WorldWideScience

Sample records for alkali metal ions

  1. Coprecipitation of alkali metal ions with calcium carbonate

    International Nuclear Information System (INIS)

    The coprecipitation of alkali metal ions Li+, Na+, K+ and Rb+ with calcium carbonate has been studied experimentally and the following results have been obtained: (1) Alkali metal ions are more easily coprecipitated with aragonite than with calcite. (2) The relationship between the amounts of alkali metal ions coprecipitated with aragonite and their ionic radii shows a parabolic curve with a peak located at Na+ which has approximately the same ionic radius as Ca2+. (3) However, the amounts of alkali metal ions coprecipitated with calcite decrease with increasing ionic radius of alkali metals. (4) Our results support the hypothesis that (a) alkali metals are in interstitial positions in the crystal structure of calcite and do not substitute for Ca2+ in the lattice, but (b) in aragonite, alkali metals substitute for Ca2+ in the crystal structure. (5) Magnesium ions in the parent solution increase the amounts of alkali metal ions (Li+, Na+, K+ and Rb+) coprecipitated with calcite but decrease those with aragonite. (6) Sodium-bearing aragonite decreases the incorporation of other alkali metal ions (Li+, K+ and Rb+) into the aragonite. (author)

  2. Bioinorganic Chemistry of the Alkali Metal Ions.

    Science.gov (United States)

    Kim, Youngsam; Nguyen, Thuy-Tien T; Churchill, David G

    2016-01-01

    The common Group 1 alkali metals are indeed ubiquitous on earth, in the oceans and in biological systems. In this introductory chapter, concepts involving aqueous chemistry and aspects of general coordination chemistry and oxygen atom donor chemistry are introduced. Also, there are nuclear isotopes of importance. A general discussion of Group 1 begins from the prevalence of the ions, and from a comparison of their ionic radii and ionization energies. While oxygen and water molecule binding have the most relevance to biology and in forming a detailed understanding between the elements, there is a wide range of basic chemistry that is potentially important, especially with respect to biological chelation and synthetic multi-dentate ligand design. The elements are widely distributed in life forms, in the terrestrial environment and in the oceans. The details about the workings in animal, as well as plant life are presented in this volume. Important biometallic aspects of human health and medicine are introduced as well. Seeing as the elements are widely present in biology, various particular endogenous molecules and enzymatic systems can be studied. Sodium and potassium are by far the most important and central elements for consideration. Aspects of lithium, rubidium, cesium and francium chemistry are also included; they help in making important comparisons related to the coordination chemistry of Na(+) and K(+). Physical methods are also introduced. PMID:26860297

  3. Sorption selectivity of alkali metal ions in polymer inclusion ion exchange membranes

    International Nuclear Information System (INIS)

    Sorption selectivity of different alkali metal ions in polymer inclusion cation exchange membranes has been studied. The concentration of the metal ions were measured using neutron activation analysis. The results show the selectivity of polymer inclusion membranes for metal ions in the order Na++++. The trend have been explained in terms of the radius of the hydrated metal ion. (author)

  4. Elucidation of transport mechanism and enhanced alkali ion transference numbers in mixed alkali metal-organic ionic molten salts.

    Science.gov (United States)

    Chen, Fangfang; Forsyth, Maria

    2016-07-28

    Mixed salts of Ionic Liquids (ILs) and alkali metal salts, developed as electrolytes for lithium and sodium batteries, have shown a remarkable ability to facilitate high rate capability for lithium and sodium electrochemical cycling. It has been suggested that this may be due to a high alkali metal ion transference number at concentrations approaching 50 mol% Li(+) or Na(+), relative to lower concentrations. Computational investigations for two IL systems illustrate the formation of extended alkali-anion aggregates as the alkali metal ion concentration increases. This tends to favor the diffusion of alkali metal ions compared with other ionic species in electrolyte solutions; behavior that has recently been reported for Li(+) in a phosphonium ionic liquid, thus an increasing alkali transference number. The mechanism of alkali metal ion diffusion via this extended coordination environment present at high concentrations is explained and compared to the dynamics at lower concentrations. Heterogeneous alkali metal ion dynamics are also evident and, somewhat counter-intuitively, it appears that the faster ions are those that are generally found clustered with the anions. Furthermore these fast alkali metal ions appear to correlate with fastest ionic liquid solvent ions. PMID:27375042

  5. Ion-exchange behavior of alkali metals on treated carbons

    International Nuclear Information System (INIS)

    The ion-exchange behavior of trace quantities of the alkali-metal ions sodium and cesium, on activated carbon impregnated with zirconium phosphate (referred to here as ZrP), was studied. Impregnated carbon had twice as much ion-exchange activity as unimpregnated, oxidized carbon, and 10 times as much as commercial activated carbons. The distribution coefficient of sodium increased with increasing pH; the distribution coefficient of cesium decreased with increasing pH. Sodium and cesium were separated with an electrolytic solution of 0.1 M HCl. Preliminary studies indicated that 0.2 M potassium and cesium can also be separated. Distribution coefficients of the supported ZrP were determined by the elution technique and agreed within 20% of the values for pure ZrP calculated from the literature

  6. A simple alkali-metal and noble gas ion source for SIMS equipments with mass separation of the primary ions

    International Nuclear Information System (INIS)

    An alkali-metal ion source working without a store of alkali-metals is described. The alkali-metal ions are produced by evaporation of alkali salts and ionization in a low-voltage arc discharge stabilized with a noble gas plasma or in the case of small alkali-metal ion currents on the base of the well known thermic ionization at a hot tungsten wire. The source is very simple in construction and produces a stable ion current of 0.3 μA for more than 100 h. It is possible to change the ion species in a short time. This source is applicable to all SIMS equipments using mass separation for primary ions. (author)

  7. Hydration number of alkali metal ions determined by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2008-01-01

    In aqueous solutions, the alkali metals ions are associated with a number of H2O molecules. A distinction is made between a primary solvent shell, (or inner solvation shell), consisting of H2O molecules directly coordinated to the metal ion, and a secondary (or outer) solvation shell, consisting of...... all other water molecules whose properties are still influenced significantly by the cation. Knowing the hydration number is important when considering, for instance, the transport of Na+ and K+ in biological cell membranes, since their different behavior may depend on the details of ion hydration....... The solvation of alkali metal ions has been discussed for many years without a clear consensus. This work presents a systematic study of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile...

  8. Alkali metal ionization detector

    Science.gov (United States)

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  9. Electrohydrodynamic emission of positive and negative ions from alkali-metal halide melts

    International Nuclear Information System (INIS)

    The characteristics of electrohydrodynamic (EHD) emission of positive and negative ions from melts of alkali-metal metals are presented. The angular current density is 3-4 μA/sr with emission currents of 0.1-0.5 μA. The salt EHD sources which have been developed yield stable currents of K+, Rb+, Cs+, F-, Cl-, and I- ions for several tens of hours. 10 refs., 4 figs., 1 tab

  10. Determination of membrane hydration numbers of alkali metal ions by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen; Junaid Mohamed Jafeen, Mohamed; Careem, M.A.

    2010-01-01

    In aqueous solutions, the alkali metals ions, Li+, Na+, K+, Rb+ and Cs+ are known to be associated with a number of H2O molecules. Traditionally, a distinction is made between a primary solvent shell, (or inner solvation shell), consisting of H2O molecules directly coordinated to the metal ion, and...... a secondary (or outer) solvation shell, consisting of all other water molecules whose properties are still influenced significantly by the cation. Knowing the hydration number is important when considering, for instance, the transport of Na+ and K+ in biological cell membranes, since their different...... necessarily define the same hydration shell. This work presents a systematic study of one special variant of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS-). The technique of...

  11. Low-polarity electrolytes on the base of crown ether complexes with alkali metal ions

    International Nuclear Information System (INIS)

    New low-polar electrolytes on the basis of 15-crown-5 complexes with alkali metal (lithium, sodium) ions in solvent characterized by low dielectrical permittivity: benzene, toluene, ethylene glycol dimethyl ether, tetrahydrofuran and methylene chloride, characterized by specific electrical permittivity equal to 10-5-10-2 Ohm-1·cm-1, are suggested and studied. 15 refs., 2 figs.,

  12. Elimination technique for alkali metal ion adducts from an electrospray ionization process using an on-line ion suppressor

    OpenAIRE

    NOZAKI, Kazuyoshi; TARUI, Akira; OSAKA, Issey; Kawasaki, Hideya; ARAKAWA, Ryuichi; 荒川, 隆一

    2010-01-01

    The effects of an on-line ion suppressor device on alkali metal ion adduct formations of the model compound tacrolimus were investigated. The base peak ion in the positive ion ESI-MS spectrum of tacrolimus was a sodium ion adduct, [M+Na]+. On the other hand, an ammonium ion adduct, [M+NH4]+, was the base peak ion in the full-scan mass spectrum of tacrolimus with a cation-exchange suppressor resin, and both [M+Na]+ and [M+K]+ were eliminated. These results indicate that the combination of an o...

  13. Structure of the Alkali-metal-atom-Strontium molecular ions: towards photoassociation and formation of cold molecular ions

    OpenAIRE

    Aymar, Mireille; Guérout, Romain; Dulieu, Olivier

    2011-01-01

    The potential energy curves, permanent and transition dipole moments, and the static dipolar polarizability, of molecular ions composed of one alkali-metal atom and a Strontium ion are determined with a quantum chemistry approach. The molecular ions are treated as effective two-electron systems and are treated using effective core potentials including core polarization, large gaussian basis sets, and full configuration interaction. In the perspective of upcoming experiments aiming at merging ...

  14. Construction of thermionic alkali-ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Ul Haq, F.

    1986-04-01

    A simple technique is described by which singly charged alkali ions of K, Na, Li, Rb and Cs are produced by heating ultra-pure chemical salts of different alkali metals on tungsten filaments without employing a temperature measuring device. The character of alkali-ion currents at different heating powers and the remarkably constant ion emission current for prolonged periods are discussed.

  15. Hydration to the poly(oxyethylene) derivative complexes of alkali metal ions and barium ion in 1,2-dichloroethane

    International Nuclear Information System (INIS)

    A series of poly(oxyethylene) derivatives (POE compound) complexes of alkali metal and barium ions were extracted into 1,2-dichloroethane (1,2-DCE) by forming ion-pairs with picrate ion. Water molecules were coextracted into 1,2-DCE with the ion-pairs. The mean number of water molecules bound to the POE compound, XH2O,S, and its complex, XH2O,comp, in water saturated with 1,2-DCE was determined by means of aquametry. The XH2O,S value increases with the increase in the number of the oxyethylene units (EO unit) of the POE compound. The XH2O,comp value decreases in the order Li+>Na+>K+≅Rb+≅Cs+ in any POE compound systems, and increases with the number of EO units of the POE compounds for a given metal ion. These results are interpreted by the hypothesis that the water molecules bound to the complex are those hydrated to the central metal ion, and the hydrated metal ion is surrounded by the EO chain with a helical conformation in the complex. The large number of water molecules are coordinating to the lithium ion complexes and bring about a serious distortion in the helical structure of the complexes. Because of the ion-pair formation with two picrate ions, the XH2O,comp values of barium ion complexes are smaller than those of potassium ion complexes. (author)

  16. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals.

    Science.gov (United States)

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-08-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: ([3])Li(+), ([3])Na(+), ([4])K(+), ([4])Rb(+), ([6])Cs(+), ([3])Be(2+), ([4])Mg(2+), ([6])Ca(2+), ([6])Sr(2+) and ([6])Ba(2+), but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of ([6])Na(+), the ratio Ueq(Na)/Ueq(bonded anions) is partially correlated with 〈([6])Na(+)-O(2-)〉 (R(2) = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li(+) in

  17. Alkali-Metal-Ion-Functionalized Graphene Oxide as a Superior Anode Material for Sodium-Ion Batteries.

    Science.gov (United States)

    Wan, Fang; Li, Yu-Han; Liu, Dai-Huo; Guo, Jin-Zhi; Sun, Hai-Zhu; Zhang, Jing-Ping; Wu, Xing-Long

    2016-06-01

    Although graphene oxide (GO) has large interlayer spacing, it is still inappropriate to use it as an anode for sodium-ion batteries (SIBs) because of the existence of H-bonding between the layers and ultralow electrical conductivity which impedes the Na(+) and e(-) transformation. To solve these issues, chemical, thermal, and electrochemical procedures are traditionally employed to reduce GO nanosheets. However, these strategies are still unscalable, consume high amounts of energy, and are expensive for practical application. Here, for the first time, we describe the superior Na storage of unreduced GO by a simple and scalable alkali-metal-ion (Li(+) , Na(+) , K(+) )-functionalized process. The various alkali metals ions, connecting with the oxygen on GO, have played different effects on morphology, porosity, degree of disorder, and electrical conductivity, which are crucial for Na-storage capabilities. Electrochemical tests demonstrated that sodium-ion-functionalized GO (GNa) has shown outstanding Na-storage performance in terms of excellent rate capability and long-term cycle life (110 mAh g(-1) after 600 cycles at 1 A g(-1) ) owing to its high BET area, appropriate mesopore, high degree of disorder, and improved electrical conductivity. Theoretical calculations were performed using the generalized gradient approximation (GGA) to further study the Na-storage capabilities of functionalized GO. These calculations have indicated that the Na-O bond has the lowest binding energy, which is beneficial to insertion/extraction of the sodium ion, hence the GNa has shown the best Na-storage properties among all comparatives functionalized by other alkali metal ions. PMID:27136376

  18. Validation of ion chromatography for the determination of transition metal ions along with alkali, alkaline earth metal elements for uranium oxide fuel

    International Nuclear Information System (INIS)

    The present report describes the use of Ion chromatography (IC) methods with spectrophotometric and direct conductivity detection for the determination of transition metal elements and alkali alkaline earth metal ions in UO2 pellets. Transmet analytical column and Metrosep- cation 1-2 column were used for the separation of transition metal elements and alkali and alkaline earth metal elements respectively. Oxalic acid and mixture of pyridine 2,6-dicarboxylic acid (PDCA), Na2SO4 and NaCl were used as mobile phase for the separation of transition metal ions and monitored after post - column reaction with 4,2-pyridylazo resorcinol (PAR) at 520nm spectrophotometrically. In the determination of alkali and alkaline earth metal ions the interference of transition metals are removed by complexing them with PDCA. Mixture of tartaric acid and PDCA employed in the separation of alkali and alkaline earth metal ions and monitored on direct conductivity detector. Mobile phase composition was optimised for the base line separation. Calibration plots of Fe3+, Cu2+, Ni2+, Co2+, Cd2+, Mn2+, Li+, Na+, K+, Mg2+, Ca2+ and Sr2+ were linear over a wide dynamic range with regression coefficient better than 0.999. Detection limit of above ions were between 5-30ppb. To prevent the overloading of the cation exchange column, uranium matrix was removed from UO2 sample by solvent extraction with 30% TBP - TOPO/CCl4. Ten sintered UO2 pellets of same lot were analysed and R.S.D. ±10% was obtained. These methods were validated by analysis of ILCE standards of UO2. (author)

  19. Evaluation of Ce3+ and alkali metal ions Co-doped LiSrAlF6 crystalline scintillators

    International Nuclear Information System (INIS)

    High scintillation efficiency of Eu-doped LiSrAlF6 (LiSAF) and LiCaAlF6 (LiCAF) codoped with alkali metal ions has been reported in our recent studies. Thus in this paper, we demonstrated the scintillation properties of 1% Ce-doped LiSAF crystals with 1% alkali metal ions co-doping to increase the light yield and understand the scintillation mechanism. The crystals showed intense emission band corresponding to the 5d-4f transition of Ce3+, and their light yields under thermal neutron excitation were higher than that of the Ce only doped crystal. Especially, the light yield of Ce–Na co-doped crystal exceeded about two times that of Ce only doped one. -- Highlights: ► Ce-doped and alkali metal co-doped LiSAF crystals were grown by μ-PD method. ► Alkali metal co-doped crystals showed higher light yield than Ce only doped crystal. ► Decay time of alkali metal co-doped LiSAF were longer than that of Ce only doped one

  20. Luminescence properties of alkali metal ions sensitized CaFCl:Tb3+ nanophosphors

    Institute of Scientific and Technical Information of China (English)

    林林; 林慧; 王哲哲; 郑标; 谌基兴; 徐森元; 冯卓宏; 郑志强

    2015-01-01

    A series of CaFCl:Tb3+ and CaFCl:Tb3+,A+ (A=Li, Na and K) nanophosphors were synthesized by the one-step sol-gel method, which were reported for the first time. The sample consisted of monodisperse particles, the average size of which was 37 nm. The emissions of Tb3+ ions and oxygen defects OF? were demonstrated in the CaFCl:Tb3+ samples. The former was made up of sev-eral peaks at 488, 545, 587 and 623 nm, ascribed to5D4→7FJ (J=6–3) transitions of Tb3+ ions. The latter was shown as a broad band peaked at about 450 nm. Alkali metal ions A+(A=Li, Na and K) were introduced asthe charge compensators to improve the lumines-cence of samples. The influence of charge compensators on the emissions of Tb3+ ions and oxygen defects OF? was investigated by the measurement of fluorescence spectra and luminescence decay curves. The results indicated that all the charge compensators weakened the defects emission. Furthermore, Li+ ion was the best charge compensator, because it not only reduced the defects emis-sion but also increased the emission intensity of Tb3+ significantly. Our results suggested that this nanophosphor sensitized by the charge compensator might broaden potential applications of rare-earth doped CaFCl.

  1. Methods of recovering alkali metals

    Science.gov (United States)

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  2. Alkali metal ion binding to glutamine and glutamine derivatives investigated by infrared action spectroscopy and theory

    NARCIS (Netherlands)

    Bush, M. F.; Oomens, J.; Saykally, R. J.; Williams, E. R.

    2008-01-01

    The gas-phase structures of alkali-metal cationized glutamine are investigated by using both infrared multiple photon dissociation (TRMPD) action spectroscopy, utilizing light generated by a free electron laser, and theory. The IRMPD spectra contain many similarities that are most consistent with gl

  3. The effects of correlation, relativity, exchange, channels coupling and polarization in scattering of electrons by alkali-metal atoms and alkali-like ions

    International Nuclear Information System (INIS)

    The present review briefly presents the growing experimental as well as theoretical interest in recent years in the effects of correlation, relativity, exchange, channels coupling and polarization on the high precision scattering of electron by alkali-metal atoms and alkali-like ions. Many high precision experiments have been performed which need very high accurate theoretical prediction for correct interpretation and identification of different physical effects involved. Several sophisticated theoretical techniques have been developed for inclusion of the above mentioned effects which play an extremely important role in order to obtain results of high accuracy for understanding experimental observation of high precision. At present, we do not have a comprehensive and practical atomic scattering theory which accounts for all these effects on an equal footing. Future challenges and directions, in reliable electron-atom scattering calculations, have been discussed and suggested. (author). 136 refs, 16 figs

  4. Hydrothermal alkali metal recovery process

    Science.gov (United States)

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  5. Crown-Ether Derived Graphene Hybrid Composite for Membrane-Free Potentiometric Sensing of Alkali Metal Ions

    DEFF Research Database (Denmark)

    Olsen, Gunnar; Ulstrup, Jens; Chi, Qijin

    2016-01-01

    surface coverage is achieved by the introduction of a flexible linking molecule. The resulting hybrid composite is highly stable and is capable of detecting potassium ions down to micromolar ranges with a selectivity over other cations (including Ca2+, Li+, Na+, NH4+) at concentrations up to 25 mM. This......We report the design and synthesis of newly functionalized graphene hybrid material that can be used for selective membrane-free potentiometric detection of alkali metal ions, represented by potassium ions. Reduced graphene oxide (RGO) functionalized covalently by 18-crown[6] ether with a dense...

  6. Solid State Structures of Alkali Metal Ion Complexes Formed by Low-Molecular-Weight Ligands of Biological Relevance.

    Science.gov (United States)

    Aoki, Katsuyuki; Murayama, Kazutaka; Hu, Ning-Hai

    2016-01-01

    This chapter provides structural data, mainly metal binding sites/modes, observed in crystal structures of alkali metal ion complexes containing low-molecular-weight ligands of biological relevance, mostly obtained from the Cambridge Structural Database (the CSD version 5.35 updated to February 2014). These ligands include (i) amino acids and small peptides, (ii) nucleic acid constituents (excluding quadruplexes and other oligonucleotides), (iii) simple carbohydrates, and (iv) naturally occurring antibiotic ionophores. For some representative complexes of these ligands, some details on the environment of the metal coordination and structural characteristics are described. PMID:26860299

  7. N-alkyl pyrrolidone ether podands as versatile alkali metal ion chelants.

    Science.gov (United States)

    Perrin, Andrea; Myers, Dominic; Fucke, Katharina; Musa, Osama M; Steed, Jonathan W

    2014-02-28

    This work explores the coordination chemistry of a bis(pyrrolidone) ether ligand. Pyrrolidones are commercially important functional groups because of the high polarity and hence high hydrophilicity and surface affinity. An array of alkali metal ion complexes of a podand bearing two pendant pyrrolidone functionalities, namely 1-{2-[2-(2-oxo-pyrrolid-1-yl)-ethoxy]-ethyl}-pyrrolid-2-one (1) are reported. Reaction of this ligand with sodium hexafluorophosphate gives two discrete species of formulae [Na(1)2]PF6 (3) and [Na3(H2O)2(μ-1)2](PF6)3 (4), and a coordination polymer {[Na3(μ3-1)3(μ2-1)](PF6)3}n (5). The same reaction in methanol gives a 1 : 1 complex, namely [Na2(μ-1)2(MeOH)2](PF6)2 (6). Use of tetraphenyl borate as a less coordinating counter ion gives [Na2(1)2(H2O)4](BPh4)2 (7) and [Na2(1)4](BPh4)2 (8). Two potassium complexes have also been isolated, a monomer [K(1)2]PF6 (9) and a cyclic tetramer [K4(μ4-H2O)2(μ-1)4](PF6)4 (10). The structures illustrate the highly polar nature of the amide carbonyl moiety within bis(pyrrolidone) ethers with longer interactions to the ether oxygen atom. The zinc complex is also reported and {[ZnCl2(μ-1)]}n (11) exhibits bonding only to the carbonyl moieties. The ether oxygen atom is not necessary for Na(+) complexation as exemplified by the structure of the sodium complex of the analogue 1,3-bis(pyrrolid-2-on-1-yl)butane (2). Reaction of compound 1 with lithium salts results in isolation of the protonated ligand. PMID:24336897

  8. Alkali Metal Ion Complexes with Phosphates, Nucleotides, Amino Acids, and Related Ligands of Biological Relevance. Their Properties in Solution.

    Science.gov (United States)

    Crea, Francesco; De Stefano, Concetta; Foti, Claudia; Lando, Gabriele; Milea, Demetrio; Sammartano, Silvio

    2016-01-01

    Alkali metal ions play very important roles in all biological systems, some of them are essential for life. Their concentration depends on several physiological factors and is very variable. For example, sodium concentrations in human fluids vary from quite low (e.g., 8.2 mmol dm(-3) in mature maternal milk) to high values (0.14 mol dm(-3) in blood plasma). While many data on the concentration of Na(+) and K(+) in various fluids are available, the information on other alkali metal cations is scarce. Since many vital functions depend on the network of interactions occurring in various biofluids, this chapter reviews their complex formation with phosphates, nucleotides, amino acids, and related ligands of biological relevance. Literature data on this topic are quite rare if compared to other cations. Generally, the stability of alkali metal ion complexes of organic and inorganic ligands is rather low (usually log K  Na(+) > K(+) > Rb(+) > Cs(+). For example, for citrate it is: log K ML = 0.88, 0.80, 0.48, 0.38, and 0.13 at 25 °C and infinite dilution. Some considerations are made on the main aspects related to the difficulties in the determination of weak complexes. The importance of the alkali metal ion complexes was also studied in the light of modelling natural fluids and in the use of these cations as probes for different processes. Some empirical relationships are proposed for the dependence of the stability constants of Na(+) complexes on the ligand charge, as well as for correlations among log K values of NaL, KL or LiL species (L = generic ligand). PMID:26860301

  9. Long-range interactions between the alkali-metal atoms and alkaline earth ions

    CERN Document Server

    Kaur, Jasmeet; Arora, Bindiya; Sahoo, B K

    2014-01-01

    Accurate knowledge of interaction potentials among the alkali atoms and alkaline earth ions is very useful in the studies of cold atom physics. Here we carry out theoretical studies of the long-range interactions among the Li, Na, K, and Rb alkali atoms with the Ca$^+$, Ba$^+$, Sr$^+$, and Ra$^+$ alkaline earth ions systematically which are largely motivated by their importance in a number of applications. These interactions are expressed as a power series in the inverse of the internuclear separation $R$. Both the dispersion and induction components of these interactions are determined accurately from the algebraic coefficients corresponding to each power combination in the series. Ultimately, these coefficients are expressed in terms of the electric multipole polarizabilities of the above mentioned systems which are calculated using the matrix elements obtained from a relativistic coupled-cluster method and core contributions to these quantities from the random phase approximation. We also compare our estim...

  10. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    Science.gov (United States)

    Joshi, Ashok V.; Balagopal, Shekar; Pendelton, Justin

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  11. Characterization of the conduction properties of alkali metal ion conducting solid electrolytes using thermoelectric measurements

    OpenAIRE

    Gautam, Devendraprakash

    2006-01-01

    Under certain circumstances the electronic conductivity of the solid electrolyte may play a pivotal role for the behaviour of a solid state galvanic cell. Quantitatively, the extent of the electronic conductivity is expressed by the electronic conduction parameters, a and a, that denote the alkali metal activities at which the n and p-type electronic conductivities, respectively, of the electrolyte are equal to its ionic conductivity. Previous findings demonstrated the existen...

  12. Preparation, characterization and applications of novel iminodiacetic polyurethane foam (IDA-PUF) for determination and removal of some alkali metal ions from water

    International Nuclear Information System (INIS)

    The new type of ion chelating resin (IDA-PUF) has iminodiacetic group that was prepared from polyurethane foam (PUF) by the reaction between primary amine of PUF and monochloro-acetic acid. The IDA-PUF was characterized using infrared spectra, elemental and thermal analysis. The exchange properties and chromatographic behaviour of the new chelating resin were investigated for removal of some alkali metal ions (lithium, sodium and potassium) using batch and column processes. The maximum distribution coefficient (KD) of trace alkali metal ions was in the pH range of 8-10. The kinetics of sorption of the alkali metal ions was found to be fast with average values of half-life of sorption (t1/2) of 4.93 min. The values of ΔG, ΔS and ΔH were -3.86 kJ mol-1, 57.73 J mol-1 K-1 and 14.41 kJ mol-1, respectively, which reflects the spontaneous and endothermic nature of ion exchanger process. The average sorption capacity of IDA-PUF is 4.8 mmol/g for alkali metal ions, enrichment factors ∼40 and the recovery 95-100% were also achieved with average value of RSD% = 1.67. The proposed method has been successfully applied to preconcentrate, determinate and remove the alkali metal ions from different samples of water

  13. Surface tension of molten alkali metal halides as a function of ion sizes

    International Nuclear Information System (INIS)

    The analysis of the experimental data on the surface tension of the liquid/vapor interphase boundary of the molten alkali metal halides MX (M Li-Cs, X = F-I) near the melting temperature, accounting for the cation and anion dimensional differences, is presented. The main attention is focused at the manifestation of the effects of the interphase boundary of the effects of the interphase boundary thickness and twofold electric layer. It is shown, that the experimental data on the whole MX series may be represented in the form of the electrocapillary curve on the graph of the surface tension dependence on the degree of the halides dimensional asymmetry

  14. Molecular origin of high free energy barriers for alkali metal ion transfer through ionic liquid-graphene electrode interfaces.

    Science.gov (United States)

    Ivaništšev, Vladislav; Méndez-Morales, Trinidad; Lynden-Bell, Ruth M; Cabeza, Oscar; Gallego, Luis J; Varela, Luis M; Fedorov, Maxim V

    2016-01-14

    In this work we study mechanisms of solvent-mediated ion interactions with charged surfaces in ionic liquids by molecular dynamics simulations, in an attempt to reveal the main trends that determine ion-electrode interactions in ionic liquids. We compare the interfacial behaviour of Li(+) and K(+) at a charged graphene sheet in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, and its mixtures with lithium and potassium tetrafluoroborate salts. Our results show that there are dense interfacial solvation structures in these electrolytes that lead to the formation of high free energy barriers for these alkali metal cations between the bulk and direct contact with the negatively charged surface. We show that the stronger solvation of Li(+) in the ionic liquid leads to the formation of significantly higher interfacial free energy barriers for Li(+) than for K(+). The high free energy barriers observed in our simulations can explain the generally high interfacial resistance in electrochemical storage devices that use ionic liquid-based electrolytes. Overcoming these barriers is the rate-limiting step in the interfacial transport of alkali metal ions and, hence, appears to be a major drawback for a generalised application of ionic liquids in electrochemistry. Some plausible strategies for future theoretical and experimental work for tuning them are suggested. PMID:26661060

  15. Upgrading platform using alkali metals

    Science.gov (United States)

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  16. Kinetics and thermodynamics of sorption of alkali metals ions with tin phosphate

    International Nuclear Information System (INIS)

    In order to extract microquantities of potassium from sodium iodide the sorption method with application of tin phosphate as ion exchanger is proposed. The conditions of synthesis of tin phosphate are optimized. Theoretical aspects of sorption process are considered. The kinetics of sorption of alkaline metals with amorphous tin phosphate is studied by means of limited volume method. The activation energies of sorption of alkaline metals ions are defined. Thermodynamic characteristics of process are defined as well.

  17. Alkali metal and alkali earth metal gadolinium halide scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  18. Metal-mediated aminocatalysis provides mild conditions: Enantioselective Michael addition mediated by primary amino catalysts and alkali-metal ions

    Directory of Open Access Journals (Sweden)

    Matthias Leven

    2013-01-01

    Full Text Available Four catalysts based on new amides of chiral 1,2-diamines and 2-sulfobenzoic acid have been developed. The alkali-metal salts of these betaine-like amides are able to form imines with enones, which are activated by Lewis acid interaction for nucleophilic attack by 4-hydroxycoumarin. The addition of 4-hydroxycoumarin to enones gives ee’s up to 83% and almost quantitative yields in many cases. This novel type of catalysis provides an effective alternative to conventional primary amino catalysis were strong acid additives are essential components.

  19. A stochastic optimization method based technique for finding out reaction paths in noble gas clusters perturbed by alkali metal ions

    International Nuclear Information System (INIS)

    Graphical abstract: The structure of a minimum in Ar19K+ cluster. Abstract: In this paper we explore the possibility of using stochastic optimizers, namely simulated annealing (SA) in locating critical points (global minima, local minima and first order saddle points) in Argon noble gas clusters perturbed by alkali metal ions namely sodium and potassium. The atomic interaction potential is the Lennard Jones potential. We also try to see if a continuous transformation in geometry during the search process can lead to a realization of a kind of minimum energy path (MEP) for transformation from one minimum geometry to another through a transition state (first order saddle point). We try our recipe for three sizes of clusters, namely (Ar)16M+, (Ar)19M+ and (Ar)24M+, where M+ is Na+ and K+.

  20. Corrosion by the Alkali Metals

    International Nuclear Information System (INIS)

    This is a review of the state of the art of corrosion testing of materials by the alkali metals, the models proposed to explain the observed corrosion results, and the status of materials selection for application in alkali metal-cooled systems. Corrosion of structural and fuel cladding materials by liquid Na and NaK has been studied intensively, but intermittently for the last 18 years. These studies and the liquid-metal-cooled reactors in operation demonstrate that stainless steels can be considered for structural and cladding applications below 650°C. Above this temperature increased corrosion and radiation-induced embrittlement make them unsatisfactory. Corrosion models are reviewed and their inability to explain all the experimental observations discussed. An alternate model is proposed which qualitatively is in agreement with experimental observations. In this model, the rate-controlling step is either the surface reaction of Fe with ''available oxygen'' (dissolved Na2O) to form an Fe-O-Na complex or the rate at which ''available oxygen'' can reach the surface to form the complex; which process is rate controlling depends on the temperature, Na velocity and oxygen concentration in the Na. The solution chemistry of oxygen, carbon and alkali metal-oxygen-transition metal complexes dissolved in the alkali metals is reviewed. ''Molecular'' complexes appear unlikely to exist in solution in the alkali metals, although the thermodynamic tendencies for them to form suggest that stable bonds exist in solution between oxygen, the transition and the alkali metals. The insolubility of carbon in ''oxygen-free'' sodium indicates that carbon transfer may be associated with oxygen in sodium down to very low oxygen levels, although experimental data do not generally confirm this postulate. Corrosion of refractory metals by boiling alkali metals at temperatures above 1000°C is markedly affected by impurities in either the liquid or refractory metal; the addition of Ti, Zr or

  1. Dispersion coefficients for the interactions of the alkali-metal and alkaline-earth-metal ions and inert-gas atoms with a graphene layer

    Science.gov (United States)

    Kaur, Kiranpreet; Arora, Bindiya; Sahoo, B. K.

    2015-09-01

    Largely motivated by a number of applications, the van der Waals dispersion coefficients C3 of the alkali-metal ions Li+,Na+,K+, and Rb+, the alkaline-earth-metal ions Ca+,Sr+,Ba+, and Ra+, and the inert-gas atoms He, Ne, Ar, and Kr with a graphene layer are determined precisely within the framework of the Dirac model. For these calculations, we evaluate the dynamic polarizabilities of the above atomic systems very accurately by evaluating the transition matrix elements employing relativistic many-body methods and using the experimental values of the excitation energies. The dispersion coefficients are given as functions of the separation distance of an atomic system from the graphene layer and the ambiance temperature during the interactions. For easy extraction of these coefficients, we give a logistic fit to the functional forms of the dispersion coefficients in terms of the separation distances at room temperature.

  2. Alkali and transition metal phospholides

    International Nuclear Information System (INIS)

    Major tendencies in modern chemistry of alkali and transition metal phospholides (phosphacyclopentadienides) are systematized, analyzed and generalized. Basic methods of synthesis of these compounds are presented. Their chemical properties are considered with a special focus on their complexing ability. Potential applications of phospholides and their derivatives are discussed. The bibliography includes 184 references

  3. Synthesis and luminescence of high-brightness Gd2O2SO4:Tb3+ nanopieces and the enhanced luminescence by alkali metal ions co-doping

    International Nuclear Information System (INIS)

    Gd2O2SO4:Tb3+ nanopieces were synthesized by a combined approach of electrospinning and calcination at 1000 °C in mixed gas of sulfur dioxide and air. The nanopieces excited by a 230 nm light showed excellent green luminescence with the strongest emission peak at 545 nm due to the 5D4→7F5 transition of Tb3+. Interestingly, the intensity of emission peak at 545 nm of Gd2O2SO4:Tb3+ nanopieces exhibited about two times stronger than that of the bulk Gd2O2SO4:Tb3+ at the same doping concentrations of Tb3+. Besides, the effects of alkali metal ions doping on the luminescence of the nanopieces have been examined. The emission intensities were further enhanced by alkali metal ions doping, especially for Gd2O2SO4:Tb3+/Li+. The optimal doping concentration of Li+ was 7%. -- Highlights: •Gd2O2SO4:Tb3+ nanopieces were prepared via electrospinning followed by calcination. •A comparison between the nanopieces and the bulk was conducted. •The effects of alkali metal ions on the luminescence of nanopieces are examined. •The content of co-dopant in nanopieces is optimized. •The potential applications of the nanopieces and the facile method are suggested

  4. Alkali metal sources for OLED devices

    Science.gov (United States)

    Cattaneo, Lorena; Longoni, Giorgio; Bonucci, Antonio; Tominetti, Stefano

    2005-07-01

    In OLED organic layers electron injection is improved by using alkali metals as cathodes, to lower work function or, as dopants of organic layer at cathode interface. The creation of an alkali metal layer can be accomplished through conventional physical vapor deposition from a heated dispenser. However alkali metals are very reactive and must be handled in inert atmosphere all through the entire process. If a contamination takes place, it reduces the lithium deposition rate and also the lithium total yield in a not controlled way. An innovative alkali metal dispensing technology has been developed to overcome these problems and ensure OLED alkali metal cathode reliability. The alkali Metal dispenser, called Alkamax, will be able to release up to a few grams of alkali metals (in particular Li and Cs) throughout the adoption of a very stable form of the alkali metal. Lithium, for example, can be evaporated "on demand": the evaporation could be stopped and re-activated without losing alkali metal yield because the metal not yet consumed remains in its stable form. A full characterization of dispensing material, dispenser configuration and dispensing process has been carried out in order to optimize the evaporation and deposition dynamics of alkali metals layers. The study has been performed applying also inside developed simulations tools.

  5. Hyperthermal alkali-ion scattering from a metal surface: A theoretical study of the potential

    International Nuclear Information System (INIS)

    The K+-W ion-atom scattering potential is calculated with the Hartree-Fock-Slater linear combination of atomic orbitals (HFS-LCAO) method. For hyperthermal (10--100 eV) K+ scattering from a W(110) surface, classical-trajectory calculations are performed, where the K+-W(110) ion-surface potential is represented by a sum of pairwise-calculated (HFS-LCAO) K+-W potentials. The results of these classical-trajectory calculations are compared with experiment and with the results of similar trajectory calculations using a sum of Ziegler-Biersack-Littmarck ''universal'' pair potentials. From these comparisons, it turns out that the HFS-LCAO pair potential is able to reproduce well on-top-site hyperthermal K+ scattering from a W(110) surface, contrary to the Ziegler-Biersack-Littmarck potential, which clearly does not work very well in this low-energy range. The inability of the HFS-LCAO pair potential to give a proper description of K+ scattering from the hollow site of the W(110) surface unit cell can be ascribed to the breakdown of a summation of pair potentials. This is clear from the difference between the sum of the calculated K+-W ion-atom potentials and a calculated K+-W5 ion-cluster potential, the cluster representing the W(110) surface. The ion-cluster calculations indicate an extra repulsion of about 10% at the center of the W(110) surface unit cell. This extra hollow-site repulsion can be explained by analyzing the properties of the exchange (Pauli, Born) repulsions between the K+ ion and (i) one W atom and (ii) the W(110) surface (W5 cluster) at the hollow site

  6. Optimized random phase approximation for the structure of liquid alkali metals as electron-ion plasmas

    International Nuclear Information System (INIS)

    The purpose of this letter is to stress that the way towards an unconventional optimized-random-phase-approximation (ORPA) approach to the structure of liquid metals is indicated, and in fact already a good first-order solution for such an approach is provided

  7. An experimental study of charge exchange process in the energy range 1-30 keV during the passage of alkali metal ions and atoms through cesium and potassium vapour

    International Nuclear Information System (INIS)

    An experimental study is presented of the charge exchange processes in the energy range of about 1-30 keV during the passage of positive alkali ions and alkali atoms through potassium and cesium vapour. The experimental set-up designed for this experiment includes a thermionic source for positive alkali ions with an acceleration stage, a first charge exchange cell to produce fast alkali atoms, a second charge exchange cell with a surface ionisation detector to determine the alkali metal vapor target thickness and a detection system with electrostatic bending of the charged secondary species. The maximum negative ion yield has been determined for the collision systems Li+ + K, Na+ + K, K+ + K, and Rb+ + K, and for another eleven systems the charge transfer cross-sections have been measured too. (orig./GG)

  8. Adsorption of humic acid by bi-functional resin JN-10 and the effect of alkali-earth metal ions on the adsorption

    International Nuclear Information System (INIS)

    This study investigated the adsorption of humic acid (HA) by bi-functional resin JN-10, which removed the HA more effectively than the commercial resins D-301, D-201, XAD-7, and globe active carbon F-400. The difference between the FT-IR spectroscopy and 13C NMR analysis of JN-10 before and after it adsorbing the HA revealed that both hydrophobic interaction and electric attraction were the adsorption force for the HA. The related thermodynamic parameters exhibited that the adsorption of the HA by JN-10 was an endothermic process. The occurring of adsorption was due to the increase of entropy, and the electric attraction was also a main adsorption force. In order to investigate the influence of the molecule weight (MW) of the HA on its removal by JN-10, the HA with the MWs ranging from 2000 to 100,000 Da was divided into six fractions by ultra-filtration. The HA with a medium MW (6000-10,000 Da) was preferentially removed by JN-10 due to the synergistic effect of hydrophilicity, molecular size, and aromaticity of the HA. The adsorption capacity of JN-10 for the HA increased in the presence of low concentration of alkali-earth metal ions Ca2+ and Mg2+, which neutralized the negative charges of the HA, but it decreased as the concentration of these ions increased because the hydrates formed by the alkali-earth metal ions occupied the adsorption sites of the resin.

  9. Alkali metal ion-proton exchange equilibria and water sorption studies on nafon 117 membrane and dowex 50 W exchange resins: effect of long storage or aging

    International Nuclear Information System (INIS)

    Alkali metal ion -H+ exchanges on Nafion 117 membrane treated differently, Dowex 50 W x 4 and Dowex 50 W x 8 resins have been studied at a total ionic strength of 0.1 mol dm-3. The water sorption isotherms of these exchangers in different ionic forms generated over the entire range of water activity, have been analysed by the D'Arcy and Watt equation (DWE). Water sorption studies have shown that the physical structure of the exchangers have changed due to long -storage or aging, resulting in poorer water sorption and even formation of pores in the case of Dowex 50 W x 8 resin. As a result, the counter ions in the exchangers are not hydrated and the water is present in a free form, albeit structured, in the resin phase. The selectivity sequence for the alkali metal ions with reference to the H+ (Li+++) for the exchangers used in the present study is in accordance with that reported in the literature for the ionomers having sulphonic acid as the functional group. In view of the absence of hydration of the cations in the resin phase, the driving force for the selectivity of the cation, namely, the net gain in entropy, is expected to come from the loss of structured water during the exchange process. Pre treating the Nafion 117 membrane with boiling acid solution activates the clustered region of the membrane in the H+ form, while pretreatment with boiling water expands the non-ionic domain (the region connecting the clusters). These modifications influence the state of water present in the Nafion 117 membrane and the ion exchange equilibria. As a result of long storage or aging, the ion exchangers lose their elasticity or swelling characteristics. The results obtained in the present study indicate that in aged materials, the ionogenic groups are existing as isolated ion -pairs rather than in a clustered morphology. (author)

  10. The structure of metallic complexes of polyacetylene with alkali metals

    Science.gov (United States)

    Baughman, R. H.; Murthy, N. S.; Miller, G. G.

    1983-07-01

    The crystal structures of sodium, potassium, rubidium, and cesium doped polyacetylene have been determined using crystal packing and x-ray diffraction analyses. Each of these metallic complexes is tetragonal, with the polyacetylene chains forming a host lattice in which the alkali metal ions are present in channels. Lithium appears to be too small to stabilize the channel structure and an amorphous structure is observed. Predicted unit cell parameters and x-ray diffraction intensities are in agreement with observed values. Similarities with the alkali metal doped graphite suggest that hybridization between carbon pz orbitals and metal s orbitals occurs. Such hybridization is expected to result in a high conductivity component normal to the chain direction. On the other hand, direct overlap between polymer chains appears small, since alkali metal columns separate polymer chains. Compositions calculated for the channel structures (from meridional diffraction spacings, the intensity of equatorial diffraction lines, measured volume expansion, and distances in model complexes) all range from y=0.12 to 0.18 for (CHMy)x, where M is sodium, potassium, rubidium, or cesium.

  11. Thermal and optical properties of Nd{sup 3+} doped lead zinc borate glasses—Influence of alkali metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Sasi Kumar, M.V.; Rajesh, D.; Balakrishna, A. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Ratnakaram, Y.C., E-mail: ratnakaramsvu@gmail.com [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India)

    2013-04-15

    In the present investigation a new series of six different Nd{sup 3+} doped alkali and mixed alkali (Li, Na, K, Li–Na, Li–K and Na–K) heavy metal (PbO and ZnO) borate glasses were prepared using the melt quenching technique. The amorphous nature of the glass systems has been identified based on the X-ray diffraction analysis. The glass transition studies were carried out using differential scanning calorimetry (DSC). Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra. The Judd–Ofelt (J–O) theory has been applied to calculate J–O intensity parameters, Ω{sub λ} (λ=2, 4 and 6) and in turn used to estimate radiative properties of certain transitions. Spectroscopic parameters such as transition probabilities (A{sub T}), branching ratios (β), radiative lifetimes (τ{sub R}) and integrated absorption cross-sections (Σ) were calculated using J–O intensity parameters for all transitions. Using emission spectra, experimental branching ratios and stimulated emission cross-sections (σ{sub P}) are obtained for all the observed emission transitions.

  12. Thermal and optical properties of Nd3+ doped lead zinc borate glasses—Influence of alkali metal ions

    Science.gov (United States)

    Sasi Kumar, M. V.; Rajesh, D.; Balakrishna, A.; Ratnakaram, Y. C.

    2013-04-01

    In the present investigation a new series of six different Nd3+ doped alkali and mixed alkali (Li, Na, K, Li-Na, Li-K and Na-K) heavy metal (PbO and ZnO) borate glasses were prepared using the melt quenching technique. The amorphous nature of the glass systems has been identified based on the X-ray diffraction analysis. The glass transition studies were carried out using differential scanning calorimetry (DSC). Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra. The Judd-Ofelt (J-O) theory has been applied to calculate J-O intensity parameters, Ωλ (λ=2, 4 and 6) and in turn used to estimate radiative properties of certain transitions. Spectroscopic parameters such as transition probabilities (AT), branching ratios (β), radiative lifetimes (τR) and integrated absorption cross-sections (Σ) were calculated using J-O intensity parameters for all transitions. Using emission spectra, experimental branching ratios and stimulated emission cross-sections (σP) are obtained for all the observed emission transitions.

  13. Thermal and optical properties of Nd3+ doped lead zinc borate glasses—Influence of alkali metal ions

    International Nuclear Information System (INIS)

    In the present investigation a new series of six different Nd3+ doped alkali and mixed alkali (Li, Na, K, Li–Na, Li–K and Na–K) heavy metal (PbO and ZnO) borate glasses were prepared using the melt quenching technique. The amorphous nature of the glass systems has been identified based on the X-ray diffraction analysis. The glass transition studies were carried out using differential scanning calorimetry (DSC). Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra. The Judd–Ofelt (J–O) theory has been applied to calculate J–O intensity parameters, Ωλ (λ=2, 4 and 6) and in turn used to estimate radiative properties of certain transitions. Spectroscopic parameters such as transition probabilities (AT), branching ratios (β), radiative lifetimes (τR) and integrated absorption cross-sections (Σ) were calculated using J–O intensity parameters for all transitions. Using emission spectra, experimental branching ratios and stimulated emission cross-sections (σP) are obtained for all the observed emission transitions

  14. Study on alkali metal thermoelectric converter

    International Nuclear Information System (INIS)

    The alkali metal thermoelectric converter (AMTEC) utilizing the sodium ion conducting β''-alumina solid electrolyte (BASE) is a device to convert heat energy to electric energy directly. It is characterized by high conversion efficiencies (20-40%), high power densities (1 W/cm2), no moving parts, low maintenance requirements, high durability, and efficiency independent of size. Because of these merits, AMTEC is one of the most promising candidate for dispersed small scale power station, remote power station and aerospace power systems. In this paper, the theoretical and experimental studies on the thin film electrodes characteristics, power generating characteristics, cell efficiency, integral electrode with large current lead, porous metal current lead, series connected cells power generation, potassium AMTEC, wick return AMTEC and system analysis for space and grand use are reported. (J.P.N.) 79 refs

  15. Near-infrared luminescence enhancing by introducing alkali metal ions in Sr2CeO4:Yb3+

    International Nuclear Information System (INIS)

    NIR luminescence phosphors Sr2CeO4:Yb3+, M+ (M+=Li+, Na+, K+) were synthesized by conventional solid-state method in the present paper. The prepared phosphors are characterized by XRD and fluorescence spectrometer. Under UV light excitation, the NIR emission intensity of Yb3+:2F5/2→2F7/2 around 1 μm of Sr2CeO4:Yb3+ is strengthened significantly by introducing appropriate alkali metal cations dopants (Li+, Na+, K+) into the crystalline lattice. The relevant mechanisms have been discussed in detail. The peculiar optical properties make Sr2CeO4:Yb3+, M+ (M+=Li+, Na+, K+) promising for potential application in the high efficiency silicon-based solar cells. -- Highlights: • Pure orthorhombic Sr2CeO4:Yb3+, M+ (M+=Li+, Na+, K+) were successfully synthesized. • The structural and photoluminescence of these samples were characterized by XRD and fluorescence spectrometer. • The effect of Li+/Na+/K+ on the properties of samples had been researched and the relevant mechanisms have been discussed in detail. • These NIR materials could have potential application in the high efficiency silicon-based solar cells

  16. Alkali-metal intercalation in carbon nanotubes

    Science.gov (United States)

    Béguin, F.; Duclaux, L.; Méténier, K.; Frackowiak, E.; Salvetat, J. P.; Conard, J.; Bonnamy, S.; Lauginie, P.

    1999-09-01

    We report on successful intercalation of multiwall (MWNT) and single wall (SWNT) carbon nanotubes with alkali metals by electrochemical and vapor phase reactions. A LiC10 compound was produced by full electrochemical reduction of MWNT. KC8 and CsC8-MWNT first stage derivatives were synthesized in conditions of alkali vapor saturation. Their identity periods and the 2×2 R 0° alkali superlattice are comparable to their parent graphite compounds. The dysonian shape of KC8 EPR line and the temperature-independent Pauli susceptibility are both characteristic of a metallic behavior, which was confirmed by 13C NMR anisotropic shifts. Exposure of SWNT bundles to alkali vapor led to an increase of the pristine triangular lattice from 1.67 nm to 1.85 nm and 1.87 nm for potassium and rubidium, respectively.

  17. Alkali metal ions transfer across a water/1,2-dichloroethane interface facilitated by a novel monoaza-B15C5 derivative

    Energy Technology Data Exchange (ETDEWEB)

    Zhan Dongping; Yuan Yi; Xiao Yanjing; Wu Bingliang; Shao Yuanhua

    2002-10-30

    In this paper, a novel monoaza-B15C5 derivative, N-(2-tosylamino)-isopentyl-monoaza-15-crown-5 (L), is used as an ionophore to facilitate alkali metal cations transfer across a water/1,2-dichloroethane (W/DCE) interface. Well-defined voltammetric behaviors are observed at the polarized W/DCE interfaces supported at micro- and nano-pipets except Cs{sup +}. The diffusion coefficient of this ionophore in the DCE phase is calculated to be equal to (3.3{+-}0.2)x10{sup -6} cm{sup 2} s{sup -1}. The experimental results indicate that a 1:1 (metal:ionophore) complex is formed at the interface with a TIC/TID mechanism. The selectivity of this ionophore towards alkali ions follows the sequence Na{sup +}>Li{sup +}>K{sup +}>Rb{sup +}>Cs{sup +}. The logarithm of the association constants (log {beta}{sub 1}{sup o}) of the LiL{sup +}, NaL{sup +}, KL{sup +} and RbL{sup +} complexes in the DCE phase are calculated to be 10.6, 11.6, 9.0 and 7.1, respectively. The kinetic parameters are determined by steady-state voltammograms using nanopipets. The standard rate constants (k{sup 0}) for Li{sup +}, Na{sup +}, K{sup +} and Rb{sup +} transfers facilitated by L are 0.54{+-}0.05, 0.63{+-}0.09, 0.51{+-}0.04 and 0.46{+-}0.06 cm s{sup -1}, respectively. The pH values of aqueous solution have little effect on the electrochemical behaviors of these facilitated processes. The results predicate that this new type of ionophore might be useful to fabricate electrochemical sensor of sodium ion.

  18. Selectivity of externally facing ion-binding sites in the Na/K pump to alkali metals and organic cations.

    Science.gov (United States)

    Ratheal, Ian M; Virgin, Gail K; Yu, Haibo; Roux, Benoît; Gatto, Craig; Artigas, Pablo

    2010-10-26

    The Na/K pump is a P-type ATPase that exchanges three intracellular Na(+) ions for two extracellular K(+) ions through the plasmalemma of nearly all animal cells. The mechanisms involved in cation selection by the pump's ion-binding sites (site I and site II bind either Na(+) or K(+); site III binds only Na(+)) are poorly understood. We studied cation selectivity by outward-facing sites (high K(+) affinity) of Na/K pumps expressed in Xenopus oocytes, under voltage clamp. Guanidinium(+), methylguanidinium(+), and aminoguanidinium(+) produced two phenomena possibly reflecting actions at site III: (i) voltage-dependent inhibition (VDI) of outwardly directed pump current at saturating K(+), and (ii) induction of pump-mediated, guanidinium-derivative-carried inward current at negative potentials without Na(+) and K(+). In contrast, formamidinium(+) and acetamidinium(+) induced K(+)-like outward currents. Measurement of ouabain-sensitive ATPase activity and radiolabeled cation uptake confirmed that these cations are external K(+) congeners. Molecular dynamics simulations indicate that bound organic cations induce minor distortion of the binding sites. Among tested metals, only Li(+) induced Na(+)-like VDI, whereas all metals tested except Na(+) induced K(+)-like outward currents. Pump-mediated K(+)-like organic cation transport challenges the concept of rigid structural models in which ion specificity at site I and site II arises from a precise and unique arrangement of coordinating ligands. Furthermore, actions by guanidinium(+) derivatives suggest that Na(+) binds to site III in a hydrated form and that the inward current observed without external Na(+) and K(+) represents cation transport when normal occlusion at sites I and II is impaired. These results provide insights on external ion selectivity at the three binding sites. PMID:20937860

  19. Study of complexation between two 1,3-alternate calix[4]crown derivatives and alkali metal ions by electrospray ionization mass spectrometry and density functional theory calculations

    Science.gov (United States)

    Shamsipur, Mojtaba; Allahyari, Leila; Fasihi, Javad; Taherpour, Avat (Arman); Asfari, Zuhair; Valinejad, Azizollah

    2016-03-01

    Complexation of two 1,3-alternate calix[4]crown ligands with alkali metals (K+, Rb+ and Cs+) has been investigated by electrospray ionization mass spectrometry (ESI-MS) and density functional theory calculations. The binding selectivities of the ligands and the binding constants of their complexes in solution have been determined using the obtained mass spectra. Also the percentage of each formed complex species in the mixture of each ligand and alkali metal has been experimentally evaluated. For both calix[4]crown-5 and calix[4]crown-6 ligands the experimental and theoretical selectivity of their alkali metal complexes found to follow the trend K+ > Rb+ > Cs+. The structures of ligands were optimized by DFT-B3LYP/6-31G method and the structures of complexes were obtained by QM-SCF-MO/PM6 method and discussed in the text.

  20. Recovery of alkali metal constituents from catalytic coal conversion residues

    Science.gov (United States)

    Soung, W.Y.

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  1. Alkali metals in fungi of forest soil

    International Nuclear Information System (INIS)

    The high affinity of forest soil fungi for alkali metals such as potassium, rubidium, caesium as well as radiocaesium is shown and discussed. Good positive correlation was found between K: Rb concentration ratios in soil and in fungi, when correlation between K: Cs concentration ratios was less pronounced. (LN)

  2. Lattice-gas model for alkali-metal fullerides: face-centered-cubic structure

    OpenAIRE

    Udvardi, Laszlo; Szabo, Gyorgy

    1995-01-01

    A lattice-gas model is suggested for describing the ordering phenomena in alkali-metal fullerides of face-centered-cubic structure assuming the electric charge of alkali ions residing in either octahedral or tetrahedral interstitial sites is completely screened by the first-neighbor C_60 molecules. This approximation allows us to derive an effective ion-ion interaction. The van der Waals interaction between the ion and C_60 molecule is characterized by introducing an additional energy at the ...

  3. Fundamental study on alkali metal thermoelectric converter

    International Nuclear Information System (INIS)

    The alkali metal thermoelectric converter (AMTEC) utilizing the sodium ion conducting β''-alumina is a device to convert heat energy to electric energy directly. In this paper, the results of theoretical and experimental studies on AMTEC power generating characteristics, internal electrical resistances of single cell, and system analysis of AMTEC power generating systems are reported. This paper consists of 5 chapters, which are summarized as follows: In chapter 1, a theoretical explanation of AMTEC, a brief survey of the research and development history of AMTEC and a purpose of this paper are reported. In chapter 2, the properties of β''-alumina, preparations of thin film electrodes, and special attention points to be paid in handling of β''-alumina and film electrodes are reported. The AMTEC power generating characteristics of the tubular cells are also reported. In chapter 3, the experimental results of the disk type cells and the theoretical considerations about internal resistances are reported. The causes of electrode erosion are also reported. In chapter 4, the system analysis on AMTEC steam-turbine combined cycle for a dispersed power station and AMTEC power system for a aerospace power are reported. Chapter 5 summarizes major results achieved in the preceding four chapters as a concluding remark. (J.P.N.) 62 refs

  4. Inner-shell excitation of alkali-metal atoms

    International Nuclear Information System (INIS)

    Inner-shell excitation of alkali-metal atoms, which leads to auto-ionization, is reviewed. The validity of quantum mechanical approximation is analyzed and the importance of exchange and correlation is demonstrated. Basic difficulties in making accurate calculations for inner-shell excitation process are discussed. Suggestions are made for further study of inner-shell process in atoms and ions. (author). 26 refs, 4 figs, 1 tab

  5. Determination of Alkali Ions in Biological and Environmental Samples.

    Science.gov (United States)

    Hauser, Peter C

    2016-01-01

    An overview of the common methods for the determination of the alkali metals is given. These are drawn from all of the three principle branches of quantitative analysis and consist mainly of optical atomic spectrometric methods, ion-selective electrodes, and the separation methods of ion-chromatography and capillary electrophoresis. Their main characteristics and performance parameters are discussed. Important specific applications are also examined, namely clinical analysis, single cell analysis, the analysis of soil samples and hydroponic nutrient solutions, as well as the detection of the radioactive (137)Cs isotope. PMID:26860298

  6. Interaction of alkali and alkaline earth ions with Ochratoxin A

    Energy Technology Data Exchange (ETDEWEB)

    Poor, Miklos [Institute of Laboratory Medicine, University of Pecs, Pecs H-7624 (Hungary); Kunsagi-Mate, Sandor; Matisz, Gergely; Li, Yin; Czibulya, Zsuzsanna [Department of General and Physical Chemistry, University of Pecs, Pecs H-7624 (Hungary); Janos Szentagothai Research Center, Pecs H-7624 (Hungary); Peles-Lemli, Beata [Department of General and Physical Chemistry, University of Pecs, Pecs H-7624 (Hungary); Koszegi, Tamas, E-mail: koszegit@freemail.hu [Institute of Laboratory Medicine, University of Pecs, Pecs H-7624 (Hungary)

    2013-03-15

    The effect of alkali and alkaline earth ions on the chemical equilibrium of mono- and dianionic forms of the mycotoxin Ochratoxin A (OTA) and their bonding onto the surface of Bovine Serum Albumin (BSA) have been investigated by fluorescence spectroscopy and fluorescence polarization techniques. Our results show that alkali metal ions shift the chemical equilibrium towards formation of dianionic form of OTA. Furthermore, the alkaline earth ions can compete with BSA for binding to OTA when these ions are present in millimolar concentrations. Our data also highlight the possibility that the 'free' fraction of OTA (not bound onto the surface of albumin) or at least a part of it is present in cation-bound form in body fluids. These observations are supported by stability constants and quantum-chemical calculations. Among the studied alkaline metal ions magnesium showed the highest affinity towards OTA under physiological conditions. Further research is required to analyze the potential significance of Mg{sup 2+}-OTA complex in cellular uptake and/or elimination of the toxin in the human body. - Highlights: Black-Right-Pointing-Pointer Fluorescence spectroscopy reveals cation-Ochratoxin A (OTA) interactions. Black-Right-Pointing-Pointer Alkali ions shift the equilibrium of OTA to formation of a dianionic structure. Black-Right-Pointing-Pointer Alkaline earth ions directly bind to OTA in the order: Mg{sup 2+}, Ca{sup 2+}, Ba{sup 2+}. Black-Right-Pointing-Pointer Quantum chemical calculations and logK values support our experimental data.

