WorldWideScience

Sample records for alkali metal ions

  1. Bioinorganic Chemistry of the Alkali Metal Ions.

    Science.gov (United States)

    Kim, Youngsam; Nguyen, Thuy-Tien T; Churchill, David G

    2016-01-01

    The common Group 1 alkali metals are indeed ubiquitous on earth, in the oceans and in biological systems. In this introductory chapter, concepts involving aqueous chemistry and aspects of general coordination chemistry and oxygen atom donor chemistry are introduced. Also, there are nuclear isotopes of importance. A general discussion of Group 1 begins from the prevalence of the ions, and from a comparison of their ionic radii and ionization energies. While oxygen and water molecule binding have the most relevance to biology and in forming a detailed understanding between the elements, there is a wide range of basic chemistry that is potentially important, especially with respect to biological chelation and synthetic multi-dentate ligand design. The elements are widely distributed in life forms, in the terrestrial environment and in the oceans. The details about the workings in animal, as well as plant life are presented in this volume. Important biometallic aspects of human health and medicine are introduced as well. Seeing as the elements are widely present in biology, various particular endogenous molecules and enzymatic systems can be studied. Sodium and potassium are by far the most important and central elements for consideration. Aspects of lithium, rubidium, cesium and francium chemistry are also included; they help in making important comparisons related to the coordination chemistry of Na(+) and K(+). Physical methods are also introduced. PMID:26860297

  2. Bioinorganic Chemistry of the Alkali Metal Ions.

    Science.gov (United States)

    Kim, Youngsam; Nguyen, Thuy-Tien T; Churchill, David G

    2016-01-01

    The common Group 1 alkali metals are indeed ubiquitous on earth, in the oceans and in biological systems. In this introductory chapter, concepts involving aqueous chemistry and aspects of general coordination chemistry and oxygen atom donor chemistry are introduced. Also, there are nuclear isotopes of importance. A general discussion of Group 1 begins from the prevalence of the ions, and from a comparison of their ionic radii and ionization energies. While oxygen and water molecule binding have the most relevance to biology and in forming a detailed understanding between the elements, there is a wide range of basic chemistry that is potentially important, especially with respect to biological chelation and synthetic multi-dentate ligand design. The elements are widely distributed in life forms, in the terrestrial environment and in the oceans. The details about the workings in animal, as well as plant life are presented in this volume. Important biometallic aspects of human health and medicine are introduced as well. Seeing as the elements are widely present in biology, various particular endogenous molecules and enzymatic systems can be studied. Sodium and potassium are by far the most important and central elements for consideration. Aspects of lithium, rubidium, cesium and francium chemistry are also included; they help in making important comparisons related to the coordination chemistry of Na(+) and K(+). Physical methods are also introduced.

  3. Elucidation of transport mechanism and enhanced alkali ion transference numbers in mixed alkali metal-organic ionic molten salts.

    Science.gov (United States)

    Chen, Fangfang; Forsyth, Maria

    2016-07-28

    Mixed salts of Ionic Liquids (ILs) and alkali metal salts, developed as electrolytes for lithium and sodium batteries, have shown a remarkable ability to facilitate high rate capability for lithium and sodium electrochemical cycling. It has been suggested that this may be due to a high alkali metal ion transference number at concentrations approaching 50 mol% Li(+) or Na(+), relative to lower concentrations. Computational investigations for two IL systems illustrate the formation of extended alkali-anion aggregates as the alkali metal ion concentration increases. This tends to favor the diffusion of alkali metal ions compared with other ionic species in electrolyte solutions; behavior that has recently been reported for Li(+) in a phosphonium ionic liquid, thus an increasing alkali transference number. The mechanism of alkali metal ion diffusion via this extended coordination environment present at high concentrations is explained and compared to the dynamics at lower concentrations. Heterogeneous alkali metal ion dynamics are also evident and, somewhat counter-intuitively, it appears that the faster ions are those that are generally found clustered with the anions. Furthermore these fast alkali metal ions appear to correlate with fastest ionic liquid solvent ions. PMID:27375042

  4. Ion-exchange behavior of alkali metals on treated carbons

    International Nuclear Information System (INIS)

    The ion-exchange behavior of trace quantities of the alkali-metal ions sodium and cesium, on activated carbon impregnated with zirconium phosphate (referred to here as ZrP), was studied. Impregnated carbon had twice as much ion-exchange activity as unimpregnated, oxidized carbon, and 10 times as much as commercial activated carbons. The distribution coefficient of sodium increased with increasing pH; the distribution coefficient of cesium decreased with increasing pH. Sodium and cesium were separated with an electrolytic solution of 0.1 M HCl. Preliminary studies indicated that 0.2 M potassium and cesium can also be separated. Distribution coefficients of the supported ZrP were determined by the elution technique and agreed within 20% of the values for pure ZrP calculated from the literature

  5. Process for carbonaceous material conversion and recovery of alkali metal catalyst constituents held by ion exchange sites in conversion residue

    Science.gov (United States)

    Sharp, David W.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  6. Properties of Hydrated Alkali Metals Aimed at the Ion Channel Selectivity

    Institute of Scientific and Technical Information of China (English)

    AN Hai-Long; LIU Yu-Zhi; ZHANG Su-Hua; ZHAN Yong; ZHANG Hai-Lin

    2008-01-01

    The hydration structure properties of different alkali metal ions with eight water molecules and potassium ions with different numbers of water molecules are studied using the mixed density functional theory, B3LYP, with 6-311G basis set. The hydration structures are obtained from structure optimization and the optimum numbers of water molecules in the innermost hydration shell for the alkali metal ions are found. Some useful information about the ion channel selectivity is presented.

  7. A simple alkali-metal and noble gas ion source for SIMS equipments with mass separation of the primary ions

    International Nuclear Information System (INIS)

    An alkali-metal ion source working without a store of alkali-metals is described. The alkali-metal ions are produced by evaporation of alkali salts and ionization in a low-voltage arc discharge stabilized with a noble gas plasma or in the case of small alkali-metal ion currents on the base of the well known thermic ionization at a hot tungsten wire. The source is very simple in construction and produces a stable ion current of 0.3 μA for more than 100 h. It is possible to change the ion species in a short time. This source is applicable to all SIMS equipments using mass separation for primary ions. (author)

  8. Hydration number of alkali metal ions determined by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2008-01-01

    In aqueous solutions, the alkali metals ions are associated with a number of H2O molecules. A distinction is made between a primary solvent shell, (or inner solvation shell), consisting of H2O molecules directly coordinated to the metal ion, and a secondary (or outer) solvation shell, consisting....... The solvation of alkali metal ions has been discussed for many years without a clear consensus. This work presents a systematic study of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS......-). The technique of Electrochemical Quartz Crystal Microbalance (EQCM) has been used to simultaneously determine the mass entering a film of PPy(DBS), and the charge during the first reduction. The method determines the total mass of metal ions and H2O entering the film quite accurately. The charge inserted allows...

  9. Determination of membrane hydration numbers of alkali metal ions by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen; Junaid Mohamed Jafeen, Mohamed; Careem, M.A.

    2010-01-01

    In aqueous solutions, the alkali metals ions, Li+, Na+, K+, Rb+ and Cs+ are known to be associated with a number of H2O molecules. Traditionally, a distinction is made between a primary solvent shell, (or inner solvation shell), consisting of H2O molecules directly coordinated to the metal ion...... may depend on the details of ion hydration. Although the solvation of alkali metal ions in aqueous solution has been discussed for many years, there is still no clear consensus. Part of the discrepancy is simply that different methods measure over different time scales, and therefore do...... not necessarily define the same hydration shell. This work presents a systematic study of one special variant of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS-). The technique...

  10. Electrohydrodynamic emission of positive and negative ions from alkali-metal halide melts

    International Nuclear Information System (INIS)

    The characteristics of electrohydrodynamic (EHD) emission of positive and negative ions from melts of alkali-metal metals are presented. The angular current density is 3-4 μA/sr with emission currents of 0.1-0.5 μA. The salt EHD sources which have been developed yield stable currents of K+, Rb+, Cs+, F-, Cl-, and I- ions for several tens of hours. 10 refs., 4 figs., 1 tab

  11. Elimination technique for alkali metal ion adducts from an electrospray ionization process using an on-line ion suppressor

    OpenAIRE

    NOZAKI, Kazuyoshi; TARUI, Akira; OSAKA, Issey; Kawasaki, Hideya; ARAKAWA, Ryuichi; 荒川, 隆一

    2010-01-01

    The effects of an on-line ion suppressor device on alkali metal ion adduct formations of the model compound tacrolimus were investigated. The base peak ion in the positive ion ESI-MS spectrum of tacrolimus was a sodium ion adduct, [M+Na]+. On the other hand, an ammonium ion adduct, [M+NH4]+, was the base peak ion in the full-scan mass spectrum of tacrolimus with a cation-exchange suppressor resin, and both [M+Na]+ and [M+K]+ were eliminated. These results indicate that the combination of an o...

  12. Structure of the Alkali-metal-atom-Strontium molecular ions: towards photoassociation and formation of cold molecular ions

    OpenAIRE

    Aymar, Mireille; Guérout, Romain; Dulieu, Olivier

    2011-01-01

    The potential energy curves, permanent and transition dipole moments, and the static dipolar polarizability, of molecular ions composed of one alkali-metal atom and a Strontium ion are determined with a quantum chemistry approach. The molecular ions are treated as effective two-electron systems and are treated using effective core potentials including core polarization, large gaussian basis sets, and full configuration interaction. In the perspective of upcoming experiments aiming at merging ...

  13. Construction of thermionic alkali-ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Ul Haq, F.

    1986-04-01

    A simple technique is described by which singly charged alkali ions of K, Na, Li, Rb and Cs are produced by heating ultra-pure chemical salts of different alkali metals on tungsten filaments without employing a temperature measuring device. The character of alkali-ion currents at different heating powers and the remarkably constant ion emission current for prolonged periods are discussed.

  14. Process for recovering alkali metals and sulfur from alkali metal sulfides and polysulfides

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard; Alvare, Javier

    2016-10-25

    Alkali metals and sulfur may be recovered from alkali monosulfide and polysulfides in an electrolytic process that utilizes an electrolytic cell having an alkali ion conductive membrane. An anolyte solution includes an alkali monosulfide, an alkali polysulfide, or a mixture thereof and a solvent that dissolves elemental sulfur. A catholyte includes molten alkali metal. Applying an electric current oxidizes sulfide and polysulfide in the anolyte compartment, causes alkali metal ions to pass through the alkali ion conductive membrane to the catholyte compartment, and reduces the alkali metal ions in the catholyte compartment. Liquid sulfur separates from the anolyte solution and may be recovered. The electrolytic cell is operated at a temperature where the formed alkali metal and sulfur are molten.

  15. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals.

    Science.gov (United States)

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-08-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: ([3])Li(+), ([3])Na(+), ([4])K(+), ([4])Rb(+), ([6])Cs(+), ([3])Be(2+), ([4])Mg(2+), ([6])Ca(2+), ([6])Sr(2+) and ([6])Ba(2+), but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of ([6])Na(+), the ratio Ueq(Na)/Ueq(bonded anions) is partially correlated with 〈([6])Na(+)-O(2-)〉 (R(2) = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li(+) in

  16. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals.

    Science.gov (United States)

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-08-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: ([3])Li(+), ([3])Na(+), ([4])K(+), ([4])Rb(+), ([6])Cs(+), ([3])Be(2+), ([4])Mg(2+), ([6])Ca(2+), ([6])Sr(2+) and ([6])Ba(2+), but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of ([6])Na(+), the ratio Ueq(Na)/Ueq(bonded anions) is partially correlated with 〈([6])Na(+)-O(2-)〉 (R(2) = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li(+) in

  17. Alkali-Metal-Ion-Functionalized Graphene Oxide as a Superior Anode Material for Sodium-Ion Batteries.

    Science.gov (United States)

    Wan, Fang; Li, Yu-Han; Liu, Dai-Huo; Guo, Jin-Zhi; Sun, Hai-Zhu; Zhang, Jing-Ping; Wu, Xing-Long

    2016-06-01

    Although graphene oxide (GO) has large interlayer spacing, it is still inappropriate to use it as an anode for sodium-ion batteries (SIBs) because of the existence of H-bonding between the layers and ultralow electrical conductivity which impedes the Na(+) and e(-) transformation. To solve these issues, chemical, thermal, and electrochemical procedures are traditionally employed to reduce GO nanosheets. However, these strategies are still unscalable, consume high amounts of energy, and are expensive for practical application. Here, for the first time, we describe the superior Na storage of unreduced GO by a simple and scalable alkali-metal-ion (Li(+) , Na(+) , K(+) )-functionalized process. The various alkali metals ions, connecting with the oxygen on GO, have played different effects on morphology, porosity, degree of disorder, and electrical conductivity, which are crucial for Na-storage capabilities. Electrochemical tests demonstrated that sodium-ion-functionalized GO (GNa) has shown outstanding Na-storage performance in terms of excellent rate capability and long-term cycle life (110 mAh g(-1) after 600 cycles at 1 A g(-1) ) owing to its high BET area, appropriate mesopore, high degree of disorder, and improved electrical conductivity. Theoretical calculations were performed using the generalized gradient approximation (GGA) to further study the Na-storage capabilities of functionalized GO. These calculations have indicated that the Na-O bond has the lowest binding energy, which is beneficial to insertion/extraction of the sodium ion, hence the GNa has shown the best Na-storage properties among all comparatives functionalized by other alkali metal ions. PMID:27136376

  18. Luminescence properties of alkali metal ions sensitized CaFCl:Tb3+ nanophosphors

    Institute of Scientific and Technical Information of China (English)

    林林; 林慧; 王哲哲; 郑标; 谌基兴; 徐森元; 冯卓宏; 郑志强

    2015-01-01

    A series of CaFCl:Tb3+ and CaFCl:Tb3+,A+ (A=Li, Na and K) nanophosphors were synthesized by the one-step sol-gel method, which were reported for the first time. The sample consisted of monodisperse particles, the average size of which was 37 nm. The emissions of Tb3+ ions and oxygen defects OF? were demonstrated in the CaFCl:Tb3+ samples. The former was made up of sev-eral peaks at 488, 545, 587 and 623 nm, ascribed to5D4→7FJ (J=6–3) transitions of Tb3+ ions. The latter was shown as a broad band peaked at about 450 nm. Alkali metal ions A+(A=Li, Na and K) were introduced asthe charge compensators to improve the lumines-cence of samples. The influence of charge compensators on the emissions of Tb3+ ions and oxygen defects OF? was investigated by the measurement of fluorescence spectra and luminescence decay curves. The results indicated that all the charge compensators weakened the defects emission. Furthermore, Li+ ion was the best charge compensator, because it not only reduced the defects emis-sion but also increased the emission intensity of Tb3+ significantly. Our results suggested that this nanophosphor sensitized by the charge compensator might broaden potential applications of rare-earth doped CaFCl.

  19. UV and IR spectroscopy of cold 1,2-dimethoxybenzene complexes with alkali metal ions.

    Science.gov (United States)

    Inokuchi, Yoshiya; Boyarkin, Oleg V; Ebata, Takayuki; Rizzo, Thomas R

    2012-04-01

    We report UV photodissociation (UVPD) and IR-UV double-resonance spectra of 1,2-dimethoxybenzene (DMB) complexes with alkali metal ions, M(+)·DMB (M = Li, Na, K, Rb, and Cs), in a cold, 22-pole ion trap. The UVPD spectrum of the Li(+) complex shows a strong origin band. For the K(+)·DMB, Rb(+)·DMB, and Cs(+)·DMB complexes, the origin band is very weak and low-frequency progressions are much more extensive than that of the Li(+) ion. In the case of the Na(+)·DMB complex, spectral features are similar to those of the K(+), Rb(+), and Cs(+) complexes, but vibronic bands are not resolved. Geometry optimization with density functional theory indicates that the metal ions are bonded to the oxygen atoms in all the M(+)·DMB complexes. For the Li(+) complex in the S(0) state, the Li(+) ion is located in the same plane as the benzene ring, while the Na(+), K(+), Rb(+), and Cs(+) ions are located off the plane. In the S(1) state, the Li(+) complex has a structure similar to that in the S(0) state, providing the strong origin band in the UV spectrum. In contrast, the other complexes show a large structural change in the out-of-plane direction upon S(1)-S(0) excitation, which results in the extensive low-frequency progressions in the UVPD spectra. For the Na(+)·DMB complex, fast charge transfer occurs from Na(+) to DMB after the UV excitation, making the bandwidth of the UVPD spectrum much broader than that of the other complexes and producing the photofragment DMB(+) ion.

  20. Tandem mass spectrometric study of ciprofloxacin-poly(ethylene glycol) conjugate in the presence of alkali metal ions

    Science.gov (United States)

    Kéki, Sándor; Nagy, Lajos; Kuki, Ákos; Pintér, Gábor; Herczegh, Pál; Zsuga, Miklós

    2008-08-01

    The fragmentation and fragmentation behaviors of singly, doubly, and triply charged adducts of ciprofloxacin-poly(ethylene glycol) conjugate (P_Cf) with alkali metal ions, including Li+, Na+ and K+ ions, generated by electrospray (ESI) were studied as a function of collision energy. The product ion spectra of adducts with charge states +1, +2, and +3 are dominated by product ions arising from the loss-neutral moiety (ciprofloxacin) and CO2, and ions formed by dissociation of the precursor ion ([P_Cf + xM]x+) into product ions [P + (x - 1)M](x-1)+ and [Cf + M]+ (where P_Cf, P and Cf represent the ciprofloxacin-poly(ethylene glycol) conjugate, the poly(ethylene glycol) backbone without the endgroups, and the ciprofloxacin moiety, respectively; M is the alkali metal ion and x is the charge). It was found that the metal ions do not significantly alter the fragmentation pattern of ciprofloxacin-poly(ethylene glycol) conjugate. It is also interesting that the run and the shape of the survival yield curves for the singly and doubly charged adduct ions are independent of the cation. However, in the case of triply charged adducts, survival yield curves follow each other in the order K+, Na+, and Li+. Based on the experimental results, a fragmentation mechanism for the singly and multiply charged adducts of P_Cf with alkali metal ions is given. In addition, a tentative description of the signal intensity variations of the product ions with the lab frame collision energy is also reported.

  1. Characterization of Adsorbed Alkali Metal Ions in 2:1 Type Clay Minerals from First-Principles Metadynamics.

    Science.gov (United States)

    Ikeda, Takashi; Suzuki, Shinichi; Yaita, Tsuyoshi

    2015-07-30

    Adsorption states of alkali metal ions in three kinds of 2:1 type clay minerals are systematically investigated via first-principles-based metadynamics. Our reconstructed free energy surfaces in a two-dimensional space of coordination numbers specifically employed as collective variables for describing the interlayer cations show that an inner-sphere (IS) complex is preferentially formed for Cs(+) in the 2:1 type trioctahedral clay minerals with saponite-like compositions, where lighter alkali metal ions show a tendency to form an outer-sphere one instead. The strong preference for an IS complex observed for Cs(+) is found to result partially from the capability of recognizing selectively Cs(+) ions at the basal O atoms with the Lewis basicity significantly enhanced by the isomorphic substitution in tetrahedral sheets.

  2. Methods of recovering alkali metals

    Science.gov (United States)

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  3. Alkali metal ion binding to glutamine and glutamine derivatives investigated by infrared action spectroscopy and theory

    NARCIS (Netherlands)

    Bush, M. F.; Oomens, J.; Saykally, R. J.; Williams, E. R.

    2008-01-01

    The gas-phase structures of alkali-metal cationized glutamine are investigated by using both infrared multiple photon dissociation (TRMPD) action spectroscopy, utilizing light generated by a free electron laser, and theory. The IRMPD spectra contain many similarities that are most consistent with gl

  4. The effects of correlation, relativity, exchange, channels coupling and polarization in scattering of electrons by alkali-metal atoms and alkali-like ions

    International Nuclear Information System (INIS)

    The present review briefly presents the growing experimental as well as theoretical interest in recent years in the effects of correlation, relativity, exchange, channels coupling and polarization on the high precision scattering of electron by alkali-metal atoms and alkali-like ions. Many high precision experiments have been performed which need very high accurate theoretical prediction for correct interpretation and identification of different physical effects involved. Several sophisticated theoretical techniques have been developed for inclusion of the above mentioned effects which play an extremely important role in order to obtain results of high accuracy for understanding experimental observation of high precision. At present, we do not have a comprehensive and practical atomic scattering theory which accounts for all these effects on an equal footing. Future challenges and directions, in reliable electron-atom scattering calculations, have been discussed and suggested. (author). 136 refs, 16 figs

  5. Crown-Ether Derived Graphene Hybrid Composite for Membrane-Free Potentiometric Sensing of Alkali Metal Ions

    DEFF Research Database (Denmark)

    Olsen, Gunnar; Ulstrup, Jens; Chi, Qijin

    2016-01-01

    surface coverage is achieved by the introduction of a flexible linking molecule. The resulting hybrid composite is highly stable and is capable of detecting potassium ions down to micromolar ranges with a selectivity over other cations (including Ca2+, Li+, Na+, NH4+) at concentrations up to 25 m......We report the design and synthesis of newly functionalized graphene hybrid material that can be used for selective membrane-free potentiometric detection of alkali metal ions, represented by potassium ions. Reduced graphene oxide (RGO) functionalized covalently by 18-crown[6] ether with a dense...

  6. New class of scorpionate: tris(tetrazolyl)-iron complex and its different coordination modes for alkali metal ions.

    Science.gov (United States)

    Park, Ka Hyun; Lee, Kang Mun; Go, Min Jeong; Choi, Sung Ho; Park, Hyoung-Ryun; Kim, Youngjo; Lee, Junseong

    2014-08-18

    We report formation of a new metallascorpionate ligand, [FeL3](3-) (IPtz), containing a Fe core and three 5-(2-hydroxyphenyl)-1H-tetrazole (LH2) ligands. It features two different binding sites, oxygen and nitrogen triangles, which consist of three oxygen or nitrogen donors from tetrazole. The binding affinities of the complex for three alkali metal ions were studied using UV spectrophotometry titrations. All three alkali metal ions show high affinities and binding constants (>3 × 10(6) M(-1)), based on the 1:1 binding isotherms to IPtz. The coordination modes of the alkali metals and IPtz in the solid were studied using X-ray crystallography; two different electron-donor sites show different coordination numbers for Li(+), Na(+), and K(+) ions. The oxygen triangles have the κ(2) coordination mode with Li(+) and κ(3) coordination mode with Na(+) and K(+) ions, whereas the nitrogen triangles show κ(3) coordination with K(+) only. The different binding affinities of IPtz in the solid were manipulated using multiple metal precursors. A Fe-K-Zn trimetallic complex was constructed by assembly of an IPtz ligand, K, and Zn precursors and characterized using X-ray crystallography. Oxygen donors are coordinated with the K ion via the κ(3) coordination mode, and nitrogen donors are coordinated with Zn metal by κ(3) coordination. The solid-state structure was confirmed to be a honeycomb coordination polymer with a one-dimensional infinite metallic array, i.e., -(K-K-Fe-Zn-Fe-K)n-.

  7. Solid State Structures of Alkali Metal Ion Complexes Formed by Low-Molecular-Weight Ligands of Biological Relevance.

    Science.gov (United States)

    Aoki, Katsuyuki; Murayama, Kazutaka; Hu, Ning-Hai

    2016-01-01

    This chapter provides structural data, mainly metal binding sites/modes, observed in crystal structures of alkali metal ion complexes containing low-molecular-weight ligands of biological relevance, mostly obtained from the Cambridge Structural Database (the CSD version 5.35 updated to February 2014). These ligands include (i) amino acids and small peptides, (ii) nucleic acid constituents (excluding quadruplexes and other oligonucleotides), (iii) simple carbohydrates, and (iv) naturally occurring antibiotic ionophores. For some representative complexes of these ligands, some details on the environment of the metal coordination and structural characteristics are described. PMID:26860299

  8. N-alkyl pyrrolidone ether podands as versatile alkali metal ion chelants.

    Science.gov (United States)

    Perrin, Andrea; Myers, Dominic; Fucke, Katharina; Musa, Osama M; Steed, Jonathan W

    2014-02-28

    This work explores the coordination chemistry of a bis(pyrrolidone) ether ligand. Pyrrolidones are commercially important functional groups because of the high polarity and hence high hydrophilicity and surface affinity. An array of alkali metal ion complexes of a podand bearing two pendant pyrrolidone functionalities, namely 1-{2-[2-(2-oxo-pyrrolid-1-yl)-ethoxy]-ethyl}-pyrrolid-2-one (1) are reported. Reaction of this ligand with sodium hexafluorophosphate gives two discrete species of formulae [Na(1)2]PF6 (3) and [Na3(H2O)2(μ-1)2](PF6)3 (4), and a coordination polymer {[Na3(μ3-1)3(μ2-1)](PF6)3}n (5). The same reaction in methanol gives a 1 : 1 complex, namely [Na2(μ-1)2(MeOH)2](PF6)2 (6). Use of tetraphenyl borate as a less coordinating counter ion gives [Na2(1)2(H2O)4](BPh4)2 (7) and [Na2(1)4](BPh4)2 (8). Two potassium complexes have also been isolated, a monomer [K(1)2]PF6 (9) and a cyclic tetramer [K4(μ4-H2O)2(μ-1)4](PF6)4 (10). The structures illustrate the highly polar nature of the amide carbonyl moiety within bis(pyrrolidone) ethers with longer interactions to the ether oxygen atom. The zinc complex is also reported and {[ZnCl2(μ-1)]}n (11) exhibits bonding only to the carbonyl moieties. The ether oxygen atom is not necessary for Na(+) complexation as exemplified by the structure of the sodium complex of the analogue 1,3-bis(pyrrolid-2-on-1-yl)butane (2). Reaction of compound 1 with lithium salts results in isolation of the protonated ligand. PMID:24336897

  9. Alkali Metal Ion Complexes with Phosphates, Nucleotides, Amino Acids, and Related Ligands of Biological Relevance. Their Properties in Solution.

    Science.gov (United States)

    Crea, Francesco; De Stefano, Concetta; Foti, Claudia; Lando, Gabriele; Milea, Demetrio; Sammartano, Silvio

    2016-01-01

    Alkali metal ions play very important roles in all biological systems, some of them are essential for life. Their concentration depends on several physiological factors and is very variable. For example, sodium concentrations in human fluids vary from quite low (e.g., 8.2 mmol dm(-3) in mature maternal milk) to high values (0.14 mol dm(-3) in blood plasma). While many data on the concentration of Na(+) and K(+) in various fluids are available, the information on other alkali metal cations is scarce. Since many vital functions depend on the network of interactions occurring in various biofluids, this chapter reviews their complex formation with phosphates, nucleotides, amino acids, and related ligands of biological relevance. Literature data on this topic are quite rare if compared to other cations. Generally, the stability of alkali metal ion complexes of organic and inorganic ligands is rather low (usually log K  Na(+) > K(+) > Rb(+) > Cs(+). For example, for citrate it is: log K ML = 0.88, 0.80, 0.48, 0.38, and 0.13 at 25 °C and infinite dilution. Some considerations are made on the main aspects related to the difficulties in the determination of weak complexes. The importance of the alkali metal ion complexes was also studied in the light of modelling natural fluids and in the use of these cations as probes for different processes. Some empirical relationships are proposed for the dependence of the stability constants of Na(+) complexes on the ligand charge, as well as for correlations among log K values of NaL, KL or LiL species (L = generic ligand). PMID:26860301

  10. Long-range interactions between the alkali-metal atoms and alkaline earth ions

    CERN Document Server

    Kaur, Jasmeet; Arora, Bindiya; Sahoo, B K

    2014-01-01

    Accurate knowledge of interaction potentials among the alkali atoms and alkaline earth ions is very useful in the studies of cold atom physics. Here we carry out theoretical studies of the long-range interactions among the Li, Na, K, and Rb alkali atoms with the Ca$^+$, Ba$^+$, Sr$^+$, and Ra$^+$ alkaline earth ions systematically which are largely motivated by their importance in a number of applications. These interactions are expressed as a power series in the inverse of the internuclear separation $R$. Both the dispersion and induction components of these interactions are determined accurately from the algebraic coefficients corresponding to each power combination in the series. Ultimately, these coefficients are expressed in terms of the electric multipole polarizabilities of the above mentioned systems which are calculated using the matrix elements obtained from a relativistic coupled-cluster method and core contributions to these quantities from the random phase approximation. We also compare our estim...

  11. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    Science.gov (United States)

    Joshi, Ashok V.; Balagopal, Shekar; Pendelton, Justin

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  12. Surface tension of molten alkali metal halides as a function of ion sizes

    International Nuclear Information System (INIS)

    The analysis of the experimental data on the surface tension of the liquid/vapor interphase boundary of the molten alkali metal halides MX (M Li-Cs, X = F-I) near the melting temperature, accounting for the cation and anion dimensional differences, is presented. The main attention is focused at the manifestation of the effects of the interphase boundary of the effects of the interphase boundary thickness and twofold electric layer. It is shown, that the experimental data on the whole MX series may be represented in the form of the electrocapillary curve on the graph of the surface tension dependence on the degree of the halides dimensional asymmetry

  13. Molecular origin of high free energy barriers for alkali metal ion transfer through ionic liquid-graphene electrode interfaces.

    Science.gov (United States)

    Ivaništšev, Vladislav; Méndez-Morales, Trinidad; Lynden-Bell, Ruth M; Cabeza, Oscar; Gallego, Luis J; Varela, Luis M; Fedorov, Maxim V

    2016-01-14

    In this work we study mechanisms of solvent-mediated ion interactions with charged surfaces in ionic liquids by molecular dynamics simulations, in an attempt to reveal the main trends that determine ion-electrode interactions in ionic liquids. We compare the interfacial behaviour of Li(+) and K(+) at a charged graphene sheet in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, and its mixtures with lithium and potassium tetrafluoroborate salts. Our results show that there are dense interfacial solvation structures in these electrolytes that lead to the formation of high free energy barriers for these alkali metal cations between the bulk and direct contact with the negatively charged surface. We show that the stronger solvation of Li(+) in the ionic liquid leads to the formation of significantly higher interfacial free energy barriers for Li(+) than for K(+). The high free energy barriers observed in our simulations can explain the generally high interfacial resistance in electrochemical storage devices that use ionic liquid-based electrolytes. Overcoming these barriers is the rate-limiting step in the interfacial transport of alkali metal ions and, hence, appears to be a major drawback for a generalised application of ionic liquids in electrochemistry. Some plausible strategies for future theoretical and experimental work for tuning them are suggested.

  14. Molecular origin of high free energy barriers for alkali metal ion transfer through ionic liquid-graphene electrode interfaces.

    Science.gov (United States)

    Ivaništšev, Vladislav; Méndez-Morales, Trinidad; Lynden-Bell, Ruth M; Cabeza, Oscar; Gallego, Luis J; Varela, Luis M; Fedorov, Maxim V

    2016-01-14

    In this work we study mechanisms of solvent-mediated ion interactions with charged surfaces in ionic liquids by molecular dynamics simulations, in an attempt to reveal the main trends that determine ion-electrode interactions in ionic liquids. We compare the interfacial behaviour of Li(+) and K(+) at a charged graphene sheet in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, and its mixtures with lithium and potassium tetrafluoroborate salts. Our results show that there are dense interfacial solvation structures in these electrolytes that lead to the formation of high free energy barriers for these alkali metal cations between the bulk and direct contact with the negatively charged surface. We show that the stronger solvation of Li(+) in the ionic liquid leads to the formation of significantly higher interfacial free energy barriers for Li(+) than for K(+). The high free energy barriers observed in our simulations can explain the generally high interfacial resistance in electrochemical storage devices that use ionic liquid-based electrolytes. Overcoming these barriers is the rate-limiting step in the interfacial transport of alkali metal ions and, hence, appears to be a major drawback for a generalised application of ionic liquids in electrochemistry. Some plausible strategies for future theoretical and experimental work for tuning them are suggested. PMID:26661060

  15. Upgrading platform using alkali metals

    Science.gov (United States)

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  16. Alkali metal and alkali earth metal gadolinium halide scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  17. Metal-mediated aminocatalysis provides mild conditions: Enantioselective Michael addition mediated by primary amino catalysts and alkali-metal ions

    Directory of Open Access Journals (Sweden)

    Matthias Leven

    2013-01-01

    Full Text Available Four catalysts based on new amides of chiral 1,2-diamines and 2-sulfobenzoic acid have been developed. The alkali-metal salts of these betaine-like amides are able to form imines with enones, which are activated by Lewis acid interaction for nucleophilic attack by 4-hydroxycoumarin. The addition of 4-hydroxycoumarin to enones gives ee’s up to 83% and almost quantitative yields in many cases. This novel type of catalysis provides an effective alternative to conventional primary amino catalysis were strong acid additives are essential components.

  18. A stochastic optimization method based technique for finding out reaction paths in noble gas clusters perturbed by alkali metal ions

    International Nuclear Information System (INIS)

    Graphical abstract: The structure of a minimum in Ar19K+ cluster. Abstract: In this paper we explore the possibility of using stochastic optimizers, namely simulated annealing (SA) in locating critical points (global minima, local minima and first order saddle points) in Argon noble gas clusters perturbed by alkali metal ions namely sodium and potassium. The atomic interaction potential is the Lennard Jones potential. We also try to see if a continuous transformation in geometry during the search process can lead to a realization of a kind of minimum energy path (MEP) for transformation from one minimum geometry to another through a transition state (first order saddle point). We try our recipe for three sizes of clusters, namely (Ar)16M+, (Ar)19M+ and (Ar)24M+, where M+ is Na+ and K+.

  19. Corrosion by the Alkali Metals

    International Nuclear Information System (INIS)

    This is a review of the state of the art of corrosion testing of materials by the alkali metals, the models proposed to explain the observed corrosion results, and the status of materials selection for application in alkali metal-cooled systems. Corrosion of structural and fuel cladding materials by liquid Na and NaK has been studied intensively, but intermittently for the last 18 years. These studies and the liquid-metal-cooled reactors in operation demonstrate that stainless steels can be considered for structural and cladding applications below 650°C. Above this temperature increased corrosion and radiation-induced embrittlement make them unsatisfactory. Corrosion models are reviewed and their inability to explain all the experimental observations discussed. An alternate model is proposed which qualitatively is in agreement with experimental observations. In this model, the rate-controlling step is either the surface reaction of Fe with ''available oxygen'' (dissolved Na2O) to form an Fe-O-Na complex or the rate at which ''available oxygen'' can reach the surface to form the complex; which process is rate controlling depends on the temperature, Na velocity and oxygen concentration in the Na. The solution chemistry of oxygen, carbon and alkali metal-oxygen-transition metal complexes dissolved in the alkali metals is reviewed. ''Molecular'' complexes appear unlikely to exist in solution in the alkali metals, although the thermodynamic tendencies for them to form suggest that stable bonds exist in solution between oxygen, the transition and the alkali metals. The insolubility of carbon in ''oxygen-free'' sodium indicates that carbon transfer may be associated with oxygen in sodium down to very low oxygen levels, although experimental data do not generally confirm this postulate. Corrosion of refractory metals by boiling alkali metals at temperatures above 1000°C is markedly affected by impurities in either the liquid or refractory metal; the addition of Ti, Zr or

  20. Dispersion coefficients for the interactions of the alkali-metal and alkaline-earth-metal ions and inert-gas atoms with a graphene layer

    Science.gov (United States)

    Kaur, Kiranpreet; Arora, Bindiya; Sahoo, B. K.

    2015-09-01

    Largely motivated by a number of applications, the van der Waals dispersion coefficients C3 of the alkali-metal ions Li+,Na+,K+, and Rb+, the alkaline-earth-metal ions Ca+,Sr+,Ba+, and Ra+, and the inert-gas atoms He, Ne, Ar, and Kr with a graphene layer are determined precisely within the framework of the Dirac model. For these calculations, we evaluate the dynamic polarizabilities of the above atomic systems very accurately by evaluating the transition matrix elements employing relativistic many-body methods and using the experimental values of the excitation energies. The dispersion coefficients are given as functions of the separation distance of an atomic system from the graphene layer and the ambiance temperature during the interactions. For easy extraction of these coefficients, we give a logistic fit to the functional forms of the dispersion coefficients in terms of the separation distances at room temperature.

  1. Alkali metal ion induced cube shaped mesoporous hematite particles for improved magnetic properties and efficient degradation of water pollutants.

    Science.gov (United States)

    Roy, Mouni; Naskar, Milan Kanti

    2016-07-27

    Mesoporous cube shaped hematite (α-Fe2O3) particles were prepared using FeCl3 as an Fe(3+) precursor and 1-butyl-3-methylimidazolium bromide (ionic liquid) as a soft template in the presence of different alkali metal (lithium, sodium and potassium) acetates, under hydrothermal conditions at 150 °C/4 h followed by calcination at 350 °C. The formation of the α-Fe2O3 phase in the synthesized samples was confirmed by XRD, FTIR and Raman spectroscopy. Unlike K(+) ions, intercalation of Li(+) and Na(+) ions occurred in α-Fe2O3 crystal layers as evidenced by XRD and Raman spectroscopy. Electron microscopy (FESEM and TEM) images showed the formation of cube-like particles of different sizes in the presence of Li(+), Na(+) and K(+) ions. The mesoporosity of the products was confirmed by N2 adsorption-desorption studies, while their optical properties were analyzed by UV-DRS. Na(+) ion intercalated α-Fe2O3 microcubes showed improved coercivity (5.7 kOe) due to increased strain in crystals, and shape and magnetocrystalline anisotropy. Temperature dependent magnetization of the samples confirmed the existence of Morin temperature in the range of 199-260 K. Catalytic degradation of methylene blue (MB), a toxic water pollutant, was studied using the synthesized products via a heterogeneous photo-Fenton process. The degradation products were traced by electrospray ionization-mass spectrometry (ESI-MS). The α-Fe2O3 microcubes obtained in the presence of Na(+) ions exhibited a more efficient degradation of MB to non-toxic open chain products. PMID:27406648

  2. Alkali and transition metal phospholides

    International Nuclear Information System (INIS)

    Major tendencies in modern chemistry of alkali and transition metal phospholides (phosphacyclopentadienides) are systematized, analyzed and generalized. Basic methods of synthesis of these compounds are presented. Their chemical properties are considered with a special focus on their complexing ability. Potential applications of phospholides and their derivatives are discussed. The bibliography includes 184 references

  3. Ion chromatography with the indirect ultraviolet detection of alkali metal ions and ammonium using imidazolium ionic liquid as ultraviolet absorption reagent and eluent.

    Science.gov (United States)

    Liu, Yong-Qiang; Yu, Hong

    2016-08-01

    Indirect ultraviolet detection was conducted in ultraviolet-absorption-agent-added mobile phase to complete the detection of the absence of ultraviolet absorption functional group in analytes. Compared with precolumn derivatization or postcolumn derivatization, this method can be widely used, has the advantages of simple operation and good linear relationship. Chromatographic separation of Li(+) , Na(+) , K(+) , and NH4 (+) was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid/organic solvent as the mobile phase, in which imidazolium ionic liquids acted as ultraviolet absorption reagent and eluting agent. The retention behaviors of four kinds of cations are discussed, and the mechanism of separation and detection are described. The main factors influencing the separation and detection were the background ultraviolet absorption reagent and the concentration of hydrogen ion in the ion chromatography-indirect ultraviolet detection. The successful separation and detection of Li(+) , Na(+) , K(+) , and NH4 (+) within 13 min was achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.02, 0.11, 0.30, and 0.06 mg/L, respectively. A new separation and analysis method of alkali metal ions and ammonium by ion chromatography with indirect ultraviolet detection method was developed, and the application range of ionic liquid was expanded.

  4. Optimized random phase approximation for the structure of liquid alkali metals as electron-ion plasmas

    International Nuclear Information System (INIS)

    The purpose of this letter is to stress that the way towards an unconventional optimized-random-phase-approximation (ORPA) approach to the structure of liquid metals is indicated, and in fact already a good first-order solution for such an approach is provided

  5. Fragmentation study of rutin, a naturally occurring flavone glycoside cationized with different alkali metal ions, using post-source decay matrix-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Kéki, S; Deák, G; Zsuga, M

    2001-12-01

    A post-source decay matrix-assisted laser desorption/ionization mass spectrometric (PSD-MALDI-MS) study of rutin, a naturally occurring flavone glycoside cationized with different alkali metal ions, is reported. The fragmentations of rutin were performed by selecting the [R + Cat]+ peaks for PSD, where R represents a rutin molecule and Cat an alkali metal ion (Li+, Na+, K+). The PSD-MALDI mass spectra showed, depending on Cat, different fragmentation patterns with respect to both the quality and quantity of the fragment ions formed. The intensity of fragmentation decreased in the order Li+ > Na+ > K+. The fragmentation mechanism and an explanation for the observed differences are suggested.

  6. Thermal and optical properties of Nd{sup 3+} doped lead zinc borate glasses—Influence of alkali metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Sasi Kumar, M.V.; Rajesh, D.; Balakrishna, A. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Ratnakaram, Y.C., E-mail: ratnakaramsvu@gmail.com [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India)

    2013-04-15

    In the present investigation a new series of six different Nd{sup 3+} doped alkali and mixed alkali (Li, Na, K, Li–Na, Li–K and Na–K) heavy metal (PbO and ZnO) borate glasses were prepared using the melt quenching technique. The amorphous nature of the glass systems has been identified based on the X-ray diffraction analysis. The glass transition studies were carried out using differential scanning calorimetry (DSC). Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra. The Judd–Ofelt (J–O) theory has been applied to calculate J–O intensity parameters, Ω{sub λ} (λ=2, 4 and 6) and in turn used to estimate radiative properties of certain transitions. Spectroscopic parameters such as transition probabilities (A{sub T}), branching ratios (β), radiative lifetimes (τ{sub R}) and integrated absorption cross-sections (Σ) were calculated using J–O intensity parameters for all transitions. Using emission spectra, experimental branching ratios and stimulated emission cross-sections (σ{sub P}) are obtained for all the observed emission transitions.

  7. Thermal and optical properties of Nd3+ doped lead zinc borate glasses—Influence of alkali metal ions

    Science.gov (United States)

    Sasi Kumar, M. V.; Rajesh, D.; Balakrishna, A.; Ratnakaram, Y. C.

    2013-04-01

    In the present investigation a new series of six different Nd3+ doped alkali and mixed alkali (Li, Na, K, Li-Na, Li-K and Na-K) heavy metal (PbO and ZnO) borate glasses were prepared using the melt quenching technique. The amorphous nature of the glass systems has been identified based on the X-ray diffraction analysis. The glass transition studies were carried out using differential scanning calorimetry (DSC). Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra. The Judd-Ofelt (J-O) theory has been applied to calculate J-O intensity parameters, Ωλ (λ=2, 4 and 6) and in turn used to estimate radiative properties of certain transitions. Spectroscopic parameters such as transition probabilities (AT), branching ratios (β), radiative lifetimes (τR) and integrated absorption cross-sections (Σ) were calculated using J-O intensity parameters for all transitions. Using emission spectra, experimental branching ratios and stimulated emission cross-sections (σP) are obtained for all the observed emission transitions.

  8. Thermal and optical properties of Nd3+ doped lead zinc borate glasses—Influence of alkali metal ions

    International Nuclear Information System (INIS)

    In the present investigation a new series of six different Nd3+ doped alkali and mixed alkali (Li, Na, K, Li–Na, Li–K and Na–K) heavy metal (PbO and ZnO) borate glasses were prepared using the melt quenching technique. The amorphous nature of the glass systems has been identified based on the X-ray diffraction analysis. The glass transition studies were carried out using differential scanning calorimetry (DSC). Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra. The Judd–Ofelt (J–O) theory has been applied to calculate J–O intensity parameters, Ωλ (λ=2, 4 and 6) and in turn used to estimate radiative properties of certain transitions. Spectroscopic parameters such as transition probabilities (AT), branching ratios (β), radiative lifetimes (τR) and integrated absorption cross-sections (Σ) were calculated using J–O intensity parameters for all transitions. Using emission spectra, experimental branching ratios and stimulated emission cross-sections (σP) are obtained for all the observed emission transitions

  9. Ternary alkali-metal and transition metal or metalloid acetylides as alkali-metal intercalation electrodes for batteries

    Energy Technology Data Exchange (ETDEWEB)

    Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z

    2015-02-10

    Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.

  10. Alkali metal ions transfer across a water/1,2-dichloroethane interface facilitated by a novel monoaza-B15C5 derivative

    Energy Technology Data Exchange (ETDEWEB)

    Zhan Dongping; Yuan Yi; Xiao Yanjing; Wu Bingliang; Shao Yuanhua

    2002-10-30

    In this paper, a novel monoaza-B15C5 derivative, N-(2-tosylamino)-isopentyl-monoaza-15-crown-5 (L), is used as an ionophore to facilitate alkali metal cations transfer across a water/1,2-dichloroethane (W/DCE) interface. Well-defined voltammetric behaviors are observed at the polarized W/DCE interfaces supported at micro- and nano-pipets except Cs{sup +}. The diffusion coefficient of this ionophore in the DCE phase is calculated to be equal to (3.3{+-}0.2)x10{sup -6} cm{sup 2} s{sup -1}. The experimental results indicate that a 1:1 (metal:ionophore) complex is formed at the interface with a TIC/TID mechanism. The selectivity of this ionophore towards alkali ions follows the sequence Na{sup +}>Li{sup +}>K{sup +}>Rb{sup +}>Cs{sup +}. The logarithm of the association constants (log {beta}{sub 1}{sup o}) of the LiL{sup +}, NaL{sup +}, KL{sup +} and RbL{sup +} complexes in the DCE phase are calculated to be 10.6, 11.6, 9.0 and 7.1, respectively. The kinetic parameters are determined by steady-state voltammograms using nanopipets. The standard rate constants (k{sup 0}) for Li{sup +}, Na{sup +}, K{sup +} and Rb{sup +} transfers facilitated by L are 0.54{+-}0.05, 0.63{+-}0.09, 0.51{+-}0.04 and 0.46{+-}0.06 cm s{sup -1}, respectively. The pH values of aqueous solution have little effect on the electrochemical behaviors of these facilitated processes. The results predicate that this new type of ionophore might be useful to fabricate electrochemical sensor of sodium ion.

  11. Alkali-metal intercalation in carbon nanotubes

    Science.gov (United States)

    Béguin, F.; Duclaux, L.; Méténier, K.; Frackowiak, E.; Salvetat, J. P.; Conard, J.; Bonnamy, S.; Lauginie, P.

    1999-09-01

    We report on successful intercalation of multiwall (MWNT) and single wall (SWNT) carbon nanotubes with alkali metals by electrochemical and vapor phase reactions. A LiC10 compound was produced by full electrochemical reduction of MWNT. KC8 and CsC8-MWNT first stage derivatives were synthesized in conditions of alkali vapor saturation. Their identity periods and the 2×2 R 0° alkali superlattice are comparable to their parent graphite compounds. The dysonian shape of KC8 EPR line and the temperature-independent Pauli susceptibility are both characteristic of a metallic behavior, which was confirmed by 13C NMR anisotropic shifts. Exposure of SWNT bundles to alkali vapor led to an increase of the pristine triangular lattice from 1.67 nm to 1.85 nm and 1.87 nm for potassium and rubidium, respectively.

  12. Ion Pairing in Alkali Nitrate Electrolyte Solutions.

    Science.gov (United States)

    Xie, Wen Jun; Zhang, Zhen; Gao, Yi Qin

    2016-03-10

    In this study, we investigate the thermodynamics of alkali nitrate salt solutions, especially the formation of contact ion pairs between alkali cation and nitrate anion. The ion-pairing propensity shows an order of LiNO3 law of matching water affinity" is followed by these alkali nitrate salt solutions. The spatial patterns of contact ion pairs are different in the three salt solutions studied here: Li(+) forms the contact ion pair with only one oxygen of the nitrate while Na(+) and K(+) can also be shared by two oxygens of the nitrate. In reproducing the salt activity coefficient using Kirkwood-Buff theory, we find that it is essential to include electronic polarization for Li(+) which has a high charge density. The electronic continuum correction for nonpolarizable force field significantly improves the agreement between the calculated activity coefficients and their experimental values. This approach also improves the performance of the force field on salt solubility. From these two aspects, this study suggests that electronic continuum correction can be a promising approach to force-field development for ions with high charge densities. PMID:26901167

  13. Ion Pairing in Alkali Nitrate Electrolyte Solutions.

    Science.gov (United States)

    Xie, Wen Jun; Zhang, Zhen; Gao, Yi Qin

    2016-03-10

    In this study, we investigate the thermodynamics of alkali nitrate salt solutions, especially the formation of contact ion pairs between alkali cation and nitrate anion. The ion-pairing propensity shows an order of LiNO3 activity coefficients and suggest that the empirical "law of matching water affinity" is followed by these alkali nitrate salt solutions. The spatial patterns of contact ion pairs are different in the three salt solutions studied here: Li(+) forms the contact ion pair with only one oxygen of the nitrate while Na(+) and K(+) can also be shared by two oxygens of the nitrate. In reproducing the salt activity coefficient using Kirkwood-Buff theory, we find that it is essential to include electronic polarization for Li(+) which has a high charge density. The electronic continuum correction for nonpolarizable force field significantly improves the agreement between the calculated activity coefficients and their experimental values. This approach also improves the performance of the force field on salt solubility. From these two aspects, this study suggests that electronic continuum correction can be a promising approach to force-field development for ions with high charge densities.

  14. Controllable formation of heterotrimetallic coordination compounds: systematically incorporating lanthanide and alkali metal ions into the manganese 12-metallacrown-4 framework.

    Science.gov (United States)

    Azar, Michael R; Boron, Thaddeus T; Lutter, Jacob C; Daly, Connor I; Zegalia, Kelcie A; Nimthong, Ruthairat; Ferrence, Gregory M; Zeller, Matthias; Kampf, Jeff W; Pecoraro, Vincent L; Zaleski, Curtis M

    2014-02-01

    The inclusion of Ln(III) ions into the 12-MC-4 framework generates the first heterotrimetallic complexes of this molecular class. The controllable and deliberate preparations of these compounds are demonstrated through 12 crystal structures of the Ln(III)M(I)(OAc)4[12-MCMn(III)(N)shi-4](H2O)4·6DMF complex, where OAc(-) is acetate, shi(3-) is salicylhydroximate, and DMF is N,N-dimethylformamide. Compounds 1-12 have M(I) as Na(I), and Ln(III) can be Pr(III) (1), Nd(III) (2), Sm(III) (3), Eu(III) (4), Gd(III) (5), Tb(III) (6), Dy(III) (7), Ho(III) (8), Er(III) (9), Tm(III) (10), Yb(III) (11), and Y(III) (12). An example with M(I) = K(I) and Ln(III) = Dy(III) is also reported (Dy(III)K(OAc)4[12-MCMn(III)(N)shi-4](DMF)4·DMF (14)). When La(III), Ce(III), or Lu(III) is used as the Ln(III) ions to prepare the Ln(III)Na(I)(OAc)4[12-MCMn(III)(N)shi-4] complex, the compound Na2(OAc)2[12-MCMn(III)(N)shi-4](DMF)6·2DMF·1.60H2O (13) results. For compounds 1-12, the identity of the Ln(III) ion affects the 12-MCMn(III)(N)shi-4 framework as the largest Ln(III), Pr(III), causes an expansion of the 12-MCMn(III)(N)shi-4 framework as demonstrated by the largest metallacrown cavity radius (0.58 Å for 1 to 0.54 Å for 11), and the Pr(III) causes the 12-MCMn(III)(N)shi-4 framework to be the most domed structure as evident in the largest average angle about the axial coordination of the ring Mn(III) ions (103.95° for 1 to 101.69° for 11). For 14, the substitution of K(I) for Na(I) does not significantly affect the 12-MCMn(III)(N)shi-4 framework as many of the structural parameters such as the metallacrown cavity radius (0.56 Å) fall within the range of compounds 1-12. However, the use of the larger K(I) ion does cause the 12-MCMn(III)(N)shi-4 framework to become more planar as evident in a smaller average angle about the axial coordination of the ring Mn(III) ions (101.35°) compared to the analogous Dy(III)/Na(I) (7) complex (102.40°). In addition to broadening the range of

  15. Recovery of alkali metal constituents from catalytic coal conversion residues

    Science.gov (United States)

    Soung, W.Y.

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  16. Alkali metals in fungi of forest soil

    International Nuclear Information System (INIS)

    The high affinity of forest soil fungi for alkali metals such as potassium, rubidium, caesium as well as radiocaesium is shown and discussed. Good positive correlation was found between K: Rb concentration ratios in soil and in fungi, when correlation between K: Cs concentration ratios was less pronounced. (LN)

  17. Lattice-gas model for alkali-metal fullerides: face-centered-cubic structure

    OpenAIRE

    Udvardi, Laszlo; Szabo, Gyorgy

    1995-01-01

    A lattice-gas model is suggested for describing the ordering phenomena in alkali-metal fullerides of face-centered-cubic structure assuming the electric charge of alkali ions residing in either octahedral or tetrahedral interstitial sites is completely screened by the first-neighbor C_60 molecules. This approximation allows us to derive an effective ion-ion interaction. The van der Waals interaction between the ion and C_60 molecule is characterized by introducing an additional energy at the ...

  18. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  19. Inner-shell excitation of alkali-metal atoms

    International Nuclear Information System (INIS)

    Inner-shell excitation of alkali-metal atoms, which leads to auto-ionization, is reviewed. The validity of quantum mechanical approximation is analyzed and the importance of exchange and correlation is demonstrated. Basic difficulties in making accurate calculations for inner-shell excitation process are discussed. Suggestions are made for further study of inner-shell process in atoms and ions. (author). 26 refs, 4 figs, 1 tab

  20. Determination of Alkali Ions in Biological and Environmental Samples.

    Science.gov (United States)

    Hauser, Peter C

    2016-01-01

    An overview of the common methods for the determination of the alkali metals is given. These are drawn from all of the three principle branches of quantitative analysis and consist mainly of optical atomic spectrometric methods, ion-selective electrodes, and the separation methods of ion-chromatography and capillary electrophoresis. Their main characteristics and performance parameters are discussed. Important specific applications are also examined, namely clinical analysis, single cell analysis, the analysis of soil samples and hydroponic nutrient solutions, as well as the detection of the radioactive (137)Cs isotope. PMID:26860298

  1. Interaction of alkali and alkaline earth ions with Ochratoxin A

    Energy Technology Data Exchange (ETDEWEB)

    Poor, Miklos [Institute of Laboratory Medicine, University of Pecs, Pecs H-7624 (Hungary); Kunsagi-Mate, Sandor; Matisz, Gergely; Li, Yin; Czibulya, Zsuzsanna [Department of General and Physical Chemistry, University of Pecs, Pecs H-7624 (Hungary); Janos Szentagothai Research Center, Pecs H-7624 (Hungary); Peles-Lemli, Beata [Department of General and Physical Chemistry, University of Pecs, Pecs H-7624 (Hungary); Koszegi, Tamas, E-mail: koszegit@freemail.hu [Institute of Laboratory Medicine, University of Pecs, Pecs H-7624 (Hungary)

    2013-03-15

    The effect of alkali and alkaline earth ions on the chemical equilibrium of mono- and dianionic forms of the mycotoxin Ochratoxin A (OTA) and their bonding onto the surface of Bovine Serum Albumin (BSA) have been investigated by fluorescence spectroscopy and fluorescence polarization techniques. Our results show that alkali metal ions shift the chemical equilibrium towards formation of dianionic form of OTA. Furthermore, the alkaline earth ions can compete with BSA for binding to OTA when these ions are present in millimolar concentrations. Our data also highlight the possibility that the 'free' fraction of OTA (not bound onto the surface of albumin) or at least a part of it is present in cation-bound form in body fluids. These observations are supported by stability constants and quantum-chemical calculations. Among the studied alkaline metal ions magnesium showed the highest affinity towards OTA under physiological conditions. Further research is required to analyze the potential significance of Mg{sup 2+}-OTA complex in cellular uptake and/or elimination of the toxin in the human body. - Highlights: Black-Right-Pointing-Pointer Fluorescence spectroscopy reveals cation-Ochratoxin A (OTA) interactions. Black-Right-Pointing-Pointer Alkali ions shift the equilibrium of OTA to formation of a dianionic structure. Black-Right-Pointing-Pointer Alkaline earth ions directly bind to OTA in the order: Mg{sup 2+}, Ca{sup 2+}, Ba{sup 2+}. Black-Right-Pointing-Pointer Quantum chemical calculations and logK values support our experimental data.

  2. Competitive binding exchange between alkali metal ions (K+, Rb+, and Cs+) and Na+ ions bound to the dimeric quadruplex [d(G4T4G4)]2: a 23Na and 1H NMR study.

    Science.gov (United States)

    Cesare Marincola, Flaminia; Virno, Ada; Randazzo, Antonio; Mocci, Francesca; Saba, Giuseppe; Lai, Adolfo

    2009-12-01

    A comparative study of the competitive cation exchange between the alkali metal ions K+, Rb+, and Cs+ and the Na+ ions bound to the dimeric quadruplex [d(G4T4G4)]2 was performed in aqueous solution by a combined use of the 23Na and 1H NMR spectroscopy. The titration data confirm the different binding affinities of these ions for the G-quadruplex and, in particular, major differences in the behavior of Cs+ as compared to the other ions were found. Accordingly, Cs+ competes with Na+ only for the binding sites at the quadruplex surface (primarily phosphate groups), while K+ and Rb+ are also able to replace sodium ions located inside the quadruplex. Furthermore, the 1H NMR results relative to the CsCl titration evidence a close approach of Cs+ ions to the phosphate groups in the narrow groove of [d(G4T4G4)]2. Based on a three-site exchange model, the 23Na NMR relaxation data lead to an estimate of the relative binding affinity of Cs+ versus Na+ for the quadruplex surface of 0.5 at 298 K. Comparing this value to those reported in the literature for the surface of the G-quadruplex formed by 5'-guanosinemonophosphate and for the surface of double-helical DNA suggests that topology factors may have an important influence on the cation affinity for the phosphate groups on DNA.

  3. Alkali Metal Complexes: Mixed Ligand Complexes of Some Alkali Metal Salts of Some Organic Acids with Isonitroso-PMethylace to phenone

    Directory of Open Access Journals (Sweden)

    O.P. Gupta

    2016-02-01

    Full Text Available A number of mixed ligand complexes of alkali metal salts of o-nitrophenol,2,4-dinitrophenol, 2,4,6,- trinitrophenol, 1-nitroso-2- naphthol and 8- hydroxyquinoline with Insoniroso–p methylacetopheone have been synthesized in absolute ethanol & characterized by elemental analysis and I .B. spectral data. Their I.R spectral data indicate the presence of hydrogen bonding in them, which many be one of the dominant factors of their stability. Further appreciable shift in 1650 cm-1 band (possibly vC=O and 1600 cm-1 band (possibly vC=NSuggests their coordination behavior in these mixed ligand complexes The reactions that take place in natural systems are highly specific and selective. Alkali metal ions actively participate in most of the reaction occurring in the biological systems, which are dominated by mixed ligand complexes. Studies of such mixed ligand complexes of alkali metals can threw light in understanding the role and mechanism of selective absorption of alkali metals ions by plants Coordinating ability of alkali metal with isonitrosoacetophenone1-2 and transition metals with isonitrosoacetophenone3 and isonitroso-p-methylacetophenone4 have been reported earlier. In the present paper we report the mixed ligand complexes of alkali metal salts having the general formula ML.HL, ‘ where M=Li, Na & K and L=deprotonated o- nitrophenol, 2,4 dinitrophenol, 2, 4, 6- trinitrophenol, 1-nitroso-2-naphthol or 8- hydroxquinoline; HL’= p -MeHINAP (isonitroso-p-methylacetophenone.

  4. Precision measurements of cross sections of inelastic processes realized in collisions of alkali metal ions with atoms of rare gases

    CERN Document Server

    Lomsadze, R A; Mosulishvili, N O; Kezerashvili, R Ya

    2015-01-01

    This work presents a multifaceted experimental study of collisions of Na$^{+}$ and K$^{+}$ ions in the energy range 0.5 -- 10 keV with He and Ar atoms. Absolute cross sections for charge-exchange, ionization, stripping and excitation were measured using a refined version of the transfer electric field method, angle- and energy-dependent collection of product ions, energy loss, and optical spectroscopy. The experimental data and the schematic correlation diagrams have been employed to analyze and determine the mechanisms for these processes.

  5. Alkali metal ion storage properties of sulphur and phosphorous molecules encapsulated in nanometer size carbon cylindrical pores

    Directory of Open Access Journals (Sweden)

    Yosuke Ishii

    2016-03-01

    Full Text Available We investigated the physical and chemical stabilities of sulfur and phosphorus molecules encapsulated in a mesoporous carbon (MPC and two kinds of single-walled carbon nanotubes (SWCNTs having different cylindrical pore diameters. The sublimation temperatures of sulfur molecules encapsulated in MPC and the two kinds of SWCNTs were measured by thermo-gravimetric measurements. It was found that the sublimation temperature of sulfur molecules encapsulated in SWCNTs having mean tube diameter of 1.5 nm is much higher than any other molecules encapsulated in larger pores. It was also found that the capacity fading of lithium-sulfur battery can be diminished by encapsulation of sulfur molecules in SWCNTs. We also investigated the electrochemical properties of phosphorus molecules encapsulated in SWCNTs (P@SWCNTs. It was shown that P@SWCNT can adsorb and desorb both Li and Na ions reversibly.

