, a bidentate O(carboxy),Cl-chelate interaction and three bridging carboxylate O-atom bonding interactions from the 2,4-D ligand. A two-dimensional coordination polymeric layer structure lying parallel to (100) is formed through a number of conjoined cyclic bridges, including a centrosymmetric four-membered Rb2O2 ring system with an Rb...Rb separation of 4.3312 (5) Å. The coordinated water molecule forms intralayer aqua-carboxylate O-H...O hydrogen bonds. Complex (III) comprises two crystallographically independent (Z' = 2) irregular CsO6Cl coordination centres, each comprising two O-atom donors (carboxylate and phenoxy) and a ring-substituted Cl-atom donor from the 2,4-D ligand species in a tridentate chelate mode, two O-atom donors from bridging carboxylate groups and one from a bridging water molecule. However, the two 2,4-D ligands are conformationally very dissimilar, with one phenoxyacetate side chain being synclinal and the other being antiperiplanar. The minimum Cs...Cs separation is 4.4463 (5) Å. Structure extension gives coordination polymeric layers which lie parallel to (001) and are stabilized by intralayer water-carboxylate O-H...O hydrogen bonds.

  1. Theory of the late stage of radiolysis of alkali halides

    OpenAIRE

    Dubinko, V. I.; Turkin, A.A.; Vainshtein, D.I.; Hartog, H.W. den

    2000-01-01

    Recent results on heavily irradiated natural and synthetic NaCl crystals give evidence for the formation of large vacancy voids, which were not addressed by the conventional Jain-Lidiard model of radiation damage ill alkali halides. This model was constructed to describe metal colloids and dislocation loops formed in alkali halides during earlier stages of irradiation. We present a theory based on a new mechanism of dislocation climb, which involves the production of Vt centers (self-trapped ...

  2. Alkali promotion of N-2 dissociation over Ru(0001)

    DEFF Research Database (Denmark)

    Mortensen, Jens Jørgen; Hammer, Bjørk; Nørskov, Jens Kehlet

    1998-01-01

    Using self-consistent density functional calculations, we show that adsorbed Na and Cs lower the barrier for dissociation of N2 on Ru(0001). Since N2 dissociation is a crucial step in the ammonia synthesis reaction, we explain in this way the experimental observation that alkali metals promote th...... the ammonia synthesis reaction over Ru catalysts. We also show that the origin of this effect is predominantly a direct electrostatic attraction between the adsorbed alkali atoms and the dissociating molecule....

  3. A genetically modified tobacco mosaic virus that can produce gold nanoparticles from a metal salt precursor.

    Directory of Open Access Journals (Sweden)

    Andrew John Love

    2015-11-01

    Full Text Available We genetically modified tobacco mosaic virus (TMV to surface display a characterized peptide with potent metal ion binding and reducing capacity (MBP TMV, and demonstrate that unlike wild type (WT TMV, this construct can lead to the formation of discrete 10-40 nm gold nanoparticles when mixed with 3 mM potassium tetrachloroaurate. Using a variety of analytical physicochemical approaches it was found that these nanoparticles were crystalline in nature and stable. Given that the MBP TMV can produce metal nanomaterials in the absence of chemical reductants, it may have utility in the green production of metal nanomaterials.

  4. Reseach on Physiological and Biochemical Index Reponse of Halophytes and Non-Salt Plants under Mixed Saline-alkali Stress%盐生和非盐生植物对混合盐碱胁迫的生理生化指标的响应

    Institute of Scientific and Technical Information of China (English)

    盖玉红; 董宝池; 魏健

    2013-01-01

    Using SOD activity materials, morphological response characteristics of artificially regulated halophytes and non-salt plants under mixed saline-alkali stress were studied. At the same time, the effect of SOD activity increased substance on plant salt resistance was also discussed. Halophyte Chenopodium quinoa are Chenopodium album L.and Kochia sieversiana (Pallas) C. A. Mey.Non-salt plants are Ambrosia artemisiifolia L.and Ambrosia trijida L. The results showed that SOD activity increased substance could obviously improve the physical and biochemical indexes of halophytes and non-salt plants, and the effect on halophytes was more remarkable. Relative conductivity under high-concentration mixed saline and alkali decreased by 21 %, SOD activity of two halophytes increased to 28 U/g and 37 U/g respectively. Leaf chlorophyll content of Chenopodium album reached 19.7 mg/g, close to that of the control. Halophytes often have higher SOD activity, which may effectively recover the damage of salinization.%利用SOD活性增强物质,研究了人工调控下盐生和非盐生植物对混合盐碱胁迫的形态响应特点,同时探讨了SOD活性增强物质对植物抗盐性的影响.结果表明:SOD活性增强物质对盐生植物和非盐生植物的生理生化指标影响有明显改善作用,并且对盐生植物的作用更显著,高浓度混合盐碱条件下相对电导率降低了21%;2种盐生植物的SOD活性分别增大到28 U/g和37 U/g;而藜的叶片叶绿素含量达到19.7 mg/g,接近对照水平,这与盐生植物常具有较高的SOD活性使得植物盐害得到有效修复有关.

  5. Salt-Responsive Polysulfabetaines from Acrylate and Acrylamide Precursors: Robust Stabilization of Metal Nanoparticles in Hyposalinity and Hypersalinity.

    Science.gov (United States)

    Vasantha, Vivek Arjunan; Junhui, Chen; Ying, Tay Boon; Parthiban, Anbanandam

    2015-10-13

    Metal nanoparticles (MNps) tend to be influenced by environmental factors such as pH, ionic strength, and temperature, thereby leading to aggregation. Forming stable aqueous dispersions could be one way of addressing the environmental toxicity of MNps. In contrast to the electrolyte-induced aggregation of MNps, novel zwitterionic sulfabetaine polymers reported here act as stabilizers of MNps even under high salinity. Polysulfabetaines exhibited unique solubility and swelling tendencies in brine and deionized water, respectively. The polysulfabetaines derived from methacrylate (PSBMA) and methacrylamide (PSBMAm) also showed reversible salt-responsive and thermoresponsive behaviors as confirmed by cloud-point titration, transmittance, and dynamic light scattering studies. The brine soluble nature was explored for its ability to be used as a capping agents to form metal nanoparticles using formic acid as a reducing agent. Thus, silver and noble metal (gold and palladium) nanoparticles were synthesized. The nanoparticles formed were characterized by UV-vis, XRD, TEM, EDX, and DLS studies. The size of the nanoparticles remained more or less the same even after 2 months of storage in 2 M sodium chloride solution under ambient conditions and also at elevated temperatures as confirmed by light-scattering measurements. The tunable, stimuli-responsive polysulfabetaine-capped stable MNp formed under low (hyposalinity) and hypersalinity could find potential applications in a variety of areas. PMID:26394088

  6. IMPACT OF DIFFERENT ENVIRONMENTAL PARAMETERS UPON THE SUSCEPTIBILITY TO HEAVY METALS SALTS IN ESCHERICHIA COLI AQUATIC STRAINS

    Directory of Open Access Journals (Sweden)

    Emilia Panus

    2012-06-01

    Full Text Available Purpose: to investigate the relationships among the expression of susceptibility to heavy metal salts, different incubation temperatures and chemical composition of the culture media in E. coli aquatic strains. 100 strains of E. coli isolated from Black Sea were investigated for the expression of resistance to different bivalent metals (Cu, Co, Mn, Zn, Ni compounds. The experiments were performed comparatively at different incubation temperatures (22°C, 37°C and 44°C in aerobic and anaerobic conditions, NaCl concentrations (from 0 to 10%, glucose (1.5 and 3% and pH (5.0, 7.2 and 9.6. The metals susceptibility patterns varied with the tested parameter and the bivalent metal compounds. The temperature growth induced an increase in susceptibility of the tested strains to Zn (from 85% at 22°C, 20% at 37°C and 100% at 44°C, Mn (from 50% at 22°C, 15% at 37°C and 75% at 44°C, Cu (from 10% at 22°C, 0% at 37°C and 55% at 44°C, Co (from 10% at 22°C, 0% at 37°C and 30% at 44°C, Ni (from 0% at 22°C, 0% at 37°C and 5% at 44°C. Concerning the influence of salinity, the highest 10% NaCl induced to occurrence of susceptibility to all tested metals, followed by 2, 6 and 7% NaCl with susceptibility to 4 of 5 metals. The highest susceptibility levels to Zn and Mn was expressed in inverse order to 3, 4, 6, 7, 0, 2 and 0.5 % NaCl, while to Cu at 3, 2 and 7% NaCl. The tested strains were very resistant to Ni and Co, at the majority of tested salinities. Concerning the relationship between the chemical composition of the culture medium and the susceptibility levels to metals, the higher glucose concentration of 3% and the alkaline pH induced higher rates of susceptibility Mn, Zn and Ni. In conclusion the expression of heavy metals susceptibility features of the E. coli strains is strongly influenced by the incubation temperature and salinity, demonstrating the role of these parameters in the selection of resistance genes in the aquatic strains.

  7. Evaluation of properties of concrete using fluosilicate salts and metal (Ni,W) compounds

    Institute of Scientific and Technical Information of China (English)

    Gyu-Yong KIM; Eui-Bae LEE; Bae-Su KHIL; Seung-Hum LEE

    2009-01-01

    To improve watertightness and antibiosis of sewage structure concrete, the antimierobial watertight admixture was made with fluosilicate salts and antimicrobial compounds. And fresh properties, watertightness, harmlessness and antibiosis of concrete were investigated experimentally. As a result, the fresh properties of concrete were similar to those of an ordinary concrete, without setting time delay. Compressive strength and carbonation resistance of concrete were better than those of an ordinary concrete. Finally it was confirmed that the antimierobial watenight admixture of concrete had an antibiosis inhibiting SOB growth.