  7. Alkali Metal Complexes: Mixed Ligand Complexes of Some Alkali Metal Salts of Some Organic Acids with Isonitroso-PMethylace to phenone

    Directory of Open Access Journals (Sweden)

    O.P. Gupta

    2016-02-01

    Full Text Available A number of mixed ligand complexes of alkali metal salts of o-nitrophenol,2,4-dinitrophenol, 2,4,6,- trinitrophenol, 1-nitroso-2- naphthol and 8- hydroxyquinoline with Insoniroso–p methylacetopheone have been synthesized in absolute ethanol & characterized by elemental analysis and I .B. spectral data. Their I.R spectral data indicate the presence of hydrogen bonding in them, which many be one of the dominant factors of their stability. Further appreciable shift in 1650 cm-1 band (possibly vC=O and 1600 cm-1 band (possibly vC=NSuggests their coordination behavior in these mixed ligand complexes The reactions that take place in natural systems are highly specific and selective. Alkali metal ions actively participate in most of the reaction occurring in the biological systems, which are dominated by mixed ligand complexes. Studies of such mixed ligand complexes of alkali metals can threw light in understanding the role and mechanism of selective absorption of alkali metals ions by plants Coordinating ability of alkali metal with isonitrosoacetophenone1-2 and transition metals with isonitrosoacetophenone3 and isonitroso-p-methylacetophenone4 have been reported earlier. In the present paper we report the mixed ligand complexes of alkali metal salts having the general formula ML.HL, ‘ where M=Li, Na & K and L=deprotonated o- nitrophenol, 2,4 dinitrophenol, 2, 4, 6- trinitrophenol, 1-nitroso-2-naphthol or 8- hydroxquinoline; HL’= p -MeHINAP (isonitroso-p-methylacetophenone.

  8. Precision measurements of cross sections of inelastic processes realized in collisions of alkali metal ions with atoms of rare gases

    CERN Document Server

    Lomsadze, R A; Mosulishvili, N O; Kezerashvili, R Ya

    2015-01-01

    This work presents a multifaceted experimental study of collisions of Na$^{+}$ and K$^{+}$ ions in the energy range 0.5 -- 10 keV with He and Ar atoms. Absolute cross sections for charge-exchange, ionization, stripping and excitation were measured using a refined version of the transfer electric field method, angle- and energy-dependent collection of product ions, energy loss, and optical spectroscopy. The experimental data and the schematic correlation diagrams have been employed to analyze and determine the mechanisms for these processes.

  9. Developments in alkali-metal atomic magnetometry

    Science.gov (United States)

    Seltzer, Scott Jeffrey

    Alkali-metal magnetometers use the coherent precession of polarized atomic spins to detect and measure magnetic fields. Recent advances have enabled magnetometers to become competitive with SQUIDs as the most sensitive magnetic field detectors, and they now find use in a variety of areas ranging from medicine and NMR to explosives detection and fundamental physics research. In this thesis we discuss several developments in alkali-metal atomic magnetometry for both practical and fundamental applications. We present a new method of polarizing the alkali atoms by modulating the optical pumping rate at both the linear and quadratic Zeeman resonance frequencies. We demonstrate experimentally that this method enhances the sensitivity of a potassium magnetometer operating in the Earth's field by a factor of 4, and we calculate that it can reduce the orientation-dependent heading error to less than 0.1 nT. We discuss a radio-frequency magnetometer for detection of oscillating magnetic fields with sensitivity better than 0.2 fT/ Hz , which we apply to the observation of nuclear magnetic resonance (NMR) signals from polarized water, as well as nuclear quadrupole resonance (NQR) signals from ammonium nitrate. We demonstrate that a spin-exchange relaxation-free (SERF) magnetometer can measure all three vector components of the magnetic field in an unshielded environment with comparable sensitivity to other devices. We find that octadecyltrichlorosilane (OTS) acts as an anti-relaxation coating for alkali atoms at temperatures below 170°C, allowing them to collide with a glass surface up to 2,000 times before depolarizing, and we present the first demonstration of high-temperature magnetometry with a coated cell. We also describe a reusable alkali vapor cell intended for the study of interactions between alkali atoms and surface coatings. Finally, we explore the use of a cesium-xenon SERF comagnetometer for a proposed measurement of the permanent electric dipole moments (EDMs

  10. Efficient destruction of CF4 through in situ generation of alkali metals from heated alkali halide reducing mixtures.

    Science.gov (United States)

    Lee, Myung Churl; Choi, Wonyong

    2002-03-15

    Perfluorocarbons (PFCs) are the most potent green house gases that are very recalcitrant at destruction. An effective way of converting PFCs using hot solid reagents into safe products has been recently introduced. By investigating the thermal reductive destruction of tetrafluoromethane (CF4) we provided new insight and more physicochemical consideration on this novel process. The complete destruction of CF4was successfully achieved by flowing the gas through a heated reagent bed (400-950 degrees C) that contained powder mixtures of alkali halides, CaO, and Si. The silicon acted as a reducing agent of alkali halides for the in-situ production of alkali metals, and the calcium oxide played the role of a halide ion acceptor. The absence of any single component in this ternary mixture drastically reduced the destruction efficiency of CF4. The CF4 destruction efficiencies with the solid reagent containing the alkali halide, MX, increased in the order of Li approximately Na < K < Cs for alkali cations and I < Br < Cl < F for halide anions. This trend agreed with the endothermicity of the alkali metal generation reaction: the higher the endothermicity, the lower the destruction efficiency. Alkali metal generation was indirectly detected by monitoring H2 production from its reaction with water. The production of alkali metals increased with NaF, KF, and CsF in this order. The CsF/CaO/Si system exhibited the complete destruction of CF4 at as low as 600 degrees C. The solid product analysis by X-ray diffraction (XRD) showed the formation of CaF2 and the depletion of Si with black carbon particles formed in the solid reagent residue. No CO/CO2 and toxic HF and SiF4 formation were detected in the exhaust gas. PMID:11944694

  11. Alkali metal ion storage properties of sulphur and phosphorous molecules encapsulated in nanometer size carbon cylindrical pores

    Directory of Open Access Journals (Sweden)

    Yosuke Ishii

    2016-03-01

    Full Text Available We investigated the physical and chemical stabilities of sulfur and phosphorus molecules encapsulated in a mesoporous carbon (MPC and two kinds of single-walled carbon nanotubes (SWCNTs having different cylindrical pore diameters. The sublimation temperatures of sulfur molecules encapsulated in MPC and the two kinds of SWCNTs were measured by thermo-gravimetric measurements. It was found that the sublimation temperature of sulfur molecules encapsulated in SWCNTs having mean tube diameter of 1.5 nm is much higher than any other molecules encapsulated in larger pores. It was also found that the capacity fading of lithium-sulfur battery can be diminished by encapsulation of sulfur molecules in SWCNTs. We also investigated the electrochemical properties of phosphorus molecules encapsulated in SWCNTs (P@SWCNTs. It was shown that P@SWCNT can adsorb and desorb both Li and Na ions reversibly.

  12. Alkali metal ion storage properties of sulphur and phosphorous molecules encapsulated in nanometer size carbon cylindrical pores

    Science.gov (United States)

    Ishii, Yosuke; Sakamoto, Yuki; Song, Hayong; Tashiro, Kosuke; Nishiwaki, Yoshiki; Al-zubaidi, Ayar; Kawasaki, Shinji

    2016-03-01

    We investigated the physical and chemical stabilities of sulfur and phosphorus molecules encapsulated in a mesoporous carbon (MPC) and two kinds of single-walled carbon nanotubes (SWCNTs) having different cylindrical pore diameters. The sublimation temperatures of sulfur molecules encapsulated in MPC and the two kinds of SWCNTs were measured by thermo-gravimetric measurements. It was found that the sublimation temperature of sulfur molecules encapsulated in SWCNTs having mean tube diameter of 1.5 nm is much higher than any other molecules encapsulated in larger pores. It was also found that the capacity fading of lithium-sulfur battery can be diminished by encapsulation of sulfur molecules in SWCNTs. We also investigated the electrochemical properties of phosphorus molecules encapsulated in SWCNTs (P@SWCNTs). It was shown that P@SWCNT can adsorb and desorb both Li and Na ions reversibly.

  13. Cathode architectures for alkali metal / oxygen batteries

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  14. The effect of the alkali metal cation on the electrocatalytic oxidation of formate on platinum

    OpenAIRE

    Previdello, B.; E. Machado; Varela, H.

    2014-01-01

    Non-covalent interactions between hydrated alkali metal cations and adsorbed oxygenated species on platinum might considerably inhibit some electrocatalytic reactions. We report in this communication the effect exerted by electrolyte alkali metal cations on the electro-oxidation of formate ions on platinum. The system was investigated by means of cyclic voltammetry and chronoamperometry in the presence of an electrolyte containing Li+, Na+, or K+. As already observed for other systems, the ge...

  15. Superconductivity in alkali metal intercalated iron selenides.

    Science.gov (United States)

    Krzton-Maziopa, A; Svitlyk, V; Pomjakushina, E; Puzniak, R; Conder, K

    2016-07-27

    Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations. PMID:27248118

  16. Superconductivity in alkali metal intercalated iron selenides

    Science.gov (United States)

    Krzton-Maziopa, A.; Svitlyk, V.; Pomjakushina, E.; Puzniak, R.; Conder, K.

    2016-07-01

    Alkali metal intercalated iron selenide superconductors A x Fe2‑y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  17. High-Order Dispersion Coefficients for Alkali-metal Atoms

    Institute of Scientific and Technical Information of China (English)

    KANG Shuai; DING Chi-Kun; CHEN Chang-Yong; WU Xue-Qing

    2013-01-01

    High-order dispersion coefficients C9,C11,C12,and C13 for the ground-state alkali-metals were calculated by combining the l-dependent model potential of alkali-metal atoms and linear variation method based on B-spline basis functions.The results were compared.

  18. Rydberg Matter clusters of alkali metal atoms: the link between meteoritic matter, polar mesosphere summer echoes (PMSE), sporadic sodium layers, polar mesospheric clouds (PMCs, NLCs), and ion chemistry

    CERN Document Server

    Olofson, Frans; Holmlid, Leif

    2010-01-01

    A material exists which links together the influx of meteoritic matter from interplanetary space, the polar mesosphere summer echoes (PMSE), the sporadic sodium layers, the polar mesospheric clouds (PMCs, NLCs), and the observed ion chemistry in the mesosphere. The evidence in these research fields is here analyzed and found to agree well with the properties of Rydberg Matter (RM). This material has been studied with numerous methods in the laboratory. Alkali atoms, mainly Na, reach the mesosphere in the form of interplanetary (meteoritic, cometary) dust. The planar RM clusters NaN usually contain N = 19, 37 or 61 atoms, and have the density of air at 90 km altitude where they float. The diameters of the clusters are 10-100 nm from laboratory high precision radio frequency spectroscopic studies. Such experiments show that RM clusters interact strongly with radar frequencies: this explains the radio frequency heating and reflection studies of PMSE layers. The clusters give the low temperature in the mesosphere...

  19. The Alkali Metal Interactions with MgO Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Beheshtian, Javad [Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of); Peyghan, Ali Ahmadi; Bagheri, Zargham [Islamic Azad University, Islamshahr Branch, Tehran (Iran, Islamic Republic of); Kamfiroozi, M. [Islamic Azad University, Shiraz Branch, Shiraz (Iran, Islamic Republic of)

    2012-06-15

    Adsorption of alkali metals (Li, Na, and K) on the surface of magnesium oxide nanotubes (MgONTs) with different diameters was investigated using density functional theory. According to the obtained results, the most stable adsorption site was found to be atop the oxygen atom of the tube surface with adsorption energies in the range of .0.25 to .0.74 eV. HOMO-LUMO gap (E{sub g}) of the tubes dramatically decreases upon the adsorption of the alkali metals, resulting in enhancement of their electrical conductivity enhancement. The order of E{sub g} decrement caused by the metal adsorption is as follows: K > Na > Li. The results suggest that the MgONTs were transformed from semi-insulator to semiconductor upon the alkali metal adsorption. Increasing the tube diameter, the HOMO/LUMO gap of the pristine tube is enhanced and adsorption energies of the alkali metals are decreased

  20. The 4843 Alkali Metal Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    The 4843 AMSF has been used primarily to provide a centralized building to receive and store dangerous and mixed alkali metal waste, including sodium and lithium, which has been generated at the Fast Flux Test Facility and at various other Hanford Site operations that used alkali metals. Most of the dangerous and mixed alkali metal waste received consists of retired equipment from liquid sodium processes. The unit continues to store material. In general, only solid alkali metal waste that is water reactive is stored at the 4843 AMSF. The 4843 AMSF will be closed in a manner consistent with Ecology guidelines and regulations (WAC 173-303-610). The general closure procedure is detailed as follows

  1. Hall Determination of Atomic Radii of Alkali Metals

    Science.gov (United States)

    Houari, Ahmed

    2008-01-01

    I will propose here an alternative method for determining atomic radii of alkali metals based on the Hall measurements of their free electron densities and the knowledge of their crystal structure. (Contains 2 figures.)

  2. Phonon Dispersion Relations in Alkali Metals

    International Nuclear Information System (INIS)

    It has been shown in this paper that the phonon dispersion curves of sodium in the [100], [110] and [111] symmetry directions can be explained well on the basis of a simple model, where one has to consider only central force constants between nearest and next nearest neighbours. The tangential force constant between the nearest neighbours is very much smaller as compared to the radial force constant, while for the next nearest neighbours the radial and tangential force constants are comparable. The calculation is carried out on the basis of the model suggested by de Launay, where it is shown that the conduction electrons exert a volume force for longitudinal modes. The stiffness constant of the electron gas is its bulk modulus which in de Launay's model is equal to the Cauchy discrepancy (C12-C14) for the cubic crystals. The three force constants α1, α2 and α1' can be determined from the measured elastic constants and the secular equation can be solved to give the dispersion curves. The dispersion curves have also been obtained using the calculated values of the bulk modulus of the electron gas after considering not only the exchange and correlation energies but also the Fermi kinetic energy. These also agree fairly well with experiment. The measured elastic constants as well as calculated bulk modulus of the electron gas indicate that the Cauchy relation C12 = C44 holds good approximately in alkali metals. This result is rather surprising as it requires that the interaction between the atoms be central in nature in spite of the metallic binding. A justification for this has been given by Cochran. A model with four force constants is being worked out. They can be determined from the three elastic constants and calculated bulk modulus of the electron gas. (author)

  3. Enrichment of hydrogen isotopes while decomposition of alkali metal amalgams (Preprint No. CA-11)

    International Nuclear Information System (INIS)

    Sodium amalgam was prepared by electrolyzing caustic soda solution in a cell with flowing mercury as cathode. On decomposition of amalgam with aqueous sodium hydroxide solution in a denuder column packed with graphite pieces, the resultant hydrogen gas was depleted in deuterium. The alkali solution was enriched in deuterium content. The separation of the isotopes of some amalgam forming metals while decomposition of the amalgam of these metals with water has already been described. The separation is due to differential reaction rates of alkali metal amalgams with water containing light and heavy isotopes of hydrogen. However in the present investigation, the separation factor obtained is considerably higher than earlier reported due to possible chemical exchange between resultant hydrogen and the alkali metal hydroxide in presence of graphite surface and/or exchange of water with nascent hydrogen catalysed by OH- ions. (author). 18 refs., 3 tabs., 1 fig

  4. Alkali metal thermoelectric conversion (AMTEC) technology status review

    International Nuclear Information System (INIS)

    The Alkali Metal Thermoelectric Converter (AMTEC) or sodium heat engine has been the subject of experimental and systems investigations to assess its potential and feasibility for several space and terrestrial power applications. AMTEC is a thermally regenerative electrochemical system operating between a high temperature reservoir at 900-1400K and a sodium condenser at 400-BOOK. Its operation is based on the sodium ion conductor beta-alumina solid electrolyte(BASE), where thermal to electric conversion efficiencies of 20-40% have been predicted for practical systems. Other AMTEC characteristics that make it attractive for space applications are compactness, light weight, no moving parts, modularity and long lifetime potential. This paper reviews AMTEC operating principles and technical challenges, reports on recent electrode research results, and summarizes the status of AMTEC device experiments at JPL and elsewhere. Also, updated projections for AMTEC space nuclear power system characteristics is presented

  5. Electrohydrodynamic emission of both sign ions from alkali halogenide melts

    International Nuclear Information System (INIS)

    Characteristics of electrohydrodynamic (EHD) emission of both sign ions from alkali halogenide melts are presented. Angular current density at emission current of 0.1 - 0.5 μA is equal to 3 - 4 μA/sr. The developed EHD salt sources allow to obtain stable current of K+, Rb+, Cs+, F-, Cl-, I- ions during few tens of hours

  6. On-chip fabrication of alkali-metal vapor cells utilizing an alkali-metal source tablet

    International Nuclear Information System (INIS)

    We describe a novel on-chip microfabrication technique for the alkali-metal vapor cell of an optically pumped atomic magnetometer (OPAM), utilizing an alkali-metal source tablet (AMST). The newly proposed AMST is a millimeter-sized piece of porous alumina whose considerable surface area holds deposited alkali-metal chloride (KCl) and barium azide (BaN6), source materials that effectively produce alkali-metal vapor at less than 400 °C. Our experiments indicated that the most effective pore size of the AMST is between 60 and 170 µm. The thickness of an insulating glass spacer holding the AMST was designed to confine generated alkali metal to the interior of the vapor cell during its production, and an integrated silicon heater was designed to seal the device using a glass frit, melted at an optimum temperature range of 460–490 °C that was determined by finite element method thermal simulation. The proposed design and AMST were used to successfully fabricate a K cell that was then operated as an OPAM with a measured sensitivity of 50 pT. These results demonstrate that the proposed concept for on-chip microfabrication of alkali-metal vapor cells may lead to effective replacement of conventional glassworking approaches. (paper)

  7. Mechanism of the transfer of alkali- and alkaline-earth-metal ions across the nitrobenzene-water interface facilitated by hexa- and octaethylene glycol dodecyl ethers

    International Nuclear Information System (INIS)

    Transfer of Li+, Na+ , K+, Rb+, Ca2+, Sr2+, and Ba2+ ions facilitated by hexa- and octaethylene glycol monododecyl ethers (C12E6 and C12E8) has been studied at the nitrobenzene (NB)- water (W) interface using cyclic voltammetry. When the concentration of C12En (n = 6 or 8) in NB is higher than 1 mM, cyclic voltammograms for all these ions show reversible transfer of ions facilitated by C12En. The current is mainly carried by 1:1 (metal:ligand) complex and is limited by the diffusion of C12En in NB. When the concentration of C12En in NB is lowered to the submillimolar range, the contribution of the adsorption of C12En to the current becomes significant. In the transfer of hydrophilic ions, e.g., Li + and Ca2+, the contribution of the complex with 1:2 (metal:ligand) stoichiometry to the measured current becomes nonnegligible. This 1:2 complex formation becomes pronounced with increasing ligand concentration

  8. Maternal exposure to alkali, alkali earth, transition and other metals: Concentrations and predictors of exposure

    International Nuclear Information System (INIS)

    Most studies of metals exposure focus on the heavy metals. There are many other metals (the transition, alkali and alkaline earth metals in particular) in common use in electronics, defense industries, emitted via combustion and which are naturally present in the environment, that have received limited attention in terms of human exposure. We analysed samples of whole blood (172), urine (173) and drinking water (172) for antimony, beryllium, bismuth, cesium, gallium, rubidium, silver, strontium, thallium, thorium and vanadium using ICPMS. In general most metals concentrations were low and below the analytical limit of detection with some high concentrations observed. Few factors examined in regression models were shown to influence biological metals concentrations and explained little of the variation. Further study is required to establish the source of metals exposures at the high end of the ranges of concentrations measured and the potential for any adverse health impacts in children. - This study has demonstrated exposure to alkali, alkali earth and transition metals in pregnant women with factors such as breastfeeding, fish oil use and diet affecting exposures

  9. Transport properties of alkali metal doped fullerides

    International Nuclear Information System (INIS)

    We have studied the intercage interactions between the adjacent C60 cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C60 phonons. We considered a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. Coulomb repulsive parameter and the electron phonon coupling strength are obtained within the random phase approximation. Transition temperature, Tc, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C60 phonons as 5 K, which is much lower as compared to reported Tc (20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. The importance of the present study, the pressure effect and normal state transport properties are calculated within the same model leading superconductivity

  10. Transport properties of alkali metal doped fullerides

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Daluram, E-mail: daluramyadav@gmail.com; Yadav, Nishchhal, E-mail: somyadav@gmail.com [School of studies in Physics, Vikram University, Ujjain (M.P) India (India)

    2015-07-31

    We have studied the intercage interactions between the adjacent C{sub 60} cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C{sub 60} phonons. We considered a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. Coulomb repulsive parameter and the electron phonon coupling strength are obtained within the random phase approximation. Transition temperature, T{sub c}, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C{sub 60} phonons as 5 K, which is much lower as compared to reported T{sub c} (20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. The importance of the present study, the pressure effect and normal state transport properties are calculated within the same model leading superconductivity.

  11. Heat transfer characteristics of alkali metals flowing across tube banks

    International Nuclear Information System (INIS)

    For the purpose of getting heat transfer coefficients of alkali metals flowing across tube banks at an acceptable level, we propose to use an inviscid-irrotational flow model, which is based on our flow visualization experiment. We show that the heat transfer coefficients obtained for the condition where only the test rod is heated in tube banks considerably differ from those obtained for the condition where all the rods are heated, because of interference between thick thermal boundary layers of alkali metals. We also confirm that the analytical values obtained by this flow model are in a reasonable agreement with experimental values. (author)

  12. Electron Mean-Free Paths in the Alkali Metals

    OpenAIRE

    Wertheim, G.K.; Riffe, D. Mark; Smith, N.V.; Citrin, P. H.

    1992-01-01

    Photoemission data in which the signal from the first atomic layer is well resolved from that of the bulk are used to determine accurately the kinetic-energy dependence of the inelastic-electron mean free path in the alkali metals. At the higher kinetic energies, the data are in very good agreement with the theory of Penn. Below about 10 eV, the mean free path in the heavier alkali metals drops markedly below the theoretical values. This is attributed to electron decay processes involvi...

  13. Alkali suppression within laser ion-source cavities and time structure of the laser ionized ion-bunches

    International Nuclear Information System (INIS)

    The chemical selectivity of the target and ion-source production system is an asset for radioactive ion-beam (RIB) facilities equipped with mass separators. Ionization via laser induced multiple resonant steps has such selectivity. However, the selectivity of the ISOLDE resonant ionization laser ion-source (RILIS), where ionization takes place within high temperature refractory metal cavities, suffers from unwanted surface ionization of low ionization potential alkalis. In order to reduce this type of isobaric contaminant, surface ionization within the target vessel was used. On-line measurements of the efficiency of this method is reported, suppression factors of alkalis up to an order of magnitude were measured as a function of their ionization potential. The time distribution of the ion-bunches produced with the RILIS was measured for a variety of elements and high temperature cavity materials. While all ions are produced within a few nanoseconds, the ion-bunch sometimes spreads over more than 100 μs. This demonstrates that ions are confined within high temperature metallic cavities. It is the internal electrical field of these cavities that causes the ions to drifts to the extraction region and defines the dwell time of the ions in the cavity. Beam optics calculations were carried out to simulate the pulse shape of a RILIS ion-bunch and are compared to the actual measurements

  14. Aqueous alkali metal hydroxide insoluble cellulose ether membrane

    Science.gov (United States)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1969-01-01

    A membrane that is insoluble in an aqueous alkali metal hydroxide medium is described. The membrane is a resin which is a water-soluble C2-C4 hydroxyalkyl cellulose ether polymer and an insolubilizing agent for controlled water sorption, a dialytic and electrodialytic membrane. It is particularly useful as a separator between electrodes or plates in an alkaline storage battery.

  15. Structural models for alkali-metal complexes of polyacetylene

    Science.gov (United States)

    Murthy, N. S.; Shacklette, L. W.; Baughman, R. H.

    1990-02-01

    Structural models for a stage-2 complex are proposed for polyacetylene doped with less than about 0.1 potassium or rubidium atoms per carbon. These structures utilize as a basic motif an alkali-metal column surrounded by four planar-zig-zag polyacetylene chains, a structure found at the highest dopant levels. In the new stage-2 structures, each polyacetylene chain neighbors only one alkali-metal column, so the phase contains four polymer chains per alkali-metal column. Basic structural aspects for stage-1 and stage-2 structures are now established for both potassium- and rubidium-doped polyacetylene. X-ray-diffraction and electrochemical data show that undoped and doped phases coexist at low dopant concentrations (<0.06 K atom per C). X-ray-diffraction data, down to a Bragg spacing of 1.3 Å, for polyacetylene heavily doped with potassium (0.125-0.167 K atom per C) is fully consistent with our previously proposed stage-1 tetragonal unit cell containing two polyacetylene chains per alkali-metal column. There is no evidence for our samples requiring a distortion to a monoclinic unit cell as reported by others for heavily doped samples. The nature of structural transformations and the relationship between structure and electronic properties are discussed for potassium-doped polyacetylene.

  16. Apparatus for use in a liquid alkali metal environment

    International Nuclear Information System (INIS)

    Apparatus is described for use in a liquid alkali metal environment consisting of components having complementary bearing surfaces in which one of the components has a bearing surface of stainless steel and another of the components has an aluminised complementary bearing surface. Examples are given of the use of the invention in heat exchange apparatus in liquid metal cooled fast breeder reactors; one example is in connection with the fuel subassembly in such a reactor. (U.K.)

  17. Study on the electrode characteristics of alkali metal thermoelectric converter

    International Nuclear Information System (INIS)

    The alkali metal thermoelectric converter utilizing the sodium ion conducting β''-alumina is a device to convert directly heat energy to electric energy. It is characterized by high conversion efficiencies, high power densities, no moving parts and low maintenance requirements. Because of these merits, AMTEC is one of the most promising candidate for aerospace power systems, remote power station and dispersed small scale power station. In this paper, the experimental results of the disk type cell and the theoretical considerations about internal resistances have been reported. The film electrode was made with a magnetron sputtering system. The open voltage of 0.98 V and the maximum power density of 0.38 W/cm2 at the sodium temperature of 1,073 K have been obtained. It became clear after the theoretical investigation on the internal resistance that the most largest internal resistance was the resistance of β''-alumina. And so, it is necessary to reduce the thickness of β''-alumina to improve the generating power densities. It was also clarified that the sodium gas flow in the small holes of molybdenum thin film electrode was a free molecular flow and the experimental results became agree well with the theoretical results considering the pressure rise due to this sodium free molecular flow. It was also necessary to develop the more porous and lower resistivity thin film electrodes because this pressure rise were fairly large. (author)

  18. Density functional study of ferromagnetism in alkali metal thin films

    Indian Academy of Sciences (India)

    Prasenjit Sen

    2010-04-01

    Electronic and magnetic structures of (1 0 0) films of K and Cs, having thicknesses of one to seven layers, are calculated within the plane-wave projector augmented wave (PAW) formalism of the density functional theory (DFT), using both local spin density approximation (LSDA) and the PW91 generalized gradient approximation (GGA). Only a six-layer Cs film is found to have a ferromagnetic (FM) state which is degenerate with a paramagnetic (PM) state within the accuracy of these calculations. These results are compared with those obtained from calculations on a finite-thickness uniform jellium model (UJM), and it is argued that within LSDA or GGA, alkali metal thin films cannot be claimed to have an FM ground state. Relevance of these results to the experiments on transition metal-doped alkali metal thin films and bulk hosts are also discussed.

  19. A hexagonal structure for alkali-metal doped poly (p-phenylene)

    Science.gov (United States)

    Murthy, N. S.; Baughman, R. H.; Shacklette, L. W.; Fark, H.; Fink, J.

    1991-05-01

    An hexagonal structure (space group p overline62m, a = 8.6 Å) is proposed for sodium-doped poly(p-phenylene), PPP. The diffraction pattern calculated using only one freely adjustable parameter (the distance between the alkali-metal column and the polymer backbone) is in good agreement with the observed electron diffraction patterns. A similar structure ( a = 9.2 Å) is also suggested by diffraction data for potassium-doped PPP. This hexagonal structure is analogous to that reported for sodium-doped poly(p-phenylene vinylene), lithium-doped polyacetylene, and sodium-doped polyacetylene. The three chain per column arrangement provides a fundamental structural motif which maximizes the coordination of the negatively charged carbon atoms with both the alkali metal ions and the hydrogens, and maximizes interchain, intercolumn, and hydrogen to alkali-metal separations. The size of the dopant-ion relative to the cross-sectional dimensions of the host polymer determines whether the dopant-ion columns are formed in triangular (three chain per column) or tetragonal (four chain per column) channels.

  20. A new polarizable force field for alkali and halide ions

    International Nuclear Information System (INIS)

    We developed transferable potentials for alkali and halide ions which are consistent with our recent model of water [P. T. Kiss and A. Baranyai, J. Chem. Phys. 138, 204507 (2013)]. Following the approach used for the water potential, we applied Gaussian charge distributions, exponential repulsion, and r−6 attraction. One of the two charges of the ions is fixed to the center of the particle, while the other is connected to this charge by a harmonic spring to express polarization. Polarizability is taken from quantum chemical calculations. The repulsion between different species is expressed by the combining rule of Kong [J. Chem. Phys. 59, 2464 (1972)]. Our primary target was the hydration free energy of ions which is correct within the error of calculations. We calculated water-ion clusters up to 6 water molecules, and, as a crosscheck, we determined the density and internal energy of alkali-halide crystals at ambient conditions with acceptable accuracy. The structure of hydrated ions was also discussed

  1. Alkali Metal Coolants. Proceedings of the Symposium on Alkali Metal Coolants - Corrosion Studies and System Operating Experience

    International Nuclear Information System (INIS)

    Proceedings of a Symposium organized by the IAEA and held in Vienna, 28 November - 2 December 1966. The meeting was attended by 107 participants from 16 countries and two international organizations. Contents: Review papers (2 papers); Corrosion of steels and metal alloys (6 papers); Mass transfer in alkali metal systems, behaviour of carbon (5 papers); Effects of sodium environment on mechanical properties of materials (3 papers); Effect of water leakage into sodium systems (2 papers); Design-and operation of testing apparatus (6 papers); Control, measurements and removal of impurities (13 papers); Corrosion by other alkali metals: NaK, K, Li, Cs (6 papers); Behaviour of fission products (3 papers). Each paper is in its original language (32 English, 6 French and 8 Russian) and is preceded by an abstract in English and one in the original language if this is not English. Discussions are in English. (author)

  2. Chemical compatibility of structural materials in alkali metals

    International Nuclear Information System (INIS)

    The objectives of this task are to (a) evaluate the chemical compatibility of structural alloys such as V-5 wt.%Cr-5 wt.%Ti alloy and Type 316 stainless steel for application in liquid alkali metals such as lithium and sodium-78 wt.% potassium (NaK) at temperatures in the range that are of interest for International Thermonuclear Experimental Reactor (ITER); (b) evaluate the transfer of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen between structural materials and liquid metals; and (c) evaluate the effects of such transfers on the mechanical and microstructural characteristics of the materials for long-term service in liquid-metal-environments

  3. Chemical compatibility of structural materials in alkali metals

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Rink, D.L.; Haglund, R. [Argonne National Lab., Chicago, IL (United States)] [and others

    1995-04-01

    The objectives of this task are to (a) evaluate the chemical compatibility of structural alloys such as V-5 wt.%Cr-5 wt.%Ti alloy and Type 316 stainless steel for application in liquid alkali metals such as lithium and sodium-78 wt.% potassium (NaK) at temperatures in the range that are of interest for International Thermonuclear Experimental Reactor (ITER); (b) evaluate the transfer of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen between structural materials and liquid metals; and (c) evaluate the effects of such transfers on the mechanical and microstructural characteristics of the materials for long-term service in liquid-metal-environments.

  4. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fluorinated carboxylic acid alkali... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under...

  5. Synthesis, structure peculiarities and electric conductivity of alkali metal-rare earth silicates (germanates)

    International Nuclear Information System (INIS)

    The process of obtaining of rare earth-alkali metal silicates (germanates) is studied. The analysis of possibilities of structural disordering of alkaline cations in these structures is given. The interaction of the structure of different by the composition alkali alkali metal - rare earth silicates with electric conductivity values is shown

  6. Synthesis and Structural Characterization of Alkali Metal Guanidinates

    Institute of Scientific and Technical Information of China (English)

    LUO,Yun-Jie; YAO,Ying-Ming; ZHANG,Yong; SHEN,Qi

    2007-01-01

    Reactions of 1,3-diisopropylcarbodiimide with alkali metal amides,MN(SiMe3)2(M=Li or Na)in hexane or THF produced the alkali metal guanidinates{(j-PrN)2C[N(SiMe3)2]Li}2(1)and{(i-PrN)2C[N(SiMe3)2]Na(THF)}2(2)in nearly quantitative yields.Both complexes 1 and 2 were well characterized by elemental analysis,IR spectra,1H and 13C NMR spectra,and X-ray diffraction.It was found that the guanidinates adopt different coordination modes in these complexes.

  7. Polarizabilities and hyperpolarizabilities of the alkali metal atoms

    Energy Technology Data Exchange (ETDEWEB)

    Fuentealba, P. (Chile Univ., Santiago (Chile). Departamento de Fisica and Centro de Mecanica Cuantica Aplicada (CMCA)); Reyes, O. (Chile Univ., Santiago (Chile). Dept. de Fisica)

    1993-08-14

    The electric static dipole polarizability [alpha], quadrupole polarizability C, dipole-quadrupole polarizability B, and the second dipole hyperpolarizability [gamma] have been calculated for the alkali metal atoms in the ground state. The results are based on a pseudopotential which is able to incorporate the very important core-valence correlation effect through a core polarization potential, and, in an empirical way, the main relativistic effects. The calculated properties compare very well with more elaborated calculations for the Li atom, excepting the second hyperpolarizability [gamma]. For the other atoms, there is neither theoretical nor experimental information about most of the higher polarizabilities. Hence, the results of this paper should be seen as a first attempt to give a complete account of the series expansion of the interaction energy of an alkali metal atom and a static electric field. (author).

  8. Dissolution of metallic uranium in alkalis

    International Nuclear Information System (INIS)

    The dissolution of U metallic foils has been studied in the framework of the development of an improved 99Mo-production process. The best conditions for the dissolution of uranium foils of approximately 150 μm are the following: a) NaClO concentrations of 0.20 and 0.23 M with NaOH of 0.27 and 0.31 M respectively; b) temperature of the solution, 70 C degrees; c) volume of the solution, 15 ml / cm2 of uranium foil; d) dissolution time, 30 minutes. (author)

  9. Charge oscillations and structure for alkali-metal-doped polyacetylene

    Science.gov (United States)

    Baughman, R. H.; Murthy, N. S.; Eckhardt, H.; Kertesz, M.

    1992-11-01

    predictions for oligomers, and good agreement is obtained between calculated and observed x-ray photoelectron spectra for sodium-doped polyacetylene. Emphasis is placed on the results of crystallographic studies of alkali-metal-doped polyacetylene and on the relationship between the experimentally derived symmetry breaking in interchain packing and the molecular symmetry breaking predicted by theory. Since presently available experimental data are insufficient for complete determination of structure, the present theoretical results can be useful for refinements in the interpretation of these data, as well as for refined crystal-packing calculations.

  10. Strong Turbulence in Alkali Halide Negative Ion Plasmas

    Science.gov (United States)

    Sheehan, Daniel

    1999-11-01

    Negative ion plasmas (NIPs) are charge-neutral plasmas in which the negative charge is dominated by negative ions rather than electrons. They are found in laser discharges, combustion products, semiconductor manufacturing processes, stellar atmospheres, pulsar magnetospheres, and the Earth's ionosphere, both naturally and man-made. They often display signatures of strong turbulence^1. Development of a novel, compact, unmagnetized alkali halide (MX) NIP source will be discussed, it incorporating a ohmically-heated incandescent (2500K) tantulum solenoid (3cm dia, 15 cm long) with heat shields. The solenoid ionizes the MX vapor and confines contaminant electrons, allowing a very dry (electron-free) source. Plasma densities of 10^10 cm-3 and positive to negative ion mass ratios of 1 Fusion 4, 91 (1978).

  11. Dispersion coefficients for the interaction of inert gas atoms with alkali and alkaline earth ions and alkali atoms with their singly ionized ions

    CERN Document Server

    Singh, Sukhjit; Sahoo, B K; Arora, Bindiya

    2016-01-01

    We report the dispersion coefficients for the interacting inert gas atoms with the alkali ions, alkaline earth ions and alkali atoms with their singly charged ions. We use our relativistic coupled-cluster method to determine dynamic dipole and quadrupole polarizabilities of the alkali atoms and singly ionized alkaline earth atoms, whereas a relativistic random phase approximation approach has been adopted to evaluate these quantities for the closed-shell configured inert gas atoms and the singly and doubly ionized alkali and alkaline earth atoms, respectively. Accuracies of these results are adjudged from the comparison of their static polarizability values with their respective experimental results. These polarizabilities are further compared with the other theoretical results. Reason for the improvement in the accuracies of our estimated dispersion coefficients than the data listed in [At. Data and Nucl. Data Tables 101, 58 (2015)] are discussed. Results for some of the atom-ion interacting systems were not...

  12. Enthalpic Interaction for α-Amino Acid with Alkali Metal Halides in Water

    Institute of Scientific and Technical Information of China (English)

    LU,Yan(卢雁)

    2004-01-01

    The studies of the enthalpic interaction parameters, hxy, hxyy and hxxv, of alkali metal halides with glycine,α-alanine and α-aminobutyric acid were published. Synthetic considering of the results of the studies, some interesting behaviors of the interaction between alkali metal halides and the α-amino acids have been found. The values of hxy will increase with the increase of the number of carbon atoms in alkyl side chain of amino acid molecules and decrease with the increase of the radius of the ions. The increasing of the salt's effect on the hydrophobic hydration structure as the radii of anion is more obvious than as that of cation. The value of hxxy will regularly decrease with the increase of the number of carbon atoms in the alkyl chain of amino acids and linear increase with the increase of the radius. But the relation of hxxy with the radius of cations is not evident. The value of hxyy will increase with the increase of the radii of the ions. As the increase of the number of carbon atoms of amino acids, hxyy is decreas for the ions which have lager size and there is a maximum value at α-alanine for the ions which have small size. The behaviors of the interaction mentioned above were further discussed in view of electrostatic and structural interactions.

  13. Method for preparation of melts of alkali metal chlorides with highly volatile polyvalent metal chlorides

    International Nuclear Information System (INIS)

    A method for production of alkali metal (Cs, Rb, K) chloride melts with highly volatile polyvalent metal chlorides is suggested. The method consists, in saturation of alkali metal chlorides, preheated to the melting point, by volatile component vapours (titanium tetrachloride, molybdenum or tantalum pentachloride) in proportion, corresponding to the composition reguired. The saturation is realized in an evacuated vessel with two heating areas for 1-1.5 h. After gradual levelling of temperature in both areas the product is rapidly cooled. 1 fig.; 1 tab

  14. Optical response of alkali metal atoms confined in nanoporous glass

    International Nuclear Information System (INIS)

    We study the influence of optical radiation on adsorption and desorption processes of alkali metal atoms confined in nanoporous glass matrices. Exposure of the sample to near-IR or visible light changes the atomic distribution inside the glass nanopores, forcing the entire system to evolve towards a different state. This effect, due to both atomic photodesorption and confinement, causes the growth and evaporation of metastable nanoparticles. It is shown that, by a proper choice of light characteristics and pore size, these processes can be controlled and tailored, thus opening new perspectives for fabrication of nanostructured surfaces. (nanoobjects)

  15. Quasiparticle electronic band structure of the alkali metal chalcogenides

    Directory of Open Access Journals (Sweden)

    S.V. Syrotyuk

    2015-09-01

    Full Text Available The electronic energy band spectra of the alkali metal chalcogenides M2A (M: Li, Na, K, Rb; A: O, S, Se, Te have been evaluated within the projector augmented waves (PAW approach by means of the ABINIT code. The Kohn-Sham single-particle states have been found in the GGA framework. Further, on the basis of these results the quasiparticle energies of electrons as well as the dielectric constants were obtained in the approximation GW. The calculations based on the Green's function have been originally done for all the considered M2A crystals, except Li2O.

  16. Secondary transformation mechanism of paramagnetic centers in irradiated alkali metal perchlorates

    International Nuclear Information System (INIS)

    The EPR method has been used to study thermal transformations of paramagnetic centres (PC) in X-ray irradiated potassium, rubidium and cesium perchlorates. Experimental data make it possible to suppose that diffusion coefficient of O- ion a rather high and this ion is freely diffused already at 262 K. Colliding with [MeClO4]+ centres it is transformed in a molecule of oxygen. Another part of O- is transformed in stable ozonide-ion at 300 K. About room temperature hole centres dissociate with formation of ClO2 radical. It is supposed that part of electron and hole centres is not stabilized but at 77 K it is transformed in stable radiolysis products. This process most effective proceeds in dislocations and on the surface of microcrystals. The suggested model of thermal transformations of primary PC in irradiated perchlorates of alkali metals explains formation of all the finite ion and paramagnetic radiolysis products

  17. Work function of alkali metal-adsorbed molybdenium dichalcogenides

    Science.gov (United States)

    Kim, Sol; Jhi, Seung-Hoon

    2015-03-01

    The lowest work function of materials, reported so far over the last few decades, is an order of 1eV experimentally and theoretically. Designing materials that has work-function less than 1eV is essential in the thermionic energy conversion. To explore new low work function materials, we study MoX2(X =S, Se, Te) adsorbed with alkali metals (Li, Na, K, Rb and Cs), and investigate the charge transfer, the formation of surface dipole, and the change in work function using first-principles calculations. It is found that the charge transfer from alkali metals to MoX2substrates decreases as the atomic number of adsorbates increases. Regardless of the amount of the charge transfer, K on MoTe2 exhibits the biggest surface dipole moment, which consequently makes the surface work function the lowest. We show that the formation of the surface dipole is a key in changing the work function. We find the trimerization of Mo atoms in the substrate with the lowest work-function, which may contribute to enhancement of the surface dipole.

  18. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed

  19. Freezing of liquid alkali metals as screened ionic plasmas

    International Nuclear Information System (INIS)

    The relationship between Wigner crystallization of the classical ionic plasma and the liquid-solid transition of alkali metals is examined within the density wave theory of freezing. Freezing of the classical plasma on a rigid neutralizing background into the bcc structure is first re-evaluated, in view of recent progress in the determination of its thermodynamic functions by simulation and of the known difficulties of the theory relating to the order parameter at the (200) star of reciprocal lattice vectors. Freezing into the fcc structure is also considered in this context and found to be unfavoured. On allowing for long-wavelength deformability of the background, the ensuing appearance of a volume change on freezing into the bcc structure is accompanied by reduced stability of the fluid phase and by an increase in the entropy of melting. Freezing of alkali metals into the bcc structure is next evaluated, taking their ionic pair structure as that of an ionic plasma reference fluid screened by conduction electrons and asking that the correct ionic coupling strength at liquid-solid coexistence should be approximately reproduced. The ensuring values of the volume and entropy changes across the phase transition, as estimated from the theory by two alternative routes, are in reasonable agreement with experiment. The order parameters of the phase transition, excepting the (200) one, conform rather closely to a Gaussian behaviour and yield a Lindemann ratio in reasonable agreement with the empirical value for melting of bcc crystals. It is suggested that ionic ordering at the (200) star in the metal may be (i) assisted by medium range ordering in the conduction electrons, as indicated by differences in X-ray and neutron diffraction intensities from the liquid, and/or (ii) quite small in the hot bcc solid. Such a possible premelting behaviour of bcc metals should be worth testing experimentally by diffraction. (author). 48 refs, 1 fig., 1 tab

  20. 50 years of superbases made from organolithium compounds and heavier alkali metal alkoxides

    Czech Academy of Sciences Publication Activity Database

    Lochmann, Lubomír; Janata, Miroslav

    2014-01-01

    Roč. 12, č. 5 (2014), s. 537-548. ISSN 1895-1066 R&D Projects: GA ČR GAP106/12/0844 Institutional support: RVO:61389013 Keywords : superbases * heavier alkali metal compounds * lithium -heavier alkali metal interchange Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.329, year: 2013

  1. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references.

  2. Superconductivity in the alkali metal intercalates of molybdenum disulphide

    Science.gov (United States)

    Somoano, R. B.; Hadek, V.; Rembaum, A.

    1972-01-01

    The complete series of alkali metals, lithium through cesium, have been intercalated into molybdenum disulphide, using both the liquid ammonia and vapor techniques. All the intercalates with the exception of lithium yielded full superconducting transitions with onset temperatures of 6 K for AxMoS2(Ax=K,Rb,Cs) and 4 K for BxMoS2(Bx=Li,Na). The superconducting transition for lithium was incomplete down to 1.5 K. Stoichiometries and unit cell parameters have been determined for the intercalation compounds. Both rhombohedral and hexagonal polymorphs of MoS2 have been intercalated and found to exhibit the same superconductivity behavior. The nature of the extraneous superconducting transition of some intercalated samples on exposure to air was elucidated.

  3. Density dependence of the diffusion coefficient of alkali metals

    International Nuclear Information System (INIS)

    The effect of density on transport coefficients of liquid Li, Na and K at high temperatures using the method of Molecular Dynamics simulation has been studied. Simulation of these liquid alkali metals were carried out with 800 particles in simulation boxes with periodic boundary conditions imposed. In order to test the reliability of the interatomic potential used in the calculations, experimental data on the structural properties were compared with calculated results. The calculations showed a linear relationship between the density and the diffusion coefficient in all the systems investigated except in lithium, where, due to the small size of the atom, standard molecular dynamics simulation method may not be appropriate for calculating the properties of interest. (author)

  4. Momentum densities and Compton profiles of alkali-metal atoms

    International Nuclear Information System (INIS)

    It is assumed that the dynamics of valence electrons of alkali-metal atoms can be well accounted for by a quantum-defect theoretic model while the core electrons may be supposed to move in a self-consistent field. This model is used to study the momentum properties of atoms from 3Li to 37Rb. The numerical results obtained for the momentum density, moments of momentum density and Compton profile are found to be in good agreement with the results of more detailed configuration-interaction calculations for the atom 3Li. Similar results for 11Na, 19K and 37Rb are compared with the corresponding Hartree-Fock-Roothan values only, for want of data from other realistic calculations. (author)

  5. Relativistic optimized effective potential method-application to alkali metals.

    Science.gov (United States)

    Ködderitzsch, D; Ebert, H; Akai, H; Engel, E

    2009-02-11

    We present a relativistic formulation of the optimized effective potential method (ROEP) and its implementation within the Korringa-Kohn-Rostoker multiple scattering formalism. The scheme is an all-electron approach, treating core and band states formally on the same footing. We use exact exchange (EXX) as an approximation to the exchange correlation functional. Numerical four-component wavefunctions for the description of core and valence electrons and the corresponding ingredients of the ROEP integral equation are employed. The exact exchange expression for the valence states is reformulated in terms of the electronic Green's function that in turn is evaluated by making use of multiple scattering formalism. We present and discuss the application of the formalism to non-magnetic alkali metals. PMID:21715911

  6. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references

  7. Theoretical investigation of the interaction of cytosine and its tautomers with alkali metals

    International Nuclear Information System (INIS)

    Quantum-chemical calculations have been applied in order to explore the interaction of alkali metals (M=Li-Cs) with cytosine and its tautomers. The optimized geometries, harmonic vibrational frequencies, and the energies of cytosine, metallated cytosine, and its tautomers have been calculated. The calculations show that metallated cytosine is more stable than non metallated one. The stability of metallated cytosine decreases with the growth of atomic number of alkali metals. Estimated charge on the metals demonstrates that there is some covalency in the metal-ligand interaction, especially in the Li+ system

  8. The role of alkali metal cations in the stabilization of guanine quadruplexes: why K(+) is the best.

    Science.gov (United States)

    Zaccaria, F; Paragi, G; Fonseca Guerra, C

    2016-08-21

    The alkali metal ion affinity of guanine quadruplexes has been studied using dispersion-corrected density functional theory (DFT-D). We have done computational investigations in aqueous solution that mimics artificial supramolecular conditions where guanine bases assemble into stacked quartets as well as biological environments in which telomeric quadruplexes are formed. In both cases, an alkali metal cation is needed to assist self-assembly. Our quantum chemical computations on these supramolecular systems are able to reproduce the experimental order of affinity of the guanine quadruplexes for the cations Li(+), Na(+), K(+), Rb(+), and Cs(+). The strongest binding is computed between the potassium cation and the quadruplex as it occurs in nature. The desolvation and the size of alkali metal cations are thought to be responsible for the order of affinity. Until now, the relative importance of these two factors has remained unclear and debated. By assessing the quantum chemical 'size' of the cation, determining the amount of deformation of the quadruplex needed to accommodate the cation and through the energy decomposition analysis (EDA) of the interaction energy between the cation and the guanines, we reveal that the desolvation and size of the alkali metal cation are both almost equally responsible for the order of affinity. PMID:27185388

  9. Intercalation of heavy alkali metals (K, Rb and Cs) in the bundles of single wall nanotubes

    Science.gov (United States)

    Duclaux, L.; Méténier, K.; Lauginie, P.; Salvetat, J. P.; Bonnamy, S.; Beguin, F.

    2000-11-01

    The electric-arc discharge carbon deposits (collaret) containing Single Wall Carbon Nanotubes (SWNTs) were heat treated at 1600 °C during 2 days under N2 flow in order to eliminate the Ni catalyst by sublimation, without modifications of the SWNTs ropes. Sorting this deposit by gravity enabled to obtain in the coarsest particles higher amount of SWNTs ropes than in other particle sizes. The coarser particles of the carbon deposits were reacted with the alkali metals vapor giving intercalated samples with a MC8 composition. The intercalation led to an expansion of the 2D lattice of the SWNTs so that the alkali metals were intercalated in between the tubes within the bundles. Disordered lattices were observed after intercalation of Rb and Cs. The simulations of the X-ray diffractograms of SWNTs reacted with K, gave the best fit for three K ions occupying the inter-tubes triangular cavities. The investigations by EPR, and 13C NMR, showed that doped carbon deposits are metallic.

  10. Ion-exchange selectivities on antimonic acids and metal antimonates

    International Nuclear Information System (INIS)

    Antimonic acids and metal antimonates as the inorganic ion-exchangers exhibit extremely high selectivity for a certain element or group of elements for comparison with sulfonated polystyrene ion-exchange resin. Various antimonic acid materials have been obtained with different compositions and ion-exchange properties, depending on the method of their preparations as well as on aging. The species can be divided into three groups - crystalline, amorphous and glassy. The affinity sequence for alkali metal ions shows LiNa>K>Rb>Cs. These selectivities are discussed in the terms of steric effect and entropy changes of the ion-exchange reactions. (author)

  11. Preparation of decarboxylic-functionalized weak cation exchanger and application for simultaneous separation of alkali, alkaline earth and transition metals.

    Science.gov (United States)

    Peng, Yahui; Gan, Yihui; He, Chengxia; Yang, Bingcheng; Guo, Zhimou; Liang, Xinmiao

    2016-06-01

    A novel weak cation exchanger (WCX) with dicarboxyl groups functionalized has been developed by clicking mercaptosuccinic acid onto silica gel. The simple synthesis starts with modification of silica gel with triethoxyvinylsilane, followed by efficient coupling vinyl-bonded silica with mercaptosuccinic acid via a "thiol-ene" click reaction. The obtained WCX demonstrated good separation and high selectivity towards common metals. Simultaneous separation of 10 alkali, alkaline earth and transition metals was achieved within 12min. Ion exchange and complex mechanism dominates the separation process. Its utility was demonstrated for determination of metals in tap water. PMID:27130093

  12. Structural properties of low-density liquid alkali metals

    Indian Academy of Sciences (India)

    A Akande; G A Adebayo; O Akinlade

    2005-12-01

    The static structure factors of liquid alkali metals have been modelled at temperatures close to their melting points and a few higher temperatures using the reverse Monte Carlo (RMC) method. The positions of 5000 atoms in a box, with full periodicity, were altered until the experimental diffraction data of the structure factor agrees with the associated model structure factor within the errors. The model generated is then analysed. The position of the first peak of the pair distribution function () does not show any significant temperature dependence and the mean bond lengths can be approximated within an interval of 3.6–5.3 Å, 4.5–6.6 Å, 4.8–6.7 Å and 5.1–7.3 Å for Na, K, Rb and Cs respectively. The cosine bond distributions show similar trend with the flattening up of the first peak with increase in temperature. In addition, the coordination numbers of these liquid metals are high due to the presence of non-covalent bonding between them. On the average, we surmise that the coordination number decreases with increase in temperature.

  13. Field emission properties of capped carbon nanotubes doped by alkali metals:a theoretical investigation

    Institute of Scientific and Technical Information of China (English)

    Jin Lei; Fu Hong-Gang; Xie Ying; Yu Hai-Tao

    2012-01-01

    The electronic structures and field emission properties of capped CNT55 systems with or without alkali metal atom adsorption were systematically investigated by density functional theory calculation.The results indicate that the adsorption of alkali metal on the center site of a CNT tip is energetically favorable.In addition,the adsorption energies increase with the introduction of the electric field.The excessive negative charges on CNT tips make electron emittance much easier and result in a decrease in work function.Furthermore,the inducing effect by positively charged alkali metal atoms can be reasonably considered as the dominant reason for the improvement in field emission properties.

  14. Method and composition for testing for the presence of an alkali metal

    International Nuclear Information System (INIS)

    A method and composition for detecting the presence of an alkali metal on the surface of a body such as a metal plate, tank, pipe or the like is provided. The method comprises contacting the surface with a thin film of a liquid composition comprising a light-colored pigment, an acid-base indicator, and a nonionic wetting agent dispersed in a liquid carrier comprising a minor amount of water and a major amount of an organic solvent selected from the group consisting of the lower aliphatic alcohols, ketones and ethers. Any alkali metal present on the surface in elemental form or as an alkali metal hydroxide or alkali metal carbonate will react with the acid-base indicator to produce a contrasting color change in the thin film, which is readily discernible by visual observation or automatic techniques

  15. Encapsulation of metal cations by the PhePhe ligand: a cation-pi ion cage

    NARCIS (Netherlands)

    R.C. Dunbar; J.D. Steill; J. Oomens

    2011-01-01

    Structures and binding thermochemistry are investigated for protonated PhePhe and for complexes of PhePhe with the alkaline-earth ions Ba2+ and Ca2+, the alkali-metal ions Li+, Na+, K+, and Cs+, and the transition-metal ion Ag+. The two neighboring aromatic side chains open the possibility of a nove

  16. Encapsulation of Metal Cations by the PhePhe Ligand: A Cation-pi Ion Cage

    NARCIS (Netherlands)

    Dunbar, R. C.; Steill, J. D.; Oomens, J.

    2011-01-01

    Structures and binding thermochemistry are investigated for protonated PhePhe and for complexes of PhePhe with the alkaline-earth ions Ba2+ and Ca2+, the alkali-metal ions Li+, Na+, K+, and Cs+, and the transition-metal ion Ag+. The two neighboring aromatic side chains open the possibility of a nove

  17. 气相中碱金属离子与丝氨酸、亮氨酸和赖氨酸五肽复合物的裂解反应%Fragmentation Reactions of Complexes of Alkali Metal Ions with Pentaserine, Pentaleucine and Pentalysine in Gas Phase

    Institute of Scientific and Technical Information of China (English)

    魏王慧; 王青; 储艳秋; 汪日志; 丁传凡

    2014-01-01

    为了探索金属离子对含有不同侧链的多肽气相解离的影响,采用质谱法研究了碱金属离子Li+, Na+, K+, Rb+和Cs+分别与丝氨酸、亮氨酸和赖氨酸五肽(分别简写为S5, L5和K5)形成的复合物的裂解反应.质谱定性结果表明,5种碱金属离子均可以在气相中与丝氨酸、亮氨酸和赖氨酸五肽形成配合比为1:1和2:1的非共价复合物;竞争反应结果表明,随着碱金属离子半径的增加,它们与3种五肽的结合能力逐渐减弱.质谱定量结果表明, K+与丝氨酸、亮氨酸和赖氨酸五肽复合物的结合常数分别为8.94×104,2.83×104和2.50×103 L/mol,表明K+与五肽复合物的结合强度按照丝氨酸、亮氨酸和赖氨酸的顺序依次减小.含不同侧链碱金属离子-五肽复合物的碰撞诱导解离结果表明,复合物的碎裂主要发生在骨架上,丝氨酸五肽复合物最易碎裂,亮氨酸五肽复合物其次,赖氨酸五肽复合物则较难碎裂,且3种复合物的侧链断裂情况也呈现明显差异.此外,研究了Na+与亮氨酸五肽复合物所产生的碎片离子,分析了不同离子之间的来源关系,并以Dunbar的复合物理论模型为依据,推测在碎裂过程中,碱金属离子可能向五肽的碳端或氮端偏移.质谱碎片分析结果表明,在2:1的非共价复合物中,第一个碱金属离子与五肽上4个酰胺键的羰基结合,第二个碱金属离子与五肽的羧基氧原子结合.%For exploring the effects of alkali metal ions on the dissociations of peptides with different side chains in the gas phase, the complexes of Li+, Na+, K+, Rb+ and Cs+ with pentapeptides, Ser-Ser-Ser-Ser-Ser( S5 ) , Leu-Leu-Leu-Leu-Leu ( L5 ) and Lys-Lys-Lys-Lys-Lys ( K5 ) , were chosen to investigate the frag-mentation reaction pathways by mass spectrometry. The experimental results indicated that alkali metal ions and S5, L5, K5 can form 1:1 and 2:1 non-covalent complexes in the gas phase, and the binding

  18. Electrical conduction in alkali borate glasses; a unique dependence on the concentration of modifier ions

    Energy Technology Data Exchange (ETDEWEB)

    Doweidar, H; Moustafa, Y M; El-Damrawi, G M; Ramadan, R M [Glass Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura 35516, POB 83 (Egypt)

    2008-01-23

    The electrical conduction of Li{sub 2}O-B{sub 2}O{sub 3}, Na{sub 2}O-B{sub 2}O{sub 3} and K{sub 2}O-B{sub 2}O{sub 3} glasses seems, at first sight, to be dominated by the activation energy. Regardless of the size of the alkali ion, there is a unique dependence of conductivity, at a certain temperature, on the alkali-alkali distance and thus on N (the number of ions per cm{sup 3}). The linear dependence of log{sigma} on N{sup -3/2} for all types of alkali ions reveals that N is the basic parameter that determines the conductivity at a certain temperature. A derived semi-empirical relation can be used to calculate the conductivity as a function of N and temperature.

