WorldWideScience

Sample records for aliphatic primary amines

  1. Environmentally friendly chemoselective oxidation of primary aliphatic amines by using a biomimetic electrocatalytic system.

    Science.gov (United States)

    Largeron, Martine; Chiaroni, Angèle; Fleury, Maurice-Bernard

    2008-01-01

    Environmentally friendly oxidation of primary aliphatic amines to imines has been successfully achieved, under metal-free conditions, by the use of diverse electrogenerated o-azaquinone mediators. High catalytic performance, together with high chemoselectivity, were observed with electron-poor o-azaquinone catalysts generated from 2-aminoresorcinol derivatives. Similar to copper amine oxidase enzymes, these mediators exhibited lower reactivity toward alpha-branched primary amines and no reactivity toward secondary amines. In the case of 3,4-aminophenol derivatives lacking a 2-hydroxy group, the generated o-azaquinone species failed to catalyze the oxidation of the amine to the corresponding imine. Further mechanistic considerations allowed a rationalization of the crucial role of the 2-hydroxy group in converting a catalytically inert species into a highly effective biomimetic catalyst.

  2. Direct electrochemical imidation of aliphatic amines via anodic oxidation.

    Science.gov (United States)

    Zhang, Li; Su, Ji-Hu; Wang, Sujing; Wan, Changfeng; Zha, Zhenggen; Du, Jiangfeng; Wang, Zhiyong

    2011-05-21

    Direct electrochemical synthesis of sulfonyl amidines from aliphatic amines and sulfonyl azides was realized with good to excellent yields. Traditional tertiary amine substrates were broadened to secondary and primary amines. The reaction intermediates were observed and a reaction mechanism was proposed and discussed. © The Royal Society of Chemistry 2011

  3. A Bioinspired Catalytic Aerobic Oxidative C–H Functionalization of Primary Aliphatic Amines: Synthesis of 1,2-Disubstituted Benzimidazoles

    Science.gov (United States)

    Nguyen, Khac Minh Huy; Largeron, Martine

    2015-01-01

    Aerobic oxidative C–H functionalization of primary aliphatic amines has been accomplished with a biomimetic cooperative catalytic system to furnish 1,2-disubstituted benzimidazoles that play an important role as drug discovery targets. This one-pot atom-economical multistep process, which proceeds under mild conditions, with ambient air and equimolar amounts of each coupling partner, constitutes a convenient environmentally friendly strategy to functionalize non-activated aliphatic amines that remain challenging substrates for non-enzymatic catalytic aerobic systems. PMID:26206475

  4. Method for the production of primary amines

    NARCIS (Netherlands)

    Baldenius, Kai-Uwe; Ditrich, Klaus; Breurer, Michael; Navickas, Vaidotas; Janssen, Dick; Crismaru, Ciprian; Bartsch, Sebastian

    2014-01-01

    The present invention relates to a novel enzymatically catalyzed method for the production of aliphatic primary amines, which method comprises the enzymatic oxidation of a primary aliphatic alcohol catalyzed by an alcohol dehydrogenase, amination of the resulting oxocompound catalyzed by a

  5. Secondary organic aerosol formation from primary aliphatic amines with NO3 radical

    Directory of Open Access Journals (Sweden)

    P. J. Silva

    2009-03-01

    Full Text Available Primary aliphatic amines are an important class of nitrogen containing compounds emitted from automobiles, waste treatment facilities and agricultural animal operations. A series of experiments conducted at the UC-Riverside/CE-CERT Environmental Chamber is presented in which oxidation of methylamine, ethylamine, propylamine, and butylamine with O3 and NO3 have been investigated. Very little aerosol formation is observed in the presence of O3 only. However, after addition of NO, and by extension NO3, large aerosol mass yields (~44% for butylamine are seen. Aerosol generated was determined to be organic in nature due to the small fraction of NO and NO2 in the total signal (<1% for all amines tested as detected by an aerosol mass spectrometer (AMS. We propose a reaction mechanism between carbonyl containing species and the parent amine leading to formation of particulate imine products. These findings can have significant impacts on rural communities with elevated nighttime PM loadings, when significant levels of NO3 exist.

  6. Secondary organic aerosol formation from primary aliphatic amines with NO3 radical

    Science.gov (United States)

    Malloy, Q. G. J.; Qi, Li; Warren, B.; Cocker, D. R., III; Erupe, M. E.; Silva, P. J.

    2009-03-01

    Primary aliphatic amines are an important class of nitrogen containing compounds emitted from automobiles, waste treatment facilities and agricultural animal operations. A series of experiments conducted at the UC-Riverside/CE-CERT Environmental Chamber is presented in which oxidation of methylamine, ethylamine, propylamine, and butylamine with O3 and NO3 have been investigated. Very little aerosol formation is observed in the presence of O3 only. However, after addition of NO, and by extension NO3, large aerosol mass yields (~44% for butylamine) are seen. Aerosol generated was determined to be organic in nature due to the small fraction of NO and NO2 in the total signal (tested) as detected by an aerosol mass spectrometer (AMS). We propose a reaction mechanism between carbonyl containing species and the parent amine leading to formation of particulate imine products. These findings can have significant impacts on rural communities with elevated nighttime PM loadings, when significant levels of NO3 exist.

  7. A bioinspired catalytic aerobic oxidative C-H functionalization of primary aliphatic amines: synthesis of 1,2-disubstituted benzimidazoles.

    Science.gov (United States)

    Nguyen, Khac Minh Huy; Largeron, Martine

    2015-09-01

    Aerobic oxidative CH functionalization of primary aliphatic amines has been accomplished with a biomimetic cooperative catalytic system to furnish 1,2-disubstituted benzimidazoles that play an important role as drug discovery targets. This one-pot atom-economical multistep process, which proceeds under mild conditions, with ambient air and equimolar amounts of each coupling partner, constitutes a convenient environmentally friendly strategy to functionalize non-activated aliphatic amines that remain challenging substrates for non-enzymatic catalytic aerobic systems. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of Creative Commons Attribution NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  8. Chemoselective organocatalytic aerobic oxidation of primary amines to secondary imines.

    Science.gov (United States)

    Wendlandt, Alison E; Stahl, Shannon S

    2012-06-01

    Biomimetic aerobic oxidation of primary benzylic amines has been achieved by using a quinone catalyst. Excellent selectivity is observed for primary, unbranched benzylic amines relative to secondary/tertiary amines, branched benzylic amines, and aliphatic amines. The exquisite selectivity for benzylic amines enables oxidative self-sorting within dynamic mixtures of amines and imines to afford high yields of cross-coupled imine products.