  8. Non-trivial solution chemistry between amido-pyridylcalix[4]arenes and some metal salts

    OpenAIRE

    Colleran, John; Creaven, Bernadette; Donlon, Denise; MCGINLEY John

    2010-01-01

    Mercury ion complexation reactions were carried out between 3 and various mercury(II) salts. 1H NMR studies showed that the role of solvent, the anion chosen and the initial reaction conditions were critical and that the formation of a “simple” mercury(II) complex was non-trivial. The mercury(II) ion can cause either (i) the formation of an ion-pair system, which have a characteristic doubling of all signals in the 1H NMR spectrum, (ii) a cleavage reaction to occur resulting in the reformatio...

  9. Microelement status changes of rats testis under increased receipts of heavy metals salts

    Directory of Open Access Journals (Sweden)

    Romanyuk A.M.

    2011-01-01

    Full Text Available The results of the study of 128 rats tissue seminal glands. We presented the experimental rats within 48 days received drinking water salts of zinc, copper, iron, manganese, chromium, and lead. The objective was to study the accumulation of zinc, copper, lead, manganese, chromium and iron in the testicular tissue in their alimentary receipt and in a correction by the drug "Tivortin." The spectrophotometry in atomic absorption mode revealed reduced levels of zinc and increased level of other studied trace elements. Accumulation of copper, iron, manganese, chromium and lead in seminal gland tissue is defined within 48 days, copper, lead and chromium exhibit the largest organ tropism.

  10. Continuous electrolytic decarbonation and recovery of a carbonate salt solution from a metal-contaminated carbonate solution.

    Science.gov (United States)

    Kim, Kwang-Wook; Kim, Yeon-Hwa; Lee, Se-Yoon; Lee, Eil-Hee; Song, Kyusuk; Song, Kee-Chan

    2009-11-15

    This work studied the characteristic changes of a continuous electrolytic decarbonation and recovery of a carbonate salt solution from a metal-contaminated carbonate solution with changes of operational variables in an electrolytic system which consisted of a cell-stacked electrolyzer equipped with a cation exchange membrane and a gas absorber. The system could completely recover the carbonate salt solution from a uranyl carbonato complex solution in a continuous operation. The cathodic feed rate could control the carbonate concentration of the recovered solution and it affected the most transient pH drop phenomenon of a well type within the gas absorber before a steady state was reached, which caused the possibility of a CO(2) gas slip from the gas absorber. The pH drop problem could be overcome by temporarily increasing the OH(-) concentration of the cathodic solution flowing down within the gas absorber only during the time required for a steady state to be obtained in the case without the addition of outside NaOH. An overshooting peak of the carbonate concentration in the recovered solution before a steady state was observed, which was ascribed to the decarbonation of the initial solution filled within the stacked cells by a redundant current leftover from the complete decarbonation of the feeding carbonate solution. PMID:19604641

  11. Synthesis of nano-composite surfaces via the co-deposition of metallic salts and nano particles

    International Nuclear Information System (INIS)

    Highlights: • Nanofaceted surfaces are prepared by a low current density (2) electrodeposition method. • Surfaces are formed of nanoparticles anchored to a conductive (carbon) substrate. • Formed surfaces show a high nano-reactivity and surface area. • Demonstration of INP/FeCl3 nanocomposite for water filtration effectively removing BTEX contamination. -- Abstract: A novel, low energy method for coating different nano-particles via electro-deposition to a recyclable carbon glass supporting structure is demonstrated. In the resulting composite, the nano-material is bound to the substrate surface, thereby removing the potential for causing harmful interactions with the environment. Nano-particles were suspended in a salt solution and deposited at low current densities (−2) producing thin (<100 nm), uniform nano-faceted surfaces. A co-deposition mechanism of nano-particles and cations from the salt solution is proposed and explored. This has been successfully demonstrated for iron, sliver, titanium in the current work. Furthermore, the removal of the surface coatings can be achieved via a reversed current applied over the system, allowing for the recovery of surface bound metal contaminants. The demonstrated applicability of this coating method to different nano-particle types, is useful in many areas within the catalysis and water treatment industries. One such example, is demonstrated, for the treatment of BTEX contamination and show a greatly improved efficiency to current leading remediation agents

  12. Influence of irradiated chitosan on rice plants growing in hydroponic medium contaminated with salt and heavy metals

    International Nuclear Information System (INIS)

    Effect of chitosan and radiation-degraded chitosan on rice seedlings of a Vietnam's original variety was investigated. Potential of irradiated chitosan in plant tolerance for several stress factors (salt, zinc, and vanadium) also was studied as well. Chitosan represented in hydroponic medium clearly inhibited the growth of rice seedlings at concentrations arranging from 50 ppm. Radiation processing of chitosan with dose higher than 100 kGy reduced toxicity of chitosan and the efficacy was of dose proportion. Rice plant of 203 origin was almost normally grown in hydroponic solution containing chitosan that has been irradiated with dose of 150 and 200 kGy. Irradiated chitosan increased plant resistance to environmental stress caused by vanadium (V); thereby the seedlings could be recovered completely, even gained in biomass. This effect was not appeared when applied chitosan to rice in media contaminated by zinc (Zn) and salt (NaCl). The selectness of irradiated chitosan on various stress factors partly clarified the assistant action of chitosan in the vanadium intoxication because chelating with metal ions could not be evaluated as main mechanism. (author)

  13. Influence of irradiated chitosan on rice plants growing in hydroponic medium contaminated with salt and heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Lam, N.D.; Diep, T.B. [Institute for Nuclear Science and Technique-VAEC, Nghiado, Cau giay, Hanoi (Viet Nam); Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Effect of chitosan and radiation-degraded chitosan on rice seedlings of a Vietnam's original variety was investigated. Potential of irradiated chitosan in plant tolerance for several stress factors (salt, zinc, and vanadium) also was studied as well. Chitosan represented in hydroponic medium clearly inhibited the growth of rice seedlings at concentrations arranging from 50 ppm. Radiation processing of chitosan with dose higher than 100 kGy reduced toxicity of chitosan and the efficacy was of dose proportion. Rice plant of 203 origin was almost normally grown in hydroponic solution containing chitosan that has been irradiated with dose of 150 and 200 kGy. Irradiated chitosan increased plant resistance to environmental stress caused by vanadium (V); thereby the seedlings could be recovered completely, even gained in biomass. This effect was not appeared when applied chitosan to rice in media contaminated by zinc (Zn) and salt (NaCl). The selectness of irradiated chitosan on various stress factors partly clarified the assistant action of chitosan in the vanadium intoxication because chelating with metal ions could not be evaluated as main mechanism. (author)

  14. PROCESS FOR SEPARATION OF HEAVY METALS

    Science.gov (United States)

    Duffield, R.B.

    1958-04-29

    A method is described for separating plutonium from aqueous acidic solutions of neutron-irradiated uranium and the impurities associated therewith. The separation is effected by adding, to the solution containing hexavalent uranium and plutonium, acetate ions and the ions of an alkali metal and those of a divalent metal and thus forming a complex plutonium acetate salt which is carried by the corresponding complex of uranium, such as sodium magnesium uranyl acetate. The plutonium may be separated from the precipitated salt by taking the same back into solution, reducing the plutonium to a lower valent state on reprecipitating the sodium magnesium uranyl salt, removing the latter, and then carrying the plutonium from ihe solution by means of lanthanum fluoride.

  15. Local structure of alkalis in mixed-alkali borate glass to elucidate the origin of mixed-alkali effect

    Directory of Open Access Journals (Sweden)

    Yomei Tokuda

    2015-12-01

    Full Text Available We report the structural analysis of Na+ and Cs+ in sodium cesium borate crystals and glasses using 23Na and 133Cs magic-angle spinning nuclear magnetic resonance (MAS NMR spectroscopy. The composition dependence of NMR spectra of the borate was similar to that of the silicate: (1 the peak position of cesium borate crystals shifted to upfield for structures with larger Cs+ coordination numbers, (2 the MAS NMR spectra of xNa2O-yCs2O-3B2O3 (x = 0, 0.25, 0.5, 0.75, 1.0, x + y = 1 glass showed that the average coordination number (CN of both the alkali cations decreases with increasing Cs+/(Na+ + Cs+ ratio. However, the degree of decrement in borates is much smaller than that in silicates. We have considered that the small difference in CN is due to 4-coordinated B, because it is electrically compensated by the alkali metal ions resulting in the restriction of having various coordinations of O to alkali metal.

  16. Modeling of heavy metal salt solubility using the Extended UNIQUAC model

    DEFF Research Database (Denmark)

    Iliuta, Maria Cornelia; Thomsen, Kaj; Rasmussen, Peter

    2002-01-01

    Solid-liquid equilibria in complex aqueous systems involving a heavy metal cation (Mn2+, Fe2+, Co2+, Ni2+, Cu2+, or Zn2+) and one or more ions for which Extended UNIQUAC parameters have been published previously are modeled using the Extended UNIQUAC model. Model parameters are determined...

  17. Electrophysical methods of separation of metal cations in the moving salts solution

    Science.gov (United States)

    Gofman, V. N.; Tuksov, I. V.; Timchenko, S. N.; Shamanin, I. V.; Poberezhnikov, A. D.; Kazaryan, M. A.

    2016-07-01

    The results of experiments on the excitation of the phenomenon of selective drift of solvated ions under the influence of an external "asymmetric" electric field to the circulating solution of calcium chloride and magnesium salts in a polar liquid dielectric - water are shown. The purpose of the experiments was to determine the influence of the field frequency and amplitude of the field strength on the excitation phenomenon, and the study of the operating characteristics of the testing apparatus - a dividing cell. The dependences of the separation efficiency of solvated cations from the frequency of the external field and the excitation threshold of the phenomenon from the field strength in the separation cell are defined.