  6. Efficient destruction of CF4 through in situ generation of alkali metals from heated alkali halide reducing mixtures.

    Science.gov (United States)

    Lee, Myung Churl; Choi, Wonyong

    2002-03-15

    Perfluorocarbons (PFCs) are the most potent green house gases that are very recalcitrant at destruction. An effective way of converting PFCs using hot solid reagents into safe products has been recently introduced. By investigating the thermal reductive destruction of tetrafluoromethane (CF4) we provided new insight and more physicochemical consideration on this novel process. The complete destruction of CF4was successfully achieved by flowing the gas through a heated reagent bed (400-950 degrees C) that contained powder mixtures of alkali halides, CaO, and Si. The silicon acted as a reducing agent of alkali halides for the in-situ production of alkali metals, and the calcium oxide played the role of a halide ion acceptor. The absence of any single component in this ternary mixture drastically reduced the destruction efficiency of CF4. The CF4 destruction efficiencies with the solid reagent containing the alkali halide, MX, increased in the order of Li approximately Na < K < Cs for alkali cations and I < Br < Cl < F for halide anions. This trend agreed with the endothermicity of the alkali metal generation reaction: the higher the endothermicity, the lower the destruction efficiency. Alkali metal generation was indirectly detected by monitoring H2 production from its reaction with water. The production of alkali metals increased with NaF, KF, and CsF in this order. The CsF/CaO/Si system exhibited the complete destruction of CF4 at as low as 600 degrees C. The solid product analysis by X-ray diffraction (XRD) showed the formation of CaF2 and the depletion of Si with black carbon particles formed in the solid reagent residue. No CO/CO2 and toxic HF and SiF4 formation were detected in the exhaust gas. PMID:11944694

  7. The effect of the alkali metal cation on the electrocatalytic oxidation of formate on platinum

    OpenAIRE

    Previdello, B.; E. Machado; Varela, H.

    2014-01-01

    Non-covalent interactions between hydrated alkali metal cations and adsorbed oxygenated species on platinum might considerably inhibit some electrocatalytic reactions. We report in this communication the effect exerted by electrolyte alkali metal cations on the electro-oxidation of formate ions on platinum. The system was investigated by means of cyclic voltammetry and chronoamperometry in the presence of an electrolyte containing Li+, Na+, or K+. As already observed for other systems, the ge...

  8. Cathode architectures for alkali metal / oxygen batteries

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  9. Electrodes For Alkali-Metal Thermoelectric Converters

    Science.gov (United States)

    Williams, Roger M.; Wheeler, Bob L.; Jeffries-Nakamura, Barbara; Lamb, James L.; Bankston, C. Perry; Cole, Terry

    1989-01-01

    Combination of thin, porous electrode and overlying collector grid reduces internal resistance of alkali-metal thermoelectric converter cell. Low resistance of new electrode and grid boosts power density nearly to 1 W/cm2 of electrode area at typical operating temperatures of 1,000 to 1,300 K. Conductive grid encircles electrode film on alumina tube. Bus wire runs along tube to collect electrical current from grid. Such converters used to transform solar, nuclear, and waste heat into electric power.

  10. Device and method for upgrading petroleum feedstocks and petroleum refinery streams using an alkali metal conductive membrane

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard; Alvare, Javier

    2016-09-13

    A reactor has two chambers, namely an oil feedstock chamber and a source chamber. An ion separator separates the oil feedstock chamber from the source chamber, wherein the ion separator allows alkali metal ions to pass from the source chamber, through the ion separator, and into the oil feedstock chamber. A cathode is at least partially housed within the oil feedstock chamber and an anode is at least partially housed within the source chamber. A quantity of an oil feedstock is within the oil feedstock chamber, the oil feedstock comprising at least one carbon atom and a heteroatom and/or one or more heavy metals, the oil feedstock further comprising naphthenic acid. When the alkali metal ion enters the oil feedstock chamber, the alkali metal reacts with the heteroatom, the heavy metals and/or the naphthenic acid, wherein the reaction with the alkali metal forms inorganic products.

  11. [Development of metal ions analysis by ion chromatography].

    Science.gov (United States)

    Yu, Hong; Wang, Yuxin

    2007-05-01

    Analysis of metal ions by ion chromatography, including cation-exchange ion chromatography, anion-exchange ion chromatography and chelation ion chromatography, is reviewed. The cation-exchange ion chromatography is a main method for the determination of metal ions. Stationary phases in cation-exchange ion chromatography are strong acid cation exchanger (sulfonic) and weak acid cation exchanger (carboxylic). Alkali metal ions, alkaline earth metal ions, transition metal ions, rare earth metal ions, ammonium ions and amines can be analyzed by cation-exchange ion chromatography with a suitable detector. The anion-exchange ion chromatography is suitable for the separation and analysis of alkaline earth metal ions, transition metal ions and rare earth metal ions. The selectivity for analysis of metal ions with anion-exchange ion chromatography is good. Simultaneous determination of metal ions and inorganic anions can be achieved using anion-exchange ion chromatography. Chelation ion chromatography is suitable for the determination of trace metal ions in complex matrices. A total of 125 references are cited.

  12. Superconductivity in alkali metal intercalated iron selenides

    Science.gov (United States)

    Krzton-Maziopa, A.; Svitlyk, V.; Pomjakushina, E.; Puzniak, R.; Conder, K.

    2016-07-01

    Alkali metal intercalated iron selenide superconductors A x Fe2‑y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  13. COMPLEX FLUORIDES OF PLUTONIUM AND AN ALKALI METAL

    Science.gov (United States)

    Seaborg, G.T.

    1960-08-01

    A method is given for precipitating alkali metal plutonium fluorides. such as KPuF/sub 5/, KPu/sub 2/F/sub 9/, NaPuF/sub 5/, and RbPuF/sub 5/, from an aqueous plutonium(IV) solution by adding hydrogen fluoride and alkali-metal- fluoride.

  14. High-Order Dispersion Coefficients for Alkali-metal Atoms

    Institute of Scientific and Technical Information of China (English)

    KANG Shuai; DING Chi-Kun; CHEN Chang-Yong; WU Xue-Qing

    2013-01-01

    High-order dispersion coefficients C9,C11,C12,and C13 for the ground-state alkali-metals were calculated by combining the l-dependent model potential of alkali-metal atoms and linear variation method based on B-spline basis functions.The results were compared.

  15. Rydberg Matter clusters of alkali metal atoms: the link between meteoritic matter, polar mesosphere summer echoes (PMSE), sporadic sodium layers, polar mesospheric clouds (PMCs, NLCs), and ion chemistry

    CERN Document Server

    Olofson, Frans; Holmlid, Leif

    2010-01-01

    A material exists which links together the influx of meteoritic matter from interplanetary space, the polar mesosphere summer echoes (PMSE), the sporadic sodium layers, the polar mesospheric clouds (PMCs, NLCs), and the observed ion chemistry in the mesosphere. The evidence in these research fields is here analyzed and found to agree well with the properties of Rydberg Matter (RM). This material has been studied with numerous methods in the laboratory. Alkali atoms, mainly Na, reach the mesosphere in the form of interplanetary (meteoritic, cometary) dust. The planar RM clusters NaN usually contain N = 19, 37 or 61 atoms, and have the density of air at 90 km altitude where they float. The diameters of the clusters are 10-100 nm from laboratory high precision radio frequency spectroscopic studies. Such experiments show that RM clusters interact strongly with radar frequencies: this explains the radio frequency heating and reflection studies of PMSE layers. The clusters give the low temperature in the mesosphere...

  16. Alkali cation specific adsorption onto fcc(111) transition metal electrodes.

    Science.gov (United States)

    Mills, J N; McCrum, I T; Janik, M J

    2014-07-21

    The presence of alkali cations in electrolyte solutions is known to impact the rate of electrocatalytic reactions, though the mechanism of such impact is not conclusively determined. We use density functional theory (DFT) to examine the specific adsorption of alkali cations to fcc(111) electrode surfaces, as specific adsorption may block catalyst sites or otherwise impact surface catalytic chemistry. Solvation of the cation-metal surface structure was investigated using explicit water models. Computed equilibrium potentials for alkali cation adsorption suggest that alkali and alkaline earth cations will specifically adsorb onto Pt(111) and Pd(111) surfaces in the potential range of hydrogen oxidation and hydrogen evolution catalysis in alkaline solutions.

  17. Hall Determination of Atomic Radii of Alkali Metals

    Science.gov (United States)

    Houari, Ahmed

    2008-01-01

    I will propose here an alternative method for determining atomic radii of alkali metals based on the Hall measurements of their free electron densities and the knowledge of their crystal structure. (Contains 2 figures.)

  18. Electrohydrodynamic emission of both sign ions from alkali halogenide melts

    International Nuclear Information System (INIS)

    Characteristics of electrohydrodynamic (EHD) emission of both sign ions from alkali halogenide melts are presented. Angular current density at emission current of 0.1 - 0.5 μA is equal to 3 - 4 μA/sr. The developed EHD salt sources allow to obtain stable current of K+, Rb+, Cs+, F-, Cl-, I- ions during few tens of hours

  19. Enrichment of hydrogen isotopes while decomposition of alkali metal amalgams (Preprint No. CA-11)

    International Nuclear Information System (INIS)

    Sodium amalgam was prepared by electrolyzing caustic soda solution in a cell with flowing mercury as cathode. On decomposition of amalgam with aqueous sodium hydroxide solution in a denuder column packed with graphite pieces, the resultant hydrogen gas was depleted in deuterium. The alkali solution was enriched in deuterium content. The separation of the isotopes of some amalgam forming metals while decomposition of the amalgam of these metals with water has already been described. The separation is due to differential reaction rates of alkali metal amalgams with water containing light and heavy isotopes of hydrogen. However in the present investigation, the separation factor obtained is considerably higher than earlier reported due to possible chemical exchange between resultant hydrogen and the alkali metal hydroxide in presence of graphite surface and/or exchange of water with nascent hydrogen catalysed by OH- ions. (author). 18 refs., 3 tabs., 1 fig

  20. Two-phase alkali-metal experiments in reduced gravity

    Energy Technology Data Exchange (ETDEWEB)

    Antoniak, Z.I.

    1986-06-01

    Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity.

  1. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    Science.gov (United States)

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  2. Neuropsychiatric manifestations of alkali metal deficiency and excess

    Energy Technology Data Exchange (ETDEWEB)

    Yung, C.Y.

    1984-01-01

    The alkali metals from the Group IA of the periodic table (lithium, sodium, potassium, rubidium, cesium and francium) are reviewed. The neuropsychiatric aspects of alkali metal deficiencies and excesses (intoxications) are described. Emphasis was placed on lithium due to its clinical uses. The signs and symptoms of these conditions are characterized by features of an organic brain syndrome with delirium and encephalopathy prevailing. There are no clinically distinctive features that could be reliably used for diagnoses. Sodium and potassium are two essential alkali metals in man. Lithium is used as therapeutic agent in bipolar affective disorders. Rubidium has been investigated for its antidepressant effect in a group of psychiatric disorders. Cesium is under laboratory investigation for its role in carcinogenesis and in depressive illness. Very little is known of francium due to its great instability for experimental study.

  3. Electrochemistry of ytterbium (III) in molten alkali metal chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Smolenski, V.; Novoselova, A. [Institute of High-Temperature Electrochemistry, Ural Division, Russian Academy of Science, Ekaterinburg, 620219 (Russian Federation); Osipenko, A. [Research Institute of Atomic Reactors, Dimitrovgrad-10, Ulyanovsk Region, 433010 (Russian Federation); Caravaca, C. [High Level Waste Unit, Nuclear Fission Division, CIEMAT, Madrid, 28040 (Spain); Cordoba, G. de [High Level Waste Unit, Nuclear Fission Division, CIEMAT, Madrid, 28040 (Spain)], E-mail: g.cordoba@ciemat.es

    2008-12-30

    This work presents the electrochemical study of Yb(III) ions in molten alkali metal chlorides in the temperature range 723-1073 K. Transient electrochemical techniques such as linear sweep, cyclic and square wave voltammetry, and potentiometry at zero current have been used to investigate the reduction mechanism, transport parameters and thermodynamic properties of the reaction YbCl{sub 2} + 1/2Cl{sub 2} = YbCl{sub 3} The results obtained show that the reduction reaction Yb(III) + e{sup -} {r_reversible} Yb(II) is reversible being controlled by the rate of the mass transfer. The diffusion coefficient of [YbCl{sub 6}]{sup 3-} complex ions has been determined at different temperatures in the fused eutectic LiCl-KCl, the equimolar NaCl-KCl and the CsCl media. The apparent standard potential of the soluble-soluble redox system Yb(III)/Yb(II) has been obtained by cyclic voltammetry. The influence of the nature of the solvent on the electrochemical and thermodynamic properties of ytterbium compounds is discussed.

  4. Transport properties of alkali metal doped fullerides

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Daluram, E-mail: daluramyadav@gmail.com; Yadav, Nishchhal, E-mail: somyadav@gmail.com [School of studies in Physics, Vikram University, Ujjain (M.P) India (India)

    2015-07-31

    We have studied the intercage interactions between the adjacent C{sub 60} cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C{sub 60} phonons. We considered a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. Coulomb repulsive parameter and the electron phonon coupling strength are obtained within the random phase approximation. Transition temperature, T{sub c}, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C{sub 60} phonons as 5 K, which is much lower as compared to reported T{sub c} (20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. The importance of the present study, the pressure effect and normal state transport properties are calculated within the same model leading superconductivity.

  5. On the origin of alkali metals in Europa exosphere

    Science.gov (United States)

    Ozgurel, Ozge; Pauzat, Françoise; Ellinger, Yves; Markovits, Alexis; Mousis, Olivier; LCT, LAM

    2016-10-01

    At a time when Europa is considered as a plausible habitat for the development of an early form of life, of particular concern is the origin of neutral sodium and potassium atoms already detected in its exosphere (together with magnesium though in smaller abundance), since these atoms are known to be crucial for building the necessary bricks of prebiotic species. However their origin and history are still poorly understood. The most likely sources could be exogenous and result from the contamination produced by Io's intense volcanism and/or by meteoritic bombardment. These sources could also be endogenous if these volatile elements originate directly from Europa's icy mantle. Here we explore the possibility that neutral sodium and potassium atoms were delivered to the satellite's surface via the upwelling of ices formed in contact with the hidden ocean. These metallic elements would have been transferred as ions to the ocean at early epochs after Europa's formation, by direct contact of water with the rocky core. During Europa's subsequent cooling, the icy layers formed at the top of the ocean would have kept trapped the sodium and potassium, allowing their future progression to the surface and final identification in the exosphere of the satellite. To support this scenario, we have used chemistry numerical models based on first principle periodic density functional theory (DFT). These models are shown to be well adapted to the description of compact ice and are capable to describe the trapping and neutralization of the initial ions in the ice matrix. The process is found relevant for all the elements considered, alkali metals like Na and K, as well as for Mg and probably for Ca, their respective abundances depending essentially of their solubility and chemical capabilities to blend with water ices.

  6. Aqueous alkali metal hydroxide insoluble cellulose ether membrane

    Science.gov (United States)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1969-01-01

    A membrane that is insoluble in an aqueous alkali metal hydroxide medium is described. The membrane is a resin which is a water-soluble C2-C4 hydroxyalkyl cellulose ether polymer and an insolubilizing agent for controlled water sorption, a dialytic and electrodialytic membrane. It is particularly useful as a separator between electrodes or plates in an alkaline storage battery.

  7. Oxidative coal desulfurization using lime to regenerate alkali metal hydroxide from reaction product

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, S.

    1980-07-22

    A process for the removal of pyrite from coal comprises (A) preparing an aqueous slurry containing finely divided coal particles; (B) adding to the slurry an alkali metal hydroxide selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide, as well as mixtures thereof, in amounts sufficient to continuously maintain the pH of the slurry at a value of below about 8; (C) agitating the slurry while treating the slurry with oxygen or an oxygen-containing gas at substantially atmospheric pressuresand at a slightly elevated temperature of at least about 70/sup 0/C to convert the pyrite in the coal to a soluble alkali metal sulfate; (D) reacting lime with the so-formed alkali metal sulfate to regenerate the alkali metal hydroxide; and (E) recycling the hydroxide for further use in the process, whereby pyrite is effectively removed and the hydroxide conveniently regenerated with the inhibiting effect of calcium ions therein upon the oxygen leaching of said pyritic sulfur from coal being overcome at said pH, the reaction rate being enhanced by the use of said elevated temperature.

  8. Croconic acid and alkali metal croconate salts: some new insights into an old story.

    Science.gov (United States)

    Braga, Dario; Maini, Lucia; Grepioni, Fabrizia

    2002-04-15

    The solid-state structures of a series of alkali metal salts of the croconate dianion (C(5)O(5)(2-)) and of croconic acid (H(2)C(5)O(5)) have been determined. The alkali metal croconates were obtained by ring contraction of rhodizonic acid (H(2)C(6)O(6)), upon treatment with alkali metal hydroxides and recrystallisation from water. The novel species Na(2)C(5)O(5) x 2H(2)O, Rb(2)C(5)O(5) and Cs(2)C(5)O(5), as well as the mixed hydrogencroconate/croconate salt K(3)(HC(5)O(5))(C(5)O(5)) small middle dot2 H(2)O are described and compared with the Li(+), K(+) and NH(4)(+) salts. Single crystals of croconic acid were obtained by crystallisation of croconic acid in the presence of HCl. Crystal structure determinations showed that the C(5)O(5)(2-) ions tend to organize themselves in columns. The interplanar separations lie in the narrow range 3.12-3.42 A and do not necessarily reflect the presence of pi-stacking interactions. It is argued that the small interplanar separation is the result of a compromise between packing of flat croconate units and the spherical cations together with the water molecules that fill the coordination spheres of the alkali metal atoms. PMID:11933108

  9. Density functional study of ferromagnetism in alkali metal thin films

    Indian Academy of Sciences (India)

    Prasenjit Sen

    2010-04-01

    Electronic and magnetic structures of (1 0 0) films of K and Cs, having thicknesses of one to seven layers, are calculated within the plane-wave projector augmented wave (PAW) formalism of the density functional theory (DFT), using both local spin density approximation (LSDA) and the PW91 generalized gradient approximation (GGA). Only a six-layer Cs film is found to have a ferromagnetic (FM) state which is degenerate with a paramagnetic (PM) state within the accuracy of these calculations. These results are compared with those obtained from calculations on a finite-thickness uniform jellium model (UJM), and it is argued that within LSDA or GGA, alkali metal thin films cannot be claimed to have an FM ground state. Relevance of these results to the experiments on transition metal-doped alkali metal thin films and bulk hosts are also discussed.

  10. A contribution to the surface characterization of alkali metal sulfates

    Energy Technology Data Exchange (ETDEWEB)

    Fantauzzi, Marzia; Rigoldi, Americo; Elsener, Bernhard; Atzei, Davide; Rossi, Antonella, E-mail: rossi@unica.it

    2014-03-01

    Highlights: • Full electronic characterization of alkali metals sulfates by X-ray photoelectron spectroscopy and X-ray induced Auger electron spectroscopy. • Curve-fitting of SKLL signals makes possible to clarify the role of the cation in the series of alkali metal sulfates. • Differences in the binding energies and Auger parameter are discussed in terms of the electronic properties and the polarizability of the cation. • The line intensities are analyzed and a thorough quantitative analysis is presented. - Abstract: The analytical characterization of surfaces of sulfur-bearing samples that present sulfides, polysulfides and/or elemental sulfur as reaction products can be difficult by simply relying on the binding energy of the S2p X-ray photoelectron signals, due to the small chemical shifts. In such cases the Auger parameter concept can be used to distinguish among different chemical states, but this requires a model to curve fit complex Auger SKLL signals in order to resolve the contributions arising from sulfur in different chemical states on the surface. With this scope a detailed X-ray photoelectron spectroscopy (XPS) and X-ray induced Auger electron spectroscopy (XAES) surface analytical study of the group IA sulfates is presented in this paper. Sulfates were chosen as model compounds for curve fitting the X-ray induced SKLL spectra since in these compounds sulfur is present in a unique chemical state. For the first time the multicomponent SKLL spectra are fitted with model functions consisting of an intense {sup 1}D and a low intensity {sup 1}S contribution with constant energy difference of 8 eV. It was found that the kinetic energy of the SK{sub 2,3}L{sub 2,3} ({sup 1}D) line increases from 2105.1 ± 0.1 to 2107.5 ± 0.2 eV whereas the corresponding S2p{sub 3/2} binding energy decreases from 169.5 ± 0.1 eV for Li{sub 2}SO{sub 4} to 167.8 ± 0.1 eV for Cs{sub 2}SO{sub 4}. Shifts to lower binding energy values are observed also for S2p, S2s and O1

  11. Alkali Metal Coolants. Proceedings of the Symposium on Alkali Metal Coolants - Corrosion Studies and System Operating Experience

    International Nuclear Information System (INIS)

    Proceedings of a Symposium organized by the IAEA and held in Vienna, 28 November - 2 December 1966. The meeting was attended by 107 participants from 16 countries and two international organizations. Contents: Review papers (2 papers); Corrosion of steels and metal alloys (6 papers); Mass transfer in alkali metal systems, behaviour of carbon (5 papers); Effects of sodium environment on mechanical properties of materials (3 papers); Effect of water leakage into sodium systems (2 papers); Design-and operation of testing apparatus (6 papers); Control, measurements and removal of impurities (13 papers); Corrosion by other alkali metals: NaK, K, Li, Cs (6 papers); Behaviour of fission products (3 papers). Each paper is in its original language (32 English, 6 French and 8 Russian) and is preceded by an abstract in English and one in the original language if this is not English. Discussions are in English. (author)

  12. Chemical compatibility of structural materials in alkali metals

    International Nuclear Information System (INIS)

    The objectives of this task are to (a) evaluate the chemical compatibility of structural alloys such as V-5 wt.%Cr-5 wt.%Ti alloy and Type 316 stainless steel for application in liquid alkali metals such as lithium and sodium-78 wt.% potassium (NaK) at temperatures in the range that are of interest for International Thermonuclear Experimental Reactor (ITER); (b) evaluate the transfer of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen between structural materials and liquid metals; and (c) evaluate the effects of such transfers on the mechanical and microstructural characteristics of the materials for long-term service in liquid-metal-environments

  13. Synthesis, structure peculiarities and electric conductivity of alkali metal-rare earth silicates (germanates)

    International Nuclear Information System (INIS)

    The process of obtaining of rare earth-alkali metal silicates (germanates) is studied. The analysis of possibilities of structural disordering of alkaline cations in these structures is given. The interaction of the structure of different by the composition alkali alkali metal - rare earth silicates with electric conductivity values is shown

  14. Synthesis and Structural Characterization of Alkali Metal Guanidinates

    Institute of Scientific and Technical Information of China (English)

    LUO,Yun-Jie; YAO,Ying-Ming; ZHANG,Yong; SHEN,Qi

    2007-01-01

    Reactions of 1,3-diisopropylcarbodiimide with alkali metal amides,MN(SiMe3)2(M=Li or Na)in hexane or THF produced the alkali metal guanidinates{(j-PrN)2C[N(SiMe3)2]Li}2(1)and{(i-PrN)2C[N(SiMe3)2]Na(THF)}2(2)in nearly quantitative yields.Both complexes 1 and 2 were well characterized by elemental analysis,IR spectra,1H and 13C NMR spectra,and X-ray diffraction.It was found that the guanidinates adopt different coordination modes in these complexes.

  15. Polarizabilities and hyperpolarizabilities of the alkali metal atoms

    Energy Technology Data Exchange (ETDEWEB)

    Fuentealba, P. (Chile Univ., Santiago (Chile). Departamento de Fisica and Centro de Mecanica Cuantica Aplicada (CMCA)); Reyes, O. (Chile Univ., Santiago (Chile). Dept. de Fisica)

    1993-08-14

    The electric static dipole polarizability [alpha], quadrupole polarizability C, dipole-quadrupole polarizability B, and the second dipole hyperpolarizability [gamma] have been calculated for the alkali metal atoms in the ground state. The results are based on a pseudopotential which is able to incorporate the very important core-valence correlation effect through a core polarization potential, and, in an empirical way, the main relativistic effects. The calculated properties compare very well with more elaborated calculations for the Li atom, excepting the second hyperpolarizability [gamma]. For the other atoms, there is neither theoretical nor experimental information about most of the higher polarizabilities. Hence, the results of this paper should be seen as a first attempt to give a complete account of the series expansion of the interaction energy of an alkali metal atom and a static electric field. (author).

  16. Strong Turbulence in Alkali Halide Negative Ion Plasmas

    Science.gov (United States)

    Sheehan, Daniel

    1999-11-01

    Negative ion plasmas (NIPs) are charge-neutral plasmas in which the negative charge is dominated by negative ions rather than electrons. They are found in laser discharges, combustion products, semiconductor manufacturing processes, stellar atmospheres, pulsar magnetospheres, and the Earth's ionosphere, both naturally and man-made. They often display signatures of strong turbulence^1. Development of a novel, compact, unmagnetized alkali halide (MX) NIP source will be discussed, it incorporating a ohmically-heated incandescent (2500K) tantulum solenoid (3cm dia, 15 cm long) with heat shields. The solenoid ionizes the MX vapor and confines contaminant electrons, allowing a very dry (electron-free) source. Plasma densities of 10^10 cm-3 and positive to negative ion mass ratios of 1 Fusion 4, 91 (1978).

  17. The unexpected properties of alkali metal iron selenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Dagotto, Elbio R [ORNL

    2013-01-01

    The iron-based superconductors that contain FeAs layers as the fundamental building block in the crystal structures have been rationalized in the past using ideas based on the Fermi surface nesting of hole and electron pockets when in the presence of weak Hubbard U interactions. This approach seemed appropriate considering the small values of the magnetic moments in the parent compounds and the clear evidence based on photoemission experiments of the required electron and hole pockets. However, recent results in the context of alkali metal iron selenides, with generic chemical composition AxFe2ySe2 (A alkali metal element), have challenged those previous ideas since at particular compositions y the low-temperature ground states are insulating and display antiferromagnetic order with large iron magnetic moments. Moreover, angle-resolved photoemission studies have revealed the absence of hole pockets at the Fermi level in these materials. The present status of this exciting area of research, with the potential to alter conceptually our understanding of the ironbased superconductors, is here reviewed, covering both experimental and theoretical investigations. Other recent related developments are also briefly reviewed, such as the study of selenide two-leg ladders and the discovery of superconductivity in a single layer of FeSe. The conceptual issues considered established for the alkali metal iron selenides, as well as several issues that still require further work, are discussed.

  18. Supramolecular recognition control of polyethylene glycol modified N-doped graphene quantum dots: tunable selectivity for alkali and alkaline-earth metal ions.

    Science.gov (United States)

    Yang, Siwei; Sun, Jing; Zhu, Chong; He, Peng; Peng, Zheng; Ding, Guqiao

    2016-02-01

    The graphene quantum dot based fluorescent probe community needs unambiguous evidence about the control on the ion selectivity. In this paper, polyethylene glycol modified N-doped graphene quantum dots (PN-GQDs) were synthesized by alkylation reaction between graphene quantum dots and organic halides. We demonstrate the tunable selectivity and sensitivity by controlling the supramolecular recognition through the length and the end group size of the polyether chain on PN-GQDs. The relationship formulae between the selectivity/detection limit and polyether chains are experimentally deduced. The polyether chain length determines the interaction between the PN-GQDs and ions with different ratios of charge to radius, which in turn leads to a good selectivity control. Meanwhile the detection limit shows an exponential growth with the size of end groups of the polyether chain. The PN-GQDs can be used as ultrasensitive and selective fluorescent probes for Li(+), Na(+), K(+), Mg(2+), Ca(2+) and Sr(2+), respectively. PMID:26730814

  19. Alkali-metal ion coordination in uranyl(VI) poly-peroxide complexes in solution. Part 1: the Li⁺, Na⁺ and K⁺--peroxide-hydroxide systems.

    Science.gov (United States)

    Zanonato, Pier Luigi; Di Bernardo, Plinio; Vallet, Valerie; Szabó, Zoltán; Grenthe, Ingmar

    2015-01-28

    The alkali metal ions Li(+), Na(+) and K(+) have a profound influence on the stoichiometry of the complexes formed in uranyl(VI)-peroxide-hydroxide systems, presumably as a result of a templating effect, resulting in the formation of two complexes, M[(UO2)(O2)(OH)]2(-) where the uranyl units are linked by one peroxide bridge, μ-η(2)-η(2), with the second peroxide coordinated "end-on", η(2), to one of the uranyl groups, and M[(UO2)(O2)(OH)]4(3-), with a four-membered ring of uranyl ions linked by μ-η(2)-η(2) peroxide bridges. The stoichiometry and equilibrium constants for the reactions: M(+) + 2UO2(2+) + 2HO2(-) + 2H2O → M[(UO2)(O2)(OH)]2(-) + 4H(+) (1) and M(+) + 4UO2(2+) + 4HO2(-) + 4H2O → M[(UO2)(O2)(OH)]4(3-) + 8H(+) (2) have been measured at 25 °C in 0.10 M (tetramethyl ammonium/M(+))NO3 ionic media using reaction calorimetry. Both reactions are strongly enthalpy driven with large negative entropies of reaction; the observation that ΔH(2) ≈ 2ΔH(1) suggests that the enthalpy of reaction is approximately the same when peroxide is added in bridging and "end-on" positions. The thermodynamic driving force in the reactions is the formation of strong peroxide bridges and the role of M(+) cations is to provide a pathway with a low activation barrier between the reactants and in this way "guide" them to form peroxide bridged complexes; they play a similar role as in the synthesis of crown-ethers. Quantum chemical (QC) methods were used to determine the structure of the complexes, and to demonstrate how the size of the M(+)-ions affects their coordination geometry. There are several isomers of Na[(UO2)(O2)(OH)]2(-) and QC energy calculations show that the ones with a peroxide bridge are substantially more stable than the ones with hydroxide bridges. There are isomers with different coordination sites for Na(+) and the one with coordination to the peroxide bridge and two uranyl oxygen atoms is the most stable one.

  20. Aqueous cathode for next-generation alkali-ion batteries.

    Science.gov (United States)

    Lu, Yuhao; Goodenough, John B; Kim, Youngsik

    2011-04-20

    The lithium-ion batteries that ushered in the wireless revolution rely on electrode strategies that are being stretched to power electric vehicles. Low-cost, safe electrical-energy storage that enables better use of alternative energy sources (e.g., wind, solar, and nuclear) requires an alternative strategy. We report a demonstration of the feasibility of a battery having a thin, solid alkali-ion electrolyte separating a water-soluble redox couple as the cathode and lithium or sodium in a nonaqueous electrolyte as the anode. The cell operates without a catalyst and has high storage efficiency. The possibility of a flow-through mode for the cathode allows flexibility of the cell design for safe, large-capacity electrical-energy storage at an acceptable cost. PMID:21443190

  1. Facilitated alkali ion transfer at the water 1,2-dichloroethane interphase Ab-initio calculations concerning alkaline metal cation - 1,10-phenanthroline complexes

    CERN Document Server

    Sánchez, C; Baruzzi, A M; Leiva, E P M

    1997-01-01

    A series of calculations on the energetics of complexation of alkaline metals with 1,10-phenanthroline are presented. It is an experimental fact that the ordering of the free energy of transfer across the water - 1,2-dichloroethane interphase is governed by the charge / size ratio of the diferent cations; the larger cations showing the lower free energy of transfer. This ordering of the free energies of transfer is reverted in the presence of 1,10-phenanthroline in the organic phase. We have devised a thermodynamic cycle for the transfer process and by means of ab-initio calculations have drawn the conclusion that in the presence of phen the free energy of transfer is governed by the stability of the PHEN/M $^{+}$complex, which explains the observed tendency from a theoretical point of view.

  2. Radioluminescence of synthetic quartz related to alkali ions

    Energy Technology Data Exchange (ETDEWEB)

    Martini, M., E-mail: m.martini@unimib.it [Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano Bicocca, Via Cozzi 53, I-20125 Milano (Italy); INFN-Sezione di Milano Bicocca, Via Cozzi 53, I-20125 Milano (Italy); Fasoli, M. [Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano Bicocca, Via Cozzi 53, I-20125 Milano (Italy); Galli, A. [Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano Bicocca, Via Cozzi 53, I-20125 Milano (Italy); Istituto di Fotonica e Nanostrutture, IFN-CNR (Italy); Villa, I. [Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano Bicocca, Via Cozzi 53, I-20125 Milano (Italy); Guibert, P. [IRAMAT-CRP2A (Institut de recherche sur les Archeomateriaux), UMR no. 5060, CNRS-Universite Bordeaux III, F-33607 Pessac (France)

    2012-04-15

    The radioluminescence (RL) of synthetic quartzes (GEMMA Quartz and Crystal Company) has been measured at room temperature. Some samples were treated by electrodiffusion ('sweeping') in order to change the concentrations of alkali ions, mainly Li{sup +} and Na{sup +}, which in quartz are known to be linked to Al ions, substitutional for Si ions. The RL emission spectra show evidence of a role of alkali ions in affecting some specific emissions. All the spectra could be analysed as composed of four bands in the blue and UV region. Specifically, the well known blue emission at around 470 nm was seen to be composed by two bands at 430 nm (2.86 eV) and at 485 nm (2.53 eV). Effects of irradiation, during the RL measurements, were clearly seen only in the 'Li swept in' sample, namely an increase in the 485 nm band intensity and a decrease in the 430 nm band one. The previously reported UV emission was detected at 355 nm (3.44 eV) in all the samples, being the most intense band in the 'swept out' sample. A further UV emission was detected at 315 nm (3.94 eV), more intense in untreated samples. Possible assignments of the detected emission bands are discussed in relation to the defects of quartz, specifically focusing on the Al centres that are most affected by sweeping procedures. - Highlights: Black-Right-Pointing-Pointer Contribution to the understanding of relationships between defects in quartz and luminescence emissions. Black-Right-Pointing-Pointer Role of charge compensators at substitutional Al sites in the optical properties of quartz. Black-Right-Pointing-Pointer Evidence of the double nature of the 'blue emission' (around 470 nm).

  3. Dispersion coefficients for the interaction of inert gas atoms with alkali and alkaline earth ions and alkali atoms with their singly ionized ions

    CERN Document Server

    Singh, Sukhjit; Sahoo, B K; Arora, Bindiya

    2016-01-01

    We report the dispersion coefficients for the interacting inert gas atoms with the alkali ions, alkaline earth ions and alkali atoms with their singly charged ions. We use our relativistic coupled-cluster method to determine dynamic dipole and quadrupole polarizabilities of the alkali atoms and singly ionized alkaline earth atoms, whereas a relativistic random phase approximation approach has been adopted to evaluate these quantities for the closed-shell configured inert gas atoms and the singly and doubly ionized alkali and alkaline earth atoms, respectively. Accuracies of these results are adjudged from the comparison of their static polarizability values with their respective experimental results. These polarizabilities are further compared with the other theoretical results. Reason for the improvement in the accuracies of our estimated dispersion coefficients than the data listed in [At. Data and Nucl. Data Tables 101, 58 (2015)] are discussed. Results for some of the atom-ion interacting systems were not...

  4. Dirac Node Lines in Pure Alkali Earth Metals.

    Science.gov (United States)

    Li, Ronghan; Ma, Hui; Cheng, Xiyue; Wang, Shoulong; Li, Dianzhong; Zhang, Zhengyu; Li, Yiyi; Chen, Xing-Qiu

    2016-08-26

    Beryllium is a simple alkali earth metal, but has been the target of intensive studies for decades because of its unusual electron behavior at surfaces. The puzzling aspects include (i) severe deviations from the description of the nearly free-electron picture, (ii) an anomalously large electron-phonon coupling effect, and (iii) giant Friedel oscillations. The underlying origins for such anomalous surface electron behavior have been under active debate, but with no consensus. Here, by means of first-principles calculations, we discover that this pure metal system, surprisingly, harbors the Dirac node line (DNL) that in turn helps to rationalize many of the existing puzzles. The DNL is featured by a closed line consisting of linear band crossings, and its induced topological surface band agrees well with previous photoemission spectroscopy observations on the Be (0001) surface. We further reveal that each of the elemental alkali earth metals of Mg, Ca, and Sr also harbors the DNL and speculate that the fascinating topological property of the DNL might naturally exist in other elemental metals as well. PMID:27610865

  5. Enthalpic Interaction for α-Amino Acid with Alkali Metal Halides in Water

    Institute of Scientific and Technical Information of China (English)

    LU,Yan(卢雁)

    2004-01-01

    The studies of the enthalpic interaction parameters, hxy, hxyy and hxxv, of alkali metal halides with glycine,α-alanine and α-aminobutyric acid were published. Synthetic considering of the results of the studies, some interesting behaviors of the interaction between alkali metal halides and the α-amino acids have been found. The values of hxy will increase with the increase of the number of carbon atoms in alkyl side chain of amino acid molecules and decrease with the increase of the radius of the ions. The increasing of the salt's effect on the hydrophobic hydration structure as the radii of anion is more obvious than as that of cation. The value of hxxy will regularly decrease with the increase of the number of carbon atoms in the alkyl chain of amino acids and linear increase with the increase of the radius. But the relation of hxxy with the radius of cations is not evident. The value of hxyy will increase with the increase of the radii of the ions. As the increase of the number of carbon atoms of amino acids, hxyy is decreas for the ions which have lager size and there is a maximum value at α-alanine for the ions which have small size. The behaviors of the interaction mentioned above were further discussed in view of electrostatic and structural interactions.

  6. Secondary transformation mechanism of paramagnetic centers in irradiated alkali metal perchlorates

    International Nuclear Information System (INIS)

    The EPR method has been used to study thermal transformations of paramagnetic centres (PC) in X-ray irradiated potassium, rubidium and cesium perchlorates. Experimental data make it possible to suppose that diffusion coefficient of O- ion a rather high and this ion is freely diffused already at 262 K. Colliding with [MeClO4]+ centres it is transformed in a molecule of oxygen. Another part of O- is transformed in stable ozonide-ion at 300 K. About room temperature hole centres dissociate with formation of ClO2 radical. It is supposed that part of electron and hole centres is not stabilized but at 77 K it is transformed in stable radiolysis products. This process most effective proceeds in dislocations and on the surface of microcrystals. The suggested model of thermal transformations of primary PC in irradiated perchlorates of alkali metals explains formation of all the finite ion and paramagnetic radiolysis products

  7. Method for preparation of melts of alkali metal chlorides with highly volatile polyvalent metal chlorides

    International Nuclear Information System (INIS)

    A method for production of alkali metal (Cs, Rb, K) chloride melts with highly volatile polyvalent metal chlorides is suggested. The method consists, in saturation of alkali metal chlorides, preheated to the melting point, by volatile component vapours (titanium tetrachloride, molybdenum or tantalum pentachloride) in proportion, corresponding to the composition reguired. The saturation is realized in an evacuated vessel with two heating areas for 1-1.5 h. After gradual levelling of temperature in both areas the product is rapidly cooled. 1 fig.; 1 tab

  8. Metal Ions in Unusual Valency States.

    Science.gov (United States)

    Sellers, Robin M.

    1981-01-01

    Discusses reactivity of metal ions with the primary products of water radiolysis, hyper-reduced metal ions, zero-valent metal ions, unstable divalent ions from the reduction of bivalent ions, hyper-oxidized metal ions, and metal complexes. (CS)

  9. Integrated oil production and upgrading using molten alkali metal

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard

    2016-10-04

    A method that combines the oil retorting process (or other process needed to obtain/extract heavy oil or bitumen) with the process for upgrading these materials using sodium or other alkali metals. Specifically, the shale gas or other gases that are obtained from the retorting/extraction process may be introduced into the upgrading reactor and used to upgrade the oil feedstock. Also, the solid materials obtained from the reactor may be used as a fuel source, thereby providing the heat necessary for the retorting/extraction process. Other forms of integration are also disclosed.

  10. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed

  11. Work function of alkali metal-adsorbed molybdenium dichalcogenides

    Science.gov (United States)

    Kim, Sol; Jhi, Seung-Hoon

    2015-03-01

    The lowest work function of materials, reported so far over the last few decades, is an order of 1eV experimentally and theoretically. Designing materials that has work-function less than 1eV is essential in the thermionic energy conversion. To explore new low work function materials, we study MoX2(X =S, Se, Te) adsorbed with alkali metals (Li, Na, K, Rb and Cs), and investigate the charge transfer, the formation of surface dipole, and the change in work function using first-principles calculations. It is found that the charge transfer from alkali metals to MoX2substrates decreases as the atomic number of adsorbates increases. Regardless of the amount of the charge transfer, K on MoTe2 exhibits the biggest surface dipole moment, which consequently makes the surface work function the lowest. We show that the formation of the surface dipole is a key in changing the work function. We find the trimerization of Mo atoms in the substrate with the lowest work-function, which may contribute to enhancement of the surface dipole.

  12. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references

  13. Momentum densities and Compton profiles of alkali-metal atoms

    International Nuclear Information System (INIS)

    It is assumed that the dynamics of valence electrons of alkali-metal atoms can be well accounted for by a quantum-defect theoretic model while the core electrons may be supposed to move in a self-consistent field. This model is used to study the momentum properties of atoms from 3Li to 37Rb. The numerical results obtained for the momentum density, moments of momentum density and Compton profile are found to be in good agreement with the results of more detailed configuration-interaction calculations for the atom 3Li. Similar results for 11Na, 19K and 37Rb are compared with the corresponding Hartree-Fock-Roothan values only, for want of data from other realistic calculations. (author)

  14. Relativistic optimized effective potential method-application to alkali metals.

    Science.gov (United States)

    Ködderitzsch, D; Ebert, H; Akai, H; Engel, E

    2009-02-11

    We present a relativistic formulation of the optimized effective potential method (ROEP) and its implementation within the Korringa-Kohn-Rostoker multiple scattering formalism. The scheme is an all-electron approach, treating core and band states formally on the same footing. We use exact exchange (EXX) as an approximation to the exchange correlation functional. Numerical four-component wavefunctions for the description of core and valence electrons and the corresponding ingredients of the ROEP integral equation are employed. The exact exchange expression for the valence states is reformulated in terms of the electronic Green's function that in turn is evaluated by making use of multiple scattering formalism. We present and discuss the application of the formalism to non-magnetic alkali metals. PMID:21715911

  15. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references.

  16. The role of alkali metal cations in the stabilization of guanine quadruplexes: why K(+) is the best.

    Science.gov (United States)

    Zaccaria, F; Paragi, G; Fonseca Guerra, C

    2016-08-21

    The alkali metal ion affinity of guanine quadruplexes has been studied using dispersion-corrected density functional theory (DFT-D). We have done computational investigations in aqueous solution that mimics artificial supramolecular conditions where guanine bases assemble into stacked quartets as well as biological environments in which telomeric quadruplexes are formed. In both cases, an alkali metal cation is needed to assist self-assembly. Our quantum chemical computations on these supramolecular systems are able to reproduce the experimental order of affinity of the guanine quadruplexes for the cations Li(+), Na(+), K(+), Rb(+), and Cs(+). The strongest binding is computed between the potassium cation and the quadruplex as it occurs in nature. The desolvation and the size of alkali metal cations are thought to be responsible for the order of affinity. Until now, the relative importance of these two factors has remained unclear and debated. By assessing the quantum chemical 'size' of the cation, determining the amount of deformation of the quadruplex needed to accommodate the cation and through the energy decomposition analysis (EDA) of the interaction energy between the cation and the guanines, we reveal that the desolvation and size of the alkali metal cation are both almost equally responsible for the order of affinity. PMID:27185388

  17. Intercalation of heavy alkali metals (K, Rb and Cs) in the bundles of single wall nanotubes

    Science.gov (United States)

    Duclaux, L.; Méténier, K.; Lauginie, P.; Salvetat, J. P.; Bonnamy, S.; Beguin, F.

    2000-11-01

    The electric-arc discharge carbon deposits (collaret) containing Single Wall Carbon Nanotubes (SWNTs) were heat treated at 1600 °C during 2 days under N2 flow in order to eliminate the Ni catalyst by sublimation, without modifications of the SWNTs ropes. Sorting this deposit by gravity enabled to obtain in the coarsest particles higher amount of SWNTs ropes than in other particle sizes. The coarser particles of the carbon deposits were reacted with the alkali metals vapor giving intercalated samples with a MC8 composition. The intercalation led to an expansion of the 2D lattice of the SWNTs so that the alkali metals were intercalated in between the tubes within the bundles. Disordered lattices were observed after intercalation of Rb and Cs. The simulations of the X-ray diffractograms of SWNTs reacted with K, gave the best fit for three K ions occupying the inter-tubes triangular cavities. The investigations by EPR, and 13C NMR, showed that doped carbon deposits are metallic.

  18. Calculation of Interaction Parameters from Immiscible Phase Diagram of Alkali Metal or Alkali Earth Metal-Halide System by Means of Subregular Solution Model

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, the interaction parameters in the subregular solution model, λ1 and λ2, are regarded as a linear function of temperature, T. Therefore, the molar excess Gibbs energy of A-B binary system may be reexpressed as follows: The calculation of the model parameters, λ11, λ12, λ21 and λ22, was carried out numerically from the phase diagrams for 11 alkali metal-alkali halide or alkali earth metal-halide systems.In addition, artificial neural network trained by known data has been used to predict the values of these model parameters. The predicted results are in good agreement with the.calculated ones. The applicability of the subregular solution model to the alkali metal-alkali halide or alkali earth metal-halide systems were tested by comparing the available experimental composition along the boundary of miscibility gap with the calculated ones which were obtained by using genetic algorithm. The good agreement between the calculated and experimental results across the entire liquidus is valid evidence in support of the model.

  19. Encapsulation of metal cations by the PhePhe ligand: a cation-pi ion cage

    NARCIS (Netherlands)

    R.C. Dunbar; J.D. Steill; J. Oomens

    2011-01-01

    Structures and binding thermochemistry are investigated for protonated PhePhe and for complexes of PhePhe with the alkaline-earth ions Ba2+ and Ca2+, the alkali-metal ions Li+, Na+, K+, and Cs+, and the transition-metal ion Ag+. The two neighboring aromatic side chains open the possibility of a nove

  20. Encapsulation of Metal Cations by the PhePhe Ligand: A Cation-pi Ion Cage

    NARCIS (Netherlands)

    Dunbar, R. C.; Steill, J. D.; Oomens, J.

    2011-01-01

    Structures and binding thermochemistry are investigated for protonated PhePhe and for complexes of PhePhe with the alkaline-earth ions Ba2+ and Ca2+, the alkali-metal ions Li+, Na+, K+, and Cs+, and the transition-metal ion Ag+. The two neighboring aromatic side chains open the possibility of a nove

  1. Researches of the electrotechnical laboratory. No. 973: Study on alkali metal thermoelectric converter

    Science.gov (United States)

    Tanaka, K.; Negishi, A.; Honda, T.; Fujii, T.; Masuda, T.; Nozaki, K.

    1995-03-01

    The alkali metal thermoelectric converter (AMTEC) utilizing the sodium ion conducting Beta' '- alumina solid electrolyte (BASE) is a device to convert heat energy to electric energy directly. It is characterized by high conversion efficiencies (20 to 40 percent), high power densities (1 W/sq cm), no moving parts, low maintenance requirements, high durability, and efficiency independent of size. Because of these merits, AMTEC is one of the most promising candidate for dispersed small scale power station, remote power station and aerospace power systems. In this paper, the theoretical and experimental studies on the thin film electrodes characteristics, power generating characteristics, cell efficiency, integral electrode with large current lead, porous metal current lead, series connected cells power generation, potassium AMTEC, wick return AMTEC and system analysis for space and grand use are reported.

  2. Alkali-crown ether complexes at metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Thontasen, Nicha; Deng, Zhitao; Rauschenbach, Stephan [Max Planck Institute for Solid State Research, Stuttgart (Germany); Levita, Giacomo [University of Trieste, Trieste (Italy); Malinowski, Nikola [Max Planck Institute for Solid State Research, Stuttgart (Germany); Bulgarian Academy of Sciences, Sofia (Bulgaria); Kern, Klaus [Max Planck Institute for Solid State Research, Stuttgart (Germany); EPFL, Lausanne (Switzerland)

    2010-07-01

    Crown ethers are polycyclic ethers which, in solution, selectively bind cations depending on the size of the ring cavity. The study of a single host-guest complex is highly desirable in order to reveal the characteristics of these specific interactions at the atomic scale. Such detailed investigation is possible at the surface where high resolution imaging tools like scanning tunneling microscopy (STM) can be applied. Here, electrospray ion beam deposition (ES-IBD) is employed for the deposition of Dibenzo-24-crown-8 (DB24C8)-H{sup +}, -Na{sup +} and -Cs{sup +} complexes on a solid surface in ultrahigh vacuum (UHV). Where other deposition techniques have not been successful, this deposition technique combines the advantages of solution based preparation of the complex ions with a highly clean and controlled deposition in UHV. Single molecular structures and the cation-binding of DB24C8 at the surface are studied in situ by STM and MALDI-MS (matrix assisted laser desorption ionization mass spectrometry). The internal structure of the complex, i.e. ring and cavity, is observable only when alkali cations are incorporated. The BD24C8-H{sup +} complex in contrast appears as a compact feature. This result is in good agreement with theoretical models based on density functional theory calculations.

  3. Preparation of decarboxylic-functionalized weak cation exchanger and application for simultaneous separation of alkali, alkaline earth and transition metals.

    Science.gov (United States)

    Peng, Yahui; Gan, Yihui; He, Chengxia; Yang, Bingcheng; Guo, Zhimou; Liang, Xinmiao

    2016-06-01

    A novel weak cation exchanger (WCX) with dicarboxyl groups functionalized has been developed by clicking mercaptosuccinic acid onto silica gel. The simple synthesis starts with modification of silica gel with triethoxyvinylsilane, followed by efficient coupling vinyl-bonded silica with mercaptosuccinic acid via a "thiol-ene" click reaction. The obtained WCX demonstrated good separation and high selectivity towards common metals. Simultaneous separation of 10 alkali, alkaline earth and transition metals was achieved within 12min. Ion exchange and complex mechanism dominates the separation process. Its utility was demonstrated for determination of metals in tap water. PMID:27130093

  4. 气相中碱金属离子与丝氨酸、亮氨酸和赖氨酸五肽复合物的裂解反应%Fragmentation Reactions of Complexes of Alkali Metal Ions with Pentaserine, Pentaleucine and Pentalysine in Gas Phase

    Institute of Scientific and Technical Information of China (English)

    魏王慧; 王青; 储艳秋; 汪日志; 丁传凡

    2014-01-01

    为了探索金属离子对含有不同侧链的多肽气相解离的影响,采用质谱法研究了碱金属离子Li+, Na+, K+, Rb+和Cs+分别与丝氨酸、亮氨酸和赖氨酸五肽(分别简写为S5, L5和K5)形成的复合物的裂解反应.质谱定性结果表明,5种碱金属离子均可以在气相中与丝氨酸、亮氨酸和赖氨酸五肽形成配合比为1:1和2:1的非共价复合物;竞争反应结果表明,随着碱金属离子半径的增加,它们与3种五肽的结合能力逐渐减弱.质谱定量结果表明, K+与丝氨酸、亮氨酸和赖氨酸五肽复合物的结合常数分别为8.94×104,2.83×104和2.50×103 L/mol,表明K+与五肽复合物的结合强度按照丝氨酸、亮氨酸和赖氨酸的顺序依次减小.含不同侧链碱金属离子-五肽复合物的碰撞诱导解离结果表明,复合物的碎裂主要发生在骨架上,丝氨酸五肽复合物最易碎裂,亮氨酸五肽复合物其次,赖氨酸五肽复合物则较难碎裂,且3种复合物的侧链断裂情况也呈现明显差异.此外,研究了Na+与亮氨酸五肽复合物所产生的碎片离子,分析了不同离子之间的来源关系,并以Dunbar的复合物理论模型为依据,推测在碎裂过程中,碱金属离子可能向五肽的碳端或氮端偏移.质谱碎片分析结果表明,在2:1的非共价复合物中,第一个碱金属离子与五肽上4个酰胺键的羰基结合,第二个碱金属离子与五肽的羧基氧原子结合.%For exploring the effects of alkali metal ions on the dissociations of peptides with different side chains in the gas phase, the complexes of Li+, Na+, K+, Rb+ and Cs+ with pentapeptides, Ser-Ser-Ser-Ser-Ser( S5 ) , Leu-Leu-Leu-Leu-Leu ( L5 ) and Lys-Lys-Lys-Lys-Lys ( K5 ) , were chosen to investigate the frag-mentation reaction pathways by mass spectrometry. The experimental results indicated that alkali metal ions and S5, L5, K5 can form 1:1 and 2:1 non-covalent complexes in the gas phase, and the binding

  5. Electrical conduction in alkali borate glasses; a unique dependence on the concentration of modifier ions

    Energy Technology Data Exchange (ETDEWEB)

    Doweidar, H; Moustafa, Y M; El-Damrawi, G M; Ramadan, R M [Glass Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura 35516, POB 83 (Egypt)

    2008-01-23

    The electrical conduction of Li{sub 2}O-B{sub 2}O{sub 3}, Na{sub 2}O-B{sub 2}O{sub 3} and K{sub 2}O-B{sub 2}O{sub 3} glasses seems, at first sight, to be dominated by the activation energy. Regardless of the size of the alkali ion, there is a unique dependence of conductivity, at a certain temperature, on the alkali-alkali distance and thus on N (the number of ions per cm{sup 3}). The linear dependence of log{sigma} on N{sup -3/2} for all types of alkali ions reveals that N is the basic parameter that determines the conductivity at a certain temperature. A derived semi-empirical relation can be used to calculate the conductivity as a function of N and temperature.

  6. Electrical conduction in alkali borate glasses; a unique dependence on the concentration of modifier ions

    Science.gov (United States)

    Doweidar, H.; Moustafa, Y. M.; El-Damrawi, G. M.; Ramadan, R. M.

    2008-01-01

    The electrical conduction of Li2O-B2O3, Na2O-B2O3 and K2O-B2O3 glasses seems, at first sight, to be dominated by the activation energy. Regardless of the size of the alkali ion, there is a unique dependence of conductivity, at a certain temperature, on the alkali-alkali distance and thus on N (the number of ions per cm3). The linear dependence of logσ on N-3/2 for all types of alkali ions reveals that N is the basic parameter that determines the conductivity at a certain temperature. A derived semi-empirical relation can be used to calculate the conductivity as a function of N and temperature.

  7. Structural properties of low-density liquid alkali metals

    Indian Academy of Sciences (India)

    A Akande; G A Adebayo; O Akinlade

    2005-12-01

    The static structure factors of liquid alkali metals have been modelled at temperatures close to their melting points and a few higher temperatures using the reverse Monte Carlo (RMC) method. The positions of 5000 atoms in a box, with full periodicity, were altered until the experimental diffraction data of the structure factor agrees with the associated model structure factor within the errors. The model generated is then analysed. The position of the first peak of the pair distribution function () does not show any significant temperature dependence and the mean bond lengths can be approximated within an interval of 3.6–5.3 Å, 4.5–6.6 Å, 4.8–6.7 Å and 5.1–7.3 Å for Na, K, Rb and Cs respectively. The cosine bond distributions show similar trend with the flattening up of the first peak with increase in temperature. In addition, the coordination numbers of these liquid metals are high due to the presence of non-covalent bonding between them. On the average, we surmise that the coordination number decreases with increase in temperature.

  8. Catalysis using hydrous metal oxide ion exchangers

    Science.gov (United States)

    Dosch, R.G.; Stephens, H.P.; Stohl, F.V.

    1983-07-21

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  9. Catalysis using hydrous metal oxide ion exchanges

    Science.gov (United States)

    Dosch, Robert G.; Stephens, Howard P.; Stohl, Frances V.

    1985-01-01

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  10. Field emission properties of capped carbon nanotubes doped by alkali metals:a theoretical investigation

    Institute of Scientific and Technical Information of China (English)

    Jin Lei; Fu Hong-Gang; Xie Ying; Yu Hai-Tao

    2012-01-01

    The electronic structures and field emission properties of capped CNT55 systems with or without alkali metal atom adsorption were systematically investigated by density functional theory calculation.The results indicate that the adsorption of alkali metal on the center site of a CNT tip is energetically favorable.In addition,the adsorption energies increase with the introduction of the electric field.The excessive negative charges on CNT tips make electron emittance much easier and result in a decrease in work function.Furthermore,the inducing effect by positively charged alkali metal atoms can be reasonably considered as the dominant reason for the improvement in field emission properties.

  11. The alkali and alkaline earth metal doped ZnO nanotubes: DFT studies

    Science.gov (United States)

    Peyghan, Ali Ahmadi; Noei, Maziar

    2014-01-01

    Doping of several alkali and alkaline earth metals into sidewall of an armchair ZnO nanotube has been investigated by employing the density functional theory in terms of energetic, geometric, and electronic properties. It has been found that doping processes of the alkali and alkaline metals are endothermic and exothermic, respectively. Based on the results, contrary to the alkaline metal doping, the electronic properties of the tube are much more sensitive to alkali metal doping so that it is transformed from intrinsic semiconductor with HOMO-LUMO energy gap of 3.77 eV to an extrinsic semiconductor with the energy gap of ~1.11-1.95 eV. The doping of alkali and alkaline metals increases and decreases the work function of the tube, respectively, which may influence the electron emission from the tube surface.

  12. The alkali and alkaline earth metal doped ZnO nanotubes: DFT studies

    Energy Technology Data Exchange (ETDEWEB)

    Peyghan, Ali Ahmadi [Department of Chemistry, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Noei, Maziar, E-mail: noeimaziar@gmail.com [Department of Chemistry, Mahshahr Branch, Islamic Azad University, Mahshahr (Iran, Islamic Republic of)

    2014-01-01

    Doping of several alkali and alkaline earth metals into sidewall of an armchair ZnO nanotube has been investigated by employing the density functional theory in terms of energetic, geometric, and electronic properties. It has been found that doping processes of the alkali and alkaline metals are endothermic and exothermic, respectively. Based on the results, contrary to the alkaline metal doping, the electronic properties of the tube are much more sensitive to alkali metal doping so that it is transformed from intrinsic semiconductor with HOMO–LUMO energy gap of 3.77 eV to an extrinsic semiconductor with the energy gap of ∼1.11–1.95 eV. The doping of alkali and alkaline metals increases and decreases the work function of the tube, respectively, which may influence the electron emission from the tube surface.

  13. Method and composition for testing for the presence of an alkali metal

    International Nuclear Information System (INIS)

    A method and composition for detecting the presence of an alkali metal on the surface of a body such as a metal plate, tank, pipe or the like is provided. The method comprises contacting the surface with a thin film of a liquid composition comprising a light-colored pigment, an acid-base indicator, and a nonionic wetting agent dispersed in a liquid carrier comprising a minor amount of water and a major amount of an organic solvent selected from the group consisting of the lower aliphatic alcohols, ketones and ethers. Any alkali metal present on the surface in elemental form or as an alkali metal hydroxide or alkali metal carbonate will react with the acid-base indicator to produce a contrasting color change in the thin film, which is readily discernible by visual observation or automatic techniques

  14. Study of Ion Specific Interactions of Alkali Cations with Dicarboxylate Dianions

    Energy Technology Data Exchange (ETDEWEB)

    Murdachaew, Garold; Valiev, Marat; Kathmann, Shawn M.; Wang, Xue B.

    2012-02-10

    Alkali metal cations often show pronounced ion specific interactions and selectivity with macromolecules in biological processes, colloids, and interfacial sciences, but a fundamental understanding about the underlying microscopic mechanism is still very limited. Here we report a direct probe of interactions between alkali metal cations (M{sup +}) and dicarboxylate dianions, O{sub 2}C(CH{sub 2})nCO{sub 2} (D{sub n}{sup 2-}) in the gas phase by combined photoelectron spectroscopy (PES) and ab initio electronic structure calculation on nine M{sup +}-D{sub n}{sup 2-} complexes (M = Li, Na, K; n = 2, 4, 6). PES spectra show that the electron binding energy (EBE) decreases from Li{sup +} to Na{sup +} to K{sup +} for complexes of M{sup +}-D{sub 2}{sup 2-}, whereas the order is Li{sup +} ion specificity and selectivity in solutions and biological systems.

  15. Modification of alkali metals on silicon-based nanoclusters: An enhanced nonlinear optical response

    Science.gov (United States)

    Li, Xiaojun; Han, Quan; Yang, Xiaohui; Song, Ruijuan; Song, Limei

    2016-08-01

    Structures, chemical stabilities and nonlinear optical properties of alkali metals-adsorbed niobium-doped silicon (M@SinNb+) clusters are investigated using the DFT methods. The alkali metals prefer energetically to be attached as bridged bond rather than M-Si single bond in most of optimized structures. Adsorption of alkali metals on doped silicon clusters gradually enhances their chemical stabilities with increasing cluster size. Noteworthily, the first hyperpolarizabilities (βtot) of the M@SinNb+ clusters, obtained by using the long-range corrected CAM-B3LYP functional, are large enough to establish their strong nonlinear optical behavior, especially for M@Si9Nb+ (M = Li, Na, and K), and the enhanced βtot ordering by alkali metals is Na > K > Li.

