WorldWideScience

Sample records for alkali metal isotopes

  1. Enrichment of hydrogen isotopes while decomposition of alkali metal amalgams (Preprint No. CA-11)

    International Nuclear Information System (INIS)

    Sodium amalgam was prepared by electrolyzing caustic soda solution in a cell with flowing mercury as cathode. On decomposition of amalgam with aqueous sodium hydroxide solution in a denuder column packed with graphite pieces, the resultant hydrogen gas was depleted in deuterium. The alkali solution was enriched in deuterium content. The separation of the isotopes of some amalgam forming metals while decomposition of the amalgam of these metals with water has already been described. The separation is due to differential reaction rates of alkali metal amalgams with water containing light and heavy isotopes of hydrogen. However in the present investigation, the separation factor obtained is considerably higher than earlier reported due to possible chemical exchange between resultant hydrogen and the alkali metal hydroxide in presence of graphite surface and/or exchange of water with nascent hydrogen catalysed by OH- ions. (author). 18 refs., 3 tabs., 1 fig

  2. Methods of recovering alkali metals

    Science.gov (United States)

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  3. Upgrading platform using alkali metals

    Science.gov (United States)

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  4. Alkali metal and alkali earth metal gadolinium halide scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  5. Corrosion by the Alkali Metals

    International Nuclear Information System (INIS)

    This is a review of the state of the art of corrosion testing of materials by the alkali metals, the models proposed to explain the observed corrosion results, and the status of materials selection for application in alkali metal-cooled systems. Corrosion of structural and fuel cladding materials by liquid Na and NaK has been studied intensively, but intermittently for the last 18 years. These studies and the liquid-metal-cooled reactors in operation demonstrate that stainless steels can be considered for structural and cladding applications below 650°C. Above this temperature increased corrosion and radiation-induced embrittlement make them unsatisfactory. Corrosion models are reviewed and their inability to explain all the experimental observations discussed. An alternate model is proposed which qualitatively is in agreement with experimental observations. In this model, the rate-controlling step is either the surface reaction of Fe with ''available oxygen'' (dissolved Na2O) to form an Fe-O-Na complex or the rate at which ''available oxygen'' can reach the surface to form the complex; which process is rate controlling depends on the temperature, Na velocity and oxygen concentration in the Na. The solution chemistry of oxygen, carbon and alkali metal-oxygen-transition metal complexes dissolved in the alkali metals is reviewed. ''Molecular'' complexes appear unlikely to exist in solution in the alkali metals, although the thermodynamic tendencies for them to form suggest that stable bonds exist in solution between oxygen, the transition and the alkali metals. The insolubility of carbon in ''oxygen-free'' sodium indicates that carbon transfer may be associated with oxygen in sodium down to very low oxygen levels, although experimental data do not generally confirm this postulate. Corrosion of refractory metals by boiling alkali metals at temperatures above 1000°C is markedly affected by impurities in either the liquid or refractory metal; the addition of Ti, Zr or

  6. Alkali and transition metal phospholides

    International Nuclear Information System (INIS)

    Major tendencies in modern chemistry of alkali and transition metal phospholides (phosphacyclopentadienides) are systematized, analyzed and generalized. Basic methods of synthesis of these compounds are presented. Their chemical properties are considered with a special focus on their complexing ability. Potential applications of phospholides and their derivatives are discussed. The bibliography includes 184 references

  7. Separation of stable isotopes of alkali and alkaline earth metals in chemical exchange systems with crown ethers

    International Nuclear Information System (INIS)

    Chemical isotope exchange in two-phase water - organic systems Men+ (water) - MeLn+ (org), where Me = Li, Ca, K, Mg; L = crown ethers with 5 to 6 oxygen atoms in macrocyclic ring; org = CHCl3, CH2Cl2 has been studied. The process of isotope separation has been realized by extraction chromatography. The chromatographic column contained a fixed aqueous phase. The organic solution of metal complex with crown ether was eluted through the column. On contact with the fixed aqueous phase in the course of chromatography, metal salt reextraction occurred and interphase isotope exchange between aqueous and organic phases resulted. Isotope separation factors in these systems were in the range of: 1.0032 - 1.020 (6Li/7Li), 1.0016 - 1.0038 (40Ca/44Ca), 1.0007 - 1.0011 (39K/41K), 1.0014 - 1.0044 (24Mg/26Mg). The theoretical model has been proposed to interpret the high separation factors in crown ether extraction systems. According to this model, the potential in such systems has a very flat bottom. This type of potential results in weakening the force field and decreasing of β-factor (i.e., (s/s')f) in spite of comparatively high energy of complexation. This model can interpret both high separation factors and their strong dependence on the type of crown ether. (author)

  8. Process for recovering alkali metals and sulfur from alkali metal sulfides and polysulfides

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard; Alvare, Javier

    2016-10-25

    Alkali metals and sulfur may be recovered from alkali monosulfide and polysulfides in an electrolytic process that utilizes an electrolytic cell having an alkali ion conductive membrane. An anolyte solution includes an alkali monosulfide, an alkali polysulfide, or a mixture thereof and a solvent that dissolves elemental sulfur. A catholyte includes molten alkali metal. Applying an electric current oxidizes sulfide and polysulfide in the anolyte compartment, causes alkali metal ions to pass through the alkali ion conductive membrane to the catholyte compartment, and reduces the alkali metal ions in the catholyte compartment. Liquid sulfur separates from the anolyte solution and may be recovered. The electrolytic cell is operated at a temperature where the formed alkali metal and sulfur are molten.

  9. Alkali-metal intercalation in carbon nanotubes

    Science.gov (United States)

    Béguin, F.; Duclaux, L.; Méténier, K.; Frackowiak, E.; Salvetat, J. P.; Conard, J.; Bonnamy, S.; Lauginie, P.

    1999-09-01

    We report on successful intercalation of multiwall (MWNT) and single wall (SWNT) carbon nanotubes with alkali metals by electrochemical and vapor phase reactions. A LiC10 compound was produced by full electrochemical reduction of MWNT. KC8 and CsC8-MWNT first stage derivatives were synthesized in conditions of alkali vapor saturation. Their identity periods and the 2×2 R 0° alkali superlattice are comparable to their parent graphite compounds. The dysonian shape of KC8 EPR line and the temperature-independent Pauli susceptibility are both characteristic of a metallic behavior, which was confirmed by 13C NMR anisotropic shifts. Exposure of SWNT bundles to alkali vapor led to an increase of the pristine triangular lattice from 1.67 nm to 1.85 nm and 1.87 nm for potassium and rubidium, respectively.

  10. Bioinorganic Chemistry of the Alkali Metal Ions.

    Science.gov (United States)

    Kim, Youngsam; Nguyen, Thuy-Tien T; Churchill, David G

    2016-01-01

    The common Group 1 alkali metals are indeed ubiquitous on earth, in the oceans and in biological systems. In this introductory chapter, concepts involving aqueous chemistry and aspects of general coordination chemistry and oxygen atom donor chemistry are introduced. Also, there are nuclear isotopes of importance. A general discussion of Group 1 begins from the prevalence of the ions, and from a comparison of their ionic radii and ionization energies. While oxygen and water molecule binding have the most relevance to biology and in forming a detailed understanding between the elements, there is a wide range of basic chemistry that is potentially important, especially with respect to biological chelation and synthetic multi-dentate ligand design. The elements are widely distributed in life forms, in the terrestrial environment and in the oceans. The details about the workings in animal, as well as plant life are presented in this volume. Important biometallic aspects of human health and medicine are introduced as well. Seeing as the elements are widely present in biology, various particular endogenous molecules and enzymatic systems can be studied. Sodium and potassium are by far the most important and central elements for consideration. Aspects of lithium, rubidium, cesium and francium chemistry are also included; they help in making important comparisons related to the coordination chemistry of Na(+) and K(+). Physical methods are also introduced. PMID:26860297

  11. Bioinorganic Chemistry of the Alkali Metal Ions.

    Science.gov (United States)

    Kim, Youngsam; Nguyen, Thuy-Tien T; Churchill, David G

    2016-01-01

    The common Group 1 alkali metals are indeed ubiquitous on earth, in the oceans and in biological systems. In this introductory chapter, concepts involving aqueous chemistry and aspects of general coordination chemistry and oxygen atom donor chemistry are introduced. Also, there are nuclear isotopes of importance. A general discussion of Group 1 begins from the prevalence of the ions, and from a comparison of their ionic radii and ionization energies. While oxygen and water molecule binding have the most relevance to biology and in forming a detailed understanding between the elements, there is a wide range of basic chemistry that is potentially important, especially with respect to biological chelation and synthetic multi-dentate ligand design. The elements are widely distributed in life forms, in the terrestrial environment and in the oceans. The details about the workings in animal, as well as plant life are presented in this volume. Important biometallic aspects of human health and medicine are introduced as well. Seeing as the elements are widely present in biology, various particular endogenous molecules and enzymatic systems can be studied. Sodium and potassium are by far the most important and central elements for consideration. Aspects of lithium, rubidium, cesium and francium chemistry are also included; they help in making important comparisons related to the coordination chemistry of Na(+) and K(+). Physical methods are also introduced.

  12. Recovery of alkali metal constituents from catalytic coal conversion residues

    Science.gov (United States)

    Soung, W.Y.

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  13. Alkali metals in fungi of forest soil

    International Nuclear Information System (INIS)

    The high affinity of forest soil fungi for alkali metals such as potassium, rubidium, caesium as well as radiocaesium is shown and discussed. Good positive correlation was found between K: Rb concentration ratios in soil and in fungi, when correlation between K: Cs concentration ratios was less pronounced. (LN)

  14. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  15. Cathode architectures for alkali metal / oxygen batteries

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  16. Electrodes For Alkali-Metal Thermoelectric Converters

    Science.gov (United States)

    Williams, Roger M.; Wheeler, Bob L.; Jeffries-Nakamura, Barbara; Lamb, James L.; Bankston, C. Perry; Cole, Terry

    1989-01-01

    Combination of thin, porous electrode and overlying collector grid reduces internal resistance of alkali-metal thermoelectric converter cell. Low resistance of new electrode and grid boosts power density nearly to 1 W/cm2 of electrode area at typical operating temperatures of 1,000 to 1,300 K. Conductive grid encircles electrode film on alumina tube. Bus wire runs along tube to collect electrical current from grid. Such converters used to transform solar, nuclear, and waste heat into electric power.

  17. Superconductivity in alkali metal intercalated iron selenides

    Science.gov (United States)

    Krzton-Maziopa, A.; Svitlyk, V.; Pomjakushina, E.; Puzniak, R.; Conder, K.

    2016-07-01

    Alkali metal intercalated iron selenide superconductors A x Fe2‑y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  18. COMPLEX FLUORIDES OF PLUTONIUM AND AN ALKALI METAL

    Science.gov (United States)

    Seaborg, G.T.

    1960-08-01

    A method is given for precipitating alkali metal plutonium fluorides. such as KPuF/sub 5/, KPu/sub 2/F/sub 9/, NaPuF/sub 5/, and RbPuF/sub 5/, from an aqueous plutonium(IV) solution by adding hydrogen fluoride and alkali-metal- fluoride.

  19. High-Order Dispersion Coefficients for Alkali-metal Atoms

    Institute of Scientific and Technical Information of China (English)

    KANG Shuai; DING Chi-Kun; CHEN Chang-Yong; WU Xue-Qing

    2013-01-01

    High-order dispersion coefficients C9,C11,C12,and C13 for the ground-state alkali-metals were calculated by combining the l-dependent model potential of alkali-metal atoms and linear variation method based on B-spline basis functions.The results were compared.

  20. Alkali cation specific adsorption onto fcc(111) transition metal electrodes.

    Science.gov (United States)

    Mills, J N; McCrum, I T; Janik, M J

    2014-07-21

    The presence of alkali cations in electrolyte solutions is known to impact the rate of electrocatalytic reactions, though the mechanism of such impact is not conclusively determined. We use density functional theory (DFT) to examine the specific adsorption of alkali cations to fcc(111) electrode surfaces, as specific adsorption may block catalyst sites or otherwise impact surface catalytic chemistry. Solvation of the cation-metal surface structure was investigated using explicit water models. Computed equilibrium potentials for alkali cation adsorption suggest that alkali and alkaline earth cations will specifically adsorb onto Pt(111) and Pd(111) surfaces in the potential range of hydrogen oxidation and hydrogen evolution catalysis in alkaline solutions.

  1. Hall Determination of Atomic Radii of Alkali Metals

    Science.gov (United States)

    Houari, Ahmed

    2008-01-01

    I will propose here an alternative method for determining atomic radii of alkali metals based on the Hall measurements of their free electron densities and the knowledge of their crystal structure. (Contains 2 figures.)

  2. Ternary alkali-metal and transition metal or metalloid acetylides as alkali-metal intercalation electrodes for batteries

    Energy Technology Data Exchange (ETDEWEB)

    Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z

    2015-02-10

    Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.

  3. Two-phase alkali-metal experiments in reduced gravity

    Energy Technology Data Exchange (ETDEWEB)

    Antoniak, Z.I.

    1986-06-01

    Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity.

  4. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    Science.gov (United States)

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  5. Elucidation of transport mechanism and enhanced alkali ion transference numbers in mixed alkali metal-organic ionic molten salts.

    Science.gov (United States)

    Chen, Fangfang; Forsyth, Maria

    2016-07-28

    Mixed salts of Ionic Liquids (ILs) and alkali metal salts, developed as electrolytes for lithium and sodium batteries, have shown a remarkable ability to facilitate high rate capability for lithium and sodium electrochemical cycling. It has been suggested that this may be due to a high alkali metal ion transference number at concentrations approaching 50 mol% Li(+) or Na(+), relative to lower concentrations. Computational investigations for two IL systems illustrate the formation of extended alkali-anion aggregates as the alkali metal ion concentration increases. This tends to favor the diffusion of alkali metal ions compared with other ionic species in electrolyte solutions; behavior that has recently been reported for Li(+) in a phosphonium ionic liquid, thus an increasing alkali transference number. The mechanism of alkali metal ion diffusion via this extended coordination environment present at high concentrations is explained and compared to the dynamics at lower concentrations. Heterogeneous alkali metal ion dynamics are also evident and, somewhat counter-intuitively, it appears that the faster ions are those that are generally found clustered with the anions. Furthermore these fast alkali metal ions appear to correlate with fastest ionic liquid solvent ions. PMID:27375042

  6. Neuropsychiatric manifestations of alkali metal deficiency and excess

    Energy Technology Data Exchange (ETDEWEB)

    Yung, C.Y.

    1984-01-01

    The alkali metals from the Group IA of the periodic table (lithium, sodium, potassium, rubidium, cesium and francium) are reviewed. The neuropsychiatric aspects of alkali metal deficiencies and excesses (intoxications) are described. Emphasis was placed on lithium due to its clinical uses. The signs and symptoms of these conditions are characterized by features of an organic brain syndrome with delirium and encephalopathy prevailing. There are no clinically distinctive features that could be reliably used for diagnoses. Sodium and potassium are two essential alkali metals in man. Lithium is used as therapeutic agent in bipolar affective disorders. Rubidium has been investigated for its antidepressant effect in a group of psychiatric disorders. Cesium is under laboratory investigation for its role in carcinogenesis and in depressive illness. Very little is known of francium due to its great instability for experimental study.

  7. Transport properties of alkali metal doped fullerides

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Daluram, E-mail: daluramyadav@gmail.com; Yadav, Nishchhal, E-mail: somyadav@gmail.com [School of studies in Physics, Vikram University, Ujjain (M.P) India (India)

    2015-07-31

    We have studied the intercage interactions between the adjacent C{sub 60} cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C{sub 60} phonons. We considered a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. Coulomb repulsive parameter and the electron phonon coupling strength are obtained within the random phase approximation. Transition temperature, T{sub c}, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C{sub 60} phonons as 5 K, which is much lower as compared to reported T{sub c} (20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. The importance of the present study, the pressure effect and normal state transport properties are calculated within the same model leading superconductivity.

  8. Aqueous alkali metal hydroxide insoluble cellulose ether membrane

    Science.gov (United States)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1969-01-01

    A membrane that is insoluble in an aqueous alkali metal hydroxide medium is described. The membrane is a resin which is a water-soluble C2-C4 hydroxyalkyl cellulose ether polymer and an insolubilizing agent for controlled water sorption, a dialytic and electrodialytic membrane. It is particularly useful as a separator between electrodes or plates in an alkaline storage battery.

  9. Density functional study of ferromagnetism in alkali metal thin films

    Indian Academy of Sciences (India)

    Prasenjit Sen

    2010-04-01

    Electronic and magnetic structures of (1 0 0) films of K and Cs, having thicknesses of one to seven layers, are calculated within the plane-wave projector augmented wave (PAW) formalism of the density functional theory (DFT), using both local spin density approximation (LSDA) and the PW91 generalized gradient approximation (GGA). Only a six-layer Cs film is found to have a ferromagnetic (FM) state which is degenerate with a paramagnetic (PM) state within the accuracy of these calculations. These results are compared with those obtained from calculations on a finite-thickness uniform jellium model (UJM), and it is argued that within LSDA or GGA, alkali metal thin films cannot be claimed to have an FM ground state. Relevance of these results to the experiments on transition metal-doped alkali metal thin films and bulk hosts are also discussed.

  10. Alkali Metal Coolants. Proceedings of the Symposium on Alkali Metal Coolants - Corrosion Studies and System Operating Experience

    International Nuclear Information System (INIS)

    Proceedings of a Symposium organized by the IAEA and held in Vienna, 28 November - 2 December 1966. The meeting was attended by 107 participants from 16 countries and two international organizations. Contents: Review papers (2 papers); Corrosion of steels and metal alloys (6 papers); Mass transfer in alkali metal systems, behaviour of carbon (5 papers); Effects of sodium environment on mechanical properties of materials (3 papers); Effect of water leakage into sodium systems (2 papers); Design-and operation of testing apparatus (6 papers); Control, measurements and removal of impurities (13 papers); Corrosion by other alkali metals: NaK, K, Li, Cs (6 papers); Behaviour of fission products (3 papers). Each paper is in its original language (32 English, 6 French and 8 Russian) and is preceded by an abstract in English and one in the original language if this is not English. Discussions are in English. (author)

  11. Chemical compatibility of structural materials in alkali metals

    International Nuclear Information System (INIS)

    The objectives of this task are to (a) evaluate the chemical compatibility of structural alloys such as V-5 wt.%Cr-5 wt.%Ti alloy and Type 316 stainless steel for application in liquid alkali metals such as lithium and sodium-78 wt.% potassium (NaK) at temperatures in the range that are of interest for International Thermonuclear Experimental Reactor (ITER); (b) evaluate the transfer of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen between structural materials and liquid metals; and (c) evaluate the effects of such transfers on the mechanical and microstructural characteristics of the materials for long-term service in liquid-metal-environments

  12. Synthesis, structure peculiarities and electric conductivity of alkali metal-rare earth silicates (germanates)

    International Nuclear Information System (INIS)

    The process of obtaining of rare earth-alkali metal silicates (germanates) is studied. The analysis of possibilities of structural disordering of alkaline cations in these structures is given. The interaction of the structure of different by the composition alkali alkali metal - rare earth silicates with electric conductivity values is shown

  13. Synthesis and Structural Characterization of Alkali Metal Guanidinates

    Institute of Scientific and Technical Information of China (English)

    LUO,Yun-Jie; YAO,Ying-Ming; ZHANG,Yong; SHEN,Qi

    2007-01-01

    Reactions of 1,3-diisopropylcarbodiimide with alkali metal amides,MN(SiMe3)2(M=Li or Na)in hexane or THF produced the alkali metal guanidinates{(j-PrN)2C[N(SiMe3)2]Li}2(1)and{(i-PrN)2C[N(SiMe3)2]Na(THF)}2(2)in nearly quantitative yields.Both complexes 1 and 2 were well characterized by elemental analysis,IR spectra,1H and 13C NMR spectra,and X-ray diffraction.It was found that the guanidinates adopt different coordination modes in these complexes.

  14. Polarizabilities and hyperpolarizabilities of the alkali metal atoms

    Energy Technology Data Exchange (ETDEWEB)

    Fuentealba, P. (Chile Univ., Santiago (Chile). Departamento de Fisica and Centro de Mecanica Cuantica Aplicada (CMCA)); Reyes, O. (Chile Univ., Santiago (Chile). Dept. de Fisica)

    1993-08-14

    The electric static dipole polarizability [alpha], quadrupole polarizability C, dipole-quadrupole polarizability B, and the second dipole hyperpolarizability [gamma] have been calculated for the alkali metal atoms in the ground state. The results are based on a pseudopotential which is able to incorporate the very important core-valence correlation effect through a core polarization potential, and, in an empirical way, the main relativistic effects. The calculated properties compare very well with more elaborated calculations for the Li atom, excepting the second hyperpolarizability [gamma]. For the other atoms, there is neither theoretical nor experimental information about most of the higher polarizabilities. Hence, the results of this paper should be seen as a first attempt to give a complete account of the series expansion of the interaction energy of an alkali metal atom and a static electric field. (author).

  15. Inner-shell excitation of alkali-metal atoms

    International Nuclear Information System (INIS)

    Inner-shell excitation of alkali-metal atoms, which leads to auto-ionization, is reviewed. The validity of quantum mechanical approximation is analyzed and the importance of exchange and correlation is demonstrated. Basic difficulties in making accurate calculations for inner-shell excitation process are discussed. Suggestions are made for further study of inner-shell process in atoms and ions. (author). 26 refs, 4 figs, 1 tab

  16. The unexpected properties of alkali metal iron selenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Dagotto, Elbio R [ORNL

    2013-01-01

    The iron-based superconductors that contain FeAs layers as the fundamental building block in the crystal structures have been rationalized in the past using ideas based on the Fermi surface nesting of hole and electron pockets when in the presence of weak Hubbard U interactions. This approach seemed appropriate considering the small values of the magnetic moments in the parent compounds and the clear evidence based on photoemission experiments of the required electron and hole pockets. However, recent results in the context of alkali metal iron selenides, with generic chemical composition AxFe2ySe2 (A alkali metal element), have challenged those previous ideas since at particular compositions y the low-temperature ground states are insulating and display antiferromagnetic order with large iron magnetic moments. Moreover, angle-resolved photoemission studies have revealed the absence of hole pockets at the Fermi level in these materials. The present status of this exciting area of research, with the potential to alter conceptually our understanding of the ironbased superconductors, is here reviewed, covering both experimental and theoretical investigations. Other recent related developments are also briefly reviewed, such as the study of selenide two-leg ladders and the discovery of superconductivity in a single layer of FeSe. The conceptual issues considered established for the alkali metal iron selenides, as well as several issues that still require further work, are discussed.

  17. Process for carbonaceous material conversion and recovery of alkali metal catalyst constituents held by ion exchange sites in conversion residue

    Science.gov (United States)

    Sharp, David W.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  18. Dirac Node Lines in Pure Alkali Earth Metals.

    Science.gov (United States)

    Li, Ronghan; Ma, Hui; Cheng, Xiyue; Wang, Shoulong; Li, Dianzhong; Zhang, Zhengyu; Li, Yiyi; Chen, Xing-Qiu

    2016-08-26

    Beryllium is a simple alkali earth metal, but has been the target of intensive studies for decades because of its unusual electron behavior at surfaces. The puzzling aspects include (i) severe deviations from the description of the nearly free-electron picture, (ii) an anomalously large electron-phonon coupling effect, and (iii) giant Friedel oscillations. The underlying origins for such anomalous surface electron behavior have been under active debate, but with no consensus. Here, by means of first-principles calculations, we discover that this pure metal system, surprisingly, harbors the Dirac node line (DNL) that in turn helps to rationalize many of the existing puzzles. The DNL is featured by a closed line consisting of linear band crossings, and its induced topological surface band agrees well with previous photoemission spectroscopy observations on the Be (0001) surface. We further reveal that each of the elemental alkali earth metals of Mg, Ca, and Sr also harbors the DNL and speculate that the fascinating topological property of the DNL might naturally exist in other elemental metals as well. PMID:27610865

  19. Efficient destruction of CF4 through in situ generation of alkali metals from heated alkali halide reducing mixtures.

    Science.gov (United States)

    Lee, Myung Churl; Choi, Wonyong

    2002-03-15

    Perfluorocarbons (PFCs) are the most potent green house gases that are very recalcitrant at destruction. An effective way of converting PFCs using hot solid reagents into safe products has been recently introduced. By investigating the thermal reductive destruction of tetrafluoromethane (CF4) we provided new insight and more physicochemical consideration on this novel process. The complete destruction of CF4was successfully achieved by flowing the gas through a heated reagent bed (400-950 degrees C) that contained powder mixtures of alkali halides, CaO, and Si. The silicon acted as a reducing agent of alkali halides for the in-situ production of alkali metals, and the calcium oxide played the role of a halide ion acceptor. The absence of any single component in this ternary mixture drastically reduced the destruction efficiency of CF4. The CF4 destruction efficiencies with the solid reagent containing the alkali halide, MX, increased in the order of Li approximately Na < K < Cs for alkali cations and I < Br < Cl < F for halide anions. This trend agreed with the endothermicity of the alkali metal generation reaction: the higher the endothermicity, the lower the destruction efficiency. Alkali metal generation was indirectly detected by monitoring H2 production from its reaction with water. The production of alkali metals increased with NaF, KF, and CsF in this order. The CsF/CaO/Si system exhibited the complete destruction of CF4 at as low as 600 degrees C. The solid product analysis by X-ray diffraction (XRD) showed the formation of CaF2 and the depletion of Si with black carbon particles formed in the solid reagent residue. No CO/CO2 and toxic HF and SiF4 formation were detected in the exhaust gas. PMID:11944694

  20. Fluid Composititon and Carbon & Oxygen Isotope Geochemistry of Cenozoic Alkali Basalts in Eastern China

    Institute of Scientific and Technical Information of China (English)

    张铭杰; 王先彬; 等

    1999-01-01

    The fluid compositions of Cenozoic alkali basalts in eastern China have been determined by the pyrolysis-MS method,meanwhile the carbon and oxygen isotopic compositions of CO2 released from these samples at different heating temperatures have been analyzed by the vacuum step-heating method.The data show the volatiole heterogeneity in upper-mantle sources and different evolution trends of alkali basaltic magmas in eastern China,and these alkali basaltic magmas may be generated in the oxidizing milieu,as compared with mantle-derived xenoliths in these alkali basalts,and exotic volatile components were mixed into these magmas in the process of their formation and development.

  1. Method for preparation of melts of alkali metal chlorides with highly volatile polyvalent metal chlorides

    International Nuclear Information System (INIS)

    A method for production of alkali metal (Cs, Rb, K) chloride melts with highly volatile polyvalent metal chlorides is suggested. The method consists, in saturation of alkali metal chlorides, preheated to the melting point, by volatile component vapours (titanium tetrachloride, molybdenum or tantalum pentachloride) in proportion, corresponding to the composition reguired. The saturation is realized in an evacuated vessel with two heating areas for 1-1.5 h. After gradual levelling of temperature in both areas the product is rapidly cooled. 1 fig.; 1 tab

  2. Integrated oil production and upgrading using molten alkali metal

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard

    2016-10-04

    A method that combines the oil retorting process (or other process needed to obtain/extract heavy oil or bitumen) with the process for upgrading these materials using sodium or other alkali metals. Specifically, the shale gas or other gases that are obtained from the retorting/extraction process may be introduced into the upgrading reactor and used to upgrade the oil feedstock. Also, the solid materials obtained from the reactor may be used as a fuel source, thereby providing the heat necessary for the retorting/extraction process. Other forms of integration are also disclosed.

  3. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed

  4. Work function of alkali metal-adsorbed molybdenium dichalcogenides

    Science.gov (United States)

    Kim, Sol; Jhi, Seung-Hoon

    2015-03-01

    The lowest work function of materials, reported so far over the last few decades, is an order of 1eV experimentally and theoretically. Designing materials that has work-function less than 1eV is essential in the thermionic energy conversion. To explore new low work function materials, we study MoX2(X =S, Se, Te) adsorbed with alkali metals (Li, Na, K, Rb and Cs), and investigate the charge transfer, the formation of surface dipole, and the change in work function using first-principles calculations. It is found that the charge transfer from alkali metals to MoX2substrates decreases as the atomic number of adsorbates increases. Regardless of the amount of the charge transfer, K on MoTe2 exhibits the biggest surface dipole moment, which consequently makes the surface work function the lowest. We show that the formation of the surface dipole is a key in changing the work function. We find the trimerization of Mo atoms in the substrate with the lowest work-function, which may contribute to enhancement of the surface dipole.

  5. Alkali Metal Complexes: Mixed Ligand Complexes of Some Alkali Metal Salts of Some Organic Acids with Isonitroso-PMethylace to phenone

    Directory of Open Access Journals (Sweden)

    O.P. Gupta

    2016-02-01

    Full Text Available A number of mixed ligand complexes of alkali metal salts of o-nitrophenol,2,4-dinitrophenol, 2,4,6,- trinitrophenol, 1-nitroso-2- naphthol and 8- hydroxyquinoline with Insoniroso–p methylacetopheone have been synthesized in absolute ethanol & characterized by elemental analysis and I .B. spectral data. Their I.R spectral data indicate the presence of hydrogen bonding in them, which many be one of the dominant factors of their stability. Further appreciable shift in 1650 cm-1 band (possibly vC=O and 1600 cm-1 band (possibly vC=NSuggests their coordination behavior in these mixed ligand complexes The reactions that take place in natural systems are highly specific and selective. Alkali metal ions actively participate in most of the reaction occurring in the biological systems, which are dominated by mixed ligand complexes. Studies of such mixed ligand complexes of alkali metals can threw light in understanding the role and mechanism of selective absorption of alkali metals ions by plants Coordinating ability of alkali metal with isonitrosoacetophenone1-2 and transition metals with isonitrosoacetophenone3 and isonitroso-p-methylacetophenone4 have been reported earlier. In the present paper we report the mixed ligand complexes of alkali metal salts having the general formula ML.HL, ‘ where M=Li, Na & K and L=deprotonated o- nitrophenol, 2,4 dinitrophenol, 2, 4, 6- trinitrophenol, 1-nitroso-2-naphthol or 8- hydroxquinoline; HL’= p -MeHINAP (isonitroso-p-methylacetophenone.

  6. Continuation of Atomic Spectroscopy on Alkali Isotopes at ISOLDE

    CERN Multimedia

    2002-01-01

    Laser optical measurements on Rb, Cs and Fr have already been performed at ISOLDE in 1978-79. The hyperfine structure and isotope shift of |7|6|-|9|8Rb, |1|1|8|-|1|4|5Cs, |2|0|8|-|2|1|3Fr and 14 of their isomers have been studied. Among the wealth of information which has been obtained, the most important are the first observation of an optical transition of the element Fr, the evidence of the onset of nuclear deformation at N~=~60 for Rb isotopes and the shape isomerism isotopes. \\\\ \\\\ From both the atomic and nuclear physics point of view, new studies seem very promising: \\item - the search for new optical transitions in Fr; the shell effect in the rms charge radius at N~=~126 for Fr isotopes \\item - the study of a possible onset of deformation for Cs isotopes beyond |1|4|5Cs \\item - the study of a region of static deformation in neutron-deficient Rb isotopes. \\\\ \\\\ \\end{enumerate} A new apparatus has been built. The principle remains the same as used in our earlier experiments. The improvements concern ess...

  7. Ion-exchange behavior of alkali metals on treated carbons

    International Nuclear Information System (INIS)

    The ion-exchange behavior of trace quantities of the alkali-metal ions sodium and cesium, on activated carbon impregnated with zirconium phosphate (referred to here as ZrP), was studied. Impregnated carbon had twice as much ion-exchange activity as unimpregnated, oxidized carbon, and 10 times as much as commercial activated carbons. The distribution coefficient of sodium increased with increasing pH; the distribution coefficient of cesium decreased with increasing pH. Sodium and cesium were separated with an electrolytic solution of 0.1 M HCl. Preliminary studies indicated that 0.2 M potassium and cesium can also be separated. Distribution coefficients of the supported ZrP were determined by the elution technique and agreed within 20% of the values for pure ZrP calculated from the literature

  8. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references

  9. Momentum densities and Compton profiles of alkali-metal atoms

    International Nuclear Information System (INIS)

    It is assumed that the dynamics of valence electrons of alkali-metal atoms can be well accounted for by a quantum-defect theoretic model while the core electrons may be supposed to move in a self-consistent field. This model is used to study the momentum properties of atoms from 3Li to 37Rb. The numerical results obtained for the momentum density, moments of momentum density and Compton profile are found to be in good agreement with the results of more detailed configuration-interaction calculations for the atom 3Li. Similar results for 11Na, 19K and 37Rb are compared with the corresponding Hartree-Fock-Roothan values only, for want of data from other realistic calculations. (author)

  10. Relativistic optimized effective potential method-application to alkali metals.

    Science.gov (United States)

    Ködderitzsch, D; Ebert, H; Akai, H; Engel, E

    2009-02-11

    We present a relativistic formulation of the optimized effective potential method (ROEP) and its implementation within the Korringa-Kohn-Rostoker multiple scattering formalism. The scheme is an all-electron approach, treating core and band states formally on the same footing. We use exact exchange (EXX) as an approximation to the exchange correlation functional. Numerical four-component wavefunctions for the description of core and valence electrons and the corresponding ingredients of the ROEP integral equation are employed. The exact exchange expression for the valence states is reformulated in terms of the electronic Green's function that in turn is evaluated by making use of multiple scattering formalism. We present and discuss the application of the formalism to non-magnetic alkali metals. PMID:21715911

  11. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references.

  12. Calculation of Interaction Parameters from Immiscible Phase Diagram of Alkali Metal or Alkali Earth Metal-Halide System by Means of Subregular Solution Model

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, the interaction parameters in the subregular solution model, λ1 and λ2, are regarded as a linear function of temperature, T. Therefore, the molar excess Gibbs energy of A-B binary system may be reexpressed as follows: The calculation of the model parameters, λ11, λ12, λ21 and λ22, was carried out numerically from the phase diagrams for 11 alkali metal-alkali halide or alkali earth metal-halide systems.In addition, artificial neural network trained by known data has been used to predict the values of these model parameters. The predicted results are in good agreement with the.calculated ones. The applicability of the subregular solution model to the alkali metal-alkali halide or alkali earth metal-halide systems were tested by comparing the available experimental composition along the boundary of miscibility gap with the calculated ones which were obtained by using genetic algorithm. The good agreement between the calculated and experimental results across the entire liquidus is valid evidence in support of the model.

  13. Structural properties of low-density liquid alkali metals

    Indian Academy of Sciences (India)

    A Akande; G A Adebayo; O Akinlade

    2005-12-01

    The static structure factors of liquid alkali metals have been modelled at temperatures close to their melting points and a few higher temperatures using the reverse Monte Carlo (RMC) method. The positions of 5000 atoms in a box, with full periodicity, were altered until the experimental diffraction data of the structure factor agrees with the associated model structure factor within the errors. The model generated is then analysed. The position of the first peak of the pair distribution function () does not show any significant temperature dependence and the mean bond lengths can be approximated within an interval of 3.6–5.3 Å, 4.5–6.6 Å, 4.8–6.7 Å and 5.1–7.3 Å for Na, K, Rb and Cs respectively. The cosine bond distributions show similar trend with the flattening up of the first peak with increase in temperature. In addition, the coordination numbers of these liquid metals are high due to the presence of non-covalent bonding between them. On the average, we surmise that the coordination number decreases with increase in temperature.

  14. Field emission properties of capped carbon nanotubes doped by alkali metals:a theoretical investigation

    Institute of Scientific and Technical Information of China (English)

    Jin Lei; Fu Hong-Gang; Xie Ying; Yu Hai-Tao

    2012-01-01

    The electronic structures and field emission properties of capped CNT55 systems with or without alkali metal atom adsorption were systematically investigated by density functional theory calculation.The results indicate that the adsorption of alkali metal on the center site of a CNT tip is energetically favorable.In addition,the adsorption energies increase with the introduction of the electric field.The excessive negative charges on CNT tips make electron emittance much easier and result in a decrease in work function.Furthermore,the inducing effect by positively charged alkali metal atoms can be reasonably considered as the dominant reason for the improvement in field emission properties.

  15. The alkali and alkaline earth metal doped ZnO nanotubes: DFT studies

    Science.gov (United States)

    Peyghan, Ali Ahmadi; Noei, Maziar

    2014-01-01

    Doping of several alkali and alkaline earth metals into sidewall of an armchair ZnO nanotube has been investigated by employing the density functional theory in terms of energetic, geometric, and electronic properties. It has been found that doping processes of the alkali and alkaline metals are endothermic and exothermic, respectively. Based on the results, contrary to the alkaline metal doping, the electronic properties of the tube are much more sensitive to alkali metal doping so that it is transformed from intrinsic semiconductor with HOMO-LUMO energy gap of 3.77 eV to an extrinsic semiconductor with the energy gap of ~1.11-1.95 eV. The doping of alkali and alkaline metals increases and decreases the work function of the tube, respectively, which may influence the electron emission from the tube surface.

  16. The alkali and alkaline earth metal doped ZnO nanotubes: DFT studies

    Energy Technology Data Exchange (ETDEWEB)

    Peyghan, Ali Ahmadi [Department of Chemistry, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Noei, Maziar, E-mail: noeimaziar@gmail.com [Department of Chemistry, Mahshahr Branch, Islamic Azad University, Mahshahr (Iran, Islamic Republic of)

    2014-01-01

    Doping of several alkali and alkaline earth metals into sidewall of an armchair ZnO nanotube has been investigated by employing the density functional theory in terms of energetic, geometric, and electronic properties. It has been found that doping processes of the alkali and alkaline metals are endothermic and exothermic, respectively. Based on the results, contrary to the alkaline metal doping, the electronic properties of the tube are much more sensitive to alkali metal doping so that it is transformed from intrinsic semiconductor with HOMO–LUMO energy gap of 3.77 eV to an extrinsic semiconductor with the energy gap of ∼1.11–1.95 eV. The doping of alkali and alkaline metals increases and decreases the work function of the tube, respectively, which may influence the electron emission from the tube surface.

  17. Method and composition for testing for the presence of an alkali metal

    International Nuclear Information System (INIS)

    A method and composition for detecting the presence of an alkali metal on the surface of a body such as a metal plate, tank, pipe or the like is provided. The method comprises contacting the surface with a thin film of a liquid composition comprising a light-colored pigment, an acid-base indicator, and a nonionic wetting agent dispersed in a liquid carrier comprising a minor amount of water and a major amount of an organic solvent selected from the group consisting of the lower aliphatic alcohols, ketones and ethers. Any alkali metal present on the surface in elemental form or as an alkali metal hydroxide or alkali metal carbonate will react with the acid-base indicator to produce a contrasting color change in the thin film, which is readily discernible by visual observation or automatic techniques

  18. A contribution to the surface characterization of alkali metal sulfates

    Energy Technology Data Exchange (ETDEWEB)

    Fantauzzi, Marzia; Rigoldi, Americo; Elsener, Bernhard; Atzei, Davide; Rossi, Antonella, E-mail: rossi@unica.it

    2014-03-01

    Highlights: • Full electronic characterization of alkali metals sulfates by X-ray photoelectron spectroscopy and X-ray induced Auger electron spectroscopy. • Curve-fitting of SKLL signals makes possible to clarify the role of the cation in the series of alkali metal sulfates. • Differences in the binding energies and Auger parameter are discussed in terms of the electronic properties and the polarizability of the cation. • The line intensities are analyzed and a thorough quantitative analysis is presented. - Abstract: The analytical characterization of surfaces of sulfur-bearing samples that present sulfides, polysulfides and/or elemental sulfur as reaction products can be difficult by simply relying on the binding energy of the S2p X-ray photoelectron signals, due to the small chemical shifts. In such cases the Auger parameter concept can be used to distinguish among different chemical states, but this requires a model to curve fit complex Auger SKLL signals in order to resolve the contributions arising from sulfur in different chemical states on the surface. With this scope a detailed X-ray photoelectron spectroscopy (XPS) and X-ray induced Auger electron spectroscopy (XAES) surface analytical study of the group IA sulfates is presented in this paper. Sulfates were chosen as model compounds for curve fitting the X-ray induced SKLL spectra since in these compounds sulfur is present in a unique chemical state. For the first time the multicomponent SKLL spectra are fitted with model functions consisting of an intense {sup 1}D and a low intensity {sup 1}S contribution with constant energy difference of 8 eV. It was found that the kinetic energy of the SK{sub 2,3}L{sub 2,3} ({sup 1}D) line increases from 2105.1 ± 0.1 to 2107.5 ± 0.2 eV whereas the corresponding S2p{sub 3/2} binding energy decreases from 169.5 ± 0.1 eV for Li{sub 2}SO{sub 4} to 167.8 ± 0.1 eV for Cs{sub 2}SO{sub 4}. Shifts to lower binding energy values are observed also for S2p, S2s and O1

  19. Modification of alkali metals on silicon-based nanoclusters: An enhanced nonlinear optical response

    Science.gov (United States)

    Li, Xiaojun; Han, Quan; Yang, Xiaohui; Song, Ruijuan; Song, Limei

    2016-08-01

    Structures, chemical stabilities and nonlinear optical properties of alkali metals-adsorbed niobium-doped silicon (M@SinNb+) clusters are investigated using the DFT methods. The alkali metals prefer energetically to be attached as bridged bond rather than M-Si single bond in most of optimized structures. Adsorption of alkali metals on doped silicon clusters gradually enhances their chemical stabilities with increasing cluster size. Noteworthily, the first hyperpolarizabilities (βtot) of the M@SinNb+ clusters, obtained by using the long-range corrected CAM-B3LYP functional, are large enough to establish their strong nonlinear optical behavior, especially for M@Si9Nb+ (M = Li, Na, and K), and the enhanced βtot ordering by alkali metals is Na > K > Li.

  20. Superconductivity of graphite intercalation compounds with alkali-metal amalgams

    International Nuclear Information System (INIS)

    Superconductivity of the alkali-metal amalgam graphite intercalation compounds of stage 1 (C4KHg, C4RbHg) and stage 2 (C8KHg, C8RbHg) has been studied as well as that of the pristine amalgams (KHg, RbHg). The transition temperatures are 0.73, 0.99, 1.90, and 1.40 K for C4KHg, C4RbHg, C8KHg, and C8RbHg, respectively. The critical-field anisotropy ratio H/sup parallel//sub c/2/H/sup perpendicular//sub c/2 is about 10 for the stage 1 and about 15 to 40 for the stage 2. It is argued that electrons in the intercalant bands rather than the graphitic bands play the main role in the superconductivity. An interesting feature is that the stage-2 compound, which has a lower density of states at the Fermi level, has a higher transition temperature than the corresponding state-1 compound

  1. Electrochemistry of ytterbium (III) in molten alkali metal chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Smolenski, V.; Novoselova, A. [Institute of High-Temperature Electrochemistry, Ural Division, Russian Academy of Science, Ekaterinburg, 620219 (Russian Federation); Osipenko, A. [Research Institute of Atomic Reactors, Dimitrovgrad-10, Ulyanovsk Region, 433010 (Russian Federation); Caravaca, C. [High Level Waste Unit, Nuclear Fission Division, CIEMAT, Madrid, 28040 (Spain); Cordoba, G. de [High Level Waste Unit, Nuclear Fission Division, CIEMAT, Madrid, 28040 (Spain)], E-mail: g.cordoba@ciemat.es

    2008-12-30

    This work presents the electrochemical study of Yb(III) ions in molten alkali metal chlorides in the temperature range 723-1073 K. Transient electrochemical techniques such as linear sweep, cyclic and square wave voltammetry, and potentiometry at zero current have been used to investigate the reduction mechanism, transport parameters and thermodynamic properties of the reaction YbCl{sub 2} + 1/2Cl{sub 2} = YbCl{sub 3} The results obtained show that the reduction reaction Yb(III) + e{sup -} {r_reversible} Yb(II) is reversible being controlled by the rate of the mass transfer. The diffusion coefficient of [YbCl{sub 6}]{sup 3-} complex ions has been determined at different temperatures in the fused eutectic LiCl-KCl, the equimolar NaCl-KCl and the CsCl media. The apparent standard potential of the soluble-soluble redox system Yb(III)/Yb(II) has been obtained by cyclic voltammetry. The influence of the nature of the solvent on the electrochemical and thermodynamic properties of ytterbium compounds is discussed.

  2. Corrosion in alkali metal/molybdenum heat pipes

    International Nuclear Information System (INIS)

    Molybdenum/sodium (Mo/Na) and molybdenum/lithium (Mo/Li) heat pipes have been operated for long periods of time in a study of their resistance to failure by alkali metal corrosion. Some Mo/Na heat pipes have operated over 20,600 h at 1400 K without failure, while at least one similar heat pipe failed in less than 14 hours at 1435 K. Detailed post-mortem analyses which have been performed on three failed Mo/Na heat pipes all indicated impurity controlled corrosion of their evaporators. Impurities observed to be transported included carbon, oxygen, and silicon. A Mo/Li heat pipe that failed after 25,216 h of operation at 1700 K was also examined in detail. This failure was due to nickel impurities being transported to the evaporator resulting in perforation of the container tube by the formation of a low melting Mo-Ni alloy. Theoretical thermochemical calculations were conducted for these systems with the objective of corroborating the corrosion mechanisms in both types of heat pipes. The results of these calculations are in general agreement with the observed corrosion a phenomena

  3. Properties of Hydrated Alkali Metals Aimed at the Ion Channel Selectivity

    Institute of Scientific and Technical Information of China (English)

    AN Hai-Long; LIU Yu-Zhi; ZHANG Su-Hua; ZHAN Yong; ZHANG Hai-Lin

    2008-01-01

    The hydration structure properties of different alkali metal ions with eight water molecules and potassium ions with different numbers of water molecules are studied using the mixed density functional theory, B3LYP, with 6-311G basis set. The hydration structures are obtained from structure optimization and the optimum numbers of water molecules in the innermost hydration shell for the alkali metal ions are found. Some useful information about the ion channel selectivity is presented.

  4. The effect of the alkali metal cation on the electrocatalytic oxidation of formate on platinum

    OpenAIRE

    Previdello, B.; E. Machado; Varela, H.

    2014-01-01

    Non-covalent interactions between hydrated alkali metal cations and adsorbed oxygenated species on platinum might considerably inhibit some electrocatalytic reactions. We report in this communication the effect exerted by electrolyte alkali metal cations on the electro-oxidation of formate ions on platinum. The system was investigated by means of cyclic voltammetry and chronoamperometry in the presence of an electrolyte containing Li+, Na+, or K+. As already observed for other systems, the ge...

  5. Design of low work function materials using alkali metal-doped transition metal dichalcogenides

    Science.gov (United States)

    Kim, Sol; Lee, Man Young; Lee, Seong; Jhi, Seung-Hoon

    Engineering the work function is a key issue in surface science. Particularly, discovering the materials that have work functions less than 1eV is essential for efficient thermionic energy conversion. The lowest work function of materials, reported so far, is in a range of about 1eV. To design low work function materials, we chose MX2 (M =Mo and W; X =S, Se and Te) as substrates and alkali metals (Li, Na, K, Rb and Cs) as dopants, and studied their electronic structures, charge transfer, induced surface dipole moment, and work function using first-principles calculations. We found that the charge transfer from alkali metals to MX2 substrates decreases as the atomic radius of alkali metals increases. Regardless of the amount of the charge transfer, K on WTe2 exhibits the biggest surface dipole moment, which consequently makes the surface work function the lowest. Also, we found a correlation between the binding distance and the work function.

  6. On the origin of alkali metals in Europa exosphere

    Science.gov (United States)

    Ozgurel, Ozge; Pauzat, Françoise; Ellinger, Yves; Markovits, Alexis; Mousis, Olivier; LCT, LAM

    2016-10-01

    At a time when Europa is considered as a plausible habitat for the development of an early form of life, of particular concern is the origin of neutral sodium and potassium atoms already detected in its exosphere (together with magnesium though in smaller abundance), since these atoms are known to be crucial for building the necessary bricks of prebiotic species. However their origin and history are still poorly understood. The most likely sources could be exogenous and result from the contamination produced by Io's intense volcanism and/or by meteoritic bombardment. These sources could also be endogenous if these volatile elements originate directly from Europa's icy mantle. Here we explore the possibility that neutral sodium and potassium atoms were delivered to the satellite's surface via the upwelling of ices formed in contact with the hidden ocean. These metallic elements would have been transferred as ions to the ocean at early epochs after Europa's formation, by direct contact of water with the rocky core. During Europa's subsequent cooling, the icy layers formed at the top of the ocean would have kept trapped the sodium and potassium, allowing their future progression to the surface and final identification in the exosphere of the satellite. To support this scenario, we have used chemistry numerical models based on first principle periodic density functional theory (DFT). These models are shown to be well adapted to the description of compact ice and are capable to describe the trapping and neutralization of the initial ions in the ice matrix. The process is found relevant for all the elements considered, alkali metals like Na and K, as well as for Mg and probably for Ca, their respective abundances depending essentially of their solubility and chemical capabilities to blend with water ices.

  7. Effects of Heavy Metals and Saline-alkali on Growth, Physiology and Biochemistry of Orychophragmus violaceus

    Institute of Scientific and Technical Information of China (English)

    Xiaoai ZHANG; Zhihui WANG; Xinquan ZHANG; Mingyang Ll; Jing ZUO

    2012-01-01

    Abstract [Oh.jective] The aim was to study on effects of heavy metals and saline-al- kali on growth, physiology and biochemistry of Orychophragmus violaceus. [Method] Taken Orychophragmus violaceus as materials, growth, physiology and biochemistry were explored under stress of saline-alkali and heavy metals (light, moderate and se- vere saline-alkali, Pb, Pb + Cd, light saline-alkali + Pb, moderate saline-alkali + Pb, severe saline-alkali + Pb, light saline-alkali + Pb + Cd, moderate saline-alkali + Pb + Cd and severe saline-alkali + Pb + Cd) with control group set. [Result] Light stress of saline-alkali had little effect on membrane permeability, as follows: MDA contents in leaves and root systems declined by 25.6% and 9.0% compared with control group; Pb (500 mg/L) stress promoted synthetization of photosynthetic pigments, as follows: chlorophyll a and b and carotenoid increased by 0.86%, 0.69% and 6.25% than those of control group; combined stresses of Pb and Cd destroyed synthetization of photosynthetic pigments, among which carotenoid was more sensitive; under com- bined stresses of saline-alkali, Pb and Cd, POD and SOD activities, soluble saccha- rides and Pro content all increased and activities of POD and SOD in root system were both higher than those in leaves. [Conclusion] Orychophragmus violaceus is with resistance against light combined stresses of saline-alkali and Pb (500 mg/L).

  8. Half metallic ferromagnetism in alkali metal nitrides MN (M = Rb, Cs): A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Murugan, A., E-mail: rrpalanichamy@gmail.com; Rajeswarapalanichamy, R., E-mail: rrpalanichamy@gmail.com; Santhosh, M., E-mail: rrpalanichamy@gmail.com; Sudhapriyanga, G., E-mail: rrpalanichamy@gmail.com [Department of Physics, N.M.S.S.V.N College, Madurai, Tamilnadu-625019 (India); Kanagaprabha, S. [Department of Physics, Kamaraj College, Tuticorin, Tamil Nadu-628003 (India)

    2014-04-24

    The structural, electronic and elastic properties of two alkali metal nitrides (MN: M= Rb, Cs) are investigated by the first principles calculations based on density functional theory using the Vienna ab-initio simulation package. At ambient pressure the two nitrides are stable in ferromagnetic state with CsCl structure. The calculated lattice parameters are in good agreement with the available results. The electronic structure reveals that these materials are half metallic in nature. A pressure-induced structural phase transition from CsCl to ZB phase is observed in RbN and CsN.

  9. Properties of solvated electrons, alkali anions and other species in metal solutions and kinetics of cation and electron exchange reactions. Final report

    International Nuclear Information System (INIS)

    The properties of solutions of alkali metals in amine solvents were studied by optical, ETR, NMR and electrochemical methods. Complexation of the alkali cations by crown ethers and cryptands permitted the preparation of concentrated solutions of alkali metals in amine and ether solvents. Extensive alkali metal NMR studies of the exchange of M+ with crown-ethers and cryptands and of the alkali metal anion, M-, were made. The first crystalline salt of an alkali metal anion, Na+ Cryptand [2.2.2]Na- was synthesized and characterized and led to the preparation of other alkali metal anion salts. This research provided the foundation for continuing studies of crystalline alkalide salts

  10. Hydration number of alkali metal ions determined by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2008-01-01

    In aqueous solutions, the alkali metals ions are associated with a number of H2O molecules. A distinction is made between a primary solvent shell, (or inner solvation shell), consisting of H2O molecules directly coordinated to the metal ion, and a secondary (or outer) solvation shell, consisting....... The solvation of alkali metal ions has been discussed for many years without a clear consensus. This work presents a systematic study of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS......-). The technique of Electrochemical Quartz Crystal Microbalance (EQCM) has been used to simultaneously determine the mass entering a film of PPy(DBS), and the charge during the first reduction. The method determines the total mass of metal ions and H2O entering the film quite accurately. The charge inserted allows...

  11. Behavior of Alkali Metals and Ash in a Low-Temperature Circulating Fluidized Bed (LTCFB) Gasifier

    DEFF Research Database (Denmark)

    Narayan, Vikas; Jensen, Peter Arendt; Henriksen, Ulrik Birk;

    2016-01-01

    , the low reactor temperature ensures that high-alkali biomass fuels canbe used without risk of bed defluidization. This paper presents the first investigation of the fate of alkali metals and ash in lowtemperaturegasifiers. Measurements on bed material and product gas dust samples were made on a 100 k......A low-temperature circulating fluidized bed system (LTCFB) gasifier allows for pyrolysis and gasification to occurat low temperatures, thereby improving the retention of alkali and other inorganic elements within the system and minimizingthe amount of ash species in the product gas. In addition...

  12. Distribution and uptake of {sup 137}Cs in relation to alkali metals in a perhumid montane forest ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Chao, J.H. [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 30013, Taiwan (China)], E-mail: jhchao@mx.nthu.edu.tw; Chiu, C.Y. [Research Center for Biodiversity, Academia Sinica, Taipei 11529, Taiwan (China); Lee, H.P. [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2008-10-15

    We determined the content of radiocesium ({sup 137}Cs) and alkali metals in soils, plants (2 ferns, a shrub and moss) and rainwater collected in an undisturbed forest ecosystem. The {sup 137}Cs activity and the isotopic ratio of {sup 137}Cs/Cs in the samples were used to interpret the distribution and uptake of {sup 137}Cs and the alkali metals in plants. As a whole, the {sup 137}Cs in plants was assimilated together with K but was not dependent on Cs. Different adaptations of fern species collected in ecological niches cause them to have different {sup 137}Cs/Cs ratios. Diplopterygium glaucum is distributed at the edges of the forest; it usually has shallow organic layers, and the root takes up more stable Cs from mineral layers, leading to lower {sup 137}Cs/Cs ratios than that in the understory Plagiogyria formosana and Rhododendron formosanum species. The steady supply of stable Cs through the uptake by D. glaucum from deep soils may gradually dilute the {sup 137}Cs concentration and thus explain the lower {sup 137}Cs/Cs ratio in the fern samples. The {sup 137}Cs is predicted to be proportional to the Cs content across plant species in the biological cycle once isotopic equilibrium is attained.

  13. Alkali and heavy metal emissions of the PCFB-process; Alkali- ja raskasmetallipaeaestoet PCFB-prosessista

    Energy Technology Data Exchange (ETDEWEB)

    Kuivalainen, R.; Eriksson, T.; Lehtonen, P. [Foster Wheeler Energia Oy, Karhula (Finland)

    1997-10-01

    Pressurized Circulating Fluidized Bed (PCFB) combustion technology has been developed in Karhula R and D Center since 1986. As part of the development, 10 MW PCFB test facility was built in 1989. The test facility has been used for performance testing with different coal types through the years 1990-1995 in order to gain data for design and commercialization of the high-efficiency low-emission PCFB combustion technology. The main object of the project was to measure vapor phase Na and K concentrations in the PCFB flue gas after hot gas filter and investigate the effects of process conditions and sorbents on alkali release. The measurements were performed using plasma assisted method of TUT Laboratory of Plasma Technology and wet absorption method of VTT Energy. The measurements were carried out during three test campaigns at PCFB Test Facility in Karhula. In autumn 1995 both VTT and TUT methods were used. The measurements of the following test period in spring 1996 were performed by VTT, and during the last test segment in autumn 1996 TUT method was in use. During the last test period, the TUT instrument was used as semi-continuous (3 values/minute) alkali analyzer for part of the time. The measured Na concentrations were below 30 ppb(w) in all measured data points. The results of K were below 10 ppb(w). The accuracies of the both methods are about +50 % at this concentration range. The scatter of the data covers the effects of different process variables on the alkali emission. The measured emissions are at the same order of magnitude as the guideline emission limits estimated by gas turbine manufacturers

  14. Rb-Sr Isotopic Systematics of Alkali-Rich Fragments in the Yamato-74442 LL-Chondritic Breccia

    Science.gov (United States)

    Yokoyama, T.; Misawa, K.; Okano, O.; Shih, C.-Y.; Nyquist, L. E.; Simo, J. I.; Tappa, M. J.; Yoneda, S.

    2012-01-01

    Alkali-rich igneous fragments were identified in the brecciated LL-chondrites, Kr henberg (LL5)], Bhola (LL3-6) and Yamato (Y)-74442 (LL4), and show characteristic fractionation patterns of alkaline elements. The K-Rb-Cs-rich fragments in Kr henberg, Bhola, and Y-74442 are very similar in mineralogy and petrography (olivine + pyroxene + glass), suggesting that they could have come from related precursor materials. We have undertaken Rb-Sr isotopic studies on alkali-rich fragments in Y-74442 to precisely determine their crystallization ages and the isotopic signatures of their precursor material(s).

  15. Lattice-gas model for alkali-metal fullerides: face-centered-cubic structure

    OpenAIRE

    Udvardi, Laszlo; Szabo, Gyorgy

    1995-01-01

    A lattice-gas model is suggested for describing the ordering phenomena in alkali-metal fullerides of face-centered-cubic structure assuming the electric charge of alkali ions residing in either octahedral or tetrahedral interstitial sites is completely screened by the first-neighbor C_60 molecules. This approximation allows us to derive an effective ion-ion interaction. The van der Waals interaction between the ion and C_60 molecule is characterized by introducing an additional energy at the ...

  16. Determination of membrane hydration numbers of alkali metal ions by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen; Junaid Mohamed Jafeen, Mohamed; Careem, M.A.

    2010-01-01

    In aqueous solutions, the alkali metals ions, Li+, Na+, K+, Rb+ and Cs+ are known to be associated with a number of H2O molecules. Traditionally, a distinction is made between a primary solvent shell, (or inner solvation shell), consisting of H2O molecules directly coordinated to the metal ion...... may depend on the details of ion hydration. Although the solvation of alkali metal ions in aqueous solution has been discussed for many years, there is still no clear consensus. Part of the discrepancy is simply that different methods measure over different time scales, and therefore do...... not necessarily define the same hydration shell. This work presents a systematic study of one special variant of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS-). The technique...

  17. Alkali Metal Backup Cooling for Stirling Systems - Experimental Results

    Science.gov (United States)

    Schwendeman, Carl; Tarau, Calin; Anderson, William G.; Cornell, Peggy A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  18. Saturated vapor pressure above the amalgam of alkali metals in discharge lamps

    Science.gov (United States)

    Gavrish, S. V.

    2011-12-01

    A theoretical and numerical analysis of the evaporation process of two-component compounds in vapors of alkali metals in discharge lamps is presented. Based on the developed mathematical model of calculation of saturated vapor pressure of the metal above the amalgam, dependences of mass fractions of the components in the discharge volume on design parameters and thermophysical characteristics of the lamp are obtained.

  19. Hyperfine-frequency shifts of alkali-metal atoms during long-range collisions

    CERN Document Server

    McGuyer, B H

    2013-01-01

    Collisions with chemically inert atoms or molecules change the hyperfine coupling of an alkali-metal atom through the hyperfine-shift interaction. This interaction is responsible for the pressure shifts of the microwave resonances of alkali-metal atoms in buffer gases, is an important spin interaction in alkali-metal--noble-gas van der Waals molecules, and is anticipated to enable the magnetoassociation of ultracold molecules such as RbSr. An improved estimate is presented for the long-range asymptote of this interaction for Na, K, Rb, and Cs. To test the results, the change in hyperfine coupling due to a static electric field is estimated and reasonable agreement is found.

  20. Ionic conduction in alkali metal doped ZnFe/sub 2/O/sub 4/ compound

    International Nuclear Information System (INIS)

    Zinc ferric oxide (ZnFe/sub 2/O/sub 4/) has been synthesized by liquid phase chemical reaction from aqueous mixture of zinc chloride and ferric chloride in sodium hydroxide (4N) solution and effect of alkali metal on electrical characteristics was explored. The well characterized powder was pressed into pellets and dried at 80 degree C. Samples with alkali metal concentrations 10-100 ppm have been investigated to I-V measurements. The conductivity of pure compound (10-/sub 2/omega-cm)/sup-1/) lies in the semiconductor range but due to alkali metal doping the compound shows ionic conduction at room temperature. The ionic conduction is found to be increased as the dopant concentration increases.(author)

  1. A hetero-alkali-metal version of the utility amide LDA: lithium-potassium diisopropylamide.

    Science.gov (United States)

    Armstrong, David R; Kennedy, Alan R; Mulvey, Robert E; Robertson, Stuart D

    2013-03-14

    Designed to extend the synthetically important alkali-metal diisopropylamide [N(i)Pr(2); DA] class of compounds, the first example of a hetero-alkali-metallic complex of DA has been prepared as a partial TMEDA solvate. Revealed by an X-ray crystallographic study, its structure exists as a discrete lithium-rich trinuclear Li(2)KN(3) heterocycle, with TMEDA only solvating the largest of the alkali-metals, with the two-coordinate lithium atoms being close to linearity [161.9(2)°]. A variety of NMR spectroscopic studies, including variable temperature and DOSY NMR experiments, suggests that this new form of LDA maintains its integrity in non-polar hydrocarbon solution. This complex thus represents a rare example of a KDA molecule which is soluble in non-polar medium without the need for excessive amounts of solubilizing Lewis donor being added.

  2. Geochemical Trace of Silicon Isotopes of Intrusions and Ore Veins Related to Alkali-rich Porphyry Deposits in Western Yunnan, China

    Institute of Scientific and Technical Information of China (English)

    LIU Xianfan; YANG Zhengxi; LIU Jiaduo; WU Dechao; ZHANG Chenjiang; LI Youguo

    2004-01-01

    Western Yunnan is the well-known polymetallic province in China. It is characterized by copper-gold mineralization related to Cenozoic alkali-rich porphyry. This paper analyzes the silicon isotope data obtained from four typical alkali-rich porphyry deposits based on the dynamic fractionation principle of silicon isotope. The study shows that the ore materials should originate mainly from alkali-rich magmas, together with silicon-rich mineralizing fluids.The process of mineralization was completed by auto-metasomatism, i.e. silicon-rich mineralizing fluids (including alkali-rich porphyry and wall-rock strata) replaced and altered the country rocks and contaminated with crustal rocks during the crystallization of alkali-rich magmas. Such a process is essentially the continuance of the metasomatism of mantle fluids in crust's mineralization. This provides important evidence of silicon isotopic geochemistry for better understanding the mineralization of the Cenozoic alkali-rich porphyry polymetallic deposits

  3. Ternary Amides Containing Transition Metals for Hydrogen Storage: A Case Study with Alkali Metal Amidozincates.

    Science.gov (United States)

    Cao, Hujun; Richter, Theresia M M; Pistidda, Claudio; Chaudhary, Anna-Lisa; Santoru, Antonio; Gizer, Gökhan; Niewa, Rainer; Chen, Ping; Klassen, Thomas; Dornheim, Martin

    2015-11-01

    The alkali metal amidozincates Li4 [Zn(NH2)4](NH2)2 and K2[Zn(NH2)4] were, to the best of our knowledge, studied for the first time as hydrogen storage media. Compared with the LiNH2-2 LiH system, both Li4 [Zn(NH2)4](NH2)2-12 LiH and K2[Zn(NH2)4]-8 LiH systems showed improved rehydrogenation performance, especially K2[Zn(NH2)4]-8 LiH, which can be fully hydrogenated within 30 s at approximately 230 °C. The absorption properties are stable upon cycling. This work shows that ternary amides containing transition metals have great potential as hydrogen storage materials.

  4. Thermochemistry of complex oxides of uranium(6), arsenic and alkali metals

    International Nuclear Information System (INIS)

    Standard reaction enthalpies for stoichiometric mixtures of mono-potassium orthoarsenate, uranium(6) and alkali metal nitrate oxides as well as mixtures of complex oxides of the M1AsUO6 (M1 = Li, Na, K, Rb, Cs) general formulas and potassium nitrate with hydrofluoric acid are determined in adiabatic calorimeter at the temperature of 298.15 K. Standard enthalpies for formation of complex oxides of uranium(6), arsenic and alkali metals at the temperature of 298.15 K are calculated by the obtained results. 8 refs., 1 tab

  5. Saturated vapor pressure over molten mixtures of GaCl3 and alkali metal chlorides

    International Nuclear Information System (INIS)

    Volatilities of GaCl3 and alkali metal chlorides over diluted (up to 3 mol %) solutions of GaCl3 in LiCl, NaCl, KCl, RbCl, and CsCl were measured at 1100 K by dynamic and indirect static methods. Chemical composition of saturated vapor over the mixed melts was determined. Partial pressures of the components were calculated. Their values depend essentially on specific alkali metal cation and on concentration of GaCl3; their variation permits altering parameters of GaCl3 distillation from the salt melt in a wide range

  6. Antiproton and proton collisions with the alkali-metal atoms Li, Na, and K

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Saenz, Alejandro

    2008-01-01

    Single-electron ionization and excitation cross sections as well as cross sections for excitation into the first excited p state of the alkali-metal atoms Li(2s), Na(3s), and K(4s) colliding with antiprotons and protons were calculated using a time-dependent channel-coupling approach. For antipro......Single-electron ionization and excitation cross sections as well as cross sections for excitation into the first excited p state of the alkali-metal atoms Li(2s), Na(3s), and K(4s) colliding with antiprotons and protons were calculated using a time-dependent channel-coupling approach...

  7. Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene

    Science.gov (United States)

    Sahin, H.; Peeters, F. M.

    2013-02-01

    The adsorption characteristics of alkali, alkaline-earth, and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, work function, and dipole moment of the metal adsorbed silicene sheets. Alkali metals, Li, Na, and K, adsorb to hollow sites without any lattice distortion. As a consequence of the significant charge transfer from alkalis to silicene, metalization of silicene takes place. Trends directly related to atomic size, adsorption height, work function, and dipole moment of the silicene/alkali adatom system are also revealed. We found that the adsorption of alkaline-earth metals on silicene is entirely different from their adsorption on graphene. The adsorption of Be, Mg, and Ca turns silicene into a narrow gap semiconductor. Adsorption characteristics of eight transition metals Ti, V, Cr, Mn, Fe, Co, Mo, and W are also investigated. As a result of their partially occupied d orbital, transition metals show diverse structural, electronic, and magnetic properties. Upon the adsorption of transition metals, depending on the adatom type and atomic radius, the system can exhibit metal, half-metal, and semiconducting behavior. For all metal adsorbates, the direction of the charge transfer is from adsorbate to silicene, because of its high surface reactivity. Our results indicate that the reactive crystal structure of silicene provides a rich playground for functionalization at nanoscale.

  8. Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project

    DEFF Research Database (Denmark)

    Hummelshøj, Jens Strabo; Landis, David; Voss, Johannes;

    2009-01-01

    We present a computational screening study of ternary metal borohydrides for reversible hydrogen storage based on density functional theory. We investigate the stability and decomposition of alloys containing 1 alkali metal atom, Li, Na, or K (M1); and 1 alkali, alkaline earth or 3d/4d transition...

  9. Oxidative coal desulfurization using lime to regenerate alkali metal hydroxide from reaction product

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, S.

    1980-07-22

    A process for the removal of pyrite from coal comprises (A) preparing an aqueous slurry containing finely divided coal particles; (B) adding to the slurry an alkali metal hydroxide selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide, as well as mixtures thereof, in amounts sufficient to continuously maintain the pH of the slurry at a value of below about 8; (C) agitating the slurry while treating the slurry with oxygen or an oxygen-containing gas at substantially atmospheric pressuresand at a slightly elevated temperature of at least about 70/sup 0/C to convert the pyrite in the coal to a soluble alkali metal sulfate; (D) reacting lime with the so-formed alkali metal sulfate to regenerate the alkali metal hydroxide; and (E) recycling the hydroxide for further use in the process, whereby pyrite is effectively removed and the hydroxide conveniently regenerated with the inhibiting effect of calcium ions therein upon the oxygen leaching of said pyritic sulfur from coal being overcome at said pH, the reaction rate being enhanced by the use of said elevated temperature.