  18. Bioleaching of incineration fly ash by Aspergillus niger – precipitation of metallic salt crystals and morphological alteration of the fungus

    Directory of Open Access Journals (Sweden)

    Tong-Jiang Xu

    2014-09-01

    Full Text Available This study examines the bioleaching of municipal solid waste incineration fly ash by Aspergillus niger, and its effect on the fungal morphology, the fate of the ash particles, and the precipitation of metallic salt crystals during bioleaching. The fungal morphology was significantly affected during one-step and two-step bioleaching; scanning electron microscopy revealed that bioleaching caused distortion of the fungal hyphae (with up to 10 μm hyphae diameter and a swollen pellet structure. In the absence of the fly ash, the fungi showed a linear structure (with 2–4 μm hyphae diameter. Energy-dispersive X-ray spectroscopy and X-ray diffraction confirmed the precipitation of calcium oxalate hydrate crystals at the surface of hyphae in both one-step and two-step bioleaching. Calcium oxalate precipitation affects bioleaching via the weakening of the fly ash, thus facilitating the release of other tightly bound metals in the matrix.

  19. Atmospheric regime of dust and salt through 75,000 years of Taylor Dome ice core: Refinement by measurement of major, minor, and trace metal suites

    Science.gov (United States)

    Hinkley, T.K.; Matsumoto, A.

    2001-01-01

    Measurement of absolute and relative amounts of dust and salt deposited in the polar ice record is central to several fields of study, including nutrient delivery, atmospheric deposition of trace elements, past wind strengths, dust provenance, and other aspects of climate and geochemical history. We present a method intended to give a more accurate picture than has been possible before of the total amounts and relative proportions of the dust and salt deposited by the atmosphere into polar ice. It also permits us to distinguish different compositional types of dust in the ice. The method is based on precise measurement of a suite of several metals whose proportions contrast strongly between dust and salt and vary substantially between dust types. We apply the method to a small suite of ice samples from the Taylor Dome core in coastal West Antarctica. In full glacial times, when total impurities were high and dust dominated over salt, wind strength in the West Antarctic region was apparently high, and extensive sea-ice cover prevented incorporation of salt into the atmospheric load. At the termination of the glacial period, increased salt in the dust-salt mixture indicates that sea ice diminished, but wind strength continued high, and unchanged dust composition indicates unchanged source areas. At about 10,000-11,000 y.B.P., sea-ice cover appears to have briefly returned to glacial conditions, but wind conditions remained in the milder postglacial condition. Soon after, sea ice retreated, and an abrupt change in dust composition indicates changed source materials or terranes. If extended by analysis of more samples from more sites, such information on salt and dust could provide firm constraints on past wind strengths, extent of sea-ice cover, deposition fluxes of salt and dust, and changing continental source areas of dust, for both polar regions of the Earth. Copyright 2000 by the American Geophysical Union.

  20. Electrodeposition of alloys or compounds in molten salts and applications

    Directory of Open Access Journals (Sweden)

    Taxil P.

    2003-01-01

    Full Text Available This article deals with the different modes of preparation of alloys or intermetallic compounds using the electrodeposition in molten salts, more particularly molten alkali fluorides. The interest in this process is to obtain new materials for high technology, particularly the compounds of reactive components such as actinides, rare earth and refractory metals. Two ways of preparation are considered: (i electrocoating of the more reactive metal on a cathode made of the noble one and reaction between the two metals in contact, and (ii electrocoating on an inert cathode of the intermetallic compound by coreduction of the ions of each elements. The kinetic is controlled by the reaction at the electrolyte interface. A wide bibliographic survey on the preparation of various compounds (intermetallic compounds, borides, carbides… is given and a special attention is paid to the own experience of the authors in the preparation of these compounds and interpretation of their results.

  1. Electrochemical decontamination of metallic wastes contaminated with uranium compounds in a neutral salt electrolyte

    International Nuclear Information System (INIS)

    Electrochemical decontamination process has been applied for recycle or self disposal with authorization of large amount of metallic wastes contaminated with uranium compounds such as UO2, ammonium uranyl carbonate (AUC), ammonium di-uranate (ADU), and uranyl nitrate (UN) with tributylphosphate (TBP) and dodecane, which are generated by dismantling the contaminated system components and equipment of a retired uranium conversion plant in Korea Atomic Energy Research Institute (KAERI). Electrochemical decontamination for metallic wastes contaminated with uranium compounds was evaluated through the experiments on the electrolytic dissolution of stainless steel as the material of the system components in neutral concentration of electrolyte on the dissolution of the materials were evaluated. Decontamination performance tests using the specimens taken from a uranium conversion plant were quite successful with the application electrochemical decontamination conditions obtained through the basic studies on the electrolytic dissolution of structural material of the system components

  2. Correlating Microstructural Lithium Metal Growth with Electrolyte Salt Depletion in Lithium Batteries Using ⁷Li MRI.

    Science.gov (United States)

    Chang, Hee Jung; Ilott, Andrew J; Trease, Nicole M; Mohammadi, Mohaddese; Jerschow, Alexej; Grey, Clare P

    2015-12-01

    Lithium dendrite growth in lithium ion and lithium rechargeable batteries is associated with severe safety concerns. To overcome these problems, a fundamental understanding of the growth mechanism of dendrites under working conditions is needed. In this work, in situ (7)Li magnetic resonance (MRI) is performed on both the electrolyte and lithium metal electrodes in symmetric lithium cells, allowing the behavior of the electrolyte concentration gradient to be studied and correlated with the type and rate of microstructure growth on the Li metal electrode. For this purpose, chemical shift (CS) imaging of the metal electrodes is a particularly sensitive diagnostic method, enabling a clear distinction to be made between different types of microstructural growth occurring at the electrode surface and the eventual dendrite growth between the electrodes. The CS imaging shows that mossy types of microstructure grow close to the surface of the anode from the beginning of charge in every cell studied, while dendritic growth is triggered much later. Simple metrics have been developed to interpret the MRI data sets and to compare results from a series of cells charged at different current densities. The results show that at high charge rates, there is a strong correlation between the onset time of dendrite growth and the local depletion of the electrolyte at the surface of the electrode observed both experimentally and predicted theoretical (via the Sand's time model). A separate mechanism of dendrite growth is observed at low currents, which is not governed by salt depletion in the bulk liquid electrolyte. The MRI approach presented here allows the rate and nature of a process that occurs in the solid electrode to be correlated with the concentrations of components in the electrolyte. PMID:26524078

  3. Solvent and stabilizer free growth of Ag and Pd nanoparticles using metallic salts/cyclotriphosphazenes mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Díaz Valenzuela, C. [Departamento de Química, Facultad de Química, Universidad de Chile, La Palmeras 3425, Nuñoa, Casilla 653, Santiago de Chile (Chile); Valenzuela, M.L., E-mail: mlvalenzuela@unab.cl [Universidad Andres Bello, Departamento de Ciencias Química, Facultad de Ciencias Exactas, Av. Republica 275, Santiago (Chile); Caceres, S.; Diaz, R. [Departamento de Química, Facultad de Química, Universidad de Chile, La Palmeras 3425, Nuñoa, Casilla 653, Santiago de Chile (Chile); O' Dwyer, C. [Applied Nanoscience Group, Department of Chemistry, University College Cork, Cork (Ireland); Micro and Nanoelectronics Centre, Tyndall National Institute, Lee Maltings, Cork (Ireland)

    2013-12-16

    Cyclotriphosphazene is used as a sacrificial solid-state template to synthesize a range of Ag and Pd nanoparticles with diverse geometries by thermal treatment using MLn/N{sub 3}P{sub 3}(O{sub 2}C{sub 12}H{sub 8}){sub 3} mixtures. The Pd and Ag nanoparticles are synthesized by solid-state pyrolysis of AgPPh{sub 3}[CF{sub 3}SO{sub 3}]/N{sub 3}P{sub 3}(O{sub 2}C{sub 12}H{sub 8}){sub 3} and PdCl{sub 2}/N{sub 3}P{sub 3}(O{sub 2}C{sub 12}H{sub 8}){sub 3} mixtures with molar relationships of 1:1, 1:5 and 1:10 respectively, in air and at 800 °C. The morphology of the as-prepared nanoparticles is found to depend on the molar ratio of the precursor mixture, the preparation method and of the nature of the metal. Ag and Pd, microcrystals were thermally grown on Si from the respective 1:1 precursors while that metal foams were grown from 1:5 ratios precursors on SiO{sub 2} wafers. High resolution transmission electron microscopy investigations reveal in most cases small crystals of Pd. HRSTEM measurements indicate that the formation of the Pd and Ag nanoparticles occurs through a phase demixing and dewetting mechanism. This approach has potential to be a useful and facile method to prepare metallic nanoparticles without requiring solutions or surfactants for application in electronic, catalytic and sensor materials and devices. - Highlights: • Pyrolysis MLn/N{sub 3}P{sub 3}(O{sub 2}C{sub 12}H{sub 8}){sub 3} mixtures under air, give Pd and Ag nanoparticles. • AgPPh{sub 3}[CF{sub 3}SO{sub 3}] and PdCl{sub 2} in molar ratios 1:1 and 1:5 were used. • Metal foams were obtained from 1:5 ratios when deposited on SiO{sub 2.} • Using crucible supporting in 1:1 metal/trimer <2 nm Pd nanoparticles were obtained. • The probable mechanism involves a dewetting, nucleation and ripening crystallization.