  16. Superconductivity of graphite intercalation compounds with alkali-metal amalgams

    International Nuclear Information System (INIS)

    Superconductivity of the alkali-metal amalgam graphite intercalation compounds of stage 1 (C4KHg, C4RbHg) and stage 2 (C8KHg, C8RbHg) has been studied as well as that of the pristine amalgams (KHg, RbHg). The transition temperatures are 0.73, 0.99, 1.90, and 1.40 K for C4KHg, C4RbHg, C8KHg, and C8RbHg, respectively. The critical-field anisotropy ratio H/sup parallel//sub c/2/H/sup perpendicular//sub c/2 is about 10 for the stage 1 and about 15 to 40 for the stage 2. It is argued that electrons in the intercalant bands rather than the graphitic bands play the main role in the superconductivity. An interesting feature is that the stage-2 compound, which has a lower density of states at the Fermi level, has a higher transition temperature than the corresponding state-1 compound

  17. Corrosion in alkali metal/molybdenum heat pipes

    International Nuclear Information System (INIS)

    Molybdenum/sodium (Mo/Na) and molybdenum/lithium (Mo/Li) heat pipes have been operated for long periods of time in a study of their resistance to failure by alkali metal corrosion. Some Mo/Na heat pipes have operated over 20,600 h at 1400 K without failure, while at least one similar heat pipe failed in less than 14 hours at 1435 K. Detailed post-mortem analyses which have been performed on three failed Mo/Na heat pipes all indicated impurity controlled corrosion of their evaporators. Impurities observed to be transported included carbon, oxygen, and silicon. A Mo/Li heat pipe that failed after 25,216 h of operation at 1700 K was also examined in detail. This failure was due to nickel impurities being transported to the evaporator resulting in perforation of the container tube by the formation of a low melting Mo-Ni alloy. Theoretical thermochemical calculations were conducted for these systems with the objective of corroborating the corrosion mechanisms in both types of heat pipes. The results of these calculations are in general agreement with the observed corrosion a phenomena

  18. Design of low work function materials using alkali metal-doped transition metal dichalcogenides

    Science.gov (United States)

    Kim, Sol; Lee, Man Young; Lee, Seong; Jhi, Seung-Hoon

    Engineering the work function is a key issue in surface science. Particularly, discovering the materials that have work functions less than 1eV is essential for efficient thermionic energy conversion. The lowest work function of materials, reported so far, is in a range of about 1eV. To design low work function materials, we chose MX2 (M =Mo and W; X =S, Se and Te) as substrates and alkali metals (Li, Na, K, Rb and Cs) as dopants, and studied their electronic structures, charge transfer, induced surface dipole moment, and work function using first-principles calculations. We found that the charge transfer from alkali metals to MX2 substrates decreases as the atomic radius of alkali metals increases. Regardless of the amount of the charge transfer, K on WTe2 exhibits the biggest surface dipole moment, which consequently makes the surface work function the lowest. Also, we found a correlation between the binding distance and the work function.

  19. Effects of Heavy Metals and Saline-alkali on Growth, Physiology and Biochemistry of Orychophragmus violaceus

    Institute of Scientific and Technical Information of China (English)

    Xiaoai ZHANG; Zhihui WANG; Xinquan ZHANG; Mingyang Ll; Jing ZUO

    2012-01-01

    Abstract [Oh.jective] The aim was to study on effects of heavy metals and saline-al- kali on growth, physiology and biochemistry of Orychophragmus violaceus. [Method] Taken Orychophragmus violaceus as materials, growth, physiology and biochemistry were explored under stress of saline-alkali and heavy metals (light, moderate and se- vere saline-alkali, Pb, Pb + Cd, light saline-alkali + Pb, moderate saline-alkali + Pb, severe saline-alkali + Pb, light saline-alkali + Pb + Cd, moderate saline-alkali + Pb + Cd and severe saline-alkali + Pb + Cd) with control group set. [Result] Light stress of saline-alkali had little effect on membrane permeability, as follows: MDA contents in leaves and root systems declined by 25.6% and 9.0% compared with control group; Pb (500 mg/L) stress promoted synthetization of photosynthetic pigments, as follows: chlorophyll a and b and carotenoid increased by 0.86%, 0.69% and 6.25% than those of control group; combined stresses of Pb and Cd destroyed synthetization of photosynthetic pigments, among which carotenoid was more sensitive; under com- bined stresses of saline-alkali, Pb and Cd, POD and SOD activities, soluble saccha- rides and Pro content all increased and activities of POD and SOD in root system were both higher than those in leaves. [Conclusion] Orychophragmus violaceus is with resistance against light combined stresses of saline-alkali and Pb (500 mg/L).

  20. Alkali ion migration between stacked glass plates by corona discharge treatment

    Science.gov (United States)

    Kawaguchi, Keiga; Suzuki, Toshio; Ikeda, Hiroshi; Sakai, Daisuke; Funatsu, Shiro; Uraji, Keiichiro; Yamamoto, Kiyoshi; Harada, Kenji; Nishii, Junji

    2015-05-01

    Corona discharge reflects the spatial migration of alkali ions over a gap between two glass plates. This study examined stacked glass plates containing different alkali ions treated with the corona discharge plasma generated by applied voltage of 4.5 kV at 200 °C. Protons generated at the anode electrode penetrate into the potassium-ion-containing upper glass plate, which is located 5 mm below the anode electrode. Potassium ions intruded into the lower glass plate containing sodium ions placed on the cathode electrode, even over a 1 mm gap separating the plates. Finally, the sodium ion discharged on the cathode electrode. The hydrogen atmosphere was effective at inhibiting the potassium ion reaction with ambient gases during the spatial migration between the two glass plates.

  1. Half metallic ferromagnetism in alkali metal nitrides MN (M = Rb, Cs): A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Murugan, A., E-mail: rrpalanichamy@gmail.com; Rajeswarapalanichamy, R., E-mail: rrpalanichamy@gmail.com; Santhosh, M., E-mail: rrpalanichamy@gmail.com; Sudhapriyanga, G., E-mail: rrpalanichamy@gmail.com [Department of Physics, N.M.S.S.V.N College, Madurai, Tamilnadu-625019 (India); Kanagaprabha, S. [Department of Physics, Kamaraj College, Tuticorin, Tamil Nadu-628003 (India)

    2014-04-24

    The structural, electronic and elastic properties of two alkali metal nitrides (MN: M= Rb, Cs) are investigated by the first principles calculations based on density functional theory using the Vienna ab-initio simulation package. At ambient pressure the two nitrides are stable in ferromagnetic state with CsCl structure. The calculated lattice parameters are in good agreement with the available results. The electronic structure reveals that these materials are half metallic in nature. A pressure-induced structural phase transition from CsCl to ZB phase is observed in RbN and CsN.

  2. Properties of solvated electrons, alkali anions and other species in metal solutions and kinetics of cation and electron exchange reactions. Final report

    International Nuclear Information System (INIS)

    The properties of solutions of alkali metals in amine solvents were studied by optical, ETR, NMR and electrochemical methods. Complexation of the alkali cations by crown ethers and cryptands permitted the preparation of concentrated solutions of alkali metals in amine and ether solvents. Extensive alkali metal NMR studies of the exchange of M+ with crown-ethers and cryptands and of the alkali metal anion, M-, were made. The first crystalline salt of an alkali metal anion, Na+ Cryptand [2.2.2]Na- was synthesized and characterized and led to the preparation of other alkali metal anion salts. This research provided the foundation for continuing studies of crystalline alkalide salts

  3. Determination of Alkali Metals, Ammonium Ion and Alkyl Amines by Non-Suppressed Ion Chromatography%非抑制型离子色谱法测定碱金属、铵离子和烷基胺

    Institute of Scientific and Technical Information of China (English)

    于泓; 李萍

    2001-01-01

    The determination of Li+,Na+,NH+4,K+,CH3NH2,CH3CH2NH2 and CH3CH2CH2NH2 by non-suppressed ion chromatography using sulfamic acid as mobile phase is described. A cation-exchange column was employed for separation with conductivity detection. The effect of the eluent concentration on retention value was studied. The retention value of ions decreased with increasing the eluent concentration.The suitable eluent concentration was 4.0 mmol/L. When 4.0 mmol/L sulfamic acid was used as mobile phase, the detection limits(mg/L) for Li+,Na+,NH+4,K+,CH3NH2,CH3CH2NH2 and CH3CH2CH2NH2 were 0.008,0.029,0.027,0.099,0.069,0.163 and 0.417 and the linear ranges of calibration curve(mg/L) were 0.008-20,0.029-20,0.027-20,0.099-30,0.069-30,0.163-40 and 0.417-40, respectively. The method has been applied to the determination of tap water samples. The recoveries of added standard were 94.0%-97.6%.%采用非抑制型离子色谱法、以氨磺酸作流动相分离测定了Li+、Na+、NH+4、K+、甲胺、乙胺和正丙胺等7种物质,研究了氨磺酸流动相浓度对溶质保留值的影响。结果发现,随着流动相浓度的增大,溶质保留值减小;适宜的流动相浓度为4.0 mmol/L。以4.0 mmol/L氨磺酸为流动相测得上述7种物质的检出限及工作曲线的线性回归方程。方法应用于自来水试样的分析,结果良好。

  4. Characterization of Alkali Metal Dispensers and Non-Evaporable Getter Pumps in Ultra-High Vacuum Systems for Cold Atomic Sensors

    OpenAIRE

    Scherer, David R.; Fenner, David B.; Hensley, Joel M.

    2012-01-01

    A glass ultrahigh vacuum chamber with rubidium alkali metal dispensers and non-evaporable getter pumps has been developed and used to create a cold atomic sample in a chamber that operates with only passive vacuum pumps. The ion-mass spectrum of evaporated gases from the alkali metal dispenser has been recorded as a function of dispenser current. The efficacy of the non-evaporable getter pumps in promoting and maintaining vacuum has been characterized by observation of the Rb vapor optical ab...

  5. Behavior of Alkali Metals and Ash in a Low-Temperature Circulating Fluidized Bed (LTCFB) Gasifier

    DEFF Research Database (Denmark)

    Narayan, Vikas; Jensen, Peter Arendt; Henriksen, Ulrik Birk;

    2016-01-01

    , the low reactor temperature ensures that high-alkali biomass fuels canbe used without risk of bed defluidization. This paper presents the first investigation of the fate of alkali metals and ash in lowtemperaturegasifiers. Measurements on bed material and product gas dust samples were made on a 100 k......A low-temperature circulating fluidized bed system (LTCFB) gasifier allows for pyrolysis and gasification to occurat low temperatures, thereby improving the retention of alkali and other inorganic elements within the system and minimizingthe amount of ash species in the product gas. In addition...

  6. Alkali and heavy metal emissions of the PCFB-process; Alkali- ja raskasmetallipaeaestoet PCFB-prosessista

    Energy Technology Data Exchange (ETDEWEB)

    Kuivalainen, R.; Eriksson, T.; Lehtonen, P. [Foster Wheeler Energia Oy, Karhula (Finland)

    1997-10-01

    Pressurized Circulating Fluidized Bed (PCFB) combustion technology has been developed in Karhula R and D Center since 1986. As part of the development, 10 MW PCFB test facility was built in 1989. The test facility has been used for performance testing with different coal types through the years 1990-1995 in order to gain data for design and commercialization of the high-efficiency low-emission PCFB combustion technology. The main object of the project was to measure vapor phase Na and K concentrations in the PCFB flue gas after hot gas filter and investigate the effects of process conditions and sorbents on alkali release. The measurements were performed using plasma assisted method of TUT Laboratory of Plasma Technology and wet absorption method of VTT Energy. The measurements were carried out during three test campaigns at PCFB Test Facility in Karhula. In autumn 1995 both VTT and TUT methods were used. The measurements of the following test period in spring 1996 were performed by VTT, and during the last test segment in autumn 1996 TUT method was in use. During the last test period, the TUT instrument was used as semi-continuous (3 values/minute) alkali analyzer for part of the time. The measured Na concentrations were below 30 ppb(w) in all measured data points. The results of K were below 10 ppb(w). The accuracies of the both methods are about +50 % at this concentration range. The scatter of the data covers the effects of different process variables on the alkali emission. The measured emissions are at the same order of magnitude as the guideline emission limits estimated by gas turbine manufacturers

  7. Metal ion binding with dehydroannulenes - Plausible two-dimensional molecular sieves

    Indian Academy of Sciences (India)

    B Sateesh; Y Soujanya; G Narahari Sastry

    2007-09-01

    Theoretical investigations have been carried out at B3LYP/6-311++G∗∗ level of theory to study the binding interaction of various metal ions, Li+, Na+ and K+ with dehydroannulene systems. The present study reveals that alkali metal ions bind strongly to dehydroannulenes and the passage through the central cavity is controlled by the size of metal ion and dimension of dehydroannulene cavity.

  8. Alkali ion migration between stacked glass plates by corona discharge treatment

    International Nuclear Information System (INIS)

    Highlights: • Two stacked glass plates with a 1 mm gap were treated by corona discharge. • Spatial migration of alkali ion over the gap was demonstrated. • Hydrogen gas was necessary for uniform migration. • Surface modification was done with this process without high temperature or vacuum. - Abstract: Corona discharge reflects the spatial migration of alkali ions over a gap between two glass plates. This study examined stacked glass plates containing different alkali ions treated with the corona discharge plasma generated by applied voltage of 4.5 kV at 200 °C. Protons generated at the anode electrode penetrate into the potassium-ion-containing upper glass plate, which is located 5 mm below the anode electrode. Potassium ions intruded into the lower glass plate containing sodium ions placed on the cathode electrode, even over a 1 mm gap separating the plates. Finally, the sodium ion discharged on the cathode electrode. The hydrogen atmosphere was effective at inhibiting the potassium ion reaction with ambient gases during the spatial migration between the two glass plates

  9. Alkali ion migration between stacked glass plates by corona discharge treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Keiga [Research Institute for Electronic Science, Hokkaido University, N20 W10, Kita-ku, Sapporo, Hokkaido 001-0020 (Japan); Suzuki, Toshio [Research Center, Asahi Glass Co., Ltd., 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa 221-8755 (Japan); Ikeda, Hiroshi [Art, Science and Technology Center for Cooperative Research, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Sakai, Daisuke [Department of Electrical and Electronic Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507 (Japan); Funatsu, Shiro; Uraji, Keiichiro [Production Technology Center, Asahi Glass Co., Ltd., 1-1 Suehiro-cyo, Tsurumiku, Yokohama, Kanagawa 230-0045 (Japan); Yamamoto, Kiyoshi [Research Center, Asahi Glass Co., Ltd., 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa 221-8755 (Japan); Harada, Kenji [Department of Computer Science, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507 (Japan); Nishii, Junji, E-mail: nishii@es.hokudai.ac.jp [Research Institute for Electronic Science, Hokkaido University, N20 W10, Kita-ku, Sapporo, Hokkaido 001-0020 (Japan)

    2015-05-30

    Highlights: • Two stacked glass plates with a 1 mm gap were treated by corona discharge. • Spatial migration of alkali ion over the gap was demonstrated. • Hydrogen gas was necessary for uniform migration. • Surface modification was done with this process without high temperature or vacuum. - Abstract: Corona discharge reflects the spatial migration of alkali ions over a gap between two glass plates. This study examined stacked glass plates containing different alkali ions treated with the corona discharge plasma generated by applied voltage of 4.5 kV at 200 °C. Protons generated at the anode electrode penetrate into the potassium-ion-containing upper glass plate, which is located 5 mm below the anode electrode. Potassium ions intruded into the lower glass plate containing sodium ions placed on the cathode electrode, even over a 1 mm gap separating the plates. Finally, the sodium ion discharged on the cathode electrode. The hydrogen atmosphere was effective at inhibiting the potassium ion reaction with ambient gases during the spatial migration between the two glass plates.

  10. Alkali Metal Backup Cooling for Stirling Systems - Experimental Results

    Science.gov (United States)

    Schwendeman, Carl; Tarau, Calin; Anderson, William G.; Cornell, Peggy A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  11. Saturated vapor pressure above the amalgam of alkali metals in discharge lamps

    Science.gov (United States)

    Gavrish, S. V.

    2011-12-01

    A theoretical and numerical analysis of the evaporation process of two-component compounds in vapors of alkali metals in discharge lamps is presented. Based on the developed mathematical model of calculation of saturated vapor pressure of the metal above the amalgam, dependences of mass fractions of the components in the discharge volume on design parameters and thermophysical characteristics of the lamp are obtained.

  12. Direct 1{sup +}{yields}N{sup +} conversion of stable alkali ions using an electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Mery, A.; Jardin, P.; Saint-Laurent, M. G.; Bajeat, O.; Delahaye, P.; Dubois, M.; Fraanberg-Delahaye, H.; Lecomte, P.; Leherissier, P.; Maunoury, L.; Pichard, A.; Pacquet, J. Y.; Thomas, J. C. [GANIL, Bd Henri Becquerel, BP 55027, 14076 CAEN Cedex 5 (France); Alcantara-Nunez, J. [Departamento de Fisica de Particulas, Universidad Santiago de Compostela, 15782 Santiago de Compostela (Spain)

    2010-02-15

    The production of radioactive ions using the Isotope Separation On-Line method gives rise, in most cases, to singly charged ions. In order to perform experiments with postaccelerated radioactive ion beams, these ions have to be multicharged. We describe here a new compact design for a charge breeder that will be coupled to the production target of SPIRAL1 at GANIL. We present recent results obtained offline with stable alkali ions (Na, K, Rb, and Cs) on the SIRa test bench. Particularly, 1{sup +} to N{sup +} conversion efficiencies and conversion times are presented. Several points have been identified for the improvements of the present performances.

  13. Hyperfine-frequency shifts of alkali-metal atoms during long-range collisions

    CERN Document Server

    McGuyer, B H

    2013-01-01

    Collisions with chemically inert atoms or molecules change the hyperfine coupling of an alkali-metal atom through the hyperfine-shift interaction. This interaction is responsible for the pressure shifts of the microwave resonances of alkali-metal atoms in buffer gases, is an important spin interaction in alkali-metal--noble-gas van der Waals molecules, and is anticipated to enable the magnetoassociation of ultracold molecules such as RbSr. An improved estimate is presented for the long-range asymptote of this interaction for Na, K, Rb, and Cs. To test the results, the change in hyperfine coupling due to a static electric field is estimated and reasonable agreement is found.

  14. Ionic conduction in alkali metal doped ZnFe/sub 2/O/sub 4/ compound

    International Nuclear Information System (INIS)

    Zinc ferric oxide (ZnFe/sub 2/O/sub 4/) has been synthesized by liquid phase chemical reaction from aqueous mixture of zinc chloride and ferric chloride in sodium hydroxide (4N) solution and effect of alkali metal on electrical characteristics was explored. The well characterized powder was pressed into pellets and dried at 80 degree C. Samples with alkali metal concentrations 10-100 ppm have been investigated to I-V measurements. The conductivity of pure compound (10-/sub 2/omega-cm)/sup-1/) lies in the semiconductor range but due to alkali metal doping the compound shows ionic conduction at room temperature. The ionic conduction is found to be increased as the dopant concentration increases.(author)

  15. A hetero-alkali-metal version of the utility amide LDA: lithium-potassium diisopropylamide.

    Science.gov (United States)

    Armstrong, David R; Kennedy, Alan R; Mulvey, Robert E; Robertson, Stuart D

    2013-03-14

    Designed to extend the synthetically important alkali-metal diisopropylamide [N(i)Pr(2); DA] class of compounds, the first example of a hetero-alkali-metallic complex of DA has been prepared as a partial TMEDA solvate. Revealed by an X-ray crystallographic study, its structure exists as a discrete lithium-rich trinuclear Li(2)KN(3) heterocycle, with TMEDA only solvating the largest of the alkali-metals, with the two-coordinate lithium atoms being close to linearity [161.9(2)°]. A variety of NMR spectroscopic studies, including variable temperature and DOSY NMR experiments, suggests that this new form of LDA maintains its integrity in non-polar hydrocarbon solution. This complex thus represents a rare example of a KDA molecule which is soluble in non-polar medium without the need for excessive amounts of solubilizing Lewis donor being added.

  16. Ternary Amides Containing Transition Metals for Hydrogen Storage: A Case Study with Alkali Metal Amidozincates.

    Science.gov (United States)

    Cao, Hujun; Richter, Theresia M M; Pistidda, Claudio; Chaudhary, Anna-Lisa; Santoru, Antonio; Gizer, Gökhan; Niewa, Rainer; Chen, Ping; Klassen, Thomas; Dornheim, Martin

    2015-11-01

    The alkali metal amidozincates Li4 [Zn(NH2)4](NH2)2 and K2[Zn(NH2)4] were, to the best of our knowledge, studied for the first time as hydrogen storage media. Compared with the LiNH2-2 LiH system, both Li4 [Zn(NH2)4](NH2)2-12 LiH and K2[Zn(NH2)4]-8 LiH systems showed improved rehydrogenation performance, especially K2[Zn(NH2)4]-8 LiH, which can be fully hydrogenated within 30 s at approximately 230 °C. The absorption properties are stable upon cycling. This work shows that ternary amides containing transition metals have great potential as hydrogen storage materials.

  17. Thermochemistry of complex oxides of uranium(6), arsenic and alkali metals

    International Nuclear Information System (INIS)

    Standard reaction enthalpies for stoichiometric mixtures of mono-potassium orthoarsenate, uranium(6) and alkali metal nitrate oxides as well as mixtures of complex oxides of the M1AsUO6 (M1 = Li, Na, K, Rb, Cs) general formulas and potassium nitrate with hydrofluoric acid are determined in adiabatic calorimeter at the temperature of 298.15 K. Standard enthalpies for formation of complex oxides of uranium(6), arsenic and alkali metals at the temperature of 298.15 K are calculated by the obtained results. 8 refs., 1 tab

  18. Saturated vapor pressure over molten mixtures of GaCl3 and alkali metal chlorides

    International Nuclear Information System (INIS)

    Volatilities of GaCl3 and alkali metal chlorides over diluted (up to 3 mol %) solutions of GaCl3 in LiCl, NaCl, KCl, RbCl, and CsCl were measured at 1100 K by dynamic and indirect static methods. Chemical composition of saturated vapor over the mixed melts was determined. Partial pressures of the components were calculated. Their values depend essentially on specific alkali metal cation and on concentration of GaCl3; their variation permits altering parameters of GaCl3 distillation from the salt melt in a wide range

  19. Antiproton and proton collisions with the alkali-metal atoms Li, Na, and K

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Saenz, Alejandro

    2008-01-01

    Single-electron ionization and excitation cross sections as well as cross sections for excitation into the first excited p state of the alkali-metal atoms Li(2s), Na(3s), and K(4s) colliding with antiprotons and protons were calculated using a time-dependent channel-coupling approach. For antipro......Single-electron ionization and excitation cross sections as well as cross sections for excitation into the first excited p state of the alkali-metal atoms Li(2s), Na(3s), and K(4s) colliding with antiprotons and protons were calculated using a time-dependent channel-coupling approach...

  20. Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene

    Science.gov (United States)

    Sahin, H.; Peeters, F. M.

    2013-02-01

    The adsorption characteristics of alkali, alkaline-earth, and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, work function, and dipole moment of the metal adsorbed silicene sheets. Alkali metals, Li, Na, and K, adsorb to hollow sites without any lattice distortion. As a consequence of the significant charge transfer from alkalis to silicene, metalization of silicene takes place. Trends directly related to atomic size, adsorption height, work function, and dipole moment of the silicene/alkali adatom system are also revealed. We found that the adsorption of alkaline-earth metals on silicene is entirely different from their adsorption on graphene. The adsorption of Be, Mg, and Ca turns silicene into a narrow gap semiconductor. Adsorption characteristics of eight transition metals Ti, V, Cr, Mn, Fe, Co, Mo, and W are also investigated. As a result of their partially occupied d orbital, transition metals show diverse structural, electronic, and magnetic properties. Upon the adsorption of transition metals, depending on the adatom type and atomic radius, the system can exhibit metal, half-metal, and semiconducting behavior. For all metal adsorbates, the direction of the charge transfer is from adsorbate to silicene, because of its high surface reactivity. Our results indicate that the reactive crystal structure of silicene provides a rich playground for functionalization at nanoscale.

  1. Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project

    DEFF Research Database (Denmark)

    Hummelshøj, Jens Strabo; Landis, David; Voss, Johannes;

    2009-01-01

    We present a computational screening study of ternary metal borohydrides for reversible hydrogen storage based on density functional theory. We investigate the stability and decomposition of alloys containing 1 alkali metal atom, Li, Na, or K (M1); and 1 alkali, alkaline earth or 3d/4d transition...

  2. Influence of alkali metal cations on the thermal, mechanical and morphological properties of rectorite/chitosan bio-nanocomposite films.

    Science.gov (United States)

    Babul Reddy, A; Jayaramudu, J; Siva Mohan Reddy, G; Manjula, B; Sadiku, E R

    2015-05-20

    The main theme of this work is to study the influence of ion-exchangeable alkali metal cations, such as: Li(+), Na(+), K(+), and Cs(+) on the thermal, mechanical and morphological properties. In this regard, a set of rectorite/chitosan (REC-CS) bio-nanocomposite films (BNCFs) was prepared by facile reaction of chitosan with ion-exchanged REC clay. The microstructure and morphology of BNCFs were investigated with XRD, TEM, SEM and AFM. Thermal and tensile properties of BNCFs were also investigated. As revealed from TEM and XRD results, the BNCFs featured a mixed morphology. Some intercalated clay sheets, together with nano-sized clay tactoids were obtained in LiREC/CS, NaREC/CS and KREC/CS of the BNCFs. From fractured surface study, via SEM, it was observed that the dispersion of chitosan polymer attaches to (and covers) the clay platelets. FTIR confirmed strong hydrogen bonds between clay and chitosan polymer. In addition, the thermal stabilities significantly varied when alkali metal cations varied from Li(+) to Cs(+). The BNCFs featured high tensile strengths (up to 84 MPa) and tensile moduli (up to 45 GPa). After evaluating these properties of BNCFs, we came to conclusion that these bio-nano composites can be used for packaging applications.

  3. Phonon dispersion in alkali metals and their equiatomic sodium-based binary alloys

    Institute of Scientific and Technical Information of China (English)

    Aditya M. VORA

    2008-01-01

    In the present article, the theoretical calcula-tions of the phonon dispersion curves (PDCs) of five alkali metals viz. Li, Na, K, Rb, Cs and their four equia-tomic sodium-based binary alloys viz. Na0.5Li0.5,Na0.5K0.5, Na0.5Rb0.5 and Na0.5Cs0.5 to second order in a local model potential is discussed in terms of the real-space sum of the Born yon Karman central force con-stants. Instead of the concentration average of the force constants of pure alkali metals, the pseudo-alloy-atom (PAA) is adopted to directly compute the force constants of the four equiatomic sodium based binary alloys and was successfully applied. The exchange and correlation functions due to the Hartree (H) and Ichimaru-Utsumi (IU) are used to investigate the influence of the screening effects. The phonon frequencies of alkali metals and their four equiatomic sodium-based binary alloys in the longit-udinal branch are more sensitive to the exchange and cor-relation effects in comparison with the transverse branches. The PDCs of pure alkali metals are found in qualitative agreement with the available experimental data. The frequencies in the longitudinal branch are sup-pressed rather due to IU-screening function than those due to static H-screening function.

  4. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    Science.gov (United States)

    Cassano, Anthony A.

    1985-01-01

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs.

  5. Long-range interactions between excited helium and alkali-metal atoms

    KAUST Repository

    Zhang, J.-Y.

    2012-12-03

    The dispersion coefficients for the long-range interaction of the first four excited states of He, i.e., He(2 1,3S) and He(2 1,3P), with the low-lying states of the alkali-metal atoms Li, Na, K, and Rb are calculated by summing over the reduced matrix elements of the multipole transition operators. For the interaction between He and Li the uncertainty of the calculations is 0.1–0.5%. For interactions with other alkali-metal atoms the uncertainty is 1–3% in the coefficient C5, 1–5% in the coefficient C6, and 1–10% in the coefficients C8 and C10. The dispersion coefficients Cn for the interaction of He(2 1,3S) and He(2 1,3P) with the ground-state alkali-metal atoms and for the interaction of He(2 1,3S) with the alkali-metal atoms in their first 2P states are presented in this Brief Report. The coefficients for other pairs of atomic states are listed in the Supplemental Material.

  6. Modified PVA-CA blend ultrafiltration membrane by alkali metal chloride

    Institute of Scientific and Technical Information of China (English)

    张启修; 邱运仁

    2003-01-01

    The modified PVA-CA blend ultrafiltration membranes were prepared by phase inversion from the casting solutions consisting of polyvinyl alcohol(PVA), cellulose acetate(CA), acetic acid, alkali metal chloride and water. The effects of different concentration of alkali metal chloride on the properties of membranes were investigated. The results show that when the mass fraction of the salt in the casting solution is not greater than 1%, the property of rejection of the alkali metal salt modified ultrafiltration PVA-CA blend membrane has little change compared with that of the unmodified PVA-CA blend membrane, but the permeation flux is much greater than that of the unmodified membrane under the same operation condition. When the mass fraction of the salt is greater than 1.5%, the permeate flux increases much greater than that of the unmodified membrane, but the property of rejection of the modified ultrafiltration membrane decreases greatly. The results also show that the contact angle of the salt modified PVA-CA blend UF membrane decreases but the swelling in water increases with the increment of the mass fraction of alkali metal salts. Furthermore, the NaCl modified PVA-CA blend membrane has a slightly lower swelling and a little smaller contact angle of water than the KCl modified PVA-CA blend membrane does when the mass fraction of salts is the same.

  7. Unidirectional thermal expansion in KZnB3O6: role of alkali metals.

    Science.gov (United States)

    Lou, Yanfang; Li, Dandan; Li, Zhilin; Zhang, Han; Jin, Shifeng; Chen, Xiaolong

    2015-12-14

    The driving force of the unidirectional thermal expansion in KZnB3O6 has been studied experimentally and theoretically. Our results show that the low-energy vibrational modes of alkali metals play a crucial role in this unusual thermal behavior. PMID:26515521

  8. Alkali Metal Carbenoids: A Case of Higher Stability of the Heavier Congeners.

    Science.gov (United States)

    Molitor, Sebastian; Gessner, Viktoria H

    2016-06-27

    As a result of the increased polarity of the metal-carbon bond when going down the group of the periodic table, the heavier alkali metal organyl compounds are generally more reactive and less stable than their lithium congeners. We now report a reverse trend for alkali metal carbenoids. Simple substitution of lithium by the heavier metals (Na, K) results in a significant stabilization of these usually highly reactive compounds. This allows their isolation and handling at room temperature and the first structure elucidation of sodium and potassium carbenoids. The control of stability was used to control reactivity and selectivity. Hence, the Na and K carbenoids act as selective carbene-transfer reagents, whereas the more labile lithium systems give rise to product mixtures. Additional fine tuning of the M-C interaction by means of crown ether addition further allows for control of the stability and reactivity. PMID:27100278

  9. Characteristic thermoluminescence of gamma-irradiated alumina ceramics doped with some alkali metals

    Science.gov (United States)

    Henaish, B. A.; El-Agrami, A. M.; Abdel-Fattah, W. I.; Osiris, W. G.

    1994-07-01

    Thermoluminescence properties of pure Al2O3-ceramic discs doped with some oxides of alkali metals and B were investigated. Two groups of samples were studied: one with a low concentration of B and alkali oxides and the other with higher concentration. The first group shows a relatively higher stability and better reproducibility for γ-radiation and neutron-induced TL, which could be utilized in mixed radiation field dosimetry. The main disadvantage of these TL-materials is the relatively high rate of signal fading. A simple course of post irradiation heat annealing is proposed to overcome this drawback.

  10. Adsorption of Alkali, Alkaline Earth and Transition Metal Atoms on Silicene

    OpenAIRE

    Sahin, Hasan; Peeters, Francois M.

    2013-01-01

    The adsorption characteristics of alkali, alkaline earth and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon, are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, workfuncti...

  11. Study of Spectral Character of Alkali Metals Using Microwave Plasma Torch Simultaneous Spectrometer

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A microwave plasma torch(MPT) simultaneous spectrometer was used to study the spectral character and the matrix effect on alkali metal ions in solution. The main parameters were optimized. The microwave forward power was 100 W. The argon flow rate that was used to sustain the Ar-MPT included the flow rate of carrier gas and the flow rate of support gas, which were 0.8 and 1.0 L/min, respectively. The HCl concentration in the solution was 0.02 mol/L. The observation height was 9.0 mm. The detection limits of Li, Na, K, Rb, and Cs were 0.0003, 0.0004, 0.009, 0.07 and2.4 mg/L, respectively, and the results obtained by the Ar-MPT were compared with those obtained by argon inductively coupled plasma(Ar-ICP) and argon microwave induced plasma(Ar-MIP). The interference effects of several matrix elements were also studied.

  12. Alkali metal cation doping of metal-organic framework for enhancing carbon dioxide adsorption capacity

    Institute of Scientific and Technical Information of China (English)

    Yan Cao; Yunxia Zhao; Fujiao Song; Qin Zhong

    2014-01-01

    Metal-organic frameworks (MOFs) have attracted much attention as adsorbents for the separation of CO2 from flue gas or natural gas. Here, a typical metal-organic framework HKUST-1(also named Cu-BTC or MOF-199) was chemically reduced by doping it with alkali metals (Li, Na and K) and they were further used to investigate their CO2 adsorption capacities. The structural information, surface chemistry and thermal behavior of the prepared adsorbent samples were characterized by X-ray powder diffraction (XRD), thermo-gravimetric analysis (TGA) and nitrogen adsorption-desorption isotherm analysis. The results showed that the CO2 storage capacity of HKUST-1 doped with moderate quantities of Li+, Na+ and K+, individually, was greater than that of unmodified HKUST-1. The highest CO2 adsorption uptake of 8.64 mmol/g was obtained with 1K-HKUST-1, and it was ca. 11%increase in adsorption capacity at 298 K and 18 bar as compared with HKUST-1. Moreover, adsorption tests showed that HKUST-1 and 1K-HKUST-1 displayed much higher adsorption capacities of CO2 than those of N2. Finally, the adsorption/desorption cycle experiment revealed that the adsorption performance of 1K-HKUST-1 was fairly stable, without obvious deterioration in the adsorption capacity of CO2 after 10 cycles.

  13. Synthesis and Characterization of Novel Ternary and Quaternary Alkali Metal Thiophosphates

    KAUST Repository

    Alahmary, Fatimah S.

    2014-05-01

    The ongoing development of nonlinear optical (NLO) crystals such as coherent mid-IR sources focuses on various classes of materials such as ternary and quaternary metal chalcophosphates. In case of thiophosphates, the connection between PS4-tetrahedral building blocks and metals gives rise to a broad structural variety where approximately one third of all known ternary (A/P/S) and quaternary (A/M/P/S) (A = alkali metal, M = metal) structures are acentric and potential nonlinear optical materials. The molten alkali metal polychalcophosphate fluxes are a well-established method for the synthesis of new ternary and quaternary thiophosphate and selenophosphate compounds. It has been a wide field of study and investigation through the last two decades. Here, the flux method is used for the synthesis of new quaternary phases containing Rb, Ag, P and S. Four new alkali metal thiophosphates, Rb4P2S10, RbAg5(PS4), Rb2AgPS4 and Rb3Ag9(PS4)4, have been synthesized successfully from high purity elements and binary starting materials. The new compounds were characterized by single crystal and powder X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), ultraviolet-visible (UV-VIS), Raman spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). These compounds show interesting structural variety and physical properties. The crystal structures feature 3D anionic framework built up of PS4 tetrahedral units and charge balanced by Ag and alkali metal cations. All prepared compounds are semiconductors with band gap between 2.3 eV to 2.6 eV and most of them are thermally stable up to 600ºC.

  14. Thermodynamic study of alkali metals release in pressurised fluidised-bed combustion and gasification of peat

    Energy Technology Data Exchange (ETDEWEB)

    Mojtahedi, W.; Backman, R.; Korhonen, M.

    1988-01-01

    A combined-cycle power generation system incorporating pressurised fluidised-bed combustion (PFBC) or gasification is considered a promising approach for electricity generation using solid fuels such as peat. In these systems, the high-pressure hot flue gas is expanded in a gas turbine. Peat contains sodium and potassium which are released in combustion and gasification. These are corrosive elements that can cause severe damage to the turbine blades if not suppressed. Multicomponent, multiphase equilibrium calculations were carried out for atmospheric and pressurised fluidised-bed operating conditions to determine the relative distribution of the two metals (Na and K) in the gas and condensed phases. Dependence of the alkali volatilisation on the operating temperature, pressure, the chlorine-content and the total alkali-content of the feedstock was studied. The results show that the alkali release in the vapour-phase could be much higher than acceptable to a gas turbine, particularly under gasification conditions. Hence the necessity to remove the volatilised alkali-metal compounds is more acute in gasification than in combustion. Both sodium and potassium are present as chlorides and to a lesser extent as hydroxides in the gas phase in both modes of operation (i.e. combustion and gasification). However, whereas under combustion conditions both metals seem to condense as sulphates (Na/sub 2/SO4 and K/sub 2/SO4), in gasification, chlorides and carbonates dominate in the condensed phase. The alkali-metals volatilisation shows strong dependence on the operating pressure of the system as well as on the chlorine-content of the feedstock. It decreases markedly with the former but increases sharply with the latter.

  15. Effects of inherent alkali and alkaline earth metallic species on biomass pyrolysis at different temperatures.

    Science.gov (United States)

    Hu, Song; Jiang, Long; Wang, Yi; Su, Sheng; Sun, Lushi; Xu, Boyang; He, Limo; Xiang, Jun

    2015-09-01

    This work aimed to investigate effects of inherent alkali and alkaline earth metallic species (AAEMs) on biomass pyrolysis at different temperatures. The yield of CO, H2 and C2H4 was increased and that of CO2 was suppressed with increasing temperature. Increasing temperature could also promote depolymerization and aromatization reactions of active tars, forming heavier polycyclic aromatic hydrocarbons, leading to decrease of tar yields and species diversity. Diverse performance of inherent AAEMs at different temperatures significantly affected the distribution of pyrolysis products. The presence of inherent AAEMs promoted water-gas shift reaction, and enhanced the yield of H2 and CO2. Additionally, inherent AAEMs not only promoted breakage and decarboxylation/decarbonylation reaction of thermally labile hetero atoms of the tar but also enhanced thermal decomposing of heavier aromatics. Inherent AAEMs could also significantly enhance the decomposition of levoglucosan, and alkaline earth metals showed greater effect than alkali metals. PMID:26005925

  16. Electrodeposition of alkali and alkali-earth metals on liquid lead cathodes in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Caravaca, C.; De Cordoba, G. [CIEMAT/DE/DFN/URAA. Avda. Complutense, 22. 28040 Madrid (Spain)

    2008-07-01

    Pyrochemical processing of spent nuclear fuel leads to the dissolution as chlorides of fission products (FPs) that have to be removed in order to recycle the salt. Precipitation technique have been tested for the removal of these FPs in the LiCl-KCl, salt selected as reference, with different results. Salt decontamination from lanthanides can be easily achieved as solid precipitates of oxychlorides or single phosphates; however, for the alkaline and alkaline-earth metals this technique is not suitable. Within the EUROPART project (VI FP of the EC), a new route that consist of the electrodeposition of these FP on a liquid lead cathode (LLC) has been considered, including the Li and K constituting the electrolyte. First results obtained with Sr and Cs are presented herein. Although according to the thermodynamic potential values, the electrodeposition order on LLC is Ba, Sr, Li, K and Cs, during our experiments it was not possible to distinguish the electrochemical signals corresponding to the individual elements. (authors)

  17. Intra-zoned luminescence in alkali earth metal carbonates

    International Nuclear Information System (INIS)

    Full text: The fundamental plasma luminescence of wide band alkali halide crystals has been found out by Vaisburd et al. This broadband luminescence with very short duration of attenuation (∼10-12 s) arises at an irradiations of crystals with electronic beam powerful pulses of nanosecond duration. It is related to radiating 'hot' electrons and holes in a conductivity zone and in a valent zone, accordingly and in later time began to refer to as an intra-zoned luminescence. The data set on revealing features of display of an intra-zoned luminescence in different classes of crystals now proceeds. We investigated a fast luminescence at excitation with pulse electrons (3 nanoseconds) in crystals CaCO3, SrCO3, BaCO3 and MgCO3. In spectra all investigated carbonates it is possible to allocate two areas: area concerning high intensity of a fast luminescence (from 2 eV down 3 eV) and area of low intensity (is higher 4 eV) with slow recession at increase in photon energy. Thus it is typical, that in area concerning high intensity at rise in temperature from 80 up to 300 K a sample intensity of luminescence falls down, whereas in area is higher 5 eV with rise in temperature of a sample increase of intensity is observed. This broadband fast (is shorter than the time sanction of the equipment) should be connected a luminescence poorly dependent on temperature and a modular status of a sample with intra zoned transitions This luminescence reaches from 2 eV down to 7 eV but as for carbonates while is absent the reliable data on structure of a valent zone, division of an intra-zoned luminescence into electronic and hole components is not obviously possible on the basis of spectra of a fast luminescence. The nature of other luminescence processes arising at excitation with pulse electrons is discussed

  18. Crystal lattice properties fully determine short-range interaction parameters for alkali and halide ions

    CERN Document Server

    Mao, Albert H; 10.1063/1.4742068

    2012-01-01

    Accurate models of alkali and halide ions in aqueous solution are necessary for computer simulations of a broad variety of systems. Previous efforts to develop ion force fields have generally focused on reproducing experimental measurements of aqueous solution properties such as hydration free energies and ion-water distribution functions. This dependency limits transferability of the resulting parameters because of the variety and known limitations of water models. We present a solvent-independent approach to calibrating ion parameters based exclusively on crystal lattice properties. Our procedure relies on minimization of lattice sums to calculate lattice energies and interionic distances instead of equilibrium ensemble simulations of dense fluids. The gain in computational efficiency enables simultaneous optimization of all parameters for Li+, Na+, K+, Rb+, Cs+, F-, Cl-, Br-, and I- subject to constraints that enforce consistency with periodic table trends. We demonstrate the method by presenting lattice-d...

  19. Development and testing of on-line analytical instrumentation for alkali and heavy metal release in pressurised conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R.; Haeyrinen, V.; Oikari, R. [Tampere Univ. of Technology (Finland)

    1997-10-01

    The purpose of the project is to demonstrate in industrial conditions and further develop the continuous alkali measurement method plasma excited alkali resonance line spectroscopy (PEARLS) developed at Tampere University of Technology (TUT). The demonstration takes place in joint measuring campaigns, where two other continuous alkali measurement methods, ELIF and surface ionisation, are being simultaneously demonstrated. A modification of PEARLS will also be developed for the continuous measurement of heavy metal concentrations. A market study of continuous measuring techniques for alkali and heavy metals is further part of the project. The method will be demonstrated in two pressurised fluidised bed combustion facilities. One of these is the 10 MW PCFB of Foster Wheeler Energia Oy in Karhula. The second one is yet to be decided. The first measuring campaign is scheduled for the spring of 1997 in Karhula. In 1996 the group at TUT participated in the performance of a market study regarding continuous measuring techniques for alkali and heavy metal concentrations. A draft report was submitted to and approved by the EC. Development work on PEARLS in 1996 has centered around the construction of a calibration device for alkali measurements. The device can be used by all three measuring techniques in the project to check readings against a known alkali concentration at controlled and known conditions. In 1996 PEARLS was applied for alkali measurement at several pressurised combustion installations of laboratory and industrial pilot scale

  20. Development of a surface ionization source for the production of radioactive alkali ion beams in SPIRAL

    Energy Technology Data Exchange (ETDEWEB)

    Eleon, C. [GANIL, CEA/DSM CNRS/IN2P3, Bd H. Becquerel, BP 55027, 14076 CAEN cedex 5 (France)], E-mail: sceleon@triumf.ca; Jardin, P.; Gaubert, G.; Saint-Laurent, M.-G.; Alcantara-Nunez, J.; Alves Conde, R.; Barue, C.; Boilley, D.; Cornell, J. [GANIL, CEA/DSM CNRS/IN2P3, Bd H. Becquerel, BP 55027, 14076 CAEN cedex 5 (France); Delahaye, P. [3 CERN ISOLDE, 1211 Geneva 23 (Switzerland); Dubois, M.; Jacquot, B.; Leherissier, P.; Leroy, R.; Lhersonneau, G. [GANIL, CEA/DSM CNRS/IN2P3, Bd H. Becquerel, BP 55027, 14076 CAEN cedex 5 (France); Marie-Jeanne, M. [3 CERN ISOLDE, 1211 Geneva 23 (Switzerland); Maunoury, L. [CIRIL, Bd H. Becquerel, BP 55027, 14076 CAEN cedex 5 (France); Pacquet, J.Y.; Pellemoine, F. [GANIL, CEA/DSM CNRS/IN2P3, Bd H. Becquerel, BP 55027, 14076 CAEN cedex 5 (France); Pierret, C. [CIRIL, Bd H. Becquerel, BP 55027, 14076 CAEN cedex 5 (France)] (and others)

    2008-10-15

    In the framework of the production of radioactive alkali ion beams by the isotope separation on-line (ISOL) method in SPIRAL I, a surface ionization source has been developed at GANIL to produce singly-charged ions of Li, Na and K. This new source has been designed to work in the hostile environment whilst having a long lifetime. This new system of production has two ohmic heating components: the first for the target oven and the second for the ionizer. The latter, being in carbon, offers high reliability and competitive ionization efficiency. This surface ionization source has been tested on-line using a {sup 48}Ca primary beam at 60.3 A MeV with an intensity of 0.14 pA. The ionization efficiencies obtained for Li, Na and K are significantly better than the theoretical values of the ionization probability per contact. The enhanced efficiency, due to the polarization of the ionizer, is shown to be very important also for short-lived isotopes. In the future, this source will be associated with the multicharged electron-cyclotron-resonance (ECR) ion source NANOGAN III for production of multicharged alkali ions in SPIRAL. The preliminary tests of the set up are also presented in this contribution.

  1. Reactions between cold methyl halide molecules and alkali-metal atoms

    CERN Document Server

    Lutz, Jesse J

    2013-01-01

    We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH$_{3}X$ ($X$ = F, Cl, Br, I) and alkali-metal atoms $A$ ($A$ = Li, Na, K, Rb) using high-level {\\it ab initio} calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, ${\\rm CH}_{3}X+A\\rightarrow{\\rm CH}_{3}+AX$. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow.

  2. X-ray Compton scattering experiments for fluid alkali metals at high temperatures and pressures

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, K., E-mail: kazuhiro-matsuda@scphys.kyoto-u.ac.jp; Fukumaru, T.; Kimura, K.; Yao, M. [Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Tamura, K. [Graduate School of Engineering, Kyoto University, Kyoto 606-8502 (Japan); Katoh, M. [A.L.M.T. Corp., Iwasekoshi-Machi 2, Toyama 931-8543 (Japan); Kajihara, Y.; Inui, M. [Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521 (Japan); Itou, M.; Sakurai, Y. [Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2015-08-17

    We have developed a high-pressure vessel and a cell for x-ray Compton scattering measurements of fluid alkali metals. Measurements have been successfully carried out for alkali metal rubidium at elevated temperatures and pressures using synchrotron radiation at SPring-8. The width of Compton profiles (CPs) of fluid rubidium becomes narrow with decreasing fluid density, which indicates that the CPs sensitively detect the effect of reduction in the valence electron density. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 10 September 2015. The original article supplied to AIP Publishing was not the final version and contained PDF conversion errors in Formulas (1) and (2). The errors have been corrected in the updated and re-published article.

  3. Emission Channeling Studies of the Lattice Site of Oversized Alkali Atoms Implanted in Metals

    CERN Document Server

    2002-01-01

    % IS340 \\\\ \\\\ As alkali atoms have the largest atomic radius of all elements, the determination of their lattice configuration following implantation into metals forms a critical test for the various models predicting the lattice site of implanted impurity atoms. The site determination of these large atoms will especially be a crucial check for the most recent model that relates the substitutional fraction of oversized elements to their solution enthalpy. Recent exploratory $^{213}$Fr and $^{221}$Fr $\\alpha$-emission channeling experiments at ISOLDE-CERN and hyperfine interaction measurements on Fr implanted in Fe gave an indication for anomalously large substitutional fractions. To investigate further the behaviour of Fr and other alkali atoms like Cs and Rb thoroughly, more on-line emission channeling experiments are needed. We propose a number of shifts for each element, where the temperature of the implanted metals will be varied between 50$^\\circ$ and 700$^\\circ$~K. Temperature dependent measurements wi...

  4. Reactions between cold methyl halide molecules and alkali-metal atoms

    International Nuclear Information System (INIS)

    We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH3X (X = F, Cl, Br, I) and alkali-metal atoms A (A = Li, Na, K, Rb) using high-level ab initio calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, CH3X + A → CH3 + AX. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow

  5. Equation of state for thermodynamic properties of pure and mixtures liquid alkali metals

    Energy Technology Data Exchange (ETDEWEB)

    Mousazadeh, M.H., E-mail: mmousazadeh@aeoi.org.ir [Department of Chemistry, Nuclear Science Research School, Nuclear Science and Technology Research Institute (NSTRI), End of North-Karegar Str., 11365-3486 Tehran (Iran, Islamic Republic of); Faramarzi, E. [Department of Physical Chemistry, School of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Maleki, Z. [Department of Chemistry, Nuclear Science Research School, Nuclear Science and Technology Research Institute (NSTRI), End of North-Karegar Str., 11365-3486 Tehran (Iran, Islamic Republic of)

    2010-11-20

    We developed an equation of state based on statistical-mechanical perturbation theory for pure and mixtures alkali metals. Thermodynamic properties were calculated by the equation of state, based on the perturbed-chain statistical associating fluid theory (PC-SAFT). The model uses two parameters for a monatomic system, segment size, {sigma}, and segment energy, {epsilon}. In this work, we calculate the saturation and compressed liquid density, heat capacity at constant pressure and constant volume, isobaric expansion coefficient, for which accurate experimental data exist in the literatures. Results on the density of binary and ternary alkali metal alloys of Cs-K, Na-K, Na-K-Cs, at temperatures from the freezing point up to several hundred degrees above the boiling point are presented. The calculated results are in good agreement with experimental data.

  6. An Aqueous Redox Flow Battery Based on Neutral Alkali Metal Ferri/ferrocyanide and Polysulfide Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiaoliang; Xia, Gordon; Kirby, Brent W.; Thomsen, Edwin C.; Li, Bin; Nie, Zimin; Graff, Gordon L.; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-11-13

    Aiming to explore low-cost redox flow battery systems, a novel iron-polysulfide (Fe/S) flow battery has been demonstrated in a laboratory cell. This system employs alkali metal ferri/ferrocyanide and alkali metal polysulfides as the redox electrolytes. When proper electrodes, such as pretreated graphite felts, are used, 78% energy efficiency and 99% columbic efficiency are achieved. The remarkable advantages of this system over current state-of-the-art redox flow batteries include: 1) less corrosive and relatively environmentally benign redox solutions used; 2) excellent energy and utilization efficiencies; 3) low cost for redox electrolytes and cell components. These attributes can lead to significantly reduced capital cost and make the Fe/S flow battery system a promising low-cost energy storage technology. The major drawbacks of the present cell design are relatively low power density and possible sulfur species crossover. Further work is underway to address these concerns.

  7. The 3-Dimensional q-Deformed Harmonic Oscillator and Magic Numbers of Alkali Metal Clusters

    CERN Document Server

    Bonatsos, Dennis; Raychev, P P; Roussev, R P; Terziev, P A; Bonatsos, Dennis

    1999-01-01

    Magic numbers predicted by a 3-dimensional q-deformed harmonic oscillator with Uq(3) > SOq(3) symmetry are compared to experimental data for alkali metal clusters, as well as to theoretical predictions of jellium models, Woods--Saxon and wine bottle potentials, and to the classification scheme using the 3n+l pseudo quantum number. The 3-dimensional q-deformed harmonic oscillator correctly predicts all experimentally observed magic numbers up to 1500 (which is the expected limit of validity for theories based on the filling of electronic shells), thus indicating that Uq(3), which is a nonlinear extension of the U(3) symmetry of the spherical (3-dimensional isotropic) harmonic oscillator, is a good candidate for being the symmetry of systems of alkali metal clusters.

  8. Alkali-doped metal-phthalocyanine and pentacene compounds

    NARCIS (Netherlands)

    Craciun, M.F.

    2006-01-01

    The ability to introduce charge carriers in organic molecular materials and control their concentration is of great relevance for both fundamental research and applications. In this thesis, it has been demonstrated that the electronic properties of Metal Phthalocyanines (MPc) and pentacene (PEN) mol

  9. Conductometric determination of dissociation constants of alkali metal monopyrocatechinborates in alcohols

    International Nuclear Information System (INIS)

    Dissociation constants of alkali metal monopyrocatechinborates of Me[(C6H4O2)B(OH)2]xnH2O (Me = Na+, Li+) composition are determined using conductometric method based on equivalent electric conductivity values, in methanol and ethanol at 25 deg C. Dissociation constants of weak electrolytes are calculated by the Fuoss-Kraus method. Conditions of Valden raw action are determined which connects concentrations with permittivity of medium

  10. Alkali metal and simple gas atom adsorption and coadsorption on transition metal surfaces

    CERN Document Server

    Norris, A G

    2000-01-01

    system is formed by adsorption of potassium or cesium on the Ni(100)c(2x2)-O overlayer. The difficulty of the structural fit is compounded' by the size of the unit cell. In this study, Anomalous Scattering was used to investigate whether there is a contribution from the nickel substrate to the reconstruction. Measurements of the fractional order rods at 10 eV and 200 eV below the nickel K edge (8333 eV) showed no discernible differences and involvement of the nickel substrate in the reconstruction can be eliminated. Alkali metal coadsorption systems represent a step along the pathway from simple model adsorbate overlayers to more technologically relevant real systems. Such is their complexity, however, that very few systems have been solved structurally. Presented here are SXRD and STM investigations of two such systems. The first study involves potassium adsorption on the Ni(100)(2x2)p4g-N surface, where a clock reconstruction is present with the nickel substrate atoms rotated in alternate clockwise and anti...

  11. Equation of state for solid rare gases and alkali metals under pressure

    Science.gov (United States)

    Bonnet, Pierre

    2016-07-01

    This investigation is based on an atomic equation of state which takes into account the excluded volume of the atom being considered. Study of solid rare gases allows following the packing factor of the solid in equilibrium with the gas at different temperatures and of the solid and the liquid in the case of solid-liquid equilibria. The application of a pressure to the solid up to 9800 MPa allows determining the decrease in atomic volume and thus the compressibility. Such a study leads to proposing a new expression through dividing the pressure derivative (as a function of the excluded volume) by the pressure. This new coefficient is a pressure-independent constant but varies with the atom considered. Multiplied by the initial atomic volume, this coefficient has a unique value for all the rare gases. Furthermore, this is also true for the series of alkali metals with however a lower value of the coefficient. The atomic configurations of the two series are very different with one free electron for the alkali metals but closed shells for the rare gases. The alkali metals are therefore more complex than the rare gases. It is worthwhile to note that study of the equilibrium has not required the use of the principles of thermodynamics.

  12. Effect of Some Metal Ion Dopants on Electrochemical Properties of Ni(OH)2 Film Electrode

    Institute of Scientific and Technical Information of China (English)

    ZHANG Heng-bin; LIU Han-san; CAO Xue-jing; SUN Chia-chung

    2003-01-01

    The Ni(OH)2 film electrodes doped respectively with alkali-earth metal aluminum, lead, partial transition metal and some rare-earth metal(altogether 17 kinds of metals) ions were prepared by cathode electrodeposition. The electrode reaction reversibility, the difficult extent of oxygen evolution, the proton diffusion coefficient, the discharge potential of middle value and the active material utilization of the Ni(OH)2 film electrode were compared with those of the ones doped with the metal ions by means of cyclic voltammetry, potential step and constant current charge-discharge experiments. It was found that Ca2+, Co2+, Cd2+, Al3+ etc. have obviously positive effect.

  13. Diffusion of alkali metals in the first stage graphite intercalation compounds by vdW-DFT calculations

    OpenAIRE

    Wang, Zhaohui; Ratvik, Arne Petter; Grande, Tor; Selbach, Sverre Magnus

    2015-01-01

    Diffusion of alkali metal cations in the first stage graphite intercalation compounds (GIC) LiC6, NaC6, NaC8 and KC8 has been investigated with density functional theory (DFT) calculations using the optPBE-vdW van der Waals functional. The formation energies of alkali vacancies, interstitials and Frenkel defects were calculated and vacancies were found to be the dominating point defects. The diffusion coefficients of the alkali metals in GIC were evaluated by a hopping model of point defects ...

  14. Alkali Metal Halide Salts as Interface Additives to Fabricate Hysteresis-Free Hybrid Perovskite-Based Photovoltaic Devices.

    Science.gov (United States)

    Wang, Lili; Moghe, Dhanashree; Hafezian, Soroush; Chen, Pei; Young, Margaret; Elinski, Mark; Martinu, Ludvik; Kéna-Cohen, Stéphane; Lunt, Richard R

    2016-09-01

    A new method was developed for doping and fabricating hysteresis-free hybrid perovskite-based photovoltaic devices by using alkali metal halide salts as interface layer additives. Such salt layers introduced at the perovskite interface can provide excessive halide ions to fill vacancies formed during the deposition and annealing process. A range of solution-processed halide salts were investigated. The highest performance of methylammonium lead mixed-halide perovskite device was achieved with a NaI interlayer and showed a power conversion efficiency of 12.6% and a hysteresis of less than 2%. This represents a 90% improvement compared to control devices without this salt layer. Through depth-resolved mass spectrometry, optical modeling, and photoluminescence spectroscopy, this enhancement is attributed to the reduction of iodide vacancies, passivation of grain boundaries, and improved hole extraction. Our approach ultimately provides an alternative and facile route to high-performance and hysteresis-free perovskite solar cells.

  15. Synthesis and Crystal Structure of A New Armed-tetraazacrown Ether and Its Liquid Membrane Transport of Alkali Metal Cations

    Institute of Scientific and Technical Information of China (English)

    马淑兰; 朱文祥; 董淑静; 郭倩玲; 佘远斌

    2003-01-01

    A new tetra-N-substituted tetraazacrown ether derivative, 4,7,13,16-tetra ( 2-cyanobenzyl)-1, 10-dioxa-4, 7, 13, 16-tetraazacy-dooctademne, C44H48N8O2, has been synthesized and struc-turally characterized. It crystallizes in the monoclinic system,Slmeegroup P21/c with a = 1.1176(3) nm, b =2.1906(7) nm,c=0.8430(3)nm, V=2.0132(10)nm3, β = 102.740(5)°,Z=4, Dc= 1.189 g/cm3, final R1=0.0460, wR2=0.0803.The liquid membrane transports of alkali metal cations using the new macrocyde as the ion-carrier were also studied. Com-pared with some macrocyclic ligands, our newly synthesized lig.and showed a good selectivity ratio for Na Na+/Li+.

  16. Near-threshold photodetachment of heavy alkali-metal anions

    International Nuclear Information System (INIS)

    We calculate near-threshold photodetachment cross sections for Rb-, Cs-, and Fr- using the Pauli equation method with a model potential describing the effective electron-atom interaction. Parameters of the model potential are fitted to reproduce ab initio scattering phase shifts obtained from Dirac R-matrix calculations. Special care is taken to formulate the boundary conditions near the atomic nucleus for solving the Pauli equation, based on the analytic solution of the Dirac equation for a Coulomb potential. We find a 3P1o resonance contribution to the photodetachment cross section of Rb-, Cs-, and Fr- ions. Our calculated total photodetachment cross sections for Cs agree with experiments after tuning the resonance position by 2.4 meV. For Rb- and Fr- the resonance contribution is much smaller than for Cs. We therefore also provide angle-differential cross sections and asymmetry parameters which are much more sensitive to the resonant contribution than total cross sections

  17. Alkali-metal ion coordination in uranyl(VI) poly-peroxo complexes in solution, inorganic analogues to crown-ethers. Part 2. Complex formation in the tetramethyl ammonium-, Li(+)-, Na(+)- and K(+)-uranyl(VI)-peroxide-carbonate systems.

    Science.gov (United States)

    Zanonato, Pier Luigi; Szabó, Zoltán; Vallet, Valerie; Di Bernardo, Plinio; Grenthe, Ingmar

    2015-10-01

    The constitution and equilibrium constants of ternary uranyl(vi) peroxide carbonate complexes [(UO2)p(O2)q(CO3)r](2(p-q-r)) have been determined at 0 °C in 0.50 M MNO3, M = Li, K, and TMA (tetramethyl ammonium), ionic media using potentiometric and spectrophotometric data; (17)O NMR data were used to determine the number of complexes present. The formation of cyclic oligomers, "[(UO2)(O2)(CO3)]n", n = 4, 5, 6, with different stoichiometries depending on the ionic medium used, suggests that Li(+), Na(+), K(+) and TMA ions act as templates for the formation of uranyl peroxide rings where the uranyl-units are linked by μ-η(2)-η(2) bridged peroxide-ions. The templating effect is due to the coordination of the M(+)-ions to the uranyl oxygen atoms, where the coordination of Li(+) results in the formation of Li[(UO2)(O2)(CO3)]4(7-), Na(+) and K(+) in the formation of Na/K[(UO2)(O2)(CO3)]5(9-) complexes, while the large tetramethyl ammonium ion promotes the formation of two oligomers, TMA[(UO2)(O2)(CO3)]5(9-) and TMA[(UO2)(O2)(CO3)]6(11-). The NMR spectra demonstrate that the coordination of Na(+) in the five- and six-membered oligomers is significantly stronger than that of TMA(+); these observations suggest that the templating effect is similar to the one observed in the synthesis of crown-ethers. The NMR experiments also demonstrate that the exchange between TMA[(UO2)(O2)(CO3)]5(9-) and TMA[(UO2)(O2)(CO3)]6(11-) is slow on the (17)O chemical shift time-scale, while the exchange between TMA[(UO2)(O2)(CO3)]6(11-) and Na[(UO2)(O2)(CO3)]6(11-) is fast. There was no indication of the presence of large clusters of the type identified by Burns and Nyman (M. Nyman and P. C. Burns, Chem. Soc. Rev., 2012, 41, 7314-7367) and possible reasons for this and the implications for the synthesis of large clusters are briefly discussed.