  10. Phonon dispersion in alkali metals and their equiatomic sodium-based binary alloys

    Institute of Scientific and Technical Information of China (English)

    Aditya M. VORA

    2008-01-01

    In the present article, the theoretical calcula-tions of the phonon dispersion curves (PDCs) of five alkali metals viz. Li, Na, K, Rb, Cs and their four equia-tomic sodium-based binary alloys viz. Na0.5Li0.5,Na0.5K0.5, Na0.5Rb0.5 and Na0.5Cs0.5 to second order in a local model potential is discussed in terms of the real-space sum of the Born yon Karman central force con-stants. Instead of the concentration average of the force constants of pure alkali metals, the pseudo-alloy-atom (PAA) is adopted to directly compute the force constants of the four equiatomic sodium based binary alloys and was successfully applied. The exchange and correlation functions due to the Hartree (H) and Ichimaru-Utsumi (IU) are used to investigate the influence of the screening effects. The phonon frequencies of alkali metals and their four equiatomic sodium-based binary alloys in the longit-udinal branch are more sensitive to the exchange and cor-relation effects in comparison with the transverse branches. The PDCs of pure alkali metals are found in qualitative agreement with the available experimental data. The frequencies in the longitudinal branch are sup-pressed rather due to IU-screening function than those due to static H-screening function.

  11. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    Science.gov (United States)

    Cassano, Anthony A.

    1985-01-01

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs.

  12. Alkali metal ion binding to glutamine and glutamine derivatives investigated by infrared action spectroscopy and theory

    NARCIS (Netherlands)

    Bush, M. F.; Oomens, J.; Saykally, R. J.; Williams, E. R.

    2008-01-01

    The gas-phase structures of alkali-metal cationized glutamine are investigated by using both infrared multiple photon dissociation (TRMPD) action spectroscopy, utilizing light generated by a free electron laser, and theory. The IRMPD spectra contain many similarities that are most consistent with gl

  13. Long-range interactions between excited helium and alkali-metal atoms

    KAUST Repository

    Zhang, J.-Y.

    2012-12-03

    The dispersion coefficients for the long-range interaction of the first four excited states of He, i.e., He(2 1,3S) and He(2 1,3P), with the low-lying states of the alkali-metal atoms Li, Na, K, and Rb are calculated by summing over the reduced matrix elements of the multipole transition operators. For the interaction between He and Li the uncertainty of the calculations is 0.1–0.5%. For interactions with other alkali-metal atoms the uncertainty is 1–3% in the coefficient C5, 1–5% in the coefficient C6, and 1–10% in the coefficients C8 and C10. The dispersion coefficients Cn for the interaction of He(2 1,3S) and He(2 1,3P) with the ground-state alkali-metal atoms and for the interaction of He(2 1,3S) with the alkali-metal atoms in their first 2P states are presented in this Brief Report. The coefficients for other pairs of atomic states are listed in the Supplemental Material.

  14. Modified PVA-CA blend ultrafiltration membrane by alkali metal chloride

    Institute of Scientific and Technical Information of China (English)

    张启修; 邱运仁

    2003-01-01

    The modified PVA-CA blend ultrafiltration membranes were prepared by phase inversion from the casting solutions consisting of polyvinyl alcohol(PVA), cellulose acetate(CA), acetic acid, alkali metal chloride and water. The effects of different concentration of alkali metal chloride on the properties of membranes were investigated. The results show that when the mass fraction of the salt in the casting solution is not greater than 1%, the property of rejection of the alkali metal salt modified ultrafiltration PVA-CA blend membrane has little change compared with that of the unmodified PVA-CA blend membrane, but the permeation flux is much greater than that of the unmodified membrane under the same operation condition. When the mass fraction of the salt is greater than 1.5%, the permeate flux increases much greater than that of the unmodified membrane, but the property of rejection of the modified ultrafiltration membrane decreases greatly. The results also show that the contact angle of the salt modified PVA-CA blend UF membrane decreases but the swelling in water increases with the increment of the mass fraction of alkali metal salts. Furthermore, the NaCl modified PVA-CA blend membrane has a slightly lower swelling and a little smaller contact angle of water than the KCl modified PVA-CA blend membrane does when the mass fraction of salts is the same.

  15. Unidirectional thermal expansion in KZnB3O6: role of alkali metals.

    Science.gov (United States)

    Lou, Yanfang; Li, Dandan; Li, Zhilin; Zhang, Han; Jin, Shifeng; Chen, Xiaolong

    2015-12-14

    The driving force of the unidirectional thermal expansion in KZnB3O6 has been studied experimentally and theoretically. Our results show that the low-energy vibrational modes of alkali metals play a crucial role in this unusual thermal behavior. PMID:26515521

  16. Croconic acid and alkali metal croconate salts: some new insights into an old story.

    Science.gov (United States)

    Braga, Dario; Maini, Lucia; Grepioni, Fabrizia

    2002-04-15

    The solid-state structures of a series of alkali metal salts of the croconate dianion (C(5)O(5)(2-)) and of croconic acid (H(2)C(5)O(5)) have been determined. The alkali metal croconates were obtained by ring contraction of rhodizonic acid (H(2)C(6)O(6)), upon treatment with alkali metal hydroxides and recrystallisation from water. The novel species Na(2)C(5)O(5) x 2H(2)O, Rb(2)C(5)O(5) and Cs(2)C(5)O(5), as well as the mixed hydrogencroconate/croconate salt K(3)(HC(5)O(5))(C(5)O(5)) small middle dot2 H(2)O are described and compared with the Li(+), K(+) and NH(4)(+) salts. Single crystals of croconic acid were obtained by crystallisation of croconic acid in the presence of HCl. Crystal structure determinations showed that the C(5)O(5)(2-) ions tend to organize themselves in columns. The interplanar separations lie in the narrow range 3.12-3.42 A and do not necessarily reflect the presence of pi-stacking interactions. It is argued that the small interplanar separation is the result of a compromise between packing of flat croconate units and the spherical cations together with the water molecules that fill the coordination spheres of the alkali metal atoms. PMID:11933108

  17. Alkali Metal Carbenoids: A Case of Higher Stability of the Heavier Congeners.

    Science.gov (United States)

    Molitor, Sebastian; Gessner, Viktoria H

    2016-06-27

    As a result of the increased polarity of the metal-carbon bond when going down the group of the periodic table, the heavier alkali metal organyl compounds are generally more reactive and less stable than their lithium congeners. We now report a reverse trend for alkali metal carbenoids. Simple substitution of lithium by the heavier metals (Na, K) results in a significant stabilization of these usually highly reactive compounds. This allows their isolation and handling at room temperature and the first structure elucidation of sodium and potassium carbenoids. The control of stability was used to control reactivity and selectivity. Hence, the Na and K carbenoids act as selective carbene-transfer reagents, whereas the more labile lithium systems give rise to product mixtures. Additional fine tuning of the M-C interaction by means of crown ether addition further allows for control of the stability and reactivity. PMID:27100278

  18. A simple alkali-metal and noble gas ion source for SIMS equipments with mass separation of the primary ions

    International Nuclear Information System (INIS)

    An alkali-metal ion source working without a store of alkali-metals is described. The alkali-metal ions are produced by evaporation of alkali salts and ionization in a low-voltage arc discharge stabilized with a noble gas plasma or in the case of small alkali-metal ion currents on the base of the well known thermic ionization at a hot tungsten wire. The source is very simple in construction and produces a stable ion current of 0.3 μA for more than 100 h. It is possible to change the ion species in a short time. This source is applicable to all SIMS equipments using mass separation for primary ions. (author)

  19. Characteristic thermoluminescence of gamma-irradiated alumina ceramics doped with some alkali metals

    Science.gov (United States)

    Henaish, B. A.; El-Agrami, A. M.; Abdel-Fattah, W. I.; Osiris, W. G.

    1994-07-01

    Thermoluminescence properties of pure Al2O3-ceramic discs doped with some oxides of alkali metals and B were investigated. Two groups of samples were studied: one with a low concentration of B and alkali oxides and the other with higher concentration. The first group shows a relatively higher stability and better reproducibility for γ-radiation and neutron-induced TL, which could be utilized in mixed radiation field dosimetry. The main disadvantage of these TL-materials is the relatively high rate of signal fading. A simple course of post irradiation heat annealing is proposed to overcome this drawback.

  20. Electrohydrodynamic emission of positive and negative ions from alkali-metal halide melts

    International Nuclear Information System (INIS)

    The characteristics of electrohydrodynamic (EHD) emission of positive and negative ions from melts of alkali-metal metals are presented. The angular current density is 3-4 μA/sr with emission currents of 0.1-0.5 μA. The salt EHD sources which have been developed yield stable currents of K+, Rb+, Cs+, F-, Cl-, and I- ions for several tens of hours. 10 refs., 4 figs., 1 tab

  1. Adsorption of Alkali, Alkaline Earth and Transition Metal Atoms on Silicene

    OpenAIRE

    Sahin, Hasan; Peeters, Francois M.

    2013-01-01

    The adsorption characteristics of alkali, alkaline earth and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon, are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, workfuncti...

  2. Alkali metal cation doping of metal-organic framework for enhancing carbon dioxide adsorption capacity

    Institute of Scientific and Technical Information of China (English)

    Yan Cao; Yunxia Zhao; Fujiao Song; Qin Zhong

    2014-01-01

    Metal-organic frameworks (MOFs) have attracted much attention as adsorbents for the separation of CO2 from flue gas or natural gas. Here, a typical metal-organic framework HKUST-1(also named Cu-BTC or MOF-199) was chemically reduced by doping it with alkali metals (Li, Na and K) and they were further used to investigate their CO2 adsorption capacities. The structural information, surface chemistry and thermal behavior of the prepared adsorbent samples were characterized by X-ray powder diffraction (XRD), thermo-gravimetric analysis (TGA) and nitrogen adsorption-desorption isotherm analysis. The results showed that the CO2 storage capacity of HKUST-1 doped with moderate quantities of Li+, Na+ and K+, individually, was greater than that of unmodified HKUST-1. The highest CO2 adsorption uptake of 8.64 mmol/g was obtained with 1K-HKUST-1, and it was ca. 11%increase in adsorption capacity at 298 K and 18 bar as compared with HKUST-1. Moreover, adsorption tests showed that HKUST-1 and 1K-HKUST-1 displayed much higher adsorption capacities of CO2 than those of N2. Finally, the adsorption/desorption cycle experiment revealed that the adsorption performance of 1K-HKUST-1 was fairly stable, without obvious deterioration in the adsorption capacity of CO2 after 10 cycles.

  3. Device and method for upgrading petroleum feedstocks and petroleum refinery streams using an alkali metal conductive membrane

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard; Alvare, Javier

    2016-09-13

    A reactor has two chambers, namely an oil feedstock chamber and a source chamber. An ion separator separates the oil feedstock chamber from the source chamber, wherein the ion separator allows alkali metal ions to pass from the source chamber, through the ion separator, and into the oil feedstock chamber. A cathode is at least partially housed within the oil feedstock chamber and an anode is at least partially housed within the source chamber. A quantity of an oil feedstock is within the oil feedstock chamber, the oil feedstock comprising at least one carbon atom and a heteroatom and/or one or more heavy metals, the oil feedstock further comprising naphthenic acid. When the alkali metal ion enters the oil feedstock chamber, the alkali metal reacts with the heteroatom, the heavy metals and/or the naphthenic acid, wherein the reaction with the alkali metal forms inorganic products.

  4. Synthesis and Characterization of Novel Ternary and Quaternary Alkali Metal Thiophosphates

    KAUST Repository

    Alahmary, Fatimah S.

    2014-05-01

    The ongoing development of nonlinear optical (NLO) crystals such as coherent mid-IR sources focuses on various classes of materials such as ternary and quaternary metal chalcophosphates. In case of thiophosphates, the connection between PS4-tetrahedral building blocks and metals gives rise to a broad structural variety where approximately one third of all known ternary (A/P/S) and quaternary (A/M/P/S) (A = alkali metal, M = metal) structures are acentric and potential nonlinear optical materials. The molten alkali metal polychalcophosphate fluxes are a well-established method for the synthesis of new ternary and quaternary thiophosphate and selenophosphate compounds. It has been a wide field of study and investigation through the last two decades. Here, the flux method is used for the synthesis of new quaternary phases containing Rb, Ag, P and S. Four new alkali metal thiophosphates, Rb4P2S10, RbAg5(PS4), Rb2AgPS4 and Rb3Ag9(PS4)4, have been synthesized successfully from high purity elements and binary starting materials. The new compounds were characterized by single crystal and powder X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), ultraviolet-visible (UV-VIS), Raman spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). These compounds show interesting structural variety and physical properties. The crystal structures feature 3D anionic framework built up of PS4 tetrahedral units and charge balanced by Ag and alkali metal cations. All prepared compounds are semiconductors with band gap between 2.3 eV to 2.6 eV and most of them are thermally stable up to 600ºC.

  5. Thermodynamic study of alkali metals release in pressurised fluidised-bed combustion and gasification of peat

    Energy Technology Data Exchange (ETDEWEB)

    Mojtahedi, W.; Backman, R.; Korhonen, M.

    1988-01-01

    A combined-cycle power generation system incorporating pressurised fluidised-bed combustion (PFBC) or gasification is considered a promising approach for electricity generation using solid fuels such as peat. In these systems, the high-pressure hot flue gas is expanded in a gas turbine. Peat contains sodium and potassium which are released in combustion and gasification. These are corrosive elements that can cause severe damage to the turbine blades if not suppressed. Multicomponent, multiphase equilibrium calculations were carried out for atmospheric and pressurised fluidised-bed operating conditions to determine the relative distribution of the two metals (Na and K) in the gas and condensed phases. Dependence of the alkali volatilisation on the operating temperature, pressure, the chlorine-content and the total alkali-content of the feedstock was studied. The results show that the alkali release in the vapour-phase could be much higher than acceptable to a gas turbine, particularly under gasification conditions. Hence the necessity to remove the volatilised alkali-metal compounds is more acute in gasification than in combustion. Both sodium and potassium are present as chlorides and to a lesser extent as hydroxides in the gas phase in both modes of operation (i.e. combustion and gasification). However, whereas under combustion conditions both metals seem to condense as sulphates (Na/sub 2/SO4 and K/sub 2/SO4), in gasification, chlorides and carbonates dominate in the condensed phase. The alkali-metals volatilisation shows strong dependence on the operating pressure of the system as well as on the chlorine-content of the feedstock. It decreases markedly with the former but increases sharply with the latter.

  6. Superconductivity and electrical resistivity in alkali metal doped fullerides: Phonon mechanism

    Indian Academy of Sciences (India)

    Dinesh Varshney; A Dube; K K Choudhary; R K Singh

    2005-04-01

    We consider a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. We first study the intercage interactions between the adjacent C60 cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C60 phonons. Electronic parameter as repulsive parameter and the attractive coupling strength are obtained within the random phase approximation. Transition temperature, c, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C60 phonons as 5 K, which is much lower as compared to reported c (≈ 20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. To illustrate the usefulness of the above approach, the carbon isotope exponent and the pressure effect are also estimated. Temperature dependence of electrical resistivity is then analysed within the same model phonon spectrum. It is inferred from the two-peak model for phonon density of states that high frequency intramolecular phonon modes play a major role in pairing mechanism with possibly some contribution from alkali-C60 phonon to describe most of the superconducting and normal state properties of doped fullerides.

  7. Effects of inherent alkali and alkaline earth metallic species on biomass pyrolysis at different temperatures.

    Science.gov (United States)

    Hu, Song; Jiang, Long; Wang, Yi; Su, Sheng; Sun, Lushi; Xu, Boyang; He, Limo; Xiang, Jun

    2015-09-01

    This work aimed to investigate effects of inherent alkali and alkaline earth metallic species (AAEMs) on biomass pyrolysis at different temperatures. The yield of CO, H2 and C2H4 was increased and that of CO2 was suppressed with increasing temperature. Increasing temperature could also promote depolymerization and aromatization reactions of active tars, forming heavier polycyclic aromatic hydrocarbons, leading to decrease of tar yields and species diversity. Diverse performance of inherent AAEMs at different temperatures significantly affected the distribution of pyrolysis products. The presence of inherent AAEMs promoted water-gas shift reaction, and enhanced the yield of H2 and CO2. Additionally, inherent AAEMs not only promoted breakage and decarboxylation/decarbonylation reaction of thermally labile hetero atoms of the tar but also enhanced thermal decomposing of heavier aromatics. Inherent AAEMs could also significantly enhance the decomposition of levoglucosan, and alkaline earth metals showed greater effect than alkali metals. PMID:26005925

  8. Electrodeposition of alkali and alkali-earth metals on liquid lead cathodes in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Caravaca, C.; De Cordoba, G. [CIEMAT/DE/DFN/URAA. Avda. Complutense, 22. 28040 Madrid (Spain)

    2008-07-01

    Pyrochemical processing of spent nuclear fuel leads to the dissolution as chlorides of fission products (FPs) that have to be removed in order to recycle the salt. Precipitation technique have been tested for the removal of these FPs in the LiCl-KCl, salt selected as reference, with different results. Salt decontamination from lanthanides can be easily achieved as solid precipitates of oxychlorides or single phosphates; however, for the alkaline and alkaline-earth metals this technique is not suitable. Within the EUROPART project (VI FP of the EC), a new route that consist of the electrodeposition of these FP on a liquid lead cathode (LLC) has been considered, including the Li and K constituting the electrolyte. First results obtained with Sr and Cs are presented herein. Although according to the thermodynamic potential values, the electrodeposition order on LLC is Ba, Sr, Li, K and Cs, during our experiments it was not possible to distinguish the electrochemical signals corresponding to the individual elements. (authors)

  9. Alkali-crown ether complexes at metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Thontasen, Nicha; Deng, Zhitao; Rauschenbach, Stephan [Max Planck Institute for Solid State Research, Stuttgart (Germany); Levita, Giacomo [University of Trieste, Trieste (Italy); Malinowski, Nikola [Max Planck Institute for Solid State Research, Stuttgart (Germany); Bulgarian Academy of Sciences, Sofia (Bulgaria); Kern, Klaus [Max Planck Institute for Solid State Research, Stuttgart (Germany); EPFL, Lausanne (Switzerland)

    2010-07-01

    Crown ethers are polycyclic ethers which, in solution, selectively bind cations depending on the size of the ring cavity. The study of a single host-guest complex is highly desirable in order to reveal the characteristics of these specific interactions at the atomic scale. Such detailed investigation is possible at the surface where high resolution imaging tools like scanning tunneling microscopy (STM) can be applied. Here, electrospray ion beam deposition (ES-IBD) is employed for the deposition of Dibenzo-24-crown-8 (DB24C8)-H{sup +}, -Na{sup +} and -Cs{sup +} complexes on a solid surface in ultrahigh vacuum (UHV). Where other deposition techniques have not been successful, this deposition technique combines the advantages of solution based preparation of the complex ions with a highly clean and controlled deposition in UHV. Single molecular structures and the cation-binding of DB24C8 at the surface are studied in situ by STM and MALDI-MS (matrix assisted laser desorption ionization mass spectrometry). The internal structure of the complex, i.e. ring and cavity, is observable only when alkali cations are incorporated. The BD24C8-H{sup +} complex in contrast appears as a compact feature. This result is in good agreement with theoretical models based on density functional theory calculations.

  10. Intra-zoned luminescence in alkali earth metal carbonates

    International Nuclear Information System (INIS)

    Full text: The fundamental plasma luminescence of wide band alkali halide crystals has been found out by Vaisburd et al. This broadband luminescence with very short duration of attenuation (∼10-12 s) arises at an irradiations of crystals with electronic beam powerful pulses of nanosecond duration. It is related to radiating 'hot' electrons and holes in a conductivity zone and in a valent zone, accordingly and in later time began to refer to as an intra-zoned luminescence. The data set on revealing features of display of an intra-zoned luminescence in different classes of crystals now proceeds. We investigated a fast luminescence at excitation with pulse electrons (3 nanoseconds) in crystals CaCO3, SrCO3, BaCO3 and MgCO3. In spectra all investigated carbonates it is possible to allocate two areas: area concerning high intensity of a fast luminescence (from 2 eV down 3 eV) and area of low intensity (is higher 4 eV) with slow recession at increase in photon energy. Thus it is typical, that in area concerning high intensity at rise in temperature from 80 up to 300 K a sample intensity of luminescence falls down, whereas in area is higher 5 eV with rise in temperature of a sample increase of intensity is observed. This broadband fast (is shorter than the time sanction of the equipment) should be connected a luminescence poorly dependent on temperature and a modular status of a sample with intra zoned transitions This luminescence reaches from 2 eV down to 7 eV but as for carbonates while is absent the reliable data on structure of a valent zone, division of an intra-zoned luminescence into electronic and hole components is not obviously possible on the basis of spectra of a fast luminescence. The nature of other luminescence processes arising at excitation with pulse electrons is discussed

  11. Preparation of Metallic Isotope 26Mg

    Institute of Scientific and Technical Information of China (English)

    WuXiaolei; ZhangFuming; GanZaiguo; GuoJunsheng; QinZhi

    2003-01-01

    Some special isotope material is usually used in nuclear experiments. It can be served as ion beam or target. When new superheavy nuclide 265Bh (Z=107) is synthesized, a reaction of 243Am target with 26Mg ion beamis selected to produce new isotope 265Bh. The preparation and production of this rare and extremely expensive isotope 26 Mg used for ion beam substance will be a key problem in synthesizing experiment of 265Bh. Theavailable chemical form of isotope 26Mg in commercial product usually is oxide or other compound, which are not required in our experiment. They need to be transformed to metal form as a proper working substance in ion source.

  12. Development and testing of on-line analytical instrumentation for alkali and heavy metal release in pressurised conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R.; Haeyrinen, V.; Oikari, R. [Tampere Univ. of Technology (Finland)

    1997-10-01

    The purpose of the project is to demonstrate in industrial conditions and further develop the continuous alkali measurement method plasma excited alkali resonance line spectroscopy (PEARLS) developed at Tampere University of Technology (TUT). The demonstration takes place in joint measuring campaigns, where two other continuous alkali measurement methods, ELIF and surface ionisation, are being simultaneously demonstrated. A modification of PEARLS will also be developed for the continuous measurement of heavy metal concentrations. A market study of continuous measuring techniques for alkali and heavy metals is further part of the project. The method will be demonstrated in two pressurised fluidised bed combustion facilities. One of these is the 10 MW PCFB of Foster Wheeler Energia Oy in Karhula. The second one is yet to be decided. The first measuring campaign is scheduled for the spring of 1997 in Karhula. In 1996 the group at TUT participated in the performance of a market study regarding continuous measuring techniques for alkali and heavy metal concentrations. A draft report was submitted to and approved by the EC. Development work on PEARLS in 1996 has centered around the construction of a calibration device for alkali measurements. The device can be used by all three measuring techniques in the project to check readings against a known alkali concentration at controlled and known conditions. In 1996 PEARLS was applied for alkali measurement at several pressurised combustion installations of laboratory and industrial pilot scale

  13. Reactions between cold methyl halide molecules and alkali-metal atoms

    CERN Document Server

    Lutz, Jesse J

    2013-01-01

    We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH$_{3}X$ ($X$ = F, Cl, Br, I) and alkali-metal atoms $A$ ($A$ = Li, Na, K, Rb) using high-level {\\it ab initio} calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, ${\\rm CH}_{3}X+A\\rightarrow{\\rm CH}_{3}+AX$. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow.

  14. X-ray Compton scattering experiments for fluid alkali metals at high temperatures and pressures

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, K., E-mail: kazuhiro-matsuda@scphys.kyoto-u.ac.jp; Fukumaru, T.; Kimura, K.; Yao, M. [Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Tamura, K. [Graduate School of Engineering, Kyoto University, Kyoto 606-8502 (Japan); Katoh, M. [A.L.M.T. Corp., Iwasekoshi-Machi 2, Toyama 931-8543 (Japan); Kajihara, Y.; Inui, M. [Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521 (Japan); Itou, M.; Sakurai, Y. [Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2015-08-17

    We have developed a high-pressure vessel and a cell for x-ray Compton scattering measurements of fluid alkali metals. Measurements have been successfully carried out for alkali metal rubidium at elevated temperatures and pressures using synchrotron radiation at SPring-8. The width of Compton profiles (CPs) of fluid rubidium becomes narrow with decreasing fluid density, which indicates that the CPs sensitively detect the effect of reduction in the valence electron density. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 10 September 2015. The original article supplied to AIP Publishing was not the final version and contained PDF conversion errors in Formulas (1) and (2). The errors have been corrected in the updated and re-published article.

  15. Emission Channeling Studies of the Lattice Site of Oversized Alkali Atoms Implanted in Metals

    CERN Document Server

    2002-01-01

    % IS340 \\\\ \\\\ As alkali atoms have the largest atomic radius of all elements, the determination of their lattice configuration following implantation into metals forms a critical test for the various models predicting the lattice site of implanted impurity atoms. The site determination of these large atoms will especially be a crucial check for the most recent model that relates the substitutional fraction of oversized elements to their solution enthalpy. Recent exploratory $^{213}$Fr and $^{221}$Fr $\\alpha$-emission channeling experiments at ISOLDE-CERN and hyperfine interaction measurements on Fr implanted in Fe gave an indication for anomalously large substitutional fractions. To investigate further the behaviour of Fr and other alkali atoms like Cs and Rb thoroughly, more on-line emission channeling experiments are needed. We propose a number of shifts for each element, where the temperature of the implanted metals will be varied between 50$^\\circ$ and 700$^\\circ$~K. Temperature dependent measurements wi...

  16. Reactions between cold methyl halide molecules and alkali-metal atoms

    International Nuclear Information System (INIS)

    We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH3X (X = F, Cl, Br, I) and alkali-metal atoms A (A = Li, Na, K, Rb) using high-level ab initio calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, CH3X + A → CH3 + AX. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow

  17. Equation of state for thermodynamic properties of pure and mixtures liquid alkali metals

    Energy Technology Data Exchange (ETDEWEB)

    Mousazadeh, M.H., E-mail: mmousazadeh@aeoi.org.ir [Department of Chemistry, Nuclear Science Research School, Nuclear Science and Technology Research Institute (NSTRI), End of North-Karegar Str., 11365-3486 Tehran (Iran, Islamic Republic of); Faramarzi, E. [Department of Physical Chemistry, School of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Maleki, Z. [Department of Chemistry, Nuclear Science Research School, Nuclear Science and Technology Research Institute (NSTRI), End of North-Karegar Str., 11365-3486 Tehran (Iran, Islamic Republic of)

    2010-11-20

    We developed an equation of state based on statistical-mechanical perturbation theory for pure and mixtures alkali metals. Thermodynamic properties were calculated by the equation of state, based on the perturbed-chain statistical associating fluid theory (PC-SAFT). The model uses two parameters for a monatomic system, segment size, {sigma}, and segment energy, {epsilon}. In this work, we calculate the saturation and compressed liquid density, heat capacity at constant pressure and constant volume, isobaric expansion coefficient, for which accurate experimental data exist in the literatures. Results on the density of binary and ternary alkali metal alloys of Cs-K, Na-K, Na-K-Cs, at temperatures from the freezing point up to several hundred degrees above the boiling point are presented. The calculated results are in good agreement with experimental data.

  18. An Aqueous Redox Flow Battery Based on Neutral Alkali Metal Ferri/ferrocyanide and Polysulfide Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiaoliang; Xia, Gordon; Kirby, Brent W.; Thomsen, Edwin C.; Li, Bin; Nie, Zimin; Graff, Gordon L.; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-11-13

    Aiming to explore low-cost redox flow battery systems, a novel iron-polysulfide (Fe/S) flow battery has been demonstrated in a laboratory cell. This system employs alkali metal ferri/ferrocyanide and alkali metal polysulfides as the redox electrolytes. When proper electrodes, such as pretreated graphite felts, are used, 78% energy efficiency and 99% columbic efficiency are achieved. The remarkable advantages of this system over current state-of-the-art redox flow batteries include: 1) less corrosive and relatively environmentally benign redox solutions used; 2) excellent energy and utilization efficiencies; 3) low cost for redox electrolytes and cell components. These attributes can lead to significantly reduced capital cost and make the Fe/S flow battery system a promising low-cost energy storage technology. The major drawbacks of the present cell design are relatively low power density and possible sulfur species crossover. Further work is underway to address these concerns.

  19. The 3-Dimensional q-Deformed Harmonic Oscillator and Magic Numbers of Alkali Metal Clusters

    CERN Document Server

    Bonatsos, Dennis; Raychev, P P; Roussev, R P; Terziev, P A; Bonatsos, Dennis

    1999-01-01

    Magic numbers predicted by a 3-dimensional q-deformed harmonic oscillator with Uq(3) > SOq(3) symmetry are compared to experimental data for alkali metal clusters, as well as to theoretical predictions of jellium models, Woods--Saxon and wine bottle potentials, and to the classification scheme using the 3n+l pseudo quantum number. The 3-dimensional q-deformed harmonic oscillator correctly predicts all experimentally observed magic numbers up to 1500 (which is the expected limit of validity for theories based on the filling of electronic shells), thus indicating that Uq(3), which is a nonlinear extension of the U(3) symmetry of the spherical (3-dimensional isotropic) harmonic oscillator, is a good candidate for being the symmetry of systems of alkali metal clusters.

  20. Alkali-doped metal-phthalocyanine and pentacene compounds

    NARCIS (Netherlands)

    Craciun, M.F.

    2006-01-01

    The ability to introduce charge carriers in organic molecular materials and control their concentration is of great relevance for both fundamental research and applications. In this thesis, it has been demonstrated that the electronic properties of Metal Phthalocyanines (MPc) and pentacene (PEN) mol

  1. Conductometric determination of dissociation constants of alkali metal monopyrocatechinborates in alcohols

    International Nuclear Information System (INIS)

    Dissociation constants of alkali metal monopyrocatechinborates of Me[(C6H4O2)B(OH)2]xnH2O (Me = Na+, Li+) composition are determined using conductometric method based on equivalent electric conductivity values, in methanol and ethanol at 25 deg C. Dissociation constants of weak electrolytes are calculated by the Fuoss-Kraus method. Conditions of Valden raw action are determined which connects concentrations with permittivity of medium

  2. Alkali metal and simple gas atom adsorption and coadsorption on transition metal surfaces

    CERN Document Server

    Norris, A G

    2000-01-01

    system is formed by adsorption of potassium or cesium on the Ni(100)c(2x2)-O overlayer. The difficulty of the structural fit is compounded' by the size of the unit cell. In this study, Anomalous Scattering was used to investigate whether there is a contribution from the nickel substrate to the reconstruction. Measurements of the fractional order rods at 10 eV and 200 eV below the nickel K edge (8333 eV) showed no discernible differences and involvement of the nickel substrate in the reconstruction can be eliminated. Alkali metal coadsorption systems represent a step along the pathway from simple model adsorbate overlayers to more technologically relevant real systems. Such is their complexity, however, that very few systems have been solved structurally. Presented here are SXRD and STM investigations of two such systems. The first study involves potassium adsorption on the Ni(100)(2x2)p4g-N surface, where a clock reconstruction is present with the nickel substrate atoms rotated in alternate clockwise and anti...

  3. Equation of state for solid rare gases and alkali metals under pressure

    Science.gov (United States)

    Bonnet, Pierre

    2016-07-01

    This investigation is based on an atomic equation of state which takes into account the excluded volume of the atom being considered. Study of solid rare gases allows following the packing factor of the solid in equilibrium with the gas at different temperatures and of the solid and the liquid in the case of solid-liquid equilibria. The application of a pressure to the solid up to 9800 MPa allows determining the decrease in atomic volume and thus the compressibility. Such a study leads to proposing a new expression through dividing the pressure derivative (as a function of the excluded volume) by the pressure. This new coefficient is a pressure-independent constant but varies with the atom considered. Multiplied by the initial atomic volume, this coefficient has a unique value for all the rare gases. Furthermore, this is also true for the series of alkali metals with however a lower value of the coefficient. The atomic configurations of the two series are very different with one free electron for the alkali metals but closed shells for the rare gases. The alkali metals are therefore more complex than the rare gases. It is worthwhile to note that study of the equilibrium has not required the use of the principles of thermodynamics.

  4. Diffusion of alkali metals in the first stage graphite intercalation compounds by vdW-DFT calculations

    OpenAIRE

    Wang, Zhaohui; Ratvik, Arne Petter; Grande, Tor; Selbach, Sverre Magnus

    2015-01-01

    Diffusion of alkali metal cations in the first stage graphite intercalation compounds (GIC) LiC6, NaC6, NaC8 and KC8 has been investigated with density functional theory (DFT) calculations using the optPBE-vdW van der Waals functional. The formation energies of alkali vacancies, interstitials and Frenkel defects were calculated and vacancies were found to be the dominating point defects. The diffusion coefficients of the alkali metals in GIC were evaluated by a hopping model of point defects ...

  5. Theory of alkali-metal-induced reconstructions of fcc(100) surfaces

    DEFF Research Database (Denmark)

    Christensen, Ole Bøssing; Jacobsen, Karsten Wedel

    1992-01-01

    Calculations of missing-row reconstruction energies of the fcc(100) surfaces of the metals Al, Ni, Pd, Pt, Cu, Ag, and Au have been performed with the effective-medium theory with and without the presence of a potassium overlayer. It is shown that the tendency to reconstruct in the presence...... of adsorbed K is largest for Ag. This is in accordance with recent experiments indicating a potassium-induced missing-row reconstruction for Ag, but not for other metals. The tendency is shown to be related to the relatively low bulk modulus of silver. Differences from the well-known alkali...

  6. Evidence for alkali metal induced intermolecular acetylenic hydrogen atom transfer between hydrogen-bonded alkyne complexes in solid argon

    International Nuclear Information System (INIS)

    Condensation of acetylene, propyne, and 2-butyne/acetylene mixtures with heavy alkali metal atoms (Na, K, Cs) in an argon matrix at 15 K has led to the appearance of infrared absorptions due to ethylene, propylene, and trans-2-butene, respectively. These results stand in sharp contrast with the products obtained with lithium. Isotopic studies have shown that ethylene formation involved three different acetylene molecules and evidenced a difference in the product yield with hydrogen vs. deuterium as well as a preference for trans- vs. cis-C2H2D2 formation, which is discussed and rationalized by differences in the zero point energies for the different mixed deuterium isotopes of the intermediate vinyl radical. This trend is amplified by methyl substitution. Spectroscopic evidence was found in these experiments for cesium acetylide (Cs+C2H-) and a cesium-acetylene π complex, which are involved in the intermolecular acetylenic hydrogen atom transfer process. 26 references, 3 figures, 2 tables

  7. Investigation of Anti-Relaxation Coatings for Alkali-Metal Vapor Cells Using Surface Science Techniques

    CERN Document Server

    Seltzer, S J; Donaldson, M H; Balabas, M V; Barber, S K; Bernasek, S L; Bouchiat, M -A; Hexemer, A; Hibberd, A M; Kimball, D F Jackson; Jaye, C; Karaulanov, T; Narducci, F A; Rangwala, S A; Robinson, H G; Voronov, D L; Yashchuk, V V; Pines, A; Budker, D

    2010-01-01

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of anti-relaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10,000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We present a survey of modern surface science techniques applied to the study of paraffin coatings, in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge X-ray absorption fine structure spectroscopy, and X-ray photoelectron spectroscopy. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present with...

  8. Structural and Dynamical Trends in Alkali-Metal Silanides Characterized by Neutron-Scattering Methods

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Wan Si; Dimitrievska, Mirjana; Chotard, Jean-Noel; Zhou, Wei; Janot, Raphael; Skripov, Alexander V.; Udovic, Terrence J.

    2016-09-29

    Structural, vibrational, and dynamical properties of the mono- and mixed-alkali silanides (MSiH3, where M = K, Rb, Cs, K0.5Rb0.5, K0.5Cs0.5, and Rb0.5Cs0.5) were investigated by various neutron experiments, including neutron powder diffraction (NPD), neutron vibrational spectroscopy (NVS), neutron-scattering fixed-window scans (FWSs), and quasielastic neutron scattering (QENS) measurements. Structural characterization showed that the mixed compounds exhibit disordered (..alpha..) and ordered (..beta..) phases for temperatures above and below about 200-250 K, respectively, in agreement with their monoalkali correspondents. Vibrational and dynamical properties are strongly influenced by the cation environment; in particular, there is a red shift in the band energies of the librational and bending modes with increasing lattice size as a result of changes in the bond lengths and force constants. Additionally, slightly broader spectral features are observed in the case of the mixed compounds, indicating the presence of structural disorder caused by the random distribution of the alkali-metal cations within the lattice. FWS measurements upon heating showed that there is a large increase in reorientational mobility as the systems go through the order-disorder (..beta..-..alpha..) phase transition, and measurements upon cooling of the ..alpha..-phase revealed the known strong hysteresis for reversion back to the ..beta..-phase. Interestingly, at a given temperature, among the different alkali silanide compounds, the relative reorientational mobilities of the SiH3- anions in the ..alpha..- and ..beta..-phases tended to decrease and increase, respectively, with increasing alkali-metal mass. This dynamical result might provide some insights concerning the enthalpy-entropy compensation effect previously observed for these potentially promising hydrogen storage materials.

  9. Environmental and biomedical applications of natural metal stable isotope variations

    Science.gov (United States)

    Bullen, T.D.; Walczyk, T.

    2009-01-01

    etal stable isotopes are now being used to trace metal contaminants in the environment and as indicators of human systemic function where metals play a role. Stable isotope abundance variations provide information about metal sources and the processes affecting metals in complex natural systems, complementing information gained from surrogate tracers, such as metal abundance ratios or biochemical markers of metal metabolism. The science is still in its infancy, but the results of initial studies confirm that metal stable isotopes can provide a powerful tool for forensic and biomedical investigations.

  10. Alkali and heavy metal emissions of the PCFB-process; Alkalipaeaestoet PCFB-prosessissa

    Energy Technology Data Exchange (ETDEWEB)

    Kuivalainen, R.; Eriksson, T.; Lehtonen, P. [Foster Wheeler Energia Oy, Karhula (Finland)

    1996-12-01

    Pressurized Circulating Fluidized Bed (PCFB) combustion technology has been developed in Karhula R and D Center since 1986. As a part of the development, 10 MW PCFB Test Facility was built in 1989. The Test Facility has been used for performance testing with different coal types through the years 1990-1995 in order to gain data for design and commercialization of the high-efficiency low-emission PCFB combustion technology. The project Y44 `Alkali and heavy metal emissions of the PCFB-process` was part of national LIEKKI 2 research program. The main object of the project was to measure vapor phase Na and K concentrations in the PCFB flue gas after hot gas filter and investigate the effects of process conditions and sorbents on alkali release. The measurements were performed using plasma assisted method by TUT Laboratory of Plasma Technology and wet absorption method of VTT Energy. The measured Na concentrations were below 30 ppb(w) in all measured data points. The results of K were below 10 ppb(w). The accuracies of the both methods are about + 50 % at this concentration range. The scatter of the data covers the effects of different process variables on the alkali emission. The measured emissions are at the same order of magnitude as the guideline emission limits estimated by gas turbine manufacturers. The measurements and development of the analyses methods are planned to be continued during PCFB test runs in spring 1996 for example within Joule II research program. (author)

  11. Thermochemical ablation therapy of VX2 tumor using a permeable oil-packed liquid alkali metal.

    Directory of Open Access Journals (Sweden)

    Ziyi Guo

    Full Text Available Alkali metal appears to be a promising tool in thermochemical ablation, but, it requires additional data on safety is required. The objective of this study was to explore the effectiveness of permeable oil-packed liquid alkali metal in the thermochemical ablation of tumors.Permeable oil-packed sodium-potassium (NaK was prepared using ultrasonic mixing of different ratios of metal to oil. The thermal effect of the mixture during ablation of muscle tissue ex vivo was evaluated using the Fluke Ti400 Thermal Imager. The thermochemical effect of the NaK-oil mixture on VX2 tumors was evaluated by performing perfusion CT scans both before and after treatment in 10 VX2 rabbit model tumors. VX2 tumors were harvested from two rabbits immediately after treatment to assess their viability using trypan blue and hematoxylin and eosin (H.E. staining.The injection of the NaK-oil mixture resulted in significantly higher heat in the ablation areas. The permeable oil controlled the rate of heat released during the NaK reaction with water in the living tissue. Perfusion computed tomography and its parameter map confirmed that the NaK-oil mixture had curative effects on VX2 tumors. Both trypan blue and H.E. staining showed partial necrosis of the VX2 tumors.The NaK-oil mixture may be used successfully to ablate tumor tissue in vivo. With reference to the controlled thermal and chemical lethal injury to tumors, using a liquid alkali in ablation is potentially an effective and safe method to treat malignant tumors.

  12. The influence of chlorine on the fate and activity of alkali metals during the gasification of wood

    Energy Technology Data Exchange (ETDEWEB)

    Struis, R.; Scala, C. von; Schuler, A.; Stucki, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Chlorine clearly inhibits the CO{sub 2}-gasification reaction of charcoal at 800{sup o}C. From this and other observations the picture emerges that the reduction in the gasification reactivity of the charcoal is intimately related to the deactivation of the catalytically active alkali metals residing in the wood due to the formation of the chloride salt. It is argued that the heavy metal chlorides will likely transfer the chlorine to the indigenous alkali metals during the pyrolysis stage of the wood. The fate of the thus formed alkali metal chlorides can then be either their removal from the sample (evaporation), or, when present at the gasification stage, re-activation (i.e., de-chlorination) under our gasification conditions. (author) 3 figs., 4 refs.

  13. Intercalation of heavy alkali metals (K, Rb and Cs) in the bundles of single wall nanotubes

    Science.gov (United States)

    Duclaux, L.; Méténier, K.; Lauginie, P.; Salvetat, J. P.; Bonnamy, S.; Beguin, F.

    2000-11-01

    The electric-arc discharge carbon deposits (collaret) containing Single Wall Carbon Nanotubes (SWNTs) were heat treated at 1600 °C during 2 days under N2 flow in order to eliminate the Ni catalyst by sublimation, without modifications of the SWNTs ropes. Sorting this deposit by gravity enabled to obtain in the coarsest particles higher amount of SWNTs ropes than in other particle sizes. The coarser particles of the carbon deposits were reacted with the alkali metals vapor giving intercalated samples with a MC8 composition. The intercalation led to an expansion of the 2D lattice of the SWNTs so that the alkali metals were intercalated in between the tubes within the bundles. Disordered lattices were observed after intercalation of Rb and Cs. The simulations of the X-ray diffractograms of SWNTs reacted with K, gave the best fit for three K ions occupying the inter-tubes triangular cavities. The investigations by EPR, and 13C NMR, showed that doped carbon deposits are metallic.

  14. Effect of particle size on thermal decomposition of alkali metal picrates

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui; Zhang, Tonglai, E-mail: ztlbit@bit.edu.cn; Yang, Li; Zhou, Zunning

    2014-05-01

    Graphical abstract: The smaller-sized picrate has greater gas emission than do its larger counterpart. The small size effect reduces the thermal decomposition activation energy, accelerates the reaction rate, and promotes the reaction activity. - Highlights: • Picrates were prepared into three micron sizes by microemulsion synthesis. • Thermal decomposition kinetics and thermodynamics were studied by DPTA and DSC. • Smaller-sized picrate has higher activity and faster reaction rate. • Particle size effect on thermal decomposition kinetics and thermodynamics was revealed. - Abstract: Three alkali metal picrates, KPA, RbPA and CsPA, were prepared into three micron sizes by microemulsion synthesis, and their thermal decomposition behaviors were investigated by DPTA at different temperatures and by DSC at different heating rates. The smaller-sized picrate has greater gas emission and smaller kinetic and thermodynamic parameters than do its larger counterpart. It can be attributed to the decreasing particle size which leads to the high surface energy, the fast mass and heat transfer, and the increasing active sites on the reaction interface. The small size effect and surface effect cause the autocatalysis which reduces the activation energy and promotes the reaction activity. The particle size does not affect the reaction mechanism. However, the picrates with different central alkali metals exhibit different reaction mechanisms even though they are of the same size. This is because the central metal determines the bond energy and consequently affects the stability of picrate.

  15. Shortcuts for understanding rovibronic spectroscopy of ultracold alkali metal diatomic molecules

    Science.gov (United States)

    Stwalley, William C.; Bellos, Michael; Carollo, Ryan; Banerjee, Jayita; Bermudez, Matthew

    2012-08-01

    The high-resolution rovibronic spectroscopies of cold and ultracold molecules (e.g. supersonic molecular beam excitation spectra (MB), photoassociation spectra of ultracold atoms (PA), resonance-enhanced multiphoton ionization spectra (REMPI), stimulated Raman transfer (SRT) spectra) are of major current interest. This manuscript summarizes the significant level of understanding of these various spectroscopies, enabled by using simple graphical and semiclassical ideas and shortcuts. Physical realizations of these spectroscopies will be illustrated using the alkali metal diatomic molecules, both homonuclear (e.g. Rb2) and heteronuclear (e.g. KRb).

  16. Van der Waals coefficients for alkali metal clusters and their size dependence

    Indian Academy of Sciences (India)

    Arup Banerjee; Manoj K Harbola

    2006-02-01

    In this paper we employ the hydrodynamic formulation of time-dependent density functional theory to obtain the van der Waals coefficients 6 and 8 of alkali metal clusters of various sizes including very large clusters. Such calculations become computationally very demanding in the orbital-based Kohn-Sham formalism, but are quite simple in the hydrodynamic approach. We show that for interactions between the clusters of the same sizes, 6 and 8 scale as the sixth and the eighth power of the cluster radius, respectively, and approach their classically predicted values for the large size clusters.

  17. Surface tension of molten alkali metal halides as a function of ion sizes

    International Nuclear Information System (INIS)

    The analysis of the experimental data on the surface tension of the liquid/vapor interphase boundary of the molten alkali metal halides MX (M Li-Cs, X = F-I) near the melting temperature, accounting for the cation and anion dimensional differences, is presented. The main attention is focused at the manifestation of the effects of the interphase boundary of the effects of the interphase boundary thickness and twofold electric layer. It is shown, that the experimental data on the whole MX series may be represented in the form of the electrocapillary curve on the graph of the surface tension dependence on the degree of the halides dimensional asymmetry

  18. Electric dipole polarizabilities of Rydberg states of alkali-metal atoms

    Science.gov (United States)

    Yerokhin, V. A.; Buhmann, S. Y.; Fritzsche, S.; Surzhykov, A.

    2016-09-01

    Calculations of the static electric-dipole scalar and tensor polarizabilities are presented for two alkali-metal atoms, Rb and Cs, for the n S , n P½,3 /2 , and n D3 /2 ,5 /2 states with large principal quantum numbers up to n =50 . The calculations are performed within an effective one-electron approximation, based on the Dirac-Fock Hamiltonian with a semiempirical core-polarization potential. The obtained results are compared with those from a simpler semiempirical approach and with available experimental data.

  19. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals.

    Science.gov (United States)

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-08-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: ([3])Li(+), ([3])Na(+), ([4])K(+), ([4])Rb(+), ([6])Cs(+), ([3])Be(2+), ([4])Mg(2+), ([6])Ca(2+), ([6])Sr(2+) and ([6])Ba(2+), but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of ([6])Na(+), the ratio Ueq(Na)/Ueq(bonded anions) is partially correlated with 〈([6])Na(+)-O(2-)〉 (R(2) = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li(+) in

  20. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals.

    Science.gov (United States)

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-08-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: ([3])Li(+), ([3])Na(+), ([4])K(+), ([4])Rb(+), ([6])Cs(+), ([3])Be(2+), ([4])Mg(2+), ([6])Ca(2+), ([6])Sr(2+) and ([6])Ba(2+), but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of ([6])Na(+), the ratio Ueq(Na)/Ueq(bonded anions) is partially correlated with 〈([6])Na(+)-O(2-)〉 (R(2) = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li(+) in

  1. The effects of correlation, relativity, exchange, channels coupling and polarization in scattering of electrons by alkali-metal atoms and alkali-like ions

    International Nuclear Information System (INIS)

    The present review briefly presents the growing experimental as well as theoretical interest in recent years in the effects of correlation, relativity, exchange, channels coupling and polarization on the high precision scattering of electron by alkali-metal atoms and alkali-like ions. Many high precision experiments have been performed which need very high accurate theoretical prediction for correct interpretation and identification of different physical effects involved. Several sophisticated theoretical techniques have been developed for inclusion of the above mentioned effects which play an extremely important role in order to obtain results of high accuracy for understanding experimental observation of high precision. At present, we do not have a comprehensive and practical atomic scattering theory which accounts for all these effects on an equal footing. Future challenges and directions, in reliable electron-atom scattering calculations, have been discussed and suggested. (author). 136 refs, 16 figs

  2. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    Science.gov (United States)

    Hagedorn, Norman H. (Inventor)

    1993-01-01

    An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.

  3. [The Measuring Method of Atomic Polarization of Alkali Metal Vapor Based on Optical Rotation and the Analysis of the Influence Factors].

    Science.gov (United States)

    Shang, Hui-ning; Quan, Wei; Chen, Yao; Li, Yang; Li, Hong

    2016-02-01

    High sensitivity measurements of inertia and magnetic field could be achieved by utilizing a category of devices, which manipulate the atomic spins in the spin-exchange-relaxation-free regime. The alkali cell which contains the alkali metal vapor is used to sense magnetic field and inertia. The atomic number density of alkali vapor and the polarization of alkali metal vapor are two of the most important parameters of the cell. They play an important role in the research on atomic spins in the spin-exchange-relaxation-free regime. Besides, optical polarization plays an important role in quantum computing and atomic physics. We propose a measurement of alkali vapor polarization and alkali number density by detecting the optical rotation in one system. This method simplifies existing experimental equipment and processes. A constant bias magnetic field is applied and the Faraday rotation angle is detected by a bunch of the probe beam to deduce alkali-metal density. Then the magnetic field is closed and a bunch of the pump laser is utilized to polarize alkali-metal. Again, the probe beam is utilized to obtain the polarization of alkali metal. The alkali density obtained at first is used to deduce the polarization. This paper applies a numerical method to analyze the Faraday rotation and the polarization rotation. According to the numerical method, the optimal wavelength for the experiment is given. Finally, the fluctuation of magnetic field and wavelength on signal analysis are analyzed. PMID:27209720

  4. Understanding the insulating nature of alkali-metal/Si(111):B interfaces.

    Science.gov (United States)

    Fagot-Revurat, Y; Tournier-Colletta, C; Chaput, L; Tejeda, A; Cardenas, L; Kierren, B; Malterre, D; Le Fèvre, P; Bertran, F; Taleb-Ibrahimi, A

    2013-03-01

    We have recently revisited the phase diagram of alkali-metal/Si(111):B semiconducting interfaces previously suggested as the possible realization of a Mott-Hubbard insulator on a triangular lattice. The insulating character of the 2√[3] × 2√[3]R30 surface reconstruction observed at the saturation coverage, i.e. 0.5 ML, has been shown to find its origin in a giant alkali-metal-induced vertical distortion. Low energy electron diffraction, photoemission spectroscopy and scanning tunneling microscopy and spectroscopy experiments coupled with linear augmented plane-wave density functional theory calculations allow a full understanding of the k-resolved band structure, explaining both the inhomogeneous charge transfers into an Si-B hybridized surface state and the opening of a band gap larger than 1 eV. Moreover, √[3] × √[3]R30, 3 × 3 and 2√[3] × 2√[3]R30 surface reconstructions observed as a function of coverage may reveal a filling-controlled transition from a half-filled correlated magnetic material to a strongly distorted band insulator at saturation. PMID:23400003

  5. Enthalpic Interaction for α-Amino Acid with Alkali Metal Halides in Water

    Institute of Scientific and Technical Information of China (English)

    LU,Yan(卢雁)

    2004-01-01

    The studies of the enthalpic interaction parameters, hxy, hxyy and hxxv, of alkali metal halides with glycine,α-alanine and α-aminobutyric acid were published. Synthetic considering of the results of the studies, some interesting behaviors of the interaction between alkali metal halides and the α-amino acids have been found. The values of hxy will increase with the increase of the number of carbon atoms in alkyl side chain of amino acid molecules and decrease with the increase of the radius of the ions. The increasing of the salt's effect on the hydrophobic hydration structure as the radii of anion is more obvious than as that of cation. The value of hxxy will regularly decrease with the increase of the number of carbon atoms in the alkyl chain of amino acids and linear increase with the increase of the radius. But the relation of hxxy with the radius of cations is not evident. The value of hxyy will increase with the increase of the radii of the ions. As the increase of the number of carbon atoms of amino acids, hxyy is decreas for the ions which have lager size and there is a maximum value at α-alanine for the ions which have small size. The behaviors of the interaction mentioned above were further discussed in view of electrostatic and structural interactions.

  6. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-11-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed.

  7. Metal-mediated aminocatalysis provides mild conditions: Enantioselective Michael addition mediated by primary amino catalysts and alkali-metal ions

    Directory of Open Access Journals (Sweden)

    Matthias Leven

    2013-01-01

    Full Text Available Four catalysts based on new amides of chiral 1,2-diamines and 2-sulfobenzoic acid have been developed. The alkali-metal salts of these betaine-like amides are able to form imines with enones, which are activated by Lewis acid interaction for nucleophilic attack by 4-hydroxycoumarin. The addition of 4-hydroxycoumarin to enones gives ee’s up to 83% and almost quantitative yields in many cases. This novel type of catalysis provides an effective alternative to conventional primary amino catalysis were strong acid additives are essential components.

  8. Researches of the electrotechnical laboratory. No. 973: Study on alkali metal thermoelectric converter

    Science.gov (United States)

    Tanaka, K.; Negishi, A.; Honda, T.; Fujii, T.; Masuda, T.; Nozaki, K.

    1995-03-01

    The alkali metal thermoelectric converter (AMTEC) utilizing the sodium ion conducting Beta' '- alumina solid electrolyte (BASE) is a device to convert heat energy to electric energy directly. It is characterized by high conversion efficiencies (20 to 40 percent), high power densities (1 W/sq cm), no moving parts, low maintenance requirements, high durability, and efficiency independent of size. Because of these merits, AMTEC is one of the most promising candidate for dispersed small scale power station, remote power station and aerospace power systems. In this paper, the theoretical and experimental studies on the thin film electrodes characteristics, power generating characteristics, cell efficiency, integral electrode with large current lead, porous metal current lead, series connected cells power generation, potassium AMTEC, wick return AMTEC and system analysis for space and grand use are reported.

  9. First-principles study of d0 ferromagnetism in alkali-metal doped GaN

    Science.gov (United States)

    Zhang, Yong

    2016-08-01

    The d0 ferromagnetism in GaN has been studied based on density functional theory. Our results show that GaN with sufficient hole become spin-polarized. Alkali-metal doping can introduce holes in GaN. Among them, both of Li- and Na-doping induce ferromagnetism in GaN and Na-doped GaN behaves as half-metallic ferromagnet. Moreover, at a growth temperature of 2000 K under N-rich condition, both concentrations can exceed 18%, which is sufficient to produce detectable macroscopic magnetism in GaN. The Curie temperature of Li- and Na-doped GaN is estimated to be 304 and 740 K, respectively, which are well above room temperature.

  10. Adsorption of alkali metal atoms on germanene: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Qing, E-mail: pangqingjkd@163.com [College of Science, Xi’an University of Architecture and Technology, Xi’an 710055, Shaanxi (China); Zhang, Chun-ling; Li, Long; Fu, Zhi-qiang [College of Science, Xi’an University of Architecture and Technology, Xi’an 710055, Shaanxi (China); Wei, Xiu-mei [College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, Shaanxi (China); Song, Yu-ling [College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, Henan (China)

    2014-09-30

    Highlights: • All alkali metal (AM) atoms considered prefer to bind on the hexagonal hollow site of germanene. • AM adsorption makes the semimetallic germanene become to be metallic. • A small band gap opens at Dirac point for AM/germanene system without degrading of electronic properties. • The band gap and charge carriers for AM/germanene system can be tuned by changing the AM coverage. • AM/germanene systems show potential applications in germanene based field effect transistors. - Abstract: The structural, energetic and electronic properties of alkali metal (AM) atoms (including Li, Na and K) adsorbed germanene with a wide range of coverages are investigated by means of first-principles calculations. All AM atoms we considered prefer to bind on the hexagonal hollow site of germanene. In contrast to graphene, the interaction between adatom and germanene surface is quite strong due to its buckled hexagonal structure. As the increasing adatom coverage, the binding between AM atom and germanene sheet is weakened, due to the enhanced adatom–adatom repulsion while the decreased adatom-germanene attraction at high coverage. As a consequence of heavy charge transfer from AM to germanene, the formed adatom–Ge bonds perform mainly an ionic character. Through adsorption, the semimetallic germanene becomes to be metallic with its Dirac point moving below the Fermi level, thus making germanene behave as n-type doped. In addition, a small band gap can be opened at the Dirac point, and both the band gap and the concentration of charge carries of AM/germanene system can be tuned by controlling the adatom coverage. The strong binding of AM adatoms to germanene and the rich electronic properties of the AM/germanene systems suggest possible potential applications in germanene based field effect transistor (FET) devices.

  11. Helium and Argon Isotopic Composition of Cenozoic Alkali Basalts and Mantle-Derived Xenoliths from Kuandian, Liaoning Province, China

    Institute of Scientific and Technical Information of China (English)

    吴茂炳; 王先彬; 叶先仁; 刘春燕

    2004-01-01

    The noble gas isotopic composition and content data of 2 alkali basalts, 3 lherzolite xenoliths and one clinopyroxene megacryst from the Kuandian region have confirmed the occurrence of a fractionation of noble gases during magmatism. Light noble gases such as He and Ne are high in mobility and appear to be incompatible as compared with heavy ones (such as Kr and Xe). Therefore, light noble gases are abundant in volcanics, especially in the volcanics with bubbles; lherzolite xenoliths have relatively high heavy noble gases. The clinopyroxene megacryst has the lowest abundance of noble gases, probably due to its high P-T origin. Noble gas isotopic composition of the clinopyroxene megacryst reveals that the mantle source beneath the Kuandian area has an MORB-like reservoir with 3He / 4He ratio of ~10 Ra (Ra: atmospheric 3He / 4He ratio) and 40 Ar/ 36 Ar ratio of 345.6 . The lherzolite xenoliths possess moderate 3He / 4He ratios of 2.59 - 4.53 Ra, reflecting the loss of primary helium during rock deformation or metasomatism caused by enriched mantle fluids during the up-lifting. The alkali volcanics have very low 3He / 4He ratios ( 0.47 - 0.61 Ra), indicating a contribution of radiogenic 4He , probably having resulted from crust contamination. Most of the samples have excess 21 Ne and 22 Ne as compared with atmospheric neon, but Kr and Xe isotopic compositions are indistinguishable from atmospheric values within uncertainties with only individual samples having excess 129 Xe , 134 Xe and 136 Xe .

  12. Dipole Polarizability of Alkali-Metal (Na, K, Rb) - Alkaline-Earth-Metal (Ca,Sr) Polar molecules - Prospects of Alignment

    CERN Document Server

    Gopakumar, Geetha; Hada, Masahiko; Kajita, Masatoshi

    2014-01-01

    Electronic open-shell ground-state properties of selected alkali-metal (AM) - alkaline-earth-metal (AEM) polar molecules are investigated. We determine potential energy curves of the 2{\\Sigma}+ ground state at the coupled-cluster singles and doubles with partial triples (CCSD(T)) level of electron correlation. Calculated spectroscopic constants for the isotopes (23Na, 39K, 85Rb) - (40Ca, 88Sr) are compared with available theoretical and experimental results. The variation of the permanent dipole moment (PDM), average dipole polarizability, and polarizability anisotropy with internuclear distance is determined using finite-field perturbation theory at the CCSD(T) level. Owing to moderate PDM (KCa: 1.67 D, RbCa: 1.75 D, KSr: 1.27 D, RbSr: 1.41 D) and large polarizability anisotropy (KCa: 566 a.u., RbCa: 604 a.u., KSr: 574 a.u., RbSr: 615 a.u.), KCa, RbCa, KSr, and RbSr are potential candidates for alignment and orientation in combined intense laser and external static electric fields.

  13. Ab initio interaction potentials and scattering lengths for ultracold mixtures of metastable helium and alkali-metal atoms

    Science.gov (United States)

    Kedziera, Dariusz; Mentel, Łukasz; Żuchowski, Piotr S.; Knoop, Steven

    2015-06-01

    We have obtained accurate ab initio +4Σ quartet potentials for the diatomic metastable triplet helium+alkali-metal (Li, Na, K, Rb) systems, using all-electron restricted open-shell coupled cluster singles and doubles with noniterative triples corrections CCSD(T) calculations and accurate calculations of the long-range C6 coefficients. These potentials provide accurate ab initio quartet scattering lengths, which for these many-electron systems is possible, because of the small reduced masses and shallow potentials that result in a small amount of bound states. Our results are relevant for ultracold metastable triplet helium+alkali-metal mixture experiments.

  14. Prospects for sympathetic cooling of polar molecules: NH with alkali-metal and alkaline-earth atoms - a new hope

    CERN Document Server

    Soldán, Pavel; Hutson, Jeremy M

    2009-01-01

    We explore the potential energy surfaces for NH molecules interacting with alkali-metal and alkaline-earth atoms using highly correlated ab-initio electronic structure calculations. The surfaces for interaction with alkali-metal atoms have deep wells dominated by covalent forces. The resulting strong anisotropies will produce strongly inelastic collisions. The surfaces for interaction with alkaline-earth atoms have shallower wells that are dominated by induction and dispersion forces. For Be and Mg the anisotropy is small compared to the rotational constant of NH, so that collisions will be relatively weakly inelastic. Be and Mg are thus promising coolants for sympathetic cooling of NH to the ultracold regime.

  15. New bonding configuration on Si(111) and Ge(111) surfaces induced by the adsorption of alkali metals

    DEFF Research Database (Denmark)

    Lottermoser, L.; Landemark, E.; Smilgies, D.M.;

    1998-01-01

    The structure of the (3×1) reconstructions of the Si(111) and Ge(111) surfaces induced by adsorption of alkali metals has been determined on the basis of surface x-ray diffraction and low-energy electron diffraction measurements and density functional theory. The (3×1) surface results primarily...... from the substrate reconstruction and shows a new bonding configuration consisting of consecutive fivefold and sixfold Si (Ge) rings in 〈11̅ 0〉 projection separated by channels containing the alkali metal atoms. © 1998 The American Physical Society...

  16. Fractionation of metal stable isotopes by higher plants

    Science.gov (United States)

    Von Blanckenburg, F.; Von Wiren, N.; Guelke, M.; Weiss, D.J.; Bullen, T.D.

    2009-01-01

    Higher plants induce chemical reactions in the rhizosphere, facilitating metal uptake by roots. Fractionation of the isotopes in nutrients such as calcium, iron, magnesium, and zinc produces a stable isotope composition in the plants that generally differs from that of the growth medium. Isotope fractionation also occurs during transport of the metals within most plants, but its extent depends on plant species and on the metal, in particular, on the metal's redox state and what ligand it is bound to. The metal stable isotope variations observed in plants create an isotope signature of life at the Earth's surface, contributing substantially to our understanding of metal cycling processes in the environment and in individual organisms.

  17. Investigation of anti-Relaxation coatings for alkali-metal vapor cells using surface science techniques

    Energy Technology Data Exchange (ETDEWEB)

    Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Balabas, M. V.; Barber, S. K.; Bernasek, S. L.; Bouchiat, M.-A.; Hexemer, A.; Hibberd, A. M.; Jackson Kimball, D. F.; Jaye, C.; Karaulanov, T.; Narducci, F. A.; Rangwala, S. A.; Robinson, H. G.; Shmakov, A. K.; Voronov, D. L.; Yashchuk, V. V.; Pines, A.; Budker, D.

    2010-10-11

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10?000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the study of paraffin coatings in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge x-ray absorption fine structure spectroscopy, and x-ray photoelectron spectroscopy. We also compare the light-induced atomic desorption yields of several different paraffin materials. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present within a particular class of effective paraffin coatings. Further study should lead to the development of more robust paraffin antirelaxation coatings, as well as the design and synthesis of new classes of coating materials.

  18. Early Solar System Alkali Fractionation Events Recorded by K-Ca Isotopes in the Yamato-74442 LL-Chondritic Breccia

    Science.gov (United States)

    Tatsunori, T.; Misawa, K.; Okano, O.; Shih, C.-Y.; Nyquist, L. E.; Simon, J. I.; Tappa, M. J.; Yoneda, S.

    2015-01-01

    Radiogenic ingrowth of Ca-40 due to decay of K-40 occurred early in the solar system history causing the Ca-40 abundance to vary within different early-former reservoirs. Marshall and DePaolo ] demonstrated that the K-40/Ca-40 decay system could be a useful radiogenic tracer for studies of terrestrial rocks. Shih et al. [3,4] determined 40K/40Ca ages of lunar granitic rock fragments and discussed the chemical characteristics of their source materials. Recently, Yokoyama et al. [5] showed the application of the K-40/Ca-40 chronometer for high K/Ca materials in ordinary chondrites (OCs). High-precision calcium isotopic data are needed to constrain mixing processes among early solar system materials and the time of planetesimal formation. To better constrain the solar system calcium isotopic compositions among astromaterials, we have determined the calcium isotopic compositions of OCs and an angrite. We further estimated a source K/Ca ratio for alkali-rich fragments in a chondritic breccia using the estimated solar system initial Ca-40/Ca-44.

  19. The role of alkali metal cations in the stabilization of guanine quadruplexes: why K(+) is the best.

    Science.gov (United States)

    Zaccaria, F; Paragi, G; Fonseca Guerra, C

    2016-08-21

    The alkali metal ion affinity of guanine quadruplexes has been studied using dispersion-corrected density functional theory (DFT-D). We have done computational investigations in aqueous solution that mimics artificial supramolecular conditions where guanine bases assemble into stacked quartets as well as biological environments in which telomeric quadruplexes are formed. In both cases, an alkali metal cation is needed to assist self-assembly. Our quantum chemical computations on these supramolecular systems are able to reproduce the experimental order of affinity of the guanine quadruplexes for the cations Li(+), Na(+), K(+), Rb(+), and Cs(+). The strongest binding is computed between the potassium cation and the quadruplex as it occurs in nature. The desolvation and the size of alkali metal cations are thought to be responsible for the order of affinity. Until now, the relative importance of these two factors has remained unclear and debated. By assessing the quantum chemical 'size' of the cation, determining the amount of deformation of the quadruplex needed to accommodate the cation and through the energy decomposition analysis (EDA) of the interaction energy between the cation and the guanines, we reveal that the desolvation and size of the alkali metal cation are both almost equally responsible for the order of affinity. PMID:27185388

  20. Alkali metal salts of formazanate ligands : diverse coordination modes as a result of the nitrogen-rich [NNCNN] ligand backbone

    NARCIS (Netherlands)

    Travieso-Puente, Raquel; Chang, Mu-Chieh; Otten, Edwin

    2014-01-01

    Alkali metal salts of redox-active formazanate ligands were prepared, and their structures in the solid-state and in solution are determined. The nitrogen-rich [NNCNN] backbone of formazanates results in a varied coordination chemistry, with both the internal and terminal nitrogen atoms available fo

  1. Electric dipole polarizabilities at imaginary frequencies for the alkali-metal, alkaline-earth, and inert gas atoms

    CERN Document Server

    Derevianko, Andrei; Babb, James F

    2009-01-01

    The electric dipole polarizabilities evaluated at imaginary frequencies for hydrogen, the alkali-metal atoms, the alkaline earth atoms, and the inert gases are tabulated along with the resulting values of the atomic static polarizabilities, the atom-surface interaction constants, and the dispersion (or van der Waals) constants for the homonuclear and the heteronuclear diatomic combinations of the atoms.

  2. Synthesis and Selective Coloration of Monoaza Crown Ethers Bearing Picrylamino-type Side Arms for Alkali Metal Salts and Methylamine

    Institute of Scientific and Technical Information of China (English)

    Wei ZENG; Zhi Hua MAO; Mi GONG; Chun Chun ZHANG; Sheng Ying QIN; Jun SU

    2003-01-01

    N-pivot lariat ethers with picrylamino group as a chromophore (1, 2 and 3) have been prepared by reaction of N-(4-aminoaryl)monoaza crown ethers with picryl chrolide, and the selective coloration of 1, 2 and 3 for alkali metal salts and amines has been studied by UV-Vis spectra.