  19. Electrical conduction in alkali borate glasses; a unique dependence on the concentration of modifier ions

    Science.gov (United States)

    Doweidar, H.; Moustafa, Y. M.; El-Damrawi, G. M.; Ramadan, R. M.

    2008-01-01

    The electrical conduction of Li2O-B2O3, Na2O-B2O3 and K2O-B2O3 glasses seems, at first sight, to be dominated by the activation energy. Regardless of the size of the alkali ion, there is a unique dependence of conductivity, at a certain temperature, on the alkali-alkali distance and thus on N (the number of ions per cm3). The linear dependence of logσ on N-3/2 for all types of alkali ions reveals that N is the basic parameter that determines the conductivity at a certain temperature. A derived semi-empirical relation can be used to calculate the conductivity as a function of N and temperature.

  20. Catalysis using hydrous metal oxide ion exchangers

    Science.gov (United States)

    Dosch, R.G.; Stephens, H.P.; Stohl, F.V.

    1983-07-21

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  1. Catalysis using hydrous metal oxide ion exchanges

    Science.gov (United States)

    Dosch, Robert G.; Stephens, Howard P.; Stohl, Frances V.

    1985-01-01

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  2. Modification of alkali metals on silicon-based nanoclusters: An enhanced nonlinear optical response

    Science.gov (United States)

    Li, Xiaojun; Han, Quan; Yang, Xiaohui; Song, Ruijuan; Song, Limei

    2016-08-01

    Structures, chemical stabilities and nonlinear optical properties of alkali metals-adsorbed niobium-doped silicon (M@SinNb+) clusters are investigated using the DFT methods. The alkali metals prefer energetically to be attached as bridged bond rather than M-Si single bond in most of optimized structures. Adsorption of alkali metals on doped silicon clusters gradually enhances their chemical stabilities with increasing cluster size. Noteworthily, the first hyperpolarizabilities (βtot) of the M@SinNb+ clusters, obtained by using the long-range corrected CAM-B3LYP functional, are large enough to establish their strong nonlinear optical behavior, especially for M@Si9Nb+ (M = Li, Na, and K), and the enhanced βtot ordering by alkali metals is Na > K > Li.

  3. Superconductivity of graphite intercalation compounds with alkali-metal amalgams

    International Nuclear Information System (INIS)

    Superconductivity of the alkali-metal amalgam graphite intercalation compounds of stage 1 (C4KHg, C4RbHg) and stage 2 (C8KHg, C8RbHg) has been studied as well as that of the pristine amalgams (KHg, RbHg). The transition temperatures are 0.73, 0.99, 1.90, and 1.40 K for C4KHg, C4RbHg, C8KHg, and C8RbHg, respectively. The critical-field anisotropy ratio H/sup parallel//sub c/2/H/sup perpendicular//sub c/2 is about 10 for the stage 1 and about 15 to 40 for the stage 2. It is argued that electrons in the intercalant bands rather than the graphitic bands play the main role in the superconductivity. An interesting feature is that the stage-2 compound, which has a lower density of states at the Fermi level, has a higher transition temperature than the corresponding state-1 compound

  4. Corrosion in alkali metal/molybdenum heat pipes

    International Nuclear Information System (INIS)

    Molybdenum/sodium (Mo/Na) and molybdenum/lithium (Mo/Li) heat pipes have been operated for long periods of time in a study of their resistance to failure by alkali metal corrosion. Some Mo/Na heat pipes have operated over 20,600 h at 1400 K without failure, while at least one similar heat pipe failed in less than 14 hours at 1435 K. Detailed post-mortem analyses which have been performed on three failed Mo/Na heat pipes all indicated impurity controlled corrosion of their evaporators. Impurities observed to be transported included carbon, oxygen, and silicon. A Mo/Li heat pipe that failed after 25,216 h of operation at 1700 K was also examined in detail. This failure was due to nickel impurities being transported to the evaporator resulting in perforation of the container tube by the formation of a low melting Mo-Ni alloy. Theoretical thermochemical calculations were conducted for these systems with the objective of corroborating the corrosion mechanisms in both types of heat pipes. The results of these calculations are in general agreement with the observed corrosion a phenomena

  5. Design of low work function materials using alkali metal-doped transition metal dichalcogenides

    Science.gov (United States)

    Kim, Sol; Lee, Man Young; Lee, Seong; Jhi, Seung-Hoon

    Engineering the work function is a key issue in surface science. Particularly, discovering the materials that have work functions less than 1eV is essential for efficient thermionic energy conversion. The lowest work function of materials, reported so far, is in a range of about 1eV. To design low work function materials, we chose MX2 (M =Mo and W; X =S, Se and Te) as substrates and alkali metals (Li, Na, K, Rb and Cs) as dopants, and studied their electronic structures, charge transfer, induced surface dipole moment, and work function using first-principles calculations. We found that the charge transfer from alkali metals to MX2 substrates decreases as the atomic radius of alkali metals increases. Regardless of the amount of the charge transfer, K on WTe2 exhibits the biggest surface dipole moment, which consequently makes the surface work function the lowest. Also, we found a correlation between the binding distance and the work function.

  6. Behavior of Alkali Metals and Ash in a Low-Temperature Circulating Fluidized Bed (LTCFB) Gasifier

    DEFF Research Database (Denmark)

    Narayan, Vikas; Jensen, Peter Arendt; Henriksen, Ulrik Birk;

    2016-01-01

    W and a 6 MW LTCFBgasifier. Of the total fuel ash entering the system, the largest fraction (40−50%) was retained in the secondary cyclone bottoms,while a lower amount (8−10%) was released as dust in the exit gas. Most of the alkali and alkaline earth metals were retained inthe solid ash, along with Si......, the low reactor temperature ensures that high-alkali biomass fuels canbe used without risk of bed defluidization. This paper presents the first investigation of the fate of alkali metals and ash in lowtemperaturegasifiers. Measurements on bed material and product gas dust samples were made on a 100 k...

  7. Alkali Metal Variation and Twisting of the FeNNFe Core in Bridging Diiron Dinitrogen Complexes.

    Science.gov (United States)

    McWilliams, Sean F; Rodgers, Kenton R; Lukat-Rodgers, Gudrun; Mercado, Brandon Q; Grubel, Katarzyna; Holland, Patrick L

    2016-03-21

    Alkali metal cations can interact with Fe-N2 complexes, potentially enhancing back-bonding or influencing the geometry of the iron atom. These influences are relevant to large-scale N2 reduction by iron, such as in the FeMoco of nitrogenase and the alkali-promoted Haber-Bosch process. However, to our knowledge there have been no systematic studies of a large range of alkali metals regarding their influence on transition metal-dinitrogen complexes. In this work, we varied the alkali metal in [alkali cation]2[LFeNNFeL] complexes (L = bulky β-diketiminate ligand) through the size range from Na(+) to K(+), Rb(+), and Cs(+). The FeNNFe cores have similar Fe-N and N-N distances and N-N stretching frequencies despite the drastic change in alkali metal cation size. The two diketiminates twist relative to one another, with larger dihedral angles accommodating the larger cations. In order to explain why the twisting has so little influence on the core, we performed density functional theory calculations on a simplified LFeNNFeL model, which show that the two metals surprisingly do not compete for back-bonding to the same π* orbital of N2, even when the ligand planes are parallel. This diiron system can tolerate distortion of the ligand planes through compensating orbital energy changes, and thus, a range of ligand orientations can give very similar energies. PMID:26925968

  8. Potential Modulated Intercalation of Alkali Cations into Metal Hexacyanoferrate Coated Electrodes

    International Nuclear Information System (INIS)

    Nickel hexacyanoferrate is a polynuclear inorganic ion intercalation material that loads (intercalates) and elutes (deintercalates) alkali cations from its structure when electrochemically reduced and oxidized, respectively. Nickel hexacyanoferrrate (NiHCF) is known to preferentially intercalate cesium over all other alkali cations, thus providing a basis for a separation scheme that can tackle DOE's radiocesium contamination problem. This program studied fundamental issues in alkalization intercalation and deintercalation in nickel hexacyanoferrate compounds, with the goal of (1) quantifying the ion exchange selectivity properties from cation mixtures, (2) enhancing ion exchange capacities, and (3) and understanding the electrochemically-switched ion exchange process (ESIX)

  9. Half metallic ferromagnetism in alkali metal nitrides MN (M = Rb, Cs): A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Murugan, A., E-mail: rrpalanichamy@gmail.com; Rajeswarapalanichamy, R., E-mail: rrpalanichamy@gmail.com; Santhosh, M., E-mail: rrpalanichamy@gmail.com; Sudhapriyanga, G., E-mail: rrpalanichamy@gmail.com [Department of Physics, N.M.S.S.V.N College, Madurai, Tamilnadu-625019 (India); Kanagaprabha, S. [Department of Physics, Kamaraj College, Tuticorin, Tamil Nadu-628003 (India)

    2014-04-24

    The structural, electronic and elastic properties of two alkali metal nitrides (MN: M= Rb, Cs) are investigated by the first principles calculations based on density functional theory using the Vienna ab-initio simulation package. At ambient pressure the two nitrides are stable in ferromagnetic state with CsCl structure. The calculated lattice parameters are in good agreement with the available results. The electronic structure reveals that these materials are half metallic in nature. A pressure-induced structural phase transition from CsCl to ZB phase is observed in RbN and CsN.

  10. Properties of solvated electrons, alkali anions and other species in metal solutions and kinetics of cation and electron exchange reactions. Final report

    International Nuclear Information System (INIS)

    The properties of solutions of alkali metals in amine solvents were studied by optical, ETR, NMR and electrochemical methods. Complexation of the alkali cations by crown ethers and cryptands permitted the preparation of concentrated solutions of alkali metals in amine and ether solvents. Extensive alkali metal NMR studies of the exchange of M+ with crown-ethers and cryptands and of the alkali metal anion, M-, were made. The first crystalline salt of an alkali metal anion, Na+ Cryptand [2.2.2]Na- was synthesized and characterized and led to the preparation of other alkali metal anion salts. This research provided the foundation for continuing studies of crystalline alkalide salts

  11. Effects of alkali ions on thermal stability and spectroscopic properties of Er3+-doped gallogermanate glasses

    International Nuclear Information System (INIS)

    Since information transportation capacity of optical communication network increases rapidly, new optical materials are always demanded with gain bandwidth desirably much broader than traditional erbium-doped silica fiber amplifier (EDFA). We show here in this paper the erbium-doped gallogermanate glasses with a full-width at half-maximum (FWHM) more than 50 nm. Incorporation of alkali ions such as Li+, Na+, K+ into the system can on the one hand improve the thermal stability of the glasses, and on the other hand enhance the emission at 1.5 μm due to the 4I13/2→4I15/2 transition of Er3+ and suppress the upconversion process at the same time. This particularly works best for the case of K+ inclusion. This work might give a general idea on controlling the Er3+ luminescence by simply adjusting the glass component and find a potential laser glass applicable to developing new broadband fiber amplifier. -- Research highlights: → We report on spectroscopic properties of Er3+-doped Ga2O3-GeO2-R2O (GGR, R=Li, Na and K) glasses for 1.53 μm fiber amplifier. Effects of alkali metal ions on the thermal stability and spectroscopic properties of Er3+-doped GGR glasses have been investigated. → Incorporation of alkali ions such as Li+, Na+, K+ into the system can on the one hand improve the thermal stability of the glasses, and on the other hand enhance the emission at 1.5 μm due to the 4I13/2→4I15/2 transition of Er3+ and suppress the upconversion process at the same time. This particularly works best for the case of K+ inclusion. This work might give a general idea on controlling the Er3+ luminescence by simply adjusting the glass component and find a potential laser glass applicable to developing new broadband fiber amplifier.

  12. Alkali ion migration between stacked glass plates by corona discharge treatment

    Science.gov (United States)

    Kawaguchi, Keiga; Suzuki, Toshio; Ikeda, Hiroshi; Sakai, Daisuke; Funatsu, Shiro; Uraji, Keiichiro; Yamamoto, Kiyoshi; Harada, Kenji; Nishii, Junji

    2015-05-01

    Corona discharge reflects the spatial migration of alkali ions over a gap between two glass plates. This study examined stacked glass plates containing different alkali ions treated with the corona discharge plasma generated by applied voltage of 4.5 kV at 200 °C. Protons generated at the anode electrode penetrate into the potassium-ion-containing upper glass plate, which is located 5 mm below the anode electrode. Potassium ions intruded into the lower glass plate containing sodium ions placed on the cathode electrode, even over a 1 mm gap separating the plates. Finally, the sodium ion discharged on the cathode electrode. The hydrogen atmosphere was effective at inhibiting the potassium ion reaction with ambient gases during the spatial migration between the two glass plates.

  13. Characterization of Alkali Metal Dispensers and Non-Evaporable Getter Pumps in Ultra-High Vacuum Systems for Cold Atomic Sensors

    OpenAIRE

    Scherer, David R.; Fenner, David B.; Hensley, Joel M.

    2012-01-01

    A glass ultrahigh vacuum chamber with rubidium alkali metal dispensers and non-evaporable getter pumps has been developed and used to create a cold atomic sample in a chamber that operates with only passive vacuum pumps. The ion-mass spectrum of evaporated gases from the alkali metal dispenser has been recorded as a function of dispenser current. The efficacy of the non-evaporable getter pumps in promoting and maintaining vacuum has been characterized by observation of the Rb vapor optical ab...

  14. Phase behaviour and thermodynamics of poly(1,4-phenylene ether sulphone) and poly(ethylene oxide)/alkali-metal salt complex blends: a thermal analysis study

    International Nuclear Information System (INIS)

    The phase behaviour and thermodynamics of poly(1,4-phenylene ether sulfone) (PES) and poly(ethylene oxide) (PEO)/alkali-metal salt complex blends were investigated by means of differential scanning calorimetry (DSC) and modulated DSC (MDSC). Experimental results show that the blend systems remain miscible after incorporating various alkali-metal salts: CF3SO3Li, CF3SO3Na and CF3SO3K. The cloud point temperature strongly depended on the Li (Na or K)/O ratio in the PES-PEO/alkali-metal salt complex blends. With increasing the Li+ (Na+ or K+)/O ratio, the phase diagram of the PES-PEO/alkali-metal salt complex blends tended to be symmetrical. When Li+/O = 0.02, the lower critical solution temperature (LCST) of the PES-PEO/CF3SO3Li complex blends was located at the 30/70 PES/PEO composition. The mixing enthalpy decreased in the PES-PEO/alkali-metal salt complex blends with increasing Li+ (Na+ or K+)/O ratio. The radius of ion has significant influence on the phase behaviour of PES/PEO blends. MDSC results showed that the change of heat capacity at the temperature of the binodal phase separation is similar to that of a melt transition in semi-crystalline polymers, which confirms the mechanism of binodal phase separation: nucleation and growth

  15. Alkali and heavy metal emissions of the PCFB-process; Alkali- ja raskasmetallipaeaestoet PCFB-prosessista

    Energy Technology Data Exchange (ETDEWEB)

    Kuivalainen, R.; Eriksson, T.; Lehtonen, P. [Foster Wheeler Energia Oy, Karhula (Finland)

    1997-10-01

    Pressurized Circulating Fluidized Bed (PCFB) combustion technology has been developed in Karhula R and D Center since 1986. As part of the development, 10 MW PCFB test facility was built in 1989. The test facility has been used for performance testing with different coal types through the years 1990-1995 in order to gain data for design and commercialization of the high-efficiency low-emission PCFB combustion technology. The main object of the project was to measure vapor phase Na and K concentrations in the PCFB flue gas after hot gas filter and investigate the effects of process conditions and sorbents on alkali release. The measurements were performed using plasma assisted method of TUT Laboratory of Plasma Technology and wet absorption method of VTT Energy. The measurements were carried out during three test campaigns at PCFB Test Facility in Karhula. In autumn 1995 both VTT and TUT methods were used. The measurements of the following test period in spring 1996 were performed by VTT, and during the last test segment in autumn 1996 TUT method was in use. During the last test period, the TUT instrument was used as semi-continuous (3 values/minute) alkali analyzer for part of the time. The measured Na concentrations were below 30 ppb(w) in all measured data points. The results of K were below 10 ppb(w). The accuracies of the both methods are about +50 % at this concentration range. The scatter of the data covers the effects of different process variables on the alkali emission. The measured emissions are at the same order of magnitude as the guideline emission limits estimated by gas turbine manufacturers

  16. Fabrication and characterization of characteristic luminescent alkali/alkaline earth fluoro boro phosphate glass ceramic materials with some transition metal ions as nucleating agents for the applications in radiation dosimetry

    International Nuclear Information System (INIS)

    The objective of the project is to synthesize CaF2/LiF-B2O3-P2O5 glass materials doped with some transition metal oxides and to study their thermoluminescence (TL) characteristics over a broad range of dose after the characterization of the samples by conventional XRD, SEM techniques and structural analysis of the samples by spectroscopic (IR, optical absorption and ESR) studies. The objectives are further extended to analyze the results of TL in the light of different oxidation states of dopant ions, the dose of ionizing radiation and the topology of the glass network and to comment on suitability of the materials for TL dosimetry

  17. Alkali Metal Backup Cooling for Stirling Systems - Experimental Results

    Science.gov (United States)

    Schwendeman, Carl; Tarau, Calin; Anderson, William G.; Cornell, Peggy A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  18. Saturated vapor pressure above the amalgam of alkali metals in discharge lamps

    Science.gov (United States)

    Gavrish, S. V.

    2011-12-01

    A theoretical and numerical analysis of the evaporation process of two-component compounds in vapors of alkali metals in discharge lamps is presented. Based on the developed mathematical model of calculation of saturated vapor pressure of the metal above the amalgam, dependences of mass fractions of the components in the discharge volume on design parameters and thermophysical characteristics of the lamp are obtained.

  19. Molecular-orbital theory for the stopping power of atoms in the low velocity regime:the case of helium in alkali metals

    OpenAIRE

    Dorado, Jose J.; Flores, F.

    1993-01-01

    A free-parameter linear-combination-of-atomic-orbitals approach is presented for analyzing the stopping power of slow ions moving in a metal. The method is applied to the case of He moving in alkali metals. Mean stopping powers for He present a good agreement with local-density-approximation calculations. Our results show important variations in the stopping power of channeled atoms with respect to their mean values.

  20. Metal ion binding with dehydroannulenes - Plausible two-dimensional molecular sieves

    Indian Academy of Sciences (India)

    B Sateesh; Y Soujanya; G Narahari Sastry

    2007-09-01

    Theoretical investigations have been carried out at B3LYP/6-311++G∗∗ level of theory to study the binding interaction of various metal ions, Li+, Na+ and K+ with dehydroannulene systems. The present study reveals that alkali metal ions bind strongly to dehydroannulenes and the passage through the central cavity is controlled by the size of metal ion and dimension of dehydroannulene cavity.

  1. Alkali ion migration between stacked glass plates by corona discharge treatment

    International Nuclear Information System (INIS)

    Highlights: • Two stacked glass plates with a 1 mm gap were treated by corona discharge. • Spatial migration of alkali ion over the gap was demonstrated. • Hydrogen gas was necessary for uniform migration. • Surface modification was done with this process without high temperature or vacuum. - Abstract: Corona discharge reflects the spatial migration of alkali ions over a gap between two glass plates. This study examined stacked glass plates containing different alkali ions treated with the corona discharge plasma generated by applied voltage of 4.5 kV at 200 °C. Protons generated at the anode electrode penetrate into the potassium-ion-containing upper glass plate, which is located 5 mm below the anode electrode. Potassium ions intruded into the lower glass plate containing sodium ions placed on the cathode electrode, even over a 1 mm gap separating the plates. Finally, the sodium ion discharged on the cathode electrode. The hydrogen atmosphere was effective at inhibiting the potassium ion reaction with ambient gases during the spatial migration between the two glass plates

  2. Alkali ion migration between stacked glass plates by corona discharge treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Keiga [Research Institute for Electronic Science, Hokkaido University, N20 W10, Kita-ku, Sapporo, Hokkaido 001-0020 (Japan); Suzuki, Toshio [Research Center, Asahi Glass Co., Ltd., 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa 221-8755 (Japan); Ikeda, Hiroshi [Art, Science and Technology Center for Cooperative Research, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Sakai, Daisuke [Department of Electrical and Electronic Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507 (Japan); Funatsu, Shiro; Uraji, Keiichiro [Production Technology Center, Asahi Glass Co., Ltd., 1-1 Suehiro-cyo, Tsurumiku, Yokohama, Kanagawa 230-0045 (Japan); Yamamoto, Kiyoshi [Research Center, Asahi Glass Co., Ltd., 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa 221-8755 (Japan); Harada, Kenji [Department of Computer Science, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507 (Japan); Nishii, Junji, E-mail: nishii@es.hokudai.ac.jp [Research Institute for Electronic Science, Hokkaido University, N20 W10, Kita-ku, Sapporo, Hokkaido 001-0020 (Japan)

    2015-05-30

    Highlights: • Two stacked glass plates with a 1 mm gap were treated by corona discharge. • Spatial migration of alkali ion over the gap was demonstrated. • Hydrogen gas was necessary for uniform migration. • Surface modification was done with this process without high temperature or vacuum. - Abstract: Corona discharge reflects the spatial migration of alkali ions over a gap between two glass plates. This study examined stacked glass plates containing different alkali ions treated with the corona discharge plasma generated by applied voltage of 4.5 kV at 200 °C. Protons generated at the anode electrode penetrate into the potassium-ion-containing upper glass plate, which is located 5 mm below the anode electrode. Potassium ions intruded into the lower glass plate containing sodium ions placed on the cathode electrode, even over a 1 mm gap separating the plates. Finally, the sodium ion discharged on the cathode electrode. The hydrogen atmosphere was effective at inhibiting the potassium ion reaction with ambient gases during the spatial migration between the two glass plates.

  3. Structural and Magnetic Diversity in Alkali-Metal Manganate Chemistry: Evaluating Donor and Alkali-Metal Effects in Co-complexation Processes.

    Science.gov (United States)

    Uzelac, Marina; Borilovic, Ivana; Amores, Marco; Cadenbach, Thomas; Kennedy, Alan R; Aromí, Guillem; Hevia, Eva

    2016-03-24

    By exploring co-complexation reactions between the manganese alkyl Mn(CH2 SiMe3 )2 and the heavier alkali-metal alkyls M(CH2 SiMe3 ) (M=Na, K) in a benzene/hexane solvent mixture and in some cases adding Lewis donors (bidentate TMEDA, 1,4-dioxane, and 1,4-diazabicyclo[2,2,2] octane (DABCO)) has produced a new family of alkali-metal tris(alkyl) manganates. The influences that the alkali metal and the donor solvent impose on the structures and magnetic properties of these ates have been assessed by a combination of X-ray, SQUID magnetization measurements, and EPR spectroscopy. These studies uncover a diverse structural chemistry ranging from discrete monomers [(TMEDA)2 MMn(CH2 SiMe3 )3 ] (M=Na, 3; M=K, 4) to dimers [{KMn(CH2 SiMe3 )3 ⋅C6 H6 }2 ] (2) and [{NaMn(CH2 SiMe3 )3 }2 (dioxane)7 ] (5); and to more complex supramolecular networks [{NaMn(CH2 SiMe3 )3 }∞ ] (1) and [{Na2 Mn2 (CH2 SiMe3 )6 (DABCO)2 }∞ ] (7)). Interestingly, the identity of the alkali metal exerts a significant effect in the reactions of 1 and 2 with 1,4-dioxane, as 1 produces coordination adduct 5, while 2 forms heteroleptic [{(dioxane)6 K2 Mn2 (CH2 SiMe3 )4 (O(CH2 )2 OCH=CH2 )2 }∞ ] (6) containing two alkoxide-vinyl anions resulting from α-metalation and ring opening of dioxane. Compounds 6 and 7, containing two spin carriers, exhibit antiferromagnetic coupling of their S=5/2 moments with varying intensity depending on the nature of the exchange pathways. PMID:26916525

  4. Ionic conduction in alkali metal doped ZnFe/sub 2/O/sub 4/ compound

    International Nuclear Information System (INIS)

    Zinc ferric oxide (ZnFe/sub 2/O/sub 4/) has been synthesized by liquid phase chemical reaction from aqueous mixture of zinc chloride and ferric chloride in sodium hydroxide (4N) solution and effect of alkali metal on electrical characteristics was explored. The well characterized powder was pressed into pellets and dried at 80 degree C. Samples with alkali metal concentrations 10-100 ppm have been investigated to I-V measurements. The conductivity of pure compound (10-/sub 2/omega-cm)/sup-1/) lies in the semiconductor range but due to alkali metal doping the compound shows ionic conduction at room temperature. The ionic conduction is found to be increased as the dopant concentration increases.(author)

  5. Thermochemistry of complex oxides of uranium(6), arsenic and alkali metals

    International Nuclear Information System (INIS)

    Standard reaction enthalpies for stoichiometric mixtures of mono-potassium orthoarsenate, uranium(6) and alkali metal nitrate oxides as well as mixtures of complex oxides of the M1AsUO6 (M1 = Li, Na, K, Rb, Cs) general formulas and potassium nitrate with hydrofluoric acid are determined in adiabatic calorimeter at the temperature of 298.15 K. Standard enthalpies for formation of complex oxides of uranium(6), arsenic and alkali metals at the temperature of 298.15 K are calculated by the obtained results. 8 refs., 1 tab

  6. Saturated vapor pressure over molten mixtures of GaCl3 and alkali metal chlorides

    International Nuclear Information System (INIS)

    Volatilities of GaCl3 and alkali metal chlorides over diluted (up to 3 mol %) solutions of GaCl3 in LiCl, NaCl, KCl, RbCl, and CsCl were measured at 1100 K by dynamic and indirect static methods. Chemical composition of saturated vapor over the mixed melts was determined. Partial pressures of the components were calculated. Their values depend essentially on specific alkali metal cation and on concentration of GaCl3; their variation permits altering parameters of GaCl3 distillation from the salt melt in a wide range

  7. Synergistic solvent extraction of crown ether complexes with alkali metal picrates by neutral donor solvents

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Y.

    1983-09-01

    The solvent extraction of rubidium and cesium picrates has been studied at 25/sup 0/C with mixtures of crown ether and tributyl phosphate (TBP) or trioctylphosphine oxide (TOPO) in benzene, and the adduct-formation constants in the benzene solution have been calculated. The crown ethers used in this work were 12-crown-4 (12C4), 15-crown-5 (15C5), and benzo-15-crown-5 (B15C5). The stoichiometric composition of any extracted complex under the present experimental conditions is alkali metal ion : crown ether : TBP or TOPO : picrate ion = 1 : 1 : 1 : 1. The TOPO complex is more extractable than the corresponding TBP complex. The extractability of the Rb/sup +/ complex is larger than that of the corresponding Cs/sup +/ complex. For both TBP and TOPO, the adduct-formation constant value sequences of Rb/sup +/ and Cs/sup +/ are B15C5 > 12C4 > 15C5 and 12C4 > B15C5 > 15C5, respectively. 2 figures, 1 table.

  8. Potential-modulated intercalation of alkali cations into metal hexacyanoferrate coated electrodes. 1998 annual progress report

    International Nuclear Information System (INIS)

    'This program is studying potential-driven cation intercalation and deintercalation in metal hexacyanoferrate compounds, with the eventual goal of creating materials with high selectivity for cesium separations and long cycle lifetimes. The separation of radiocesium from other benign cations has important implications for the cost of processing a variety of cesium contaminated DOE wasteforms. This report summarizes results after nine months of work. Much of the initial efforts have been directed towards quantitatively characterizing the selectivity of nickel hexacyanoferrate derivatized electrodes for intercalating cesium preferentially over other alkali metal cations. Using energy dispersive xray spectroscopy (ex-situ, but non-destructive) and ICP analysis (ex-situ and destructive), the authors have demonstrated that the nickel hexacyanoferrate lattice has a strong preference for intercalated cesium over sodium. For example, when ions are reversibly loaded into a nickel hexacyanoferrate thin film from a solution containing 0.9999 M Na+ and 0.0001 M Cs+, the film intercalates 40% as much Cs+ as when loaded from pure 1 M Cs+ containing electrolyte (all electrolytes use nitrates as the common anion). The authors have also shown that, contrary to the common assumptions found in the literature, a significant fraction of the thin film is not active initially. A new near infrared laser has been purchased and is being added to the Raman spectroscopy facilities to allow in-situ studies of the intercalation processes.'

  9. On metal oxide solubilities in some molten alkali metal bromides at T = 973 K

    International Nuclear Information System (INIS)

    Highlights: • Solubility products of MeO oxides in KBr–NaBr and KBr–LiBr eutectics are presented. • Correlation between radius of cation entering in oxide and its solubility is found. • Melt acidity increases in CsBr − KBr → KBr − NaBr → KBr − LiBr sequence. • The common oxoacidity scale of alkali metal chlorides and bromides is constructed. - Abstract: Reactions of Me2+ cations with O2− in molten (KBr + NaBr) (0.5:0.5) and (KBr + LiBr) (0.4:0.6) mixtures at T = 973 K were studied by potentiometric titration method using Pt(O2)|ZrO2(Y2O3) indicator electrode. In the former melt, the set of cations available for investigation was wide enough (Me = Sr, Ca, Mn, Co, Ni and Pb) and the corresponding solubility product indices (pKs,MeO, molalities) were found to be (3.81 ± 0.3) (SrO), (5.00 ± 0.3) (CaO), (7.85 ± 0.3) (MnO), (8.80 ± 0.1) (CoO), (9.72 ± 0.04) (NiO) and (5.20 ± 0.3) (PbO). A correlation between pKs,MeO and the polarisation action of the metal cation by Goldschmidt (ZerMe2+-2) was obtained. The oxide solubilities on the mole fraction scale were shown to be close to those obtained in molten (KCl + NaCl) equimolar mixture. On the basis of the solubility data the oxobasicity index (primary medium effect for oxide ion) for the (KBr + NaBr) melt was estimated as pI{KBr–LiBr} = −0.24. Due to considerable oxoacidic properties of Li+ cation in the molten (KBr + LiBr) eutectic, it was possible to study only three from the above cations (Me = Mn, Co and Ni) and their pKs,MeO values were (4.36 ± 0.2), (5.19 ± 0.05) and (6.25 ± 0.03), respectively. Comparison with the corresponding data for (KBr + NaBr) equimolar mixture showed that the Li+-based melt dissolved all the studied oxides in more extent. On the basis of the data obtained, the oxobasicity index value pI{KBr−LiBr} was estimated as (3.01 ± 0.5), that was close to the similar parameter of the chloride analogue (KCl + LiCl) (3.36). The change of the constituent anion of the

  10. Theoretical study of metal noble-gas positive ions

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.

    1989-01-01

    Theoretical calculations have been performed to determine the spectroscopic constant for the ground and selected low-lying electronic states of the transition-metal noble-gas ions Var(+), FeAr(+), CoAr(+), CuHe(+), CuAr(+), and CuKr(+). Analogous calculations have been performed for the ground states of the alkali noble-gas ions LiAr(+), LiKr(+), NaAr(+), and KAr(+) and the alkaline-earth noble-gas ion MgAr(+) to contrast the difference in binding energies between the simple and transition-metal noble-gas ions. The binding energies increase with increasing polarizability of the noble-gas ions, as expected for a charge-induced dipole bonding mechanism. It is found that the spectroscopic constants of the X 1Sigma(+) states of the alkali noble-gas ions are well described at the self-consistent field level. In contrast, the binding energies of the transition-metal noble-gas ions are substantially increased by electron correlation.

  11. Theoretical study on the adsorption of carbon dioxide on individual and alkali-metal doped MOF-5s

    Science.gov (United States)

    Ha, Nguyen Thi Thu; Lefedova, O. V.; Ha, Nguyen Ngoc

    2016-01-01

    Density functional theory (DFT) calculations were performed to investigate the adsorption of carbon dioxide (CO2) on metal-organic framework (MOF-5) and alkali-metal (Li, K, Na) doped MOF-5s. The adsorption energy calculation showed that metal atom adsorption is exothermic in MOF-5 system. Moreover, alkali-metal doping can significantly improve the adsorption ability of carbon dioxide on MOF-5. The best influence is observed for Li-doping.

  12. Model for H-, D- production by hydrogen backscattering from alkali and alkali/transition-metal surfaces

    International Nuclear Information System (INIS)

    A model for H-, D- production by energetic particles reflecting from metal surfaces is discussed. The model employs the energy and angular distribution data derived from the Marlowe code. The model is applied to particles incident normally upon Cs, Ni, and Cs/Ni surfaces

  13. Phonon dispersion in alkali metals and their equiatomic sodium-based binary alloys

    Institute of Scientific and Technical Information of China (English)

    Aditya M. VORA

    2008-01-01

    In the present article, the theoretical calcula-tions of the phonon dispersion curves (PDCs) of five alkali metals viz. Li, Na, K, Rb, Cs and their four equia-tomic sodium-based binary alloys viz. Na0.5Li0.5,Na0.5K0.5, Na0.5Rb0.5 and Na0.5Cs0.5 to second order in a local model potential is discussed in terms of the real-space sum of the Born yon Karman central force con-stants. Instead of the concentration average of the force constants of pure alkali metals, the pseudo-alloy-atom (PAA) is adopted to directly compute the force constants of the four equiatomic sodium based binary alloys and was successfully applied. The exchange and correlation functions due to the Hartree (H) and Ichimaru-Utsumi (IU) are used to investigate the influence of the screening effects. The phonon frequencies of alkali metals and their four equiatomic sodium-based binary alloys in the longit-udinal branch are more sensitive to the exchange and cor-relation effects in comparison with the transverse branches. The PDCs of pure alkali metals are found in qualitative agreement with the available experimental data. The frequencies in the longitudinal branch are sup-pressed rather due to IU-screening function than those due to static H-screening function.

  14. Modified PVA-CA blend ultrafiltration membrane by alkali metal chloride

    Institute of Scientific and Technical Information of China (English)

    张启修; 邱运仁

    2003-01-01

    The modified PVA-CA blend ultrafiltration membranes were prepared by phase inversion from the casting solutions consisting of polyvinyl alcohol(PVA), cellulose acetate(CA), acetic acid, alkali metal chloride and water. The effects of different concentration of alkali metal chloride on the properties of membranes were investigated. The results show that when the mass fraction of the salt in the casting solution is not greater than 1%, the property of rejection of the alkali metal salt modified ultrafiltration PVA-CA blend membrane has little change compared with that of the unmodified PVA-CA blend membrane, but the permeation flux is much greater than that of the unmodified membrane under the same operation condition. When the mass fraction of the salt is greater than 1.5%, the permeate flux increases much greater than that of the unmodified membrane, but the property of rejection of the modified ultrafiltration membrane decreases greatly. The results also show that the contact angle of the salt modified PVA-CA blend UF membrane decreases but the swelling in water increases with the increment of the mass fraction of alkali metal salts. Furthermore, the NaCl modified PVA-CA blend membrane has a slightly lower swelling and a little smaller contact angle of water than the KCl modified PVA-CA blend membrane does when the mass fraction of salts is the same.

  15. Unidirectional thermal expansion in KZnB3O6: role of alkali metals.

    Science.gov (United States)

    Lou, Yanfang; Li, Dandan; Li, Zhilin; Zhang, Han; Jin, Shifeng; Chen, Xiaolong

    2015-12-14

    The driving force of the unidirectional thermal expansion in KZnB3O6 has been studied experimentally and theoretically. Our results show that the low-energy vibrational modes of alkali metals play a crucial role in this unusual thermal behavior. PMID:26515521

  16. Long-range interactions between excited helium and alkali-metal atoms

    KAUST Repository

    Zhang, J.-Y.

    2012-12-03

    The dispersion coefficients for the long-range interaction of the first four excited states of He, i.e., He(2 1,3S) and He(2 1,3P), with the low-lying states of the alkali-metal atoms Li, Na, K, and Rb are calculated by summing over the reduced matrix elements of the multipole transition operators. For the interaction between He and Li the uncertainty of the calculations is 0.1–0.5%. For interactions with other alkali-metal atoms the uncertainty is 1–3% in the coefficient C5, 1–5% in the coefficient C6, and 1–10% in the coefficients C8 and C10. The dispersion coefficients Cn for the interaction of He(2 1,3S) and He(2 1,3P) with the ground-state alkali-metal atoms and for the interaction of He(2 1,3S) with the alkali-metal atoms in their first 2P states are presented in this Brief Report. The coefficients for other pairs of atomic states are listed in the Supplemental Material.

  17. Mechanism of alkali metal insertion into TiO2 polymorphs

    Czech Academy of Sciences Publication Activity Database

    Zukalová, Markéta; Lásková, Barbora; Kavan, Ladislav

    Toulouse: Phantoms Foundation, 2015. s. 139-139. [TNT2015. Trends in Nanotechnology /16./. 07.09.2015-11.09.2015, Toulouse] R&D Projects: GA ČR GA13-07724S; GA ČR(CZ) GA15-06511S Institutional support: RVO:61388955 Keywords : TiO2 * alkali metal insertion Subject RIV: CG - Electrochemistry

  18. Alkali metal insertion into TiO2 polymorphs for battery applications

    Czech Academy of Sciences Publication Activity Database

    Zukalová, Markéta; Pitňa Lásková, Barbora; Kavan, Ladislav

    Dubai: EMN Dubai, 2016. s. 13-14. [EMN Dubai Meeting. Energy Materials Nanotechnology . 01.04.2016-04.04.2016, Dubai] R&D Projects: GA ČR GA15-06511S Institutional support: RVO:61388955 Keywords : TiO2 polymorphs * alkali metal insertion * LTO Subject RIV: CG - Electrochemistry

  19. Liquid metal cooled reactor - alkali metal thermoelectric space power system concept for multi megawatt applications

    International Nuclear Information System (INIS)

    A number of Strategic Defense Initiative missions require space power systems with lifetime on the order of 7 to 10 years and systems with reliabilities greater than 0.95. In addition, power source system mass must be as low as possible, consistent with existing and projected launch capabilities. For steady state power sources greater than tens of kilowatts, nuclear reactor systems would yield the lowest system mass. Among potential power conversion systems, Alkali Metal Thermoelectric (AMTEC) is highly attractive from a number of standpoints: it has the highest conversion efficiencies among the different types of static energy conversion systems at moderate operating temperatures that are reasonably high so that waste heat rejection can be carried out with relatively low system mass

  20. High dose metal ion implantation

    International Nuclear Information System (INIS)

    To affect non-electronic surface properties (wear, corrosion and so on) the implanted material must reach measureable atom percentages, on the order of 10%, requiring ion implantation does in the range of 1017/cm2. For this reason, the MEVVA metallic ion source, developed at Lawrence Berkeley Laboratory, has been modified to provide metal ions for high dose metal ion implantation. The modifications inlcude increasing the arc efficiency, increasing beam spot size, and increasing beam divergence. The extracted beams have been characterized as to beam cross section and the depth profiles of implants. Time-average beam currents in excess of 20 mA have been extracted. Beams of titanium, tantalum, and other refractory metal ions, plus other refractory materials, such as titanium carbide, have been extracted and used to produce modifications in the surface properties of materials. (orig.)

  1. Rapid and efficient synthesis of alkali metal-C[sub 60] compounds in liquid ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Buffinger, D.R.; Ziebarth, R.P.; Stenger, V.A.; Recchia, C.; Pennington, C.H. (Ohio State Univ., Columbus, OH (United States))

    1993-10-06

    The reaction of stoichiometric amounts of alkali metals with C[sub 60] in liquid ammonia provides a rapid and quantitative route to M[sub x]C[sub 60] superconductors (M[sub x] = K[sub 3]/, Rb[sub 3]/, CsRb[sub 2], RbCs[sub 2], KRbCs). Annealing of the samples for 24-48 h at 375[degrees]C is required to obtain large superconducting fractions. [sup 13]C and [sup 87]Rb NMR line shapes are reported for Rb[sub 3]C[sub 60]. The [sup 13]C line shapes show the degree of rotational motion of the C[sub 60] ions varies considerably from sample to sample and is dependent on the method of preparation and subsequent heat treatment. A correlation between the degree of rotational motion and the superconducting fraction is noted and attributed to the amount of disorder in the sample. [sup 87]Rb NMR shows three peaks indicating that Rb[sub 3]C[sub 60] actually contains three different cation sites, rather than the two suggested by X-ray powder diffraction data. The third site is occupied by approximately 15% of the Rb ions in Rb[sub 3]C[sub 60] and is shown to be a subset of the tetrahedral sites in the cubic close-packed C[sub 60] lattice. Although the exact nature of the distortion required to produce the third site is unknown, it appears to be unrelated to the orientations of the C[sub 60] ions creating the site. 18 refs., 2 figs.

  2. Adsorption of Alkali, Alkaline Earth and Transition Metal Atoms on Silicene

    OpenAIRE

    Sahin, Hasan; Peeters, Francois M.

    2013-01-01

    The adsorption characteristics of alkali, alkaline earth and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon, are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, workfuncti...

  3. Alkali metal cation doping of metal-organic framework for enhancing carbon dioxide adsorption capacity

    Institute of Scientific and Technical Information of China (English)

    Yan Cao; Yunxia Zhao; Fujiao Song; Qin Zhong

    2014-01-01

    Metal-organic frameworks (MOFs) have attracted much attention as adsorbents for the separation of CO2 from flue gas or natural gas. Here, a typical metal-organic framework HKUST-1(also named Cu-BTC or MOF-199) was chemically reduced by doping it with alkali metals (Li, Na and K) and they were further used to investigate their CO2 adsorption capacities. The structural information, surface chemistry and thermal behavior of the prepared adsorbent samples were characterized by X-ray powder diffraction (XRD), thermo-gravimetric analysis (TGA) and nitrogen adsorption-desorption isotherm analysis. The results showed that the CO2 storage capacity of HKUST-1 doped with moderate quantities of Li+, Na+ and K+, individually, was greater than that of unmodified HKUST-1. The highest CO2 adsorption uptake of 8.64 mmol/g was obtained with 1K-HKUST-1, and it was ca. 11%increase in adsorption capacity at 298 K and 18 bar as compared with HKUST-1. Moreover, adsorption tests showed that HKUST-1 and 1K-HKUST-1 displayed much higher adsorption capacities of CO2 than those of N2. Finally, the adsorption/desorption cycle experiment revealed that the adsorption performance of 1K-HKUST-1 was fairly stable, without obvious deterioration in the adsorption capacity of CO2 after 10 cycles.

  4. Interaction of alkali metals with perylene-3,4,9,10- tetracarboxylic-dianhydride thin films

    International Nuclear Information System (INIS)

    n doping of the molecular organic semiconductor perylene-3,4,9,10-tetracarboxylic-dianhydride (PTCDA) is often achieved by use of alkali metals as dopants. This doping process is commonly performed in two steps. In the first the dopant is evaporated onto the surface of the PTCDA film. As it has been believed that the dopant shows an inhomogeneous diffusion profile through the layer with most of the dopant accumulated in the first few layers, a subsequent annealing step has been performed in order to reach a homogeneous distribution of the dopant in the whole layer. In this paper experimental results concerning chemical composition ((angle resolved) X-ray photoemission spectroscopy, secondary-ion-mass spectrometry, Fourier transform infrared spectroscopy), electronic structure (ultraviolet photoemission spectroscopy, inverse photoemission spectroscopy), as well as electrical properties (conductivity, Seebeck coefficient) are shown before and after doping and before and after annealing. These results suggest that the deposited dopant is redistributed and partially removed during the annealing step. A model for the dopant distribution is suggested

  5. Atomic many-body effects and Lamb shifts in alkali metals

    Science.gov (United States)

    Ginges, J. S. M.; Berengut, J. C.

    2016-05-01

    We present a detailed study of the radiative potential method [V. V. Flambaum and J. S. M. Ginges, Phys. Rev. A 72, 052115 (2005), 10.1103/PhysRevA.72.052115], which enables the accurate inclusion of quantum electrodynamics (QED) radiative corrections in a simple manner in atoms and ions over the range 10 ≤Z ≤120 , where Z is the nuclear charge. Calculations are performed for binding energy shifts to the lowest valence s , p , and d waves over the series of alkali-metal atoms Na to E119. The high accuracy of the radiative potential method is demonstrated by comparison with rigorous QED calculations in frozen atomic potentials, with deviations on the level of 1%. The many-body effects of core relaxation and second- and higher-order perturbation theory on the interaction of the valence electron with the core are calculated. The inclusion of many-body effects tends to increase the size of the shifts, with the enhancement particularly significant for d waves; for K to E119, the self-energy shifts for d waves are only an order of magnitude smaller than the s -wave shifts. It is shown that taking into account many-body effects is essential for an accurate description of the Lamb shift.

  6. H- and D- production by backscattering from alkali-metal targets

    International Nuclear Information System (INIS)

    Measurements have been made of the total backscattered D- and H- yields from thick, clean targets of Cs, Rb, K, Na, and Li, bombarded with H+2, H+3, D+2, D+3 with incident energies from 0.15 to 4.0 keV/nucleus. All of the measurements were made at background pressures less than 10-9 Torr, and the alkali-metal targets were evaporated onto a cold substrate (Tapprox.77 K) in situ to assure thick, uncontaminated targets. For each target, the H- and D- yields exhibited maxima (as high as 0.08 per incident proton or deuteron) at incident energies between 0.3 and 1.4 keV/nucleus. For both hydrogen and deuterium incident at any energy, the negative-ion yield decreases in going form Cs to Li in the order given above. Also, a definite isotope effect was observed for every target used, with the H- yield peaking at a lower incident energy than the D- yield and in most cases, the maximum H- yield was higher than the maximum D- yield. Measurements of the D- yield as a function of Cs coverage were also made for D3/sup ts+/ bombarding a Ni substrate. The D- yield maximized at or near the coverage at which the surface work function reached a minimum

  7. Study of Spectral Character of Alkali Metals Using Microwave Plasma Torch Simultaneous Spectrometer

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A microwave plasma torch(MPT) simultaneous spectrometer was used to study the spectral character and the matrix effect on alkali metal ions in solution. The main parameters were optimized. The microwave forward power was 100 W. The argon flow rate that was used to sustain the Ar-MPT included the flow rate of carrier gas and the flow rate of support gas, which were 0.8 and 1.0 L/min, respectively. The HCl concentration in the solution was 0.02 mol/L. The observation height was 9.0 mm. The detection limits of Li, Na, K, Rb, and Cs were 0.0003, 0.0004, 0.009, 0.07 and2.4 mg/L, respectively, and the results obtained by the Ar-MPT were compared with those obtained by argon inductively coupled plasma(Ar-ICP) and argon microwave induced plasma(Ar-MIP). The interference effects of several matrix elements were also studied.

  8. Synthesis and Characterization of Novel Ternary and Quaternary Alkali Metal Thiophosphates

    KAUST Repository

    Alahmary, Fatimah S.

    2014-05-01

    The ongoing development of nonlinear optical (NLO) crystals such as coherent mid-IR sources focuses on various classes of materials such as ternary and quaternary metal chalcophosphates. In case of thiophosphates, the connection between PS4-tetrahedral building blocks and metals gives rise to a broad structural variety where approximately one third of all known ternary (A/P/S) and quaternary (A/M/P/S) (A = alkali metal, M = metal) structures are acentric and potential nonlinear optical materials. The molten alkali metal polychalcophosphate fluxes are a well-established method for the synthesis of new ternary and quaternary thiophosphate and selenophosphate compounds. It has been a wide field of study and investigation through the last two decades. Here, the flux method is used for the synthesis of new quaternary phases containing Rb, Ag, P and S. Four new alkali metal thiophosphates, Rb4P2S10, RbAg5(PS4), Rb2AgPS4 and Rb3Ag9(PS4)4, have been synthesized successfully from high purity elements and binary starting materials. The new compounds were characterized by single crystal and powder X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), ultraviolet-visible (UV-VIS), Raman spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). These compounds show interesting structural variety and physical properties. The crystal structures feature 3D anionic framework built up of PS4 tetrahedral units and charge balanced by Ag and alkali metal cations. All prepared compounds are semiconductors with band gap between 2.3 eV to 2.6 eV and most of them are thermally stable up to 600ºC.

  9. Metal ion complexation by ionizable crown ethers. Progress report, January 1, 1991--December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, R.A.

    1993-07-01

    Cyclic and acyclic polyether compounds with pendent carboxylic acid, phosphonic acid monoethyl ester, sulfonic acid, phosphinic acid and hydroxamic acid groups have been synthesized. The proton-ionizable polyethers can come with and without lipophilic groups. Two types of lipophilic di-ionizable lariat ethers have been prepared. Conformations of proton-ionizable lariat ethers have been probed. Competitive alkali metal cation transport by syn-(decyl)dibenzo-16-crown-5-oxyacetic acid and lipophilic proton-ionizable dibenzo lariat ethers in polymer-supported liquid membranes was studied. Complexation of alkali metal cations with ionized lariat ethers was studied. Condensation polymerization of cyclic and acyclic dibenzo polyethers containing pendent mono-ionizable groups with formaldehyde produces novel ion exchange resins with both ion exchange sites for metal ion complexation and polyether binding sites for metal ion recognition. Resins prepared from lariat ether dibenzo phosphonic acid monoethyl esters show strong sorption of divalent heavy metal cations with selectivity for Pb{sup 2+}.

  10. Structure and properties of alizarin complex formed with alkali metal hydroxides in methanol solution.

    Science.gov (United States)

    Jeliński, Tomasz; Cysewski, Piotr

    2016-06-01

    Quantum chemical computations were used for prediction of the structure and color of alizarin complex with alkali metal hydroxides in methanolic solutions. The color prediction relying on the single Gaussian-like band once again proved the usefulness of the PBE0 density functional due to the observed smallest color difference between computed and experimentally derived values. It was found that the alkali metal hydroxide molecules can bind to the two oxygen atoms of both hydroxyl groups of alizarin or to one of these atoms and the oxygen atom from the keto group in a complex with three methanol molecules. This means that two electronic transitions need to be taken into account when considering the spectra of the studied complexes. The resulting bond lengths and angles are correlated with the properties of the alkali metal atoms. The molar mass, the atomic radius, and the Pauling electronegativity of studied metals are quite accurate predictors of the geometric properties of hydroxide complexes with alizarin in methanol solution. Graphical abstract The spectra of the neutral and monoanionic form of alizarin together with color changes resulting from addition of different metal hydroxides and represented in CIE color space. PMID:27178415

  11. Phase behaviour and thermodynamics of poly(1,4-phenylene ether sulphone) and poly(ethylene oxide)/alkali-metal salt complex blends: a thermal analysis study

    Energy Technology Data Exchange (ETDEWEB)

    Jin, J. [Institute of Polymer Technology and Materials Engineering, Loughborough University, Loughborough LE113TU (United Kingdom); Song, M. [Institute of Polymer Technology and Materials Engineering, Loughborough University, Loughborough LE113TU (United Kingdom)]. E-mail: m.song@lboro.ac.uk

    2005-02-01

    The phase behaviour and thermodynamics of poly(1,4-phenylene ether sulfone) (PES) and poly(ethylene oxide) (PEO)/alkali-metal salt complex blends were investigated by means of differential scanning calorimetry (DSC) and modulated DSC (MDSC). Experimental results show that the blend systems remain miscible after incorporating various alkali-metal salts: CF{sub 3}SO{sub 3}Li, CF{sub 3}SO{sub 3}Na and CF{sub 3}SO{sub 3}K. The cloud point temperature strongly depended on the Li (Na or K)/O ratio in the PES-PEO/alkali-metal salt complex blends. With increasing the Li{sup +} (Na{sup +} or K{sup +})/O ratio, the phase diagram of the PES-PEO/alkali-metal salt complex blends tended to be symmetrical. When Li{sup +}/O = 0.02, the lower critical solution temperature (LCST) of the PES-PEO/CF{sub 3}SO{sub 3}Li complex blends was located at the 30/70 PES/PEO composition. The mixing enthalpy decreased in the PES-PEO/alkali-metal salt complex blends with increasing Li{sup +} (Na{sup +} or K{sup +})/O ratio. The radius of ion has significant influence on the phase behaviour of PES/PEO blends. MDSC results showed that the change of heat capacity at the temperature of the binodal phase separation is similar to that of a melt transition in semi-crystalline polymers, which confirms the mechanism of binodal phase separation: nucleation and growth.

  12. Intra-zoned luminescence in alkali earth metal carbonates

    International Nuclear Information System (INIS)

    Full text: The fundamental plasma luminescence of wide band alkali halide crystals has been found out by Vaisburd et al. This broadband luminescence with very short duration of attenuation (∼10-12 s) arises at an irradiations of crystals with electronic beam powerful pulses of nanosecond duration. It is related to radiating 'hot' electrons and holes in a conductivity zone and in a valent zone, accordingly and in later time began to refer to as an intra-zoned luminescence. The data set on revealing features of display of an intra-zoned luminescence in different classes of crystals now proceeds. We investigated a fast luminescence at excitation with pulse electrons (3 nanoseconds) in crystals CaCO3, SrCO3, BaCO3 and MgCO3. In spectra all investigated carbonates it is possible to allocate two areas: area concerning high intensity of a fast luminescence (from 2 eV down 3 eV) and area of low intensity (is higher 4 eV) with slow recession at increase in photon energy. Thus it is typical, that in area concerning high intensity at rise in temperature from 80 up to 300 K a sample intensity of luminescence falls down, whereas in area is higher 5 eV with rise in temperature of a sample increase of intensity is observed. This broadband fast (is shorter than the time sanction of the equipment) should be connected a luminescence poorly dependent on temperature and a modular status of a sample with intra zoned transitions This luminescence reaches from 2 eV down to 7 eV but as for carbonates while is absent the reliable data on structure of a valent zone, division of an intra-zoned luminescence into electronic and hole components is not obviously possible on the basis of spectra of a fast luminescence. The nature of other luminescence processes arising at excitation with pulse electrons is discussed

  13. Effect of alkali ions (Na+, K+) on the solvent extraction of uranium(VI) with a di-carboxylated calix[4]arene

    International Nuclear Information System (INIS)

    The solvent extraction of uranium(VI) with a di-carboxylated calix[4]arene (LH2) in chloroform and 1,2-dichloroethane has been studied in the presence or absence of alkali ions (M=Na+,K+). For UO22+ when studied alone, a 1:2 (metal:ligand) extracted species is evidenced, with a rather low associated extraction equilibrium constant. The efficiency of extraction increases drastically in the presence of alkali ions, due to the formation of heteronuclear complexes. In all cases, the extracted species are found to be both 1:2:2 and 1:1:2 (UO22+:M:LH2) mixed complexes, except in chloroform with K+, where only the latter is formed. In the case of Na+, mass spectrometry spectra confirm the existence of both homo and heteronuclear complexes as determined in the extraction studies. (author). 26 refs., 10 figs., 3 tabs

  14. Kinetics of electrochemical scandium reduction in molten alkali metal chlorides

    International Nuclear Information System (INIS)

    The mechanism has been studied and kinetic parameters ascertained for Sc3+ ions reduction in eutectic melt of NaCl-KCl-CsCl at temperatures from 817 to 928 K using the methods of cyclic voltametry, chronopotentiometry and chronoamperometry. Temperature dependence of diffusion factor, equilibrium constant and dissociation rate constant of the complexes have been determined

  15. Development and testing of on-line analytical instrumentation for alkali and heavy metal release in pressurised conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R.; Haeyrinen, V.; Oikari, R. [Tampere Univ. of Technology (Finland)

    1997-10-01

    The purpose of the project is to demonstrate in industrial conditions and further develop the continuous alkali measurement method plasma excited alkali resonance line spectroscopy (PEARLS) developed at Tampere University of Technology (TUT). The demonstration takes place in joint measuring campaigns, where two other continuous alkali measurement methods, ELIF and surface ionisation, are being simultaneously demonstrated. A modification of PEARLS will also be developed for the continuous measurement of heavy metal concentrations. A market study of continuous measuring techniques for alkali and heavy metals is further part of the project. The method will be demonstrated in two pressurised fluidised bed combustion facilities. One of these is the 10 MW PCFB of Foster Wheeler Energia Oy in Karhula. The second one is yet to be decided. The first measuring campaign is scheduled for the spring of 1997 in Karhula. In 1996 the group at TUT participated in the performance of a market study regarding continuous measuring techniques for alkali and heavy metal concentrations. A draft report was submitted to and approved by the EC. Development work on PEARLS in 1996 has centered around the construction of a calibration device for alkali measurements. The device can be used by all three measuring techniques in the project to check readings against a known alkali concentration at controlled and known conditions. In 1996 PEARLS was applied for alkali measurement at several pressurised combustion installations of laboratory and industrial pilot scale

  16. Reactions between cold methyl halide molecules and alkali-metal atoms

    CERN Document Server

    Lutz, Jesse J

    2013-01-01

    We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH$_{3}X$ ($X$ = F, Cl, Br, I) and alkali-metal atoms $A$ ($A$ = Li, Na, K, Rb) using high-level {\\it ab initio} calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, ${\\rm CH}_{3}X+A\\rightarrow{\\rm CH}_{3}+AX$. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow.