  4. Design and Synthesis of Redox-Switched Lariat Ethers and Their Application for Transport of Alkali and Alkaline-Earth Metal Cations Across Supported Liquid Membrane

    Directory of Open Access Journals (Sweden)

    Uma Sharma

    2006-08-01

    Full Text Available A new class of redox-switched anthraquinone derived lariat ethers 1-(1-anthraquinonyloxy 3, 6, 9 trioxaundecane 11-ol (M1, 1-(1-anthraquinonyloxy 3, 6 dioxaoctane 9-ol (M2, 1-(1-anthraquinonyloxy 3 oxapentane 5-ol (M3, 1-(1-anthraquinonyloxy 3 oxapentane 5-butane (M4, 1-(1-anthraquinonyloxy 3, 6 dioxaoctane 9-methane (M5 and 1-(1-anthraquinonyloxy 3 oxapentane 5-methane (M6 have been synthesized and characterized by spectral analysis. These ionophores were used in liquid membrane carrier facilitated transport of main group metal cations across supported liquid membrane (SLM. Cellulose nitrate membrane was used as membrane support. Effect of various parameters such as variation in concentration of metal as well as ionophore, effect of chain length and end group of ionophore have been studied. The sequence of metal ions transported by ionophore M1 is Na+ > Li+ > K+ > Ca2+ > Mg2+ and the order of metal ions transported by ionophores (M2–M6 is Li+ > Na+ > K+ > Ca2+ > Mg2+. Ionophore M1 is selective for Na+, Li+, and K+ and ionophores (M2–M6 are selective for Li+ and Na+.

  5. The study of molten salt electrorefining characteristics of metallic uranium and cerium

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young Ho; Yoo, Jae Hyung; Woo, Mun Sik; Hwang, Sung Chan

    2000-01-01

    Uranium was electrodeposited on solid cathode in LiCl-KCl eutectic with some CdCl{sub 2} as an oxidizing agent at 550 deg C. In every electro-transport, uranium metal deposit was obtained in the form of dendrite grown on the cathode surface The shape of dendrite on the cathode surface was changed on applied voltage. At the current density range of 100 {approx}150 mA/cm{sup 2}, the highest efficiency was observed in this experiment. The deposition rate and current efficiency was the highest at about 75 rpm.

  6. Competitive binding exchange between alkali metal ions (K+, Rb+, and Cs+) and Na+ ions bound to the dimeric quadruplex [d(G4T4G4)]2: a 23Na and 1H NMR study.

    Science.gov (United States)

    Cesare Marincola, Flaminia; Virno, Ada; Randazzo, Antonio; Mocci, Francesca; Saba, Giuseppe; Lai, Adolfo

    2009-12-01

    A comparative study of the competitive cation exchange between the alkali metal ions K+, Rb+, and Cs+ and the Na+ ions bound to the dimeric quadruplex [d(G4T4G4)]2 was performed in aqueous solution by a combined use of the 23Na and 1H NMR spectroscopy. The titration data confirm the different binding affinities of these ions for the G-quadruplex and, in particular, major differences in the behavior of Cs+ as compared to the other ions were found. Accordingly, Cs+ competes with Na+ only for the binding sites at the quadruplex surface (primarily phosphate groups), while K+ and Rb+ are also able to replace sodium ions located inside the quadruplex. Furthermore, the 1H NMR results relative to the CsCl titration evidence a close approach of Cs+ ions to the phosphate groups in the narrow groove of [d(G4T4G4)]2. Based on a three-site exchange model, the 23Na NMR relaxation data lead to an estimate of the relative binding affinity of Cs+ versus Na+ for the quadruplex surface of 0.5 at 298 K. Comparing this value to those reported in the literature for the surface of the G-quadruplex formed by 5'-guanosinemonophosphate and for the surface of double-helical DNA suggests that topology factors may have an important influence on the cation affinity for the phosphate groups on DNA.

  7. New Alkali-Metal- and 2-Phenethylamine-Intercalated Superconductors Ax(C8H11N)yFe1-zSe (A = Li, Na) with the Largest Interlayer Spacings and Tc ˜ 40 K

    Science.gov (United States)

    Hatakeda, Takehiro; Noji, Takashi; Sato, Kazuki; Kawamata, Takayuki; Kato, Masatsune; Koike, Yoji

    2016-10-01

    New FeSe-based intercalation superconductors, Ax(C8H11N)yFe1-zSe (A = Li, Na), with Tc = 39-44 K have been successfully synthesized via the intercalation of alkali metals and 2-phenethylamine into FeSe. The interlayer spacings, namely, the distances between neighboring Fe layers, d, of Ax(C8H11N)yFe1-zSe (A = Li, Na) are 19.04(6) and 18.0(1) Å, respectively. These d values are the largest among those of the FeSe-based intercalation compounds and are understood to be due to the intercalation of two molecules of 2-phenethylamine in series perpendicular to the FeSe layers. It appears that the relationship between Tc and d in the FeSe-based intercalation superconductors is not domic but Tc is saturated at ˜45 K, which is comparable to the Tc values of single-layer FeSe films, for d ≥ 9 Å.

  8. Alkali Aggregate Reaction in Alkali Slag Cement Mortars

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By means of "Mortar Bar Method",the ratio of cement to aggregate was kept as a constant 1∶2.25,the water-cement ratio of the mixture was 0.40,and six prism specimens were prepared for each batch of mixing proportions with dimensions of 10×10×60mm3 at 38±2℃ and RH≥95%, the influences of content and particle size of active aggregate, sort and content of alkali component and type of slag on the expansion ratios of alkali-activated slag cement(ASC) mortars due to alkali aggregate reaction(AAR) were studied. According to atomic absorption spectrometry,the amount of free alkali was measured in ASC mortars at 90d.The results show above factors affect AAR remarkably,but no dangerous AAR will occur in ASC system when the amount of active aggregate is below 15% and the mass fraction of alkali is not more than 5% (Na2O).Alkali participated in reaction as an independent component, and some hydrates containing alkali cations were produced, free alkalis in ASC system can be reduced enormously.Moreover,slag is an effective inhibitor, the possibility of generating dangerous AAR in ASC system is much lower at same conditions than that in ordinary Portland cement system.

  9. Surprisingly Different Reaction Behavior of Alkali and Alkaline Earth Metal Bis(trimethylsilyl)amides toward Bulky N-(2-Pyridylethyl)-N'-(2,6-diisopropylphenyl)pivalamidine.

    Science.gov (United States)

    Kalden, Diana; Oberheide, Ansgar; Loh, Claas; Görls, Helmar; Krieck, Sven; Westerhausen, Matthias

    2016-07-25

    N-(2,6-Diisopropylphenyl)-N'-(2-pyridylethyl)pivalamidine (Dipp-N=C(tBu)-N(H)-C2 H4 -Py) (1), reacts with metalation reagents of lithium, magnesium, calcium, and strontium to give the corresponding pivalamidinates [(tmeda)Li{Dipp-N=C(tBu)-N-C2 H4 -Py}] (6), [Mg{Dipp-N=C(tBu)-N-C2 H4 -Py}2 ] (3), and heteroleptic [{(Me3 Si)2 N}Ae{Dipp-N=C(tBu)-N-C2 H4 -Py}], with Ae being Ca (2 a) and Sr (2 b). In contrast to this straightforward deprotonation of the amidine units, the reaction of 1 with the bis(trimethylsilyl)amides of sodium or potassium unexpectedly leads to a β-metalation and an immediate deamidation reaction yielding [(thf)2 Na{Dipp-N=C(tBu)-N(H)}] (4 a) or [(thf)2 K{Dipp-N=C(tBu)-N(H)}] (4 b), respectively, as well as 2-vinylpyridine in both cases. The lithium derivative shows a similar reaction behavior to the alkaline earth metal congeners, underlining the diagonal relationship in the periodic table. Protonation of 4 a or the metathesis reaction of 4 b with CaI2 in tetrahydrofuran yields N-(2,6-diisopropylphenyl)pivalamidine (Dipp-N=C(tBu)-NH2 ) (5), or [(thf)4 Ca{Dipp-N=C(tBu)-N(H)}2 ] (7), respectively. The reaction of AN(SiMe3 )2 (A=Na, K) with less bulky formamidine Dipp-N=C(H)-N(H)-C2 H4 -Py (8) leads to deprotonation of the amidine functionality, and [(thf)Na{Dipp-N=C(H)-N-C2 H4 -Py}]2 (9 a) or [(thf)K{Dipp-N=C(H)-N-C2 H4 -Py}]2 (9 b), respectively, are isolated as dinuclear complexes. From these experiments it is obvious, that β-metalation/deamidation of N-(2-pyridylethyl)amidines requires bases with soft metal ions and also steric pressure. The isomeric forms of all compounds are verified by single-crystal X-ray structure analysis and are maintained in solution. PMID:27355970

  10. Natural Alkali Shifts to the Methanol Business

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Inner Mongolia Yuanxing Natural Alkali Co., Ltd. (Natural Alkali SZ: 000683) established in 1997 is a large chemical enterprise with new energy as its leading business and natural gas chemicals and natural alkali chemicals as the supplement business.

  11. Study of the composition and gas-phase release characteristics of salt material extracted from MSW ash particles using STA

    DEFF Research Database (Denmark)

    Arvelakis, Stelios; Frandsen, Flemming; Koukios, E.G.

    2007-01-01

    The ash material generated from the MSW incineration contains large amounts of alkali metals, heavy metals, chlorine and sulfur mainly deposited as inorganic salts and/or oxides on the surface of the Si-rich ash particles. In this work, the composition and gas-phase release characteristics of salt...... material extracted from MSW ash particles using a six-stage leaching process is studied using simultaneous thermal analysis (STA). The produced results provide useful information regarding the composition of the salt material and its melting behavior that is considered to play an important role to...... deposition and corrosion problems at MSW incinerators. The results may be used to model the deposition process and to the better understanding of the corrosion process during MSW incineration....