  3. LDA or GGA? A combined experimental inelastic neutron scattering and ab initio lattice dynamics study of alkali metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, G.D. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Departamento de Quimica, Universidad Nacional de la Patagonia SJB, Ciudad Universitaria, 9005 Comodoro Rivadavia (Argentina); Colognesi, D. [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del Piano s.n.c., 50019 Sesto Fiorentino (Finland) (Italy); Mitchell, P.C.H. [School of Chemistry, University of Reading, RG6 6AD (United Kingdom); Ramirez-Cuesta, A.J. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); School of Chemistry, University of Reading, RG6 6AD (United Kingdom)], E-mail: a.j.ramirez-cuesta@rl.ac.uk

    2005-10-31

    In a previous work, we carried out inelastic neutron scattering (INS) spectroscopy experiments and preliminary first principles calculations on alkali metal hydrides. The complete series of alkali metal hydrides, LiH, NaH, KH, RbH and CsH was measured in the high-resolution TOSCA INS spectrometer at ISIS. Here, we present the results of ab initio electronic structure calculations of the properties of the alkali metal hydrides using both the local density approximation (LDA) and the generalized gradient approximation (GGA), using the Perdew-Burke-Ernzerhof (PBE) parameterization. Properties calculated were lattice parameters, bulk moduli, dielectric constants, effective charges, electronic densities and inelastic neutron scattering (INS) spectra. We took advantage of the currently available computer power to use full lattice dynamics theory to calculate thermodynamic properties for these materials. For the alkali metal hydrides (LiH, NaH, KH, RbH and CsH) using lattice dynamics, we found that the INS spectra calculated using LDA agreed better with the experimental data than the spectra calculated using GGA. Both zero-point effects and thermal contributions to free energies had an important effect on INS and several thermodynamic properties.

  4. Separation of hafnium from zirconium in their tetrachloride solution in molten alkali metal chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, A.B.; Kudyakov, V.Ya.; Smirnov, M.V.; Moskalenko, N.I. (AN SSSR, Sverdlovsk. Inst. Ehlektrokhimii)

    1984-08-01

    The coefficient of HfCl/sub 4/ and ZrCl/sub 4/ separation in the process of vapour sublimation from their solutions in molten NaCl, KCl, CsCl, NaCl-KCl and NaCl-CsCl equimolar mixtures is found to vary in the series from approximately 1.10 to approximately 1.22 and practically not to depend on the temperature (in the 600-910 deg) range and concentration (2-25 mol.% ZrCl/sub 4/+HfCl/sub 4/). HfCl/sub 4/ and ZrCl/sub 4/ are shown to form almost perfect solutions with each other, which in their turn form imperfect solutions with molten alkali metal chlorides, with the strength of hafnium complex chloride anions increasing higher than that of zirconium in the series from NaCl to CsCl.

  5. Separation of hafnium from zirconium in their tetrachloride solution in molten alkali metal chlorides

    International Nuclear Information System (INIS)

    The coefficient of HfCl4 and ZrCl4 separation in the process of vapour sublimation from their solutions in molten NaCl, KCl, CsCl, NaCl-KCl and NaCl-CsCl equimolar mixtures is found to vary in the series from approximately 1.10 to approximately 1.22 and practically not to depend on the temperature (in the 600-910 deg) range and concentration (2-25 mol.% ZrCl4+HfCl4). HfCl4 and ZrCl4 are shown to form almost perfect solutions with each other, which in their turn form imperfect solutions with molten alkali metal chlorides, with the strength of hafnium complex chloride anions increasing higher than that of zirconium in the series from NaCl to CsCl

  6. The alkali metal thermoelectric converter /AMTEC/ - A new direct energy conversion technology for aerospace power

    Science.gov (United States)

    Bankston, C. P.; Cole, T.; Jones, R.; Ewell, R.

    1982-01-01

    A thermally regenerative electrochemical device for the direct conversion of heat to electrical energy, the alkali metal thermoelectric converter (AMTEC), is characterized by potential efficiencies on the order of 15-40% and possesses no moving parts, making it a candidate for space power system applications. Device conversion efficiency is projected on the basis of experimental voltage vs current curves exhibiting power densities of 0.7 W/sq cm and measured electrode efficiencies of up to 40%. Preliminary radiative heat transfer measurements presented may be used in an investigation of methods for the reduction of AMTEC parasitic radiation losses. AMTEC assumes heat input and rejection temperatures of 900-1300 K and 400-800 K, respectively. The working fluid is liquid sodium, and the porous electrode employed is of molybdenum.

  7. Secondary transformation mechanism of paramagnetic centers in irradiated alkali metal perchlorates

    International Nuclear Information System (INIS)

    The EPR method has been used to study thermal transformations of paramagnetic centres (PC) in X-ray irradiated potassium, rubidium and cesium perchlorates. Experimental data make it possible to suppose that diffusion coefficient of O- ion a rather high and this ion is freely diffused already at 262 K. Colliding with [MeClO4]+ centres it is transformed in a molecule of oxygen. Another part of O- is transformed in stable ozonide-ion at 300 K. About room temperature hole centres dissociate with formation of ClO2 radical. It is supposed that part of electron and hole centres is not stabilized but at 77 K it is transformed in stable radiolysis products. This process most effective proceeds in dislocations and on the surface of microcrystals. The suggested model of thermal transformations of primary PC in irradiated perchlorates of alkali metals explains formation of all the finite ion and paramagnetic radiolysis products

  8. Momentum densities and Compton profiles of alkali-metal atoms

    Indian Academy of Sciences (India)

    Pranab Sarkar; Anupam Sarkar; S N Roy; B Talukdar

    2003-03-01

    It is assumed that the dynamics of valence electrons of alkali-metal atoms can be well accounted for by a quantum-defect theoretic model while the core electrons may be supposed to move in a self-consistent field. This model is used to study the momentum properties of atoms from 3Li to 37Rb. The numerical results obtained for the momentum density, moments of momentum density and Compton profile are found to be in good agreement with the results of more detailed configuration-interaction calculations for the atom 3Li. Similar results for 11Na, 19K and 37Rb are compared with the corresponding Hartree–Fock–Roothaan values only, for want of data from other realistic calculations.

  9. Pb and Sr isotopes and trace metals in molluscs: constraints on metal sources and water fluxes in a coastal lagoon (Thau, France)

    International Nuclear Information System (INIS)

    Because of its unique ability to characterize the origins and quantify the fluxes of waters and their loads, isotopic geochemistry is being increasingly used in environmental problems. On the other hand, molluscs are known to concentrate metals in a very strong manner and equilibrate relatively rapidly with their environment. They are used in many programs of coastal survey (Mussel Watch, RNO,...). The originality of our work is to apply isotopic systems (Pb, Sr) to living organisms, in order to: 1- identify the metal sources; 2- determine their proportions in the lagoon and 3- to trace the water movements. The Thau lagoon (Herault, S. France) presents various potential sources of metals inputs: heavy traffic road, Sete harbour, various industries (cement factory, fertilizers...), agriculture, camping areas and leisure ports, not to mention natural (rock) sources. Our study deals with the metal and alkali, alkali-earth concentrations, Pb and Sr isotopes determined on both mussels implanted in the lagoon and wild mussels. We also compare our mussel results with those determined on clams which live at the water/sediments interface. A first study deals with the metal accumulation in laboratory experiments using mono-isotopic tracers 'spike'. It shows that the new metal is being superimposed to the metals initially present in the organisms; this effect is seen within a few days, although variable depending on elements (Zn, Cd, Pb). We have sampled the introduced mussels 4 times a year and we see that the concentration fluctuations are principally related to animal weight variations. The flesh isotopic compositions usually define nice alignments depending on season, indicative of a progressive mixing between two main components: one natural, one anthropogenic. Depending on winds,two influences of seawater entries or local water treatment plants effluents can be shown. We have compared past and present metal levels and origins in the area by analysing also ancient shells

  10. Study of complex amalgams containing alkali metals by method of broken thermometric titration

    International Nuclear Information System (INIS)

    Complex potassium-cadmium and sodium-cadmium amalgams containing different amounts of the alkali metal nad cadmium have been studied by thermometric titration with mercury. The experiments have been carried out in argon atmosphere at 25 deg C. As evidenced by the titration of sodium-cadmium amalgams, in the range of concentrations studied (Csub(Na)=0.71-2.95, Csub(Cd)=4.38-6.45 g-at/lHg) no solid phase is formed in them. Potassium-cadmium amalgams where the metals content is no higher than their individual solubility in mercury, display, when being mercury-titrated, negative heat effects due to solid phase formation. An estimation is made of the solid phase composition, its solubility in mercury and the heat of dissolution. The solid phase appearing in complex K-Cd amalgams is likely to contain K and Cd in a ratio 1:1 its conventional solubility product is 5.4 g-at/l Hg, and the heat of dissolution in mercury at 25 deg is -21 +-4 kJ/g-at

  11. Stability of alkali-metal hydrides: effects of n-type doping

    Science.gov (United States)

    Olea Amezcua, Monica Araceli; de La Peña Seaman, Omar; Rivas Silva, Juan Francisco; Heid, Rolf; Bohnen, Klaus-Peter

    Metal hydrides could be considered ideal solid-state hydrogen storage systems, they have light weight and high hydrogen volumetric densities, but the hydrogen desorption process requires excessively high temperatures due to their high stability. Efforts have been performed to improve their dehydrogenation properties, based on the introduction of defects, impurities and doping. We present a systematic study of the n-type (electronic) doping effects on the stability of two alkali-metal hydrides: Na1-xMgxH and Li1-xBexH. These systems have been studied within the framework of density functional perturbation theory, using a mixed-basis pseudopotential method and the self-consistent version of the virtual crystal approximation to model the doping. The full-phonon dispersions are analyzed for several doping content, paying special attention to the crystal stability. It is found a doping content threshold for each system, where they are close to dynamical instabilities, which are related to charge redistribution in interstitial zones. Applying the quasiharmonic approximation, the vibrational free energy, the linear thermal expansion and heat capacities are obtained for both hydrides systems and are analyzed as a function of the doping content. This work is partially supported by the VIEP-BUAP 2016 and CONACYT-México (No.221807) projects.

  12. Elucidating the magnetic and superconducting phases in the alkali metal intercalated iron chalcogenides

    Science.gov (United States)

    Wang, Meng; Yi, Ming; Tian, Wei; Bourret-Courchesne, Edith; Birgeneau, Robert J.

    2016-02-01

    The complex interdigitated phases have greatly frustrated attempts to document the basic features of the superconductivity in the alkali metal intercalated iron chalcogenides. Here, using elastic neutron scattering, energy-dispersive x-ray spectroscopy, and resistivity measurements, we elucidate the relations of these phases in RbxFeySe2 -zSz . We find (i) the iron content is crucial in stabilizing the stripe antiferromagnetic (AF) phase with rhombic iron vacancy order (y ≈1.5 ) , the block AF phase with √{5 }×√{5 } iron vacancy order (y ≈1.6 ) , and the iron vacancy-free phase (y ≈2 ) ; and (ii) the iron vacancy-free superconducting phase (z =0 ) evolves into an iron vacancy-free metallic phase with sulfur substitution (z >1.5 ) due to the progressive decrease of the electronic correlation strength. Both the stripe AF phase and the block AF phase are Mott insulators. The iron-rich compounds (y >1.6 ) undergo a first order transition from an iron vacancy disordered phase at high temperatures into the √{5 }×√{5 } iron vacancy ordered phase and the iron vacancy-free phase below Ts. Our data demonstrate that there are miscibility gaps between these three phases. The existence of the miscibility gaps in the iron content is a key to understanding the relationship between these complicated phases.

  13. Alkali metal pool boiler life tests for a 25 kWe advanced Stirling conversion system

    Science.gov (United States)

    Anderson, W. G.; Rosenfeld, J. H.; Noble, J.

    The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding an alkali metal pool boiler heat transport system to supply heat more uniformly to the heater head tubes. One issue with liquid metal pool boilers is unstable boiling. Stable boiling is obtained with an enhanced boiling surface containing nucleation sites that promote continuous boiling. Over longer time periods, it is possible that the boiling behavior of the system will change. An 800-h life test was conducted to verify that pool boiling with the chosen fluid/surface combination remains stable as the system ages. The apparatus uses NaK boiling on a - 100 + 140 stainless steel sintered porous layer, with the addition of a small amount of xenon. Pool boiling remained stable to the end of life test. The pool boiler life test included a total of 82 cold starts, to simulate startup each morning, and 60 warm restarts, to simulate cloud cover transients. The behavior of the cold and warm starts showed no significant changes during the life test. In the experiments, the fluid/surface combination provided stable, high-performance boiling at the operating temperature of 700 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.

  14. Metal stable isotope signatures as tracers in environmental geochemistry.

    Science.gov (United States)

    Wiederhold, Jan G

    2015-03-01

    The biogeochemical cycling of metals in natural systems is often accompanied by stable isotope fractionation which can now be measured due to recent analytical advances. In consequence, a new research field has emerged over the last two decades, complementing the traditional stable isotope systems (H, C, O, N, S) with many more elements across the periodic table (Li, B, Mg, Si, Cl, Ca, Ti, V, Cr, Fe, Ni, Cu, Zn, Ge, Se, Br, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, W, Pt, Hg, Tl, U) which are being explored and potentially applicable as novel geochemical tracers. This review presents the application of metal stable isotopes as source and process tracers in environmental studies, in particular by using mixing and Rayleigh model approaches. The most important concepts of mass-dependent and mass-independent metal stable isotope fractionation are introduced, and the extent of natural isotopic variations for different elements is compared. A particular focus lies on a discussion of processes (redox transformations, complexation, sorption, precipitation, dissolution, evaporation, diffusion, biological cycling) which are able to induce metal stable isotope fractionation in environmental systems. Additionally, the usefulness and limitations of metal stable isotope signatures as tracers in environmental geochemistry are discussed and future perspectives presented. PMID:25640608

  15. DETERMINATION OF POTASH ALKALI AND METAL CONTENTS OF ASHES OBTAINED FROM PEELS OF SOME VARIETIES OF NIGERIA GROWN MUSA SPECIES

    Directory of Open Access Journals (Sweden)

    Joshua Olajiire Babayemi

    2010-05-01

    Full Text Available Potash alkali and metal contents of ashes obtained from peels of six varieties of Nigeria Musa species were investigated. The varieties of Musa species – Musa paradisiaca (plantain, Musa ‘Gross Michel’ (Igbo banana, M.sapientum L. (paranta, Musa ‘Wild Banana’ (omini, Musa ‘Red’ (sweet banana, and Musa ‘Fugamo’ (somupeke, were investigated. The moisture, dry matter, ash and alkali contents; concentration of metals in the ashes and in the contents extracted with water from the ashes; and the ratio of potassium to other metals in the ashes and in the corresponding extracts were determined. Moisture contents ranged from 80.9 to 86.7%; dry matter content, 13.3 to 19.1%; ash content, 6.3 to 12.0%; alkali content, 69.0 to 81.9% of ash and 4.7 to 9.6% of dry sample. Samples ranged between 2.60 and 720mg/kg and in the corresponding extracts, BDL to 500.49mg/kg; ratio of concentration of potassium to other metals in the samples, 0.6 to 395; and in the extracts, 0.5 to 313. Gross michel showed the highest concentration of K (750mg/kg while omini banana gave the lowest average value (112.70mg/kg.

  16. Solid State Structures of Alkali Metal Ion Complexes Formed by Low-Molecular-Weight Ligands of Biological Relevance.

    Science.gov (United States)

    Aoki, Katsuyuki; Murayama, Kazutaka; Hu, Ning-Hai

    2016-01-01

    This chapter provides structural data, mainly metal binding sites/modes, observed in crystal structures of alkali metal ion complexes containing low-molecular-weight ligands of biological relevance, mostly obtained from the Cambridge Structural Database (the CSD version 5.35 updated to February 2014). These ligands include (i) amino acids and small peptides, (ii) nucleic acid constituents (excluding quadruplexes and other oligonucleotides), (iii) simple carbohydrates, and (iv) naturally occurring antibiotic ionophores. For some representative complexes of these ligands, some details on the environment of the metal coordination and structural characteristics are described. PMID:26860299

  17. Preparation of decarboxylic-functionalized weak cation exchanger and application for simultaneous separation of alkali, alkaline earth and transition metals.

    Science.gov (United States)

    Peng, Yahui; Gan, Yihui; He, Chengxia; Yang, Bingcheng; Guo, Zhimou; Liang, Xinmiao

    2016-06-01

    A novel weak cation exchanger (WCX) with dicarboxyl groups functionalized has been developed by clicking mercaptosuccinic acid onto silica gel. The simple synthesis starts with modification of silica gel with triethoxyvinylsilane, followed by efficient coupling vinyl-bonded silica with mercaptosuccinic acid via a "thiol-ene" click reaction. The obtained WCX demonstrated good separation and high selectivity towards common metals. Simultaneous separation of 10 alkali, alkaline earth and transition metals was achieved within 12min. Ion exchange and complex mechanism dominates the separation process. Its utility was demonstrated for determination of metals in tap water. PMID:27130093

  18. Characterization of Adsorbed Alkali Metal Ions in 2:1 Type Clay Minerals from First-Principles Metadynamics.

    Science.gov (United States)

    Ikeda, Takashi; Suzuki, Shinichi; Yaita, Tsuyoshi

    2015-07-30

    Adsorption states of alkali metal ions in three kinds of 2:1 type clay minerals are systematically investigated via first-principles-based metadynamics. Our reconstructed free energy surfaces in a two-dimensional space of coordination numbers specifically employed as collective variables for describing the interlayer cations show that an inner-sphere (IS) complex is preferentially formed for Cs(+) in the 2:1 type trioctahedral clay minerals with saponite-like compositions, where lighter alkali metal ions show a tendency to form an outer-sphere one instead. The strong preference for an IS complex observed for Cs(+) is found to result partially from the capability of recognizing selectively Cs(+) ions at the basal O atoms with the Lewis basicity significantly enhanced by the isomorphic substitution in tetrahedral sheets.

  19. Hartree-Fock ground-state properties for the group 1 alkali metals and the group 11 noble metals

    International Nuclear Information System (INIS)

    In order to use wavefunction-based correlation methods in solids it is necessary to have reliable Hartree-Fock results for the infinite system of interest. Therefore we performed Hartree-Fock calculations for the group 1 alkali metals (Li to Cs) and group 11 noble metals (Cu, Ag and Au). We optimized a basis set of valence-double-ζ quality for the periodic system. For the lighter atoms all-electron basis sets are applied, whereas for the heavier atoms small-core pseudopotentials with the corresponding basis sets were used to deal with the scalar-relativistic effects. We determine the cohesive energy, the lattice constant and the bulk modulus of the systems at the Hartree-Fock level. We use the counterpoise correction for the free atom to minimize the basis set superposition error occurring for finite basis sets. The effects due to the counterpoise correction not only for the cohesive energy but also for the lattice structure and bulk modulus are discussed in detail

  20. Optical detection of sodium salts of fluoride, acetate and phosphate by a diacylhydrazine ligand by the formation of a colour alkali metal complex

    Indian Academy of Sciences (India)

    Purnandhu Bose; Ranjan Dutta; I Ravikumar; Pradyut Ghosh

    2011-11-01

    A solution of N, N'-diacylhydrazine ligand in organic solvent is potential for colourimetric detection of F−/AcO−/PO$^{3−}_{4}$ via -NH deprotonation, tautomerization and its stabilization as a colour alkali metal complex.

  1. Alkali Metal Ion Complexes with Phosphates, Nucleotides, Amino Acids, and Related Ligands of Biological Relevance. Their Properties in Solution.

    Science.gov (United States)

    Crea, Francesco; De Stefano, Concetta; Foti, Claudia; Lando, Gabriele; Milea, Demetrio; Sammartano, Silvio

    2016-01-01

    Alkali metal ions play very important roles in all biological systems, some of them are essential for life. Their concentration depends on several physiological factors and is very variable. For example, sodium concentrations in human fluids vary from quite low (e.g., 8.2 mmol dm(-3) in mature maternal milk) to high values (0.14 mol dm(-3) in blood plasma). While many data on the concentration of Na(+) and K(+) in various fluids are available, the information on other alkali metal cations is scarce. Since many vital functions depend on the network of interactions occurring in various biofluids, this chapter reviews their complex formation with phosphates, nucleotides, amino acids, and related ligands of biological relevance. Literature data on this topic are quite rare if compared to other cations. Generally, the stability of alkali metal ion complexes of organic and inorganic ligands is rather low (usually log K  Na(+) > K(+) > Rb(+) > Cs(+). For example, for citrate it is: log K ML = 0.88, 0.80, 0.48, 0.38, and 0.13 at 25 °C and infinite dilution. Some considerations are made on the main aspects related to the difficulties in the determination of weak complexes. The importance of the alkali metal ion complexes was also studied in the light of modelling natural fluids and in the use of these cations as probes for different processes. Some empirical relationships are proposed for the dependence of the stability constants of Na(+) complexes on the ligand charge, as well as for correlations among log K values of NaL, KL or LiL species (L = generic ligand). PMID:26860301

  2. Research Investigation Directed Toward Extending the Useful Range of the Electromagnetic Spectrum. [atomic spectra and electronic structure of alkali metals

    Science.gov (United States)

    Hartmann, S. R.; Happer, W.

    1974-01-01

    The report discusses completed and proposed research in atomic and molecular physics conducted at the Columbia Radiation Laboratory from July 1972 to June 1973. Central topics described include the atomic spectra and electronic structure of alkali metals and helium, molecular microwave spectroscopy, the resonance physics of photon echoes in some solid state systems (including Raman echoes, superradiance, and two photon absorption), and liquid helium superfluidity.

  3. Structure of the Alkali-metal-atom-Strontium molecular ions: towards photoassociation and formation of cold molecular ions

    OpenAIRE

    Aymar, Mireille; Guérout, Romain; Dulieu, Olivier

    2011-01-01

    The potential energy curves, permanent and transition dipole moments, and the static dipolar polarizability, of molecular ions composed of one alkali-metal atom and a Strontium ion are determined with a quantum chemistry approach. The molecular ions are treated as effective two-electron systems and are treated using effective core potentials including core polarization, large gaussian basis sets, and full configuration interaction. In the perspective of upcoming experiments aiming at merging ...

  4. An Alkali-Vapor Cell with Metal Coated Windows for Efficient Application of an Electric Field

    CERN Document Server

    Sarkisyan, D; Guena, J; Lintz, M; Bouchiat, M A; Sarkisyan, David; Gu\\'{e}na, Jocelyne; Lintz, Michel; Bouchiat, Marie-Anne

    2005-01-01

    We describe the implementation of a cylindrical T-shaped alkali-vapor cell for laser spectroscopy in the presence of a longitudinal electric field. The two windows are used as two electrodes of the high-voltage assembly, which is made possible by a metallic coating which entirely covers the inner and outer sides of the windows except for a central area to let the laser beams in and out of the cell. This allows very efficient application of the electric field, up to 2 kV/cm in a rather dense superheated vapor, even when significant photoemission takes place at the windows during pulsed laser irradiation. The body of the cell is made of sapphire or alumina ceramic to prevent large currents resulting from surface conduction observed in cesiated glass cells. The technique used to attach the monocrystalline sapphire windows to the cell body causes minimal stress birefringence in the windows. In addition, reflection losses at the windows can be made very small. The vapor cell operates with no buffer gas and has no ...

  5. Alkali-vapor cell with metal coated windows for efficient application of an electric field

    Science.gov (United States)

    Sarkisyan, D.; Sarkisyan, A. S.; Guéna, J.; Lintz, M.; Bouchiat, M.-A.

    2005-05-01

    We describe the implementation of a cylindrical T-shaped alkali-vapor cell for laser spectroscopy in the presence of a longitudinal electric field. The two windows are used as two electrodes of the high-voltage assembly, which is made possible by a metallic coating which entirely covers the inner and outer sides of the windows except for a central area to let the laser beams in and out of the cell. This allows very efficient application of the electric field, up to 2kV/cm in a rather dense superheated vapor, even when significant photoemission takes place at the windows during pulsed laser irradiation. The body of the cell is made of sapphire or alumina ceramic to prevent large currents resulting from surface conduction observed in cesiated glass cells. The technique used to attach the monocrystalline sapphire windows to the cell body causes minimal stress birefringence in the windows. In addition, reflection losses at the windows can be made very small. The vapor cell operates with no buffer gas and has no magnetic part. The use of this kind of cell has resulted in an improvement of the signal-to-noise ratio in the measurement of parity violation in cesium vapor underway at ENS, Paris. The technique can be applied to other situations where a brazed assembly would give rise to unacceptably large birefringence in the windows.

  6. Study of Spectral Character of Alkali Metals Using Microwave Plasma Torch Simultaneous Spectrometer

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A microwave plasma torch(MPT) simultaneous spectrometer was used to study the spectral character and the matrix effect on alkali metal ions in solution. The main parameters were optimized. The microwave forward power was 100 W. The argon flow rate that was used to sustain the Ar-MPT included the flow rate of carrier gas and the flow rate of support gas, which were 0.8 and 1.0 L/min, respectively. The HCl concentration in the solution was 0.02 mol/L. The observation height was 9.0 mm. The detection limits of Li, Na, K, Rb, and Cs were 0.0003, 0.0004, 0.009, 0.07 and2.4 mg/L, respectively, and the results obtained by the Ar-MPT were compared with those obtained by argon inductively coupled plasma(Ar-ICP) and argon microwave induced plasma(Ar-MIP). The interference effects of several matrix elements were also studied.

  7. Luminescence properties of alkali metal ions sensitized CaFCl:Tb3+ nanophosphors

    Institute of Scientific and Technical Information of China (English)

    林林; 林慧; 王哲哲; 郑标; 谌基兴; 徐森元; 冯卓宏; 郑志强

    2015-01-01

    A series of CaFCl:Tb3+ and CaFCl:Tb3+,A+ (A=Li, Na and K) nanophosphors were synthesized by the one-step sol-gel method, which were reported for the first time. The sample consisted of monodisperse particles, the average size of which was 37 nm. The emissions of Tb3+ ions and oxygen defects OF? were demonstrated in the CaFCl:Tb3+ samples. The former was made up of sev-eral peaks at 488, 545, 587 and 623 nm, ascribed to5D4→7FJ (J=6–3) transitions of Tb3+ ions. The latter was shown as a broad band peaked at about 450 nm. Alkali metal ions A+(A=Li, Na and K) were introduced asthe charge compensators to improve the lumines-cence of samples. The influence of charge compensators on the emissions of Tb3+ ions and oxygen defects OF? was investigated by the measurement of fluorescence spectra and luminescence decay curves. The results indicated that all the charge compensators weakened the defects emission. Furthermore, Li+ ion was the best charge compensator, because it not only reduced the defects emis-sion but also increased the emission intensity of Tb3+ significantly. Our results suggested that this nanophosphor sensitized by the charge compensator might broaden potential applications of rare-earth doped CaFCl.

  8. Second virial coefficients and viscosity property of monatomic alkali-metal gases

    International Nuclear Information System (INIS)

    In this work, we have calculated the second virial coefficients B2 of monatomic lithium, sodium, and potassium gases by using the most recent 1Σg+ and 3Σu+ Rydberg-Klein-Rees interatomic potentials. We have also determined the viscosity η and thermal conductivity λ coefficients of the alkali-metal vapors as a function of the temperature T. The results we have found of the collision integrals and of the coefficients η and λ agree quite well with some available experimental data. Besides, we have investigated the variation law with temperature T of the above thermophysical quantities. For temperatures ranging from 100 K to 3,000 K, the results can be reproduced by simple formulas η(T)=ATα and λ(T)=BTα, where for T in Kelvin, η in micropoise, and λ in 10-3 W·m-1·K-1, for lithium Li:A=0.314, B=0.1398, and α=0.863; for sodium Na:A=0.624, B=0.0846, and α=0.827; for potassium K:A=0.400, B=0.0320, and α=0.883. (author)

  9. Nano-baskets of Calix[4]-1,3-crown in Emulsion Membranes for Selective Extraction of Alkali Metal Cations

    Institute of Scientific and Technical Information of China (English)

    Bahram Mokhtari; Kobra Pourabdollah

    2013-01-01

    Nano-assisted inclusion separation of alkali metals from basic solutions was reported by inclu-sion-facilitated emulsion liquid membrane process. The novelty of this study is application of nano-baskets of calixcrown in the selective and efficient separation of alkali metals as both the carrier and the surfactant. For this aim, four derivatives of diacid calix[4]-1,3-crowns-4,5 were synthesized, and their inclusion-extraction parameters were optimized including the calixcrown scaffold (4.4%, by mass) as the carrier/demulsifier, the commercial kero-sene as diluent in membrane, sulphonic acid (0.2 mol·L-1) and ammonium carbonate (0.4 mol·L-1) as the strip and the feed phases, the phase and the treat ratios of 0.8 and 0.3, mixing speed (300 r·min-1), and initial solute concen-tration (100 mg·L-1). The selectivity of membrane over more than ten interfering cations was examined and the re-sults reveled that under the optimized operating condition, the degree of inclusion-extraction of alkali metals was as high as 98%-99%.

  10. Properties of alkali metal atoms deposited on a MgO surface: a systematic experimental and theoretical study.

    Science.gov (United States)

    Finazzi, Emanuele; Di Valentin, Cristiana; Pacchioni, Gianfranco; Chiesa, Mario; Giamello, Elio; Gao, Hongjun; Lian, Jichun; Risse, Thomas; Freund, Hans-Joachim

    2008-01-01

    The adsorption of small amounts of alkali metal atoms (Li, Na, K, Rb, and Cs) on the surface of MgO powders and thin films has been studied by means of EPR spectroscopy and DFT calculations. From a comparison of the measured and computed g values and hyperfine coupling constants (hfccs), a tentative assignment of the preferred adsorption sites is proposed. All atoms bind preferentially to surface oxide anions, but the location of these anions differs as a function of the deposition temperature and alkali metal. Lithium forms relatively strong bonds with MgO and can be stabilized at low temperatures on terrace sites. Potassium interacts very weakly with MgO and is stabilized only at specific sites, such as at reverse corners where it can interact simultaneously with three surface oxygen atoms (rubidium and cesium presumably behave in the same way). Sodium forms bonds of intermediate strength and could, in principle, populate more than a single site when deposited at room temperature. In all cases, large deviations of the hfccs from the gas-phase values are observed. These reductions in the hfccs are due to polarization effects and are not connected to ionization of the alkali metal, which would lead to the formation of an adsorbed cation and a trapped electron. In this respect, hydrogen atoms behave completely differently. Under similar conditions, they form (H(+))(e(-)) pairs. The reasons for this different behavior are discussed. PMID:18381711

  11. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals

    OpenAIRE

    Liu, Yuanyue; Merinov, Boris V.; Goddard III, William A.

    2016-01-01

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same...

  12. UV and IR spectroscopy of cold 1,2-dimethoxybenzene complexes with alkali metal ions.

    Science.gov (United States)

    Inokuchi, Yoshiya; Boyarkin, Oleg V; Ebata, Takayuki; Rizzo, Thomas R

    2012-04-01

    We report UV photodissociation (UVPD) and IR-UV double-resonance spectra of 1,2-dimethoxybenzene (DMB) complexes with alkali metal ions, M(+)·DMB (M = Li, Na, K, Rb, and Cs), in a cold, 22-pole ion trap. The UVPD spectrum of the Li(+) complex shows a strong origin band. For the K(+)·DMB, Rb(+)·DMB, and Cs(+)·DMB complexes, the origin band is very weak and low-frequency progressions are much more extensive than that of the Li(+) ion. In the case of the Na(+)·DMB complex, spectral features are similar to those of the K(+), Rb(+), and Cs(+) complexes, but vibronic bands are not resolved. Geometry optimization with density functional theory indicates that the metal ions are bonded to the oxygen atoms in all the M(+)·DMB complexes. For the Li(+) complex in the S(0) state, the Li(+) ion is located in the same plane as the benzene ring, while the Na(+), K(+), Rb(+), and Cs(+) ions are located off the plane. In the S(1) state, the Li(+) complex has a structure similar to that in the S(0) state, providing the strong origin band in the UV spectrum. In contrast, the other complexes show a large structural change in the out-of-plane direction upon S(1)-S(0) excitation, which results in the extensive low-frequency progressions in the UVPD spectra. For the Na(+)·DMB complex, fast charge transfer occurs from Na(+) to DMB after the UV excitation, making the bandwidth of the UVPD spectrum much broader than that of the other complexes and producing the photofragment DMB(+) ion.

  13. Design and Test of Advanced Thermal Simulators for an Alkali Metal-Cooled Reactor Simulator

    Science.gov (United States)

    Garber, Anne E.; Dickens, Ricky E.

    2011-01-01

    The Early Flight Fission Test Facility (EFF-TF) at NASA Marshall Space Flight Center (MSFC) has as one of its primary missions the development and testing of fission reactor simulators for space applications. A key component in these simulated reactors is the thermal simulator, designed to closely mimic the form and function of a nuclear fuel pin using electric heating. Continuing effort has been made to design simple, robust, inexpensive thermal simulators that closely match the steady-state and transient performance of a nuclear fuel pin. A series of these simulators have been designed, developed, fabricated and tested individually and in a number of simulated reactor systems at the EFF-TF. The purpose of the thermal simulators developed under the Fission Surface Power (FSP) task is to ensure that non-nuclear testing can be performed at sufficiently high fidelity to allow a cost-effective qualification and acceptance strategy to be used. Prototype thermal simulator design is founded on the baseline Fission Surface Power reactor design. Recent efforts have been focused on the design, fabrication and test of a prototype thermal simulator appropriate for use in the Technology Demonstration Unit (TDU). While designing the thermal simulators described in this paper, effort were made to improve the axial power profile matching of the thermal simulators. Simultaneously, a search was conducted for graphite materials with higher resistivities than had been employed in the past. The combination of these two efforts resulted in the creation of thermal simulators with power capacities of 2300-3300 W per unit. Six of these elements were installed in a simulated core and tested in the alkali metal-cooled Fission Surface Power Primary Test Circuit (FSP-PTC) at a variety of liquid metal flow rates and temperatures. This paper documents the design of the thermal simulators, test program, and test results.

  14. Application of transition metal isotope tracers in global change research

    Institute of Scientific and Technical Information of China (English)

    SONG Jinming; Thomas F. Pedersen

    2005-01-01

    High-precision isotope composition determinations using multicollector, magnetic-sector inductively coupled plasma mass spectrometry (MC-ICPMS) have recently revealed that some transition metal isotopes such as those of Mo, Fe, Cu, Zn etc. can be used as biogeochemical tracers in global change research.The Mo isotope system may be useful in paleoredox investigations indicating that δ 97/95Mo in seawater may co-vary with changes in the relative proportions of anoxic and oxic sedimentation in the ocean, and that this variation may be recorded in δ 97/95Mo of anoxic sediments. The Mo continental flux into the oceans and the global Mo isotope budget can be estimated fromδ 97/95MO values. The Fe isotope composition in seawater is an important issue because Fe plays a controlling role in biological productivity in the oceans and its abundance in seawater may have substantial effect on climate changes. Iron isotope fractionations could result from bio- and abio-processes and have about 0.1% variation (δ 56/54Fe), so Fe isotopes considered alone cannot be used to distinguish the products of abiotic and biotic Fe processing in geological records. Cu and Zn isotopes are also used as biogeochemical tracers, but the researches are relatively less. This review mainly focuses on the methods for preparation, purification and determination of new isotope tracer samples, and on isotope applications in marine environmental changes.

  15. New class of scorpionate: tris(tetrazolyl)-iron complex and its different coordination modes for alkali metal ions.

    Science.gov (United States)

    Park, Ka Hyun; Lee, Kang Mun; Go, Min Jeong; Choi, Sung Ho; Park, Hyoung-Ryun; Kim, Youngjo; Lee, Junseong

    2014-08-18

    We report formation of a new metallascorpionate ligand, [FeL3](3-) (IPtz), containing a Fe core and three 5-(2-hydroxyphenyl)-1H-tetrazole (LH2) ligands. It features two different binding sites, oxygen and nitrogen triangles, which consist of three oxygen or nitrogen donors from tetrazole. The binding affinities of the complex for three alkali metal ions were studied using UV spectrophotometry titrations. All three alkali metal ions show high affinities and binding constants (>3 × 10(6) M(-1)), based on the 1:1 binding isotherms to IPtz. The coordination modes of the alkali metals and IPtz in the solid were studied using X-ray crystallography; two different electron-donor sites show different coordination numbers for Li(+), Na(+), and K(+) ions. The oxygen triangles have the κ(2) coordination mode with Li(+) and κ(3) coordination mode with Na(+) and K(+) ions, whereas the nitrogen triangles show κ(3) coordination with K(+) only. The different binding affinities of IPtz in the solid were manipulated using multiple metal precursors. A Fe-K-Zn trimetallic complex was constructed by assembly of an IPtz ligand, K, and Zn precursors and characterized using X-ray crystallography. Oxygen donors are coordinated with the K ion via the κ(3) coordination mode, and nitrogen donors are coordinated with Zn metal by κ(3) coordination. The solid-state structure was confirmed to be a honeycomb coordination polymer with a one-dimensional infinite metallic array, i.e., -(K-K-Fe-Zn-Fe-K)n-.

  16. Synthesis and properties of alkali metal intercalated fullerene-like MS2 (M=W,Mo) nanoparticles

    International Nuclear Information System (INIS)

    Layered metal disulfides - MoS2 and WS2 in the form of fullerene-like (IF) nanoparticles and in the form of platelets (crystallites of the 2H polytype) have been intercalated by exposure to alkali metal (potassium and sodium) vapor using a two-zone transport method. The composition of the intercalated systems was established using X-ray energy dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS). X-ray powder diffraction (XRD) analysis and transmission electron microscopy (TEM) of the samples, which were not exposed to the ambient atmosphere, showed that they suffered little change in their lattice parameters. On the other hand, after exposure to ambient atmosphere, substantial increase in the interplanar spacing (3-5 Aa) was observed for the intercalated phases. Insertion of one to two water molecules per intercalated metal atom was suggested as a possible explanation for this large expansion along the c-axis. The modifications in magnetic and transport properties of the intercalated materials were investigated, and are believed to occur via charge transfer from the alkali metal to the conduction band of the host lattice. Restacking of the MS2 layers after prolonged exposure to the atmosphere and recovery of the pristine compound properties were observed as a result of deintercalation of the metal atoms

  17. METALLIC PHASE AND INSULATING CHARACTER OF ALKALI-EARTH METAL DOPED C60

    Institute of Scientific and Technical Information of China (English)

    曹阳; 陈良进; 陈波; 冯建文; 陈文建

    1995-01-01

    The three dimensional EHMO crystal orbital calculations for crystalline Ba6 C60,Ca3 C60 and Ca5 C60 are reported.The ground state of partially doped Ca3 C60 is found to be insulating with an indrect energy gap of 0.5eV.In contrast,the Ca5 C60 forms a metallic conducting phase with a set of three half-filled bands crossing the Fermi level which is Found to locate close to a peak of the density of state. The character of crystal orbitals near the Fermilevel for both Ca3 C60 and Ca5 C60 is completely carbon-like.In both cases the Ca3 atoms are almost fully ionized and C60 molecules form a stable negative charge state with six to ten additional electrons.The conductivity of Ba6 C60 is resuted from the incomplete charge tranfer.The valance charge of every Ba ion is about 0.33.The total charge tranfer of six Ba atoms is almost the same as that of five Ca atoms.

  18. Study on the Characteristics of an Alkali-Metal Thermoelectric Power Generation System

    Science.gov (United States)

    Lee, Wook-Hyun; Hwang, Hyun-Chang; Lee, Ji-Su; Kim, Pan-Jo; Lim, Sang-Hyuk; Rhi, Seok-Ho; Lee, Kye-Bock; Lee, Ki-Woo

    2015-10-01

    In the present study, a numerical simulation and experimental studies of an alkali-metal thermoelectric energy converter (AMTEC) system were carried out. The present, unique AMTEC model consists of an evaporator, a β-alumina solid electrolyte (BASE) tube, a condenser, and an artery cable wick. The key points for operation of the present AMTEC were 1100 K in the evaporator and 600 K in the condenser. A numerical model based on sodium-saturated porous wicks was developed and shown to be able to simulate the AMTEC system. The simulation results show that the AMTEC system can generate up to 100 W with a given design. The AMTEC system developed in the present work and used in the practical investigations could generate an electromotive force of 7 V. Artery wick and evaporator wick structures were simulated for the optimum design. Both sodium-saturated wicks were affected by numerous variables, such as the input heat power, cooling temperature, sodium mass flow rate, and capillary-driven fluid flow. Based on an effective thermal conductivity model, the presented simulation could successfully predict the system performance. Based on the numerical simulation, the AMTEC system operates with efficiency near 10% to 15%. In the case of an improved BASE design, the system could reach efficiency of over 30%. The system was designed for 0.6 V power, 25 A current, and 100 W power input. In addition, in this study, the temperature effects in each part of the AMTEC system were analyzed using a heat transfer model in porous media to apply to the computational fluid dynamics at a predetermined temperature condition for the design of a 100-W AMTEC prototype. It was found that a current density of 0.5 A/cm2 to 0.9 A/cm2 for the BASE is suitable when the temperatures of the evaporator section and condenser section are 1100 K and 600 K, respectively.

  19. N-alkyl pyrrolidone ether podands as versatile alkali metal ion chelants.

    Science.gov (United States)

    Perrin, Andrea; Myers, Dominic; Fucke, Katharina; Musa, Osama M; Steed, Jonathan W

    2014-02-28

    This work explores the coordination chemistry of a bis(pyrrolidone) ether ligand. Pyrrolidones are commercially important functional groups because of the high polarity and hence high hydrophilicity and surface affinity. An array of alkali metal ion complexes of a podand bearing two pendant pyrrolidone functionalities, namely 1-{2-[2-(2-oxo-pyrrolid-1-yl)-ethoxy]-ethyl}-pyrrolid-2-one (1) are reported. Reaction of this ligand with sodium hexafluorophosphate gives two discrete species of formulae [Na(1)2]PF6 (3) and [Na3(H2O)2(μ-1)2](PF6)3 (4), and a coordination polymer {[Na3(μ3-1)3(μ2-1)](PF6)3}n (5). The same reaction in methanol gives a 1 : 1 complex, namely [Na2(μ-1)2(MeOH)2](PF6)2 (6). Use of tetraphenyl borate as a less coordinating counter ion gives [Na2(1)2(H2O)4](BPh4)2 (7) and [Na2(1)4](BPh4)2 (8). Two potassium complexes have also been isolated, a monomer [K(1)2]PF6 (9) and a cyclic tetramer [K4(μ4-H2O)2(μ-1)4](PF6)4 (10). The structures illustrate the highly polar nature of the amide carbonyl moiety within bis(pyrrolidone) ethers with longer interactions to the ether oxygen atom. The zinc complex is also reported and {[ZnCl2(μ-1)]}n (11) exhibits bonding only to the carbonyl moieties. The ether oxygen atom is not necessary for Na(+) complexation as exemplified by the structure of the sodium complex of the analogue 1,3-bis(pyrrolid-2-on-1-yl)butane (2). Reaction of compound 1 with lithium salts results in isolation of the protonated ligand. PMID:24336897

  20. Spectrum, radial wave functions, and hyperfine splittings of the Rydberg states in heavy alkali-metal atoms

    Science.gov (United States)

    Sanayei, Ali; Schopohl, Nils

    2016-07-01

    We present numerically accurate calculations of the bound-state spectrum of the highly excited valence electron in the heavy alkali-metal atoms solving the radial Schrödinger eigenvalue problem with a modern spectral collocation method that applies also for a large principal quantum number n ≫1 . As an effective single-particle potential we favor the reputable potential of Marinescu et al. [Phys. Rev. A 49, 982 (1994)], 10.1103/PhysRevA.49.982. Recent quasiclassical calculations of the quantum defect of the valence electron agree for orbital angular momentum l =0 ,1 ,2 ,... overall remarkably well with the results of the numerical calculations, but for the Rydberg states of rubidium and also cesium with l =3 this agreement is less fair. The reason for this anomaly is that in rubidium and cesium the potential acquires for l =3 deep inside the ionic core a second classical region, thus invalidating a standard Wentzel-Kramers-Brillouin (WKB) calculation with two widely spaced turning points. Comparing then our numerical solutions of the radial Schrödinger eigenvalue problem with the uniform analytic WKB approximation of Langer constructed around the remote turning point rn,j ,l (" close=")n -δ0)">+ we observe everywhere a remarkable agreement, apart from a tiny region around the inner turning point rn,j ,l (-). For s states the centrifugal barrier is absent and no inner turning point exists: rn,j ,0 (-)=0 . With the help of an ansatz proposed by Fock we obtain for the s states a second uniform analytic approximation to the radial wave function complementary to the WKB approximation of Langer, which is exact for r →0+ . From the patching condition, that is, for l =0 the Langer and Fock solutions should agree in the intermediate region 0 application we consider recent spectroscopic data for the hyperfine splittings of the isotopes 85Rb and 87Rb and find a remarkable agreement with the predicted scaling relation An,j ,0 (HFS )=const .

  1. Isotope enrichment of metal in the process of zone melting

    International Nuclear Information System (INIS)

    The possibility of using the zone melting technique with the purpose of isotope enrichment of metal has been checked. The experiments have been carried out with zinc and cadmium wires. After the experiment the long wire has been sectioned by 15 mm and in such a state has been subjected to mass spectrometric and neutron activation analysis. The dependence of isotope enrichment with zone passage is shown. The light isotopes 64Zn in zinc and 106Cd and 108Cd in cadmium move following the zone enriching at the wire end

  2. Tandem mass spectrometric study of ciprofloxacin-poly(ethylene glycol) conjugate in the presence of alkali metal ions

    Science.gov (United States)

    Kéki, Sándor; Nagy, Lajos; Kuki, Ákos; Pintér, Gábor; Herczegh, Pál; Zsuga, Miklós

    2008-08-01

    The fragmentation and fragmentation behaviors of singly, doubly, and triply charged adducts of ciprofloxacin-poly(ethylene glycol) conjugate (P_Cf) with alkali metal ions, including Li+, Na+ and K+ ions, generated by electrospray (ESI) were studied as a function of collision energy. The product ion spectra of adducts with charge states +1, +2, and +3 are dominated by product ions arising from the loss-neutral moiety (ciprofloxacin) and CO2, and ions formed by dissociation of the precursor ion ([P_Cf + xM]x+) into product ions [P + (x - 1)M](x-1)+ and [Cf + M]+ (where P_Cf, P and Cf represent the ciprofloxacin-poly(ethylene glycol) conjugate, the poly(ethylene glycol) backbone without the endgroups, and the ciprofloxacin moiety, respectively; M is the alkali metal ion and x is the charge). It was found that the metal ions do not significantly alter the fragmentation pattern of ciprofloxacin-poly(ethylene glycol) conjugate. It is also interesting that the run and the shape of the survival yield curves for the singly and doubly charged adduct ions are independent of the cation. However, in the case of triply charged adducts, survival yield curves follow each other in the order K+, Na+, and Li+. Based on the experimental results, a fragmentation mechanism for the singly and multiply charged adducts of P_Cf with alkali metal ions is given. In addition, a tentative description of the signal intensity variations of the product ions with the lab frame collision energy is also reported.

  3. Plasma assisted measurements of alkali metal concentrations in pressurised combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R.; Haeyrinen, V. [Tampere Univ. of Technology (Finland)

    1997-10-01

    In this project the continuous alkali measurement method plasma excited alkali resonance line spectroscopy (PEARLS) was developed, tested and demonstrated in pressurised combustion facilities. The PEARLS method has been developed at Tampere University of Technology (TUT). During 1994-1996 the PEARLS method was developed from the laboratory level to an industrial prototype. The alkali measuring instrument has been tested and used for regular measurements in four different pressurised combustion installations ranging up to industrial pilot scale. The installations are: (1) a pressurised entrained flow reactor (PEFR) at VTT Energy in Jyvaeskylae, Finland (2) a pressurised fluidised bed combustion facility, called FRED, at DMT in Essen, Germany. (3) a 10 MW pressurised circulating fluidised bed combustion pilot plant at Foster Wheeler Energia Oy in Karhula, Finland (4) PFBC Research Facility at ABB Carbon in Finspaang, Sweden

  4. Oxygen isotope fractionation in divalent metal carbonates

    Science.gov (United States)

    O'Neil, J.R.; Clayton, R.N.; Mayeda, T.K.

    1969-01-01

    Equilibrium fractionation factors for the distribution of 18O between alkaline-earth carbonates and water have been measured over the temperature range 0-500??C. The fractionation factors ?? can be represented by the equations CaCO3-H2O, 1000 ln??=2.78(106 T-2)-3.39, SrCO3-H 2O, 1000 ln??=2.69(106 T-2)-3.74, BaCO3-H2O, 1000 ln??=2.57(106 T -2)-4.73. Measurements on MnCO3, CdCO3, and PbCO3 were made at isolated temperatures. A statistical-mechanical calculation of the isotopic partition function ratios gives reasonably good agreement with experiment. Both cationic size and mass are important in isotopic fractionation, the former predominantly in its effect on the internal vibrations of the anion, the latter in its effect on the lattice vibrations.

  5. Alkali-Metal-Ion-Functionalized Graphene Oxide as a Superior Anode Material for Sodium-Ion Batteries.

    Science.gov (United States)

    Wan, Fang; Li, Yu-Han; Liu, Dai-Huo; Guo, Jin-Zhi; Sun, Hai-Zhu; Zhang, Jing-Ping; Wu, Xing-Long

    2016-06-01

    Although graphene oxide (GO) has large interlayer spacing, it is still inappropriate to use it as an anode for sodium-ion batteries (SIBs) because of the existence of H-bonding between the layers and ultralow electrical conductivity which impedes the Na(+) and e(-) transformation. To solve these issues, chemical, thermal, and electrochemical procedures are traditionally employed to reduce GO nanosheets. However, these strategies are still unscalable, consume high amounts of energy, and are expensive for practical application. Here, for the first time, we describe the superior Na storage of unreduced GO by a simple and scalable alkali-metal-ion (Li(+) , Na(+) , K(+) )-functionalized process. The various alkali metals ions, connecting with the oxygen on GO, have played different effects on morphology, porosity, degree of disorder, and electrical conductivity, which are crucial for Na-storage capabilities. Electrochemical tests demonstrated that sodium-ion-functionalized GO (GNa) has shown outstanding Na-storage performance in terms of excellent rate capability and long-term cycle life (110 mAh g(-1) after 600 cycles at 1 A g(-1) ) owing to its high BET area, appropriate mesopore, high degree of disorder, and improved electrical conductivity. Theoretical calculations were performed using the generalized gradient approximation (GGA) to further study the Na-storage capabilities of functionalized GO. These calculations have indicated that the Na-O bond has the lowest binding energy, which is beneficial to insertion/extraction of the sodium ion, hence the GNa has shown the best Na-storage properties among all comparatives functionalized by other alkali metal ions. PMID:27136376

  6. Methane coupling reaction in an oxy-steam stream through an OH radical pathway by using supported alkali metal catalysts

    KAUST Repository

    Liang, Yin

    2014-03-24

    A universal reaction mechanism involved in the oxidative coupling of methane (OCM) is demonstrated under oxy-steam conditions using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH radical formation from a H 2O-O2 reaction followed by C-H activation in CH 4 with an OH radical. Thus, the presence of water enhances both the CH4 conversion rate and the C2 selectivity. This OH radical pathway that is selective for the OCM was observed for the catalyst without Mn, which suggests clearly that Mn is not the essential component in a selective OCM catalyst. The experiments with different catalyst compositions revealed that the OH.-mediated pathway proceeded in the presence of catalysts with different alkali metals (Na, K) and different oxo anions (W, Mo). This difference in catalytic activity for OH radical generation accounts for the different OCM selectivities. As a result, a high C2 yield is achievable by using Na2WO4/SiO2, which catalyzes the OH.-mediated pathway selectively. Make it methane: A universal reaction mechanism involved in the oxidative coupling of methane is demonstrated under oxy-stream conditions by using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH radical formation from an H2O-O2 reaction, followed by C-H activation in CH4 with an OH radical. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Third order nonlinear optical properties and optical limiting behavior of alkali metal complexes of p-nitrophenol

    Science.gov (United States)

    Thangaraj, M.; Vinitha, G.; Sabari Girisun, T. C.; Anandan, P.; Ravi, G.

    2015-10-01

    Optical nonlinearity of metal complexes of p-nitrophenolate (M=Li, Na and K) in ethanol is studied by using a continuous wave (cw) diode pumped Nd:YAG laser (532 nm, 50 mW). The predominant mechanism of observed nonlinearity is thermal in origin. The nonlinear refractive index and the nonlinear absorption coefficient of the samples were found to be in the order of 10-8 cm2/W and 10-3 cm/W respectively. Magnitude of third-order optical parameters varies according to the choice of alkali metal chosen for metal complex formation of p-nitrophenolate. The third-order nonlinear susceptibility was found to be in the order of 10-6 esu. The observed saturable absorption and the self-defocusing effect were used to demonstrate the optical limiting action at 532 nm by using the same cw laser beam.

  8. Alkali metal salts of rutin - Synthesis, spectroscopic (FT-IR, FT-Raman, UV-VIS), antioxidant and antimicrobial studies.

    Science.gov (United States)

    Samsonowicz, M; Kamińska, I; Kalinowska, M; Lewandowski, W

    2015-12-01

    In this work several metal salts of rutin with lithium, sodium, potassium, rubidium and cesium were synthesized. Their molecular structures were discussed on the basis of spectroscopic (FT-IR, FT-Raman, UV-VIS) studies. Optimized geometrical structure of rutin was calculated by B3LYP/6-311++G(∗∗) method and sodium salt of rutin were calculated by B3LYP/LanL2DZ method. Metal chelation change the biological properties of ligand therefore the antioxidant (FRAP and DPPH) and antimicrobial activities (toward Escherichia coli, Staphylococcus aureus, Enterococcus faecium, Proteus vulgaris, Pseudomonas aeruginosa, Klebsiella pneumonia, Candida albicans and Saccharomyces cerevisiae) of alkali metal salts were evaluated and compared with the biological properties of rutin. PMID:26184478

  9. Crown-Ether Derived Graphene Hybrid Composite for Membrane-Free Potentiometric Sensing of Alkali Metal Ions

    DEFF Research Database (Denmark)

    Olsen, Gunnar; Ulstrup, Jens; Chi, Qijin

    2016-01-01

    surface coverage is achieved by the introduction of a flexible linking molecule. The resulting hybrid composite is highly stable and is capable of detecting potassium ions down to micromolar ranges with a selectivity over other cations (including Ca2+, Li+, Na+, NH4+) at concentrations up to 25 m......We report the design and synthesis of newly functionalized graphene hybrid material that can be used for selective membrane-free potentiometric detection of alkali metal ions, represented by potassium ions. Reduced graphene oxide (RGO) functionalized covalently by 18-crown[6] ether with a dense...

  10. Sensitive determination of the spin polarization of optically pumped alkali-metal atoms using near-resonant light.

    Science.gov (United States)

    Ding, Zhichao; Long, Xingwu; Yuan, Jie; Fan, Zhenfang; Luo, Hui

    2016-01-01

    A new method to measure the spin polarization of optically pumped alkali-metal atoms is demonstrated. Unlike the conventional method using far-detuned probe light, the near-resonant light with two specific frequencies was chosen. Because the Faraday rotation angle of this approach can be two orders of magnitude greater than that with the conventional method, this approach is more sensitive to the spin polarization. Based on the results of the experimental scheme, the spin polarization measurements are found to be in good agreement with the theoretical predictions, thereby demonstrating the feasibility of this approach. PMID:27595707

  11. Thermophysical properties of alkali metal vapours. Part II - assessment of experimental data on thermal conductivity and viscosity

    OpenAIRE

    Fialho, Paulo; Ramires, Maria de Lurdes V.; Nieto de Castro, Carlos A.; João M. N. A. Fareleira; Mardolcar, Umesh V.

    1994-01-01

    Copyright © 1994 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Article first published online: 8 MAY 2010. An analysis of the available data on the viscosity and thermal conductivity coefficients of the alkali metal vapours is presented. The analysis is based upon theoretical calculations of the properties of the monatomic systems, described in the preceding parts I and I.A of the present paper, and making use of the kinetic theory of a binary gas reacting mixture. A summary of the measur...

  12. Nuclear Wavepacket Dynamics of Alkali Adsorbates on Metal Surfaces Studied by Time-Resolved Second Harmonic Generation

    Directory of Open Access Journals (Sweden)

    Kazuya Watanabe

    2012-01-01

    Full Text Available This paper reviews recent efforts to understand the dynamics of coherent surface vibrations of alkali atoms adsorbed on metal surfaces. Time-resolved second harmonic generation is used for the coherent excitation and detection of the nuclear wavepacket dynamics of the surface modes. The principles of the measurement and the experimental details are described. The main focus is on coverage and excitation photon energy dependences of the coherent phonon dynamics for Na-, K-, and Cs-covered Cu(111. The excitation mechanism of the coherent phonon has been revealed by the ultrafast time-domain technique and theoretical modelings.

  13. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    International Nuclear Information System (INIS)

    We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of 87Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the 87Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the 87Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system

  14. Cooper minima in the transitions from low-excited and Rydberg states of alkali-metal atoms

    OpenAIRE

    Beterov, I. I.; Mansell, C. W.; Yakshina, E. A.; Ryabtsev, I. I.; Tretyakov, D. B.; Entin, V. M.; MacCormick, C.; Piotrowicz, M. J.; Kowalczyk, A.; S. Bergamini

    2012-01-01

    The structure of the Cooper minima in the transition probabilities and photoionization cross-sections for low-excited and Rydberg nS, nP, nD and nF states of alkali-metal atoms has been studied using a Coulomb approximation and a quasiclassical model. The range of applicability of the quasiclassical model has been defined from comparison with available experimental and theoretical data on dipole moments, oscillator strengths, and photoionization cross-sections. A new Cooper minimum for transi...

  15. Cooper minima in the transitions from low-excited and Rydberg states of alkali-metal atoms

    CERN Document Server

    Beterov, I I; Yakshina, E A; Ryabtsev, I I; Tretyakov, D B; Entin, V M; MacCormick, C; Piotrowicz, M J; Kowalczyk, A; Bergamini, S

    2012-01-01

    The structure of the Cooper minima in the transition probabilities and photoionization cross-sections for low-excited and Rydberg nS, nP, nD and nF states of alkali-metal atoms has been studied using a Coulomb approximation and a quasiclassical model. The range of applicability of the quasiclassical model has been defined from comparison with available experimental and theoretical data on dipole moments, oscillator strengths, and photoionization cross-sections. A new Cooper minimum for transitions between rubidium Rydberg states has been found.

  16. Elimination technique for alkali metal ion adducts from an electrospray ionization process using an on-line ion suppressor

    OpenAIRE

    NOZAKI, Kazuyoshi; TARUI, Akira; OSAKA, Issey; Kawasaki, Hideya; ARAKAWA, Ryuichi; 荒川, 隆一

    2010-01-01

    The effects of an on-line ion suppressor device on alkali metal ion adduct formations of the model compound tacrolimus were investigated. The base peak ion in the positive ion ESI-MS spectrum of tacrolimus was a sodium ion adduct, [M+Na]+. On the other hand, an ammonium ion adduct, [M+NH4]+, was the base peak ion in the full-scan mass spectrum of tacrolimus with a cation-exchange suppressor resin, and both [M+Na]+ and [M+K]+ were eliminated. These results indicate that the combination of an o...

  17. Electric-field-induced change of alkali-metal vapor density in paraffin-coated cells

    CERN Document Server

    Kimball, D F Jackson; Ravi, K; Sharma, Arijit; Prabhudesai, Vaibhav S; Rangwala, S A; Yashchuk, V V; Balabas, M V; Budker, D

    2008-01-01

    Alkali vapor cells with antirelaxation coating (especially paraffin-coated cells) have been a central tool in optical pumping and atomic spectroscopy experiments for 50 years. We have discovered a dramatic change of the alkali vapor density in a paraffin-coated cell upon application of an electric field to the cell. A systematic experimental characterization of the phenomenon is carried out for electric fields ranging in strength from 0-8 kV/cm for paraffin-coated cells containing rubidium and cells containing cesium. The typical response of the vapor density to a rapid (duration < 100 ms) change in electric field of sufficient magnitude includes (a) a rapid (duration of < 100 ms) and significant increase in alkali vapor density followed by (b) a less rapid (duration of ~ 1 s) and significant decrease in vapor density (below the equilibrium vapor density), and then (c) a slow (duration of ~ 100 s) recovery of the vapor density to its equilibrium value. Measurements conducted after the alkali vapor densi...

  18. Alkali metal and ammonium chlorides in water and heavy water (binary systems)

    CERN Document Server

    Cohen-Adad, R

    1991-01-01

    This volume surveys the data available in the literature for solid-fluid solubility equilibria plus selected solid-liquid-vapour equilibria, for binary systems containing alkali and ammonium chlorides in water or heavy water. Solubilities covered are lithium chloride, sodium chloride, potassium chloride, rubidium chloride, caesium chloride and ammonium chloride in water and heavy water.

  19. Plasma assisted measurements of alkali metal concentrations in pressurized combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R.; Haeyrinen, V. [Tampere Univ. of Technology (Finland). Dept. of Physics

    1996-12-01

    The plasma assisted method for continuous measurement of alkali concentrations in product gas flows of pressurized energy processes will be tested and applied at the 1.6 MW PFBC/G facility at Delft University of Technology in the Netherlands. During the reporting period the alkali measuring device has been tested under pressurized conditions at VTT Energy, DMT, Foster-Wheeler Energia and ABB Carbon. Measurements in Delft will be performed during 1996 after installation of the hot gas filter. The original plan for measurements in Delft has been postponed due to schedule delays in Delft. The results are expected to give information about the influence of different process conditions on the generation of alkali vapours, the comparison of different methods for alkali measurement and the specific performance of our system. This will be the first test of the plasma assisted measurement method in a gasification process. The project belongs to the Joule II extension program under contract JOU2-CT93-0431. (author)

  20. Molecular origin of high free energy barriers for alkali metal ion transfer through ionic liquid-graphene electrode interfaces.

    Science.gov (United States)

    Ivaništšev, Vladislav; Méndez-Morales, Trinidad; Lynden-Bell, Ruth M; Cabeza, Oscar; Gallego, Luis J; Varela, Luis M; Fedorov, Maxim V

    2016-01-14

    In this work we study mechanisms of solvent-mediated ion interactions with charged surfaces in ionic liquids by molecular dynamics simulations, in an attempt to reveal the main trends that determine ion-electrode interactions in ionic liquids. We compare the interfacial behaviour of Li(+) and K(+) at a charged graphene sheet in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, and its mixtures with lithium and potassium tetrafluoroborate salts. Our results show that there are dense interfacial solvation structures in these electrolytes that lead to the formation of high free energy barriers for these alkali metal cations between the bulk and direct contact with the negatively charged surface. We show that the stronger solvation of Li(+) in the ionic liquid leads to the formation of significantly higher interfacial free energy barriers for Li(+) than for K(+). The high free energy barriers observed in our simulations can explain the generally high interfacial resistance in electrochemical storage devices that use ionic liquid-based electrolytes. Overcoming these barriers is the rate-limiting step in the interfacial transport of alkali metal ions and, hence, appears to be a major drawback for a generalised application of ionic liquids in electrochemistry. Some plausible strategies for future theoretical and experimental work for tuning them are suggested.

  1. Molecular origin of high free energy barriers for alkali metal ion transfer through ionic liquid-graphene electrode interfaces.

    Science.gov (United States)

    Ivaništšev, Vladislav; Méndez-Morales, Trinidad; Lynden-Bell, Ruth M; Cabeza, Oscar; Gallego, Luis J; Varela, Luis M; Fedorov, Maxim V

    2016-01-14

    In this work we study mechanisms of solvent-mediated ion interactions with charged surfaces in ionic liquids by molecular dynamics simulations, in an attempt to reveal the main trends that determine ion-electrode interactions in ionic liquids. We compare the interfacial behaviour of Li(+) and K(+) at a charged graphene sheet in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, and its mixtures with lithium and potassium tetrafluoroborate salts. Our results show that there are dense interfacial solvation structures in these electrolytes that lead to the formation of high free energy barriers for these alkali metal cations between the bulk and direct contact with the negatively charged surface. We show that the stronger solvation of Li(+) in the ionic liquid leads to the formation of significantly higher interfacial free energy barriers for Li(+) than for K(+). The high free energy barriers observed in our simulations can explain the generally high interfacial resistance in electrochemical storage devices that use ionic liquid-based electrolytes. Overcoming these barriers is the rate-limiting step in the interfacial transport of alkali metal ions and, hence, appears to be a major drawback for a generalised application of ionic liquids in electrochemistry. Some plausible strategies for future theoretical and experimental work for tuning them are suggested. PMID:26661060

  2. Influence of alkali metal cations on the thermal, mechanical and morphological properties of rectorite/chitosan bio-nanocomposite films.

    Science.gov (United States)

    Babul Reddy, A; Jayaramudu, J; Siva Mohan Reddy, G; Manjula, B; Sadiku, E R

    2015-05-20

    The main theme of this work is to study the influence of ion-exchangeable alkali metal cations, such as: Li(+), Na(+), K(+), and Cs(+) on the thermal, mechanical and morphological properties. In this regard, a set of rectorite/chitosan (REC-CS) bio-nanocomposite films (BNCFs) was prepared by facile reaction of chitosan with ion-exchanged REC clay. The microstructure and morphology of BNCFs were investigated with XRD, TEM, SEM and AFM. Thermal and tensile properties of BNCFs were also investigated. As revealed from TEM and XRD results, the BNCFs featured a mixed morphology. Some intercalated clay sheets, together with nano-sized clay tactoids were obtained in LiREC/CS, NaREC/CS and KREC/CS of the BNCFs. From fractured surface study, via SEM, it was observed that the dispersion of chitosan polymer attaches to (and covers) the clay platelets. FTIR confirmed strong hydrogen bonds between clay and chitosan polymer. In addition, the thermal stabilities significantly varied when alkali metal cations varied from Li(+) to Cs(+). The BNCFs featured high tensile strengths (up to 84 MPa) and tensile moduli (up to 45 GPa). After evaluating these properties of BNCFs, we came to conclusion that these bio-nano composites can be used for packaging applications.

  3. Independent cross-sections of alkali isotopes produced in various targets bombarded by $^{12}C$ and $^{18}O$ ions up to 77 MeV/amu

    CERN Document Server

    De Saint-Simon, M; Coc, A; Epherre-Rey-Campagnolle, Marcelle; Guimbal, P; Haan, S; Langevin, M; Müller, A C; Thibault, C; Touchard, F

    1982-01-01

    The authors report on an online mass-spectrometric study of the isotopic distributions of nuclear reaction products. The two purposes of this experiment are the investigation of a particular aspect of reaction-mechanisms and the study of the possibility for exotic-nuclei production. The measurements have been carried out with the 86 MeV/amu /sup 12/C and /sup 18/O beams of the synchrocyclotron SC (CERN). By degradation in different sets of graphite slabs, three different energies: 13, 27 and 77 MeV/amu have been chosen. Due to the chemical selectivity for the alkali elements of the device, the isotopic distributions of Li, Na, K, Rb, Cs and Fr were measured in four targets: C, Nb, Ta and U. The independent yields obtained by direct ion counting are converted in cross-sections using a calibration of T. Lund et al.

  4. Long-range interactions between the alkali-metal atoms and alkaline earth ions

    CERN Document Server

    Kaur, Jasmeet; Arora, Bindiya; Sahoo, B K

    2014-01-01

    Accurate knowledge of interaction potentials among the alkali atoms and alkaline earth ions is very useful in the studies of cold atom physics. Here we carry out theoretical studies of the long-range interactions among the Li, Na, K, and Rb alkali atoms with the Ca$^+$, Ba$^+$, Sr$^+$, and Ra$^+$ alkaline earth ions systematically which are largely motivated by their importance in a number of applications. These interactions are expressed as a power series in the inverse of the internuclear separation $R$. Both the dispersion and induction components of these interactions are determined accurately from the algebraic coefficients corresponding to each power combination in the series. Ultimately, these coefficients are expressed in terms of the electric multipole polarizabilities of the above mentioned systems which are calculated using the matrix elements obtained from a relativistic coupled-cluster method and core contributions to these quantities from the random phase approximation. We also compare our estim...

  5. Characterization of Alkali Metal Dispensers and Non-Evaporable Getter Pumps in Ultra-High Vacuum Systems for Cold Atomic Sensors

    OpenAIRE

    Scherer, David R.; Fenner, David B.; Hensley, Joel M.

    2012-01-01

    A glass ultrahigh vacuum chamber with rubidium alkali metal dispensers and non-evaporable getter pumps has been developed and used to create a cold atomic sample in a chamber that operates with only passive vacuum pumps. The ion-mass spectrum of evaporated gases from the alkali metal dispenser has been recorded as a function of dispenser current. The efficacy of the non-evaporable getter pumps in promoting and maintaining vacuum has been characterized by observation of the Rb vapor optical ab...