  9. Vapour pressure and enthalpy of vaporization of aliphatic poly-amines

    International Nuclear Information System (INIS)

    Efimova, Anastasia A.; Emel'yanenko, Vladimir N.; Verevkin, Sergey P.; Chernyak, Yury

    2010-01-01

    Molar enthalpies of vaporization of aliphatic poly-amines: 1,4-dimethylpiperazine [106-58-1], 1-(2-aminoethyl)-piperazine, [140-31-8], 1-(2-aminoethyl)-4-methyl-piperazine [934-98-5], and triethylenetetramine [112-24-3] were obtained from the temperature dependence of the vapour pressure measured by the transpiration method. A large number of the primary experimental results on temperature dependences of vapour pressures of the parent compounds have been collected from the literature and have been treated uniformly in order to derive vaporization enthalpies of poly-amines at the reference temperature 298.15 K. An internal consistency check was performed on enthalpy of vaporization values for poly-amines studied in this work.

  10. Selective fluorescence quenching of nitrogen-containing polycyclic aromatic hydrocarbons by aliphatic amines

    International Nuclear Information System (INIS)

    Li Xiaoping; McGuffin, Victoria L.

    2004-01-01

    In this investigation, primary, secondary, and tertiary amines are evaluated for their efficiency and selectivity as fluorescence quenchers for polycyclic aromatic hydrocarbons (PAHs) and nitrogen-containing polycyclic aromatic hydrocarbons (N-PAHs). In general, the quenching efficiency tends to increase from primary to tertiary amine due to a greater number of alkyl groups that increase the electron-donating ability. However, the selectivity decreases from primary to tertiary amine. The effect of low concentrations of water is also examined. Because water can form hydrogen bonds with amines, the nonbonding electron pair is not available for interaction with the fluorophore, thus the quenching constant is decreased. These aliphatic amines are then applied to PAHs and N-PAHs and some interesting trends are observed. Whereas amino-PAHs remain virtually unquenched by different amines, aza-PAHs are all quenched well. The selectivity between aza-PAHs and amino-PAHs is as high as several hundred. This trend provides an easy and effective method to discriminate between these classes of N-PAHs. Moreover, the alternant aza-PAHs are quenched more than their corresponding alternant PAHs

  11. A Hydrazone-Based exo-Directing-Group Strategy for β C-H Oxidation of Aliphatic Amines.

    Science.gov (United States)

    Huang, Zhongxing; Wang, Chengpeng; Dong, Guangbin

    2016-04-18

    Described is a new hydrazone-based exo-directing group (DG) strategy developed for the functionalization of unactivated primary β C-H bonds of aliphatic amines. Conveniently synthesized from protected primary amines, the hydrazone DGs are shown to site-selectively promote the β-acetoxylation and tosyloxylation via five-membered exo-palladacycles. Amines with a wide scope of skeletons and functional groups are tolerated. Moreover, the hydrazone DG can be readily removed, and a one-pot C-H acetoxylation/DG removal protocol was also discovered. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Platinum-Catalyzed, Terminal-Selective C(sp(3))-H Oxidation of Aliphatic Amines.

    Science.gov (United States)

    Lee, Melissa; Sanford, Melanie S

    2015-10-14

    This Communication describes the terminal-selective, Pt-catalyzed C(sp(3))-H oxidation of aliphatic amines without the requirement for directing groups. CuCl2 is employed as a stoichiometric oxidant, and the reactions proceed in high yield at Pt loadings as low as 1 mol%. These transformations are conducted in the presence of sulfuric acid, which reacts with the amine substrates in situ to form ammonium salts. We propose that protonation of the amine serves at least three important roles: (i) it renders the substrates soluble in the aqueous reaction medium; (ii) it limits binding of the amine nitrogen to Pt or Cu; and (iii) it electronically deactivates the C-H bonds proximal to the nitrogen center. We demonstrate that this strategy is effective for the terminal-selective C(sp(3))-H oxidation of a variety of primary, secondary, and tertiary amines.

  13. Selective N-alkylation of amines using nitriles under hydrogenation conditions: facile synthesis of secondary and tertiary amines.

    Science.gov (United States)

    Ikawa, Takashi; Fujita, Yuki; Mizusaki, Tomoteru; Betsuin, Sae; Takamatsu, Haruki; Maegawa, Tomohiro; Monguchi, Yasunari; Sajiki, Hironao

    2012-01-14

    Nitriles were found to be highly effective alkylating reagents for the selective N-alkylation of amines under catalytic hydrogenation conditions. For the aromatic primary amines, the corresponding secondary amines were selectively obtained under Pd/C-catalyzed hydrogenation conditions. Although the use of electron poor aromatic amines or bulky nitriles showed a lower reactivity toward the reductive alkylation, the addition of NH(4)OAc enhanced the reactivity to give secondary aromatic amines in good to excellent yields. Under the same reaction conditions, aromatic nitro compounds instead of the aromatic primary amines could be directly transformed into secondary amines via a domino reaction involving the one-pot hydrogenation of the nitro group and the reductive alkylation of the amines. While aliphatic amines were effectively converted to the corresponding tertiary amines under Pd/C-catalyzed conditions, Rh/C was a highly effective catalyst for the N-monoalkylation of aliphatic primary amines without over-alkylation to the tertiary amines. Furthermore, the combination of the Rh/C-catalyzed N-monoalkylation of the aliphatic primary amines and additional Pd/C-catalyzed alkylation of the resulting secondary aliphatic amines could selectively prepare aliphatic tertiary amines possessing three different alkyl groups. According to the mechanistic studies, it seems reasonable to conclude that nitriles were reduced to aldimines before the nucleophilic attack of the amine during the first step of the reaction.

  14. Platinum-Catalyzed Terminal-Selective C(sp3)–H Oxidation of Aliphatic Amines

    Science.gov (United States)

    Lee, Melissa; Sanford, Melanie S.

    2016-01-01

    This paper describes the terminal-selective Pt-catalyzed C(sp3)–H oxidation of aliphatic amines without the requirement for directing groups. CuCl2 is employed as a stoichiometric oxidant, and the reactions proceed in high yield at Pt loadings as low as 1 mol %. These transformations are conducted in the presence of sulfuric acid, which reacts with the amine substrates in situ to form ammonium salts. We propose that protonation of the amine serves at least three important roles: (i) it renders the substrates soluble in the aqueous reaction medium; (ii) it limits binding of the amine nitrogen to Pt or Cu; and (ii) it electronically deactivates the C–H bonds proximal to the nitrogen center. We demonstrate that this strategy is effective for the terminal-selective C(sp3)–H oxidation of a variety of primary, secondary and tertiary amines. PMID:26439251

  15. Corrosion inhibition of brass by aliphatic amines

    International Nuclear Information System (INIS)

    Taha, K. K.; Sheshadri, B. S; Ahmed, M. F.