  18. Theory of alkali-metal-induced reconstructions of fcc(100) surfaces

    DEFF Research Database (Denmark)

    Christensen, Ole Bøssing; Jacobsen, Karsten Wedel

    1992-01-01

    Calculations of missing-row reconstruction energies of the fcc(100) surfaces of the metals Al, Ni, Pd, Pt, Cu, Ag, and Au have been performed with the effective-medium theory with and without the presence of a potassium overlayer. It is shown that the tendency to reconstruct in the presence...... of adsorbed K is largest for Ag. This is in accordance with recent experiments indicating a potassium-induced missing-row reconstruction for Ag, but not for other metals. The tendency is shown to be related to the relatively low bulk modulus of silver. Differences from the well-known alkali...

  19. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals.

    Science.gov (United States)

    Liu, Yuanyue; Merinov, Boris V; Goddard, William A

    2016-04-01

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems. PMID:27001855

  20. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals

    Science.gov (United States)

    Liu, Yuanyue; Merinov, Boris V.; Goddard, William A., III

    2016-04-01

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.

  1. The Effect of Alkali and Ce(III Ions on the Response Properties of Benzoxazine Supramolecules Prepared via Molecular Assembly

    Directory of Open Access Journals (Sweden)

    Apirat Laobuthee

    2012-01-01

    Full Text Available A series of benzoxazine monomer supramolecules with different substituted groups on their benzene ring was prepared with a Mannich reaction and characterized by FTIR, 1H-NMR and MS. The obtained products were 3,4-dihydro-3-(2’-hydroxyethylene-6-methyl-2H-benzoxazine (BM1, 3,4-dihydro-3-(2’-hydroxyethylene-6-ethyl-2H-benz-oxazine (BM2, and 3,4-dihydro-3-(2’-hydroxyethylene-6-methoxy-2H-benzoxazine (BM3. The efficiency of alkali metal ion extraction from the products was determined with Pedersen’s technique, while the complexation of the Ce(III ion was confirmed by the Job’s and the mole ratio methods. The evidence of complex formation between benzoxazine monomers and Ce(III ions was obtained with FTIR and a computational simulation. Single phase ceria (CeO2 as observed with XRD was successfully prepared by calcinating the Ce(III-benzoxazine monomer complexes at 600 °C for 2 h. In addition, the geometry of the ceria nanoparticles confirmed by TEM is spherical, with an average diameter of 10‑20 nm.

  2. Equilibrium electrode U(4)-U and redox U(4)-U(3) potentials in molten alkali metal chlorides medium

    International Nuclear Information System (INIS)

    Conditional standard electrode potentials of uranium are determined for diluted solutions of its tetrachloride in alkali metal chloride melts (LiCl, NaCl, NaCl-KCl, KCl, RbCl and CsCl) when using U(4) ion activity coefficient values experimentally found by the tensimetric method. These potentials shift to the electronegative side at the temperature decrease and alkali cation radius increase rsub(Msup(+)) according to the empiric ratio E*U(4)-U= -3.06+6.87x10-4 T-(1.67-10-4T-0.44) 1/rsub(Msup(+)) +-0.01. The temperature dependences of formal conditional redox potentials of the U(4)-U(3) system for above melted chlorides are estimated. The E*U(4)-U(3) value also becomes more electronegative in the series LiCl, NaCl, NaCl-KCl, KCl, RbCl and CsCl. This alternation is satisfactorily described by the empiric expression E*U(4)-U(3)= -1.74+1.74x10-4T-(0.71x10-4T-0.20) 1rsub(Msup(+)) +-0.05. The calculated values Eu*(4)-U(3) are compared with those directly measured for the NaCl-KCl equimolar mixture and 3LiCl-2KCl eutectic mixture. A satisfactory confirmity has been observed

  3. Rational Design of Metal Ion Sequestering Agents

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Kenneth N.; Xu, Jide; Gramer, Christine

    1999-06-01

    This project addresses the fundamental issues and requirements for developing hazardous metal ion separation technologies applicable to the treatment and disposal of radioactive waste. Our research encompasses the following areas: the design and synthesis of metal ion specific sequestering ligands, structural and thermodynamic investigations of these ligand and the complexes formed with targeted metal ions, and the development and incorporation of these ligands into applied separation technologies as highly effective materials for hazardous metal ion decontamination.

  4. Metal ion binding with carbon nanotubes and graphene: Effect of chirality and curvature

    Science.gov (United States)

    Umadevi, Deivasigamani; Sastry, G. Narahari

    2012-10-01

    First principles calculations have been used to comprehensively study the binding of a series alkali (Li+, Na+, K+) and alkaline earth (Be2+, Mg2+, Ca2+) metal ions with carbon nanotubes (CNTs) and graphene. It is interesting to note that the mono-cationic systems prefer binding to armchair CNTs over zigzag CNTs, while the preference for the di-cationic systems is exactly opposite. We have also observed significant changes in the HOMO-LUMO energy gap of the CNTs on metal ion binding and these results indicate that the fine tuning of energy gap of the CNTs can be effected through metal ion binding.

  5. Investigation of Anti-Relaxation Coatings for Alkali-Metal Vapor Cells Using Surface Science Techniques

    CERN Document Server

    Seltzer, S J; Donaldson, M H; Balabas, M V; Barber, S K; Bernasek, S L; Bouchiat, M -A; Hexemer, A; Hibberd, A M; Kimball, D F Jackson; Jaye, C; Karaulanov, T; Narducci, F A; Rangwala, S A; Robinson, H G; Voronov, D L; Yashchuk, V V; Pines, A; Budker, D

    2010-01-01

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of anti-relaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10,000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We present a survey of modern surface science techniques applied to the study of paraffin coatings, in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge X-ray absorption fine structure spectroscopy, and X-ray photoelectron spectroscopy. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present with...

  6. Reversible photodeposition and dissolution of metal ions

    Science.gov (United States)

    Foster, Nancy S.; Koval, Carl A.; Noble, Richard D.

    1994-01-01

    A cyclic photocatalytic process for treating waste water containing metal and organic contaminants. In one embodiment of the method, metal ions are photoreduced onto the photocatalyst and the metal concentrated by resolubilization in a smaller volume. In another embodiment of the method, contaminant organics are first oxidized, then metal ions removed by photoreductive deposition. The present invention allows the photocatalyst to be recycled until nearly complete removal of metal ions and organic contaminants is achieved.

  7. Structural and Dynamical Trends in Alkali-Metal Silanides Characterized by Neutron-Scattering Methods

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Wan Si; Dimitrievska, Mirjana; Chotard, Jean-Noel; Zhou, Wei; Janot, Raphael; Skripov, Alexander V.; Udovic, Terrence J.

    2016-09-29

    Structural, vibrational, and dynamical properties of the mono- and mixed-alkali silanides (MSiH3, where M = K, Rb, Cs, K0.5Rb0.5, K0.5Cs0.5, and Rb0.5Cs0.5) were investigated by various neutron experiments, including neutron powder diffraction (NPD), neutron vibrational spectroscopy (NVS), neutron-scattering fixed-window scans (FWSs), and quasielastic neutron scattering (QENS) measurements. Structural characterization showed that the mixed compounds exhibit disordered (..alpha..) and ordered (..beta..) phases for temperatures above and below about 200-250 K, respectively, in agreement with their monoalkali correspondents. Vibrational and dynamical properties are strongly influenced by the cation environment; in particular, there is a red shift in the band energies of the librational and bending modes with increasing lattice size as a result of changes in the bond lengths and force constants. Additionally, slightly broader spectral features are observed in the case of the mixed compounds, indicating the presence of structural disorder caused by the random distribution of the alkali-metal cations within the lattice. FWS measurements upon heating showed that there is a large increase in reorientational mobility as the systems go through the order-disorder (..beta..-..alpha..) phase transition, and measurements upon cooling of the ..alpha..-phase revealed the known strong hysteresis for reversion back to the ..beta..-phase. Interestingly, at a given temperature, among the different alkali silanide compounds, the relative reorientational mobilities of the SiH3- anions in the ..alpha..- and ..beta..-phases tended to decrease and increase, respectively, with increasing alkali-metal mass. This dynamical result might provide some insights concerning the enthalpy-entropy compensation effect previously observed for these potentially promising hydrogen storage materials.

  8. Cyclic peptides-assisted trans- port of metal ions across liquid-organic membrane

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The formation of alkali and alkaline-earth metal picrate complexes with cyclo(Pro-Gly)n ionophores (1, n = 3; 2, n = 4) can facilitate the migration of metal ions across a bulk liquid CH2Cl2 membrane. The migration behavior was studied by measuring the solution absorption at 356 nm, using a UV/Vis spectrophotometer, and the rates can be determined by comparing the initial absorption of donor solutions with the absorption of the corresponding receiver solutions as the function of time. It was found that cyclic peptide 1 shows higher transport activity for the studied alkali and alkaline-earth metal ions than compound 2, which is related to the backbone flexibility of the cyclic peptides. The findings in this work suggest that the rate of ionophore-facilitated ion transport depends not only on the ability of complex forma-tion in aqueous phase, but also on the ability of complex dissociation in organic phase.

  9. An {\\it ab initio} relativistic coupled-cluster theory of dipole and quadrupole polarizabilities: Applications to a few alkali atoms and alkaline earth ions

    CERN Document Server

    Sahoo, B K

    2006-01-01

    We present a general approach within the relativistic coupled-cluster theory framework to calculate exactly the first order wave functions due to any rank perturbation operators. Using this method, we calculate the static dipole and quadrupole polarizabilities in some alkali atoms and alkaline earth-metal ions. This may be a good test of the present theory for different rank and parity interaction operators. This shows a wide range of applications including precise calculations of both parity and CP violating amplitudes due to rank zero and rank one weak interaction Hamiltonians. We also give contributions from correlation effects and discuss them in terms of lower order many-body perturbation theory.

  10. Alkali and heavy metal emissions of the PCFB-process; Alkalipaeaestoet PCFB-prosessissa

    Energy Technology Data Exchange (ETDEWEB)

    Kuivalainen, R.; Eriksson, T.; Lehtonen, P. [Foster Wheeler Energia Oy, Karhula (Finland)

    1996-12-01

    Pressurized Circulating Fluidized Bed (PCFB) combustion technology has been developed in Karhula R and D Center since 1986. As a part of the development, 10 MW PCFB Test Facility was built in 1989. The Test Facility has been used for performance testing with different coal types through the years 1990-1995 in order to gain data for design and commercialization of the high-efficiency low-emission PCFB combustion technology. The project Y44 `Alkali and heavy metal emissions of the PCFB-process` was part of national LIEKKI 2 research program. The main object of the project was to measure vapor phase Na and K concentrations in the PCFB flue gas after hot gas filter and investigate the effects of process conditions and sorbents on alkali release. The measurements were performed using plasma assisted method by TUT Laboratory of Plasma Technology and wet absorption method of VTT Energy. The measured Na concentrations were below 30 ppb(w) in all measured data points. The results of K were below 10 ppb(w). The accuracies of the both methods are about + 50 % at this concentration range. The scatter of the data covers the effects of different process variables on the alkali emission. The measured emissions are at the same order of magnitude as the guideline emission limits estimated by gas turbine manufacturers. The measurements and development of the analyses methods are planned to be continued during PCFB test runs in spring 1996 for example within Joule II research program. (author)

  11. Multiheteromacrocycles that Complex Metal Ions. Sixth Progress Report, 1 May 1979-30 April 1980

    Science.gov (United States)

    Cram, D. J.

    1980-01-15

    Objective is to design synthesize, and evaluate cyclic and polycyclic host organic compounds for their abilities to complex and lipophilize guest metal ions, their complexes, and their clusters. Host organic compounds consist of strategically placed solvating, coordinating, and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions or by metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; number of binding sites; character of binding sites; and valences. During this period, hemispherands based on an aryloxy or cyclic urea unit, spherands based on aryloxyl units only, and their complexes with alkali metals and alkaline earths were investigated. An attempt to separate {sup 6}Li and {sup 7}Li by gel permeation chromatography of lithiospherium chloride failed. (DLC)

  12. Thermochemical ablation therapy of VX2 tumor using a permeable oil-packed liquid alkali metal.

    Directory of Open Access Journals (Sweden)

    Ziyi Guo

    Full Text Available Alkali metal appears to be a promising tool in thermochemical ablation, but, it requires additional data on safety is required. The objective of this study was to explore the effectiveness of permeable oil-packed liquid alkali metal in the thermochemical ablation of tumors.Permeable oil-packed sodium-potassium (NaK was prepared using ultrasonic mixing of different ratios of metal to oil. The thermal effect of the mixture during ablation of muscle tissue ex vivo was evaluated using the Fluke Ti400 Thermal Imager. The thermochemical effect of the NaK-oil mixture on VX2 tumors was evaluated by performing perfusion CT scans both before and after treatment in 10 VX2 rabbit model tumors. VX2 tumors were harvested from two rabbits immediately after treatment to assess their viability using trypan blue and hematoxylin and eosin (H.E. staining.The injection of the NaK-oil mixture resulted in significantly higher heat in the ablation areas. The permeable oil controlled the rate of heat released during the NaK reaction with water in the living tissue. Perfusion computed tomography and its parameter map confirmed that the NaK-oil mixture had curative effects on VX2 tumors. Both trypan blue and H.E. staining showed partial necrosis of the VX2 tumors.The NaK-oil mixture may be used successfully to ablate tumor tissue in vivo. With reference to the controlled thermal and chemical lethal injury to tumors, using a liquid alkali in ablation is potentially an effective and safe method to treat malignant tumors.

  13. Metal ion separations using hydrophobic anions: Aspects of ligand design

    International Nuclear Information System (INIS)

    Metal ion extraction using hydrophobic anions has been investigated by several researchers for remediation of Cs-137 and Sr-90 in nuclear waste. The rich derivative chemistry of the cobalt bis-dicarbollide anion makes it amendable to systematic studies of the relative importance of anion structure, solvent, and synergists on the extraction selectivity and efficiency. Halogenation or alkylation of cobalt dicarbollide strongly influences the anion's solubility and stability but has little effect on extraction properties. Alkali metal selectivity depends primarily on solvent, while alkaline earth selectivity is driven by the concentration and molecular weight of polyethylene glycol synergists. Additional aspects of ligand design, including a simple extraction and recovery cycle based on redox-active metal centers, will be discussed

  14. The influence of chlorine on the fate and activity of alkali metals during the gasification of wood

    Energy Technology Data Exchange (ETDEWEB)

    Struis, R.; Scala, C. von; Schuler, A.; Stucki, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Chlorine clearly inhibits the CO{sub 2}-gasification reaction of charcoal at 800{sup o}C. From this and other observations the picture emerges that the reduction in the gasification reactivity of the charcoal is intimately related to the deactivation of the catalytically active alkali metals residing in the wood due to the formation of the chloride salt. It is argued that the heavy metal chlorides will likely transfer the chlorine to the indigenous alkali metals during the pyrolysis stage of the wood. The fate of the thus formed alkali metal chlorides can then be either their removal from the sample (evaporation), or, when present at the gasification stage, re-activation (i.e., de-chlorination) under our gasification conditions. (author) 3 figs., 4 refs.

  15. Purification and characterization of an extracellular, thermo-alkali-stable, metal tolerant laccase from Bacillus tequilensis SN4.

    Directory of Open Access Journals (Sweden)

    Sonica Sondhi

    Full Text Available A novel extracellular thermo-alkali-stable laccase from Bacillus tequilensis SN4 (SN4LAC was purified to homogeneity. The laccase was a monomeric protein of molecular weight 32 KDa. UV-visible spectrum and peptide mass fingerprinting results showed that SN4LAC is a multicopper oxidase. Laccase was active in broad range of phenolic and non-phenolic substrates. Catalytic efficiency (kcat/Km showed that 2, 6-dimethoxyphenol was most efficiently oxidized by the enzyme. The enzyme was inhibited by conventional inhibitors of laccase like sodium azide, cysteine, dithiothreitol and β-mercaptoethanol. SN4LAC was found to be highly thermostable, having temperature optimum at 85°C and could retain more than 80% activity at 70°C for 24 h. The optimum pH of activity for 2, 6-dimethoxyphenol, 2, 2'-azino bis[3-ethylbenzthiazoline-6-sulfonate], syringaldazine and guaiacol was 8.0, 5.5, 6.5 and 8.0 respectively. Enzyme was alkali-stable as it retained more than 75% activity at pH 9.0 for 24 h. Activity of the enzyme was significantly enhanced by Cu2+, Co2+, SDS and CTAB, while it was stable in the presence of halides, most of the other metal ions and surfactants. The extracellular nature and stability of SN4LAC in extreme conditions such as high temperature, pH, heavy metals, halides and detergents makes it a highly suitable candidate for biotechnological and industrial applications.

  16. Effect of particle size on thermal decomposition of alkali metal picrates

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui; Zhang, Tonglai, E-mail: ztlbit@bit.edu.cn; Yang, Li; Zhou, Zunning

    2014-05-01

    Graphical abstract: The smaller-sized picrate has greater gas emission than do its larger counterpart. The small size effect reduces the thermal decomposition activation energy, accelerates the reaction rate, and promotes the reaction activity. - Highlights: • Picrates were prepared into three micron sizes by microemulsion synthesis. • Thermal decomposition kinetics and thermodynamics were studied by DPTA and DSC. • Smaller-sized picrate has higher activity and faster reaction rate. • Particle size effect on thermal decomposition kinetics and thermodynamics was revealed. - Abstract: Three alkali metal picrates, KPA, RbPA and CsPA, were prepared into three micron sizes by microemulsion synthesis, and their thermal decomposition behaviors were investigated by DPTA at different temperatures and by DSC at different heating rates. The smaller-sized picrate has greater gas emission and smaller kinetic and thermodynamic parameters than do its larger counterpart. It can be attributed to the decreasing particle size which leads to the high surface energy, the fast mass and heat transfer, and the increasing active sites on the reaction interface. The small size effect and surface effect cause the autocatalysis which reduces the activation energy and promotes the reaction activity. The particle size does not affect the reaction mechanism. However, the picrates with different central alkali metals exhibit different reaction mechanisms even though they are of the same size. This is because the central metal determines the bond energy and consequently affects the stability of picrate.

  17. Shortcuts for understanding rovibronic spectroscopy of ultracold alkali metal diatomic molecules

    Science.gov (United States)

    Stwalley, William C.; Bellos, Michael; Carollo, Ryan; Banerjee, Jayita; Bermudez, Matthew

    2012-08-01

    The high-resolution rovibronic spectroscopies of cold and ultracold molecules (e.g. supersonic molecular beam excitation spectra (MB), photoassociation spectra of ultracold atoms (PA), resonance-enhanced multiphoton ionization spectra (REMPI), stimulated Raman transfer (SRT) spectra) are of major current interest. This manuscript summarizes the significant level of understanding of these various spectroscopies, enabled by using simple graphical and semiclassical ideas and shortcuts. Physical realizations of these spectroscopies will be illustrated using the alkali metal diatomic molecules, both homonuclear (e.g. Rb2) and heteronuclear (e.g. KRb).

  18. Van der Waals coefficients for alkali metal clusters and their size dependence

    Indian Academy of Sciences (India)

    Arup Banerjee; Manoj K Harbola

    2006-02-01

    In this paper we employ the hydrodynamic formulation of time-dependent density functional theory to obtain the van der Waals coefficients 6 and 8 of alkali metal clusters of various sizes including very large clusters. Such calculations become computationally very demanding in the orbital-based Kohn-Sham formalism, but are quite simple in the hydrodynamic approach. We show that for interactions between the clusters of the same sizes, 6 and 8 scale as the sixth and the eighth power of the cluster radius, respectively, and approach their classically predicted values for the large size clusters.

  19. Electric dipole polarizabilities of Rydberg states of alkali-metal atoms

    Science.gov (United States)

    Yerokhin, V. A.; Buhmann, S. Y.; Fritzsche, S.; Surzhykov, A.

    2016-09-01

    Calculations of the static electric-dipole scalar and tensor polarizabilities are presented for two alkali-metal atoms, Rb and Cs, for the n S , n P½,3 /2 , and n D3 /2 ,5 /2 states with large principal quantum numbers up to n =50 . The calculations are performed within an effective one-electron approximation, based on the Dirac-Fock Hamiltonian with a semiempirical core-polarization potential. The obtained results are compared with those from a simpler semiempirical approach and with available experimental data.

  20. Investigation of luminescence and spectroscopic properties of Nd3+ions in cadmium alkali borate glasses

    Science.gov (United States)

    Mohan, Shaweta; Thind, Kulwant Singh

    2016-07-01

    Neodymium doped cadmium alkali borate glasses having composition 20CdOsbnd 20R2Osbnd 59.5H3BO3sbnd 0.5Nd2O3; (R = Li, Na and K) were prepared by conventional melt-quenching technique. The amorphous nature of the glasses was confirmed by X-ray diffraction studies. The physical properties such as density, refractive index, molar volume, rare earth ion concentration etc. were determined. Optical absorption and fluorescence spectra were recorded. The Judd-Ofelt theory was applied on the optical absorption spectra of the glasses to evaluate the three phenomenological intensity parameters Ω2, Ω4 and Ω6. These parameters were in turn used to predict the radiative properties such as the radiative transition probability (A), radiative lifetime (τR) and branching ratio (βR) for the fluorescent levels of Nd3+ ion in the present glass series. The lasing efficiency of the prepared glasses has been characterized by the spectroscopic quality factor (Ω4/Ω6), the value of which is in the range of 0.2-1.5, typical for Nd3+ in different laser hosts. The variation of Ω2 with the change in alkali oxide has been attributed to the changes in the asymmetry of the ligand field at the rare earth ion site. The shift of the hypersensitive bands, study of the oscillator strengths and the variation of the spectral profile of the transition 4I9/2 → 4F7/2 + 4S3/2 indicate a maximum covalency of Ndsbnd O bond for glass with potassium ions. From the fluorescence spectra, peak wavelength (λp), effective line widths (Δλeff) and stimulated emission cross-section (σp) have been obtained for the three transitions 4F3/2 → 4I9/2,4F3/2 → 4I11/2 and4F3/2 → 4I13/2 of Nd3+ ion. The relatively high values of σp obtained for Nd3+ in present glass system suggest that these materials can be considered as suitable candidates for laser applications. The glass with potassium ions shows the highest value of the stimulated emission cross-section.

  1. Metal ions, Alzheimer's disease and chelation therapy.

    Science.gov (United States)

    Budimir, Ana

    2011-03-01

    In the last few years, various studies have been providing evidence that metal ions are critically involved in the pathogenesis of major neurological diseases (Alzheimer, Parkinson). Metal ion chelators have been suggested as potential therapies for diseases involving metal ion imbalance. Neurodegeneration is an excellent target for exploiting the metal chelator approach to therapeutics. In contrast to the direct chelation approach in metal ion overload disorders, in neurodegeneration the goal seems to be a better and subtle modulation of metal ion homeostasis, aimed at restoring ionic balance. Thus, moderate chelators able to coordinate deleterious metals without disturbing metal homeostasis are needed. To date, several chelating agents have been investigated for their potential to treat neurodegeneration, and a series of 8-hydroxyquinoline analogues showed the greatest potential for the treatment of neurodegenerative diseases.

  2. Metal ions, Alzheimer's disease and chelation therapy.

    Science.gov (United States)

    Budimir, Ana

    2011-03-01

    In the last few years, various studies have been providing evidence that metal ions are critically involved in the pathogenesis of major neurological diseases (Alzheimer, Parkinson). Metal ion chelators have been suggested as potential therapies for diseases involving metal ion imbalance. Neurodegeneration is an excellent target for exploiting the metal chelator approach to therapeutics. In contrast to the direct chelation approach in metal ion overload disorders, in neurodegeneration the goal seems to be a better and subtle modulation of metal ion homeostasis, aimed at restoring ionic balance. Thus, moderate chelators able to coordinate deleterious metals without disturbing metal homeostasis are needed. To date, several chelating agents have been investigated for their potential to treat neurodegeneration, and a series of 8-hydroxyquinoline analogues showed the greatest potential for the treatment of neurodegenerative diseases. PMID:21406339

  3. Photon Hall Scattering from Alkaline-earth-like atoms and Alkali-like ions

    CERN Document Server

    van Tiggelen, B A

    2016-01-01

    We investigate the possibility of observing a magneto-transverse scattering of photons from alkaline-earth-like atoms as well as alkali-like ions and provide orders of magnitude. The transverse magneto-scattering is physically induced by the interference between two possible quantum transitions of an outer electron in a S-state, one dispersive electric-dipole transition to a P-orbital state and a second resonant electric-quadrupole transition to a P-orbital state. In contrast with previous mechanisms proposed for such an atomic photonic Hall effect, no real photons are scattered by the electric-dipole allowed transition, which increases the ratio of Hall current to background photons significantly. The main experimental challenge is to overcome the small detection threshold, with only 10^{-5} photons scattered per atom per second.

  4. New Proton-Ionizable, Calixarene-Based Ligands for Selective Metal Ion Separations

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, Richard A.

    2012-06-04

    The project objective was the discovery of new ligands for performing metal ion separations. The research effort entailed the preparation of new metal ion complexing agents and polymers and their evaluation in metal ion separation processes of solvent extraction, synthetic liquid membrane transport, and sorption. Structural variations in acyclic, cyclic, and bicyclic organic ligands were used to probe their influence upon the efficiency and selectivity with which metal ion separations can be performed. A unifying feature of the ligand structures is the presence of one (or more) side arm with a pendent acidic function. When a metal ion is complexed within the central cavity of the ligand, ionization of the side arm(s) produces the requisite anion(s) for formation of an overall electroneutral complex. This markedly enhances extraction/transport efficiency for separations in which movement of aqueous phase anions of chloride, nitrate, or sulfate into an organic medium would be required. Through systematic structural variations, new ligands have been developed for efficient and selective separations of monovalent metal ions (e.g., alkali metal, silver, and thallium cations) and of divalent metal ion species (e.g., alkaline earth metal, lead, and mercury cations). Research results obtained in these fundamental investigations provide important insight for the design and development of ligands suitable for practical metal ion separation applications.

  5. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    Science.gov (United States)

    Hagedorn, Norman H. (Inventor)

    1993-01-01

    An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.

  6. [The Measuring Method of Atomic Polarization of Alkali Metal Vapor Based on Optical Rotation and the Analysis of the Influence Factors].

    Science.gov (United States)

    Shang, Hui-ning; Quan, Wei; Chen, Yao; Li, Yang; Li, Hong

    2016-02-01

    High sensitivity measurements of inertia and magnetic field could be achieved by utilizing a category of devices, which manipulate the atomic spins in the spin-exchange-relaxation-free regime. The alkali cell which contains the alkali metal vapor is used to sense magnetic field and inertia. The atomic number density of alkali vapor and the polarization of alkali metal vapor are two of the most important parameters of the cell. They play an important role in the research on atomic spins in the spin-exchange-relaxation-free regime. Besides, optical polarization plays an important role in quantum computing and atomic physics. We propose a measurement of alkali vapor polarization and alkali number density by detecting the optical rotation in one system. This method simplifies existing experimental equipment and processes. A constant bias magnetic field is applied and the Faraday rotation angle is detected by a bunch of the probe beam to deduce alkali-metal density. Then the magnetic field is closed and a bunch of the pump laser is utilized to polarize alkali-metal. Again, the probe beam is utilized to obtain the polarization of alkali metal. The alkali density obtained at first is used to deduce the polarization. This paper applies a numerical method to analyze the Faraday rotation and the polarization rotation. According to the numerical method, the optimal wavelength for the experiment is given. Finally, the fluctuation of magnetic field and wavelength on signal analysis are analyzed. PMID:27209720

  7. Understanding the insulating nature of alkali-metal/Si(111):B interfaces.

    Science.gov (United States)

    Fagot-Revurat, Y; Tournier-Colletta, C; Chaput, L; Tejeda, A; Cardenas, L; Kierren, B; Malterre, D; Le Fèvre, P; Bertran, F; Taleb-Ibrahimi, A

    2013-03-01

    We have recently revisited the phase diagram of alkali-metal/Si(111):B semiconducting interfaces previously suggested as the possible realization of a Mott-Hubbard insulator on a triangular lattice. The insulating character of the 2√[3] × 2√[3]R30 surface reconstruction observed at the saturation coverage, i.e. 0.5 ML, has been shown to find its origin in a giant alkali-metal-induced vertical distortion. Low energy electron diffraction, photoemission spectroscopy and scanning tunneling microscopy and spectroscopy experiments coupled with linear augmented plane-wave density functional theory calculations allow a full understanding of the k-resolved band structure, explaining both the inhomogeneous charge transfers into an Si-B hybridized surface state and the opening of a band gap larger than 1 eV. Moreover, √[3] × √[3]R30, 3 × 3 and 2√[3] × 2√[3]R30 surface reconstructions observed as a function of coverage may reveal a filling-controlled transition from a half-filled correlated magnetic material to a strongly distorted band insulator at saturation. PMID:23400003

  8. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-11-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed.

  9. First-principles study of d0 ferromagnetism in alkali-metal doped GaN

    Science.gov (United States)

    Zhang, Yong

    2016-08-01

    The d0 ferromagnetism in GaN has been studied based on density functional theory. Our results show that GaN with sufficient hole become spin-polarized. Alkali-metal doping can introduce holes in GaN. Among them, both of Li- and Na-doping induce ferromagnetism in GaN and Na-doped GaN behaves as half-metallic ferromagnet. Moreover, at a growth temperature of 2000 K under N-rich condition, both concentrations can exceed 18%, which is sufficient to produce detectable macroscopic magnetism in GaN. The Curie temperature of Li- and Na-doped GaN is estimated to be 304 and 740 K, respectively, which are well above room temperature.

  10. Adsorption of alkali metal atoms on germanene: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Qing, E-mail: pangqingjkd@163.com [College of Science, Xi’an University of Architecture and Technology, Xi’an 710055, Shaanxi (China); Zhang, Chun-ling; Li, Long; Fu, Zhi-qiang [College of Science, Xi’an University of Architecture and Technology, Xi’an 710055, Shaanxi (China); Wei, Xiu-mei [College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, Shaanxi (China); Song, Yu-ling [College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, Henan (China)

    2014-09-30

    Highlights: • All alkali metal (AM) atoms considered prefer to bind on the hexagonal hollow site of germanene. • AM adsorption makes the semimetallic germanene become to be metallic. • A small band gap opens at Dirac point for AM/germanene system without degrading of electronic properties. • The band gap and charge carriers for AM/germanene system can be tuned by changing the AM coverage. • AM/germanene systems show potential applications in germanene based field effect transistors. - Abstract: The structural, energetic and electronic properties of alkali metal (AM) atoms (including Li, Na and K) adsorbed germanene with a wide range of coverages are investigated by means of first-principles calculations. All AM atoms we considered prefer to bind on the hexagonal hollow site of germanene. In contrast to graphene, the interaction between adatom and germanene surface is quite strong due to its buckled hexagonal structure. As the increasing adatom coverage, the binding between AM atom and germanene sheet is weakened, due to the enhanced adatom–adatom repulsion while the decreased adatom-germanene attraction at high coverage. As a consequence of heavy charge transfer from AM to germanene, the formed adatom–Ge bonds perform mainly an ionic character. Through adsorption, the semimetallic germanene becomes to be metallic with its Dirac point moving below the Fermi level, thus making germanene behave as n-type doped. In addition, a small band gap can be opened at the Dirac point, and both the band gap and the concentration of charge carries of AM/germanene system can be tuned by controlling the adatom coverage. The strong binding of AM adatoms to germanene and the rich electronic properties of the AM/germanene systems suggest possible potential applications in germanene based field effect transistor (FET) devices.

  11. Ab initio interaction potentials and scattering lengths for ultracold mixtures of metastable helium and alkali-metal atoms

    Science.gov (United States)

    Kedziera, Dariusz; Mentel, Łukasz; Żuchowski, Piotr S.; Knoop, Steven

    2015-06-01

    We have obtained accurate ab initio +4Σ quartet potentials for the diatomic metastable triplet helium+alkali-metal (Li, Na, K, Rb) systems, using all-electron restricted open-shell coupled cluster singles and doubles with noniterative triples corrections CCSD(T) calculations and accurate calculations of the long-range C6 coefficients. These potentials provide accurate ab initio quartet scattering lengths, which for these many-electron systems is possible, because of the small reduced masses and shallow potentials that result in a small amount of bound states. Our results are relevant for ultracold metastable triplet helium+alkali-metal mixture experiments.

  12. Prospects for sympathetic cooling of polar molecules: NH with alkali-metal and alkaline-earth atoms - a new hope

    CERN Document Server

    Soldán, Pavel; Hutson, Jeremy M

    2009-01-01

    We explore the potential energy surfaces for NH molecules interacting with alkali-metal and alkaline-earth atoms using highly correlated ab-initio electronic structure calculations. The surfaces for interaction with alkali-metal atoms have deep wells dominated by covalent forces. The resulting strong anisotropies will produce strongly inelastic collisions. The surfaces for interaction with alkaline-earth atoms have shallower wells that are dominated by induction and dispersion forces. For Be and Mg the anisotropy is small compared to the rotational constant of NH, so that collisions will be relatively weakly inelastic. Be and Mg are thus promising coolants for sympathetic cooling of NH to the ultracold regime.

  13. New bonding configuration on Si(111) and Ge(111) surfaces induced by the adsorption of alkali metals

    DEFF Research Database (Denmark)

    Lottermoser, L.; Landemark, E.; Smilgies, D.M.;

    1998-01-01

    The structure of the (3×1) reconstructions of the Si(111) and Ge(111) surfaces induced by adsorption of alkali metals has been determined on the basis of surface x-ray diffraction and low-energy electron diffraction measurements and density functional theory. The (3×1) surface results primarily...... from the substrate reconstruction and shows a new bonding configuration consisting of consecutive fivefold and sixfold Si (Ge) rings in 〈11̅ 0〉 projection separated by channels containing the alkali metal atoms. © 1998 The American Physical Society...

  14. METALLIC PHASE AND INSULATING CHARACTER OF ALKALI-EARTH METAL DOPED C60

    Institute of Scientific and Technical Information of China (English)

    曹阳; 陈良进; 陈波; 冯建文; 陈文建

    1995-01-01

    The three dimensional EHMO crystal orbital calculations for crystalline Ba6 C60,Ca3 C60 and Ca5 C60 are reported.The ground state of partially doped Ca3 C60 is found to be insulating with an indrect energy gap of 0.5eV.In contrast,the Ca5 C60 forms a metallic conducting phase with a set of three half-filled bands crossing the Fermi level which is Found to locate close to a peak of the density of state. The character of crystal orbitals near the Fermilevel for both Ca3 C60 and Ca5 C60 is completely carbon-like.In both cases the Ca3 atoms are almost fully ionized and C60 molecules form a stable negative charge state with six to ten additional electrons.The conductivity of Ba6 C60 is resuted from the incomplete charge tranfer.The valance charge of every Ba ion is about 0.33.The total charge tranfer of six Ba atoms is almost the same as that of five Ca atoms.

  15. Intercalation Pseudocapacitance in Ultrathin VOPO4 Nanosheets: Toward High-Rate Alkali-Ion-Based Electrochemical Energy Storage.

    Science.gov (United States)

    Zhu, Yue; Peng, Lele; Chen, Dahong; Yu, Guihua

    2016-01-13

    There is a growing need for energy storage devices in numerous applications where a large amount of energy needs to be either stored or delivered quickly. The present paper details the study of alkali-ion intercalation pseudocapacitance in ultrathin VOPO4 nanosheets, which hold promise in high-rate alkali-ion based electrochemical energy storage. Starting from bulk VOPO4·2H2O chunks, VOPO4 nanosheets were obtained through simple ultrasonication in 2-propanol. These nanosheets as the cathode exhibit a specific capacity of 154 and 136 mAh/g (close to theoretical value 166 mAh/g) for lithium and sodium storage devices at 0.1 C and 100 and ∼70 mAh/g at 5 C, demonstrating their high rate capability. Moreover, the capacity retention is maintained at 90% for lithium ion storage and 73% for sodium ion storage after 500 cycles, showing their reasonable stability. The demonstrated alkali-ion intercalation pseudocapacitance represents a promising direction for developing battery materials with promising high rate capability.

  16. Investigation of anti-Relaxation coatings for alkali-metal vapor cells using surface science techniques

    Energy Technology Data Exchange (ETDEWEB)

    Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Balabas, M. V.; Barber, S. K.; Bernasek, S. L.; Bouchiat, M.-A.; Hexemer, A.; Hibberd, A. M.; Jackson Kimball, D. F.; Jaye, C.; Karaulanov, T.; Narducci, F. A.; Rangwala, S. A.; Robinson, H. G.; Shmakov, A. K.; Voronov, D. L.; Yashchuk, V. V.; Pines, A.; Budker, D.

    2010-10-11

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10?000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the study of paraffin coatings in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge x-ray absorption fine structure spectroscopy, and x-ray photoelectron spectroscopy. We also compare the light-induced atomic desorption yields of several different paraffin materials. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present within a particular class of effective paraffin coatings. Further study should lead to the development of more robust paraffin antirelaxation coatings, as well as the design and synthesis of new classes of coating materials.

  17. Metal Ion Controlled Polymorphism of a Peptide

    DEFF Research Database (Denmark)

    Hemmingsen, Lars Bo Stegeager; Jancso, Attila; Szunyogh, Daniel;

    2011-01-01

    , …) in the peptide, and the ligand and structural preferences of the metal ion (in our studies Zn2+, Cd2+, Hg2+, Cu+/2+). Simultaneously, new species such as metal ion bridged ternary complexes or even oligomers may be formed. In recent previous studies we have observed similar polymorphism of zinc finger model...

  18. Alkali metal salts of formazanate ligands : diverse coordination modes as a result of the nitrogen-rich [NNCNN] ligand backbone

    NARCIS (Netherlands)

    Travieso-Puente, Raquel; Chang, Mu-Chieh; Otten, Edwin

    2014-01-01

    Alkali metal salts of redox-active formazanate ligands were prepared, and their structures in the solid-state and in solution are determined. The nitrogen-rich [NNCNN] backbone of formazanates results in a varied coordination chemistry, with both the internal and terminal nitrogen atoms available fo

  19. Electric dipole polarizabilities at imaginary frequencies for the alkali-metal, alkaline-earth, and inert gas atoms

    CERN Document Server

    Derevianko, Andrei; Babb, James F

    2009-01-01

    The electric dipole polarizabilities evaluated at imaginary frequencies for hydrogen, the alkali-metal atoms, the alkaline earth atoms, and the inert gases are tabulated along with the resulting values of the atomic static polarizabilities, the atom-surface interaction constants, and the dispersion (or van der Waals) constants for the homonuclear and the heteronuclear diatomic combinations of the atoms.

  20. Synthesis and Selective Coloration of Monoaza Crown Ethers Bearing Picrylamino-type Side Arms for Alkali Metal Salts and Methylamine

    Institute of Scientific and Technical Information of China (English)

    Wei ZENG; Zhi Hua MAO; Mi GONG; Chun Chun ZHANG; Sheng Ying QIN; Jun SU

    2003-01-01

    N-pivot lariat ethers with picrylamino group as a chromophore (1, 2 and 3) have been prepared by reaction of N-(4-aminoaryl)monoaza crown ethers with picryl chrolide, and the selective coloration of 1, 2 and 3 for alkali metal salts and amines has been studied by UV-Vis spectra.

  1. LDA or GGA? A combined experimental inelastic neutron scattering and ab initio lattice dynamics study of alkali metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, G.D. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Departamento de Quimica, Universidad Nacional de la Patagonia SJB, Ciudad Universitaria, 9005 Comodoro Rivadavia (Argentina); Colognesi, D. [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del Piano s.n.c., 50019 Sesto Fiorentino (Finland) (Italy); Mitchell, P.C.H. [School of Chemistry, University of Reading, RG6 6AD (United Kingdom); Ramirez-Cuesta, A.J. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); School of Chemistry, University of Reading, RG6 6AD (United Kingdom)], E-mail: a.j.ramirez-cuesta@rl.ac.uk

    2005-10-31

    In a previous work, we carried out inelastic neutron scattering (INS) spectroscopy experiments and preliminary first principles calculations on alkali metal hydrides. The complete series of alkali metal hydrides, LiH, NaH, KH, RbH and CsH was measured in the high-resolution TOSCA INS spectrometer at ISIS. Here, we present the results of ab initio electronic structure calculations of the properties of the alkali metal hydrides using both the local density approximation (LDA) and the generalized gradient approximation (GGA), using the Perdew-Burke-Ernzerhof (PBE) parameterization. Properties calculated were lattice parameters, bulk moduli, dielectric constants, effective charges, electronic densities and inelastic neutron scattering (INS) spectra. We took advantage of the currently available computer power to use full lattice dynamics theory to calculate thermodynamic properties for these materials. For the alkali metal hydrides (LiH, NaH, KH, RbH and CsH) using lattice dynamics, we found that the INS spectra calculated using LDA agreed better with the experimental data than the spectra calculated using GGA. Both zero-point effects and thermal contributions to free energies had an important effect on INS and several thermodynamic properties.

  2. Separation of hafnium from zirconium in their tetrachloride solution in molten alkali metal chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, A.B.; Kudyakov, V.Ya.; Smirnov, M.V.; Moskalenko, N.I. (AN SSSR, Sverdlovsk. Inst. Ehlektrokhimii)

    1984-08-01

    The coefficient of HfCl/sub 4/ and ZrCl/sub 4/ separation in the process of vapour sublimation from their solutions in molten NaCl, KCl, CsCl, NaCl-KCl and NaCl-CsCl equimolar mixtures is found to vary in the series from approximately 1.10 to approximately 1.22 and practically not to depend on the temperature (in the 600-910 deg) range and concentration (2-25 mol.% ZrCl/sub 4/+HfCl/sub 4/). HfCl/sub 4/ and ZrCl/sub 4/ are shown to form almost perfect solutions with each other, which in their turn form imperfect solutions with molten alkali metal chlorides, with the strength of hafnium complex chloride anions increasing higher than that of zirconium in the series from NaCl to CsCl.

  3. Separation of hafnium from zirconium in their tetrachloride solution in molten alkali metal chlorides

    International Nuclear Information System (INIS)

    The coefficient of HfCl4 and ZrCl4 separation in the process of vapour sublimation from their solutions in molten NaCl, KCl, CsCl, NaCl-KCl and NaCl-CsCl equimolar mixtures is found to vary in the series from approximately 1.10 to approximately 1.22 and practically not to depend on the temperature (in the 600-910 deg) range and concentration (2-25 mol.% ZrCl4+HfCl4). HfCl4 and ZrCl4 are shown to form almost perfect solutions with each other, which in their turn form imperfect solutions with molten alkali metal chlorides, with the strength of hafnium complex chloride anions increasing higher than that of zirconium in the series from NaCl to CsCl

  4. The alkali metal thermoelectric converter /AMTEC/ - A new direct energy conversion technology for aerospace power

    Science.gov (United States)

    Bankston, C. P.; Cole, T.; Jones, R.; Ewell, R.

    1982-01-01

    A thermally regenerative electrochemical device for the direct conversion of heat to electrical energy, the alkali metal thermoelectric converter (AMTEC), is characterized by potential efficiencies on the order of 15-40% and possesses no moving parts, making it a candidate for space power system applications. Device conversion efficiency is projected on the basis of experimental voltage vs current curves exhibiting power densities of 0.7 W/sq cm and measured electrode efficiencies of up to 40%. Preliminary radiative heat transfer measurements presented may be used in an investigation of methods for the reduction of AMTEC parasitic radiation losses. AMTEC assumes heat input and rejection temperatures of 900-1300 K and 400-800 K, respectively. The working fluid is liquid sodium, and the porous electrode employed is of molybdenum.

  5. Momentum densities and Compton profiles of alkali-metal atoms

    Indian Academy of Sciences (India)

    Pranab Sarkar; Anupam Sarkar; S N Roy; B Talukdar

    2003-03-01

    It is assumed that the dynamics of valence electrons of alkali-metal atoms can be well accounted for by a quantum-defect theoretic model while the core electrons may be supposed to move in a self-consistent field. This model is used to study the momentum properties of atoms from 3Li to 37Rb. The numerical results obtained for the momentum density, moments of momentum density and Compton profile are found to be in good agreement with the results of more detailed configuration-interaction calculations for the atom 3Li. Similar results for 11Na, 19K and 37Rb are compared with the corresponding Hartree–Fock–Roothaan values only, for want of data from other realistic calculations.

  6. Metal Ions Analysis with Capillary Zone Electrophoresis.

    Science.gov (United States)

    Malik, Ashok Kumar; Aulakh, Jatinder Singh; Kaur, Varinder

    2016-01-01

    Capillary electrophoresis has recently attracted considerable attention as a promising analytical technique for metal ion separations. Significant advances that open new application areas for capillary electrophoresis in the analysis of metal species occurred based on various auxiliary separation principles. These are mainly due to complexation, ion pairing, solvation, and micellization interactions between metal analytes and electrolyte additives, which alter the separation selectivity in a broad range. Likewise, many separation studies for metal ions have been concentrated on the use of preelectrophoresis derivatization methodology. Approaches suitable for manipulation of selectivity for different metal species including metal cations, metal complexes, metal oxoanions, and organometallic compounds, are discussed, with special attention paid to the related electrophoretic system variables using illustrative examples. PMID:27645740

  7. Molecular dynamics simulations of the dynamic and energetic properties of alkali and halide ions using water-model-specific ion parameters.

    Science.gov (United States)

    Joung, In Suk; Cheatham, Thomas E

    2009-10-01

    The dynamic and energetic properties of the alkali and halide ions were calculated using molecular dynamics (MD) and free energy simulations with various different water and ion force fields including our recently developed water-model-specific ion parameters. The properties calculated were activity coefficients, diffusion coefficients, residence times of atomic pairs, association constants, and solubility. Through calculation of these properties, we can assess the validity and range of applicability of the simple pair potential models and better understand their limitations. Due to extreme computational demands, the activity coefficients were only calculated for a subset of the models. The results qualitatively agree with experiment. Calculated diffusion coefficients and residence times between cation-anion, water-cation, and water-anion showed differences depending on the choice of water and ion force field used. The calculated solubilities of the alkali-halide salts were generally lower than the true solubility of the salts. However, for both the TIP4P(EW) and SPC/E water-model-specific ion parameters, solubility was reasonably well-reproduced. Finally, the correlations among the various properties led to the following conclusions: (1) The reliability of the ion force fields is significantly affected by the specific choice of water model. (2) Ion-ion interactions are very important to accurately simulate the properties, especially solubility. (3) The SPC/E and TIP4P(EW) water-model-specific ion force fields are preferred for simulation in high salt environments compared to the other ion force fields.

  8. First-principles study of intercalation of alkali ions in FeSe for solid-state batteries

    Science.gov (United States)

    Jiang, Zhiqiang; Gu, Xiao; Wang, Linxia; Huang, Li

    2016-08-01

    Electrochemical properties of alkali ions (Li+, Na+, and K+) intercalating into FeSe have been studied based on first-principles calculations within density functional theory. The intercalation sites of lithium ions are found to be different from sodium and potassium ions due to the small ionic radius of lithium. Calculations of minimum energy path on the diffusions of Li+, Na+, and K+ in FeSe show that the activation energies for those alkali ions increase with their ionic radii. Lithium ions have a rather smaller diffusion barrier of about 0.20 eV, which leads to a bigger diffusion coefficient of about 6.3 ×10-6cm2 /s . We also show that FeSe has a flat discharging stage at about 1.0 V with lithium ions. These results indicate that XFe2Se2 (X = Li, Na, K) may be potential electrochemical active materials, especially for solid-state electrolyte and supercapacitors.

  9. Study of complex amalgams containing alkali metals by method of broken thermometric titration

    International Nuclear Information System (INIS)

    Complex potassium-cadmium and sodium-cadmium amalgams containing different amounts of the alkali metal nad cadmium have been studied by thermometric titration with mercury. The experiments have been carried out in argon atmosphere at 25 deg C. As evidenced by the titration of sodium-cadmium amalgams, in the range of concentrations studied (Csub(Na)=0.71-2.95, Csub(Cd)=4.38-6.45 g-at/lHg) no solid phase is formed in them. Potassium-cadmium amalgams where the metals content is no higher than their individual solubility in mercury, display, when being mercury-titrated, negative heat effects due to solid phase formation. An estimation is made of the solid phase composition, its solubility in mercury and the heat of dissolution. The solid phase appearing in complex K-Cd amalgams is likely to contain K and Cd in a ratio 1:1 its conventional solubility product is 5.4 g-at/l Hg, and the heat of dissolution in mercury at 25 deg is -21 +-4 kJ/g-at

  10. Stability of alkali-metal hydrides: effects of n-type doping

    Science.gov (United States)

    Olea Amezcua, Monica Araceli; de La Peña Seaman, Omar; Rivas Silva, Juan Francisco; Heid, Rolf; Bohnen, Klaus-Peter

    Metal hydrides could be considered ideal solid-state hydrogen storage systems, they have light weight and high hydrogen volumetric densities, but the hydrogen desorption process requires excessively high temperatures due to their high stability. Efforts have been performed to improve their dehydrogenation properties, based on the introduction of defects, impurities and doping. We present a systematic study of the n-type (electronic) doping effects on the stability of two alkali-metal hydrides: Na1-xMgxH and Li1-xBexH. These systems have been studied within the framework of density functional perturbation theory, using a mixed-basis pseudopotential method and the self-consistent version of the virtual crystal approximation to model the doping. The full-phonon dispersions are analyzed for several doping content, paying special attention to the crystal stability. It is found a doping content threshold for each system, where they are close to dynamical instabilities, which are related to charge redistribution in interstitial zones. Applying the quasiharmonic approximation, the vibrational free energy, the linear thermal expansion and heat capacities are obtained for both hydrides systems and are analyzed as a function of the doping content. This work is partially supported by the VIEP-BUAP 2016 and CONACYT-México (No.221807) projects.

  11. Elucidating the magnetic and superconducting phases in the alkali metal intercalated iron chalcogenides

    Science.gov (United States)

    Wang, Meng; Yi, Ming; Tian, Wei; Bourret-Courchesne, Edith; Birgeneau, Robert J.

    2016-02-01

    The complex interdigitated phases have greatly frustrated attempts to document the basic features of the superconductivity in the alkali metal intercalated iron chalcogenides. Here, using elastic neutron scattering, energy-dispersive x-ray spectroscopy, and resistivity measurements, we elucidate the relations of these phases in RbxFeySe2 -zSz . We find (i) the iron content is crucial in stabilizing the stripe antiferromagnetic (AF) phase with rhombic iron vacancy order (y ≈1.5 ) , the block AF phase with √{5 }×√{5 } iron vacancy order (y ≈1.6 ) , and the iron vacancy-free phase (y ≈2 ) ; and (ii) the iron vacancy-free superconducting phase (z =0 ) evolves into an iron vacancy-free metallic phase with sulfur substitution (z >1.5 ) due to the progressive decrease of the electronic correlation strength. Both the stripe AF phase and the block AF phase are Mott insulators. The iron-rich compounds (y >1.6 ) undergo a first order transition from an iron vacancy disordered phase at high temperatures into the √{5 }×√{5 } iron vacancy ordered phase and the iron vacancy-free phase below Ts. Our data demonstrate that there are miscibility gaps between these three phases. The existence of the miscibility gaps in the iron content is a key to understanding the relationship between these complicated phases.

  12. Alkali metal pool boiler life tests for a 25 kWe advanced Stirling conversion system

    Science.gov (United States)

    Anderson, W. G.; Rosenfeld, J. H.; Noble, J.

    The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding an alkali metal pool boiler heat transport system to supply heat more uniformly to the heater head tubes. One issue with liquid metal pool boilers is unstable boiling. Stable boiling is obtained with an enhanced boiling surface containing nucleation sites that promote continuous boiling. Over longer time periods, it is possible that the boiling behavior of the system will change. An 800-h life test was conducted to verify that pool boiling with the chosen fluid/surface combination remains stable as the system ages. The apparatus uses NaK boiling on a - 100 + 140 stainless steel sintered porous layer, with the addition of a small amount of xenon. Pool boiling remained stable to the end of life test. The pool boiler life test included a total of 82 cold starts, to simulate startup each morning, and 60 warm restarts, to simulate cloud cover transients. The behavior of the cold and warm starts showed no significant changes during the life test. In the experiments, the fluid/surface combination provided stable, high-performance boiling at the operating temperature of 700 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.

  13. Recovery of metal ions by microfungal filters.

    Science.gov (United States)

    Wales, D S; Sagar, B F

    1990-01-01

    Many microfungi contain chitin/chitosan as an integral part of the cell wall structure. The binding of toxic and heavy metal ions by chitosan or partly deacetylated chitin is a direct consequence of the base strength of the primary amine group and is most effective for those metals that form complexes with ammonia. Of the microfungi studied, hyphae from Mucor mucedo and Rhizomucor miehei, after treatment with hydroxide to expose the chitin/chitosan, were found to be most effective in the capture of metal ions. Chemically treated mycelia have so far been shown to bind silver, zinc, lead, copper, nickel, cobalt, cadmium, iron and chromium, with the efficiency of metal-ion binding apparently being inversely proportional to the valency state of the metal ions to be bound. Wet-laid papers produced from mixed slurries of treated mycelia and various conventional paper-making and textile fibres have exceptionally good tensile- and bursting-strength properties, particularly in the wet state. Papers containing 1 g treated mycelia removed up to 90% of various metal ions in solution (50 cm3, 1.5 mmol dm-3) with flow rates of 0.5 cm3 cm-2 min-1. However, the total metal-ion binding capacities of single-thickness microfungal papers are limited under constant flow conditions. The total volume flowing through the system before metal-ion breakthrough occurs increases in direct proportion to the number of sheets of microfungal paper but the concomitant reduction in flow rates becomes a limiting factor. Mycelia-containing structures that allow efficient metal-ion binding at commercially acceptable flow rates are currently being investigated.

  14. DETERMINATION OF POTASH ALKALI AND METAL CONTENTS OF ASHES OBTAINED FROM PEELS OF SOME VARIETIES OF NIGERIA GROWN MUSA SPECIES

    Directory of Open Access Journals (Sweden)

    Joshua Olajiire Babayemi

    2010-05-01

    Full Text Available Potash alkali and metal contents of ashes obtained from peels of six varieties of Nigeria Musa species were investigated. The varieties of Musa species – Musa paradisiaca (plantain, Musa ‘Gross Michel’ (Igbo banana, M.sapientum L. (paranta, Musa ‘Wild Banana’ (omini, Musa ‘Red’ (sweet banana, and Musa ‘Fugamo’ (somupeke, were investigated. The moisture, dry matter, ash and alkali contents; concentration of metals in the ashes and in the contents extracted with water from the ashes; and the ratio of potassium to other metals in the ashes and in the corresponding extracts were determined. Moisture contents ranged from 80.9 to 86.7%; dry matter content, 13.3 to 19.1%; ash content, 6.3 to 12.0%; alkali content, 69.0 to 81.9% of ash and 4.7 to 9.6% of dry sample. Samples ranged between 2.60 and 720mg/kg and in the corresponding extracts, BDL to 500.49mg/kg; ratio of concentration of potassium to other metals in the samples, 0.6 to 395; and in the extracts, 0.5 to 313. Gross michel showed the highest concentration of K (750mg/kg while omini banana gave the lowest average value (112.70mg/kg.

  15. Alkali-ions diffusion, mullite formation, and crystals dissolution during sintering of porcelain bodies: Microstructural approach

    DEFF Research Database (Denmark)

    Leonelli, C.; Kamseu, E.; Boccaccini, Dino;

    2009-01-01

    The effect of alkali-silicate glassy matrix as replacement for feldspar in soft and hard porcelain compositions was studied. SEM and X-ray diffraction analysis were used to evidence phase evolution. For each composition, the influence of soaking time was evaluated. The difference in chemical...... to hard porcelain. Replacing the feldspar by alkali-silicate glassy matrices with similar chemical composition, the amount of secondary mullite and mechanical properties increased in both soft and hard compositions....

  16. Gas and metal ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Oaks, E. [High Current Electronics Institute, Tomsk (Russian Federation)]|[State Academy of Control System and Radioelectronics, Tomsk (Russian Federation); Yushkov, G. [High Current Electronics Institute, Tomsk (Russian Federation)

    1996-08-01

    The positive ion sources are now of interest owing to both their conventional use, e.g., as injectors in charged-particle accelerators and the promising capabilities of intense ion beams in the processes related to the action of ions on various solid surfaces. For industrial use, the sources of intense ion beams and their power supplies should meet the specific requirements as follows: They should be simple, technologically effective, reliable, and relatively low-cost. Since the scanning of an intense ion beam is a complicated problem, broad ion beams hold the greatest promise. For the best use of such beams it is desirable that the ion current density be uniformly distributed over the beam cross section. The ion beam current density should be high enough for the treatment process be accomplished for an acceptable time. Thus, the ion sources used for high-current, high-dose metallurgical implantation should provide for gaining an exposure dose of {approximately} 10{sup 17} cm{sup {minus}2} in some tens of minutes. So the average ion current density at the surface under treatment should be over 10{sup {minus}5} A/cm{sup 2}. The upper limit of the current density depends on the admissible heating of the surface under treatment. The accelerating voltage of an ion source is dictated by its specific use; it seems to lie in the range from {approximately}1 kV (for the ion source used for surface sputtering) to {approximately}100 kV and over (for the ion sources used for high-current, high-dose metallurgical implantation).

  17. Atomic many-body effects and Lamb shifts in alkali metals

    CERN Document Server

    Ginges, J S M

    2016-01-01

    We present a detailed study of the Flambaum-Ginges radiative potential method which enables the accurate inclusion of quantum electrodynamics (QED) radiative corrections in a simple manner in atoms, ions, and molecules over the range 10<=Z<=120, where Z is the nuclear charge. Calculations are performed for binding energy shifts to the lowest valence s, p, and d waves over the series of alkali atoms Na to E119. The high accuracy of the radiative potential method is demonstrated by comparison with rigorous QED calculations in frozen atomic potentials, with deviations on the level of 1%. The many-body effects of core relaxation and second- and higher-order perturbation theory on the interaction of the valence electron with the core are calculated. The inclusion of many-body effects tends to increase the size of the shifts, with the enhancement particularly significant for d waves; for K to E119, the self-energy shifts for d waves are only an order of magnitude smaller than the s-wave shifts. It is shown th...

  18. Hartree-Fock ground-state properties for the group 1 alkali metals and the group 11 noble metals

    International Nuclear Information System (INIS)

    In order to use wavefunction-based correlation methods in solids it is necessary to have reliable Hartree-Fock results for the infinite system of interest. Therefore we performed Hartree-Fock calculations for the group 1 alkali metals (Li to Cs) and group 11 noble metals (Cu, Ag and Au). We optimized a basis set of valence-double-ζ quality for the periodic system. For the lighter atoms all-electron basis sets are applied, whereas for the heavier atoms small-core pseudopotentials with the corresponding basis sets were used to deal with the scalar-relativistic effects. We determine the cohesive energy, the lattice constant and the bulk modulus of the systems at the Hartree-Fock level. We use the counterpoise correction for the free atom to minimize the basis set superposition error occurring for finite basis sets. The effects due to the counterpoise correction not only for the cohesive energy but also for the lattice structure and bulk modulus are discussed in detail

  19. Optical detection of sodium salts of fluoride, acetate and phosphate by a diacylhydrazine ligand by the formation of a colour alkali metal complex

    Indian Academy of Sciences (India)

    Purnandhu Bose; Ranjan Dutta; I Ravikumar; Pradyut Ghosh

    2011-11-01

    A solution of N, N'-diacylhydrazine ligand in organic solvent is potential for colourimetric detection of F−/AcO−/PO$^{3−}_{4}$ via -NH deprotonation, tautomerization and its stabilization as a colour alkali metal complex.

  20. Capacity-controllable nanocarriers for metal ions

    NARCIS (Netherlands)

    Yan, Y.; Keizer, de A.; Cohen Stuart, M.A.; Besseling, N.A.M.

    2009-01-01

    We report on capacity-controllable nanocarrier system for metal ions based on a novel kind of polymeric microemulsion. These microemulsions are formed in mixed systems of negatively charged metal-bisligand coordination polymers (cp), positively charged homopolyelectrolyte (hp), and positive-neutral

  1. Research Investigation Directed Toward Extending the Useful Range of the Electromagnetic Spectrum. [atomic spectra and electronic structure of alkali metals

    Science.gov (United States)

    Hartmann, S. R.; Happer, W.

    1974-01-01

    The report discusses completed and proposed research in atomic and molecular physics conducted at the Columbia Radiation Laboratory from July 1972 to June 1973. Central topics described include the atomic spectra and electronic structure of alkali metals and helium, molecular microwave spectroscopy, the resonance physics of photon echoes in some solid state systems (including Raman echoes, superradiance, and two photon absorption), and liquid helium superfluidity.