  6. Ion beam mixing isotopic metal bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Fell, C.J. [Newcastle Univ., NSW (Australia). Dept. of Physics; Kenny, M.J. [CSIRO, Lindfield, NSW (Australia). Div. of Applied Physics

    1993-12-31

    In order to obtain an insight into the mechanisms of ion-solid interactions, bilayer targets can be prepared from two different isotopes. A mixing study SIMS is to be carried out using specially grown monocrystalline bilayers of {sup 58}Ni / {sup 60}Ni. An important aspect of the work is the preparation of high quality single-crystal thin films. The Ni layers will be grown on the (110) surface of pure Ni and verified for crystallinity using Reflection High-Energy Electron Diffraction and Rutherford Backscattering channelling analysis. The Pd bilayers will be grown on a Pd (100) surface. RHEED will be used to confirm the two-dimensional crystallinity of the surface before and after deposition of each layer, and channelling used to confirm bulk film crystallinity. Single crystal substrates are currently being prepared. Analysis of the Ni (110) surface using RHEED at 9 kV shows a streak spacing which corresponds to a lattice spacing of 2.47 {+-} 0.09 Angstroms. 9 refs., 1 fig.

  7. Release and sorption of alkali metals in coal fired combined cycle power systems; Freisetzung und Einbindung von Alkalimetallverbindungen in kohlebefeuerten Kombikraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Michael

    2009-07-01

    Coal fired combined cycle power systems will be a sufficient way to increase the efficiency of coal combustion. However, combined cycle power systems require a reliable hot gas cleanup. Especially alkali metals, such as sodium and potassium, can lead to hot corrosion of the gas turbine blading if they condensate as sulphates. The actual work deals with the release and sorption of alkali metals in coal fired combined cycle power systems. The influence of coal composition, temperature and pressure on the release of alkali species in coal combustion was investigated and the relevant release mechanisms identified. Alumosilicate sorbents have been found that reduce the alkali concentration in the hot flue gas of the Circulating Pressurized Fluidized Bed Combustion 2{sup nd} Generation (CPFBC 2{sup nd} Gen.) at 750 C to values sufficient for use in a gas turbine. Accordingly, alumosilicate sorbents working at 1400 C have been found for the Pressurized Pulverized Coal Combustion (PPCC). The sorption mechanisms have been identified. Thermodynamic calculations were performed to upscale the results of the laboratory experiments to conditions prevailing in power systems. According to these calculations, there is no risk of hot corrosion in both processes. Furthermore, thermodynamic calculations were performed to investigate the behaviour of alkali metals in an IGCC with integrated hot gas cleanup and H{sub 2} membrane for CO{sub 2} sequestration. (orig.)

  8. Comparisons between adsorption and diffusion of alkali, alkaline earth metal atoms on silicene and those on silicane: Insight from first-principles calculations

    Science.gov (United States)

    Bo, Xu; Huan-Sheng, Lu; Bo, Liu; Gang, Liu; Mu-Sheng, Wu; Chuying, Ouyang

    2016-06-01

    The adsorption and diffusion behaviors of alkali and alkaline-earth metal atoms on silicane and silicene are both investigated by using a first-principles method within the frame of density functional theory. Silicane is staler against the metal adatoms than silicene. Hydrogenation makes the adsorption energies of various metal atoms considered in our calculations on silicane significantly lower than those on silicene. Similar diffusion energy barriers of alkali metal atoms on silicane and silicene could be observed. However, the diffusion energy barriers of alkali-earth metal atoms on silicane are essentially lower than those on silicene due to the small structural distortion and weak interaction between metal atoms and silicane substrate. Combining the adsorption energy with the diffusion energy barriers, it is found that the clustering would occur when depositing metal atoms on perfect hydrogenated silicene with relative high coverage. In order to avoid forming a metal cluster, we need to remove the hydrogen atoms from the silicane substrate to achieve the defective silicane. Our results are helpful for understanding the interaction between metal atoms and silicene-based two-dimensional materials. Project supported by the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20152ACB21014, 20151BAB202006, and 20142BAB212002) and the Fund from the Jiangxi Provincial Educational Committee, China (Grant No. GJJ14254). Bo Xu is also supported by the Oversea Returned Project from the Ministry of Education, China.

  9. Lead isotopes and trace metals in dust at Yucca Mountain

    Science.gov (United States)

    Kwak, Loretta; Neymark, Leonid A.; Peterman, Zell E.

    2008-01-01

    Lead (Pb)-isotope compositions and trace-metal concentrations were determined for samples of dust collected from underground and surface locations at and near the proposed radioactive waste repository at Yucca Mountain, Nevada. Rare earth element concentrations in the dust samples from the underground tunnels are similar to those in wholerock samples of the repository host rocks (Miocene Tiva Canyon Tuff and Topopah Spring Tuff), supporting interpretation that the subsurface dust is mainly composed of rock comminuted during tunnel construction. Other trace metals (arsenic, cadmium, cobalt, chromium, copper, manganese, nickel, lead, antimony, thallium, and zinc) are variably enriched in the subsurface dust samples relative to the average concentrations in the host rocks. Average concentrations of arsenic and lead in dust samples, high concentrations of which can cause corrosion of waste canisters, have enrichment factors from 1.2 to 1.6 and are insignificant relative to the range of concentrations for these metals observed in the host rock samples. Most dust samples from surface sites also are enriched in many of these trace metals relative to average repository host rocks. At least some of these enrichments may be artifacts of sampling. Plotted on a 208Pb/206Pb-207Pb/206Pb graph, Pb-isotope compositions of dust samples from underground sites form a mixing line extending from host-rock Pb-isotope compositions towards compositions of many of the dust samples from surface sites; however, combined Pb concentration and isotope data indicate the presence of a Pbenriched component in the subsurface dust that is not derived from host rock or surface dust and may derive from anthropogenic materials introduced into the underground environment.

  10. A curious interplay in the films of N-heterocyclic carbene PtII complexes upon deposition of alkali metals

    Science.gov (United States)

    Makarova, Anna A.; Grachova, Elena V.; Niedzialek, Dorota; Solomatina, Anastasia I.; Sonntag, Simon; Fedorov, Alexander V.; Vilkov, Oleg Yu.; Neudachina, Vera S.; Laubschat, Clemens; Tunik, Sergey P.; Vyalikh, Denis V.

    2016-05-01

    The recently synthesized series of PtII complexes containing cyclometallating (phenylpyridine or benzoquinoline) and N-heterocyclic carbene ligands possess intriguing structures, topologies, and light emitting properties. Here, we report curious physicochemical interactions between in situ PVD-grown films of a typical representative of the aforementioned PtII complex compounds and Li, Na, K and Cs atoms. Based on a combination of detailed core-level photoelectron spectroscopy and quantum-chemical calculations at the density functional theory level, we found that the deposition of alkali atoms onto the molecular film leads to unusual redistribution of electron density: essential modification of nitrogen sites, reduction of the coordination PtII centre to Pt0 and decrease of electron density on the bromine atoms. A possible explanation for this is formation of a supramolecular system “Pt complex-alkali metal ion” the latter is supported by restoration of the system to the initial state upon subsequent oxygen treatment. The discovered properties highlight a considerable potential of the PtII complexes for a variety of biomedical, sensing, chemical, and electronic applications.

  11. Equilibrium electrode U(4)-U and redox U(4)-U(3) potentials in molten alkali metal chlorides medium

    International Nuclear Information System (INIS)

    Conditional standard electrode potentials of uranium are determined for diluted solutions of its tetrachloride in alkali metal chloride melts (LiCl, NaCl, NaCl-KCl, KCl, RbCl and CsCl) when using U(4) ion activity coefficient values experimentally found by the tensimetric method. These potentials shift to the electronegative side at the temperature decrease and alkali cation radius increase rsub(Msup(+)) according to the empiric ratio E*U(4)-U= -3.06+6.87x10-4 T-(1.67-10-4T-0.44) 1/rsub(Msup(+)) +-0.01. The temperature dependences of formal conditional redox potentials of the U(4)-U(3) system for above melted chlorides are estimated. The E*U(4)-U(3) value also becomes more electronegative in the series LiCl, NaCl, NaCl-KCl, KCl, RbCl and CsCl. This alternation is satisfactorily described by the empiric expression E*U(4)-U(3)= -1.74+1.74x10-4T-(0.71x10-4T-0.20) 1rsub(Msup(+)) +-0.05. The calculated values Eu*(4)-U(3) are compared with those directly measured for the NaCl-KCl equimolar mixture and 3LiCl-2KCl eutectic mixture. A satisfactory confirmity has been observed

  12. Thermal and optical properties of Nd{sup 3+} doped lead zinc borate glasses—Influence of alkali metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Sasi Kumar, M.V.; Rajesh, D.; Balakrishna, A. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Ratnakaram, Y.C., E-mail: ratnakaramsvu@gmail.com [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India)

    2013-04-15

    In the present investigation a new series of six different Nd{sup 3+} doped alkali and mixed alkali (Li, Na, K, Li–Na, Li–K and Na–K) heavy metal (PbO and ZnO) borate glasses were prepared using the melt quenching technique. The amorphous nature of the glass systems has been identified based on the X-ray diffraction analysis. The glass transition studies were carried out using differential scanning calorimetry (DSC). Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra. The Judd–Ofelt (J–O) theory has been applied to calculate J–O intensity parameters, Ω{sub λ} (λ=2, 4 and 6) and in turn used to estimate radiative properties of certain transitions. Spectroscopic parameters such as transition probabilities (A{sub T}), branching ratios (β), radiative lifetimes (τ{sub R}) and integrated absorption cross-sections (Σ) were calculated using J–O intensity parameters for all transitions. Using emission spectra, experimental branching ratios and stimulated emission cross-sections (σ{sub P}) are obtained for all the observed emission transitions.

  13. Thermal and optical properties of Nd3+ doped lead zinc borate glasses—Influence of alkali metal ions

    Science.gov (United States)

    Sasi Kumar, M. V.; Rajesh, D.; Balakrishna, A.; Ratnakaram, Y. C.

    2013-04-01

    In the present investigation a new series of six different Nd3+ doped alkali and mixed alkali (Li, Na, K, Li-Na, Li-K and Na-K) heavy metal (PbO and ZnO) borate glasses were prepared using the melt quenching technique. The amorphous nature of the glass systems has been identified based on the X-ray diffraction analysis. The glass transition studies were carried out using differential scanning calorimetry (DSC). Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra. The Judd-Ofelt (J-O) theory has been applied to calculate J-O intensity parameters, Ωλ (λ=2, 4 and 6) and in turn used to estimate radiative properties of certain transitions. Spectroscopic parameters such as transition probabilities (AT), branching ratios (β), radiative lifetimes (τR) and integrated absorption cross-sections (Σ) were calculated using J-O intensity parameters for all transitions. Using emission spectra, experimental branching ratios and stimulated emission cross-sections (σP) are obtained for all the observed emission transitions.

  14. Thermal and optical properties of Nd3+ doped lead zinc borate glasses—Influence of alkali metal ions

    International Nuclear Information System (INIS)

    In the present investigation a new series of six different Nd3+ doped alkali and mixed alkali (Li, Na, K, Li–Na, Li–K and Na–K) heavy metal (PbO and ZnO) borate glasses were prepared using the melt quenching technique. The amorphous nature of the glass systems has been identified based on the X-ray diffraction analysis. The glass transition studies were carried out using differential scanning calorimetry (DSC). Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra. The Judd–Ofelt (J–O) theory has been applied to calculate J–O intensity parameters, Ωλ (λ=2, 4 and 6) and in turn used to estimate radiative properties of certain transitions. Spectroscopic parameters such as transition probabilities (AT), branching ratios (β), radiative lifetimes (τR) and integrated absorption cross-sections (Σ) were calculated using J–O intensity parameters for all transitions. Using emission spectra, experimental branching ratios and stimulated emission cross-sections (σP) are obtained for all the observed emission transitions

  15. Hydrothermal synthesis of mixed rare earth-alkali metal or ammonium fluorides

    Institute of Scientific and Technical Information of China (English)

    由芳田; 黄世华; 时秋峰

    2010-01-01

    The recent results on hydrothermal synthesis of mixed rare earth-alkali or ammonium fluorides were presented. The initial ratios of the starting materials, pH value and reaction temperature were the critical factors for obtaining the single-phase product. Four main types of complex rare earth fluorides, AREF4, A2REF5, ARE2F7 and ARE3F10 (A=Na+, K+, Rb+, NH4+), appeared in the primary hydrothermal reactions. The correlation between cation sizes and the formation of mixed rare earth fluorides under mild hydro...

  16. Viscometric and thermodynamic studies of interactions in ternary solutions containing sucrose and aqueous alkali metal halides at 293.15, 303.15 and 313.15 K

    Indian Academy of Sciences (India)

    Reena Gupta; Mukhtar Singh

    2005-05-01

    Viscosities and densities of sucrose in aqueous alkali metal halide solutions of different concentrations in the temperature range 293.15 to 313.15 K have been measured. Partial molar volumes at infinite dilution ($V_{2}^{0}$) of sucrose determined from apparent molar volume ($\\phi_v$) have been utilized to estimate partial molar volumes of transfer ($V^{0}_{2,tr}$) for sucrose from water to alkali metal halide solutions. The viscosity data of alkali metal halides in purely aqueous solutions and in the presence of sucrose at different temperatures (293.15, 303.15 and 313.5 K) have been analysed by the Jones-Dole equation. The nature and magnitude of solute-solvent and solute-solute interactions have been discussed in terms of the values of limiting apparent molar volume ($\\phi^{0}_{v}$), slope ($S_{v}$) and coefficients of the Jones-Dole equation. The structuremaking and structure-breaking capacities of alkali metal halides in pure aqueous solutions and in the presence of sucrose have been ascertained from temperature dependence of $\\phi^{0}_{v}$.

  17. Alkali Metal Halide Salts as Interface Additives to Fabricate Hysteresis-Free Hybrid Perovskite-Based Photovoltaic Devices.

    Science.gov (United States)

    Wang, Lili; Moghe, Dhanashree; Hafezian, Soroush; Chen, Pei; Young, Margaret; Elinski, Mark; Martinu, Ludvik; Kéna-Cohen, Stéphane; Lunt, Richard R

    2016-09-01

    A new method was developed for doping and fabricating hysteresis-free hybrid perovskite-based photovoltaic devices by using alkali metal halide salts as interface layer additives. Such salt layers introduced at the perovskite interface can provide excessive halide ions to fill vacancies formed during the deposition and annealing process. A range of solution-processed halide salts were investigated. The highest performance of methylammonium lead mixed-halide perovskite device was achieved with a NaI interlayer and showed a power conversion efficiency of 12.6% and a hysteresis of less than 2%. This represents a 90% improvement compared to control devices without this salt layer. Through depth-resolved mass spectrometry, optical modeling, and photoluminescence spectroscopy, this enhancement is attributed to the reduction of iodide vacancies, passivation of grain boundaries, and improved hole extraction. Our approach ultimately provides an alternative and facile route to high-performance and hysteresis-free perovskite solar cells.

  18. Structural and electronic engineering of 3DOM WO3 by alkali metal doping for improved NO2 sensing performance

    Science.gov (United States)

    Wang, Zhihua; Fan, Xiaoxiao; Han, Dongmei; Gu, Fubo

    2016-05-01

    Novel alkali metal doped 3DOM WO3 materials were prepared using a simple colloidal crystal template method. Raman, XRD, SEM, TEM, XPS, PL, Hall and UV-Vis techniques were used to characterize the structural and electronic properties of all the products, while the corresponding sensing performances targeting ppb level NO2 were determined at different working temperatures. For the overall goal of structural and electronic engineering, the co-effect of structural and electronic properties on the improved NO2 sensing performance of alkali metal doped 3DOM WO3 was studied. The test results showed that the gas sensing properties of 3DOM WO3/Li improved the most, with the fast response-recovery time and excellent selectivity. More importantly, the response of 3DOM WO3/Li to 500 ppb NO2 was up to 55 at room temperature (25 °C). The especially high response to ppb level NO2 at room temperature (25 °C) in this work has a very important practical significance. The best sensing performance of 3DOM WO3/Li could be ascribed to the most structure defects and the highest carrier mobility. And the possible gas sensing mechanism based on the model of the depletion layer was proposed to demonstrate that both structural and electronic properties are responsible for the NO2 sensing behavior.Novel alkali metal doped 3DOM WO3 materials were prepared using a simple colloidal crystal template method. Raman, XRD, SEM, TEM, XPS, PL, Hall and UV-Vis techniques were used to characterize the structural and electronic properties of all the products, while the corresponding sensing performances targeting ppb level NO2 were determined at different working temperatures. For the overall goal of structural and electronic engineering, the co-effect of structural and electronic properties on the improved NO2 sensing performance of alkali metal doped 3DOM WO3 was studied. The test results showed that the gas sensing properties of 3DOM WO3/Li improved the most, with the fast response-recovery time and

  19. A stochastic optimization method based technique for finding out reaction paths in noble gas clusters perturbed by alkali metal ions

    International Nuclear Information System (INIS)

    Graphical abstract: The structure of a minimum in Ar19K+ cluster. Abstract: In this paper we explore the possibility of using stochastic optimizers, namely simulated annealing (SA) in locating critical points (global minima, local minima and first order saddle points) in Argon noble gas clusters perturbed by alkali metal ions namely sodium and potassium. The atomic interaction potential is the Lennard Jones potential. We also try to see if a continuous transformation in geometry during the search process can lead to a realization of a kind of minimum energy path (MEP) for transformation from one minimum geometry to another through a transition state (first order saddle point). We try our recipe for three sizes of clusters, namely (Ar)16M+, (Ar)19M+ and (Ar)24M+, where M+ is Na+ and K+.

  20. Synthesis and X-ray Characterization of Alkali Metal 2-Acyl-1,1,3,3-tetracyanopropenides.

    Science.gov (United States)

    Karpov, Sergey V; Grigor'ev, Arthur A; Kayukov, Yakov S; Karpova, Irina V; Nasakin, Oleg E; Tafeenko, Victor A

    2016-08-01

    A novel route for synthesis of 2-acyl-1,1,3,3-tetracyanopropenides (ATCN) salts in high yields and excellent purities starting from readily available methyl ketones, malononitrile, bromine, and alkali metal acetates is reported. The starting aryl(heteroaryl) methyl ketones were oxidized to the corresponding α-ketoaldehydes by new a DMSO-NaBr-H2SO4 oxidation system in yields up to 90% within a short reaction time of 8-10 min. The subsequent stages of ATCN preparation are realized in aqueous media without use of any toxic solvents, in accordance with principle 5 of "green chemistry". Lithium, sodium, potassium, rubidium, and cesium 2-benzoyl-1,1,3,3-tetracyanopropenides were characterized by X-ray diffraction analysis. These salts show a good potential for synthesis of five- and six-membered heterocycles and may serve as potentially useful ligands in coordination and supramolecular chemistry. PMID:27384963

  1. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    Directory of Open Access Journals (Sweden)

    X. H. Liu

    2015-10-01

    Full Text Available We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of 87Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the 87Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the 87Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system.

  2. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X. H.; Luo, H.; Qu, T. L., E-mail: qutianliang@nudt.edu.cn; Yang, K. Y.; Ding, Z. C. [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2015-10-15

    We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of {sup 87}Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the {sup 87}Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the {sup 87}Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system.

  3. Heavy main-group iodometallates hybridized by alkali metal via 1,10-Phenanthroline-5,6-dione

    Indian Academy of Sciences (India)

    Mengfan Yin; Gengxing Cai; Peng Wang; Xihui Chao; Jibo Liu; Haohong Li; Zhirong Chen

    2015-09-01

    Alkali metals were introduced into heavy main-group iodometallates to get two new IA/IVAheterometallic frameworks [PbI3K(pdon)(H2O)2] (1) and {[Pb3I9K2(pdon)2(H3O)]·H2O} (2) (pdon=1,10-phenanthroline-5,6-dione), which were obtained as single phases by hydrothermal method at different pH values. Compounds 1 and 2 are three-dimensional heterometallic frameworks constructed from the linkage of pdon ligand between iodometallate chains and potassium oxides/iodide clusters. Specially, these two heterometallic frameworks exhibit broadened absorption bands at 700 and 750 nm compared with those of bulk PbI2 and pdon ligand. The band gap of 2 is wider than that of 1, which is due to the absence of · · · interaction in 2. Their thermal stabilities are also discussed.

  4. Synthesis and Crystal Structure of A New Armed-tetraazacrown Ether and Its Liquid Membrane Transport of Alkali Metal Cations

    Institute of Scientific and Technical Information of China (English)

    马淑兰; 朱文祥; 董淑静; 郭倩玲; 佘远斌

    2003-01-01

    A new tetra-N-substituted tetraazacrown ether derivative, 4,7,13,16-tetra ( 2-cyanobenzyl)-1, 10-dioxa-4, 7, 13, 16-tetraazacy-dooctademne, C44H48N8O2, has been synthesized and struc-turally characterized. It crystallizes in the monoclinic system,Slmeegroup P21/c with a = 1.1176(3) nm, b =2.1906(7) nm,c=0.8430(3)nm, V=2.0132(10)nm3, β = 102.740(5)°,Z=4, Dc= 1.189 g/cm3, final R1=0.0460, wR2=0.0803.The liquid membrane transports of alkali metal cations using the new macrocyde as the ion-carrier were also studied. Com-pared with some macrocyclic ligands, our newly synthesized lig.and showed a good selectivity ratio for Na Na+/Li+.

  5. The Trapping and Cooling of Alkalis Metal Atoms%碱金属原子的囚禁与冷却

    Institute of Scientific and Technical Information of China (English)

    邓海明; 李璋

    2012-01-01

      描述了如何利用激光以及磁场构建光学粘胶、激光阱、磁阱、磁光阱等实现对碱金属的囚禁与冷却,旨在明晰的呈现BEC实验实现的关键技术、物理原理以及各种装置的优缺点。%  This essay describes how to use laser and magnetic field to construct optical molasses ,laser trap ,mag-netic trap and magneto -optical trap to trap and cool alkali-metal atoms .It presents clearly the key experimental technologies of Bose-Einstein condensate ,the physical principle and the relative advantages and disadvantages of different equipments .

  6. Hyperfine-induced quadrupole moments of alkali-metal atom ground states and their implications for atomic clocks

    CERN Document Server

    Derevianko, Andrei

    2016-01-01

    Spherically-symmetric ground states of alkali-metal atoms do not posses electric quadrupole moments. However, the hyperfine interaction between nuclear moments and atomic electrons distorts the spherical symmetry of electronic clouds and leads to non-vanishing atomic quadrupole moments. We evaluate these hyperfine-induced quadrupole moments using techniques of relativistic many-body theory and compile results for Li, Na, K, Rb, and Cs atoms. For heavy atoms we find that the hyperfine-induced quadrupole moments are strongly (two orders of magnitude) enhanced by correlation effects. We further apply the results of the calculation to microwave atomic clocks where the coupling of atomic quadrupole moments to gradients of electric fields leads to clock frequency uncertainties. We show that for $^{133}$Cs atomic clocks, the spatial gradients of electric fields must be smaller than $30 \\, \\mathrm{V}/\\mathrm{cm}^2$ to guarantee fractional inaccuracies below $10^{-16}$.

  7. Purification and characterization of an extracellular, thermo-alkali-stable, metal tolerant laccase from Bacillus tequilensis SN4.

    Directory of Open Access Journals (Sweden)

    Sonica Sondhi

    Full Text Available A novel extracellular thermo-alkali-stable laccase from Bacillus tequilensis SN4 (SN4LAC was purified to homogeneity. The laccase was a monomeric protein of molecular weight 32 KDa. UV-visible spectrum and peptide mass fingerprinting results showed that SN4LAC is a multicopper oxidase. Laccase was active in broad range of phenolic and non-phenolic substrates. Catalytic efficiency (kcat/Km showed that 2, 6-dimethoxyphenol was most efficiently oxidized by the enzyme. The enzyme was inhibited by conventional inhibitors of laccase like sodium azide, cysteine, dithiothreitol and β-mercaptoethanol. SN4LAC was found to be highly thermostable, having temperature optimum at 85°C and could retain more than 80% activity at 70°C for 24 h. The optimum pH of activity for 2, 6-dimethoxyphenol, 2, 2'-azino bis[3-ethylbenzthiazoline-6-sulfonate], syringaldazine and guaiacol was 8.0, 5.5, 6.5 and 8.0 respectively. Enzyme was alkali-stable as it retained more than 75% activity at pH 9.0 for 24 h. Activity of the enzyme was significantly enhanced by Cu2+, Co2+, SDS and CTAB, while it was stable in the presence of halides, most of the other metal ions and surfactants. The extracellular nature and stability of SN4LAC in extreme conditions such as high temperature, pH, heavy metals, halides and detergents makes it a highly suitable candidate for biotechnological and industrial applications.

  8. Dispersion coefficients for the interactions of the alkali-metal and alkaline-earth-metal ions and inert-gas atoms with a graphene layer

    Science.gov (United States)

    Kaur, Kiranpreet; Arora, Bindiya; Sahoo, B. K.

    2015-09-01

    Largely motivated by a number of applications, the van der Waals dispersion coefficients C3 of the alkali-metal ions Li+,Na+,K+, and Rb+, the alkaline-earth-metal ions Ca+,Sr+,Ba+, and Ra+, and the inert-gas atoms He, Ne, Ar, and Kr with a graphene layer are determined precisely within the framework of the Dirac model. For these calculations, we evaluate the dynamic polarizabilities of the above atomic systems very accurately by evaluating the transition matrix elements employing relativistic many-body methods and using the experimental values of the excitation energies. The dispersion coefficients are given as functions of the separation distance of an atomic system from the graphene layer and the ambiance temperature during the interactions. For easy extraction of these coefficients, we give a logistic fit to the functional forms of the dispersion coefficients in terms of the separation distances at room temperature.

  9. Partial Oxidation of Butane to Syngas over Nickel SupportedCatalysts Modified by Alkali Metal Oxide and Rare-Earth Metal Oxide

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The partial oxidation of butane (POB) to syngas over nickel supported catalysts was first investigated with a flow-reactor, TG and UVRRS. The NiO/g-Al2O3 is the most suitable for the POB among NiO/g-Al2O3, NiO/MgO and NiO/SiO2. And the reaction performance of the NiO/g-Al2O3 shows little difference from those of the nickel supported catalysts modified by alkali metal oxide and rare-earth metal oxide. However, modification with Li2O and La2O3 can suppress carbon-deposition of the NiO/g-Al2O3, which contains graphite-like species during the POB reaction.

  10. Cr isotope fractionation in metal-mineral-microbe interactions

    Science.gov (United States)

    Zhang, Qiong; Porcelli, Don; Thompson, Ian; Amor, Ken; Galer, Stephen

    2016-04-01

    Microbes interact with metals and minerals in the environments, altering their physical and chemical state whilst in turn the metals and minerals affect microbial growth, activity and survival. The interactions between Cr, Fe minerals and bacteria were investigated in this study. Cr(VI) reduction experiments by two iron-reducing bacteria, Pseudomonas fluorescens LB 300 and Shewanella oneidensis MR 1, in the presence of two iron oxide minerals, goethite and hematite, were conducted. Both minerals were found to inhibit the Cr(VI) reduction rate by Pseudomonas fluorescens LB 300 but accelerated Shewanella oneidensis MR 1. The Cr isotopic fractionation factor generated by both bacteria was mostly independent of the presence of the minerals, except for hematite with Pseudomonas fluorescens LB 300, where the ɛ was much higher. Aqueous Fe(III) in the solution did not have any detectable impact on either bacterial Cr reduction rates or the isotopic fractionation factors, indicating that the reduction of Cr(VI) occurred prior to that of Fe(III). The presence of aqueous Fe(II) induced a very fast abiotic reduction of Cr, but had little impact on the bacterial Cr reduction rates or its isotope fractionations. The evidence suggests that the different impact that Fe minerals had on the bacteria were related to the way they attached to the minerals and the difference in the reduction mechanism. SEM images confirmed that the attachment of Pseudomonas fluorescens LB 300 on the mineral surfaces were much more tightly packed than that of Shewanella oneidensis MR 1, so reducing mineral-metal interactions.

  11. Multinuclear Alkali Metal Complexes of a Triphenylene-Based Hexamine and the Transmetalation to Tris(N-heterocyclic tetrylenes) (Ge, Sn, Pb).

    Science.gov (United States)

    Zhong, Fei; Yang, Xiaodong; Shen, Lingyi; Zhao, Yanxia; Ma, Hongwei; Wu, Biao; Yang, Xiao-Juan

    2016-09-01

    A C3-symmetric hexamine (LH6) based on the triphenylene and ortho-phenylenediamine (PDAH2) skeletons has been synthesized, and was partially or fully deprotonated upon treatment with alkali metal agents to afford amino-amido or diamido coordination sites. Four alkali metal complexes, the dinuclear [Na2(LH4)(DME)5] (1) and [K2(LH4)(DME)4] (2), trinuclear [K3(LH3)(DME)6] (3), and hexanuclear [Li6(L)(DME)6] (4), were obtained and used in transmetalation/ligand exchange with other metals. The hexalithium salt of the fully deprotonated ligand, [Li6L], reacted with heavier group 14 element halides to yield three tris(N-heterocyclic tetrylenes), the germylene [Ge3(L)] (5), stannylene [Sn3(L)] (6), and plumbylene [Pb3(L)] (7). The synthesis and crystal and electronic structures of these compounds are reported. PMID:27525542

  12. The electronic properties of bare and alkali metal adsorbed two-dimensional GeSi alloy sheet

    Science.gov (United States)

    Qiu, Wenhao; Ye, Han; Yu, Zhongyuan; Liu, Yumin

    2016-09-01

    In this paper, the structural and electronic properties of both bare and alkali metal (AM) atoms adsorbed two-dimensional GeSi alloy sheet (GeSiAS) are investigated by means of first-principles calculations. The band gaps of bare GeSiAS are shown slightly opened at Dirac point with the energy dispersion remain linear due to the spin-orbit coupling effect at all concentrations of Ge atoms. For metal adsorption, AM atoms (including Li, Na and K) prefer to occupy the hexagonal hollow site of GeSiAS and the primary chemical bond between AM adatom and GeSiAS is ionic. The adsorption energy has an increase tendency with the increase of the Ge concentration in supercell. Besides, single-side adsorption of AM atoms introduces band gap at Dirac point, which can be tuned by the Ge concentration and the species of AM atoms. The strong relation between the band gaps and the distribution of Si and Ge atoms inside GeSiAS are also demonstrated. The opened band gaps of AM covered GeSiAS range from 14.8 to 269.1 meV along with the effective masses of electrons ranging from 0.013 to 0.109 me, indicating the high tunability of band gap as well as high mobility of carriers. These results provide a development in two-dimensional alloys and show potential applications in novel micro/nano-electronic devices.

  13. Atomic many-body effects and Lamb shifts in alkali metals

    CERN Document Server

    Ginges, J S M

    2016-01-01

    We present a detailed study of the Flambaum-Ginges radiative potential method which enables the accurate inclusion of quantum electrodynamics (QED) radiative corrections in a simple manner in atoms, ions, and molecules over the range 10<=Z<=120, where Z is the nuclear charge. Calculations are performed for binding energy shifts to the lowest valence s, p, and d waves over the series of alkali atoms Na to E119. The high accuracy of the radiative potential method is demonstrated by comparison with rigorous QED calculations in frozen atomic potentials, with deviations on the level of 1%. The many-body effects of core relaxation and second- and higher-order perturbation theory on the interaction of the valence electron with the core are calculated. The inclusion of many-body effects tends to increase the size of the shifts, with the enhancement particularly significant for d waves; for K to E119, the self-energy shifts for d waves are only an order of magnitude smaller than the s-wave shifts. It is shown th...

  14. The lithium isotopic ratio in very metal-poor stars

    CERN Document Server

    Lind, Karin; Asplund, Martin; Collet, Remo; Magic, Zazralt

    2013-01-01

    Un-evolved, very metal-poor stars are the most important tracers of the cosmic abundance of lithium in the early universe. Combining the standard Big Bang nucleosynthesis model with Galactic production through cosmic ray spallation, these stars at [Fe/H]<-2 are expected to show an undetectably small 6Li/7Li isotopic signature. Evidence to the contrary may necessitate an additional pre-galactic production source or a revision of the standard model of Big Bang nucleosynthesis. We revisit the isotopic analysis of four halo stars, two with claimed 6Li-detections in the literature, to investigate the influence of improved model atmospheres and line formation treatment. For the first time, a combined 3D, NLTE (non-local thermodynamic equilibrium) modelling technique for Li, Na, and Ca lines is utilised to constrain the intrinsic line-broadening and to determine the Li isotopic ratio. We discuss the influence of 3D NLTE effects on line profile shapes and assess the realism of our modelling using the Ca excitation...

  15. ALKALI RESISTANT CATALYST

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention concerns the selective removal of nitrogen oxides (NOx) from gasses. In particular, the invention concerns a process, a catalyst and the use of a catalyst for the selective removal of nitrogen oxides in the presence of ammonia from gases containing a significant amount...... of alkali metal and/or alkali-earth compounds which process comprises using a catalyst combined of (i) a formed porous superacidic support, said superacidic support having an Hammett acidity stronger than Ho=-12, and (ii) a metal oxide catalytic component deposited on said superacidic support selected from...

  16. Alkali Metal Rankine Cycle Boiler Technology Challenges and Some Potential Solutions for Space Nuclear Power and Propulsion Applications

    Science.gov (United States)

    Stone, James R.

    1994-01-01

    Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently. This report is aimed at evaluating alkali metal boiler

  17. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals.

    Science.gov (United States)

    Liu, Yuanyue; Merinov, Boris V; Goddard, William A

    2016-04-01

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems. PMID:27001855

  18. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals

    Science.gov (United States)

    Liu, Yuanyue; Merinov, Boris V.; Goddard, William A., III

    2016-04-01

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.

  19. Stable isotopes of transition and post-transition metals as tracers in environmental studies

    Science.gov (United States)

    Bullen, Tomas D.; Baskaran, Mark

    2011-01-01

    The transition and post-transition metals, which include the elements in Groups 3–12 of the Periodic Table, have a broad range of geological and biological roles as well as industrial applications and thus are widespread in the environment. Interdisciplinary research over the past decade has resulted in a broad understanding of the isotope systematics of this important group of elements and revealed largely unexpected variability in isotope composition for natural materials. Significant kinetic and equilibrium isotope fractionation has been observed for redox sensitive metals such as iron, chromium, copper, molybdenum and mercury, and for metals that are not redox sensitive in nature such as cadmium and zinc. In the environmental sciences, the isotopes are increasingly being used to understand important issues such as tracing of metal contaminant sources and fates, unraveling metal redox cycles, deciphering metal nutrient pathways and cycles, and developing isotope biosignatures that can indicate the role of biological activity in ancient and modern planetary systems.

  20. A Teaching Exercise to Introduce Stable Isotope Fractionation of Metals into Geochemistry Courses

    Science.gov (United States)

    Weiss, Dominik J.; Harris, Caroline; Maher, Kate; Bullen, Thomas

    2013-01-01

    Variations in the isotopic composition of elements have been widely used to study earth's climate, biosphere, and interior, and more recently to track the fate of contaminants. Within the broad range of elements that exhibit measureable isotopic variations, metal stable isotopes are increasingly applied across the biological, geological,…

  1. Optimized random phase approximation for the structure of liquid alkali metals as electron-ion plasmas

    International Nuclear Information System (INIS)

    The purpose of this letter is to stress that the way towards an unconventional optimized-random-phase-approximation (ORPA) approach to the structure of liquid metals is indicated, and in fact already a good first-order solution for such an approach is provided

  2. Effect of semicore banding on heavy-alkali-metal lattice constants: Corrections to the frozen-core approximation

    Science.gov (United States)

    Yang, L. H.; Smith, A. P.; Benedek, R.; Koelling, D. D.

    1993-06-01

    Equilibrium lattice constants and bulk moduli of the heavy alkali metals K, Rb, and Cs were calculated using the Troullier-Martins pseudopotentials and plane-wave basis functions. The treatment of the outermost p-shell electrons as Bloch states yielded lattice constants 2-3 % larger than those obtained within the frozen-core approximation (including the partial core correction of Louie, Froyen, and Cohen [Phys. Rev. B 26, 1738 (1982)]), which narrows a long-standing discrepancy between local-density functional theory and experiment. Predicted bulk moduli are 30-50 % larger than measured values, within either treatment. The band dispersion of the semicore states (with bandwidths 0.067, 0.14, and 0.25 eV for K, Rb, and Cs) is attributed primarily to core-electron-conduction-electron hybridization rather than direct core-core overlap. The semicore density of states has a flat line shape, rather than the peaked shape expected for an idealized tight-binding band.

  3. FP-APW+lo calculations of the electronic and optical properties of alkali metal sulfides under pressure

    International Nuclear Information System (INIS)

    The electronic and optical properties of M2S (M = Li, Na, K and Rb) compounds in the cubic antifluorite structure have been calculated, using a full relativistic version of the full-potential augmented plane-wave plus local orbitals method based on density functional theory, within both the local density approximation (LDA) and the generalized gradient approximation (GGA). Moreover, the Engel-Vosko GGA formalism (EV-GGA) is applied so as to optimize the corresponding potential for band structure calculations. The calculated equilibrium lattices and bulk moduli are in good agreement with the available data. Band structure, density of states, electron charge density and pressure coefficients of energy gaps are given. Results obtained for band structure using EV-GGA are larger than those with LDA and GGA. It is found that the spin-orbit coupling lifts the triple degeneracy at the Γ point and the double degeneracy at the X point. The analysis of the electron charge density shows that the M-S bonds have a significant ionic character. The complex dielectric functions ε2(ω) for alkali metal sulfides were calculated for radiation up to 30 eV and the assignment of the critical points to the band structure energy differences at various points of the Brillouin zone was made. The pressure and volume dependence of the static dielectric constant and the refractive index are calculated.

  4. Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS2

    Directory of Open Access Journals (Sweden)

    X. D. Li

    2015-05-01

    Full Text Available Single adsorption of different atoms on pristine two-dimensional monolayer MoS2 have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3d-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS2. Additionally, local or long-range magnetic moments of two-dimensional MoS2 sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS2 monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application.

  5. Magnetometry with millimeter-scale anti-relaxation-coated alkali-metal vapor cells

    CERN Document Server

    Balabas, M V; Kitching, J; Schwindt, P D D; Stalnaker, J E

    2005-01-01

    Dynamic nonlinear magneto-optical-rotation signals with frequency- and amplitude-modulated laser light have been observed and investigated with a spherical glass cell of 3-mm diameter containing Cs metal with inner walls coated with paraffin. Intrinsic Zeeman relaxation rates of $\\gamma/(2\\pi)\\approx 20 $Hz and lower have been observed. Favorable prospects of using millimeter-scale coated cells in portable magnetometers and secondary frequency references are discussed.

  6. X-ray and neutron diffraction studies of some liquid alkali metals and alloys

    International Nuclear Information System (INIS)

    Experimental techniques and correction procedures have been searched for, which allow a reliable and accurate determination of the structure factors of simple liquid metals, particularly in the small-angle region. A study of binary alloys was carried out and showed that clustering of like atoms (a tendency to phase separation) occurs, indicating special structural aspects. The densities of Na-K, Na-Cs, K-Rb alloys were also measured. (C.F.)

  7. Chemical state analysis of trace-level alkali metals sorbed in micaceous oxide by total reflection X-ray photoelectron spectroscopy

    Science.gov (United States)

    Baba, Y.; Shimoyama, I.; Hirao, N.

    2016-10-01

    In order to determine the chemical states of radioactive cesium (137Cs or 134Cs) sorbed in clay minerals, chemical states of cesium as well as the other alkali metals (sodium and rubidium) sorbed in micaceous oxides have been investigated by X-ray photoelectron spectroscopy (XPS). Since the number of atoms in radioactive cesium is extremely small, we specially focused on chemical states of trace-level alkali metals. For this purpose, we have measured XPS under X-ray total reflection (TR) condition. For cesium, it was shown that ultra-trace amount of cesium down to about 100 pg cm-2 can be detected by TR-XPS. This amount corresponds to about 200 Bq of 137Cs (t1/2 = 30.2 y). It was demonstrated that ultra-trace amount of cesium corresponding to radioactive cesium level can be measured by TR-XPS. As to the chemical states, it was found that core-level binding energy in TR-XPS for trace-level cesium shifted to lower-energy side compared with that for thicker layer. A reverse tendency is observed in sodium. Based on charge transfer within a simple point-charge model, it is concluded that chemical bond between alkali metal and micaceous oxide for ultra-thin layer is more polarized that for thick layer.

  8. Construction of thermionic alkali-ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Ul Haq, F.

    1986-04-01

    A simple technique is described by which singly charged alkali ions of K, Na, Li, Rb and Cs are produced by heating ultra-pure chemical salts of different alkali metals on tungsten filaments without employing a temperature measuring device. The character of alkali-ion currents at different heating powers and the remarkably constant ion emission current for prolonged periods are discussed.

  9. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    Science.gov (United States)

    Joshi, Ashok V.; Balagopal, Shekar; Pendelton, Justin

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  10. Alkali metal – yttrium borohydrides: The link between coordination of small and large rare-earth

    International Nuclear Information System (INIS)

    The system Li–A–Y–BH4 (A=K, Rb, Cs) is found to contain five new compounds and four further ones known from previous work on the homoleptic borohydrides. Crystal structures have been solved and refined from synchrotron X-ray powder diffraction, thermal stability of new compounds have been investigated and ionic conductivity measured for selected samples. Significant coordination flexibility for Y3+ is revealed, which allows the formation of both octahedral frameworks and tetrahedral complex anions with the tetrahydroborate anion BH4 both as a linker and terminal ligand. Bi- and trimetallic cubic double-perovskites c-A3Y(BH4)6 or c-A2LiY(BH4)6 (A=Rb, Cs) form in all the investigated systems, with the exception of the Li–K–Y system. The compounds with the stoichiometry AY(BH4)4 crystallize in all investigated systems with a great variety of structure types which find their analog amongst metal oxides. In-situ formation of a new borohydride – closo-borane is observed during decomposition of all double perovskites. - Graphical abstract: The system Li–A–Y–BH4 (A=K, Rb, Cs) is found to contain five novel compounds and four further ones previously reported. Significant coordination flexibility of Y3+ is revealed, which can be employed to form both octahedral frameworks and tetrahedral complex anions, very different structural topologies. Versatility is also manifested in three different simultaneously occurring coordination modes of borohydrides for one metal cation, as proposed by DFT optimization of the monoclinic KY(BH4)4 structural model observed by powder diffraction. - Highlights: • The system Li-A-Y-BH4 (A=K, Rb, Cs) contains nine compounds in total. • Y3+ forms octahedral frameworks and tetrahedral complex anions. • Bi- and trimetallic double-perovskites crystallize in most systems. • Various AY(BH4)4 crystallize with structure types analogous to metal oxides. • Double-perovskites decompose and form a novel borohydride-closo-borane

  11. Ab initio properties of the ground-state polar and paramagnetic europium-alkali-metal-atom and europium-alkaline-earth-metal-atom molecules

    CERN Document Server

    Tomza, Michał

    2014-01-01

    The properties of the electronic ground state of the polar and paramagnetic europium-$S$-state-atom molecules have been investigated. Ab initio techniques have been applied to compute the potential energy curves for the europium-alkali-metal-atom, Eu$X$ ($X$=Li, Na, K, Rb, Cs), europium-alkaline-earth-metal-atom, Eu$Y$ ($Y$=Be, Mg, Ca, Sr, Ba), and europium-ytterbium, EuYb, molecules in the Born-Oppenheimer approximation for the high-spin electronic ground state. The spin restricted open-shell coupled cluster method restricted to single, double, and noniterative triple excitations, RCCSD(T), was employed and the scalar relativistic effects within the small-core energy-consistent pseudopotentials were included. The permanent electric dipole moments and static electric dipole polarizabilities were computed. The leading long-range coefficients describing the dispersion interaction between atoms at large internuclear distances $C_6$ are also reported. The EuK, EuRb, and EuCs molecules are examples of species poss...

  12. Vanadium oxide based cpd. useful as a cathode active material - is used in lithium or alkali metal batteries to prolong life cycles

    DEFF Research Database (Denmark)

    1997-01-01

    A mixt. of metallic iron particles and vanadium pentoxide contg. V in its pentavalent state in a liq. is reacted to convert at least some of the pentavalent V to its tetravalent state and form a gel. The liq. phase is then sepd. from the oxide based gel to obtain a solid material(I) comprising Fe......, V and oxygen where at least some of the V is in the tetravalent state. USE-(I) is a cathode active material in electric current producing storage cells. ADVANTAGE-Use of (I) in Li or alkali metal batteries gives prolonged life cycles.Storage cells using (I) have improved capacity during charge and...

  13. Explorations of New SHG Materials in the Alkali-Metal-Nb(5+)-Selenite System.

    Science.gov (United States)

    Cao, Xue-Li; Hu, Chun-Li; Kong, Fang; Mao, Jiang-Gao

    2015-11-16

    Standard high-temperature solid-state reactions of NaCl, Nb2O5, and SeO2 resulted in two new sodium selenites containing a second-order Jahn-Teller (SOJT) distorted Nb(5+) cation, namely, Na2Nb4O7(SeO3)4 (P1̅; 1) and NaNbO(SeO3)2 (Cmc21; 2). Compound 1 exhibits an unusual 3D [Nb4O7(SeO3)4](2-) anionic network composed of 2D [Nb4O11(SeO3)2](6-) layers which are further bridged by additional SeO3(2-) anions via corner sharing; the 2D [Nb4O11(SeO3)2](6-) layer is formed by unusual quadruple [Nb4O17](14-) niobium oxide chains of corner-sharing NbO6 octahedra being further interconnected by selenite anions via Nb-O-Se bridges. The polar compound 2 features a 1D [NbO(SeO3)2](-) anionic chain in which two neighboring Nb(5+) cations are bridged by one oxo and two selenite anions. The alignments of the polarizations from the NbO6 octahedra in 2 led to a strong SHG response of ∼7.8 × KDP (∼360 × α-SiO2), which is the largest among all phases found in metal-Nb(5+)-Se(4+)/metal-Nb(5+)-Te(4+)-O systems. Furthermore, the material is also type I phase matchable. The above experimental results are consistent with those based on DFT theoretical calculations. Thermal stabilities and optical properties for both compounds are also reported. PMID:26513233

  14. Solubility of alkali metal halides in the ionic liquid [C4C1im][OTf].

    Science.gov (United States)

    Kuzmina, O; Bordes, E; Schmauck, J; Hunt, P A; Hallett, J P; Welton, T

    2016-06-28

    The solubilities of the metal halides LiF, LiCl, LiBr, LiI, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, KI, RbCl, CsCl, CsI, were measured at temperatures ranging from 298.15 to 378.15 K in the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([C4C1im][OTf]). Li(+), Na(+) and K(+) salts with anions matching the ionic liquid have also been investigated to determine how well these cations dissolve in [C4C1im][OTf]. This study compares the influence of metal cation and halide anion on the solubility of salts within this ionic liquid. The highest solubility found was for iodide salts, and the lowest solubility for the three fluoride salts. There is no outstanding difference in the solubility of salts with matching anions in comparison to halide salts. The experimental data were correlated employing several phase equilibria models, including ideal mixtures, van't Hoff, the λh (Buchowski) equation, the modified Apelblat equation, and the non-random two-liquid model (NRTL). It was found that the van't Hoff model gave the best correlation results. On the basis of the experimental data the thermodynamic dissolution parameters (ΔH, ΔS, and ΔG) were determined for the studied systems together with computed gas phase metathesis parameters. Dissolution depends on the energy difference between enthalpies of fusion and dissolution of the solute salt. This demonstrates that overcoming the lattice energy of the solid matrix is the key to the solubility of inorganic salts in ionic liquids. PMID:27264676

  15. Low temperature alkali metal-sulfur batteries. Final report, December 1, 1974-November 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Brummer, S.B.; Rauh, R.D.; Abraham, K.M.; Dampier, F.W.; Subrahmanyam, V.; Pearson, G.F.; Surprenant, J.K.; Buzby, J.M.

    1980-03-01

    Work on the development of rechargeable, ambient-temperature Li/sulfur and Li/metal sulfide batteries is reported. The Li/S system has the cathode material dissolved in the electrolyte, as Li/sub 2/S/sub n/. Tetrahydrofuran, 1M LiAsF/sub 6/, is one of the more attractive electrolytes discovered for this cell, since it can dissolve up to approx. 10M S as Li/sub 2/Sn. Despite the oxidative nature of the electrolyte, Li is stable in it and can be electrodeposited from it on battery charge. Cells of the configuration Li 5M S (as Li/sub 2/S/sub n/), THF, 1M LiAsF/sub 6//carbon can be discharged at 50/sup 0/C with a utilization of nearly 1.5e/sup -//S at the C/3 rate. This corresponds to the rate-capacity goal for this battery in its proposed vehicular or load-leveling applications. Further improvements in rate are possible. Rechargeability of 135 cycles of 0.1 e/sup -//S and approx. 45 cycles of 0.5 e/sup -//S was demonstrated. The self-discharge reaction keeps the Li electrode free of electrically isolated dendrites. Ultimate failure on cycling is due to cathode depletion via precipitation of Li/sub 2/S on the anode in a form insoluble in the electrolyte. Attempts to solubilize the Li/sub 2/S by the internal generation of an oxidizing scavenger (e.g., Br/sub 2/) or by addition of Lewis acids have met only with limited success. Cells of configuration Li/THF, 1M LiAsF/sub 6//insoluble metal sulfide were investigated, using the following cathodes: CuS, NiS, SiS/sub 2/, MnS/sub 2/, FeS, and Bi/sub 2/S/sub 3/. Of these, the most promising new material in terms of energy density and rechargeability is CuS. Well over 100 cycles for Li/CuS cells with moderate cathode loadings were demonstrated. CuS compares favorably with TiS/sub 2/ in terms of energy density and rechargeability and is superior in terms of economics. 39 figures, 19 tables.

  16. Determining metal assimilation efficiency in aquatic invertebrates using enriched stable metal isotope tracers

    International Nuclear Information System (INIS)

    We employ a novel approach that combines pulse-chase feeding and multi-labelled stable isotopes to determine gut passage time (GPT), gut retention time (GRT), food ingestion rate (IR) and assimilation efficiency (AE) of three trace elements for a freshwater gastropod. Lettuce isotopically enriched in 53Cr, 65Cu and 106Cd was fed for 2 h to Lymnaea stagnalis. The release of tracers in feces and water was monitored for 48 h, during which unlabelled lettuce was provided ad libidum. The first defecation of 53Cr occurred after 5 h of depuration (GPT), whereas 90% of the ingested 53Cr was recovered in the feces after 22.5 h of depuration (GRT). 53Chromium was not significantly accumulated in the soft tissues upon exposure. In contrast, 65Cu and 106Cd assimilation was detectable for most experimental snails, i.e., 65/63Cu and 106/114Cd ratios in exposed snails were higher than those for controls. Food IR during the labelled feeding phase was 0.16 ± 0.07 g g-1 d-1. IR was inferred from the amount of 53Cr egested in the feces during depuration and the concentration of 53Cr in the labelled lettuce. Assimilation efficiencies (±95% CI) determined using mass balance calculations were 84 ± 4% for Cu and 85 ± 3% for Cd. The ratio method yields similar AE estimates. Expanding the application of this novel stable isotope tracer technique to other metals in a wide variety of species will provide unique opportunities to evaluate the interplay between digestive processes and dietary influx of metals. Understanding the biological processes that modulate dietborne metal uptake is crucial to assess the toxicity of dietborne metals

  17. Determining metal assimilation efficiency in aquatic invertebrates using enriched stable metal isotope tracers

    Science.gov (United States)

    Croteau, M.-N.; Luoma, S.N.; Pellet, B.

    2007-01-01

    We employ a novel approach that combines pulse-chase feeding and multi-labelled stable isotopes to determine gut passage time (GPT), gut retention time (GRT), food ingestion rate (IR) and assimilation efficiency (AE) of three trace elements for a freshwater gastropod. Lettuce isotopically enriched in 53Cr, 65Cu and 106Cd was fed for 2 h to Lymnaea stagnalis. The release of tracers in feces and water was monitored for 48 h, during which unlabelled lettuce was provided ad libidum. The first defecation of 53Cr occurred after 5 h of depuration (GPT), whereas 90% of the ingested 53Cr was recovered in the feces after 22.5 h of depuration (GRT). 53Chromium was not significantly accumulated in the soft tissues upon exposure. In contrast, 65Cu and 106Cd assimilation was detectable for most experimental snails, i.e., 65/63Cu and 106/114Cd ratios in exposed snails were higher than those for controls. Food IR during the labelled feeding phase was 0.16 ?? 0.07 g g-1 d-1. IR was inferred from the amount of 53Cr egested in the feces during depuration and the concentration of 53Cr in the labelled lettuce. Assimilation efficiencies (??95% CI) determined using mass balance calculations were 84 ?? 4% for Cu and 85 ?? 3% for Cd. The ratio method yields similar AE estimates. Expanding the application of this novel stable isotope tracer technique to other metals in a wide variety of species will provide unique opportunities to evaluate the interplay between digestive processes and dietary influx of metals. Understanding the biological processes that modulate dietborne metal uptake is crucial to assess the toxicity of dietborne metals. ?? 2007 Elsevier B.V. All rights reserved.

  18. Complex formation during dissolution of metal oxides in molten alkali carbonates

    DEFF Research Database (Denmark)

    Li, Qingfeng; Borup, Flemming; Petrushina, Irina;

    1999-01-01

    as the partial pressure of carbon dioxide varies. By combination of solubility and electromotive force measurements, a model is constructed assuming the dissolution involves complex formation. The possible species for lead are proposed to be [Pb(CO3)(2)](-2) and/or [Pb(CO3)(3)](-4). A similar complex......Dissolution of metal oxides in molten carbonates relates directly to the stability of materials for electrodes and construction of molten carbonate fuel cells. In the present work the solubilities of PbO, NiO, Fe2O3,and Bi2O3 in molten Li/K carbonates have been measured at 650 degrees C under...... carbon dioxide atmosphere. It is found that the solubilities of NiO and PbO decrease while those of Fe2O3 and Bi2O3 remain approximately constant as the lithium mole fraction increases from 0.43 to 0.62 in the melt. At a fixed composition of the melt, NiO and PbO display both acidic and basic dissolution...

  19. Alkali metal Rankine cycle boiler technology challenges and some potential solutions for space nuclear power and propulsion applications

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J.R.

    1994-07-01

    Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently.

  20. Alkali metal ion induced cube shaped mesoporous hematite particles for improved magnetic properties and efficient degradation of water pollutants.

    Science.gov (United States)

    Roy, Mouni; Naskar, Milan Kanti

    2016-07-27

    Mesoporous cube shaped hematite (α-Fe2O3) particles were prepared using FeCl3 as an Fe(3+) precursor and 1-butyl-3-methylimidazolium bromide (ionic liquid) as a soft template in the presence of different alkali metal (lithium, sodium and potassium) acetates, under hydrothermal conditions at 150 °C/4 h followed by calcination at 350 °C. The formation of the α-Fe2O3 phase in the synthesized samples was confirmed by XRD, FTIR and Raman spectroscopy. Unlike K(+) ions, intercalation of Li(+) and Na(+) ions occurred in α-Fe2O3 crystal layers as evidenced by XRD and Raman spectroscopy. Electron microscopy (FESEM and TEM) images showed the formation of cube-like particles of different sizes in the presence of Li(+), Na(+) and K(+) ions. The mesoporosity of the products was confirmed by N2 adsorption-desorption studies, while their optical properties were analyzed by UV-DRS. Na(+) ion intercalated α-Fe2O3 microcubes showed improved coercivity (5.7 kOe) due to increased strain in crystals, and shape and magnetocrystalline anisotropy. Temperature dependent magnetization of the samples confirmed the existence of Morin temperature in the range of 199-260 K. Catalytic degradation of methylene blue (MB), a toxic water pollutant, was studied using the synthesized products via a heterogeneous photo-Fenton process. The degradation products were traced by electrospray ionization-mass spectrometry (ESI-MS). The α-Fe2O3 microcubes obtained in the presence of Na(+) ions exhibited a more efficient degradation of MB to non-toxic open chain products. PMID:27406648

  1. Source identification of heavy metal contamination using metal association and Pb isotopes in Ulsan Bay sediments, East Sea, Korea

    International Nuclear Information System (INIS)

    Highlights: • The levels of Cu, Zn, and Pb in sediments were higher than the Korean TEL at one-third of all sites. • The primary source of metal contamination came from activities related to nonferrous metal refineries near Onsan Harbor. • Three different anthropogenic sources and background sediments could be identified as endmembers using Pb isotopes. • The major anthropogenic Pb sources were identified as imported ores from Australia and Peru. • Isotope ratios in anthropogenic Pb discharged from Ulsan Bay to offshore could be identified. - Abstract: To determine the characteristics of metal pollution sources in Ulsan Bay, East Sea, 39 surface and nine core sediments were collected within the bay and offshore area, and analyzed for metals and stable lead (Pb) isotopes. Most surface sediments (>95% from 48 sites) had high copper (Cu), zinc (Zn), cadmium (Cd), and Pb concentrations that were as much as 1.3 times higher than background values. The primary source of metal contamination came from activities related to nonferrous metal refineries near Onsan Harbor, and the next largest source was from shipbuilding companies located at the mouth of the Taehwa River. Three different anthropogenic sources and background sediments could be identified as end-members using Pb isotopes. Isotopic ratios for the anthropogenic Pb revealed that the sources were imported ores from Australia, Peru, and the United States. In addition, Pb isotopes of anthropogenic Pb discharged from Ulsan Bay toward offshore could be determined

  2. CO2 Extraction from Ambient Air Using Alkali-Metal Hydroxide Solutions Derived from Concrete Waste and Steel Slag

    Science.gov (United States)

    Stolaroff, J. K.; Lowry, G. V.; Keith, D. W.

    2003-12-01

    To mitigate global climate change, deep reductions in CO2 emissions are required in the coming decades. Carbon sequestration will play a crucial role in this reduction. Early adoption of carbon sequestration in low-cost niche markets will help develop the technology and experience required for large-scale deployment. One such niche may be the use of alkali metals from industrial waste streams to form carbonate minerals, a safe and stable means of sequestering carbon. In this research, the potential of using two industrial waste streams---concrete and steel slag---for sequestering carbon is assessed. The scheme is outlined as follows: Ca and Mg are leached with water from a finely ground bed of steel slag or concrete. The resulting solution is sprayed through air, capturing CO2 and forming solid carbonates, and collected. The feasibility of this scheme is explored with a combination of experiments, theoretical calculations, cost accounting, and literature review. The dissolution kinetics of steel slag and concrete as a function of particle size and pH is examined. In stirred batch reactors, the majority of Ca which dissolved did so within the first hour, yielding between 50 and 250 (mg; Ca)/(g; slag) and between 10 and 30 (mg; Ca)/(g; concrete). The kinetics of dissolution are thus taken to be sufficiently fast to support the type of scheme described above. As proof-of-concept, further experiments were performed where water was dripped slowly through a stagnant column of slag or concrete and collected at the bottom. Leachate Ca concentrations in the range of 15 mM were achieved --- sufficient to support the scheme. Using basic physical principles and numerical methods, the quantity of CO2 captured by falling droplets is estimated. Proportion of water loss and required pumping energy is similarly estimated. The results indicate that sprays are capable of capturing CO2 from the air and that the water and energy requirements are tractable. An example system for

  3. Surface studies of metals after interaction with hydrogen isotopes

    Science.gov (United States)

    Silver, David Samuel

    1998-12-01

    The objective of this research is to characterize surfaces of metals after interaction with hydrogen isotopes. Iron, which does not readily bond with hydrogen, and palladium, which strongly bonds with hydrogen, were studied. Observations of surfaces are used to determine the nature of their metamorphosis due to such exposures. An experimental study of pure iron foil (99.99%) exposed to a hot, dense hydrogen and argon gas mixture in a ballistic compressor yielded evidence for new structural and compositional changes of the metal due to the exposure. Atomic force microscope (AFM) studies demonstrated surfaces to be highly uneven, where height variations were often 2 mum for many micron-sized regions scanned. An iron foil exposed to argon gases alone revealed unique dendritic patterns but negligible height variations for micron-size scans. A cold rolled single crystal palladium cathode was electrolyzed in a solution of Dsb2O and 15% Hsb2SOsb4 by volume for 12 minutes. The cathode bent toward the anode during electrolysis. Examination of both concave and convex surfaces using the scanning electron microscope (SEM), scanning tunneling microscope (STM), and AFM revealed rimmed craters with faceted crystals inside and multi-textured surfaces. Also pairs of cold rolled polycrystalline palladium cathodes underwent electrolysis for six minutes or less, in Dsb2O and Hsb2O solutions, each solution containing 15% Hsb2SOsb4, by volume. Surface morphologies of the heavy water electrolyzed samples revealed asperities, craters, and nodules, and evidence of recrystallization and crystal planes. After 1.5 years, new AFM studies of the same Pd surfaces exposed to heavy water electrolyte exhibited loose, nanometer-sized particles. However, the surfaces of Pd cathodes exposed to light water electrolyte remained nearly identical to morphologies of foils not electrolyzed, and did not change with time. No surface asperities or loose grains were observed on the latter. Secondary ion mass

  4. Synthesis of monomeric and polymeric alkali and alkaline earth metal complexes using a phosphinoselenoic amide ligand in metal coordination sphere

    Indian Academy of Sciences (India)

    Jayeeta Bhattacharjee; Ravi K Kottalanka; Harinath Adimulam; Tarun K Panda

    2014-09-01

    We report the monomeric complexes of magnesium and calcium of composition [M(THF){2-Ph2P(Se)N(CMe3)}2] [M= Mg (3), n = 1 andM = Ca (4), n = 2)] and polymeric complexes of potassium and barium of composition [K(THF)2{Ph2P(Se)N(CMe3)}] (2) and [K(THF)Ba{Ph2P(Se)N(CMe3)}3](5) respectively. The potassium complex 2 was readily prepared by the reaction of potassium bis(trimethylsilyl)amide with phosphinoselenoic amide ligand (1) at ambient temperature. The calcium complex 4 was prepared by two synthetic routes: in the first method, commonly known as salt metathesis reaction, the potassium complex 2 was made to react with alkaline earth metal diiodide at room temperature to afford the corresponding calcium complex. The metal bis(trimethylsilyl)amides were made to react with protic ligand 1 in the second method to eliminate the volatile bis(trimethyl)silyl amine. The magnesium complex 3 and barium complex 5 were prepared only through the first method. Solid-state structures of all the new complexes were established by single crystal X-ray diffraction analysis. The smaller ionic radii of Mg2+ (0.72Å) and Ca2+ (0.99Å) ions form the monomeric complex, whereas the larger ions K+ (1.38Å) and Ba2+ (1.35Å) were found to form onedimensional polymeric complexes with monoanionic ligand 1. Compound 2 serves an example of magnesium complex with a Mg-Se direct bond.

  5. Activation analysis for measurements of silicon, phosphorus, alkali metals and other elements in high-purity metals

    International Nuclear Information System (INIS)

    In the present thesis, methods of activation analysis were developed for the determination of the elements silicon, phosphorus, potassium, sodium, i.a. in the high-purity metals vanadium, niobium, tantalum, tungsten, molybdenum and iron. The determination of silicon is based on the activation of samples with reactor neutrons, on a subsequent radiochemical separation of the tracer radionuclide 31Si resulting from the reaction 30Si(n,γ), and on the measurement of β activity with the help of a liquid scintillation measuring desk. Since the tracer radionuclide 31Si almost exclusively emits β rays which are not sufficiently nuclide-specific, silicon was selectively separated from the other sample elements by being distilled as silicon tetrafluoride. The processing of the residue following the separation of silicon permits a complementary gamma-spectroscopic determination of a whole lot of additional elements. Thus, the separation of the nuclide 182Ta with the anion exchanger Dowex 1X8 from HF/H2SO4 medium permits the determination of 22 elements in vanadium, niobium and tantalum. Phosphorus content is determined by activating the samples with rapid neutrons (cyclotrons) via the reaction 31P(n,p)31Si. (orig./MM)

  6. Electrochemical H-D isotope effect at metal-perovskite proton conductor interfaces

    DEFF Research Database (Denmark)

    Kek, D.; Bonanos, N.

    1999-01-01

    The H-D isotope effect on the electrode kinetics of a metal-proton conductor interface has been investigated. The current-voltage behaviour depends on the nature of the electrode (Ni, Ag), the atmosphere (H(2), D(2)), the partial pressures of the gases, and the temperature. The isotope effect...

  7. Calculation of van der Walls coefficients of alkali metal clusters by hydrodynamic approach to time-dependent density-functional theory

    CERN Document Server

    Banerjee, A; Banerjee, Arup; Harbola, Manoj K.

    2004-01-01

    In this paper we employ the hydrodynamic formulation of time-dependent density functional theory to obtain the van der Waal coefficients $C_{6}$ and $C_{8}$ of alkali-metal clusters of various sizes including very large clusters. Such calculation becomes computationally very demanding in the orbital-based Kohn-Sham formalism, but quite simple in the hydrodynamic approach. We show that for interactions between the clusters of same sizes, $C_{6}$ and $C_{8}$ sale as the sixth and the eighth power of the cluster radius rsepectively, and approach the respective classically predicted values for the large size clusters.

  8. High-temperature, high-pressure hydrothermal synthesis, characterization, and structural relationships of mixed-alkali metals uranyl silicates

    Science.gov (United States)

    Chen, Yi-Hsin; Liu, Hsin-Kuan; Chang, Wen-Jung; Tzou, Der-Lii; Lii, Kwang-Hwa

    2016-04-01

    Three mixed-alkali metals uranyl silicates, Na3K3[(UO2)3(Si2O7)2]·2H2O (1), Na3Rb3[(UO2)3(Si2O7)2] (2), and Na6Rb4[(UO2)4Si12O33] (3), have been synthesized by high-temperature, high-pressure hydrothermal reactions at 550 °C and 1440 bar, and characterized by single-crystal X-ray diffraction, photoluminescence, and thermogravimetric analysis. Compound 1 and 2 are isostructural and contain layers of uranyl disilicate. The smaller cation, Na+, is located in the intralayer channels, whereas the larger cations, K+ and Rb+, and water molecule are located in the interlayer region. The absence of lattice water in 2 can be understood according to the valence-matching principle. The structure is related to that of a previously reported mixed-valence uranium(V,VI) silicate. Compound 3 adopts a 3D framework structure and contains a unique unbranched dreier fourfold silicate chain with the structural formula {uB,41∞}[3Si12O33] formed of Q2, Q3, and Q4 Si. The connectivity of the Si atoms in the Si12O3318- anion can be interpreted on the basis of Zintl-Klemm concept. Crystal data for compound 1: triclinic, P-1, a=5.7981(2) Å, b=7.5875(3) Å, c=12.8068(5) Å, α=103.593(2)°, β=102.879(2)°, γ=90.064(2)°, V=533.00(3) Å3, Z=1, R1=0.0278; compound 2: triclinic, P-1, a=5.7993(3) Å, b=7.5745(3) Å, c=12.9369(6) Å, α=78.265(2)°, β=79.137(2)°, γ=89.936(2)°, V=546.02(4) Å3, Z=1, R1=0.0287; compound 3: monoclinic, C2/m, a=23.748(1) Å, b=7.3301(3) Å, c=15.2556(7) Å, β=129.116(2)°, V=2060.4(2) Å3, Z=2, R1=0.0304.

  9. Metal Stable Isotope Tagging: Renaissance of Radioimmunoassay for Multiplex and Absolute Quantification of Biomolecules.

    Science.gov (United States)

    Liu, Rui; Zhang, Shixi; Wei, Chao; Xing, Zhi; Zhang, Sichun; Zhang, Xinrong

    2016-05-17

    The unambiguous quantification of biomolecules is of great significance in fundamental biological research as well as practical clinical diagnosis. Due to the lack of a detectable moiety, the direct and highly sensitive quantification of biomolecules is often a "mission impossible". Consequently, tagging strategies to introduce detectable moieties for labeling target biomolecules were invented, which had a long and significant impact on studies of biomolecules in the past decades. For instance, immunoassays have been developed with radioisotope tagging by Yalow and Berson in the late 1950s. The later languishment of this technology can be almost exclusively ascribed to the use of radioactive isotopes, which led to the development of nonradioactive tagging strategy-based assays such as enzyme-linked immunosorbent assay, fluorescent immunoassay, and chemiluminescent and electrochemiluminescent immunoassay. Despite great success, these strategies suffered from drawbacks such as limited spectral window capacity for multiplex detection and inability to provide absolute quantification of biomolecules. After recalling the sequences of tagging strategies, an apparent question is why not use stable isotopes from the start? A reasonable explanation is the lack of reliable means for accurate and precise quantification of stable isotopes at that time. The situation has changed greatly at present, since several atomic mass spectrometric measures for metal stable isotopes have been developed. Among the newly developed techniques, inductively coupled plasma mass spectrometry is an ideal technique to determine metal stable isotope-tagged biomolecules, for its high sensitivity, wide dynamic linear range, and more importantly multiplex and absolute quantification ability. Since the first published report by our group, metal stable isotope tagging has become a revolutionary technique and gained great success in biomolecule quantification. An exciting research highlight in this area

  10. Metal Stable Isotope Tagging: Renaissance of Radioimmunoassay for Multiplex and Absolute Quantification of Biomolecules.