    2005-01-01

    Aliphatic amines hexylamine (HCA), octylamine (OCA) and decylamine (DCA) have been used as corrosion inhibitors for (70/30) brass in 0.I M HCIO 4 . The inhibitor efficiency (%P) calculated using weight loss, Tafel extrapolation, linear polarization and impedance methods was found to be in the order DCA> OCA> HCA. These adsorb on brass surface following bockris-swinkels' isotherm. DCA, OCA and HCA displaced 4, 3 and 2 molecules of water from interface respectively. Displacement of water molecules brought a great reorganization of double layer at the interface. These amines during corrosion form complexes with dissolved zinc and copper ions.(Author)

  16. Cloud condensation nuclei activity of aliphatic amine secondary aerosol

    Science.gov (United States)

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The resulting particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate ...

  17. 40 CFR 721.6140 - Dialkyldithiophosphoric acid, aliphatic amine salt.

    Science.gov (United States)

    2010-07-01

    ... methods for protecting against such risk, into an MSDS as described in § 721.72(c) within 90 days from the..., aliphatic amine salt. 721.6140 Section 721.6140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... manner or method of manufacture, import, or processing associated with any use of this substance without...

  18. Visible-Light-Promoted Metal-Free Aerobic Oxidation of Primary Amines to Acids and Lactones.

    Science.gov (United States)

    Cheng, Xiaokai; Yang, Bo; Hu, Xingen; Xu, Qing; Lu, Zhan

    2016-12-05

    A unique metal-free aerobic oxidation of primary amines via visible light photocatalytic double carbon-carbon bonds cleavage and multi carbon-hydrogen bonds oxidation was observed. Aerobic oxidation of primary amines could be controlled to afford acids by using dioxane with 18 W CFL, and lactones by using DMF with 8 W green LEDs, respectively. A plausible mechanism was proposed based on control experiments. This observation showed direct evidences for the fragmentation in the aerobic oxidation of aliphatic primary amines. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Oxyfunctionalization of the Remote C-H Bonds of Aliphatic Amines by Decatungstate Photocatalysis.

    Science.gov (United States)

    Schultz, Danielle M; Lévesque, François; DiRocco, Daniel A; Reibarkh, Mikhail; Ji, Yining; Joyce, Leo A; Dropinski, James F; Sheng, Huaming; Sherry, Benjamin D; Davies, Ian W

    2017-11-27

    Aliphatic amines, oxygenated at remote positions within the molecule, represent an important class of synthetic building blocks to which there are currently no direct means of access. Reported herein is an efficient and scalable solution that relies upon decatungstate photocatalysis under acidic conditions using either H 2 O 2 or O 2 as the terminal oxidant. By using these reaction conditions a series of simple and unbiased aliphatic amine starting materials can be oxidized to value-added ketone products. Lastly, NMR spectroscopy using in situ LED-irradiated samples was utilized to monitor the kinetics of the reaction, thus enabling direct translation of the reaction into flow. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Screening and Quantification of Aliphatic Primary Alkyl Corrosion Inhibitor Amines in Water Samples by Paper Spray Mass Spectrometry.

    Science.gov (United States)

    Jjunju, Fred P M; Maher, Simon; Damon, Deidre E; Barrett, Richard M; Syed, S U; Heeren, Ron M A; Taylor, Stephen; Badu-Tawiah, Abraham K

    2016-01-19

    Direct analysis and identification of long chain aliphatic primary diamine Duomeen O (n-oleyl-1,3-diaminopropane), corrosion inhibitor in raw water samples taken from a large medium pressure water tube boiler plant water samples at low LODs (corrosion inhibitors in an industrial water boiler plant and other related samples in the water treatment industry. This approach was applied for the analysis of three complex water samples including feedwater, condensate water, and boiler water, all collected from large medium pressure (MP) water tube boiler plants, known to be dosed with varying amounts of polyamine and amine corrosion inhibitor components. Polyamine chemistry is widely used for example in large high pressure (HP) boilers operating in municipal waste and recycling facilities to prevent corrosion of metals. The samples used in this study are from such a facility in Coventry waste treatment facility, U.K., which has 3 × 40 tonne/hour boilers operating at 17.5 bar.

  1. A microanalytical method for ammonium and short-chain primary aliphatic amines using precolumn derivatization and capillary liquid chromatography.

    Science.gov (United States)

    Moliner-Martínez, Y; Herráez-Hernández, R; Campíns-Falcó, P

    2007-09-14

    A new microscale method is presented for the determination of ammonium and primary short-chain aliphatic amines (methylamine, ethylamine, propylamine, n-butylamine and n-pentylamine) in water. The assay uses precolumn derivatization with the reagent o-phthaldialdehyde (OPA) in combination with the thiol N-acetyl-L-cysteine (NAC), and capillary liquid chromatography with UV detection at 330 nm. The described method is very simple and rapid as no preconcentration of the analytes is necessary, and the volume of sample required is only 0.1 mL. Under the proposed conditions good linearity has been obtained up to a concentration of the analytes of 10.0 mgL(-1), the limits of detection being of 8-50 microgL(-1). No matrix effect was found, and recoveries between 97 and 110% were obtained. The precision of the method was good, and the achieved variation coefficients were below 12%. The reliability of the proposed approach has been tested by analyzing a microsample of fogwater collected from leaf surfaces.

  2. Development of four-component synthesis of tetra- and pentasubstituted polyfunctional dihydropyrroles: free permutation and combination of aromatic and aliphatic amines.

    Science.gov (United States)

    Lv, Longyun; Zheng, Sichao; Cai, Xiaotie; Chen, Zhipeng; Zhu, Qiuhua; Liu, Shuwen

    2013-04-08

    We previously reported the novel efficient proton/heat-promoted four-component reactions (4CRs) of but-2-ynedioates, two same/different primary amines, and aldehydes for the synthesis of tetra- and pentasubstituted polyfunctional dihydropyrroles. If aromatic and aliphatic amines were used as reagents, four different series of products should be obtained via the permutation and combination of aromatic and aliphatic primary amines. However, only three/two rather four different series of tetra-/pentasubstisuted dihydropyrroles could be prepared via the proton/heat-promoted 4CRs. Herein, Cu(OAc)2·H2O, a Lewis acid being stable in air and water, was found to be an efficient catalyst for the 4CR synthesis of all the four different series of tetra-/pentasubstisuted dihydropyrroles. The copper-catalyzed 4CR could produce target products at room temperature in good to excellent yields. Interestingly, benzaldehyde, in addition to being used as a useful reactant for the synthesis of pentasubstituted dihydropyrroles, was found to be an excellent additive for preventing the oxidation of aromatic amines with copper(II) and ensuring the sooth conduct of the 4CRs for the synthesis of tetrasubstituted dihydropyrroles with aryl R(3). In addition, salicylic acid was found to be needed to increase the activities and yields of the copper-catalyzed 4CRs for the synthesis of petasubstituted diyhydropyrroles. On the basis of experimental results, the enamination/amidation/intramolecular cyclization mechanism was proposed and amidation is expected to be the rate-limited step in the copper-catalyzed 4CRs.