  12. Low temperature vibrational spectroscopy. III. Structural aspects and detection of phase transitions in crystalline alkali metal and tetramethylammonium hexabromotellurates and platinates

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    1979-01-01

    that the methyl groups are not pseudo freely rotating. The anharmonicity of the vibrations in tetramethylammonium hexabromotellurate seems to increase abnormally at lower temperatures, possibly due to enhanced methyl–bromine interaction. The Journal of Chemical Physics is copyrighted by The American Institute......The low-frequency infrared and Raman spectra of A2[TeBr6] with A=K, Rb, Cs, NH4, (CH3)4N, (CD3)4N and of A2[PtBr6] with A=K, (CH3)4N, and (CD3)4N were recorded as a function of temperature down to ~100 K. The spectra of the Rb and Cs compounds changed little. For the other salts new, and in some...... cases sharp, bands were observed at low temperatures. The spectra have been assigned, and in most cases a confirmation of previous results was obtained. The assignment ambiguity in the literature on the nu4 mode of [PtBr6]2− has been solved, placing it at ~ 130 cm−1. The majority of the new low...

  13. Liquid alkali metals - Equation of state and reduced-pressure, bulk-modulus, sound-velocity, and specific-heat functions

    Science.gov (United States)

    Schlosser, Herbert; Ferrante, John

    1989-01-01

    The previous work of Schlosser and Ferrante (1988) on universality in solids is extended to the study of liquid metals. As in the case of solids, to a good approximation, in the absence of phase transitions, plots of the logarithm of the reduced-pressure function H, of the reduced-isothermal-bulk-modulus function b, and of the reduced-sound-velocity function v are all linear in 1-X. Finally, it is demonstrated that ln(Cp/C/v) is also linear in 1-X, where X = (V/V/0/)exp 1/3), and V(0) is the volume at zero pressure.

  14. 滨海盐碱地刺槐林降水与土壤水盐运动规律相关性研究%Studies on Correlations Among the Precipitation and Variation of Soil Water and Salt Under Robinia pseudoacacia Plantation in Coastal Saline-Alkali Area

    Institute of Scientific and Technical Information of China (English)

    崔鹏; 秦宇; 刘霄; 秦永建; 曹帮华

    2013-01-01

    以滨海盐碱地33年生刺槐纯林为对象,研究不同土层土壤水盐年份变化,分析年际降水与土壤水盐运动规律的相关性.结果表明:表层土壤同期含盐量低,土壤含盐量随土层深度的增加逐渐升高;雨季表层土壤同期含水量高,土壤含水量随土层深度增加逐渐降低,随蒸发量的增大,表层土壤含水量逐渐低于深层土;年份降水主要集中在夏季,占全年降水量的66%;土壤含水量与降水量呈显著正相关,土壤含盐量与降水量呈显著负相关,不同土层之间含水量与含盐量呈负相关;不同土层之间含水量相关性显著,在3月份0~20 cm表层土与60~80 cm土层土壤含水量差异显著(P =0.034 1 <0.05);不同土层之间含盐量相关性显著,差异不显著(P=0.125 2 >0.05).%The annual variations of soil water and salt content at different soil layers in a 33a old Robinia pseudoacacia pure plantation in the coastal saline-alkali area were measured,and meanwhile the correlation between the annual precipitation and the annual variations of soil water and salt content was analyzed.The results showed that the synchronized salt content in the surface soil was the lowest,the salt content increased with the increment of soil depth.The synchronized water content at the top soil layer in the rainy season was the highest,it was reduced with the increment of soil depth.The water content at the top soil layer was reduced along with the increase of evaporation and finally lower than that of the deeper layer soil.The annual precipitation in the studied area was concentrated in the summer,which accounted for 66% of the total.The soil water content was significantly positively correlated to rainfall.The salt content in the soil was significantly negatively correlated to the rainfall.Whereas there was a negative correlation between water content and salt content at different layers of the soil.There were significant correlations among the

  15. Experimental and Modeling Studies on the Conversion of Inulin to 5-Hydroxymethylfurfural Using Metal Salts in Water

    Directory of Open Access Journals (Sweden)

    Boy Arief Fachri

    2015-12-01

    Full Text Available Inulin, a plant polysaccharide consisting of mainly d-fructose units, is considered an interesting feed for 5-hydroxymethylfurfural (HMF, a top 12 bio-based chemical. We here report an exploratory experimental study on the use of a wide range of homogeneous metal salts as catalysts for the conversion of inulin to HMF in water. Best results were obtained using CuCl2. Activity-pH relations indicate that the catalyst activity of CuCl2 is likely related to Lewis acidity and not to Brönsted acidity. The effects of process conditions on HMF yield for CuCl2 were systematically investigated and quantified using a central composite design (160–180 °C, an inulin loading between 0.05 and 0.15 g/mL, CuCl2 concentration in range of 0.005–0.015 M, and a reaction time between 10 and 120 min. The highest experimental HMF yield in the process window was 30.3 wt. % (39 mol %, 180 °C, 0.05 g/mL inulin, 0.005 M CuCl2 and a reaction time of 10 min. The HMF yields were modelled using non-linear, multi variable regression and good agreement between experimental data and model were obtained.

  16. Effect of salt, drought and metal stress on essential oil yield and quality in plants.

    Science.gov (United States)

    Biswas, Shreyasee; Koul, Monika; Bhatnagar, Ashok Kumar

    2011-10-01

    Essential oil extracted from plants is of high commercial value in medicine, cosmetics and perfumery. Enhancing yield and maintaining the quality of oil is of significant commercial importance. Production of oil in plants is dependent on various biotic and abiotic factors to which the plants are subjected during their growth. Plants are exposed to various degrees of stress on account of natural and human-induced factors. Salinization, drought and presence of heavy metals in the substratum cause substantial effect on the yield and quality of bioactive constituents in the oil. In many plants, the level and kind of stress have detrimental effects on the growth and development. This review provides an account of the studies on some common abiotic stresses to which essential oil plants are exposed during their growth period and their influence on quality and quantity of oil. The yield and quality vary in different plants and so is the response. Enhancing essential oil productivity is an important challenge, and understanding the role played by stress may offer significant advantages to the essential oil farmers and processing industry. Scientific evaluation of the data on many important but unexplored essential oil plants will also help in mitigating, ameliorating and minimizing the harmful effects caused by stress. PMID:22164806

  17. Study of the thermal and mechanical sensitivity of bitumen/oxygen salt mixtures

    International Nuclear Information System (INIS)

    The safe handling characteristics of radioactive wastes containing nitrate salts to be fixed in bitumen for ultimate storage in salt mines according to a process developed at the Karlsruhe Nuclear Research Center have been examined with respect to their combustibility and shock sensitivity in tests of inactive bitumen/salt mixtures. Samples containing 40% bitumen and 60% nitrates of alkali, alkaline earth, and heavy metals, organic acids and rare earths were used to determine the thermal sensitivity (ignition temperature, duration of burning, heating under contained conditions), the mechanical sensitivity (shock sensitivity) and, in order to simulate major shock stresses, the sensitivity against detonation stresses. A few basic experiments were also performed on some beta-irradiated inactive samples. It appeared that although the addition of nitrates increased the combustibility of bitumen, neither the high thermal nor the detonation stresses resulted in any explosion-type reaction. (orig.)

  18. Facilitated alkali ion transfer at the water 1,2-dichloroethane interphase Ab-initio calculations concerning alkaline metal cation - 1,10-phenanthroline complexes

    CERN Document Server

    Sánchez, C; Baruzzi, A M; Leiva, E P M

    1997-01-01

    A series of calculations on the energetics of complexation of alkaline metals with 1,10-phenanthroline are presented. It is an experimental fact that the ordering of the free energy of transfer across the water - 1,2-dichloroethane interphase is governed by the charge / size ratio of the diferent cations; the larger cations showing the lower free energy of transfer. This ordering of the free energies of transfer is reverted in the presence of 1,10-phenanthroline in the organic phase. We have devised a thermodynamic cycle for the transfer process and by means of ab-initio calculations have drawn the conclusion that in the presence of phen the free energy of transfer is governed by the stability of the PHEN/M $^{+}$complex, which explains the observed tendency from a theoretical point of view.

  19. The influence of hydrogen bonding on the dielectric constant and the piezoelectric energy harvesting performance of hydrated metal salt mediated PVDF films.

    Science.gov (United States)

    Jana, Santanu; Garain, Samiran; Sen, Shrabanee; Mandal, Dipankar

    2015-07-14

    Polyvinylidene fluoride (PVDF) films are filled with various mass fractions (wt%) of hydrated metal salt (MgCl2·6H2O) (Mg-salt) to fabricate high performance piezoelectric energy harvesters (PEHs). They deliver up to 4 V of open circuit voltage by simply repeated human finger imparting (under a pressure of ∼4.45 kPa) and also generate sufficient power to turn on at least ten commercial blue light emitting diodes (LEDs) instantly. The enhanced piezo-response is attributed to the combined effect of the change in the inherent dipole moment of the electroactive phase containing PVDF itself and H-bonding arising between the Mg-salt filler and PVDF via electrostatic interactions. Furthermore, it also successfully charged the capacitors, signifying practical applicability as a piezoelectric based energy harvester power source. UV-visible optical absorption spectral analysis revealed the possibility to estimate a change in the optical band gap value at different concentrations of Mg-salt filler added PVDF films that possess a useful methodology where the Mg-salt can be used as an optical probe. In addition dielectric properties have been studied to understand the role of molecular kinetic and interfacial polarization occurs in H-bond PVDF films at different applied frequencies at room temperature. PMID:26077827

  20. Room temperature oxidative intercalation with chalcogen hydrides: Two-step method for the formation of alkali-metal chalcogenide arrays within layered perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Ranmohotti, K.G. Sanjaya; Montasserasadi, M. Dariush; Choi, Jonglak; Yao, Yuan; Mohanty, Debasish; Josepha, Elisha A.; Adireddy, Shiva; Caruntu, Gabriel [Department of Chemistry and the Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148-2820 (United States); Wiley, John B., E-mail: jwiley@uno.edu [Department of Chemistry and the Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148-2820 (United States)