    Science.gov (United States)

    Liu, Rui; Zhang, Shixi; Wei, Chao; Xing, Zhi; Zhang, Sichun; Zhang, Xinrong

    2016-05-17

    The unambiguous quantification of biomolecules is of great significance in fundamental biological research as well as practical clinical diagnosis. Due to the lack of a detectable moiety, the direct and highly sensitive quantification of biomolecules is often a "mission impossible". Consequently, tagging strategies to introduce detectable moieties for labeling target biomolecules were invented, which had a long and significant impact on studies of biomolecules in the past decades. For instance, immunoassays have been developed with radioisotope tagging by Yalow and Berson in the late 1950s. The later languishment of this technology can be almost exclusively ascribed to the use of radioactive isotopes, which led to the development of nonradioactive tagging strategy-based assays such as enzyme-linked immunosorbent assay, fluorescent immunoassay, and chemiluminescent and electrochemiluminescent immunoassay. Despite great success, these strategies suffered from drawbacks such as limited spectral window capacity for multiplex detection and inability to provide absolute quantification of biomolecules. After recalling the sequences of tagging strategies, an apparent question is why not use stable isotopes from the start? A reasonable explanation is the lack of reliable means for accurate and precise quantification of stable isotopes at that time. The situation has changed greatly at present, since several atomic mass spectrometric measures for metal stable isotopes have been developed. Among the newly developed techniques, inductively coupled plasma mass spectrometry is an ideal technique to determine metal stable isotope-tagged biomolecules, for its high sensitivity, wide dynamic linear range, and more importantly multiplex and absolute quantification ability. Since the first published report by our group, metal stable isotope tagging has become a revolutionary technique and gained great success in biomolecule quantification. An exciting research highlight in this area

  11. Production of Synthesis Gas via Methane Reforming with CO2 on Ni/SiO2 Catalysts Promoted by Alkali and Alkaline Earth Metals

    Institute of Scientific and Technical Information of China (English)

    陈平; 侯昭胤; 郑小明

    2005-01-01

    Ni/SiO2 catalysts promoted by alkali metals K and Cs or alkaline earth metals Mg, Ca, Sr and Ba were prepared, characterized by H2-TPR and XRD, and used for the production of synthesis gas via methane reforming with CO2. Though K and Cs promoted Ni catalysts could eliminate coke deposition, the reforming activity of these promoted catalysts was decreased heavily. Mg and Ca promoted Ni/SiO2 catalysts exhibited excellent coke resistance ability with minor loss of the reforming activity of Ni/SiO2. Ba showed poor coke resistance ability and small amount of Sr increased the formation of coke. The possible mechanism of these promoters was discussed.

  12. Fragmentation study of rutin, a naturally occurring flavone glycoside cationized with different alkali metal ions, using post-source decay matrix-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Kéki, S; Deák, G; Zsuga, M

    2001-12-01

    A post-source decay matrix-assisted laser desorption/ionization mass spectrometric (PSD-MALDI-MS) study of rutin, a naturally occurring flavone glycoside cationized with different alkali metal ions, is reported. The fragmentations of rutin were performed by selecting the [R + Cat]+ peaks for PSD, where R represents a rutin molecule and Cat an alkali metal ion (Li+, Na+, K+). The PSD-MALDI mass spectra showed, depending on Cat, different fragmentation patterns with respect to both the quality and quantity of the fragment ions formed. The intensity of fragmentation decreased in the order Li+ > Na+ > K+. The fragmentation mechanism and an explanation for the observed differences are suggested.

  13. Two-photon photoemission investigation of electronic and dynamical properties of alkali atoms adsorbed on noble metal surfaces

    Science.gov (United States)

    Sametoglu, Vahit

    We present a systematic time-resolved two-photon photoemission study of the electronic and dynamical properties of Li through Cs adsorbed on Cu(111) and Ag(111) surfaces. A fundamental problem in surface science is how to describe the electronic structure of a chemisorption interface based on the intrinsic properties of the interacting materials. Because of their simple s-electron structure, elements of the alkali atom group comprise paradigmatic adsorbates in many theories of chemisorption, whereas the complementary experimental studies are sparse and incomplete. Through a combination of spectroscopic and femtosecond time-resolved surface measurements, we are able to probe systematically the binding energies, symmetries, and electron and nuclear relaxation dynamics of the initially unoccupied alkali atom resonances. As a prelude, we study the two-photon photoemission process occurring at the bare Ag(111) surface. We develop a quantitative model for two-photon photoemission process, where the nonresonant and k-dependent two-photon absorption between the lower and upper sp-bands is modeled by the optical Bloch equations, and the angle-dependent intensities are described by the Fresnel equations. Our two-photon photoemission spectra of Li through Cs chemisorbed Cu(111) and Ag(111) surfaces reveal two resonances with the m = 0 and m = +/-1 symmetry ('m' is the projection of the orbital angular momentum 'l' onto the surface plane). For the m = 0 resonance, which is derived from the hybridization of the ns and npz orbitals of alkali atoms, we find a binding energy of 1.84--1.99 eV below the vacuum level, which is independent of the alkali atom period, and tunes with coverage in a universal manner. At 0.3--0.7 eV higher energy, we discover and identify the m = +/-1 resonance by its characteristic angular intensity distribution, which derives from the antisymmetry of the npx and npy orbitals. We implement a quantitative model for the alkali atom chemisorption based on the

  14. Determination of Alkali Ions in Biological and Environmental Samples.

    Science.gov (United States)

    Hauser, Peter C

    2016-01-01

    An overview of the common methods for the determination of the alkali metals is given. These are drawn from all of the three principle branches of quantitative analysis and consist mainly of optical atomic spectrometric methods, ion-selective electrodes, and the separation methods of ion-chromatography and capillary electrophoresis. Their main characteristics and performance parameters are discussed. Important specific applications are also examined, namely clinical analysis, single cell analysis, the analysis of soil samples and hydroponic nutrient solutions, as well as the detection of the radioactive (137)Cs isotope. PMID:26860298

  15. Heavy Metals Pollution and Pb Isotopic Signatures in Surface Sediments Collected from Bohai Bay, North China

    OpenAIRE

    Bo Gao; Jin Lu; Hong Hao; Shuhua Yin; Xiao Yu; Qiwen Wang; Ke Sun

    2014-01-01

    To investigate the characteristics and potential sources of heavy metals pollution, surface sediments collected from Bohai Bay, North China, were analyzed for the selected metals (Cd, Cr, Cu, Ni, Pb, and Zn). The Geoaccumulation Index was used to assess the level of heavy metal pollution. Pb isotopic compositions in sediments were also measured to effectively identify the potential Pb sources. The results showed that the average concentrations of Cd, Cr, Cu, Ni, Pb, and Zn were 0.15, 79.73, 2...

  16. Stable isotopes and metal contamination in caged marine mussel Mytilus galloprovincialis

    International Nuclear Information System (INIS)

    Metal concentrations and isotopic composition were measured in different tissues of the mussel Mytilus galloprovincialis in waters of the Balearic Islands (Western Mediterranean) in order to assess pollution levels. The isotopic composition was correlated with lead, cadmium, selenium and nickel obtained from the digestive gland and foot of the mussels. Significant negative correlations were found between cadmium, selenium and zinc and the mussel foot, mainly for 13C. Significant correlations were also found between lead and cadmium and the digestive gland. Pearson correlations indicated that the 13C isotopic signal in foot is a good proxy for the concentration of metals such as lead, cadmium, selenium and zinc. Similarly, 15N isotopic signatures in the digestive gland reflected the lead and cadmium concentration.

  17. Stable isotopes and metal contamination in caged marine mussel Mytilus galloprovincialis.

    Science.gov (United States)

    Deudero, S; Box, A; Tejada, S; Tintoré, J

    2009-07-01

    Metal concentrations and isotopic composition were measured in different tissues of the mussel Mytilus galloprovincialis in waters of the Balearic Islands (Western Mediterranean) in order to assess pollution levels. The isotopic composition was correlated with lead, cadmium, selenium and nickel obtained from the digestive gland and foot of the mussels. Significant negative correlations were found between cadmium, selenium and zinc and the mussel foot, mainly for (13)C. Significant correlations were also found between lead and cadmium and the digestive gland. Pearson correlations indicated that the (13)C isotopic signal in foot is a good proxy for the concentration of metals such as lead, cadmium, selenium and zinc. Similarly, (15)N isotopic signatures in the digestive gland reflected the lead and cadmium concentration. PMID:19303611

  18. Promoting alkali and alkaline-earth metals on MgO for enhancing CO2 capture by first-principles calculations.

    Science.gov (United States)

    Kim, Kiwoong; Han, Jeong Woo; Lee, Kwang Soon; Lee, Won Bo

    2014-12-01

    Developing next-generation solid sorbents to improve the economy of pre- and post-combustion carbon capture processes has been challenging for many researchers. Magnesium oxide (MgO) is a promising sorbent because of its moderate sorption-desorption temperature and low heat of sorption. However, its low sorption capacity and thermal instability need to be improved. Various metal-promoted MgO sorbents have been experimentally developed to enhance the CO2 sorption capacities. Nevertheless, rigorous computational studies to screen an optimal metal promoter have been limited to date. We conducted first-principles calculations to select metal promoters of MgO sorbents. Five alkali (Li-, Na-, K-, Rb-, and Cs-) and 4 alkaline earth metals (Be-, Ca-, Sr-, and Ba-) were chosen as a set of promoters. Compared with the CO2 adsorption energy on pure MgO, the adsorption energy on the metal-promoted MgO sorbents is higher, except for the Na-promoter, which indicates that metal promotion on MgO is an efficient approach to enhance the sorption capacities. Based on the stabilized binding of promoters on the MgO surface and the regenerability of sorbents, Li, Ca, and Sr were identified as adequate promoters among the 9 metals on the basis of PW91/GGA augmented with DFT+D2. The adsorption energies of CO2 on metal-promoted MgO sorbents for Li, Ca, and Sr atoms are -1.13, -1.68, and -1.48 eV, respectively. PMID:25319405

  19. Characterization of uranium isotopic abundances in depleted uranium metal assay standard 115

    International Nuclear Information System (INIS)

    Certified reference material (CRM) 115, Uranium (Depleted) Metal (Uranium Assay Standard), was analyzed using a TRITON Thermal Ionization Mass Spectrometer to characterize the uranium isotope-amount ratios. The certified 235U/238U 'major' isotope-amount ratio of 0.0020337 (12) in CRM 115 was determined using the total evaporation (TE) and the modified total evaporation (MTE) analytical techniques. In the MTE method, the total evaporation process is interrupted on a regular basis to allow correction of background from peak tailing, internal calibration of the secondary electron multiplier detector versus the Faraday cups, peak-centering, and ion source re-focusing. For the 'minor' 234U/238U and 236U/238U isotope-amount ratio measurements using MTE, precision and accuracy comparable to conventional analyses are achieved, without compromising the quality of the 235U/238U isotope-amount ratios. Characterized values of the 234U/238U and 236U/238U isotope-amount ratios in CRM 115 are 0.000007545 (10) and 0.000032213 (84), respectively. The 233U/238U isotope-amount ratio in CRM 115 is estimated to be -9. The homogeneity of the CRM 115 materials is established through the absence of any statistically significant unit-to-unit variation in the uranium isotope-amount ratios. The measurements leading to the certification of uranium isotope-amount ratios are discussed. (author)

  20. Alkali metal non-stoichiometric effects in (K{sub 0.5}Na{sub 0.5})NbO{sub 3} based piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. C.; Yeo, H. G.; Cho, J. H.; Sung, Y. S.; Kim, M. H.; Song, T. K.; Kim, S. S. [Changwon National University, Changwon (Korea, Republic of); Choi, B. C. [Pukyung National University, Busan (Korea, Republic of); Choi, K. S. [Sunchon National University, Sunchon, Chonnam (Korea, Republic of)

    2010-01-15

    Alkali-metal-excess lead-free 0.93(K{sub 0.5}Na{sub 0.5}){sub (1+x)}NbO{sub 3}-0.07LiNbO{sub 3} (KNNL) piezoelectric ceramics were prepared by using a solid state reaction. The contents of both K and Na were simultaneously controlled to 4 mol% excess. From X-ray diffraction and temperature-dependent dielectric constant measurements, a polymorphic phase transition (PPT) between the tetragonal and orthorhombic phases was observed by changing the stoichiometry of x. With increasing (K+Na) content, the PPT temperature increased, but the Curie temperature decreased. The highest piezoelectric constant was 189 pC/N for x = 0.01, where the PPT temperature was around room temperature.

  1. Volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass: differences between sugar cane bagasse and cane trash.

    Science.gov (United States)

    Keown, Daniel M; Favas, George; Hayashi, Jun-ichiro; Li, Chun-Zhu

    2005-09-01

    Sugar cane bagasse and cane trash were pyrolysed in a novel quartz fluidised-bed/fixed-bed reactor. Quantification of the Na, K, Mg and Ca in chars revealed that pyrolysis temperature, heating rate, valence and biomass type were important factors influencing the volatilisation of these alkali and alkaline earth metallic (AAEM) species. Pyrolysis at a slow heating rate (approximately 10 K min(-1)) led to minimal (often biomass samples. Fast heating rates (>1000 K s(-1)), encouraging volatile-char interactions with the current reactor configuration, resulted in the volatilisation of around 80% of Na, K, Mg and Ca from bagasse during pyrolysis at 900 degrees C. Similar behaviour was observed for monovalent Na and K with cane trash, but the volatilisation of Mg and Ca from cane trash was always restricted. The difference in Cl content between bagasse and cane trash was not sufficient to fully explain the difference in the volatilisation of Mg and Ca.

  2. Improved thermoelectric performance in polycrystalline p-type Bi2Te3 via an alkali metal salt hydrothermal nanocoating treatment approach

    Science.gov (United States)

    Ji, Xiaohua; He, Jian; Su, Zhe; Gothard, Nick; Tritt, Terry M.

    2008-08-01

    We report herein a proof-of-principle study of grain boundary engineering in the polycrystalline p-type Bi2Te3 system. Utilizing the recently developed hydrothermal nanocoating treatment technique, we fabricated an alkali-metal(s)-containing surface layer on the p-Bi2Te3 bulk grain, which in turn became part of the grain boundary upon hot pressing densification. Compared to the untreated bulk reference, the dimensionless figure of merit ZT has been improved by ˜30% in the Na-treated sample chiefly due to the reduced thermal conductivity, and ˜38% in the Rb-treated sample mainly owing to the improved power factor. The grain boundary phase provides a new avenue by which one can potentially decouple the otherwise inter-related electrical resistivity, Seebeck coefficient, and thermal conductivity within one thermoelectric material.

  3. 热煤气中碱金属蒸气的脱除%Removal of Alkali Metal Vapor from Hot Coal Gas

    Institute of Scientific and Technical Information of China (English)

    申文琴; 豆彬林; 邢嵘; 沙兴中

    2000-01-01

    Seven adsorbents were screened for removal of alkali metal vapor from hot coal gas. It is found that five adsorbents present higher adsorption efficiency and activated almmina shows the highest adsorption capacity. The adsorption process of activated alumina is a physical process in experimental condition.%为了清除煤燃烧或气化产生的热气体中的碱金属蒸气,筛选了7种吸附剂,发现5种吸附剂的吸附效率都能达到80%以上,其中活性氧化铝的碱容量最高,对活性氧化铝吸附机理也进行了初步探讨。

  4. Alkali metal ions transfer across a water/1,2-dichloroethane interface facilitated by a novel monoaza-B15C5 derivative

    Energy Technology Data Exchange (ETDEWEB)

    Zhan Dongping; Yuan Yi; Xiao Yanjing; Wu Bingliang; Shao Yuanhua

    2002-10-30

    In this paper, a novel monoaza-B15C5 derivative, N-(2-tosylamino)-isopentyl-monoaza-15-crown-5 (L), is used as an ionophore to facilitate alkali metal cations transfer across a water/1,2-dichloroethane (W/DCE) interface. Well-defined voltammetric behaviors are observed at the polarized W/DCE interfaces supported at micro- and nano-pipets except Cs{sup +}. The diffusion coefficient of this ionophore in the DCE phase is calculated to be equal to (3.3{+-}0.2)x10{sup -6} cm{sup 2} s{sup -1}. The experimental results indicate that a 1:1 (metal:ionophore) complex is formed at the interface with a TIC/TID mechanism. The selectivity of this ionophore towards alkali ions follows the sequence Na{sup +}>Li{sup +}>K{sup +}>Rb{sup +}>Cs{sup +}. The logarithm of the association constants (log {beta}{sub 1}{sup o}) of the LiL{sup +}, NaL{sup +}, KL{sup +} and RbL{sup +} complexes in the DCE phase are calculated to be 10.6, 11.6, 9.0 and 7.1, respectively. The kinetic parameters are determined by steady-state voltammograms using nanopipets. The standard rate constants (k{sup 0}) for Li{sup +}, Na{sup +}, K{sup +} and Rb{sup +} transfers facilitated by L are 0.54{+-}0.05, 0.63{+-}0.09, 0.51{+-}0.04 and 0.46{+-}0.06 cm s{sup -1}, respectively. The pH values of aqueous solution have little effect on the electrochemical behaviors of these facilitated processes. The results predicate that this new type of ionophore might be useful to fabricate electrochemical sensor of sodium ion.

  5. Design study of a 200 MW(e) alkali metal/steam binary power plant using a coal-fired fluidized bed furnace

    Energy Technology Data Exchange (ETDEWEB)

    Samuels, G.; Graves, R. L.; Lackey, M. E.; Tudor, J. J.; Zimmerman, G. P.

    1978-04-01

    The results of a study of 200 MW(e) alkali metal/steam binary power plant using a coal-fired fluidized bed furnace are described. Both cesium and potassium were evaluated for the topping cycle working fluid and cesium was selected. The fuel used was Illinois No. 6 coal, and limestone was used as the bed sorbent material. For the reference design, the furnace operated at atmospheric pressure and the cycle conditions for the power conversion system were 1500/sup 0/F to 900/sup 0/F for the topping cycle and 2400 psi 1000/sup 0/F to 1/sup 1///sub 2/ in. Hg for the steam system. Several variations of the plant were briefly evaluated. These variations included using a supercritical steam system and using a pressurized furnace. The principal conclusions of the study are as follows: a satisfactory design of an atmospheric pressure fluidized bed furnace binary power plant was evolved which uses a variation of the conventional binary cycle which permits utilizing the full potential of the alkali metal topping cycle; the net plant efficiency (coal to busbar) of the reference system was 44.6%; the net plant efficiency of a larger system with a 3500 psi 1000/sup 0/F steam system was 46.8%; an intermediate pressure turbocharged system with a furnace pressure of 4 atm (0.4 MPa) would have many advantages in comparison to the atmospheric pressure system, including a plant efficiency about one percentage point higher than the reference design, reduced limestone requirement and potential capital cost saving; and although cost estimates were not a part of the design study, a comparison of the design of this study to that of the Energy Conversion Alternative Study (ECAS) indicates plant costs 20 to 25% less than that of the final ECAS design.

  6. Reclamation of reactive metal oxides from complex minerals using alkali roasting and leaching- an improved approach to process engineering

    OpenAIRE

    Sanchez Segado, S; Makanyire, T; Escudero-Castejon, L; Hara, Y.; Jha, A.

    2015-01-01

    In nature, the commonly occurring reactive metal oxides of titanium, chromium, aluminium, and vanadium often chemically combine with the transition metal oxides such as iron oxides and form complex minerals. Physico-chemical separation of transition metal oxides from the remaining reactive metal oxides is therefore an important step in the purification of reactive oxide constituents. Each purification step has quite a high energy requirement at present. Current practice in industry yields sul...

  7. Highly effective hydrogen isotope separation in nanoporous metal-organic frameworks with open metal sites: direct measurement and theoretical analysis.

    Science.gov (United States)

    Oh, Hyunchul; Savchenko, Ievgeniia; Mavrandonakis, Andreas; Heine, Thomas; Hirscher, Michael

    2014-01-28

    Separating gaseous mixtures that consist of very similar size is one of the critical issues in modern separation technology. Especially, the separation of the isotopes hydrogen and deuterium requires special efforts, even though these isotopes show a very large mass ratio. Conventionally, H/D separation can be realized through cryogenic distillation of the molecular species or the Girdler-sulfide process, which are among the most energy-intensive separation techniques in the chemical industry. However, costs can be significantly reduced by using highly mass-selective nanoporous sorbents. Here, we describe a hydrogen isotope separation strategy exploiting the strongly attractive open metal sites present in nanoporous metal-organic frameworks of the CPO-27 family (also referred to as MOF-74). A theoretical analysis predicts an outstanding hydrogen isotopologue separation at open metal sites due to isotopal effects, which has been directly observed through cryogenic thermal desorption spectroscopy. For H2/D2 separation of an equimolar mixture at 60 K, the selectivity of 12 is the highest value ever measured, and this methodology shows extremely high separation efficiencies even above 77 K. Our theoretical results imply also a high selectivity for HD/H2 separation at similar temperatures, and together with catalytically active sites, we propose a mechanism to produce D2 from HD/H2 mixtures with natural or enriched deuterium content. PMID:24359584

  8. Kinetic isotope effects on metal to nitrogen proton transfers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.T.; Tilset, M. [Univ. of Oslo, Oslo (Norway); Kristjansdottir, S.S.; Norton, J.R. [Colorado State Univ., Fort Collins, CO (United States)

    1995-12-20

    The rate constants for proton transfer from the radical cation CpRu(PPh{sub 3}){sub 2}H{sup .}{sup +} to pyrrolidine and piperidine have been determined by deriviate cyclic voltammetry in CH{sub 3}CN. The kinetic isotope effects k{sub H}/k{sub D} at 20 {degrees}C are 2.7 for pyrrolidine and 2.3 for piperidine-suprisingly small transfers that are almost thermonuetral. The rate constant for proton transfer from CpW(CO){sub 3}H to aniline in CH{sub 3}CN has been determined from the effect of the aniline concentration on the rate of W {r_arrow} W self-exchange; the kinetic isotope effect k{sub H}/k{sub D} at 25{degrees}C is 4.2-suprisingly large for a transfer that is uphill by 5.5 pK{sub a} units.

  9. Structural phase stability, electronic structure and mechanical properties of alkali metal hydrides AMH4 (A=Li, Na; M=B, AL)

    Science.gov (United States)

    Santhosh, M.; Rajeswarapalanichamy, R.

    2016-01-01

    The structural stability of Alkali metal hydrides AMH4 (A=Li, Na; M=B, Al) is analyzed among the various crystal structures, namely hexagonal (P63mc), tetragonal (P42/nmc), tetragonal (P-421c), tetragonal (I41/a), orthorhombic (Pnma) and monoclinic (P21/c). It is observed that, orthorhombic (Pnma) phase is the most stable structure for LiBH4, monoclinic (P21/c) for LiAlH4, tetragonal (P42/nmc) for NaBH4 and tetragonal (I41/a) for NaAlH4 at normal pressure. Pressure induced structural phase transitions are observed in LiBH4, LiAlH4, NaBH4 and NaAlH4 at the pressures of 4 GPa, 36.1 GPa, 26.5 GPa and 46 GPa respectively. The electronic structure reveals that these metal hydrides are wide band gap insulators. The calculated elastic constants indicate that these metal hydrides are mechanically stable at normal pressure.

  10. Effects of heavy metals and saline-alkali on seedlings growth,physiological-biochemical of Oryehophragmus violaeeus%重金属及盐碱对二月兰幼苗生长和生理生化的影响

    Institute of Scientific and Technical Information of China (English)

    张小艾; 李名扬; 汪志辉; 汤浩若; 张新全; 左静

    2013-01-01

    The aim was to study on effects of heavy metals and saline-alkali on seedlings growth, physiological-biochemical of Oryehophragmus violaeeus. The results showed that relative electrolyte leakage, the content of soluble sugar and the content of Pro all increased with increased heavy metals and saline-alkali conditions, the total biomass decreased with increased heavy metals and saline-alkali conditions, but the content of MDA initially increased and then decreased. The activities of superoxide dismutase, peroxidase increased with increased heavy metals and saline-alkali conditions, and evidently higher than the control. The effect of heavy metals and saline-alkali stress on photosynthetic pigment content, in the leaf was assessed. With an increase in heavy metals and saline-alkali concentration, the chlorophyll and carotenoid contents decreased gradually, but the carote-noid contents decreased morn. The seedlings of O. violaeeus is with resistance against light combined stresses of salt-alkali and Pb (500 mg/L), and the stress patience of vane is greater than the root.%以二月兰为试验材料,研究了在不同浓度的盐碱和重金属胁迫下,二月兰幼苗生长和生理生化特性.结果表明,盐碱及重金属胁迫均会对二月兰幼苗的生长发育造成影响,MDA含量呈先降后升趋势,生物量随着胁迫的加重而减少,相对电导率、渗透物质可溶性糖含量和Pro含量均呈上升趋势,抗氧化酶POD活性、SOD活性明显高于对照,胁迫对叶片光合色素的合成具有一定的破坏作用,其中类胡萝卜素更敏感.轻度盐碱及Pb(500 mg/L)的复合胁迫下,MDA含量下降,叶绿素a、叶绿素b、类胡萝卜素高于对照,说明二月兰幼苗对轻度盐碱及Pb胁迫具有一定耐性,且叶片对于胁迫的耐性大于根部.

  11. Hydrogen isotope behavior on a water–metal boundary with simultaneous transfer from and to the metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Takumi, E-mail: hayashi.takumi@jaea.go.jp [Japan Atomic Energy Agency, Tokai-mira, Naka-gun, Ibaraki-ken 319-1195 (Japan); Isobe, Kanetsugu; Nakamura, Hirofumi; Kobayashi, Kazuhiro [Japan Atomic Energy Agency, Tokai-mira, Naka-gun, Ibaraki-ken 319-1195 (Japan); Oya, Yasuhisa; Okuno, Kenji [Faculty of Science, Shizuoka University, Oya 836, Suruga-ku, Shizuoka city, Shizuoka-ken 422-8529 (Japan); Oyaizu, Makoto [Japan Atomic Energy Agency, Rokkasho-mira, Kamikita-gun, Aomori-ken 039-3212 (Japan); Edao, Yuki [Japan Atomic Energy Agency, Tokai-mira, Naka-gun, Ibaraki-ken 319-1195 (Japan); Yamanishi, Yoshihiko [Japan Atomic Energy Agency, Rokkasho-mira, Kamikita-gun, Aomori-ken 039-3212 (Japan)

    2014-10-15

    To investigate the behavior of hydrogen on a water–metal boundary, a series of experiments have been performed that studied tritium permeation into a pressurized water jacket through pure iron piping, which contained approximately 1 kPa of pure tritium gas at 423 K, while monitoring the chemical forms of tritium. Additionally, the behavior of deuterium, which was generated on the heavy water–metal boundary and transferred to the metal, was also investigated using a pressure-proof heavy water vessel. Actual deuterium transfer through various metal piping, such as Fe, Ni, SS304, etc., was detected clearly by QMS at 423–573 K. Moreover, using the above heavy water system, we have succeeded in detecting hydrogen isotopes simultaneously transferring from and to the metal surface by introducing hydrogen gas to the Ni piping after deuterium permeation from the heavy water side had stabilized.

  12. Structural changes of polyacids initiated by their neutralization with various alkali metal hydroxides. Diffusion studies in poly(acrylic acid)s.

    Science.gov (United States)

    Masiak, Michal; Hyk, Wojciech; Stojek, Zbigniew; Ciszkowska, Malgorzata

    2007-09-27

    The changes in the three-dimensional structure of the poly(acrylic acid), PAA, induced by incorporation of various alkali-metal counterions have been evaluated by studying diffusion of an uncharged probe (1,1'-ferrocenedimethanol) in the polymeric media. The studies are supported by the measurements of conductivity and viscosity of the polymeric media. Solutions of linear PAA of four different sizes (molecular weights: 450,000, 750,000, 1,250,000, 4,000,000) were neutralized with hydroxides of alkali metals of group 1 of the periodic table (Li, Na, K, Rb, Cs) to the desired neutralization degree. The transport properties of the obtained polyacrylates were monitored by measuring the changes in the probe diffusion coefficient during the titration of the polyacids. The probe diffusivity was determined from the steady-state current of the probe voltammetric oxidation at disk microelectrodes. Diffusivity of the probe increases with the increase in the degree of neutralization and with the increase in viscosity. It reaches the maximum value at about 60-80% of the polyacid neutralization. The way the probe diffusion coefficients change is similar in all polyacid solutions and gels. The increase in the size of a metal cation causes, in general, an enhancement in the transport of probe molecules. The biggest differences in the probe diffusivities are between lithium and cesium polyacrylates. The differences between the results obtained for cesium and rubidium are not statistically significant due to lack of good precision of the voltammetric measurements. The measurements of the electric conductivity of polyacrylates and the theoretical predictions supplemented the picture of electrostatic interactions between the polyanionic chains and the metal cations of increasing size. In all instances of the PAAs, the viscosity of the solutions rapidly increases in the 0-60% range of neutralization and then becomes constant in the 60-100% region. With the exception of the shortest

  13. Normal variations in the isotopic composition of metabolically relevant transition metals in human blood

    Science.gov (United States)

    Van Heghe, L.; Cloquet, C.; Vanhaecke, F.

    2012-04-01

    Cu, Fe and Zn are transition metals with great catalytic, structural and regulating importance in the human body. Hence, an aberrant metabolism of these elements can have serious implications on the health of a person. It is assumed that, due to differences in isotope fractionation, the isotopic composition of these elements in whole blood of patients can be different from that in blood of healthy subjects. Therefore, isotopic analysis of the element affected by the disease can be a promising approach for early diagnosis. A method for isotopic analysis of Cu, Fe and Zn in human whole blood was developed. The simultaneous chromatographic isolation of these elements and the conditions for isotope ratio measurement via multi-collector ICP - mass spectrometry (MC-ICP-MS) were optimized. So far, only whole blood of supposedly healthy volunteers (reference population) was analyzed. Results for Fe confirmed the known differences in isotopic composition between male and female blood. It is also shown that other parameters can have influence as well, e.g., the isotopic composition of Zn seems to be governed by the diet.

  14. Hydrogen isotope analysis of natural water and inclusion water in minerals by zinc metal

    International Nuclear Information System (INIS)

    The method of D/H ratio analyses of natural water, inclusion water and structure water in minerals have been established on hydrogen gas obtained by quantitative reduction of water passing over hot zinc metal. The vacuum line and hydrogen isotope concentration ratios are available. The results agree well with in the analytical errors. The experimental procedure of the method is presented in detail

  15. Rapid lead isotope analysis of archaeological metals by multiple-collector inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Baker, J.A.; Stos, S.; Waight, Tod Earle

    2006-01-01

    Lead isotope ratios in archaeological silver and copper were determined by MC-ICPMS using laser ablation and bulk dissolution without lead purification. Laser ablation results on high-lead metals and bulk solution analyses on all samples agree within error of TIMS data, suggesting that problems f...

  16. Europium, Samarium, and Neodymium Isotopic Fractions in Metal-Poor Stars

    Science.gov (United States)

    Roederer, Ian U.; Lawler, James E.; Sneden, Christopher; Cowan, John J.; Sobeck, Jennifer S.; Pilachowski, Catherine A.

    2008-03-01

    We have derived isotopic fractions of europium (Eu), samarium (Sm), and neodymium (Nd) in two metal-poor giants with differing neutron-capture nucleosynthetic histories. These isotopic fractions were measured from new very high resolution (R~120,000), high signal-to-noise (S/N~160-1000) spectra obtained with the 2dCoudé spectrograph of McDonald Observatory's 2.7 m Smith telescope. Synthetic spectra were generated using recent high-precision laboratory measurements of hyperfine and isotopic subcomponents of several transitions of these elements and matched quantitatively to the observed spectra. We interpret our isotopic fractions by the nucleosynthesis predictions of the stellar model, which models s-process nucleosynthesis in the physical conditions expected in a low-mass, thermally-pulsing star on the AGB, and the classical method, which assumes that s-process nucleosynthesis can be approximated by a steady neutron flux impinging upon Fe-peak seed nuclei. These two approaches predict the relative contributions to the Solar System n-capture abundances from the s- and r-processes and, by extension, the relative contributions of these two process to material in metal-poor stars. Our Eu isotopic fraction in HD 175305 is consistent with an r-process origin by the classical method and is consistent with both an r-process and s-process origin by the stellar model. Our Sm isotopic fraction in HD 175305 is consistent with a predominantly r-process origin by both methods, and our Sm isotopic fraction in HD 196944 is consistent with a pure s-process origin by both methods as well. Our Nd isotopic fractions in both stars are consistent with either r-process and s-process origins by both methods. The Eu and Sm isotopic fraction estimates argue for an r-process origin for the rare-earth elements in HD 175305 and an s-process origin for them in HD 196944, in excellent agreement with previous studies of the elemental abundance distributions in these stars. This study for the

  17. Influence of alkali metals (Na, Li, Rb) on the performance of electrostatic spray-assisted vapor deposited Cu2ZnSn(S,Se)4 solar cells

    Science.gov (United States)

    Altamura, Giovanni; Wang, Mingqing; Choy, Kwang-Leong

    2016-02-01

    Electrostatic Spray-Assisted Vapor Deposition (ESAVD) is a non-vacuum and cost-effective method to deposit metal oxide, various sulphide and chalcogenide at large scale. In this work, ESAVD was used to deposit Cu2ZnSn(S1-xSex)4 (CZTSSe) absorber. Different alkali metals like Na, Li and Rb were incorporated in CZTSSe compounds to further improve the photovoltaic performances of related devices. In addition, to the best of our knowledge, no experimental study has been carried out to test the effect of Li and Rb incorporation in CZTSSe solar cells. X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and glow discharge spectroscopy have been used to characterize the phase purity, morphology and composition of as-deposited CZTSSe thin films. Photovoltaic properties of the resulting devices were determined by completing the solar cells as follows: Mo/CZTSSe/CdS/i-ZnO/Al:ZnO/Ni/Al. The results showed that Li, Na and Rb incorporation can increase power conversion efficiency of CZTS devices up to 5.5%. The introduction of a thiourea treatment, has improved the quality of the absorber|buffer interface, pushed the device efficiency up to 6.3% which is at the moment the best reported result for ESAVD deposited CZTSSe solar cells.

  18. Theoretical study on the ground state of the polar alkali-metal-barium molecules: potential energy curve and permanent dipole moment.

    Science.gov (United States)

    Gou, Dezhi; Kuang, Xiaoyu; Gao, Yufeng; Huo, Dongming

    2015-01-21

    In this paper, we systematically investigate the electronic structure for the (2)Σ(+) ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Å and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained. PMID:25612710

  19. Theoretical study on the ground state of the polar alkali-metal-barium molecules: Potential energy curve and permanent dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Dezhi; Kuang, Xiaoyu, E-mail: scu-kuang@163.com; Gao, Yufeng; Huo, Dongming [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China)

    2015-01-21

    In this paper, we systematically investigate the electronic structure for the {sup 2}Σ{sup +} ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Å and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained.

  20. Towards new molecular superconductors: a first study of alkali metal reduced aromatic cryptands as 'pseudo-fullerides'

    International Nuclear Information System (INIS)

    The search for new molecular superconductors based upon concepts derived from the interpretation of alkali fullerides superconductivity led to the study of an aromatic cryptand (IHIC) considered as 'pseudo-fullerene'. New solids made of IHIC mono or di-reduced by potassium, rubidium and cesium were investigated. Low field microwave absorption (LFMA) signals appeared at 20 K for IHIC-Rb and IHIC-K (1:1), although these observations could not be confirmed by AC susceptibility or SQUID magnetometry. IR spectroscopy was used to probe the integrity of the final solid. EPR spectra consisted of a single symmetric line, combination of a Gaussian and of a Lorentzian lineshape, down to 4.2 K. However, the paramagnetic contribution of the reduced molecular species was too high to allow the observation of any transition at low temperature. Although two samples had a semiconductor like conductivity behavior as a function of temperature at high temperature, no indication of the presence of conduction electrons could be observed on the EPR spectrum. The LFMA measurements obtained can be considered as hints of superconductivity, thus opening the route towards new materials. (orig.)

  1. Pb Isotope Study of Some Nonferrous Metallic Deposits in China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on Pb-Pb isochron data of more than 40 Precambrian polymetallic deposits, the authors consider that there are four mineralization periods for the Precambrian copper deposits in China, and the major copper deposits were formed at about 1800 Ma; there are three mineralization periods for gold deposits formed from Archaean to Proterozoic. By studying hundreds of lead isotope data from some Mesozoic continental subvolcanic Cu and Ag polymetallic deposits and fine-disseminated gold deposits, the authors found that the calculation based on the lead single-stage evolution model or two-stage evolution model cannot give the true ore-forming ages but can provide more information about mineralization and material sources of the deposits.

  2. Using stable and radioactive isotopes for the investigation of contaminant metal mobilization in a metal mining district

    International Nuclear Information System (INIS)

    Naturally occurring stable and radioactive isotopes were used as environmental tracers to investigate contaminant metal mobilization processes in a metal smelter dump mainly consisting of slag. Water emerging from the dump at a spring is heavily contaminated by metals. The smelter dump contains minor amounts of flue dust, a material which shows a high potential for metal mobilization. Nearby dumps mainly consist of low-grade ore. Concentration patterns of 238U, 226Ra and 210Pb determined in sediment deposited close to the contaminated spring reveal the flue dust to be the major local metal source rather than the slag or the low-grade ore. Contamination pathways inside the dump were investigated using hydrological, chemical and isotopic data. Strong negative correlation between water discharge and metal concentration in the spring water suggests, besides short-term dilution of the metal concentration by direct rainwater runoff, distinct long-term dilution of the spring water by groundwater being discharged at a significantly increased rate as a result of heavy rains. δ18O and δD signatures of rain, local groundwater and spring water confirm the importance of groundwater derived from the local aquifer. Another hydrological component with importance for metal mobilization was found to be water that is recharged in the dump itself. Tritium analysis allowed an assessment of the probable residence time of that water component in the smelter dump. Since that water component seems to represent a major local contamination pathway the findings of the study are of substantial importance for site remediation planning. As a primary result it could be stated that covering the dump would not result in any noteworthy short-term improvement of the spring water quality. First significant effects would only be visible after 2-3 decades at the earliest

  3. Tracing industrial heavy metal inputs to topsoils using using cadmium isotopes

    Science.gov (United States)

    Huang, Y.; Ma, L.; Ni, S.; Lu, H.; Liu, Z.; Zhang, C.; Guo, J.; Wang, N.

    2015-12-01

    Anthropogenic activities have dominated heavy metal (such as Cd, Pb, and Zn) cycling in many environments. The extent and fate of these metal depositions in topsoils, however, have not been adequately evaluated. Here, we utilize an innovative Cadmium (Cd) isotope tool to trace the sources of metal pollutants in topsoils collected from surrounding a Vanadium Titanium Magnetite smelting plant in Sichuan, China. Topsoil samples and possible pollution end-members such as fly ashes, bottom ashes, ore materials, and coal were also collected from the region surrounding the smelting plant and were analyzed for Cd isotope ratios (d114Cd relative to Cd NIST 3108). Large Cd isotope fractionation (up to 3 ‰) was observed in these industrial end-members: fly ashes possessed higher δ114Cd values ranging from +0.03 to +0.19‰; bottom fly ashes have lower δ114Cd values ranging from -0.35 to -2.46‰; and unprocessed ore and coal samples has δ114Cd value of -0.40‰. This fractionation can be attributed to the smelting processes during which bottom ashes acquired lighter Cd isotope signatures while fly ashes were mainly characterized by heavy isotope ratios, in comparison to the unprocessed ore and coal samples. Indeed, δ114Cd values of topsoils in the smelting area range from 0.29 to -0.56‰, and more than half of the soils analyzed have distinct δ114Cd values > 0‰. Cd isotopes and concentrations measured in topsoils suggested that processed materials (fly and bottom ashes from ore and coal actually used by the smelting plant) were the major source of Cd in soils. In a δ114Cd vs 1/Cd mixing diagram, the soils represent a mixture of three identified end members (fly ash, bottom ash and deep unaffected soil) with distinct Cd isotopic compositions and concentrations. Deep soils have the same δ114Cd values range as the unprocessed ore and coal, which indicated the Cd isotope fractionation did occur during evaporation and condensation processes inside the smelting plant

  4. Binding energy referencing for XPS in alkali metal-based battery materials research (I): Basic model investigations

    Energy Technology Data Exchange (ETDEWEB)

    Oswald, S., E-mail: s.oswald@ifw-dresden.de

    2015-10-01

    Highlights: • We point to a not seriously solved conflict in energy scale referencing of Li metal samples in XPS. • Model experiments at Li-, Na-metal and Li-doped HOPG samples were used to classify the effects. • Binding energy shifts up to 3 eV are observed when the alkaline metal is present in metallic state. • A phenomenological explanation based on an electrostatic interaction is suggested. • Consequences for energy scale correction depending on the kind of surface species are followed. - Abstract: For the investigation of chemical changes in Li- and Na-ion battery electrode systems, X-ray photoelectron spectroscopy (XPS) is a well-accepted method. Charge compensation and referencing of the binding energy (BE) scale is necessary to account for the involved mostly non-conducting species. Motivated by a conflict in energy scale referencing of Li-metal samples discussed earlier by several authors, further clarifying experimental results on several Li containing reference materials are presented and extended by similar experiments for Na. When correlating the peak positions of characteristic chemical species in all the different prepared model sample states, there seems to be a systematic deviation in characteristic binding energies of several eV if lithium is present in its metallic state. Similar results were found for sodium. The observations are furthermore confirmed by the implementation of inert artificial energy reference material, such as implanted argon or deposited gold. The behavior is associated with the high reactivity of metallic lithium and a phenomenological explanation is proposed for the understanding of the observations. Consequences for data interpretation in Li-ion battery research will be discussed for various applications in part (II)

  5. Diode laser spectroscopy of NaD, KD, RbD, and CsD: determination of the mass independent parameters and mass scaling coefficients of the alkali metal hydrides

    International Nuclear Information System (INIS)

    The infrared spectrum of the monodeuterides of the alkali metals, sodium, potassium, rubidium, and cesium have been measured with a nominal accuracy of ±0.001 cm-1 using a diode laser spectrometer. Spectral lines of both the fundamental and the first hot band were observed for all the deuterides except RbD where only the fundamental was measured. The accuracy of previously published data on KH was also improved. Combination of these new data with similar results obtained previously for the equivalent monohydrides allowed the determination of a set of mass-independent parameters and mass-scaling coefficients for the hydrides of all of the alkali metals. This has allowed the relative magnitudes of the parameters to be compared for the first time. The results indicate that non-adiabatic effects are most prevalent in CsH. (orig.)

  6. Isotope exchange kinetics in metal hydrides I : TPLUG model.

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Rich; James, Scott Carlton; Nilson, Robert H.

    2011-05-01

    A one-dimensional isobaric reactor model is used to simulate hydrogen isotope exchange processes taking place during flow through a powdered palladium bed. This simple model is designed to serve primarily as a platform for the initial development of detailed chemical mechanisms that can then be refined with the aid of more complex reactor descriptions. The one-dimensional model is based on the Sandia in-house code TPLUG, which solves a transient set of governing equations including an overall mass balance for the gas phase, material balances for all of the gas-phase and surface species, and an ideal gas equation of state. An energy equation can also be solved if thermodynamic properties for all of the species involved are known. The code is coupled with the Chemkin package to facilitate the incorporation of arbitrary multistep reaction mechanisms into the simulations. This capability is used here to test and optimize a basic mechanism describing the surface chemistry at or near the interface between the gas phase and a palladium particle. The mechanism includes reversible dissociative adsorptions of the three gas-phase species on the particle surface as well as atomic migrations between the surface and the bulk. The migration steps are more general than those used previously in that they do not require simultaneous movement of two atoms in opposite directions; this makes possible the creation and destruction of bulk vacancies and thus allows the model to account for variations in the bulk stoichiometry with isotopic composition. The optimization code APPSPACK is used to adjust the mass-action rate constants so as to achieve the best possible fit to a given set of experimental data, subject to a set of rigorous thermodynamic constraints. When data for nearly isothermal and isobaric deuterium-to-hydrogen (D {yields} H) and hydrogen-to-deuterium (H {yields} D) exchanges are fitted simultaneously, results for the former are excellent, while those for the latter show

  7. Metallic elements and isotope of Pb in wet precipitation in urban area, South America

    Science.gov (United States)

    Migliavacca, Daniela Montanari; Teixeira, Elba Calesso; Gervasoni, Fernanda; Conceição, Rommulo Vieira; Raya Rodriguez, Maria Teresa

    2012-04-01

    The atmosphere of urban areas has been the subject of many studies to show the atmospheric pollution in large urban centers. By quantifying wet precipitation through the analysis of metallic elements (ICP/AES) and Pb isotopes, the wet precipitation of the Metropolitan Area of the Porto Alegre (MAPA), Brazil, was characterized. The samples were collected between July 2005 and December 2007. Zn, Fe and Mn showed the highest concentration in studied sites. Sapucaia do Sul showed the highest average for Zn, due to influence by the steel plant located near the sampling site. The contribution of anthropogenic emissions from vehicular activity and steel plants in wet precipitation and suspended particulate matter in the MAPA was identified by the isotopic signatures of 208Pb/207Pb and 206Pb/207Pb. Moreover the analyses of the metallic elements allowed also to identify the contribution of other anthropic sources, such as steel plants and oil refinery.

  8. Ion chromatography with the indirect ultraviolet detection of alkali metal ions and ammonium using imidazolium ionic liquid as ultraviolet absorption reagent and eluent.

    Science.gov (United States)

    Liu, Yong-Qiang; Yu, Hong

    2016-08-01

    Indirect ultraviolet detection was conducted in ultraviolet-absorption-agent-added mobile phase to complete the detection of the absence of ultraviolet absorption functional group in analytes. Compared with precolumn derivatization or postcolumn derivatization, this method can be widely used, has the advantages of simple operation and good linear relationship. Chromatographic separation of Li(+) , Na(+) , K(+) , and NH4 (+) was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid/organic solvent as the mobile phase, in which imidazolium ionic liquids acted as ultraviolet absorption reagent and eluting agent. The retention behaviors of four kinds of cations are discussed, and the mechanism of separation and detection are described. The main factors influencing the separation and detection were the background ultraviolet absorption reagent and the concentration of hydrogen ion in the ion chromatography-indirect ultraviolet detection. The successful separation and detection of Li(+) , Na(+) , K(+) , and NH4 (+) within 13 min was achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.02, 0.11, 0.30, and 0.06 mg/L, respectively. A new separation and analysis method of alkali metal ions and ammonium by ion chromatography with indirect ultraviolet detection method was developed, and the application range of ionic liquid was expanded.

  9. I3-/I- Redox Behavior of Alkali-metal Iodide Complexes with Crown Ether/Cryptand Macrocycles and Their Applications to Dye-sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    史成武; 戴松元; 王孔嘉; 潘旭; 郭力; 胡林华; 孔凡太

    2005-01-01

    In this article, the I3-/I- redox behavior in 3-methoxypropionitrile (MePN) containing alkali-metal iodide complexes with crown ether and crypt,and macrocycles was studied by cyclic voltammetry. It was found that the apparent diffusion coefficient D values of triiodide and iodide ions correlate with cations. D values of triiodide follow the order: 1,2-dimethyl-3-propylimidazolium cation (DMPI+)>[Na belong to 15-C-5]+ (the mathematical symbol of inclus ions belong to, was used to indicate Na+ included in 15-C-5)> [K belong to 18-C-6]+> [Na belog to 2.2.1-cryptand]+ and those of iodide ionsfollow the order: [Na belong to 2.2.1-cryptand]+ > [Na belong to 15-C-5]+≈[K belong to 18-C-6]+ > DMPI+. The photovoltaic performances of dye-sensitized solar cells (DSC) with these complexes were compared with those containing 1,2-dimethyl-3-propylimidazolium iodide (DMPII) in MePN. It shows that DSC with these complexes gave a little higher short photocurrent intensity and lower fill factor than those with DMPII, which is consistent with D values of triiodide and iodide ions. Moreover, solvents played an important role for the photo-electric conversion efficiency of DSC. The photo-electric conversion efficiency of DSC with DMPII is higher than that with [K belong to 18-C-6]I in MePN, while in ACN, it shows a little difference.

  10. EVALUATION OF RADIOLOGICAL SIGNIFICANCE OF RARE-EARTH METALS WITH NATURAL RADIOACTIVE ISOTOPES

    OpenAIRE

    E. P. Lisachenko

    2013-01-01

    Among the rare-earth metals with natural radioactive isotopes, lantan, lutetium and samarium are allocated a relatively high specific activity. The formation of the additional external radiation keep it close to the significance of the materials to the radiation categories of materials with a high content of natural radionuclides of uranium and thorium family, lanthanum value is much less. Samarium, with acceptable toxicology content in the working area, forms the internal exposure to the lim...

  11. Isotope exchange of indoles with D/sub 2/O over group VIII metals

    Energy Technology Data Exchange (ETDEWEB)

    Karakhanov, E.A.; Dedov, A.G.; Kurts, A.L.; Luzikov, Yu.N.

    1981-08-01

    Results of H - D exchange between indole and its methyl derivatives and D/sub 2/O over metallic Pt, Rh, and Pd are reported. The composition of the reaction mixture after the isotopic exchange was determined by mass spectrometry. The order of reactivity of the metals was Pt>Pd>Rh. It was determined that it was only the heterocycle ..pi..-electron system that interacts with the surface and mainly the hydrogens at C/sub 2/ and C/sub 3/ that undergo exchange and not those bonded to the N. (BLM)

  12. Solubility of hydrogen and its isotopes in metals from mixed gases

    Science.gov (United States)

    San Marchi, C.; Somerday, B. P.; Larson, R. S.; Rice, S. F.

    2008-01-01

    This short communication reviews the classical thermodynamics governing dissolution of hydrogen in metals. Classical thermodynamics is then applied to equilibrium dissolution of hydrogen and its isotopes in metals from mixtures of their diatomic gases. For simplicity in presentation, we use the specific example of H 2 and D 2 gas mixtures to demonstrate the general principles of equilibrium solubility; however, other systems may be treated analogously. The formation of HD gas is shown to have a significant effect on equilibrium solubility since it affects the chemical potentials of the H 2 and D 2 gases. Finally, we compare this thermodynamic analysis with empirical solutions from the literature.

  13. Metal isotopes and carbonate proxy archives: Model-based perspectives on diagenesis

    Science.gov (United States)

    Fantle, M. S.; Higgins, J. A.; Griffith, E. M.

    2014-12-01

    Metal isotopes are novel tools, and have expanded the geochemical toolbox for elucidating the functioning of the Earth over various time scales. Carbonate-based stable isotope proxies now extend well beyond the traditional major elements (C and O) to include Ca, as well as trace elements such as Sr, S, Mg, B, Li, Cd, and U. Such trace isotopic proxies may contain invaluable information about the Earth system in the past, but can be susceptible to diagenetic alteration over long time scales. It is therefore critical that diagenetic effects are understood and can be recognized in ancient rocks. The extent of alteration depends on reaction rate and advection velocity in the sedimentary section, and elemental partitioning and isotopic effects associated with diagenesis. Numerical approaches, such as reactive transport models, are extremely useful tools for constraining such variables, and for testing hypotheses related to alteration of proxy records. Reactive transport models allow for constraints on calcite recrystallization rates in natural systems; data from ODP Sites 807A, 1170A, 1171A, and 806B suggest rapid recrystallization in relatively young sediments, as well as a Ca isotopic fractionation factor (α) associated with calcite recrystallization close to 1 (Δ=0). While the former is critical for addressing the fidelity and accuracy of a variety of geochemical proxies, the latter is distinctly different from that associated with the formation of carbonates in the surface ocean (Δ~ -1.35‰), suggesting considerable isotopic leverage to alter Ca isotopes during diagenesis. While Ca isotopes are generally well buffered in carbonate-rich sediments, this leverage to alter may be expressed as a reduction in the amplitude of geochemical variability in the solid or as a result of reactions near the sediment-seawater interface (as seen at ODP Site 1221 associated with chemical burndown during the PETM). Further, the Ca and Mg isotopic compositions of shallow water

  14. Uranium Metalla-Allenes with Carbene Imido R2 C=U(IV) =NR' Units (R=Ph2 PNSiMe3 ; R'=CPh3 ): Alkali-Metal-Mediated Push-Pull Effects with an Amido Auxiliary.

    Science.gov (United States)

    Lu, Erli; Tuna, Floriana; Lewis, William; Kaltsoyannis, Nikolas; Liddle, Stephen T

    2016-08-01

    We report uranium(IV)-carbene-imido-amide metalla-allene complexes [U(BIPM(TMS) )(NCPh3 )(NHCPh3 )(M)] (BIPM(TMS) =C(PPh2 NSiMe3 )2 ; M=Li or K) that can be described as R2 C=U=NR' push-pull metalla-allene units, as organometallic counterparts of the well-known push-pull organic allenes. The solid-state structures reveal that the R2 C=U=NR' units adopt highly unusual cis-arrangements, which are also reproduced by gas-phase theoretical studies conducted without the alkali metals to remove their potential structure-directing roles. Computational studies confirm the double-bond nature of the U=NR' and U=CR2 interactions, the latter increasingly attenuated by potassium then lithium when compared to the hypothetical alkali-metal-free anion. Combined experimental and theoretical data show that the push-pull effect induced by the alkali metal cations and amide auxiliary gives a fundamental and tunable structural influence over the C=U(IV) =N units. PMID:27403746

  15. Milk-alkali syndrome

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000332.htm Milk-alkali syndrome To use the sharing features on this page, please enable JavaScript. Milk-alkali syndrome is a condition in which there ...

  16. Use of Lead Isotopes to Identify Sources of Metal and Metalloid Contaminants in Atmospheric Aerosol from Mining Operations

    OpenAIRE

    Félix, Omar I.; Csavina, Janae; Field, Jason; Kyle P. Rine; Sáez, A. Eduardo; Betterton, Eric A.

    2014-01-01

    Mining operations are a potential source of metal and metalloid contamination by atmospheric particulate generated from smelting activities, as well as from erosion of mine tailings. In this work, we show how lead isotopes can be used for source apportionment of metal and metalloid contaminants from the site of an active copper mine. Analysis of atmospheric aerosol shows two distinct isotopic signatures: one prevalent in fine particles (< 1 μm aerodynamic diameter) while the other corresponds...

  17. Analysis on Alkali Metal Migration Law in Process of Eucalyptus Branches Direct Combustion%桉树枝直燃利用过程中碱金属迁移规律分析

    Institute of Scientific and Technical Information of China (English)

    韦威; 廖艳芬; 陈拓; 马晓茜; 杨云金; 余勇强

    2014-01-01

    For knowing alkali metal migration law in eucalyptus branches burned in some biomass power plant,this paper studies it by combustion experiment.The experimental sample is eucalyptus branch particle with grain size of 1 80μm which is used for repeat combustion experiment in pipe burner in order to get residual samples under different temperatures and with different combustion time.By proximate analysis on residual samples,it is able to get combustion laws of volatiles and fixed carbon.The experimental result shows that volatility of alkali metal in eucalyptus branches is very strong and there is 87%potassium released into gas phase in process of high temperature burning.Meanwhile,precipitation of alkali metal is speeding up with increase of temperature and precipitation volume dose is increasing with temperature and stop time.In addition,tak-ing kaolin as additive,it conducts quantitative analysis on its impact on retention rate of alkali metal in ash.The analysis re-sult indicates that kaolin has very good retention role for alkali metal in eucalyptus branches and retention effect of 5% kao-lin is the best.%为了解某生物质电厂燃用的桉树枝的碱金属迁移规律,对其进行了燃烧实验研究。实验样品为粒径180μm的桉树枝颗粒,在管式燃烧器中进行燃烧重复实验,获得不同温度和燃烧时间下的残留物样品,然后对残留物进行工业分析,获得挥发分、固定碳的燃烧规律;实验结果表明桉树枝碱金属挥发性很强,高温燃尽时有87%的钾释放进入气相,碱金属的析出随温度的增高而加快,析出总量也随温度和停留时间而增加。另外,以高岭土作为添加剂,定量分析了其对桉树枝碱金属在灰渣中的固留率的影响,分析结果表明高岭土对桉树枝的碱金属有很好固留作用,5%的高岭土添加量固留效果最佳。

  18. Assessment of the bioavailability of heavy metals in soils using isotopic exchange kinetics method

    Energy Technology Data Exchange (ETDEWEB)

    Echevarria, G.; Gerard, E.; Shallari, S.; Massoura, S.; Schwartz, C.; Morel, J.L. [Ecole Nationale Superieur d' Agronomie et des Industries Alimentaires (ENSAIA-INRA), Lab. Sols et Environnement, 54 - Vandoeuvre les Nancy (France)

    2001-07-01

    The aim of this paper was to investigate the potential risk of food chain contamination of soils from urban and industrial sites by nickel and cadmium. Therefore, the isotopic exchange kinetics (IEK) method, which allows to understand the potential transfer from soil to plant of these two metals, was carried out on soil samples from agricultural, urban and industrial areas contaminated by mining, smelting and other metal industry activities. The IEK method have been successfully used to assess metal bioavailability in natural and anthropogenic metal rich soils and have succeeded in predicting metal transfer to plants, especially to hyper-accumulators. This method allows indeed to characterize the three main characteristics of bioavailability of metals in soils (intensity, quantity and capacity). The latter being the most difficult to assess with traditional chemical extraction procedures. A further step in improving the method would be to characterize for each soil sample the part of the metal in solution which is actually under the form M{sup 2+} rather than assuming that the total metal in solution is M{sup 2+}. It is therefore possible to assess the risk associated with the presence of metals in urban and industrial soils and also to evaluate the management practices on these areas. Their use has also allowed to assess the effect of management practices on contaminated agricultural, urban and industrial soils (liming, sewage sludge applications, phyto-extraction). The effect of such practices is often a combined effect directly on the solubility of the metals (intensity), on the increase or decrease of the exchangeable pool (quantity) and on the decrease or increase of the capacity.

  19. Availability of radium isotopes and heavy metals from scales and tailings of Polish hard coal mining

    Energy Technology Data Exchange (ETDEWEB)

    Karsten Leopold; Boguslaw Michalik; Jens Wiegand [University of Duisburg-Essen, Essen (Germany)

    2007-02-15

    Radium and heavy metal contaminated tailings and scales resulting from Polish hard coal mining were investigated for their mobilisation potential by using leaching methods. The main focus is set on a three-step extraction procedure proposed by BCR (Bureau Communautaire de Reference, now Standards Measurements and Testing Programme) of the European Union, which was used for investigating the availability of radium isotopes. In addition, the results of a Polish extraction procedure for the heavy metals' water solubility are presented for rough comparison. After a special treatment, the BCR-reagents were measured by gamma-spectrometry to define their radium activity concentrations; the heavy metal content in the water soluble fractions was determined by ICP-AES. The samples were collected at two different sites influenced by the discharge of pit water from hard coal mining. The tailings were taken from a former tailing pond, which now is no longer in use, but the settled material is still present. At another abandoned and meanwhile flooded tailing pond, the scales were scraped from the inside of a discharge tube. The results obtained show that there is different leaching behaviour between the radium isotopes. The tailings being characterised by surface adsorbed radium provide up to 25% of the initial 226Ra content, 228Ra is altogether leached up to 15%. The scales comprise stable radiobaryte (Ba(Ra)SO{sub 4}) and can be considered as being unable to provide radium isotopes, since no trace of radium dissolution was observed. The leaching behaviour of heavy metals is similar to that of radium. Mn, Ni and Zn are dissolved by water from the tailings; the scales do not provide any.

  20. Availability of radium isotopes and heavy metals from scales and tailings of Polish hard coal mining

    Energy Technology Data Exchange (ETDEWEB)

    Leopold, Karsten [University Duisburg-Essen, Geology Department, Universitaetsstrasse 5, D-45117 Essen (Germany)]. E-mail: karsten.leopold@uni-due.de; Michalik, Boguslaw [Central Mining Institute, Laboratory of Radiometry, Pl. Gwarkow 1, 40-166 Katowice (Poland)]. E-mail: b.michalik@gig.katowice.pl; Wiegand, Jens [University of Wuerzburg, Geological Institute, Pleicherwall 1, D-97070 Wuerzburg (Germany)]. E-mail: jens.wiegand@geologie.uni-wuerzburg.de

    2007-05-15

    Radium and heavy metal contaminated tailings and scales resulting from Polish hard coal mining were investigated for their mobilisation potential by using leaching methods. The main focus is set on a three-step extraction procedure proposed by BCR (Bureau Communautaire de Reference, now Standards Measurements and Testing Programme) of the European Union, which was used for investigating the availability of radium isotopes. In addition, the results of a Polish extraction procedure for the heavy metals' water solubility are presented for rough comparison. After a special treatment, the BCR-reagents were measured by gamma-spectrometry to define their radium activity concentrations; the heavy metal content in the water soluble fractions was determined by ICP-AES. The samples were collected at two different sites influenced by the discharge of pit water from hard coal mining. The tailings were taken from a former tailing pond, which now is no longer in use, but the settled material is still present. At another abandoned and meanwhile flooded tailing pond, the scales were scraped from the inside of a discharge tube. The results obtained show that there is different leaching behaviour between the radium isotopes. The tailings being characterised by surface adsorbed radium provide up to 25% of the initial {sup 226}Ra content, {sup 228}Ra is altogether leached up to 15%. The scales comprise stable radiobaryte (Ba[Ra]SO{sub 4}) and can be considered as being unable to provide radium isotopes, since no trace of radium dissolution was observed. The leaching behaviour of heavy metals is similar to that of radium. Mn, Ni and Zn are dissolved by water from the tailings; the scales do not provide any.

  1. Availability of radium isotopes and heavy metals from scales and tailings of Polish hard coal mining

    Energy Technology Data Exchange (ETDEWEB)

    Karsten Leopold; Boguslaw Michalik; Jens Wiegand [University Duisburg-Essen, Essen (Germany). Geology Department

    2007-05-15

    Radium and heavy metal contaminated tailings and scales resulting from Polish hard coal mining were investigated for their mobilisation potential by using leaching methods. The main focus is set on a three-step extraction procedure proposed by BCR (Bureau Communautaire de Reference, now Standards Measurements and Testing Programme) of the European Union, which was used for investigating the availability of radium isotopes. In addition, the results of a Polish extraction procedure for the heavy metals' water solubility are presented for rough comparison. After a special treatment, the BCR-reagents were measured by gamma-spectrometry to define their radium activity concentrations; the heavy metal content in the water soluble fractions was determined by ICP-AES. The samples were collected at two different sites influenced by the discharge of pit water from hard coal mining. The tailings were taken from a former tailing pond, which now is no longer in use, but the settled material is still present. At another abandoned and meanwhile flooded tailing pond, the scales were scraped from the inside of a discharge tube. The results obtained show that there is different leaching behaviour between the radium isotopes. The tailings being characterised by surface adsorbed radium provide up to 25% of the initial {sup 226}Ra content, {sup 228}Ra is altogether leached up to 15%. The scales comprise stable radiobaryte and can be considered as being unable to provide radium isotopes, since no trace of radium dissolution was observed. The leaching behaviour of heavy metals is similar to that of radium. Mn, Ni and Zn are dissolved by water from the tailings; the scales do not provide any.

  2. A structural investigation of the alkali metal site distribution within bioactive glass using neutron diffraction and multinuclear solid state NMR.

    Science.gov (United States)

    Martin, Richard A; Twyman, Helen L; Rees, Gregory J; Smith, Jodie M; Barney, Emma R; Smith, Mark E; Hanna, John V; Newport, Robert J

    2012-09-21

    The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective isomorphic substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a similar manner within the glassy matrix and do not disrupt the short range order of the network former. Residual differences are attributed solely to the variation in ionic radius between the two species. Successful simplification of the 2 bioactive glasses, and an analogous splitting of the Li-O correlations. The observed correlations are attributed to the metal ions bonded either to bridging or to non-bridging oxygen atoms. (23)Na triple quantum MAS (3QMAS) NMR data corroborates the split Na-O correlations. The structural sites present will be intimately related to the release properties of the glass system in physiological fluids such as plasma and saliva, and hence to the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimizing material design. PMID:22868255

  3. Stable isotope and trace metal compositions of Australian prawns as a guide to authenticity and wholesomeness.

    Science.gov (United States)

    Carter, J F; Tinggi, U; Yang, X; Fry, B

    2015-03-01

    This research has explored the potential of stable isotope and trace metal profiles to distinguish Australian prawns from prawns imported from neighbouring Asian countries. Australian prawns were collected mostly from the Brisbane area. Strong differences in Australian vs. imported prawns were evident from both the isotope and trace element data, with the differences most likely occurring because imported prawns are typically reared in aquaculture facilities and frozen prior to sale in Australia. The aquaculture origins are characterised by comparatively; low δHVSMOW, δ(13)CVPDB values, low concentrations of arsenic, zinc and potassium, and high water contents (>80%). Relatively high arsenic and cadmium contents were found within Australian prawns, but the concentrations did not exceed local human health guidelines.

  4. Metal Content and Stable Isotope Determination in Some Commercial Beers from Romanian Markets

    Directory of Open Access Journals (Sweden)

    Cezara Voica

    2015-01-01

    Full Text Available Characterization of beer samples is of interest because their compositions affect the taste and stability of beer and, also, consumer health. In this work, the characterizations of 20 Romanian beers were performed by mean of Inductively Coupled Plasma Mass Spectrometry (ICP-MS and Isotope Ratio Mass Spectrometry (IRMS in order to trace heavy metals and isotopic content of them. Major, minor, and trace metals are important in beer fermentation since they supply the appropriate environment for yeast growth and influence yeast metabolism. Beside this, the presence of the C4 plants in the brewing process was followed. Our study has shown that the analyzed beers indicated the presence of different plant types used in brewing: C3, C3-C4 mixtures, and also C4, depending on producers. Also the trace metal content of each sample is presented and discussed in this study. A comparison of the beers quality manufactured by the same producer but bottled in different type of packaging like glass, dose, or PET was made; our results show that no compositional differences among the same beer type exist.

  5. Zinc isotopes in sphalerite from base metal deposits in the Red Dog district, northern Alaska

    Science.gov (United States)

    Kelley, K.D.; Wilkinson, J.J.; Chapman, J.B.; Crowther, H.L.; Weiss, D.J.

    2009-01-01

    Analyses of sphalerite samples from shale-hosted massive sulfide and stratigraphically underlying vein breccia deposits in the Red Dog district in northern Alaska show a range ??66Zn values from zero to 0.60 per mil. The lowest values are observed in the vein breccia deposits, and the stratigraphically overlying (but structurally displaced) shale-hosted massive sulfide deposits show a systematic trend of increasing ??66Zn values from south to north (Main-Aqqaluk-Paalaaq-Anarraaq). The ??66Zn values are inversely correlated with sphalerite Fe/Mn ratio and also tend to be higher in low Cu sphalerite, consistent with precipitation of lower ??66Zn sphalerite closer to the principal hydrothermal fluid conduits. The most likely control on isotopic variation is Rayleigh fractionation during sulfide precipitation, with lighter zinc isotopes preferentially incorporated in the earliest sphalerite to precipitate from ore fluids at deeper levels (vein breccias) and close to the principal fluid conduits in the orebodies, followed by precipitation of sulfides with higher ??66Zn values in shallower and/or more distal parts of the flow path. There is no systematic variation among the paragenetic stages of sphalerite from a single deposit, suggesting an isotopically homogeneous zinc source and consistent transport-deposition conditions and/or dissolution-reprecipitation of earlier sphalerite without significant fractionation. Decoupled Zn and S isotope compositions are best explained by mixing of separate metal- and sulfur-bearing fluids at the depositional site. The results confirm that Zn isotopes may be a useful tracer for distinguishing between the central and distal parts of large hydrothermal systems as previously suggested and could therefore be of use in exploration. ?? 2009 by Economic Geology.

  6. Controllable formation of heterotrimetallic coordination compounds: systematically incorporating lanthanide and alkali metal ions into the manganese 12-metallacrown-4 framework.

    Science.gov (United States)

    Azar, Michael R; Boron, Thaddeus T; Lutter, Jacob C; Daly, Connor I; Zegalia, Kelcie A; Nimthong, Ruthairat; Ferrence, Gregory M; Zeller, Matthias; Kampf, Jeff W; Pecoraro, Vincent L; Zaleski, Curtis M

    2014-02-01

    structures available through the metallacrown analogy, these complexes allow for the mixing and matching of a diverse range of metals that might permit the fine-tuning of molecular properties where one day they may be exploited as magnetic materials or luminescent agents.