  3. The ozonolysis of primary aliphatic amines in fine particles

    Science.gov (United States)

    Zahardis, J.; Geddes, S.; Petrucci, G. A.

    2008-02-01

    The oxidative processing by ozone of the particulate amines octadecylamine (ODA) and hexadecylamine (HDA) is reported. Ozonolysis of these amines resulted in strong NO2- and NO3- ion signals that increased with ozone exposure as monitored by photoelectron resonance capture ionization aerosol mass spectrometry. These products suggest a mechanism of progressive oxidation of the particulate amines to nitroalkanes. Additionally, a strong ion signal at 125 m/z is assigned to the ion NO3- (HNO3). For ozonized mixed particles containing ODA or HDA + oleic acid (OL), with pO3≥3×10-7 atm, imine, secondary amide, and tertiary amide products were measured. These products most likely arise from reactions of amines with aldehydes (for imines) and stabilized Criegee intermediates (SCI) or secondary ozonides (for amides) from the fatty acid. The routes to amides via SCI and/or secondary ozonides were shown to be more important than comparable amide forming reactions between amines and organic acids, using azelaic acid as a test compound. Finally, direct evidence is provided for the formation of a surface barrier in the ODA + OL reaction system that resulted in the retention of OL at high ozone exposures (up to 10-3 atm for 17 s). This effect was not observed in HDA + OL or single component OL particles, suggesting that it may be a species-specific surfactant effect from an in situ generated amide or imine. Implications to tropospheric chemistry, including particle bound amines as sources of oxidized gas phase nitrogen species (e.g.~NO2, NO3), formation of nitrogen enriched HULIS via ozonolysis of amines and source apportionment are discussed.

  4. Cu/Nitroxyl Catalyzed Aerobic Oxidation of Primary Amines into Nitriles at Room Temperature

    OpenAIRE

    Kim, Jinho; Stahl, Shannon S.

    2013-01-01

    An efficient catalytic method has been developed for aerobic oxidation of primary amines to the corresponding nitriles. The reactions proceed at room temperature and employ a catalyst consisting of (4,4′-tBu2bpy)CuI/ABNO (ABNO = 9-azabicyclo[3.3.1]nonan-3-one N-oxyl). The reactions exhibit excellent functional group compatibility and substrate scope, and are effective with benzylic, allylic and aliphatic amines. Preliminary mechanistic studies suggest that aerobic oxidation of the Cu catalyst...

  5. The ozonolysis of primary aliphatic amines in fine particles

    Directory of Open Access Journals (Sweden)

    J. Zahardis

    2008-02-01

    Full Text Available The oxidative processing by ozone of the particulate amines octadecylamine (ODA and hexadecylamine (HDA is reported. Ozonolysis of these amines resulted in strong NO2 and NO3 ion signals that increased with ozone exposure as monitored by photoelectron resonance capture ionization aerosol mass spectrometry. These products suggest a mechanism of progressive oxidation of the particulate amines to nitroalkanes. Additionally, a strong ion signal at 125 m/z is assigned to the ion NO3 (HNO3. For ozonized mixed particles containing ODA or HDA + oleic acid (OL, with pO3≥3×10–7 atm, imine, secondary amide, and tertiary amide products were measured. These products most likely arise from reactions of amines with aldehydes (for imines and stabilized Criegee intermediates (SCI or secondary ozonides (for amides from the fatty acid. The routes to amides via SCI and/or secondary ozonides were shown to be more important than comparable amide forming reactions between amines and organic acids, using azelaic acid as a test compound. Finally, direct evidence is provided for the formation of a surface barrier in the ODA + OL reaction system that resulted in the retention of OL at high ozone exposures (up to 10−3 atm for 17 s. This effect was not observed in HDA + OL or single component OL particles, suggesting that it may be a species-specific surfactant effect from an in situ generated amide or imine. Implications to tropospheric chemistry, including particle bound amines as sources of oxidized gas phase nitrogen species (e.g.~NO2, NO3, formation of nitrogen enriched HULIS via ozonolysis of amines and source apportionment are discussed.

  6. Oxidations of N-(3-indoleethyl) cyclic aliphatic amines by horseradish peroxidase: the indole ring binds to the enzyme and mediates electron-transfer amine oxidation.

    Science.gov (United States)

    Ling, Ke-Qing; Li, Wen-Shan; Sayre, Lawrence M

    2008-01-23

    Although oxidations of aromatic amines by horseradish peroxidase (HRP) are well-known, typical aliphatic amines are not substrates of HRP. In this study, the reactions of N-benzyl and N-methyl cyclic amines with HRP were found to be slow, but reactions of N-(3-indoleethyl) cyclic amines were 2-3 orders of magnitude faster. Analyses of pH-rate profiles revealed a dominant contribution to reaction by the amine-free base forms, the only species found to bind to the enzyme. A metabolic study on a family of congeneric N-(3-indoleethyl) cyclic amines indicated competition between amine and indole oxidation pathways. Amine oxidation dominated for the seven- and eight-membered azacycles, where ring size supports the change in hybridization from sp3 to sp2 that occurs upon one-electron amine nitrogen oxidation, whereas only indole oxidation was observed for the six-membered ring congener. Optical difference spectroscopic binding data and computational docking simulations suggest that all the arylalkylamine substrates bind to the enzyme through their aromatic termini with similar binding modes and binding affinities. Kinetic saturation was observed for a particularly soluble substrate, consistent with an obligatory role of an enzyme-substrate complexation preceding electron transfer. The significant rate enhancements seen for the indoleethylamine substrates suggest the ability of the bound indole ring to mediate what amounts to medium long-range electron-transfer oxidation of the tertiary amine center by the HRP oxidants. This is the first systematic investigation to document aliphatic amine oxidation by HRP at rates consistent with normal metabolic turnover, and the demonstration that this is facilitated by an auxiliary electron-rich aromatic ring.

  7. Cu/Nitroxyl Catalyzed Aerobic Oxidation of Primary Amines into Nitriles at Room Temperature.

    Science.gov (United States)

    Kim, Jinho; Stahl, Shannon S

    2013-07-05

    An efficient catalytic method has been developed for aerobic oxidation of primary amines to the corresponding nitriles. The reactions proceed at room temperature and employ a catalyst consisting of (4,4'- t Bu 2 bpy)CuI/ABNO (ABNO = 9-azabicyclo[3.3.1]nonan-3-one N -oxyl). The reactions exhibit excellent functional group compatibility and substrate scope, and are effective with benzylic, allylic and aliphatic amines. Preliminary mechanistic studies suggest that aerobic oxidation of the Cu catalyst is the turnover-limiting step of the reaction.