    2012-06-15

    Highlights: ► Topochemical reactions involving intercalation allow construction of metal chalcogenide arrays within perovskite hosts. ► Gaseous chalcogen hydrides serve as effect reactants for intercalation of sulfur and selenium. ► New compounds prepared by a two-step intercalation strategy are presented. -- Abstract: A two-step topochemical reaction strategy utilizing oxidative intercalation with gaseous chalcogen hydrides is presented. Initially, the Dion-Jacobson-type layered perovskite, RbLaNb{sub 2}O{sub 7}, is intercalated reductively with rubidium metal to make the Ruddlesden-Popper-type layered perovskite, Rb{sub 2}LaNb{sub 2}O{sub 7}. This compound is then reacted at room-temperature with in situ generated H{sub 2}S gas to create Rb-S layers within the perovskite host. Rietveld refinement of X-ray powder diffraction data (tetragonal, a = 3.8998(2) Å, c = 15.256(1) Å; space group P4/mmm) shows the compound to be isostructural with (Rb{sub 2}Cl)LaNb{sub 2}O{sub 7} where the sulfide resides on a cubic interlayer site surrounded by rubidium ions. The mass increase seen on sulfur intercalation and the refined S site occupation factor (∼0.8) of the product indicate a higher sulfur content than expected for S{sup 2−} alone. This combined with the Raman studies, which show evidence for an H-S stretch, indicate that a significant fraction of the intercalated sulfide exists as hydrogen sulfide ion. Intercalation reactions with H{sub 2}Se{sub (g)} were also carried out and appear to produce an isostructural selenide compound. The utilization of such gaseous hydride reagents could significantly expand multistep topochemistry to a larger number of intercalants.

  1. DNA Damage and Transcriptional Changes in the Gills of Mytilus galloprovincialis Exposed to Nanomolar Doses of Combined Metal Salts (Cd, Cu, Hg)

    OpenAIRE

    Rosani, Umberto; Manfrin, Chiara; Cajaraville Bereciartua, Miren Pilare; Raccanelli, Stefano; Pallavicini, Alberto; Venier, Paola

    2013-01-01

    [ENG]Aiming at an integrated and mechanistic view of the early biological effects of selected metals in the marine sentinel organism Mytilus galloprovincialis, we exposed mussels for 48 hours to 50, 100 and 200 nM solutions of equimolar Cd, Cu and Hg salts and measured cytological and molecular biomarkers in parallel. Focusing on the mussel gills, first target of toxic water contaminants and actively proliferating tissue, we detected significant dose-related increases of cells with m...

  2. DNA Damage and Transcriptional Changes in the Gills of Mytilus galloprovincialis Exposed to Nanomolar Doses of Combined Metal Salts (Cd, Cu, Hg)

    OpenAIRE

    Varotto, Laura; Domeneghetti, Stefania; Rosani, Umberto; Manfrin, Chiara; Miren P. Cajaraville; Raccanelli, Stefano; Pallavicini, Alberto; Venier, Paola

    2013-01-01

    Aiming at an integrated and mechanistic view of the early biological effects of selected metals in the marine sentinel organism Mytilus galloprovincialis, we exposed mussels for 48 hours to 50, 100 and 200 nM solutions of equimolar Cd, Cu and Hg salts and measured cytological and molecular biomarkers in parallel. Focusing on the mussel gills, first target of toxic water contaminants and actively proliferating tissue, we detected significant dose-related increases of cells with micronuclei and...

  3. An Overview of Liquid Fluoride Salt Heat Transport Systems

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Cetiner, Sacit M [ORNL

    2010-09-01

    Heat transport is central to all thermal-based forms of electricity generation. The ever increasing demand for higher thermal efficiency necessitates power generation cycles transitioning to progressively higher temperatures. Similarly, the desire to provide direct thermal coupling between heat sources and higher temperature chemical processes provides the underlying incentive to move toward higher temperature heat transfer loops. As the system temperature rises, the available materials and technology choices become progressively more limited. Superficially, fluoride salts at {approx}700 C resemble water at room temperature being optically transparent and having similar heat capacity, roughly three times the viscosity, and about twice the density. Fluoride salts are a leading candidate heat-transport material at high temperatures. Fluoride salts have been extensively used in specialized industrial processes for decades, yet they have not entered widespread deployment for general heat transport purposes. This report does not provide an exhaustive screening of potential heat transfer media and other high temperature liquids such as alkali metal carbonate eutectics or chloride salts may have economic or technological advantages. A particular advantage of fluoride salts is that the technology for their use is relatively mature as they were extensively studied during the 1940s-1970s as part of the U.S. Atomic Energy Commission's program to develop molten salt reactors (MSRs). However, the instrumentation, components, and practices for use of fluoride salts are not yet developed sufficiently for commercial implementation. This report provides an overview of the current understanding of the technologies involved in liquid salt heat transport (LSHT) along with providing references to the more detailed primary information resources. Much of the information presented here derives from the earlier MSR program. However, technology has evolved over the intervening years

  4. Theory of the late stage of radiolysis of alkali halides

    NARCIS (Netherlands)

    Dubinko, V.I.; Turkin, A.A.; Vainshtein, D.I.; Hartog, H.W. den

    2000-01-01

    Recent results on heavily irradiated natural and synthetic NaCl crystals give evidence for the formation of large vacancy voids, which were not addressed by the conventional Jain-Lidiard model of radiation damage ill alkali halides. This model was constructed to describe metal colloids and dislocati

  5. Durability of Alkali Activated Blast Furnace Slag

    Science.gov (United States)

    Ellis, K.; Alharbi, N.; Matheu, P. S.; Varela, B.; Hailstone, R.

    2015-11-01

    The alkali activation of blast furnace slag has the potential to reduce the environmental impact of cementitious materials and to be applied in geographic zones where weather is a factor that negatively affects performance of materials based on Ordinary Portland Cement. The scientific literature provides many examples of alkali activated slag with high compressive strengths; however research into the durability and resistance to aggressive environments is still necessary for applications in harsh weather conditions. In this study two design mixes of blast furnace slag with mine tailings were activated with a potassium based solution. The design mixes were characterized by scanning electron microscopy, BET analysis and compressive strength testing. Freeze-thaw testing up to 100 freeze-thaw cycles was performed in 10% road salt solution. Our findings included compressive strength of up to 100 MPa after 28 days of curing and 120 MPa after freeze-thaw testing. The relationship between pore size, compressive strength, and compressive strength after freeze-thaw was explored.

  6. Characterization of a salt resistant bacterial strain Proteus sp. NA6 capable of decolorizing reactive dyes in presence of multi-metal stress.

    Science.gov (United States)

    Abbas, Naila; Hussain, Sabir; Azeem, Farrukh; Shahzad, Tanvir; Bhatti, Sajjad Haider; Imran, Muhammad; Ahmad, Zulfiqar; Maqbool, Zahid; Abid, Muhammad

    2016-11-01

    Microbial biotechnologies for the decolorization of textile wastewaters have attracted worldwide attention because of their economic suitability and easiness in handling. However, the presence of high amounts of salts and metal ions in textile wastewaters adversely affects the decolorization efficiency of the microbial bioresources. In this regard, the present study was conducted to isolate salt tolerant bacterial strains which might have the potential to decolorize azo dyes even in the presence of multi-metal ion mixtures. Out of the tested 48 bacteria that were isolated from an effluent drain, the strain NA6 was found relatively more efficient in decolorizing the reactive yellow-2 (RY2) dye in the presence of 50 g L(-1) NaCl. Based on the similarity of its 16S rRNA gene sequence and its position in a phylogenetic tree, this strain was designated as Proteus sp. NA6. The strain NA6 showed efficient decolorization (>90 %) of RY2 at pH 7.5 in the presence of 50 g L(-1) NaCl under static incubation at 30 °C. This strain also had the potential to efficiently decolorize other structurally related azo dyes in the presence of 50 g L(-1) NaCl. Moreover, Proteus sp. NA6 was found to resist the presence of different metal ions (Co(+2), Cr(+6), Zn(+2), Pb(+2), Cu(+2), Cd(+2)) and was capable of decolorizing reactive dyes in the presence of different levels of the mixtures of these metal ions along with 50 g L(-1) NaCl. Based on the findings of this study, it can be suggested that Proteus sp. NA6 might serve as a potential bioresource for the biotechnologies involving bioremediation of textile wastewaters containing the metal ions and salts.

  7. Optimisation of chemical purification conditions for direct application of solid metal salt coagulants: Treatment of peatland-derived diffuse runoff

    Institute of Scientific and Technical Information of China (English)

    Elisangela Heiderscheidt; Jaakko Saukkoriipi; Anna-Kaisa Ronkanen; Bjφrn Klφve

    2013-01-01

    The drainage of peatland areas for peat extraction,agriculture or bioenergy requires affordable,simple and reliable treatment methods that can purify waters rich in particulates and dissolved organic carbon.This work focused on the optimisation of chemical purification process for the direct dosage of solid metal salt coagulants.It investigated process requirements of solid coagulants and the influence of water quality,temperature and process parameters on their performance.This is the first attempt to provide information on specific process requirements of solid coagulants.Three solid inorganic coagulants were evaluated:aluminium sulphate,ferric sulphate and ferric aluminium sulphate.Pre-dissolved aluminium and ferric sulphate were also tested with the objective of identifying the effects of in-line coagulant dissolution on purification performance.It was determined that the pre-dissolution of the coagulants had a significant effect on coagulant performance and process requirements.Highest purification levels achieved by solid coagulants,even at 30% higher dosages,were generally lower (5%-30%) than those achieved by pre-dissolved coagulants.Furthermore,the mixing requirements of coagulants pre-dissolved prior to addition differed substantially from those of solid coagulants.The pH of the water samples being purified had a major influence on coagulant dosage and purification efficiency.Ferric sulphate (70 mg/L) was found to be the best performing solid coagulant achieving the following load removals:suspended solids (59%-88%),total organic carbon (56%-62%),total phosphorus (87%-90%),phosphate phosphorus (85%-92%) and total nitrogen (33%-44%).The results show that the use of solid coagulants is a viable option for the treatment of peatland-derived runoff water if solid coagulant-specific process requirements,such as mixing and settling time,are considered.