  7. Heavy metal input to agricultural soils from irrigation with treated wastewater: Insight from Pb isotopes

    Science.gov (United States)

    Kloppmann, Wolfram; Cary, Lise; Psarras, Georgios; Surdyk, Nicolas; Chartzoulakis, Kostas; Pettenati, Marie; Maton, Laure

    2010-05-01

    A major objective of the EU FP6 project SAFIR was to overcome certain drawbacks of wastewater reuse through the development of a new irrigation technology combining small-scale modular water treatment plants on farm level and improved irrigation hardware, in the aim to lower the risks related to low quality water and to increase water use efficiency. This innovative technology was tested in several hydro-climatic contexts (Crete, Italy, Serbia, China) on experimental irrigated tomato and potato fields. Here we present the heavy metal variations in soil after medium-term (3 irrigation seasons from 2006-2008) use of treated municipal wastewater with a special focus on lead and lead isotope signatures. The experimental site is located in Chania, Crete. A matrix of plots were irrigated, combining different water qualities (secondary, primary treated wastewater, tap water, partially spiked with heavy metals, going through newly developed tertiary treatment systems) with different irrigation strategies (surface and subsurface drip irrigation combined with full irrigation and partial root drying). In order to assess small scale heavy metal distribution around a drip emitter, Pb isotope tracing was used, combined with selective extraction. The sampling for Pb isotope fingerprinting was performed after the 3rd season of ww-irrigation on a lateral profile from a drip irrigator (half distance between drip lines, i.e. 50cm) and three depth intervals (0-10, 10-20, 20-40 cm). These samples were lixiviated through a 3 step selective extraction procedure giving rise to the bio-accessible, mobile and residual fraction: CaCl2/NaNO3 (bio-accessible fraction), DPTA (mobile fraction), total acid attack (residual fraction). Those samples were analysed for trace elements (including heavy metals) and major inorganic compounds by ICP-MS. The extracted fractions were then analysed by Thermal Ionisation Mass Spectrometry (TIMS) for their lead isotope fingerprints (204Pb, 206Pb, 207Pb, 208Pb

  8. EVALUATION OF RADIOLOGICAL SIGNIFICANCE OF RARE-EARTH METALS WITH NATURAL RADIOACTIVE ISOTOPES

    Directory of Open Access Journals (Sweden)

    E. P. Lisachenko

    2013-01-01

    Full Text Available Among the rare-earth metals with natural radioactive isotopes, lantan, lutetium and samarium are allocated a relatively high specific activity. The formation of the additional external radiation keep it close to the significance of the materials to the radiation categories of materials with a high content of natural radionuclides of uranium and thorium family, lanthanum value is much less. Samarium, with acceptable toxicology content in the working area, forms the internal exposure to the limits for professionals. The use of these elements in science and industry requires the radiation-hygienic evaluation.

  9. Using stable isotope systematics and trace metals to constrain the dispersion of fish farm pollution

    Science.gov (United States)

    Torchinsky, A.; Shiel, A. E.; Price, M.; Weis, D. A.

    2010-12-01

    Fish farming is a growing industry of great economic importance to coastal communities. Unfortunately, open-net fish farming is associated with the release of organic and metal pollution, which has the potential to adversely affect the coastal marine environment. The dispersion of fish farm pollution and its environmental impact are not well understood/quantified. Pollutants released by fish farms include organic products such as uneaten feed pellets and fish feces, as well as chemicals and pharmaceuticals, all of which may enter marine ecosystems. In this study, we took advantage of bioaccumulation in passive suspension feeding Manila Clams collected at varying distances from an open-net salmon farm located in the Discovery Islands of British Columbia. Measurements of stable C and N isotopes, as well as trace metal concentrations, in the clams were used to investigate the spread of pollutants by detecting the presence of fish farm waste in the clams’ diet. Lead isotopic measurements were used to identify other significant anthropogenic pollution sources, which may impact the study area. Clams located within the areal extent of waste discharged by a fish farm are expected to exhibit anomalous light stable isotope ratios and metal concentrations, reflecting the presence of pollutants accumulated directly from seawater and from their diet. Clams were collected in the Discovery Islands from three sites in the Octopus Islands, located 850 m, 2100 m and 3000 m north of the Cyrus Rocks salmon farm (near Quadra Island) and from a reference site on Penn Island. Light stable isotope ratios (δN = ~10‰, with little variation between sites, and δC from -14.5 to -17.3‰) of the clams suggest that the most distal site (i.e., 3000 m away) is most impacted by organic fish farm waste (i.e., food pellets and feces) and that contributions of organic waste actually decrease closer to the farm. Not surprisingly, the smallest contribution of organic waste was detected in clams

  10. The effect of a micro bubble dispersed gas phase on hydrogen isotope transport in liquid metals under nuclear irradiation

    International Nuclear Information System (INIS)

    The present work intend to be a first step towards the understanding and quantification of the hydrogen isotope complex phenomena in liquid metals for nuclear technology. Liquid metals under nuclear irradiation in, e.g., breeding blankets of a nuclear fusion reactor would generate tritium which is to be extracted and recirculated as fuel. At the same time that tritium is bred, helium is also generated and may precipitate in the form of nano bubbles. Other liquid metal systems of a nuclear reactor involve hydrogen isotope absorption processes, e.g., tritium extraction system. Hence, hydrogen isotope absorption into gas bubbles modelling and control may have a capital importance regarding design, operation and safety. Here general models for hydrogen isotopes transport in liquid metal and absorption into gas phase, that do not depend on the mass transfer limiting regime, are exposed and implemented in OpenFOAM® CFD tool for 0D–3D simulations. Results for a 0D case show the impact of a He dispersed phase of nano bubbles on hydrogen isotopes inventory at different temperatures as well as the inventory evolution during a He nucleation event. In addition, 1D and 2D axisymmetric cases are exposed showing the effect of a He dispersed gas phase on hydrogen isotope permeation through a lithium lead eutectic alloy and the effect of vortical structures on hydrogen isotope transport at a backward facing step. Exposed results give a valuable insight on current nuclear technology regarding the importance of controlling hydrogen isotope transport and its interactions with nucleation event through gas absorption processes

  11. The effect of a micro bubble dispersed gas phase on hydrogen isotope transport in liquid metals under nuclear irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fradera, J., E-mail: jfradera@ubu.es; Cuesta-López, S., E-mail: scuesta@ubu.es

    2013-12-15

    The present work intend to be a first step towards the understanding and quantification of the hydrogen isotope complex phenomena in liquid metals for nuclear technology. Liquid metals under nuclear irradiation in, e.g., breeding blankets of a nuclear fusion reactor would generate tritium which is to be extracted and recirculated as fuel. At the same time that tritium is bred, helium is also generated and may precipitate in the form of nano bubbles. Other liquid metal systems of a nuclear reactor involve hydrogen isotope absorption processes, e.g., tritium extraction system. Hence, hydrogen isotope absorption into gas bubbles modelling and control may have a capital importance regarding design, operation and safety. Here general models for hydrogen isotopes transport in liquid metal and absorption into gas phase, that do not depend on the mass transfer limiting regime, are exposed and implemented in OpenFOAM® CFD tool for 0D–3D simulations. Results for a 0D case show the impact of a He dispersed phase of nano bubbles on hydrogen isotopes inventory at different temperatures as well as the inventory evolution during a He nucleation event. In addition, 1D and 2D axisymmetric cases are exposed showing the effect of a He dispersed gas phase on hydrogen isotope permeation through a lithium lead eutectic alloy and the effect of vortical structures on hydrogen isotope transport at a backward facing step. Exposed results give a valuable insight on current nuclear technology regarding the importance of controlling hydrogen isotope transport and its interactions with nucleation event through gas absorption processes.

  12. A Metal Stable Isotope Approach to Understanding Uranium Mobility Across Roll Front Redox Boundaries

    Science.gov (United States)

    Brown, S. T.; Basu, A.; Christensen, J. N.; DePaolo, D. J.; Heikoop, J. M.; Reimus, P. W.; Maher, K.; Weaver, K. L.

    2015-12-01

    Sedimentary roll-front uranium (U) ore deposits are the principal source of U for nuclear fuel in the USA and an important part of the current all-of-the-above energy strategy. Mining of roll-front U ore in the USA is primarily by in situ alkaline oxidative dissolution of U minerals. There are significant environmental benefits to in situ mining including no mine tailings or radioactive dust, however, the long-term immobilization of U in the aquifer after the completion of mining remains uncertain. We have utilized the metal stable isotopes U, Se and Mo in groundwater from roll-front mines in Texas and Wyoming to quantify the aquifer redox conditions and predict the onset of U reduction after post mining aquifer restoration. Supporting information from the geochemistry of groundwater and aquifer sediments are used to understand the transport of U prior to and after in situ mining. Groundwater was collected across 4 mining units at the Rosita mine in the Texas coastal plain and 2 mining units at the Smith Ranch mine in the Powder River Basin, Wyoming. In general, the sampled waters are moderately reducing and ore zone wells contain the highest aqueous U concentrations. The lowest U concentrations occur in monitoring wells downgradient of the ore zone. 238U/235U is lowest in downgradient wells and is correlated with aqueous U concentrations. Rayleigh distillation models of the 238U/235U are consistent with U isotope fractionation factors of 1.0004-1.001, similar to lab-based studies. Based on these results we conclude that redox reactions continue to affect U distribution in the ore zone and downgradient regions. We also measured aqueous selenium isotope (δ82Se) and molybdenum isotope (δ98Mo) compositions in the Rosita groundwater. Se(VI) primarily occurs in the upgradient wells and is absent in most ore zone and downgradient wells. Rayleigh distillation models suggest reduction of Se(VI) along the groundwater flow path and when superimposed on the U isotope data

  13. Application of iron and zinc isotopes to track the sources and mechanisms of metal loading in a mountain watershed

    Science.gov (United States)

    Borrok, D.M.; Wanty, R.B.; Ian, Ridley W.; Lamothe, P.J.; Kimball, B.A.; Verplanck, P.L.; Runkel, R.L.

    2009-01-01

    Here the hydrogeochemical constraints of a tracer dilution study are combined with Fe and Zn isotopic measurements to pinpoint metal loading sources and attenuation mechanisms in an alpine watershed impacted by acid mine drainage. In the tested mountain catchment, ??56Fe and ??66Zn isotopic signatures of filtered stream water samples varied by ???3.5??? and 0.4???, respectively. The inherent differences in the aqueous geochemistry of Fe and Zn provided complimentary isotopic information. For example, variations in ??56Fe were linked to redox and precipitation reactions occurring in the stream, while changes in ??66Zn were indicative of conservative mixing of different Zn sources. Fen environments contributed distinctively light dissolved Fe (isotopically heavy suspended Fe precipitates to the watershed, while Zn from the fen was isotopically heavy (>+0.4???). Acidic drainage from mine wastes contributed heavier dissolved Fe (???+0.5???) and lighter Zn (???+0.2???) isotopes relative to the fen. Upwelling of Fe-rich groundwater near the mouth of the catchment was the major source of Fe (??56Fe ??? 0???) leaving the watershed in surface flow, while runoff from mining wastes was the major source of Zn. The results suggest that given a strong framework for interpretation, Fe and Zn isotopes are useful tools for identifying and tracking metal sources and attenuation mechanisms in mountain watersheds. ?? 2009 Elsevier Ltd.

  14. Combining metal and nonmetal isotopic measurements in barite to identify mode of formation

    Science.gov (United States)

    Griffith, E. M.; Paytan, A.; Eisenhauer, A.; Scher, H. D.; Wortmann, U.

    2014-12-01

    Barite (BaSO4) is a highly stable and widely-distributed mineral found in magmatic, metamorphic, and sedimentary rocks (of all ages), as well as in soils, aerosol dust, and extraterrestrial material. Today, barite can form in a variety of settings in the oceans (hydrothermal, cold seeps, water column, sediments) and on the continents - where supersaturation and precipitation of barite typically occurs from the mixing of fluids - one containing Ba and another containing sulfate. Sulfur (δ34S) and oxygen (δ18O) isotopes together with 87Sr/86Sr and stable Sr-isotopic signatures (δ88/86Sr) of modern authigenic continental barite are compared to modern pelagic marine barite and marine hydrothermal and cold seep barite to investigate the potential for their combined use to indicate mode of barite formation. The 87Sr/86Sr in barite cleary identifies the source of fluid for any particular type of barite (as previously noted, see Paytan et al., 2002). The highest (most radiogenic) 87Sr/86Sr values are measured in continental barite samples. There is no unique δ88/86Sr signature for any particular type of barite, but coretop marine (pelagic) barite has a consistent value measured from samples collected in different ocean basins. The highest and lowest δ88/86Sr values were measured in continental barite samples. The combination of isotopic systems result in unique δ88/86Sr and δ18O relationships and distinct δ88/86Sr and δ34S relationships for different types of barites investigated. Data suggest that the combined use of these metal and nonmetal isotopic measurements in barite could be useful as a new geochemical proxy to identify mode of barite mineralization for use in earth science applications including understanding ancient barite deposits.

  15. Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals.

    Science.gov (United States)

    Touboul, M; Kleine, T; Bourdon, B; Palme, H; Wieler, R

    2007-12-20

    The Moon is thought to have formed from debris ejected by a giant impact with the early 'proto'-Earth and, as a result of the high energies involved, the Moon would have melted to form a magma ocean. The timescales for formation and solidification of the Moon can be quantified by using 182Hf-182W and 146Sm-142Nd chronometry, but these methods have yielded contradicting results. In earlier studies, 182W anomalies in lunar rocks were attributed to decay of 182Hf within the lunar mantle and were used to infer that the Moon solidified within the first approximately 60 million years of the Solar System. However, the dominant 182W component in most lunar rocks reflects cosmogenic production mainly by neutron capture of 181Ta during cosmic-ray exposure of the lunar surface, compromising a reliable interpretation in terms of 182Hf-182W chronometry. Here we present tungsten isotope data for lunar metals that do not contain any measurable Ta-derived 182W. All metals have identical 182W/184W ratios, indicating that the lunar magma ocean did not crystallize within the first approximately 60 Myr of the Solar System, which is no longer inconsistent with Sm-Nd chronometry. Our new data reveal that the lunar and terrestrial mantles have identical 182W/184W. This, in conjunction with 147Sm-143Nd ages for the oldest lunar rocks, constrains the age of the Moon and Earth to Myr after formation of the Solar System. The identical 182W/184W ratios of the lunar and terrestrial mantles require either that the Moon is derived mainly from terrestrial material or that tungsten isotopes in the Moon and Earth's mantle equilibrated in the aftermath of the giant impact, as has been proposed to account for identical oxygen isotope compositions of the Earth and Moon.

  16. Dynamic chiral-at-metal stability of tetrakis(d/l-hfc)Ln(III) complexes capped with an alkali metal cation in solution.

    Science.gov (United States)

    Lin, Yiji; Zou, Fang; Wan, Shigang; Ouyang, Jie; Lin, Lirong; Zhang, Hui

    2012-06-14

    Chiral tetrakis(β-diketonate) Ln(III) complexes Δ-[NaLa(d-hfc)(4)(CH(3)CN)] (1) and Λ-[NaLa(l-hfc)(4) (CH(3)CN)] (2) (d/l-hfc(-) = 3-heptafluo-robutylryl-(+)/(-)-camphorate) are a pair of enantiomers and crystallize in the same Sohncke space group (P2(1)2(1)2(1)) with dodecahedral (DD) geometry. Typically positive and negative exciton splitting patterns around 320 nm were observed in the solid-state circular dichroism (CD) spectra of complexes 1 and 2, which indicate that their shell configurational chiralities are Δ and Λ, respectively. The apparent bisignate couplets in the solid-state CD spectra of [CsLn(d-hfc)(4)(H(2)O)] [Ln = La (3), Yb (5)] and [CsLn(l-hfc)(4)(H(2)O)] [Ln = La (4), Yb (6)] show that they are a pair of enantiomers and their absolute configurations are denoted Δ and Λ, respectively. The crystallographic data of 5 reveals that its coordination polyhedron is the square antiprism (SAP) geometry and it undergoes a phase transition from triclinic (α phase, P1) to monoclinic (β phase, C2) upon cooling. The difference between the two phases is brought about by the temperature dependent behaviour of the coordination water molecules, but this did not affect the configurational chirality of the Δ-SAP-[Yb(d-hfc)(4)](-) moiety. Furthermore, time-dependent CD, UV-vis and (19)F NMR were applied to study the solution behavior of these complexes. It was found that the chiral-at-metal stability of the three pairs of complexes is different and affected by both the Ln(3+) and M(+) ion size. The results show that the Cs(+) cation can retain the metal center chirality and stablize the structures of [Ln(d/l-hfc)(4)](-) or the dissociated tris(d/l-hfc)Ln(III) species in solution for a longer time than that of the Na(+) cation, and it is important that the Cs(+) ion successfully lock the configurational chirality around the Yb(3+) center of the complex species in solution. This is reasoned by the short Cs(+)···FC, Cs(+)···O-Yb and Cs(+)···Yb(3

  17. Use of lead isotopes to identify sources of metal and metalloid contaminants in atmospheric aerosol from mining operations.

    Science.gov (United States)

    Félix, Omar I; Csavina, Janae; Field, Jason; Rine, Kyle P; Sáez, A Eduardo; Betterton, Eric A

    2015-03-01

    Mining operations are a potential source of metal and metalloid contamination by atmospheric particulate generated from smelting activities, as well as from erosion of mine tailings. In this work, we show how lead isotopes can be used for source apportionment of metal and metalloid contaminants from the site of an active copper mine. Analysis of atmospheric aerosol shows two distinct isotopic signatures: one prevalent in fine particles (environment. The lead isotopic ratios found in the fine particles are equal to those of the mine that provides the ore to the smelter. Topsoil samples at the mining site show concentrations of Pb and As decreasing with distance from the smelter. Isotopic ratios for the sample closest to the smelter (650m) and from topsoil at all sample locations, extending to more than 1km from the smelter, were similar to those found in fine particles in atmospheric dust. The results validate the use of lead isotope signatures for source apportionment of metal and metalloid contaminants transported by atmospheric particulate. PMID:25496740

  18. Use of Lead Isotopes to Identify Sources of Metal and Metalloid Contaminants in Atmospheric Aerosol from Mining Operations

    Science.gov (United States)

    Félix, Omar I.; Csavina, Janae; Field, Jason; Rine, Kyle P.; Sáez, A. Eduardo; Betterton, Eric A.

    2014-01-01

    Mining operations are a potential source of metal and metalloid contamination by atmospheric particulate generated from smelting activities, as well as from erosion of mine tailings. In this work, we show how lead isotopes can be used for source apportionment of metal and metalloid contaminants from the site of an active copper mine. Analysis of atmospheric aerosol shows two distinct isotopic signatures: one prevalent in fine particles (< 1 μm aerodynamic diameter) while the other corresponds to coarse particles as well as particles in all size ranges from a nearby urban environment. The lead isotopic ratios found in the fine particles are equal to those of the mine that provides the ore to the smelter. Topsoil samples at the mining site show concentrations of Pb and As decreasing with distance from the smelter. Isotopic ratios for the sample closest to the smelter (650 m) and from topsoil at all sample locations, extending to more than 1 km from the smelter, were similar to those found in fine particles in atmospheric dust. The results validate the use of lead isotope signatures for source apportionment of metal and metalloid contaminants transported by atmospheric particulate. PMID:25496740

  19. The quality control of fruit juices by using the stable isotope ratios and trace metal elements concentrations

    Science.gov (United States)

    Magdas, D. A.; Dehelean, A.; Puscas, R.; Cristea, G.; Tusa, F.; Voica, C.

    2012-02-01

    In the last years, a growing number of research articles detailing the use of natural abundance light stable isotopes variations and trace metal elements concentration as geographic "tracers" to determine the provenance of food have been published. These investigations exploit the systematic global variations of stable hydrogen, oxygen and carbon isotope ratios in (combination) relation with trace metal element concentrations. The trace metal elements content of plants and also their light stable isotopic ratios are mainly related to the geological and pedoclimatic characteristics of the site of growth. The interpretation of such analysis requires an important number of data for authentic natural juices regarding the same seasonal and regional origin, because the isotopic analysis parameters of fruit juices show remarkable variability depending on climatologically factors. In this work was mesured H, C, O stable isotope ratios and the concentrations of 16 elements (P, K, Mg, Na, Ca, Cu, Cr, Ni, Zn, Pb, Co, As, Cd, Mn, Fe and Hg) from 12 single strength juices. The natural variations that appear due to different environmental and climatic conditions are presented and discussed.

  20. Crystal growth and evaluation of scintillation properties of Eu and alkali-metal co-doped LiSrAlF{sub 6} single crystals for thermal neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Wakahara, Shingo; Yokota, Yuui; Yamaji, Akihiro; Fujimoto, Yutaka; Sugiyama, Makoto; Kurosawa, Shunsuke [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yanagida, Takayuki [New Industry Creation Hatchery Center (NICHe), 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Pejchal, Jan [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Institute of Physics AS CR, Cukrovarnicka 10, Prague 16253 (Czech Republic); Kawaguchi, Noriaki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Tokuyama, Co. Ltd., Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Fukuda, Kentaro [Tokuyama, Co. Ltd., Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Yoshikawa, Akira [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan)

    2012-12-15

    In recent work, Na co-doping have found to improve the light output of Eu doped LiCaAlF{sub 6} (Eu:LiCAF) for thermal neutron scintillator. We grew Eu 2% and alkali metal 1% co-doped LiSAF crystals by Micro-Pulling down method to understand the effect of alkali metal co-doping on scintillation properties and mechanism compared with LiCAF. In photo- and {alpha}-ray induced radio-luminescence spectra of the all grown crystals, the emissions from d-f transition of Eu{sup 2+} were observed. Without relation to excitation source, decay times of co-doped LiSAF were longer than Eu only doped one. The light yield of Na, K and Cs co-doped LiSAF under {sup 252}Cf neutron excitation were improved. Especially, K co-doped Eu:LiSAF reached 33200 ph/n, which outperformed Eu only doped one by approximately 20% (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Characteristics of Heavy Metals and Pb Isotopic Composition in Sediments Collected from the Tributaries in Three Gorges Reservoir, China

    OpenAIRE

    Bo Gao; Huaidong Zhou; Yong Huang; Yuchun Wang; Jijun Gao; Xiaobo Liu

    2014-01-01

    The concentrations, distribution, accumulation, and potential ecological risk of heavy metals (Cr, Cu, Zn, Ni, As, Pb, Cd, and Hg) in sediments from the Three Gorges Reservoir (TGR) tributaries were determined and studied. Pb isotopic compositions in sediments were also measured to effectively identify the potential Pb sources. The results showed that the average concentrations of heavy metals in sediment of TGR tributaries were higher than the local background values of soils and sediments i...

  2. Fractionation of stable isotopes and impurities during zone recrystallization of metals and preparation of single crystals rich in individual isotopes

    International Nuclear Information System (INIS)

    It is shown that a small number of zone melting (recrystallization) passes results in a periodical distribution of individual isotopes along the material. The effect is observed with the Zn64 and Sn119 isotopes in zinc and tin, respectively. An increase of the number of passes to about ten leads to some preferential final isotope distribution. In the case of Sn119, the tail portion of the material becomes enriched (the portion to which the zone movement is directed), provided that the recrystallization rate is high enough (3 mm/min), or the head portion is enriched if the rate is slow (about 0.5 mm/min). In the presence of bismuth impurities, the isotope Sn119 is in all cases displaced towards the head portion of the material, which suggests a complex nature of the behaviour of individual isotopes during zone melting and an effect of impurities on this process. The Zn64 and Cd119 isotopes may be characterized, in accordance with their respective behaviour in the course of zone melting, by some effective distribution coefficients which are less than unity (K 1) in the latter. (author)

  3. On reactivity of metallic zinc used for preparation of samples for hydrogen isotope ratio measurement

    International Nuclear Information System (INIS)

    As the reagent which is suitable to the reduction of water to hydrogen for preparing the samples for hydrogen isotope ratio measurement, the supply of the zinc of BDH Co. which has been widely used so far was stopped, consequently, for the purpose of searching for its substitute, several kinds of metallic zinc were obtained, and their reactivity was examined. As the criteria of the reactivity, the points that the experimental setup used so far can be used and that the accuracy of measurement and efficiency similar to those of heretofore can be obtained were selected, then, it was found that the zinc made by Bio Geochemical Laboratory, Indiana University, and the powder zinc on the market satisfied the criteria. In order to measure hydrogen isotope ratio within the measurement error of ±1%, it is necessary to maintain the quantities of zinc and water to be used and reaction temperature constant, to prepare the standard sample and an unknown sample under the same conditions, and to do the mass analysis as quickly as possible. The researches carried out so far, the reactivity test on various kinds of zinc and so on are reported. The optimum reaction conditions are shown. (K.I.)

  4. Bone remodeling during pregnancy and post-partum assessed by metal lead levels and isotopic concentrations.

    Science.gov (United States)

    Gulson, Brian; Taylor, Alan; Eisman, John

    2016-08-01

    Bone remodeling is normally evaluated using bone turnover markers/indices as indicators of bone resorption and formation. However, during pregnancy and post-partum, there have been inconsistent results between and within biomarkers for bone formation and resorption. These differences may relate to pregnancy-related changes in metabolism and/or hemodilution altering measured marker levels. An alternative approach to evaluating bone remodeling is to use the metal lead (Pb) concentrations and Pb isotopic compositions in blood. These measurements can also provide information on the amount of Pb that is mobilized from the maternal skeleton. Despite some similarities with accepted bone turnover markers, the Pb data demonstrate increased bone resorption throughout pregnancy that further continues post-partum independent of length of breast-feeding, dietary intake and resumption of menses. Furthermore the isotopic measurements are not affected by hemodilution. These data confirm calcium balance studies that indicate increased bone resorption throughout pregnancy and lactation. They also indicate potentially major public health implications of the transfer of maternal Pb burden to the fetus and new born. PMID:27233973

  5. The effect of a micro bubble dispersed gas phase on hydrogen isotope transport in liquid metals under nuclear irradiation

    CERN Document Server

    Fradera, Jorge

    2013-01-01

    The present work intend to be a first step towards the understanding and quantification of the hydrogen isotope complex phenomena in liquid metals for nuclear technology. Liquid metals under nuclear irradiation in,e.g., breeding blankets of a nuclear fusion reactor would generate tritium which is to be extracted and recirculated as fuel. At the same time that tritium is bred, helium is also generated and may precipitate in the form of nano bubbles. Other liquid metal systems of a nuclear reactor involve hydrogen isotope absorption processes, e.g., tritium extraction system. Hence, hydrogen isotope absorption into gas bubbles modelling and control may have a capital importance regarding design, operation and safety. Here general models for hydrogen isotopes transport in liquid metal and absorption into gas phase, that do not depend on the mass transfer limiting regime, are exposed and implemented in OpenFOAMR CFD tool for 0D to 3D simulations. Results for a 0D case show the impact of a He dispersed phase of na...

  6. Regional and inter annual patterns of heavy metals, organochlorines and stable isotopes in narwhals (Monodon monoceros) from West Greenland

    NARCIS (Netherlands)

    Dietz, R.; Riget, F.; Hobson, K.A.; Heide-Jorgensen, M.P.; Moller, P.; Cleemann, M.; Boer, de J.; Glasius, M.

    2004-01-01

    Samples of 150 narwhals obtained in different years from two West Greenland areas, Avanersuaq and Uummannaq, were compared for concentrations of and regional differences in heavy metals and organochlorines and stable-carbon and nitrogen isotopes. Cadmium, Hg, and Se concentrations increased in the f

  7. Regional and inter annual patterns of heavy metals, organochlorines and stable isotopes in narwhals (Monodon monoceros) from West Greenland

    DEFF Research Database (Denmark)

    Dietz, R.; Riget, F.; Hobson, K.A.;

    2004-01-01

    Samples of 150 narwhals obtained in different years from two West Greenland areas, Avanersuaq and Uummannaq, were compared for concentrations of and regional differences in heavy metals and organochlorines and stable-carbon and nitrogen isotopes. Cadmium, Hg, and Se concentrations increased...

  8. Isotope dilution mass spectrometry of microelectronically relevant heavy metal traces in high-purity cobalt

    International Nuclear Information System (INIS)

    Because cobalt and its silicides are increasingly used in microelectronic devices, an isotope dilution mass spectrometric (IDMS) method has been developed for trace analysis of relevant heavy metals (U, Th, Fe, Zn, Tl, and Cd) in high-purity cobalt. The measurements of the isotope ratios were carried out with a small thermal ionization quadrupole mass spectrometer by producing positive thermal ions in a single- or double-filament ion source. For the trace/matrix separation and the isolation of the different heavy metals, anion-exchange chromatography and an extraction method for iron were applied. The detection limits obtained were (in ng/g): U = 0.007, Th = 0.017, Tl = 0.06, Cd = 1, Zn = 8, and Fe = 11, which demonstrates that the particularly critical radioactive impurities uranium and thorium could be analysed down to the low pg/g range. Three cobalt samples of different purity were analysed with concentrations ranging from about 0.1 ng/g for U and Th in an ultra high-purity material produced for microelectronic purposes, up to about 70 μg/g for Cd in a cobalt sample with declared purity of 99.8%. Because IDMS usually results in accurate analytical results, it can be used in the future for calibration of other methods like glow discharge mass spectrometry, as could be shown by analysing one cobalt sample by both methods. IDMS can also be applied for the production of urgently needed certified standard reference materials in this important field of high technology. (orig.)

  9. Archaeological reconstruction of medieval lead production: Implications for ancient metal provenance studies and paleopollution tracing by Pb isotopes

    International Nuclear Information System (INIS)

    The identification of metal provenance is often based on chemical and Pb isotope analyses of materials from the operating chain, mainly ores and metallic artefacts. Such analyses, however, have their limits. Some studies are unable to trace metallic artefacts or ingots to their ore sources, even in well-constrained archaeological contexts. Possible reasons for this difficulty are to be found among a variety of limiting factors: (i) problems of ore signatures, (ii) mixing of different ores (alloys), (iii) the use of additives during the metallurgical process, (iv) metal recycling and (v) possible Pb isotopic fractionation during metal production. This paper focuses on the issue of Pb isotope fractionation during smelting to address the issue of metal provenance. Through an experimental reconstruction of argentiferous Pb production in the medieval period, an attempt was made to better understand and interpret the Pb isotopic composition of ore smelting products. It is shown that the measured differences (outside the total external uncertainties of 0.005 (2*sd) for 206Pb/204Pb ratios) in Pb signatures measured between ores, slag and smoke are not due to Pb mass fractionation processes, but to (1) ore heterogeneity (Δ206Pb/204Pbslag-ores = 0.066) and (2) the use of additives during the metallurgical process (Δ206Pb/204Pbslag-ores = 0.083). Even if these differences are due to causes (1) and/or (2), smoke from the ore reduction appears to reflect the ore mining area without a significant disturbance of its Pb signature for all the isotopic ratios (Δ206Pb/204Pbsmokes-ores = 0.026). Thus, because the isotopic heterogeneity of the mining district and additives is averaged in slags, slag appears as the most relevant product to identify ancient metal provenance. Whereas aiming at identifying a given mine seems beyond the possibilities provided by the method, searching for the mining district through analysis of the smelting workshop materials should provide a more

  10. Simultaneous Synthesis of Dimethyl Carbonate and Poly(ethylene terephthalate) Using Alkali Metals as Catalysts%碱金属化合物催化同时合成碳酸二甲酯和聚对苯二甲酸乙二醇酯

    Institute of Scientific and Technical Information of China (English)

    张丹; 王庆印; 姚洁; 王越; 曾毅; 王公应

    2007-01-01

    Dimethyl carbonate (DMC) and poly(ethylene terephthalate) was simultaneously synthesized by the transesterification of ethylene carbonate (EC) with dimethyl terephthalate (DMT) in this paper. This reaction is an excellent green chemical process without poisonous substance. Various alkali metals were used as the catalysts. The results showed alkali metals had catalytic activity in a certain extent. The effect of reaction condition was also studied. When the reaction was carried out under the following conditions: the reaction temperature 250℃, molar ratio of EC to DMT 3: 1, reaction time 3h, and catalyst amount 0.004 (molar ratio to DMT), the yield of DMC was 68.9%.

  11. Directed reflectivity, long life AMTEC condenser (DRC). Final report of Phase II SBIR program[Alkali Metal ThermoElectric Converter

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, Thomas K.

    2001-09-10

    The Alkali Metal Thermal to Electric Converter (AMTEC) is a static energy conversion device that operates at high thermal to electric conversion efficiencies that are essentially independent of size, have reached 19% and are expected to reach 25% to 30% in 1997. AMTEC systems have been chosen by NASA and DOE for spacecraft applications and have considerable promise for a wide variety of terrestrial applications. Reduction of parasitic heat losses in AMTEC systems related to radiative heat transfer from the hot side to the condenser can make a substantial contribution to system efficiency. Through design, analysis and the fabrication and testing of cells and systems, the proposed program to develop a Directed Reflectivity Condenser (DRC) has investigated the feasibility of an improved AMTEC condenser component. Phase 1 work showed the potential for adding from 4% to 7% to overall system efficiency for identical operating conditions using the concept. A detailed thermal analysis of several DRC capped cell designs was carried out and some of the conditions under which a DRC, used as the condenser at an end cap of a cylindrical converter, can reduce thermal radiation related losses were determined. A model experimental converter was built and tested to compare DRC and planar condenser surfaces. The results of both analysis and experiment indicate that for moderate aspect ratios of a cylindrical, end condensed converter, the DRC can reduce overall thermal losses by up to 4%. The initial effort in Phase 2 extended the analysis to a novel 150 watt radial AMTEC cell design. This analysis indicated that for the effective aspect ratio of this new converter design, the system performance at the 100+ watt level was not significantly improved by use of a DRC type condenser surface. Further analyses however showed that for cylindrical, end-condensed converters, optimized for use with internal radiation shields, the use of DRC surfaces on the side walls of the converter could be

  12. Carbon and nitrogen stable isotopes and metal concentration in food webs from a mining-impacted coastal lagoon.

    Science.gov (United States)

    Marín-Guirao, Lázaro; Lloret, Javier; Marin, Arnaldo

    2008-04-01

    Two food webs from the Mar Menor coastal lagoon, differing in the distance from the desert-stream through which mining wastes were discharged, were examined by reference to essential (Zn and Cu) and non-essential (Pb and Cd) metal concentrations and stable isotopes content (C and N). The partial extraction technique applied, which reflects the availability of metals to organisms after sediment ingestion, showed higher bioavailable metal concentrations in sediments from the station influenced by the mining discharges, in agreement with the higher metal concentrations observed in organisms, which in many cases exceeded the regulatory limits established in Spanish legislation concerning seafood. Spatial differences in essential metal concentrations in the fauna suggest that several organisms are exposed to metal levels above their regulation capacity. Differences in isotopic composition were found between both food webs, the wadi-influenced station showing higher delta(15)N values and lower delta(13)C levels, due to the discharge of urban waste waters and by the entrance of freshwater and allochthonous marsh plants. The linear-regressions between trophic levels (as indicated by delta(15)N) and the metal content indicated that biomagnification does not occur. In the case of invertebrates, since the "handle strategy" of the species and the physiological requirements of the organisms, among other factors, determine the final concentration of a specific element, no clear relationships between trophic level and the metal content are to be expected. For their part, fish communities did not show clear patterns in the case of any of the analyzed metals, probably because most fish species have similar metal requirements, and because biological factors also intervened. Finally, since the study deals with metals, assumptions concerning trophic transfer factors calculation may not be suitable since the metal burden originates not only from the prey but also from adsorption over

  13. Carbon and nitrogen stable isotopes and metal concentration in food webs from a mining-impacted coastal lagoon

    Energy Technology Data Exchange (ETDEWEB)

    Marin-Guirao, Lazaro [Departamento de Ecologia e Hidrologia, Facultad de Biologia, Universidad de Murcia, 30100-Murcia (Spain)], E-mail: lamarin@um.es; Lloret, Javier; Marin, Arnaldo [Departamento de Ecologia e Hidrologia, Facultad de Biologia, Universidad de Murcia, 30100-Murcia (Spain)

    2008-04-01

    Two food webs from the Mar Menor coastal lagoon, differing in the distance from the desert-stream through which mining wastes were discharged, were examined by reference to essential (Zn and Cu) and non-essential (Pb and Cd) metal concentrations and stable isotopes content (C and N). The partial extraction technique applied, which reflects the availability of metals to organisms after sediment ingestion, showed higher bioavailable metal concentrations in sediments from the station influenced by the mining discharges, in agreement with the higher metal concentrations observed in organisms, which in many cases exceeded the regulatory limits established in Spanish legislation concerning seafood. Spatial differences in essential metal concentrations in the fauna suggest that several organisms are exposed to metal levels above their regulation capacity. Differences in isotopic composition were found between both food webs, the wadi-influenced station showing higher {delta}{sup 15}N values and lower {delta}{sup 13}C levels, due to the discharge of urban waste waters and by the entrance of freshwater and allochthonous marsh plants. The linear-regressions between trophic levels (as indicated by {delta}{sup 15}N) and the metal content indicated that biomagnification does not occur. In the case of invertebrates, since the 'handle strategy' of the species and the physiological requirements of the organisms, among other factors, determine the final concentration of a specific element, no clear relationships between trophic level and the metal content are to be expected. For their part, fish communities did not show clear patterns in the case of any of the analyzed metals, probably because most fish species have similar metal requirements, and because biological factors also intervened. Finally, since the study deals with metals, assumptions concerning trophic transfer factors calculation may not be suitable since the metal burden originates not only from the prey but

  14. Electropholic Transition Metal Complexes: Catalysis of Isotope Exchange. April 1, 1992 - December 3, 1996. Final Report

    International Nuclear Information System (INIS)

    The central aim of this project is to exploit transition metal dihydrogen complexes to develop catalysts for isotope exchange reactions between hydrogen and substrates such as water. The authors have partially met this goal by the synthesis of novel cationic rhenium complexes of the form [Re(CO)3(PR3)2(H2)]+. These complexes bind hydrogen somehwat more strongly than the neutral tungsten analogs but also activate the bound H2 to heterolytic cleavage. Thus rapid proton (deuteron) exchange between hydrogen and water can be achieved. An example of this reaction is the rapid formation of bound HD from the complex [Re(CO)3(PR3)2(H2)]+ and deuterium gas. Rapid incorporation of deuterium from D2O has also been observed. In these systems, the competitive binding of water to the metal center is a drawback. The affinity of the Re center for water depends upon the nature of the phosphine ligands, with the presumably more electrophilic PPh3 complex binding water strongly and irreversibly, while the PCy3 complex binds water reversibly. These results have been published in J.Am.Chem.Soc 1994, 116, 4515 and J.Am.Chem.Soc 1997, 119, 4172

  15. Solution behavior of hydrogen isotopes and other non-metallic elements in liquid lithium

    Energy Technology Data Exchange (ETDEWEB)

    Maroni, V.A.; Calaway, W.F.; Veleckis, E.; Yonco, R.M.

    1976-01-01

    Results of experimental studies to measure selected thermodynamic properties for systems of lithium with non-metallic elements are reported. Investigations of the Li-H, Li-D, and Li-T systems have led to the elucidation of the dilute solution behavior and the H/D/T isotope effects. In the case of the Li-H and Li-D systems, the principal features of the respective phase diagrams have been delineated. The solubility of Li-D in liquid lithium has been measured down to 200/sup 0/C. The solubility of Li/sub 3/N in liquid lithium and the thermal decomposition of Li/sub 3/N have also been studied. From these data, the free energy of formation of Li/sub 3/N and the Sieverts' constant for dissolution of nitrogen in lithium have been determined. Based on studies of the distribution of non-metallic elements between liquid lithium and selected molten salts, it appears that molten salt extraction offers promise as a means of removing these impurity elements (e.g., H, D, T, O, N, C) from liquid lithium.

  16. Application of iron and zinc isotopes to track the sources and mechanisms of metal loading in a mountain watershed

    International Nuclear Information System (INIS)

    Here the hydrogeochemical constraints of a tracer dilution study are combined with Fe and Zn isotopic measurements to pinpoint metal loading sources and attenuation mechanisms in an alpine watershed impacted by acid mine drainage. In the tested mountain catchment, δ56Fe and δ66Zn isotopic signatures of filtered stream water samples varied by ∼3.5 per mille and 0.4 per mille, respectively. The inherent differences in the aqueous geochemistry of Fe and Zn provided complimentary isotopic information. For example, variations in δ56Fe were linked to redox and precipitation reactions occurring in the stream, while changes in δ66Zn were indicative of conservative mixing of different Zn sources. Fen environments contributed distinctively light dissolved Fe (+0.4 per mille). Acidic drainage from mine wastes contributed heavier dissolved Fe (∼+0.5 per mille) and lighter Zn (∼+0.2 per mille) isotopes relative to the fen. Upwelling of Fe-rich groundwater near the mouth of the catchment was the major source of Fe (δ56Fe ∼ 0 per mille) leaving the watershed in surface flow, while runoff from mining wastes was the major source of Zn. The results suggest that given a strong framework for interpretation, Fe and Zn isotopes are useful tools for identifying and tracking metal sources and attenuation mechanisms in mountain watersheds.

  17. Isotope effect studies of chicken liver NADP malic enzyme: role of the metal ion and viscosity dependence

    International Nuclear Information System (INIS)

    The role of the metal ion in the oxidative decarboxylation of malate by chicken liver NADP malic enzyme and details of the reaction mechanism have been investigated by 13C isotope effects. With saturating NADP and the indicated metal ion at a total concentration 10-fold higher than its K/sub m/, the following primary 13C kinetic isotope effects at C4 of malate [13(VK/sub mal/)] were observed at pH 8.0: Mg2+, 1.0336; Mn2+, 1.0365; Cd2+, 1.0366; Zn2+, 1.0337; Co2+, 1.0283; Ni2+, 1.025. Knowing the partitioning of the intermediate oxalacetate between decarboxylation to pyuvate and reduction to malate allows calculation of the intrinsic carbon isotope effect for decarboxylation to pyuvate and reduction to malate allows calculation of the intrinsic carbon isotope effect for decarboxylation. For Mg2+ as activator, this was 1.049 with NADP and 1.046 with 3-acetylpyridine adenine dinucleotide phosphate, although the intrinsic primary deuterium isotope effects on dehydrogenation were 5.6 and 4.2, and the partition ratios of the oxalacetate intermediate for decarboxylation as opposed to hydride transfer were 0.11 and 3.96. It was not possible to calculate reasonable intrinsic carbon isotope effects with the other metal ions by use of the partitioning ratio of oxalacetate because of decarboxylation by another mechanism. The variation of 13(VK/sub mal/) with pH was used to dissect the total forward and external components. When the authors attempted to use the variation of 13(VK/sub mal/) with solution viscosity to determine the internal and external commitments, incorrect values were obtained because of a specific effect of the viscosogen in decreasing the K/sub m/ for malate, so that VK/sub mal/ actually increased with viscosity instead of decreasing, as theory predicts

  18. Trace metal concentrations and lead isotopic composition in surface waters of the Northeast Pacific along the United States - Mexico boundary

    Energy Technology Data Exchange (ETDEWEB)

    Sanudo-Wilhelmy, S. (Inst. of Marine Science, Santa Cruz, CA (United States))

    1990-01-09

    To evaluate the magnitude of heavy metal contamination along the United States - Mexico boundary, trace metal concentrations (Pb, Cd, Mn, Fe, and Zn) and lead isotopic composition ([sup 204]Pb, [sup 206]Pb, [sup 207]Pb, and [sup 208]Pb) were measured along four surface water transects across the continental shelf off the Baja California Coast. The stations were located between 2 to 45 km offshore, including both coastal and open ocean locations. All the metal distributions along the transects were characterized by offshore concentration gradients. The highest trace metal concentrations occurred in coastal waters in association with high salinities and nutrient concentrations. There was also a longshore gradient in trace metal concentrations. Trace element concentrations were lower in the southern locations than along the United States - Mexico boundary, and were comparable to typical open ocean values. The relative enrichment of metals in surface waters off the northern part of Baja California was primarily associated with advection/upwelling processes, not with anthropogenic inputs. Mass balance calculations indicated that about 1% of Cd and 13% of Zn were from urban discharges. The low metal levels measured in coastal waters off the central part of Baja California were attributed to the intrusion of open ocean waters, based on hydrographic data, satellite images and lead isotopic compositions.

  19. Identification of trace metal pollution in urban dust from kindergartens using magnetic, geochemical and lead isotopic analyses

    Science.gov (United States)

    Zhu, Zongmin; Sun, Guangyi; Bi, Xiangyang; Li, Zhonggen; Yu, Genhua

    2013-10-01

    In the present study, magnetic measurements were combined with geochemical analysis and stable Pb isotopic ratios to reveal the distribution and origination of trace metal pollutants in kindergarten dusts from a typical urban environment of Wuhan, central China. The geoaccumulation index (Igeo) of magnetic properties was more prominent than those of individual metals. The magnetic susceptibility (MS) and trace metals (Zn, Pb, and Cu) in this study together with published results from other Chinese cities formed a liner relationship, suggesting that metal contaminants in Chinese urban areas had similar MS to metal ratios, which could be used as an indicator for identification of pollution sources between Chinese cities and the other Asian cities. Stable Pb isotopic ratios (1.1125-1.1734 for 206Pb/207Pb and 2.4457-2.4679 for 208Pb/207Pb) in the urban dusts from Wuhan were characterized by higher 208Pb component in comparison with those from other Chinese cities. This result combined with principal component analysis (PCA) indicated that metal pollutants in the dusts were derived from industrial activities and coal combustion, whereas the traffic emissions were no longer a predominant pollution source in urban environment. Our study demonstrated that environmental magnetic methods could not only reveal the overall situation of trace metal contamination, but also prove evidence in the identification of pollution sources.

  20. Isotopic exchange between molecular hydrogen and liquid ammonia catalysed by alkali amides; Echange isotopique entre l'hydrogene moleculaire et l'ammoniac liquide catalyse par les amidures alcalins

    Energy Technology Data Exchange (ETDEWEB)

    Delmas, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-06-15

    The catalytic action of alkali amides on the isotopic exchange between hydrogen and liquid ammonia has been reinvestigated. It was clear before this work that the reaction is homogeneous and first order with respect to the concentration of dissolved hydrogen, but the nature of the catalytic species was still subject to discussion. On one hand new precise kinetic measurements have been made with sodium, potassium, rubidium and cesium amide. On the other hand, the dissociation of these salts has been calculated with the help of the FUOSS-ONSAGER equation. If the rate of exchange is plotted as a function of the concentration of the free amide ion, a linear relationship is obtained. In our experimental conditions, primary salt effects are negligible and the concentration has to be used in the rate equations. This shows that only the free amide ion is acting as a catalytic species. Experiments on common ion effects and secondary salt effects support this conclusion. The results are in agreement with an associative mechanism. (author) [French] Une nouvelle etude de l'echange isotopique entre l'hydrogene et l'ammoniac liquide catalyse par les amidures alcalins a ete effectuee. II etait bien etabli avant le present travail que la reaction etait homogene et que sa vitesse etait du premier ordre par rapport a la concentration d'hydrogene dissous, mais la nature de l'espece catalytique etait encore controversee. De nouvelles mesures cinetiques precises ont ete faites avec les amidures de sodium, de potassium, de rubidium et de cesium. D'autre part, la dissociation de ces sels a ete calculee a l'aide de l'equation de FUOSS-ONSAGER. On constate que la vitesse d'echange est proportionnelle a la concentration de l'ion amidure libre. Dans nos conditions experimentales, les effets de sel primaires sont negligeables, l'equation de vitesse doit s'exprimer simplement en fonction des concentrations. Ceci indique que l

  1. Metal extent in blood of livestock from Dandora dumping site, Kenya: Source identification of Pb exposure by stable isotope analysis

    International Nuclear Information System (INIS)

    Nairobi city in Kenya produces 2000 tons/day of garbage, and most of it is dumped onto the Dandora dumping site, home to a quarter-million residents. This study was conducted (1) to assess the contamination levels of nine metals and a metalloid (arsenic) in the blood of pigs, goats, sheep and cattle from Dandora, and (2) to identify a possible source of lead (Pb) pollution. Cadmium (Cd, 0.17–4.35 μg/kg, dry-wt) and Pb (90–2710 μg/kg) levels in blood were generally high, suggesting human exposure to Cd through livestock consumption and Pb poisoning among pigs (2600 μg/kg) and cattle (354 μg/kg). Results of Pb isotope ratios indicated that the major exposure route might differ among species. Our results also suggested a possibility that the residents in Dandora have been exposed to the metals through livestock consumption. - Highlights: • Metals extent in blood of livestock were examined. • Dandora dumping site, Kenya is study site. • Concentrations of Cd and Pb were high in the blood of livestock. • Pb isotope ratios indicated that major exposure route might differ among species. - Metal extent and stable Pb isotope ratio in livestock from Dandora, Kenya were examined

  2. ChelomEx: Isotope-assisted discovery of metal chelates in complex media using high-resolution LC-MS.

    Science.gov (United States)

    Baars, Oliver; Morel, François M M; Perlman, David H

    2014-11-18

    Chelating agents can control the speciation and reactivity of trace metals in biological, environmental, and laboratory-derived media. A large number of trace metals (including Fe, Cu, Zn, Hg, and others) show characteristic isotopic fingerprints that can be exploited for the discovery of known and unknown organic metal complexes and related chelating ligands in very complex sample matrices using high-resolution liquid chromatography mass spectrometry (LC-MS). However, there is currently no free open-source software available for this purpose. We present a novel software tool, ChelomEx, which identifies isotope pattern-matched chromatographic features associated with metal complexes along with free ligands and other related adducts in high-resolution LC-MS data. High sensitivity and exclusion of false positives are achieved by evaluation of the chromatographic coherence of the isotope pattern within chromatographic features, which we demonstrate through the analysis of bacterial culture media. A built-in graphical user interface and compound library aid in identification and efficient evaluation of results. ChelomEx is implemented in MatLab. The source code, binaries for MS Windows and MAC OS X as well as test LC-MS data are available for download at SourceForge ( http://sourceforge.net/projects/chelomex ).

  3. Lead Isotope Constraints on the Sources of Ore Metals in SW Mexican Deposits

    Science.gov (United States)

    Potra, A.; Macfarlane, A. W.

    2007-12-01

    Lead isotope ratios from mineral deposits in southern Mexico increase with distance from the trench from 206Pb/204Pb values between 18.597 and 18.650 in the coastal area to values between 18.712 and 19.069 approximately 800 km east from the trench. This variation has been attributed to increasing assimilation of radiogenic lead from the crust with increasing distance from the trench. New sampling was undertaken in this area to provide a clearer picture of the potential sources of ore metals in this arc system, and also, if possible, to examine whether ore metal sources differ among the proposed tectonostratigraphic exotic terranes of southern Mexico. New TIMS lead isotope analyses are presented for samples from the metamorphic basement rocks of the Guerrero Terrane, the Late Cretaceous clastic sedimentary rocks from the Upper Mesozoic Assemblage, and for mid-Cretaceous igneous rocks, as well as for samples from the Oligocene La Verde, Esmeralda, and El Malacate copper prospects. Whole rock samples of schist from the Jurassic-Cretaceous Arteaga Complex and phyllite and slate from the Tierra Caliente Complex contain radiogenic lead relative to bulk earth models, with 206Pb/204Pb ranging from 18.981-19.256. These values are substantially more radiogenic than published values of analyses of metagabbro and charnockite from the Grenvillian-age Oaxaca Terrane. Sedimentary rocks (sandstones, siltstones, and marls) belonging to the Huetamo Sequence have 206Pb/204Pb values ranging between 18.630 to 18.998, close to the published data for the sediments from IPOD-DSDP Sites 487 and 488, Cocos Plate. Whole rock analyses of igneous rocks (granodiorite) collected from La Verde and El Malacate have 206Pb/204Pb ranging from 18.764 to 18.989, clustering between the fields represented by the sedimentary and the metamorphic rocks, suggesting assimilation of lead from these components. Ore samples from La Verde and Esmeralda have 206Pb/204Pb between 18.685 and 18.731 and plot within

  4. Effects of alkali treatments on Ag nanowire transparent conductive films

    Science.gov (United States)

    Kim, Sunho; Kang, Jun-gu; Eom, Tae-yil; Moon, Bongjin; Lee, Hoo-Jeong

    2016-06-01

    In this study, we employ various alkali materials (alkali metals with different base strengths, and ammonia gas and solution) to improve the conductivity of silver nanowire (Ag NW)-networked films. The alkali treatment appears to remove the surface oxide and improve the conductivity. When applied with TiO2 nanoparticles, the treatment appears more effective as the alkalis gather around wire junctions and help them weld to each other via heat emitted from the reduction reaction. The ammonia solution treatment is found to be quick and aggressive, damaging the wires severely in the case of excessive treatment. On the other hand, the ammonia gas treatment seems much less aggressive and does not damage the wires even after a long exposure. The results of this study highlight the effectiveness of the alkali treatment in improving of the conductivity of Ag NW-networked transparent conductive films.

  5. Ab initio study of the adsorption, diffusion, and intercalation of alkali metal atoms on the (0001) surface of the topological insulator Bi{sub 2}Se{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Ryabishchenkova, A. G., E-mail: ryaange@gmail.com; Otrokov, M. M.; Kuznetsov, V. M.; Chulkov, E. V. [Tomsk State University (Russian Federation)

    2015-09-15

    Ab initio study of the adsorption, diffusion, and intercalation of alkali metal adatoms on the (0001) step surface of the topological insulator Bi{sub 2}Se{sub 3} has been performed for the case of low coverage. The calculations of the activation energies of diffusion of adatoms on the surface and in van der Waals gaps near steps, as well as the estimate of diffusion lengths, have shown that efficient intercalation through steps is possible only for Li and Na. Data obtained for K, Rb, and Cs atoms indicate that their thermal desorption at high temperatures can occur before intercalation. The results have been discussed in the context of existing experimental data.

  6. User's manual for the ARMLID (Argonne metallic lithium/isotopic dilution) tritium assay system

    International Nuclear Information System (INIS)

    The Argonne Metallic Lithium - Isotopic Dilution (ARMLID) system described in this report, originally developed at ANL for other purposes, was recently redeployed to measure the tritium production rate (TPR) in a series of US/Japanese collaborative fusion blanket integral experiments, involving large assemblies of fusion breeder blanket materials that were irradiated with a fusion neutron source at FNS/JAERI, Japan. Whereas previous uses of the ARMUD scheme involved just a few samples, its application infusion blanket TPR mapping called for large sample numbers per experiment, implying a commensurate scale of sample fabrication and encapsulation, on one hand, and tritium extraction and counting on the other hand. To shorten the time required for these various tasks, yet still yield reliable and accurate results, both the sample fabrication - encapsulation facility and the tritium extraction system had to be extensively revised from original versions that were designed for accuracy, but not necessarily for speed. The present report describes overall revisions in sufficient detail to serve as a User's Manual for this facility, and/or suggest how a new system might be put together. Either possibility may develop in the near future, in support of ITER design studies. Preliminary and partial descriptions of various aspects and features of the system were presented orally, in the course of annual ANL/JAERI/UCLA ''workshops'', over the last 34 years, as well as elsewhere

  7. Elemental partitioning and isotopic fractionation of Zn between metal and silicate and geochemical estimation of the S content of the Earth's core

    CERN Document Server

    Mahan, B; Pringle, E A; Moynier, F

    2016-01-01

    Zinc metal-silicate fractionation provides experimental access to the conditions of core formation and Zn has been used to estimate the S contents of the Earth's core and of the bulk Earth, assuming that they share similar volatility and that Zn was not partitioned into the Earth's core. We have conducted a suite of partitioning experiments to characterize Zn metal-silicate elemental and isotopic fractionation as a function of time, temperature, and composition. Experiments were conducted at temperatures from 1473-2273K, with run durations from 5-240 minutes for four starting materials. Chemical and isotopic equilibrium is achieved within 10 minutes. Zinc metal-silicate isotopic fractionation displays no resolvable dependence on temperature, composition, or oxygen fugacity. Thus, the Zn isotopic composition of silicate phases can be used as a proxy for bulk telluric bodies. Results from this study and literature data were used to parameterize Zn metal-silicate partitioning as a function of temperature, pressu...

  8. Mound Laboratory activities in chemical and physical research: July--December 1976. [Isotope separation; metal hydride research, separation chemistry and separation research

    Energy Technology Data Exchange (ETDEWEB)

    1977-05-04

    The status of the following programs is reported: isotope separation of carbon, argon, helium, krypton, neon, xenon, oxygen, and sulfur; metal hydride research; separation chemistry; and separation research. (LK)

  9. Rydberg Matter clusters of alkali metal atoms: the link between meteoritic matter, polar mesosphere summer echoes (PMSE), sporadic sodium layers, polar mesospheric clouds (PMCs, NLCs), and ion chemistry

    CERN Document Server

    Olofson, Frans; Holmlid, Leif

    2010-01-01

    A material exists which links together the influx of meteoritic matter from interplanetary space, the polar mesosphere summer echoes (PMSE), the sporadic sodium layers, the polar mesospheric clouds (PMCs, NLCs), and the observed ion chemistry in the mesosphere. The evidence in these research fields is here analyzed and found to agree well with the properties of Rydberg Matter (RM). This material has been studied with numerous methods in the laboratory. Alkali atoms, mainly Na, reach the mesosphere in the form of interplanetary (meteoritic, cometary) dust. The planar RM clusters NaN usually contain N = 19, 37 or 61 atoms, and have the density of air at 90 km altitude where they float. The diameters of the clusters are 10-100 nm from laboratory high precision radio frequency spectroscopic studies. Such experiments show that RM clusters interact strongly with radar frequencies: this explains the radio frequency heating and reflection studies of PMSE layers. The clusters give the low temperature in the mesosphere...

  10. My academic life with isotopes

    International Nuclear Information System (INIS)

    The present article outlines investigations and experience made by the author in carrying out a variety of studies on isotopes since 1939. First, he was interested in transuranic elements and his studies on artificial radioactive isotopes covered the detection of plutonium at Nagasaki, chemical separation of plutomium from atmosphere at Tokyo, spectral analysis of alpha rays from plutomium, application of 113mIn to emission spectral analysis as a tracer, chemical enrichment of 76As hot atom, and non-destructive analysis of the chemical state of 119Sn produced through EC disintegration in solid material. His studies on natural radioactivity include measurement of the radium content in rock and mineral samples collected in the Korean Peninsula, investigation on the formation process of minerals found around hot springs and determination of the age of rock and mineral samples. He started investigations on isotope enrichment around 1965. Studies in this field cover the application of cataphoretic processes to separation of 23Na and 22Na, enrichment of 7Li and other alkali metals, enrichment of 6Li by isotope exchange, derivation of an empirical equation (Saito-Kanno Equation) for mass effect in couter-current cataphoresis of molten halides, etc. (Nogami, K.)

  11. Novel and non-traditional use of stable isotope tracers to study metal bioavailability from natural particles

    Science.gov (United States)

    Croteau, Marie-Noële; Cain, Daniel J.; Fuller, Christopher C.

    2013-01-01

    We devised a novel tracing approach that involves enriching test organisms with a stable metal isotope of low natural abundance prior to characterizing metal bioavailability from natural inorganic particles. In addition to circumventing uncertainties associated with labeling natural particles and distinguishing background metals, the proposed "reverse labeling" technique overcomes many drawbacks inherent to using radioisotope tracers. Specifically, we chronically exposed freshwater snails (Lymnaea stagnalis) to synthetic water spiked with Cu that was 99.4% 65Cu to increase the relative abundance of 65Cu in the snail’s tissues from 32% to >80%. The isotopically enriched snails were then exposed to benthic algae mixed with Cu-bearing Fe–Al particles collected from the Animas River (Colorado), an acid mine drainage impacted river. We used 63Cu to trace Cu uptake from the natural particles and inferred their bioavailability from calculation of Cu assimilation into tissues. Cu assimilation from these particles was 44%, indicating that 44% of the particulate Cu was absorbed by the invertebrate. This demonstrates that inorganic particulate Cu can be bioavailable. The reverse labeling approach shows great potential in various scientific areas such as environmental contamination and nutrition for addressing questions involving uptake of an element that naturally has multiple isotopes.

  12. Experimental determination of Fe isotope fractionation between liquid metal, silicate and sulfide at high pressures and temperatures

    Science.gov (United States)

    Williams, H. M.; Wood, B. J.; Halliday, A. N.

    2007-12-01

    There is evidence for significant equilibrium Fe isotope fractionation (≤0.26‰/amu) between metal and troilite (FeS) in iron meteorites (Williams et al., EPSL (250) 2006) and a smaller fractionation (Gessmann and Wood, EPSL (200) 2002; Wood et al., EPSL (in revision) 2007). Metal, sulfide and silicate fractions were separated from mounted and sectioned experimental charges using a computer-controlled micromill (New Wave-Merchantek). Sample dissolution, Fe purification and isotopic analysis followed established procedures (Williams et al., EPSL (235) 2005). In agreement with another preliminary high-pressure experimental study (Poitrasson and Roskosz, LPSC XXXVIII 2007) we find no appreciable fractionation between liquid iron metal and basaltic melt. However, there is a resolvable Fe isotope fractionation between silicate melt and Fe-S alloy which ranges from 0.12±0.04 to 0.15±0.04‰/amu for separate experiments (errors are propagated based on the 2 SD errors of replicate analyses). The Fe isotope compositions of coexisting phases from these experiments define a positive linear relationship with a slope that is, within error, equal to unity, implying isotopic equilibrium. No relationship between apparent fractionation factor and pressure or temperature is detectable within the range covered by the experiments. The fractionation factors determined from our experiments overlap with the average equilibrium fractionation factor obtained between silicate melt and pyrrhotite (Fe1-xS) of 0.18±0.02‰/amu at 0.5GPa and 1114-1274K (Schuessler et al., GCA (71) 2007) and are also broadly consistent with silicate-FeS fractionation factors inferred indirectly from iron meteorites and pallasites which range from ~0.16 to 0.24‰/amu. Taken together these observations suggest that resolvable stable isotope fractionation between Fe-S alloys and silicate melts can take place at extreme pressure and temperature conditions and that isotopically light Fe can be sequestered into

  13. Spectra of alkali atoms

    International Nuclear Information System (INIS)

    Emission spectra of alkali atoms has been determined by using spectrometer at the ultraviolet to infra red waves range. The spectra emission can be obtained by absorption spectrophotometric analysis. Comparative evaluations between experimental data and data handbook obtained by spark method were also presented. (author tr.)

  14. Theory of the late stage of radiolysis of alkali halides

    OpenAIRE

    Dubinko, V. I.; Turkin, A.A.; Vainshtein, D.I.; Hartog, H.W. den

    2000-01-01

    Recent results on heavily irradiated natural and synthetic NaCl crystals give evidence for the formation of large vacancy voids, which were not addressed by the conventional Jain-Lidiard model of radiation damage ill alkali halides. This model was constructed to describe metal colloids and dislocation loops formed in alkali halides during earlier stages of irradiation. We present a theory based on a new mechanism of dislocation climb, which involves the production of Vt centers (self-trapped ...

  15. Alkali promotion of N-2 dissociation over Ru(0001)

    DEFF Research Database (Denmark)

    Mortensen, Jens Jørgen; Hammer, Bjørk; Nørskov, Jens Kehlet

    1998-01-01

    Using self-consistent density functional calculations, we show that adsorbed Na and Cs lower the barrier for dissociation of N2 on Ru(0001). Since N2 dissociation is a crucial step in the ammonia synthesis reaction, we explain in this way the experimental observation that alkali metals promote th...... the ammonia synthesis reaction over Ru catalysts. We also show that the origin of this effect is predominantly a direct electrostatic attraction between the adsorbed alkali atoms and the dissociating molecule....

  16. Application of Pb isotopes to track the sources and routes of metal uptake in the earthworm Eisenia fetida

    Directory of Open Access Journals (Sweden)

    Bader Albogami

    2014-12-01

    Full Text Available The aim of this work is to determine the important routes of metal uptake in earthworms to enable a better understanding of the primary source of metal uptake in the environment. Earthworms can take up chemicals from pore water and soil both by ingestion and through contact with their skin. However, it is unclear which pathway is the most important for metal uptake. An experiment was designed in which both soil chemistry and foods were artificially manipulated, producing different pools of soil lead (Pb with different isotope compositions at a range of Pb concentrations. Earthworms (Eiseniafetida were exposed to different lead concentrations through the addition of 500 mg/kg lead oxide (Pb3O4 to soil and 500 mg/kg lead nitrate to food (manure, with distinctly different isotopic compositions. Earthworms were also exposed to combinations of soil only and soil plus food in order to quantify the proportions of Pb taken up from each component. After acid digestion of the earthworm tissues, the Pb isotope composition of the accumulated lead in the earthworms was measured using a Thermo-fisher, iCAPQ, ICP-MS for 208Pb/206Pb and 207Pb/206Pb ratios measured relative to NIST SRM 981, allowing us to determine the pathway of lead uptake. Mixing calculations have been used to deconvolute the lead isotope signatures and identify the amount of lead taken up by the earthworms from the different soil pools. Differences in bioaccumulation factors and the relative amounts of lead accumulated from different pools changes as a function of concentration in the different pools. Earthworms were shown to uptake lead from bothsoil and food sources through ingestion route. Our findings suggest that a major pathway of lead uptake in earthworm species is heavily influenced by their ecology.

  17. Characteristics of Heavy Metals and Pb Isotopic Composition in Sediments Collected from the Tributaries in Three Gorges Reservoir, China

    Directory of Open Access Journals (Sweden)

    Bo Gao

    2014-01-01

    Full Text Available The concentrations, distribution, accumulation, and potential ecological risk of heavy metals (Cr, Cu, Zn, Ni, As, Pb, Cd, and Hg in sediments from the Three Gorges Reservoir (TGR tributaries were determined and studied. Pb isotopic compositions in sediments were also measured to effectively identify the potential Pb sources. The results showed that the average concentrations of heavy metals in sediment of TGR tributaries were higher than the local background values of soils and sediments in China. The assessment by Geoaccumulation Index indicated that Cu, Ni, and Hg were at the “slightly polluted” level and Cd was ranked as the “moderately polluted” level in tributary sediments of TGR. The assessment by Potential Ecological Risk Index showed that Hg and Cd were the predominant elements in tributary sediments in TGR. The Pb isotopic ratios in sediments varied from 1.171 to 1.202 for 206Pb/207Pb and from 2.459 to 2.482 for 208Pb/207Pb in TGR. All Pb isotopic ratios in sediments were similar to those from coal combustion, lead ores (the mining activities and smelting process, and cement material, indicating that these anthropogenic inputs may be the main sources for Pb pollution in sediments of TGR tributaries.

  18. Ten years of elemental atmospheric metal fallout and Pb isotopic composition monitoring using lichens in north-eastern France

    Science.gov (United States)

    Cloquet, Christophe; Estrade, Nicolas

    2016-04-01

    We report on the chemical and Pb isotopic compositions of epiphytic lichens collected from small tree branches in the urban area of the city of Metz (NE France). Lichens were collected in five different years between 2001 and 2009. The data are first compared year to year in order to document any temporal changes and trends in metal atmospheric fallout. The area studied was then subdivided into different zones on the basis of land-use (urban, suburban, rural and industrial) in order to determine potential spatial gradients. The median concentrations and enrichment factors (EF, normalized to Al) of Pb and other metals (Cu, Zn, Cd, Ni, Cr, Hg, Fe) in lichens from the urban, suburban, and rural zones show no systematic variation between 2001 and 2008. However, the metal EFs show spatial variation and are generally highest in the urban area and lowest in the rural area. Lichens within the industrial zone (collected in 2009), which is dominated by steel industries, are richest in Al, Fe, Cr, Pb, and Zn. Although the Al concentration is high in these lichens, the EFs for the cited metals are several times higher than those measured in lichens from the other three zones. No significant differences were noted for Hg, Cd, Cu and or Ni. Lead isotopic compositions measured in lichens may be highly variable from year to year and from zone to zone. The variation is primarily interpreted to result from mixing between: (i) Pb added to gasoline (and recycled through re-emission of road dust in the atmosphere); (ii) regional industrial Pb from long-range transportation and/or mixed with urban Pb; and (iii) local industrial Pb. The median isotopic compositions of individual zones are distinct, suggesting variable mixing of these three sources. The annual variations show that 2001 was most affected by gasoline Pb, whereas 2003 and 2006 were more affected by the local steel industry.