  17. Emission Channeling Studies of the Lattice Site of Oversized Alkali Atoms Implanted in Metals

    CERN Multimedia

    2002-01-01

    % IS340 \\\\ \\\\ As alkali atoms have the largest atomic radius of all elements, the determination of their lattice configuration following implantation into metals forms a critical test for the various models predicting the lattice site of implanted impurity atoms. The site determination of these large atoms will especially be a crucial check for the most recent model that relates the substitutional fraction of oversized elements to their solution enthalpy. Recent exploratory $^{213}$Fr and $^{221}$Fr $\\alpha$-emission channeling experiments at ISOLDE-CERN and hyperfine interaction measurements on Fr implanted in Fe gave an indication for anomalously large substitutional fractions. To investigate further the behaviour of Fr and other alkali atoms like Cs and Rb thoroughly, more on-line emission channeling experiments are needed. We propose a number of shifts for each element, where the temperature of the implanted metals will be varied between 50$^\\circ$ and 700$^\\circ$~K. Temperature dependent measurements wi...

  18. X-ray Compton scattering experiments for fluid alkali metals at high temperatures and pressures

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, K., E-mail: kazuhiro-matsuda@scphys.kyoto-u.ac.jp; Fukumaru, T.; Kimura, K.; Yao, M. [Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Tamura, K. [Graduate School of Engineering, Kyoto University, Kyoto 606-8502 (Japan); Katoh, M. [A.L.M.T. Corp., Iwasekoshi-Machi 2, Toyama 931-8543 (Japan); Kajihara, Y.; Inui, M. [Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521 (Japan); Itou, M.; Sakurai, Y. [Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2015-08-17

    We have developed a high-pressure vessel and a cell for x-ray Compton scattering measurements of fluid alkali metals. Measurements have been successfully carried out for alkali metal rubidium at elevated temperatures and pressures using synchrotron radiation at SPring-8. The width of Compton profiles (CPs) of fluid rubidium becomes narrow with decreasing fluid density, which indicates that the CPs sensitively detect the effect of reduction in the valence electron density. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 10 September 2015. The original article supplied to AIP Publishing was not the final version and contained PDF conversion errors in Formulas (1) and (2). The errors have been corrected in the updated and re-published article.

  19. Reactions between cold methyl halide molecules and alkali-metal atoms

    International Nuclear Information System (INIS)

    We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH3X (X = F, Cl, Br, I) and alkali-metal atoms A (A = Li, Na, K, Rb) using high-level ab initio calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, CH3X + A → CH3 + AX. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow

  20. An Aqueous Redox Flow Battery Based on Neutral Alkali Metal Ferri/ferrocyanide and Polysulfide Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiaoliang; Xia, Gordon; Kirby, Brent W.; Thomsen, Edwin C.; Li, Bin; Nie, Zimin; Graff, Gordon L.; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-11-13

    Aiming to explore low-cost redox flow battery systems, a novel iron-polysulfide (Fe/S) flow battery has been demonstrated in a laboratory cell. This system employs alkali metal ferri/ferrocyanide and alkali metal polysulfides as the redox electrolytes. When proper electrodes, such as pretreated graphite felts, are used, 78% energy efficiency and 99% columbic efficiency are achieved. The remarkable advantages of this system over current state-of-the-art redox flow batteries include: 1) less corrosive and relatively environmentally benign redox solutions used; 2) excellent energy and utilization efficiencies; 3) low cost for redox electrolytes and cell components. These attributes can lead to significantly reduced capital cost and make the Fe/S flow battery system a promising low-cost energy storage technology. The major drawbacks of the present cell design are relatively low power density and possible sulfur species crossover. Further work is underway to address these concerns.

  1. Equation of state for thermodynamic properties of pure and mixtures liquid alkali metals

    Energy Technology Data Exchange (ETDEWEB)

    Mousazadeh, M.H., E-mail: mmousazadeh@aeoi.org.ir [Department of Chemistry, Nuclear Science Research School, Nuclear Science and Technology Research Institute (NSTRI), End of North-Karegar Str., 11365-3486 Tehran (Iran, Islamic Republic of); Faramarzi, E. [Department of Physical Chemistry, School of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Maleki, Z. [Department of Chemistry, Nuclear Science Research School, Nuclear Science and Technology Research Institute (NSTRI), End of North-Karegar Str., 11365-3486 Tehran (Iran, Islamic Republic of)

    2010-11-20

    We developed an equation of state based on statistical-mechanical perturbation theory for pure and mixtures alkali metals. Thermodynamic properties were calculated by the equation of state, based on the perturbed-chain statistical associating fluid theory (PC-SAFT). The model uses two parameters for a monatomic system, segment size, {sigma}, and segment energy, {epsilon}. In this work, we calculate the saturation and compressed liquid density, heat capacity at constant pressure and constant volume, isobaric expansion coefficient, for which accurate experimental data exist in the literatures. Results on the density of binary and ternary alkali metal alloys of Cs-K, Na-K, Na-K-Cs, at temperatures from the freezing point up to several hundred degrees above the boiling point are presented. The calculated results are in good agreement with experimental data.

  2. X-ray Compton scattering experiments for fluid alkali metals at high temperatures and pressures

    International Nuclear Information System (INIS)

    We have developed a high-pressure vessel and a cell for x-ray Compton scattering measurements of fluid alkali metals. Measurements have been successfully carried out for alkali metal rubidium at elevated temperatures and pressures using synchrotron radiation at SPring-8. The width of Compton profiles (CPs) of fluid rubidium becomes narrow with decreasing fluid density, which indicates that the CPs sensitively detect the effect of reduction in the valence electron density. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 10 September 2015. The original article supplied to AIP Publishing was not the final version and contained PDF conversion errors in Formulas (1) and (2). The errors have been corrected in the updated and re-published article

  3. The 3-Dimensional q-Deformed Harmonic Oscillator and Magic Numbers of Alkali Metal Clusters

    CERN Document Server

    Bonatsos, Dennis; Raychev, P P; Roussev, R P; Terziev, P A; Bonatsos, Dennis

    1999-01-01

    Magic numbers predicted by a 3-dimensional q-deformed harmonic oscillator with Uq(3) > SOq(3) symmetry are compared to experimental data for alkali metal clusters, as well as to theoretical predictions of jellium models, Woods--Saxon and wine bottle potentials, and to the classification scheme using the 3n+l pseudo quantum number. The 3-dimensional q-deformed harmonic oscillator correctly predicts all experimentally observed magic numbers up to 1500 (which is the expected limit of validity for theories based on the filling of electronic shells), thus indicating that Uq(3), which is a nonlinear extension of the U(3) symmetry of the spherical (3-dimensional isotropic) harmonic oscillator, is a good candidate for being the symmetry of systems of alkali metal clusters.

  4. Alkali-doped metal-phthalocyanine and pentacene compounds

    NARCIS (Netherlands)

    Craciun, M.F.

    2006-01-01

    The ability to introduce charge carriers in organic molecular materials and control their concentration is of great relevance for both fundamental research and applications. In this thesis, it has been demonstrated that the electronic properties of Metal Phthalocyanines (MPc) and pentacene (PEN) mol

  5. Conductometric determination of dissociation constants of alkali metal monopyrocatechinborates in alcohols

    International Nuclear Information System (INIS)

    Dissociation constants of alkali metal monopyrocatechinborates of Me[(C6H4O2)B(OH)2]xnH2O (Me = Na+, Li+) composition are determined using conductometric method based on equivalent electric conductivity values, in methanol and ethanol at 25 deg C. Dissociation constants of weak electrolytes are calculated by the Fuoss-Kraus method. Conditions of Valden raw action are determined which connects concentrations with permittivity of medium

  6. Ab initio GW quasiparticle calculation of small alkali-metal clusters

    International Nuclear Information System (INIS)

    Quasiparticle energies of small alkali-metal clusters are evaluated from first principles by means of the GW approximation with the generalized plasmon-pole model. An all-electron mixed-basis approach, in which wave function is represented as a linear combination of both plane waves and atomic orbitals, is adopted in the calculation. Obtained quasiparticle energies (ionization potential and electron affinity) are in good agreement with experimental data

  7. Effect of radiation trapping on the polarization of an optically pumped alkali-metal vapor

    International Nuclear Information System (INIS)

    Calculations are presented of the limitations imposed by radiation trapping on the electron spin polarization produced in an alkali-metal vapor by optical pumping in a large magnetic field. It is found that electron spin polarizations of 90% are possible with Na densities up to 1019 atoms/m3 and ground-level relaxation times of 150 μs in a large magnetic field using a cylindrical geometry of radius 7.5 x 10-3 m

  8. Alkali Metal Modification of Silica Gel-Based Stationary Phase in Gas Chromatography

    OpenAIRE

    Ashraf Yehia El-Naggar

    2013-01-01

    Modification of the precipitated silica gel was done by treatment with alkali metal (NaCl) before and after calcination. The silica surfaces before and after modification were confirmed by infrared spectroscopy in order to observe the strength and abundance of the acidic surface OH group bands which play an important role in the adsorption properties of polar and nonpolar solutes. The surface-modified silica gels were tested as GC solid stationary phases in terms of the separation efficiency ...

  9. Ab initio GW quasiparticle calculation of small alkali-metal clusters

    CERN Document Server

    Ishii, S; Louie, S G; Ohno, K

    2001-01-01

    Quasiparticle energies of small alkali-metal clusters are evaluated from first principles by means of the GW approximation with the generalized plasmon-pole model. An all-electron mixed-basis approach, in which wave function is represented as a linear combination of both plane waves and atomic orbitals, is adopted in the calculation. Obtained quasiparticle energies (ionization potential and electron affinity) are in good agreement with experimental data.

  10. Active-alkali metal promoted reductive desulfurization of dibenzothiophene and its hindered analogues

    OpenAIRE

    Pittalis, Mario; Azzena, Ugo Gavino; Carraro, Massimo; Pisano, Luisa

    2013-01-01

    Reductive desulfurisation of organic compounds is of importance both in organic synthesis and in industry. Benzo- and dibenzothiophenes are between the most abundant sulphur containing impurities in crude oils, and their desulfurization is a mandatory issue in the production of non polluting fuels. Following our interest in the development of efficient alkali metal-mediated synthetic procedures and alternative protocols for the chemical transformation of widespread environmental contaminants ...

  11. Crystal lattice properties fully determine short-range interaction parameters for alkali and halide ions

    CERN Document Server

    Mao, Albert H; 10.1063/1.4742068

    2012-01-01

    Accurate models of alkali and halide ions in aqueous solution are necessary for computer simulations of a broad variety of systems. Previous efforts to develop ion force fields have generally focused on reproducing experimental measurements of aqueous solution properties such as hydration free energies and ion-water distribution functions. This dependency limits transferability of the resulting parameters because of the variety and known limitations of water models. We present a solvent-independent approach to calibrating ion parameters based exclusively on crystal lattice properties. Our procedure relies on minimization of lattice sums to calculate lattice energies and interionic distances instead of equilibrium ensemble simulations of dense fluids. The gain in computational efficiency enables simultaneous optimization of all parameters for Li+, Na+, K+, Rb+, Cs+, F-, Cl-, Br-, and I- subject to constraints that enforce consistency with periodic table trends. We demonstrate the method by presenting lattice-d...

  12. Equation of state for solid rare gases and alkali metals under pressure

    Science.gov (United States)

    Bonnet, Pierre

    2016-07-01

    This investigation is based on an atomic equation of state which takes into account the excluded volume of the atom being considered. Study of solid rare gases allows following the packing factor of the solid in equilibrium with the gas at different temperatures and of the solid and the liquid in the case of solid-liquid equilibria. The application of a pressure to the solid up to 9800 MPa allows determining the decrease in atomic volume and thus the compressibility. Such a study leads to proposing a new expression through dividing the pressure derivative (as a function of the excluded volume) by the pressure. This new coefficient is a pressure-independent constant but varies with the atom considered. Multiplied by the initial atomic volume, this coefficient has a unique value for all the rare gases. Furthermore, this is also true for the series of alkali metals with however a lower value of the coefficient. The atomic configurations of the two series are very different with one free electron for the alkali metals but closed shells for the rare gases. The alkali metals are therefore more complex than the rare gases. It is worthwhile to note that study of the equilibrium has not required the use of the principles of thermodynamics.

  13. Interpretation of X-ray diffraction from liquid alkali metals

    International Nuclear Information System (INIS)

    It is known that, near freezing, the peaks in the liquid structure factors of Na and K reflect the ordering of a body-centred cubic lattice. Therefore, we have considered the modifications introduced into the electron distribution of a body-centred cubic, nearly-free electron, metal by destruction of the long-range order. Use of the Wannier representation, as has been pointed out by Matthai et al. leads naturally in a metal to bond charges at the centres of near-neighbour, next-near neighbour, etc. bonds. Because of the absence of long-range order in the nuclei of liquid Na and K, it is argued that only near-neighbour and perhaps next-near neighbour bond charges remain meaningful. Thus, whereas in crystalline Na and K, the totality of the bond charge distributions, including however many longer and longer bonds, adds up to an almost constant electron density of the valence electrons, in the liquid the local angularity of the electron density is significant. We find then that a model which can explain the observed reflections, which are characteristic of a face-centred-cubic lattice, can be built up by: (a) using local sp3 type bonding charges, with Pauling resonance invoked between occupied and unoccupied bonds; (b) assuming, once local electron co-ordination characteristic of such bonds is formed, Wigner-type lattice ordering can propagate the face-centred lattice over distances of 30 to 40 A. The differences to be expected between nearly-free electron metals and tight-binding metals in the liquid state are finally stressed. (author)

  14. Diffusion of alkali metals in the first stage graphite intercalation compounds by vdW-DFT calculations

    OpenAIRE

    Wang, Zhaohui; Ratvik, Arne Petter; Grande, Tor; Selbach, Sverre Magnus

    2015-01-01

    Diffusion of alkali metal cations in the first stage graphite intercalation compounds (GIC) LiC6, NaC6, NaC8 and KC8 has been investigated with density functional theory (DFT) calculations using the optPBE-vdW van der Waals functional. The formation energies of alkali vacancies, interstitials and Frenkel defects were calculated and vacancies were found to be the dominating point defects. The diffusion coefficients of the alkali metals in GIC were evaluated by a hopping model of point defects ...

  15. Gaussian-basis LDA and GGA calculations for alkali-metal equations of state

    International Nuclear Information System (INIS)

    Recently there has been renewed interest in implementations of density-functional theory for solids using various types of localized basis sets, including atom-centered Gaussian-type functions. While such methods are clearly well adapted to most insulating and semiconducting systems, one might expect them to give a less-than-optimal description of metals relative to plane-wave-type methods. Nevertheless, several successful applications of local-basis methods to metals have recently been reported. Here, we report an application of our Gaussian linear combination of atomic orbitals (LCAO) code to some extremely free-electron-like metals, namely, the alkali metals Li, Na, and K. In agreement with other calculations (both local and plane wave) we find that the local-density approximation (LDA) lattice constants are relatively poor (∼-3% from experiment for the alkali metals versus ±1% for many other solids) and that the LDA bulk moduli are ∼30% too high. We find that the Perdew-Burke-Enzerhof (PBE) version of the generalized-gradient approximation (GGA) corrects most of this error, in agreement with earlier calculations using similar GGA functionals. The Becke-Lee-Yang-Parr GGA functional gives similar results for the alkali-metal equations of state but is found to overcorrect the errors of the LDA for the cohesive energies, for which the PBE functional is in better agreement with experiment. Our results indicate that the Gaussian-LCAO method should be able to give accurate results for nearly any crystalline solid, since it succeeds even where it would be expected to have the most difficulty. copyright 1998 The American Physical Society

  16. Near-threshold photodetachment of heavy alkali-metal anions

    International Nuclear Information System (INIS)

    We calculate near-threshold photodetachment cross sections for Rb-, Cs-, and Fr- using the Pauli equation method with a model potential describing the effective electron-atom interaction. Parameters of the model potential are fitted to reproduce ab initio scattering phase shifts obtained from Dirac R-matrix calculations. Special care is taken to formulate the boundary conditions near the atomic nucleus for solving the Pauli equation, based on the analytic solution of the Dirac equation for a Coulomb potential. We find a 3P1o resonance contribution to the photodetachment cross section of Rb-, Cs-, and Fr- ions. Our calculated total photodetachment cross sections for Cs agree with experiments after tuning the resonance position by 2.4 meV. For Rb- and Fr- the resonance contribution is much smaller than for Cs. We therefore also provide angle-differential cross sections and asymmetry parameters which are much more sensitive to the resonant contribution than total cross sections

  17. Theory of alkali-metal-induced reconstructions of fcc(100) surfaces

    DEFF Research Database (Denmark)

    Christensen, Ole Bøssing; Jacobsen, Karsten Wedel

    1992-01-01

    Calculations of missing-row reconstruction energies of the fcc(100) surfaces of the metals Al, Ni, Pd, Pt, Cu, Ag, and Au have been performed with the effective-medium theory with and without the presence of a potassium overlayer. It is shown that the tendency to reconstruct in the presence of...... adsorbed K is largest for Ag. This is in accordance with recent experiments indicating a potassium-induced missing-row reconstruction for Ag, but not for other metals. The tendency is shown to be related to the relatively low bulk modulus of silver. Differences from the well-known alkali...

  18. ELECTROHYDRAULIC LEACHING OF ALKALI METALS FROM ZINNWALDITE MICA

    Czech Academy of Sciences Publication Activity Database

    Faltus, M.; Babický, Václav; Botula, J.; Hong Vu, N.; Člupek, Martin

    Bratislava: Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava (Slovakia); Society for Plasma Research and Applications in cooperation with Library and Publishing Centre CU, Bratislava, Slovakia, 2015 - (Papp, P.; Országh, J.; Moravský, L.; Ribar, A.; Matejčík, Š.), s. 234-239 ISBN 978-80-8147-027-1. [Symposium on Application of Plasma Processes COST TD1208 Workshop on Application of Gaseous Plasma with Liquids: SAPP XX /20./. Tatranská Lomnica (SK), 17.01.2015-22.01.2015] R&D Projects: GA MŠk(CZ) LD14080 Grant ostatní: European Cooperation in Science and Technology(XE) COST TD1208 Institutional support: RVO:61389021 Keywords : electrical discharge in liquid * leaching of metals Subject RIV: BL - Plasma and Gas Discharge Physics http://is.muni.cz/repo/1219429/SAPP_XX_2015.pdf

  19. Modulation of the work function of fullerenes C60 and C70 by alkali-metal adsorption: A theoretical study

    International Nuclear Information System (INIS)

    The impact of alkali-metal (Li/Na/Cs) adsorption on work function of fullerenes C60 and C70 was investigated by first-principles calculations. After adsorption, the work functions of fullerenes C60 and C70 decrease distinctly and vary linearly with the electronegativity of the alkali metal elements, and the positions where the alkali atoms are adsorbed considerably influence the work functions. On the contrary, a vacancy defect elevates the work functions of the fullerenes C60 and C70. The variation in the work functions rests with variation in Fermi level (which are attributed to charge transfer) and variation in vacuum levels (which are attributed to the induced dipole moments). Moreover, alkali-metal adsorption can also improve the electric conductivity of a fullerene mixture of C60 and C70.

  20. Effect of Some Metal Ion Dopants on Electrochemical Properties of Ni(OH)2 Film Electrode

    Institute of Scientific and Technical Information of China (English)

    ZHANG Heng-bin; LIU Han-san; CAO Xue-jing; SUN Chia-chung

    2003-01-01

    The Ni(OH)2 film electrodes doped respectively with alkali-earth metal aluminum, lead, partial transition metal and some rare-earth metal(altogether 17 kinds of metals) ions were prepared by cathode electrodeposition. The electrode reaction reversibility, the difficult extent of oxygen evolution, the proton diffusion coefficient, the discharge potential of middle value and the active material utilization of the Ni(OH)2 film electrode were compared with those of the ones doped with the metal ions by means of cyclic voltammetry, potential step and constant current charge-discharge experiments. It was found that Ca2+, Co2+, Cd2+, Al3+ etc. have obviously positive effect.

  1. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals

    Science.gov (United States)

    Liu, Yuanyue; Merinov, Boris V.; Goddard, William A., III

    2016-04-01

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.

  2. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals.

    Science.gov (United States)

    Liu, Yuanyue; Merinov, Boris V; Goddard, William A

    2016-04-01

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems. PMID:27001855

  3. A series of new phases in the alkali metal-Nb(V)/Ta(V)-Se(IV)/Te(IV)-O systems.

    Science.gov (United States)

    Gu, Qian-Hua; Hu, Chun-Li; Zhang, Jian-Han; Mao, Jiang-Gao

    2011-03-21

    Six new phases in the alkali metal-Nb(V)/Ta(V)-Se(IV)/Te(IV)-O systems have been prepared by solid-state reactions at high-temperatures. Their structures were determined by single-crystal X-ray diffraction studies. AM(3)O(6)(QO(3))(2) (A = K, Rb, M = Nb, Ta, Q = Te; A = K, M = Nb, Q = Se) are isomorphous and their structures feature a 3D network with 1D 4- and 6-MRs tunnels along the a-axis which is composed of 2D layers of corner-sharing MO(6) octahedra bridged by QO(3) groups. The alkali metal ions are located at the above 1D tunnels of 6-MRs. The structure of Cs(3)Nb(9)O(18)(TeO(3))(2)(TeO(4))(2) features a thick Nb-Te-O layer built of corner-sharing NbO(6) octahedra, TeO(3) and TeO(4) groups. The 2D layer of the NbO(6) octahedra with 1D tunnels of 6-MRs along the c-axis are formed by 1D chains of NbO(6) chains along the c-axis and linear Nb(4)O(21) tetramers by corner-sharing. The TeO(3) and TeO(4) groups are grafted on both sides of the niobium-oxide layer via Nb-O-Te or/and Te-O-Te bridges. The caesium(i) ions are located at the above 1D tunnels of 6-MRs. TGA, UV-vis and infrared spectral measurements as well as electronic structure calculations have also been performed. PMID:21293821

  4. Equilibrium electrode U(4)-U and redox U(4)-U(3) potentials in molten alkali metal chlorides medium

    International Nuclear Information System (INIS)

    Conditional standard electrode potentials of uranium are determined for diluted solutions of its tetrachloride in alkali metal chloride melts (LiCl, NaCl, NaCl-KCl, KCl, RbCl and CsCl) when using U(4) ion activity coefficient values experimentally found by the tensimetric method. These potentials shift to the electronegative side at the temperature decrease and alkali cation radius increase rsub(Msup(+)) according to the empiric ratio E*U(4)-U= -3.06+6.87x10-4 T-(1.67-10-4T-0.44) 1/rsub(Msup(+)) +-0.01. The temperature dependences of formal conditional redox potentials of the U(4)-U(3) system for above melted chlorides are estimated. The E*U(4)-U(3) value also becomes more electronegative in the series LiCl, NaCl, NaCl-KCl, KCl, RbCl and CsCl. This alternation is satisfactorily described by the empiric expression E*U(4)-U(3)= -1.74+1.74x10-4T-(0.71x10-4T-0.20) 1rsub(Msup(+)) +-0.05. The calculated values Eu*(4)-U(3) are compared with those directly measured for the NaCl-KCl equimolar mixture and 3LiCl-2KCl eutectic mixture. A satisfactory confirmity has been observed

  5. Alkali-metal ion coordination in uranyl(VI) poly-peroxo complexes in solution, inorganic analogues to crown-ethers. Part 2. Complex formation in the tetramethyl ammonium-, Li(+)-, Na(+)- and K(+)-uranyl(VI)-peroxide-carbonate systems.

    Science.gov (United States)

    Zanonato, Pier Luigi; Szabó, Zoltán; Vallet, Valerie; Di Bernardo, Plinio; Grenthe, Ingmar

    2015-10-01

    The constitution and equilibrium constants of ternary uranyl(vi) peroxide carbonate complexes [(UO2)p(O2)q(CO3)r](2(p-q-r)) have been determined at 0 °C in 0.50 M MNO3, M = Li, K, and TMA (tetramethyl ammonium), ionic media using potentiometric and spectrophotometric data; (17)O NMR data were used to determine the number of complexes present. The formation of cyclic oligomers, "[(UO2)(O2)(CO3)]n", n = 4, 5, 6, with different stoichiometries depending on the ionic medium used, suggests that Li(+), Na(+), K(+) and TMA ions act as templates for the formation of uranyl peroxide rings where the uranyl-units are linked by μ-η(2)-η(2) bridged peroxide-ions. The templating effect is due to the coordination of the M(+)-ions to the uranyl oxygen atoms, where the coordination of Li(+) results in the formation of Li[(UO2)(O2)(CO3)]4(7-), Na(+) and K(+) in the formation of Na/K[(UO2)(O2)(CO3)]5(9-) complexes, while the large tetramethyl ammonium ion promotes the formation of two oligomers, TMA[(UO2)(O2)(CO3)]5(9-) and TMA[(UO2)(O2)(CO3)]6(11-). The NMR spectra demonstrate that the coordination of Na(+) in the five- and six-membered oligomers is significantly stronger than that of TMA(+); these observations suggest that the templating effect is similar to the one observed in the synthesis of crown-ethers. The NMR experiments also demonstrate that the exchange between TMA[(UO2)(O2)(CO3)]5(9-) and TMA[(UO2)(O2)(CO3)]6(11-) is slow on the (17)O chemical shift time-scale, while the exchange between TMA[(UO2)(O2)(CO3)]6(11-) and Na[(UO2)(O2)(CO3)]6(11-) is fast. There was no indication of the presence of large clusters of the type identified by Burns and Nyman (M. Nyman and P. C. Burns, Chem. Soc. Rev., 2012, 41, 7314-7367) and possible reasons for this and the implications for the synthesis of large clusters are briefly discussed. PMID:26331776

  6. Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project

    DEFF Research Database (Denmark)

    Hummelshøj, Jens Strabo; Landis, David; Voss, Johannes;

    2009-01-01

    We present a computational screening study of ternary metal borohydrides for reversible hydrogen storage based on density functional theory. We investigate the stability and decomposition of alloys containing 1 alkali metal atom, Li, Na, or K (M1); and 1 alkali, alkaline earth or 3d/4d transition...... metal atom (M2) plus two to five (BH4)− groups, i.e., M1M2(BH4)2–5, using a number of model structures with trigonal, tetrahedral, octahedral, and free coordination of the metal borohydride complexes. Of the over 700 investigated structures, about 20 were predicted to form potentially stable alloys with...

  7. The Effect of Alkali and Ce(III Ions on the Response Properties of Benzoxazine Supramolecules Prepared via Molecular Assembly

    Directory of Open Access Journals (Sweden)

    Apirat Laobuthee

    2012-01-01

    Full Text Available A series of benzoxazine monomer supramolecules with different substituted groups on their benzene ring was prepared with a Mannich reaction and characterized by FTIR, 1H-NMR and MS. The obtained products were 3,4-dihydro-3-(2’-hydroxyethylene-6-methyl-2H-benzoxazine (BM1, 3,4-dihydro-3-(2’-hydroxyethylene-6-ethyl-2H-benz-oxazine (BM2, and 3,4-dihydro-3-(2’-hydroxyethylene-6-methoxy-2H-benzoxazine (BM3. The efficiency of alkali metal ion extraction from the products was determined with Pedersen’s technique, while the complexation of the Ce(III ion was confirmed by the Job’s and the mole ratio methods. The evidence of complex formation between benzoxazine monomers and Ce(III ions was obtained with FTIR and a computational simulation. Single phase ceria (CeO2 as observed with XRD was successfully prepared by calcinating the Ce(III-benzoxazine monomer complexes at 600 °C for 2 h. In addition, the geometry of the ceria nanoparticles confirmed by TEM is spherical, with an average diameter of 10‑20 nm.

  8. Formation and evolution of point defects created in alkali halogen compounds irradiated by heavy ions

    International Nuclear Information System (INIS)

    The goal of this study was to achieve a better understanding of the heavy-ion material interaction. Alkali halogen crystals were chosen since the color centers produced by heavy ions can be distinguished easier from those generated by X rays. Measurements on KI irradiated at low temperature showed that the usual process of non radiative de-excitation of self-captured exciton is not prevailing. As the main objective of this work was the exact determination of the defects created by accelerated heavy ions, an important effort was dedicated to the spectrum deconvolution. Due to the high quality of the obtained spectra the V band analyse was possible. The defect stability was found to have the same nature in all the cubical alkali halogens and depend essentially on the crystal type. The defect evolution after irradiation is related to the diffusion coefficients corresponding to each mobile species and to the crystal lattice in which they move. Based on measurements made at different temperatures a simple modeling of the recombination kinetics was proposed. This effect was found to be specific to irradiation by heavy ions. It is difficult to determine the initial processes from the fossil defects, so, the defect history must be known as the described investigation methods do not permit to establish the transient aspect of defect creation. The important role of impurities should be stressed as the third intruder in the ion/crystal configuration; it can modify significantly the final state of the irradiated crystal, as it was found in KI, for instance. The open problems underlined in this study will probably be solved by using the atomic force microscopy and diffraction or on-line Raman measurements in ISOC chamber to avoid the passage to ambient conditions of the crystals irradiated at low temperatures

  9. Metal Ion Controlled Polymorphism of a Peptide

    DEFF Research Database (Denmark)

    Hemmingsen, Lars Bo Stegeager; Jancso, Attila; Szunyogh, Daniel; Larsen, Flemming Hofmann; Thulstrup, Peter Waaben; Christensen, Niels Johan; Gyurcsik, Bela

    2011-01-01

    In this work a metal ion binding model dodecapeptide was investigated in terms of its capacity to adopt different structures depending on the metal ion to peptide stoichiometry. The dodecapeptide is much simpler than real proteins, yet displays sufficient complexity to model the effect of metal...... ions on fully or partially unstructured proteins, or the effect of metal ions on protein aggregation. Metal ions may be employed to fold (or misfold) individual peptides in a controlled manner depending on the potential metal ion coordinating amino acid side chains (Cys, His, Asp, Glu, …) in the...... peptide, and the ligand and structural preferences of the metal ion (in our studies Zn2+, Cd2+, Hg2+, Cu+/2+). Simultaneously, new species such as metal ion bridged ternary complexes or even oligomers may be formed. In recent previous studies we have observed similar polymorphism of zinc finger model...

  10. Alkali and heavy metal emissions of the PCFB-process; Alkalipaeaestoet PCFB-prosessissa

    Energy Technology Data Exchange (ETDEWEB)

    Kuivalainen, R.; Eriksson, T.; Lehtonen, P. [Foster Wheeler Energia Oy, Karhula (Finland)

    1996-12-01

    Pressurized Circulating Fluidized Bed (PCFB) combustion technology has been developed in Karhula R and D Center since 1986. As a part of the development, 10 MW PCFB Test Facility was built in 1989. The Test Facility has been used for performance testing with different coal types through the years 1990-1995 in order to gain data for design and commercialization of the high-efficiency low-emission PCFB combustion technology. The project Y44 `Alkali and heavy metal emissions of the PCFB-process` was part of national LIEKKI 2 research program. The main object of the project was to measure vapor phase Na and K concentrations in the PCFB flue gas after hot gas filter and investigate the effects of process conditions and sorbents on alkali release. The measurements were performed using plasma assisted method by TUT Laboratory of Plasma Technology and wet absorption method of VTT Energy. The measured Na concentrations were below 30 ppb(w) in all measured data points. The results of K were below 10 ppb(w). The accuracies of the both methods are about + 50 % at this concentration range. The scatter of the data covers the effects of different process variables on the alkali emission. The measured emissions are at the same order of magnitude as the guideline emission limits estimated by gas turbine manufacturers. The measurements and development of the analyses methods are planned to be continued during PCFB test runs in spring 1996 for example within Joule II research program. (author)

  11. Ion Segregation and Deliquescence of Alkali Halide Nanocrystals on SiO2

    Energy Technology Data Exchange (ETDEWEB)

    Arima, Kenta; Jiang, Peng; Lin, Deng-Sung; Verdaguer, Albert; Salmeron, Miquel

    2009-08-11

    The adsorption of water on alkali halide (KBr, KCl, KF, NaCl) nanocrystals on SiO{sub 2} and their deliquescence was investigated as a function of relative humidity (RH) from 8% to near saturation by scanning polarization force microscopy. At low humidity, water adsorption solvates ions at the surface of the crystals and increases their mobility. This results in a large increase in the dielectric constant, which is manifested in an increase in the electrostatic force and in an increase in the apparent height of the nanocrystals. Above 58% RH, the diffusion of ions leads to Ostwald ripening, where larger nanocrystals grow at the expense of the smaller ones. At the deliquescence point, droplets were formed. For KBr, KCl, and NaCl, the droplets exhibit a negative surface potential relative to the surrounding region, which is indicative of the preferential segregation of anions to the air/solution interface.

  12. Reversible photodeposition and dissolution of metal ions

    Science.gov (United States)

    Foster, Nancy S.; Koval, Carl A.; Noble, Richard D.

    1994-01-01

    A cyclic photocatalytic process for treating waste water containing metal and organic contaminants. In one embodiment of the method, metal ions are photoreduced onto the photocatalyst and the metal concentrated by resolubilization in a smaller volume. In another embodiment of the method, contaminant organics are first oxidized, then metal ions removed by photoreductive deposition. The present invention allows the photocatalyst to be recycled until nearly complete removal of metal ions and organic contaminants is achieved.

  13. The influence of chlorine on the fate and activity of alkali metals during the gasification of wood

    Energy Technology Data Exchange (ETDEWEB)

    Struis, R.; Scala, C. von; Schuler, A.; Stucki, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Chlorine clearly inhibits the CO{sub 2}-gasification reaction of charcoal at 800{sup o}C. From this and other observations the picture emerges that the reduction in the gasification reactivity of the charcoal is intimately related to the deactivation of the catalytically active alkali metals residing in the wood due to the formation of the chloride salt. It is argued that the heavy metal chlorides will likely transfer the chlorine to the indigenous alkali metals during the pyrolysis stage of the wood. The fate of the thus formed alkali metal chlorides can then be either their removal from the sample (evaporation), or, when present at the gasification stage, re-activation (i.e., de-chlorination) under our gasification conditions. (author) 3 figs., 4 refs.

  14. Thermodynamics and structure of liquid alkali metals from the charged-hard-sphere reference fluid

    International Nuclear Information System (INIS)

    The evaluation of thermodynamic properties of liquid alkali metals is re-examined in the approach based on the Gibbs-Bogoliubov inequality and using the fluid of charged hard spheres in the mean spherical approximation as reference system, with a view to achieving consistency with the liquid structure factor. The perturbative variational calculation of the Helmholtz free energy is based on an ab initio and highly reliable nonlocal pseudopotential. Only limited improvement is found in the calculated thermodynamic functions, even when full advantage is taken of the two variational parameters inherent in this approach. The role of thermodynamic self-consistency between the equations of state of the reference fluid derived from the routes of the internal energy and of the virial theorem is then discussed, using previous results by Hoye and Stell. An approximate evaluation of the corresponding contribution to the free energy of liquid alkali metals yields appreciable improvements in both the thermodynamic functions and the liquid structure factor. It thus appears that an accurate treatment of thermodynamic self-consistency in the charged-hard-sphere system may help to resolve some of the difficulties that are commonly met in the evaluation of thermodynamic and structural properties of liquid metals. (author). 55 refs, 4 figs, 4 tabs

  15. Effect of particle size on thermal decomposition of alkali metal picrates

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui; Zhang, Tonglai, E-mail: ztlbit@bit.edu.cn; Yang, Li; Zhou, Zunning

    2014-05-01

    Graphical abstract: The smaller-sized picrate has greater gas emission than do its larger counterpart. The small size effect reduces the thermal decomposition activation energy, accelerates the reaction rate, and promotes the reaction activity. - Highlights: • Picrates were prepared into three micron sizes by microemulsion synthesis. • Thermal decomposition kinetics and thermodynamics were studied by DPTA and DSC. • Smaller-sized picrate has higher activity and faster reaction rate. • Particle size effect on thermal decomposition kinetics and thermodynamics was revealed. - Abstract: Three alkali metal picrates, KPA, RbPA and CsPA, were prepared into three micron sizes by microemulsion synthesis, and their thermal decomposition behaviors were investigated by DPTA at different temperatures and by DSC at different heating rates. The smaller-sized picrate has greater gas emission and smaller kinetic and thermodynamic parameters than do its larger counterpart. It can be attributed to the decreasing particle size which leads to the high surface energy, the fast mass and heat transfer, and the increasing active sites on the reaction interface. The small size effect and surface effect cause the autocatalysis which reduces the activation energy and promotes the reaction activity. The particle size does not affect the reaction mechanism. However, the picrates with different central alkali metals exhibit different reaction mechanisms even though they are of the same size. This is because the central metal determines the bond energy and consequently affects the stability of picrate.

  16. Characterization of alkali-metal and alkaline-earth nitrates by vibrational spectroscopy

    OpenAIRE

    Martínez, S.; Acción, F.; Puertas, F.

    1992-01-01

    Infrared spectra of sodium and potassium alkaline-metal nitrates and magnesium and calcium alkali-earth nitrates in solid phase had been recorded in order to assign the fundamental bands. The influence of the dispersal médium (alkaline halide), employed in the solid sample preparation have been discussed. The quantitative measurements of the band in ten sities at 1387 cm-1 (present in the I.R. spectra of the four nitrates in KBr médium) allowed us to determine the Lambe...

  17. Van der Waals coefficients for alkali metal clusters and their size dependence

    Indian Academy of Sciences (India)

    Arup Banerjee; Manoj K Harbola

    2006-02-01

    In this paper we employ the hydrodynamic formulation of time-dependent density functional theory to obtain the van der Waals coefficients 6 and 8 of alkali metal clusters of various sizes including very large clusters. Such calculations become computationally very demanding in the orbital-based Kohn-Sham formalism, but are quite simple in the hydrodynamic approach. We show that for interactions between the clusters of the same sizes, 6 and 8 scale as the sixth and the eighth power of the cluster radius, respectively, and approach their classically predicted values for the large size clusters.

  18. Conductimetric determination of dissociation constants of alkali metal (bis)pyrocatechol borates in alcohols

    International Nuclear Information System (INIS)

    Dissociation constants of dipyrocatechinborates of the alkali metals of the Me[C6H4O2)2B] composition, where M - Na, K, Rb, Cs in the methanol and ethanol medium at 25 deg C, are determined through conductometric method on the basis of values of equiva lent electroconductivities. The dissociation constants of low power electrolytes are calculated through the Fuoss-Kraus method. The performance conditions of the Valden rule, binding the substances concentrations with dielectric permittivity of the medium, are identified

  19. Cycle analysis of an alkali metal thermo-electric converter for small capillary type

    International Nuclear Information System (INIS)

    This paper describes the design of a small size Alkali Metal Thermal to Electric Converter (AMTEC) which employs a capillary structure for recirculating sodium working fluid. The cycle is based on the simple and small capillary type β-alumina and wick tube element. The proposed cell consists of the 37 conversion elements with capillary tube of 50μm in diameter and the sealed cylindrical vessel of 22mm in outer diameter. Results on the cycle analysis of sodium flow and heat transfer in the cell showed that the expected power output was 4.65 W and the conversion efficiency was 19% for the source temperature of 900 K

  20. A study of the chemistry of alkali metals in the upper atmosphere

    Science.gov (United States)

    Silver, J. A.; Kolb, C. E.

    1985-01-01

    The reactions of metallic species introduced into the atmosphere by meteor ablation may play a significant role in mesospheric and stratospheric chemistry. During this second year of a three year program to investigate these phenomena, we have completed measurements for the reactions of atomic sodium with ozone, and of NaO with ozone. Preliminary measurements of the rate constant for the reaction of NaO2 + HCl have been done, as well as an initial photodissociation cross section determination for NaCl at 193 nm. We have also begun to investigate the means by which neutral gas phase alkali species may be removed from the mesosphere and stratosphere.

  1. Alkali Metal Control over N–N Cleavage in Iron Complexes

    OpenAIRE

    Grubel, Katarzyna; Brennessel, William W.; Mercado, Brandon Q.; Holland, Patrick L.

    2014-01-01

    Though N2 cleavage on K-promoted Fe surfaces is important in the large-scale Haber–Bosch process, there is still ambiguity about the number of Fe atoms involved during the N–N cleaving step and the interactions responsible for the promoting ability of K. This work explores a molecular Fe system for N2 reduction, particularly focusing on the differences in the results obtained using different alkali metals as reductants (Na, K, Rb, Cs). The products of these reactions feature new types of Fe–N...

  2. Purification and characterization of an extracellular, thermo-alkali-stable, metal tolerant laccase from Bacillus tequilensis SN4.

    Directory of Open Access Journals (Sweden)

    Sonica Sondhi

    Full Text Available A novel extracellular thermo-alkali-stable laccase from Bacillus tequilensis SN4 (SN4LAC was purified to homogeneity. The laccase was a monomeric protein of molecular weight 32 KDa. UV-visible spectrum and peptide mass fingerprinting results showed that SN4LAC is a multicopper oxidase. Laccase was active in broad range of phenolic and non-phenolic substrates. Catalytic efficiency (kcat/Km showed that 2, 6-dimethoxyphenol was most efficiently oxidized by the enzyme. The enzyme was inhibited by conventional inhibitors of laccase like sodium azide, cysteine, dithiothreitol and β-mercaptoethanol. SN4LAC was found to be highly thermostable, having temperature optimum at 85°C and could retain more than 80% activity at 70°C for 24 h. The optimum pH of activity for 2, 6-dimethoxyphenol, 2, 2'-azino bis[3-ethylbenzthiazoline-6-sulfonate], syringaldazine and guaiacol was 8.0, 5.5, 6.5 and 8.0 respectively. Enzyme was alkali-stable as it retained more than 75% activity at pH 9.0 for 24 h. Activity of the enzyme was significantly enhanced by Cu2+, Co2+, SDS and CTAB, while it was stable in the presence of halides, most of the other metal ions and surfactants. The extracellular nature and stability of SN4LAC in extreme conditions such as high temperature, pH, heavy metals, halides and detergents makes it a highly suitable candidate for biotechnological and industrial applications.

  3. An {\\it ab initio} relativistic coupled-cluster theory of dipole and quadrupole polarizabilities: Applications to a few alkali atoms and alkaline earth ions

    CERN Document Server

    Sahoo, B K

    2006-01-01

    We present a general approach within the relativistic coupled-cluster theory framework to calculate exactly the first order wave functions due to any rank perturbation operators. Using this method, we calculate the static dipole and quadrupole polarizabilities in some alkali atoms and alkaline earth-metal ions. This may be a good test of the present theory for different rank and parity interaction operators. This shows a wide range of applications including precise calculations of both parity and CP violating amplitudes due to rank zero and rank one weak interaction Hamiltonians. We also give contributions from correlation effects and discuss them in terms of lower order many-body perturbation theory.

  4. Cyclic peptides-assisted trans- port of metal ions across liquid-organic membrane

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The formation of alkali and alkaline-earth metal picrate complexes with cyclo(Pro-Gly)n ionophores (1, n = 3; 2, n = 4) can facilitate the migration of metal ions across a bulk liquid CH2Cl2 membrane. The migration behavior was studied by measuring the solution absorption at 356 nm, using a UV/Vis spectrophotometer, and the rates can be determined by comparing the initial absorption of donor solutions with the absorption of the corresponding receiver solutions as the function of time. It was found that cyclic peptide 1 shows higher transport activity for the studied alkali and alkaline-earth metal ions than compound 2, which is related to the backbone flexibility of the cyclic peptides. The findings in this work suggest that the rate of ionophore-facilitated ion transport depends not only on the ability of complex forma-tion in aqueous phase, but also on the ability of complex dissociation in organic phase.

  5. Model for C60 solid doped with metallic ions

    International Nuclear Information System (INIS)

    Full text: Fullerene solids have been extensively studied by doping them with various alkali metal ions. This has been done by varying the dopant as well as the amount of doping. The results of such experimentation have been found to be very interesting, as on doping the C60 solid AxC60 becomes superconducting as long as x ≤3 with its Tc going up to about 30 K depending upon the kind and amount of doping. The doping is found to increase the lattice parameter. Further, the increased lattice parameter is correlated with increase in Tc. We had accounted for several bulk, dynamical and thermodynamical properties of pure C60 solids using a simple 6-exponential potential between C atoms of two bucky balls. We had also accounted for the rise in Tc of doped C60 by equating doping to application of a negative hydrostatic pressure on pure C60, without actually using the interactions of the metallic ions with the bucky balls. In the present paper, we suggest a model to include the metallic ion interactions along with the Van der Waals interactions between the two bucky balls. The interactions considered are the repulsive metal-metal Coulomb interactions screened due to the electron gas, metal-ion -bucky-ball Van der Waals conduction electron-ion and electron-electron interactions are treated within the electron gas jellium model. The net effect of the additional interactions is dominated by repulsive metal-metal interactions, which tend to enhance the lattice parameter as obtained in the undoped C60 solid. This result is in agreement with our earlier conclusion and enables us to correlate doping with negative pressure

  6. Enhancement of green long lasting phosphorescence in CaSnO3:Tb3+ by addition of alkali ions

    International Nuclear Information System (INIS)

    Long lasting phosphors of CaSnO3:Tb3+ added alkali ions (Li+, Na+, K+) were prepared by solid-state reaction. The phosphorescence of samples consists of a group of green emission lines originating from 5D4→7FJ transitions of Tb3+. The afterglow spectra and concentration quenching behaviors of fluorescence were investigated in the Tb3+ mono-doped sample. The result shows the optimal doping concentration of Tb3+ is 0.3 mol%. In the co-doped samples, the doping concentrations of Tb3+ and alkali ions are both at 0.3 mol%. It is found from the afterglow decay curves that the introduction of alkali ions can prolong the phosphorescent lasting time and the sample of incorporating Na+ shows the best result. Tb3+ and alkali ions can substitute Ca2+ ions, acting as hole and electron traps, respectively. The thermoluminescence (TL) spectra are also investigated. The depths of traps for the mono- and co-doped samples are calculated to be 0.622, 0.541, 0.529 and 0.538 eV, respectively. Moreover, the possible mechanism of the green long lasting phosphorescence is proposed based on the experiment results

  7. Metal ion separations using hydrophobic anions: Aspects of ligand design

    International Nuclear Information System (INIS)

    Metal ion extraction using hydrophobic anions has been investigated by several researchers for remediation of Cs-137 and Sr-90 in nuclear waste. The rich derivative chemistry of the cobalt bis-dicarbollide anion makes it amendable to systematic studies of the relative importance of anion structure, solvent, and synergists on the extraction selectivity and efficiency. Halogenation or alkylation of cobalt dicarbollide strongly influences the anion's solubility and stability but has little effect on extraction properties. Alkali metal selectivity depends primarily on solvent, while alkaline earth selectivity is driven by the concentration and molecular weight of polyethylene glycol synergists. Additional aspects of ligand design, including a simple extraction and recovery cycle based on redox-active metal centers, will be discussed

  8. New bonding configuration on Si(111) and Ge(111) surfaces induced by the adsorption of alkali metals

    DEFF Research Database (Denmark)

    Lottermoser, L.; Landemark, E.; Smilgies, D.M.; Nielsen, M.; Feidenhans'l, R. Falkenberg; Johnson, R.L.; Gierer, M.; Seitsonen, A.P.; Kleine, H.; Bludau, H.; Over, H.; Kim, S.K.; Jona, F.

    1998-01-01

    The structure of the (3×1) reconstructions of the Si(111) and Ge(111) surfaces induced by adsorption of alkali metals has been determined on the basis of surface x-ray diffraction and low-energy electron diffraction measurements and density functional theory. The (3×1) surface results primarily f...... from the substrate reconstruction and shows a new bonding configuration consisting of consecutive fivefold and sixfold Si (Ge) rings in 〈11̅ 0〉 projection separated by channels containing the alkali metal atoms. © 1998 The American Physical Society......The structure of the (3×1) reconstructions of the Si(111) and Ge(111) surfaces induced by adsorption of alkali metals has been determined on the basis of surface x-ray diffraction and low-energy electron diffraction measurements and density functional theory. The (3×1) surface results primarily...

  9. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    Science.gov (United States)

    Hagedorn, Norman H. (Inventor)

    1993-01-01

    An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.

  10. A study on optical properties of poly (ethylene oxide) based polymer electrolyte with different alkali metal iodides

    Science.gov (United States)

    Rao, B. Narasimha; Suvarna, R. Padma

    2016-05-01

    Polymer electrolytes were prepared by adding poly (ethylene glycol) dimethyl ether (PEGDME), TiO2 (nano filler), different alkali metal iodide salts RI (R+=Li+, Na+, K+, Rb+, Cs+) and I2 into Acetonitrile gelated with Poly (ethylene oxide) (PEO). Optical properties of poly (ethylene oxide) based polymer electrolytes were studied by FTIR, UV-Vis spectroscopic techniques. FTIR spectrum reveals that the alkali metal cations were coordinated to ether oxygen of PEO. The optical absorption studies were made in the wavelength range 200-800 nm. It is observed that the optical absorption increases with increase in the radius of alkali metal cation. The optical band gap for allowed direct transitions was evaluated using Urbach-edges method. The optical properties such as optical band gap, refractive index and extinction coefficient were determined. The studied polymer materials are useful for solar cells, super capacitors, fuel cells, gas sensors etc.

  11. A numerical study of spin-dependent organization of alkali-metal atomic clusters using density-functional method

    International Nuclear Information System (INIS)

    We calculate the different geometric isomers of spin clusters composed of a small number of alkali-metal atoms using the UB3LYP density-functional method. The electron density distribution of clusters changes according to the value of total spin. Steric structures as well as planar structures arise when the number of atoms increases. The lowest spin state is the most stable and Lin, Nan, Kn, Rbn, and Csn with n = 2–8 can be formed in higher spin states. In the highest spin state, the preparation of clusters depends on the kind and the number of constituent atoms. The interaction energy between alkali-metal atoms and rare-gas atoms is smaller than the binding energy of spin clusters. Consequently, it is possible to self-organize the alkali-metal-atom clusters on a non-wetting substrate coated with rare-gas atoms.

  12. Higher-order Cn dispersion coefficients for the alkali-metal atoms

    International Nuclear Information System (INIS)

    The van der Waals coefficients, from C11 through to C16 resulting from second-, third-, and fourth-order perturbation theory are estimated for the alkali-metal (Li, Na, K, and Rb) atoms. The dispersion coefficients are also computed for all possible combinations of the alkali-metal atoms and hydrogen. The parameters are determined from sum rules after diagonalizing a semiempirical fixed core Hamiltonian in a large basis. Comparisons of the radial dependence of the Cn/rn potentials give guidance as to the radial regions in which the various higher-order terms can be neglected. It is seen that including terms up to C10/r10 results in a dispersion interaction that is accurate to better than 1% whenever the inter-nuclear spacing is larger than 20a0. This level of accuracy is mainly achieved due to the fortuitous cancellation between the repulsive (C11,C13,C15) and attractive (C12,C14,C16) dispersion forces

  13. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-11-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed.

  14. Alkali metal control over N-N cleavage in iron complexes.

    Science.gov (United States)

    Grubel, Katarzyna; Brennessel, William W; Mercado, Brandon Q; Holland, Patrick L

    2014-12-01

    Though N2 cleavage on K-promoted Fe surfaces is important in the large-scale Haber-Bosch process, there is still ambiguity about the number of Fe atoms involved during the N-N cleaving step and the interactions responsible for the promoting ability of K. This work explores a molecular Fe system for N2 reduction, particularly focusing on the differences in the results obtained using different alkali metals as reductants (Na, K, Rb, Cs). The products of these reactions feature new types of Fe-N2 and Fe-nitride cores. Surprisingly, adding more equivalents of reductant to the system gives a product in which the N-N bond is not cleaved, indicating that the reducing power is not the most important factor that determines the extent of N2 activation. On the other hand, the results suggest that the size of the alkali metal cation can control the number of Fe atoms that can approach N2, which in turn controls the ability to achieve N2 cleavage. The accumulated results indicate that cleaving the triple N-N bond to nitrides is facilitated by simultaneous approach of least three low-valent Fe atoms to a single molecule of N2. PMID:25412468

  15. Investigation of luminescence and spectroscopic properties of Nd3+ions in cadmium alkali borate glasses

    Science.gov (United States)

    Mohan, Shaweta; Thind, Kulwant Singh

    2016-07-01

    Neodymium doped cadmium alkali borate glasses having composition 20CdOsbnd 20R2Osbnd 59.5H3BO3sbnd 0.5Nd2O3; (R = Li, Na and K) were prepared by conventional melt-quenching technique. The amorphous nature of the glasses was confirmed by X-ray diffraction studies. The physical properties such as density, refractive index, molar volume, rare earth ion concentration etc. were determined. Optical absorption and fluorescence spectra were recorded. The Judd-Ofelt theory was applied on the optical absorption spectra of the glasses to evaluate the three phenomenological intensity parameters Ω2, Ω4 and Ω6. These parameters were in turn used to predict the radiative properties such as the radiative transition probability (A), radiative lifetime (τR) and branching ratio (βR) for the fluorescent levels of Nd3+ ion in the present glass series. The lasing efficiency of the prepared glasses has been characterized by the spectroscopic quality factor (Ω4/Ω6), the value of which is in the range of 0.2-1.5, typical for Nd3+ in different laser hosts. The variation of Ω2 with the change in alkali oxide has been attributed to the changes in the asymmetry of the ligand field at the rare earth ion site. The shift of the hypersensitive bands, study of the oscillator strengths and the variation of the spectral profile of the transition 4I9/2 → 4F7/2 + 4S3/2 indicate a maximum covalency of Ndsbnd O bond for glass with potassium ions. From the fluorescence spectra, peak wavelength (λp), effective line widths (Δλeff) and stimulated emission cross-section (σp) have been obtained for the three transitions 4F3/2 → 4I9/2,4F3/2 → 4I11/2 and4F3/2 → 4I13/2 of Nd3+ ion. The relatively high values of σp obtained for Nd3+ in present glass system suggest that these materials can be considered as suitable candidates for laser applications. The glass with potassium ions shows the highest value of the stimulated emission cross-section.

  16. From carbanions to organometallic compounds: quantification of metal ion effects on nucleophilic reactivities.

    Science.gov (United States)

    Corral-Bautista, Francisco; Klier, Lydia; Knochel, Paul; Mayr, Herbert

    2015-10-12

    The influence of the metal on the nucleophilic reactivities of indenyl metal compounds was quantitatively determined by kinetic investigations of their reactions with benzhydrylium ions (Ar2 CH(+) ) and structurally related quinone methides. With the correlation equation log k2 =sN (N+E), it can be derived that the ionic indenyl alkali compounds are 10(18) to 10(24) times more reactive (depending on the reference electrophile) than the corresponding indenyltrimethylsilane. PMID:25951612

  17. Ab initio interaction potentials and scattering lengths for ultracold mixtures of metastable helium and alkali-metal atoms

    Science.gov (United States)

    Kedziera, Dariusz; Mentel, Łukasz; Żuchowski, Piotr S.; Knoop, Steven

    2015-06-01

    We have obtained accurate ab initio +4Σ quartet potentials for the diatomic metastable triplet helium+alkali-metal (Li, Na, K, Rb) systems, using all-electron restricted open-shell coupled cluster singles and doubles with noniterative triples corrections CCSD(T) calculations and accurate calculations of the long-range C6 coefficients. These potentials provide accurate ab initio quartet scattering lengths, which for these many-electron systems is possible, because of the small reduced masses and shallow potentials that result in a small amount of bound states. Our results are relevant for ultracold metastable triplet helium+alkali-metal mixture experiments.

  18. Prospects for sympathetic cooling of polar molecules: NH with alkali-metal and alkaline-earth atoms - a new hope

    CERN Document Server

    Soldán, Pavel; Hutson, Jeremy M

    2009-01-01

    We explore the potential energy surfaces for NH molecules interacting with alkali-metal and alkaline-earth atoms using highly correlated ab-initio electronic structure calculations. The surfaces for interaction with alkali-metal atoms have deep wells dominated by covalent forces. The resulting strong anisotropies will produce strongly inelastic collisions. The surfaces for interaction with alkaline-earth atoms have shallower wells that are dominated by induction and dispersion forces. For Be and Mg the anisotropy is small compared to the rotational constant of NH, so that collisions will be relatively weakly inelastic. Be and Mg are thus promising coolants for sympathetic cooling of NH to the ultracold regime.

  19. New trends in ion-exchange studies on saline and alkali soils

    International Nuclear Information System (INIS)

    From the beginning of this century, studies of ion-exchange processes in salt-affected soils, a term referring to both saline and alkali soils, have had an ever-growing importance. Three general problems make the consistent study of these processes necessary in theory and in practice, and the same problems require the quantitative description and determination of the ion-exchange processes in salt-affected soils. 1. The first of these three problems comprises the evolution and genetics of the various kinds of salt-affected soils, e.g. the solonetz-forming process, in the course of which the adsorption of Na-ions on the soil colloids became dominant; the de-solonetzation in the .opposite direction; the solid-forming process, etc. All these processes develop in the presence of various anions and cations, and the soil properties are also different depending on the environmental conditions. The direction and rate of ion-exchange processes are also different and need positive investigation. 2. The second process, in which the ion-exchange phenomenon plays an important role and has special importance, is the interaction between water and soils in the course of irrigation. It is well known that both irrigation water and ground water have an influence on soil salinity and alkalinity. In the literature and in practice this interaction ha.s been better elaborated than the other two mentioned in this paper. Theoretical and practical equations and formulas are available all over the world in countries interested in irrigation, concerning the amounts of irrigation water and the physical and chemical properties of soil and water in order to avoid the danger of secondary salinization and alkalization of soils. This problem, however, makes further investigation necessary of the interaction between water and soil in relation to the wide variety of natural conditions and soil properties. 3. The third problem, which is especially important from the point of view of ion

  20. Metal ions, Alzheimer's disease and chelation therapy.

    Science.gov (United States)

    Budimir, Ana

    2011-03-01

    In the last few years, various studies have been providing evidence that metal ions are critically involved in the pathogenesis of major neurological diseases (Alzheimer, Parkinson). Metal ion chelators have been suggested as potential therapies for diseases involving metal ion imbalance. Neurodegeneration is an excellent target for exploiting the metal chelator approach to therapeutics. In contrast to the direct chelation approach in metal ion overload disorders, in neurodegeneration the goal seems to be a better and subtle modulation of metal ion homeostasis, aimed at restoring ionic balance. Thus, moderate chelators able to coordinate deleterious metals without disturbing metal homeostasis are needed. To date, several chelating agents have been investigated for their potential to treat neurodegeneration, and a series of 8-hydroxyquinoline analogues showed the greatest potential for the treatment of neurodegenerative diseases. PMID:21406339

  1. New Proton-Ionizable, Calixarene-Based Ligands for Selective Metal Ion Separations

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, Richard A.