  2. An Alkali-Vapor Cell with Metal Coated Windows for Efficient Application of an Electric Field

    CERN Document Server

    Sarkisyan, D; Guena, J; Lintz, M; Bouchiat, M A; Sarkisyan, David; Gu\\'{e}na, Jocelyne; Lintz, Michel; Bouchiat, Marie-Anne

    2005-01-01

    We describe the implementation of a cylindrical T-shaped alkali-vapor cell for laser spectroscopy in the presence of a longitudinal electric field. The two windows are used as two electrodes of the high-voltage assembly, which is made possible by a metallic coating which entirely covers the inner and outer sides of the windows except for a central area to let the laser beams in and out of the cell. This allows very efficient application of the electric field, up to 2 kV/cm in a rather dense superheated vapor, even when significant photoemission takes place at the windows during pulsed laser irradiation. The body of the cell is made of sapphire or alumina ceramic to prevent large currents resulting from surface conduction observed in cesiated glass cells. The technique used to attach the monocrystalline sapphire windows to the cell body causes minimal stress birefringence in the windows. In addition, reflection losses at the windows can be made very small. The vapor cell operates with no buffer gas and has no ...

  3. Alkali-vapor cell with metal coated windows for efficient application of an electric field

    Science.gov (United States)

    Sarkisyan, D.; Sarkisyan, A. S.; Guéna, J.; Lintz, M.; Bouchiat, M.-A.

    2005-05-01

    We describe the implementation of a cylindrical T-shaped alkali-vapor cell for laser spectroscopy in the presence of a longitudinal electric field. The two windows are used as two electrodes of the high-voltage assembly, which is made possible by a metallic coating which entirely covers the inner and outer sides of the windows except for a central area to let the laser beams in and out of the cell. This allows very efficient application of the electric field, up to 2kV/cm in a rather dense superheated vapor, even when significant photoemission takes place at the windows during pulsed laser irradiation. The body of the cell is made of sapphire or alumina ceramic to prevent large currents resulting from surface conduction observed in cesiated glass cells. The technique used to attach the monocrystalline sapphire windows to the cell body causes minimal stress birefringence in the windows. In addition, reflection losses at the windows can be made very small. The vapor cell operates with no buffer gas and has no magnetic part. The use of this kind of cell has resulted in an improvement of the signal-to-noise ratio in the measurement of parity violation in cesium vapor underway at ENS, Paris. The technique can be applied to other situations where a brazed assembly would give rise to unacceptably large birefringence in the windows.

  4. Second virial coefficients and viscosity property of monatomic alkali-metal gases

    International Nuclear Information System (INIS)

    In this work, we have calculated the second virial coefficients B2 of monatomic lithium, sodium, and potassium gases by using the most recent 1Σg+ and 3Σu+ Rydberg-Klein-Rees interatomic potentials. We have also determined the viscosity η and thermal conductivity λ coefficients of the alkali-metal vapors as a function of the temperature T. The results we have found of the collision integrals and of the coefficients η and λ agree quite well with some available experimental data. Besides, we have investigated the variation law with temperature T of the above thermophysical quantities. For temperatures ranging from 100 K to 3,000 K, the results can be reproduced by simple formulas η(T)=ATα and λ(T)=BTα, where for T in Kelvin, η in micropoise, and λ in 10-3 W·m-1·K-1, for lithium Li:A=0.314, B=0.1398, and α=0.863; for sodium Na:A=0.624, B=0.0846, and α=0.827; for potassium K:A=0.400, B=0.0320, and α=0.883. (author)

  5. Intense metal ion beam source for heavy ion fusion

    International Nuclear Information System (INIS)

    We have developed an ion source which can produce high current beams of metal ions. The source uses a metal vapor vacuum arc discharge as the plasma medium from which the ions are extracted, so we have called this source the MEVVA ion source. The metal plasma is created simply and efficiently and no carrier gas is required. Beams have been produced from metallic elements spanning the periodic table from lithium through uranium, at extraction voltages from 10 to 60 kV and with beam currents as high as 1.1 Amperes (electrical current in all charge states). A brief description of the source is given and its possible application as an ion source for heavy ion fusion is considered. Beams such as C+ (greater than or equal to99% of the beam in this species and charge state), Cr2+ (80%), and Ta/sup 3+,4+,5+/ (mixed charge states) have been produced. Beam emittance measurements and ways of increasing the source brightness are discussed

  6. Nano-baskets of Calix[4]-1,3-crown in Emulsion Membranes for Selective Extraction of Alkali Metal Cations

    Institute of Scientific and Technical Information of China (English)

    Bahram Mokhtari; Kobra Pourabdollah

    2013-01-01

    Nano-assisted inclusion separation of alkali metals from basic solutions was reported by inclu-sion-facilitated emulsion liquid membrane process. The novelty of this study is application of nano-baskets of calixcrown in the selective and efficient separation of alkali metals as both the carrier and the surfactant. For this aim, four derivatives of diacid calix[4]-1,3-crowns-4,5 were synthesized, and their inclusion-extraction parameters were optimized including the calixcrown scaffold (4.4%, by mass) as the carrier/demulsifier, the commercial kero-sene as diluent in membrane, sulphonic acid (0.2 mol·L-1) and ammonium carbonate (0.4 mol·L-1) as the strip and the feed phases, the phase and the treat ratios of 0.8 and 0.3, mixing speed (300 r·min-1), and initial solute concen-tration (100 mg·L-1). The selectivity of membrane over more than ten interfering cations was examined and the re-sults reveled that under the optimized operating condition, the degree of inclusion-extraction of alkali metals was as high as 98%-99%.

  7. Properties of alkali metal atoms deposited on a MgO surface: a systematic experimental and theoretical study.

    Science.gov (United States)

    Finazzi, Emanuele; Di Valentin, Cristiana; Pacchioni, Gianfranco; Chiesa, Mario; Giamello, Elio; Gao, Hongjun; Lian, Jichun; Risse, Thomas; Freund, Hans-Joachim

    2008-01-01

    The adsorption of small amounts of alkali metal atoms (Li, Na, K, Rb, and Cs) on the surface of MgO powders and thin films has been studied by means of EPR spectroscopy and DFT calculations. From a comparison of the measured and computed g values and hyperfine coupling constants (hfccs), a tentative assignment of the preferred adsorption sites is proposed. All atoms bind preferentially to surface oxide anions, but the location of these anions differs as a function of the deposition temperature and alkali metal. Lithium forms relatively strong bonds with MgO and can be stabilized at low temperatures on terrace sites. Potassium interacts very weakly with MgO and is stabilized only at specific sites, such as at reverse corners where it can interact simultaneously with three surface oxygen atoms (rubidium and cesium presumably behave in the same way). Sodium forms bonds of intermediate strength and could, in principle, populate more than a single site when deposited at room temperature. In all cases, large deviations of the hfccs from the gas-phase values are observed. These reductions in the hfccs are due to polarization effects and are not connected to ionization of the alkali metal, which would lead to the formation of an adsorbed cation and a trapped electron. In this respect, hydrogen atoms behave completely differently. Under similar conditions, they form (H(+))(e(-)) pairs. The reasons for this different behavior are discussed. PMID:18381711

  8. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals

    OpenAIRE

    Liu, Yuanyue; Merinov, Boris V.; Goddard III, William A.

    2016-01-01

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same...

  9. Design and Test of Advanced Thermal Simulators for an Alkali Metal-Cooled Reactor Simulator

    Science.gov (United States)

    Garber, Anne E.; Dickens, Ricky E.

    2011-01-01

    The Early Flight Fission Test Facility (EFF-TF) at NASA Marshall Space Flight Center (MSFC) has as one of its primary missions the development and testing of fission reactor simulators for space applications. A key component in these simulated reactors is the thermal simulator, designed to closely mimic the form and function of a nuclear fuel pin using electric heating. Continuing effort has been made to design simple, robust, inexpensive thermal simulators that closely match the steady-state and transient performance of a nuclear fuel pin. A series of these simulators have been designed, developed, fabricated and tested individually and in a number of simulated reactor systems at the EFF-TF. The purpose of the thermal simulators developed under the Fission Surface Power (FSP) task is to ensure that non-nuclear testing can be performed at sufficiently high fidelity to allow a cost-effective qualification and acceptance strategy to be used. Prototype thermal simulator design is founded on the baseline Fission Surface Power reactor design. Recent efforts have been focused on the design, fabrication and test of a prototype thermal simulator appropriate for use in the Technology Demonstration Unit (TDU). While designing the thermal simulators described in this paper, effort were made to improve the axial power profile matching of the thermal simulators. Simultaneously, a search was conducted for graphite materials with higher resistivities than had been employed in the past. The combination of these two efforts resulted in the creation of thermal simulators with power capacities of 2300-3300 W per unit. Six of these elements were installed in a simulated core and tested in the alkali metal-cooled Fission Surface Power Primary Test Circuit (FSP-PTC) at a variety of liquid metal flow rates and temperatures. This paper documents the design of the thermal simulators, test program, and test results.

  10. Computational Design of Metal Ion Sequestering Agents

    Energy Technology Data Exchange (ETDEWEB)

    Hay, Benjamin P.; Rapko, Brian M.

    2006-06-01

    Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach for discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort.

  11. Computational Design of Metal Ion Sequestering Agents

    Energy Technology Data Exchange (ETDEWEB)

    Hay, Benjamin P.; Rapko, Brian M.

    2005-06-15

    Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach for discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort.

  12. Computational Design of Metal Ion Sequestering Agents

    Energy Technology Data Exchange (ETDEWEB)

    Hay, Benjamin P.; Rapko, Brian M.

    2005-06-15

    Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach for discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort. This project seeks to enhance and strengthen the traditional approach through computer-aided design of new and improved host molecules. Accurate electronic structure calculations are coupled with experimental data to provide fundamental information about ligand structure and the nature of metal-donor group interactions (design criteria). This fundamental information then is used in a molecular mechanics model (MM) that helps us rapidly screen proposed ligand architectures and select the best members from a set of potential candidates. By using combinatorial methods, molecule building software has been developed that generates large numbers of candidate architectures for a given set of donor groups. The specific goals of this project are: • further understand the structural and energetic aspects of individual donor group- metal ion interactions and incorporate this information within the MM framework • further develop and evaluate approaches for correlating ligand structure with reactivity toward metal ions, in other words, screening capability • use molecule structure building software to generate

  13. Where metal ions bind in proteins.

    OpenAIRE

    Yamashita, M M; Wesson, L.; Eisenman, G.; Eisenberg, D.

    1990-01-01

    The environments of metal ions (Li+, Na+, K+, Ag+, Cs+, Mg2+, Ca2+, Mn2+, Cu2+, Zn2+) in proteins and other metal-host molecules have been examined. Regardless of the metal and its precise pattern of ligation to the protein, there is a common qualitative feature to the binding site: the metal is ligated by a shell of hydrophilic atomic groups (containing oxygen, nitrogen, or sulfur atoms) and this hydrophilic shell is embedded within a larger shell of hydrophobic atomic groups (containing car...

  14. Ion beam analysis of metal ion implanted surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P.J.; Chu, J.W.; Johnson, E.P.; Noorman, J.T. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs.

  15. Synthesis and properties of alkali metal intercalated fullerene-like MS2 (M=W,Mo) nanoparticles

    International Nuclear Information System (INIS)

    Layered metal disulfides - MoS2 and WS2 in the form of fullerene-like (IF) nanoparticles and in the form of platelets (crystallites of the 2H polytype) have been intercalated by exposure to alkali metal (potassium and sodium) vapor using a two-zone transport method. The composition of the intercalated systems was established using X-ray energy dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS). X-ray powder diffraction (XRD) analysis and transmission electron microscopy (TEM) of the samples, which were not exposed to the ambient atmosphere, showed that they suffered little change in their lattice parameters. On the other hand, after exposure to ambient atmosphere, substantial increase in the interplanar spacing (3-5 Aa) was observed for the intercalated phases. Insertion of one to two water molecules per intercalated metal atom was suggested as a possible explanation for this large expansion along the c-axis. The modifications in magnetic and transport properties of the intercalated materials were investigated, and are believed to occur via charge transfer from the alkali metal to the conduction band of the host lattice. Restacking of the MS2 layers after prolonged exposure to the atmosphere and recovery of the pristine compound properties were observed as a result of deintercalation of the metal atoms

  16. Study on the Characteristics of an Alkali-Metal Thermoelectric Power Generation System

    Science.gov (United States)

    Lee, Wook-Hyun; Hwang, Hyun-Chang; Lee, Ji-Su; Kim, Pan-Jo; Lim, Sang-Hyuk; Rhi, Seok-Ho; Lee, Kye-Bock; Lee, Ki-Woo

    2015-10-01

    In the present study, a numerical simulation and experimental studies of an alkali-metal thermoelectric energy converter (AMTEC) system were carried out. The present, unique AMTEC model consists of an evaporator, a β-alumina solid electrolyte (BASE) tube, a condenser, and an artery cable wick. The key points for operation of the present AMTEC were 1100 K in the evaporator and 600 K in the condenser. A numerical model based on sodium-saturated porous wicks was developed and shown to be able to simulate the AMTEC system. The simulation results show that the AMTEC system can generate up to 100 W with a given design. The AMTEC system developed in the present work and used in the practical investigations could generate an electromotive force of 7 V. Artery wick and evaporator wick structures were simulated for the optimum design. Both sodium-saturated wicks were affected by numerous variables, such as the input heat power, cooling temperature, sodium mass flow rate, and capillary-driven fluid flow. Based on an effective thermal conductivity model, the presented simulation could successfully predict the system performance. Based on the numerical simulation, the AMTEC system operates with efficiency near 10% to 15%. In the case of an improved BASE design, the system could reach efficiency of over 30%. The system was designed for 0.6 V power, 25 A current, and 100 W power input. In addition, in this study, the temperature effects in each part of the AMTEC system were analyzed using a heat transfer model in porous media to apply to the computational fluid dynamics at a predetermined temperature condition for the design of a 100-W AMTEC prototype. It was found that a current density of 0.5 A/cm2 to 0.9 A/cm2 for the BASE is suitable when the temperatures of the evaporator section and condenser section are 1100 K and 600 K, respectively.

  17. Neutralization of fast alkali-ions after grazing scattering from Al(111) and Ni(111)

    Energy Technology Data Exchange (ETDEWEB)

    Zimny, R.; Nienhaus, H.; Winter, H. (Muenster Univ. (Germany, F.R.). Inst. fuer Kernphysik)

    1989-01-01

    We have studied the neutralization of fast Na{sup +}- and K{sup +}-ions after the interaction with clean and flat Al(111)-and Ni(111)-surfaces at grazing incidence (PHI{sub in}<1{sup 0}). The neutral fractions of specularly reflected projectiles show two different classes of dependences on projectile velocity which can be referred to the difference between work function of the target and binding energy of the atomic ground term. Model calculations in the framework of resonance tunneling between metal surface and atom which incorporate the parallel velocity of the projectile by Galilean-transformation and the electronic spin degree of freedom reproduce our experimental data fairly well. (author).

  18. Metal ion sorption by untreated and chemically treated biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J.; Xie, J.

    1992-12-31

    The metal-binding ability of biosorbents is well known; however, in comparison with commercial ion-exchange resins the capacity of biosorbents is low. The purpose of this research was to examine chemically modified biosorbents and biosorbents prepared from microorganisms isolated from extreme environments to determine if significant improvements in metal-binding capacity or biosorbents with unique capabilities could be produced. Chemical treatments examined included acid, alkali, carbon disulfide, phosphorus oxychloride, anhydrous formamide, sodium thiosulfate, sodium chloroacetic acid, and phenylsulfonate. Biosorbents were prepared from microorganisms isolated from pristine and acid mine drainage impacted sites and included heterotrophs, methanotrophs, algae, and sulfate reducers. Chemical modification with carbon disulfide, phosphorous oxychloride, and sodium thiosulfate yielded biosorbents with such as much as 74%, 133%, and 155% improvements, respectively, in metal-binding capacity, but the performance of these chemically modified biosorbents deteriorated upon repeated use. A culture isolated from an acid mine drainage impacted site, IGTM17, exhibits about 3-fold higher metal-binding capacity in comparison with other biosorbents examined in this study. IGTM17 also exhibits superior metal-binding ability at decreased pH or in the presence of interfering common cations in comparison with other biosorbents or some commercially available cation exchange resins. Some biosorbents, such as IGTM5, can bind anions. To our knowledge this is the first demonstration of the ability of biosorbents to bind anions. Moreover, preliminary data indicate that the chemical modification of biosorbents may be capable of imparting the ability to selectively bind certain anions. Further research is needed to optimize conditions for the chemical modification and stabilization of biosorbents.

  19. First-principles study of ternary graphite compounds cointercalated with alkali atoms (Li, Na, and K) and alkylamines towards alkali ion battery applications

    Science.gov (United States)

    Ri, Gum-Chol; Yu, Chol-Jun; Kim, Jin-Song; Hong, Song-Nam; Jong, Un-Gi; Ri, Mun-Hyok

    2016-08-01

    First-principles calculations were carried out to investigate the structural, energetic, and electronic properties of ternary graphite compounds cointercalated with alkali atoms (AM = Li, Na, and K) and normal alkylamine molecules (nCx; x = 1, 2, 3, 4), denoted as AM-nCx-GICs. From the optimization of the orthorhombic unit cells for the crystalline compounds, it was found that, with the increase in the atomic number of alkali atoms, the layer separations decrease in contrast to AM-GICs, while the bond lengths between alkali atoms and graphene layer, and nitrogen atom of alkylamine increase. The calculated formation energies and interlayer binding energies of AM-nC3-GICs indicate that the compounds is increasingly stabilized from Li to K, and the energy barriers for migration of alkali atoms suggest that alkali cation with larger ionic radius diffuses more smoothly in graphite, being similar to AM-GICs. Through the analysis of electronic properties, it was established that more extent of electronic charge is transferred from more electropositive alkali atom to the carbon ring of graphene layer, and the hybridization of valence electron orbitals between alkylamine molecules and graphene layer is occurred.

  20. Plasma assisted measurements of alkali metal concentrations in pressurised combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R.; Haeyrinen, V. [Tampere Univ. of Technology (Finland)

    1997-10-01

    In this project the continuous alkali measurement method plasma excited alkali resonance line spectroscopy (PEARLS) was developed, tested and demonstrated in pressurised combustion facilities. The PEARLS method has been developed at Tampere University of Technology (TUT). During 1994-1996 the PEARLS method was developed from the laboratory level to an industrial prototype. The alkali measuring instrument has been tested and used for regular measurements in four different pressurised combustion installations ranging up to industrial pilot scale. The installations are: (1) a pressurised entrained flow reactor (PEFR) at VTT Energy in Jyvaeskylae, Finland (2) a pressurised fluidised bed combustion facility, called FRED, at DMT in Essen, Germany. (3) a 10 MW pressurised circulating fluidised bed combustion pilot plant at Foster Wheeler Energia Oy in Karhula, Finland (4) PFBC Research Facility at ABB Carbon in Finspaang, Sweden

  1. I3-/I- Redox Behavior of Alkali-metal Iodide Complexes with Crown Ether/Cryptand Macrocycles and Their Applications to Dye-sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    史成武; 戴松元; 王孔嘉; 潘旭; 郭力; 胡林华; 孔凡太

    2005-01-01

    In this article, the I3-/I- redox behavior in 3-methoxypropionitrile (MePN) containing alkali-metal iodide complexes with crown ether and crypt,and macrocycles was studied by cyclic voltammetry. It was found that the apparent diffusion coefficient D values of triiodide and iodide ions correlate with cations. D values of triiodide follow the order: 1,2-dimethyl-3-propylimidazolium cation (DMPI+)>[Na belong to 15-C-5]+ (the mathematical symbol of inclus ions belong to, was used to indicate Na+ included in 15-C-5)> [K belong to 18-C-6]+> [Na belog to 2.2.1-cryptand]+ and those of iodide ionsfollow the order: [Na belong to 2.2.1-cryptand]+ > [Na belong to 15-C-5]+≈[K belong to 18-C-6]+ > DMPI+. The photovoltaic performances of dye-sensitized solar cells (DSC) with these complexes were compared with those containing 1,2-dimethyl-3-propylimidazolium iodide (DMPII) in MePN. It shows that DSC with these complexes gave a little higher short photocurrent intensity and lower fill factor than those with DMPII, which is consistent with D values of triiodide and iodide ions. Moreover, solvents played an important role for the photo-electric conversion efficiency of DSC. The photo-electric conversion efficiency of DSC with DMPII is higher than that with [K belong to 18-C-6]I in MePN, while in ACN, it shows a little difference.

  2. Electronic structure and Fano antiresonance of chromium Cr(III) ions in alkali silicate glasses

    International Nuclear Information System (INIS)

    The optical properties of the Cr3+ doped in alkali silicate glasses X2O–SiO2 with different modifier cations X=Li, Na and K have been investigated by Villian et al. This work investigates a theoretical crystal-field analysis of the electronic energy levels of Cr3+ in these glasses. This analysis based on the Racah theory was carried out for the Chromium (III) center with an Oh site symmetry. The objective of this study is to determine the effect of glass matrix modifier on the Racah B, C and crystal-field Dq parameters. The effect of the glass matrix environment on these parameters is also reported by comparison with alkali cadmium borosulphate, phosphate and borate glasses. The interference dips observed in the broad band 4T2g(4F) result from interaction with the 2Eg(2G) and 2T1g(2G) sharp levels are known as the Fano antiresonance model. This feature is qualitatively studied using the adiabatic potential surfaces for the quartet 4T2g(4F) and doublet 2Eg(2G) levels. - Highlights: • The electronic structure of Cr3+ in alkali silicate glasses X2O–SiO2 (X=Li,Na,K) was performed. • The theoretical study, based on Racah theory, permits us to deduce the energy levels. • The observed interference dip in absorption spectra is related to Fano antiresonance

  3. Methane coupling reaction in an oxy-steam stream through an OH radical pathway by using supported alkali metal catalysts

    KAUST Repository

    Liang, Yin

    2014-03-24

    A universal reaction mechanism involved in the oxidative coupling of methane (OCM) is demonstrated under oxy-steam conditions using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH radical formation from a H 2O-O2 reaction followed by C-H activation in CH 4 with an OH radical. Thus, the presence of water enhances both the CH4 conversion rate and the C2 selectivity. This OH radical pathway that is selective for the OCM was observed for the catalyst without Mn, which suggests clearly that Mn is not the essential component in a selective OCM catalyst. The experiments with different catalyst compositions revealed that the OH.-mediated pathway proceeded in the presence of catalysts with different alkali metals (Na, K) and different oxo anions (W, Mo). This difference in catalytic activity for OH radical generation accounts for the different OCM selectivities. As a result, a high C2 yield is achievable by using Na2WO4/SiO2, which catalyzes the OH.-mediated pathway selectively. Make it methane: A universal reaction mechanism involved in the oxidative coupling of methane is demonstrated under oxy-stream conditions by using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH radical formation from an H2O-O2 reaction, followed by C-H activation in CH4 with an OH radical. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Third order nonlinear optical properties and optical limiting behavior of alkali metal complexes of p-nitrophenol

    Science.gov (United States)

    Thangaraj, M.; Vinitha, G.; Sabari Girisun, T. C.; Anandan, P.; Ravi, G.

    2015-10-01

    Optical nonlinearity of metal complexes of p-nitrophenolate (M=Li, Na and K) in ethanol is studied by using a continuous wave (cw) diode pumped Nd:YAG laser (532 nm, 50 mW). The predominant mechanism of observed nonlinearity is thermal in origin. The nonlinear refractive index and the nonlinear absorption coefficient of the samples were found to be in the order of 10-8 cm2/W and 10-3 cm/W respectively. Magnitude of third-order optical parameters varies according to the choice of alkali metal chosen for metal complex formation of p-nitrophenolate. The third-order nonlinear susceptibility was found to be in the order of 10-6 esu. The observed saturable absorption and the self-defocusing effect were used to demonstrate the optical limiting action at 532 nm by using the same cw laser beam.

  5. Alkali metal salts of rutin - Synthesis, spectroscopic (FT-IR, FT-Raman, UV-VIS), antioxidant and antimicrobial studies.

    Science.gov (United States)

    Samsonowicz, M; Kamińska, I; Kalinowska, M; Lewandowski, W

    2015-12-01

    In this work several metal salts of rutin with lithium, sodium, potassium, rubidium and cesium were synthesized. Their molecular structures were discussed on the basis of spectroscopic (FT-IR, FT-Raman, UV-VIS) studies. Optimized geometrical structure of rutin was calculated by B3LYP/6-311++G(∗∗) method and sodium salt of rutin were calculated by B3LYP/LanL2DZ method. Metal chelation change the biological properties of ligand therefore the antioxidant (FRAP and DPPH) and antimicrobial activities (toward Escherichia coli, Staphylococcus aureus, Enterococcus faecium, Proteus vulgaris, Pseudomonas aeruginosa, Klebsiella pneumonia, Candida albicans and Saccharomyces cerevisiae) of alkali metal salts were evaluated and compared with the biological properties of rutin. PMID:26184478

  6. Sensitive determination of the spin polarization of optically pumped alkali-metal atoms using near-resonant light.

    Science.gov (United States)

    Ding, Zhichao; Long, Xingwu; Yuan, Jie; Fan, Zhenfang; Luo, Hui

    2016-01-01

    A new method to measure the spin polarization of optically pumped alkali-metal atoms is demonstrated. Unlike the conventional method using far-detuned probe light, the near-resonant light with two specific frequencies was chosen. Because the Faraday rotation angle of this approach can be two orders of magnitude greater than that with the conventional method, this approach is more sensitive to the spin polarization. Based on the results of the experimental scheme, the spin polarization measurements are found to be in good agreement with the theoretical predictions, thereby demonstrating the feasibility of this approach. PMID:27595707

  7. Thermophysical properties of alkali metal vapours. Part II - assessment of experimental data on thermal conductivity and viscosity

    OpenAIRE

    Fialho, Paulo; Ramires, Maria de Lurdes V.; Nieto de Castro, Carlos A.; João M. N. A. Fareleira; Mardolcar, Umesh V.

    1994-01-01

    Copyright © 1994 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Article first published online: 8 MAY 2010. An analysis of the available data on the viscosity and thermal conductivity coefficients of the alkali metal vapours is presented. The analysis is based upon theoretical calculations of the properties of the monatomic systems, described in the preceding parts I and I.A of the present paper, and making use of the kinetic theory of a binary gas reacting mixture. A summary of the measur...

  8. Nuclear Wavepacket Dynamics of Alkali Adsorbates on Metal Surfaces Studied by Time-Resolved Second Harmonic Generation

    Directory of Open Access Journals (Sweden)

    Kazuya Watanabe

    2012-01-01

    Full Text Available This paper reviews recent efforts to understand the dynamics of coherent surface vibrations of alkali atoms adsorbed on metal surfaces. Time-resolved second harmonic generation is used for the coherent excitation and detection of the nuclear wavepacket dynamics of the surface modes. The principles of the measurement and the experimental details are described. The main focus is on coverage and excitation photon energy dependences of the coherent phonon dynamics for Na-, K-, and Cs-covered Cu(111. The excitation mechanism of the coherent phonon has been revealed by the ultrafast time-domain technique and theoretical modelings.

  9. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    International Nuclear Information System (INIS)

    We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of 87Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the 87Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the 87Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system

  10. Cooper minima in the transitions from low-excited and Rydberg states of alkali-metal atoms

    OpenAIRE

    Beterov, I. I.; Mansell, C. W.; Yakshina, E. A.; Ryabtsev, I. I.; Tretyakov, D. B.; Entin, V. M.; MacCormick, C.; Piotrowicz, M. J.; Kowalczyk, A.; S. Bergamini

    2012-01-01

    The structure of the Cooper minima in the transition probabilities and photoionization cross-sections for low-excited and Rydberg nS, nP, nD and nF states of alkali-metal atoms has been studied using a Coulomb approximation and a quasiclassical model. The range of applicability of the quasiclassical model has been defined from comparison with available experimental and theoretical data on dipole moments, oscillator strengths, and photoionization cross-sections. A new Cooper minimum for transi...

  11. Cooper minima in the transitions from low-excited and Rydberg states of alkali-metal atoms

    CERN Document Server

    Beterov, I I; Yakshina, E A; Ryabtsev, I I; Tretyakov, D B; Entin, V M; MacCormick, C; Piotrowicz, M J; Kowalczyk, A; Bergamini, S

    2012-01-01

    The structure of the Cooper minima in the transition probabilities and photoionization cross-sections for low-excited and Rydberg nS, nP, nD and nF states of alkali-metal atoms has been studied using a Coulomb approximation and a quasiclassical model. The range of applicability of the quasiclassical model has been defined from comparison with available experimental and theoretical data on dipole moments, oscillator strengths, and photoionization cross-sections. A new Cooper minimum for transitions between rubidium Rydberg states has been found.

  12. Electric-field-induced change of alkali-metal vapor density in paraffin-coated cells

    CERN Document Server

    Kimball, D F Jackson; Ravi, K; Sharma, Arijit; Prabhudesai, Vaibhav S; Rangwala, S A; Yashchuk, V V; Balabas, M V; Budker, D

    2008-01-01

    Alkali vapor cells with antirelaxation coating (especially paraffin-coated cells) have been a central tool in optical pumping and atomic spectroscopy experiments for 50 years. We have discovered a dramatic change of the alkali vapor density in a paraffin-coated cell upon application of an electric field to the cell. A systematic experimental characterization of the phenomenon is carried out for electric fields ranging in strength from 0-8 kV/cm for paraffin-coated cells containing rubidium and cells containing cesium. The typical response of the vapor density to a rapid (duration < 100 ms) change in electric field of sufficient magnitude includes (a) a rapid (duration of < 100 ms) and significant increase in alkali vapor density followed by (b) a less rapid (duration of ~ 1 s) and significant decrease in vapor density (below the equilibrium vapor density), and then (c) a slow (duration of ~ 100 s) recovery of the vapor density to its equilibrium value. Measurements conducted after the alkali vapor densi...

  13. Superconductivity and electrical resistivity in alkali metal doped fullerides: Phonon mechanism

    Indian Academy of Sciences (India)

    Dinesh Varshney; A Dube; K K Choudhary; R K Singh

    2005-04-01

    We consider a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. We first study the intercage interactions between the adjacent C60 cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C60 phonons. Electronic parameter as repulsive parameter and the attractive coupling strength are obtained within the random phase approximation. Transition temperature, c, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C60 phonons as 5 K, which is much lower as compared to reported c (≈ 20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. To illustrate the usefulness of the above approach, the carbon isotope exponent and the pressure effect are also estimated. Temperature dependence of electrical resistivity is then analysed within the same model phonon spectrum. It is inferred from the two-peak model for phonon density of states that high frequency intramolecular phonon modes play a major role in pairing mechanism with possibly some contribution from alkali-C60 phonon to describe most of the superconducting and normal state properties of doped fullerides.

  14. Alkali metal and ammonium chlorides in water and heavy water (binary systems)

    CERN Document Server

    Cohen-Adad, R

    1991-01-01

    This volume surveys the data available in the literature for solid-fluid solubility equilibria plus selected solid-liquid-vapour equilibria, for binary systems containing alkali and ammonium chlorides in water or heavy water. Solubilities covered are lithium chloride, sodium chloride, potassium chloride, rubidium chloride, caesium chloride and ammonium chloride in water and heavy water.

  15. Plasma assisted measurements of alkali metal concentrations in pressurized combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R.; Haeyrinen, V. [Tampere Univ. of Technology (Finland). Dept. of Physics

    1996-12-01

    The plasma assisted method for continuous measurement of alkali concentrations in product gas flows of pressurized energy processes will be tested and applied at the 1.6 MW PFBC/G facility at Delft University of Technology in the Netherlands. During the reporting period the alkali measuring device has been tested under pressurized conditions at VTT Energy, DMT, Foster-Wheeler Energia and ABB Carbon. Measurements in Delft will be performed during 1996 after installation of the hot gas filter. The original plan for measurements in Delft has been postponed due to schedule delays in Delft. The results are expected to give information about the influence of different process conditions on the generation of alkali vapours, the comparison of different methods for alkali measurement and the specific performance of our system. This will be the first test of the plasma assisted measurement method in a gasification process. The project belongs to the Joule II extension program under contract JOU2-CT93-0431. (author)

  16. Luminescent decay and spectra of impurity-activated alkali halides under high pressure

    International Nuclear Information System (INIS)

    The effect of high pressure on the luminescence of alkali halides doped with the transition-metal ions Cu+ and Ag+ and the heavy-metal ions In+ and Tl+ was investigated to 140 kbar. Measurement of spectra allowed the prediction of kinetic properties, and the predictions agree with lifetime data

  17. Separation of boron from borated paraffin wax by pyrohydrolysis and alkali extraction methods and its determination using ion chromatography.

    Science.gov (United States)

    Raut, Vaibhavi Vishwajeet; Jeyakumar, Subbiah; Shah, Dipti Jayesh; Thakur, Uday Kumar; Tomar, Bhupendra Singh; Ramakumar, Karanam Lakshminarayana

    2015-01-01

    A method based on the pyrohydrolysis extraction of boron and its quantification with ion chromatography was proposed for paraffin waxes borated with H3BO3 and B4C. The optimum pyrohydrolysis conditions were identified. Wax samples were mixed with U3O8, which prevents the sample from flare up, and also accelerates the extraction of boron. Pyrohydrolysis was carried out with moist O2 at 950°C for 60 and 90 min for wax with H3BO3 and wax with B4C, respectively. Two simple methods of separation based on alkali extraction and melting wax in alkali were also developed exclusively for wax with H3BO3. In all the separations, the recovery of B was above 98%. During IC separation, B was separated as boron-mannitol anion complex. Linear calibration was obtained it between 0.1 and 50 ppm of B, and LOD was calculated as 5 ppb (S/N = 3). The reproducibility was better than 5% (RSD). PMID:25765277

  18. EFFECTS OF METAL IONS ON THE CONFORMATIONAL CHANGES OF DNA

    Institute of Scientific and Technical Information of China (English)

    G. Q. Liu; Y.Y. Meng; S.H. Liu; Y.H. Hu

    2005-01-01

    DNA takes on multi-different conformations such as A-, B-, C-, D- and Z-form. These conformations can transit to one another when DNA deposited in some metal ions solutions or when changing the concentrations of the same metal ions. Here, several major conformational transitions of DNA induced by metal ions under different environment were introduced and the mechanism of the interaction of metal ions with DNA was discuss in detail.

  19. Electronic structure and Fano antiresonance of chromium Cr(III) ions in alkali silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Taktak, Olfa, E-mail: taktak.olfa@gmail.com; Souissi, Hajer; Souha, Kammoun

    2015-05-15

    The optical properties of the Cr{sup 3+} doped in alkali silicate glasses X{sub 2}O–SiO{sub 2} with different modifier cations X=Li, Na and K have been investigated by Villian et al. This work investigates a theoretical crystal-field analysis of the electronic energy levels of Cr{sup 3+} in these glasses. This analysis based on the Racah theory was carried out for the Chromium (III) center with an O{sub h} site symmetry. The objective of this study is to determine the effect of glass matrix modifier on the Racah B, C and crystal-field Dq parameters. The effect of the glass matrix environment on these parameters is also reported by comparison with alkali cadmium borosulphate, phosphate and borate glasses. The interference dips observed in the broad band {sup 4}T{sub 2g}({sup 4}F) result from interaction with the {sup 2}E{sub g}({sup 2}G) and {sup 2}T{sub 1g}({sup 2}G) sharp levels are known as the Fano antiresonance model. This feature is qualitatively studied using the adiabatic potential surfaces for the quartet {sup 4}T{sub 2g}({sup 4}F) and doublet {sup 2}E{sub g}({sup 2}G) levels. - Highlights: • The electronic structure of Cr{sup 3+} in alkali silicate glasses X{sub 2}O–SiO{sub 2} (X=Li,Na,K) was performed. • The theoretical study, based on Racah theory, permits us to deduce the energy levels. • The observed interference dip in absorption spectra is related to Fano antiresonance.

  20. Ion irradiation effects on metallic nanocrystals

    Science.gov (United States)

    Kluth, P.; Johannessen, B.; Giulian, R.; Schnohr, C. S.; Foran, G. J.; Cookson, D. J.; Byrne, A. P.; Ridgway, M. C.

    We have investigated structural and morphological properties of metallic nanocrystals (NCs) exposed to ion irradiation. NCs were characterized by transmission electron microscopy in combination with advanced synchrotron-based analytical techniques, in particular X-ray absorption spectroscopy and small-angle X-ray scattering. A number of different effects were observed depending on the irradiation conditions. At energies where nuclear stopping is predominant, structural disorder/amorphization followed by inverse Ostwald ripening/dissolution due to ion beam mixing was observed for Au and Cu NCs embedded in SiO2. The ion-irradiation-induced crystalline to amorphous transition in the NCs, which cannot be achieved in the corresponding bulk metals, was attributed to their initially higher structural energy as compared to bulk material and possibly preferential nucleation of the amorphous phase at the NC/SiO2 interface. At very high irradiation energies (swift heavy ion irradiation), where the energy loss is nearly entirely due to electronic stopping, a size-dependent shape transformation of the NCs from spheres to rod like shapes was apparent in Au NCs. Our preliminary results are in good agreement with considerations on melting of the NCs in the ion track as one mechanism involved in the shape transformation.

  1. Synthesis of novel calix[4]crown telomers and selective extraction of cesium ions

    Institute of Scientific and Technical Information of China (English)

    Hai Bing Li; Yuan Yin Chen; De Jun Xiong; Jun Yan Zhan; Cui Ping Han

    2007-01-01

    p-tert-Butylcalix[4]diazacrown-4 telomer, which contains hard and soft ion binding sites, was synthesized. It exhibited high selectivity toward cesium ions. The binding sites may complex alkali metal ions selectively.

  2. Effects of Metal Ion Adduction on the Gas-Phase Conformations of Protein Ions

    OpenAIRE

    Flick, Tawnya G.; Merenbloom, Samuel I.; Williams, Evan R.

    2013-01-01

    Changes in protein ion conformation as a result of nonspecific adduction of metal ions to the protein during electrospray ionization (ESI) from aqueous solutions were investigated using traveling wave ion mobility spectrometry (TWIMS). For all proteins examined, protein cations (and in most cases anions) with nonspecific metal ion adducts are more compact than the fully protonated (or deprotonated) ions with the same charge state. Compaction of protein cations upon nonspecific metal ion bindi...

  3. EMISSION CHARACTERISTICS OF LIQUID METAL ION SOURCE

    OpenAIRE

    Arimoto, H.; Komuro, M.

    1989-01-01

    Energy distributions of Au-Si-Be, Au-Si, Pd-Ni-Si-Be-B, and Pt-Si liquid metal alloy ion sources were investigated, being focused on behaviors of Si++ and Si+. We found that the energy spreads of the Si++ and Si+ were kept constant at 6 to 7.5 eV, even at an extremely low emission current (50 nA). This saturation results in a decrease in the figure of merit, (dI/dΩ)/ (ƊE)2, for an ion probe forming. (dI/dΩ : angular current density, ƊE : energy spread) The energy distribution profiles suggest...

  4. Potentiometric and spectroscopic study of the interaction of 3d transition metal ions with inositol hexakisphosphate

    Science.gov (United States)

    Veiga, Nicolás; Macho, Israel; Gómez, Kerman; González, Gabriel; Kremer, Carlos; Torres, Julia

    2015-10-01

    Among myo-inositol phosphates, the most abundant in nature is the myo-inositol hexakisphosphate, InsP6. Although it is known to be vital to cell functioning, the biochemical research into its metabolism needs chemical and structural analysis of all the protonation, complexation and precipitation processes that it undergoes in the biological media. In view of its high negative charge at physiological level, our group has been leading a thorough research into the InsP6 chemical and structural behavior in the presence of the alkali and alkaline earth metal ions essential for life. The aim of this article is to extend these studies, dealing with the chemical and structural features of the InsP6 interaction with biologically relevant 3d transition metal ions (Fe(II), Fe(III), Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)), in a non-interacting medium and under simulated physiological conditions. The metal-complex stability constants were determined by potentiometry, showing under ligand-excess conditions the formation of mononuclear species in different protonation states. Under metal ion excess, polymetallic species were detected for Fe(II), Fe(III), Zn(II) and Cu(II). Additionally, the 31P NMR and UV-vis spectroscopic studies provided interesting structural aspects of the strong metal ion-InsP6 interaction.

  5. Distribution and uptake of {sup 137}Cs in relation to alkali metals in a perhumid montane forest ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Chao, J.H. [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 30013, Taiwan (China)], E-mail: jhchao@mx.nthu.edu.tw; Chiu, C.Y. [Research Center for Biodiversity, Academia Sinica, Taipei 11529, Taiwan (China); Lee, H.P. [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2008-10-15

    We determined the content of radiocesium ({sup 137}Cs) and alkali metals in soils, plants (2 ferns, a shrub and moss) and rainwater collected in an undisturbed forest ecosystem. The {sup 137}Cs activity and the isotopic ratio of {sup 137}Cs/Cs in the samples were used to interpret the distribution and uptake of {sup 137}Cs and the alkali metals in plants. As a whole, the {sup 137}Cs in plants was assimilated together with K but was not dependent on Cs. Different adaptations of fern species collected in ecological niches cause them to have different {sup 137}Cs/Cs ratios. Diplopterygium glaucum is distributed at the edges of the forest; it usually has shallow organic layers, and the root takes up more stable Cs from mineral layers, leading to lower {sup 137}Cs/Cs ratios than that in the understory Plagiogyria formosana and Rhododendron formosanum species. The steady supply of stable Cs through the uptake by D. glaucum from deep soils may gradually dilute the {sup 137}Cs concentration and thus explain the lower {sup 137}Cs/Cs ratio in the fern samples. The {sup 137}Cs is predicted to be proportional to the Cs content across plant species in the biological cycle once isotopic equilibrium is attained.

  6. Influence of alkali and alkaline earth ions on the -alkylation of the lower rim phenolic-OH groups of -tert-butyl-calix[4]arene to result in amide-pendants: Template action of K+ and the structure of K+ bound tetra-amide derivative crystallized with a -tert-butylcalix[4]arene anion

    Indian Academy of Sciences (India)

    Amjad Ali; Chebrolu P Rao; Philippe Guionneau

    2008-03-01

    Role of alkali and alkaline earth ions on the formation of calix[4]arene-amide derivatives through -alkylation of the lower rim phenolic-OH groups in general and template action of K+ in particular have been explored. Na+ and K+ ions among alkali, and Ca2+ and Sr2+ ions among alkaline earth have shown tetra-amide derivatives bound to metal ion species. Among all these, potassium salts act as template and yields a K+ bound tetra-amide derivative where the charge is counter balanced by a calix[4] arene-monoanion and the product is crystallographically characterized. Change in the amide precursor used in these -alkylation reactions has no effect on the type of the amide derivative formed. Also demonstrated is a direct one-step reaction for the preparation of 1,3-di-amide derivative in high yield and low reaction period using CsHCO3.

  7. EPR of transition metal ions in NZP ceramics

    International Nuclear Information System (INIS)

    NZP-ceramics have been produced by different methods such as sol-gel, flux melting and sintering of dry salts or phosphates. Formation of NZP and related phases was confirmed by X-ray diffraction analysis. Electron paramagnetic resonance (EPR) was applied to evaluate a structure positions of paramagnetic ions and nature of radiation-induced centers. EPR responses from transition metal ions Fe3+ and Mn2+ with electron configuration 3d5 (ground state 6S5/2) which occurred as impurities in raw materials were registered in powders of NZP-ceramics. Fine structure arising due to high spin iron complexes is well resolved. A part of Fe3+ ions substitutes for Zr4+ and another part of one substitutes for Na+ ions in six-fold coordinated positions. A great value of hyperfine structure (hfs) constant (9.3 mT) shows a high ionic character of Mn-O bonds in the first coordination sphere. A coordination number is close to 6. Fine structure of Mn2+ ions are not well resolved. A comparison of the spectra of samples containing various alkali cations shows the substitution for cations in series of Li-Na-K-Rb-Cs does not result in fundamental variation in spectra except for CZP ceramics where the response with g=4.3 due to Fe3+ in strong ligand field rather than response with g=2.0 due to Fe3+ in weak field is observed. An investigation of some samples doped by 0.1...0.5 mole % of Fe3+ or Gd3+ has been carried out and principal spin-Hamiltonian parameters have been determined. The increase of Fe and Gd ions content as compared to impurity substituting for Zr and possibly Na in their own structural positions results in noticeable site distortion. Gamma irradiation of NZP ceramics results in formation of radiation-induced paramagnetic centers connected to phosphorus-oxygen. The nature and concentration of these centers depend on production method. The lowest defect concentration is in hot-pressed ceramics

  8. Liquid metal ion source analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, P.

    1986-06-14

    An analysis system for angular and mass resolved energy distribution measurements of liquid metal ion source beams has been constructed. The energy analyser has been calibrated, and preliminary on-axis energy distribution measurements of a gallium source operating between 0.26 and 30.0 ..mu..A have been made. These results closely agree with measurements reported by other workers, confirming the unusual FWHM behaviour of gallium sources below approx. 2 ..mu..A.

  9. Effects of metal ion adduction on the gas-phase conformations of protein ions.

    Science.gov (United States)

    Flick, Tawnya G; Merenbloom, Samuel I; Williams, Evan R

    2013-11-01

    Changes in protein ion conformation as a result of nonspecific adduction of metal ions to the protein during electrospray ionization (ESI) from aqueous solutions were investigated using traveling wave ion mobility spectrometry (TWIMS). For all proteins examined, protein cations (and in most cases anions) with nonspecific metal ion adducts are more compact than the fully protonated (or deprotonated) ions with the same charge state. Compaction of protein cations upon nonspecific metal ion binding is most significant for intermediate charge state ions, and there is a greater reduction in collisional cross section with increasing number of metal ion adducts and increasing ion valency, consistent with an electrostatic interaction between the ions and the protein. Protein cations with the greatest number of adducted metal ions are no more compact than the lowest protonated ions formed from aqueous solutions. These results show that smaller collisional cross sections for metal-attached protein ions are not a good indicator of a specific metal-protein interaction in solution because nonspecific metal ion adduction also results in smaller gaseous protein cation cross sections. In contrast, the collisional cross section of α-lactalbumin, which specifically binds one Ca(2+), is larger for the holo-form compared with the apo-form, in agreement with solution-phase measurements. Because compaction of protein cations occurs when metal ion adduction is nonspecific, elongation of a protein cation may be a more reliable indicator that a specific metal ion-protein interaction occurs in solution.

  10. Metal assisted focused-ion beam nanopatterning

    Science.gov (United States)

    Kannegulla, Akash; Cheng, Li-Jing

    2016-09-01

    Focused-ion beam milling is a versatile technique for maskless nanofabrication. However, the nonuniform ion beam profile and material redeposition tend to disfigure the surface morphology near the milling areas and degrade the fidelity of nanoscale pattern transfer, limiting the applicability of the technique. The ion-beam induced damage can deteriorate the performance of photonic devices and hinders the precision of template fabrication for nanoimprint lithography. To solve the issue, we present a metal assisted focused-ion beam (MAFIB) process in which a removable sacrificial aluminum layer is utilized to protect the working material. The new technique ensures smooth surfaces and fine milling edges; in addition, it permits direct formation of v-shaped grooves with tunable angles on dielectric substrates or metal films, silver for instance, which are rarely achieved by using traditional nanolithography followed by anisotropic etching processes. MAFIB was successfully demonstrated to directly create nanopatterns on different types of substrates with high fidelity and reproducibility. The technique provides the capability and flexibility necessary to fabricate nanophotonic devices and nanoimprint templates.

  11. Metal assisted focused-ion beam nanopatterning.

    Science.gov (United States)

    Kannegulla, Akash; Cheng, Li-Jing

    2016-09-01

    Focused-ion beam milling is a versatile technique for maskless nanofabrication. However, the nonuniform ion beam profile and material redeposition tend to disfigure the surface morphology near the milling areas and degrade the fidelity of nanoscale pattern transfer, limiting the applicability of the technique. The ion-beam induced damage can deteriorate the performance of photonic devices and hinders the precision of template fabrication for nanoimprint lithography. To solve the issue, we present a metal assisted focused-ion beam (MAFIB) process in which a removable sacrificial aluminum layer is utilized to protect the working material. The new technique ensures smooth surfaces and fine milling edges; in addition, it permits direct formation of v-shaped grooves with tunable angles on dielectric substrates or metal films, silver for instance, which are rarely achieved by using traditional nanolithography followed by anisotropic etching processes. MAFIB was successfully demonstrated to directly create nanopatterns on different types of substrates with high fidelity and reproducibility. The technique provides the capability and flexibility necessary to fabricate nanophotonic devices and nanoimprint templates. PMID:27479713

  12. Synthesis of monomeric and polymeric alkali and alkaline earth metal complexes using a phosphinoselenoic amide ligand in metal coordination sphere

    Indian Academy of Sciences (India)

    Jayeeta Bhattacharjee; Ravi K Kottalanka; Harinath Adimulam; Tarun K Panda

    2014-09-01

    We report the monomeric complexes of magnesium and calcium of composition [M(THF){2-Ph2P(Se)N(CMe3)}2] [M= Mg (3), n = 1 andM = Ca (4), n = 2)] and polymeric complexes of potassium and barium of composition [K(THF)2{Ph2P(Se)N(CMe3)}] (2) and [K(THF)Ba{Ph2P(Se)N(CMe3)}3](5) respectively. The potassium complex 2 was readily prepared by the reaction of potassium bis(trimethylsilyl)amide with phosphinoselenoic amide ligand (1) at ambient temperature. The calcium complex 4 was prepared by two synthetic routes: in the first method, commonly known as salt metathesis reaction, the potassium complex 2 was made to react with alkaline earth metal diiodide at room temperature to afford the corresponding calcium complex. The metal bis(trimethylsilyl)amides were made to react with protic ligand 1 in the second method to eliminate the volatile bis(trimethyl)silyl amine. The magnesium complex 3 and barium complex 5 were prepared only through the first method. Solid-state structures of all the new complexes were established by single crystal X-ray diffraction analysis. The smaller ionic radii of Mg2+ (0.72Å) and Ca2+ (0.99Å) ions form the monomeric complex, whereas the larger ions K+ (1.38Å) and Ba2+ (1.35Å) were found to form onedimensional polymeric complexes with monoanionic ligand 1. Compound 2 serves an example of magnesium complex with a Mg-Se direct bond.

  13. Release and sorption of alkali metals in coal fired combined cycle power systems; Freisetzung und Einbindung von Alkalimetallverbindungen in kohlebefeuerten Kombikraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Michael

    2009-07-01

    Coal fired combined cycle power systems will be a sufficient way to increase the efficiency of coal combustion. However, combined cycle power systems require a reliable hot gas cleanup. Especially alkali metals, such as sodium and potassium, can lead to hot corrosion of the gas turbine blading if they condensate as sulphates. The actual work deals with the release and sorption of alkali metals in coal fired combined cycle power systems. The influence of coal composition, temperature and pressure on the release of alkali species in coal combustion was investigated and the relevant release mechanisms identified. Alumosilicate sorbents have been found that reduce the alkali concentration in the hot flue gas of the Circulating Pressurized Fluidized Bed Combustion 2{sup nd} Generation (CPFBC 2{sup nd} Gen.) at 750 C to values sufficient for use in a gas turbine. Accordingly, alumosilicate sorbents working at 1400 C have been found for the Pressurized Pulverized Coal Combustion (PPCC). The sorption mechanisms have been identified. Thermodynamic calculations were performed to upscale the results of the laboratory experiments to conditions prevailing in power systems. According to these calculations, there is no risk of hot corrosion in both processes. Furthermore, thermodynamic calculations were performed to investigate the behaviour of alkali metals in an IGCC with integrated hot gas cleanup and H{sub 2} membrane for CO{sub 2} sequestration. (orig.)

  14. Liquid metal ion source assembly for external ion injection into an electron string ion source (ESIS)

    Energy Technology Data Exchange (ETDEWEB)

    Segal, M. J., E-mail: mattiti@gmail.com [iThemba LABS, P.O. Box 722, Somerset West 7130 (South Africa); University of Cape Town, Rondebosch, Cape Town 7700 (South Africa); Bark, R. A.; Thomae, R. [iThemba LABS, P.O. Box 722, Somerset West 7130 (South Africa); Donets, E. E.; Donets, E. D.; Boytsov, A.; Ponkin, D.; Ramsdorf, A. [Joint Institute for Nuclear Research, Joloit-Curie 6, 141980 Dubna, Moscow Region (Russian Federation)

    2016-02-15

    An assembly for a commercial Ga{sup +} liquid metal ion source in combination with an ion transportation and focusing system, a pulse high-voltage quadrupole deflector, and a beam diagnostics system has been constructed in the framework of the iThemba LABS (Cape Town, South Africa)—JINR (Dubna, Russia) collaboration. First, results on Ga{sup +} ion beam commissioning will be presented. Outlook of further experiments for measurements of charge breeding efficiency in the electron string ion source with the use of external injection of Ga{sup +} and Au{sup +} ion beams will be reported as well.

  15. Comparisons between adsorption and diffusion of alkali, alkaline earth metal atoms on silicene and those on silicane: Insight from first-principles calculations

    Science.gov (United States)

    Bo, Xu; Huan-Sheng, Lu; Bo, Liu; Gang, Liu; Mu-Sheng, Wu; Chuying, Ouyang

    2016-06-01

    The adsorption and diffusion behaviors of alkali and alkaline-earth metal atoms on silicane and silicene are both investigated by using a first-principles method within the frame of density functional theory. Silicane is staler against the metal adatoms than silicene. Hydrogenation makes the adsorption energies of various metal atoms considered in our calculations on silicane significantly lower than those on silicene. Similar diffusion energy barriers of alkali metal atoms on silicane and silicene could be observed. However, the diffusion energy barriers of alkali-earth metal atoms on silicane are essentially lower than those on silicene due to the small structural distortion and weak interaction between metal atoms and silicane substrate. Combining the adsorption energy with the diffusion energy barriers, it is found that the clustering would occur when depositing metal atoms on perfect hydrogenated silicene with relative high coverage. In order to avoid forming a metal cluster, we need to remove the hydrogen atoms from the silicane substrate to achieve the defective silicane. Our results are helpful for understanding the interaction between metal atoms and silicene-based two-dimensional materials. Project supported by the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20152ACB21014, 20151BAB202006, and 20142BAB212002) and the Fund from the Jiangxi Provincial Educational Committee, China (Grant No. GJJ14254). Bo Xu is also supported by the Oversea Returned Project from the Ministry of Education, China.

  16. Metal ion binding to iron oxides

    Science.gov (United States)

    Ponthieu, M.; Juillot, F.; Hiemstra, T.; van Riemsdijk, W. H.; Benedetti, M. F.

    2006-06-01

    The biogeochemistry of trace elements (TE) is largely dependent upon their interaction with heterogeneous ligands including metal oxides and hydrous oxides of iron. The modeling of TE interactions with iron oxides has been pursued using a variety of chemical models. The objective of this work is to show that it is possible to model the adsorption of protons and TE on a crystallized oxide (i.e., goethite) and on an amorphous oxide (HFO) in an identical way. Here, we use the CD-MUSIC approach in combination with valuable and reliable surface spectroscopy information about the nature of surface complexes of the TE. The other objective of this work is to obtain generic parameters to describe the binding of the following elements (Cd, Co, Cu, Ni, Pb, and Zn) onto both iron oxides for the CD-MUSIC approach. The results show that a consistent description of proton and metal ion binding is possible for goethite and HFO with the same set of model parameters. In general a good prediction of almost all the collected experimental data sets corresponding to metal ion binding to HFO is obtained. Moreover, dominant surface species are in agreement with the recently published surface complexes derived from X-ray absorption spectroscopy (XAS) data. Until more detailed information on the structure of the two iron oxides is available, the present option seems a reasonable approximation and can be used to describe complex geochemical systems. To improve our understanding and modeling of multi-component systems we need more data obtained at much lower metal ion to iron oxide ratios in order to be able to account eventually for sites that are not always characterized in spectroscopic studies.

  17. A curious interplay in the films of N-heterocyclic carbene PtII complexes upon deposition of alkali metals

    Science.gov (United States)

    Makarova, Anna A.; Grachova, Elena V.; Niedzialek, Dorota; Solomatina, Anastasia I.; Sonntag, Simon; Fedorov, Alexander V.; Vilkov, Oleg Yu.; Neudachina, Vera S.; Laubschat, Clemens; Tunik, Sergey P.; Vyalikh, Denis V.

    2016-05-01

    The recently synthesized series of PtII complexes containing cyclometallating (phenylpyridine or benzoquinoline) and N-heterocyclic carbene ligands possess intriguing structures, topologies, and light emitting properties. Here, we report curious physicochemical interactions between in situ PVD-grown films of a typical representative of the aforementioned PtII complex compounds and Li, Na, K and Cs atoms. Based on a combination of detailed core-level photoelectron spectroscopy and quantum-chemical calculations at the density functional theory level, we found that the deposition of alkali atoms onto the molecular film leads to unusual redistribution of electron density: essential modification of nitrogen sites, reduction of the coordination PtII centre to Pt0 and decrease of electron density on the bromine atoms. A possible explanation for this is formation of a supramolecular system “Pt complex-alkali metal ion” the latter is supported by restoration of the system to the initial state upon subsequent oxygen treatment. The discovered properties highlight a considerable potential of the PtII complexes for a variety of biomedical, sensing, chemical, and electronic applications.

  18. Hydrothermal synthesis of mixed rare earth-alkali metal or ammonium fluorides

    Institute of Scientific and Technical Information of China (English)

    由芳田; 黄世华; 时秋峰

    2010-01-01

    The recent results on hydrothermal synthesis of mixed rare earth-alkali or ammonium fluorides were presented. The initial ratios of the starting materials, pH value and reaction temperature were the critical factors for obtaining the single-phase product. Four main types of complex rare earth fluorides, AREF4, A2REF5, ARE2F7 and ARE3F10 (A=Na+, K+, Rb+, NH4+), appeared in the primary hydrothermal reactions. The correlation between cation sizes and the formation of mixed rare earth fluorides under mild hydro...

  19. Rational Design of Metal Ion Sequestering Agents

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Kenneth N.

    2000-09-30

    The discriminate bonding of metal ions is a challenge to the synthetic chemist and a phenomenon of considerable practical importance.1 An important feature of many technical applications is the specific or preferential binding of a single metal ion in the presence of many metals. Examples range from large-volume uses (e.g. ferric EDTA as a plant food, calcium complexing agents as water softeners or anticaking formulations) to very high technology applications (technetium complexation in radiopharmaceuticals, synthetic metalloenzymes). We are interested in efficient and discriminate binding of actinides for waste stream remediation. Actinides represent a major and long-lived contaminant in nuclear waste. While the separation of actinides from other radioactive components of waste, such as Sr and Cs, is relatively well established, the separation of actinides from each other and in complex solutions (e.g. those found in tank wastes) is not as well resolved. The challenge of designing metal-specific (actinide) ligands is facilitated by examples from nature. Bacteria synthesize Fe(III)-specific ligands, called siderophores, to sequester Fe(III) from the environment and return it to the cell. The similarities between Fe(III) and Pu(IV) (their charge-to-size ratios and acidity), make the siderophores prototypical for designing actinide-specific ligands. The chelating groups present in siderophores are usually hydroxamic acids and catecholamides. We have developed derivatives of these natural products which have improved properties. The catechol derivatives are the 2,3-dihydroxyterephthalamides (TAMs), and 3,4-dihydroxysulfonamides (SFAMs), and the hydroxamic acid derivatives are three isomers of hydroxypyridinones, 1,2- HOPO, 3,2-HOPO, and 3,4-HOPO. All of these ligands are attached to molecular backbones by amides and a very important feature of HOPO and CAM ligands is a strong hydrogen bonds formed between the amide proton and the adjacent phenolic oxygen in the metal

  20. Characterization of Cr3+ doped mixed alkali ions effect in zinc borate glasses - Physical and spectroscopic investigations

    Science.gov (United States)

    Rama Sundari, G.; Pushpa Manjari, V.; Raghavendra Rao, T.; Satish, D. V.; Rama Krishna, Ch.; Venkata Reddy, Ch.; Ravikumar, R. V. S. S. N.

    2014-06-01

    The physical and structural properties of Cr3+ doped 19.9 ZnO + xLi2O + (30 - x) Na2O + 50B2O3 (5 ⩽ x ⩽ 25) (ZLNB) glasses have been studied. Powder X-ray diffraction patterns indicated the amorphous nature of the glass samples. The physical parameters of all the glasses were also evaluated with respect to the composition. They exhibit the non-linearity providing the evidence for mixed alkali ions effect. The infrared spectra of the glasses in the range 400-4000 cm-1 showed the presence of BO3 and BO4 local structures in all the glass systems. No boroxol ring formation was observed in the structure of these glasses. Optical absorption and electron paramagnetic resonance studies were carried out at room temperature. From the optical absorption data various optical parameters such as optical band gap, Urbach energy were evaluated. Crystal field and Racah parameters are evaluated from optical absorption spectra. The EPR spectra of Cr3+ doped ZLNB glasses exhibited resonance signals at g = 4.066 and g = 1.9779 characteristic of Cr3+ ions. The evaluated bonding parameters suggest the covalent nature.

  1. Viscometric and thermodynamic studies of interactions in ternary solutions containing sucrose and aqueous alkali metal halides at 293.15, 303.15 and 313.15 K

    Indian Academy of Sciences (India)

    Reena Gupta; Mukhtar Singh

    2005-05-01

    Viscosities and densities of sucrose in aqueous alkali metal halide solutions of different concentrations in the temperature range 293.15 to 313.15 K have been measured. Partial molar volumes at infinite dilution ($V_{2}^{0}$) of sucrose determined from apparent molar volume ($\\phi_v$) have been utilized to estimate partial molar volumes of transfer ($V^{0}_{2,tr}$) for sucrose from water to alkali metal halide solutions. The viscosity data of alkali metal halides in purely aqueous solutions and in the presence of sucrose at different temperatures (293.15, 303.15 and 313.5 K) have been analysed by the Jones-Dole equation. The nature and magnitude of solute-solvent and solute-solute interactions have been discussed in terms of the values of limiting apparent molar volume ($\\phi^{0}_{v}$), slope ($S_{v}$) and coefficients of the Jones-Dole equation. The structuremaking and structure-breaking capacities of alkali metal halides in pure aqueous solutions and in the presence of sucrose have been ascertained from temperature dependence of $\\phi^{0}_{v}$.