  8. Seasonal variation of aliphatic amines in marine sub-micrometer particles at the Cape Verde islands

    Directory of Open Access Journals (Sweden)

    H. Herrmann

    2009-12-01

    Full Text Available Monomethylamine (MA, dimethylamine (DMA and diethylamine (DEA were detected at non-negligible concentrations in sub-micrometer particles at the Cap Verde Atmospheric Observatory (CVAO located on the island of São Vicente in Cape Verde during algal blooms in 2007. The concentrations of these amines in five stage impactor samples ranged from 0–30 pg m−3 for MA, 130–360 pg m−3 for DMA and 5–110 pg m−3 for DEA during the spring bloom in May 2007 and 2–520 pg m−3 for MA, 100–1400 pg m−3 for DMA and 90–760 pg m−3 for DEA during an unexpected winter algal bloom in December 2007. Anomalously high Saharan dust deposition and intensive ocean layer deepening were found at the Atmospheric Observatory and the associated Ocean Observatory during algal bloom periods. The highest amine concentrations in fine particles (impactor stage 2, 0.14–0.42 μm indicate that amines are likely taken up from the gas phase into the acidic sub-micrometer particles. The contribution of amines to the organic carbon (OC content ranged from 0.2–2.5% C in the winter months, indicating the importance of this class of compounds to the carbon cycle in the marine environment. Furthermore, aliphatic amines originating from marine biological sources likely contribute significantly to the nitrogen content in the marine atmosphere. The average contribution of the amines to the detected nitrogen species in sub-micrometer particles can be non-negligible, especially in the winter months (0.1% N–1.5% N in the sum of nitrate, ammonium and amines. This indicates that these smaller aliphatic amines can be important for the carbon and the nitrogen cycles in the remote marine environment.

  9. Facile synthesis of aliphatic isothiocyanates and thioureas on solid phase using peptide coupling reagents

    DEFF Research Database (Denmark)

    Boas, Ulrik; Andersen, Heidi Gertz; Christensen, Jørn B.

    2004-01-01

    Peptide coupling reagents can be used as versatile reagents for the formation of aliphatic isothiocyanates and thioureas on solid phase from the corresponding solid-phase anchored aliphatic primary amines. The formation of the thioureas is fast and highly chemoselective, and proceeds via formatio...

  10. Amperometric detection and electrochemical oxidation of aliphatic amines and ammonia on silver-lead oxide thin-film electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Jisheng [Iowa State Univ., Ames, IA (United States)

    1996-01-08

    This thesis comprises three parts: Electrocatalysis of anodic oxygen-transfer reactions: aliphatic amines at mixed Ag-Pb oxide thin-film electrodes; oxidation of ammonia at anodized Ag-Pb eutectic alloy electrodes; and temperature effects on oxidation of ethylamine, alanine, and aquated ammonia.

  11. Ionic liquids as silica deactivating agents in gas chromatography for direct analysis of primary amines in water.

    Science.gov (United States)

    Krzyżaniak, Agnieszka; Weggemans, Wilko; Schuur, Boelo; de Haan, André B

    2011-12-16

    Analysis of primary amines in aqueous samples remains a challenging analytical issue. The preferred approach by gas chromatography is hampered by interactions of free silanol groups with the highly reactive amine groups, resulting in inconsistent measurements. Here, we report a method for direct analysis of aliphatic amines and diamines in aqueous samples by gas chromatography (GC) with silanol deactivation using ionic liquids (ILs). ILs including trihexyl(tetradecyl)phosphonium bis 2,4,4-(trimethylpentyl)phosphinate (Cyphos IL-104), 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide [pmim][Tf(2)N] and N″-ethyl-N,N,N',N'-tetramethylguanidinium tris(pentafluoroethyl)trifluorophosphate [etmg][FAP] were tested as deactivating media for the GC liner. Solutions of these ILs in methanol were injected in the system prior to the analysis of primary amines. Butane-1,4-diamine (putrescine, BDA) was used as a reference amine. The best results were obtained using the imidazolium IL [pmim][Tf(2)N]. With this deactivator, excellent reproducibility of the analysis was achieved, and the detection limit of BDA was as low as 1mM. The applicability of the method was proven for the analysis of two different primary amines (C4-C5) and pentane-1,5-diamine. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. The ozonolysis of primary aliphatic amines in single and multicomponent fine particles

    Science.gov (United States)

    Zahardis, J.; Geddes, S.; Petrucci, G. A.

    2007-10-01

    The oxidative processing by ozone of the particulate amines octadecylamine (ODA) and hexadecylamine (HDA) is reported. Ozonolysis of these amines resulted in strong NO2- and NO3- ion signals that increased with ozone exposure as monitored by photoelectron resonance capture ionization aerosol mass spectrometry. These products suggest a mechanism of progressive oxidation of the particulate amines to nitro alkanes. Additionally, a strong ion signal at 125 m/z is assigned to the ion NO3-(HNO3). For ozonized mixed particles containing ODA or HDA + oleic acid (OL), with pO3≥3×10-7 atm, imine, secondary amide, and tertiary amide products were measured. These products most likely arise from reactions of amines with aldehydes (for imines) and stabilized Criegee intermediates (SCI) or secondary ozonides (for amides) from the fatty acid. The routes to amides via SCI and/or secondary ozonides was shown to be more important than comparable amide forming reactions between amines and organic acids, using azelaic acid as a test compound. Finally, direct evidence is provided for the formation of a surface barrier in the ODA + OL reaction system that resulted in the retention of OL at high ozone exposures (up to 10-3 atm for 17 s). This effect was not observed in HDA + OL or single component OL particles, suggesting that it may be a species-specific surfactant effect from an in situ generated amide or imine. Implications to tropospheric chemistry, including particle bound amines as sources of oxidized gas phase nitrogen species (e.g. NO2, NO3), formation of nitrogen enriched HULIS via ozonolysis of amines and source apportionment are discussed.

  13. Iridium-Catalyzed Condensation of Primary Amines To Form Secondary Amines

    DEFF Research Database (Denmark)

    Lorentz-Petersen, Linda Luise Reeh; Jensen, Paw; Madsen, Robert

    2009-01-01

    Symmetric secondary amines are readily obtained by heating a neat primary amine with 0.5 mol% of bis(dichloro[eta(5)-pentamethylcyclopentadienyl]iridium). The products are isolated by direct distillation in good yields.......Symmetric secondary amines are readily obtained by heating a neat primary amine with 0.5 mol% of bis(dichloro[eta(5)-pentamethylcyclopentadienyl]iridium). The products are isolated by direct distillation in good yields....