  8. Enhanced charging capability of lithium metal batteries based on lithium bis(trifluoromethanesulfonyl)imide-lithium bis(oxalato)borate dual-salt electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Hongfa; Shi, Pengcheng; Bhattacharya, Priyanka; Chen, Xilin; Mei, Donghai; Bowden, Mark E.; Zheng, Jianming; Zhang, Jiguang; Xu, Wu

    2016-06-30

    Rechargeable lithium (Li) metal batteries with conventional LiPF6-carbonate electrolytes have been reported to fail quickly at charging current densities of about 1.0 mA cm-2 and above. In this work, we demonstrate the rapid charging capability of the Li||LiNi0.8Co0.15Al0.05O2 (NCA) cells enabled by a dual-salt electrolyte of LiTFSI-LiBOB in a carbonate solvent mixture. It is found that the thickness of solid electrolyte interphase (SEI) layer on Li metal anode largely increases with increasing charging current density. However, the cells using the LiTFSI-LiBOB dual-salt electrolyte significantly outperforms those using the LiPF6 electrolyte at high charging current densities. At the charging current density of 1.50 mA cm-2, the Li||NCA cells with the dual-salt electrolyte can still deliver a discharge capacity of 131 mAh g-1 and a capacity retention of 80% after 100 cycles, while those with the LiPF6 electrolyte start to show fast capacity fading after the 30th cycle and only exhibit a low capacity of 25 mAh g-1 and a low retention of 15% after 100 cycles. The reasons for the good chargeability and cycling stability of the cells using LiTFSI-LiBOB dual-salt electrolyte can be attributed to the good film-formation ability of the electrolyte on lithium metal anode and the highly conductive nature of the sulfur-rich interphase layer.

  9. 不同矿化度咸水滴灌对盐碱地水盐特性及油葵生长的影响%Effects of drip irrigation with different saline water on salt and water characteristics in saline-alkali soil and oil sunflower growth

    Institute of Scientific and Technical Information of China (English)

    刘娟; 孙兆军; 范秀华

    2015-01-01

    Pointed at large area distribution of Baijiang saline-alkali soil in northern Ningxia ,through the continu-ous 2 years fixed position field experiment ,have researched the effects of different saline water (0 .2、1、2、3、4、5 g·L-1 ) on salt and water characteristics and oil sunflower growth ,with the condition of drip irrigation under plastic film .The re-sults showed that:When using the lower saline water (0 .2、1 g·L-1 ) for drip irrigation ,the soil put up better soil infil-tration performance .As the water mineralization degree increased from 0 .2 g·L-1 to 5 g·L-1 ,the soil water content at 40~60 cm depth was increase at first then decrease .The treatment of lower saline water has showed an obvious effect of salt leaching ,but with high saline water irrigation resulted in large salt accumulation in soil ,which led to the damage of crop growth or even death .Using the micro salty water of 1 g·L-1 for drip irrigation ,could be obtained better growth and rather higher yield .Therefore ,the micro salty water of 1 g·L-1 could be used to plant the oil sunflower by the drip irri-gation under plastic film ,also to reclaim the Baijiang saline-alkali soils .%针对宁夏银北地区大面积分布的白僵土盐碱地,通过连续2年田间定位试验,研究了膜下滴灌条件下,灌溉水矿化度(0.2、1、2、3、4、5 g·L-1)对土壤水盐特性及油葵生长和产量的影响。结果表明,0.2、1 g·L-1的微咸水滴灌时,土壤表现出较好的入渗性能,随灌溉水矿化度从0.2 g·L-1升高到5 g·L-1时,40~60 cm深度处土壤含水量先增加后减小。低矿化度咸水处理表现出了明显的盐分淋洗效果,而高矿化度的咸水灌溉带来了盐分在土壤中的大量积累,导致了作物的生长受阻,甚至死亡。采用矿化度为1 g·L-1的微咸水滴灌,可以获得较好的植物生长和较高产量。因此,采用膜下滴灌的方式,1 g·L-1的微咸水

  10. Dispersibility and flocculability of a trimethy quaternary ammonium salt of wheat-alkali-lignin under microwave irradiation.%微波辐照合成麦草碱木质素三甲基季铵盐的分散与絮凝性能

    Institute of Scientific and Technical Information of China (English)

    任世学; 方桂珍; 马艳丽; 王鹏

    2012-01-01

    以造纸黑液中提取的麦草碱木质素为原料,在微波辐照下合成了麦草碱木质素三甲基季铵盐,检测其絮凝和分散性能。结果表明:麦草碱木质素三甲基季铵盐的表面张力随着质量浓度的增加而降低,当质量浓度为500mg/L时,表面张力为63.64mN/m,水溶液表面张力降低效果不明显;对碳酸钙颗粒具有一定的分散性能,可以将其作为阻垢剂使用;对酸性染料酸性红B和酸性橙GG均有脱色作用,且对酸性橙GG的脱色率更高;质量浓度为300~500mg/L、pH值不高于3时,对质量浓度为1000mg/L的高岭土胶体颗粒悬浮液具有絮凝沉降作用。%The trimethyl quaternary ammonium sah was synthesized under microwave irradiation with wheat- alkali-lignin as raw material, which was extracted from black liquor from the kraft process. Its dispersibility and flocculability were determined: surface tension decreased with the increasing concentration of trimethyl quaternary ammonium salt, degreasing of surface tension was less effective toward water, the surface tension was 63.64 mN/m with its concentration of 500 mg/L;it had a certain dispersion of calcium carbonate particles and can be used as a scale inhibitor; the flocculation of trimethy quaternary ammonium salt was examined by the acid dye of Acid Red B and Acid Orange GG, and the results showed that the acid dye of Acid Red B and Acid Orange GG could be flocculated, and decolorization of Acid Orange GG was higher; the trimethyl quaternary ammonium salt had sedimentation of flocculation with a concentration of 1 000 mg/L kaolin colloidal particle at a concentration of 300 - 500 mg/L with pH values of no more than 3.

  11. Metabolic Profiles Reveal Changes in Wild and Cultivated Soybean Seedling Leaves under Salt Stress.

    Science.gov (United States)

    Zhang, Jing; Yang, Dongshuang; Li, Mingxia; Shi, Lianxuan

    2016-01-01

    Clarification of the metabolic mechanisms underlying salt stress responses in plants will allow further optimization of crop breeding and cultivation to obtain high yields in saline-alkali land. Here, we characterized 68 differential metabolites of cultivated soybean (Glycine max) and wild soybean (Glycine soja) under neutral-salt and alkali-salt stresses using gas chromatography-mass spectrometry (GC-MS)-based metabolomics, to reveal the physiological and molecular differences in salt tolerance. According to comparisons of growth parameters under the two kinds of salt stresses, the level of inhibition in wild soybean was lower than in cultivated soybean, especially under alkali-salt stress. Moreover, wild soybean contained significantly higher amounts of phenylalanine, asparagine, citraconic acid, citramalic acid, citric acid and α-ketoglutaric acid under neutral-salt stress, and higher amounts of palmitic acid, lignoceric acid, glucose, citric acid and α-ketoglutaric acid under alkali-salt stress, than cultivated soybean. Further investigations demonstrated that the ability of wild soybean to salt tolerance was mainly based on the synthesis of organic and amino acids, and the more active tricarboxylic acid cycle under neutral-salt stress. In addition, the metabolite profiling analysis suggested that the energy generation from β-oxidation, glycolysis and the citric acid cycle plays important roles under alkali-salt stress. Our results extend the understanding of mechanisms involved in wild soybean salt tolerance and provide an important reference for increasing yields and developing salt-tolerant soybean cultivars.

  12. Metabolic Profiles Reveal Changes in Wild and Cultivated Soybean Seedling Leaves under Salt Stress.

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    Full Text Available Clarification of the metabolic mechanisms underlying salt stress responses in plants will allow further optimization of crop breeding and cultivation to obtain high yields in saline-alkali land. Here, we characterized 68 differential metabolites of cultivated soybean (Glycine max and wild soybean (Glycine soja under neutral-salt and alkali-salt stresses using gas chromatography-mass spectrometry (GC-MS-based metabolomics, to reveal the physiological and molecular differences in salt tolerance. According to comparisons of growth parameters under the two kinds of salt stresses, the level of inhibition in wild soybean was lower than in cultivated soybean, especially under alkali-salt stress. Moreover, wild soybean contained significantly higher amounts of phenylalanine, asparagine, citraconic acid, citramalic acid, citric acid and α-ketoglutaric acid under neutral-salt stress, and higher amounts of palmitic acid, lignoceric acid, glucose, citric acid and α-ketoglutaric acid under alkali-salt stress, than cultivated soybean. Further investigations demonstrated that the ability of wild soybean to salt tolerance was mainly based on the synthesis of organic and amino acids, and the more active tricarboxylic acid cycle under neutral-salt stress. In addition, the metabolite profiling analysis suggested that the energy generation from β-oxidation, glycolysis and the citric acid cycle plays important roles under alkali-salt stress. Our results extend the understanding of mechanisms involved in wild soybean salt tolerance and provide an important reference for increasing yields and developing salt-tolerant soybean cultivars.

  13. Long range interactions between alkali and alkaline-earth atoms

    CERN Document Server

    Jiang, Jun; Mitroy, J

    2013-01-01

    Dispersion coefficients between the alkali metal atoms (Li-Rb) and alkaline-earth metal atoms (Be-Sr) are evaluated using matrix elements computed from frozen core configuration interaction calculations. Besides dispersion coefficients with both atoms in their respective ground states, dispersion coefficients are also given for the case where one atom is in its ground state and the other atom is in a low lying excited state.