  2. Metal ion levels and lymphocyte counts

    DEFF Research Database (Denmark)

    Penny, Jeannette Ø; Varmarken, Jens-Erik; Ovesen, Ole;

    2013-01-01

    ) and investigated whether cobalt and chromium ions affected the lymphocyte counts. METHOD: In a randomized controlled trial, we followed 19 RHA patients and 19 THA patients. Lymphocyte subsets and chromium and cobalt ion concentrations were measured at baseline, at 8 weeks, at 6 months, and at 1 and 2 years...... of cobalt ions in particular on T-cells with 2-year whole-blood cobalt regression coefficients for CD3+ of -0.10 (95% CI: -0.16 to -0.04) × 10(9) cells/parts per billion (ppb), for CD3+CD4+ of -0.06 (-0.09 to -0.03) × 10(9) cells/ppb, and for CD3(+)CD8(+) of -0.02 (-0.03 to -0.00) × 10(9) cells....../ppb. INTERPRETATION: Circulating T-lymphocyte levels may decline after surgery, regardless of implant type. Metal ions-particularly cobalt-may have a general depressive effect on T- and B-lymphocyte levels. Registered with ClinicalTrials.gov under # NCT01113762....

  3. Structural and electronic engineering of 3DOM WO3 by alkali metal doping for improved NO2 sensing performance

    Science.gov (United States)

    Wang, Zhihua; Fan, Xiaoxiao; Han, Dongmei; Gu, Fubo

    2016-05-01

    Novel alkali metal doped 3DOM WO3 materials were prepared using a simple colloidal crystal template method. Raman, XRD, SEM, TEM, XPS, PL, Hall and UV-Vis techniques were used to characterize the structural and electronic properties of all the products, while the corresponding sensing performances targeting ppb level NO2 were determined at different working temperatures. For the overall goal of structural and electronic engineering, the co-effect of structural and electronic properties on the improved NO2 sensing performance of alkali metal doped 3DOM WO3 was studied. The test results showed that the gas sensing properties of 3DOM WO3/Li improved the most, with the fast response-recovery time and excellent selectivity. More importantly, the response of 3DOM WO3/Li to 500 ppb NO2 was up to 55 at room temperature (25 °C). The especially high response to ppb level NO2 at room temperature (25 °C) in this work has a very important practical significance. The best sensing performance of 3DOM WO3/Li could be ascribed to the most structure defects and the highest carrier mobility. And the possible gas sensing mechanism based on the model of the depletion layer was proposed to demonstrate that both structural and electronic properties are responsible for the NO2 sensing behavior.Novel alkali metal doped 3DOM WO3 materials were prepared using a simple colloidal crystal template method. Raman, XRD, SEM, TEM, XPS, PL, Hall and UV-Vis techniques were used to characterize the structural and electronic properties of all the products, while the corresponding sensing performances targeting ppb level NO2 were determined at different working temperatures. For the overall goal of structural and electronic engineering, the co-effect of structural and electronic properties on the improved NO2 sensing performance of alkali metal doped 3DOM WO3 was studied. The test results showed that the gas sensing properties of 3DOM WO3/Li improved the most, with the fast response-recovery time and

  4. Synthesis and X-ray Characterization of Alkali Metal 2-Acyl-1,1,3,3-tetracyanopropenides.

    Science.gov (United States)

    Karpov, Sergey V; Grigor'ev, Arthur A; Kayukov, Yakov S; Karpova, Irina V; Nasakin, Oleg E; Tafeenko, Victor A

    2016-08-01

    A novel route for synthesis of 2-acyl-1,1,3,3-tetracyanopropenides (ATCN) salts in high yields and excellent purities starting from readily available methyl ketones, malononitrile, bromine, and alkali metal acetates is reported. The starting aryl(heteroaryl) methyl ketones were oxidized to the corresponding α-ketoaldehydes by new a DMSO-NaBr-H2SO4 oxidation system in yields up to 90% within a short reaction time of 8-10 min. The subsequent stages of ATCN preparation are realized in aqueous media without use of any toxic solvents, in accordance with principle 5 of "green chemistry". Lithium, sodium, potassium, rubidium, and cesium 2-benzoyl-1,1,3,3-tetracyanopropenides were characterized by X-ray diffraction analysis. These salts show a good potential for synthesis of five- and six-membered heterocycles and may serve as potentially useful ligands in coordination and supramolecular chemistry. PMID:27384963

  5. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    Directory of Open Access Journals (Sweden)

    X. H. Liu

    2015-10-01

    Full Text Available We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of 87Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the 87Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the 87Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system.

  6. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X. H.; Luo, H.; Qu, T. L., E-mail: qutianliang@nudt.edu.cn; Yang, K. Y.; Ding, Z. C. [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2015-10-15

    We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of {sup 87}Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the {sup 87}Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the {sup 87}Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system.

  7. Heavy main-group iodometallates hybridized by alkali metal via 1,10-Phenanthroline-5,6-dione

    Indian Academy of Sciences (India)

    Mengfan Yin; Gengxing Cai; Peng Wang; Xihui Chao; Jibo Liu; Haohong Li; Zhirong Chen

    2015-09-01

    Alkali metals were introduced into heavy main-group iodometallates to get two new IA/IVAheterometallic frameworks [PbI3K(pdon)(H2O)2] (1) and {[Pb3I9K2(pdon)2(H3O)]·H2O} (2) (pdon=1,10-phenanthroline-5,6-dione), which were obtained as single phases by hydrothermal method at different pH values. Compounds 1 and 2 are three-dimensional heterometallic frameworks constructed from the linkage of pdon ligand between iodometallate chains and potassium oxides/iodide clusters. Specially, these two heterometallic frameworks exhibit broadened absorption bands at 700 and 750 nm compared with those of bulk PbI2 and pdon ligand. The band gap of 2 is wider than that of 1, which is due to the absence of · · · interaction in 2. Their thermal stabilities are also discussed.

  8. The Trapping and Cooling of Alkalis Metal Atoms%碱金属原子的囚禁与冷却

    Institute of Scientific and Technical Information of China (English)

    邓海明; 李璋

    2012-01-01

      描述了如何利用激光以及磁场构建光学粘胶、激光阱、磁阱、磁光阱等实现对碱金属的囚禁与冷却,旨在明晰的呈现BEC实验实现的关键技术、物理原理以及各种装置的优缺点。%  This essay describes how to use laser and magnetic field to construct optical molasses ,laser trap ,mag-netic trap and magneto -optical trap to trap and cool alkali-metal atoms .It presents clearly the key experimental technologies of Bose-Einstein condensate ,the physical principle and the relative advantages and disadvantages of different equipments .

  9. Hyperfine-induced quadrupole moments of alkali-metal atom ground states and their implications for atomic clocks

    CERN Document Server

    Derevianko, Andrei

    2016-01-01

    Spherically-symmetric ground states of alkali-metal atoms do not posses electric quadrupole moments. However, the hyperfine interaction between nuclear moments and atomic electrons distorts the spherical symmetry of electronic clouds and leads to non-vanishing atomic quadrupole moments. We evaluate these hyperfine-induced quadrupole moments using techniques of relativistic many-body theory and compile results for Li, Na, K, Rb, and Cs atoms. For heavy atoms we find that the hyperfine-induced quadrupole moments are strongly (two orders of magnitude) enhanced by correlation effects. We further apply the results of the calculation to microwave atomic clocks where the coupling of atomic quadrupole moments to gradients of electric fields leads to clock frequency uncertainties. We show that for $^{133}$Cs atomic clocks, the spatial gradients of electric fields must be smaller than $30 \\, \\mathrm{V}/\\mathrm{cm}^2$ to guarantee fractional inaccuracies below $10^{-16}$.

  10. Alkali-Resistant Mechanism of a Hollandite DeNOx Catalyst.

    Science.gov (United States)

    Hu, Pingping; Huang, Zhiwei; Gu, Xiao; Xu, Fei; Gao, Jiayi; Wang, Yue; Chen, Yaxin; Tang, Xingfu

    2015-06-01

    A thorough understanding of the deactivation mechanism by alkalis is of great importance for rationally designing improved alkali-resistant deNOx catalysts, but a traditional ion-exchange mechanism cannot often accurately describe the nature of the deactivation, thus hampering the development of superior catalysts. Here, we establish a new exchange-coordination mechanism on the basis of the exhaustive study on the strong alkali resistance of a hollandite manganese oxide (HMO) catalyst. A combination of isothermal adsorption measurements of ammonia with X-ray absorption near-edge structure spectra and X-ray photoelectron spectra reveals that alkali metal ions first react with protons from Brønsted acid sites of HMO via the ion exchange. Synchrotron X-ray diffraction patterns and extended X-ray absorption fine structure spectra coupled with theoretical calculations demonstrate that the exchanged alkali metal ions are subsequently stabilized at size-suitable cavities in the HMO pores via a coordination model with an energy savings. This exchange-coordination mechanism not only gives a wholly convincing explanation for the intrinsic nature of the deactivation of the reported catalysts by alkalis but also provides a strategy for rationally designing improved alkali-resistant deNOx catalysts in general. PMID:25941972

  11. Partial Oxidation of Butane to Syngas over Nickel SupportedCatalysts Modified by Alkali Metal Oxide and Rare-Earth Metal Oxide

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The partial oxidation of butane (POB) to syngas over nickel supported catalysts was first investigated with a flow-reactor, TG and UVRRS. The NiO/g-Al2O3 is the most suitable for the POB among NiO/g-Al2O3, NiO/MgO and NiO/SiO2. And the reaction performance of the NiO/g-Al2O3 shows little difference from those of the nickel supported catalysts modified by alkali metal oxide and rare-earth metal oxide. However, modification with Li2O and La2O3 can suppress carbon-deposition of the NiO/g-Al2O3, which contains graphite-like species during the POB reaction.

  12. Separation of traces of metal ions from sodium matrices

    Science.gov (United States)

    Korkisch, J.; Orlandini, K. A.

    1969-01-01

    Method for isolating metal ion traces from sodium matrices consists of two extractions and an ion exchange step. Extraction is accomplished by using 2-thenoyltrifluoracetone and dithizone followed by cation exchange.

  13. Structure of glasses containing transition-metal ions. Progress report, January 1, 1982-October 31, 1982

    International Nuclear Information System (INIS)

    Investigations of host glasses include the completion of an interpretation of the Raman spectra of soda-gallia-silica glasses and some new work on zinc-containing glasses. The question of the structural environment of transition metal ions in silicate glasses and whether these ions should be regarded as occupying sites (a crystal-like model) or whether they form complexes (a solution-like model) continues to occupy our attention. A study of cobalt in alkali silicate glasses was completed and work is underway on chromium in borate glasses. The investigation of diffusion processes and the hydration of glass surfaces by sputter-induced-photon spectrometry (SIPS) was completed and the final portions are reported

  14. Experiments and Researches on Production of Highly Charged Metallic Ions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To satisfy the requirements of HIRFL (Heavy Ion Research Facility in Lanzhou), series of experiments have been done to produce metallic ion beams on the 14.5 GHz ECR ion source. By now, numerous methods have been tested, in which oven heating and MIVOC (Metallic Ion from Volatile Compounds) are both included.According to the experiments, the results show that oven heating is much better than MIVOC. In most of our

  15. Plasma immersion ion implantation for reducing metal ion release

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, C.; Garcia, J. A.; Maendl, S.; Pereiro, R.; Fernandez, B.; Rodriguez, R. J. [Centro de Ingenieria Avanzada de Superficies AIN, 31191, Cordovilla-Pamplona (Spain); Leibniz-Institut fuer Oberflaechenmodifizierung, 04318 Leipzig (Germany); Universidad de Oviedo, Departamento Quimica Fisica y Analitica (Spain); Centro de Ingenieria Avanzada de Superficies AIN, 31191, Cordovilla-Pamplona (Spain)

    2012-11-06

    Plasma immersion ion implantation of Nitrogen and Oxygen on CoCrMo alloys was carried out to improve the tribological and corrosion behaviors of these biomedical alloys. In order to optimize the implantation results we were carried experiments at different temperatures. Tribocorrosion tests in bovine serum were used to measure Co, Cr and Mo releasing by using Inductively Coupled Plasma Mass Spectrometry analysis after tests. Also, X-ray Diffraction analysis were employed in order to explain any obtained difference in wear rate and corrosion tests. Wear tests reveals important decreases in rate of more than one order of magnitude for the best treatment. Moreover decreases in metal release were found for all the implanted samples, preserving the same corrosion resistance of the unimplanted samples. Finally this paper gathers an analysis, in terms of implantation parameters and achieved properties for industrial implementation of these treatments.

  16. Effects of metal ions on recombinant calcineurin A subunit

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Effects of metal ions on activities and solution conformations of calcineurin A subunit have been examined.The ability of several metal ions to activate calcineurin A has been tested with Ni2+>Mn2+>Mg2+/Ca2+.The corresponding CD spectra and intrinsic fluorescent emission spectra show that calcineurin A exists in different metal ion-dependent conformation states.Effects of the different concentritions of Ni2+ on activities and solution conformations of calcineurin A have been tested too.Results indicate that effects of these metal ions to activate calcineurin are due to their conformational changes.

  17. Interaction of the model alkyltrimethylammonium ions with alkali halide salts: an explicit water molecular dynamics study

    Directory of Open Access Journals (Sweden)

    M. Druchok

    2013-01-01

    Full Text Available We present an explicit water molecular dynamics simulation of dilute solutions of model alkyltrimethylammonium surfactant ions (number of methylene groups in the tail is 3, 5, 8, 10, and 12 in mixture with NaF, NaCl, NaBr, and NaI salts, respectively. The SPC/E model is used to describe water molecules. Results of the simulation at 298 K are presented in form of the radial distribution functions between nitrogen and carbon atoms of CH2 groups on the alkyltrimethylammonium ion, and the counterion species in the solution. The running coordination numbers between carbon atoms of surfactants and counterions are also calculated. We show that I- counterion exhibits the highest, and F- the lowest affinity to "bind" to the model surfactants. The results are discussed in view of the available experimental and simulation data for this and similar solutions.

  18. Influence of additives on the retention of metal ions in a soil of Bangalore, India

    Directory of Open Access Journals (Sweden)

    Dr Maya Naik

    2009-04-01

    Full Text Available Liners play an important role in minimizing migration of contaminants and are frequently constructed with natural materials serving as the primary barrier to contain chemicals and potentially harmful pollutants from municipal toxic waste leachates. To improve the performance of liners, additives like lime and cement at low percentages were added to Red Soil of Bangalore. Heavy metals like hexavalent chromium, copper and zinc and alkali metals like sodium and potassium were taken as contaminants. Batch leaching tests on 50 samples were performed according to ASTM D 3987 – 85 for soil and soil mixtures with contaminants. The heavy metals were potentiometrically monitored using ion selective mercury and platinum electrodes. The alkali metals were determined using a Flame Photometry. It has been observed that the retention of heavy metals elements followed the order copper> zinc>chromium over a period of 7 to 28 days. Chromium, zinc and copper attained equilibrium in this period as confirmed based on conductivity and pH data. Cement and lime had significant effect on copper and zinc. Specific adsorption of Cu onto CaCO3 surfaces may control Cu concentration in solution. Zn adsorption increases with pH; Zinc hydrolysed at pH > 7.7 and these hydrolyzed species are strongly adsorbed to soil surfaces. Cr was retained only by 50% and additives did not have much effect as it is subjected to nonspecific adsorption (temporary. Cr was found to be highly mobile in alkaline soils. It was observed that the retention of alkali metals follows the order: K > Na. Cement and lime had positive effect on the retention of Na and K. Sodium ion retarded immediately due to the removal of exchangeable cations, whereas potassium retarded more than sodium due to the lower hydrated radius of potassium. Scanning Electron Microscopy (SEM characterization tests were performed to understand the soil mineral structure. Regular porous, sponge like, particles were detected in

  19. In situ alkali-silica reaction observed by x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kurtis, K.E.; Monteiro, P.J.M. [Univ. of California, Berkeley, CA (United States); Brown, J.T.; Meyer-Ilse, W. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    In concrete, alkali metal ions and hydroxyl ions contributed by the cement and reactive silicates present in aggregate can participate in a destructive alkali-silica reaction (ASR). This reaction of the alkalis with the silicates produces a gel that tends to imbibe water found in the concrete pores, leading to swelling of the gel and eventual cracking of the affected concrete member. Over 104 cases of alkali-aggregate reaction in dams and spillways have been reported around the world. At present, no method exists to arrest the expansive chemical reaction which generates significant distress in the affected structures. Most existing techniques available for the examination of concrete microstructure, including ASR products, demand that samples be dried and exposed to high pressure during the observation period. These sample preparation requirements present a major disadvantage for the study of alkali-silica reaction. Given the nature of the reaction and the affect of water on its products, it is likely that the removal of water will affect the morphology, creating artifacts in the sample. The purpose of this research is to observe and characterize the alkali-silica reaction, including each of the specific reactions identified previously, in situ without introducing sample artifacts. For observation of unconditioned samples, x-ray microscopy offers an opportunity for such an examination of the alkali-silica reaction. Currently, this investigation is focusing on the effect of calcium ions on the alkali-silica reaction.

  20. Multinuclear Alkali Metal Complexes of a Triphenylene-Based Hexamine and the Transmetalation to Tris(N-heterocyclic tetrylenes) (Ge, Sn, Pb).

    Science.gov (United States)

    Zhong, Fei; Yang, Xiaodong; Shen, Lingyi; Zhao, Yanxia; Ma, Hongwei; Wu, Biao; Yang, Xiao-Juan

    2016-09-01

    A C3-symmetric hexamine (LH6) based on the triphenylene and ortho-phenylenediamine (PDAH2) skeletons has been synthesized, and was partially or fully deprotonated upon treatment with alkali metal agents to afford amino-amido or diamido coordination sites. Four alkali metal complexes, the dinuclear [Na2(LH4)(DME)5] (1) and [K2(LH4)(DME)4] (2), trinuclear [K3(LH3)(DME)6] (3), and hexanuclear [Li6(L)(DME)6] (4), were obtained and used in transmetalation/ligand exchange with other metals. The hexalithium salt of the fully deprotonated ligand, [Li6L], reacted with heavier group 14 element halides to yield three tris(N-heterocyclic tetrylenes), the germylene [Ge3(L)] (5), stannylene [Sn3(L)] (6), and plumbylene [Pb3(L)] (7). The synthesis and crystal and electronic structures of these compounds are reported. PMID:27525542

  1. Conformational thermodynamics of metal-ion binding to a protein

    Science.gov (United States)

    Das, Amit; Chakrabarti, J.; Ghosh, Mahua

    2013-08-01

    Conformational changes in proteins induced by metal-ions play extremely important role in various cellular processes and technological applications. Dihedral angles are suitable conformational variables to describe microscopic conformations of a biomacromolecule. Here, we use the histograms of the dihedral angles to study the thermodynamics of conformational changes of a protein upon metal-ion binding. Our method applied to Ca2+ ion binding to an important metalloprotein, Calmodulin, reveals different thermodynamic changes in different metal-binding sites. The ligands coordinating to Ca2+ ions also play different roles in stabilizing the metal-ion coordinated protein-structure. Metal-ion binding induce remarkable thermodynamic changes in distant part of the protein via modification of secondary structural elements.

  2. The electronic properties of bare and alkali metal adsorbed two-dimensional GeSi alloy sheet

    Science.gov (United States)

    Qiu, Wenhao; Ye, Han; Yu, Zhongyuan; Liu, Yumin

    2016-09-01

    In this paper, the structural and electronic properties of both bare and alkali metal (AM) atoms adsorbed two-dimensional GeSi alloy sheet (GeSiAS) are investigated by means of first-principles calculations. The band gaps of bare GeSiAS are shown slightly opened at Dirac point with the energy dispersion remain linear due to the spin-orbit coupling effect at all concentrations of Ge atoms. For metal adsorption, AM atoms (including Li, Na and K) prefer to occupy the hexagonal hollow site of GeSiAS and the primary chemical bond between AM adatom and GeSiAS is ionic. The adsorption energy has an increase tendency with the increase of the Ge concentration in supercell. Besides, single-side adsorption of AM atoms introduces band gap at Dirac point, which can be tuned by the Ge concentration and the species of AM atoms. The strong relation between the band gaps and the distribution of Si and Ge atoms inside GeSiAS are also demonstrated. The opened band gaps of AM covered GeSiAS range from 14.8 to 269.1 meV along with the effective masses of electrons ranging from 0.013 to 0.109 me, indicating the high tunability of band gap as well as high mobility of carriers. These results provide a development in two-dimensional alloys and show potential applications in novel micro/nano-electronic devices.

  3. Influence of alkali ion doping on the electrochemical performances of tin-based composite materials

    Science.gov (United States)

    Aboulaich, A.; Conte, D. E.; Olivier-Fourcade, J.; Jordy, C.; Willmann, P.; Jumas, J. C.

    In this paper, we report an investigation of three tin-based composite materials as negative electrodes for lithium-ion batteries. Theses composites were synthesized by solid state reaction from dispersion of micrometric tin into BPO 4, Li-doped BPO 4 (LiBPO) and Na-substituted BPO 4 (NaBPO) matrix, respectively. We have investigated more particularly the influence of the two alkaline ions (Li +, Na +) introduced into the matrix on electrochemical performances. The morphology of powders was observed by SEM and the composition studied by EDX analysis. The conductivity measurements showed that the modified BPO 4 matrixes (Li or Na) exhibit improved conductivity (σ RT = 2 × 10 -11 S cm -1 for NaBPO). A focus of our interest was to relate the nature and structural composition of the composite interface between active tin and inactive matrix to the irreversible capacity in this type of composite materials. The electrochemical analysis shows a decrease of the irreversible capacity for the composite based on modified matrixes (around 150 and 190 mAh g -1 for SnNaBPO and SnLiBPO, respectively) with respect to the reference composite SnBPO (245 mAh g -1).

  4. Influence of alkali ion doping on the electrochemical performances of tin-based composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Aboulaich, A.; Conte, D.E.; Olivier-Fourcade, J.; Jumas, J.C. [Institut Charles Gerhardt-Laboratoire des Agregats, Interfaces et Materiaux pour l' Energie (UMR 5253), Place Eugene Bataillon, 34095 Montpellier Cedex 5 (France); Jordy, C. [SAFT, 111-113 Boulevard Alfred Daney, 33300 Bordeaux Cedex (France); Willmann, P. [Centre National d' Etudes Spatiales, 18 Avenue Edouard Belin, 31401 Toulouse Cedex 9 (France)

    2010-05-15

    In this paper, we report an investigation of three tin-based composite materials as negative electrodes for lithium-ion batteries. Theses composites were synthesized by solid state reaction from dispersion of micrometric tin into BPO{sub 4}, Li-doped BPO{sub 4} (LiBPO) and Na-substituted BPO{sub 4} (NaBPO) matrix, respectively. We have investigated more particularly the influence of the two alkaline ions (Li{sup +}, Na{sup +}) introduced into the matrix on electrochemical performances. The morphology of powders was observed by SEM and the composition studied by EDX analysis. The conductivity measurements showed that the modified BPO{sub 4} matrixes (Li or Na) exhibit improved conductivity ({sigma}{sub RT} = 2 x 10{sup -11} S cm{sup -1} for NaBPO). A focus of our interest was to relate the nature and structural composition of the composite interface between active tin and inactive matrix to the irreversible capacity in this type of composite materials. The electrochemical analysis shows a decrease of the irreversible capacity for the composite based on modified matrixes (around 150 and 190 mAh g{sup -1} for SnNaBPO and SnLiBPO, respectively) with respect to the reference composite SnBPO (245 mAh g{sup -1}). (author)

  5. Molecular Turnstiles Regulated by Metal Ions.

    Science.gov (United States)

    Wang, Guangxia; Xiao, Hongmei; He, Jiaojiao; Xiang, Junfeng; Wang, Ying; Chen, Xuebo; Che, Yanke; Jiang, Hua

    2016-04-15

    A family of novel molecular turnstiles 1-3 composed of two stators with pyridyl binding sites and a different-sized triptycene rotor was synthesized. The molecular turnstiles behave in an open state at room temperature in the absence of metal ions but display significantly different closed states in the presence of Ag(+) and Pd(2+). The Ag(+)-mediated turnstiles 1-3Ag exhibited closed states but unreadable bistability at ambient temperature because the Ag(+)-mediated macrocyclic framework is not able to restrict the rotations of the rotors; while temperature was decreased, the macrocyclic frameworks became stable enough to halt the rotations of the rotors, eventually leading to the readable closed states for 1-3Ag. In contrast, Pd(2+)-mediated macrocyclic frameworks are stable, giving rise to a detectable closed state of turnstiles 1-3Pd in a wide range of temperatures. These findings have also been supported by DFT calculations. PMID:26986992

  6. A study on fluorescence properties of Eu~(3+) ions in alkali lead tellurofluoroborate glasses

    Institute of Scientific and Technical Information of China (English)

    S.A.Saleem; B.C.Jamalaiah; A.Mohan; Babu; K.Pavani; L.R

    2010-01-01

    Glasses with chemical composition of (in mol.%): 26 RF-20 PbO-10 TeO2-43 H3BO3-1 EuO3 (RLTB) were prepared by conventional melt quenching method. The Judd-Ofelt intensity parameters Ω2 and Ω6 were obtained from the absorption intensities of 7F0→5D2 and 7F0→5L6 transitions, respectively. In order to overcome the problem of applicability of Judd-Ofelt analysis at room temperature due to the overlapping of the transitions originating from 7F0 and 7F1 levels of Eu3+ ion, the effect of the thermalization on the ...

  7. ALKALI RESISTANT CATALYST

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention concerns the selective removal of nitrogen oxides (NOx) from gasses. In particular, the invention concerns a process, a catalyst and the use of a catalyst for the selective removal of nitrogen oxides in the presence of ammonia from gases containing a significant amount...... of alkali metal and/or alkali-earth compounds which process comprises using a catalyst combined of (i) a formed porous superacidic support, said superacidic support having an Hammett acidity stronger than Ho=-12, and (ii) a metal oxide catalytic component deposited on said superacidic support selected from...

  8. Metal ion binding to peptides: Oxygen or nitrogen sites?

    NARCIS (Netherlands)

    Dunbar, R. C.; Polfer, N. C.; G. Berden,; Oomens, J.

    2012-01-01

    Infrared multiple-photon dissociation (IRMPD) spectroscopy was used to probe the conformations of gas-phase metal-ion complexes between a series of five metal ions and six small peptide ligands. This report is presented in recognition and tribute for the Armentrout group's long and hugely produ

  9. Metal ion binding to peptides: oxygen or nitrogen sites?

    NARCIS (Netherlands)

    R.C. Dunbar; N.C. Polfer; G. Berden; J. Oomens

    2012-01-01

    Infrared multiple-photon dissociation (IRMPD) spectroscopy was used to probe the conformations of gas-phase metal-ion complexes between a series of five metal ions and six small peptide ligands. This report is presented in recognition and tribute for the Armentrout group's long and hugely productive

  10. Alkali Metal Rankine Cycle Boiler Technology Challenges and Some Potential Solutions for Space Nuclear Power and Propulsion Applications

    Science.gov (United States)

    Stone, James R.

    1994-01-01

    Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently. This report is aimed at evaluating alkali metal boiler

  11. [Ion specificity during ion exchange equilibrium in natural clinoptilolite].

    Science.gov (United States)

    He, Yun-Hua; Li, Hang; Liu, Xin-Min; Xiong, Hai-Ling

    2015-03-01

    Zeolites have been widely applied in soil improvement and environment protection. The study on ion specificity during ion exchange equilibrium is of important significance for better use of zeolites. The maximum adsorption capacities of alkali ions during ion exchange equilibrium in the clinoptilolite showed obvious specificity. For alkali metal ions with equivalent valence, the differences in adsorption capacity increased with the decrease of ionic concentration. These results cannot be well explained by the classical theories including coulomb force, ionic size, hydration, dispersion force, classic induction force and surface complexation. We found that the coupling of polarization effects resulted from the quantum fluctuation of diverse alkali metal ions and electric field near the zeolite surface should be the primary reason for specific ion effect during ion exchange in zeolite. The result of this coupling effect was that the difference in the ion dipole moment increased with the increase of surface potential, which further expanded the difference in the adsorption ability between zeolite surface and ions, resulting in different ion exchange adsorption ability at the solid/liquid interface. Due to the high surface charge density of zeolite, ionic size also played an important role in the distribution of ions in the double diffuse layer, which led to an interesting result that distinct differences in exchange adsorption ability of various alkali metal ions were only detected at high surface potential (the absolute value was greater than 0.2 V), which was different from the ion exchange equilibrium result on the surface with low charge density. PMID:25929073

  12. Long range implantation by MEVVA metal ion source

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Metal vapor vacuum arc (MEVVA) source ion implantation is a new technology used for achieving long range ion impantation.It is very important for research and application of the ion beammodification of materials. The results showthat the implanted atom diffusion coefficient increases in Mo implanted Al with high ion flux andhigh dose. The implanted depth is 311.6 times greater than that ofthe corresponding ion range. The ionspecies, doses and ion fluxes play an important part in the long-range implantation. Especially,thermal atom chemistry have specific effect on the long-range implantation during high ion fluximplantation at transient high target temperature.

  13. Metal Transport across Biomembranes: Emerging Models for a Distinct Chemistry*

    OpenAIRE

    Argüello, José M.; Raimunda, Daniel; González-Guerrero, Manuel

    2012-01-01

    Transition metals are essential components of important biomolecules, and their homeostasis is central to many life processes. Transmembrane transporters are key elements controlling the distribution of metals in various compartments. However, due to their chemical properties, transition elements require transporters with different structural-functional characteristics from those of alkali and alkali earth ions. Emerging structural information and functional studies have revealed distinctive ...

  14. DNA as sensors and imaging agents for metal ions.

    Science.gov (United States)

    Xiang, Yu; Lu, Yi

    2014-02-17

    Increasing interest in detecting metal ions in many chemical and biomedical fields has created demands for developing sensors and imaging agents for metal ions with high sensitivity and selectivity. This review covers recent progress in DNA-based sensors and imaging agents for metal ions. Through both combinatorial selection and rational design, a number of metal-ion-dependent DNAzymes and metal-ion-binding DNA structures that can selectively recognize specific metal ions have been obtained. By attachment of these DNA molecules with signal reporters such as fluorophores, chromophores, electrochemical tags, and Raman tags, a number of DNA-based sensors for both diamagnetic and paramagnetic metal ions have been developed for fluorescent, colorimetric, electrochemical, and surface Raman detection. These sensors are highly sensitive (with a detection limit down to 11 ppt) and selective (with selectivity up to millions-fold) toward specific metal ions. In addition, through further development to simplify the operation, such as the use of "dipstick tests", portable fluorometers, computer-readable disks, and widely available glucose meters, these sensors have been applied for on-site and real-time environmental monitoring and point-of-care medical diagnostics. The use of these sensors for in situ cellular imaging has also been reported. The generality of the combinatorial selection to obtain DNAzymes for almost any metal ion in any oxidation state and the ease of modification of the DNA with different signal reporters make DNA an emerging and promising class of molecules for metal-ion sensing and imaging in many fields of applications.

  15. Investigation of ozonide ion reaction with neptunium (6) ions in alkali aqueous solutions by the method of pulse radiolysis

    International Nuclear Information System (INIS)

    By pulse radiolysis method with spectrophotometric recording of short-living particles kinetics of O3-radical-ion reaction with Np5+ and Np6+ in alkaline solutions is investigated. Rate constant of the first reaction equals to (2.0±0.3)x106, of the second -(2.1±0.2)x105 l/(mol·c) in 0.2-2.0 mol/l of LiOH. Peculiarities of Np6+ γ-radiolysis in alkaline solutions saturated with N2O and in aerated solutions containing K2S2O8 are explained. Np7+ yield is determined by O3-behaviour which depends on Np6+ and OH- concentration

  16. Understanding the defect chemistry of alkali metal strontium silicate solid solutions: insights from experiment and theory

    KAUST Repository

    Bayliss, Ryan D.

    2014-09-24

    © the Partner Organisations 2014. Recent reports of remarkably high oxide ion conduction in a new family of strontium silicates have been challenged. It has recently been demonstrated that, in the nominally potassium substituted strontium germanium silicate material, the dominant charge carrier was not the oxygen ion, and furthermore that the material was not single phase (R. D. Bayliss et. al., Energy Environ. Sci., 2014, DOI: 10.1039/c4ee00734d). In this work we re-investigate the sodium-doped strontium silicate material that was reported to exhibit the highest oxide ion conductivity in the solid solution, nominally Sr0.55Na0.45SiO2.775. The results show lower levels of total conductivity than previously reported and sub-micron elemental mapping demonstrates, in a similar manner to that reported for the Sr0.8K0.2Si0.5Ge0.5O2.9 composition, an inhomogeneous chemical distribution correlating with a multiphase material. It is also shown that the conductivity is not related to protonic mobility. A density functional theory computational approach provides a theoretical justification for these new results, related to the high energetic costs associated with oxygen vacancy formation. This journal is

  17. Binding energy referencing for XPS in alkali metal-based battery materials research (I): Basic model investigations

    Energy Technology Data Exchange (ETDEWEB)

    Oswald, S., E-mail: s.oswald@ifw-dresden.de

    2015-10-01

    Highlights: • We point to a not seriously solved conflict in energy scale referencing of Li metal samples in XPS. • Model experiments at Li-, Na-metal and Li-doped HOPG samples were used to classify the effects. • Binding energy shifts up to 3 eV are observed when the alkaline metal is present in metallic state. • A phenomenological explanation based on an electrostatic interaction is suggested. • Consequences for energy scale correction depending on the kind of surface species are followed. - Abstract: For the investigation of chemical changes in Li- and Na-ion battery electrode systems, X-ray photoelectron spectroscopy (XPS) is a well-accepted method. Charge compensation and referencing of the binding energy (BE) scale is necessary to account for the involved mostly non-conducting species. Motivated by a conflict in energy scale referencing of Li-metal samples discussed earlier by several authors, further clarifying experimental results on several Li containing reference materials are presented and extended by similar experiments for Na. When correlating the peak positions of characteristic chemical species in all the different prepared model sample states, there seems to be a systematic deviation in characteristic binding energies of several eV if lithium is present in its metallic state. Similar results were found for sodium. The observations are furthermore confirmed by the implementation of inert artificial energy reference material, such as implanted argon or deposited gold. The behavior is associated with the high reactivity of metallic lithium and a phenomenological explanation is proposed for the understanding of the observations. Consequences for data interpretation in Li-ion battery research will be discussed for various applications in part (II)

  18. Evidence for alkali metal induced intermolecular acetylenic hydrogen atom transfer between hydrogen-bonded alkyne complexes in solid argon

    International Nuclear Information System (INIS)

    Condensation of acetylene, propyne, and 2-butyne/acetylene mixtures with heavy alkali metal atoms (Na, K, Cs) in an argon matrix at 15 K has led to the appearance of infrared absorptions due to ethylene, propylene, and trans-2-butene, respectively. These results stand in sharp contrast with the products obtained with lithium. Isotopic studies have shown that ethylene formation involved three different acetylene molecules and evidenced a difference in the product yield with hydrogen vs. deuterium as well as a preference for trans- vs. cis-C2H2D2 formation, which is discussed and rationalized by differences in the zero point energies for the different mixed deuterium isotopes of the intermediate vinyl radical. This trend is amplified by methyl substitution. Spectroscopic evidence was found in these experiments for cesium acetylide (Cs+C2H-) and a cesium-acetylene π complex, which are involved in the intermolecular acetylenic hydrogen atom transfer process. 26 references, 3 figures, 2 tables

  19. Effect of semicore banding on heavy-alkali-metal lattice constants: Corrections to the frozen-core approximation

    Science.gov (United States)

    Yang, L. H.; Smith, A. P.; Benedek, R.; Koelling, D. D.

    1993-06-01

    Equilibrium lattice constants and bulk moduli of the heavy alkali metals K, Rb, and Cs were calculated using the Troullier-Martins pseudopotentials and plane-wave basis functions. The treatment of the outermost p-shell electrons as Bloch states yielded lattice constants 2-3 % larger than those obtained within the frozen-core approximation (including the partial core correction of Louie, Froyen, and Cohen [Phys. Rev. B 26, 1738 (1982)]), which narrows a long-standing discrepancy between local-density functional theory and experiment. Predicted bulk moduli are 30-50 % larger than measured values, within either treatment. The band dispersion of the semicore states (with bandwidths 0.067, 0.14, and 0.25 eV for K, Rb, and Cs) is attributed primarily to core-electron-conduction-electron hybridization rather than direct core-core overlap. The semicore density of states has a flat line shape, rather than the peaked shape expected for an idealized tight-binding band.

  20. FP-APW+lo calculations of the electronic and optical properties of alkali metal sulfides under pressure

    International Nuclear Information System (INIS)

    The electronic and optical properties of M2S (M = Li, Na, K and Rb) compounds in the cubic antifluorite structure have been calculated, using a full relativistic version of the full-potential augmented plane-wave plus local orbitals method based on density functional theory, within both the local density approximation (LDA) and the generalized gradient approximation (GGA). Moreover, the Engel-Vosko GGA formalism (EV-GGA) is applied so as to optimize the corresponding potential for band structure calculations. The calculated equilibrium lattices and bulk moduli are in good agreement with the available data. Band structure, density of states, electron charge density and pressure coefficients of energy gaps are given. Results obtained for band structure using EV-GGA are larger than those with LDA and GGA. It is found that the spin-orbit coupling lifts the triple degeneracy at the Γ point and the double degeneracy at the X point. The analysis of the electron charge density shows that the M-S bonds have a significant ionic character. The complex dielectric functions ε2(ω) for alkali metal sulfides were calculated for radiation up to 30 eV and the assignment of the critical points to the band structure energy differences at various points of the Brillouin zone was made. The pressure and volume dependence of the static dielectric constant and the refractive index are calculated.

  1. Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS2

    Directory of Open Access Journals (Sweden)

    X. D. Li

    2015-05-01

    Full Text Available Single adsorption of different atoms on pristine two-dimensional monolayer MoS2 have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3d-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS2. Additionally, local or long-range magnetic moments of two-dimensional MoS2 sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS2 monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application.

  2. Impregnated-electrode-type liquid metal ion source

    Science.gov (United States)

    Ishikawa, J.; Gotoh, Y.; Tsuji, H.; Takagi, T.

    We have developed an impregnated-electrode-type liquid metal ion source whose tip is a sintered-porous structure made of a refractory metal such as tungsten. By this structure the ratio of the liquid metal surface area facing the vacuum to the volume is low, which decreases useless metal evaporation from the surface. The maximum vapour pressure of the metal in operation for this ion source is 10 -1-10 0 Torr, which is 2-3 orders of magnitude higher than that for the needle type. Therefore, useful metal ions such as Ga +, Au +, Ag +, In +, Si 2+, Ge 2+, and Sb 2+ can be extracted from single element metals or alloys. The porous structure of the tip has also an effect on the positive control of the liquid metal flow rate to the tip head. Thus, a stable operation with a high current of a few hundreds of μA can be obtained together with a low current high brightness ion beam. Therefore, this ion source is suitable not only for microfocusing but also for a general use as a metal ion source.

  3. Atomic Beam Merging and Suppression of Alkali Contaminants in Multi Body High Power Targets: Design and Test of Target and Ion Source Prototypes at ISOLDE

    CERN Document Server

    Bouquerel, Elian J A; Lettry, J; Stora, T

    2009-01-01

    The next generation of high power ISOL-facilities will deliver intense and pure radioactive ion beams. Two key issues of developments mandatory for the forthcoming generation of ISOL target-ion source units are assessed and demonstrated in this thesis. The design and production of target and ion-source prototypes is described and dedicated measurements at ISOLDE-CERN of their radioisotope yields are analyzed. The purity of short lived or rare radioisotopes suffer from isobaric contaminants, notably alkalis which are highly volatile and easily ionized elements. Therefore, relying on their chemical nature, temperature controlled transfer lines were equipped with a tube of quartz that aimed at trapping these unwanted elements before they reached the ion source. The successful application yields high alkali-suppression factors for several elements (ie: 80, 82mRb, 126, 142Cs, 8Li, 46K, 25Na, 114In, 77Ga, 95, 96Sr) for quartz temperatures between 300ºC and 1100ºC. The enthalpies of adsorption on quartz were measu...

  4. Magnetometry with millimeter-scale anti-relaxation-coated alkali-metal vapor cells

    CERN Document Server

    Balabas, M V; Kitching, J; Schwindt, P D D; Stalnaker, J E

    2005-01-01

    Dynamic nonlinear magneto-optical-rotation signals with frequency- and amplitude-modulated laser light have been observed and investigated with a spherical glass cell of 3-mm diameter containing Cs metal with inner walls coated with paraffin. Intrinsic Zeeman relaxation rates of $\\gamma/(2\\pi)\\approx 20 $Hz and lower have been observed. Favorable prospects of using millimeter-scale coated cells in portable magnetometers and secondary frequency references are discussed.

  5. X-ray and neutron diffraction studies of some liquid alkali metals and alloys

    International Nuclear Information System (INIS)

    Experimental techniques and correction procedures have been searched for, which allow a reliable and accurate determination of the structure factors of simple liquid metals, particularly in the small-angle region. A study of binary alloys was carried out and showed that clustering of like atoms (a tendency to phase separation) occurs, indicating special structural aspects. The densities of Na-K, Na-Cs, K-Rb alloys were also measured. (C.F.)

  6. Operational characteristics of a metal vapor vacuum arc ion source

    International Nuclear Information System (INIS)

    The MEVVA ion source can produce high current pulsed beams of metallic ions using a metal vapor vacuum arc discharge as the plasma medium from which the ions are extracted. In this study, the operational characteristics of the MEVVA IV ion source are summarized. Results are presented of measurements of the ion beam current as a function of arc current over a range of extraction voltage. Ti, Ta and Pb were examined as the cathode materials. The arc current ranged from 50A to 250A and the extraction voltage from 10kV to 80kV. The ion beam current was measured at two different distances from the ion source using Faraday cups, so as to investigate the beam divergence. Additionally, the cathode erosion rates were measured. Optimum operating conditions of the MEVVA ion source were determined. 10 refs., 6 figs

  7. Chemical state analysis of trace-level alkali metals sorbed in micaceous oxide by total reflection X-ray photoelectron spectroscopy

    Science.gov (United States)

    Baba, Y.; Shimoyama, I.; Hirao, N.

    2016-10-01

    In order to determine the chemical states of radioactive cesium (137Cs or 134Cs) sorbed in clay minerals, chemical states of cesium as well as the other alkali metals (sodium and rubidium) sorbed in micaceous oxides have been investigated by X-ray photoelectron spectroscopy (XPS). Since the number of atoms in radioactive cesium is extremely small, we specially focused on chemical states of trace-level alkali metals. For this purpose, we have measured XPS under X-ray total reflection (TR) condition. For cesium, it was shown that ultra-trace amount of cesium down to about 100 pg cm-2 can be detected by TR-XPS. This amount corresponds to about 200 Bq of 137Cs (t1/2 = 30.2 y). It was demonstrated that ultra-trace amount of cesium corresponding to radioactive cesium level can be measured by TR-XPS. As to the chemical states, it was found that core-level binding energy in TR-XPS for trace-level cesium shifted to lower-energy side compared with that for thicker layer. A reverse tendency is observed in sodium. Based on charge transfer within a simple point-charge model, it is concluded that chemical bond between alkali metal and micaceous oxide for ultra-thin layer is more polarized that for thick layer.

  8. Conditions for preparation of ultrapure beryllium by electrolytic refining in molten alkali-metal chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Wohlfarth, Hagen

    1982-02-01

    Electrolytic refining is regarded as the most suitable process for the production of beryllium with impurity contents below 1 at.-ppM. Several parameters are important for electrolytic refining of beryllium in a BeCl/sub 2/-containing LiCl-KCl melt: current density, BeCl/sub 2/ content, electrolyte temperature, composition of the unpurified beryllium and impurity-ion concentrations in the melt, as well as apparatus characteristics such as rotation speed of the cathode and condition of the crucible material. These factors were studied and optimized such that extensive removal of the maximum number of accompanying and alloying elements was achieved.

  9. Probing Ion-Ion and Electron-Ion Correlations in Liquid Metals within the Quantum Hypernetted Chain Approximation

    OpenAIRE

    Anta, J. A.; Louis, A.A.

    1999-01-01

    We use the Quantum Hypernetted Chain Approximation (QHNC) to calculate the ion-ion and electron-ion correlations for liquid metallic Li, Be, Na, Mg, Al, K, Ca, and Ga. We discuss trends in electron-ion structure factors and radial distribution functions, and also calculate the free-atom and metallic-atom form-factors, focusing on how bonding effects affect the interpretation of X-ray scattering experiments, especially experimental measurements of the ion-ion structure factor in the liquid met...

  10. Preparation of Dithizone Functionalized Polystyrene for Detecting Heavy Metal Ion

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyeon Ho; Kim, Younghun [Kwangwoon University, Seoul (Korea, Republic of)

    2015-04-15

    Colorimetric sensors were usually used to detect specific metal ions using selective color change of solutions. While almost organic dye in colorimetric sensors detected single molecule, dithizone (DTZ) solution could be separately detected above 5 kinds of heavy metal ions by the change of clear color. Namely, DTZ could be used as multicolorimetric sensors. However, DTZ was generally used as aqueous type and paper/pellet-type DTZ was not reported yet. Therefore, in this work, polystyrene (PS) was prepared to composite with DTZ and then DTZ/PS pellet was obtained, which was used to selectively detect 10 kinds of heavy metal ions. When 10 ppm of Hg and Co ions was exposed in DTZ/PS pellets, clear color change was revealed. It is noted that DTZ/PS pellet could be used in detecting of heavy metal ion as dry type.

  11. Radiation defects and metal ions of iron group in oxides

    International Nuclear Information System (INIS)

    The effect of transition ion impurities (iron group) upon optical properties and radiation defect production has been studied for alkaline earth metal oxides. Basic physical and chemical properties of the latters have been compared to those of transition metal (iron group) oxides. Original results of magnesium oxide monocrystal growth have been obtained by the method of chemical transport reactions in a narrow gap for various cobalt, nickel and manganese ion concentrations. For transition metal ions the dependences of optical absorption, luminescence and ESR on ion concentration in magnesium oxide have been found. Basing on those dependences and in terms of the ligand field theory the crystal field parameters have been calculated for cobalt and nickel ions. Characteristics of electron and hole center creation in oxides of alkaline earth metals stated for various concentrations of transition metal ions are the following: the change of the ions' electron state, their participation in the radiation defect creation and decay, the interaction between transition metal ions and radiation defects

  12. Competing binding of metal ions with protein studied by microdialysis

    Institute of Scientific and Technical Information of China (English)

    郭明; 孔亮; 毛希琴; 历欣; 邹汉法

    2002-01-01

    A method has been established to study the competing binding of metal ions with protein by a combined technique of microdialysis with high performance liquid chromatography (HPLC). Ni2+, Cd2+, Zn2+, Cu2+ and human serum albumin (HSA) were chosen as model metal ions and protein. The experimental results show that Ni2+ and Cu2+ share a common primary binding site on HSA, and Zn2+ and Cd2+ share a different common primary binding site from them, but there is a common multi-metal binding site for all of those four metal ions. This method show advantages of fast sampling, easily to be operated and especially to be useful when ideal spectroscopic probes are not available for the study of interaction between protein and metal ions.

  13. Metallic ion release from biocompatible cobalt-based alloy

    Directory of Open Access Journals (Sweden)

    Dimić Ivana D.

    2014-01-01

    Full Text Available Metallic biomaterials, which are mainly used for the damaged hard tissue replacements, are materials with high strength, excellent toughness and good wear resistance. The disadvantages of metals as implant materials are their susceptibility to corrosion, the elastic modulus mismatch between metals and human hard tissues, relatively high density and metallic ion release which can cause serious health problems. The aim of this study was to examine metallic ion release from Co-Cr-Mo alloy in artificial saliva. In that purpose, alloy samples were immersed into artificial saliva with different pH values (4.0, 5.5 and 7.5. After a certain immersion period (1, 3 and 6 weeks the concentrations of released ions were determined using Inductively Coupled Plasma - Mass Spectrophotometer (ICP-MS. The research findings were used in order to define the dependence between the concentration of released metallic ions, artificial saliva pH values and immersion time. The determined released metallic ions concentrations were compared with literature data in order to describe and better understand the phenomenon of metallic ion release from the biocompatible cobalt-based alloy. [Projekat Ministarstva nauke Republike Srbije, br. III 46010 i br. ON 174004

  14. Metal ion adsorption at the ionic liquid-mica interface.

    Science.gov (United States)

    McDonald, Samila; Elbourne, Aaron; Warr, Gregory G; Atkin, Rob

    2016-01-14

    Mica has been employed in many studies of ionic liquid (IL) interfaces on account of its atomic smoothness and well defined surface properties. However, until now it has been unclear whether ions dissolved in ILs can compete with the IL cation and adsorb to mica charge sites. In this work amplitude modulated atomic force microscopy (AM-AFM) has been used to probe metal ion adsorption at the interface of mica with propylammonium nitrate (PAN), a room temperature IL. Lithium, sodium, potassium, magnesium and calcium nitrate salts were added to PAN at a concentration of ∼60 mM. Aluminum nitrate was also investigated, but only at 5 mM because its solubility in PAN is much lower. The AM-AFM images obtained when the metal ions were present are strikingly different to that of pure PAN, indicating that the ions compete effectively with the propylammonium cation and adsorb to negatively charged sites on the mica surface despite their much lower concentration. This is a consequence of electrostatic attractions between the mica charge sites and the metal ions being significantly stronger than for the propylammonium cation; compared to the metal ions the propylammonium charged group is relatively constrained sterically. A distinct honeycomb pattern is noted for the PAN + Al(3+) system, less obviously for the divalent ions and not at all for monovalent ions. This difference is attributed to the strength of electrostatic interactions between metal ions and mica charge sites increasing with the ion charge, which means that divalent and (particularly) trivalent ions are located more precisely above the charged sites of the mica lattice. The images obtained allow important distinctions between metal ion adsorption at mica-water and mica-PAN interfaces to be made.

  15. Metal ion adsorption at the ionic liquid-mica interface.

    Science.gov (United States)

    McDonald, Samila; Elbourne, Aaron; Warr, Gregory G; Atkin, Rob

    2016-01-14

    Mica has been employed in many studies of ionic liquid (IL) interfaces on account of its atomic smoothness and well defined surface properties. However, until now it has been unclear whether ions dissolved in ILs can compete with the IL cation and adsorb to mica charge sites. In this work amplitude modulated atomic force microscopy (AM-AFM) has been used to probe metal ion adsorption at the interface of mica with propylammonium nitrate (PAN), a room temperature IL. Lithium, sodium, potassium, magnesium and calcium nitrate salts were added to PAN at a concentration of ∼60 mM. Aluminum nitrate was also investigated, but only at 5 mM because its solubility in PAN is much lower. The AM-AFM images obtained when the metal ions were present are strikingly different to that of pure PAN, indicating that the ions compete effectively with the propylammonium cation and adsorb to negatively charged sites on the mica surface despite their much lower concentration. This is a consequence of electrostatic attractions between the mica charge sites and the metal ions being significantly stronger than for the propylammonium cation; compared to the metal ions the propylammonium charged group is relatively constrained sterically. A distinct honeycomb pattern is noted for the PAN + Al(3+) system, less obviously for the divalent ions and not at all for monovalent ions. This difference is attributed to the strength of electrostatic interactions between metal ions and mica charge sites increasing with the ion charge, which means that divalent and (particularly) trivalent ions are located more precisely above the charged sites of the mica lattice. The images obtained allow important distinctions between metal ion adsorption at mica-water and mica-PAN interfaces to be made. PMID:26661934

  16. Adsorption of rare earth metal ion by algae. Sorui ni yoru kidorui ion no kyuchaku

    Energy Technology Data Exchange (ETDEWEB)

    Kuwabara, T.; Yazawa, A. (Miyagi National College of Technology, Miyagi (Japan))

    1994-02-25

    This paper reports the result of investigations on adsorption of rare earth metal ion by using algae, and adsorption of different metal ions by using egg white and soy bean protein. Rare earth metal ion is adsorbed at a considerably high rate with alga powder of different kinds. The adsorption has been judged to be cation exchange reactive adsorption, while with use of spirulina and chlorella a maximum value of adsorption rate has been observed at pH from 3 to 4.5. Therefore, selective adsorption and separation of metal ions other than rare earth metal ion has become possible. When the blue pigment extracted from spirulina, the spirulina blue, is used, the rare earth metal ion had its selective adsorption and separation performance improved higher than using spirulina itself at pH from 3 to 4.5. As a result of adsorption experiment using egg white and soy bean protein, it has been found that the metal ion adsorption behavior of the spirulina blue depends on coagulative action of protein structure to some extent. However, the sharp selective adsorption performance on rare earth metal ion due to particular pH strength has been found because of actions unique to the pigment structure of phycocyanin, a major component in the spirulina blue. 7 refs., 19 figs.

  17. Inelastic neutron scattering spectra of alkali metal (Na, K) bifluorides: The harmonic overtone of v3

    Science.gov (United States)

    Waddington, Thomas C.; Howard, Joseph; Brierley (in part), Keith P.; Tomkinson, John

    1982-01-01

    Inelastic neutron scattering spectra of MFHF (M  Na and K) have been measured up to energy transfers of ca. 4000 cm -1 Both 0 → 1 and 0 → 2 transitions of the bending ( v2), and antisymmetric stretching ( v3) modes were observed. A normal harmonic (i.e. no quartic contribution) model for the dynamics of the bifluoride ion is entirely consistent with our observations. Evidence of phonon dispersion was observed in the band shape of v3, but no structure attributable to the LO mode could be found. The similarity of the band shapes of v3 for both NaFHF and KFHF is interpreted in terms of a very short range coupling mechanism.

  18. Synthesis of Novel Metal Ion Sensors Based on DNA-Metal Interactions

    Institute of Scientific and Technical Information of China (English)

    Akira Ono; Shiqi Cao; Humika Togashi; Yoko Miyake

    2005-01-01

    @@ 1Introduction The interactions of metal ions with nucleic acids, nucleosides, and nucleo-bases have been extensively investigated[1,2]. We have reported that thymine-thymine (T-T) and cytosine-cytosine (C- C) miss base pairs in DNA duplexes highly selectively capture HgⅡ ion and Ag Ⅰ ion, which result in formations of metal-mediated base pairs, T-HgⅡ -T and C-AgⅠ -C, in duplexes[3]. The phenomenon is expected to be useful for a variety of studies such as synthesis of nano-wires containing metal ions, developing metal-ion sensing methods, etc.Here, we report novel oligodeoxyribonucleotide (ODN)-based sensors that detect HgⅡ ions and AgⅠ ions in aqueous solutions.

  19. Alkali metal – yttrium borohydrides: The link between coordination of small and large rare-earth

    International Nuclear Information System (INIS)

    The system Li–A–Y–BH4 (A=K, Rb, Cs) is found to contain five new compounds and four further ones known from previous work on the homoleptic borohydrides. Crystal structures have been solved and refined from synchrotron X-ray powder diffraction, thermal stability of new compounds have been investigated and ionic conductivity measured for selected samples. Significant coordination flexibility for Y3+ is revealed, which allows the formation of both octahedral frameworks and tetrahedral complex anions with the tetrahydroborate anion BH4 both as a linker and terminal ligand. Bi- and trimetallic cubic double-perovskites c-A3Y(BH4)6 or c-A2LiY(BH4)6 (A=Rb, Cs) form in all the investigated systems, with the exception of the Li–K–Y system. The compounds with the stoichiometry AY(BH4)4 crystallize in all investigated systems with a great variety of structure types which find their analog amongst metal oxides. In-situ formation of a new borohydride – closo-borane is observed during decomposition of all double perovskites. - Graphical abstract: The system Li–A–Y–BH4 (A=K, Rb, Cs) is found to contain five novel compounds and four further ones previously reported. Significant coordination flexibility of Y3+ is revealed, which can be employed to form both octahedral frameworks and tetrahedral complex anions, very different structural topologies. Versatility is also manifested in three different simultaneously occurring coordination modes of borohydrides for one metal cation, as proposed by DFT optimization of the monoclinic KY(BH4)4 structural model observed by powder diffraction. - Highlights: • The system Li-A-Y-BH4 (A=K, Rb, Cs) contains nine compounds in total. • Y3+ forms octahedral frameworks and tetrahedral complex anions. • Bi- and trimetallic double-perovskites crystallize in most systems. • Various AY(BH4)4 crystallize with structure types analogous to metal oxides. • Double-perovskites decompose and form a novel borohydride-closo-borane

  20. Rechargeable dual-metal-ion batteries for advanced energy storage.

    Science.gov (United States)

    Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-04-14

    Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future.

  1. Dipole Polarizability of Alkali-Metal (Na, K, Rb) - Alkaline-Earth-Metal (Ca,Sr) Polar molecules - Prospects of Alignment

    CERN Document Server

    Gopakumar, Geetha; Hada, Masahiko; Kajita, Masatoshi

    2014-01-01

    Electronic open-shell ground-state properties of selected alkali-metal (AM) - alkaline-earth-metal (AEM) polar molecules are investigated. We determine potential energy curves of the 2{\\Sigma}+ ground state at the coupled-cluster singles and doubles with partial triples (CCSD(T)) level of electron correlation. Calculated spectroscopic constants for the isotopes (23Na, 39K, 85Rb) - (40Ca, 88Sr) are compared with available theoretical and experimental results. The variation of the permanent dipole moment (PDM), average dipole polarizability, and polarizability anisotropy with internuclear distance is determined using finite-field perturbation theory at the CCSD(T) level. Owing to moderate PDM (KCa: 1.67 D, RbCa: 1.75 D, KSr: 1.27 D, RbSr: 1.41 D) and large polarizability anisotropy (KCa: 566 a.u., RbCa: 604 a.u., KSr: 574 a.u., RbSr: 615 a.u.), KCa, RbCa, KSr, and RbSr are potential candidates for alignment and orientation in combined intense laser and external static electric fields.

  2. Ab initio properties of the ground-state polar and paramagnetic europium-alkali-metal-atom and europium-alkaline-earth-metal-atom molecules

    CERN Document Server

    Tomza, Michał

    2014-01-01

    The properties of the electronic ground state of the polar and paramagnetic europium-$S$-state-atom molecules have been investigated. Ab initio techniques have been applied to compute the potential energy curves for the europium-alkali-metal-atom, Eu$X$ ($X$=Li, Na, K, Rb, Cs), europium-alkaline-earth-metal-atom, Eu$Y$ ($Y$=Be, Mg, Ca, Sr, Ba), and europium-ytterbium, EuYb, molecules in the Born-Oppenheimer approximation for the high-spin electronic ground state. The spin restricted open-shell coupled cluster method restricted to single, double, and noniterative triple excitations, RCCSD(T), was employed and the scalar relativistic effects within the small-core energy-consistent pseudopotentials were included. The permanent electric dipole moments and static electric dipole polarizabilities were computed. The leading long-range coefficients describing the dispersion interaction between atoms at large internuclear distances $C_6$ are also reported. The EuK, EuRb, and EuCs molecules are examples of species poss...

  3. Vanadium oxide based cpd. useful as a cathode active material - is used in lithium or alkali metal batteries to prolong life cycles

    DEFF Research Database (Denmark)

    1997-01-01

    A mixt. of metallic iron particles and vanadium pentoxide contg. V in its pentavalent state in a liq. is reacted to convert at least some of the pentavalent V to its tetravalent state and form a gel. The liq. phase is then sepd. from the oxide based gel to obtain a solid material(I) comprising Fe......, V and oxygen where at least some of the V is in the tetravalent state. USE-(I) is a cathode active material in electric current producing storage cells. ADVANTAGE-Use of (I) in Li or alkali metal batteries gives prolonged life cycles.Storage cells using (I) have improved capacity during charge and...