  14. EFSA ; Scientific Opinion on Flavouring Group Evaluation 94, Revision 1 (FGE.94Rev1): Consideration of aliphatic amines and amides evaluated in an addendum to the group of aliphatic and aromatic amines and amides evaluated by the JECFA (68th meeting)

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    evaluation is necessary, as laid down in Commission Regulation (EC) No 1565/2000. The present consideration concerns a group of 12 aliphatic amines and amides evaluated by the JECFA at the 68th meeting in 2007. This revision of the consideration is made due to additional toxicity data available for two...

  15. Products of tungstate ion interaction with primary aliphatic amines

    International Nuclear Information System (INIS)

    Skrylev, L.D.; Sejfullina, I.I.; Purich, A.N.; Babinets, S.K.

    1982-01-01

    Using the methods of conductometric titration, IR-spectroscopic and thermographic analyses precipitates formed in the process of interaction of diluted aqueous solutions of sodium tungstate with alcoholic solutions of dodecyl-, tetradecyl- and octadecylamine have been studied. It is shown that as a result of interaction tungstates of corresponding amines are formed. The structure and thermal stability of singled out products are determined

  16. Metal-free oxidative olefination of primary amines with benzylic C-H bonds through direct deamination and C-H bond activation.

    Science.gov (United States)

    Gong, Liang; Xing, Li-Juan; Xu, Tong; Zhu, Xue-Ping; Zhou, Wen; Kang, Ning; Wang, Bin

    2014-09-14

    An oxidative olefination reaction between aliphatic primary amines and benzylic sp(3) C-H bonds has been achieved using N-bromosuccinimide as catalyst and tert-butyl hydroperoxide as oxidant. The olefination proceeds under mild metal-free conditions through direct deamination and benzylic C-H bond activation, and provides easy access to biologically active 2-styrylquinolines with (E)-configuration.

  17. Synthesis of 3-Bromotetronamides via Amination of 3,4-Dibromofuran-2(5H)-one

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Silvio; Oliveira, Caio C., E-mail: silviodc@ufba.b [Universidade Federal da Bahia (IQ/UFBA), Salvador, BA (Brazil). Inst. de Quimica; Instituto Nacional de Ciencia e Tecnologia (INCT) em Energia, Salvador, BA (Brazil); Sabino, Jose R. [Universidade Federal de Goias (IF/UFG), Goiania (Brazil). Inst. de Fisica

    2011-07-01

    This work describes the direct synthesis of 3-bromotetronamides in good yields through the reaction of 3,4-dibromofuran-2(5H)-one, obtained from furfural, with primary and secondary amines. Aromatic amines were more tolerated than aliphatic and heteroaromatic ones. The X-ray structures of five derivatives are described. (author)

  18. N-heterocyclic carbene copper(I) catalysed N-methylation of amines using CO2

    KAUST Repository

    Santoro, Orlando

    2015-09-30

    The N-methylation of amines using CO2 and PhSiH3 as source of CH3 was efficiently performed using a N-heterocyclic carbene copper(I) complex. The methodology was found compatible with aromatic and aliphatic primary and secondary amines. Synthetic and computational studies have been carried out to support the proposed reaction mechanism for this transformation.

  19. N-heterocyclic carbene copper(I) catalysed N-methylation of amines using CO2

    KAUST Repository

    Santoro, Orlando; Lazreg, Faï ma; Minenkov, Yury; Cavallo, Luigi; Cazin, Catherine S. J.

    2015-01-01

    The N-methylation of amines using CO2 and PhSiH3 as source of CH3 was efficiently performed using a N-heterocyclic carbene copper(I) complex. The methodology was found compatible with aromatic and aliphatic primary and secondary amines. Synthetic and computational studies have been carried out to support the proposed reaction mechanism for this transformation.

  20. Oxidation of primary amines to oximes with molecular oxygen using 1,1-diphenyl-2-picrylhydrazyl and WO3/Al2O3 as catalysts.

    Science.gov (United States)

    Suzuki, Ken; Watanabe, Tomonari; Murahashi, Shun-Ichi

    2013-03-15

    The oxidative transformation of primary amines to their corresponding oximes proceeds with high efficiency under molecular oxygen diluted with molecular nitrogen (O2/N2 = 7/93 v/v, 5 MPa) in the presence of the catalysts 1,1-diphenyl-2-picrylhydrazyl (DPPH) and tungusten oxide/alumina (WO3/Al2O3). The method is environmentally benign, because the reaction requires only molecular oxygen as the terminal oxidant and gives water as a side product. Various alicyclic amines and aliphatic amines can be converted to their corresponding oximes in excellent yields. It is noteworthy that the oxidative transformation of primary amines proceeds chemoselectively in the presence of other functional groups. The key step of the present oxidation is a fast electron transfer from the primary amine to DPPH followed by proton transfer to give the α-aminoalkyl radical intermediate, which undergoes reaction with molecular oxygen and hydrogen abstraction to give α-aminoalkyl hydroperoxide. Subsequent reaction of the peroxide with WO3/Al2O3 gives oximes. The aerobic oxidation of secondary amines gives the corresponding nitrones. Aerobic oxidative transformation of cyclohexylamines to cyclohexanone oximes is important as a method for industrial production of ε-caprolactam, a raw material for Nylon 6.

  1. Conversion of alcohols to enantiopure amines through dual-enzyme hydrogen-borrowing cascades.

    Science.gov (United States)

    Mutti, Francesco G; Knaus, Tanja; Scrutton, Nigel S; Breuer, Michael; Turner, Nicholas J

    2015-09-25

    α-Chiral amines are key intermediates for the synthesis of a plethora of chemical compounds at industrial scale. We present a biocatalytic hydrogen-borrowing amination of primary and secondary alcohols that allows for the efficient and environmentally benign production of enantiopure amines. The method relies on a combination of two enzymes: an alcohol dehydrogenase (from Aromatoleum sp., Lactobacillus sp., or Bacillus sp.) operating in tandem with an amine dehydrogenase (engineered from Bacillus sp.) to aminate a structurally diverse range of aromatic and aliphatic alcohols, yielding up to 96% conversion and 99% enantiomeric excess. Primary alcohols were aminated with high conversion (up to 99%). This redox self-sufficient cascade possesses high atom efficiency, sourcing nitrogen from ammonium and generating water as the sole by-product. Copyright © 2015, American Association for the Advancement of Science.