  19. Anthropogenic impact on diffuse trace metal accumulation in river sediments from agricultural reclamation areas with geochemical and isotopic approaches

    International Nuclear Information System (INIS)

    A better understanding of anthropogenic impact can help assess the diffuse trace metal accumulation in the agricultural environment. In this study, both river sediments and background soils were collected from a case study area in Northeast China and analyzed for total concentrations of six trace metals, four major elements and three lead isotopes. Results showed that Pb, Cd, Cu, Zn, Cr and Ni have accumulated in the river sediments after about 40 years of agricultural development, with average concentrations 1.23–1.71 times higher than local soil background values. Among them Ni, Cr and Cu were of special concern and they may pose adverse biological effects. By calculating enrichment factor (EF), it was found that the trace metal accumulation was still mainly ascribed to natural weathering processes, but anthropogenic contribution could represent up to 40.09% of total sediment content. For Pb, geochemical and isotopic approaches gave very similar anthropogenic contributions. Principal component analysis (PCA) further suggested that the anthropogenic Pb, Cu, Cr and Ni inputs were mostly related to the regional atmospheric deposition of industrial emissions and gasoline combustion, which had a strong affinity for iron oxides in the sediments. Concerning Cd, however, it mainly originated from local fertilizer applications and was controlled by sediment carbonates. - Graphical abstract: The trace metal accumulation was mainly ascribed to natural weathering processes, but anthropogenic contribution could represent up to 40.09% of total sediment content. Anthropogenic Pb, Cu, Cr and Ni mostly came from atmospheric deposition, while fertilizer application was the main anthropogenic source of Cd. - Highlights: • Trace metals have accumulated in the Naolihe sediments. • Natural weathering was still a major contributor to metal accumulation. • Anthropogenic Pb, Cu, Cr and Ni mostly came from atmospheric deposition. • Local fertilizer application was the main

  20. Anthropogenic impact on diffuse trace metal accumulation in river sediments from agricultural reclamation areas with geochemical and isotopic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Wei; Ouyang, Wei, E-mail: wei@itc.nl; Hao, Fanghua; Lin, Chunye

    2015-12-01

    A better understanding of anthropogenic impact can help assess the diffuse trace metal accumulation in the agricultural environment. In this study, both river sediments and background soils were collected from a case study area in Northeast China and analyzed for total concentrations of six trace metals, four major elements and three lead isotopes. Results showed that Pb, Cd, Cu, Zn, Cr and Ni have accumulated in the river sediments after about 40 years of agricultural development, with average concentrations 1.23–1.71 times higher than local soil background values. Among them Ni, Cr and Cu were of special concern and they may pose adverse biological effects. By calculating enrichment factor (EF), it was found that the trace metal accumulation was still mainly ascribed to natural weathering processes, but anthropogenic contribution could represent up to 40.09% of total sediment content. For Pb, geochemical and isotopic approaches gave very similar anthropogenic contributions. Principal component analysis (PCA) further suggested that the anthropogenic Pb, Cu, Cr and Ni inputs were mostly related to the regional atmospheric deposition of industrial emissions and gasoline combustion, which had a strong affinity for iron oxides in the sediments. Concerning Cd, however, it mainly originated from local fertilizer applications and was controlled by sediment carbonates. - Graphical abstract: The trace metal accumulation was mainly ascribed to natural weathering processes, but anthropogenic contribution could represent up to 40.09% of total sediment content. Anthropogenic Pb, Cu, Cr and Ni mostly came from atmospheric deposition, while fertilizer application was the main anthropogenic source of Cd. - Highlights: • Trace metals have accumulated in the Naolihe sediments. • Natural weathering was still a major contributor to metal accumulation. • Anthropogenic Pb, Cu, Cr and Ni mostly came from atmospheric deposition. • Local fertilizer application was the main

  1. Local structure of alkalis in mixed-alkali borate glass to elucidate the origin of mixed-alkali effect

    Directory of Open Access Journals (Sweden)

    Yomei Tokuda

    2015-12-01

    Full Text Available We report the structural analysis of Na+ and Cs+ in sodium cesium borate crystals and glasses using 23Na and 133Cs magic-angle spinning nuclear magnetic resonance (MAS NMR spectroscopy. The composition dependence of NMR spectra of the borate was similar to that of the silicate: (1 the peak position of cesium borate crystals shifted to upfield for structures with larger Cs+ coordination numbers, (2 the MAS NMR spectra of xNa2O-yCs2O-3B2O3 (x = 0, 0.25, 0.5, 0.75, 1.0, x + y = 1 glass showed that the average coordination number (CN of both the alkali cations decreases with increasing Cs+/(Na+ + Cs+ ratio. However, the degree of decrement in borates is much smaller than that in silicates. We have considered that the small difference in CN is due to 4-coordinated B, because it is electrically compensated by the alkali metal ions resulting in the restriction of having various coordinations of O to alkali metal.

  2. Copper isotope fractionation during its interaction with soil and aquatic microorganisms and metal oxy(hydr)oxides: Possible structural control

    Science.gov (United States)

    Pokrovsky, O. S.; Viers, J.; Emnova, E. E.; Kompantseva, E. I.; Freydier, R.

    2008-04-01

    Brantley S. (2005) Cu isotopic fractionation in the supergene environment with and without bacteria. Geochim. Cosmochim. Acta69, 5233-5246] and Balistrieri et al. [Balistrieri L. S., Borrok D. M., Wanty R. B. and Ridley W. I. (2008) Fractionation of Cu and Zn isotopes during adsorption onto amorhous Fe(III) oxyhydroxide: experimental mixing of acid rock drainage and ambient river water. Geochim. Cosmochim. Acta72, 311-328] who reported heavy Cu isotope enrichment onto amorphous ferric oxyhydroxide and on metal hydroxide precipitates on the external membranes of Fe-oxidizing bacteria, respectively. Although measured isotopic fractionation does not correlate with the relative thermodynamic stability of surface complexes, it can be related to their structures as found with available EXAFS data. Indeed, strong, bidentate, inner-sphere complexes presented by tetrahedrally coordinated Cu on metal oxide surfaces are likely to result in enrichment of the heavy isotope on the surface compared to aqueous solution. The outer-sphere, monodentate complex, which is likely to form between Cu 2+ and surface phosphoryl groups of bacteria in acidic solutions, has a higher number of neighbors and longer bond distances compared to inner-sphere bidentate complexes with carboxyl groups formed on bacterial and diatom surfaces in circumneutral solutions. As a result, in acidic solution, light isotopes become more enriched on bacterial surfaces (as opposed to the surrounding aqueous medium) than they do in neutral solution. Overall, the results of the present study demonstrate important isotopic fractionation of copper in both organic and inorganic systems and provide a firm basis for using Cu isotopes for tracing metal transport in earth-surface aquatic systems. It follows that both adsorption on oxides in a wide range of pH values and adsorption on bacteria in acidic solutions are capable of producing a significant (up to 2.5-3‰ (±0.1-0.15‰)) isotopic offset. At the same time, Cu

  3. Electrolytic systems and methods for making metal halides and refining metals

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Justin M.; Cecala, David M.

    2015-05-26

    Disclosed are electrochemical cells and methods for producing a halide of a non-alkali metal and for electrorefining the halide. The systems typically involve an electrochemical cell having a cathode structure configured for dissolving a hydrogen halide that forms the halide into a molten salt of the halogen and an alkali metal. Typically a direct current voltage is applied across the cathode and an anode that is fabricated with the non-alkali metal such that the halide of the non-alkali metal is formed adjacent the anode. Electrorefining cells and methods involve applying a direct current voltage across the anode where the halide of the non-alkali metal is formed and the cathode where the non-alkali metal is electro-deposited. In a representative embodiment the halogen is chlorine, the alkali metal is lithium and the non-alkali metal is uranium.

  4. Isotopic characterisation of lead in contaminated soils from the vicinity of a non-ferrous metal smelter near Plovdiv, Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, Jeffrey R. [Macaulay Institute, Craigiebuckler, Aberdeen AB15 8QH (United Kingdom)]. E-mail: j.bacon@macaulay.ac.uk; Dinev, Nikolai S. [N Poushkarov Institute of Soil Science and Agroecology, Sofia (Bulgaria)

    2005-03-01

    Soil samples from the vicinity of a non-ferrous metal smelter near Plovdiv, Bulgaria contained very high concentrations of cadmium, lead and zinc (up to 140, 4900 and 5900 mg kg{sup -1}, respectively). A roadside soil in a relatively uncontaminated area also contained high concentrations of the same metals (24, 1550 and 1870 mg kg{sup -1}, respectively) indicating that the transport of ores could be a source of contamination. Even though the lead isotope ratios in all the samples fell within a very narrow range (for example, 1.186-1.195 for {sup 206}Pb/{sup 207}Pb), the samples could be differentiated into three distinct groups: ores ({sup 206}Pb/{sup 207}Pb and {sup 208}Pb/{sup 207}Pb ratios of 1.1874-1.1884 and 2.4755-2.4807, respectively), current deposition (1.1864 and 2.4704-2.4711, respectively) and local background (1.1927-1.1951 and 2.4772-2.4809, respectively). Although most of the current deposition has its origin in the ores used at the smelter, up to 12% could be from other sources such as petrol lead. - Although soils in the vicinity of a non-ferrous metal smelter near Plovdiv, Bulgaria, have become highly contaminated with the ores used, lead isotope analysis has revealed that up to 12% of current deposition could be from other sources such as petrol lead.

  5. Magnesium isotope fractionation during carbonatite magmatism at Oldoinyo Lengai, Tanzania

    Science.gov (United States)

    Li, Wang-Ye; Teng, Fang-Zhen; Halama, Ralf; Keller, Jörg; Klaudius, Jurgis

    2016-06-01

    To investigate the behaviour of Mg isotopes during carbonatite magmatism, we analyzed Mg isotopic compositions of natrocarbonatites and peralkaline silicate rocks from Oldoinyo Lengai, Tanzania. The olivine melilitites from the vicinity of Oldoinyo Lengai have homogeneous and mantle-like Mg isotopic compositions (δ26Mg of -0.30 to -0.26‰), indicating limited Mg isotope fractionation during mantle melting. The highly evolved peralkaline silicate rocks not related to silicate-carbonatite liquid immiscibility, including phonolites from the unit Lengai I, combeite-wollastonite nephelinites (CWNs) from the unit Lengai II A and carbonated combeite-wollastonite-melilite nephelinites (carbCWMNs), have δ26Mg values (from -0.25 to -0.10‰) clustered around the mantle value. By contrast, the CWNs from the unit Lengai II B, which evolved from the silicate melts that were presumably generated by silicate-carbonatite liquid immiscibility, have heavier Mg isotopes (δ26Mg of -0.06 to +0.09‰). Such a difference suggests Mg isotope fractionation during liquid immiscibility and implies, based on mass-balance calculations, that the original carbonatite melts at Lengai were isotopically light. The variable and positive δ26Mg values of natrocarbonatites (from +0.13 to +0.37‰) hence require a change of their Mg isotopic compositions subsequent to liquid immiscibility. The negative correlations between δ26Mg values and contents of alkali and alkaline earth metals of natrocarbonatites suggest Mg isotope fractionation during fractional crystallization of carbonatite melts, with heavy Mg isotopes enriched in the residual melts relative to fractionated carbonate minerals. Collectively, significant Mg isotope fractionation may occur during both silicate-carbonatite liquid immiscibility and fractional crystallization of carbonatite melts, making Mg isotopes a potentially useful tracer of these processes relevant to carbonatite petrogenesis.

  6. Lead isotopes and trace metal ratios of aerosols as tracers of Pb pollution sources in Kanpur, India

    Science.gov (United States)

    Sen, Indra; Bizimis, Michael; Tripathi, Sachchida; Paul, Debajyoti; Tyagi, Swati; Sengupta, Deep

    2015-04-01

    The anthropogenic flux of Pb in the Earth's surface is almost an order of magnitude higher than its corresponding natural flux [1]. Identifying the sources and pathways of anthropogenic Pb in environment is important because Pb toxicity is known to have adverse effects on human health. Pb pollution sources for America, Europe, and China are well documented. However, sources of atmospheric Pb are unknown in India, particularly after leaded gasoline was phased out in 2000. India has a developing economy with a rapidly emerging automobile and high temperature industry, and anthropogenic Pb emission is expected to rise in the next decade. In this study, we report on the Pb- isotope compositions and trace metal ratios of airborne particulates collected in Kanpur, an industrial city in northern India. The Pb concentration in the airborne particulate matter varies between 14-216 ng/m3, while the other heavy metals vary by factor of 10 or less, e.g. Cd=0.3-3 ng/m3, As=0.4-3.5 ng/m3, Zn=36-161 ng/m3, and Cu=3-22 ng/m3. The 206Pb/207Pb, 208Pb/206Pb, and 208Pb/207Pb vary between 1.112 - 1.129, 2.123-2.141, and 2.409-2.424 respectively, and are highly correlated with each other (R2>0.9). Pb isotopes and trace metal data reveals that coal combustion is the major source of anthropogenic Pb in the atmosphere, with limited contribution from mining and smelting processes. We further conclude that combination of Pb isotope ratios and V/Pb ratios are powerful tracers for Pb source apportionment studies, which is otherwise difficult to differentiate based only on Pb systematics [1] Sen and Peucker-Ehrenbrink (2012), Environ. Sci. Technol.(46), 8601-8609

  7. Coupling meteorology, metal concentrations, and Pb isotopes for source attribution in archived precipitation samples.

    Science.gov (United States)

    Graney, Joseph R; Landis, Matthew S

    2013-03-15

    A technique that couples lead (Pb) isotopes and multi-element concentrations with meteorological analysis was used to assess source contributions to precipitation samples at the Bondville, Illinois USA National Trends Network (NTN) site. Precipitation samples collected over a 16month period (July 1994-October 1995) at Bondville were parsed into six unique meteorological flow regimes using a minimum variance clustering technique on back trajectory endpoints. Pb isotope ratios and multi-element concentrations were measured using high resolution inductively coupled plasma-sector field mass spectrometry (ICP-SFMS) on the archived precipitation samples. Bondville is located in central Illinois, ~250km downwind from smelters in southeast Missouri. The Mississippi Valley Type ore deposits in Missouri provided a unique multi-element and Pb isotope fingerprint for smelter emissions which could be contrasted to industrial emissions from the Chicago and Indianapolis urban areas (~125km north and east, of Bondville respectively) and regional emissions from electric utility facilities. Differences in Pb isotopes and element concentrations in precipitation corresponded to flow regime. Industrial sources from urban areas, and thorogenic Pb from coal use, could be differentiated from smelter emissions from Missouri by coupling Pb isotopes with variations in element ratios and relative mass factors. Using a three endmember mixing model based on Pb isotope ratio differences, industrial processes in urban airsheds contributed 56±19%, smelters in southeast Missouri 26±13%, and coal combustion 18±7%, of the Pb in precipitation collected in Bondville in the mid-1990s.

  8. Feeding ecology of five commercial shark species of the Celtic Sea through stable isotope and trace metal analysis

    OpenAIRE

    Domi, Nadège; Bouquegneau, Jean-Marie; Das, Krishna

    2005-01-01

    In order to trace their feeding habits, stable carbon and nitrogen isotope ratios (d15N and d13C), as well as trace metal concentrations (Zn, Cd, Fe, Cu, Se and Hg) were analysed in the tissues of five commercial shark species from the Celtic Sea: the tope shark Galeorhinus galeus, the black-mouthed catshark Galeus melastomus, the starry smooth hound Mustelus asterias, the spiny dogfish Squalus acanthias and the lesser-spotted dogfish Scyliorhinus canicula. Our results were compared to previo...

  9. A century long sedimentary record of anthropogenic lead (Pb), Pb isotopes and other trace metals in Singapore.

    Science.gov (United States)

    Chen, Mengli; Boyle, Edward A; Switzer, Adam D; Gouramanis, Chris

    2016-06-01

    Reconstructing the history of metal deposition in Singapore lake sediments contributes to understanding the anthropogenic and natural metal deposition in the data-sparse Southeast Asia. To this end, we present a sedimentary record of Pb, Pb isotopes and eleven other metals (Ag, As, Ba, Cd, Co, Cr, Cu, Ni, Tl, U and Zn) from a well-dated sediment core collected near the depocenter of MacRitchie Reservoir in central Singapore. Before the 1900s, the sedimentary Pb concentration was less than 2 mg/kg for both soil and sediment, with a corresponding (206)Pb/(207)Pb of ∼1.20. The Pb concentration increased to 55 mg/kg in the 1990s, and correspondingly the (206)Pb/(207)Pb decreased to less than 1.14. The (206)Pb/(207)Pb in the core top sediment is concordant with the (206)Pb/(207)Pb signal of aerosols in Singapore and other Southeast Asian cities, suggesting that Pb in the reservoir sediment was mainly from atmospheric deposition. Using the Pb concentration in the topmost layer of sediment, the estimated atmospheric Pb flux in Singapore today is ∼1.6 × 10(-2) g/m(2) yr. The concentrations of eleven other metals preserved in the sediment were also determined. A principal component analysis showed that most of the metals exhibit an increasing trend towards 1990s with a local concentration peak in the mid-20(th) century.

  10. Design and Synthesis of Redox-Switched Lariat Ethers and Their Application for Transport of Alkali and Alkaline-Earth Metal Cations Across Supported Liquid Membrane

    Directory of Open Access Journals (Sweden)

    Uma Sharma

    2006-08-01

    Full Text Available A new class of redox-switched anthraquinone derived lariat ethers 1-(1-anthraquinonyloxy 3, 6, 9 trioxaundecane 11-ol (M1, 1-(1-anthraquinonyloxy 3, 6 dioxaoctane 9-ol (M2, 1-(1-anthraquinonyloxy 3 oxapentane 5-ol (M3, 1-(1-anthraquinonyloxy 3 oxapentane 5-butane (M4, 1-(1-anthraquinonyloxy 3, 6 dioxaoctane 9-methane (M5 and 1-(1-anthraquinonyloxy 3 oxapentane 5-methane (M6 have been synthesized and characterized by spectral analysis. These ionophores were used in liquid membrane carrier facilitated transport of main group metal cations across supported liquid membrane (SLM. Cellulose nitrate membrane was used as membrane support. Effect of various parameters such as variation in concentration of metal as well as ionophore, effect of chain length and end group of ionophore have been studied. The sequence of metal ions transported by ionophore M1 is Na+ > Li+ > K+ > Ca2+ > Mg2+ and the order of metal ions transported by ionophores (M2–M6 is Li+ > Na+ > K+ > Ca2+ > Mg2+. Ionophore M1 is selective for Na+, Li+, and K+ and ionophores (M2–M6 are selective for Li+ and Na+.

  11. Metal extent in blood of livestock from Dandora dumping site, Kenya: Source identification of Pb exposure by stable isotope analysis.

    Science.gov (United States)

    Nakata, Hokuto; Nakayama, Shouta M M; Ikenaka, Yoshinori; Mizukawa, Hazuki; Ishii, Chihiro; Yohannes, Yared B; Konnai, Satoru; Darwish, Wageh Sobhy; Ishizuka, Mayumi

    2015-10-01

    Nairobi city in Kenya produces 2000 tons/day of garbage, and most of it is dumped onto the Dandora dumping site, home to a quarter-million residents. This study was conducted (1) to assess the contamination levels of nine metals and a metalloid (arsenic) in the blood of pigs, goats, sheep and cattle from Dandora, and (2) to identify a possible source of lead (Pb) pollution. Cadmium (Cd, 0.17-4.35 μg/kg, dry-wt) and Pb (90-2710 μg/kg) levels in blood were generally high, suggesting human exposure to Cd through livestock consumption and Pb poisoning among pigs (2600 μg/kg) and cattle (354 μg/kg). Results of Pb isotope ratios indicated that the major exposure route might differ among species. Our results also suggested a possibility that the residents in Dandora have been exposed to the metals through livestock consumption. PMID:25997160

  12. Competitive binding exchange between alkali metal ions (K+, Rb+, and Cs+) and Na+ ions bound to the dimeric quadruplex [d(G4T4G4)]2: a 23Na and 1H NMR study.

    Science.gov (United States)

    Cesare Marincola, Flaminia; Virno, Ada; Randazzo, Antonio; Mocci, Francesca; Saba, Giuseppe; Lai, Adolfo

    2009-12-01

    A comparative study of the competitive cation exchange between the alkali metal ions K+, Rb+, and Cs+ and the Na+ ions bound to the dimeric quadruplex [d(G4T4G4)]2 was performed in aqueous solution by a combined use of the 23Na and 1H NMR spectroscopy. The titration data confirm the different binding affinities of these ions for the G-quadruplex and, in particular, major differences in the behavior of Cs+ as compared to the other ions were found. Accordingly, Cs+ competes with Na+ only for the binding sites at the quadruplex surface (primarily phosphate groups), while K+ and Rb+ are also able to replace sodium ions located inside the quadruplex. Furthermore, the 1H NMR results relative to the CsCl titration evidence a close approach of Cs+ ions to the phosphate groups in the narrow groove of [d(G4T4G4)]2. Based on a three-site exchange model, the 23Na NMR relaxation data lead to an estimate of the relative binding affinity of Cs+ versus Na+ for the quadruplex surface of 0.5 at 298 K. Comparing this value to those reported in the literature for the surface of the G-quadruplex formed by 5'-guanosinemonophosphate and for the surface of double-helical DNA suggests that topology factors may have an important influence on the cation affinity for the phosphate groups on DNA.

  13. New Alkali-Metal- and 2-Phenethylamine-Intercalated Superconductors Ax(C8H11N)yFe1-zSe (A = Li, Na) with the Largest Interlayer Spacings and Tc ˜ 40 K

    Science.gov (United States)

    Hatakeda, Takehiro; Noji, Takashi; Sato, Kazuki; Kawamata, Takayuki; Kato, Masatsune; Koike, Yoji

    2016-10-01

    New FeSe-based intercalation superconductors, Ax(C8H11N)yFe1-zSe (A = Li, Na), with Tc = 39-44 K have been successfully synthesized via the intercalation of alkali metals and 2-phenethylamine into FeSe. The interlayer spacings, namely, the distances between neighboring Fe layers, d, of Ax(C8H11N)yFe1-zSe (A = Li, Na) are 19.04(6) and 18.0(1) Å, respectively. These d values are the largest among those of the FeSe-based intercalation compounds and are understood to be due to the intercalation of two molecules of 2-phenethylamine in series perpendicular to the FeSe layers. It appears that the relationship between Tc and d in the FeSe-based intercalation superconductors is not domic but Tc is saturated at ˜45 K, which is comparable to the Tc values of single-layer FeSe films, for d ≥ 9 Å.

  14. Isotopic Studies of the Guerrero Composite Terrane, West-Central Mexico: Implications for Provenance of Crustal Rocks and Ore Metals

    Science.gov (United States)

    Potra, A.; Macfarlane, A. W.; Salters, V. J.; Sachi-Kocher, A.

    2010-12-01

    continental crust in the Cenozoic magma. Generally, Pb isotope ratios of igneous rocks from La Esmeralda and El Malacate overlap the isotopic compositions of the Pacific Ocean sediments and the Huetamo Sequence rocks, implying metal derivation from one of these sources. The lower ɛNd values and higher 87Sr/86Sr ratios in the NW plutonic rocks may be caused by the involvement of an old crustal component, while the positive ɛNd values and lower 87Sr/86Sr ratios in the SE intrusions may suggest younger basement rocks and less crustal contamination. Lead isotope ratios of ores from La Verde and La Esmeralda porphyry copper deposits plot within the sedimentary rocks field of the Huetamo Sequence. This indicates that a substantial component of the Pb may have been incorporated from continent-derived sediments. The trend is different than that for epithermal deposits situated further inland, where ores have more radiogenic Pb isotope compositions; this pattern is compatible with assimilation of metamorphic basement rocks by magmas derived from a MORB-type mantle.

  15. Alkali Aggregate Reaction in Alkali Slag Cement Mortars

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By means of "Mortar Bar Method",the ratio of cement to aggregate was kept as a constant 1∶2.25,the water-cement ratio of the mixture was 0.40,and six prism specimens were prepared for each batch of mixing proportions with dimensions of 10×10×60mm3 at 38±2℃ and RH≥95%, the influences of content and particle size of active aggregate, sort and content of alkali component and type of slag on the expansion ratios of alkali-activated slag cement(ASC) mortars due to alkali aggregate reaction(AAR) were studied. According to atomic absorption spectrometry,the amount of free alkali was measured in ASC mortars at 90d.The results show above factors affect AAR remarkably,but no dangerous AAR will occur in ASC system when the amount of active aggregate is below 15% and the mass fraction of alkali is not more than 5% (Na2O).Alkali participated in reaction as an independent component, and some hydrates containing alkali cations were produced, free alkalis in ASC system can be reduced enormously.Moreover,slag is an effective inhibitor, the possibility of generating dangerous AAR in ASC system is much lower at same conditions than that in ordinary Portland cement system.

  16. Oscillation Frequencies for Simultaneous Trapping of Heteronuclear Alkali Atoms

    CERN Document Server

    Kaur, Kiranpreet; Arora, Bindiya

    2016-01-01

    We investigate oscillation frequencies for simultaneous trapping of more than one type of alkali atoms in a common optical lattice. For this purpose, we present numerical results for magic trapping conditions, where the oscillation frequencies for two different kind of alkali atoms using laser lights in the wavelength range 500-1200 nm are same. These wavelengths will be of immense interest for studying static and dynamic properties of boson-boson, boson-fermion, fermion-fermion, and boson-boson-boson mixtures involving different isotopes of Li, Na, K, Rb, Cs and Fr alkali atoms. In addition to this, we were also able to locate a magic wavelength around 808.1 nm where all the three Li, K, and Rb atoms are found to be suitable for oscillating at the same frequency in a common optical trap.

  17. Production of intense metallic ion beams in order of isotopic separations; Production de faisceaux intenses d'ions metalliques en vue de la separation des isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Sarrouy, J.L. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    We describe an isotope separator with magnetic sector of 60 deg that permits, with a process of neutralization of the space charge, to use efficiently intense ion beams. The sources of realized ions provide ionic debits of 10 mA. This present work deals who to obtain intense ion beams (10 to 15 mA), different processes of ion currents measurement, as well as the study of the phenomenon of space charge neutralization. The second part of this memory will be on the survey and the adaptation on the source of various type of oven permitting to spray and to ionize metals directly. By order of increasing difficulty of vaporization, we reached the chromium. (M.B.) [French] 0n decrit un separateur d'isotope a secteur magnetique de 60 deg qui permet, grace a un procede de neutralisation de la charge d'espace, d'utiliser efficacement des faisceaux d'ions intenses. Les sources d'ions realisees fournissent des debits ioniques de 10 mA. Ce present travail porte sur l'obtention de faisceaux d'ions faisceaux d'ions intenses (10 a 15 mA), des differents procedes de mesures des courants d'ions, ainsi que l'etude du phenomene de neutralisation de charge d'espace. La deuxieme partie de ce memoire portera sur l'etude et l'adaptation sur la source de divers type de four permettant de vaporiser et d'ioniser directement les metaux. Par ordre de difficulte croissantes de vaporisations, nous avons atteint le chrome. (M.B.)

  18. Surprisingly Different Reaction Behavior of Alkali and Alkaline Earth Metal Bis(trimethylsilyl)amides toward Bulky N-(2-Pyridylethyl)-N'-(2,6-diisopropylphenyl)pivalamidine.

    Science.gov (United States)

    Kalden, Diana; Oberheide, Ansgar; Loh, Claas; Görls, Helmar; Krieck, Sven; Westerhausen, Matthias

    2016-07-25

    N-(2,6-Diisopropylphenyl)-N'-(2-pyridylethyl)pivalamidine (Dipp-N=C(tBu)-N(H)-C2 H4 -Py) (1), reacts with metalation reagents of lithium, magnesium, calcium, and strontium to give the corresponding pivalamidinates [(tmeda)Li{Dipp-N=C(tBu)-N-C2 H4 -Py}] (6), [Mg{Dipp-N=C(tBu)-N-C2 H4 -Py}2 ] (3), and heteroleptic [{(Me3 Si)2 N}Ae{Dipp-N=C(tBu)-N-C2 H4 -Py}], with Ae being Ca (2 a) and Sr (2 b). In contrast to this straightforward deprotonation of the amidine units, the reaction of 1 with the bis(trimethylsilyl)amides of sodium or potassium unexpectedly leads to a β-metalation and an immediate deamidation reaction yielding [(thf)2 Na{Dipp-N=C(tBu)-N(H)}] (4 a) or [(thf)2 K{Dipp-N=C(tBu)-N(H)}] (4 b), respectively, as well as 2-vinylpyridine in both cases. The lithium derivative shows a similar reaction behavior to the alkaline earth metal congeners, underlining the diagonal relationship in the periodic table. Protonation of 4 a or the metathesis reaction of 4 b with CaI2 in tetrahydrofuran yields N-(2,6-diisopropylphenyl)pivalamidine (Dipp-N=C(tBu)-NH2 ) (5), or [(thf)4 Ca{Dipp-N=C(tBu)-N(H)}2 ] (7), respectively. The reaction of AN(SiMe3 )2 (A=Na, K) with less bulky formamidine Dipp-N=C(H)-N(H)-C2 H4 -Py (8) leads to deprotonation of the amidine functionality, and [(thf)Na{Dipp-N=C(H)-N-C2 H4 -Py}]2 (9 a) or [(thf)K{Dipp-N=C(H)-N-C2 H4 -Py}]2 (9 b), respectively, are isolated as dinuclear complexes. From these experiments it is obvious, that β-metalation/deamidation of N-(2-pyridylethyl)amidines requires bases with soft metal ions and also steric pressure. The isomeric forms of all compounds are verified by single-crystal X-ray structure analysis and are maintained in solution. PMID:27355970

  19. Radiotracer diffusion in semiconductors and metallic compounds using short-lived isotopes

    CERN Multimedia

    Deicher, M; Kronenberg, J; Wagner, F E

    The transport of atoms in solids is of central importance for solid state physics, chemistry, metallurgy, and material sciences. Since the mobility of atoms in solids contributes to many physical phenomena the study of diffusion processes is of fundamental interest for solid state physics. Diffusion processes were frequently investigated using radioactive isotopes (radiotracers). The application of short-lived isotopes delivered at ISOLDE extends substantially the possibilities of investigating diffusion processes in solids. In particular, a new experimental set-up to be installed at ISOLDE in this year will enable the use of radioactive isotopes with half-lives down to minutes. Alternatively, in special cases diffusion processes can be investigated with help of hyperfine techniques on an atomic scale, like by perturbed $\\gamma \\gamma$-angular correlation (PAC). Here, the motion of the atom of interest becomes visible directly via characteristic changes in the measured PAC spectra.

  20. Metabolites Associated with Adaptation of Microorganisms to an Acidophilic, Metal-Rich Environment Identified by Stable-Isotope-Enabled Metabolomics

    Science.gov (United States)

    Mosier, Annika C.; Justice, Nicholas B.; Bowen, Benjamin P.; Baran, Richard; Thomas, Brian C.; Northen, Trent R.; Banfield, Jillian F.

    2013-01-01

    ABSTRACT Microorganisms grow under a remarkable range of extreme conditions. Environmental transcriptomic and proteomic studies have highlighted metabolic pathways active in extremophilic communities. However, metabolites directly linked to their physiology are less well defined because metabolomics methods lag behind other omics technologies due to a wide range of experimental complexities often associated with the environmental matrix. We identified key metabolites associated with acidophilic and metal-tolerant microorganisms using stable isotope labeling coupled with untargeted, high-resolution mass spectrometry. We observed >3,500 metabolic features in biofilms growing in pH ~0.9 acid mine drainage solutions containing millimolar concentrations of iron, sulfate, zinc, copper, and arsenic. Stable isotope labeling improved chemical formula prediction by >50% for larger metabolites (>250 atomic mass units), many of which were unrepresented in metabolic databases and may represent novel compounds. Taurine and hydroxyectoine were identified and likely provide protection from osmotic stress in the biofilms. Community genomic, transcriptomic, and proteomic data implicate fungi in taurine metabolism. Leptospirillum group II bacteria decrease production of ectoine and hydroxyectoine as biofilms mature, suggesting that biofilm structure provides some resistance to high metal and proton concentrations. The combination of taurine, ectoine, and hydroxyectoine may also constitute a sulfur, nitrogen, and carbon currency in the communities. PMID:23481603

  1. Energetics and control of ultracold isotope-exchange reactions between heteronuclear dimers in external fields

    CERN Document Server

    Tomza, Michał

    2015-01-01

    We show that isotope-exchange reactions between ground-state alkali-metal, alkaline-earth-metal, and lanthanide heteronuclear dimers consisting of two isotopes of the same atom are exothermic with an energy change in the range of 1-8000$\\,$MHz thus resulting in cold or ultracold products. For these chemical reactions there are only one rovibrational and at most several hyperfine possible product states. The number and energetics of open and closed reactive channels can be controlled by the laser and magnetic fields. The exothermic isotope-exchange reactions can be tuned to become endothermic by employing a laser-induced state-selective Stark shift control thus providing a ground for testing models of the chemical reactivity. The present proposal opens the way for studying the state-to-state dynamics of ultracold chemical reactions beyond the universal limit with a meaningful control over quantum states of both reactants and products.

  2. Natural Alkali Shifts to the Methanol Business

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Inner Mongolia Yuanxing Natural Alkali Co., Ltd. (Natural Alkali SZ: 000683) established in 1997 is a large chemical enterprise with new energy as its leading business and natural gas chemicals and natural alkali chemicals as the supplement business.

  3. Direct μ-flow injection isotope dilution ICP-MS for the determination of heavy metals in oil samples

    International Nuclear Information System (INIS)

    The determination of trace elements in oil samples and their products is of high interest as their presence significantly affects refinery processes and the environment by possible impact of their combustion products. In this context, inductively coupled plasma mass spectrometry (ICP-MS) plays an important role due to its outstanding analytical properties in the quantification of trace elements. In this work, we present the accurate and precise determination of selected heavy metals in oil samples by making use of the combination of μ-flow direct injection and isotope dilution ICP-MS (ICP-IDMS). Spike solutions of 62Ni, 97Mo, 117Sn and 206Pb were prepared in an organic solvent, mixed directly with the diluted oil samples and tested to be fit for purpose for the intended ID approach. The analysis of real samples revealed strong matrix effects affecting the ICP-MS sensitivity, but not the isotope ratio measurements, so that accurate results are obtained by ICP-IDMS. Typical relative standard deviations were about 15% for peak area and peak height measurements, whereas the isotope ratios were not significantly affected (RSD < 2%). The developed method was validated by the analysis of a metallo-organic multi-element standard (SCP-21, typically applied as a calibration standard) and the standard reference material SRM1084a (wear metals in lubricating oil). The obtained results were in excellent agreement with the certified values (recoveries between 98% and 102%), so the proposed methodology of combining μ-flow direct injection and ICP-IDMS can be regarded as a new tool for the matrix-independent, multi-element and reliable determination of trace elements in oil and related organic liquids. (orig.)

  4. The behaviour of radioactive isotopes in liquid metal cooled fast reactors

    International Nuclear Information System (INIS)

    A small scale, all AISI 316 stainless steel, pumped loop has been operated with 134Cs, 137Cs and 22Na in the sodium. The loop has a distillation sampler, oxygen meter, two cold traps and a small subsidiary pumped loop initially containing the isotopes adsorbed on uranium oxide. The distribution of the isotopes within the loop has been determined over the temperature range 100 to 3000C with 1 to 2 ppm of oxygen in the sodium and a sodium velocity about half the Reynolds number required for the onset of turbulence in the vertical legs. (author)

  5. Liquid alkali metals - Equation of state and reduced-pressure, bulk-modulus, sound-velocity, and specific-heat functions

    Science.gov (United States)

    Schlosser, Herbert; Ferrante, John

    1989-01-01

    The previous work of Schlosser and Ferrante (1988) on universality in solids is extended to the study of liquid metals. As in the case of solids, to a good approximation, in the absence of phase transitions, plots of the logarithm of the reduced-pressure function H, of the reduced-isothermal-bulk-modulus function b, and of the reduced-sound-velocity function v are all linear in 1-X. Finally, it is demonstrated that ln(Cp/C/v) is also linear in 1-X, where X = (V/V/0/)exp 1/3), and V(0) is the volume at zero pressure.

  6. Evaluation of water quality in El-Sadat city, Egypt, using nitrogen isotopes and heavy metal pollution indices

    International Nuclear Information System (INIS)

    Groundwater pollution by heavy metals and nitrogen compounds are a serious problem for human health. Waste water accumulation in the oxidation ponds could be threat the groundwater of the Pleistocene aquifer where it is used for bottling drinking water. Groundwater was collected from El-Sadat city, Egypt, to asses its suitability for drinking water. Also, surface water from oxidation ponds and industrial drainage water were sampled to detect the levels of heavy metals and nitrate pollution in these contamination sources. Four methods have been taken to evaluate the contamination level based on heavy metal concentration: (1) contamination index (Cd), (2) the heavy metal potential index (HPI), (3) heavy metal evaluation index (HEI) and (4) pollution load index (PLI). The output calculation of these methods gave a better classification of the pollution indices which straddle the groundwater samples to 3 classes via low, medium and high. The out put results show that 82% of industrial drainage samples and 67% of ponds water lie in the high class. About 62.5% of shallow groundwater at depth below 100 m and 89% of deep groundwater at depth up to 100 m lie in the low class (non-contaminated water) indicating the suitability of water for drinking purpose, whereas the rest of groundwater at the north-eastern border of the city was polluted by trace metals due to the effect of seepage from irrigation and drainage water. This was confirmed with the relatively high concentrations of nitrate obtained in 78 % of the shallow wells. Nitrogen isotope analysis δ 15NNO3 delineated the sources and mechanisms of nitrate pollution, where low values of δ 15N represent that nitrogen fertilizers and mineralized soil nitrogen were the dominant sources of NO3-N contamination in the shallow part of the aquifer

  7. Facilitated alkali ion transfer at the water 1,2-dichloroethane interphase Ab-initio calculations concerning alkaline metal cation - 1,10-phenanthroline complexes

    CERN Document Server

    Sánchez, C; Baruzzi, A M; Leiva, E P M

    1997-01-01

    A series of calculations on the energetics of complexation of alkaline metals with 1,10-phenanthroline are presented. It is an experimental fact that the ordering of the free energy of transfer across the water - 1,2-dichloroethane interphase is governed by the charge / size ratio of the diferent cations; the larger cations showing the lower free energy of transfer. This ordering of the free energies of transfer is reverted in the presence of 1,10-phenanthroline in the organic phase. We have devised a thermodynamic cycle for the transfer process and by means of ab-initio calculations have drawn the conclusion that in the presence of phen the free energy of transfer is governed by the stability of the PHEN/M $^{+}$complex, which explains the observed tendency from a theoretical point of view.

  8. Room temperature oxidative intercalation with chalcogen hydrides: Two-step method for the formation of alkali-metal chalcogenide arrays within layered perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Ranmohotti, K.G. Sanjaya; Montasserasadi, M. Dariush; Choi, Jonglak; Yao, Yuan; Mohanty, Debasish; Josepha, Elisha A.; Adireddy, Shiva; Caruntu, Gabriel [Department of Chemistry and the Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148-2820 (United States); Wiley, John B., E-mail: jwiley@uno.edu [Department of Chemistry and the Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148-2820 (United States)

    2012-06-15

    Highlights: ► Topochemical reactions involving intercalation allow construction of metal chalcogenide arrays within perovskite hosts. ► Gaseous chalcogen hydrides serve as effect reactants for intercalation of sulfur and selenium. ► New compounds prepared by a two-step intercalation strategy are presented. -- Abstract: A two-step topochemical reaction strategy utilizing oxidative intercalation with gaseous chalcogen hydrides is presented. Initially, the Dion-Jacobson-type layered perovskite, RbLaNb{sub 2}O{sub 7}, is intercalated reductively with rubidium metal to make the Ruddlesden-Popper-type layered perovskite, Rb{sub 2}LaNb{sub 2}O{sub 7}. This compound is then reacted at room-temperature with in situ generated H{sub 2}S gas to create Rb-S layers within the perovskite host. Rietveld refinement of X-ray powder diffraction data (tetragonal, a = 3.8998(2) Å, c = 15.256(1) Å; space group P4/mmm) shows the compound to be isostructural with (Rb{sub 2}Cl)LaNb{sub 2}O{sub 7} where the sulfide resides on a cubic interlayer site surrounded by rubidium ions. The mass increase seen on sulfur intercalation and the refined S site occupation factor (∼0.8) of the product indicate a higher sulfur content than expected for S{sup 2−} alone. This combined with the Raman studies, which show evidence for an H-S stretch, indicate that a significant fraction of the intercalated sulfide exists as hydrogen sulfide ion. Intercalation reactions with H{sub 2}Se{sub (g)} were also carried out and appear to produce an isostructural selenide compound. The utilization of such gaseous hydride reagents could significantly expand multistep topochemistry to a larger number of intercalants.

  9. Mechanistic and kinetic analysis of the oxidative dehydrogenation of ethane via novel supported alkali chloride catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gaertner, C.; Veen, A.C. van; Lercher, J.A. [Technische Universitaet Muenchen (Germany). Catalysis Research Center

    2013-11-01

    The oxidative dehydrogenation of ethane over advanced catalysts is promising to selectively produce ethylene, an essential building block for the chemical industry. In this way, ethane from shale gas can be efficiently valorized. Supported alkali chloride catalysts are investigated in this work. Essential feature of those materials is the presence of a solid core (magnesium oxide in part doped with Dy{sub 2}O{sub 3}) covered under reaction conditions with a molten alkali chloride shell. It is shown that especially the lowered melting point of eutectic mixtures of LiCl with other alkali/alkaline earth metals is the key to taylor highly efficient materials. Elucidating the ODH reaction mechanism is essential to understand the reactivity of this novel catalyst class and provides the basis for improving performances. Information about elementary steps and the rate determining step were extracted from kinetic measurements, both in steady state and in transient configuration. Furthermore, isotopic labelling studies were performed, i.e. SSITKA studies and temperature programmed isotopic exchange experiments. Step experiments showed a significant oxygen uptake by the catalysts. Retained oxygen reacted quantitatively with ethane at nearly 100% selectivity to ethylene and conversion rates were comparable with rates observed during steady state operation. Thus, chemically bound oxygen in the melt is the active and selective intermediate in the ODH. Therefore, it is required to consider an intermediate and the activation is concluded to relate to the oxygen dissociation. The total concentration of stored oxygen can be correlated to the steady-state activity, while the viscosity of the melts mainly influences the selectivity towards ethene. Properties of the solid core impact on the catalyst efficiency suggesting that the oxygen species forms at the interface between support and overlayer. The quantity of retained oxygen additionally depends on the properties of the chloride

  10. Chemical and lead isotope constraints on sources of metal pollution in street sediment and lichens in southwest Ohio

    International Nuclear Information System (INIS)

    Highlights: ► Urban pollution study in a neighborhood adjacent to a coal-fired power plant. ► Pb isotopic compositions determined in street sediment and lichen samples. ► Geochemistry is consistent with Pb contamination from yellow road paint containing PbCrO4. - Abstract: Lead isotopic compositions were determined in street sediment and lichen samples to constrain the sources of metal pollution near a coal-fired power plant in SW Ohio. Previous studies of the street sediment found elevated levels of Cr, Cu and Ni, and extremely high levels of Pb and Zn. Although initial investigations suggested the presence of coal-derived pollution, Pb isotopes were employed to investigate the importance of additional sources. Highly variable concentrations of Pb in sieved (<38 μm) street sediment and lichen samples range from 130 to 1399 ppm and 11 to 53 ppm, respectively. Street sediment and lichen samples exhibit a strong positive correlation of 208Pb/204Pb vs. 206Pb/204Pb, 208Pb/206Pb vs. 207Pb/206Pb, 207Pb/206Pb vs. 206Pb/204Pb, and 207Pb/204Pb vs. 206Pb/204Pb consistent with Pb contamination from road paint containing PbCrO4 as a yellow pigment. Extremely high concentrations of Pb in road paint samples (812–6305 ppm) suggest road paint containing PbCrO4 is a major contributor to Pb levels in urban environments. Additional sources fro Zn and Cu beyond pollution derived from coal and road paint are proposed. Fine particulates containing potentially harmful metals in street sediment may be re-suspended in the air, as suggested by their presence in lichens, and pose a respiratory risk to human health. These metals may pose a risk to the greater environment, such as aquatic ecosystems subject to stormwater discharge from urban areas. This study is relevant and applicable to other urban settings, and prevention and remediation strategies for contaminated street sediment are recommended

  11. Improvement of hydrogen isotope exchange reactions on Li4SiO4 ceramic pebble by catalytic metals

    Institute of Scientific and Technical Information of China (English)

    Cheng Jian Xiao; Chun Mei Kang; Xiao Jun Chen; Xiao Ling Gao; Yang Ming Luo; Sheng Hu; Xiao Lin Wang

    2012-01-01

    Li4SiO4 ceramic pebble is considered as a candidate tritium breeding material of Chinese Helium Cooled Solid Breeder Test Blanket Module (CH HCSB TBM) for the International Thermonuclear Experimental Reactor (ITER).In this paper,Li4SiO4 ceramic pebbles deposited with catalytic metals,including Pt,Pd,Ru and Ir,were prepared by wet impregnation method.The metal particles on Li4SiO4 pebble exhibit a good promotion of hydrogen isotope exchange reactions in H2-DzO gas system,with conversion equilibrium temperature reduction of 200-300 ℃.The out-of-pile tritium release experiments were performed using 1.0 wt% Pt/Li4SiO4 and Li4SiO4 pebbles irradiated in a thermal neutron reactor.The thermal desorption spectroscopy shows that Pt was effective to increase the tritium release rate at lower temperatures,and the ratio of tritium molecule (HT) to tritiated water (HTO) of 1.0 wt% Pt/Li4SiO4 was much more than that of Li4SiO4,which released mainly as HTO.Thus,catalytic metals deposited on Li4SiO4 pebble may help to accelerate the recovery of bred tritium particularly in low temperature region,and increase the tritium molecule form released from the tritium breeding materials.

  12. Theory of the late stage of radiolysis of alkali halides

    NARCIS (Netherlands)

    Dubinko, V.I.; Turkin, A.A.; Vainshtein, D.I.; Hartog, H.W. den

    2000-01-01

    Recent results on heavily irradiated natural and synthetic NaCl crystals give evidence for the formation of large vacancy voids, which were not addressed by the conventional Jain-Lidiard model of radiation damage ill alkali halides. This model was constructed to describe metal colloids and dislocati

  13. Automated sample preparation for radiogenic and non-traditional metal isotope analysis by MC-ICP-MS

    Science.gov (United States)

    Field, M. P.; Romaniello, S. J.; Gordon, G. W.; Anbar, A. D.

    2012-12-01

    High throughput analysis is becoming increasingly important for many applications of radiogenic and non-traditional metal isotopes. While MC-ICP-MS instruments offer the potential for very high sample throughout, the requirement for labor-intensive sample preparation and purification procedures remains a substantial bottleneck. Current purification protocols require manually feeding gravity-driven separation columns, a process that is both costly and time consuming. This bottleneck is eliminated with the prepFAST-MC™, an automated, low-pressure ion exchange chromatography system that can process from 1 to 60 samples in unattended operation. The syringe-driven system allows sample loading, multiple acid washes, column conditioning and elution cycles necessary to isolate elements of interest and automatically collect up to 3 discrete eluent fractions at user-defined intervals (time, volume and flow rate). Newly developed protocols for automated purification of uranium illustrates high throughput (>30 per run), multiple samples processed per column (>30), complete (>99%) matrix removal, high recovery (> 98%, n=25), and excellent precision (2 sigma =0.03 permil, n=10). The prepFAST-MC™ maximizes sample throughput and minimizes costs associated with personnel and consumables providing an opportunity to greatly expand research horizons in fields where large isotopic data sets are required, including archeology, geochemistry, and climate/environmental science

  14. Lead isotope compositions of Late Cretaceous and early Tertiary igneous rocks and sulfide minerals in Arizona: Implications for the sources of plutons and metals in porphyry copper deposits

    Science.gov (United States)

    Bouse, R.M.; Ruiz, J.; Titley, S.R.; Tosdal, R.M.; Wooden, J.L.

    1999-01-01

    Porphyry copper deposits in Arizona are genetically associated with Late Cretaceous and early Tertiary igneous complexes that consist of older intermediate volcanic rocks and younger intermediate to felsic intrusions. The igneous complexes and their associated porphyry copper deposits were emplaced into an Early Proterozoic basement characterized by different rocks, geologic histories, and isotopic compositions. Lead isotope compositions of the Proterozoic basement rocks define, from northwest to southeast, the Mojave, central Arizona, and southeastern Arizona provinces. Porphyry copper deposits are present in each Pb isotope province. Lead isotope compositions of Late Cretaceous and early Tertiary plutons, together with those of sulfide minerals in porphyry copper deposits and of Proterozoic country rocks, place important constraints on genesis of the magmatic suites and the porphyry copper deposits themselves. The range of age-corrected Pb isotope compositions of plutons in 12 Late Cretaceous and early Tertiary igneous complexes is 206Pb/204Pb = 17.34 to 22.66, 207Pb/204Pb = 15.43 to 15.96, and 208Pb/204Pb = 37.19 to 40.33. These Pb isotope compositions and calculated model Th/U are similar to those of the Proterozoic rocks in which the plutons were emplaced, thereby indicating that Pb in the younger rocks and ore deposits was inherited from the basement rocks and their sources. No Pb isotope differences distinguish Late Cretaceous and early Tertiary igneous complexes that contain large economic porphyry copper deposits from less rich or smaller deposits that have not been considered economic for mining. Lead isotope compositions of Late Cretaceous and early Tertiary plutons and sulfide minerals from 30 metallic mineral districts, furthermore, require that the southeastern Arizona Pb province be divided into two subprovinces. The northern subprovince has generally lower 206Pb/204Pb and higher model Th/U, and the southern subprovince has higher 206Pb/204Pb and

  15. Long range interactions between alkali and alkaline-earth atoms

    CERN Document Server

    Jiang, Jun; Mitroy, J

    2013-01-01

    Dispersion coefficients between the alkali metal atoms (Li-Rb) and alkaline-earth metal atoms (Be-Sr) are evaluated using matrix elements computed from frozen core configuration interaction calculations. Besides dispersion coefficients with both atoms in their respective ground states, dispersion coefficients are also given for the case where one atom is in its ground state and the other atom is in a low lying excited state.

  16. Isotopic mass-dependence of metal cation diffusion coefficients in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Richter, F.M.; Christensen, J.N.; Sposito, G.

    2009-01-11

    Isotope distributions in natural systems can be highly sensitive to the mass (m) dependence of solute diffusion coefficients (D) in liquid water. Isotope geochemistry studies routinely have assumed that this mass dependence either is negligible (as predicted by hydrodynamic theories) or follows a kinetic-theory-like inverse square root relationship (D {proportional_to} m{sup -0.5}). However, our recent experimental results and molecular dynamics (MD) simulations showed that the mass dependence of D is intermediate between hydrodynamic and kinetic theory predictions (D {proportional_to} m{sup -{beta}} with 0 {<=} {beta} < 0.2 for Li{sup +}, Cl{sup -}, Mg{sup 2+}, and the noble gases). In this paper, we present new MD simulations and experimental results for Na{sup +}, K{sup +}, Cs{sup +}, and Ca{sup 2+} that confirm the generality of the inverse power-law relation D {proportional_to} m{sup -{beta}}. Our new findings allow us to develop a general description of the influence of solute valence and radius on the mass dependence of D for monatomic solutes in liquid water. This mass dependence decreases with solute radius and with the magnitude of solute valence. Molecular-scale analysis of our MD simulation results reveals that these trends derive from the exponent {beta} being smallest for those solutes whose motions are most strongly coupled to solvent hydrodynamic modes.

  17. Role of alkali hydroxides in the fireside corrosion of heat transfer surfaces, a practical approach

    Energy Technology Data Exchange (ETDEWEB)

    Blomberg, T. [Foster Wheeler Energia Oy (Finland); ASM Microchemistry OY, Espoo (Finland); Makkonen, P. [VTT Processes (Finland); Hiltunen, M. [Foster Wheeler Energia Oy, Karhula (Finland)

    2004-07-01

    In wood and other biomass-based fuels, the amount of potassium is normally high. The amount of potassium may play an important role in the corrosion of heat transfer surfaces located in the flue gas path, especially in the superheater region. The thermodynamic instability of the alkali metal hydroxides in the high vapour pressure of CO{sub 2} atmosphere is relevant only when the flue gas temperature is below 700 h C. The temperature profile of a typical biomass boiler is such that the flue gas entering the convective superheater region has a temperature around 850 C, and it contains alkali metal hydroxides that condense on the tube surfaces. In coal, oil and peat fired boilers the alkali metal hydroxides are converted to sulphates and chlorides, because these fuels do not contain excess of alkali metals like biomass typically does. In the fouling and corrosion risk evaluation of the fuel, the excess of alkali metals gives a better indication than the content of Cl or S. Reason for this are the alkali metal hydroxides present in the process. (orig.)

  18. Assessment of heavy metal pollution in sediments from Xiangjiang River (China) using sequential extraction and lead isotope analysis

    Institute of Scientific and Technical Information of China (English)

    蒋博峰; 孙卫玲

    2014-01-01

    The heavy metal (such as Cr, Ni, Cu, Cd, Pb, and Zn) concentration, speciation, and pollution source in 43 sediment samples from the Xiangjiang River were investigated using sequential extraction combined with Pb isotope analysis. Cu, Cd, Pb, and Zn concentrations are higher than their background values, while Cr and Ni concentrations are close to those. Sequential extraction demonstrates that heavy metals have different fractions, showing different bioavailabilities. Thew(206Pb)/w(207Pb) ratio increases with decreasing bioavailability in the order of exchangeable

  19. Field isotopic study of lead fate and compartmentalization in earthworm-soil-metal particle systems for highly polluted soil near Pb recycling factory.

    Science.gov (United States)

    Goix, Sylvaine; Mombo, Stéphane; Schreck, Eva; Pierart, Antoine; Lévêque, Thibaut; Deola, Frédéric; Dumat, Camille

    2015-11-01

    Earthworms are important organisms in soil macrofauna and play a key role in soil functionality, and consequently in terrestrial ecotoxicological risk assessments. Because they are frequently observed in soils strongly polluted by metals, the influence of earthworm bioturbation on Pb fate could therefore be studied through the use of Pb isotopes. Total Pb concentrations and isotopic composition ((206)Pb, (207)Pb and (208)Pb) were then measured in earthworms, casts and bulk soils sampled at different distance from a lead recycling factory. Results showed decreasing Pb concentrations with the distance from the factory whatever the considered matrix (bulk soils, earthworm bodies or cast samples) with higher concentrations in bulk soils than in cast samples. The bivariate plot (208)Pb/(206)Pb ratios versus (206)Pb/(207)Pb ratios showed that all samples can be considered as a linear mixing between metallic process particulate matter (PM) and geochemical Pb background. Calculated anthropogenic fraction of Pb varied between approximately 84% and 100%. Based on Pb isotopic signatures, the comparison between casts, earthworms and bulk soils allowed to conclude that earthworms preferentially ingest the anthropogenic lead fraction associated with coarse soil organic matter. Actually, soil organic matter was better correlated with Pb isotopic ratios than with Pb content in soils. The proposed hypothesis is therefore a decrease of soil organic matter turnover due to Pb pollution with consequences on Pb distribution in soils and earthworm exposure. Finally, Pb isotopes analysis constitutes an efficient tool to study the influence of earthworm bioturbation on Pb cycle in polluted soils. PMID:26025429

  20. 18O isotopic characterisation of non-point source contributed heavy metals (Zn and Cu) contamination of groundwater

    International Nuclear Information System (INIS)

    In many urbanised areas, fast depletion and severe degradation of the of groundwater resource with contaminants such as nitrate, fluoride, and heavy metals is a common phenomenon, resulting in zonal disparity in fresh water availability. Therefore, for protection of groundwater from pollution and depletion, it is a matter of concern for the planners and decision makers to clearly characterise the sources of contamination and to search for an alternative approach for groundwater development and management. In this context, a new approach is presented here, based on monitoring of 18O stable isotopic and heavy metals composition of groundwater, to clearly characterise non-point source contributed heavy metals pollution of groundwater in northern parts of Delhi area. In the investigated area, the Cu content in the groundwater ranges from 3-41 μg/l and Zn content ranges from 5-182 μg/l, showing considerable variation from location to location as well as within the small parts of a location. Wide variation in the 18O stable isotope content of groundwater (δ value of -5.7 per mille to -8.5 per mille) is due to significant variation in the δ18O-contents of rainfall with space and time, as well as intensity and distribution of rainfall. Enrichment in 18O composition with increasing Cu and Zn levels in groundwater suggest that infiltration of rain water, irrigation water and surface run-off water from the surrounding farm lands, along with agrochemicals and other salts present in the soil, to be the main processes causing groundwater contamination. The concentration of Cu and Zn in groundwater vary spatially, due to different degrees of evaporation/recharge, amounts of fertiliser applied and wastes disposed, adsorption/dispersion of species in the soils and lateral mixing of groundwater. Two opposite mechanisms adsorption and redistribution of infiltrating water along with Zn and Cu species in the soil zone are likely to affect the movement of the Zn and Cu species

  1. Metal sources of black smoker chimneys, Endeavour Segment, Juan de Fuca Ridge: Pb isotope constraints

    Energy Technology Data Exchange (ETDEWEB)

    Yao Huiqiang, E-mail: hqyao11@yahoo.com [Guangzhou Institute of Geochemistry Chinese Academy of Science, Guangzhou 510640 (China); National Key Lab of Marine Geology, Tongji University, Shanghai 200092 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Zhou Huaiyang, E-mail: zhouhy@tongji.edu.cn [Guangzhou Institute of Geochemistry Chinese Academy of Science, Guangzhou 510640 (China); National Key Lab of Marine Geology, Tongji University, Shanghai 200092 (China); Peng Xiaotong [Guangzhou Institute of Geochemistry Chinese Academy of Science, Guangzhou 510640 (China); National Key Lab of Marine Geology, Tongji University, Shanghai 200092 (China); Bao Shenxu [Guangzhou Institute of Geochemistry Chinese Academy of Science, Guangzhou 510640 (China); National Key Lab of Marine Geology, Tongji University, Shanghai 200092 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Wu Zijun; Li Jiangtao [Guangzhou Institute of Geochemistry Chinese Academy of Science, Guangzhou 510640 (China); National Key Lab of Marine Geology, Tongji University, Shanghai 200092 (China); Sun Zhilei; Chen Zhiqiang; Li Jiwei [Guangzhou Institute of Geochemistry Chinese Academy of Science, Guangzhou 510640 (China); National Key Lab of Marine Geology, Tongji University, Shanghai 200092 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Chen Guangqian [Guangzhou Institute of Geochemistry Chinese Academy of Science, Guangzhou 510640 (China)

    2009-10-15

    Hydrothermal chimney sulfides, vent cap chimney samples, Fe-oxide and basalts from sediment-starving Juan de Fuca Ridge, in the Endeavour segment, exhibit a range of Pb isotope ratios ({sup 206}Pb/{sup 204}Pb = 18.658-18.769; {sup 207}Pb/{sup 204}Pb = 15.457-15.566; {sup 208}Pb/{sup 204}Pb = 37.810-38.276). The data array is not parallel to the northern hemisphere mantle reservoirs indicating a possible sediment component within the sulfides. By assuming that the potential end-member sediment component has a {sup 207}Pb/{sup 204}Pb (15.70) similar to Middle Valley sediment, it is suggested the potential end-member sediment component may have {sup 206}Pb/{sup 204}Pb = 18.90; {sup 208}Pb/{sup 204}Pb = 38.82. Basalt-derived Pb for the Endeavour segment hydrothermal system involves about 50/50 leaching of E-MORB and T2-MORB. Detailed observations show the Mothra field derives more Pb from T2-MORB than the Main Endeavour field does. According to the binary mixing model, the results show little Pb (<1.5%) or no Pb derivation from sedimentary sources. However, the high NH{sub 4}{sup +}, CH{sub 4} and Br/Cl ratios in hydrothermal fluids are consistent with a sediment component within the segment. Reconciling the Pb isotope data with the chemistry data of hydrothermal fluids, it is suggested that the sediment component may be located in a lower temperature recharge zone where Pb could not be mobilized from the sediment.

  2. Organochlorine pesticides and heavy metals in fish from Lake Awassa, Ethiopia : Insights from stable isotope analysis

    OpenAIRE

    Yohannes, Yared Beyene; Ikenaka, Yoshinori; NAKAYAMA, Shouta M.M.; Saengtienchai, Aksorn; Watanabe, Kensuke; ISHIZUKA, Mayumi

    2013-01-01

    The levels and bioaccumulation of organochlorine pesticides (OCPs) and heavy metals were studied in muscle and liver of three fish species, with two trophic levels, from Lake Awassa, Ethiopia. DDTs were the predominant organic pollutant in all species with a maximum level of 73.28 ng g(-1) wet weight (ww). p,p'-DDE was the predominate congener and showed a significant (p

  3. Carbonation of metal silicates for long-term CO2 sequestration

    Science.gov (United States)

    Blencoe, James G; Palmer, Donald A; Anovitz, Lawrence M; Beard, James S

    2014-03-18

    In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).

  4. Alkali-metal ion coordination in uranyl(VI) poly-peroxide complexes in solution. Part 1: the Li⁺, Na⁺ and K⁺--peroxide-hydroxide systems.

    Science.gov (United States)

    Zanonato, Pier Luigi; Di Bernardo, Plinio; Vallet, Valerie; Szabó, Zoltán; Grenthe, Ingmar

    2015-01-28

    The alkali metal ions Li(+), Na(+) and K(+) have a profound influence on the stoichiometry of the complexes formed in uranyl(VI)-peroxide-hydroxide systems, presumably as a result of a templating effect, resulting in the formation of two complexes, M[(UO2)(O2)(OH)]2(-) where the uranyl units are linked by one peroxide bridge, μ-η(2)-η(2), with the second peroxide coordinated "end-on", η(2), to one of the uranyl groups, and M[(UO2)(O2)(OH)]4(3-), with a four-membered ring of uranyl ions linked by μ-η(2)-η(2) peroxide bridges. The stoichiometry and equilibrium constants for the reactions: M(+) + 2UO2(2+) + 2HO2(-) + 2H2O → M[(UO2)(O2)(OH)]2(-) + 4H(+) (1) and M(+) + 4UO2(2+) + 4HO2(-) + 4H2O → M[(UO2)(O2)(OH)]4(3-) + 8H(+) (2) have been measured at 25 °C in 0.10 M (tetramethyl ammonium/M(+))NO3 ionic media using reaction calorimetry. Both reactions are strongly enthalpy driven with large negative entropies of reaction; the observation that ΔH(2) ≈ 2ΔH(1) suggests that the enthalpy of reaction is approximately the same when peroxide is added in bridging and "end-on" positions. The thermodynamic driving force in the reactions is the formation of strong peroxide bridges and the role of M(+) cations is to provide a pathway with a low activation barrier between the reactants and in this way "guide" them to form peroxide bridged complexes; they play a similar role as in the synthesis of crown-ethers. Quantum chemical (QC) methods were used to determine the structure of the complexes, and to demonstrate how the size of the M(+)-ions affects their coordination geometry. There are several isomers of Na[(UO2)(O2)(OH)]2(-) and QC energy calculations show that the ones with a peroxide bridge are substantially more stable than the ones with hydroxide bridges. There are isomers with different coordination sites for Na(+) and the one with coordination to the peroxide bridge and two uranyl oxygen atoms is the most stable one.

  5. Development of Detection Method for Chlorates of Alkali Metals in Cosmetics%化妆品中碱金属氯酸盐的检测方法研究

    Institute of Scientific and Technical Information of China (English)

    杨轶眉; 李勤; 薛峰

    2014-01-01

    A thin layer chromatography(TCL)&potentiometric titration method was developed for the determination of chlo-rates of alkali metals in cosmetics. Chlorates were separated from other halates by thin layer chromatography and identified by the oxidation of iodide to form iodine. After identification,chlorate was reduced by zinc powder under acid conditions. The formed chloride was measured by potentiometric titration using a silver nitrate solution. The results showed that the recovery of the method was in the range of 81.4% to 105.2% under the concentration of 0.03% to 3.41% while being counted as chlorate ions(with relative standard deviation of not more than 10% ). Additionally,the detection and quantification limits were found to be 0.03% and 0.10% respectively.%建立了薄层色谱法和电位滴定法联用测定化妆品中碱金属氯酸盐含量的方法。用薄层色谱将氯酸盐从其他卤酸盐中分离,与碘化物形成碘来鉴别碱金属的氯酸盐。通过鉴别试验后,在酸性条件下氯酸盐被锌粉还原,所形成的氯化物用硝酸银溶液进行电位滴定。试验结果表明:在0.03%~3.41%(以氯酸根离子计)的质量分数范围内,加标回收率为81.4%~105.2%,相对标准偏差(RSD)≤10%;定性检出限为0.03%(质量分数),定量检出限为0.10%(质量分数)。

  6. An equation of state for alkali metals

    Science.gov (United States)

    Arafin, Sayyadul; Singh, Ram N.

    2016-04-01

    Semi-empirical equations of state based on Lindemann's law have been developed to determine the pressure (P) dependence of the melting temperature (Tm) of Li, K, Rb and Cs. The basic inputs are Grüneisen parameter and the bulk modulus. Tm-P variations exhibit maximum melting temperature with concave downwards. The maximum in Tm for Cs is found to occur at pressure of 2.2 GPa whereas for Li, K and Rb it falls in the range of 7-9.5 GPa. The predicted values of Tm as a function of pressure, based on the present empirical relation, fit quite well with the available experimental data. The empirical relation can also be used to extrapolate Tm at higher pressure from the values available at lower pressures.

  7. Black Carbon, Metal Concentrations and Lead Isotopes Ratios in Aerosols as Tracers of Human and Natural Activities in Northern Vietnam

    Science.gov (United States)

    Guinot, B. P.

    2015-12-01

    Atmospheric brown clouds (ABC) observed as widespread layers of brownish haze are regional scale plumes of air pollutants with a hot spot of emission located in East Asia. ABC are mainly composed of aerosol particles such as Black Carbon (BC) emitted to the atmosphere during biomass burning and fossil fuels combustion. The atmospheric lifetime of BC ranges from a few days in wet season up to one month in dry season. The use of stable lead isotopes and 21 elements as tracers of air pollution was applied to identify and characterized the main sources of anthropogenic activities in Asian region. Aerosol samples from Haiphong (North Vietnam) were collected by a high volume sampler for a period of one year from October 2012 to October 2013. Vietnam's 207Pb/206Pb ratios were almost identical to those found for China. Ratios of 207Pb/206Pb ranged from 0.837 to 0.871 which agrees with values previously reported for the last 10 years in China (0.841 - 0.879). No significant variation in isotope ratio was observed during the sampling period, which suggests that there was no large seasonal variation in the isotope ratios of airborne lead. Trajectory analysis showed that almost two third of the air masses originated from East Northeast which implies that China was a major source of lead in atmosphere. Enrichment factor calculations indicated a large influence of coal activity (EF(Al) As = 1982 ± 796, EF(Al) Cd = 972 ± 659, EF(Al) Sb = 1358 ± 930) but the difference between combustion and mining exploitation could not be evidenced. Significant correlations were found between two others groups of elements: As, Cu, Ni, Zn, and Al, Fe K, Co. Wind dilution was effective on metals concentration variation. During the cold and dry season (winter) ambient concentrations were high and variable, during the warm and wet season (summer) concentrations were stable and low. Taken together, these factors also identified industrial and lithogenic activities in the region.

  8. Fe and Cu isotope fractionation between chalcopyrite and dissolved metal species during hydrothermal recrystallization: An experimental study at 350°C and 500 bars

    Science.gov (United States)

    Syverson, D. D.; Luhmann, A. J.; Tan, C.; Borrok, D. M.; Ding, K.; Seyfried, W. E., Jr.