    2012-06-04

    The project objective was the discovery of new ligands for performing metal ion separations. The research effort entailed the preparation of new metal ion complexing agents and polymers and their evaluation in metal ion separation processes of solvent extraction, synthetic liquid membrane transport, and sorption. Structural variations in acyclic, cyclic, and bicyclic organic ligands were used to probe their influence upon the efficiency and selectivity with which metal ion separations can be performed. A unifying feature of the ligand structures is the presence of one (or more) side arm with a pendent acidic function. When a metal ion is complexed within the central cavity of the ligand, ionization of the side arm(s) produces the requisite anion(s) for formation of an overall electroneutral complex. This markedly enhances extraction/transport efficiency for separations in which movement of aqueous phase anions of chloride, nitrate, or sulfate into an organic medium would be required. Through systematic structural variations, new ligands have been developed for efficient and selective separations of monovalent metal ions (e.g., alkali metal, silver, and thallium cations) and of divalent metal ion species (e.g., alkaline earth metal, lead, and mercury cations). Research results obtained in these fundamental investigations provide important insight for the design and development of ligands suitable for practical metal ion separation applications.

  2. Semiempirical calculation of van der Waals coefficients for alkali-metal and alkaline-earth-metal atoms

    International Nuclear Information System (INIS)

    The van der Waals coefficients, C6, C8, and C10 for the alkali-metal (Li, Na, K, and Rb) and alkaline-earth-metal (Be, Mg, Ca, and Sr) atoms are estimated by a combination of ab initio and semiempirical methods. Polarizabilities and atom-wall coefficients are given as a diagnostic check, and the lowest order nonadiabatic dispersion coefficient, D8 and the three-body coefficient, C9 are also presented. The dispersion coefficients are in agreement with the available relativistic many-body perturbation theory calculations. The contribution from the core was included by using constrained sum rules involving the core polarizability and Hartree-Fock expectation values to estimate the f-value distribution

  3. Dispersion coefficients for H and He interactions with alkali-metal and alkaline-earth-metal atoms

    International Nuclear Information System (INIS)

    The van der Waals coefficients C6, C8, and C10 for H and He interactions with the alkali-metal (Li, Na, K, and Rb) and alkaline-earth-metal (Be, Mg, Ca, and Sr) atoms are determined from oscillator strength sum rules. The oscillator strengths were computed using a combination of ab initio and semiempirical methods. The dispersion parameters generally agree with close to exact variational calculations for Li-H and Li-He at the 0.1% level of accuracy. For larger systems, there is agreement with relativistic many-body perturbation theory estimates of C6 at the 1% level. These validations for selected systems attest to the reliability of the present dispersion parameters. About half the present parameters lie within the recommended bounds of the Standard and Certain compilation [J. Chem. Phys. 83, 3002 (1985)

  4. Electric dipole polarizabilities at imaginary frequencies for the alkali-metal, alkaline-earth, and inert gas atoms

    CERN Document Server

    Derevianko, Andrei; Babb, James F

    2009-01-01

    The electric dipole polarizabilities evaluated at imaginary frequencies for hydrogen, the alkali-metal atoms, the alkaline earth atoms, and the inert gases are tabulated along with the resulting values of the atomic static polarizabilities, the atom-surface interaction constants, and the dispersion (or van der Waals) constants for the homonuclear and the heteronuclear diatomic combinations of the atoms.

  5. Momentum densities and Compton profiles of alkali-metal atoms

    Indian Academy of Sciences (India)

    Pranab Sarkar; Anupam Sarkar; S N Roy; B Talukdar

    2003-03-01

    It is assumed that the dynamics of valence electrons of alkali-metal atoms can be well accounted for by a quantum-defect theoretic model while the core electrons may be supposed to move in a self-consistent field. This model is used to study the momentum properties of atoms from 3Li to 37Rb. The numerical results obtained for the momentum density, moments of momentum density and Compton profile are found to be in good agreement with the results of more detailed configuration-interaction calculations for the atom 3Li. Similar results for 11Na, 19K and 37Rb are compared with the corresponding Hartree–Fock–Roothaan values only, for want of data from other realistic calculations.

  6. Separation of hafnium from zirconium in their tetrachloride solution in molten alkali metal chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, A.B.; Kudyakov, V.Ya.; Smirnov, M.V.; Moskalenko, N.I. (AN SSSR, Sverdlovsk. Inst. Ehlektrokhimii)

    1984-08-01

    The coefficient of HfCl/sub 4/ and ZrCl/sub 4/ separation in the process of vapour sublimation from their solutions in molten NaCl, KCl, CsCl, NaCl-KCl and NaCl-CsCl equimolar mixtures is found to vary in the series from approximately 1.10 to approximately 1.22 and practically not to depend on the temperature (in the 600-910 deg) range and concentration (2-25 mol.% ZrCl/sub 4/+HfCl/sub 4/). HfCl/sub 4/ and ZrCl/sub 4/ are shown to form almost perfect solutions with each other, which in their turn form imperfect solutions with molten alkali metal chlorides, with the strength of hafnium complex chloride anions increasing higher than that of zirconium in the series from NaCl to CsCl.

  7. Separation of hafnium from zirconium in their tetrachloride solution in molten alkali metal chlorides

    International Nuclear Information System (INIS)

    The coefficient of HfCl4 and ZrCl4 separation in the process of vapour sublimation from their solutions in molten NaCl, KCl, CsCl, NaCl-KCl and NaCl-CsCl equimolar mixtures is found to vary in the series from approximately 1.10 to approximately 1.22 and practically not to depend on the temperature (in the 600-910 deg) range and concentration (2-25 mol.% ZrCl4+HfCl4). HfCl4 and ZrCl4 are shown to form almost perfect solutions with each other, which in their turn form imperfect solutions with molten alkali metal chlorides, with the strength of hafnium complex chloride anions increasing higher than that of zirconium in the series from NaCl to CsCl

  8. Thermal characterization of an AMTEC recirculating test cell. [Alkali Metal ThermoElectric Converter

    Science.gov (United States)

    Underwood, M. L.; O'Connor, D.; Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Bankston, C. P.

    1990-01-01

    An alkali metal thermoelectric converter (AMTEC) recirculating test cell has been operated in order to determine the magnitudes of the primary heat losses of the cell and the value of the emissivity of the condenser surface. The energy balance included radiation losses, conductive losses, and losses due to the flow of sodium into the cell. The radiative heat flux dominated the heat loss mechanism of the cell at open circuit, and the condenser emissivity was calculated to be about 0.1. It is shown that, if this emissivity can be reduced to 0.02, then parasitic losses in an AMTEC recirculating test cell operating near peak power would be less than 40 percent of the heat required by the cell. The condenser emissivity decreases with elapsed time, resulting in improved thermal performance of the cell.

  9. The alkali metal thermoelectric converter /AMTEC/ - A new direct energy conversion technology for aerospace power

    Science.gov (United States)

    Bankston, C. P.; Cole, T.; Jones, R.; Ewell, R.

    1982-01-01

    A thermally regenerative electrochemical device for the direct conversion of heat to electrical energy, the alkali metal thermoelectric converter (AMTEC), is characterized by potential efficiencies on the order of 15-40% and possesses no moving parts, making it a candidate for space power system applications. Device conversion efficiency is projected on the basis of experimental voltage vs current curves exhibiting power densities of 0.7 W/sq cm and measured electrode efficiencies of up to 40%. Preliminary radiative heat transfer measurements presented may be used in an investigation of methods for the reduction of AMTEC parasitic radiation losses. AMTEC assumes heat input and rejection temperatures of 900-1300 K and 400-800 K, respectively. The working fluid is liquid sodium, and the porous electrode employed is of molybdenum.

  10. Structural systematic and crystal chemistry of novel borates with REE, Pb, Sr, and alkali metals

    International Nuclear Information System (INIS)

    Crystal structures of novel borates with REE, Pb, Sr and alkali metals were analyzed using classical fundamental buildings blocks approach. It is demonstrated that hexa-, penta-, tetra-, tri- and diborates subdivisions in systematic are real families of structures with the common peculiarities. According to the symmetrical way and the degree of FBB condensation structural-generic rows exist in every of subdivisions. Mega- or polyborates subdivision is valid for the structures with the different types of simplest FBB. In all new complex borates it is possible to separate FBB of equal or different types which are presented in isolated form or are connected into chains, layers or frameworks, and to find unexpected correlation between structures. The possibility to recognize and to visualize in this approach the polarity or non-polarity of the structural units and correspondingly the polarity or nonpolarity of the structures in the whole is very important for the conclusion on structure-properties relation. (orig.)

  11. Reasons for different solubility of alkali metal chlorides in cadmium nitrate solutions

    International Nuclear Information System (INIS)

    Maximum solubility of MCl salts (M=Li, Na, K, Cs) in solutions of cadmium nitrate and perchlorate of different concentration was measured in detail for studying the reason for different solubility of alkali metal chlorides in aqueous solutions of cadmium nitrate with concentration of 0.9 and 4.1 mol/l. It is shown that in the framework of phenomenological model of the solutions concentrated solutions of salts forming several crystallohydrates can be considered as a system of mixed solvents. In this case, preferable interaction of LiCl and CsCl with the Cd(NO3)2·9H2O type solvent, while NaCl and KCl - with the Cd(NO3)2·4H2O type solvent can be mentioned

  12. Oxidized graphene as an electrode material for rechargeable metal-ion batteries – a DFT point of view

    International Nuclear Information System (INIS)

    Graphical abstract: - Abstract: In line with a growing interest in the use of graphene-based materials for energy storage applications and active research in the field of rechargeable metal-ion batteries we have performed a DFT based computational study of alkali metal atoms (Li, Na and K) interaction with an oxidized graphene. The presence of oxygen surface groups (epoxy and hydroxyl) alters the chemisorption properties of graphene. In particular, we observe that the epoxy groups are redox active and enhance the alkali metal adsorption energies by a factor of 2 or more. When an alkali metal atom interacts with hydroxyl-graphene the formation of metal-hydroxide is observed. In addition to a potential boost of metal ion storage capability, oxygen functional groups also prevent the precipitation of the metal phase. By simulating lithiation/de-lithiation process on epoxy-graphenes, it was concluded that the oxidized graphene can undergo structural changes during battery operation. Our results suggest that the content and the type of oxygen surface groups should be carefully tailored to maximize the performance of metal-ion batteries. This is mainly related to the control of the oxidation level in order to provide enough active centers for metal ion storage while preserving sufficient electrical conductivity

  13. Studies on the determination of trace amounts of nitrogen along with alkali and alkaline earth elements in uranium based samples by ion-chromatography (IC)

    International Nuclear Information System (INIS)

    Present report describes an ion chromatography (IC) method with suppressed conductivity detection for the determination of traces of nitrogen along with alkali and alkaline earth elements in uranium based nuclear fuels. Method was developed to determine nitrogen as NH4+ along with alkali and alkaline earth cations by IC using a cation exchange column. (author)

  14. Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides

    Science.gov (United States)

    Patki, Gauri Dilip

    mole of Si. We compare our silicon nanoparticles (˜10nm diameter) with commercial silicon nanopowder (Metal hydrides are also promising hydrogen storage materials. The optimum metal hydride would possess high hydrogen storage density at moderate temperature and pressure, release hydrogen safely and controllably, and be stable in air. Alkali metal hydrides have high hydrogen storage density, but exhibit high uncontrollable reactivity with water. In an attempt to control this explosive nature while maintaining high storage capacity, we mixed our silicon nanoparticles with the hydrides. This has dual benefits: (1) the hydride- water reaction produces the alkali hydroxide needed for base-catalyzed silicon oxidation, and (2) dilution with 10nm coating by, the silicon may temper the reactivity of the hydride, making the process more controllable. Initially, we analyzed hydrolysis of pure alkali metal hydrides and alkaline earth metal hydrides. Lithium hydride has particularly high hydrogen gravimetric density, along with faster reaction kinetics than sodium hydride or magnesium hydride. On analysis of hydrogen production we found higher hydrogen yield from the silicon nanoparticle—metal hydride mixture than from pure hydride hydrolysis. The silicon-hydride mixtures using our 10nm silicon nanoparticles produced high hydrogen yield, exceeding the theoretical yield. Some evidence of slowing of the hydride reaction rate upon addition of silicon nanoparticles was observed.

  15. Experience in the Design and Operation of High-Temperature Alkali Metal Systems

    International Nuclear Information System (INIS)

    Our experience with the alkali metals began in 1942, when it became necessary to manufacture potassium as an intermediate step in producing potassium superoxide and oxygen generator chemicals for use in rebreather safety equipment evaluation. Study of the alkali metals has continued to the present with measurement of the physical properties, high temperature heat transfer properties, followed by the development of liquid metal instruments and the design and reliable manufacture of components. The present operation (up to 1200°F) of two sodium systems to study the instream mechanical properties of materials for long periods of time reveals the satisfactory operation of many components and the trouble to be experienced when operation is attempted with impurities added to the sodium. Cold-trap purification of 1200°F sodium systems is sufficient for low-corrosion operation over a 2-yr period in an AISI, Type 316 stainless-steel system. The adding of new specimens always raises the oxygen level, requiring repurification of the sodium. Some carbon was removed by the cold trap when high carbon-sodium conditions prevailed, but removal is not complete enough for satisfactory operation; therefore great care should be taken in preventing the carbon contamination. Plugging indicators were a good tool for normal operation. Under high carbon conditions the initial break in the plugging indicator curve can be related to the carburization potential of the sodium. Inert gas lines in sodium systems need to be heated above the melting point of sodium to prevent plugging. However, under high oxygen-sodium conditions, solids deposit in the cover gas regions under ambient temperatures above the melting point of sodium. It is observed that the main difficulty incurred in running with high oxygen - sodium systems is the oxide plugging of small lines. In high carbon sodium systems, the failure of valve bellows by carburization causes operational difficulties. Stability of magnetic flow

  16. Ab initio studies of structural, electronic, magnetic and mechanical properties of alkali earth metal silicides

    International Nuclear Information System (INIS)

    Alkali earth metal silicides MSi (M = Mg, Ca, Sr, Ba) are multi-phase compound and exist simultaneously in CrB, CsCl, NaCl or rock salt (RS) and zinc blende (zb) structures. In the CrB and CsCl phases, their behavior is metallic in the non-magnetic (NM) as well as the ferromagnetic (FM) structure. The total spin magnetic moment of these compounds in the zb phase is more than that in the corresponding RS phase; therefore, detailed studies for the zb phase are presented in this paper. This study includes structural, electronic and mechanical properties by using the full potential linear augmented plain wave scheme with local orbitals. Ferromagnetic CaSi, SrSi and BaSi show true half-metallic character. For a better understanding of the half-metallicity in the above-mentioned sp-type compounds, their band structures have been calculated and densities of state plots have been produced. The FM structures are more stable and harder than the corresponding NM structures. The magnetic moment corresponding to equilibrium lattice constants is calculated as 2 µB for FM CaSi, SrSi and BaSi, which are in accordance with the earlier work on the sp-type compounds CaC, SrC and BaC. The FM character changes to the paramagnetic character as the lattice parameter decreases. The general trend is that the values of the elastic constants C11, C12 and C44 increase with increasing hydrostatic pressure

  17. Elucidating the magnetic and superconducting phases in the alkali metal intercalated iron chalcogenides

    Science.gov (United States)

    Wang, Meng; Yi, Ming; Tian, Wei; Bourret-Courchesne, Edith; Birgeneau, Robert J.

    2016-02-01

    The complex interdigitated phases have greatly frustrated attempts to document the basic features of the superconductivity in the alkali metal intercalated iron chalcogenides. Here, using elastic neutron scattering, energy-dispersive x-ray spectroscopy, and resistivity measurements, we elucidate the relations of these phases in RbxFeySe2 -zSz . We find (i) the iron content is crucial in stabilizing the stripe antiferromagnetic (AF) phase with rhombic iron vacancy order (y ≈1.5 ) , the block AF phase with √{5 }×√{5 } iron vacancy order (y ≈1.6 ) , and the iron vacancy-free phase (y ≈2 ) ; and (ii) the iron vacancy-free superconducting phase (z =0 ) evolves into an iron vacancy-free metallic phase with sulfur substitution (z >1.5 ) due to the progressive decrease of the electronic correlation strength. Both the stripe AF phase and the block AF phase are Mott insulators. The iron-rich compounds (y >1.6 ) undergo a first order transition from an iron vacancy disordered phase at high temperatures into the √{5 }×√{5 } iron vacancy ordered phase and the iron vacancy-free phase below Ts. Our data demonstrate that there are miscibility gaps between these three phases. The existence of the miscibility gaps in the iron content is a key to understanding the relationship between these complicated phases.

  18. Study of complex amalgams containing alkali metals by method of broken thermometric titration

    International Nuclear Information System (INIS)

    Complex potassium-cadmium and sodium-cadmium amalgams containing different amounts of the alkali metal nad cadmium have been studied by thermometric titration with mercury. The experiments have been carried out in argon atmosphere at 25 deg C. As evidenced by the titration of sodium-cadmium amalgams, in the range of concentrations studied (Csub(Na)=0.71-2.95, Csub(Cd)=4.38-6.45 g-at/lHg) no solid phase is formed in them. Potassium-cadmium amalgams where the metals content is no higher than their individual solubility in mercury, display, when being mercury-titrated, negative heat effects due to solid phase formation. An estimation is made of the solid phase composition, its solubility in mercury and the heat of dissolution. The solid phase appearing in complex K-Cd amalgams is likely to contain K and Cd in a ratio 1:1 its conventional solubility product is 5.4 g-at/l Hg, and the heat of dissolution in mercury at 25 deg is -21 +-4 kJ/g-at

  19. Stability of alkali-metal hydrides: effects of n-type doping

    Science.gov (United States)

    Olea Amezcua, Monica Araceli; de La Peña Seaman, Omar; Rivas Silva, Juan Francisco; Heid, Rolf; Bohnen, Klaus-Peter

    Metal hydrides could be considered ideal solid-state hydrogen storage systems, they have light weight and high hydrogen volumetric densities, but the hydrogen desorption process requires excessively high temperatures due to their high stability. Efforts have been performed to improve their dehydrogenation properties, based on the introduction of defects, impurities and doping. We present a systematic study of the n-type (electronic) doping effects on the stability of two alkali-metal hydrides: Na1-xMgxH and Li1-xBexH. These systems have been studied within the framework of density functional perturbation theory, using a mixed-basis pseudopotential method and the self-consistent version of the virtual crystal approximation to model the doping. The full-phonon dispersions are analyzed for several doping content, paying special attention to the crystal stability. It is found a doping content threshold for each system, where they are close to dynamical instabilities, which are related to charge redistribution in interstitial zones. Applying the quasiharmonic approximation, the vibrational free energy, the linear thermal expansion and heat capacities are obtained for both hydrides systems and are analyzed as a function of the doping content. This work is partially supported by the VIEP-BUAP 2016 and CONACYT-México (No.221807) projects.

  20. Alkali metal pool boiler life tests for a 25 kWe advanced Stirling conversion system

    Science.gov (United States)

    Anderson, W. G.; Rosenfeld, J. H.; Noble, J.

    The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding an alkali metal pool boiler heat transport system to supply heat more uniformly to the heater head tubes. One issue with liquid metal pool boilers is unstable boiling. Stable boiling is obtained with an enhanced boiling surface containing nucleation sites that promote continuous boiling. Over longer time periods, it is possible that the boiling behavior of the system will change. An 800-h life test was conducted to verify that pool boiling with the chosen fluid/surface combination remains stable as the system ages. The apparatus uses NaK boiling on a - 100 + 140 stainless steel sintered porous layer, with the addition of a small amount of xenon. Pool boiling remained stable to the end of life test. The pool boiler life test included a total of 82 cold starts, to simulate startup each morning, and 60 warm restarts, to simulate cloud cover transients. The behavior of the cold and warm starts showed no significant changes during the life test. In the experiments, the fluid/surface combination provided stable, high-performance boiling at the operating temperature of 700 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.

  1. First-principles study of intercalation of alkali ions in FeSe for solid-state batteries

    Science.gov (United States)

    Jiang, Zhiqiang; Gu, Xiao; Wang, Linxia; Huang, Li

    2016-08-01

    Electrochemical properties of alkali ions (Li+, Na+, and K+) intercalating into FeSe have been studied based on first-principles calculations within density functional theory. The intercalation sites of lithium ions are found to be different from sodium and potassium ions due to the small ionic radius of lithium. Calculations of minimum energy path on the diffusions of Li+, Na+, and K+ in FeSe show that the activation energies for those alkali ions increase with their ionic radii. Lithium ions have a rather smaller diffusion barrier of about 0.20 eV, which leads to a bigger diffusion coefficient of about 6.3 ×10-6cm2 /s . We also show that FeSe has a flat discharging stage at about 1.0 V with lithium ions. These results indicate that XFe2Se2 (X = Li, Na, K) may be potential electrochemical active materials, especially for solid-state electrolyte and supercapacitors.

  2. DETERMINATION OF POTASH ALKALI AND METAL CONTENTS OF ASHES OBTAINED FROM PEELS OF SOME VARIETIES OF NIGERIA GROWN MUSA SPECIES

    Directory of Open Access Journals (Sweden)

    Joshua Olajiire Babayemi

    2010-05-01

    Full Text Available Potash alkali and metal contents of ashes obtained from peels of six varieties of Nigeria Musa species were investigated. The varieties of Musa species – Musa paradisiaca (plantain, Musa ‘Gross Michel’ (Igbo banana, M.sapientum L. (paranta, Musa ‘Wild Banana’ (omini, Musa ‘Red’ (sweet banana, and Musa ‘Fugamo’ (somupeke, were investigated. The moisture, dry matter, ash and alkali contents; concentration of metals in the ashes and in the contents extracted with water from the ashes; and the ratio of potassium to other metals in the ashes and in the corresponding extracts were determined. Moisture contents ranged from 80.9 to 86.7%; dry matter content, 13.3 to 19.1%; ash content, 6.3 to 12.0%; alkali content, 69.0 to 81.9% of ash and 4.7 to 9.6% of dry sample. Samples ranged between 2.60 and 720mg/kg and in the corresponding extracts, BDL to 500.49mg/kg; ratio of concentration of potassium to other metals in the samples, 0.6 to 395; and in the extracts, 0.5 to 313. Gross michel showed the highest concentration of K (750mg/kg while omini banana gave the lowest average value (112.70mg/kg.

  3. Thermal Decomposition of Anhydrous Alkali Metal Dodecaborates M2B12H12 (M = Li, Na, K)

    OpenAIRE

    Liqing He; Hai-Wen Li; Etsuo Akiba

    2015-01-01

    Metal dodecaborates M2/nB12H12 are regarded as the dehydrogenation intermediates of metal borohydrides M(BH4)n that are expected to be high density hydrogen storage materials. In this work, thermal decomposition processes of anhydrous alkali metal dodecaborates M2B12H12 (M = Li, Na, K) synthesized by sintering of MBH4 (M = Li, Na, K) and B10H14 have been systematically investigated in order to understand its role in the dehydrogenation of M(BH4)n. Thermal decomposition of M2B12H12 indicates m...

  4. Electric Double-Layer Effects Induce Separation of Aqueous Metal Ions.

    Science.gov (United States)

    Ji, Qinghua; An, Xiaoqiang; Liu, Huijuan; Guo, Lin; Qu, Jiuhui

    2015-11-24

    Metal ion separation is crucial to environmental decontamination, chromatography, and metal recovery and recycling. Theoretical studies have suggested that the ion distributions in the electric double-layer (EDL) region depend on the nature of the ions and the characteristics of the charged electrode surface. We believe that rational design of the electrode material and device structure will enable EDL-based devices to be utilized in the separation of aqueous metal ions. On the basis of this concept, we fabricate an EDL separation (EDLS) device based on sandwich-structured N-functionalized graphene sheets (CN-GS) for selective separation of aqueous toxic heavy metal ions. We demonstrate that the EDLS enables randomly distributed soluble ions to form a coordination-driven layer and electrostatic-driven layer in the interfacial region of the CN-GS/solution. Through tuning the surface potential of the CN-GS, the effective separation of heavy metal ions (coordination-driven layer) from alkali or alkaline earth metal ions (electrostatic-driven layer) can be achieved. PMID:26481603

  5. Influence of the alkali metal cation on the fragmentation of monensin in ESI-MS/MS Influência de cátions de metais alcalinos sobre a fragmentação de monensina em ESI-MS/MS

    OpenAIRE

    Norberto Peporine Lopes; Filipe Alexandre Almeida-Paz; Paul Jonathan Gates

    2006-01-01

    The MS/MS fragmentation of the alkali metal complexes of monensin A are studied. The increase in alkali metal ionic radii decreases the ability of the Grob-Wharton fragmentation mechanism to occur and reduces the overall degree of fragmentation. Conversely, the electronegativity of the metal cation is related to the number of fragment ions observed.O presente trabalho relata os estudos de fragmentação por espectrometria de massas seqüencial de complexos formados pela monensina A e uma série d...

  6. Atomic many-body effects and Lamb shifts in alkali metals

    CERN Document Server

    Ginges, J S M

    2016-01-01

    We present a detailed study of the Flambaum-Ginges radiative potential method which enables the accurate inclusion of quantum electrodynamics (QED) radiative corrections in a simple manner in atoms, ions, and molecules over the range 10<=Z<=120, where Z is the nuclear charge. Calculations are performed for binding energy shifts to the lowest valence s, p, and d waves over the series of alkali atoms Na to E119. The high accuracy of the radiative potential method is demonstrated by comparison with rigorous QED calculations in frozen atomic potentials, with deviations on the level of 1%. The many-body effects of core relaxation and second- and higher-order perturbation theory on the interaction of the valence electron with the core are calculated. The inclusion of many-body effects tends to increase the size of the shifts, with the enhancement particularly significant for d waves; for K to E119, the self-energy shifts for d waves are only an order of magnitude smaller than the s-wave shifts. It is shown th...

  7. Hartree-Fock ground-state properties for the group 1 alkali metals and the group 11 noble metals

    International Nuclear Information System (INIS)

    In order to use wavefunction-based correlation methods in solids it is necessary to have reliable Hartree-Fock results for the infinite system of interest. Therefore we performed Hartree-Fock calculations for the group 1 alkali metals (Li to Cs) and group 11 noble metals (Cu, Ag and Au). We optimized a basis set of valence-double-ζ quality for the periodic system. For the lighter atoms all-electron basis sets are applied, whereas for the heavier atoms small-core pseudopotentials with the corresponding basis sets were used to deal with the scalar-relativistic effects. We determine the cohesive energy, the lattice constant and the bulk modulus of the systems at the Hartree-Fock level. We use the counterpoise correction for the free atom to minimize the basis set superposition error occurring for finite basis sets. The effects due to the counterpoise correction not only for the cohesive energy but also for the lattice structure and bulk modulus are discussed in detail

  8. Microstructure of metal Ion implanted ceramics

    International Nuclear Information System (INIS)

    Microstructure of alumina and silicon nitride after metal ion implantation has been studied. A metal vapour vacuum arc (MEVVA) ion source was employed to implant Ti ions into alumina with 7.6x1016 and 3.1x1017 ions/cm2 at 40 keV. Ti ions were also implanted into silicon nitride at a dose of 4x1017 ions/cm2 at 70 keV. The characterisation of ion implanted ceramics by Rutherford Backscattering Spectrometry (RBS) and cross-sectional transmission electron microscopy (XTEM) showed low dose Ti implantation into alumina resulted in a highly defective surface layer. At higher dose, TiO2 precipitates in an amorphous matrix were detected. In contrast, Ti implantation into silicon nitride produced a layered structure. The upper most layer consisted of extremely fine TiN particles in an amorphous matrix. Underneath this layer, an amorphous layer was formed. (authors)

  9. Optical detection of sodium salts of fluoride, acetate and phosphate by a diacylhydrazine ligand by the formation of a colour alkali metal complex

    Indian Academy of Sciences (India)

    Purnandhu Bose; Ranjan Dutta; I Ravikumar; Pradyut Ghosh

    2011-11-01

    A solution of N, N'-diacylhydrazine ligand in organic solvent is potential for colourimetric detection of F−/AcO−/PO$^{3−}_{4}$ via -NH deprotonation, tautomerization and its stabilization as a colour alkali metal complex.

  10. Research Investigation Directed Toward Extending the Useful Range of the Electromagnetic Spectrum. [atomic spectra and electronic structure of alkali metals

    Science.gov (United States)

    Hartmann, S. R.; Happer, W.

    1974-01-01

    The report discusses completed and proposed research in atomic and molecular physics conducted at the Columbia Radiation Laboratory from July 1972 to June 1973. Central topics described include the atomic spectra and electronic structure of alkali metals and helium, molecular microwave spectroscopy, the resonance physics of photon echoes in some solid state systems (including Raman echoes, superradiance, and two photon absorption), and liquid helium superfluidity.

  11. Second virial coefficients and viscosity property of monatomic alkali-metal gases

    International Nuclear Information System (INIS)

    In this work, we have calculated the second virial coefficients B2 of monatomic lithium, sodium, and potassium gases by using the most recent 1Σg+ and 3Σu+ Rydberg-Klein-Rees interatomic potentials. We have also determined the viscosity η and thermal conductivity λ coefficients of the alkali-metal vapors as a function of the temperature T. The results we have found of the collision integrals and of the coefficients η and λ agree quite well with some available experimental data. Besides, we have investigated the variation law with temperature T of the above thermophysical quantities. For temperatures ranging from 100 K to 3,000 K, the results can be reproduced by simple formulas η(T)=ATα and λ(T)=BTα, where for T in Kelvin, η in micropoise, and λ in 10-3 W·m-1·K-1, for lithium Li:A=0.314, B=0.1398, and α=0.863; for sodium Na:A=0.624, B=0.0846, and α=0.827; for potassium K:A=0.400, B=0.0320, and α=0.883. (author)

  12. Optical probes for the detection of protons, and alkali and alkaline earth metal cations.

    Science.gov (United States)

    Hamilton, Graham R C; Sahoo, Suban K; Kamila, Sukanta; Singh, Narinder; Kaur, Navneet; Hyland, Barry W; Callan, John F

    2015-07-01

    Luminescent sensors and switches continue to play a key role in shaping our understanding of key biochemical processes, assist in the diagnosis of disease and contribute to the design of new drugs and therapies. Similarly, their contribution to the environment cannot be understated as they offer a portable means to undertake field testing for hazardous chemicals and pollutants such as heavy metals. From a physiological perspective, the Group I and II metal ions are among the most important in the periodic table with blood plasma levels of H(+), Na(+) and Ca(2+) being indicators of several possible disease states. In this review, we examine the progress that has been made in the development of luminescent probes for Group I and Group II ions as well as protons. The potential applications of these probes and the mechanism involved in controlling their luminescent response upon analyte binding will also be discussed. PMID:25742963

  13. Properties of alkali metal atoms deposited on a MgO surface: a systematic experimental and theoretical study.

    Science.gov (United States)

    Finazzi, Emanuele; Di Valentin, Cristiana; Pacchioni, Gianfranco; Chiesa, Mario; Giamello, Elio; Gao, Hongjun; Lian, Jichun; Risse, Thomas; Freund, Hans-Joachim

    2008-01-01

    The adsorption of small amounts of alkali metal atoms (Li, Na, K, Rb, and Cs) on the surface of MgO powders and thin films has been studied by means of EPR spectroscopy and DFT calculations. From a comparison of the measured and computed g values and hyperfine coupling constants (hfccs), a tentative assignment of the preferred adsorption sites is proposed. All atoms bind preferentially to surface oxide anions, but the location of these anions differs as a function of the deposition temperature and alkali metal. Lithium forms relatively strong bonds with MgO and can be stabilized at low temperatures on terrace sites. Potassium interacts very weakly with MgO and is stabilized only at specific sites, such as at reverse corners where it can interact simultaneously with three surface oxygen atoms (rubidium and cesium presumably behave in the same way). Sodium forms bonds of intermediate strength and could, in principle, populate more than a single site when deposited at room temperature. In all cases, large deviations of the hfccs from the gas-phase values are observed. These reductions in the hfccs are due to polarization effects and are not connected to ionization of the alkali metal, which would lead to the formation of an adsorbed cation and a trapped electron. In this respect, hydrogen atoms behave completely differently. Under similar conditions, they form (H(+))(e(-)) pairs. The reasons for this different behavior are discussed. PMID:18381711

  14. Nano-baskets of Calix[4]-1,3-crown in Emulsion Membranes for Selective Extraction of Alkali Metal Cations

    Institute of Scientific and Technical Information of China (English)

    Bahram Mokhtari; Kobra Pourabdollah

    2013-01-01

    Nano-assisted inclusion separation of alkali metals from basic solutions was reported by inclu-sion-facilitated emulsion liquid membrane process. The novelty of this study is application of nano-baskets of calixcrown in the selective and efficient separation of alkali metals as both the carrier and the surfactant. For this aim, four derivatives of diacid calix[4]-1,3-crowns-4,5 were synthesized, and their inclusion-extraction parameters were optimized including the calixcrown scaffold (4.4%, by mass) as the carrier/demulsifier, the commercial kero-sene as diluent in membrane, sulphonic acid (0.2 mol·L-1) and ammonium carbonate (0.4 mol·L-1) as the strip and the feed phases, the phase and the treat ratios of 0.8 and 0.3, mixing speed (300 r·min-1), and initial solute concen-tration (100 mg·L-1). The selectivity of membrane over more than ten interfering cations was examined and the re-sults reveled that under the optimized operating condition, the degree of inclusion-extraction of alkali metals was as high as 98%-99%.

  15. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals

    OpenAIRE

    Liu, Yuanyue; Merinov, Boris V.; Goddard III, William A.

    2016-01-01

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same...

  16. Design and Test of Advanced Thermal Simulators for an Alkali Metal-Cooled Reactor Simulator

    Science.gov (United States)

    Garber, Anne E.; Dickens, Ricky E.

    2011-01-01

    The Early Flight Fission Test Facility (EFF-TF) at NASA Marshall Space Flight Center (MSFC) has as one of its primary missions the development and testing of fission reactor simulators for space applications. A key component in these simulated reactors is the thermal simulator, designed to closely mimic the form and function of a nuclear fuel pin using electric heating. Continuing effort has been made to design simple, robust, inexpensive thermal simulators that closely match the steady-state and transient performance of a nuclear fuel pin. A series of these simulators have been designed, developed, fabricated and tested individually and in a number of simulated reactor systems at the EFF-TF. The purpose of the thermal simulators developed under the Fission Surface Power (FSP) task is to ensure that non-nuclear testing can be performed at sufficiently high fidelity to allow a cost-effective qualification and acceptance strategy to be used. Prototype thermal simulator design is founded on the baseline Fission Surface Power reactor design. Recent efforts have been focused on the design, fabrication and test of a prototype thermal simulator appropriate for use in the Technology Demonstration Unit (TDU). While designing the thermal simulators described in this paper, effort were made to improve the axial power profile matching of the thermal simulators. Simultaneously, a search was conducted for graphite materials with higher resistivities than had been employed in the past. The combination of these two efforts resulted in the creation of thermal simulators with power capacities of 2300-3300 W per unit. Six of these elements were installed in a simulated core and tested in the alkali metal-cooled Fission Surface Power Primary Test Circuit (FSP-PTC) at a variety of liquid metal flow rates and temperatures. This paper documents the design of the thermal simulators, test program, and test results.

  17. Oxidation-reduction reactions of metal ions.

    OpenAIRE

    Carter, D E

    1995-01-01

    Several metal or metalloid ions exist in multiple oxidation states and can undergo electron transfer reactions that are important in biological and environmental systems. There are endogenous metal ions such as iron, copper, and cobalt that participate in oxidation-reduction reactions with species of oxygen like molecular dioxygen, superoxide, and hydrogen peroxide. These reactions may be modulated by endogenous reducing agents such as glutathione, ascorbate, and tocopherol. The reactions can...

  18. Gas and metal ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Oaks, E. [High Current Electronics Institute, Tomsk (Russian Federation)]|[State Academy of Control System and Radioelectronics, Tomsk (Russian Federation); Yushkov, G. [High Current Electronics Institute, Tomsk (Russian Federation)

    1996-08-01

    The positive ion sources are now of interest owing to both their conventional use, e.g., as injectors in charged-particle accelerators and the promising capabilities of intense ion beams in the processes related to the action of ions on various solid surfaces. For industrial use, the sources of intense ion beams and their power supplies should meet the specific requirements as follows: They should be simple, technologically effective, reliable, and relatively low-cost. Since the scanning of an intense ion beam is a complicated problem, broad ion beams hold the greatest promise. For the best use of such beams it is desirable that the ion current density be uniformly distributed over the beam cross section. The ion beam current density should be high enough for the treatment process be accomplished for an acceptable time. Thus, the ion sources used for high-current, high-dose metallurgical implantation should provide for gaining an exposure dose of {approximately} 10{sup 17} cm{sup {minus}2} in some tens of minutes. So the average ion current density at the surface under treatment should be over 10{sup {minus}5} A/cm{sup 2}. The upper limit of the current density depends on the admissible heating of the surface under treatment. The accelerating voltage of an ion source is dictated by its specific use; it seems to lie in the range from {approximately}1 kV (for the ion source used for surface sputtering) to {approximately}100 kV and over (for the ion sources used for high-current, high-dose metallurgical implantation).

  19. EFFECT OF DIFFERENT TREATMENTS ON CELLULOSE TOWARD CARBOXYLATION AND ITS APPLICATION FOR METAL ION ABSORPTION

    Directory of Open Access Journals (Sweden)

    A. M. A. Nada

    2009-02-01

    Full Text Available Carboxylation of cotton linters was investigated relative to its use in ion exchange. The effects of different treatments of cotton linters, such as alkali, acid, and activating agents, e.g. LiCl, on the molecular structure and carboxylation of cotton linters were taken in our consideration. The absence or presence of a crosslinking was considered, and the efficiency of these prepared carboxylated cotton linters toward metal ions uptake, as well as thermal analysis of treated and carboxylated cotton linters, was investigated. It was found that treatment of cotton linters with alkali and activating agent decreased the crystallinity index (band intensity at 1425/band intensity at 890 cm-1. On the other hand, the prepared carboxylated cotton linters had lower crystallinity index than uncarboxylated linters. Thermal analysis of the treated and carboxylated cotton linters allowed calculation of the activation energy of thermally treated materials. It was found that the crosslinked and acid treated cotton linters had a higher activation.

  20. Effect of alkali metals on the interaction of O2 and CO with some transition-metal surfaces

    International Nuclear Information System (INIS)

    The interactions of O2 and CO with alkali covered Ni, Ru, and Pt are reviewed with emphasis on the author's own studies. It is shown that the presence of alkalis changes the coadsorbates adsorption rates, heats of adsorption, and dissociative propensity, the strength of the effect depending on the alkali nature and coverage. The differences for the three substrates are interpreted comparing the properties of the clean surface. A detailed analysis of the coadsorbate--modifier interactions suggests that they depend on the adsorption state of the alkali species and the coadsorbate--substrate bond strength. Evidence of the formation of patches of ''surface complexes'' coexisting with the unperturbed surface is given and discussed in terms of strong direct alkali--coadsorbate interactions

  1. Effect of metallic Si addition on polymerization degree of in situ foamed alkali-aluminosilicates

    Czech Academy of Sciences Publication Activity Database

    Medri, V.; Papa, E.; Dědeček, Jiří; Jirglová, Hana; Benito, P.; Vaccari, A.; Landi, E.

    2013-01-01

    Roč. 39, č. 7 (2013), s. 7657-7668. ISSN 0272-8842 Institutional support: RVO:61388955 Keywords : B. porosity * alkali-bonded ceramics * geopolymerization Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.086, year: 2013

  2. Synthesis and properties of alkali metal intercalated fullerene-like MS2 (M=W,Mo) nanoparticles

    International Nuclear Information System (INIS)

    Layered metal disulfides - MoS2 and WS2 in the form of fullerene-like (IF) nanoparticles and in the form of platelets (crystallites of the 2H polytype) have been intercalated by exposure to alkali metal (potassium and sodium) vapor using a two-zone transport method. The composition of the intercalated systems was established using X-ray energy dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS). X-ray powder diffraction (XRD) analysis and transmission electron microscopy (TEM) of the samples, which were not exposed to the ambient atmosphere, showed that they suffered little change in their lattice parameters. On the other hand, after exposure to ambient atmosphere, substantial increase in the interplanar spacing (3-5 Aa) was observed for the intercalated phases. Insertion of one to two water molecules per intercalated metal atom was suggested as a possible explanation for this large expansion along the c-axis. The modifications in magnetic and transport properties of the intercalated materials were investigated, and are believed to occur via charge transfer from the alkali metal to the conduction band of the host lattice. Restacking of the MS2 layers after prolonged exposure to the atmosphere and recovery of the pristine compound properties were observed as a result of deintercalation of the metal atoms

  3. Syntheses and characterization of one-dimensional alkali metal antimony(III) thiostannates(IV), A{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} (A=K, Rb, Cs)

    Energy Technology Data Exchange (ETDEWEB)

    Yohannan, Jinu P.; Vidyasagar, Kanamaluru, E-mail: kvsagar@iitm.ac.in

    2015-01-15

    Three new isostructural quaternary antimony(III) thiostannates(IV), A{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} (A=K, Rb, Cs) have been synthesized by using alkali metal thiosulfate flux and structurally characterized by X-ray diffraction. Their structures contain A{sup +} ions around the [Sb{sub 2}Sn{sub 3}S{sub 10}]{sup 2−} chains, which are built from SbS{sub 3} pyramids, SnS{sub 6} octahedra and SnS{sub 4} tetrahedra. Raman and Mössbauer spectroscopic measurements corroborate the oxidation states and coordination environments of Sb(III) and Sn(IV). All three compounds are wide band gap semiconductors. Potassium compound undergoes partial exchange with strontium, cadmium and lead ions. - Graphical abstract: Syntheses, crystal structure, spectroscopic and partial ion-exchange studies of new one-dimensional alkali metal antimony(III) thiostannates(IV), A{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} (A=K, Rb, Cs) are described. - Highlights: • Syntheses of new alkali metal antimony(III) thiostannates(IV), A{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} (A=K, Rb, Cs). • Wide band gap semiconductors with one-dimensional structure. • Topotactic partial exchange of K{sup +} ions of K{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} with Sr{sup 2+}, Cd{sup 2+} and Pb{sup 2+} ions.

  4. Intense metal ion beam source for heavy ion fusion

    International Nuclear Information System (INIS)

    We have developed an ion source which can produce high current beams of metal ions. The source uses a metal vapor vacuum arc discharge as the plasma medium from which the ions are extracted, so we have called this source the MEVVA ion source. The metal plasma is created simply and efficiently and no carrier gas is required. Beams have been produced from metallic elements spanning the periodic table from lithium through uranium, at extraction voltages from 10 to 60 kV and with beam currents as high as 1.1 Amperes (electrical current in all charge states). A brief description of the source is given and its possible application as an ion source for heavy ion fusion is considered. Beams such as C+ (greater than or equal to99% of the beam in this species and charge state), Cr2+ (80%), and Ta/sup 3+,4+,5+/ (mixed charge states) have been produced. Beam emittance measurements and ways of increasing the source brightness are discussed

  5. Hydrogen production coupled to nuclear waste treatment: the safe treatment of alkali metals through a well-demonstrated process

    International Nuclear Information System (INIS)

    In 1992, the United Nations emphasised the urgent need to act against the perpetuation of disparities between and within nations, the worsening of poverty, hunger, ill health and illiteracy and the continuing deterioration of ecosystems on which we depend for our well-being. In this framework, taking into account the preservation of both worldwide energy resources and ecosystems, the use of nuclear energy to produce clean energy carriers, such as hydrogen, is undoubtedly advisable. However, coping fully with the Agenda 21 statements requires defining adequate treatment processes for nuclear wastes. This paper discusses the possible use of a well-demonstrated process to convert radioactively contaminated alkali metals into sodium hydroxide while producing hydrogen. We conclude that a synergy between Chlor-Alkali specialists and nuclear specialists may help find an acceptable solution for radioactively contaminated sodium waste. (author)

  6. Computational Design of Metal Ion Sequestering Agents

    Energy Technology Data Exchange (ETDEWEB)

    Hay, Benjamin P.; Rapko, Brian M.

    2005-06-15

    Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach for discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort.

  7. Computational Design of Metal Ion Sequestering Agents

    Energy Technology Data Exchange (ETDEWEB)

    Hay, Benjamin P.; Rapko, Brian M.

    2006-06-01

    Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach for discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort.

  8. Theoretical investigation on the alkali-metal doped BN fullerene as a material for hydrogen storage

    International Nuclear Information System (INIS)

    Graphical abstract: First-principles calculations have been used to investigate hydrogen adsorption on alkali atom doped B36N36 clusters. Adsorption of alkali atoms involves a charge transfer process, creating positively-charged alkali atoms and this polarizes the H2 molecules and increases their binding energy. The maximum hydrogen storage capacity of Li doped BN fullerene is 8.9 wt.% in which 60 hydrogen atoms were chemisorbed and 12 H2 were adsorbed in molecular form. - Abstract: First-principles calculations have been used to investigate hydrogen adsorption on alkali atom doped B36N36 clusters. The alkali atom adsorption takes place near the six tetragonal bridge sites available on the cage, thereby avoiding the notorious clustering problem. Adsorption of alkali atoms involves a charge transfer process, creating positively charged alkali atoms and this polarizes the H2 molecules thereby, increasing their binding energy. Li atom has been found to adsorb up to three hydrogen molecules with an average binding energy of 0.189 eV. The fully doped Li6B36N36 cluster has been found to hold up to 18 hydrogen molecules with the average binding energy of 0.146 eV. This corresponds to a gravimetric density of hydrogen storage of 3.7 wt.%. Chemisorption on the Li6B36N36 has been found to be an exothermic reaction, in which 60 hydrogen atoms chemisorbed with an average chemisorption energy of -2.13 eV. Thus, the maximum hydrogen storage capacity of Li doped BN fullerene is 8.9 wt.% in which 60 hydrogen atoms were chemisorbed and 12 hydrogen molecules were adsorbed in molecular form.

  9. Alkali-ions diffusion, mullite formation, and crystals dissolution during sintering of porcelain bodies: Microstructural approach

    DEFF Research Database (Denmark)

    Leonelli, C.; Kamseu, E.; Boccaccini, Dino; Sglavo, V.M.; Pellacani, G.C.

    2009-01-01

    The effect of alkali-silicate glassy matrix as replacement for feldspar in soft and hard porcelain compositions was studied. SEM and X-ray diffraction analysis were used to evidence phase evolution. For each composition, the influence of soaking time was evaluated. The difference in chemical comp...

  10. Computational Design of Metal Ion Sequestering Agents

    Energy Technology Data Exchange (ETDEWEB)

    Hay, Benjamin P.; Rapko, Brian M.

    2005-06-15

    Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach for discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort. This project seeks to enhance and strengthen the traditional approach through computer-aided design of new and improved host molecules. Accurate electronic structure calculations are coupled with experimental data to provide fundamental information about ligand structure and the nature of metal-donor group interactions (design criteria). This fundamental information then is used in a molecular mechanics model (MM) that helps us rapidly screen proposed ligand architectures and select the best members from a set of potential candidates. By using combinatorial methods, molecule building software has been developed that generates large numbers of candidate architectures for a given set of donor groups. The specific goals of this project are: • further understand the structural and energetic aspects of individual donor group- metal ion interactions and incorporate this information within the MM framework • further develop and evaluate approaches for correlating ligand structure with reactivity toward metal ions, in other words, screening capability • use molecule structure building software to generate

  11. Where metal ions bind in proteins.

    OpenAIRE

    Yamashita, M M; Wesson, L.; Eisenman, G.; Eisenberg, D.

    1990-01-01

    The environments of metal ions (Li+, Na+, K+, Ag+, Cs+, Mg2+, Ca2+, Mn2+, Cu2+, Zn2+) in proteins and other metal-host molecules have been examined. Regardless of the metal and its precise pattern of ligation to the protein, there is a common qualitative feature to the binding site: the metal is ligated by a shell of hydrophilic atomic groups (containing oxygen, nitrogen, or sulfur atoms) and this hydrophilic shell is embedded within a larger shell of hydrophobic atomic groups (containing car...

  12. Neutralization of fast alkali-ions after grazing scattering from Al(111) and Ni(111)

    Energy Technology Data Exchange (ETDEWEB)

    Zimny, R.; Nienhaus, H.; Winter, H. (Muenster Univ. (Germany, F.R.). Inst. fuer Kernphysik)

    1989-01-01

    We have studied the neutralization of fast Na{sup +}- and K{sup +}-ions after the interaction with clean and flat Al(111)-and Ni(111)-surfaces at grazing incidence (PHI{sub in}<1{sup 0}). The neutral fractions of specularly reflected projectiles show two different classes of dependences on projectile velocity which can be referred to the difference between work function of the target and binding energy of the atomic ground term. Model calculations in the framework of resonance tunneling between metal surface and atom which incorporate the parallel velocity of the projectile by Galilean-transformation and the electronic spin degree of freedom reproduce our experimental data fairly well. (author).

  13. Plasma assisted measurements of alkali metal concentrations in pressurised combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R.; Haeyrinen, V. [Tampere Univ. of Technology (Finland)

    1997-10-01

    In this project the continuous alkali measurement method plasma excited alkali resonance line spectroscopy (PEARLS) was developed, tested and demonstrated in pressurised combustion facilities. The PEARLS method has been developed at Tampere University of Technology (TUT). During 1994-1996 the PEARLS method was developed from the laboratory level to an industrial prototype. The alkali measuring instrument has been tested and used for regular measurements in four different pressurised combustion installations ranging up to industrial pilot scale. The installations are: (1) a pressurised entrained flow reactor (PEFR) at VTT Energy in Jyvaeskylae, Finland (2) a pressurised fluidised bed combustion facility, called FRED, at DMT in Essen, Germany. (3) a 10 MW pressurised circulating fluidised bed combustion pilot plant at Foster Wheeler Energia Oy in Karhula, Finland (4) PFBC Research Facility at ABB Carbon in Finspaang, Sweden

  14. First-principles study of ternary graphite compounds cointercalated with alkali atoms (Li, Na, and K) and alkylamines towards alkali ion battery applications

    Science.gov (United States)

    Ri, Gum-Chol; Yu, Chol-Jun; Kim, Jin-Song; Hong, Song-Nam; Jong, Un-Gi; Ri, Mun-Hyok

    2016-08-01

    First-principles calculations were carried out to investigate the structural, energetic, and electronic properties of ternary graphite compounds cointercalated with alkali atoms (AM = Li, Na, and K) and normal alkylamine molecules (nCx; x = 1, 2, 3, 4), denoted as AM-nCx-GICs. From the optimization of the orthorhombic unit cells for the crystalline compounds, it was found that, with the increase in the atomic number of alkali atoms, the layer separations decrease in contrast to AM-GICs, while the bond lengths between alkali atoms and graphene layer, and nitrogen atom of alkylamine increase. The calculated formation energies and interlayer binding energies of AM-nC3-GICs indicate that the compounds is increasingly stabilized from Li to K, and the energy barriers for migration of alkali atoms suggest that alkali cation with larger ionic radius diffuses more smoothly in graphite, being similar to AM-GICs. Through the analysis of electronic properties, it was established that more extent of electronic charge is transferred from more electropositive alkali atom to the carbon ring of graphene layer, and the hybridization of valence electron orbitals between alkylamine molecules and graphene layer is occurred.

  15. Methane coupling reaction in an oxy-steam stream through an OH radical pathway by using supported alkali metal catalysts

    KAUST Repository

    Liang, Yin

    2014-03-24

    A universal reaction mechanism involved in the oxidative coupling of methane (OCM) is demonstrated under oxy-steam conditions using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH radical formation from a H 2O-O2 reaction followed by C-H activation in CH 4 with an OH radical. Thus, the presence of water enhances both the CH4 conversion rate and the C2 selectivity. This OH radical pathway that is selective for the OCM was observed for the catalyst without Mn, which suggests clearly that Mn is not the essential component in a selective OCM catalyst. The experiments with different catalyst compositions revealed that the OH.-mediated pathway proceeded in the presence of catalysts with different alkali metals (Na, K) and different oxo anions (W, Mo). This difference in catalytic activity for OH radical generation accounts for the different OCM selectivities. As a result, a high C2 yield is achievable by using Na2WO4/SiO2, which catalyzes the OH.-mediated pathway selectively. Make it methane: A universal reaction mechanism involved in the oxidative coupling of methane is demonstrated under oxy-stream conditions by using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH radical formation from an H2O-O2 reaction, followed by C-H activation in CH4 with an OH radical. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Cooper minima in the transitions from low-excited and Rydberg states of alkali-metal atoms

    OpenAIRE

    Beterov, I. I.; Mansell, C. W.; Yakshina, E. A.; Ryabtsev, I. I.; Tretyakov, D. B.; Entin, V. M.; MacCormick, C.; Piotrowicz, M. J.; Kowalczyk, A.; S. Bergamini

    2012-01-01

    The structure of the Cooper minima in the transition probabilities and photoionization cross-sections for low-excited and Rydberg nS, nP, nD and nF states of alkali-metal atoms has been studied using a Coulomb approximation and a quasiclassical model. The range of applicability of the quasiclassical model has been defined from comparison with available experimental and theoretical data on dipole moments, oscillator strengths, and photoionization cross-sections. A new Cooper minimum for transi...

  17. Cooper minima in the transitions from low-excited and Rydberg states of alkali-metal atoms

    CERN Document Server

    Beterov, I I; Yakshina, E A; Ryabtsev, I I; Tretyakov, D B; Entin, V M; MacCormick, C; Piotrowicz, M J; Kowalczyk, A; Bergamini, S

    2012-01-01

    The structure of the Cooper minima in the transition probabilities and photoionization cross-sections for low-excited and Rydberg nS, nP, nD and nF states of alkali-metal atoms has been studied using a Coulomb approximation and a quasiclassical model. The range of applicability of the quasiclassical model has been defined from comparison with available experimental and theoretical data on dipole moments, oscillator strengths, and photoionization cross-sections. A new Cooper minimum for transitions between rubidium Rydberg states has been found.

  18. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    International Nuclear Information System (INIS)

    We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of 87Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the 87Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the 87Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system

  19. Nuclear Wavepacket Dynamics of Alkali Adsorbates on Metal Surfaces Studied by Time-Resolved Second Harmonic Generation

    Directory of Open Access Journals (Sweden)

    Kazuya Watanabe

    2012-01-01

    Full Text Available This paper reviews recent efforts to understand the dynamics of coherent surface vibrations of alkali atoms adsorbed on metal surfaces. Time-resolved second harmonic generation is used for the coherent excitation and detection of the nuclear wavepacket dynamics of the surface modes. The principles of the measurement and the experimental details are described. The main focus is on coverage and excitation photon energy dependences of the coherent phonon dynamics for Na-, K-, and Cs-covered Cu(111. The excitation mechanism of the coherent phonon has been revealed by the ultrafast time-domain technique and theoretical modelings.

  20. Thermophysical properties of alkali metal vapours. Part II - assessment of experimental data on thermal conductivity and viscosity

    OpenAIRE

    Fialho, Paulo; Ramires, Maria de Lurdes V.; Nieto de Castro, Carlos A.; João M. N. A. Fareleira; Mardolcar, Umesh V.

    1994-01-01

    Copyright © 1994 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Article first published online: 8 MAY 2010. An analysis of the available data on the viscosity and thermal conductivity coefficients of the alkali metal vapours is presented. The analysis is based upon theoretical calculations of the properties of the monatomic systems, described in the preceding parts I and I.A of the present paper, and making use of the kinetic theory of a binary gas reacting mixture. A summary of the measur...

  1. Collimated, single-pass atom source from a pulsed alkali metal dispenser for laser-cooling experiments

    International Nuclear Information System (INIS)

    We have developed an improved scheme for loading atoms into a magneto-optical trap (MOT) from a directed rubidium alkali metal dispenser in -10 Torr ultrahigh vacuum conditions. A current-driven dispenser was surrounded with a cold absorbing 'shroud' held at ≤0 deg. C, pumping rubidium atoms not directed into the MOT. This nearly eliminates background atoms and reduces the detrimental rise in pressure normally associated with these devices. The system can be well-described as a current-controlled, rapidly switched, two-temperature thermal beam, and was used to load a MOT with 3x108 atoms

  2. Sensitive determination of the spin polarization of optically pumped alkali-metal atoms using near-resonant light.

    Science.gov (United States)

    Ding, Zhichao; Long, Xingwu; Yuan, Jie; Fan, Zhenfang; Luo, Hui

    2016-01-01

    A new method to measure the spin polarization of optically pumped alkali-metal atoms is demonstrated. Unlike the conventional method using far-detuned probe light, the near-resonant light with two specific frequencies was chosen. Because the Faraday rotation angle of this approach can be two orders of magnitude greater than that with the conventional method, this approach is more sensitive to the spin polarization. Based on the results of the experimental scheme, the spin polarization measurements are found to be in good agreement with the theoretical predictions, thereby demonstrating the feasibility of this approach. PMID:27595707

  3. Third order nonlinear optical properties and optical limiting behavior of alkali metal complexes of p-nitrophenol

    Science.gov (United States)

    Thangaraj, M.; Vinitha, G.; Sabari Girisun, T. C.; Anandan, P.; Ravi, G.

    2015-10-01

    Optical nonlinearity of metal complexes of p-nitrophenolate (M=Li, Na and K) in ethanol is studied by using a continuous wave (cw) diode pumped Nd:YAG laser (532 nm, 50 mW). The predominant mechanism of observed nonlinearity is thermal in origin. The nonlinear refractive index and the nonlinear absorption coefficient of the samples were found to be in the order of 10-8 cm2/W and 10-3 cm/W respectively. Magnitude of third-order optical parameters varies according to the choice of alkali metal chosen for metal complex formation of p-nitrophenolate. The third-order nonlinear susceptibility was found to be in the order of 10-6 esu. The observed saturable absorption and the self-defocusing effect were used to demonstrate the optical limiting action at 532 nm by using the same cw laser beam.