  2. Thermometric titrations of amines with nitrosyl perchlorate in acetonitrile solvent.

    Science.gov (United States)

    Gündüz, T; Kiliç, E; Cakirer, O

    1996-05-01

    Thirteen aliphatic and four aromatic amines, namely diethylamine, triethylamine, n-propylamine, di-n-propylamine, tri-n-butylamine, isopropylamine, di-isopropylamine, n-butylamine, di-n-butylamine, tri-n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, aniline, N,N-dimethylaniline, 2-nitroaniline and 4-nitroaniline were titrated thermometrically with nitrosyl perchlorate in acetonitrile solvent. All the aliphatic amines gave very well-shaped thermometric titration curves. The calculated recovery values of the amines were very good. In comparison, the aromatic amines, aniline and N,N-dimethylaniline gave rather well-shaped titration curves, but the recovery values were fairly low. 2-Nitro- and 4-nitro anilines gave no thermometric response at all. The heats of reaction of the amines with nitrosyl perchlorate are rather high. However, the average heat of reaction of the aromatic amines is approximately two-thirds that of the average heat of the aliphatic amines. To support this method all the amines were also titrated potentiometrically and very similar results to those obtained with the thermometric method are seen. The nitrosyl ion is a Lewis acid, strong enough to titrate quantitatively aliphatic amines in acetonitrile solvent, but not strong enough to titrate aromatic amines at the required level in the same solvent.

  3. Automated determination of aliphatic primary amines in wastewater by simultaneous derivatization and headspace solid-phase microextraction followed by gas chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Llop, Anna; Pocurull, Eva; Borrull, Francesc

    2010-01-22

    This paper presents a fully automated method for determining ten primary amines in wastewater at ng/L levels. The method is based on simultaneous derivatization with pentafluorobenzaldehyde (PFBAY) and headspace solid-phase microextraction (HS-SPME) followed by gas chromatography coupled to ion trap tandem mass spectrometry (GC-IT-MS-MS). The influence of main factors on the efficiency of derivatization and of HS-SPME is described in detail and optimized by a central composite design. For all species, the highest enrichment factors were achieved using a 85 microm polyacrylate (PA) fiber exposed in the headspace of stirred water samples (750 rpm) at pH 12, containing 360 g/L of NaCl, at 40 degrees C for 15 min. Under optimized conditions, the proposed method achieved detection limits ranging from 10 to 100 ng/L (except for cyclohexylamine). The optimized method was then used to determine the presence of primary amines in various types of wastewater samples, such as influent and effluent wastewater from municipal and industrial wastewater treatment plants (WWTPs) and a potable water treatment plant. Although the analysis of these samples revealed the presence of up to 1500 microg/L of certain primary amines in influent industrial wastewater, the concentration of these compounds in the effluent and in municipal and potable water was substantially lower, at low microg/L levels. The new derivatization-HS-SPME-GC-IT-MS-MS method is suitable for the fast, reliable and inexpensive determination of primary amines in wastewater in an automated procedure. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Azobisisobutyronitrile initiated aerobic oxidative transformation of amines: coupling of primary amines and cyanation of tertiary amines.

    Science.gov (United States)

    Liu, Lianghui; Wang, Zikuan; Fu, Xuefeng; Yan, Chun-Hua

    2012-11-16

    In the presence of a catalytic amount of radical initiator AIBN, primary amines are oxidatively coupled to imines and tertiary amines are cyanated to α-aminonitriles. These "metal-free" aerobic oxidative coupling reactions may find applications in a wide range of "green" oxidation chemistry.

  5. Electrochemical and Quantum Chemical Study of Reactivity of Orthophthalaldehyde with Aliphatic Primary Amines

    Czech Academy of Sciences Publication Activity Database

    Donkeng Dazie, Joel; Liška, Alan; Ludvík, Jiří

    2016-01-01

    Roč. 163, č. 9 (2016), G127-G132 ISSN 0013-4651 R&D Projects: GA ČR GA13-21704S Institutional support: RVO:61388955 Keywords : electrochemistry * quantum chemical study * amines Subject RIV: CG - Electrochemistry Impact factor: 3.259, year: 2016

  6. Practical Synthesis of Amides via Copper/ABNO-Catalyzed Aerobic Oxidative Coupling of Alcohols and Amines.

    Science.gov (United States)

    Zultanski, Susan L; Zhao, Jingyi; Stahl, Shannon S

    2016-05-25

    A modular Cu/ABNO catalyst system has been identified that enables efficient aerobic oxidative coupling of alcohols and amines to amides. All four permutations of benzylic/aliphatic alcohols and primary/secondary amines are viable in this reaction, enabling broad access to secondary and tertiary amides. The reactions exhibit excellent functional group compatibility and are complete within 30 min-3 h at rt. All components of the catalyst system are commercially available.

  7. Extraction of some acids using aliphatic amines

    International Nuclear Information System (INIS)

    Matutano, L.

    1964-06-01

    Hydrochloric, nitric, sulphuric, perchloric, phosphoric, acetic and formic acids in aqueous solution (0.05 to 10 M) are extracted by amberlite LA2 and trilaurylamine in solution, 5 per cent by volume, in kerosene and xylene respectively. The extraction process consists of: neutralization of the amine salt; a 'molecular extraction', i.e. an extraction using an excess of acid with respect to the stoichiometry of the amine salt. According to the behaviour of the acid during the extraction, three groups may be distinguished: completely dissociated acids, carboxylic acids, phosphoric acid. This classification is also valid for the extraction of the water which occurs simultaneously with that of the acid. An extraction mechanism is put forward for formic acid and the formation constant of its amine salt is calculated. (author) [fr

  8. Effect of donor orientation on ultrafast intermolecular electron transfer in coumarin-amine systems

    International Nuclear Information System (INIS)

    Singh, P. K.; Nath, S.; Bhasikuttan, A. C.; Kumbhakar, M.; Mohanty, J.; Sarkar, S. K.; Mukherjee, T.; Pal, H.