  4. Explorations of New SHG Materials in the Alkali-Metal-Nb(5+)-Selenite System.

    Science.gov (United States)

    Cao, Xue-Li; Hu, Chun-Li; Kong, Fang; Mao, Jiang-Gao

    2015-11-16

    Standard high-temperature solid-state reactions of NaCl, Nb2O5, and SeO2 resulted in two new sodium selenites containing a second-order Jahn-Teller (SOJT) distorted Nb(5+) cation, namely, Na2Nb4O7(SeO3)4 (P1̅; 1) and NaNbO(SeO3)2 (Cmc21; 2). Compound 1 exhibits an unusual 3D [Nb4O7(SeO3)4](2-) anionic network composed of 2D [Nb4O11(SeO3)2](6-) layers which are further bridged by additional SeO3(2-) anions via corner sharing; the 2D [Nb4O11(SeO3)2](6-) layer is formed by unusual quadruple [Nb4O17](14-) niobium oxide chains of corner-sharing NbO6 octahedra being further interconnected by selenite anions via Nb-O-Se bridges. The polar compound 2 features a 1D [NbO(SeO3)2](-) anionic chain in which two neighboring Nb(5+) cations are bridged by one oxo and two selenite anions. The alignments of the polarizations from the NbO6 octahedra in 2 led to a strong SHG response of ∼7.8 × KDP (∼360 × α-SiO2), which is the largest among all phases found in metal-Nb(5+)-Se(4+)/metal-Nb(5+)-Te(4+)-O systems. Furthermore, the material is also type I phase matchable. The above experimental results are consistent with those based on DFT theoretical calculations. Thermal stabilities and optical properties for both compounds are also reported. PMID:26513233

  5. Solubility of alkali metal halides in the ionic liquid [C4C1im][OTf].

    Science.gov (United States)

    Kuzmina, O; Bordes, E; Schmauck, J; Hunt, P A; Hallett, J P; Welton, T

    2016-06-28

    The solubilities of the metal halides LiF, LiCl, LiBr, LiI, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, KI, RbCl, CsCl, CsI, were measured at temperatures ranging from 298.15 to 378.15 K in the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([C4C1im][OTf]). Li(+), Na(+) and K(+) salts with anions matching the ionic liquid have also been investigated to determine how well these cations dissolve in [C4C1im][OTf]. This study compares the influence of metal cation and halide anion on the solubility of salts within this ionic liquid. The highest solubility found was for iodide salts, and the lowest solubility for the three fluoride salts. There is no outstanding difference in the solubility of salts with matching anions in comparison to halide salts. The experimental data were correlated employing several phase equilibria models, including ideal mixtures, van't Hoff, the λh (Buchowski) equation, the modified Apelblat equation, and the non-random two-liquid model (NRTL). It was found that the van't Hoff model gave the best correlation results. On the basis of the experimental data the thermodynamic dissolution parameters (ΔH, ΔS, and ΔG) were determined for the studied systems together with computed gas phase metathesis parameters. Dissolution depends on the energy difference between enthalpies of fusion and dissolution of the solute salt. This demonstrates that overcoming the lattice energy of the solid matrix is the key to the solubility of inorganic salts in ionic liquids. PMID:27264676

  6. Designer ligands: The search for metal ion selectivity

    Directory of Open Access Journals (Sweden)

    Perry T. Kaye

    2011-03-01

    Full Text Available The paper reviews research conducted at Rhodes University towards the development of metal-selective ligands. The research has focused on the rational design, synthesis and evaluation of novel ligands for use in the formation of copper complexes as biomimetic models of the metalloenzyme, tyrosinase, and for the selective extraction of silver, nickel and platinum group metal ions in the presence of contaminating metal ions. Attention has also been given to the development of efficient, metal-selective molecular imprinted polymers.

  7. Conditioning of spent ion-exchange resins followed by solidification in the alkali-slag long-lived matrix with an increased level of filling with resins

    Directory of Open Access Journals (Sweden)

    Svetlana Nikolaevna Skomorokhova

    2015-12-01

    Full Text Available The possibility for spent ion-exchange resins (IER of intermediate specific activity to be solidified in alkali-slag (geocement water-resistant matrixes with an increased level of filling with resins was studied. Comparative tests of the IER immobilization process were done for justifying the most technologically effective matrix material. We used three different alkali-slag cementing systems and the prepared simulated pulps of IER with the specific activity of 3×108 Bq/L, saturated with 137Cs radionuclide. The manufactured samples of the alkali-slag compounds, filled with IER at the level of 24-27% by weight, meet the regulatory requirements set in NP-019-15 code and feature better working quality parameters (mechanical strength: 5-14 MPa, leaching rate of 137Cs, Na, Ca: <2×10-4 g/cm2∙day on the 7th-10th day, mechanical strength of compounds rises by the factor of 1.2-1.5 after immersion tests. The incorporation of the spent IER in the most technologically effective alkali-slag matrix makes it possible to decrease the cementing material consumption by the factor of 2.4 in comparison with Portland cement and by the factor of 1.3 in comparison with the known slag binders, while a compound with better quality parameters is produced. The research was done with the support of the Russian Ministry of Education and Science (unique identifier of the applied research studies - RFMEFI57915X0101 for justifying a new energy-efficient and resource-saving technology of reprocessing the spent IER-containing waste.

  8. Low temperature alkali metal-sulfur batteries. Final report, December 1, 1974-November 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Brummer, S.B.; Rauh, R.D.; Abraham, K.M.; Dampier, F.W.; Subrahmanyam, V.; Pearson, G.F.; Surprenant, J.K.; Buzby, J.M.

    1980-03-01

    Work on the development of rechargeable, ambient-temperature Li/sulfur and Li/metal sulfide batteries is reported. The Li/S system has the cathode material dissolved in the electrolyte, as Li/sub 2/S/sub n/. Tetrahydrofuran, 1M LiAsF/sub 6/, is one of the more attractive electrolytes discovered for this cell, since it can dissolve up to approx. 10M S as Li/sub 2/Sn. Despite the oxidative nature of the electrolyte, Li is stable in it and can be electrodeposited from it on battery charge. Cells of the configuration Li 5M S (as Li/sub 2/S/sub n/), THF, 1M LiAsF/sub 6//carbon can be discharged at 50/sup 0/C with a utilization of nearly 1.5e/sup -//S at the C/3 rate. This corresponds to the rate-capacity goal for this battery in its proposed vehicular or load-leveling applications. Further improvements in rate are possible. Rechargeability of 135 cycles of 0.1 e/sup -//S and approx. 45 cycles of 0.5 e/sup -//S was demonstrated. The self-discharge reaction keeps the Li electrode free of electrically isolated dendrites. Ultimate failure on cycling is due to cathode depletion via precipitation of Li/sub 2/S on the anode in a form insoluble in the electrolyte. Attempts to solubilize the Li/sub 2/S by the internal generation of an oxidizing scavenger (e.g., Br/sub 2/) or by addition of Lewis acids have met only with limited success. Cells of configuration Li/THF, 1M LiAsF/sub 6//insoluble metal sulfide were investigated, using the following cathodes: CuS, NiS, SiS/sub 2/, MnS/sub 2/, FeS, and Bi/sub 2/S/sub 3/. Of these, the most promising new material in terms of energy density and rechargeability is CuS. Well over 100 cycles for Li/CuS cells with moderate cathode loadings were demonstrated. CuS compares favorably with TiS/sub 2/ in terms of energy density and rechargeability and is superior in terms of economics. 39 figures, 19 tables.

  9. Experimental Study on Surface Reactions of Heavy Metal Ions With Quartz—Aqueous Ion Concentration Dependence

    Institute of Scientific and Technical Information of China (English)

    吴宏海; 吴大清; 等

    1999-01-01

    Adsorption of divalent metal ions,including Cu2+,Pb2+,Zn2+,Cd2+ and Ni2+,on quartz surface was measured as a function of metal ion concentration at 30℃under condi tions of solution pH=6.5 and ion strength I=0.1mol/L.Results of the experimental measuements can be described very well by adsorption isoterm dquations of Freudlich.The correlation coefficients(r)of adsorption isotherm lines are>0.96.Moreover,the exprimental data were interpreted on the basis of surface complexation model.Te experimental results showed that the monodentate-coordinated metal ion surface complex species(SOM+)are predominant over the bidentate-coordinated metal ion surface complex species[(SO)2M]formed only by the ions Cu2+,Zn2+ and Ni2+,And the relevant apparent surface complexation constants are lgKM=2.2-3.3 in order of KCd≥KPb>KZn>KNi≥KCu,and lgβM=5.8-6.8 in oder of βNi>βZn>βCu.Therefore,the reactive ability of the ions onto mineral surface of quartz follows the order of Cd>Pb>Zn>Ni>Cu under the above-mentioned solution conditions.The apparent surface complexation constants,influenced by the surface potential,surface species and hydrolysis of metal ions,depend mainly on the Born solvation coefficeient of the metal ions.

  10. Complex formation during dissolution of metal oxides in molten alkali carbonates

    DEFF Research Database (Denmark)

    Li, Qingfeng; Borup, Flemming; Petrushina, Irina;

    1999-01-01

    as the partial pressure of carbon dioxide varies. By combination of solubility and electromotive force measurements, a model is constructed assuming the dissolution involves complex formation. The possible species for lead are proposed to be [Pb(CO3)(2)](-2) and/or [Pb(CO3)(3)](-4). A similar complex......Dissolution of metal oxides in molten carbonates relates directly to the stability of materials for electrodes and construction of molten carbonate fuel cells. In the present work the solubilities of PbO, NiO, Fe2O3,and Bi2O3 in molten Li/K carbonates have been measured at 650 degrees C under...... carbon dioxide atmosphere. It is found that the solubilities of NiO and PbO decrease while those of Fe2O3 and Bi2O3 remain approximately constant as the lithium mole fraction increases from 0.43 to 0.62 in the melt. At a fixed composition of the melt, NiO and PbO display both acidic and basic dissolution...

  11. Polysiloxane based CHEMFETs for the detection of heavy metal ions

    NARCIS (Netherlands)

    Lugtenberg, Ronny J.W.; Antonisse, Martijn M.G.; Egberink, Richard J.M.; Engbersen, Johan F.J.; Reinhoudt, David N.

    1996-01-01

    The development of polysiloxane based chemically modified field effect transistors (CHEMFETs) for heavy metal ions is described. Different polar siloxane copolymers have been synthesized via an anionic copolymerization of hexamethylcyclotrisiloxane, [3-(methacryloxy)propyl]pentamethylcyclotrisiloxan

  12. Kinetic Analysis of Metal Ions: An Undergraduate Laboratory Experiment.

    Science.gov (United States)

    Williams, Kathryn R.

    1985-01-01

    Reports on the adaptation of a kinetic method of analysis of metal ions for use in an undergraduate teaching laboratory. Background information, procedures used, and analysis of typical results obtained are provided. (JN)

  13. Alkali metal Rankine cycle boiler technology challenges and some potential solutions for space nuclear power and propulsion applications

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J.R.

    1994-07-01

    Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently.

  14. Metal Ion Selectivity of Kojate Complexes: A Theoretical Study

    Directory of Open Access Journals (Sweden)

    Sarita Singh

    2013-01-01

    Full Text Available Density functional calculations have been performed on four-coordinate kojate complexes of selected divalent metal ions in order to determine the affinity of the metal ions for the kojate ion. The complexation reactions are characterized by high energies, showing that they are highly exothermic. It is found that Ni(II exhibits the highest affinity for the kojate ion, and this is attributed to the largest amount of charge transfer from the ligand to the metal ion. The Ni(II complex has distorted square planar structure. The HOMOs and LUMOs of the complexes are also discussed. All complexes display a strong band at ~1500 cm−1 corresponding to the stretching frequency of the weakened carbonyl bond. Comparison of the complexation energies for the two steps shows that most of the complexation energy is realized in the first step. The energy released in the second step is about one-third that of the first step.

  15. An engineered palette of metal ion quenchable fluorescent proteins.

    Directory of Open Access Journals (Sweden)

    Xiaozhen Yu

    Full Text Available Many fluorescent proteins have been created to act as genetically encoded biosensors. With these sensors, changes in fluorescence report on chemical states in living cells. Transition metal ions such as copper, nickel, and zinc are crucial in many physiological and pathophysiological pathways. Here, we engineered a spectral series of optimized transition metal ion-binding fluorescent proteins that respond to metals with large changes in fluorescence intensity. These proteins can act as metal biosensors or imaging probes whose fluorescence can be tuned by metals. Each protein is uniquely modulated by four different metals (Cu2+, Ni2+, Co2+, and Zn2+. Crystallography revealed the geometry and location of metal binding to the engineered sites. When attached to the extracellular terminal of a membrane protein VAMP2, dimeric pairs of the sensors could be used in cells as ratiometric probes for transition metal ions. Thus, these engineered fluorescent proteins act as sensitive transition metal ion-responsive genetically encoded probes that span the visible spectrum.

  16. Review of Magnetic Carrier Technologies for Metal Ion Removal

    OpenAIRE

    Broomberg, J.; Gélinas, S.; Finch, James A.; Xu, Z.

    1999-01-01

    Magnetic carriers are magnetic materials designed to bind selectively on some non -magnetic materials to make them separable using magnetic separation. It allows magnetic separation, a fast, efficient, high capacity and well-developed industrial technology, to be applied to the separation of materials that are otherwise non-magnetic. One application is in metal ion recovery from dilute effluents. Magnetic carrier technologies offer some advantages over other more conventional metal ion separa...

  17. Smart textile device using ion polymer metal compound.

    Science.gov (United States)

    Nakamura, Taro; Ihara, Tadashi

    2013-01-01

    We have developed a smart textile device that detects angular displacement of attached surface using ion polymer metal compound. The device was composed of ion polymer metal compound (IPMC) which was fabricated from Nafion resin by heat-press and chemical gold plating. The generated voltage from IPMC was measured as a function of bending angle. Fabricated IPMC device was weaved into a cotton cloth and multidirectional movements were detected. PMID:24109750

  18. An optical dosimeter for monitoring heavy metal ions in water

    Science.gov (United States)

    Mignani, Anna G.; Regan, Fiona; Leamy, D.; Mencaglia, A. A.; Ciaccheri, L.

    2005-05-01

    This work presents an optochemical dosimeter for determining and discriminating nickel, copper, and cobalt ions in water that can be used as an early warning system for water pollution. An inexpensive fiber optic spectrophotometer monitors the sensor's spectral behavior under exposure to water solutions of heavy metal ions in the 1-10 mg/l concentration range. The Principal Component Analysis (PCA) method quantitatively determines the heavy metals and discriminates their type and combination.

  19. Metal ion implantation for large scale surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Brown, I.G.

    1992-10-01

    Intense energetic beams of metal ions can be produced by using a metal vapor vacuum arc as the plasma discharge from which the ion beam is formed. We have developed a number of ion sources of this kind and have built a metal ion implantation facility which can produce repetitively pulsed ion beams with mean ion energy up to several hundred key, pulsed beam current of more than an ampere, and time averaged current of several tens of milliamperes delivered onto a downstream target. We've also done some preliminary work on scaling up this technology to very large size. For example, a 50-cm diameter (2000 cm[sup 2]) set of beam formation electrodes was used to produce a pulsed titanium beam with ion current over 7 amperes at a mean ion energy of 100 key. Separately, a dc embodiment has been used to produce a dc titanium ion beam with current over 600 mA, power supply limited in this work, and up to 6 amperes of dc plasma ion current was maintained for over an hour. In a related program we've developed a plasma immersion method for applying thin metallic and compound films in which the added species is atomically mixed to the substrate. By adding a gas flow to the process, well-bonded compound films can also be formed; metallic films and multilayers as well as oxides and nitrides with mixed transition zones some hundreds of angstroms thick have been synthesized. Here we outline these parallel metal-plasma-based research programs and describe the hardware that we've developed and some of the surface modification research that we've done with it.

  20. Production of negative hydrogen ions on metal grids

    Energy Technology Data Exchange (ETDEWEB)

    Oohara, W.; Maetani, Y.; Takeda, Takashi; Takeda, Toshiaki; Yokoyama, H.; Kawata, K. [Department of Electronic Device Engineering, Yamaguchi University, Ube 755-8611 (Japan)

    2015-03-15

    Negative hydrogen ions are produced on a nickel grid with positive-ion irradiation. In order to investigate the production mechanism, a copper grid without the chemisorption of hydrogen atoms and positive helium ions without negative ionization are used for comparison. Positive hydrogen ions reflected on the metal surface obtain two electrons from the surface and become negatively ionized. It is found that the production yield of negative ions by desorption ionization of chemisorbed hydrogen atoms seems to be small, and the production is a minor mechanism.

  1. Isothermal Titration Calorimetry Measurements of Metal Ions Binding to Proteins.

    Science.gov (United States)

    Quinn, Colette F; Carpenter, Margaret C; Croteau, Molly L; Wilcox, Dean E

    2016-01-01

    ITC measurements involving metal ions are susceptible to a number of competing reactions (oxidation, precipitation, and hydrolysis) and coupled reactions involving the buffer and protons. Stabilization and delivery of the metal ion as a well-defined and well-characterized complex with the buffer, or a specific ligand, can suppress undesired solution chemistry and, depending on the stability of the metal complex, allow accurate measurements of higher affinity protein-binding sites. This requires, however, knowledge of the thermodynamics of formation of the metal complex and accounting for its contribution to the experimentally measured values (KITC and ΔHITC) through a post hoc analysis that provides the condition-independent binding thermodynamics (K, ΔG(o), ΔH, ΔS, and ΔCP). This analysis also quantifies the number of protons that are displaced when the metal ion binds to the protein.

  2. Local structure of alkalis in mixed-alkali borate glass to elucidate the origin of mixed-alkali effect

    Directory of Open Access Journals (Sweden)

    Yomei Tokuda

    2015-12-01

    Full Text Available We report the structural analysis of Na+ and Cs+ in sodium cesium borate crystals and glasses using 23Na and 133Cs magic-angle spinning nuclear magnetic resonance (MAS NMR spectroscopy. The composition dependence of NMR spectra of the borate was similar to that of the silicate: (1 the peak position of cesium borate crystals shifted to upfield for structures with larger Cs+ coordination numbers, (2 the MAS NMR spectra of xNa2O-yCs2O-3B2O3 (x = 0, 0.25, 0.5, 0.75, 1.0, x + y = 1 glass showed that the average coordination number (CN of both the alkali cations decreases with increasing Cs+/(Na+ + Cs+ ratio. However, the degree of decrement in borates is much smaller than that in silicates. We have considered that the small difference in CN is due to 4-coordinated B, because it is electrically compensated by the alkali metal ions resulting in the restriction of having various coordinations of O to alkali metal.

  3. On the interaction of metal-ions during mutual hydrolysis and coprecipitation with metal hydroxides

    International Nuclear Information System (INIS)

    Results of radiochemical and spectrophotometric studies of coprecipitation of hydrolytes are presented. Coprecipitation of 1μg of Cr(3) with hydroxides of Sn(4), Fe(3), Th, Be, Cd and Mg was studied. The interaction of partially hydrolyzed metal-ions proceeds with the formation of bridge bonds through mutual hydroxyls. Metal ions with less obvious acid properties in the given conditions act as a donor of hydroxyls, and, vice versa, ions of another metal posessing more vivid acid properties may be their acceptor. Hydrolysis of ions with the increasing of pA up to the formation of neutral hydrolysis forms promotes the formation of bridge bonds between interacting metal-ions, hydroxyls of the inner sphere of hydroxocomplexes of the both metals taking part in it

  4. Laccase Immobilization by Chelated Metal Ion Coordination Chemistry

    Directory of Open Access Journals (Sweden)

    Qingqing Wang

    2014-09-01

    Full Text Available In this work, amidoxime polyacrylonitrile (AOPAN nanofibrous membrane was prepared by a reaction between PAN nanofibers and hydroxylamine hydrochloride. The AOPAN nanofibrous membranes were used for four metal ions (Fe3+, Cu2+, Ni2+, Cd2+ chelation under different conditions. Further, the competition of different metal ions coordinating with AOPAN nanofibrous membrane was also studied. The AOPAN chelated with individual metal ion (Fe3+, Cu2+, Ni2+, Cd2+ and also the four mixed metal ions were further used for laccase (Lac immobilization. Compared with free laccase, the immobilized laccase showed better resistance to pH and temperature changes as well as improved storage stability. Among the four individual metal ion chelated membranes, the stability of the immobilized enzymes generally followed the order as Fe–AOPAN–Lac > Cu–AOPAN–Lac > Ni–AOPAN–Lac > Cd–AOPAN–Lac. In addition, the immobilized enzyme on the carrier of AOPAN chelated with four mixed metal ions showed the best properties.

  5. Functional identification of catalytic metal ion binding sites within RNA.

    Directory of Open Access Journals (Sweden)

    James L Hougland

    2005-09-01

    Full Text Available The viability of living systems depends inextricably on enzymes that catalyze phosphoryl transfer reactions. For many enzymes in this class, including several ribozymes, divalent metal ions serve as obligate cofactors. Understanding how metal ions mediate catalysis requires elucidation of metal ion interactions with both the enzyme and the substrate(s. In the Tetrahymena group I intron, previous work using atomic mutagenesis and quantitative analysis of metal ion rescue behavior identified three metal ions (MA, MB, and MC that make five interactions with the ribozyme substrates in the reaction's transition state. Here, we combine substrate atomic mutagenesis with site-specific phosphorothioate substitutions in the ribozyme backbone to develop a powerful, general strategy for defining the ligands of catalytic metal ions within RNA. In applying this strategy to the Tetrahymena group I intron, we have identified the pro-SP phosphoryl oxygen at nucleotide C262 as a ribozyme ligand for MC. Our findings establish a direct connection between the ribozyme core and the functionally defined model of the chemical transition state, thereby extending the known set of transition-state interactions and providing information critical for the application of the recent group I intron crystallographic structures to the understanding of catalysis.

  6. CO2 Extraction from Ambient Air Using Alkali-Metal Hydroxide Solutions Derived from Concrete Waste and Steel Slag

    Science.gov (United States)

    Stolaroff, J. K.; Lowry, G. V.; Keith, D. W.

    2003-12-01

    To mitigate global climate change, deep reductions in CO2 emissions are required in the coming decades. Carbon sequestration will play a crucial role in this reduction. Early adoption of carbon sequestration in low-cost niche markets will help develop the technology and experience required for large-scale deployment. One such niche may be the use of alkali metals from industrial waste streams to form carbonate minerals, a safe and stable means of sequestering carbon. In this research, the potential of using two industrial waste streams---concrete and steel slag---for sequestering carbon is assessed. The scheme is outlined as follows: Ca and Mg are leached with water from a finely ground bed of steel slag or concrete. The resulting solution is sprayed through air, capturing CO2 and forming solid carbonates, and collected. The feasibility of this scheme is explored with a combination of experiments, theoretical calculations, cost accounting, and literature review. The dissolution kinetics of steel slag and concrete as a function of particle size and pH is examined. In stirred batch reactors, the majority of Ca which dissolved did so within the first hour, yielding between 50 and 250 (mg; Ca)/(g; slag) and between 10 and 30 (mg; Ca)/(g; concrete). The kinetics of dissolution are thus taken to be sufficiently fast to support the type of scheme described above. As proof-of-concept, further experiments were performed where water was dripped slowly through a stagnant column of slag or concrete and collected at the bottom. Leachate Ca concentrations in the range of 15 mM were achieved --- sufficient to support the scheme. Using basic physical principles and numerical methods, the quantity of CO2 captured by falling droplets is estimated. Proportion of water loss and required pumping energy is similarly estimated. The results indicate that sprays are capable of capturing CO2 from the air and that the water and energy requirements are tractable. An example system for

  7. On the dynamics of liquid metal ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Mair, G.L.R.; Ganetsos, Th. [University of Athens, Department of Physics, Section of Solid State Physics, Panepistimiopolis, Zographos, Athens (Greece); Aidinis, C.J. [University of Athens, Department of Physics, Section of Applied Physics, Panepistimiopolis, Zographos, Athens (Greece)]. E-mail: caidinis@cc.uoa.gr; Bischoff, L. [Research Center Rossendorf Inc, Institute of Ion Beam and Materials Research, Dresden (Germany)

    2002-06-21

    The mechanisms governing the formation of the liquid metal cone that constitutes the basis of a liquid metal ion source (LMIS) are investigated. Cone formation times ranging from <20 ns up to several hundreds of ms have been reported in the literature. This paper attempts to explain these differences by devising a theoretical model that encompasses inertial and flow effects. (author)

  8. In Vivo Metal Ion Imaging Using Fluorescent Sensors.

    Science.gov (United States)

    Van de Bittner, Genevieve C; Hirayama, Tasuku

    2016-01-01

    In vivo imaging in living animals provides the ability to monitor alterations of signaling molecules, ions, and other biological components during various life stages and in disease. The data gained from in vivo imaging can be used for biological discovery or to determine elements of disease progression and can inform the development and translation of therapeutics. Herein, we present theories behind small-molecule, fluorescent, metal ion sensors as well as the methods for their successful application to in vivo metal ion imaging, including ex vivo validation. PMID:27283424

  9. In Vivo Metal Ion Imaging Using Fluorescent Sensors.

    Science.gov (United States)

    Van de Bittner, Genevieve C; Hirayama, Tasuku

    2016-01-01

    In vivo imaging in living animals provides the ability to monitor alterations of signaling molecules, ions, and other biological components during various life stages and in disease. The data gained from in vivo imaging can be used for biological discovery or to determine elements of disease progression and can inform the development and translation of therapeutics. Herein, we present theories behind small-molecule, fluorescent, metal ion sensors as well as the methods for their successful application to in vivo metal ion imaging, including ex vivo validation.

  10. Dispersion coefficients for the interactions of the alkali and alkaline-earth ions and inert gas atoms with a graphene layer

    CERN Document Server

    Kaur, Kiranpreet; Sahoo, B K

    2015-01-01

    Largely motivated by a number of applications, the van der Waals dispersion coefficients ($C_3$s) of the alkali ions (Li$^+$, Na$^+$, K$^+$ and Rb$^+$), the alkaline-earth ions (Ca$^+$, Sr$^+$, Ba$^+$ and Ra$^+$) and the inert gas atoms (He, Ne, Ar and Kr) with a graphene layer are determined precisely within the framework of Dirac model. For these calculations, we have evaluated the dynamic polarizabilities of the above atomic systems very accurately by evaluating the transition matrix elements employing relativistic many-body methods and using the experimental values of the excitation energies. The dispersion coefficients are, finally, given as functions of the separation distance of an atomic system from the graphene layer and the ambiance temperature during the interactions. For easy extraction of these coefficients, we give a logistic fit to the functional forms of the dispersion coefficients in terms of the separation distances at the room temperature.

  11. Metal ion toxins and brain aquaporin-4 expression: an overview

    OpenAIRE

    Adriana eXimenes-Da-Silva

    2016-01-01

    Metal ions such as iron, zinc, and manganese are essential to metabolic functions, protein synthesis, neurotransmission, and antioxidant neuroprotective mechanisms. Conversely, non-essential metals such as mercury and lead are sources of human intoxication due to occupational activities or environmental contamination. Essential or non-essential metal accumulation in the central nervous system (CNS) results in changes in blood-brain barrier (BBB) permeability, as well as triggering microglia a...

  12. Metal Ion Toxins and Brain Aquaporin-4 Expression: An Overview

    OpenAIRE

    Ximenes-da-Silva, Adriana

    2016-01-01

    Metal ions such as iron, zinc, and manganese are essential to metabolic functions, protein synthesis, neurotransmission, and antioxidant neuroprotective mechanisms. Conversely, non-essential metals such as mercury and lead are sources of human intoxication due to occupational activities or environmental contamination. Essential or non-essential metal accumulation in the central nervous system (CNS) results in changes in blood-brain barrier (BBB) permeability, as well as triggering microglia a...

  13. THE THEORETICAL STUDY OF ADSORPTION OF METAL IONS ON CHITOSAN

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The interactions between metal ions such as Zn2+, Pb2+, Mn2+, Hg2+, Cd2+, Ni2+ and chitosan have been investigated using the model cluster model method and density functional method. Full optimization and frequency analysis of all cluster models have been performed employing B3LYP hybrid method at 3-21G basis set level except metal ions which were invoked to use effective core potential (ECP) method. The energy changes, and the main structural parameters have been obtained during the theoretical study of the adsorption of metal ions on the chitosan. The calculations showed that the coordination modes of metal ions with chitosan models were different, the geometries of Mn2+, Zn2+, Cd2+, Hg2+, Pb2+ ions coordinated with two nitrogen atoms and two oxygen atoms were distorted tetrahedral, while the square planar structure of Ni2+ coordinated two nitrogen atoms and two oxygen atoms was observed. The heat of reaction between six metal ions and chitosan models showed the order: Mn2+ >Ni2+ >Zn2+ >Pb2+ >Hg2+ >Cd2+, this suggested that the coordination strength of Mn2+ >Ni2+ >Zn2+ >Pb2+ >Hg2+ >Cd2+.

  14. Activation analysis for measurements of silicon, phosphorus, alkali metals and other elements in high-purity metals

    International Nuclear Information System (INIS)

    In the present thesis, methods of activation analysis were developed for the determination of the elements silicon, phosphorus, potassium, sodium, i.a. in the high-purity metals vanadium, niobium, tantalum, tungsten, molybdenum and iron. The determination of silicon is based on the activation of samples with reactor neutrons, on a subsequent radiochemical separation of the tracer radionuclide 31Si resulting from the reaction 30Si(n,γ), and on the measurement of β activity with the help of a liquid scintillation measuring desk. Since the tracer radionuclide 31Si almost exclusively emits β rays which are not sufficiently nuclide-specific, silicon was selectively separated from the other sample elements by being distilled as silicon tetrafluoride. The processing of the residue following the separation of silicon permits a complementary gamma-spectroscopic determination of a whole lot of additional elements. Thus, the separation of the nuclide 182Ta with the anion exchanger Dowex 1X8 from HF/H2SO4 medium permits the determination of 22 elements in vanadium, niobium and tantalum. Phosphorus content is determined by activating the samples with rapid neutrons (cyclotrons) via the reaction 31P(n,p)31Si. (orig./MM)

  15. Metal ion implantation in inert polymers for strain gauge applications

    International Nuclear Information System (INIS)

    Metal ion implantation in inert polymers may produce ultra-thin conducting films below the polymer surface. These subsurface films are promising structures for strain gauge applications. To this purpose, polycarbonate substrates were irradiated at room temperature with low-energy metal ions (Cu+ and Ni+) and with fluences in the range between 1 x 1016 and 1 x 1017 ions/cm2, in order to promote the precipitation of dispersed metal nanoparticles or the formation of a continuous thin film. The nanoparticle morphology and the microstructural properties of polymer nanocomposites were investigated by glancing-incidence X-ray diffraction and transmission electron microscopy (TEM) measurements. At lower fluences (16 ions/cm2) a spontaneous precipitation of spherical-shaped metal nanoparticles occurred below the polymer top-surface (∼50 nm), whereas at higher fluences the aggregation of metal nanoparticles produced the formation of a continuous polycrystalline nanofilm. Furthermore, a characteristic surface plasmon resonance peak was observed for nanocomposites produced at lower ion fluences, due to the presence of Cu nanoparticles. A reduced electrical resistance of the near-surface metal-polymer nanocomposite was measured. The variation of electrical conductivity as a function of the applied surface load was measured: we found a linear relationship and a very small hysteresis.

  16. Hall transport of divalent metal ion modified DNA lattices

    International Nuclear Information System (INIS)

    We investigate the Hall transport characteristics of double-crossover divalent metal ion (Cu2+, Ni2+, Zn2+, and Co2+)-modified DNA (M-DNA) lattices grown on silica via substrate-assisted growth. The electronic characteristics of the M-DNA lattices are investigated by varying the concentration of the metal ions and then conducting Hall measurements, including resistivity, Hall mobility, carrier concentration, and magneto resistance. The tendency of the resistivity and Hall mobility was to initially decrease as the ion concentration increased, until reaching the saturation concentration (Cs) of each metal ion, and then to increase as the ion concentration increased further. On the other hand, the carrier concentration revealed the opposite tendency as the resistivity and Hall mobility. The specific binding (≤Cs) and the nonspecific aggregates (>Cs) of the ions into the DNA lattices were significantly affected by the Hall characteristics. The numerical ranges of the Hall parameters revealed that the M-DNA lattices with metal ions had semiconductor-like characteristics. Consequently, the distinct characteristics of the electrical transport through M-DNA lattices will provide useful information on the practical use of such structures in physical devices and chemical sensors

  17. A vacuum spark ion source: High charge state metal ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Yushkov, G. Yu., E-mail: gyushkov@mail.ru; Nikolaev, A. G.; Frolova, V. P. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Oks, E. M. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Tomsk State University of Control System and Radioelectronics, Tomsk 634050 (Russian Federation)

    2016-02-15

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  18. A vacuum spark ion source: High charge state metal ion beams

    Science.gov (United States)

    Yushkov, G. Yu.; Nikolaev, A. G.; Oks, E. M.; Frolova, V. P.

    2016-02-01

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  19. A vacuum spark ion source: High charge state metal ion beams

    International Nuclear Information System (INIS)

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described

  20. Synthesis and Characteristics of A Novel Heavy Metal Ions Chelator

    Institute of Scientific and Technical Information of China (English)

    LIU Zhuannian; SONG Yejing; HAN Xiaogang

    2012-01-01

    Polyacrylamide-urea-sulfanilamide(PUS) was prepared as a novel heavy metal ions chelator and successfully used to simultaneously remove heavy metals from wastewater effluents.The effects of reaction parameters (sodium hydroxide,material ratio,temprature and contact time) were monitored to specify the best synthesis conditions.PUS was chemically characterized by means of infrared spectroscopy (FTIR) and ultraviolet-visible (UV-Vis).The simultaneous chelation performance of PUS towards selected heavy metals ions,Ni2+,Cu2+,Pb2+,Zn2+,Cd2+ was discussed,showing that Ni2+,Cu2+,Pb2+,Zn2+ could be better chelated.It is indicated that the synthesized PUS is a potential remediation material when used for the treatment of wastewater containing metal ions.

  1. Effect of Glass Powder on Chloride Ion Transport and Alkali-aggregate Reaction Expansion of Lightweight Aggregate Concrete

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi; SHI Caijun; SONG Jianming

    2009-01-01

    The effects of glass powder on the strength development, chloride permeability and potential alkali-aggregate reaction expansion of lightweight aggregate concrete were investigated.Ground blast furnace slag, coal fly ash and silica fume were used as reference materials. The re-placement of cement with 25% glass powder slightly decreases the strengthes at 7 and 28 d, but shows no effect on 90 d's. Silica fume is very effective in improving both the strength and chloride penetra-tion resistance, while ground glass powder is much more effective than blast furnace slag and fly ash in improving chloride penetration resistance of the concrete. When expanded shale or clay is used as coarse aggregate, the concrete containing glass powder does not exhibit deleterious expansion even if alkali-reactive sand is used as fine aggregate of the concrete.

  2. Complexation-induced supramolecular assembly drives metal-ion extraction.

    Science.gov (United States)

    Ellis, Ross J; Meridiano, Yannick; Muller, Julie; Berthon, Laurence; Guilbaud, Philippe; Zorz, Nicole; Antonio, Mark R; Demars, Thomas; Zemb, Thomas

    2014-09-26

    Combining experiment with theory reveals the role of self-assembly and complexation in metal-ion transfer through the water-oil interface. The coordinating metal salt Eu(NO3)3 was extracted from water into oil by a lipophilic neutral amphiphile. Molecular dynamics simulations were coupled to experimental spectroscopic and X-ray scattering techniques to investigate how local coordination interactions between the metal ion and ligands in the organic phase combine with long-range interactions to produce spontaneous changes in the solvent microstructure. Extraction of the Eu(3+)-3(NO3(-)) ion pairs involves incorporation of the "hard" metal complex into the core of "soft" aggregates. This seeds the formation of reverse micelles that draw the water and "free" amphiphile into nanoscale hydrophilic domains. The reverse micelles interact through attractive van der Waals interactions and coalesce into rod-shaped polynuclear Eu(III) -containing aggregates with metal centers bridged by nitrate. These preorganized hydrophilic domains, containing high densities of O-donor ligands and anions, provide improved Eu(III) solvation environments that help drive interfacial transfer, as is reflected by the increasing Eu(III) partitioning ratios (oil/aqueous) despite the organic phase approaching saturation. For the first time, this multiscale approach links metal-ion coordination with nanoscale structure to reveal the free-energy balance that drives the phase transfer of neutral metal salts. PMID:25169678

  3. A new approach for understanding ion transport in glasses; example of complex alkali diborate glasses containing lead, bismuth and tellurium oxides

    Indian Academy of Sciences (India)

    V C Veeranna Gowda; C Narayana Reddy; K J Rao

    2013-02-01

    Mechanism of ion transport in glasses continues to be incompletely understood. Several of the theoretical models in vogue fail to rationalize conductivity behaviour when d.c. and a.c. measurements are considered together. While they seem to involve the presence of at least two components in d.c. activation energy, experiments fail to reveal that feature. Further, only minor importance is given to the influence of structure of the glass on the ionic conductivity behaviour. In this paper, we have examined several general aspects of ion transport taking the example of ionically conducting glasses in pseudo binary, Na2B4O7.(1−) M$_{a}$O$_{b}$ (with = 0.25–0.79 and M$_{a}$O$_{b}$ = PbO, TeO2 and Bi2O3) system of glasses which have also been recently characterized. Ion transport in them has been studied in detail. We have proposed that non-bridging oxygen (NBO) participation is crucial to the understanding of the observed conductivity behaviour. NBO–BO switching is projected as the first important step in ion transport and alkali ion jump is a subsequent event with a characteristically lower barrier which is, therefore, not observed in any study. All important observations in d.c. and a.c. transport in glasses are found consistent with this model.

  4. Coordination Chemistry of Alkali and Alkaline-Earth Cations with Macrocyclic Ligands.

    Science.gov (United States)

    Dietrich, Bernard

    1985-01-01

    Discusses: (l) alkali and alkaline-earth cations in biology (considering naturally occurring lonophores, their X-ray structures, and physiochemical studies); (2) synthetic complexing agents for groups IA and IIA; and (3) ion transport across membranes (examining neutral macrobicyclic ligands as metal cation carriers, transport by anionic carriers,…

  5. Calculation of van der Walls coefficients of alkali metal clusters by hydrodynamic approach to time-dependent density-functional theory

    CERN Document Server

    Banerjee, A; Banerjee, Arup; Harbola, Manoj K.

    2004-01-01

    In this paper we employ the hydrodynamic formulation of time-dependent density functional theory to obtain the van der Waal coefficients $C_{6}$ and $C_{8}$ of alkali-metal clusters of various sizes including very large clusters. Such calculation becomes computationally very demanding in the orbital-based Kohn-Sham formalism, but quite simple in the hydrodynamic approach. We show that for interactions between the clusters of same sizes, $C_{6}$ and $C_{8}$ sale as the sixth and the eighth power of the cluster radius rsepectively, and approach the respective classically predicted values for the large size clusters.

  6. High-temperature, high-pressure hydrothermal synthesis, characterization, and structural relationships of mixed-alkali metals uranyl silicates

    Science.gov (United States)

    Chen, Yi-Hsin; Liu, Hsin-Kuan; Chang, Wen-Jung; Tzou, Der-Lii; Lii, Kwang-Hwa

    2016-04-01

    Three mixed-alkali metals uranyl silicates, Na3K3[(UO2)3(Si2O7)2]·2H2O (1), Na3Rb3[(UO2)3(Si2O7)2] (2), and Na6Rb4[(UO2)4Si12O33] (3), have been synthesized by high-temperature, high-pressure hydrothermal reactions at 550 °C and 1440 bar, and characterized by single-crystal X-ray diffraction, photoluminescence, and thermogravimetric analysis. Compound 1 and 2 are isostructural and contain layers of uranyl disilicate. The smaller cation, Na+, is located in the intralayer channels, whereas the larger cations, K+ and Rb+, and water molecule are located in the interlayer region. The absence of lattice water in 2 can be understood according to the valence-matching principle. The structure is related to that of a previously reported mixed-valence uranium(V,VI) silicate. Compound 3 adopts a 3D framework structure and contains a unique unbranched dreier fourfold silicate chain with the structural formula {uB,41∞}[3Si12O33] formed of Q2, Q3, and Q4 Si. The connectivity of the Si atoms in the Si12O3318- anion can be interpreted on the basis of Zintl-Klemm concept. Crystal data for compound 1: triclinic, P-1, a=5.7981(2) Å, b=7.5875(3) Å, c=12.8068(5) Å, α=103.593(2)°, β=102.879(2)°, γ=90.064(2)°, V=533.00(3) Å3, Z=1, R1=0.0278; compound 2: triclinic, P-1, a=5.7993(3) Å, b=7.5745(3) Å, c=12.9369(6) Å, α=78.265(2)°, β=79.137(2)°, γ=89.936(2)°, V=546.02(4) Å3, Z=1, R1=0.0287; compound 3: monoclinic, C2/m, a=23.748(1) Å, b=7.3301(3) Å, c=15.2556(7) Å, β=129.116(2)°, V=2060.4(2) Å3, Z=2, R1=0.0304.

  7. Spectrum, radial wave functions, and hyperfine splittings of the Rydberg states in heavy alkali-metal atoms

    Science.gov (United States)

    Sanayei, Ali; Schopohl, Nils

    2016-07-01

    We present numerically accurate calculations of the bound-state spectrum of the highly excited valence electron in the heavy alkali-metal atoms solving the radial Schrödinger eigenvalue problem with a modern spectral collocation method that applies also for a large principal quantum number n ≫1 . As an effective single-particle potential we favor the reputable potential of Marinescu et al. [Phys. Rev. A 49, 982 (1994)], 10.1103/PhysRevA.49.982. Recent quasiclassical calculations of the quantum defect of the valence electron agree for orbital angular momentum l =0 ,1 ,2 ,... overall remarkably well with the results of the numerical calculations, but for the Rydberg states of rubidium and also cesium with l =3 this agreement is less fair. The reason for this anomaly is that in rubidium and cesium the potential acquires for l =3 deep inside the ionic core a second classical region, thus invalidating a standard Wentzel-Kramers-Brillouin (WKB) calculation with two widely spaced turning points. Comparing then our numerical solutions of the radial Schrödinger eigenvalue problem with the uniform analytic WKB approximation of Langer constructed around the remote turning point rn,j ,l (" close=")n -δ0)">+ we observe everywhere a remarkable agreement, apart from a tiny region around the inner turning point rn,j ,l (-). For s states the centrifugal barrier is absent and no inner turning point exists: rn,j ,0 (-)=0 . With the help of an ansatz proposed by Fock we obtain for the s states a second uniform analytic approximation to the radial wave function complementary to the WKB approximation of Langer, which is exact for r →0+ . From the patching condition, that is, for l =0 the Langer and Fock solutions should agree in the intermediate region 0 application we consider recent spectroscopic data for the hyperfine splittings of the isotopes 85Rb and 87Rb and find a remarkable agreement with the predicted scaling relation An,j ,0 (HFS )=const .

  8. Therapeutic redistribution of metal ions to treat Alzheimer's disease.

    Science.gov (United States)

    Crouch, Peter J; Barnham, Kevin J

    2012-09-18

    Currently, therapeutics that modify Alzheimer's disease (AD)are not available. Increasing age is the primary risk factor for AD and due to an aging global population the urgent need for effective therapeutics increases every year. This Account presents the development of an AD treatment strategy that incorporates diverse compounds with a common characteristic: the ability to redistribute metal ions within the brain. Central to cognitive decline in AD is the amyloid-β peptide (Aβ) that accumulates in the AD brain. A range of therapeutic strategies have been developed based on the premise that decreasing the brain Aβ burden will attenuate the severity of the disease symptoms. Unfortunately these treatments have failed to show any positive outcomes in large-scale clinical trials, raising many questions regarding whether therapeutics for AD can rely solely on decreasing Aβ levels. An alternate strategy is to target the interaction between Aβ and metal ions using compounds with the potential to redistribute metal ions within the brain. The original rationale for this strategy came from studies showing that metal ions promote Aβ toxicity and aggregation. In initial studies using the prototype metal-chelating compound clioquinol (CQ), CQ prevented Aβ toxicity in vitro, out-competed Aβ for metal ions without affecting the activity of metal-dependent enzymes, and attenuated the rate of cognitive decline in AD subjects in a small phase II clinical trial. All these outcomes were consistent with the original hypothesized mechanism of action for CQ where prevention or reversal of the extracellular Aβ-metal interactions could prevent Aβ toxicity. Soon after the completion of these studies, a new body of work began to suggest that this hypothesized mechanism of action for CQ was simplistic and that other factors were also important for the positive therapeutic outcomes. Perhaps most significantly, it was shown that after CQ sequesters metal ions the neutral CQ-metal

  9. Characterization of Anthraquinone-DerivedRedox Switchable Ionophores and Their Complexes with Li+, Na+, K+, Ca+, and Mg+ Metal Ions

    Directory of Open Access Journals (Sweden)

    Vaishali Vyas

    2011-01-01

    Full Text Available Anthraquinone derived redox switchable ionophores 1,5 bis (2-(2-(2-ethoxy ethoxy ethoxyanthracene-9,10-dione (V1 and 1,8-bis(2-(2-(2-ethoxyethoxyethoxy anthracene—9,10-dione (V2 have been used for isolation, extraction and liquid membrane transport studies of Li+, Na+, K+, Ca2+ and Mg2+ metal ions. These isolated complexes were characterized by melting point determination, CV and IR, 1H NMR spectral analysis. Ionophore V2 shows maximum shift in reduction potential (ΔE with Ca(Pic2. The observed sequence for the shifting in reduction potential (ΔE between V2 and their complexes is V2 calcium picrate (42 mV > V2 potassium picrate (33 mV > V2 lithium picrate (25 mV > V2 sodium picrate (18 mV > V2 magnesium picrate (15 mV. These findings are also supported by results of extraction, back extraction and transport studies. Ionophore V2 complexed with KPic and showed much higher extractability and selectivity towards K+ than V1. These synthetic ionophores show positive and negative cooperativity towards alkali and alkaline earth metal ions in reduced and oxidized state. Hence, this property can be used in selective separation and enrichment of metal ions using electrochemically driven ion transport.

  10. Metal ions potentiate microglia responsiveness to endotoxin.

    Science.gov (United States)

    Rachmawati, Dessy; Peferoen, Laura A N; Vogel, Daphne Y S; Alsalem, Inás W A; Amor, Sandra; Bontkes, Hetty J; von Blomberg, B Mary E; Scheper, Rik J; van Hoogstraten, Ingrid M W

    2016-02-15

    Oral metal exposure has been associated with diverse adverse reactions, including neurotoxicity. We showed previously that dentally applied metals activate dendritic cells (MoDC) via TLR4 (Ni, Co, Pd) and TLR3 (Au). It is still unknown whether the low levels of dental metals reaching the brain can trigger local innate cells or prime them to become more responsive. Here we tested whether dentally applied metals (Cr, Fe, Co, Ni, Cu, Zn, Au, Hg) activate primary human microglia in vitro and, as a model, monocytic THP-1-cells, in high non-toxic as well as near-physiological concentrations. In addition the effects of 'near-physiological' metal exposure on endotoxin (LPS) responsiveness of these cells were evaluated. IL-8 and IL-6 production after 24h was used as read out. In high, non-toxic concentrations all transition metals except Cr induced IL-8 and IL-6 production in microglia, with Ni and Co providing the strongest stimulation. When using near-physiological doses (up to 10× the normal plasma concentration), only Zn and Cu induced significant IL-8 production. Of note, the latter metals also markedly potentiated LPS responsiveness of microglia and THP-1 cells. In conclusion, transition metals activate microglia similar to MoDCs. In near-physiological concentrations Zn and Cu are the most effective mediators of innate immune activation. A clear synergism between innate responses to Zn/Cu and LPS was observed, shedding new light on the possible relation between oral metal exposure and neurotoxicity.

  11. Interactions Between Metal Ions and Carbohydrates: Coordination Behavior of D-Ribose to Lanthanide Ions

    Institute of Scientific and Technical Information of China (English)

    苏允兰; 杨丽敏; 翁诗甫; 吴瑾光

    2002-01-01

    Lanthanum chloride α-D-ribopyranose pentahydrate complex was prepared and speculated its structure from the similar IR spectra of corresponding praseodymium and neodymium-D-ribose complexes, which reveal the coordination behavior of D-ribose to lanthanide ions and give us a model of the interactions between metal ions and carbohydrates.

  12. Ab Initio Molecular Dynamics Study on the Interactions between Carboxylate Ions and Metal Ions in Water.

    Science.gov (United States)

    Mehandzhiyski, Aleksandar Y; Riccardi, Enrico; van Erp, Titus S; Trinh, Thuat T; Grimes, Brian A

    2015-08-20

    The interaction between a carboxylate anion (deprotonated propanoic acid) and the divalent Mg(2+), Ca(2+), Sr(2+), Ba(2+) metal ions is studied via ab initio molecular dynamics. The main focus of the study is the selectivity of the carboxylate-metal ion interaction in aqueous solution. The interaction is modeled by explicitly accounting for the solvent molecules on a DFT level. The hydration energies of the metal ions along with their diffusion and mobility coefficients are determined and a trend correlated with their ionic radius is found. Subsequently, a series of 16 constrained molecular dynamics simulations for every ion is performed, and the interaction free energy is obtained from thermodynamic integration of the forces between the metal ion and the carboxylate ion. The results indicate that the magnesium ion interacts most strongly with the carboxylate, followed by calcium, strontium, and barium. Because the interaction free energy is not enough to explain the selectivity of the reaction observed experimentally, more detailed analysis is performed on the simulation trajectories to understand the steric changes in the reaction complex during dissociation. The solvent dynamics appear to play an important role during the dissociation of the complex and also in the observed selectivity behavior of the divalent ions.

  13. L electron populations of hollow ions produced in collisions of energetic Ar ions with metallic targets

    International Nuclear Information System (INIS)

    In this work, we studied hollow ions produced in collisions of Ar ions with metallic targets of atomic numbers 12 ∝ 73, at incident energies 43 ∝ 95 MeV. We observed Kα hypersatellites and satellites of Ar ions and obtained L shell electron populations with vacant and half vacant K shell. The results are very different to those reported for hollow atoms formed in slow collisions. (orig.)

  14. Low coefficient of thermal expansion polyimides containing metal ion additives

    Science.gov (United States)

    Stoakley, D. M.; St. Clair, A. K.

    1992-01-01

    Polyimides have become widely used as high performance polymers as a result of their excellent thermal stability and toughness. However, lowering their coefficient of thermal expansion (CTE) would increase their usefulness for aerospace and electronic applications where dimensional stability is a requirement. The incorporation of metal ion-containing additives into polyimides, resulting in significantly lowered CTE's, has been studied. Various metal ion additives have been added to both polyamic acid resins and soluble polyimide solutions in the concentration range of 4-23 weight percent. The incorporation of these metal ions has resulted in reductions in the CTE's of the control polyimides of 12 percent to over 100 percent depending on the choice of additive and its concentration.

  15. Sensitive Determination of DNA by RLS Enhancement of Metal Ions

    Institute of Scientific and Technical Information of China (English)

    Huang Jian-ping; Chen Fang; Ai Xin-ping; He Zhi-ke

    2004-01-01

    The interactions between metal ions and DNA have been studied by the resonance light scattering (RLS) spectra. In the acidic condition, the RLS signals of metal ions, especially the transition metal ions in group ⅠB and ⅡB, were increased by DNA. And it is found that the enhancement of RLS signals is linear to the concentration of DNA, so the RLS method for DNA determination was proposed in the presence of Cu2+. On the optimum conditions, the linear range and the detect limit of ctDNA is 4×10-8-4×10-6 g·5mL-1 and 1.13×10-8 g·5mL-1, respectively. The proposed method is successfully applied to determine the extracted plasmid DNA of Bacillus subtilis DB104.

  16. INCORPORATION OF METAL IONS INTO POLYPHENYLQUINOXALINE

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chi; LU Fengcai

    1987-01-01

    FeCl3·6H2O, NiCl2, CuCl2, ZnCl2 and CrCl3 have been incorporated into polyphenylquinoxaline by a new method. High-quality, flexible, glass-cast films have been obtained which exhibit increased glass transition temperature and excellent thermal stability. Moduli and tensile strengths of the metal-containing polyphenylquinoxaline films increase surprisingly at elevated temperature. Electrical resistivities of these films fall in the same order range as polyphenylquinoxaline alone. X-ray photoelectron spectroscopic study of metal-containing polyphenylquinoxaline films shows that all metals in these films are present in the ionic state, there is charge transfer between nitrogen of polyphenylquinoxaline and Cu2+, Zn2+ of CuCl2, ZnCl2 containing polyphenylquinoxaline films.

  17. Determination of Some Heavy-metal-ions Using a Sulfur Ion Modified BZ Oscillating System

    Institute of Scientific and Technical Information of China (English)

    Hua CHEN; Wu YANG; Hong Xia DAI; Xiao Xia WEI; Jie QU; Jin Zhang GAO

    2006-01-01

    A highly sensitive method is developed for the determination of trace amounts of some heavy metal ions in aqueous solution based on the classical Belousov-Zhabotinskii (BZ) oscillating chemical system. Introducing of S2- ion makes the new oscillating system Ce(SO4)2 - KBrO3-CH2(COOH)2 - Na2S - H2SO4 have to a high sensitivity for some heavy metal ions such as Ag+,pb2+, Hg2+, Cd2+, Cu2+and Bi3+ with detection limits down to 10-12 mol. L-1.

  18. Metal ion coordination, conditional stability constants, and solution behavior of chelating surfactant metal complexes.

    Science.gov (United States)

    Svanedal, Ida; Boija, Susanne; Almesåker, Ann; Persson, Gerd; Andersson, Fredrik; Hedenström, Erik; Bylund, Dan; Norgren, Magnus; Edlund, Håkan

    2014-04-29

    Coordination complexes of some divalent metal ions with the DTPA (diethylenetriaminepentaacetic acid)-based chelating surfactant 2-dodecyldiethylenetriaminepentaacetic acid (4-C12-DTPA) have been examined in terms of chelation and solution behavior. The headgroup of 4-C12-DTPA contains eight donor atoms that can participate in the coordination of a metal ion. Conditional stability constants for five transition metal complexes with 4-C12-DTPA were determined by competition measurements between 4-C12-DTPA and DTPA, using electrospray ionization mass spectrometry (ESI-MS). Small differences in the relative strength between the coordination complexes of DTPA and 4-C12-DTPA indicated that the hydrocarbon tail only affected the chelating ability of the headgroup to a limited extent. The coordination of Cu(2+) ions was investigated in particular, using UV-visible spectroscopy. By constructing Job's plots, it was found that 4-C12-DTPA could coordinate up to two Cu(2+) ions. Surface tension measurements and NMR diffusometry showed that the coordination of metal ions affected the solution behavior of 4-C12-DTPA, but there were no specific trends between the studied divalent metal complexes. Generally, the effects of the metal ion coordination could be linked to the neutralization of the headgroup charge of 4-C12-DTPA, and the resulting reduced electrostatic repulsions between adjacent surfactants in micelles and monolayers. The pH vs concentration plots, on the other hand, showed a distinct difference between 4-C12-DTPA complexes of the alkaline earth metals and the transition metals. This was explained by the difference in coordination between the two groups of metal ions, as predicted by the hard and soft acid and base (HSAB) theory.

  19. Stopping powers of metallic elements for high energy ions

    International Nuclear Information System (INIS)

    The stopping powers of metallic elements have been measured for 55, 65 and 73 MeV protons and for 13 MeV/u 4He and 12C ions using a high resolution magnetic spectrograph. Analyzing experimental data for protons with the Bethe-Bloch formula, we deduced mean excitation energies for 10 metallic elements. The magnitude of the Barkas correction was extracted from the stopping power difference for 4He and 12C ions at the same velocity which was found to consistent with that measured in previous experiments. (Author)

  20. Smart responsive microcapsules capable of recognizing heavy metal ions.

    Science.gov (United States)

    Pi, Shuo-Wei; Ju, Xiao-Jie; Wu, Han-Guang; Xie, Rui; Chu, Liang-Yin

    2010-09-15

    Smart responsive microcapsules capable of recognizing heavy metal ions are successfully prepared with oil-in-water-in-oil double emulsions as templates for polymerization in this study. The microcapsules are featured with thin poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide) (P(NIPAM-co-BCAm)) membranes, and they can selectively recognize special heavy metal ions such as barium(II) or lead(II) ions very well due to the "host-guest" complexation between the BCAm receptors and barium(II) or lead(II) ions. The stable BCAm/Ba(2+) or BCAm/Pb(2+) complexes in the P(NIPAM-co-BCAm) membrane cause a positive shift of the volume phase transition temperature of the crosslinked P(NIPAM-co-BCAm) hydrogel to a higher temperature, and the repulsion among the charged BCAm/Ba(2+) or BCAm/Pb(2+) complexes and the osmotic pressure within the P(NIPAM-co-BCAm) membranes result in the swelling of microcapsules. Induced by recognizing barium(II) or lead(II) ions, the prepared microcapsules with P(NIPAM-co-BCAm) membranes exhibit isothermal and significant swelling not only in outer and inner diameters but also in the membrane thickness. The proposed microcapsules in this study are highly attractive for developing smart sensors and/or carriers for detection and/or elimination of heavy metal ions.

  1. Smart responsive microcapsules capable of recognizing heavy metal ions.

    Science.gov (United States)

    Pi, Shuo-Wei; Ju, Xiao-Jie; Wu, Han-Guang; Xie, Rui; Chu, Liang-Yin

    2010-09-15

    Smart responsive microcapsules capable of recognizing heavy metal ions are successfully prepared with oil-in-water-in-oil double emulsions as templates for polymerization in this study. The microcapsules are featured with thin poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide) (P(NIPAM-co-BCAm)) membranes, and they can selectively recognize special heavy metal ions such as barium(II) or lead(II) ions very well due to the "host-guest" complexation between the BCAm receptors and barium(II) or lead(II) ions. The stable BCAm/Ba(2+) or BCAm/Pb(2+) complexes in the P(NIPAM-co-BCAm) membrane cause a positive shift of the volume phase transition temperature of the crosslinked P(NIPAM-co-BCAm) hydrogel to a higher temperature, and the repulsion among the charged BCAm/Ba(2+) or BCAm/Pb(2+) complexes and the osmotic pressure within the P(NIPAM-co-BCAm) membranes result in the swelling of microcapsules. Induced by recognizing barium(II) or lead(II) ions, the prepared microcapsules with P(NIPAM-co-BCAm) membranes exhibit isothermal and significant swelling not only in outer and inner diameters but also in the membrane thickness. The proposed microcapsules in this study are highly attractive for developing smart sensors and/or carriers for detection and/or elimination of heavy metal ions. PMID:20656104

  2. Independent cross-sections of alkali isotopes produced in various targets bombarded by $^{12}C$ and $^{18}O$ ions up to 77 MeV/amu

    CERN Document Server

    De Saint-Simon, M; Coc, A; Epherre-Rey-Campagnolle, Marcelle; Guimbal, P; Haan, S; Langevin, M; Müller, A C; Thibault, C; Touchard, F

    1982-01-01

    The authors report on an online mass-spectrometric study of the isotopic distributions of nuclear reaction products. The two purposes of this experiment are the investigation of a particular aspect of reaction-mechanisms and the study of the possibility for exotic-nuclei production. The measurements have been carried out with the 86 MeV/amu /sup 12/C and /sup 18/O beams of the synchrocyclotron SC (CERN). By degradation in different sets of graphite slabs, three different energies: 13, 27 and 77 MeV/amu have been chosen. Due to the chemical selectivity for the alkali elements of the device, the isotopic distributions of Li, Na, K, Rb, Cs and Fr were measured in four targets: C, Nb, Ta and U. The independent yields obtained by direct ion counting are converted in cross-sections using a calibration of T. Lund et al.

  3. Production of Synthesis Gas via Methane Reforming with CO2 on Ni/SiO2 Catalysts Promoted by Alkali and Alkaline Earth Metals

    Institute of Scientific and Technical Information of China (English)

    陈平; 侯昭胤; 郑小明

    2005-01-01

    Ni/SiO2 catalysts promoted by alkali metals K and Cs or alkaline earth metals Mg, Ca, Sr and Ba were prepared, characterized by H2-TPR and XRD, and used for the production of synthesis gas via methane reforming with CO2. Though K and Cs promoted Ni catalysts could eliminate coke deposition, the reforming activity of these promoted catalysts was decreased heavily. Mg and Ca promoted Ni/SiO2 catalysts exhibited excellent coke resistance ability with minor loss of the reforming activity of Ni/SiO2. Ba showed poor coke resistance ability and small amount of Sr increased the formation of coke. The possible mechanism of these promoters was discussed.

  4. Removal and recovery of toxic metal ions from aqueous waste sites using polymer pendant ligands

    Energy Technology Data Exchange (ETDEWEB)

    Fish, D. [Lawrence Berkeley National Lab., CA (United States)

    1996-10-01

    The purpose of this project is to investigate the use of polymer pendant ligand technology to remove and recover toxic metal ions from DOE aqueous waste sites. Polymer pendant lgiands are organic ligands, anchored to crosslinked, modified divinylbenzene-polystyrene beads, that can selectively complex metal ions. The metal ion removal step usually occurs through a complexation or ion exchange phenomena, thus recovery of the metal ions and reuse of the beads is readily accomplished.

  5. Density of mixed alkali borate glasses: A structural analysis

    Energy Technology Data Exchange (ETDEWEB)

    Doweidar, H. [Glass Research Group, Physics Department, Faculty of Science, Mansoura University, P.O. Box 83, Mansoura 35516 (Egypt)]. E-mail: hdoweidar@mans.edu.eg; El-Damrawi, G.M. [Glass Research Group, Physics Department, Faculty of Science, Mansoura University, P.O. Box 83, Mansoura 35516 (Egypt); Moustafa, Y.M. [Glass Research Group, Physics Department, Faculty of Science, Mansoura University, P.O. Box 83, Mansoura 35516 (Egypt); Ramadan, R.M. [Glass Research Group, Physics Department, Faculty of Science, Mansoura University, P.O. Box 83, Mansoura 35516 (Egypt)

    2005-05-15

    Density of mixed alkali borate glasses has been correlated with the glass structure. It is assumed that in such glasses each alkali oxide associates with a proportional quantity of B{sub 2}O{sub 3}. The number of BO{sub 3} and BO{sub 4} units related to each type of alkali oxide depends on the total concentration of alkali oxide. It is concluded that in mixed alkali borate glasses the volumes of structural units related to an alkali ion are the same as in the corresponding binary alkali borate glass. This reveals that each type of alkali oxide forms its own borate matrix and behaves as if not affected with the presence of the other alkali oxide. Similar conclusions are valid for borate glasses with three types of alkali oxide.