  4. Alkali metal salts of rutin - Synthesis, spectroscopic (FT-IR, FT-Raman, UV-VIS), antioxidant and antimicrobial studies.

    Science.gov (United States)

    Samsonowicz, M; Kamińska, I; Kalinowska, M; Lewandowski, W

    2015-12-01

    In this work several metal salts of rutin with lithium, sodium, potassium, rubidium and cesium were synthesized. Their molecular structures were discussed on the basis of spectroscopic (FT-IR, FT-Raman, UV-VIS) studies. Optimized geometrical structure of rutin was calculated by B3LYP/6-311++G(∗∗) method and sodium salt of rutin were calculated by B3LYP/LanL2DZ method. Metal chelation change the biological properties of ligand therefore the antioxidant (FRAP and DPPH) and antimicrobial activities (toward Escherichia coli, Staphylococcus aureus, Enterococcus faecium, Proteus vulgaris, Pseudomonas aeruginosa, Klebsiella pneumonia, Candida albicans and Saccharomyces cerevisiae) of alkali metal salts were evaluated and compared with the biological properties of rutin. PMID:26184478

  5. Characterization of alkali-metal and alkaline-earth nitrates by vibrational spectroscopy

    Directory of Open Access Journals (Sweden)

    Martínez, S.

    1992-09-01

    Full Text Available Infrared spectra of sodium and potassium alkaline-metal nitrates and magnesium and calcium alkali-earth nitrates in solid phase had been recorded in order to assign the fundamental bands. The influence of the dispersal médium (alkaline halide, employed in the solid sample preparation have been discussed. The quantitative measurements of the band in ten sities at 1387 cm-1 (present in the I.R. spectra of the four nitrates in KBr médium allowed us to determine the Lambert-Beer law slopes for each compound. These values are differents (bearing in mind experimental random errors, so we have could to affirm the nonexistence of solid solution between the nitrate and the alkaline halide médium. The L-B law obtained by us can be used for the Identification differentiation and quantitative analysis of these nitrates in solid phase, even if they are present in a very low concentration.

    Se ha realizado la asignación de los espectros infrarrojo (IR de los nitratos alcalinos, sódico y potásico, y de los alcalinotérreos, magnésico y cálcico, en estado sólido. Se ha visto la influencia del medio dispersante (haluro alcalino, utilizado en la preparación de la muestra sólida. El estudio cuantitativo de la absorbencia de la banda a 1.387 cm-1 (presente en los espectros IR de los cuatro nitratos en medio KBr permite determinar las pendientes de la Ley de Lambert-Beer Se comprueba que dichas pendientes son diferentes lo que conduce a poder afirmar que no se produce disolución sólida entre el KBr y el nitrato alcalino o alcalinotérreo. La determinación de la ley de Lambert-Beer permite la identificación y el análisis cualitativo y cuantitativo por espectroscopia IR de estos nitratos cuando están presentes en bajas concentraciones en muestras sólidas.

  6. Structural study and properties of the alkali metal, nitrosyl, and ammonium hepta- and octafluorouranates(VI)

    International Nuclear Information System (INIS)

    The thermal decomposition of the heptafluorouranates(VI) of the alkali metals is shown to take place in two steps. The first step gives the octafluorouranates(VI) and UF6, and the decomposition rate is noticeable at temperatures above 100, 130, 150, and 2100C for the Na, K, Rb, and Cs salts, respectively. The second step for Na2UF8 yields pure NaF and UF6 above 3000C, whereas the decomposition temperatures for the K, Rb, and Cs salts are above 300, 350, and 4000C, respectively. Depending on the decomposition conditions, F2 and M2UF7(M = K, Rb, Cs) or F2, UF6, and M3UF8 are formed. The heptafluorouranates(VI) of all the cations studied, except for ammonium, were shown to exhibit dimorphism. The parameters of their cubic form were obtained and are as follows: KUF7; a = 5.22 A; RbUF7; a = 5.385 A; CsUF7; a = 5.517 A; NOUF7; a = 5.334 A; NH4UF7; a = 5.393 A; NaUF7(fccub), a = 8.511 A, Z = 4. The x-ray pattern of the low-symmetry form of CsUF7 just below the solid transition temperature (15 +- 10C) was indexed with a tetragonal cell where a = 5.50 A and c = 5.37 A. The x-ray diagrams of the low symmetry form of the other MUF7 salts were not indexed, whereas those of the octafluorouranates were indexed with orthorhombic cells. The vibrational spectra of the hepta- and octafluorouranates were found to be very dependent on the temperature, and for the same temperature on the cation size. Some trends observed in this study, like the thermal decomposition temperatures or the relative symmetries, are thought to arise from the differences in the cation--anion interaction. This interaction is stronger with smaller cations, which results in more distorted anions, less ionic U--F bonds, and paradoxically less stable complexes

  7. Similarities and differences of alkali metal chlorides applied in organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lue, Zhaoyue [Department of Physics, School of Science, East China University of Science and Technology, Shanghai 200237 (China); Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Deng, Zhenbo [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Hou, Ying [Department of Physics, School of Science, East China University of Science and Technology, Shanghai 200237 (China); Xu, Haisheng, E-mail: hsxu@ecust.edu.cn [Department of Physics, School of Science, East China University of Science and Technology, Shanghai 200237 (China); Kunshan Hisense Electronics, Co., Ltd., Kunshan, Jiangsu 215300 (China)

    2012-12-15

    The similarities and differences of alkali metal chlorides (sodium chloride (NaCl), potassium chloride (KCl), rubidium chloride (RbCl) and cesium chloride (CsCl)) applied in organic light-emitting diodes (OLEDs) are investigated. The behavior is similar for the OLEDs with these four chlorides as electron injection layer (EIL). Their maximum luminance and efficiency at 100 mA/cm{sup 2} are within the ranges of 18 550 {+-} 600 (cd/m{sup 2}) with an error of 3.23% and 4.09 {+-} 0.15 (cd/A) within an error of 3.67%, respectively. The similar performance is due to almost identical electron injection barrier for NaCl, KCl, RbCl and CsCl as EIL. Interestingly, the properties are different for devices with chlorides inserted inside tris (8-hydroxyquinoline) aluminum at the position of 20 nm away from aluminum cathode, labeled as NaCl-, KCl-, RbCl- and CsCl- devices. The relation of luminance is CsCl- > RbCl- = KCl- > NaCl-, where '>' and '=' mean 'better than' and 'the same as', respectively. And the device efficiencies are decreased from CsCl to NaCl. That is, the sort order of the efficiencies is CsCl- > RbCl- > KCl- > NaCl-. The mechanism is explained by tunneling model in terms of various energy gaps estimated by optical electronegativity of NaCl, KCl, RbCl and CsCl. - Highlights: Black-Right-Pointing-Pointer Effects of NaCl, KCl, RbCl and CsCl in organic light-emitting diodes are compared. Black-Right-Pointing-Pointer The similar performance is due to almost identical electron injection barrier. Black-Right-Pointing-Pointer The different behavior of chlorides inside Alq{sub 3} is explained by tunneling model. Black-Right-Pointing-Pointer The different behavior is attributed to various energy gaps of different chlorides. Black-Right-Pointing-Pointer The efficiency of device with chlorides inside Alq{sub 3} is decreased from CsCl to NaCl.

  8. Stability diagrams for fourfold coordination of polyvalent metal ions in molten mixtures of halide salts

    International Nuclear Information System (INIS)

    The stability of local fourfold coordination for divalent and trivalent metal ions in liquid mixtures of polyvalent metal halides and alkali halides is classified by means of structural coordinates obtained from properties of the elements. In parallel with earlier classifications of compound crystal structures and molecular shapes, the elemental properties are taken from first-principles calculations of valence electron orbitals in atoms, in the form of (i) the nodal radii of Andreoni, Baldereschi and Guizzetti or (ii) the pseudopotential radii or Zunger and Cohen. As a third alternative a classification based on Pettifor's phenomenological chemical scale of the elements is also considered. The alternative structural classification schemes that are developed from these elemental properties are generally successfully in distinguishing molten mixtures in which the available experimental evidence indicates long-lived fourfold coordination of polyvalent metal ions. In addition, Pettifor's chemical scale scheme is useful in sorting out finer details of local coordination in the liquid state. 3 figs., 71 refs

  9. Electronic structure and Fano antiresonance of chromium Cr(III) ions in alkali silicate glasses

    International Nuclear Information System (INIS)

    The optical properties of the Cr3+ doped in alkali silicate glasses X2O–SiO2 with different modifier cations X=Li, Na and K have been investigated by Villian et al. This work investigates a theoretical crystal-field analysis of the electronic energy levels of Cr3+ in these glasses. This analysis based on the Racah theory was carried out for the Chromium (III) center with an Oh site symmetry. The objective of this study is to determine the effect of glass matrix modifier on the Racah B, C and crystal-field Dq parameters. The effect of the glass matrix environment on these parameters is also reported by comparison with alkali cadmium borosulphate, phosphate and borate glasses. The interference dips observed in the broad band 4T2g(4F) result from interaction with the 2Eg(2G) and 2T1g(2G) sharp levels are known as the Fano antiresonance model. This feature is qualitatively studied using the adiabatic potential surfaces for the quartet 4T2g(4F) and doublet 2Eg(2G) levels. - Highlights: • The electronic structure of Cr3+ in alkali silicate glasses X2O–SiO2 (X=Li,Na,K) was performed. • The theoretical study, based on Racah theory, permits us to deduce the energy levels. • The observed interference dip in absorption spectra is related to Fano antiresonance

  10. Alkali metal and ammonium chlorides in water and heavy water (binary systems)

    CERN Document Server

    Cohen-Adad, R

    1991-01-01

    This volume surveys the data available in the literature for solid-fluid solubility equilibria plus selected solid-liquid-vapour equilibria, for binary systems containing alkali and ammonium chlorides in water or heavy water. Solubilities covered are lithium chloride, sodium chloride, potassium chloride, rubidium chloride, caesium chloride and ammonium chloride in water and heavy water.

  11. Plasma assisted measurements of alkali metal concentrations in pressurized combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R.; Haeyrinen, V. [Tampere Univ. of Technology (Finland). Dept. of Physics

    1996-12-01

    The plasma assisted method for continuous measurement of alkali concentrations in product gas flows of pressurized energy processes will be tested and applied at the 1.6 MW PFBC/G facility at Delft University of Technology in the Netherlands. During the reporting period the alkali measuring device has been tested under pressurized conditions at VTT Energy, DMT, Foster-Wheeler Energia and ABB Carbon. Measurements in Delft will be performed during 1996 after installation of the hot gas filter. The original plan for measurements in Delft has been postponed due to schedule delays in Delft. The results are expected to give information about the influence of different process conditions on the generation of alkali vapours, the comparison of different methods for alkali measurement and the specific performance of our system. This will be the first test of the plasma assisted measurement method in a gasification process. The project belongs to the Joule II extension program under contract JOU2-CT93-0431. (author)

  12. Superconductivity and electrical resistivity in alkali metal doped fullerides: Phonon mechanism

    Indian Academy of Sciences (India)

    Dinesh Varshney; A Dube; K K Choudhary; R K Singh

    2005-04-01

    We consider a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. We first study the intercage interactions between the adjacent C60 cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C60 phonons. Electronic parameter as repulsive parameter and the attractive coupling strength are obtained within the random phase approximation. Transition temperature, c, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C60 phonons as 5 K, which is much lower as compared to reported c (≈ 20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. To illustrate the usefulness of the above approach, the carbon isotope exponent and the pressure effect are also estimated. Temperature dependence of electrical resistivity is then analysed within the same model phonon spectrum. It is inferred from the two-peak model for phonon density of states that high frequency intramolecular phonon modes play a major role in pairing mechanism with possibly some contribution from alkali-C60 phonon to describe most of the superconducting and normal state properties of doped fullerides.

  13. Luminescent decay and spectra of impurity-activated alkali halides under high pressure

    International Nuclear Information System (INIS)

    The effect of high pressure on the luminescence of alkali halides doped with the transition-metal ions Cu+ and Ag+ and the heavy-metal ions In+ and Tl+ was investigated to 140 kbar. Measurement of spectra allowed the prediction of kinetic properties, and the predictions agree with lifetime data

  14. Enhancement of green long lasting phosphorescence in CaSnO{sub 3}:Tb{sup 3+} by addition of alkali ions

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Zuoqiu [Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026 (China); Zhang, Jinsu, E-mail: zhangjinsu@gmail.com [Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026 (China); Sun, Jiashi; Li, Xiangping; Cheng, Lihong; Zhong, Haiyang; Fu, Shaobo; Tian, Yue [Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026 (China); Chen, Baojiu, E-mail: chenmbj@sohu.com [Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026 (China)

    2013-03-01

    Long lasting phosphors of CaSnO{sub 3}:Tb{sup 3+} added alkali ions (Li{sup +}, Na{sup +}, K{sup +}) were prepared by solid-state reaction. The phosphorescence of samples consists of a group of green emission lines originating from {sup 5}D{sub 4}→{sup 7}F{sub J} transitions of Tb{sup 3+}. The afterglow spectra and concentration quenching behaviors of fluorescence were investigated in the Tb{sup 3+} mono-doped sample. The result shows the optimal doping concentration of Tb{sup 3+} is 0.3 mol%. In the co-doped samples, the doping concentrations of Tb{sup 3+} and alkali ions are both at 0.3 mol%. It is found from the afterglow decay curves that the introduction of alkali ions can prolong the phosphorescent lasting time and the sample of incorporating Na{sup +} shows the best result. Tb{sup 3+} and alkali ions can substitute Ca{sup 2+} ions, acting as hole and electron traps, respectively. The thermoluminescence (TL) spectra are also investigated. The depths of traps for the mono- and co-doped samples are calculated to be 0.622, 0.541, 0.529 and 0.538 eV, respectively. Moreover, the possible mechanism of the green long lasting phosphorescence is proposed based on the experiment results.

  15. IMMUNOASSAYS FOR METAL IONS. (R824029)

    Science.gov (United States)

    AbstractAntibodies that recognize chelated forms of metal ions have been used to construct immunoassays for Cd(II), Hg(II), Pb(II), and Ni(II). In this paper, the format of these immunoassays is described and the binding properties of three monoclonal antibodies direc...

  16. XPS studies and photocurrent applications of alkali-metals-doped ZnO nanoparticles under visible illumination conditions

    Science.gov (United States)

    Saáedi, Abdolhossein; Yousefi, Ramin; Jamali-Sheini, Farid; Zak, Ali Khorsand; Cheraghizade, Mohsen; Mahmoudian, M. R.; Baghchesara, Mohammad Amin; Dezaki, Abbas Shirmardi

    2016-05-01

    The present work is a study about a relationship between X-ray photoelectron spectrometer (XPS) results and photocurrent intensity of alkali-metals-elements doped ZnO nanoparticles, which is carried out under visible illumination conditions. The nanoparticles were synthesized by a simple sol-gel method. Structure and morphology studies of the NPs were carried out by X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM). The effect of doping on the optical band-gap was investigated by using UV-visible spectrometer. The absorption peak of the doped ZnO NPs was red-shifted with respect to that of the undoped ZnO NPs. After that, the photocurrent application of the products was examined under a white light source at 2 V bias. The photocurrent results showed that, the current intensity of the ZnO NPs was increased by doping materials. However, K-doped ZnO NPs showed the highest photocurrent intensity. Finally, a discussion was carried out about the obtained photocurrent results by the O-1s spectra of the XPS of the samples. Our results suggest that the alkali-metals-doped ZnO NPs exhibit considerable promise for highly sensitive visible-light photodetectors.

  17. Structural and electronic engineering of 3DOM WO3 by alkali metal doping for improved NO2 sensing performance.

    Science.gov (United States)

    Wang, Zhihua; Fan, Xiaoxiao; Han, Dongmei; Gu, Fubo

    2016-05-19

    Novel alkali metal doped 3DOM WO3 materials were prepared using a simple colloidal crystal template method. Raman, XRD, SEM, TEM, XPS, PL, Hall and UV-Vis techniques were used to characterize the structural and electronic properties of all the products, while the corresponding sensing performances targeting ppb level NO2 were determined at different working temperatures. For the overall goal of structural and electronic engineering, the co-effect of structural and electronic properties on the improved NO2 sensing performance of alkali metal doped 3DOM WO3 was studied. The test results showed that the gas sensing properties of 3DOM WO3/Li improved the most, with the fast response-recovery time and excellent selectivity. More importantly, the response of 3DOM WO3/Li to 500 ppb NO2 was up to 55 at room temperature (25 °C). The especially high response to ppb level NO2 at room temperature (25 °C) in this work has a very important practical significance. The best sensing performance of 3DOM WO3/Li could be ascribed to the most structure defects and the highest carrier mobility. And the possible gas sensing mechanism based on the model of the depletion layer was proposed to demonstrate that both structural and electronic properties are responsible for the NO2 sensing behavior. PMID:27109698

  18. Experimental and theoretical determinations of the absolute ionization cross section of alkali metals by electron impact in the energy range from 100 to 2000 eV

    International Nuclear Information System (INIS)

    The absolute electron impact ionization cross sections for the alkali metals in the energy range between 100 eV and 2000 eV were measured by the non-modulated crossed beam technique. The neutral beam of alkali atoms is produced by a Knudsen cell and crossed at right angles with the electron beam. The ions formed are collected on a plate and their intensity determined with a D.C. amplifier. The neutral beam is condensed on a cold trap cooled with liquid nitrogen, this temperature being much lower than that required to obtain total condensation. The amount of metal deposited is measured by the isotopic dilution technique and by atomic absorption, and the density of the atoms in the neutral beam is calculated. The total absolute ionization cross sections can then be determined. All possible errors have been carefully analyzed and their magnitudes estimated. The absolute ionization cross section for Li at an energy of 500 eV is: QLi = 0,358 x 10-16 cm2. This value is half of that obtained by Mac Farland and Kinney. The partial ionization cross sections for the singly and multiply charged ions is determined with a mass spectrometer attached to this apparatus. For the singly charged ions, the variation of the cross section with the energy of the ionizing electrons is in agreement with the optically allowed transition law: Q = A log BE/E. From the variation of Q with E, the squared matrix elements of the transition moment (|Mi|)2 are determined for all the elements studied. New calculations of the ionization cross section of Li and Na were performed in the framework of the Born-Bethe approximation as modified by Gaudin and Botter to take into account collisions with large momentum variation of the incident electron. Hartree-Fock type wave functions for the ground state atom (tabulated by Clementi) were used. The calculated values are in good agreement with our experimental results and with the former theoretical results calculated by various methods. This work also

  19. Separation of boron from borated paraffin wax by pyrohydrolysis and alkali extraction methods and its determination using ion chromatography.

    Science.gov (United States)

    Raut, Vaibhavi Vishwajeet; Jeyakumar, Subbiah; Shah, Dipti Jayesh; Thakur, Uday Kumar; Tomar, Bhupendra Singh; Ramakumar, Karanam Lakshminarayana

    2015-01-01

    A method based on the pyrohydrolysis extraction of boron and its quantification with ion chromatography was proposed for paraffin waxes borated with H3BO3 and B4C. The optimum pyrohydrolysis conditions were identified. Wax samples were mixed with U3O8, which prevents the sample from flare up, and also accelerates the extraction of boron. Pyrohydrolysis was carried out with moist O2 at 950°C for 60 and 90 min for wax with H3BO3 and wax with B4C, respectively. Two simple methods of separation based on alkali extraction and melting wax in alkali were also developed exclusively for wax with H3BO3. In all the separations, the recovery of B was above 98%. During IC separation, B was separated as boron-mannitol anion complex. Linear calibration was obtained it between 0.1 and 50 ppm of B, and LOD was calculated as 5 ppb (S/N = 3). The reproducibility was better than 5% (RSD). PMID:25765277

  20. Complexation of metal ions with humic acid: metal ion charge neutralization model

    International Nuclear Information System (INIS)

    The humic acid complexation reaction presented in this work is based on the concept of metal ion charge neutralization upon complexation to humic acid functional groups. Experimental results from the complexation of UO22+, Am3+, and Cm3+ with humic acids of different origin are presented to demonstrate and validate the proposed model. By introducing the operational humic acid concentration and the loading capacity, the complexation constants are derived, which are independent of the metal ion concentration, pH, and origin of humic acid. The loading capacity is an operational term needed for the intercomparison of stability constants and is the mole fraction of the maximum available complexing sites of humic acid under a given set of experimental conditions. The metal ion charge neutralization model adequately describes the thermodynamic equilibrium reaction of metal ions with humic acid and allows a direct application of the resulting stability constants for geochemical modeling of actinide migration at an environmentally relevant pH. (orig.)

  1. Electronic structure and Fano antiresonance of chromium Cr(III) ions in alkali silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Taktak, Olfa, E-mail: taktak.olfa@gmail.com; Souissi, Hajer; Souha, Kammoun

    2015-05-15

    The optical properties of the Cr{sup 3+} doped in alkali silicate glasses X{sub 2}O–SiO{sub 2} with different modifier cations X=Li, Na and K have been investigated by Villian et al. This work investigates a theoretical crystal-field analysis of the electronic energy levels of Cr{sup 3+} in these glasses. This analysis based on the Racah theory was carried out for the Chromium (III) center with an O{sub h} site symmetry. The objective of this study is to determine the effect of glass matrix modifier on the Racah B, C and crystal-field Dq parameters. The effect of the glass matrix environment on these parameters is also reported by comparison with alkali cadmium borosulphate, phosphate and borate glasses. The interference dips observed in the broad band {sup 4}T{sub 2g}({sup 4}F) result from interaction with the {sup 2}E{sub g}({sup 2}G) and {sup 2}T{sub 1g}({sup 2}G) sharp levels are known as the Fano antiresonance model. This feature is qualitatively studied using the adiabatic potential surfaces for the quartet {sup 4}T{sub 2g}({sup 4}F) and doublet {sup 2}E{sub g}({sup 2}G) levels. - Highlights: • The electronic structure of Cr{sup 3+} in alkali silicate glasses X{sub 2}O–SiO{sub 2} (X=Li,Na,K) was performed. • The theoretical study, based on Racah theory, permits us to deduce the energy levels. • The observed interference dip in absorption spectra is related to Fano antiresonance.

  2. Oxidation behavior of Cr(III) during thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides.

    Science.gov (United States)

    Mao, Linqiang; Gao, Bingying; Deng, Ning; Liu, Lu; Cui, Hao

    2016-02-01

    The oxidation behavior of Cr(III) during the thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides (NaCl, KCl, MgCl2, and CaCl2) was investigated. The amounts of Cr(III) oxidized at various temperatures and heating times were determined, and the Cr-containing species in the residues were characterized. During the transformation of chromium hydroxide to Cr2O3 at 300 °C approximately 5% of the Cr(III) was oxidized to form intermediate compounds containing Cr(VI) (i.e., CrO3), but these intermediates were reduced to Cr2O3 when the temperature was above 400 °C. Alkali and alkaline earth metals significantly promoted the oxidation of Cr(III) during the thermal drying process. Two pathways were involved in the influences the alkali and alkaline earth metals had on the formation of Cr(VI). In pathway I, the alkali and alkaline earth metals were found to act as electron transfer agents and to interfere with the dehydration process, causing more intermediate Cr(VI)-containing compounds (which were identified as being CrO3 and Cr5O12) to be formed. The reduction of intermediate compounds to Cr2O3 was also found to be hindered in pathway I. In pathway II, the alkali and alkaline earth metals were found to contribute to the oxidation of Cr(III) to form chromates. The results showed that the presence of alkali and alkaline earth metals significantly increases the degree to which Cr(III) is oxidized during the thermal drying of chromium-containing sludge. PMID:26650573

  3. EFFECTS OF METAL IONS ON THE CONFORMATIONAL CHANGES OF DNA

    Institute of Scientific and Technical Information of China (English)

    G. Q. Liu; Y.Y. Meng; S.H. Liu; Y.H. Hu

    2005-01-01

    DNA takes on multi-different conformations such as A-, B-, C-, D- and Z-form. These conformations can transit to one another when DNA deposited in some metal ions solutions or when changing the concentrations of the same metal ions. Here, several major conformational transitions of DNA induced by metal ions under different environment were introduced and the mechanism of the interaction of metal ions with DNA was discuss in detail.

  4. Ion microprobe analysis of metallic pigments

    International Nuclear Information System (INIS)

    Full text: Metallic paints consist of metallic flakes dispersed m a resinous binder, i.e. a light-element polymer matrix. The spatial distribution and orientation of metallic flakes inside the matrix determines the covering efficiency of the paint, glossiness, and its angular-dependent properties such as lightness flop or color flop (two-tone). Such coatings are extensively used for a functional (i.e. security) as well as decorative purpose. The ion microbeam analysis of two types of silver paint with imbedded metallic flake has been performed to test the ability of the ion microbeam spectroscopic methods on this type of samples. The average sizes of the aluminium flakes were 23 (size distribution 10-37) and 49 (size distribution 34-75) micrometers, respectively. The proton beam with the size of 2x2 micrometers at Ljubljana ion microprobe has been used to scan the surface of the pigments. PIXE mapping of Al Kα map shows lateral distribution of the aluminum flakes, whereas the RBS slicing method reveals tomographic image of the flakes in uppermost 5 micrometers of the pigment layer. The flake distribution in the larger layer depths has been accessed by RBS analysis in a point mode. (author)

  5. Release and sorption of alkali metals in coal fired combined cycle power systems; Freisetzung und Einbindung von Alkalimetallverbindungen in kohlebefeuerten Kombikraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Michael

    2009-07-01

    Coal fired combined cycle power systems will be a sufficient way to increase the efficiency of coal combustion. However, combined cycle power systems require a reliable hot gas cleanup. Especially alkali metals, such as sodium and potassium, can lead to hot corrosion of the gas turbine blading if they condensate as sulphates. The actual work deals with the release and sorption of alkali metals in coal fired combined cycle power systems. The influence of coal composition, temperature and pressure on the release of alkali species in coal combustion was investigated and the relevant release mechanisms identified. Alumosilicate sorbents have been found that reduce the alkali concentration in the hot flue gas of the Circulating Pressurized Fluidized Bed Combustion 2{sup nd} Generation (CPFBC 2{sup nd} Gen.) at 750 C to values sufficient for use in a gas turbine. Accordingly, alumosilicate sorbents working at 1400 C have been found for the Pressurized Pulverized Coal Combustion (PPCC). The sorption mechanisms have been identified. Thermodynamic calculations were performed to upscale the results of the laboratory experiments to conditions prevailing in power systems. According to these calculations, there is no risk of hot corrosion in both processes. Furthermore, thermodynamic calculations were performed to investigate the behaviour of alkali metals in an IGCC with integrated hot gas cleanup and H{sub 2} membrane for CO{sub 2} sequestration. (orig.)

  6. Synthesis of monomeric and polymeric alkali and alkaline earth metal complexes using a phosphinoselenoic amide ligand in metal coordination sphere

    Indian Academy of Sciences (India)

    Jayeeta Bhattacharjee; Ravi K Kottalanka; Harinath Adimulam; Tarun K Panda

    2014-09-01

    We report the monomeric complexes of magnesium and calcium of composition [M(THF){2-Ph2P(Se)N(CMe3)}2] [M= Mg (3), n = 1 andM = Ca (4), n = 2)] and polymeric complexes of potassium and barium of composition [K(THF)2{Ph2P(Se)N(CMe3)}] (2) and [K(THF)Ba{Ph2P(Se)N(CMe3)}3](5) respectively. The potassium complex 2 was readily prepared by the reaction of potassium bis(trimethylsilyl)amide with phosphinoselenoic amide ligand (1) at ambient temperature. The calcium complex 4 was prepared by two synthetic routes: in the first method, commonly known as salt metathesis reaction, the potassium complex 2 was made to react with alkaline earth metal diiodide at room temperature to afford the corresponding calcium complex. The metal bis(trimethylsilyl)amides were made to react with protic ligand 1 in the second method to eliminate the volatile bis(trimethyl)silyl amine. The magnesium complex 3 and barium complex 5 were prepared only through the first method. Solid-state structures of all the new complexes were established by single crystal X-ray diffraction analysis. The smaller ionic radii of Mg2+ (0.72Å) and Ca2+ (0.99Å) ions form the monomeric complex, whereas the larger ions K+ (1.38Å) and Ba2+ (1.35Å) were found to form onedimensional polymeric complexes with monoanionic ligand 1. Compound 2 serves an example of magnesium complex with a Mg-Se direct bond.

  7. Influence of alkali and alkaline earth ions on the -alkylation of the lower rim phenolic-OH groups of -tert-butyl-calix[4]arene to result in amide-pendants: Template action of K+ and the structure of K+ bound tetra-amide derivative crystallized with a -tert-butylcalix[4]arene anion

    Indian Academy of Sciences (India)

    Amjad Ali; Chebrolu P Rao; Philippe Guionneau

    2008-03-01

    Role of alkali and alkaline earth ions on the formation of calix[4]arene-amide derivatives through -alkylation of the lower rim phenolic-OH groups in general and template action of K+ in particular have been explored. Na+ and K+ ions among alkali, and Ca2+ and Sr2+ ions among alkaline earth have shown tetra-amide derivatives bound to metal ion species. Among all these, potassium salts act as template and yields a K+ bound tetra-amide derivative where the charge is counter balanced by a calix[4] arene-monoanion and the product is crystallographically characterized. Change in the amide precursor used in these -alkylation reactions has no effect on the type of the amide derivative formed. Also demonstrated is a direct one-step reaction for the preparation of 1,3-di-amide derivative in high yield and low reaction period using CsHCO3.

  8. Ion irradiation effects on metallic nanocrystals

    International Nuclear Information System (INIS)

    We have investigated structural and morphological properties of metallic nanocrystals (NCs) exposed to ion irradiation. NCs were characterized by transmission electron microscopy in combination with advanced synchrotron-based analytical techniques, in particular X-ray absorption spectroscopy and small-angle X-ray scattering. A number of different effects were observed depending on the irradiation conditions. At energies where nuclear stopping is predominant, structural disorder/amorphization followed by inverse Ostwald ripening/dissolution due to ion beam mixing was observed for Au and Cu NCs embedded in SiO2. The ion-irradiation-induced crystalline to amorphous transition in the NCs, which cannot be achieved in the corresponding bulk metals, was attributed to their initially higher structural energy as compared to bulk material and possibly preferential nucleation of the amorphous phase at the NC/SiO2 interface. At very high irradiation energies (swift heavy ion irradiation), where the energy loss is nearly entirely due to electronic stopping, a size-dependent shape transformation of the NCs from spheres to rod like shapes was apparent in Au NCs. Our preliminary results are in good agreement with considerations on melting of the NCs in the ion track as one mechanism involved in the shape transformation.

  9. Ion irradiation effects on metallic nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Kluth, P.; Johannessen, B.; Giulian, R.; Schnohr, C.S.; Foran, G.J.; Cookson, D.J.; Byrne, A.P.; Ridgway, M.C. (ASRP); (ANSTO); (ANU)

    2008-04-02

    We have investigated structural and morphological properties of metallic nanocrystals (NCs) exposed to ion irradiation. NCs were characterized by transmission electron microscopy in combination with advanced synchrotron-based analytical techniques, in particular X-ray absorption spectroscopy and small-angle X-ray scattering. A number of different effects were observed depending on the irradiation conditions. At energies where nuclear stopping is predominant, structural disorder/amorphization followed by inverse Ostwald ripening/dissolution due to ion beam mixing was observed for Au and Cu NCs embedded in SiO{sub 2}. The ion-irradiation-induced crystalline to amorphous transition in the NCs, which cannot be achieved in the corresponding bulk metals, was attributed to their initially higher structural energy as compared to bulk material and possibly preferential nucleation of the amorphous phase at the NC/SiO{sub 2} interface. At very high irradiation energies (swift heavy ion irradiation), where the energy loss is nearly entirely due to electronic stopping, a size-dependent shape transformation of the NCs from spheres to rod like shapes was apparent in Au NCs. Our preliminary results are in good agreement with considerations on melting of the NCs in the ion track as one mechanism involved in the shape transformation.

  10. Potentiometric and spectroscopic study of the interaction of 3d transition metal ions with inositol hexakisphosphate

    Science.gov (United States)

    Veiga, Nicolás; Macho, Israel; Gómez, Kerman; González, Gabriel; Kremer, Carlos; Torres, Julia

    2015-10-01

    Among myo-inositol phosphates, the most abundant in nature is the myo-inositol hexakisphosphate, InsP6. Although it is known to be vital to cell functioning, the biochemical research into its metabolism needs chemical and structural analysis of all the protonation, complexation and precipitation processes that it undergoes in the biological media. In view of its high negative charge at physiological level, our group has been leading a thorough research into the InsP6 chemical and structural behavior in the presence of the alkali and alkaline earth metal ions essential for life. The aim of this article is to extend these studies, dealing with the chemical and structural features of the InsP6 interaction with biologically relevant 3d transition metal ions (Fe(II), Fe(III), Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)), in a non-interacting medium and under simulated physiological conditions. The metal-complex stability constants were determined by potentiometry, showing under ligand-excess conditions the formation of mononuclear species in different protonation states. Under metal ion excess, polymetallic species were detected for Fe(II), Fe(III), Zn(II) and Cu(II). Additionally, the 31P NMR and UV-vis spectroscopic studies provided interesting structural aspects of the strong metal ion-InsP6 interaction.

  11. EMISSION CHARACTERISTICS OF LIQUID METAL ION SOURCE

    OpenAIRE

    Arimoto, H.; Komuro, M.

    1989-01-01

    Energy distributions of Au-Si-Be, Au-Si, Pd-Ni-Si-Be-B, and Pt-Si liquid metal alloy ion sources were investigated, being focused on behaviors of Si++ and Si+. We found that the energy spreads of the Si++ and Si+ were kept constant at 6 to 7.5 eV, even at an extremely low emission current (50 nA). This saturation results in a decrease in the figure of merit, (dI/dΩ)/ (ƊE)2, for an ion probe forming. (dI/dΩ : angular current density, ƊE : energy spread) The energy distribution profiles suggest...

  12. Comparisons between adsorption and diffusion of alkali, alkaline earth metal atoms on silicene and those on silicane: Insight from first-principles calculations

    Science.gov (United States)

    Bo, Xu; Huan-Sheng, Lu; Bo, Liu; Gang, Liu; Mu-Sheng, Wu; Chuying, Ouyang

    2016-06-01

    The adsorption and diffusion behaviors of alkali and alkaline-earth metal atoms on silicane and silicene are both investigated by using a first-principles method within the frame of density functional theory. Silicane is staler against the metal adatoms than silicene. Hydrogenation makes the adsorption energies of various metal atoms considered in our calculations on silicane significantly lower than those on silicene. Similar diffusion energy barriers of alkali metal atoms on silicane and silicene could be observed. However, the diffusion energy barriers of alkali-earth metal atoms on silicane are essentially lower than those on silicene due to the small structural distortion and weak interaction between metal atoms and silicane substrate. Combining the adsorption energy with the diffusion energy barriers, it is found that the clustering would occur when depositing metal atoms on perfect hydrogenated silicene with relative high coverage. In order to avoid forming a metal cluster, we need to remove the hydrogen atoms from the silicane substrate to achieve the defective silicane. Our results are helpful for understanding the interaction between metal atoms and silicene-based two-dimensional materials. Project supported by the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20152ACB21014, 20151BAB202006, and 20142BAB212002) and the Fund from the Jiangxi Provincial Educational Committee, China (Grant No. GJJ14254). Bo Xu is also supported by the Oversea Returned Project from the Ministry of Education, China.

  13. Effects of Metal Ion Adduction on the Gas-Phase Conformations of Protein Ions

    OpenAIRE

    Flick, Tawnya G.; Merenbloom, Samuel I.; Williams, Evan R.

    2013-01-01

    Changes in protein ion conformation as a result of nonspecific adduction of metal ions to the protein during electrospray ionization (ESI) from aqueous solutions were investigated using traveling wave ion mobility spectrometry (TWIMS). For all proteins examined, protein cations (and in most cases anions) with nonspecific metal ion adducts are more compact than the fully protonated (or deprotonated) ions with the same charge state. Compaction of protein cations upon nonspecific metal ion bindi...

  14. EPR of transition metal ions in NZP ceramics

    International Nuclear Information System (INIS)

    NZP-ceramics have been produced by different methods such as sol-gel, flux melting and sintering of dry salts or phosphates. Formation of NZP and related phases was confirmed by X-ray diffraction analysis. Electron paramagnetic resonance (EPR) was applied to evaluate a structure positions of paramagnetic ions and nature of radiation-induced centers. EPR responses from transition metal ions Fe3+ and Mn2+ with electron configuration 3d5 (ground state 6S5/2) which occurred as impurities in raw materials were registered in powders of NZP-ceramics. Fine structure arising due to high spin iron complexes is well resolved. A part of Fe3+ ions substitutes for Zr4+ and another part of one substitutes for Na+ ions in six-fold coordinated positions. A great value of hyperfine structure (hfs) constant (9.3 mT) shows a high ionic character of Mn-O bonds in the first coordination sphere. A coordination number is close to 6. Fine structure of Mn2+ ions are not well resolved. A comparison of the spectra of samples containing various alkali cations shows the substitution for cations in series of Li-Na-K-Rb-Cs does not result in fundamental variation in spectra except for CZP ceramics where the response with g=4.3 due to Fe3+ in strong ligand field rather than response with g=2.0 due to Fe3+ in weak field is observed. An investigation of some samples doped by 0.1...0.5 mole % of Fe3+ or Gd3+ has been carried out and principal spin-Hamiltonian parameters have been determined. The increase of Fe and Gd ions content as compared to impurity substituting for Zr and possibly Na in their own structural positions results in noticeable site distortion. Gamma irradiation of NZP ceramics results in formation of radiation-induced paramagnetic centers connected to phosphorus-oxygen. The nature and concentration of these centers depend on production method. The lowest defect concentration is in hot-pressed ceramics

  15. On-sun test results from second-generation and advanced-concepts alkali-metal pool-boiler receivers

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, J.B.; Andraka, C.E.; Moss, T.A.; Cordeiro, P.G.; Dudley, V.E.; Rawlinson, K.S.

    1994-05-01

    Two 75-kW{sub t} alkali-metal pool-boiler solar receivers have been successfully tested at Sandia National Laboratories` National Solar Thermal Test Facility. The first one, Sandia`s `` second-generation pool-boiler receiver,`` was designed to address commercialization issues identified during post-test assessment of Sandia`s first-generation pool-boiler receiver. It was constructed from Haynes alloy 230 and contained the alkali-metal alloy NaK-78. The absorber`s wetted side had a brazed-on powder-metal coating to stabilize boiling. This receiver was evaluated for boiling stability, hot- and warm-restart behavior, and thermal efficiency. Boiling was stable under all conditions. All of the hot restarts were successful. Mild transient hot spots observed during some hot restarts were eliminated by the addition of 1/3 torr of xenon to the vapor space. All of the warm restarts were also successful. The heat-transfer crisis that damaged the first receiver did not recur. Thermal efficiency was 92.3% at 750{degrees}C with 69.6 kW{sub t} solar input. The second receiver tested, Sandia`s ``advanced-concepts receiver,`` was a replica of the first-generation receiver except that the cavities, which were electric-discharge-machined in the absorber for boiling stability, were eliminated. This step was motivated by bench-scale test results that showed that boiling stability improved with increased heated-surface area, tilt of the heated surface from vertical, and added xenon. The bench-scale results suggested that stable boiling might be possible without heated-surface modification in a 75-kW{sub t} receiver. Boiling in the advanced-concepts receiver with 1/3 torr of xenon added has been stable under all conditions, confirming the bench-scale tests.

  16. Metal ion levels and lymphocyte counts

    DEFF Research Database (Denmark)

    Penny, Jeannette Ø; Varmarken, Jens-Erik; Ovesen, Ole;

    2013-01-01

    BACKGROUND AND PURPOSE: Wear particles from metal-on-metal arthroplasties are under suspicion for adverse effects both locally and systemically, and the DePuy ASR Hip Resurfacing System (RHA) has above-average failure rates. We compared lymphocyte counts in RHA and total hip arthroplasty (THA) and...... investigated whether cobalt and chromium ions affected the lymphocyte counts. METHOD: In a randomized controlled trial, we followed 19 RHA patients and 19 THA patients. Lymphocyte subsets and chromium and cobalt ion concentrations were measured at baseline, at 8 weeks, at 6 months, and at 1 and 2 years....... RESULTS: The T-lymphocyte counts for both implant types declined over the 2-year period. This decline was statistically significant for CD3(+)CD8(+) in the THA group, with a regression coefficient of -0.04 × 10(9)cells/year (95% CI: -0.08 to -0.01). Regression analysis indicated a depressive effect of...

  17. Hydrothermal synthesis of mixed rare earth-alkali metal or ammonium fluorides

    Institute of Scientific and Technical Information of China (English)

    由芳田; 黄世华; 时秋峰

    2010-01-01

    The recent results on hydrothermal synthesis of mixed rare earth-alkali or ammonium fluorides were presented. The initial ratios of the starting materials, pH value and reaction temperature were the critical factors for obtaining the single-phase product. Four main types of complex rare earth fluorides, AREF4, A2REF5, ARE2F7 and ARE3F10 (A=Na+, K+, Rb+, NH4+), appeared in the primary hydrothermal reactions. The correlation between cation sizes and the formation of mixed rare earth fluorides under mild hydro...

  18. Ultraviolet spectroscopy and metal ions detection

    International Nuclear Information System (INIS)

    The spectrochemical analysis is based on the interaction of radiation with the chemical species and depends on their nature, having pi, sigma or electrons, or d and f electrons, UV. Visible spectrophotometry has been used extensively in the detection and determination of both organics and inorganics. In UV detection the sensitivity is proportional to the bath length and the excitation coefficient of the given sample. It may be insensitive to many species unless these are converted to UV, absorbing derivatives. The technique has been applied for the monitoring of the effluents from HPLC, as chlorides or other complexes of various elements in this article the utility of HCl as reagent for the spectrophotometric determination of the metal ions like Al(III), As(III,IV), Ba(II), Cd(II), Ca(II) Ce(III), Cs(i), Cr(III,VI), Co(II), Cu(II), Dy(III), Eu(III), Gd(III), Au(III), Hf(IV), Ho(III), In(III), Fe(III), La(III), Pb(II), Lu (III), Mg(II), Mn(II), Hg(II), Mo(VI), Ni(II), Pd(II), Pt(IV), K(I), Pr(III), Re(VII), Ru(IV), Sm(III), Sc(III), Ag(I), Sr(II) Te(III), Th(IV), Sn(II,IV), Ti(III,IV), W(VI), U(VI), V(IV,V), Yb(III), Zn(II) AND Zr(IV) Ions i.e. for meta ions from d of the most of these metal ions has been found sufficient permit their detection in HPLC. Their molar absorptive have also been reported. Reference has also been provided to post column derivatization of some metal ions from d and f block elements for their detection in HPLC. (author) 12 figs.; 6 tabs.; 27 refs

  19. Metal hydrides for lithium-ion batteries.

    Science.gov (United States)

    Oumellal, Y; Rougier, A; Nazri, G A; Tarascon, J-M; Aymard, L

    2008-11-01

    Classical electrodes for Li-ion technology operate via an insertion/de-insertion process. Recently, conversion electrodes have shown the capability of greater capacity, but have so far suffered from a marked hysteresis in voltage between charge and discharge, leading to poor energy efficiency and voltages. Here, we present the electrochemical reactivity of MgH(2) with Li that constitutes the first use of a metal-hydride electrode for Li-ion batteries. The MgH(2) electrode shows a large, reversible capacity of 1,480 mAh g(-1) at an average voltage of 0.5 V versus Li(+)/Li(o) which is suitable for the negative electrode. In addition, it shows the lowest polarization for conversion electrodes. The electrochemical reaction results in formation of a composite containing Mg embedded in a LiH matrix, which on charging converts back to MgH(2). Furthermore, the reaction is not specific to MgH(2), as other metal or intermetallic hydrides show similar reactivity towards Li. Equally promising, the reaction produces nanosized Mg and MgH(2), which show enhanced hydrogen sorption/desorption kinetics. We hope that such findings can pave the way for designing nanoscale active metal elements with applications in hydrogen storage and lithium-ion batteries. PMID:18849978

  20. Ion-induced effects on metallic nanoparticles

    International Nuclear Information System (INIS)

    This work deals with the ion-irradiation of metallic nanoparticles in combination with various substrates. Particle diameters were systematically varied within the range of 2.5-14 nm, inter-particle distances range from 30-120 nm. Irradiations were performed with various inert gas ions with energies of 200 keV, resulting in an average ion range larger than the particle dimensions and therefore the effects of irradiation are mainly due to creation of structural defects within the particles and the underlying substrate as well. The main part of this work deals with ion-induced burrowing of metallic nanoparticles into the underlying substrate. The use of micellar nanoparticles with sharp size distribution combined with AFM and TEM analysis allows a much more detailed look at this effect than other works on that topic so far. With respect to the particle properties also a detailed look on the effect of irradiation on the particle structure would be interesting, which might lead to a deliberate influence on magnetic properties, for example. Within the context of this work, first successful experiments were performed on FePt particles, showing a significant reduction of the ordering temperature leading to the magnetically interesting, ordered L10 phase. (orig.)

  1. Analysis of metallic pigments by ion microbeam

    International Nuclear Information System (INIS)

    Metallic paints consist of metallic flakes dispersed in a resinous binder, i.e. a light-element polymer matrix. The spatial distribution and orientation of metallic flakes inside the matrix determines the covering efficiency of the paint, glossiness, and its angular-dependent properties such as lightness flop or color flop (two-tone). Such coatings are extensively used for a functional (i.e. security) as well as decorative purpose. The ion microbeam analysis of two types of silver paint with imbedded metallic flakes has been performed to determine the spatial distribution of the aluminum flakes in paint layer. The average sizes of the aluminum flakes were 23 μm (size distribution 10-37) and 49 μm (size distribution 34-75), respectively. The proton beam with the size of 2x2 μm2 at Ljubljana ion microprobe has been used to scan the surface of the pigments. PIXE mapping of Al Kα map shows lateral distribution of the aluminum flakes, whereas the RBS slicing method reveals tomograms of the flakes in uppermost 7 μm of the pigment layer. The series of point analysis aligned over the single flake reveal the flake angle in respect to the polymer matrix surface. The angular sensitivity is well below 1 angular degree

  2. Influence of the alkali metal cation on the fragmentation of monensin in ESI-MS/MS Influência de cátions de metais alcalinos sobre a fragmentação de monensina em ESI-MS/MS

    Directory of Open Access Journals (Sweden)

    Norberto Peporine Lopes

    2006-09-01

    Full Text Available The MS/MS fragmentation of the alkali metal complexes of monensin A are studied. The increase in alkali metal ionic radii decreases the ability of the Grob-Wharton fragmentation mechanism to occur and reduces the overall degree of fragmentation. Conversely, the electronegativity of the metal cation is related to the number of fragment ions observed.O presente trabalho relata os estudos de fragmentação por espectrometria de massas seqüencial de complexos formados pela monensina A e uma série de metais alcalinos. Foi observado que o aumento do raio iônico do metal alcalino levou a uma diminuição do mecanismo de fragmentação do tipo Grob-Wharton e ao grau de fragmentação. Por outro lado, a maior eletronegatividade mostrou estar relacionada ao número de fragmentos observados.

  3. Liquid metal alloy ion source based metal ion injection into a room-temperature electron beam ion source.

    Science.gov (United States)

    Thorn, A; Ritter, E; Ullmann, F; Pilz, W; Bischoff, L; Zschornack, G

    2012-02-01

    We have carried out a series of measurements demonstrating the feasibility of using the Dresden electron beam ion source (EBIS)-A, a table-top sized, permanent magnet technology based electron beam ion source, as a charge breeder. Low charged gold ions from an AuGe liquid metal alloy ion source were injected into the EBIS and re-extracted as highly charged ions, thereby producing charge states as high as Au(60 +). The setup, the charge breeding technique, breeding efficiencies as well as acceptance and emittance studies are presented. PMID:22380207

  4. Viscometric and thermodynamic studies of interactions in ternary solutions containing sucrose and aqueous alkali metal halides at 293.15, 303.15 and 313.15 K

    Indian Academy of Sciences (India)

    Reena Gupta; Mukhtar Singh

    2005-05-01

    Viscosities and densities of sucrose in aqueous alkali metal halide solutions of different concentrations in the temperature range 293.15 to 313.15 K have been measured. Partial molar volumes at infinite dilution ($V_{2}^{0}$) of sucrose determined from apparent molar volume ($\\phi_v$) have been utilized to estimate partial molar volumes of transfer ($V^{0}_{2,tr}$) for sucrose from water to alkali metal halide solutions. The viscosity data of alkali metal halides in purely aqueous solutions and in the presence of sucrose at different temperatures (293.15, 303.15 and 313.5 K) have been analysed by the Jones-Dole equation. The nature and magnitude of solute-solvent and solute-solute interactions have been discussed in terms of the values of limiting apparent molar volume ($\\phi^{0}_{v}$), slope ($S_{v}$) and coefficients of the Jones-Dole equation. The structuremaking and structure-breaking capacities of alkali metal halides in pure aqueous solutions and in the presence of sucrose have been ascertained from temperature dependence of $\\phi^{0}_{v}$.

  5. A new route to the syntheses of alkali metal bis(fluorosulfuryl)imides: Crystal structure of LiN(SO2F)2

    Czech Academy of Sciences Publication Activity Database

    Beran, Martin; Příhoda, J.; Žák, Z.; Černík, M.

    2006-01-01

    Roč. 25, č. 6 (2006), s. 1292-1298. ISSN 0277-5387 Institutional research plan: CEZ:AV0Z40310501 Keywords : imido-bis( sulfuric acid ) difluoride * lithium bis(fluorosulfuryl)imide * alkali metal bis(fluorosulfuryl)imides Subject RIV: CA - Inorganic Chemistry Impact factor: 1.843, year: 2006

  6. Sputter-induced erosion of alkali metal surfaces - AES, XPS and SIMS studies

    International Nuclear Information System (INIS)

    This paper will discuss the manner in which the techniques of Auger-electron spectroscopy (AES), X-ray-photoelectron spectroscopy (XPS), secondary-ion mass spectroscopy (SIMS) and ion-scattering spectroscopy (ISS) may be used to study the use of high secondary-ion-yield surfaces as a means of reducing plasma-impurity influx in magnetic-confinement fusion devices

  7. Sputter-induced erosion of alkali metal surfaces - AES, XPS and SIMS studies

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, A.R.

    1982-01-01

    This paper will discuss the manner in which the techniques of Auger-electron spectroscopy (AES), X-ray-photoelectron spectroscopy (XPS), secondary-ion mass spectroscopy (SIMS) and ion-scattering spectroscopy (ISS) may be used to study the use of high secondary-ion-yield surfaces as a means of reducing plasma-impurity influx in magnetic-confinement fusion devices.

  8. Structural and electronic engineering of 3DOM WO3 by alkali metal doping for improved NO2 sensing performance

    Science.gov (United States)

    Wang, Zhihua; Fan, Xiaoxiao; Han, Dongmei; Gu, Fubo

    2016-05-01

    Novel alkali metal doped 3DOM WO3 materials were prepared using a simple colloidal crystal template method. Raman, XRD, SEM, TEM, XPS, PL, Hall and UV-Vis techniques were used to characterize the structural and electronic properties of all the products, while the corresponding sensing performances targeting ppb level NO2 were determined at different working temperatures. For the overall goal of structural and electronic engineering, the co-effect of structural and electronic properties on the improved NO2 sensing performance of alkali metal doped 3DOM WO3 was studied. The test results showed that the gas sensing properties of 3DOM WO3/Li improved the most, with the fast response-recovery time and excellent selectivity. More importantly, the response of 3DOM WO3/Li to 500 ppb NO2 was up to 55 at room temperature (25 °C). The especially high response to ppb level NO2 at room temperature (25 °C) in this work has a very important practical significance. The best sensing performance of 3DOM WO3/Li could be ascribed to the most structure defects and the highest carrier mobility. And the possible gas sensing mechanism based on the model of the depletion layer was proposed to demonstrate that both structural and electronic properties are responsible for the NO2 sensing behavior.Novel alkali metal doped 3DOM WO3 materials were prepared using a simple colloidal crystal template method. Raman, XRD, SEM, TEM, XPS, PL, Hall and UV-Vis techniques were used to characterize the structural and electronic properties of all the products, while the corresponding sensing performances targeting ppb level NO2 were determined at different working temperatures. For the overall goal of structural and electronic engineering, the co-effect of structural and electronic properties on the improved NO2 sensing performance of alkali metal doped 3DOM WO3 was studied. The test results showed that the gas sensing properties of 3DOM WO3/Li improved the most, with the fast response-recovery time and

  9. Heavy main-group iodometallates hybridized by alkali metal via 1,10-Phenanthroline-5,6-dione

    Indian Academy of Sciences (India)

    Mengfan Yin; Gengxing Cai; Peng Wang; Xihui Chao; Jibo Liu; Haohong Li; Zhirong Chen

    2015-09-01

    Alkali metals were introduced into heavy main-group iodometallates to get two new IA/IVAheterometallic frameworks [PbI3K(pdon)(H2O)2] (1) and {[Pb3I9K2(pdon)2(H3O)]·H2O} (2) (pdon=1,10-phenanthroline-5,6-dione), which were obtained as single phases by hydrothermal method at different pH values. Compounds 1 and 2 are three-dimensional heterometallic frameworks constructed from the linkage of pdon ligand between iodometallate chains and potassium oxides/iodide clusters. Specially, these two heterometallic frameworks exhibit broadened absorption bands at 700 and 750 nm compared with those of bulk PbI2 and pdon ligand. The band gap of 2 is wider than that of 1, which is due to the absence of · · · interaction in 2. Their thermal stabilities are also discussed.

  10. Thermally stimulated luminescence and lattice defects in crystals of alkali metal borate LiB3O5 (LBO)

    International Nuclear Information System (INIS)

    The recombination processes and lattice defects in crystals of alkali metal borate LiB3O5 (LBO) were studied by the means of the thermally stimulated luminescence (TL) and electron spin resonance (ESR) techniques. The glow curves, the spectra of the LBO recombination luminescence, and the angular variations of ESR-spectra of the O- center in three different planes were measured in the temperature range from 80 to 400 K. The luminescence bands were assigned to the electron (Em=4.0 eV) and hole (Em=4.2 eV) recombination processes. The model of the trapped hole center O- was proposed. The processes responsible for the formation of localised electronic excitations in LBO were discussed and compared with those taking place in other wide-gap oxides

  11. Synthesis and X-ray Characterization of Alkali Metal 2-Acyl-1,1,3,3-tetracyanopropenides.

    Science.gov (United States)

    Karpov, Sergey V; Grigor'ev, Arthur A; Kayukov, Yakov S; Karpova, Irina V; Nasakin, Oleg E; Tafeenko, Victor A

    2016-08-01

    A novel route for synthesis of 2-acyl-1,1,3,3-tetracyanopropenides (ATCN) salts in high yields and excellent purities starting from readily available methyl ketones, malononitrile, bromine, and alkali metal acetates is reported. The starting aryl(heteroaryl) methyl ketones were oxidized to the corresponding α-ketoaldehydes by new a DMSO-NaBr-H2SO4 oxidation system in yields up to 90% within a short reaction time of 8-10 min. The subsequent stages of ATCN preparation are realized in aqueous media without use of any toxic solvents, in accordance with principle 5 of "green chemistry". Lithium, sodium, potassium, rubidium, and cesium 2-benzoyl-1,1,3,3-tetracyanopropenides were characterized by X-ray diffraction analysis. These salts show a good potential for synthesis of five- and six-membered heterocycles and may serve as potentially useful ligands in coordination and supramolecular chemistry. PMID:27384963

  12. Liquid metal ion source assembly for external ion injection into an electron string ion source (ESIS)

    Energy Technology Data Exchange (ETDEWEB)

    Segal, M. J., E-mail: mattiti@gmail.com [iThemba LABS, P.O. Box 722, Somerset West 7130 (South Africa); University of Cape Town, Rondebosch, Cape Town 7700 (South Africa); Bark, R. A.; Thomae, R. [iThemba LABS, P.O. Box 722, Somerset West 7130 (South Africa); Donets, E. E.; Donets, E. D.; Boytsov, A.; Ponkin, D.; Ramsdorf, A. [Joint Institute for Nuclear Research, Joloit-Curie 6, 141980 Dubna, Moscow Region (Russian Federation)

    2016-02-15

    An assembly for a commercial Ga{sup +} liquid metal ion source in combination with an ion transportation and focusing system, a pulse high-voltage quadrupole deflector, and a beam diagnostics system has been constructed in the framework of the iThemba LABS (Cape Town, South Africa)—JINR (Dubna, Russia) collaboration. First, results on Ga{sup +} ion beam commissioning will be presented. Outlook of further experiments for measurements of charge breeding efficiency in the electron string ion source with the use of external injection of Ga{sup +} and Au{sup +} ion beams will be reported as well.

  13. Liquid metal ion source assembly for external ion injection into an electron string ion source (ESIS)

    Science.gov (United States)

    Segal, M. J.; Bark, R. A.; Thomae, R.; Donets, E. E.; Donets, E. D.; Boytsov, A.; Ponkin, D.; Ramsdorf, A.

    2016-02-01

    An assembly for a commercial Ga+ liquid metal ion source in combination with an ion transportation and focusing system, a pulse high-voltage quadrupole deflector, and a beam diagnostics system has been constructed in the framework of the iThemba LABS (Cape Town, South Africa)—JINR (Dubna, Russia) collaboration. First, results on Ga+ ion beam commissioning will be presented. Outlook of further experiments for measurements of charge breeding efficiency in the electron string ion source with the use of external injection of Ga+ and Au+ ion beams will be reported as well.