    2015-12-01

    The equilibrium Fe and Cu isotope fractionation factor between chalcopyrite and dissolved metal species was determined under hydrothermal conditions at 350°C and 500 bars. The experiments took advantage of gold-cell reaction technology, allowing time-series sampling of solution during the hydrothermal recrystallization of chalcopyrite over 3000 hours. One of the recrystallization experiments utilized an anomalous 57Fe spike in solution to quantify the degree and rate of isotopic exchange towards equilibrium between mineral and fluid reservoirs. The time-series 57Fe spike data suggests that chalcopyrite exchanges rapidly with dissolved Fe and Cu in solution and the isotopic fractionation between each metal-bearing reservoir throughout reaction progress, upon dissolution and recrystallization, represents close to equilibrium conditions. The isotope data indicate that the equilibrium fractionation between chalcopyrite and dissolved Fe and Cu at 350°C, Δ56FeCpy-Fe(aq), is 0.129±0.171‰ and Δ65CuCpy-Fe(aq), is -0.201±0.341‰ (2σ), and are in good agreement with recent theoretical equilibrium predictions. Comparison of the experimental data from this study with conjugate chalcopyrite and dissolved Fe and Cu pairs from a variety of hydrothermal systems along the mid-ocean ridge system indicates that chalcopyrite precipitates and recrystallizes at isotopic equilibrium with the fluid during cooling upon ascent to the seafloor. The rapid exchange between the mineral and fluid metal-reservoirs suggests that chalcopyrite effectively records the isotopic composition of the coexisting hydrothermal fluid during the evolution of hydrothermal systems. In addition, the pyrite-chalcopyrite equilibrium Fe isotope fractionation, Δ56FePyr-Cpy, at 350°C is quantified by combination of pyrite-Fe2+(aq) equilibrium fractionation data from Syverson et al., [2013] with chalcopyrite-Fe2+(aq) from this study, resulting in a fractionation of 0.861±0.337‰ (2σ). The empirical

  9. Effects of alkali metals on catalyst of MnOx-CeO2/ZrO2-PILC in the low-temperature selective catalytic reduction%碱土金属对MnOx-CeO2/ZrO2-PILC催化剂SCR活性影响研究

    Institute of Scientific and Technical Information of China (English)

    沈伯雄; 陈建宏; 姚燕; 胡国丽

    2012-01-01

    The poisoning effects of alkali metals on low-temperature selective catalytic reduction (SCR) catalyst MnOx-CeO2/ZrO2-PILC were invested by the method of impregnation in the laboratory. It was indicated that the addition of Ca/Mg would decrease the activities of the catalyst, and the poisoning effects were contacted with the amount and acidity of the doped-alkali metal. X-ray diffraction (XRD) , H2-temperature programmed reduction (H2-TPR) , N2 adsorption-desorption and temperature-programmed desorption of NH3(NH3-TPD) were used to characterize the properties of the fresh and alkali earth doped catalysts. According to the results, the doped-alkali metals would inhibit the reduction properties, induce the loss in surface area and surface acidity.%采用浸渍法模拟低温选择性催化还原(SCR)催化剂MnOx-CeO2/ZrO2-PILC的碱土金属中毒特性,研究了碱土金属及其负载量对中毒程度的影响.实验表明,钙/镁的添加会引起催化剂中毒,催化剂中毒失活程度与碱土金属的负载量有关.运用X射线衍射(XRD)、H2程序升温还原(H2-TPR)、氮气吸脱附及NH3程序升温脱附(NH3-TPD)对新鲜催化剂以及碱土金属中毒后的催化剂进行了表征.结果表明,钙/镁中毒后催化剂的比表面积降低、催化剂氧化还原性和表面酸性减少,进而造成催化剂失活.

  10. In situ alkali-silica reaction observed by x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kurtis, K.E.; Monteiro, P.J.M. [Univ. of California, Berkeley, CA (United States); Brown, J.T.; Meyer-Ilse, W. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    In concrete, alkali metal ions and hydroxyl ions contributed by the cement and reactive silicates present in aggregate can participate in a destructive alkali-silica reaction (ASR). This reaction of the alkalis with the silicates produces a gel that tends to imbibe water found in the concrete pores, leading to swelling of the gel and eventual cracking of the affected concrete member. Over 104 cases of alkali-aggregate reaction in dams and spillways have been reported around the world. At present, no method exists to arrest the expansive chemical reaction which generates significant distress in the affected structures. Most existing techniques available for the examination of concrete microstructure, including ASR products, demand that samples be dried and exposed to high pressure during the observation period. These sample preparation requirements present a major disadvantage for the study of alkali-silica reaction. Given the nature of the reaction and the affect of water on its products, it is likely that the removal of water will affect the morphology, creating artifacts in the sample. The purpose of this research is to observe and characterize the alkali-silica reaction, including each of the specific reactions identified previously, in situ without introducing sample artifacts. For observation of unconditioned samples, x-ray microscopy offers an opportunity for such an examination of the alkali-silica reaction. Currently, this investigation is focusing on the effect of calcium ions on the alkali-silica reaction.

  11. A study of radionuclides, metals and stable lead isotope ratios in sediments and soils in the vicinity of natural U-mineralisation areas in the Northern Territory.

    Science.gov (United States)

    Frostick, A; Bollhöfer, A; Parry, D

    2011-10-01

    Australian guidelines recommend that tailings materials from uranium (U) mining and milling be contained without any detrimental impact on the environment for at least 1000 years. Natural analogue sites are being investigated to determine if they can provide data on the rates of natural erosion processes which occur over these timescales, for input into predictive geomorphic computer models. This paper presents radionuclide, metal and stable lead (Pb) isotope data from sediment cores and surface soils in the vicinity of two mineralised areas in the Alligator Rivers Region. Surface scrapes from the natural Anomaly #2, south of the Ranger mineral lease, exhibit radiogenic (206)Pb/(207)Pb and (208)Pb/(207)Pb ratios, and elevated U and metal concentrations typical for a near surface U anomaly. In contrast, samples taken from the Koongarra mineral lease (KML) show radionuclide activity and metal concentrations similar to natural areas elsewhere in the Alligator Rivers Region and Pb isotope ratios are closer to present day average crustal ratios (PDAC), as the orebodies at KML are covered by surficial sand. A sediment core collected from Anbangbang Billabong, downstream of KML, exhibits small variations in Pb isotope ratios that indicate that approximately 1% of the upper sediments in the sediment core may be derived from material originating from the U anomaly at Koongarra. PMID:20471726

  12. A study of radionuclides, metals and stable lead isotope ratios in sediments and soils in the vicinity of natural U-mineralisation areas in the Northern Territory

    Energy Technology Data Exchange (ETDEWEB)

    Frostick, A., E-mail: Alison.Frostick@cdu.edu.au [Charles Darwin University, School of Environment and Life Sciences, Darwin NT 0909 (Australia); ERISS, GPO Box 461, Darwin NT 0801 (Australia); Bollhoefer, A. [ERISS, GPO Box 461, Darwin NT 0801 (Australia); Parry, D. [AIMS, PO Box 41775, Casuarina NT 0811 (Australia)

    2011-10-15

    Australian guidelines recommend that tailings materials from uranium (U) mining and milling be contained without any detrimental impact on the environment for at least 1000 years. Natural analogue sites are being investigated to determine if they can provide data on the rates of natural erosion processes which occur over these timescales, for input into predictive geomorphic computer models. This paper presents radionuclide, metal and stable lead (Pb) isotope data from sediment cores and surface soils in the vicinity of two mineralised areas in the Alligator Rivers Region. Surface scrapes from the natural Anomaly no. 2, south of the Ranger mineral lease, exhibit radiogenic {sup 206}Pb/{sup 207}Pb and {sup 208}Pb/{sup 207}Pb ratios, and elevated U and metal concentrations typical for a near surface U anomaly. In contrast, samples taken from the Koongarra mineral lease (KML) show radionuclide activity and metal concentrations similar to natural areas elsewhere in the Alligator Rivers Region and Pb isotope ratios are closer to present day average crustal ratios (PDAC), as the orebodies at KML are covered by surficial sand. A sediment core collected from Anbangbang Billabong, downstream of KML, exhibits small variations in Pb isotope ratios that indicate that approximately 1% of the upper sediments in the sediment core may be derived from material originating from the U anomaly at Koongarra.

  13. Evidence for [18-Crown-6 Na]2[S2O4] in methanol and dissociation to Na2S2O4 and 18-Crown-6 in the solid state; accounting for the scarcity of simple oxy dianion salts of alkali metal crown ethers in the solid state.

    Science.gov (United States)

    Bruna, Pablo J; Greer, Scott; Passmore, Jack; Rautiainen, J Mikko

    2011-02-21

    [18-Crown-6 Na](2)S(2)O(4) complex was prepared in methanol solution but dissociates into 18-Crown-6 ((s)) and Na(2)S(2)O(4 (s)) on removal of the solvent. Evidence for complexation in methanol is supported by a quantitative mass analysis and the dissociation in the solid state by vibrational spectroscopy and powder X-ray diffraction. These observations are accounted for by investigating the energetics of complexation in solution and dissociation in the solid state using calculated density functional theory (DFT) gas phase binding enthalpies and free energies combined with conductor-like screening model (COSMO) solvation energies and lattice enthalpy and free energy terms derived from volume based thermodynamics (VBT). Our calculations show that complexation of alkali metal dianion salts to crown ethers are much less favorable than that of the corresponding monoanion salts in the solid state and that the formation of alkali metal crown complexes of stable simple oxy-dianion (e.g., CO(3)(2-), SO(4)(2-)) salts is unlikely. The roles of complexation with 18-Crown-6 and ion pair formation in the process of dissolution of Na(2)S(2)O(4) to methanol are discussed.

  14. Alkali-Resistant Mechanism of a Hollandite DeNOx Catalyst.

    Science.gov (United States)

    Hu, Pingping; Huang, Zhiwei; Gu, Xiao; Xu, Fei; Gao, Jiayi; Wang, Yue; Chen, Yaxin; Tang, Xingfu

    2015-06-01

    A thorough understanding of the deactivation mechanism by alkalis is of great importance for rationally designing improved alkali-resistant deNOx catalysts, but a traditional ion-exchange mechanism cannot often accurately describe the nature of the deactivation, thus hampering the development of superior catalysts. Here, we establish a new exchange-coordination mechanism on the basis of the exhaustive study on the strong alkali resistance of a hollandite manganese oxide (HMO) catalyst. A combination of isothermal adsorption measurements of ammonia with X-ray absorption near-edge structure spectra and X-ray photoelectron spectra reveals that alkali metal ions first react with protons from Brønsted acid sites of HMO via the ion exchange. Synchrotron X-ray diffraction patterns and extended X-ray absorption fine structure spectra coupled with theoretical calculations demonstrate that the exchanged alkali metal ions are subsequently stabilized at size-suitable cavities in the HMO pores via a coordination model with an energy savings. This exchange-coordination mechanism not only gives a wholly convincing explanation for the intrinsic nature of the deactivation of the reported catalysts by alkalis but also provides a strategy for rationally designing improved alkali-resistant deNOx catalysts in general. PMID:25941972

  15. Alkali binding in hydrated Portland cement paste

    NARCIS (Netherlands)

    Chen, W.; Brouwers, H.J.H.

    2010-01-01

    The alkali-binding capacity of C–S–H in hydrated Portland cement pastes is addressed in this study. The amount of bound alkalis in C–S–H is computed based on the alkali partition theories firstly proposed by Taylor (1987) and later further developed by Brouwers and Van Eijk (2003). Experimental data

  16. Isotopic-tracer-aided studies on undesirable effects of heavy metals in the soil-plant system. Part of a coordinated programme on isotopic-tracer-aided studies of agrochemical residue - soil biota interactions

    International Nuclear Information System (INIS)

    Uptake of isotopically labelled mercury (Hg-203), cadmium (Cd-115m) and zinc (Zn-65) from a calcareous chernozem and a podzolized brown earth by spring and winter varieties of wheat, rye and barley was investigated in pot experiments carried out until maturity of the plants. The labelled heavy metals, applied at concentrations innocuous to plant growth (0.5 ppm Hg or Cd, 50 ppm Zn) were determined radiometrically in the straw and in the grains of the harvested plants, as well as in the milling products (bran, semolina and flour) obtained by standard procedures of grain processing. Uptake of mercury was several hundred times smaller than the uptake of cadmium, if both metals were applied to the soil in equal amounts. Whereas the uptake of mercury from the acid soil was insignificant or not detectable, cadmium was taken up from this soil at a much higher rate than from the alkaline soil. Thus, not mercury, but cadmium imposes the greatest hazard on the food chain. Winter varieties of cereals took up more mercury and cadmium than did spring varieties. The content of heavy metals in the plants decreased considerably when plants approached maturity. During translocation through the plants the metals were gradually retained when passing from the stalks (''straw'') into the grains, and from the seed-cover (''bran'') into the endosperm (''flour''). The heavy metal contents of the grain fractions decreased in the order: bran > semolina > flour. Concentrations of heavy metals in flour were 3-8 times smaller than in straw, showing that flour is least affected by heavy metal pollution of cereals via the soil. The metal content of the various flour types was correlated with their percentage of bran and with their ash content. By adding an ion-exchanger to the soil the pattern of relative distribution of heavy metals in mature plants was not changed, but the cadmium content of all cereal products was considerably lowered

  17. Trace metal in surface water and groundwater and its transfer in a Yellow River alluvial fan: Evidence from isotopes and hydrochemistry

    International Nuclear Information System (INIS)

    Metals are ubiquitous in the environment. The aim of sustainable management of the agro-ecosystem includes ensuring that water continues to fulfill its function in agricultural production, cycling of elements, and as a habitat of numerous organisms. There is no doubt that the influence of large-scale irrigation projects has impacted the regional surface–groundwater interactions in the North China Plain (NCP). Given these concerns, the aim of this study is to evaluate the pollution, identify the sources of trace metals, analyze the influence of surface–groundwater interactions on trace metal distribution, and to propose urgent management strategies for trace metals in the agriculture area in China. Trace metals, hydrochemical indicators (EC, pH, concentrations of Na+, K+, Mg2+, Ca2+, Cl−, SO42−, and HCO3−) and stable isotopic composition (δ18O and δ2H) were determined for surface water (SW) and groundwater (GW) samples. Trace metals were detected in all samples. Concentrations of Fe, Se, B, Mn, and Zn in SW exceeded drinking water standards by 14.8%, 29.6%, 25.9%, 11.1%, and 14.8% higher, respectively, and by 3.8%, 23.1%, 11.5%, 11.5%, and 7.7% in GW. The pollution of trace metals in surface water was more serious than that in groundwater, and was also higher than in common irrigation areas in NCP. Trace metals were found to have a combined origin of geogenic and agriculture and industrial activities. Their distribution varied greatly and exhibited a certain relationship with the water flow direction, with the exception of a number of singular sites. Hydrochemical and environmental isotopic evidence indicates surface–groundwater interactions influence the spatial distribution of trace metal in the study area. Facing the ongoing serious pollution, management practices for source control, improved control technologies, and the construction of a monitoring net to warn of increased risk are urgently needed. - Highlights: • Trace metal pollution in

  18. Trace metal in surface water and groundwater and its transfer in a Yellow River alluvial fan: Evidence from isotopes and hydrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; Li, Fadong, E-mail: lifadong@igsnrr.ac.cn; Liu, Qiang; Zhang, Yan

    2014-02-01

    Metals are ubiquitous in the environment. The aim of sustainable management of the agro-ecosystem includes ensuring that water continues to fulfill its function in agricultural production, cycling of elements, and as a habitat of numerous organisms. There is no doubt that the influence of large-scale irrigation projects has impacted the regional surface–groundwater interactions in the North China Plain (NCP). Given these concerns, the aim of this study is to evaluate the pollution, identify the sources of trace metals, analyze the influence of surface–groundwater interactions on trace metal distribution, and to propose urgent management strategies for trace metals in the agriculture area in China. Trace metals, hydrochemical indicators (EC, pH, concentrations of Na{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, Cl{sup −}, SO{sub 4}{sup 2−}, and HCO{sub 3}{sup −}) and stable isotopic composition (δ{sup 18}O and δ{sup 2}H) were determined for surface water (SW) and groundwater (GW) samples. Trace metals were detected in all samples. Concentrations of Fe, Se, B, Mn, and Zn in SW exceeded drinking water standards by 14.8%, 29.6%, 25.9%, 11.1%, and 14.8% higher, respectively, and by 3.8%, 23.1%, 11.5%, 11.5%, and 7.7% in GW. The pollution of trace metals in surface water was more serious than that in groundwater, and was also higher than in common irrigation areas in NCP. Trace metals were found to have a combined origin of geogenic and agriculture and industrial activities. Their distribution varied greatly and exhibited a certain relationship with the water flow direction, with the exception of a number of singular sites. Hydrochemical and environmental isotopic evidence indicates surface–groundwater interactions influence the spatial distribution of trace metal in the study area. Facing the ongoing serious pollution, management practices for source control, improved control technologies, and the construction of a monitoring net to warn of increased risk are

  19. Precision two-photon spectroscopy of alkali elements

    Indian Academy of Sciences (India)

    P V Kiran Kumar; M V Suryanarayana

    2014-08-01

    In this paper, we have briefly reviewed the work on two-photon spectroscopy of alkali elements and its applications. The technique of Doppler-free two-photon spectroscopy is briefly summarized. A review of various techniques adopted for measuring absolute frequencies of the atomic transitions and precision measurements of isotope shifts and hyperfine structures (HFS) is presented. Some of the recent works on precision measurements of HFS constants of 6 ${}^2S_{1/2}$ level of ${}^{39}$K and ${}^{41}$K, 9 ${}^2S_{1/2}$ level and 7 ${}^2D_{3/2}$ level of 133Cs are also discussed.

  20. In situ catalytic pyrolysis of lignocellulose using alkali-modified amorphous silica alumina

    NARCIS (Netherlands)

    Zabeti, M.; Nguyen, T. S.; Lefferts, L.; Heeres, H. J.; Seshan, K.

    2012-01-01

    Canadian pinewood was pyrolyzed at 450 degrees C in an Infrared oven and the pyrolysis vapors were converted by passing through a catalyst bed at 450 degrees C. The catalysts studied were amorphous silica alumina (ASA) containing alkali metal or alkaline earth metal species including Na, K, Cs, Mg a

  1. Luminescent decay and spectra of impurity-activated alkali halides under high pressure

    International Nuclear Information System (INIS)

    The effect of high pressure on the luminescence of alkali halides doped with the transition-metal ions Cu+ and Ag+ and the heavy-metal ions In+ and Tl+ was investigated to 140 kbar. Measurement of spectra allowed the prediction of kinetic properties, and the predictions agree with lifetime data

  2. Catalysis using hydrous metal oxide ion exchangers

    Science.gov (United States)

    Dosch, R.G.; Stephens, H.P.; Stohl, F.V.

    1983-07-21

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  3. Catalysis using hydrous metal oxide ion exchanges

    Science.gov (United States)

    Dosch, Robert G.; Stephens, Howard P.; Stohl, Frances V.

    1985-01-01

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  4. High-precision analysis on annual variations of heavy metals, lead isotopes and rare earth elements in mangrove tree rings by inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Yu, Ke-Fu; Kamber, Balz S.; Lawrence, Michael G.; Greig, Alan; Zhao, Jian-Xin

    2007-02-01

    Annual variations from 1982 to 1999 of a wide range of trace elements and reconnaissance Pb isotopes ( 207Pb/ 206Pb and 208Pb/ 206Pb) were analyzed by solution ICP-MS on digested ash from mangrove Rhizophora apiculata, obtained from Leizhou Peninsula, along northern coast of South China Sea. The concentrations of the majority of elements show a weak declining trend with growth from 1982 to 1999, punctuated by several high concentration spikes. The declining trends are positively correlated with ring width and negatively correlated with inferred water-use efficiency, suggesting a physiological control over metal-uptake in this species. The episodic metal concentration-peaks cannot be interpreted with lateral movement or growth activities and appear to be related to environmental pollution events. Pb isotope ratios for most samples plot along the 'Chinese Pb line' and clearly document the importance of gasoline Pb as a source of contaminant. Shale-normalised REE + Y patterns are relatively flat and consistent across the growth period, with all patterns showing a positive Ce anomaly and elevated Y/Ho ratio. The positive Ce anomaly is observed regardless of the choice of normaliser, in contrast to previously reported REE patterns for terrestrial and marine plants. This pilot study of trace element, REE + Y and Pb isotope distribution in mangrove tree rings indicates the potential use of mangroves as monitors of historical environmental change.

  5. Bioaccumulation of polonium (210Po, uranium (234U, 238U isotopes and trace metals in mosses from Sobieszewo Island, northern Poland

    Directory of Open Access Journals (Sweden)

    Boryło A.

    2013-04-01

    Full Text Available The objective of this study was determination of the polonium (210Po, uranium (234U and 238U radionuclides and trace metals (Pb, Fe, Zn, Cu, Ni, Cd, Hg concentrations in mosses samples from Sobieszewo Island near the phosphogypsum waste dump in Wiślinka (northern Poland. The obtained results revealed that the concentrations of 210Po, 234U, and 238U in the two analyzed kinds of mosses: Pleurozium schreberi and Dicranum scoparium were similar. Among the analyzed trace metals the highest concentration in mosses was recorded for iron, while the lowest for nickel, cadmium and mercury. The obtained studies showed that the sources of polonium and uranium isotopes, as well as trace metals in analyzed mosses are air city contaminations transported from Gdańsk and from existing in the vicinity the phosphogypsum waste heap in Wiślinka (near Gdańsk.

  6. 气相中碱金属离子与丝氨酸、亮氨酸和赖氨酸五肽复合物的裂解反应%Fragmentation Reactions of Complexes of Alkali Metal Ions with Pentaserine, Pentaleucine and Pentalysine in Gas Phase

    Institute of Scientific and Technical Information of China (English)

    魏王慧; 王青; 储艳秋; 汪日志; 丁传凡

    2014-01-01

    为了探索金属离子对含有不同侧链的多肽气相解离的影响,采用质谱法研究了碱金属离子Li+, Na+, K+, Rb+和Cs+分别与丝氨酸、亮氨酸和赖氨酸五肽(分别简写为S5, L5和K5)形成的复合物的裂解反应.质谱定性结果表明,5种碱金属离子均可以在气相中与丝氨酸、亮氨酸和赖氨酸五肽形成配合比为1:1和2:1的非共价复合物;竞争反应结果表明,随着碱金属离子半径的增加,它们与3种五肽的结合能力逐渐减弱.质谱定量结果表明, K+与丝氨酸、亮氨酸和赖氨酸五肽复合物的结合常数分别为8.94×104,2.83×104和2.50×103 L/mol,表明K+与五肽复合物的结合强度按照丝氨酸、亮氨酸和赖氨酸的顺序依次减小.含不同侧链碱金属离子-五肽复合物的碰撞诱导解离结果表明,复合物的碎裂主要发生在骨架上,丝氨酸五肽复合物最易碎裂,亮氨酸五肽复合物其次,赖氨酸五肽复合物则较难碎裂,且3种复合物的侧链断裂情况也呈现明显差异.此外,研究了Na+与亮氨酸五肽复合物所产生的碎片离子,分析了不同离子之间的来源关系,并以Dunbar的复合物理论模型为依据,推测在碎裂过程中,碱金属离子可能向五肽的碳端或氮端偏移.质谱碎片分析结果表明,在2:1的非共价复合物中,第一个碱金属离子与五肽上4个酰胺键的羰基结合,第二个碱金属离子与五肽的羧基氧原子结合.%For exploring the effects of alkali metal ions on the dissociations of peptides with different side chains in the gas phase, the complexes of Li+, Na+, K+, Rb+ and Cs+ with pentapeptides, Ser-Ser-Ser-Ser-Ser( S5 ) , Leu-Leu-Leu-Leu-Leu ( L5 ) and Lys-Lys-Lys-Lys-Lys ( K5 ) , were chosen to investigate the frag-mentation reaction pathways by mass spectrometry. The experimental results indicated that alkali metal ions and S5, L5, K5 can form 1:1 and 2:1 non-covalent complexes in the gas phase, and the binding

  7. Isotopically controlled semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Haller, Eugene E.

    2001-12-21

    Semiconductor bulk crystals and multilayer structures with controlled isotopic composition have attracted much scientific and technical interest in the past few years. Isotopic composition affects a large number of physical properties, including phonon energies and lifetimes, bandgaps, the thermal conductivity and expansion coefficient and spin-related effects. Isotope superlattices are ideal media for self-diffusion studies. In combination with neutron transmutation doping, isotope control offers a novel approach to metal-insulator transition studies. Spintronics, quantum computing and nanoparticle science are emerging fields using isotope control.

  8. Electrochemical synthesis of alkali-intercalated iron selenide superconductors

    Institute of Scientific and Technical Information of China (English)

    申士杰; 应天平; 王刚; 金士锋; 张韩; 林志萍; 陈小龙

    2015-01-01

    Electrochemical method has been used to insert K/Na into FeSe lattice to prepare alkali-intercalated iron selenides at room temperature. Magnetization measurement reveals that KxFe2Se2 and NaxFe2Se2 are superconductive at 31 K and 46 K, respectively. This is the first successful report of obtaining metal-intercalated FeSe-based high-temperature superconductors using electrochemical method. It provides an effective route to synthesize metal-intercalated layered compounds for new superconductor exploration.

  9. Design strategies for development of SCR catalyst: improvement of alkali poisoning resistance and novel regeneration method.

    Science.gov (United States)

    Peng, Yue; Li, Junhua; Shi, Wenbo; Xu, Jiayu; Hao, Jiming

    2012-11-20

    Based on the ideas of the additives modification and regeneration method update, two different strategies were designed to deal with the traditional SCR catalyst poisoned by alkali metals. First, ceria doping on the V(2)O(5)-WO(3)/TiO(2) catalyst could promote the SCR performance even reducing the V loading, which resulted in the enhancement of the catalyst's alkali poisoning resistance. Then, a novel method, electrophoresis treatment, was employed to regenerate the alkali poisoned V(2)O(5)-WO(3)/TiO(2) catalyst. This novel technique could dramatically enhance the SCR activities of the alkali poisoned catalysts by removing approximately 95% K or Na ions from the catalyst and showed less hazardous to the environment. Finally, the deactivation mechanisms by the alkali metals were extensively studied by employing both the experimental and DFT theoretical approaches. Alkali atom mainly influences the active site V species rather than W oxides. The decrease of catalyst surface acidity might directly reduce the catalytic activity, while the reducibility of catalysts could be another important factor.

  10. Development and character of gap states on alkali doping of molecular films

    International Nuclear Information System (INIS)

    Here we study the alkali metal induced effects on an ordered and aligned sexiphenyl monolayer on Cu(110) with angle-resolved UV spectroscopy (ARUPS). The caesium (Cs) induced gap states could clearly be identified by orbital tomography, a method based on ARUPS, which allows both the orbital character of these states and the molecular orientation to be determined. We show that with increasing alkali metal dose, doping proceeds in three distinct steps. Initially, Cs decouples the molecular monolayer from the substrate, with emptying of the lowest unoccupied molecular orbital (LUMO) that had been filled on hybridization with the substrate. Further Cs exposure refills the LUMO. Finally a filling of the LUMO + 1 by charge transfer from the alkali metal occurs. Remarkably, although long range order is not preserved and the molecular planes tilt away from the surface, the molecules remain aligned parallel to the [1 1-bar 0] azimuth during the whole doping process. (paper)

  11. Automated Sample Preparation for Radiogenic and Non-Traditional Metal Isotopes: Removing an Analytical Barrier for High Sample Throughput

    Science.gov (United States)

    Field, M. Paul; Romaniello, Stephen; Gordon, Gwyneth W.; Anbar, Ariel D.; Herrmann, Achim; Martinez-Boti, Miguel A.; Anagnostou, Eleni; Foster, Gavin L.

    2014-05-01

    MC-ICP-MS has dramatically improved the analytical throughput for high-precision radiogenic and non-traditional isotope ratio measurements, compared to TIMS. The generation of large data sets, however, remains hampered by tedious manual drip chromatography required for sample purification. A new, automated chromatography system reduces the laboratory bottle neck and expands the utility of high-precision isotope analyses in applications where large data sets are required: geochemistry, forensic anthropology, nuclear forensics, medical research and food authentication. We have developed protocols to automate ion exchange purification for several isotopic systems (B, Ca, Fe, Cu, Zn, Sr, Cd, Pb and U) using the new prepFAST-MC™ (ESI, Nebraska, Omaha). The system is not only inert (all-flouropolymer flow paths), but is also very flexible and can easily facilitate different resins, samples, and reagent types. When programmed, precise and accurate user defined volumes and flow rates are implemented to automatically load samples, wash the column, condition the column and elute fractions. Unattended, the automated, low-pressure ion exchange chromatography system can process up to 60 samples overnight. Excellent reproducibility, reliability, recovery, with low blank and carry over for samples in a variety of different matrices, have been demonstrated to give accurate and precise isotopic ratios within analytical error for several isotopic systems (B, Ca, Fe, Cu, Zn, Sr, Cd, Pb and U). This illustrates the potential of the new prepFAST-MC™ (ESI, Nebraska, Omaha) as a powerful tool in radiogenic and non-traditional isotope research.

  12. Performance characterization of rigid polyurethane foam with refined alkali lignin and modified alkali lignin

    Institute of Scientific and Technical Information of China (English)

    LIU Zhi-ming; YU Fei; FANG Gui-zhen; YANG Hui-jun

    2009-01-01

    The two kinds of rigid polyurethane (PU) foams were prepared with respectively adding the refined alkali lignin and alkali lignin modified by 3-chloro-1,2-epoxypropane to be instead of 15% of the polyether glycol in weight. The indexes of mechanical performance, apparent density, thermal stability and aging resistance were separately tested for the prepared PU foams. The results show that the mechanical property, thermal insulation and thermal stability for PU foam with modified alkali lignin are excellent among two kinds of PU foams and control samples. The additions of the refined alkali lignin and modified alkali lignin to PU foam have little effect on the natural aging or heat aging resistance except for decreasing hot alkali resistance apparently. Additionally, the thermal conductivity of modified alkali lignin PU foam is lowest among two kinds of PU foams and control samples. The alkali lignin PU foam modified by 3-chloro-1,2-epoxypropane could be applied in the heat preservation field.

  13. Geochemistry, water dynamics and metals: Major, trace elements, Pb and Sr isotope constraints on their origins and movements in a small anthropized catchment over a flood

    Energy Technology Data Exchange (ETDEWEB)

    Luck, J.M.; Othman, D.B. [University Montpellier II, Laboratoire Geofluides, Bassins, Eaux, Montpellier (France)

    1997-10-01

    Major, trace elements and Sr-Pb isotope data on the dissolved and particulate phases are reported for water samples taken regularly over the September flood of a Mediterranean river (S France). This river drains runoff from a small, carbonate, karstified watershed with Miocene and Jurassic lithologies, and characterized by agricultural, urban and road network activities. The objective is to combine all the data into a dynamic model for constraining the origin(s) and movements of waters and of their loads. Furthermore, for metals, it becomes then feasible to know their fate and bioavailability downstream 18 refs., 4 figs.

  14. Trace metal inventories and lead isotopic composition chronicle a forest fire's remobilization of industrial contaminants deposited in the angeles national forest.

    Directory of Open Access Journals (Sweden)

    Kingsley O Odigie

    Full Text Available The amounts of labile trace metals: [Co] (3 to 11 µg g-1, [Cu] (15 to 69 µg g-1, [Ni] (6 to 15 µg g-1, [Pb] (7 to 42 µg g-1, and [Zn] (65 to 500 µg g-1 in ash collected from the 2012 Williams Fire in Los Angeles, California attest to the role of fires in remobilizing industrial metals deposited in forests. These remobilized trace metals may be dispersed by winds, increasing human exposures, and they may be deposited in water bodies, increasing exposures in aquatic ecosystems. Correlations between the concentrations of these trace metals, normalized to Fe, in ash from the fire suggest that Co, Cu, and Ni in most of those samples were predominantly from natural sources, whereas Pb and Zn were enriched in some ash samples. The predominantly anthropogenic source of excess Pb in the ash was further demonstrated by its isotopic ratios (208Pb/207Pb: 206Pb/207Pb that fell between those of natural Pb and leaded gasoline sold in California during the previous century. These analyses substantiate current human and environmental health concerns with the pyrogenic remobilization of toxic metals, which are compounded by projections of increases in the intensity and frequency of wildfires associated with climate change.

  15. Trace metal inventories and lead isotopic composition chronicle a forest fire's remobilization of industrial contaminants deposited in the angeles national forest.

    Science.gov (United States)

    Odigie, Kingsley O; Flegal, A Russell

    2014-01-01

    The amounts of labile trace metals: [Co] (3 to 11 µg g-1), [Cu] (15 to 69 µg g-1), [Ni] (6 to 15 µg g-1), [Pb] (7 to 42 µg g-1), and [Zn] (65 to 500 µg g-1) in ash collected from the 2012 Williams Fire in Los Angeles, California attest to the role of fires in remobilizing industrial metals deposited in forests. These remobilized trace metals may be dispersed by winds, increasing human exposures, and they may be deposited in water bodies, increasing exposures in aquatic ecosystems. Correlations between the concentrations of these trace metals, normalized to Fe, in ash from the fire suggest that Co, Cu, and Ni in most of those samples were predominantly from natural sources, whereas Pb and Zn were enriched in some ash samples. The predominantly anthropogenic source of excess Pb in the ash was further demonstrated by its isotopic ratios (208Pb/207Pb: 206Pb/207Pb) that fell between those of natural Pb and leaded gasoline sold in California during the previous century. These analyses substantiate current human and environmental health concerns with the pyrogenic remobilization of toxic metals, which are compounded by projections of increases in the intensity and frequency of wildfires associated with climate change.

  16. Lead isotopic composition and lead source of the Tongchanghe basalt-type native copper-chalcocite deposit in Ninglang, western Yunnan, China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qian; ZHU Xiaoqing; ZHANG Zhengwei

    2006-01-01

    The Tongchanghe native copper-chalcocite deposit at Ninglang occurs in low-Ti basalts of western Yunnan, and the mode of fault-filling & metasomatism metallogenesis indicates that this deposit is of late-stage hydrothermal origin. This makes it more complicated to define the source of ore-forming materials. This paper introduces the Pb isotope data of Himalayan alkali-rich porphyries, regional Early-Middle Proterozoic metamorphic rock basement and various types of rocks of the mining district in western Yunnan with an attempt to constrain the origin of the Tongchanghe native copper-chalcocite deposit at Ninglang.The results showed that the ores are relatively homogeneous in Pb isotopic composition, implying a simple ore-forming material source. The three sets of Pb isotopic ratios in the Himalayan alkali-rich porphyries are all higher than those of the ores; the regional basement metamorphic rocks show a wide range of variations in Pb isotopic ratio, quite different from the isotopic composition of ore lead; the Pb isotopic composition of the Triassic sedimentary rocks and mudstone and siltstone interbeds in the Late Permian Heinishao Formation (corresponding to the forth cycle of basaltic eruption) in the mining district has the characteristics of radiogenic lead and is significantly different from the isotopic composition of ore lead; like the ores, the Emeishan basalts in the mining district and those regionally distributed possess the same Pb isotopic composition, showing a complete overlap with respect to their distribution range. From the above, the possibilities can be ruled out that the ore-forming materials of the Tongchanghe deposit were derived from the basement, a variety of Himalayan magmatic activities, etc. It is thereby defined that the ore-forming materials were derived largely from the Emeishan basalts. From the data available it is deduced that the native cupper-chalcocite-type metallogenesis that occurred in the Emeishan basalt-distributed area

  17. Alkali-metal/alkaline-earth-metal fluorine beryllium borate NaSr{sub 3}Be{sub 3}B{sub 3}O{sub 9}F{sub 4} with large nonlinear optical properties in the deep-ultraviolet region

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A. H., E-mail: maalidph@yahoo.com [New Technologies—Research Centre, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Huang, Hongwei [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Kamarudin, H. [Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Auluck, S. [Council of Scientific and Industrial Research—National Physical Laboratory, Dr. K S Krishnan Marg, New Delhi 110012, India and Physics Department, Indian Institute of Technology - Delhi, Hauz Khas, New Delhi 110016 (India)

    2015-02-28

    The linear optical response and second harmonic generation (SHG) in alkali-metal/alkaline-earth-metal fluorine beryllium borate NaSr{sub 3}Be{sub 3}B{sub 3}O{sub 9}F{sub 4} are investigated by means of density functional theory. Calculations are performed using four types of exchange correlations: Ceperley-Alder local density approximation, Perdew Burke and Ernzerhof general gradient approximation, Engel-Vosko generalized gradient approximation, and the recently modified Becke-Johnson potential (mBJ). The mBJ approach brings the calculated band gap (7.20 eV) in excellent agreement with the experimental one (7.28 eV). The calculated values of the uniaxial anisotropy δε=−0.076 and the birefringence Δn(0)=0.052 indicate considerable anisotropy in the linear optical properties, which makes it favorable for the second harmonic generation. The dominant component of the second harmonic generation is χ{sub 111}{sup (2)}(ω). The value of |χ{sub 111}{sup (2)}(ω)| is about 1.2 pm/V at λ = 1064 nm in agreement with previous calculations. To analyze the origin of the high SHG of NaSr{sub 3}Be{sub 3}B{sub 3}O{sub 9}F{sub 4} single crystals, we have correlated the features of |χ{sub 111}{sup (2)}(ω)| spectra with the features of ε{sub 2}(ω) spectra as a function of ω/2 and ω. From the calculated dominant component |χ{sub 111}{sup (2)}(ω)|, we find that the microscopic first hyperpolarizability, β{sub 111}, the vector components along the dipole moment direction is 0.5 × 10{sup −30} esu at static limit and 0.6 × 10{sup −30} esu at λ = 1064 nm.

  18. Thermodynamics Study of Effects of Alkali Metals on Mercury Transformation During Co-combustion of Biomass With Coal%生物质与煤混燃过程中碱金属对汞氧化影响的热力学研究

    Institute of Scientific and Technical Information of China (English)

    余婉璇; 刁永发; 沈恒

    2012-01-01

    针对生物质中C1和碱金属含量高的特点,研究生物质与煤混燃过程中Hg的氧化机制.使用化学热力学软件Chemical Equilibrium with Applications(CEA)建立C/H/O/N/S/C1/K/Na模型,分析碱金属元素K、Na与非金属元素Cl和S的反应,发现1 100K以下Cl仍然主要以HCl形式存在,SO2的含量逐渐减少,碱金属主要以碱金属硫酸盐(A2SO4)的形式存在,这对Hg的氧化反应变得更为有利,同时随着生物质的添加,这种趋势更为明显.同时使用动力学软件Chemkin4.1构建了Hg/C/H/O/N/S/C1/K/Na的化学和气相平衡模型,进一步研究了生物质与煤混燃过程中对Hg氧化的影响.计算结果表明,生物质与煤之比越高,对Hg的氧化越有利,生物质中高含量的C1是促进Hg氧化最主要的因素,而K、Na的存在对Hg的氧化有进一步的促进作用,这进一步证实了热力学计算结果.%The oxidation mechanism of mercury during co-combustion biomass with coal was studied because of the high content of Cl and alkali metal of the biomass. C/H/O/N/S/ Cl/K/Na model was established with chemical thermodynamics software CEA, and the interaction between alkali metals and chlorine or sulfur were analyzed. It is founded that below 1 100K, Cl is still mainly in the form of HC1, the content of SO2 decreases, and the alkali metals exist in the form of alkali sulfate (A2SO4), which will contribute to the oxidation of Hg. And with the addition of biomass, this trend becomes more apparent. Hg/C/H/O/N/S/Cl/Hg/K/Na chemical and phase equilibrium model was established based on previous studies with CHEMKIN 4.1, and the effect of biomass co-firing with coal on Hg oxidation was further studied. Chemical and phase equilibrium calculations results show that the more the ratio of biomass and coal is, the better the oxidation of Hg. The high content of Cl in the biomass is the most important factor to promote Hg oxidation, and the presence of K and Na will further promote Hg oxidation

  19. New hypodiphosphates of the alkali metals: Synthesis, crystal structure and vibrational spectra of the hypodiphosphates(IV) M{sub 2}[(H{sub 2}P{sub 2}O{sub 6})(H{sub 4}P{sub 2}O{sub 6})] (M=Rb and Cs)

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Peng [Institut fuer Anorganische und Analytische Chemie der TU Clausthal, Paul-Ernst-Strasse 4, D-38678 Clausthal-Zellerfeld (Germany); Wiegand, Thomas; Eckert, Hellmut [Institut fuer Physikalische Chemie and Graduate School of Chemistry, Westfaelische Wilhelms-Universitaet Muenster, Corrensstr. 28/30, D-48149 Muenster (Germany); Gjikaj, Mimoza, E-mail: mimoza.gjikaj@tu-clausthal.de [Institut fuer Anorganische und Analytische Chemie der TU Clausthal, Paul-Ernst-Strasse 4, D-38678 Clausthal-Zellerfeld (Germany)

    2012-10-15

    The new hypodiphosphates(IV) Rb{sub 2}[(H{sub 2}P{sub 2}O{sub 6})(H{sub 4}P{sub 2}O{sub 6})] (1) and Cs{sub 2}[(H{sub 2}P{sub 2}O{sub 6})(H{sub 4}P{sub 2}O{sub 6})] (2) were synthesized by soft chemistry reactions from aqueous solutions of hypophosphoric acid and the corresponding heavy alkali-metal carbonates. Their crystal structures were determined by single crystal X-ray diffraction. Both compounds crystallize isotypic in the triclinic space group P-1 with one formula unit in the unit cell. The structures are built up by discrete (H{sub 2}P{sub 2}O{sub 6}){sup 2-} and (H{sub 4}P{sub 2}O{sub 6}) units in staggered conformation for the P{sub 2}O{sub 6} skeleton and the corresponding alkali-metal cations. In the (H{sub 2}P{sub 2}O{sub 6}){sup 2-} ion the hydrogen atoms are in a 'trans-trans' conformation. O{center_dot}H-O hydrogen bonds between the (H{sub 2}P{sub 2}O{sub 6}){sup 2-} and (H{sub 4}P{sub 2}O{sub 6}) groups consolidate the structures into a three-dimensional network. The FT-Raman and {sup 31}P and {sup 1}H and MAS NMR spectra of the title compounds have been recorded and interpreted, especially with respect to their assignment to the (H{sub 2}P{sub 2}O{sub 6}){sup 2-} and (H{sub 4}P{sub 2}O{sub 6}) groups. Thermogravimetric data of 2 have been interpreted in terms of a thermal decomposition model. - Graphical Abstract: The layered compounds Rb{sub 2}[(H{sub 2}P{sub 2}O{sub 6})(H{sub 4}P{sub 2}O{sub 6})] and Cs{sub 2}[(H{sub 2}P{sub 2}O{sub 6})(H{sub 4}P{sub 2}O{sub 6})] have been synthesized and investigated. Both crystallize isotypic. The structures are built up by discrete (H{sub 2}P{sub 2}O{sub 6}){sup 2-} and (H{sub 4}P{sub 2}O{sub 6}) units and the corresponding alkali-metal cations. Highlights: Black-Right-Pointing-Pointer Synthesis and single-crystal structure of new alkali hypodiphosphates. Black-Right-Pointing-Pointer Structures are characterized by [(H{sub 2}P{sub 2}O{sub 6})(H{sub 4}P{sub 2}O{sub 6})]{sup 2-} units and M

  20. Alkali basalts and enclosed ultramafic xenoliths near Ushuaia, Tierra Del Fuego, Argentina.

    Science.gov (United States)

    Acevedo, Rogelio Daniel

    2016-01-01

    At the southernmost part of Tierra del Fuego a few outcrops and erratic boulders of alkali basaltic rocks with ultramafic enclaves have been studied. Alkali basalt plugs or pipes hitherto identified are scarce, and host rocks are constituted by slates that belong to Mesozoic deposition. The petrography, texture and composition of the basalt and xenoliths were investigated by petrographic microscope and electron microprobe analysis. Xenocrysts of amphibole and alkali feldspar, phenocrysts of nepheline, olivine, spinel, phlogopite and Fe-Ti minerals (10 %) and a diversity of xenoliths, mainly lherzolitic, pyroxenite and wehrlitic nodules (15 %), but also from metamorphic rocks provenance, are contained in the basalt groundmass (75 %). This finer-grained material is made up of laths or needles of plagioclase, pyroxene, opaque minerals, apatite and glass, with intersertal, hyalopilitic and pilotaxitic. Locally, rock has an even granoblastic texture. Former amygdules are filled by analcite, zeolites, sodalite and calcite. The normative classification, based on nepheline content, conclude that this rock is an alkali basalt. The chemical classification, considering immobile elements as Zr/TiO2 versus Nb/Y indicate an alkali basalt too and plots over the TAS diagram fall in the foidite (Na-rich or nephelinite) and basanite fields. The REE patterns are fractionated (La/Yb primitive mantle normalized is approximately 30). The K-Ar isotopic technique on individual macrocrysts gave ages of 146 ± 5 Ma (amphibole) and 127 ± 4 Ma (alkali feldspar); and K-Ar whole rock datum reported 8.3 ± 0.3 Ma. Nevertheless, fertile samples show geochemical features typical of deep derived material thus, based on the position in the actual tectonic setting, indicate that the basalt is older than its isotopic age.

  1. Intracellular Cadmium Isotope Fractionation

    Science.gov (United States)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  2. Lead concentrations and isotope ratios in speleothems as proxies for atmospheric metal pollution since the Industrial Revolution

    OpenAIRE

    Allan, Mohammed; Fagel, Nathalie; Van Rampelbergh, Maïte; Baldini, James; Riotte, Jean; Cheng, Hai; Edwards, Lawrence; Gillikin, David; Quinif, Yves; Verheyden, Sophie

    2015-01-01

    Lead concentrations and isotope ratios from two speleothems from the Han-sur-Lesse cave in southern Belgium were measured in order to study the ability of speleothems to act as archives of atmospheric pollution. To address this aim we analyzed trace elemental Al and Pb compositions by LA-ICP-MS and ICP-MS as well as Pb isotopes by MC-ICP-MS. The results help to identify three intervals characterized by particularly high enrichment of Pb: from 1880 to 1905 AD, from 1945 to 1965 AD, and from 19...

  3. Superconductivity in alkali-doped fullerene nanowhiskers.

    Science.gov (United States)

    Takeya, Hiroyuki; Konno, Toshio; Hirata, Chika; Wakahara, Takatsugu; Miyazawa, Kun'ichi; Yamaguchi, Takahide; Tanaka, Masashi; Takano, Yoshihiko

    2016-09-01

    Superconductivity in alkali metal-doped fullerene nanowhiskers (C60NWs) was observed in K3.3C60NWs, Rb3.0C60NWs and Cs2.0Rb1.0C60NWs with transition temperatures at 17, 25 and 26 K, respectively. Almost full shielding volume fraction (~80%) was observed in K3.3C60NWs when subjected to thermal treatment at 200 °C for a duration of 24 h. In contrast, the shielding fraction of Rb3.0C60NWs and Cs2.0Rb1.0C60NWs were calculated to be 8% and 6%, respectively. Here we report on an extensive investigation of the superconducting properties of these AC60NWs (A  =  K3.3, Rb3.0 and Cs2.0Rb1.0). These properties are compared to the ones reported on the corresponding conventional (single-crystal or powder) K-doped fullerene. We also evaluated the critical current densities of these C60NWs using the Bean model under an applied magnetic field up to 50 kOe. PMID:27385220

  4. Electrochemically controlled iron isotope fractionation

    Science.gov (United States)

    Black, Jay R.; Young, Edward D.; Kavner, Abby

    2010-02-01

    Variations in the stable isotope abundances of transition metals have been observed in the geologic record and trying to understand and reconstruct the physical/environmental conditions that produced these signatures is an area of active research. It is clear that changes in oxidation state lead to large fractionations of the stable isotopes of many transition metals such as iron, suggesting that transition metal stable isotope signatures could be used as a paleo-redox proxy. However, the factors contributing to these observed stable isotope variations are poorly understood. Here we investigate how the kinetics of iron redox electrochemistry generates isotope fractionation. Through a combination of electrodeposition experiments and modeling of electrochemical processes including mass-transport, we show that electron transfer reactions are the cause of a large isotope separation, while mass transport-limited supply of reactant to the electrode attenuates the observed isotopic fractionation. Furthermore, the stable isotope composition of electroplated transition metals can be tuned in the laboratory by controlling parameters such as solution chemistry, reaction overpotential, and solution convection. These methods are potentially useful for generating isotopically-marked metal surfaces for tracking and forensic purposes. In addition, our studies will help interpret stable isotope data in terms of identifying underlying electron transfer processes in laboratory and natural samples.

  5. A new mechanism for radiation damage processes in alkali halides

    OpenAIRE

    Dubinko, V. I.; Turkin, A.A.; Vainshtein, D.I.; Hartog, H.W. den

    1999-01-01

    We present a theory of radiation damage formation in alkali halides based on a new mechanism of dislocation climb, which involves the production of VF centers (self-trapped hole neighboring a cation vacancy) as a result of the absorption of H centers of dislocation lines. We consider the evolution of all experimentally observed extended defects: metal colloids, gas bubbles, and vacancy voids. Voids are shown to arise and grow large due to the reaction between F and VF centers at the surface o...

  6. Effect of Alkali Treatment of Wheat Straw on Adsorption of Cu(II under Acidic Condition

    Directory of Open Access Journals (Sweden)

    Yiping Guo

    2016-01-01

    Full Text Available The convenient and feasible pretreatment method of alkali treatment is very common in the degradation process of wheat straw. However, its utilization in the pretreatment of wheat straw as alternative adsorbents for aqueous heavy metals remediation is rarely reported. The present study investigated the removal efficiency of Cu(II ions using wheat straw with alkali pretreatment. The condition of alkali treatment on wheat straw was optimized with the adsorption capacity of Cu(II as indicator using single-factor experiments. The influences of wheat straw dosages, pH values, contact time, and temperatures on adsorption performance for both untreated wheat straw (UWS and alkali-treated wheat straw (AWS were investigated. Results showed that the relatively large removal rate of Cu(II could be obtained, and chemical behavior occurred during the adsorption process. Characteristic analysis found that the major function of alkali treatment to wheat straw was to introduce the hydroxy group, which resulted in the increase of -C-O- group. Although the adsorption capacity is not as high as the one of ligands supported adsorbents, the method is easy to operate and has a wide range of application; at the same time, it could realize both purposes of treating heavy metal pollution and solid wastes.

  7. Formation cross-sections and chromatographic separation of protactinium isotopes formed in proton-irradiated thorium metal

    Energy Technology Data Exchange (ETDEWEB)

    Radchenko, Valery; Engle, Jonathan W.; Wilson, Justin J.; Maassen, Joel R.; Nortier, Meiring F.; Birnbaum, Eva R.; John, Kevin D.; Fassbender, Michael E. [Los Alamos National Laboratory, NM (United States)

    2016-08-01

    Targeted alpha therapy (TAT) is a treatment method of increasing interest to the clinical oncology community that utilizes α-emitting radionuclides conjugated to biomolecules for the selective killing of tumor cells. Proton irradiation of thorium generates a number of α-emitting radionuclides with therapeutic potential for application via TAT. In particular, the radionuclide {sup 230}Pa is formed via the {sup 232}Th(p, 3n) nuclear reaction and partially decays to {sup 230}U, an α emitter which has recently received attention as a possible therapy nuclide. In this study, we estimate production yields for {sup 230}Pa and other Pa isotopes from proton-irradiated thorium based on cross section measurements. We adopt existing methods for the chromatographic separation of protactinium isotopes from proton irradiated thorium matrices to combine and optimize them for effective fission product decontamination.

  8. Coordination Chemistry of Alkali and Alkaline-Earth Cations with Macrocyclic Ligands.

    Science.gov (United States)

    Dietrich, Bernard

    1985-01-01

    Discusses: (l) alkali and alkaline-earth cations in biology (considering naturally occurring lonophores, their X-ray structures, and physiochemical studies); (2) synthetic complexing agents for groups IA and IIA; and (3) ion transport across membranes (examining neutral macrobicyclic ligands as metal cation carriers, transport by anionic carriers,…

  9. Potassium-intercalated H2Pc films : Alkali-induced electronic and geometrical modifications

    NARCIS (Netherlands)

    Nilson, K.; Ahlund, J.; Shariati, M. -N.; Schiessling, J.; Palmgren, P.; Brena, B.; Gothelid, E.; Hennies, F.; Huismans, Y.; Evangelista, F.; Rudolf, P.; Gothelid, M.; Martensson, N.; Puglia, C.; Åhlund, J.; Göthelid, E.; Göthelid, M.; Mårtensson, N.

    2012-01-01

    X-ray spectroscopy studies of potassium intercalated metal-free phthalocyanine multilayers adsorbed on Al(110) have been undertaken. Photoelectron spectroscopy measurements show the presence of several charge states of the molecules upon K intercalation, due to a charge transfer from the alkali. In

  10. Advancements in flowing diode pumped alkali lasers

    Science.gov (United States)

    Pitz, Greg A.; Stalnaker, Donald M.; Guild, Eric M.; Oliker, Benjamin Q.; Moran, Paul J.; Townsend, Steven W.; Hostutler, David A.

    2016-03-01

    Multiple variants of the Diode Pumped Alkali Laser (DPAL) have recently been demonstrated at the Air Force Research Laboratory (AFRL). Highlights of this ongoing research effort include: a) a 571W rubidium (Rb) based Master Oscillator Power Amplifier (MOPA) with a gain (2α) of 0.48 cm-1, b) a rubidium-cesium (Cs) Multi-Alkali Multi-Line (MAML) laser that simultaneously lases at both 795 nm and 895 nm, and c) a 1.5 kW resonantly pumped potassium (K) DPAL with a slope efficiency of 50%. The common factor among these experiments is the use of a flowing alkali test bed.

  11. High effective silica fume alkali activator

    Indian Academy of Sciences (India)

    Vladimír Živica

    2004-04-01

    Growing demands on the engineering properties of cement based materials and the urgency to decrease unsuitable ecologic impact of Portland cement manufacturing represent significant motivation for the development of new cement corresponding to these aspects. One category represents prospective alkali activated cements. A significant factor influencing their properties is alkali activator used. In this paper we present a new high effective alkali activator prepared from silica fume and its effectiveness. According to the results obtained this activator seems to be more effective than currently used activators like natrium hydroxide, natrium carbonate, and water glass.

  12. Iron isotope and trace metal records of iron cycling in the proto-North Atlantic during the Cenomanian-Turonian oceanic anoxic event (OAE-2)

    Science.gov (United States)

    Owens, Jeremy D.; Lyons, Timothy W.; Li, Xiaona; MacLeod, Kenneth G.; Gordon, Gwenyth; Kuypers, Marcel M. M.; Anbar, Ariel; Kuhnt, Wolfgang; Severmann, Silke

    2012-09-01

    The global carbon cycle during the mid-Cretaceous (˜125-88 million years ago, Ma) experienced numerous major perturbations linked to increased organic carbon burial under widespread, possibly basin-scale oxygen deficiency and episodes of euxinia (anoxic and H2S-containing). The largest of these episodes, the Cenomanian-Turonian boundary event (ca. 93.5 Ma), or oceanic anoxic event (OAE) 2, was marked by pervasive deposition of organic-rich, laminated black shales in deep waters and in some cases across continental shelves. This deposition is recorded in a pronounced positive carbon isotope excursion seen ubiquitously in carbonates and organic matter. Enrichments of redox-sensitive, often bioessential trace metals, including Fe and Mo, indicate major shifts in their biogeochemical cycles under reducing conditions that may be linked to changes in primary production. Iron enrichments and bulk Fe isotope compositions track the sources and sinks of Fe in the proto-North Atlantic at seven localities marked by diverse depositional conditions. Included are an ancestral mid-ocean ridge and euxinic, intermittently euxinic, and oxic settings across varying paleodepths throughout the basin. These data yield evidence for a reactive Fe shuttle that likely delivered Fe from the shallow shelf to the deep ocean basin, as well as (1) hydrothermal sources enhanced by accelerated seafloor spreading or emplacement of large igneous province(s) and (2) local-scale Fe remobilization within the sediment column. This study, the first to explore Fe cycling and enrichment patterns on an ocean scale using iron isotope data, demonstrates the complex processes operating on this scale that can mask simple source-sink relationships. The data imply that the proto-North Atlantic received elevated Fe inputs from several sources (e.g., hydrothermal, shuttle and detrital inputs) and that the redox state of the basin was not exclusively euxinic, suggesting previously unknown heterogeneity in

  13. Interaction of alkali and alkaline earth ions with Ochratoxin A

    Energy Technology Data Exchange (ETDEWEB)

    Poor, Miklos [Institute of Laboratory Medicine, University of Pecs, Pecs H-7624 (Hungary); Kunsagi-Mate, Sandor; Matisz, Gergely; Li, Yin; Czibulya, Zsuzsanna [Department of General and Physical Chemistry, University of Pecs, Pecs H-7624 (Hungary); Janos Szentagothai Research Center, Pecs H-7624 (Hungary); Peles-Lemli, Beata [Department of General and Physical Chemistry, University of Pecs, Pecs H-7624 (Hungary); Koszegi, Tamas, E-mail: koszegit@freemail.hu [Institute of Laboratory Medicine, University of Pecs, Pecs H-7624 (Hungary)

    2013-03-15

    The effect of alkali and alkaline earth ions on the chemical equilibrium of mono- and dianionic forms of the mycotoxin Ochratoxin A (OTA) and their bonding onto the surface of Bovine Serum Albumin (BSA) have been investigated by fluorescence spectroscopy and fluorescence polarization techniques. Our results show that alkali metal ions shift the chemical equilibrium towards formation of dianionic form of OTA. Furthermore, the alkaline earth ions can compete with BSA for binding to OTA when these ions are present in millimolar concentrations. Our data also highlight the possibility that the 'free' fraction of OTA (not bound onto the surface of albumin) or at least a part of it is present in cation-bound form in body fluids. These observations are supported by stability constants and quantum-chemical calculations. Among the studied alkaline metal ions magnesium showed the highest affinity towards OTA under physiological conditions. Further research is required to analyze the potential significance of Mg{sup 2+}-OTA complex in cellular uptake and/or elimination of the toxin in the human body. - Highlights: Black-Right-Pointing-Pointer Fluorescence spectroscopy reveals cation-Ochratoxin A (OTA) interactions. Black-Right-Pointing-Pointer Alkali ions shift the equilibrium of OTA to formation of a dianionic structure. Black-Right-Pointing-Pointer Alkaline earth ions directly bind to OTA in the order: Mg{sup 2+}, Ca{sup 2+}, Ba{sup 2+}. Black-Right-Pointing-Pointer Quantum chemical calculations and logK values support our experimental data.

  14. Density of mixed alkali borate glasses: A structural analysis

    Energy Technology Data Exchange (ETDEWEB)

    Doweidar, H. [Glass Research Group, Physics Department, Faculty of Science, Mansoura University, P.O. Box 83, Mansoura 35516 (Egypt)]. E-mail: hdoweidar@mans.edu.eg; El-Damrawi, G.M. [Glass Research Group, Physics Department, Faculty of Science, Mansoura University, P.O. Box 83, Mansoura 35516 (Egypt); Moustafa, Y.M. [Glass Research Group, Physics Department, Faculty of Science, Mansoura University, P.O. Box 83, Mansoura 35516 (Egypt); Ramadan, R.M. [Glass Research Group, Physics Department, Faculty of Science, Mansoura University, P.O. Box 83, Mansoura 35516 (Egypt)

    2005-05-15

    Density of mixed alkali borate glasses has been correlated with the glass structure. It is assumed that in such glasses each alkali oxide associates with a proportional quantity of B{sub 2}O{sub 3}. The number of BO{sub 3} and BO{sub 4} units related to each type of alkali oxide depends on the total concentration of alkali oxide. It is concluded that in mixed alkali borate glasses the volumes of structural units related to an alkali ion are the same as in the corresponding binary alkali borate glass. This reveals that each type of alkali oxide forms its own borate matrix and behaves as if not affected with the presence of the other alkali oxide. Similar conclusions are valid for borate glasses with three types of alkali oxide.

  15. K-Ca Dating of Alkali-Rich Fragments in the Y-74442 and Bhola LL-Chondritic Breccias

    Science.gov (United States)

    Yokoyama, T; Misawa, K.; Okano, O; Shih, C. -Y.; Nyquist, L. E.; Simon, J. I.; Tappa, M. J.; Yoneda, S.

    2013-01-01

    Alkali-rich igneous fragments in the brecciated LL-chondrites, Krahenberg (LL5) [1], Bhola (LL3-6) [2], Siena (LL5) [3] and Yamato (Y)-74442 (LL4) [4-6], show characteristic fractionation patterns of alkali and alkaline elements [7]. The alkali-rich fragments in Krahenberg, Bhola and Y-74442 are very similar in mineralogy and petrography, suggesting that they could have come from related precursor materials [6]. Recently we reported Rb-Sr isotopic systematics of alkali-rich igneous rock fragments in Y-74442: nine fragments from Y-74442 yield the Rb-Sr age of 4429 plus or minus 54 Ma (2 sigma) for lambda(Rb-87) = 0.01402 Ga(exp -1) [8] with the initial ratio of Sr-87/Sr-86 = 0.7144 plus or minus 0.0094 (2 sigma) [9]. The Rb-Sr age of the alkali-rich fragments of Y-74442 is younger than the primary Rb-Sr age of 4541 plus or minus 14 Ma for LL-chondrite whole-rock samples [10], implying that they formed after accumulation of LL-chondrite parental bodies, although enrichment may have happened earlier. Marshall and DePaolo [11,12] demonstrated that the K-40 - Ca-40 decay system could be an important chronometer as well as a useful radiogenic tracer for studies of terrestrial rocks. Shih et al. [13,14] and more recently Simon et al. [15] determined K-Ca ages of lunar granitic rocks, and showed the application of the K-Ca chronometer for K-rich planetary materials. Since alkali-rich fragments in the LL-chondritic breccias are highly enriched in K, we can expect enhancements of radiogenic Ca-40. Here, we report preliminary results of K-Ca isotopic systematics of alkali-rich fragments in the LL-chondritic breccias, Y-74442 and Bhola.

  16. Calcium silicate hydrate: Crystallisation and alkali sorption

    International Nuclear Information System (INIS)

    Homogeneous single C-S-H gels has been prepared for the investigation of alkali binding potential and crystallisation. A distribution coefficient, Rd, was introduced to express the partition of alkali between solid and aqueous phases at 25 deg. C. Rd is independent of alkali hydroxide concentration and depends only on Ca:Si ratio over wide ranges of alkali concentration. The trend of numerical values of Rd indicates that alkali bonding into the solid improves as its Ca:Si ratio decreases. Reversibility is demonstrated, indicating a possibility of constant Rd value of the material. Al has been introduced to form C-A-S-H gels and their alkali sorption properties also determined. Al substituted into C-S-H markedly increases Rd, indicating enhancement of alkali binding. However, the dependence of Rd on alkali concentration is non-ideal with composition. A two-site model for bonding is presented. Crystallisation both under saturated steam and 1 bar vapour pressure has been investigated. It has been shown that heat treatment by saturated steam causes crystallisation of gels. The principal minerals obtained were (i) C-S-H gel and Ca(OH)2 at -55 deg. C, (ii) 1.1 nm tobermorite, jennite and afwillite at 85 -130 deg. C, and (iii) xonotlite, foshagite and hillebrandite at 150-180 deg. C. Properties of crystalline C-S-H were also reported for reversible phase transformation, pH conditioning ability, seeding effect and solubility. At 1 bar pressure, crystallisation is slower than in saturated steam due to lower water activity. Tobermorite-like nanodomains develop during reaction at low Ca/Si ratios. In some Ca-rich compositions, Ca(OH)2 is exsolved and occurs as nano-sized crystallites. (author)

  17. Oxygen isotopic compositions of chondrules from the metal-rich chondrites Isheyevo (CH/CB b), MAC 02675 (CB b) and QUE 94627 (CB b)

    Science.gov (United States)

    Krot, Alexander N.; Nagashima, Kazuhide; Yoshitake, Miwa; Yurimoto, Hisayoshi

    2010-04-01

    It has been recently suggested that (1) CH chondrites and the CB b/CH-like chondrite Isheyevo contain two populations of chondrules formed by different processes: (i) magnesian non-porphyritic (cryptocrystalline and barred) chondrules, which are similar to those in the CB chondrites and formed in an impact-generated plume of melt and gas resulted from large-scale asteroidal collision, and (ii) porphyritic chondrules formed by melting of solid precursors in the solar nebula. (2) Porphyritic chondrules in Isheyevo and CH chondrites are different from porphyritic chondrules in other carbonaceous chondrites ( Krot et al., 2005, 2008a,b). In order to test these hypotheses, we measured in situ oxygen isotopic compositions of porphyritic (magnesian, Type I and ferroan, Type II) and non-porphyritic (magnesian and ferroan cryptocrystalline) chondrules from Isheyevo and CB b chondrites MAC 02675 and QUE 94627, paired with QUE 94611, using a Cameca ims-1280 ion microprobe. On a three-isotope oxygen diagram ( δ17O vs. δ18O), compositions of chondrules measured follow approximately slope-1 line. Data for 19 magnesian cryptocrystalline chondrules from Isheyevo, 24 magnesian cryptocrystalline chondrules and 6 magnesian cryptocrystalline silicate inclusions inside chemically-zoned Fe,Ni-metal condensates from CB b chondrites have nearly identical compositions: Δ17O = -2.2 ± 0.9‰, -2.3 ± 0.6‰ and -2.2 ± 1.0‰ (2 σ), respectively. These observations and isotopically light magnesium compositions of cryptocrystalline magnesian chondrules in CB b chondrites ( Gounelle et al., 2007) are consistent with their single-stage origin, possibly as gas-melt condensates in an impact-generated plume. In contrast, Δ17O values for 11 Type I and 9 Type II chondrules from Isheyevo range from -5‰ to +4‰ and from -17‰ to +3‰, respectively. In contrast to typical chondrules from carbonaceous chondrites, seven out of 11 Type I chondrules from Isheyevo plot above the terrestrial

  18. Tracing oxygen variations and its biogeochemical expression during the late hauterivian Faraoni Event: A multi tracers approach using paired carbon, nitrogen, sulfur isotopes and trace metallic elements

    Science.gov (United States)

    Thomazo, Christophe; Riquier, Laurent; Martinez, Mathieu; Mathieu, Olivier

    2013-04-01

    During the Cretaceous, several occurrences of Oceanic Anoxic Event (OAE) are described in the sedimentary record. Among them, the late Hauterivian Faraoni Event has been extensively studied in several locations including Italy, Switzerland, France and Spain and interpreted as a short-lived OAE from palaeontological, sedimentological and geochemical observations. However, the biogeochemical response to water column oxygen depletion is poorly documented and mostly stands on carbon carbonates isotopes during the Faraoni event. In order to bring further insights into the biogeochemical cycles modifications during O2 variations across the Faraoni Event, we performed an integrated geochemical study including C, N and S isotopes together with paleo-redox tracers (i.e. trace metallic elements and iron speciation) on about 25 samples from the Río Argos section (S.E. Spain). δ13Ccarb increases from 1.23‰ to 1.61‰ at the base of the studied section before the Faraoni event. Maximum values, ranging between 1.21‰ and 1.73‰, are observed within this event and are followed by a rapid decrease in δ13Ccarb values down to 0.50‰ toward the top of the section. δ13Corg and TOC values show a narrow range of variations around -26.3±0.3‰ and 0.15±0.3 wt.%, respectively. Only one sample records a higher TOC content up to 1.53 wt.% at the very base of the Faraoni Event while no sensible variations can be deduced form organic carbon isotopes. Bulk sediments nitrogen isotopes have a mean value of 2.3±0.2‰ and nitrogen contents vary between 320 and 790 ppm. A noticeable δ15N excursion (i.e. 0.86‰) is observed at the very base of the Faraoni Event and is associated with the highest TOC value. Sulfur contents vary between 100 and 2480 ppm, the highest content being recorded just bellow the base of the Faraoni Event. δ34S show a wide range of variations from -44.8 to -10.1‰ on a short scale without easily recognizable stratigraphic trend. Finally, slight increases of

  19. Identification of the sources of metal (lead) contamination in drinking waters in north-eastern Tasmania using lead isotopic compositions.

    Science.gov (United States)

    Harvey, P J; Handley, H K; Taylor, M P

    2015-08-01

    This study utilises a range of scientific approaches, including lead isotopic compositions, to differentiate unknown sources of ongoing lead contamination of a drinking water supply in north-eastern Tasmania, Australia. Drinking water lead concentrations are elevated above the Australian Drinking Water Guideline (10 μg/L), reaching 540 μg/L in the supply network. Water lead isotopic compositions from the town of Pioneer ((208)Pb/(207)Pb 2.406, (206)Pb/(207)Pb 1.144 to (208)Pb/(207)Pb 2.360, (206)Pb/(207)Pb 1.094) and Ringarooma ((208)Pb/(207)Pb 2.398, (206)Pb/(207)Pb 1.117) are markedly different from the local bedrock ((208)Pb/(207)Pb 2.496, (206)Pb/(207)Pb 1.237). The data show that the lead in the local waters is sourced from a combination of dilapidated drinking water infrastructure, including lead jointed pipelines, end-of-life polyvinyl chloride pipes and household plumbing. Drinking water is being inadvertently contaminated by aging infrastructure, and it is an issue that warrants investigation to limit the burden of disease from lead exposure.

  20. Interactions of hydrogen with alkali promoted Ru/SiO{sub 2} catalysts: A proton NMR study

    Energy Technology Data Exchange (ETDEWEB)

    Ozbay, U.D.

    1994-05-10

    Role of H spillover to the silica support was studied using chemisorption; a strongly bound component of spilled over H was found in the silica support which interfered with accurate measurements of active metal sites via volumetric strong H chemisorption. The volumetric chemisorption technique was modified so that measurement times were reduced from 12--36 h to 1 h. The active Ru surface was characterized means of changes in proton spin counts and NMR Knight shifts vs alkali loading. Na, K blocked the active surface of Ru metal, but Cs was pushed off by H chemisorption. The alkali promoters restricted H mobility on both metal surface and at the metal support interfaces; this is consistent with effects on Fischer-Tropsch synthesis. {sup 1}H NMR was used to study the effect of the active metal and promoter on support hydroxyl groups. The OH group density in the silica support decreased with metal and/or promoter loading, but not on a one-to-one basis; the exchange efficiency of the hydroxyls decreased with atomic size of the alkali metal. An additional downfield proton resonance was detected which was assigned to the alkali hydroxide species in the support.