  14. 1-Aminocyclopropane-1-Carboxylate Deaminase from Pseudomonas stutzeri A1501 Facilitates the Growth of Rice in the Presence of Salt or Heavy Metals.

    Science.gov (United States)

    Han, Yunlei; Wang, Rui; Yang, Zhirong; Zhan, Yuhua; Ma, Yao; Ping, Shuzhen; Zhang, Liwen; Lin, Min; Yan, Yongliang

    2015-07-01

    1-Aminocyclopropane-1-carboxylate (ACC) deaminase, which is encoded by some bacteria, can reduce the amount of ethylene, a root elongation inhibitor, and stimulate the growth of plants under various environmental stresses. The presence of ACC deaminase activity and the regulation of ACC in several rhizospheric bacteria have been reported. The nitrogen-fixing Pseudomonas stutzeri A1501 is capable of endophytic association with rice plants and promotes the growth of rice. However, the functional identification of ACC deaminase has not been performed. In this study, the proposed effect of ACC deaminase in P. stutzeri A1501 was investigated. Genome mining showed that P. stutzeri A1501 carries a single gene encoding ACC deaminase, designated acdS. The acdS mutant was devoid of ACC deaminase activity and was less resistant to NaCl and NiCl2 compared with the wild-type. Furthermore, inactivation of acdS greatly impaired its nitrogenase activity under salt stress conditions. It was also observed that mutation of the acdS gene led to loss of the ability to promote the growth of rice under salt or heavy metal stress. Taken together, this study illustrates the essential role of ACC deaminase, not only in enhancing the salt or heavy metal tolerance of bacteria but also in improving the growth of plants, and provides a theoretical basis for studying the interaction between plant growth-promoting rhizobacteria and plants. PMID:25674802

  15. Antimicrobial Effects of Sodium Fluoride, Xylitol and Metals Salts on in Vitro Growth Inhibition, Acid Production and Ultrastructure of Streptococcus mutans

    International Nuclear Information System (INIS)

    This study aimed to evaluate the effects of sodium fluoride (NaF), dietary sugars, sugar alcohols (xylitol and sorbitol) and different metals salts either separately or in combination, by different concentrations at different ph, on the growth inhibition, acid production and ultra structure of Streptococcus mutans. NaF was more effective at low ph, when NaF was added to actively growing Streptococcus mutans broth culture, the growth rate was unaffected by 75 ppm F-, slowed by 150 ppm F-, and immediately arrested by 300 or 600 ppm F-. On the other hand, the best effect of xylitol was at high ph. The effect of xylitol was more marked in the presence of NaF as the acid production was inhibited and the ph did not fall to 5.0. The response of Streptococcus mutans to metals salts was typical of this organism's response to a number of trace metals above optimum concentrations of which may be inhibitory. Synergistic effect observed by addition of metals salts by concentration ranged from 0.2 to 5.0 mML-1, 300 ppm NaF and 5% xylitol. This formula can work at any ph value and causes no drop of the broth culture ph to below 5.0 which is the optimal ph for growth and multiplication of Streptococcus mutans, so this formula worked as ph buffer regulation and growth inhibition for S. mutans. Low concentration of this combined formula after 5 min only at 5.0 and 7.0 ph values caused effective complete destruction of the bacterial viable cells and this effect was observed clearly by Electron Microscope photo graph

  16. Role of alkali hydroxides in the fireside corrosion of heat transfer surfaces, a practical approach

    Energy Technology Data Exchange (ETDEWEB)

    Blomberg, T. [Foster Wheeler Energia Oy (Finland); ASM Microchemistry OY, Espoo (Finland); Makkonen, P. [VTT Processes (Finland); Hiltunen, M. [Foster Wheeler Energia Oy, Karhula (Finland)

    2004-07-01

    In wood and other biomass-based fuels, the amount of potassium is normally high. The amount of potassium may play an important role in the corrosion of heat transfer surfaces located in the flue gas path, especially in the superheater region. The thermodynamic instability of the alkali metal hydroxides in the high vapour pressure of CO{sub 2} atmosphere is relevant only when the flue gas temperature is below 700 h C. The temperature profile of a typical biomass boiler is such that the flue gas entering the convective superheater region has a temperature around 850 C, and it contains alkali metal hydroxides that condense on the tube surfaces. In coal, oil and peat fired boilers the alkali metal hydroxides are converted to sulphates and chlorides, because these fuels do not contain excess of alkali metals like biomass typically does. In the fouling and corrosion risk evaluation of the fuel, the excess of alkali metals gives a better indication than the content of Cl or S. Reason for this are the alkali metal hydroxides present in the process. (orig.)

  17. High current density electrodeposition of silver from silver-containing liquid metal salts with pyridine-N-oxide ligands.

    Science.gov (United States)

    Sniekers, Jeroen; Brooks, Neil R; Schaltin, Stijn; Van Meervelt, Luc; Fransaer, Jan; Binnemans, Koen

    2014-01-28

    New cationic silver-containing ionic liquids were synthesized and used as non-aqueous electrolytes for the electrodeposition of silver layers. In the liquid state of these ionic liquids, a silver (i) cation is coordinated by pyridine-N-oxide (py-O) ligands in a 1 : 3 metal-to-ligand ratio, although in some cases a different stoichiometry of the silver center crystallized out. As anions, bis(trifluoromethanesulfonyl)imide (Tf2N), trifluoromethanesulfonate (OTf), methanesulfonate (OMs) and nitrate were used, yielding compounds with the formulae [Ag(py-O)3][Tf2N], [Ag(py-O)3][OTf], [Ag(py-O)3][OMs] and [Ag(py-O)3][NO3], respectively. The compounds were characterized by CHN analysis, FTIR, NMR, DSC, TGA and the electrodeposition of silver was investigated by cyclic voltammetry, linear potential scans, scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry (EDX). With the exception of [Ag(py-O)3][Tf2N], which melts at 108 °C, all the silver(i) compounds have a melting point below 80 °C and were tested as electrolytes for silver electrodeposition. Interestingly, very high current densities were observed at a potential of -0.5 V vs. Ag/Ag(+) for the compounds with fluorine-free anions, i.e. [Ag(py-O)3][NO3] (current density of -10 A dm(-2)) and [Ag(py-O)3][OMs] (-6.5 A dm(-2)). The maximum current density of the compound with the fluorinated anion trifluoromethanesulfonate, [Ag(py-O)3][OTf], was much lower: -2.5 A dm(-2) at -0.5 V vs. Ag/Ag(+). Addition of an excess of ligand to [Ag(py-O)3][OTf] resulted in the formation of the room-temperature ionic liquid [Ag(py-O)6][OTf]. A current density of -5 A dm(-2) was observed at -0.5 V vs. Ag/Ag(+) for this low viscous silver salt. The crystal structures of several silver complexes could be determined by X-ray diffraction, and it was found that several of them had a stoichiometry different from the 1 : 3 metal-to-ligand ratio used in their synthesis. This indicates that the compounds form crystals

  18. Method for synthesizing metal bis(borano) hypophosphite complexes

    Science.gov (United States)

    Cordaro, Joseph G.

    2013-06-18

    The present invention describes the synthesis of a family of metal bis(borano) hypophosphite complexes. One procedure described in detail is the syntheses of complexes beginning from phosphorus trichloride and sodium borohydride. Temperature, solvent, concentration, and atmosphere are all critical to ensure product formation. In the case of sodium bis(borano) hypophosphite, hydrogen gas was evolved upon heating at temperatures above 150.degree. C. Included in this family of materials are the salts of the alkali metals Li, Na and K, and those of the alkaline earth metals Mg and Ca. Hydrogen storage materials are possible. In particular the lithium salt, Li[PH.sub.2(BH.sub.3).sub.2], theoretically would contain nearly 12 wt % hydrogen. Analytical data for product characterization and thermal properties are given.

  19. Enhanced charging capability of lithium metal batteries based on lithium bis(trifluoromethanesulfonyl)imide-lithium bis(oxalato)borate dual-salt electrolytes

    Science.gov (United States)

    Xiang, Hongfa; Shi, Pengcheng; Bhattacharya, Priyanka; Chen, Xilin; Mei, Donghai; Bowden, Mark E.; Zheng, Jianming; Zhang, Ji-Guang; Xu, Wu

    2016-06-01

    Rechargeable lithium (Li) metal batteries with conventional LiPF6-carbonate electrolytes have been reported to fail quickly at charging current densities of about 1.0 mA cm-2 and above. In this work, we demonstrate the rapid charging capability of Li||LiNi0.8Co0.15Al0.05O2 (NCA) cells can be enabled by a dual-salt electrolyte of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium bis(oxalato)borate (LiBOB) in a carbonate solvent mixture. The cells using the LiTFSI-LiBOB dual-salt electrolyte significantly outperform those using the LiPF6 electrolyte at high charging current densities. At the charging current density of 1.50 mA cm-2, the Li||NCA cells with the dual-salt electrolyte can still deliver a discharge capacity of 131 mAh g-1 and a capacity retention of 80% after 100 cycles. The Li||NCA cells with the LiPF6 electrolyte start to show fast capacity fading after the 30th cycle and only exhibit a low capacity of 25 mAh g-1 and a low retention of 15% after 100 cycles. The reasons for the good chargeability and cycling stability of the cells using the LiTFSI-LiBOB dual-salt electrolyte can be attributed to the good film-formation ability of the electrolyte on the Li metal anode and the highly conductive nature of the sulfur-rich interphase layer.

  20. Carbonation of metal silicates for long-term CO2 sequestration

    Science.gov (United States)

    Blencoe, James G; Palmer, Donald A; Anovitz, Lawrence M; Beard, James S

    2014-03-18

    In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).