  14. Development of operationally stable inverted organic light-emitting diode prepared without using alkali metals (Presentation Recording)

    Science.gov (United States)

    Fukagawa, Hirohiko; Morii, Katsuyuki; Hasegawa, Munehiro; Gouda, Shun; Tsuzuki, Toshimitsu; Shimizu, Takahisa; Yamamoto, Toshihiro

    2015-10-01

    The OLED is one of the key devices for realizing future flexible displays and lightings. One of the biggest challenges left for the OLED fabricated on a flexible substrate is the improvement of its resistance to oxygen and moisture. A high barrier layer [a water vapor transmission rate (WVTR) of about 10-6 g/m2/day] is proposed to be necessary for the encapsulation of conventional OLEDs. Some flexible high barrier layers have recently been demonstrated; however, such high barrier layers require a complex process, which makes flexible OLEDs expensive. If an OLED is prepared without using air-sensitive materials such as alkali metals, no stringent encapsulation is necessary for such an OLED. In this presentation, we will discuss our continuing efforts to develop an inverted OLED (iOLED) prepared without using alkali metals. iOLEDs with a bottom cathode are considered to be effective for realizing air-stable OLEDs since the electron injection layer (EIL) can be prepared by fabrication processes that might damage the organic layers, resulting in the enhanced range of materials suitable for EILs. We have demonstrated that a highly efficient and relatively air-stable iOLED can be realized by employing poly(ethyleneimine) as an EIL. Dark spot formation was not observed after 250 days in the poly(ethyleneimine)-based iOLED encapsulated by a barrier film with a WVTR of 10-4 g/m2/day. In addition, we have demonstrated the fabrication of a highly operational stable iOLED utilizing a newly developed EIL. The iOLED exhibits an expected half-lifetime of over 10,000 h from an initial luminance of 1,000 cd/m2.

  15. Characterization of Cr3+ doped mixed alkali ions effect in zinc borate glasses - Physical and spectroscopic investigations

    Science.gov (United States)

    Rama Sundari, G.; Pushpa Manjari, V.; Raghavendra Rao, T.; Satish, D. V.; Rama Krishna, Ch.; Venkata Reddy, Ch.; Ravikumar, R. V. S. S. N.

    2014-06-01

    The physical and structural properties of Cr3+ doped 19.9 ZnO + xLi2O + (30 - x) Na2O + 50B2O3 (5 ⩽ x ⩽ 25) (ZLNB) glasses have been studied. Powder X-ray diffraction patterns indicated the amorphous nature of the glass samples. The physical parameters of all the glasses were also evaluated with respect to the composition. They exhibit the non-linearity providing the evidence for mixed alkali ions effect. The infrared spectra of the glasses in the range 400-4000 cm-1 showed the presence of BO3 and BO4 local structures in all the glass systems. No boroxol ring formation was observed in the structure of these glasses. Optical absorption and electron paramagnetic resonance studies were carried out at room temperature. From the optical absorption data various optical parameters such as optical band gap, Urbach energy were evaluated. Crystal field and Racah parameters are evaluated from optical absorption spectra. The EPR spectra of Cr3+ doped ZLNB glasses exhibited resonance signals at g = 4.066 and g = 1.9779 characteristic of Cr3+ ions. The evaluated bonding parameters suggest the covalent nature.

  16. Structure of hydrated complexes formed by metal ions of groups I-III of the Periodic table in aqueous electrolyte solutions under ambient conditions

    International Nuclear Information System (INIS)

    Published and authors' experimental data on the structure of aqueous electrolyte solutions under standard conditions were generalized to ascertain the dependences of the solution structural parameters on chemical nature of dissolved compounds of alkali, alkaline-earth metals, cadmium, scandium, yttrium, lanthanum and indium. Hydrate complexes of metal ions formed in aqueous solutions were systematized, depending on cation size, charge and structure of their external electronic shell

  17. Metal ion binding to iron oxides

    Science.gov (United States)

    Ponthieu, M.; Juillot, F.; Hiemstra, T.; van Riemsdijk, W. H.; Benedetti, M. F.

    2006-06-01

    The biogeochemistry of trace elements (TE) is largely dependent upon their interaction with heterogeneous ligands including metal oxides and hydrous oxides of iron. The modeling of TE interactions with iron oxides has been pursued using a variety of chemical models. The objective of this work is to show that it is possible to model the adsorption of protons and TE on a crystallized oxide (i.e., goethite) and on an amorphous oxide (HFO) in an identical way. Here, we use the CD-MUSIC approach in combination with valuable and reliable surface spectroscopy information about the nature of surface complexes of the TE. The other objective of this work is to obtain generic parameters to describe the binding of the following elements (Cd, Co, Cu, Ni, Pb, and Zn) onto both iron oxides for the CD-MUSIC approach. The results show that a consistent description of proton and metal ion binding is possible for goethite and HFO with the same set of model parameters. In general a good prediction of almost all the collected experimental data sets corresponding to metal ion binding to HFO is obtained. Moreover, dominant surface species are in agreement with the recently published surface complexes derived from X-ray absorption spectroscopy (XAS) data. Until more detailed information on the structure of the two iron oxides is available, the present option seems a reasonable approximation and can be used to describe complex geochemical systems. To improve our understanding and modeling of multi-component systems we need more data obtained at much lower metal ion to iron oxide ratios in order to be able to account eventually for sites that are not always characterized in spectroscopic studies.

  18. Alkali-Resistant Mechanism of a Hollandite DeNOx Catalyst.

    Science.gov (United States)

    Hu, Pingping; Huang, Zhiwei; Gu, Xiao; Xu, Fei; Gao, Jiayi; Wang, Yue; Chen, Yaxin; Tang, Xingfu

    2015-06-01

    A thorough understanding of the deactivation mechanism by alkalis is of great importance for rationally designing improved alkali-resistant deNOx catalysts, but a traditional ion-exchange mechanism cannot often accurately describe the nature of the deactivation, thus hampering the development of superior catalysts. Here, we establish a new exchange-coordination mechanism on the basis of the exhaustive study on the strong alkali resistance of a hollandite manganese oxide (HMO) catalyst. A combination of isothermal adsorption measurements of ammonia with X-ray absorption near-edge structure spectra and X-ray photoelectron spectra reveals that alkali metal ions first react with protons from Brønsted acid sites of HMO via the ion exchange. Synchrotron X-ray diffraction patterns and extended X-ray absorption fine structure spectra coupled with theoretical calculations demonstrate that the exchanged alkali metal ions are subsequently stabilized at size-suitable cavities in the HMO pores via a coordination model with an energy savings. This exchange-coordination mechanism not only gives a wholly convincing explanation for the intrinsic nature of the deactivation of the reported catalysts by alkalis but also provides a strategy for rationally designing improved alkali-resistant deNOx catalysts in general. PMID:25941972

  19. Coordination polymers based on diiron tetrakis(dithiolato) bridged by alkali metals, electrical bistability around room temperature, and strong antiferromagnetic coupling.

    Science.gov (United States)

    Benmansour, Samia; Delgado, Esther; Gómez-García, Carlos J; Hernández, Diego; Hernández, Elisa; Martin, Avelino; Perles, Josefina; Zamora, Félix

    2015-03-01

    Coordination polymer chains have been formed by the direct reaction between HSC6H2Cl2SH and FeCl3·6H2O in the presence of an aqueous solution of the corresponding alkali-metal hydroxide (M = Li, Na, and K) or carbonate (M = Rb and Cs). The structures consist of dimeric [Fe2(SC6H2Cl2S)4](2-) entities bridged by [M2(THF)4] [M = K (1), Rb (2), and Cs (3); THF = tetrahydrofuran] or {[Na2(μ-H2O)2(THF)2] (5 and 5') units. The smaller size of the lithium atom yields an anion/cation ion-pair molecule, [Li(THF)4]2[Fe2(SC6H2Cl2S)4] (4), in which the dianionic moieties are held together by Cl···Cl interactions. Electrical characterization of these compounds shows a general semiconductor behavior in which the conductivity and activation energies are mainly determined by the M-Cl and M-S bond distances. Compounds 1 and 5' are interesting examples of bistability showing reversible transitions centered at ca. 350 and 290 K with very large hysteresis of ca. 60 and 35 K, respectively. All of these compounds exhibit intradimer strong antiferromagnetic Fe···Fe interactions. PMID:25667965

  20. Application of X-ray diffraction technique for determining triclinicity of alkali-feldspar from the rare metal pegmatites of the Pandikimal Area, North Orissa, India

    International Nuclear Information System (INIS)

    The zoned rare metal pegmatites of Archaean age in the Jharsuguda district of north Orissa, eastern India, are well-known for their potentiality for Nb, Ta, and Be minerals. They also contain limited Li, Bi, Th, and U minerals. Because of the economic concentrations of the ore minerals of Nb-Ta and Be, they are being mined for recovering columbite-tantalite and beryl. In this paper, the values of triclinicity of alkali-feldspars, determined by X-ray diffraction, are presented and, based on the same data, the evolutionary history of the rare metal pegmatites is traced. The values of triclinicity range from 0.83 to 0.97 with an average of 0.92. The high values of triclinicity suggest that the investigated alkali-feldspars from the rare metal pegmatites of the Pandikimal area belong to the category of maximum microcline. It would, thus, mean that during the crystallisation of alkali-feldspar, and by implication their host rare metal pegmatites, not only was the rate of cooling slow, the temperature of crystallisation was also falling. Accordingly, it is interpreted that the rare metal pegmatites of the Pandikimal area crystallised slowly under a falling-temperature regime in deep-seated plutonic conditions. The presence of large beryl crystals in the rare metal pegmatites also supports this interpretation. (author)

  1. Designer ligands: The search for metal ion selectivity

    OpenAIRE

    Perry T. Kaye

    2011-01-01

    The paper reviews research conducted at Rhodes University towards the development of metal-selective ligands. The research has focused on the rational design, synthesis and evaluation of novel ligands for use in the formation of copper complexes as biomimetic models of the metalloenzyme, tyrosinase, and for the selective extraction of silver, nickel and platinum group metal ions in the presence of contaminating metal ions. Attention has also been given to the development of efficient, metal-s...

  2. Enhanced brightness of organic light-emitting diodes based on Mg:Ag cathode using alkali metal chlorides as an electron injection layer

    International Nuclear Information System (INIS)

    Different thicknesses of cesium chloride (CsCl) and various alkali metal chlorides were inserted into organic light-emitting diodes (OLEDs) as electron injection layers (EILs). The basic structure of OLED is indium tin oxide (ITO)/N,N′-diphenyl-N,N′-bis(1-napthyl-phenyl)-1.1′-biphenyl-4.4′-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq3)/Mg:Ag/Ag. The electroluminescent (EL) performance curves show that both the brightness and efficiency of the OLEDs can be obviously enhanced by using a thin alkali metal chloride layer as an EIL. The electron injection barrier height between the Alq3 layer and Mg:Ag cathode is reduced by inserting a thin alkali metal chloride as an EIL, which results in enhanced electron injection and electron current. Therefore, a better balance of hole and electron currents at the emissive interface is achieved and consequently the brightness and efficiency of OLEDs are improved. - Highlights: ► Alkaline metal chlorides were used as electron injection layers in organic light-emitting diodes based on Mg:Ag cathode. ► Brightness and efficiency of OLEDs with alkaline metal chlorides as electron injection layers were all greatly enhanced. ► The Improved OLED performance was attributed to the possible interfacial chemical reaction. ► Electron-only devices are fabricated to demonstrate the electron injection enhancement.

  3. Enhanced brightness of organic light-emitting diodes based on Mg:Ag cathode using alkali metal chlorides as an electron injection layer

    Energy Technology Data Exchange (ETDEWEB)

    Zou Ye [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Deng Zhenbo, E-mail: zbdeng@bjtu.edu.cn [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Xu Denghui [Department of Mathematics and Physics, Beijing Technology and Business University, Beijing 100037 (China); Lue Zhaoyue; Yin Yuehong; Du Hailiang; Chen Zheng; Wang Yongsheng [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China)

    2012-02-15

    Different thicknesses of cesium chloride (CsCl) and various alkali metal chlorides were inserted into organic light-emitting diodes (OLEDs) as electron injection layers (EILs). The basic structure of OLED is indium tin oxide (ITO)/N,N Prime -diphenyl-N,N Prime -bis(1-napthyl-phenyl)-1.1 Prime -biphenyl-4.4 Prime -diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq{sub 3})/Mg:Ag/Ag. The electroluminescent (EL) performance curves show that both the brightness and efficiency of the OLEDs can be obviously enhanced by using a thin alkali metal chloride layer as an EIL. The electron injection barrier height between the Alq{sub 3} layer and Mg:Ag cathode is reduced by inserting a thin alkali metal chloride as an EIL, which results in enhanced electron injection and electron current. Therefore, a better balance of hole and electron currents at the emissive interface is achieved and consequently the brightness and efficiency of OLEDs are improved. - Highlights: Black-Right-Pointing-Pointer Alkaline metal chlorides were used as electron injection layers in organic light-emitting diodes based on Mg:Ag cathode. Black-Right-Pointing-Pointer Brightness and efficiency of OLEDs with alkaline metal chlorides as electron injection layers were all greatly enhanced. Black-Right-Pointing-Pointer The Improved OLED performance was attributed to the possible interfacial chemical reaction. Black-Right-Pointing-Pointer Electron-only devices are fabricated to demonstrate the electron injection enhancement.

  4. Ion chromatography of transition metals: specific alteration of retention by complexation reactions in the mobile and on the stationary phase

    International Nuclear Information System (INIS)

    Ion chromatography of mono- and bivalent cations was performed on a conventional cation exchanger. The pH influence of an ethylene-diamine/citrate eluent was significant for the retention of alkaline earth and transition metals, but negligible for alkali ions. This was dealt with from a mechanistic point of view. Mobile phase optimization allowed fast isocratic analysis of mono- and bivalent cations and the separation of the radionuclides Cs-137 and Sr-90. A newly synthesized stationary phase containing iminodiacetate (IDA) function was investigated for cation chromatography using ethylenediamine/citrate eluents, polyhydroxy acid and dipicolinic acid. The column's high selectivity for transition metal ions in comparison to alkali and alkaline earth metals may be governed by the choice of complexing ability and pH of the eluent. Applications verified by atomic absorption spectroscopy include alkaline earth metals in beverages and the determination of Co, Cd and Zn in solutions containing more than 1014-fold excess of Na and Mg, such as sea water

  5. In situ alkali-silica reaction observed by x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kurtis, K.E.; Monteiro, P.J.M. [Univ. of California, Berkeley, CA (United States); Brown, J.T.; Meyer-Ilse, W. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    In concrete, alkali metal ions and hydroxyl ions contributed by the cement and reactive silicates present in aggregate can participate in a destructive alkali-silica reaction (ASR). This reaction of the alkalis with the silicates produces a gel that tends to imbibe water found in the concrete pores, leading to swelling of the gel and eventual cracking of the affected concrete member. Over 104 cases of alkali-aggregate reaction in dams and spillways have been reported around the world. At present, no method exists to arrest the expansive chemical reaction which generates significant distress in the affected structures. Most existing techniques available for the examination of concrete microstructure, including ASR products, demand that samples be dried and exposed to high pressure during the observation period. These sample preparation requirements present a major disadvantage for the study of alkali-silica reaction. Given the nature of the reaction and the affect of water on its products, it is likely that the removal of water will affect the morphology, creating artifacts in the sample. The purpose of this research is to observe and characterize the alkali-silica reaction, including each of the specific reactions identified previously, in situ without introducing sample artifacts. For observation of unconditioned samples, x-ray microscopy offers an opportunity for such an examination of the alkali-silica reaction. Currently, this investigation is focusing on the effect of calcium ions on the alkali-silica reaction.

  6. Structure of glasses containing transition-metal ions. Progress report, January 1, 1982-October 31, 1982

    International Nuclear Information System (INIS)

    Investigations of host glasses include the completion of an interpretation of the Raman spectra of soda-gallia-silica glasses and some new work on zinc-containing glasses. The question of the structural environment of transition metal ions in silicate glasses and whether these ions should be regarded as occupying sites (a crystal-like model) or whether they form complexes (a solution-like model) continues to occupy our attention. A study of cobalt in alkali silicate glasses was completed and work is underway on chromium in borate glasses. The investigation of diffusion processes and the hydration of glass surfaces by sputter-induced-photon spectrometry (SIPS) was completed and the final portions are reported

  7. The electronic properties of bare and alkali metal adsorbed two-dimensional GeSi alloy sheet

    Science.gov (United States)

    Qiu, Wenhao; Ye, Han; Yu, Zhongyuan; Liu, Yumin

    2016-09-01

    In this paper, the structural and electronic properties of both bare and alkali metal (AM) atoms adsorbed two-dimensional GeSi alloy sheet (GeSiAS) are investigated by means of first-principles calculations. The band gaps of bare GeSiAS are shown slightly opened at Dirac point with the energy dispersion remain linear due to the spin-orbit coupling effect at all concentrations of Ge atoms. For metal adsorption, AM atoms (including Li, Na and K) prefer to occupy the hexagonal hollow site of GeSiAS and the primary chemical bond between AM adatom and GeSiAS is ionic. The adsorption energy has an increase tendency with the increase of the Ge concentration in supercell. Besides, single-side adsorption of AM atoms introduces band gap at Dirac point, which can be tuned by the Ge concentration and the species of AM atoms. The strong relation between the band gaps and the distribution of Si and Ge atoms inside GeSiAS are also demonstrated. The opened band gaps of AM covered GeSiAS range from 14.8 to 269.1 meV along with the effective masses of electrons ranging from 0.013 to 0.109 me, indicating the high tunability of band gap as well as high mobility of carriers. These results provide a development in two-dimensional alloys and show potential applications in novel micro/nano-electronic devices.

  8. Interaction of the model alkyltrimethylammonium ions with alkali halide salts: an explicit water molecular dynamics study

    Directory of Open Access Journals (Sweden)

    M. Druchok

    2013-01-01

    Full Text Available We present an explicit water molecular dynamics simulation of dilute solutions of model alkyltrimethylammonium surfactant ions (number of methylene groups in the tail is 3, 5, 8, 10, and 12 in mixture with NaF, NaCl, NaBr, and NaI salts, respectively. The SPC/E model is used to describe water molecules. Results of the simulation at 298 K are presented in form of the radial distribution functions between nitrogen and carbon atoms of CH2 groups on the alkyltrimethylammonium ion, and the counterion species in the solution. The running coordination numbers between carbon atoms of surfactants and counterions are also calculated. We show that I- counterion exhibits the highest, and F- the lowest affinity to "bind" to the model surfactants. The results are discussed in view of the available experimental and simulation data for this and similar solutions.

  9. Fluorescence enhancement aided by metal ion displacement.

    Science.gov (United States)

    Susini, Vanessa; Ienco, Andrea; Lucia Rossi, Veronica; Paolicchi, Aldo; Sanesi, Antonio

    2016-06-15

    Immunosensors are one of the most common platform used in clinical laboratories, in particular the class based on Enzyme Linked Fluorescent Assays (ELFA) takes advantage of the amplification step of the enzyme, usually the alkaline phosphatase, that catalyzes the hydrolysis of a fluorescent substrate leading it to fluoresce. Anyway, they suffer in sensitivity if compared to molecular diagnostic or more modern in vitro diagnostic devices. In our work, a simple and effective mechanism to enhance the fluorescent signal, and hence the sensitivity of the system, is presented. It is based on the metal ion displacement principle in which a second fluorophore, in our case Calcein Blue, quenched by a cobalt ion is add to the first one (4-MUP), and, in presence of inorganic phosphate, it will be progressively activated by the inorganic phosphate itself leading to the metal displacement. In this way Calcein Blue, newly free to fluoresce, contributes to global fluorescent signal generated by 4-MU. We have tested our proof of principle on a currently used immunoanalyzer, that is VIDAS® system (bioMérieux, Marcy l'Etoile, France) obtaining a fluorescence enhancement of about 50% for each concentration of hydrolyzed 4-MUP tested. PMID:26851581

  10. Ion specific effects of alkali cations on the catalytic activity of HIV-1 protease

    Czech Academy of Sciences Publication Activity Database

    Pokorná, Jana; Heyda, J.; Konvalinka, Jan

    2013-01-01

    Roč. 160, č. 1 (2013), s. 359-370. ISSN 1359-6640 R&D Projects: GA ČR GBP208/12/G016; GA ČR GAP207/11/1798 Institutional support: RVO:61388963 Keywords : HIV -1 protease * ion-protein interaction * Hofmeister series * enzyme kinetics * molecular dynamics Subject RIV: CE - Biochemistry Impact factor: 4.194, year: 2013

  11. Separation of traces of metal ions from sodium matrices

    Science.gov (United States)

    Korkisch, J.; Orlandini, K. A.

    1969-01-01

    Method for isolating metal ion traces from sodium matrices consists of two extractions and an ion exchange step. Extraction is accomplished by using 2-thenoyltrifluoracetone and dithizone followed by cation exchange.

  12. Influence of additives on the retention of metal ions in a soil of Bangalore, India

    Directory of Open Access Journals (Sweden)

    Dr Maya Naik

    2009-04-01

    Full Text Available Liners play an important role in minimizing migration of contaminants and are frequently constructed with natural materials serving as the primary barrier to contain chemicals and potentially harmful pollutants from municipal toxic waste leachates. To improve the performance of liners, additives like lime and cement at low percentages were added to Red Soil of Bangalore. Heavy metals like hexavalent chromium, copper and zinc and alkali metals like sodium and potassium were taken as contaminants. Batch leaching tests on 50 samples were performed according to ASTM D 3987 – 85 for soil and soil mixtures with contaminants. The heavy metals were potentiometrically monitored using ion selective mercury and platinum electrodes. The alkali metals were determined using a Flame Photometry. It has been observed that the retention of heavy metals elements followed the order copper> zinc>chromium over a period of 7 to 28 days. Chromium, zinc and copper attained equilibrium in this period as confirmed based on conductivity and pH data. Cement and lime had significant effect on copper and zinc. Specific adsorption of Cu onto CaCO3 surfaces may control Cu concentration in solution. Zn adsorption increases with pH; Zinc hydrolysed at pH > 7.7 and these hydrolyzed species are strongly adsorbed to soil surfaces. Cr was retained only by 50% and additives did not have much effect as it is subjected to nonspecific adsorption (temporary. Cr was found to be highly mobile in alkaline soils. It was observed that the retention of alkali metals follows the order: K > Na. Cement and lime had positive effect on the retention of Na and K. Sodium ion retarded immediately due to the removal of exchangeable cations, whereas potassium retarded more than sodium due to the lower hydrated radius of potassium. Scanning Electron Microscopy (SEM characterization tests were performed to understand the soil mineral structure. Regular porous, sponge like, particles were detected in

  13. Experiments and Researches on Production of Highly Charged Metallic Ions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To satisfy the requirements of HIRFL (Heavy Ion Research Facility in Lanzhou), series of experiments have been done to produce metallic ion beams on the 14.5 GHz ECR ion source. By now, numerous methods have been tested, in which oven heating and MIVOC (Metallic Ion from Volatile Compounds) are both included.According to the experiments, the results show that oven heating is much better than MIVOC. In most of our

  14. Metal Ion Effect on BOD Exertion at Different Temperatures

    OpenAIRE

    Ajay Sharma; Siloni Goel; SUSHEEL K. MITTAL

    2004-01-01

    The toxic effect of metal ions like chromium (Cr3+), cobalt (Co2+), nickel (Ni2+), copper (Cu2+), cadmium (Cd2+) and lead (Pb2+) on biochemical oxygen demand (BOD) of synthetic wastewater samples has been studied at different temperatures i.e., 15°C, 20°C, 25°C and 30°C. Experiments were conducted for BOD exertion in presence (10 ppm of each metal ion) and in the absence of metal ions at different temperatures. Transition metal ions like Cr3+, Co2+, Ni2+ and Cu2+ show an increase ...

  15. Plasma immersion ion implantation for reducing metal ion release

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, C.; Garcia, J. A.; Maendl, S.; Pereiro, R.; Fernandez, B.; Rodriguez, R. J. [Centro de Ingenieria Avanzada de Superficies AIN, 31191, Cordovilla-Pamplona (Spain); Leibniz-Institut fuer Oberflaechenmodifizierung, 04318 Leipzig (Germany); Universidad de Oviedo, Departamento Quimica Fisica y Analitica (Spain); Centro de Ingenieria Avanzada de Superficies AIN, 31191, Cordovilla-Pamplona (Spain)

    2012-11-06

    Plasma immersion ion implantation of Nitrogen and Oxygen on CoCrMo alloys was carried out to improve the tribological and corrosion behaviors of these biomedical alloys. In order to optimize the implantation results we were carried experiments at different temperatures. Tribocorrosion tests in bovine serum were used to measure Co, Cr and Mo releasing by using Inductively Coupled Plasma Mass Spectrometry analysis after tests. Also, X-ray Diffraction analysis were employed in order to explain any obtained difference in wear rate and corrosion tests. Wear tests reveals important decreases in rate of more than one order of magnitude for the best treatment. Moreover decreases in metal release were found for all the implanted samples, preserving the same corrosion resistance of the unimplanted samples. Finally this paper gathers an analysis, in terms of implantation parameters and achieved properties for industrial implementation of these treatments.

  16. Release and transformation of alkali metals during co-combustion of coal and sulfur-rich wheat straw

    International Nuclear Information System (INIS)

    Highlights: • Wheat straw rich in sulfur compared to coal was chosen as biomass material. • The behavior of alkali metal species during co-combustion was investigated. • The amount of KCl(g) and NaCl(g) was decreased by adding coal to wheat straw. • Most of fuel K was retained in the bottom ash as K2SO4, KAlSiO4 and KAlSiO6. • The amount of K2SO4 in the bottom ash decreased with temperature increase. - Abstract: Co-combustion of coal and biomass is a low-cost, large-scale, and efficient way to utilize biomass energy, which has a wide range of potential applications. However, biomass, especially herbaceous fuels, contains high levels of volatile K, Na, and Cl, the use of which may result in ash-related operational problems, such as corrosion, fouling, and slagging during thermal utilization. The aim of this study is to investigate the effects of wheat straw and temperature on the release and transformation of alkali metal species during co-combustion of coal and S-rich wheat straw. Results indicate that the amounts of K and Na released during co-combustion could be reduced by the effects of Fe, Ti, S, Si, and Al from blended fuels. At lower wheat straw shares, the release of K decreased due to reactions of KCl with Fe species, and Ti species, forming K2Fe2O4 and K2TiO3. At high wheat straw shares, the release of K could be mainly captured in the form of K2SO4; small amounts of KAlSiO4 were also observed in the bottom ash. When the wheat straw share was 80 wt.%, increasing temperatures enhanced the release of KCl(g) and NaCl(g) at 600–800 °C. By contrast, in the range of 800–1000 °C, the amounts of these gases released exhibited no apparent association with temperature. Compared with the release of K, fuel K was mainly retained in the bottom ash. The K2SO4 content in the bottom ash decreased with increasing temperature in the range of 600–1000 °C, whereas the fraction of K in the form of KAlSiO4 and KAlSiO6 increased with increasing temperature

  17. Comparative study on the change in index of refraction in ion-exchange interdiffusion in alkali-silicate glasses containing calcium, strontium, barium and titanium oxides

    International Nuclear Information System (INIS)

    Different ability to ion exchange from the salts of lithium-sodium-silicate glass melt containing calcium (or strontium, or barium) and titanium oxides in addition has been shown. CaO, SrO and BaO have negative effect, but TiO2 -positive one on the fullness of ion exchange of lithium-sodium and on the rate of interdiffusion in alkali-silicate glass. The value of change in index of refraction of glass with TiO2 is twice higher than glass with calcium oxide (or strontium, or barium) as the fourth component

  18. Synthetic inorganic ion exchangers. XVI. Electrochromatographic separations of metal ions on zirconium tungstate-impregnated paper

    International Nuclear Information System (INIS)

    The electrochromatographic behavior of 25 metal ions on zirconium tungstate-impregnated papers is described. Six background electrolytes were used. On the basis of the differential mobilities of metal ions which depend on the ion-exchange properties of zirconium tungstate and the nature of complex formation with the electrolytes, some important binary and ternary separations have been achieved

  19. Metal Transport across Biomembranes: Emerging Models for a Distinct Chemistry*

    OpenAIRE

    Argüello, José M.; Raimunda, Daniel; González-Guerrero, Manuel

    2012-01-01

    Transition metals are essential components of important biomolecules, and their homeostasis is central to many life processes. Transmembrane transporters are key elements controlling the distribution of metals in various compartments. However, due to their chemical properties, transition elements require transporters with different structural-functional characteristics from those of alkali and alkali earth ions. Emerging structural information and functional studies have revealed distinctive ...

  20. Molecular Turnstiles Regulated by Metal Ions.

    Science.gov (United States)

    Wang, Guangxia; Xiao, Hongmei; He, Jiaojiao; Xiang, Junfeng; Wang, Ying; Chen, Xuebo; Che, Yanke; Jiang, Hua

    2016-04-15

    A family of novel molecular turnstiles 1-3 composed of two stators with pyridyl binding sites and a different-sized triptycene rotor was synthesized. The molecular turnstiles behave in an open state at room temperature in the absence of metal ions but display significantly different closed states in the presence of Ag(+) and Pd(2+). The Ag(+)-mediated turnstiles 1-3Ag exhibited closed states but unreadable bistability at ambient temperature because the Ag(+)-mediated macrocyclic framework is not able to restrict the rotations of the rotors; while temperature was decreased, the macrocyclic frameworks became stable enough to halt the rotations of the rotors, eventually leading to the readable closed states for 1-3Ag. In contrast, Pd(2+)-mediated macrocyclic frameworks are stable, giving rise to a detectable closed state of turnstiles 1-3Pd in a wide range of temperatures. These findings have also been supported by DFT calculations. PMID:26986992

  1. FP-APW+lo calculations of the electronic and optical properties of alkali metal sulfides under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Khachai, H; Haddou, A; Rached, D; Soudini, B [Applied Materials Laboratory (AML), Electronics Department, University of Sidi-bel-Abbes, Sidi-bel-Abbes 22000 (Algeria); Khenata, R; Amrani, B [Laboratoire de Physique Quantique et de Modelisation Mathematique (LPQ3M), Departement de Technologie, Universite de Mascara, Mascara 29000 (Algeria); Bouhemadou, A [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, University of Setif, Setif 19000 (Algeria); Reshak, Ali H [Institute of Physical Biology, South Bohemia University, Nove Hrady 373 33 (Czech Republic)], E-mail: khenata_rabah@yahoo.fr, E-mail: a_bouhemadou@yahoo.fr

    2009-03-04

    The electronic and optical properties of M{sub 2}S (M = Li, Na, K and Rb) compounds in the cubic antifluorite structure have been calculated, using a full relativistic version of the full-potential augmented plane-wave plus local orbitals method based on density functional theory, within both the local density approximation (LDA) and the generalized gradient approximation (GGA). Moreover, the Engel-Vosko GGA formalism (EV-GGA) is applied so as to optimize the corresponding potential for band structure calculations. The calculated equilibrium lattices and bulk moduli are in good agreement with the available data. Band structure, density of states, electron charge density and pressure coefficients of energy gaps are given. Results obtained for band structure using EV-GGA are larger than those with LDA and GGA. It is found that the spin-orbit coupling lifts the triple degeneracy at the {gamma} point and the double degeneracy at the X point. The analysis of the electron charge density shows that the M-S bonds have a significant ionic character. The complex dielectric functions {epsilon}{sub 2}({omega}) for alkali metal sulfides were calculated for radiation up to 30 eV and the assignment of the critical points to the band structure energy differences at various points of the Brillouin zone was made. The pressure and volume dependence of the static dielectric constant and the refractive index are calculated.

  2. Solubility of some phenolic compounds in aqueous alkali metal nitrate solutions from (293.15 to 318.15) K

    International Nuclear Information System (INIS)

    This paper is continuation of the study concerning the solubility-temperature dependence data for some phenolic compounds (PhC), contained in olive mill wastewater (OMWW), in two nitrate salts (KNO3 and NaNO3) aqueous solutions. The solubilities of PhC were determined in the temperature ranging from (293.15 to 318.15) K. It has been observed that the solubility, in aqueous nitrate solutions, increases with increasing temperature. Results showed that alkali metal nitrate has a salting-out effect on the solubility of PhC. The effect of the anion of the electrolyte on the solubility of PhC is observed by comparing these results with values reported in the previous papers for the effect of LiCl, NaCl and KCl. For each cation, the solubilites of the phenolic compounds are higher with nitrate anion than with chloride anion. Results were interpreted in terms of the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The solubility data were accurately correlated by a semi empirical equation. The standard molar Gibbs free energies of transfer of PhC (ΔtrG0) from pure water to aqueous solutions of the nitrate salts have been calculated from the solubility data. The decrease in solubility is correlated to the positive ΔtrG0 value which is mainly of enthalpic origin

  3. Evidence for alkali metal induced intermolecular acetylenic hydrogen atom transfer between hydrogen-bonded alkyne complexes in solid argon

    International Nuclear Information System (INIS)

    Condensation of acetylene, propyne, and 2-butyne/acetylene mixtures with heavy alkali metal atoms (Na, K, Cs) in an argon matrix at 15 K has led to the appearance of infrared absorptions due to ethylene, propylene, and trans-2-butene, respectively. These results stand in sharp contrast with the products obtained with lithium. Isotopic studies have shown that ethylene formation involved three different acetylene molecules and evidenced a difference in the product yield with hydrogen vs. deuterium as well as a preference for trans- vs. cis-C2H2D2 formation, which is discussed and rationalized by differences in the zero point energies for the different mixed deuterium isotopes of the intermediate vinyl radical. This trend is amplified by methyl substitution. Spectroscopic evidence was found in these experiments for cesium acetylide (Cs+C2H-) and a cesium-acetylene π complex, which are involved in the intermolecular acetylenic hydrogen atom transfer process. 26 references, 3 figures, 2 tables

  4. FP-APW+lo calculations of the electronic and optical properties of alkali metal sulfides under pressure

    International Nuclear Information System (INIS)

    The electronic and optical properties of M2S (M = Li, Na, K and Rb) compounds in the cubic antifluorite structure have been calculated, using a full relativistic version of the full-potential augmented plane-wave plus local orbitals method based on density functional theory, within both the local density approximation (LDA) and the generalized gradient approximation (GGA). Moreover, the Engel-Vosko GGA formalism (EV-GGA) is applied so as to optimize the corresponding potential for band structure calculations. The calculated equilibrium lattices and bulk moduli are in good agreement with the available data. Band structure, density of states, electron charge density and pressure coefficients of energy gaps are given. Results obtained for band structure using EV-GGA are larger than those with LDA and GGA. It is found that the spin-orbit coupling lifts the triple degeneracy at the Γ point and the double degeneracy at the X point. The analysis of the electron charge density shows that the M-S bonds have a significant ionic character. The complex dielectric functions ε2(ω) for alkali metal sulfides were calculated for radiation up to 30 eV and the assignment of the critical points to the band structure energy differences at various points of the Brillouin zone was made. The pressure and volume dependence of the static dielectric constant and the refractive index are calculated.

  5. Understanding the defect chemistry of alkali metal strontium silicate solid solutions: insights from experiment and theory

    KAUST Repository

    Bayliss, Ryan D.

    2014-09-24

    © the Partner Organisations 2014. Recent reports of remarkably high oxide ion conduction in a new family of strontium silicates have been challenged. It has recently been demonstrated that, in the nominally potassium substituted strontium germanium silicate material, the dominant charge carrier was not the oxygen ion, and furthermore that the material was not single phase (R. D. Bayliss et. al., Energy Environ. Sci., 2014, DOI: 10.1039/c4ee00734d). In this work we re-investigate the sodium-doped strontium silicate material that was reported to exhibit the highest oxide ion conductivity in the solid solution, nominally Sr0.55Na0.45SiO2.775. The results show lower levels of total conductivity than previously reported and sub-micron elemental mapping demonstrates, in a similar manner to that reported for the Sr0.8K0.2Si0.5Ge0.5O2.9 composition, an inhomogeneous chemical distribution correlating with a multiphase material. It is also shown that the conductivity is not related to protonic mobility. A density functional theory computational approach provides a theoretical justification for these new results, related to the high energetic costs associated with oxygen vacancy formation. This journal is

  6. Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS2

    International Nuclear Information System (INIS)

    Single adsorption of different atoms on pristine two-dimensional monolayer MoS2 have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3d-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS2. Additionally, local or long-range magnetic moments of two-dimensional MoS2 sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS2 monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application

  7. Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS2

    Directory of Open Access Journals (Sweden)

    X. D. Li

    2015-05-01

    Full Text Available Single adsorption of different atoms on pristine two-dimensional monolayer MoS2 have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3d-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS2. Additionally, local or long-range magnetic moments of two-dimensional MoS2 sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS2 monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application.

  8. Binding energy referencing for XPS in alkali metal-based battery materials research (I): Basic model investigations

    International Nuclear Information System (INIS)

    Highlights: • We point to a not seriously solved conflict in energy scale referencing of Li metal samples in XPS. • Model experiments at Li-, Na-metal and Li-doped HOPG samples were used to classify the effects. • Binding energy shifts up to 3 eV are observed when the alkaline metal is present in metallic state. • A phenomenological explanation based on an electrostatic interaction is suggested. • Consequences for energy scale correction depending on the kind of surface species are followed. - Abstract: For the investigation of chemical changes in Li- and Na-ion battery electrode systems, X-ray photoelectron spectroscopy (XPS) is a well-accepted method. Charge compensation and referencing of the binding energy (BE) scale is necessary to account for the involved mostly non-conducting species. Motivated by a conflict in energy scale referencing of Li-metal samples discussed earlier by several authors, further clarifying experimental results on several Li containing reference materials are presented and extended by similar experiments for Na. When correlating the peak positions of characteristic chemical species in all the different prepared model sample states, there seems to be a systematic deviation in characteristic binding energies of several eV if lithium is present in its metallic state. Similar results were found for sodium. The observations are furthermore confirmed by the implementation of inert artificial energy reference material, such as implanted argon or deposited gold. The behavior is associated with the high reactivity of metallic lithium and a phenomenological explanation is proposed for the understanding of the observations. Consequences for data interpretation in Li-ion battery research will be discussed for various applications in part (II)

  9. Binding energy referencing for XPS in alkali metal-based battery materials research (I): Basic model investigations

    Energy Technology Data Exchange (ETDEWEB)

    Oswald, S., E-mail: s.oswald@ifw-dresden.de

    2015-10-01

    Highlights: • We point to a not seriously solved conflict in energy scale referencing of Li metal samples in XPS. • Model experiments at Li-, Na-metal and Li-doped HOPG samples were used to classify the effects. • Binding energy shifts up to 3 eV are observed when the alkaline metal is present in metallic state. • A phenomenological explanation based on an electrostatic interaction is suggested. • Consequences for energy scale correction depending on the kind of surface species are followed. - Abstract: For the investigation of chemical changes in Li- and Na-ion battery electrode systems, X-ray photoelectron spectroscopy (XPS) is a well-accepted method. Charge compensation and referencing of the binding energy (BE) scale is necessary to account for the involved mostly non-conducting species. Motivated by a conflict in energy scale referencing of Li-metal samples discussed earlier by several authors, further clarifying experimental results on several Li containing reference materials are presented and extended by similar experiments for Na. When correlating the peak positions of characteristic chemical species in all the different prepared model sample states, there seems to be a systematic deviation in characteristic binding energies of several eV if lithium is present in its metallic state. Similar results were found for sodium. The observations are furthermore confirmed by the implementation of inert artificial energy reference material, such as implanted argon or deposited gold. The behavior is associated with the high reactivity of metallic lithium and a phenomenological explanation is proposed for the understanding of the observations. Consequences for data interpretation in Li-ion battery research will be discussed for various applications in part (II)

  10. Quantum Chemical and FTIR Spectroscopic Studies on the Linkage Isomerism of Carbon Monoxide in Alkali-Metal-Exchanged Zeolites: A Review of Current Research

    Directory of Open Access Journals (Sweden)

    E. Garrone

    2002-07-01

    Full Text Available Abstract: When adsorbed (at a low temperature on alkali-metal-exchanged zeolites, CO forms both M(CO+ and M(OC+ carbonyl species with the extra-framework alkali-metal cation of the zeolite. Both quantum chemical and experimental results show that C-bondend adducts are characterized by a C−O stretching IR band at a frequency higher than that of 2143 cm-1 for free CO, while for O-bonded adducts this IR band appears below 2143 cm-1. The cation-CO interaction energy is higher for M(CO+ than for M(OC+ carbonyls, although the corresponding difference decreases substantially when going from Li+ to Cs+. By means of variable-temperature FTIR spectroscopy, this energy difference was determined for several alkali-metal cations, and the existence of a thermal equilibrium between M(CO+ and M(OC+ species was established. The current state of research in this field is reviewed here, with a view to gain more insight into the thermal isomerization process.

  11. Magnetometry with millimeter-scale anti-relaxation-coated alkali-metal vapor cells

    CERN Document Server

    Balabas, M V; Kitching, J; Schwindt, P D D; Stalnaker, J E

    2005-01-01

    Dynamic nonlinear magneto-optical-rotation signals with frequency- and amplitude-modulated laser light have been observed and investigated with a spherical glass cell of 3-mm diameter containing Cs metal with inner walls coated with paraffin. Intrinsic Zeeman relaxation rates of $\\gamma/(2\\pi)\\approx 20 $Hz and lower have been observed. Favorable prospects of using millimeter-scale coated cells in portable magnetometers and secondary frequency references are discussed.

  12. X-ray and neutron diffraction studies of some liquid alkali metals and alloys

    International Nuclear Information System (INIS)

    Experimental techniques and correction procedures have been searched for, which allow a reliable and accurate determination of the structure factors of simple liquid metals, particularly in the small-angle region. A study of binary alloys was carried out and showed that clustering of like atoms (a tendency to phase separation) occurs, indicating special structural aspects. The densities of Na-K, Na-Cs, K-Rb alloys were also measured. (C.F.)

  13. Metal ion complexation by ionizable crown ethers. Final report, January 1, 1988--June 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, R.A.

    1994-12-31

    During the report period a variety of new lipophilic ionizable crown ethers with pendent proton-ionizable groups has been synthesized. The ligands possess one or more ionizable group (carboxylic acid, phosphonic acid monoethyl ester, para-nitrophenol, phosphonic acid) attached to crown ether, monoazacrown ether or diazacrown ether frameworks. These novel chelating agents have either pendent or inward-facing proton-ionizable groups. Such lipophilic proton-ionizable crown ethers are designed for use in multiphase metal ion separations (solvent extraction, liquid membrane transport). In addition a series of proton-ionizable crown ethers without lipophilic groups was prepared to study how structural variations within the ligand influence metal ion complexation in homogeneous media as assessed by NMR spectroscopy or titration calorimetry. A third class of new metal ion-complexing agents is a series of lipophilic acyclic polyether dicarboxylic acids. Competitive solvent extractions of alkali metal and alkaline earth cations and of the mixed species have been conducted to reveal the influence of ring size, nature and attachment site of the lipophilic group, sidearm length, and proton-ionizable group identity and location upon the selectivity and efficiency of metal ion complexation. In addition to such studies of structural variation within the lipophilic proton-ionizable crown ether, the effect of changing the organic solvent and variation of the stripping conditions have been assessed. The influence of structural variations within lipophilic acyclic polyether dicarboxylic acids upon competitive solvent extraction of alkaline earth cations has been probed. Also a new chromogenic, di-ionizable crown ether with extremely high selectivity for Hg{sup 2+} has been discovered.

  14. [Ion specificity during ion exchange equilibrium in natural clinoptilolite].

    Science.gov (United States)

    He, Yun-Hua; Li, Hang; Liu, Xin-Min; Xiong, Hai-Ling

    2015-03-01

    Zeolites have been widely applied in soil improvement and environment protection. The study on ion specificity during ion exchange equilibrium is of important significance for better use of zeolites. The maximum adsorption capacities of alkali ions during ion exchange equilibrium in the clinoptilolite showed obvious specificity. For alkali metal ions with equivalent valence, the differences in adsorption capacity increased with the decrease of ionic concentration. These results cannot be well explained by the classical theories including coulomb force, ionic size, hydration, dispersion force, classic induction force and surface complexation. We found that the coupling of polarization effects resulted from the quantum fluctuation of diverse alkali metal ions and electric field near the zeolite surface should be the primary reason for specific ion effect during ion exchange in zeolite. The result of this coupling effect was that the difference in the ion dipole moment increased with the increase of surface potential, which further expanded the difference in the adsorption ability between zeolite surface and ions, resulting in different ion exchange adsorption ability at the solid/liquid interface. Due to the high surface charge density of zeolite, ionic size also played an important role in the distribution of ions in the double diffuse layer, which led to an interesting result that distinct differences in exchange adsorption ability of various alkali metal ions were only detected at high surface potential (the absolute value was greater than 0.2 V), which was different from the ion exchange equilibrium result on the surface with low charge density. PMID:25929073

  15. Development of Metal Ion Implanter and it's Application

    International Nuclear Information System (INIS)

    PEFP(Proton Engineering Frontier Project) has been developed some test facilities using domestic accelerators for the basic experiments and pilot studies of proton and ion beam application technology developments. Metal ion implanter has been designed and manufactured for studies of surface modification by metal ion beam. The purpose of design is domestic development of the basic technology for the application field using by metal ion beam. The main point of design and manufacture is production, acceleration and transportation of metal ion beam current up to 1mA and ion energy up to 100keV and beam size on target up to 10cm x 10cm. Metal ion implanter consists of modified Burnas ion source, mass separation magnet, slit, acceleration tube, magnetic quadrupole, electrostatic scanner and target. It includes fiber optic links for the monitoring and control of the ion source parameters in the high voltage zone, and a computer system for the characterization of the ion beam and the whole control of an implantation process. Also, this equipment used for diverse application areas, like gem coloring, photo-catalyst, solar cell, lighting LED, medical material, and so on, by modifying the surface characteristics of materials such as polymers, metals, and ceramics

  16. Conditions for preparation of ultrapure beryllium by electrolytic refining in molten alkali-metal chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Wohlfarth, Hagen

    1982-02-01

    Electrolytic refining is regarded as the most suitable process for the production of beryllium with impurity contents below 1 at.-ppM. Several parameters are important for electrolytic refining of beryllium in a BeCl/sub 2/-containing LiCl-KCl melt: current density, BeCl/sub 2/ content, electrolyte temperature, composition of the unpurified beryllium and impurity-ion concentrations in the melt, as well as apparatus characteristics such as rotation speed of the cathode and condition of the crucible material. These factors were studied and optimized such that extensive removal of the maximum number of accompanying and alloying elements was achieved.

  17. Investigation of ozonide ion reaction with neptunium (6) ions in alkali aqueous solutions by the method of pulse radiolysis

    International Nuclear Information System (INIS)

    By pulse radiolysis method with spectrophotometric recording of short-living particles kinetics of O3-radical-ion reaction with Np5+ and Np6+ in alkaline solutions is investigated. Rate constant of the first reaction equals to (2.0±0.3)x106, of the second -(2.1±0.2)x105 l/(mol·c) in 0.2-2.0 mol/l of LiOH. Peculiarities of Np6+ γ-radiolysis in alkaline solutions saturated with N2O and in aerated solutions containing K2S2O8 are explained. Np7+ yield is determined by O3-behaviour which depends on Np6+ and OH- concentration

  18. Atomic Beam Merging and Suppression of Alkali Contaminants in Multi Body High Power Targets: Design and Test of Target and Ion Source Prototypes at ISOLDE

    CERN Document Server

    Bouquerel, Elian J A; Lettry, J; Stora, T

    2009-01-01

    The next generation of high power ISOL-facilities will deliver intense and pure radioactive ion beams. Two key issues of developments mandatory for the forthcoming generation of ISOL target-ion source units are assessed and demonstrated in this thesis. The design and production of target and ion-source prototypes is described and dedicated measurements at ISOLDE-CERN of their radioisotope yields are analyzed. The purity of short lived or rare radioisotopes suffer from isobaric contaminants, notably alkalis which are highly volatile and easily ionized elements. Therefore, relying on their chemical nature, temperature controlled transfer lines were equipped with a tube of quartz that aimed at trapping these unwanted elements before they reached the ion source. The successful application yields high alkali-suppression factors for several elements (ie: 80, 82mRb, 126, 142Cs, 8Li, 46K, 25Na, 114In, 77Ga, 95, 96Sr) for quartz temperatures between 300ºC and 1100ºC. The enthalpies of adsorption on quartz were measu...

  19. A self-sputtering ion source: A new approach to quiescent metal ion beams

    OpenAIRE

    Oks, Efim M.

    2010-01-01

    A new metal ion source is presented based on sustained self-sputtering plasma in a magnetron discharge. Metals exhibiting high self-sputtering yield like Cu, Ag, Zn, and Bi can be used in a high-power impulse magnetron sputtering (HIPIMS) discharge such that the plasma almost exclusively contains singly charged metal ions of the target material. The plasma and extracted ion beam are quiescent. The ion beams consist mostly of singly charged ions with a space-charge limited current density w...

  20. A self-sputtering ion source: A new approach to quiescent metal ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Oks, Efim M.; Anders, Andre

    2009-09-03

    A new metal ion source is presented based on sustained self-sputtering plasma in a magnetron discharge. Metals exhibiting high self-sputtering yield like Cu, Ag, Zn, and Bi can be used in a high-power impulse magnetron sputtering (HIPIMS) discharge such that the plasma almost exclusively contains singly charged metal ions of the target material. The plasma and extracted ion beam are quiescent. The ion beams consist mostly of singly charged ions with a space-charge limited current density which reached about 10 mA/cm2 at an extraction voltage of 45 kV and a first gap spacing of 12 mm.

  1. Dipole Polarizability of Alkali-Metal (Na, K, Rb) - Alkaline-Earth-Metal (Ca,Sr) Polar molecules - Prospects of Alignment

    CERN Document Server

    Gopakumar, Geetha; Hada, Masahiko; Kajita, Masatoshi

    2014-01-01

    Electronic open-shell ground-state properties of selected alkali-metal (AM) - alkaline-earth-metal (AEM) polar molecules are investigated. We determine potential energy curves of the 2{\\Sigma}+ ground state at the coupled-cluster singles and doubles with partial triples (CCSD(T)) level of electron correlation. Calculated spectroscopic constants for the isotopes (23Na, 39K, 85Rb) - (40Ca, 88Sr) are compared with available theoretical and experimental results. The variation of the permanent dipole moment (PDM), average dipole polarizability, and polarizability anisotropy with internuclear distance is determined using finite-field perturbation theory at the CCSD(T) level. Owing to moderate PDM (KCa: 1.67 D, RbCa: 1.75 D, KSr: 1.27 D, RbSr: 1.41 D) and large polarizability anisotropy (KCa: 566 a.u., RbCa: 604 a.u., KSr: 574 a.u., RbSr: 615 a.u.), KCa, RbCa, KSr, and RbSr are potential candidates for alignment and orientation in combined intense laser and external static electric fields.

  2. Ab initio properties of the ground-state polar and paramagnetic europium-alkali-metal-atom and europium-alkaline-earth-metal-atom molecules

    CERN Document Server

    Tomza, Michał

    2014-01-01

    The properties of the electronic ground state of the polar and paramagnetic europium-$S$-state-atom molecules have been investigated. Ab initio techniques have been applied to compute the potential energy curves for the europium-alkali-metal-atom, Eu$X$ ($X$=Li, Na, K, Rb, Cs), europium-alkaline-earth-metal-atom, Eu$Y$ ($Y$=Be, Mg, Ca, Sr, Ba), and europium-ytterbium, EuYb, molecules in the Born-Oppenheimer approximation for the high-spin electronic ground state. The spin restricted open-shell coupled cluster method restricted to single, double, and noniterative triple excitations, RCCSD(T), was employed and the scalar relativistic effects within the small-core energy-consistent pseudopotentials were included. The permanent electric dipole moments and static electric dipole polarizabilities were computed. The leading long-range coefficients describing the dispersion interaction between atoms at large internuclear distances $C_6$ are also reported. The EuK, EuRb, and EuCs molecules are examples of species poss...

  3. Alkali metal – yttrium borohydrides: The link between coordination of small and large rare-earth

    International Nuclear Information System (INIS)

    The system Li–A–Y–BH4 (A=K, Rb, Cs) is found to contain five new compounds and four further ones known from previous work on the homoleptic borohydrides. Crystal structures have been solved and refined from synchrotron X-ray powder diffraction, thermal stability of new compounds have been investigated and ionic conductivity measured for selected samples. Significant coordination flexibility for Y3+ is revealed, which allows the formation of both octahedral frameworks and tetrahedral complex anions with the tetrahydroborate anion BH4 both as a linker and terminal ligand. Bi- and trimetallic cubic double-perovskites c-A3Y(BH4)6 or c-A2LiY(BH4)6 (A=Rb, Cs) form in all the investigated systems, with the exception of the Li–K–Y system. The compounds with the stoichiometry AY(BH4)4 crystallize in all investigated systems with a great variety of structure types which find their analog amongst metal oxides. In-situ formation of a new borohydride – closo-borane is observed during decomposition of all double perovskites. - Graphical abstract: The system Li–A–Y–BH4 (A=K, Rb, Cs) is found to contain five novel compounds and four further ones previously reported. Significant coordination flexibility of Y3+ is revealed, which can be employed to form both octahedral frameworks and tetrahedral complex anions, very different structural topologies. Versatility is also manifested in three different simultaneously occurring coordination modes of borohydrides for one metal cation, as proposed by DFT optimization of the monoclinic KY(BH4)4 structural model observed by powder diffraction. - Highlights: • The system Li-A-Y-BH4 (A=K, Rb, Cs) contains nine compounds in total. • Y3+ forms octahedral frameworks and tetrahedral complex anions. • Bi- and trimetallic double-perovskites crystallize in most systems. • Various AY(BH4)4 crystallize with structure types analogous to metal oxides. • Double-perovskites decompose and form a novel borohydride-closo-borane

  4. Alkali metal – yttrium borohydrides: The link between coordination of small and large rare-earth

    Energy Technology Data Exchange (ETDEWEB)

    Sadikin, Yolanda [Department of Quantum Matter Physics, Laboratory of Crystallography, University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva (Switzerland); Stare, Katarina [Department of Quantum Matter Physics, Laboratory of Crystallography, University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva (Switzerland); Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerjeva 5, SI-1000 Ljubljana (Slovenia); Schouwink, Pascal [Department of Quantum Matter Physics, Laboratory of Crystallography, University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva (Switzerland); Brix Ley, Morten; Jensen, Torben R. [Center for Materials Crystallography (CMC), Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Århus C (Denmark); Meden, Anton [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerjeva 5, SI-1000 Ljubljana (Slovenia); Černý, Radovan, E-mail: radovan.cerny@unige.ch [Department of Quantum Matter Physics, Laboratory of Crystallography, University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva (Switzerland)

    2015-05-15

    The system Li–A–Y–BH{sub 4} (A=K, Rb, Cs) is found to contain five new compounds and four further ones known from previous work on the homoleptic borohydrides. Crystal structures have been solved and refined from synchrotron X-ray powder diffraction, thermal stability of new compounds have been investigated and ionic conductivity measured for selected samples. Significant coordination flexibility for Y{sup 3+} is revealed, which allows the formation of both octahedral frameworks and tetrahedral complex anions with the tetrahydroborate anion BH{sub 4} both as a linker and terminal ligand. Bi- and trimetallic cubic double-perovskites c-A{sub 3}Y(BH{sub 4}){sub 6} or c-A{sub 2}LiY(BH{sub 4}){sub 6} (A=Rb, Cs) form in all the investigated systems, with the exception of the Li–K–Y system. The compounds with the stoichiometry AY(BH{sub 4}){sub 4} crystallize in all investigated systems with a great variety of structure types which find their analog amongst metal oxides. In-situ formation of a new borohydride – closo-borane is observed during decomposition of all double perovskites. - Graphical abstract: The system Li–A–Y–BH{sub 4} (A=K, Rb, Cs) is found to contain five novel compounds and four further ones previously reported. Significant coordination flexibility of Y{sup 3+} is revealed, which can be employed to form both octahedral frameworks and tetrahedral complex anions, very different structural topologies. Versatility is also manifested in three different simultaneously occurring coordination modes of borohydrides for one metal cation, as proposed by DFT optimization of the monoclinic KY(BH{sub 4}){sub 4} structural model observed by powder diffraction. - Highlights: • The system Li-A-Y-BH{sub 4} (A=K, Rb, Cs) contains nine compounds in total. • Y{sup 3+} forms octahedral frameworks and tetrahedral complex anions. • Bi- and trimetallic double-perovskites crystallize in most systems. • Various AY(BH{sub 4}){sub 4} crystallize with

  5. Vanadium oxide based cpd. useful as a cathode active material - is used in lithium or alkali metal batteries to prolong life cycles

    DEFF Research Database (Denmark)

    1997-01-01

    A mixt. of metallic iron particles and vanadium pentoxide contg. V in its pentavalent state in a liq. is reacted to convert at least some of the pentavalent V to its tetravalent state and form a gel. The liq. phase is then sepd. from the oxide based gel to obtain a solid material(I) comprising Fe......, V and oxygen where at least some of the V is in the tetravalent state. USE-(I) is a cathode active material in electric current producing storage cells. ADVANTAGE-Use of (I) in Li or alkali metal batteries gives prolonged life cycles.Storage cells using (I) have improved capacity during charge and...

  6. Impregnated-electrode-type liquid metal ion source

    Science.gov (United States)

    Ishikawa, J.; Gotoh, Y.; Tsuji, H.; Takagi, T.

    We have developed an impregnated-electrode-type liquid metal ion source whose tip is a sintered-porous structure made of a refractory metal such as tungsten. By this structure the ratio of the liquid metal surface area facing the vacuum to the volume is low, which decreases useless metal evaporation from the surface. The maximum vapour pressure of the metal in operation for this ion source is 10 -1-10 0 Torr, which is 2-3 orders of magnitude higher than that for the needle type. Therefore, useful metal ions such as Ga +, Au +, Ag +, In +, Si 2+, Ge 2+, and Sb 2+ can be extracted from single element metals or alloys. The porous structure of the tip has also an effect on the positive control of the liquid metal flow rate to the tip head. Thus, a stable operation with a high current of a few hundreds of μA can be obtained together with a low current high brightness ion beam. Therefore, this ion source is suitable not only for microfocusing but also for a general use as a metal ion source.