  6. Aqueous corrosion behaviour of ion-implanted metals

    International Nuclear Information System (INIS)

    We can now look back at 10 years of application of ion beams in corrosion studies. Therefore, after the introduction, we first attempt to give an overview of what has been accomplished during this period in the field of aqueous corrosion, with emphasis on developments in more recent years. Then we present a more detailed discussion of some particular examples of research which make use of different types of corrosion protection mechanism as well as applications of different types of ion beam technique to metal surfaces. These examples include the application of ion beam mixing and ion-beam-assisted vapour deposition to (i) the prevention of localized corrosion, (ii) the reduction of hydrogen uptake by metals (the formation of 'migration barriers'), (iii) corrosion protection by means of ion-beam-mixed monolayers and multilayers of aluminium and boron and (iv) ion-beam-modified carbon layers and their influence on the corrosion of mild steel. Following these examples, we attempt to deduce recommendations for the future application of ion beams in corrosion science. (orig.)

  7. Metal ion release from electric guitar strings in artificial sweat

    Energy Technology Data Exchange (ETDEWEB)

    Rezic, Iva [Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, Prilaz Baruna Filipovica 28a, 10000 Zagreb (Croatia)], E-mail: iva_rezic@net.hr; Curkovic, Lidija [Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb (Croatia); Ujevic, Magdalena [Croatian Institute of Public Health, Zagreb, Croatia (Croatia)

    2009-09-15

    The aim of this study was to monitor the dissolution of metal ions from electric guitar strings. For characterization of investigated strings, two independent methods of analysis were chosen: ICP-OES and AAS. Electric guitar strings consisted of two separate parts: Sn-plated steel core wire which was hexagonal in cross section and Ni-plated steel wrap which was round in cross section. Dissolution of Ni{sup 2+}, Mn{sup 2+}, Si{sup 4+}, Sn{sup 2+} and Fe{sup 3+} ions from electric guitar strings E6 and D4 were measured as a function of time in artificial sweat solution, at temperature of 37 deg. C according to the EN 1811:1999 standard test procedure. The determination of the amount of the metal ions released in the corrosive solutions was carried out by means of inductively coupled plasma-optical emission spectroscopy (ICP-OES). The mechanism of metal ions eluted in artificial sweat is discussed. The concentrations of dissolved metal ions in corrosive solution from E6 and D4 strings are decreasing in the following order: Fe{sup 3+} > Sn{sup 2+} > Mn{sup 2+} > Si{sup 4+} > Ni{sup 2+}. Among all investigated metal ions, nickel is far the most allergenic. Since the amounts of the eluted Ni{sup 2+} did not exceed 0.5 {mu}g cm{sup -2} week{sup -1}, the investigated electric guitar strings should not induce contact dermatitis.

  8. Formation of Metal-Related Ions in Matrix-Assisted Laser Desorption Ionization

    Science.gov (United States)

    Lee, Chuping; Lu, I.-Chung; Hsu, Hsu Chen; Lin, Hou-Yu; Liang, Sheng-Ping; Lee, Yuan-Tseh; Ni, Chi-Kung

    2016-09-01

    In a study of the metal-related ion generation mechanism in matrix-assisted laser desorption ionization (MALDI), crystals of matrix used in MALDI were grown from matrix- and salt-containing solutions. The intensities of metal ion and metal adducts of the matrix ion obtained from unwashed crystals were higher than those from crystals washed with deionized water, indicating that metal ions and metal adducts of the matrix ions are mainly generated from the surface of crystals. The contributions of preformed metal ions and metal adducts of the matrix ions inside the matrix crystals were minor. Metal adducts of the matrix and analyte ion intensities generated from a mixture of dried matrix, salt, and analyte powders were similar to or higher than those generated from the powder of dried droplet crystals, indicating that the contributions of the preformed metal adducts of the matrix and analyte ions were insignificant. Correlation between metal-related ion intensity fluctuation and protonated ion intensity fluctuation was observed, indicating that the generation mechanism of the metal-related ions is similar to that of the protonated ions. Because the thermally induced proton transfer model effectively describes the generation of the protonated ions, we suggest that metal-related ions are mainly generated from the salt dissolution in the matrix melted by the laser.

  9. Two-photon photoemission investigation of electronic and dynamical properties of alkali atoms adsorbed on noble metal surfaces

    Science.gov (United States)

    Sametoglu, Vahit

    We present a systematic time-resolved two-photon photoemission study of the electronic and dynamical properties of Li through Cs adsorbed on Cu(111) and Ag(111) surfaces. A fundamental problem in surface science is how to describe the electronic structure of a chemisorption interface based on the intrinsic properties of the interacting materials. Because of their simple s-electron structure, elements of the alkali atom group comprise paradigmatic adsorbates in many theories of chemisorption, whereas the complementary experimental studies are sparse and incomplete. Through a combination of spectroscopic and femtosecond time-resolved surface measurements, we are able to probe systematically the binding energies, symmetries, and electron and nuclear relaxation dynamics of the initially unoccupied alkali atom resonances. As a prelude, we study the two-photon photoemission process occurring at the bare Ag(111) surface. We develop a quantitative model for two-photon photoemission process, where the nonresonant and k-dependent two-photon absorption between the lower and upper sp-bands is modeled by the optical Bloch equations, and the angle-dependent intensities are described by the Fresnel equations. Our two-photon photoemission spectra of Li through Cs chemisorbed Cu(111) and Ag(111) surfaces reveal two resonances with the m = 0 and m = +/-1 symmetry ('m' is the projection of the orbital angular momentum 'l' onto the surface plane). For the m = 0 resonance, which is derived from the hybridization of the ns and npz orbitals of alkali atoms, we find a binding energy of 1.84--1.99 eV below the vacuum level, which is independent of the alkali atom period, and tunes with coverage in a universal manner. At 0.3--0.7 eV higher energy, we discover and identify the m = +/-1 resonance by its characteristic angular intensity distribution, which derives from the antisymmetry of the npx and npy orbitals. We implement a quantitative model for the alkali atom chemisorption based on the

  10. Chromium and cobalt ion concentrations in blood and serum following various types of metal-on-metal hip arthroplasties

    DEFF Research Database (Denmark)

    Jantzen, Christopher; Jørgensen, Henrik L; Duus, Benn R;

    2013-01-01

    Widely different metal ion concentrations in blood and serum have been reported with metal-on-metal (MoM) implants. We reviewed the literature on blood and serum ion concentrations of chromium (Cr) and cobalt (Co) following various MoM hip arthroplasties.......Widely different metal ion concentrations in blood and serum have been reported with metal-on-metal (MoM) implants. We reviewed the literature on blood and serum ion concentrations of chromium (Cr) and cobalt (Co) following various MoM hip arthroplasties....

  11. Impact of metal ions on netilmicin-melanin interaction.

    Science.gov (United States)

    Wrześniok, Dorota; Buszman, Ewa; Grzegorczyk, Magdalena; Grzegorczyk, Aneta; Hryniewicz, Tomasz

    2012-01-01

    Netilmicin, which is mainly used as the sulfate, is a semisynthetic, water soluble aminoglycoside antibiotic obtained by chemical modification of sisomicin. It is active against both Gram-positive and Gram-negative bacteria, including strains which are resistant to other aminoglycosides. Netilmicin form complexes with melanin. The aim of the presented work was to examine the effect of Cu2+, Zn2+, Ca2+ and Mg2+ on netilmicin binding to synthetic DOPA-melanin. It has been demonstrated that metal ions decrease the amount of antibiotic bound to melanin as compared with netilmicin-melanin complexes obtained in the absence of metals. It has been also shown that only one class of binding sites participates in netilmicin-[melanin-metal ion] complexes formation with the association constant K approximately 10(3) M(-1). The obtained results demonstrate that Cu2+, Zn2+, Ca2+ and Mg2+ ions modify the interaction between netilmicin and melanin biopolymer. The blocking of some active centers in melanin molecules by metal ions, which potentially exist in living systems, may influence the clinical therapeutic efficiency as well as the undesirable side effects of netilmicin. PMID:22574505

  12. Dimeric Complexes of Tryptophan with M2+ Metal Ions

    NARCIS (Netherlands)

    Dunbar, R. C.; Steill, J. D.; Polfer, N. C.; Oomens, J.

    2009-01-01

    IRMPD spectroscopy using the FELIX free electron laser and a Fourier transform ICR mass spectrometer was used to characterize the structures of electrosprayed dimer complexes M(2+)Trp(2) of tryptophan with a series of eight doubly charged metal ions, including alkaline earths Ca, Sr, and Ba, and tra

  13. Stripping chronopotentiometry for metal ion speciation analysis at a microelectrode

    NARCIS (Netherlands)

    Leeuwen, van H.P.; Town, R.

    2002-01-01

    The features of metal ion speciation determination by stripping chronopotentiometry (SCP) at a microelectrode are examined and compared with those of DP-SV. SCP measurements are essentially of a steady-state nature under experimentally achievable conditions and correspond to practically complete dep

  14. Conformations and vibrational spectroscopy of metal-ion/polylalanine complexes

    NARCIS (Netherlands)

    R.C. Dunbar; J.D. Steill; J. Oomens

    2010-01-01

    The thermochemistry and structures of complexes of dialanine and trialanine with a series of singly and doubly charged metal ions have been examined by spectroscopic and computational approaches. Complexes with Li+, K+, Cs+, Ca2+, Sr2+ and Ba2+ were formed by electrospray ionization, and studied by

  15. Formation and evolution of point defects created in alkali halogen compounds irradiated by heavy ions; Formation et evolution des defauts ponctuels crees dans certains halogenures alcalins irradies par des ions lourds

    Energy Technology Data Exchange (ETDEWEB)

    Hourdequin, E. [Nantes Univ., 44 (France)

    1993-07-16

    The goal of this study was to achieve a better understanding of the heavy-ion material interaction. Alkali halogen crystals were chosen since the color centers produced by heavy ions can be distinguished easier from those generated by X rays. Measurements on KI irradiated at low temperature showed that the usual process of non radiative de-excitation of self-captured exciton is not prevailing. As the main objective of this work was the exact determination of the defects created by accelerated heavy ions, an important effort was dedicated to the spectrum deconvolution. Due to the high quality of the obtained spectra the V band analyse was possible. The defect stability was found to have the same nature in all the cubical alkali halogens and depend essentially on the crystal type. The defect evolution after irradiation is related to the diffusion coefficients corresponding to each mobile species and to the crystal lattice in which they move. Based on measurements made at different temperatures a simple modeling of the recombination kinetics was proposed. This effect was found to be specific to irradiation by heavy ions. It is difficult to determine the initial processes from the fossil defects, so, the defect history must be known as the described investigation methods do not permit to establish the transient aspect of defect creation. The important role of impurities should be stressed as the third intruder in the ion/crystal configuration; it can modify significantly the final state of the irradiated crystal, as it was found in KI, for instance. The open problems underlined in this study will probably be solved by using the atomic force microscopy and diffraction or on-line Raman measurements in ISOC chamber to avoid the passage to ambient conditions of the crystals irradiated at low temperatures 60 refs.

  16. A structural investigation of the alkali metal site distribution within bioactive glass using neutron diffraction and multinuclear solid state NMR.

    Science.gov (United States)

    Martin, Richard A; Twyman, Helen L; Rees, Gregory J; Smith, Jodie M; Barney, Emma R; Smith, Mark E; Hanna, John V; Newport, Robert J

    2012-09-21

    The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective isomorphic substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a similar manner within the glassy matrix and do not disrupt the short range order of the network former. Residual differences are attributed solely to the variation in ionic radius between the two species. Successful simplification of the 2 bioactive glasses, and an analogous splitting of the Li-O correlations. The observed correlations are attributed to the metal ions bonded either to bridging or to non-bridging oxygen atoms. (23)Na triple quantum MAS (3QMAS) NMR data corroborates the split Na-O correlations. The structural sites present will be intimately related to the release properties of the glass system in physiological fluids such as plasma and saliva, and hence to the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimizing material design. PMID:22868255

  17. Promoting alkali and alkaline-earth metals on MgO for enhancing CO2 capture by first-principles calculations.

    Science.gov (United States)

    Kim, Kiwoong; Han, Jeong Woo; Lee, Kwang Soon; Lee, Won Bo

    2014-12-01

    Developing next-generation solid sorbents to improve the economy of pre- and post-combustion carbon capture processes has been challenging for many researchers. Magnesium oxide (MgO) is a promising sorbent because of its moderate sorption-desorption temperature and low heat of sorption. However, its low sorption capacity and thermal instability need to be improved. Various metal-promoted MgO sorbents have been experimentally developed to enhance the CO2 sorption capacities. Nevertheless, rigorous computational studies to screen an optimal metal promoter have been limited to date. We conducted first-principles calculations to select metal promoters of MgO sorbents. Five alkali (Li-, Na-, K-, Rb-, and Cs-) and 4 alkaline earth metals (Be-, Ca-, Sr-, and Ba-) were chosen as a set of promoters. Compared with the CO2 adsorption energy on pure MgO, the adsorption energy on the metal-promoted MgO sorbents is higher, except for the Na-promoter, which indicates that metal promotion on MgO is an efficient approach to enhance the sorption capacities. Based on the stabilized binding of promoters on the MgO surface and the regenerability of sorbents, Li, Ca, and Sr were identified as adequate promoters among the 9 metals on the basis of PW91/GGA augmented with DFT+D2. The adsorption energies of CO2 on metal-promoted MgO sorbents for Li, Ca, and Sr atoms are -1.13, -1.68, and -1.48 eV, respectively. PMID:25319405

  18. New gas phase inorganic ion cluster species and their atmospheric implications

    Science.gov (United States)

    Maerk, T. D.; Peterson, K. I.; Castleman, A. W., Jr.

    1980-06-01

    Recent experimental laboratory observations, with high-pressure mass spectroscopy, have revealed the existence of previously unreported species involving water clustered to sodium dimer ions, and alkali metal hydroxides clustered to alkali metal ions. The important implications of these results concerning the existence of such species are here discussed, as well as how from a practical aspect they confirm the stability of certain cluster species proposed by Ferguson (1978) to explain masses recently detected at upper altitudes using mass spectrometric techniques.

  19. Chitosan Removes Toxic Heavy Metal Ions from Cigarette Mainstream Smoke

    Institute of Scientific and Technical Information of China (English)

    ZHOU Wen; XU Ying; WANG Dongfeng; ZHOU Shilu

    2013-01-01

    This study investigated the removal of heavy metal ions from cigarette mainstream smoke using chitosan.Chitosan of various deacetylation degrees and molecular weights were manually added to cigarette filters in different dosages.The mainstream smoke particulate matter was collected by a Cambridge filter pad,digested by a microwave digestor,and then analyzed for contents of heavy metal ions,including As(Ⅲ/Ⅴ),Pb(Ⅱ),Cd(Ⅱ),Cr(Ⅲ/Ⅵ) and Ni(Ⅱ),by graphite furnace atomic absorption spectrometry (GFAAS).The results showed that chitosan had a removal effect on Pb(Ⅱ),Cd(Ⅱ),Cr(Ⅲ/Ⅵ) and Ni(Ⅱ).Of these,the percent removal of Ni(Ⅱ) was elevated with an increasing dosage of chitosan.Chitosan of a high deace tylation degree exhibited good binding performance toward Cd(Ⅱ),Cr(Ⅲ/Ⅵ) and Ni(Ⅱ),though with poor efficiency for Pb(Ⅱ).Except As(Ⅲ/Ⅴ),all the tested metal ions showed similar tendencies in the growing contents with an increasing chitosan molecular weight.Nonetheless,the percent removal of Cr(Ⅲ/Ⅵ) peaked with a chitosan molecular weight of 200 kDa,followed by a dramatic decrease with an increasing chitosan molecular weight.Generally,chitosan had different removal effects on four out of five tested metal ions,and the percent removal of Cd(Ⅱ),Pb(Ⅱ),Cr(Ⅲ/Ⅵ) and Ni(Ⅱ) was approximately 55%,45%,50%,and 16%,respectively.In a word,chitosan used in cigarette filter can remove toxic heavy metal ions in the mainstream smoke,improve cigarette safety,and reduce the harm to smokers.

  20. Metal ion influence on eumelanin fluorescence and structure

    Science.gov (United States)

    Sutter, Jens-Uwe; Birch, David J. S.

    2014-06-01

    Melanin has long been thought to have an unworkably weak and complex fluorescence, but here we study its intrinsic fluorescence in order to demonstrate how metal ions can be used to control the rate of formation, constituents and structure of eumelanin formed from the well-known laboratory auto-oxidation of 3,4-dihydroxy-L-phenylalanine (L-DOPA). The effect on eumelanin absorption and fluorescence of a range of solvated metal ions is reported including Cu, Zn, Ni, Na and K. Monovalent cations and Zn have little effect, but the effect of transition metal cations can be considerable. For example, at pH 10, copper ions are shown to accelerate the onset of eumelanin formation, but not the rate of formation once it commences, and simplify the usual complex structure and intrinsic fluorescence of eumelanin in a way that is consistent with an increased abundance of 5,5-dihydroxyindole-2-carboxylic acid (DHICA). The presence of a dominant 6 ns fluorescence decay time at 480 nm, when excited at 450 nm describes a distinct photophysical species, which we tentatively assign to small oligomers. Copper is well-known to normally quench fluorescence, but increasing amounts of copper surprisingly leads to an increase in the fluorescence decay time of eumelanin, while reducing the fluorescence intensity, suggesting copper modification of the excited state. Such results have bearing on diverse areas. The most accepted morphology for melanin is that of a graphite-like sheet structure, and one which readily binds metal ions, an interaction that is thought to have an important, though as yet unclear bearing on several areas of medicine including neurology. There is also increasing interest in bio-mimicry by preparing and labelling sheet structures with metal ions for new electronic and photonic materials.

  1. Design strategies for development of SCR catalyst: improvement of alkali poisoning resistance and novel regeneration method.

    Science.gov (United States)

    Peng, Yue; Li, Junhua; Shi, Wenbo; Xu, Jiayu; Hao, Jiming

    2012-11-20

    Based on the ideas of the additives modification and regeneration method update, two different strategies were designed to deal with the traditional SCR catalyst poisoned by alkali metals. First, ceria doping on the V(2)O(5)-WO(3)/TiO(2) catalyst could promote the SCR performance even reducing the V loading, which resulted in the enhancement of the catalyst's alkali poisoning resistance. Then, a novel method, electrophoresis treatment, was employed to regenerate the alkali poisoned V(2)O(5)-WO(3)/TiO(2) catalyst. This novel technique could dramatically enhance the SCR activities of the alkali poisoned catalysts by removing approximately 95% K or Na ions from the catalyst and showed less hazardous to the environment. Finally, the deactivation mechanisms by the alkali metals were extensively studied by employing both the experimental and DFT theoretical approaches. Alkali atom mainly influences the active site V species rather than W oxides. The decrease of catalyst surface acidity might directly reduce the catalytic activity, while the reducibility of catalysts could be another important factor.

  2. Methods for synthesizing metal oxide nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Sunkara, Mahendra Kumar; Kumar, Vivekanand; Kim, Jeong H.; Clark, Ezra Lee

    2016-08-09

    A method of synthesizing a metal oxide nanowire includes the steps of: combining an amount of a transition metal or a transition metal oxide with an amount of an alkali metal compound to produce a mixture; activating a plasma discharge reactor to create a plasma discharge; exposing the mixture to the plasma discharge for a first predetermined time period such that transition metal oxide nanowires are formed; contacting the transition metal oxide nanowires with an acid solution such that an alkali metal ion is exchanged for a hydrogen ion on each of the transition metal oxide nanowires; and exposing the transition metal oxide nanowires to the plasma discharge for a second predetermined time period to thermally anneal the transition metal oxide nanowires. Transition metal oxide nanowires produced using the synthesis methods described herein are also provided.

  3. Ion beam mixing isotopic metal bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Fell, C.J. [Newcastle Univ., NSW (Australia). Dept. of Physics; Kenny, M.J. [CSIRO, Lindfield, NSW (Australia). Div. of Applied Physics

    1993-12-31

    In order to obtain an insight into the mechanisms of ion-solid interactions, bilayer targets can be prepared from two different isotopes. A mixing study SIMS is to be carried out using specially grown monocrystalline bilayers of {sup 58}Ni / {sup 60}Ni. An important aspect of the work is the preparation of high quality single-crystal thin films. The Ni layers will be grown on the (110) surface of pure Ni and verified for crystallinity using Reflection High-Energy Electron Diffraction and Rutherford Backscattering channelling analysis. The Pd bilayers will be grown on a Pd (100) surface. RHEED will be used to confirm the two-dimensional crystallinity of the surface before and after deposition of each layer, and channelling used to confirm bulk film crystallinity. Single crystal substrates are currently being prepared. Analysis of the Ni (110) surface using RHEED at 9 kV shows a streak spacing which corresponds to a lattice spacing of 2.47 {+-} 0.09 Angstroms. 9 refs., 1 fig.

  4. Liquid metal alloy ion sources—An alternative for focussed ion beam technology

    Science.gov (United States)

    Bischoff, Lothar; Mazarov, Paul; Bruchhaus, Lars; Gierak, Jacques

    2016-06-01

    Today, Focused Ion Beam (FIB) processing is nearly exclusively based on gallium Liquid Metal Ion Sources (LMIS). But, many applications in the μm- or nm range could benefit from ion species other than gallium: local ion implantation, ion beam mixing, ion beam synthesis, or Focused Ion Beam Lithography (IBL). Therefore, Liquid Metal Alloy Ion Sources (LMAIS) represent a promising alternative to expand the remarkable application fields for FIB. Especially, the IBL process shows potential advantages over, e.g., electron beam or other lithography techniques: direct, resistless, and three-dimensional patterning, enabling a simultaneous in-situ process control by cross-sectioning and inspection. Taking additionally into account that the used ion species influences significantly the physical and chemical nature of the resulting nanostructures—in particular, the electrical, optical, magnetic, and mechanic properties leading to a large potential application area which can be tuned by choosing a well suited LMAIS. Nearly half of the elements of the periodic table are recently available in the FIB technology as a result of continuous research in this area during the last forty years. Key features of a LMAIS are long life-time, high brightness, and stable ion current. Recent developments could make these sources feasible for nano patterning issues as an alternative technology more in research than in industry. The authors will review existing LMAIS, LMIS other than Ga, and binary and ternary alloys. These physical properties as well as the fabrication technology and prospective domains for modern FIB applications will similarly be reviewed. Other emerging ion sources will be also presented and their performances discussed.

  5. Peptide immobilisation on porous silicon surface for metal ions detection

    Directory of Open Access Journals (Sweden)

    Chazalviel Jean-Noël

    2011-01-01

    Full Text Available Abstract In this work, a Glycyl-Histidyl-Glycyl-Histidine (GlyHisGlyHis peptide is covalently anchored to the porous silicon PSi surface using a multi-step reaction scheme compatible with the mild conditions required for preserving the probe activity. In a first step, alkene precursors are grafted onto the hydrogenated PSi surface using the hydrosilylation route, allowing for the formation of a carboxyl-terminated monolayer which is activated by reaction with N-hydroxysuccinimide in the presence of a peptide-coupling carbodiimide N-ethyl-N'-(3-dimethylaminopropyl-carbodiimide and subsequently reacted with the amino linker of the peptide to form a covalent amide bond. Infrared spectroscopy (FT-IR and X-ray photoelectron spectroscopy are used to investigate the different steps of functionalization. The property of peptides to form stable complexes with metal ions is exploited to achieve metal-ion recognition by the peptide-modified PSi-based biosensor. An electrochemical study of the GlyHisGlyHis-modified PSi electrode is achieved in the presence of copper ions. The recorded cyclic voltammograms show a quasi-irreversible process corresponding to the Cu(II/Cu(I couple. The kinetic factors (the heterogeneous rate constant and the transfer coefficient and the stability constant of the complex formed on the porous silicon surface are determined. These results demonstrate the potential role of peptides grafted on porous silicon in developing strategies for simple and fast detection of metal ions in solution.

  6. Peptide immobilisation on porous silicon surface for metal ions detection.

    Science.gov (United States)

    Sam, Sabrina S; Chazalviel, Jean-Noël Jn; Gouget-Laemmel, Anne Chantal Ac; Ozanam, François F; Etcheberry, Arnaud A; Gabouze, Nour-Eddine N

    2011-01-01

    In this work, a Glycyl-Histidyl-Glycyl-Histidine (GlyHisGlyHis) peptide is covalently anchored to the porous silicon PSi surface using a multi-step reaction scheme compatible with the mild conditions required for preserving the probe activity. In a first step, alkene precursors are grafted onto the hydrogenated PSi surface using the hydrosilylation route, allowing for the formation of a carboxyl-terminated monolayer which is activated by reaction with N-hydroxysuccinimide in the presence of a peptide-coupling carbodiimide N-ethyl-N'-(3-dimethylaminopropyl)-carbodiimide and subsequently reacted with the amino linker of the peptide to form a covalent amide bond. Infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy are used to investigate the different steps of functionalization.The property of peptides to form stable complexes with metal ions is exploited to achieve metal-ion recognition by the peptide-modified PSi-based biosensor. An electrochemical study of the GlyHisGlyHis-modified PSi electrode is achieved in the presence of copper ions. The recorded cyclic voltammograms show a quasi-irreversible process corresponding to the Cu(II)/Cu(I) couple. The kinetic factors (the heterogeneous rate constant and the transfer coefficient) and the stability constant of the complex formed on the porous silicon surface are determined. These results demonstrate the potential role of peptides grafted on porous silicon in developing strategies for simple and fast detection of metal ions in solution.

  7. [Applications of metal ions and their complexes in medicine I].

    Science.gov (United States)

    Nagy, László; Csintalan, Gabriella; Kálmán, Eszter; Sipos, Pál; Szvetnik, Attila

    2003-01-01

    The "inorganic medical chemistry" is a rapidly developing field with enormous potential for applications, which offers new possibilities to the pharmaceutical industry. For example, the titanocene dichloride is already in clinical use, and antimetastatic activity of a range of Ru(III) complexes is also well established. There are ways to minimize the toxicity of Gd(III) complexes and therefore they can be safely injected as MRI contrast agents. The so called "ligand design" allows paramagnetic ions to be targeted to specific organs. Such designed ligands also enable the targeting of radiodiagnostic (99mTc) and radiotherapeutic (186Re) isotopes. There is a significant progress in understanding the coordination chemistry and biochemistry of metal ion(s) containing complexes such as Au antiarthritic and Bi antiulcer drugs. Further, currently developing areas include Mn (SOD mimics), V (insulin mimics), Ru (NO scavengers), Ln-based photosensitizers, metal-targeted organic agents and the Fe overload. The expanding knowledge of the role of metals in biochemistry is expected to provide scope for the design of new drugs in many other areas too, for example neuropharmaceutical and antiaffective agents. Progress in coordination chemistry is strongly dependent on understanding not only the thermodynamics of reactions, but also the kinetics of metal complexes under biologically relevant conditions.

  8. EPR spectroscopic analysis of TAR RNA-metal ion interactions

    International Nuclear Information System (INIS)

    Metal ion-induced changes in HIV-1 TAR RNA internal dynamics were determined by the changes in EPR spectral width for TAR RNAs containing spin-labeled nucleotides (U23, U25, U38, and U40). This gave a dynamic signature for each of 10 metal ions studied, which fell into one of three distinct groups. While Li+ and K+ had little effect on TAR RNA internal dynamics, Na+ unexpectedly had a dynamic signature that was similar to Ca2+ and Sr2+, with a decrease in mobility at U23 and U38, little or no change at U25, and an increase in mobility at U40. Mg2+, Co2+, Ni2+, Zn2+, and Ba2+ had similar effects on U23, U38, and U40, but the mobility of U25 was markedly increased. Our results show that RNA dynamics change upon metal binding to the TAR RNA bulge, indicating that RNA structure adapts to accommodate metal ions of different size and coordination properties

  9. Polymer Catalysts Imprinted with Metal Ions as Biomimics of Metalloenzymes

    Directory of Open Access Journals (Sweden)

    Joanna Czulak

    2013-01-01

    Full Text Available This work presents the preparation and properties of molecularly imprinted polymers (MIPs with catalytic centers that mimic the active sites of metalloenzymes. The MIP synthesis was based on suspension polymerization of functional monomers (4-vinylpyridine and acrylonitrile with trimethylolpropane trimethacrylate as a crosslinker in the presence of transition metal ions and 4-methoxybenzyl alcohol as a template. Four metal ions have been chosen for imprinting from among the microelements that are the most essential in the native enzymes: Cu2+, Co2+, Mn2+, and Zn2+. To prepare catalysts, the required loading of metal ions was obtained during sorption process. The catalysts imprinted with Cu2+, Co2+, and Zn2+ were successfully used for hydroquinone oxidation in the presence of hydrogen peroxide. The Mn2+-imprinted catalyst showed no activity due to the insufficient metal loading. Cu2+ MIP showed the highest efficiency. In case of Cu- and Co-MIP catalysts, their activity was additionally increased by the use of surface imprinting technique.

  10. New Catalytic DNA Biosensors for Radionuclides and Metal ion

    Energy Technology Data Exchange (ETDEWEB)

    Yi Lu

    2008-03-01

    We aim to develop new DNA biosensors for simultaneous detection and quantification of bioavailable radionuclides, such as uranium, technetium, and plutonium, and metal contaminants, such as lead, chromium, and mercury. The sensors will be highly sensitive and selective. They will be applied to on-site, real-time assessment of concentration, speciation, and stability of the individual contaminants before and during bioremediation, and for long-term monitoring of DOE contaminated sites. To achieve this goal, we have employed a combinatorial method called “in vitro selection” to search from a large DNA library (~ 1015 different molecules) for catalytic DNA molecules that are highly specific for radionuclides or other metal ions through intricate 3-dimensional interactions as in metalloproteins. Comprehensive biochemical and biophysical studies have been performed on the selected DNA molecules. The findings from these studies have helped to elucidate fundamental principles for designing effective sensors for radionuclides and metal ions. Based on the study, the DNA have been converted to fluorescent or colorimetric sensors by attaching to it fluorescent donor/acceptor pairs or gold nanoparticles, with 11 part-per-trillion detection limit (for uranium) and over million fold selectivity (over other radionuclides and metal ions tested). Practical application of the biosensors for samples from the Environmental Remediation Sciences Program (ERSP) Field Research Center (FRC) at Oak Ridge has also been demonstrated.

  11. Alkali metal non-stoichiometric effects in (K{sub 0.5}Na{sub 0.5})NbO{sub 3} based piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. C.; Yeo, H. G.; Cho, J. H.; Sung, Y. S.; Kim, M. H.; Song, T. K.; Kim, S. S. [Changwon National University, Changwon (Korea, Republic of); Choi, B. C. [Pukyung National University, Busan (Korea, Republic of); Choi, K. S. [Sunchon National University, Sunchon, Chonnam (Korea, Republic of)

    2010-01-15

    Alkali-metal-excess lead-free 0.93(K{sub 0.5}Na{sub 0.5}){sub (1+x)}NbO{sub 3}-0.07LiNbO{sub 3} (KNNL) piezoelectric ceramics were prepared by using a solid state reaction. The contents of both K and Na were simultaneously controlled to 4 mol% excess. From X-ray diffraction and temperature-dependent dielectric constant measurements, a polymorphic phase transition (PPT) between the tetragonal and orthorhombic phases was observed by changing the stoichiometry of x. With increasing (K+Na) content, the PPT temperature increased, but the Curie temperature decreased. The highest piezoelectric constant was 189 pC/N for x = 0.01, where the PPT temperature was around room temperature.

  12. Volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass: differences between sugar cane bagasse and cane trash.

    Science.gov (United States)

    Keown, Daniel M; Favas, George; Hayashi, Jun-ichiro; Li, Chun-Zhu

    2005-09-01

    Sugar cane bagasse and cane trash were pyrolysed in a novel quartz fluidised-bed/fixed-bed reactor. Quantification of the Na, K, Mg and Ca in chars revealed that pyrolysis temperature, heating rate, valence and biomass type were important factors influencing the volatilisation of these alkali and alkaline earth metallic (AAEM) species. Pyrolysis at a slow heating rate (approximately 10 K min(-1)) led to minimal (often biomass samples. Fast heating rates (>1000 K s(-1)), encouraging volatile-char interactions with the current reactor configuration, resulted in the volatilisation of around 80% of Na, K, Mg and Ca from bagasse during pyrolysis at 900 degrees C. Similar behaviour was observed for monovalent Na and K with cane trash, but the volatilisation of Mg and Ca from cane trash was always restricted. The difference in Cl content between bagasse and cane trash was not sufficient to fully explain the difference in the volatilisation of Mg and Ca.

  13. Improved thermoelectric performance in polycrystalline p-type Bi2Te3 via an alkali metal salt hydrothermal nanocoating treatment approach

    Science.gov (United States)

    Ji, Xiaohua; He, Jian; Su, Zhe; Gothard, Nick; Tritt, Terry M.

    2008-08-01

    We report herein a proof-of-principle study of grain boundary engineering in the polycrystalline p-type Bi2Te3 system. Utilizing the recently developed hydrothermal nanocoating treatment technique, we fabricated an alkali-metal(s)-containing surface layer on the p-Bi2Te3 bulk grain, which in turn became part of the grain boundary upon hot pressing densification. Compared to the untreated bulk reference, the dimensionless figure of merit ZT has been improved by ˜30% in the Na-treated sample chiefly due to the reduced thermal conductivity, and ˜38% in the Rb-treated sample mainly owing to the improved power factor. The grain boundary phase provides a new avenue by which one can potentially decouple the otherwise inter-related electrical resistivity, Seebeck coefficient, and thermal conductivity within one thermoelectric material.

  14. 热煤气中碱金属蒸气的脱除%Removal of Alkali Metal Vapor from Hot Coal Gas

    Institute of Scientific and Technical Information of China (English)

    申文琴; 豆彬林; 邢嵘; 沙兴中

    2000-01-01

    Seven adsorbents were screened for removal of alkali metal vapor from hot coal gas. It is found that five adsorbents present higher adsorption efficiency and activated almmina shows the highest adsorption capacity. The adsorption process of activated alumina is a physical process in experimental condition.%为了清除煤燃烧或气化产生的热气体中的碱金属蒸气,筛选了7种吸附剂,发现5种吸附剂的吸附效率都能达到80%以上,其中活性氧化铝的碱容量最高,对活性氧化铝吸附机理也进行了初步探讨。

  15. Design study of a 200 MW(e) alkali metal/steam binary power plant using a coal-fired fluidized bed furnace

    Energy Technology Data Exchange (ETDEWEB)

    Samuels, G.; Graves, R. L.; Lackey, M. E.; Tudor, J. J.; Zimmerman, G. P.

    1978-04-01

    The results of a study of 200 MW(e) alkali metal/steam binary power plant using a coal-fired fluidized bed furnace are described. Both cesium and potassium were evaluated for the topping cycle working fluid and cesium was selected. The fuel used was Illinois No. 6 coal, and limestone was used as the bed sorbent material. For the reference design, the furnace operated at atmospheric pressure and the cycle conditions for the power conversion system were 1500/sup 0/F to 900/sup 0/F for the topping cycle and 2400 psi 1000/sup 0/F to 1/sup 1///sub 2/ in. Hg for the steam system. Several variations of the plant were briefly evaluated. These variations included using a supercritical steam system and using a pressurized furnace. The principal conclusions of the study are as follows: a satisfactory design of an atmospheric pressure fluidized bed furnace binary power plant was evolved which uses a variation of the conventional binary cycle which permits utilizing the full potential of the alkali metal topping cycle; the net plant efficiency (coal to busbar) of the reference system was 44.6%; the net plant efficiency of a larger system with a 3500 psi 1000/sup 0/F steam system was 46.8%; an intermediate pressure turbocharged system with a furnace pressure of 4 atm (0.4 MPa) would have many advantages in comparison to the atmospheric pressure system, including a plant efficiency about one percentage point higher than the reference design, reduced limestone requirement and potential capital cost saving; and although cost estimates were not a part of the design study, a comparison of the design of this study to that of the Energy Conversion Alternative Study (ECAS) indicates plant costs 20 to 25% less than that of the final ECAS design.

  16. Removal of Heavy Metal Ions From Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    maziar noei

    2014-12-01

    Full Text Available The removal of Zn(II, V(II,  by  silica aerogel has been found to be concentration, , contact time, adsorbent dose and temperature dependent. ion exchange are the major removal mechanisms involved. The adsorption isotherm studies clearly indicated that the adsorptive behaviour of metal ions on silica aerogel  was satisfied. The applicability of the Lagergren kinetic model has also been investigated. Thermodynamic constant (Kad , standard free energy ( ∆G0 ,enthalpy (∆H0 and entropy (∆S0 were calculated for predicting the nature of adsorption

  17. A novel dithiourea and its response to metal ions

    Institute of Scientific and Technical Information of China (English)

    Lu Yuan; Hong Zhong; Li Oing Li; Jing Jing Xiao

    2012-01-01

    The synthesis,characterization,and its response to metal ions of a novel thiourea N,N'-diethoxycarbonyl-N'',N'''-(1,2-ethylidene) dithiourea was reported.The results show that this dithiourea with new structure can react with Cu2+ and Ni2+ separately,and has a best selectivity to Fe3+ ions.Bench-scale flotation tests were also carried out,verifying it has higher copper flotation recovery and better selectivity to sulfide ores containing Cu compared with universal collectors.

  18. Solid-liquid solvent extraction of metal ions

    Institute of Scientific and Technical Information of China (English)

    Bo Peng; Haiyan Fan; Jinzhang Gao

    2003-01-01

    An overview of extraction of some trace metal ions using molten solvent (low melting substance) during last two decadesis presented. The development of this technique since its inception is briefly traced. The comparison of extraction efficiency, thermo-dynamics and kinetics mainly involving extraction of rare earth ions between molten solvent extraction at high temperature and usualliquid-liquid extraction at room temperature are discussed in detail. The various parameters obtained from the previous and presentstudies such as equilibrium extraction constant Kex, pH1/2, thermodynamic and kinetic data are displayed in tabular form. Finally, thecurrent demands, disadvantages and future prospects are also evaluated.

  19. Metal ion toxins and brain aquaporin-4 expression: an overview

    Directory of Open Access Journals (Sweden)

    Adriana eXimenes-Da-Silva

    2016-06-01

    Full Text Available Metal ions such as iron, zinc, and manganese are essential to metabolic functions, protein synthesis, neurotransmission, and antioxidant neuroprotective mechanisms. Conversely, non-essential metals such as mercury and lead are sources of human intoxication due to occupational activities or environmental contamination. Essential or non-essential metal accumulation in the central nervous system (CNS results in changes in blood-brain barrier (BBB permeability, as well as triggering microglia activation and astrocyte reactivity and changing water transport through the cells, which could result in brain swelling. Aquaporin-4 is the main water channel in the CNS, is expressed in astrocyte foot processes in brain capillaries and along the circumventricular epithelium in the ventricles, and has important physiological functions in maintaining brain osmotic homeostasis and supporting brain excitability through regulation of the extracellular space. Some evidence has pointed to a role of AQP4 during metal intoxication in the brain, where it may act in a dual form as a neuroprotector or a mediator of the development of oxidative stress in neurons and astrocytes, resulting in brain swelling and neuronal damage. This mini-review presents the way some metal ions affect changes in AQP4 expression in the CNS and discuss the ways in which water transport in brain cells can be involved in brain damage.

  20. MRI probes for sensing biologically relevant metal ions.

    Science.gov (United States)

    Bonnet, Célia S; Tóth, Eva

    2010-03-01

    Given the important role of metal ions in fundamental biological processes, the visualization of their concentration in living animals by repeatable, noninvasive imaging techniques, such as MRI, would be highly desirable. A large number of metal-responsive MRI contrast agents, the majority based on Gd(3+) complexes, have been reported in recent years. The contrast-enhancing properties (relaxivity) of a Gd(3+) complex can be most conveniently modulated by interaction with the sensed metal cation via changes in the number of water molecules bound directly to Gd(3+) or changes in the size of the complex, which represent the two major strategies to develop metal sensitive MRI probes. Here, we survey paramagnetic lanthanide complexes involving Gd(3+) agents and paramagnetic chemical exchange saturation transfer probes designed to detect the most important endogenous metal ions: calcium, zinc, iron and copper. Future work will likely focus on extending applications of these agents to living animals, as well as on exploring new ways of creating molecular MRI probes in order to meet requirements such as higher specificity or lower detection limits.

  1. Metal Ion Toxins and Brain Aquaporin-4 Expression: An Overview.

    Science.gov (United States)

    Ximenes-da-Silva, Adriana

    2016-01-01

    Metal ions such as iron, zinc, and manganese are essential to metabolic functions, protein synthesis, neurotransmission, and antioxidant neuroprotective mechanisms. Conversely, non-essential metals such as mercury and lead are sources of human intoxication due to occupational activities or environmental contamination. Essential or non-essential metal accumulation in the central nervous system (CNS) results in changes in blood-brain barrier (BBB) permeability, as well as triggering microglia activation and astrocyte reactivity and changing water transport through the cells, which could result in brain swelling. Aquaporin-4 is the main water channel in the CNS, is expressed in astrocyte foot processes in brain capillaries and along the circumventricular epithelium in the ventricles, and has important physiological functions in maintaining brain osmotic homeostasis and supporting brain excitability through regulation of the extracellular space. Some evidence has pointed to a role of AQP4 during metal intoxication in the brain, where it may act in a dual form as a neuroprotector or a mediator of the development of oxidative stress in neurons and astrocytes, resulting in brain swelling and neuronal damage. This mini-review presents the way some metal ions affect changes in AQP4 expression in the CNS and discuss the ways in which water transport in brain cells can be involved in brain damage. PMID:27313504

  2. Reclamation of reactive metal oxides from complex minerals using alkali roasting and leaching- an improved approach to process engineering

    OpenAIRE

    Sanchez Segado, S; Makanyire, T; Escudero-Castejon, L; Hara, Y.; Jha, A.

    2015-01-01

    In nature, the commonly occurring reactive metal oxides of titanium, chromium, aluminium, and vanadium often chemically combine with the transition metal oxides such as iron oxides and form complex minerals. Physico-chemical separation of transition metal oxides from the remaining reactive metal oxides is therefore an important step in the purification of reactive oxide constituents. Each purification step has quite a high energy requirement at present. Current practice in industry yields sul...

  3. Luminescence enhancement of rare earth ions by metal nanostructures

    Institute of Scientific and Technical Information of China (English)

    G.A.Denisenko

    2009-01-01

    Well-ordered metal structures,i.e.arrays of nanosized tips on silver surface for studies of the luminescence enhancement of absorbed media with rare earth ions were used.These arrays were prepared by the metal evaporation on track membranes.Calculations of resonance frequencies of tips regarded as semispheroids were done taking into account the interaction between dipoles of tips.They were used to discuss experimental results for media with Eu(NO3)3·6H2O salt basing on data for bulk silver dielectric function.

  4. Using diastereopeptides to control metal ion coordination in proteins

    OpenAIRE

    Peacock, Anna F. A.; Hemmingsen, Lars; Pecoraro, Vincent L.

    2008-01-01

    Here, we report a previously undescribed approach for controlling metal ion coordination geometry in biomolecules by reorientating amino acid side chains through substitution of L- to D-amino acids. These diastereopeptides allow us to manipulate the spatial orientation of amino acid side chains to alter the sterics of metal binding pockets. We have used this approach to design the de novo metallopeptide, Cd(TRIL12LDL16C)3−, which is an example of Cd(II) bound to 3 L-Cys as exclusively trigona...

  5. Conversion of agonist site to metal-ion chelator site in the beta(2)-adrenergic receptor

    DEFF Research Database (Denmark)

    Elling, C E; Thirstrup, K; Holst, Birgitte;

    1999-01-01

    in the mutant receptors not by normal catecholamine ligands but instead either by free zinc ions or by zinc or copper ions in complex with small hydrophobic metal-ion chelators. Chelation of the metal ions by small hydrophobic chelators such as phenanthroline or bipyridine protected the cells from the toxic...... effect of, for example Cu(2+), and in several cases increased the affinity of the ions for the agonistic site. Wash-out experiments and structure-activity analysis indicated, that the high-affinity chelators and the metal ions bind and activate the mutant receptor as metal ion guided ligand complexes....... Because of the well-understood binding geometry of the small metal ions, an important distance constraint has here been imposed between TM-III and -VII in the active, signaling conformation of 7TM receptors. It is suggested that atoxic metal-ion chelator complexes could possibly in the future be used...

  6. Statistical evaluation of biogeochemical variables affecting spatiotemporal distributions of multiple free metal ion concentrationsin an urban estuary

    Science.gov (United States)

    Free metal ion concentrations have been recognized as a better indicator of metal bioavailability in aquatic environments than total dissolved metal concentrations. However, our understanding of the determinants of free ion concentrations, especially in a metal mixture, is limite...

  7. Influence of additives on the retention of metal ions in a soil of Bangalore, India

    OpenAIRE

    Dr Maya Naik; Syed Tanveeruddin; Syed Abu Sayeed Mohammed

    2009-01-01

    Liners play an important role in minimizing migration of contaminants and are frequently constructed with natural materials serving as the primary barrier to contain chemicals and potentially harmful pollutants from municipal toxic waste leachates. To improve the performance of liners, additives like lime and cement at low percentages were added to Red Soil of Bangalore. Heavy metals like hexavalent chromium, copper and zinc and alkali metals like sodium and potassium were taken as contaminan...

  8. Structural phase stability, electronic structure and mechanical properties of alkali metal hydrides AMH4 (A=Li, Na; M=B, AL)

    Science.gov (United States)

    Santhosh, M.; Rajeswarapalanichamy, R.

    2016-01-01

    The structural stability of Alkali metal hydrides AMH4 (A=Li, Na; M=B, Al) is analyzed among the various crystal structures, namely hexagonal (P63mc), tetragonal (P42/nmc), tetragonal (P-421c), tetragonal (I41/a), orthorhombic (Pnma) and monoclinic (P21/c). It is observed that, orthorhombic (Pnma) phase is the most stable structure for LiBH4, monoclinic (P21/c) for LiAlH4, tetragonal (P42/nmc) for NaBH4 and tetragonal (I41/a) for NaAlH4 at normal pressure. Pressure induced structural phase transitions are observed in LiBH4, LiAlH4, NaBH4 and NaAlH4 at the pressures of 4 GPa, 36.1 GPa, 26.5 GPa and 46 GPa respectively. The electronic structure reveals that these metal hydrides are wide band gap insulators. The calculated elastic constants indicate that these metal hydrides are mechanically stable at normal pressure.

  9. Speciation of heavy metal ions as influenced by interactions with montmorillonite, Al hydroxide polymers and citrate.

    NARCIS (Netherlands)

    Janssen, R.P.T.

    1995-01-01

    Clay minerals, metal-hydroxides and organic matter can bind metal ions; moreover they also interact with each other. These mutual interactions influence the metal binding to a significant extent. In this study, the speciation of the heavy metal ions Zn and Ph was investigated in model systems consis

  10. Effects of heavy metals and saline-alkali on seedlings growth,physiological-biochemical of Oryehophragmus violaeeus%重金属及盐碱对二月兰幼苗生长和生理生化的影响

    Institute of Scientific and Technical Information of China (English)

    张小艾; 李名扬; 汪志辉; 汤浩若; 张新全; 左静

    2013-01-01

    The aim was to study on effects of heavy metals and saline-alkali on seedlings growth, physiological-biochemical of Oryehophragmus violaeeus. The results showed that relative electrolyte leakage, the content of soluble sugar and the content of Pro all increased with increased heavy metals and saline-alkali conditions, the total biomass decreased with increased heavy metals and saline-alkali conditions, but the content of MDA initially increased and then decreased. The activities of superoxide dismutase, peroxidase increased with increased heavy metals and saline-alkali conditions, and evidently higher than the control. The effect of heavy metals and saline-alkali stress on photosynthetic pigment content, in the leaf was assessed. With an increase in heavy metals and saline-alkali concentration, the chlorophyll and carotenoid contents decreased gradually, but the carote-noid contents decreased morn. The seedlings of O. violaeeus is with resistance against light combined stresses of salt-alkali and Pb (500 mg/L), and the stress patience of vane is greater than the root.%以二月兰为试验材料,研究了在不同浓度的盐碱和重金属胁迫下,二月兰幼苗生长和生理生化特性.结果表明,盐碱及重金属胁迫均会对二月兰幼苗的生长发育造成影响,MDA含量呈先降后升趋势,生物量随着胁迫的加重而减少,相对电导率、渗透物质可溶性糖含量和Pro含量均呈上升趋势,抗氧化酶POD活性、SOD活性明显高于对照,胁迫对叶片光合色素的合成具有一定的破坏作用,其中类胡萝卜素更敏感.轻度盐碱及Pb(500 mg/L)的复合胁迫下,MDA含量下降,叶绿素a、叶绿素b、类胡萝卜素高于对照,说明二月兰幼苗对轻度盐碱及Pb胁迫具有一定耐性,且叶片对于胁迫的耐性大于根部.

  11. Lithium metal doped electrodes for lithium-ion rechargeable chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Battaglia, Vince; Wang, Lei

    2016-09-13

    An embodiment of the invention combines the superior performance of a polyvinylidene difluoride (PVDF) or polyethyleneoxide (POE) binder, the strong binding force of a styrene-butadiene (SBR) binder, and a source of lithium ions in the form of solid lithium metal powder (SLMP) to form an electrode system that has improved performance as compared to PVDF/SBR binder based electrodes. This invention will provide a new way to achieve improved results at a much reduced cost.

  12. Gas porosity in metals and alloys irradiated by helium ions

    International Nuclear Information System (INIS)

    Experimental studies of the development of gas porosity in metals and alloys during irradiation with helium ions up to high doses and during post-irradiation annealings, are reviewed. The main theoretical problems of the mechanisms of bubble formation and growth, the regularities and peculiarities of bubble development in a thin near-the surface layer during the introduction of helium with the energy of tens of kiloelectron volt, are considered

  13. Metal ion complexation by ionizable crown ethers: Progress report, January 1, 1985-December 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, R.A.

    1987-06-01

    A variety of lipophilic crown ethers with pendant ionizable groups has been prepared. Several lipophilic acyclic polyethers bearing either one or two ionizable groups have also been synthesized. Complexation of alkali metal and alkaline earth cations by such novel ligands has been probed using NMR and solvent extraction. Effects of ring size, side arm length, ionizable group identity and other structural variations, as well as the effect of the solvent, the competitive alkali metal cation solvent extraction has been assessed. Investigations of heavy metal and transition metal cation complexation by ionizable crown ethers have been conducted. The influence of structural variations within acyclic polyether carboxylic acids and dicarboxylic acids on the alkali metal and alkaline earth cation solvent extraction has also been probed. New ligands have been developed which exhibit high selectivities for Cs/sup +/ and Ra/sup 2 +/ in solvent extraction processes. The ability of ionizable crown ethers to function as selective metal cation carriers in liquid membrane transport processes has been examined in both bulk liquid membrane and polymer-supported liquid membrane transport systems.

  14. Spectrophotometric determination of some metal ions using hydrazones

    International Nuclear Information System (INIS)

    In this research many starting materials were prepared, like methyl salicylate and salicylic acid hydrazide from which different derivatives of hydrazones were synthesized by coupling with carbonyl compounds like benzil monoxime and benzil mono hydrazone which are prepared and others like salicylaldehyde and benzoin. The hydrazones that were synthesized are salicylaldehyde salicylic acid hydrazone, benzoin salicylic acid hydrazone, benzil mono hydrazone salicylic acid hydrazone and benzil monoxime salicylic acid hydrazone. These reagents were determined by different methods, IR spectrophotometric determination, the nitrogen content method and melting point determination. These hydrazones act as ligands for determination of some metal ions by making different coloured complexes that were prepared for eight hydrazones with eight metal ions U (VI), Fe (II), Fe (III), Co (II), V (II), Mo (VI), Ni (II) and Cu (II). These complexes were determined by ultraviolet and visible spectrophotometer (UV/VIS) to detect their absorbance and wavelengths (λ max). The two hydrazones salicylaldehyde salicylic acid-hydrazone and benzoin salicylic acid hydrazone, were selected for determination of five metal ions (Fe (II), Fe (III), U (VI), Ni (II) and Cu (II)), using two micelles sodium n-dodecyl sulphate and pyridinium hexa decyl bromide mono hydrate. Their absorbance and wavelengths were detected using UV/VIS spectrophotometer. (Author)

  15. Studies on the Interaction between Catechin and Metal Ions

    Energy Technology Data Exchange (ETDEWEB)

    Yeom, Jieun; Yang, Ikjun; Park, Okhyun; Park, Hyoungryun [Chonnam National Univ., Gwangju (Korea, Republic of); Bark, Kimin [Gyeongsang National Univ., Chinju (Korea, Republic of); Park, Chulho [Nambu Univ., Gwangju (Korea, Republic of)

    2012-12-15

    In conclusion, the UV-vis absorption spectra of the deaerated methanolic solution reacted with metal ions such as Cu{sup 2+}, Zn{sup 2+}, Co{sup 2+}, and Fe{sup 3+} were changed as time passed after adding catechin followed by addition of catechin to methanol. This is strongly dependent not only on the presence of metal ion but on the storage time of the solution. The change has relevance to the oxidation of catechin. Oxidation of catechin is first initiated by the dissociation of -OH part of the catechol moiety in methanol and then the ionized anion forms are converted into their oxidized forms called quinones. The higher the standard reduction potential for metal-ion, the faster the oxidation occurs. The steady-state fluorescence emission spectra of catechin changed depending on the storage time of the solution. This finding indicates that oxidation of catechin is undergone by a sequence of multistep reactions in deaerated methanol solution.

  16. Structural changes of polyacids initiated by their neutralization with various alkali metal hydroxides. Diffusion studies in poly(acrylic acid)s.

    Science.gov (United States)

    Masiak, Michal; Hyk, Wojciech; Stojek, Zbigniew; Ciszkowska, Malgorzata

    2007-09-27

    The changes in the three-dimensional structure of the poly(acrylic acid), PAA, induced by incorporation of various alkali-metal counterions have been evaluated by studying diffusion of an uncharged probe (1,1'-ferrocenedimethanol) in the polymeric media. The studies are supported by the measurements of conductivity and viscosity of the polymeric media. Solutions of linear PAA of four different sizes (molecular weights: 450,000, 750,000, 1,250,000, 4,000,000) were neutralized with hydroxides of alkali metals of group 1 of the periodic table (Li, Na, K, Rb, Cs) to the desired neutralization degree. The transport properties of the obtained polyacrylates were monitored by measuring the changes in the probe diffusion coefficient during the titration of the polyacids. The probe diffusivity was determined from the steady-state current of the probe voltammetric oxidation at disk microelectrodes. Diffusivity of the probe increases with the increase in the degree of neutralization and with the increase in viscosity. It reaches the maximum value at about 60-80% of the polyacid neutralization. The way the probe diffusion coefficients change is similar in all polyacid solutions and gels. The increase in the size of a metal cation causes, in general, an enhancement in the transport of probe molecules. The biggest differences in the probe diffusivities are between lithium and cesium polyacrylates. The differences between the results obtained for cesium and rubidium are not statistically significant due to lack of good precision of the voltammetric measurements. The measurements of the electric conductivity of polyacrylates and the theoretical predictions supplemented the picture of electrostatic interactions between the polyanionic chains and the metal cations of increasing size. In all instances of the PAAs, the viscosity of the solutions rapidly increases in the 0-60% range of neutralization and then becomes constant in the 60-100% region. With the exception of the shortest

  17. Dynamic chiral-at-metal stability of tetrakis(d/l-hfc)Ln(III) complexes capped with an alkali metal cation in solution.

    Science.gov (United States)

    Lin, Yiji; Zou, Fang; Wan, Shigang; Ouyang, Jie; Lin, Lirong; Zhang, Hui

    2012-06-14

    Chiral tetrakis(β-diketonate) Ln(III) complexes Δ-[NaLa(d-hfc)(4)(CH(3)CN)] (1) and Λ-[NaLa(l-hfc)(4) (CH(3)CN)] (2) (d/l-hfc(-) = 3-heptafluo-robutylryl-(+)/(-)-camphorate) are a pair of enantiomers and crystallize in the same Sohncke space group (P2(1)2(1)2(1)) with dodecahedral (DD) geometry. Typically positive and negative exciton splitting patterns around 320 nm were observed in the solid-state circular dichroism (CD) spectra of complexes 1 and 2, which indicate that their shell configurational chiralities are Δ and Λ, respectively. The apparent bisignate couplets in the solid-state CD spectra of [CsLn(d-hfc)(4)(H(2)O)] [Ln = La (3), Yb (5)] and [CsLn(l-hfc)(4)(H(2)O)] [Ln = La (4), Yb (6)] show that they are a pair of enantiomers and their absolute configurations are denoted Δ and Λ, respectively. The crystallographic data of 5 reveals that its coordination polyhedron is the square antiprism (SAP) geometry and it undergoes a phase transition from triclinic (α phase, P1) to monoclinic (β phase, C2) upon cooling. The difference between the two phases is brought about by the temperature dependent behaviour of the coordination water molecules, but this did not affect the configurational chirality of the Δ-SAP-[Yb(d-hfc)(4)](-) moiety. Furthermore, time-dependent CD, UV-vis and (19)F NMR were applied to study the solution behavior of these complexes. It was found that the chiral-at-metal stability of the three pairs of complexes is different and affected by both the Ln(3+) and M(+) ion size. The results show that the Cs(+) cation can retain the metal center chirality and stablize the structures of [Ln(d/l-hfc)(4)](-) or the dissociated tris(d/l-hfc)Ln(III) species in solution for a longer time than that of the Na(+) cation, and it is important that the Cs(+) ion successfully lock the configurational chirality around the Yb(3+) center of the complex species in solution. This is reasoned by the short Cs(+)···FC, Cs(+)···O-Yb and Cs(+)···Yb(3

  18. Electrospray Ionization Mass Spectrometry: From Cluster Ions to Toxic metal Ions in Biology

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Nicholas B. [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    This dissertation focused on using electrospray ionization mass spectrometry to study cluster ions and toxic metal ions in biology. In Chapter 2, it was shown that primary, secondary and quarternary amines exhibit different clustering characteristics under identical instrument conditions. Carbon chain length also played a role in cluster ion formation. In Chapters 3 and 4, the effects of solvent types/ratios and various instrumental parameters on cluster ion formation were examined. It was found that instrument interface design also plays a critical role in the cluster ion distribution seen in the mass spectrum. In Chapter 5, ESI-MS was used to investigate toxic metal binding to the [Gln11]-amyloid β-protein fragment (1-16). Pb and Cd bound stronger than Zn, even in the presence of excess Zn. Hg bound weaker than Zn. There are endless options for future work on cluster ions. Any molecule that is poorly ionized in positive ion mode can potentially show an increase in ionization efficiency if an appropriate anion is used to produce a net negative charge. It is possible that drug protein or drug/DNA complexes can also be stabilized by adding counter-ions. This would preserve the solution characteristics of the complex in the gas phase. Once in the gas phase, CID could determine the drug binding location on the biomolecule. There are many research projects regarding toxic metals in biology that have yet to be investigated or even discovered. This is an area of research with an almost endless future because of the changing dynamics of biological systems. What is deemed safe today may show toxic effects in the future. Evolutionary changes in protein structures may render them more susceptible to toxic metal binding. As the understanding of toxicity evolves, so does the demand for new toxic metal research. New instrumentation designs and software make it possible to perform research that could not be done in the past. What was undetectable yesterday will

  19. Di-ionizable p-tert-butylcalix[4]arene-1,2-crown-3 ligands in cone and 1,2-alternate conformations: synthesis and metal ion extraction.

    Science.gov (United States)

    Zhang, Dongmei; Cao, Xiaodan; Purkiss, David W; Bartsch, Richard A

    2007-04-21

    Novel di-ionizable p-tert-butylcalix[4]arene-1,2-crown-3 ligands in cone and 1,2-alternate conformations were prepared as potential metal ion extractants. Selective bridging of proximal hydroxyl groups of the calix[4]arene platform by a crown-3 polyether unit was achieved under Mitsunobu reaction conditions. In addition to the carboxylic acid group, the acidity tunable N-(X)sulfonyl oxyacetamide functions [OCH(2)C(O)NHSO(2)X] with X group variation from methyl to phenyl to p-nitrophenyl to trifluomethyl were used as the proton-ionizable groups. Conformations and regioselectivities of the new ligands were established by (1)H and (13)C NMR spectroscopy. Competitive solvent extractions of alkali metal cations and of alkaline earth metal cations from aqueous solutions into chloroform were performed, as were single species extractions of lead(ii) and mercury(ii).

  20. Quenching of the luminescent state of the uranyl ion (UO22+) by metal ions

    International Nuclear Information System (INIS)

    The quenching of the luminescence of the uranyl ion by other metal ions has been studied in aqueous solution. The quenching is shown to be a dynamic process, and the correlation of the logarithm of the quenching rate with the metal ion ionization potential suggests that intermolecular electron transfer is the predominant mechanism. Evidence that this involves complete electron transfer comes from flash photolysis of solutions of UO2+2 and manganese (11), where a broad absorption lambdasub(max) = 505 nm) is observed which is assigned to Mn3+. Consideration of the energetics of the quenching process suggests that in the quenching of uranyl by silver(1), the products (U0+2 and Ag2+) are produced in their electronic ground states. Studies of the effect of temperature on the quenching suggest that if an intermediate complex (exciplex) is involved in the quenching then this must involve only very weak binding. With silver(I), the quenching is sensitive to the ionic strength of the solution. Further studies suggest that the lifetime of the luminescent state of the uranyl ion in aqueous solution varies with both temperature and uranyl ion concentration. (author)