  7. Electronic structure of alkali metal hydrides on data of cluster calculations by LCAO MO SCF CNDO

    International Nuclear Information System (INIS)

    The results of quantum-chemical study in where by M = Li, Na, K, Rb and Cs, are presented. The calculation expresses the expected electron density distributions in hydrides on the hydrogen and metal atoms as well as the energy characteristics: M-H, M-M and compounds binding energies. The latter ones qualitatively correlate with the binding energies of LiH-CsH compounds. The calculated values for the Fermi energy and the width of the forbidden zone at the Fermi level make it possible to suppose that the ideally formed lithium hydride crystal will be characterized by the highest electrical resistance. It is established that quantum-chemical characteristics of the MH hydrides structure change nonmonotonously by transfer from Li to Cs

  8. Explorations of New SHG Materials in the Alkali-Metal-Nb(5+)-Selenite System.

    Science.gov (United States)

    Cao, Xue-Li; Hu, Chun-Li; Kong, Fang; Mao, Jiang-Gao

    2015-11-16

    Standard high-temperature solid-state reactions of NaCl, Nb2O5, and SeO2 resulted in two new sodium selenites containing a second-order Jahn-Teller (SOJT) distorted Nb(5+) cation, namely, Na2Nb4O7(SeO3)4 (P1̅; 1) and NaNbO(SeO3)2 (Cmc21; 2). Compound 1 exhibits an unusual 3D [Nb4O7(SeO3)4](2-) anionic network composed of 2D [Nb4O11(SeO3)2](6-) layers which are further bridged by additional SeO3(2-) anions via corner sharing; the 2D [Nb4O11(SeO3)2](6-) layer is formed by unusual quadruple [Nb4O17](14-) niobium oxide chains of corner-sharing NbO6 octahedra being further interconnected by selenite anions via Nb-O-Se bridges. The polar compound 2 features a 1D [NbO(SeO3)2](-) anionic chain in which two neighboring Nb(5+) cations are bridged by one oxo and two selenite anions. The alignments of the polarizations from the NbO6 octahedra in 2 led to a strong SHG response of ∼7.8 × KDP (∼360 × α-SiO2), which is the largest among all phases found in metal-Nb(5+)-Se(4+)/metal-Nb(5+)-Te(4+)-O systems. Furthermore, the material is also type I phase matchable. The above experimental results are consistent with those based on DFT theoretical calculations. Thermal stabilities and optical properties for both compounds are also reported. PMID:26513233

  9. Solubility of alkali metal halides in the ionic liquid [C4C1im][OTf].

    Science.gov (United States)

    Kuzmina, O; Bordes, E; Schmauck, J; Hunt, P A; Hallett, J P; Welton, T

    2016-06-28

    The solubilities of the metal halides LiF, LiCl, LiBr, LiI, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, KI, RbCl, CsCl, CsI, were measured at temperatures ranging from 298.15 to 378.15 K in the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([C4C1im][OTf]). Li(+), Na(+) and K(+) salts with anions matching the ionic liquid have also been investigated to determine how well these cations dissolve in [C4C1im][OTf]. This study compares the influence of metal cation and halide anion on the solubility of salts within this ionic liquid. The highest solubility found was for iodide salts, and the lowest solubility for the three fluoride salts. There is no outstanding difference in the solubility of salts with matching anions in comparison to halide salts. The experimental data were correlated employing several phase equilibria models, including ideal mixtures, van't Hoff, the λh (Buchowski) equation, the modified Apelblat equation, and the non-random two-liquid model (NRTL). It was found that the van't Hoff model gave the best correlation results. On the basis of the experimental data the thermodynamic dissolution parameters (ΔH, ΔS, and ΔG) were determined for the studied systems together with computed gas phase metathesis parameters. Dissolution depends on the energy difference between enthalpies of fusion and dissolution of the solute salt. This demonstrates that overcoming the lattice energy of the solid matrix is the key to the solubility of inorganic salts in ionic liquids. PMID:27264676

  10. Metal-ion adsorption on poly (1-vinylimidazole) resins prepared by γ-irradiation with template metal ion

    International Nuclear Information System (INIS)

    Poly (1-vinylimidazole) (PVI) resins were prepared with a metal ions as template by the radiation polymerization at room temperature. The metal (Ni2+, Co2+ and Zn2+)-1-vinylimidazole complex was copolymerized and crosslinked with 1-vinylpyrrolidone by γ-ray irradiation, followed by the removal of the template metal ion by treating the resins with an acid. These PVI resins adsorbed metal ions in the wide pH region more effectively than the PVI resins prepared without template, which is due to an increase in the number of adsorption sites (A sub(s)) and the larger stability constants (K) of the PVI resins prepared with template. (author)

  11. Operational characteristics of a metal vapor vacuum arc ion source

    International Nuclear Information System (INIS)

    The MEVVA ion source can produce high current pulsed beams of metallic ions using a metal vapor vacuum arc discharge as the plasma medium from which the ions are extracted. In this study, the operational characteristics of the MEVVA IV ion source are summarized. Results are presented of measurements of the ion beam current as a function of arc current over a range of extraction voltage. Ti, Ta and Pb were examined as the cathode materials. The arc current ranged from 50A to 250A and the extraction voltage from 10kV to 80kV. The ion beam current was measured at two different distances from the ion source using Faraday cups, so as to investigate the beam divergence. Additionally, the cathode erosion rates were measured. Optimum operating conditions of the MEVVA ion source were determined. 10 refs., 6 figs

  12. Preparation of Dithizone Functionalized Polystyrene for Detecting Heavy Metal Ion

    International Nuclear Information System (INIS)

    Colorimetric sensors were usually used to detect specific metal ions using selective color change of solutions. While almost organic dye in colorimetric sensors detected single molecule, dithizone (DTZ) solution could be separately detected above 5 kinds of heavy metal ions by the change of clear color. Namely, DTZ could be used as multicolorimetric sensors. However, DTZ was generally used as aqueous type and paper/pellet-type DTZ was not reported yet. Therefore, in this work, polystyrene (PS) was prepared to composite with DTZ and then DTZ/PS pellet was obtained, which was used to selectively detect 10 kinds of heavy metal ions. When 10 ppm of Hg and Co ions was exposed in DTZ/PS pellets, clear color change was revealed. It is noted that DTZ/PS pellet could be used in detecting of heavy metal ion as dry type

  13. Complex formation during dissolution of metal oxides in molten alkali carbonates

    DEFF Research Database (Denmark)

    Li, Qingfeng; Borup, Flemming; Petrushina, Irina;

    1999-01-01

    as the partial pressure of carbon dioxide varies. By combination of solubility and electromotive force measurements, a model is constructed assuming the dissolution involves complex formation. The possible species for lead are proposed to be [Pb(CO3)(2)](-2) and/or [Pb(CO3)(3)](-4). A similar complex......Dissolution of metal oxides in molten carbonates relates directly to the stability of materials for electrodes and construction of molten carbonate fuel cells. In the present work the solubilities of PbO, NiO, Fe2O3,and Bi2O3 in molten Li/K carbonates have been measured at 650 degrees C under...... carbon dioxide atmosphere. It is found that the solubilities of NiO and PbO decrease while those of Fe2O3 and Bi2O3 remain approximately constant as the lithium mole fraction increases from 0.43 to 0.62 in the melt. At a fixed composition of the melt, NiO and PbO display both acidic and basic dissolution...

  14. Estimation of alkali metal mole percent and weight of calcined solids for ICPP calcine

    International Nuclear Information System (INIS)

    An updated method is given for estimation of the weight of calcined solids and volume reduction factor for calcine, and mole percent sodium plus potassium in calcine produced from radioactive waste in a fluidized-bed calciner at the Idaho Chemical Processing Plant (ICPP). It incorporates new information on a calcine chemistry from a study by K. N. Brewer and G. F. Kessinger in which they determined the compounds formed during calcination by both high temperature thermodynamic equilibrium calculations and by analyses of pilot-plant calcines. An explanation of the assumptions made in the calculations, along with several example calculations and comparisons with the previous calculation methods are included. This method allows calculation of the heat generation rate and sodium content of the calcine, which are used to determine the suitability of the calcine for storage in the ICPP bin sets. Although this method accurately predicts the weight of calcine and mole percent Na + K for its intended purpose, the compounds predicted should only be used as a first approximation for other purposes since the calculation does not incorporate all of the compounds, such as mixed-metal oxides, which may form during calcination

  15. Radiation defects and metal ions of iron group in oxides

    International Nuclear Information System (INIS)

    The effect of transition ion impurities (iron group) upon optical properties and radiation defect production has been studied for alkaline earth metal oxides. Basic physical and chemical properties of the latters have been compared to those of transition metal (iron group) oxides. Original results of magnesium oxide monocrystal growth have been obtained by the method of chemical transport reactions in a narrow gap for various cobalt, nickel and manganese ion concentrations. For transition metal ions the dependences of optical absorption, luminescence and ESR on ion concentration in magnesium oxide have been found. Basing on those dependences and in terms of the ligand field theory the crystal field parameters have been calculated for cobalt and nickel ions. Characteristics of electron and hole center creation in oxides of alkaline earth metals stated for various concentrations of transition metal ions are the following: the change of the ions' electron state, their participation in the radiation defect creation and decay, the interaction between transition metal ions and radiation defects

  16. Soil sampling and analysis plan for the 3718-F Alkali Metal Treatment and Storage Facility closure activities

    International Nuclear Information System (INIS)

    Amendment V.13.B.b to the approved closure plan (DOE-RL 1995a) requires that a soil sampling and analysis plan be prepared and submitted to the Washington State Department of Ecology (Ecology) for review and approval. Amendment V.13.B.c requires that a diagram of the 3718-F Alkali Metal Treatment and Storage Facility unit (the treatment, storage, and disposal [TSD] unit) boundary that is to be closed, including the maximum extent of operation, be prepared and submitted as part is of the soil sampling and analysis plan. This document describes the sampling and analysis that is to be performed in response to these requirements and amends the closure plan. Specifically, this document supersedes Section 6.2, lines 43--46, and Section 7.3.6 of the closure plan. Results from the analysis will be compared to cleanup levels identified in the closure plan. These cleanup levels will be established using residential exposure assumptions in accordance with the Model Toxics Control Act (MTCA) Cleanup Regulation (Washington Administrative Code [WAC] 173-340) as required in Amendment V.13.B.I. Results of all sampling, including the raw analytical data, a summary of analytical results, a data validation package, and a narrative summary with conclusions will be provided to Ecology as specified in Amendment V.13.B.e. The results and process used to collect and analyze the soil samples will be certified by a licensed professional engineer. These results and a certificate of closure for the balance of the TSD unit, as outlined in Chapter 7.0 of the approved closure plan (storage shed, concrete pad, burn building, scrubber, and reaction tanks), will provide the basis for a closure determination

  17. Alkali metal Rankine cycle boiler technology challenges and some potential solutions for space nuclear power and propulsion applications

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J.R.

    1994-07-01

    Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently.

  18. Metallic ion release from biocompatible cobalt-based alloy

    Directory of Open Access Journals (Sweden)

    Dimić Ivana D.

    2014-01-01

    Full Text Available Metallic biomaterials, which are mainly used for the damaged hard tissue replacements, are materials with high strength, excellent toughness and good wear resistance. The disadvantages of metals as implant materials are their susceptibility to corrosion, the elastic modulus mismatch between metals and human hard tissues, relatively high density and metallic ion release which can cause serious health problems. The aim of this study was to examine metallic ion release from Co-Cr-Mo alloy in artificial saliva. In that purpose, alloy samples were immersed into artificial saliva with different pH values (4.0, 5.5 and 7.5. After a certain immersion period (1, 3 and 6 weeks the concentrations of released ions were determined using Inductively Coupled Plasma - Mass Spectrophotometer (ICP-MS. The research findings were used in order to define the dependence between the concentration of released metallic ions, artificial saliva pH values and immersion time. The determined released metallic ions concentrations were compared with literature data in order to describe and better understand the phenomenon of metallic ion release from the biocompatible cobalt-based alloy. [Projekat Ministarstva nauke Republike Srbije, br. III 46010 i br. ON 174004

  19. Probing Ion-Ion and Electron-Ion Correlations in Liquid Metals within the Quantum Hypernetted Chain Approximation

    OpenAIRE

    Anta, J. A.; Louis, A.A.

    1999-01-01

    We use the Quantum Hypernetted Chain Approximation (QHNC) to calculate the ion-ion and electron-ion correlations for liquid metallic Li, Be, Na, Mg, Al, K, Ca, and Ga. We discuss trends in electron-ion structure factors and radial distribution functions, and also calculate the free-atom and metallic-atom form-factors, focusing on how bonding effects affect the interpretation of X-ray scattering experiments, especially experimental measurements of the ion-ion structure factor in the liquid met...

  20. Alkali and alkaline metal oxide materials for high temperature CO2 sorption studies

    International Nuclear Information System (INIS)

    In recent years, a number of novel ceramic oxide materials have emerged that are capable of absorbing CO2 at high temperatures (>500OC) while remaining stable over a large number of cycles and a wide range of temperatures. The most promising are been considered for carbon capture applications – specifically, for use in combustion chambers and the smoke stacks of power plants where combustion gases which contain primarily a mixture of CO2 and N2 at high temperature. Compared to other CO2 sequestration technologies, these ceramics have some advantages (eg. chemisorption at high temperatures) and disadvantages (eg. limited kinetics over time). Examples of oxides already known to show significant CO2 absorption include Li5AlO4, Li6Zr2O7, Na2ZrO3 and Ba4Sb2O9. The phase formations and structural evolution of these metal oxides have been studied under environmental conditions mimicking those found in combustion chambers and power plants, over the temperature range 873–1173 K. CO2 absorption by these materials is believed to proceed through a layering effect of the sorbent material, explained through a core-shell model. Each phase is represented as a layer covering a particle, with the outermost layer exposed and allowed to react with the environment. Detailed studies into the mechanism of CO2 absorption and the material layers will shed more information that can be used to fine tune the materials to increase their CO2 absorption capacity. Previous work has focused on the identification of phases ex situ and studies of their practical absorption capacity and kinetics. The new work we will present here uses a combination of a xray spectroscopy, x-ray and neutron diffraction, to understand both how the sorption process works and how the structural evolution of the phases affects the CO2 sorption of the materials over time in-situ.

  1. Conditioning of spent ion-exchange resins followed by solidification in the alkali-slag long-lived matrix with an increased level of filling with resins

    Directory of Open Access Journals (Sweden)

    Svetlana Nikolaevna Skomorokhova

    2015-12-01

    Full Text Available The possibility for spent ion-exchange resins (IER of intermediate specific activity to be solidified in alkali-slag (geocement water-resistant matrixes with an increased level of filling with resins was studied. Comparative tests of the IER immobilization process were done for justifying the most technologically effective matrix material. We used three different alkali-slag cementing systems and the prepared simulated pulps of IER with the specific activity of 3×108 Bq/L, saturated with 137Cs radionuclide. The manufactured samples of the alkali-slag compounds, filled with IER at the level of 24-27% by weight, meet the regulatory requirements set in NP-019-15 code and feature better working quality parameters (mechanical strength: 5-14 MPa, leaching rate of 137Cs, Na, Ca: <2×10-4 g/cm2∙day on the 7th-10th day, mechanical strength of compounds rises by the factor of 1.2-1.5 after immersion tests. The incorporation of the spent IER in the most technologically effective alkali-slag matrix makes it possible to decrease the cementing material consumption by the factor of 2.4 in comparison with Portland cement and by the factor of 1.3 in comparison with the known slag binders, while a compound with better quality parameters is produced. The research was done with the support of the Russian Ministry of Education and Science (unique identifier of the applied research studies - RFMEFI57915X0101 for justifying a new energy-efficient and resource-saving technology of reprocessing the spent IER-containing waste.

  2. Metal ion adsorption at the ionic liquid-mica interface.

    Science.gov (United States)

    McDonald, Samila; Elbourne, Aaron; Warr, Gregory G; Atkin, Rob

    2016-01-14

    Mica has been employed in many studies of ionic liquid (IL) interfaces on account of its atomic smoothness and well defined surface properties. However, until now it has been unclear whether ions dissolved in ILs can compete with the IL cation and adsorb to mica charge sites. In this work amplitude modulated atomic force microscopy (AM-AFM) has been used to probe metal ion adsorption at the interface of mica with propylammonium nitrate (PAN), a room temperature IL. Lithium, sodium, potassium, magnesium and calcium nitrate salts were added to PAN at a concentration of ∼60 mM. Aluminum nitrate was also investigated, but only at 5 mM because its solubility in PAN is much lower. The AM-AFM images obtained when the metal ions were present are strikingly different to that of pure PAN, indicating that the ions compete effectively with the propylammonium cation and adsorb to negatively charged sites on the mica surface despite their much lower concentration. This is a consequence of electrostatic attractions between the mica charge sites and the metal ions being significantly stronger than for the propylammonium cation; compared to the metal ions the propylammonium charged group is relatively constrained sterically. A distinct honeycomb pattern is noted for the PAN + Al(3+) system, less obviously for the divalent ions and not at all for monovalent ions. This difference is attributed to the strength of electrostatic interactions between metal ions and mica charge sites increasing with the ion charge, which means that divalent and (particularly) trivalent ions are located more precisely above the charged sites of the mica lattice. The images obtained allow important distinctions between metal ion adsorption at mica-water and mica-PAN interfaces to be made. PMID:26661934

  3. Synthesis of Novel Metal Ion Sensors Based on DNA-Metal Interactions

    Institute of Scientific and Technical Information of China (English)

    Akira Ono; Shiqi Cao; Humika Togashi; Yoko Miyake

    2005-01-01

    @@ 1Introduction The interactions of metal ions with nucleic acids, nucleosides, and nucleo-bases have been extensively investigated[1,2]. We have reported that thymine-thymine (T-T) and cytosine-cytosine (C- C) miss base pairs in DNA duplexes highly selectively capture HgⅡ ion and Ag Ⅰ ion, which result in formations of metal-mediated base pairs, T-HgⅡ -T and C-AgⅠ -C, in duplexes[3]. The phenomenon is expected to be useful for a variety of studies such as synthesis of nano-wires containing metal ions, developing metal-ion sensing methods, etc.Here, we report novel oligodeoxyribonucleotide (ODN)-based sensors that detect HgⅡ ions and AgⅠ ions in aqueous solutions.

  4. Local structure of alkalis in mixed-alkali borate glass to elucidate the origin of mixed-alkali effect

    Directory of Open Access Journals (Sweden)

    Yomei Tokuda

    2015-12-01

    Full Text Available We report the structural analysis of Na+ and Cs+ in sodium cesium borate crystals and glasses using 23Na and 133Cs magic-angle spinning nuclear magnetic resonance (MAS NMR spectroscopy. The composition dependence of NMR spectra of the borate was similar to that of the silicate: (1 the peak position of cesium borate crystals shifted to upfield for structures with larger Cs+ coordination numbers, (2 the MAS NMR spectra of xNa2O-yCs2O-3B2O3 (x = 0, 0.25, 0.5, 0.75, 1.0, x + y = 1 glass showed that the average coordination number (CN of both the alkali cations decreases with increasing Cs+/(Na+ + Cs+ ratio. However, the degree of decrement in borates is much smaller than that in silicates. We have considered that the small difference in CN is due to 4-coordinated B, because it is electrically compensated by the alkali metal ions resulting in the restriction of having various coordinations of O to alkali metal.

  5. Adsorption of rare earth metal ion by algae. Sorui ni yoru kidorui ion no kyuchaku

    Energy Technology Data Exchange (ETDEWEB)

    Kuwabara, T.; Yazawa, A. (Miyagi National College of Technology, Miyagi (Japan))

    1994-02-25

    This paper reports the result of investigations on adsorption of rare earth metal ion by using algae, and adsorption of different metal ions by using egg white and soy bean protein. Rare earth metal ion is adsorbed at a considerably high rate with alga powder of different kinds. The adsorption has been judged to be cation exchange reactive adsorption, while with use of spirulina and chlorella a maximum value of adsorption rate has been observed at pH from 3 to 4.5. Therefore, selective adsorption and separation of metal ions other than rare earth metal ion has become possible. When the blue pigment extracted from spirulina, the spirulina blue, is used, the rare earth metal ion had its selective adsorption and separation performance improved higher than using spirulina itself at pH from 3 to 4.5. As a result of adsorption experiment using egg white and soy bean protein, it has been found that the metal ion adsorption behavior of the spirulina blue depends on coagulative action of protein structure to some extent. However, the sharp selective adsorption performance on rare earth metal ion due to particular pH strength has been found because of actions unique to the pigment structure of phycocyanin, a major component in the spirulina blue. 7 refs., 19 figs.

  6. Rechargeable dual-metal-ion batteries for advanced energy storage.

    Science.gov (United States)

    Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-04-14

    Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future. PMID:26996438

  7. Complexation of metal ion with poly(1-vinylimidazole) resin prepared by radiation-induced polymerization with template metal ion

    International Nuclear Information System (INIS)

    Poly(1-vinylimidazole) (PVI) resin was prepared with Ni2+, CO2+, or Zn2+ as a template to study the adsorption of metal ions. The metal-1-vinylimidazole complex was copolymerized and cross-linked with 1-vinyl-2-pyrrolidone by γ-ray irradiation and the template metal ion was removed by treating the polymer complex with an acid. These PVI resins adsorbed metal ions more effectively than the PVI resin prepared without the template. The number of adsorption sites (As) and the stability constant (K) of Ni2+ complex were larger for the PVI resin prepared with the Ni ion template caused by the smaller dissociation rate constant of Ni ion from the resin. The composition of the Ni2+ complex in the resin remained constant. This suggests that the complexation proceeded via a one-step mechanism

  8. CO2 Extraction from Ambient Air Using Alkali-Metal Hydroxide Solutions Derived from Concrete Waste and Steel Slag

    Science.gov (United States)

    Stolaroff, J. K.; Lowry, G. V.; Keith, D. W.

    2003-12-01

    To mitigate global climate change, deep reductions in CO2 emissions are required in the coming decades. Carbon sequestration will play a crucial role in this reduction. Early adoption of carbon sequestration in low-cost niche markets will help develop the technology and experience required for large-scale deployment. One such niche may be the use of alkali metals from industrial waste streams to form carbonate minerals, a safe and stable means of sequestering carbon. In this research, the potential of using two industrial waste streams---concrete and steel slag---for sequestering carbon is assessed. The scheme is outlined as follows: Ca and Mg are leached with water from a finely ground bed of steel slag or concrete. The resulting solution is sprayed through air, capturing CO2 and forming solid carbonates, and collected. The feasibility of this scheme is explored with a combination of experiments, theoretical calculations, cost accounting, and literature review. The dissolution kinetics of steel slag and concrete as a function of particle size and pH is examined. In stirred batch reactors, the majority of Ca which dissolved did so within the first hour, yielding between 50 and 250 (mg; Ca)/(g; slag) and between 10 and 30 (mg; Ca)/(g; concrete). The kinetics of dissolution are thus taken to be sufficiently fast to support the type of scheme described above. As proof-of-concept, further experiments were performed where water was dripped slowly through a stagnant column of slag or concrete and collected at the bottom. Leachate Ca concentrations in the range of 15 mM were achieved --- sufficient to support the scheme. Using basic physical principles and numerical methods, the quantity of CO2 captured by falling droplets is estimated. Proportion of water loss and required pumping energy is similarly estimated. The results indicate that sprays are capable of capturing CO2 from the air and that the water and energy requirements are tractable. An example system for

  9. Designer ligands: The search for metal ion selectivity

    Directory of Open Access Journals (Sweden)

    Perry T. Kaye

    2011-03-01

    Full Text Available The paper reviews research conducted at Rhodes University towards the development of metal-selective ligands. The research has focused on the rational design, synthesis and evaluation of novel ligands for use in the formation of copper complexes as biomimetic models of the metalloenzyme, tyrosinase, and for the selective extraction of silver, nickel and platinum group metal ions in the presence of contaminating metal ions. Attention has also been given to the development of efficient, metal-selective molecular imprinted polymers.

  10. Charge transfer activation energy for alkali atoms on Re and Ta

    Science.gov (United States)

    Gładyszewski, Longin

    1993-09-01

    Ion and atom desorption energies for five alkali metals on Re and Ta were determined using the ion thermal emission noise method. The activation energies for the charge transfer process in the adsorbed state were calculated using a special energetic balance equation, which describes the surface ionization and thermal desorption effect. Energies for desorption of Li, Na, K, Rb and Cs from Re and Ta surfaces were determined by measuring the time autocorrelation function of the ion thermoemission current fluctuations.

  11. Alkali migration and desorption energies on polycrystalline tungsten at low coverages

    Science.gov (United States)

    Gładyszewski, Longin

    1990-05-01

    This work concerns research on fluctuations (noises) of the ion thermoemission currents of five alkali metals emitted from the tungsten surface. These noises are generated as a result of adsorbate density fluctuations. Adsorbate density fluctuations cause random changes of the work function, which influence the intensity of the emitted ion current. The methods used made it possible to determine the ion desorption energy and the surface diffusion energy for Li, Na, K, Rb and Cs.

  12. Metal ion separations using reactive membranes

    International Nuclear Information System (INIS)

    A membrane is a barrier between two phases. If one component of a mixture moves through the membrane faster than another mixture component, a separation can be accomplished. Membranes are used commercially for many applications including gas separations, water purification, particle filtration, and macromolecule separations (Abelson). There are two points to note concerning this definition. First, a membrane is defined based on its function, not the material used to make the membrane. Secondly, a membrane separation is a rate process. The separation is accomplished by a driving force, not by equilibrium between phases. Liquids that are immiscible with the feed and product streams can also be used as membrane materials. Different solutes will have different solubilities and diffusion coefficients in a liquid. The product of the diffusivity and the solubility is known as the permeability coefficient, which is proportional to the solute flux. Differences in permeability coefficient will produce a separation between solutes at constant driving force. Because the diffusion coefficients in liquids are typically orders of magnitude higher than in polymers, a larger flux can be obtained. Further enhancements can be accomplished by adding a nonvolatile complexation agent to the liquid membrane. One can then have either coupled or facilitated transport of metal ions through a liquid membrane. The author describes two implementations of this concept, one involving a liquid membrane supported on a microporous membrane, and the other an emulsion liquid membrane, where separation occurs to internal receiving phases. Applications and costing studies for this technology are reviewed, and a brief summary of some of the problems with liquid membranes is presented

  13. Polysiloxane based CHEMFETs for the detection of heavy metal ions

    NARCIS (Netherlands)

    Lugtenberg, Ronny J.W.; Antonisse, Martijn M.G.; Egberink, Richard J.M.; Engbersen, Johan F.J.; Reinhoudt, David N.

    1996-01-01

    The development of polysiloxane based chemically modified field effect transistors (CHEMFETs) for heavy metal ions is described. Different polar siloxane copolymers have been synthesized via an anionic copolymerization of hexamethylcyclotrisiloxane, [3-(methacryloxy)propyl]pentamethylcyclotrisiloxan

  14. Supercritical fluid extraction of nutraceuticals and metal ions

    International Nuclear Information System (INIS)

    This paper presents some principles and processes of the environmentally beneficial Supercritical Fluid Extraction (SCFE) technology for the extraction of natural products, in-situ reaction-cum-separation of metal ions and production of nanoparticles

  15. Experimental Study on Surface Reactions of Heavy Metal Ions With Quartz—Aqueous Ion Concentration Dependence

    Institute of Scientific and Technical Information of China (English)

    吴宏海; 吴大清; 等

    1999-01-01

    Adsorption of divalent metal ions,including Cu2+,Pb2+,Zn2+,Cd2+ and Ni2+,on quartz surface was measured as a function of metal ion concentration at 30℃under condi tions of solution pH=6.5 and ion strength I=0.1mol/L.Results of the experimental measuements can be described very well by adsorption isoterm dquations of Freudlich.The correlation coefficients(r)of adsorption isotherm lines are>0.96.Moreover,the exprimental data were interpreted on the basis of surface complexation model.Te experimental results showed that the monodentate-coordinated metal ion surface complex species(SOM+)are predominant over the bidentate-coordinated metal ion surface complex species[(SO)2M]formed only by the ions Cu2+,Zn2+ and Ni2+,And the relevant apparent surface complexation constants are lgKM=2.2-3.3 in order of KCd≥KPb>KZn>KNi≥KCu,and lgβM=5.8-6.8 in oder of βNi>βZn>βCu.Therefore,the reactive ability of the ions onto mineral surface of quartz follows the order of Cd>Pb>Zn>Ni>Cu under the above-mentioned solution conditions.The apparent surface complexation constants,influenced by the surface potential,surface species and hydrolysis of metal ions,depend mainly on the Born solvation coefficeient of the metal ions.

  16. Metal Ion Selectivity of Kojate Complexes: A Theoretical Study

    Directory of Open Access Journals (Sweden)

    Sarita Singh

    2013-01-01

    Full Text Available Density functional calculations have been performed on four-coordinate kojate complexes of selected divalent metal ions in order to determine the affinity of the metal ions for the kojate ion. The complexation reactions are characterized by high energies, showing that they are highly exothermic. It is found that Ni(II exhibits the highest affinity for the kojate ion, and this is attributed to the largest amount of charge transfer from the ligand to the metal ion. The Ni(II complex has distorted square planar structure. The HOMOs and LUMOs of the complexes are also discussed. All complexes display a strong band at ~1500 cm−1 corresponding to the stretching frequency of the weakened carbonyl bond. Comparison of the complexation energies for the two steps shows that most of the complexation energy is realized in the first step. The energy released in the second step is about one-third that of the first step.

  17. Activation analysis for measurements of silicon, phosphorus, alkali metals and other elements in high-purity metals

    International Nuclear Information System (INIS)

    In the present thesis, methods of activation analysis were developed for the determination of the elements silicon, phosphorus, potassium, sodium, i.a. in the high-purity metals vanadium, niobium, tantalum, tungsten, molybdenum and iron. The determination of silicon is based on the activation of samples with reactor neutrons, on a subsequent radiochemical separation of the tracer radionuclide 31Si resulting from the reaction 30Si(n,γ), and on the measurement of β activity with the help of a liquid scintillation measuring desk. Since the tracer radionuclide 31Si almost exclusively emits β rays which are not sufficiently nuclide-specific, silicon was selectively separated from the other sample elements by being distilled as silicon tetrafluoride. The processing of the residue following the separation of silicon permits a complementary gamma-spectroscopic determination of a whole lot of additional elements. Thus, the separation of the nuclide 182Ta with the anion exchanger Dowex 1X8 from HF/H2SO4 medium permits the determination of 22 elements in vanadium, niobium and tantalum. Phosphorus content is determined by activating the samples with rapid neutrons (cyclotrons) via the reaction 31P(n,p)31Si. (orig./MM)

  18. On the interaction of metal-ions during mutual hydrolysis and coprecipitation with metal hydroxides

    International Nuclear Information System (INIS)

    Results of radiochemical and spectrophotometric studies of coprecipitation of hydrolytes are presented. Coprecipitation of 1μg of Cr(3) with hydroxides of Sn(4), Fe(3), Th, Be, Cd and Mg was studied. The interaction of partially hydrolyzed metal-ions proceeds with the formation of bridge bonds through mutual hydroxyls. Metal ions with less obvious acid properties in the given conditions act as a donor of hydroxyls, and, vice versa, ions of another metal posessing more vivid acid properties may be their acceptor. Hydrolysis of ions with the increasing of pA up to the formation of neutral hydrolysis forms promotes the formation of bridge bonds between interacting metal-ions, hydroxyls of the inner sphere of hydroxocomplexes of the both metals taking part in it

  19. Review of Magnetic Carrier Technologies for Metal Ion Removal

    OpenAIRE

    Broomberg, J.; Gélinas, S.; Finch, James A.; Xu, Z.

    1999-01-01

    Magnetic carriers are magnetic materials designed to bind selectively on some non -magnetic materials to make them separable using magnetic separation. It allows magnetic separation, a fast, efficient, high capacity and well-developed industrial technology, to be applied to the separation of materials that are otherwise non-magnetic. One application is in metal ion recovery from dilute effluents. Magnetic carrier technologies offer some advantages over other more conventional metal ion separa...

  20. An optical dosimeter for monitoring heavy metal ions in water

    Science.gov (United States)

    Mignani, Anna G.; Regan, Fiona; Leamy, D.; Mencaglia, A. A.; Ciaccheri, L.

    2005-05-01

    This work presents an optochemical dosimeter for determining and discriminating nickel, copper, and cobalt ions in water that can be used as an early warning system for water pollution. An inexpensive fiber optic spectrophotometer monitors the sensor's spectral behavior under exposure to water solutions of heavy metal ions in the 1-10 mg/l concentration range. The Principal Component Analysis (PCA) method quantitatively determines the heavy metals and discriminates their type and combination.

  1. Metal ion implantation for large scale surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Brown, I.G.

    1992-10-01

    Intense energetic beams of metal ions can be produced by using a metal vapor vacuum arc as the plasma discharge from which the ion beam is formed. We have developed a number of ion sources of this kind and have built a metal ion implantation facility which can produce repetitively pulsed ion beams with mean ion energy up to several hundred key, pulsed beam current of more than an ampere, and time averaged current of several tens of milliamperes delivered onto a downstream target. We've also done some preliminary work on scaling up this technology to very large size. For example, a 50-cm diameter (2000 cm[sup 2]) set of beam formation electrodes was used to produce a pulsed titanium beam with ion current over 7 amperes at a mean ion energy of 100 key. Separately, a dc embodiment has been used to produce a dc titanium ion beam with current over 600 mA, power supply limited in this work, and up to 6 amperes of dc plasma ion current was maintained for over an hour. In a related program we've developed a plasma immersion method for applying thin metallic and compound films in which the added species is atomically mixed to the substrate. By adding a gas flow to the process, well-bonded compound films can also be formed; metallic films and multilayers as well as oxides and nitrides with mixed transition zones some hundreds of angstroms thick have been synthesized. Here we outline these parallel metal-plasma-based research programs and describe the hardware that we've developed and some of the surface modification research that we've done with it.

  2. Production of negative hydrogen ions on metal grids

    International Nuclear Information System (INIS)

    Negative hydrogen ions are produced on a nickel grid with positive-ion irradiation. In order to investigate the production mechanism, a copper grid without the chemisorption of hydrogen atoms and positive helium ions without negative ionization are used for comparison. Positive hydrogen ions reflected on the metal surface obtain two electrons from the surface and become negatively ionized. It is found that the production yield of negative ions by desorption ionization of chemisorbed hydrogen atoms seems to be small, and the production is a minor mechanism

  3. Production of negative hydrogen ions on metal grids

    Energy Technology Data Exchange (ETDEWEB)

    Oohara, W.; Maetani, Y.; Takeda, Takashi; Takeda, Toshiaki; Yokoyama, H.; Kawata, K. [Department of Electronic Device Engineering, Yamaguchi University, Ube 755-8611 (Japan)

    2015-03-15

    Negative hydrogen ions are produced on a nickel grid with positive-ion irradiation. In order to investigate the production mechanism, a copper grid without the chemisorption of hydrogen atoms and positive helium ions without negative ionization are used for comparison. Positive hydrogen ions reflected on the metal surface obtain two electrons from the surface and become negatively ionized. It is found that the production yield of negative ions by desorption ionization of chemisorbed hydrogen atoms seems to be small, and the production is a minor mechanism.

  4. Laccase Immobilization by Chelated Metal Ion Coordination Chemistry

    Directory of Open Access Journals (Sweden)

    Qingqing Wang

    2014-09-01

    Full Text Available In this work, amidoxime polyacrylonitrile (AOPAN nanofibrous membrane was prepared by a reaction between PAN nanofibers and hydroxylamine hydrochloride. The AOPAN nanofibrous membranes were used for four metal ions (Fe3+, Cu2+, Ni2+, Cd2+ chelation under different conditions. Further, the competition of different metal ions coordinating with AOPAN nanofibrous membrane was also studied. The AOPAN chelated with individual metal ion (Fe3+, Cu2+, Ni2+, Cd2+ and also the four mixed metal ions were further used for laccase (Lac immobilization. Compared with free laccase, the immobilized laccase showed better resistance to pH and temperature changes as well as improved storage stability. Among the four individual metal ion chelated membranes, the stability of the immobilized enzymes generally followed the order as Fe–AOPAN–Lac > Cu–AOPAN–Lac > Ni–AOPAN–Lac > Cd–AOPAN–Lac. In addition, the immobilized enzyme on the carrier of AOPAN chelated with four mixed metal ions showed the best properties.

  5. Functional identification of catalytic metal ion binding sites within RNA.

    Directory of Open Access Journals (Sweden)

    James L Hougland

    2005-09-01

    Full Text Available The viability of living systems depends inextricably on enzymes that catalyze phosphoryl transfer reactions. For many enzymes in this class, including several ribozymes, divalent metal ions serve as obligate cofactors. Understanding how metal ions mediate catalysis requires elucidation of metal ion interactions with both the enzyme and the substrate(s. In the Tetrahymena group I intron, previous work using atomic mutagenesis and quantitative analysis of metal ion rescue behavior identified three metal ions (MA, MB, and MC that make five interactions with the ribozyme substrates in the reaction's transition state. Here, we combine substrate atomic mutagenesis with site-specific phosphorothioate substitutions in the ribozyme backbone to develop a powerful, general strategy for defining the ligands of catalytic metal ions within RNA. In applying this strategy to the Tetrahymena group I intron, we have identified the pro-SP phosphoryl oxygen at nucleotide C262 as a ribozyme ligand for MC. Our findings establish a direct connection between the ribozyme core and the functionally defined model of the chemical transition state, thereby extending the known set of transition-state interactions and providing information critical for the application of the recent group I intron crystallographic structures to the understanding of catalysis.

  6. Dispersion coefficients for the interactions of the alkali and alkaline-earth ions and inert gas atoms with a graphene layer

    CERN Document Server

    Kaur, Kiranpreet; Sahoo, B K

    2015-01-01

    Largely motivated by a number of applications, the van der Waals dispersion coefficients ($C_3$s) of the alkali ions (Li$^+$, Na$^+$, K$^+$ and Rb$^+$), the alkaline-earth ions (Ca$^+$, Sr$^+$, Ba$^+$ and Ra$^+$) and the inert gas atoms (He, Ne, Ar and Kr) with a graphene layer are determined precisely within the framework of Dirac model. For these calculations, we have evaluated the dynamic polarizabilities of the above atomic systems very accurately by evaluating the transition matrix elements employing relativistic many-body methods and using the experimental values of the excitation energies. The dispersion coefficients are, finally, given as functions of the separation distance of an atomic system from the graphene layer and the ambiance temperature during the interactions. For easy extraction of these coefficients, we give a logistic fit to the functional forms of the dispersion coefficients in terms of the separation distances at the room temperature.

  7. Calculation of van der Walls coefficients of alkali metal clusters by hydrodynamic approach to time-dependent density-functional theory

    CERN Document Server

    Banerjee, A; Banerjee, Arup; Harbola, Manoj K.

    2004-01-01

    In this paper we employ the hydrodynamic formulation of time-dependent density functional theory to obtain the van der Waal coefficients $C_{6}$ and $C_{8}$ of alkali-metal clusters of various sizes including very large clusters. Such calculation becomes computationally very demanding in the orbital-based Kohn-Sham formalism, but quite simple in the hydrodynamic approach. We show that for interactions between the clusters of same sizes, $C_{6}$ and $C_{8}$ sale as the sixth and the eighth power of the cluster radius rsepectively, and approach the respective classically predicted values for the large size clusters.

  8. Caracterización de nitratos alcalinos y alcalinoterreos por espectroscopia vibracional Characterization of alkali-metal and alkaline-earth nitrates by vibrational spectroscopy

    OpenAIRE

    Martínez, S; Acción, F.; Puertas, F.

    1992-01-01

    [EN] Infrared spectra of sodium and potassium alkaline-metal nitrates and magnesium and calcium alkali-earth nitrates in solid phase had been recorded in order to assign the fundamental bands. The influence of the dispersal médium (alkaline halide), employed in the solid sample preparation have been discussed. The quantitative measurements of the band in ten sities at 1.387 cm~^ (present in the I.R. spectra of the four nitrates in KBr médium) allowed us to determine th...

  9. Ab initio study of the adsorption, diffusion, and intercalation of alkali metal atoms on the (0001) surface of the topological insulator Bi2Se3

    International Nuclear Information System (INIS)

    Ab initio study of the adsorption, diffusion, and intercalation of alkali metal adatoms on the (0001) step surface of the topological insulator Bi2Se3 has been performed for the case of low coverage. The calculations of the activation energies of diffusion of adatoms on the surface and in van der Waals gaps near steps, as well as the estimate of diffusion lengths, have shown that efficient intercalation through steps is possible only for Li and Na. Data obtained for K, Rb, and Cs atoms indicate that their thermal desorption at high temperatures can occur before intercalation. The results have been discussed in the context of existing experimental data

  10. High-temperature, high-pressure hydrothermal synthesis, characterization, and structural relationships of mixed-alkali metals uranyl silicates

    Science.gov (United States)

    Chen, Yi-Hsin; Liu, Hsin-Kuan; Chang, Wen-Jung; Tzou, Der-Lii; Lii, Kwang-Hwa

    2016-04-01

    Three mixed-alkali metals uranyl silicates, Na3K3[(UO2)3(Si2O7)2]·2H2O (1), Na3Rb3[(UO2)3(Si2O7)2] (2), and Na6Rb4[(UO2)4Si12O33] (3), have been synthesized by high-temperature, high-pressure hydrothermal reactions at 550 °C and 1440 bar, and characterized by single-crystal X-ray diffraction, photoluminescence, and thermogravimetric analysis. Compound 1 and 2 are isostructural and contain layers of uranyl disilicate. The smaller cation, Na+, is located in the intralayer channels, whereas the larger cations, K+ and Rb+, and water molecule are located in the interlayer region. The absence of lattice water in 2 can be understood according to the valence-matching principle. The structure is related to that of a previously reported mixed-valence uranium(V,VI) silicate. Compound 3 adopts a 3D framework structure and contains a unique unbranched dreier fourfold silicate chain with the structural formula {uB,41∞}[3Si12O33] formed of Q2, Q3, and Q4 Si. The connectivity of the Si atoms in the Si12O3318- anion can be interpreted on the basis of Zintl-Klemm concept. Crystal data for compound 1: triclinic, P-1, a=5.7981(2) Å, b=7.5875(3) Å, c=12.8068(5) Å, α=103.593(2)°, β=102.879(2)°, γ=90.064(2)°, V=533.00(3) Å3, Z=1, R1=0.0278; compound 2: triclinic, P-1, a=5.7993(3) Å, b=7.5745(3) Å, c=12.9369(6) Å, α=78.265(2)°, β=79.137(2)°, γ=89.936(2)°, V=546.02(4) Å3, Z=1, R1=0.0287; compound 3: monoclinic, C2/m, a=23.748(1) Å, b=7.3301(3) Å, c=15.2556(7) Å, β=129.116(2)°, V=2060.4(2) Å3, Z=2, R1=0.0304.

  11. On the dynamics of liquid metal ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Mair, G.L.R.; Ganetsos, Th. [University of Athens, Department of Physics, Section of Solid State Physics, Panepistimiopolis, Zographos, Athens (Greece); Aidinis, C.J. [University of Athens, Department of Physics, Section of Applied Physics, Panepistimiopolis, Zographos, Athens (Greece)]. E-mail: caidinis@cc.uoa.gr; Bischoff, L. [Research Center Rossendorf Inc, Institute of Ion Beam and Materials Research, Dresden (Germany)

    2002-06-21

    The mechanisms governing the formation of the liquid metal cone that constitutes the basis of a liquid metal ion source (LMIS) are investigated. Cone formation times ranging from <20 ns up to several hundreds of ms have been reported in the literature. This paper attempts to explain these differences by devising a theoretical model that encompasses inertial and flow effects. (author)

  12. Effect of Glass Powder on Chloride Ion Transport and Alkali-aggregate Reaction Expansion of Lightweight Aggregate Concrete

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi; SHI Caijun; SONG Jianming

    2009-01-01

    The effects of glass powder on the strength development, chloride permeability and potential alkali-aggregate reaction expansion of lightweight aggregate concrete were investigated.Ground blast furnace slag, coal fly ash and silica fume were used as reference materials. The re-placement of cement with 25% glass powder slightly decreases the strengthes at 7 and 28 d, but shows no effect on 90 d's. Silica fume is very effective in improving both the strength and chloride penetra-tion resistance, while ground glass powder is much more effective than blast furnace slag and fly ash in improving chloride penetration resistance of the concrete. When expanded shale or clay is used as coarse aggregate, the concrete containing glass powder does not exhibit deleterious expansion even if alkali-reactive sand is used as fine aggregate of the concrete.

  13. Plasma spectroscopy of metal ions for hyper-electron cyclotron resonance ion source.

    Science.gov (United States)

    Muto, Hideshi; Ohshiro, Yukimitsu; Yamaka, Shoichi; Watanabe, Shin-ichi; Oyaizu, Michihiro; Kubono, Shigeru; Yamaguchi, Hidetoshi; Kase, Masayuki; Hattori, Toshiyuki; Shimoura, Susumu

    2014-02-01

    In this research, the optical line spectra of metal ions from ECR plasma were observed using a grating monochromator with a photomultiplier. The light intensity of line spectrum from the ECR plasma had a strong correlation with ion beam intensity measured by a magnetic mass analyzer. This correlation is a significant information for the beam tuning process, because it allows to conduct the extraction of the desired metal ion species from the ECR plasma. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process, but this research provides a new approach for its simplification. In this paper the grating monochromator method for metal ion beam tuning such as (40)Ca(12+), (56)Fe(15+), and (85)Rb(20+) of hyper-ECR ion source as an injector for RIKEN Azimuthal Varying Field cyclotron is described. PMID:24593484

  14. Comparative study of metal and non-metal ion implantation in polymers: Optical and electrical properties

    International Nuclear Information System (INIS)

    The implantation of 1 MeV metal (63Cu+, 107Ag+, 197Au+) and non-metal (4He+, 12C+) ions in a polycarbonate (PC) matrix has been studied in order to evaluate the role of ion species in the modification of optical and electrical properties of the polymer. When the ion fluence is above ∼1 × 1013 ions cm−2, the threshold for latent tracks overlapping is overcome and π-bonded carbon clusters grow and aggregate forming a network of conjugated C=C bonds. For fluences around 1 × 1017 ions cm−2, the aggregation phenomena induce the formation of amorphous carbon and/or graphite like structures. At the same time, nucleation of metal nanoparticles (NPs) from implanted species can take place when the supersaturation threshold is overcome. The optical absorption of the samples increases in the visible range and the optical band gap redshifts from 3.40 eV up to 0.70 eV mostly due to the carbonization process and the formation of C0x clusters and cluster aggregates. Specific structures in the extinction spectra are observed when metal ions are selected in contrast to the non-metal ion implanted PC, thus revealing the possible presence of noble metal based NPs interstitial to the C0x cluster network. The corresponding electrical resistance decreases much more when metal ions are implanted with at least a factor of 2 orders of magnitude difference than the non-metal ions based samples. An absolute value of ∼107 Ω/sq has been measured for implantation with metals at doses higher than 5 × 1016 ions cm−2, being 1017 Ω/sq the corresponding sheet resistance for pristine PC

  15. Metal ion toxins and brain aquaporin-4 expression: an overview

    OpenAIRE

    Adriana eXimenes-Da-Silva

    2016-01-01

    Metal ions such as iron, zinc, and manganese are essential to metabolic functions, protein synthesis, neurotransmission, and antioxidant neuroprotective mechanisms. Conversely, non-essential metals such as mercury and lead are sources of human intoxication due to occupational activities or environmental contamination. Essential or non-essential metal accumulation in the central nervous system (CNS) results in changes in blood-brain barrier (BBB) permeability, as well as triggering microglia a...

  16. Metal Ion Toxins and Brain Aquaporin-4 Expression: An Overview

    OpenAIRE

    Ximenes-da-Silva, Adriana

    2016-01-01

    Metal ions such as iron, zinc, and manganese are essential to metabolic functions, protein synthesis, neurotransmission, and antioxidant neuroprotective mechanisms. Conversely, non-essential metals such as mercury and lead are sources of human intoxication due to occupational activities or environmental contamination. Essential or non-essential metal accumulation in the central nervous system (CNS) results in changes in blood-brain barrier (BBB) permeability, as well as triggering microglia a...

  17. Proton and metal ion binding to humic substances.

    OpenAIRE

    Wit, de, N.J.W.

    1992-01-01

    Humic substances are polydisperse mixtures of organic molecules which at least to some extent determine the mobility and bioavailability of heavy metals in soils, sediments and aquatic systems. In order to make a sound risk assessment of the fate of trace metals a good conception and preferably a sound description is essential. In this thesis mechanistic models are presented that explicitely take into account the dominant factors that determine metal ion binding. These factors are the chemica...

  18. In Vivo Metal Ion Imaging Using Fluorescent Sensors.

    Science.gov (United States)

    Van de Bittner, Genevieve C; Hirayama, Tasuku

    2016-01-01

    In vivo imaging in living animals provides the ability to monitor alterations of signaling molecules, ions, and other biological components during various life stages and in disease. The data gained from in vivo imaging can be used for biological discovery or to determine elements of disease progression and can inform the development and translation of therapeutics. Herein, we present theories behind small-molecule, fluorescent, metal ion sensors as well as the methods for their successful application to in vivo metal ion imaging, including ex vivo validation. PMID:27283424

  19. A new approach for understanding ion transport in glasses; example of complex alkali diborate glasses containing lead, bismuth and tellurium oxides

    Indian Academy of Sciences (India)

    V C Veeranna Gowda; C Narayana Reddy; K J Rao

    2013-02-01

    Mechanism of ion transport in glasses continues to be incompletely understood. Several of the theoretical models in vogue fail to rationalize conductivity behaviour when d.c. and a.c. measurements are considered together. While they seem to involve the presence of at least two components in d.c. activation energy, experiments fail to reveal that feature. Further, only minor importance is given to the influence of structure of the glass on the ionic conductivity behaviour. In this paper, we have examined several general aspects of ion transport taking the example of ionically conducting glasses in pseudo binary, Na2B4O7.(1−) M$_{a}$O$_{b}$ (with = 0.25–0.79 and M$_{a}$O$_{b}$ = PbO, TeO2 and Bi2O3) system of glasses which have also been recently characterized. Ion transport in them has been studied in detail. We have proposed that non-bridging oxygen (NBO) participation is crucial to the understanding of the observed conductivity behaviour. NBO–BO switching is projected as the first important step in ion transport and alkali ion jump is a subsequent event with a characteristically lower barrier which is, therefore, not observed in any study. All important observations in d.c. and a.c. transport in glasses are found consistent with this model.

  20. Metal ion release from electric guitar strings in artificial sweat

    International Nuclear Information System (INIS)

    The aim of this study was to monitor the dissolution of metal ions from electric guitar strings. For characterization of investigated strings, two independent methods of analysis were chosen: ICP-OES and AAS. Electric guitar strings consisted of two separate parts: Sn-plated steel core wire which was hexagonal in cross section and Ni-plated steel wrap which was round in cross section. Dissolution of Ni2+, Mn2+, Si4+, Sn2+ and Fe3+ ions from electric guitar strings E6 and D4 were measured as a function of time in artificial sweat solution, at temperature of 37 deg. C according to the EN 1811:1999 standard test procedure. The determination of the amount of the metal ions released in the corrosive solutions was carried out by means of inductively coupled plasma-optical emission spectroscopy (ICP-OES). The mechanism of metal ions eluted in artificial sweat is discussed. The concentrations of dissolved metal ions in corrosive solution from E6 and D4 strings are decreasing in the following order: Fe3+ > Sn2+ > Mn2+ > Si4+ > Ni2+. Among all investigated metal ions, nickel is far the most allergenic. Since the amounts of the eluted Ni2+ did not exceed 0.5 μg cm-2 week-1, the investigated electric guitar strings should not induce contact dermatitis.

  1. Metal ion implantation in inert polymers for strain gauge applications

    International Nuclear Information System (INIS)

    Metal ion implantation in inert polymers may produce ultra-thin conducting films below the polymer surface. These subsurface films are promising structures for strain gauge applications. To this purpose, polycarbonate substrates were irradiated at room temperature with low-energy metal ions (Cu+ and Ni+) and with fluences in the range between 1 x 1016 and 1 x 1017 ions/cm2, in order to promote the precipitation of dispersed metal nanoparticles or the formation of a continuous thin film. The nanoparticle morphology and the microstructural properties of polymer nanocomposites were investigated by glancing-incidence X-ray diffraction and transmission electron microscopy (TEM) measurements. At lower fluences (16 ions/cm2) a spontaneous precipitation of spherical-shaped metal nanoparticles occurred below the polymer top-surface (∼50 nm), whereas at higher fluences the aggregation of metal nanoparticles produced the formation of a continuous polycrystalline nanofilm. Furthermore, a characteristic surface plasmon resonance peak was observed for nanocomposites produced at lower ion fluences, due to the presence of Cu nanoparticles. A reduced electrical resistance of the near-surface metal-polymer nanocomposite was measured. The variation of electrical conductivity as a function of the applied surface load was measured: we found a linear relationship and a very small hysteresis.

  2. Hall transport of divalent metal ion modified DNA lattices

    International Nuclear Information System (INIS)

    We investigate the Hall transport characteristics of double-crossover divalent metal ion (Cu2+, Ni2+, Zn2+, and Co2+)-modified DNA (M-DNA) lattices grown on silica via substrate-assisted growth. The electronic characteristics of the M-DNA lattices are investigated by varying the concentration of the metal ions and then conducting Hall measurements, including resistivity, Hall mobility, carrier concentration, and magneto resistance. The tendency of the resistivity and Hall mobility was to initially decrease as the ion concentration increased, until reaching the saturation concentration (Cs) of each metal ion, and then to increase as the ion concentration increased further. On the other hand, the carrier concentration revealed the opposite tendency as the resistivity and Hall mobility. The specific binding (≤Cs) and the nonspecific aggregates (>Cs) of the ions into the DNA lattices were significantly affected by the Hall characteristics. The numerical ranges of the Hall parameters revealed that the M-DNA lattices with metal ions had semiconductor-like characteristics. Consequently, the distinct characteristics of the electrical transport through M-DNA lattices will provide useful information on the practical use of such structures in physical devices and chemical sensors

  3. Complexation-induced supramolecular assembly drives metal-ion extraction.

    Science.gov (United States)

    Ellis, Ross J; Meridiano, Yannick; Muller, Julie; Berthon, Laurence; Guilbaud, Philippe; Zorz, Nicole; Antonio, Mark R; Demars, Thomas; Zemb, Thomas

    2014-09-26

    Combining experiment with theory reveals the role of self-assembly and complexation in metal-ion transfer through the water-oil interface. The coordinating metal salt Eu(NO3)3 was extracted from water into oil by a lipophilic neutral amphiphile. Molecular dynamics simulations were coupled to experimental spectroscopic and X-ray scattering techniques to investigate how local coordination interactions between the metal ion and ligands in the organic phase combine with long-range interactions to produce spontaneous changes in the solvent microstructure. Extraction of the Eu(3+)-3(NO3(-)) ion pairs involves incorporation of the "hard" metal complex into the core of "soft" aggregates. This seeds the formation of reverse micelles that draw the water and "free" amphiphile into nanoscale hydrophilic domains. The reverse micelles interact through attractive van der Waals interactions and coalesce into rod-shaped polynuclear Eu(III) -containing aggregates with metal centers bridged by nitrate. These preorganized hydrophilic domains, containing high densities of O-donor ligands and anions, provide improved Eu(III) solvation environments that help drive interfacial transfer, as is reflected by the increasing Eu(III) partitioning ratios (oil/aqueous) despite the organic phase approaching saturation. For the first time, this multiscale approach links metal-ion coordination with nanoscale structure to reveal the free-energy balance that drives the phase transfer of neutral metal salts. PMID:25169678

  4. A vacuum spark ion source: High charge state metal ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Yushkov, G. Yu., E-mail: gyushkov@mail.ru; Nikolaev, A. G.; Frolova, V. P. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Oks, E. M. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Tomsk State University of Control System and Radioelectronics, Tomsk 634050 (Russian Federation)

    2016-02-15

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  5. A vacuum spark ion source: High charge state metal ion beams

    International Nuclear Information System (INIS)

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described

  6. A vacuum spark ion source: High charge state metal ion beams

    Science.gov (United States)

    Yushkov, G. Yu.; Nikolaev, A. G.; Oks, E. M.; Frolova, V. P.

    2016-02-01

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  7. Atomic arrangement and electron band structure of Si(1 1 1)-ß-√3 x √3-Bi reconstruction modified by alkali-metal adsorption: ab initio study.

    Science.gov (United States)

    Eremeev, S V; Chukurov, E N; Gruznev, D V; Zotov, A V; Saranin, A A

    2015-08-01

    Using ab initio calculations, atomic structure and electronic properties of Si(1 1 1)[Formula: see text]-Bi surface modified by adsorption of 1/3 monolayer of alkali metals, Li, Na, K, Rb and Cs, have been explored. Upon adsorption of all metals, a similar atomic structure develops at the surface where twisted chained Bi trimers are arranged into a honeycomb network and alkali metal atoms occupy the [Formula: see text] sites in the center of each honeycomb unit. Among other structural characteristics, the greatest variation concerns the relative heights at which alkali metals reside with respect to Bi-trimer layer. Except for Li, the other metals reside higher than Bi layer and their heights increase with atomic number. All adsorbed surface structures display similar electron band structures of which the most essential feature is metallic surface-state band with a giant spin splitting. This electronic property allows one to consider the Si(1 1 1)[Formula: see text]-Bi surfaces modified by alkali metal adsorption as a set of material systems showing promise for spintronic applications. PMID:26151642

  8. Characterization of Anthraquinone-DerivedRedox Switchable Ionophores and Their Complexes with Li+, Na+, K+, Ca+, and Mg+ Metal Ions

    Directory of Open Access Journals (Sweden)

    Vaishali Vyas

    2011-01-01

    Full Text Available Anthraquinone derived redox switchable ionophores 1,5 bis (2-(2-(2-ethoxy ethoxy ethoxyanthracene-9,10-dione (V1 and 1,8-bis(2-(2-(2-ethoxyethoxyethoxy anthracene—9,10-dione (V2 have been used for isolation, extraction and liquid membrane transport studies of Li+, Na+, K+, Ca2+ and Mg2+ metal ions. These isolated complexes were characterized by melting point determination, CV and IR, 1H NMR spectral analysis. Ionophore V2 shows maximum shift in reduction potential (ΔE with Ca(Pic2. The observed sequence for the shifting in reduction potential (ΔE between V2 and their complexes is V2 calcium picrate (42 mV > V2 potassium picrate (33 mV > V2 lithium picrate (25 mV > V2 sodium picrate (18 mV > V2 magnesium picrate (15 mV. These findings are also supported by results of extraction, back extraction and transport studies. Ionophore V2 complexed with KPic and showed much higher extractability and selectivity towards K+ than V1. These synthetic ionophores show positive and negative cooperativity towards alkali and alkaline earth metal ions in reduced and oxidized state. Hence, this property can be used in selective separation and enrichment of metal ions using electrochemically driven ion transport.

  9. Dansyl - Substituted Aza Crown Ethers: Complexation with Alkali, Alkaline Earth Metal Ions and Ammonium

    OpenAIRE

    Nelly Mateeva; Shihab Deiab; Edikan Archibong; Donka Tasheva; Bereket Mochona; Madhavi Gangapuram; Kinfe Redda

    2011-01-01