    2008-01-01

    Effect of donor amine orientation on nondiffusive ultrafast intermolecular electron transfer (ET) reactions in coumarin-amine systems has been investigated using femtosecond fluorescence upconversion measurements. Intermolecular ET from different aromatic and aliphatic amines used as donor solvents to the excited coumarin-151 (C151) acceptor occurs with ultrafast rates such that the shortest fluorescence lifetime component (τ 1 ) is the measure of the fastest ET rate (τ 1 =τ ET fast =(k ET fast ) -1 ), assigned to the C151-amine contact pairs in which amine donors are properly oriented with respect to C151 to maximize the acceptor-donor electronic coupling (V el ). It is interestingly observed that as the amine solvents are diluted by suitable diluents (either keeping solvent dielectric constant similar or with increasing dielectric constant), the τ 1 remains almost in the similar range as long as the amine dilution does not cross a certain critical limit, which in terms of the amine mole fraction (x A ) is found to be ∼0.4 for aromatic amines and ∼0.8 for aliphatic amines. Beyond these dilutions in the two respective cases of the amine systems, the τ 1 values are seen to increase very sharply. The large difference in the critical x A values involving aromatic and aliphatic amine donors has been rationalized in terms of the largely different orientational restrictions for the ET reactions as imposed by the aliphatic (n-type) and aromatic (π-type) nature of the amine donors [A. K. Satpati et al., J. Mol. Struct. 878, 84 (2008)]. Since the highest occupied molecular orbital (HOMO) of the n-type aliphatic amines is mostly centralized at the amino nitrogen, only some specific orientations of these amines with respect to the close-contact acceptor dye [also of π-character; A. K. Satpati et al., J. Mol. Struct. 878, 84 (2008) and E. W. Castner et al., J. Phys. Chem. A 104, 2869 (2000)] can give suitable V el and thus ultrafast ET reaction. In contrary, the

  9. Kinetics and mechanism of oxidation of aliphatic primary alcohols by ...

    Indian Academy of Sciences (India)

    Unknown

    Kinetics and mechanism of oxidation of aliphatic primary alcohols by quinolinium bromochromate. SONU SARASWAT, VINITA SHARMA and K K BANERJI*. Department of Chemistry, JNV University, Jodhpur 342 005, India e-mail: banerjikk@rediffmail.com. MS received 4 December 2001; revised 2 November 2002.

  10. A one-pot chemoselective synthesis of secondary amines by using a biomimetic electrocatalytic system

    International Nuclear Information System (INIS)

    Largeron, Martine

    2009-01-01

    A one-pot electrochemically induced oxidation-imine formation-reduction route to secondary amines is described in detail. The key step of the process consists of the o-iminoquinone-mediated chemoselective catalytic oxidation of a primary aliphatic amine substrate, in the presence of a second amine used as the alkylating agent. Through the examination of the scope of the reaction by systematically varying both amine substrate and amine alkylating agent, it can be shown that this reaction sequence, leaving ammonia as the sole by-product, allows the rapid synthesis of various secondary amines in moderate to good yields. This process, that highlights the pre-eminent green advantages of electrochemical synthesis, especially the utilization of electricity as energy instead of chemical reagents, high atom economy as well as ambient temperature and pressure, could be a mild alternative to already reported synthetic methods.

  11. A one-pot chemoselective synthesis of secondary amines by using a biomimetic electrocatalytic system

    Energy Technology Data Exchange (ETDEWEB)

    Largeron, Martine [UMR CNRS 8638, Synthese et Structure de Molecules d' nteret Pharmacologique, Universite Paris Descartes, Faculte des Sciences Pharmaceutiques et Biologiques, 4 Avenue de l' Observatoire, 75270 Paris Cedex 06 (France)], E-mail: martine.largeron@parisdescartes.fr

    2009-09-01

    A one-pot electrochemically induced oxidation-imine formation-reduction route to secondary amines is described in detail. The key step of the process consists of the o-iminoquinone-mediated chemoselective catalytic oxidation of a primary aliphatic amine substrate, in the presence of a second amine used as the alkylating agent. Through the examination of the scope of the reaction by systematically varying both amine substrate and amine alkylating agent, it can be shown that this reaction sequence, leaving ammonia as the sole by-product, allows the rapid synthesis of various secondary amines in moderate to good yields. This process, that highlights the pre-eminent green advantages of electrochemical synthesis, especially the utilization of electricity as energy instead of chemical reagents, high atom economy as well as ambient temperature and pressure, could be a mild alternative to already reported synthetic methods.

  12. Peptidyl prolyl isomerase Pin1-inhibitory activity of D-glutamic and D-aspartic acid derivatives bearing a cyclic aliphatic amine moiety.

    Science.gov (United States)

    Nakagawa, Hidehiko; Seike, Suguru; Sugimoto, Masatoshi; Ieda, Naoya; Kawaguchi, Mitsuyasu; Suzuki, Takayoshi; Miyata, Naoki

    2015-12-01

    Pin1 is a peptidyl prolyl isomerase that specifically catalyzes cis-trans isomerization of phosphorylated Thr/Ser-Pro peptide bonds in substrate proteins and peptides. Pin1 is involved in many important cellular processes, including cancer progression, so it is a potential target of cancer therapy. We designed and synthesized a novel series of Pin1 inhibitors based on a glutamic acid or aspartic acid scaffold bearing an aromatic moiety to provide a hydrophobic surface and a cyclic aliphatic amine moiety with affinity for the proline-binding site of Pin1. Glutamic acid derivatives bearing cycloalkylamino and phenylthiazole groups showed potent Pin1-inhibitory activity comparable with that of known inhibitor VER-1. The results indicate that steric interaction of the cyclic alkyl amine moiety with binding site residues plays a key role in enhancing Pin1-inhibitory activity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Supramolecular Recognition Allows Remote, Site-Selective C-H Oxidation of Methylenic Sites in Linear Amines.

    Science.gov (United States)

    Olivo, Giorgio; Farinelli, Giulio; Barbieri, Alessia; Lanzalunga, Osvaldo; Di Stefano, Stefano; Costas, Miquel

    2017-12-18

    Site-selective C-H functionalization of aliphatic alkyl chains is a longstanding challenge in oxidation catalysis, given the comparable relative reactivity of the different methylenes. A supramolecular, bioinspired approach is described to address this challenge. A Mn complex able to catalyze C(sp 3 )-H hydroxylation with H 2 O 2 is equipped with 18-benzocrown-6 ether receptors that bind ammonium substrates via hydrogen bonding. Reversible pre-association of protonated primary aliphatic amines with the crown ether selectively exposes remote positions (C8 and C9) to the oxidizing unit, resulting in a site-selective oxidation. Remarkably, such control of selectivity retains its efficiency for a whole series of linear amines, overriding the intrinsic reactivity of C-H bonds, no matter the chain length. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Reactivity of polyester aliphatic amine surfactants as corrosion inhibitors for carbon steel in formation water (deep well water)

    International Nuclear Information System (INIS)

    Alsabagh, A.M.; Migahed, M.A.; Awad, Hayam S.

    2006-01-01

    Effect of different concentrations, 40-200 ppm, of various polyester aliphatic amine surfactants on inhibition of the corrosion of carbon steel in the formation water (deep well water) was investigated. These surfactants exhibit different levels of inhibition particularly at high concentration (200 ppm). Inhibition efficiencies in the range 86-96% were determined by weight loss method. Comparable results were obtained from electrochemical measurements using Tafel extrapolation and polarisation resistance methods. It was shown that all the investigated surfactants act primarily as anodic inhibitors; however, they also affect the rate and mechanism of the cathodic reaction. These compounds function via adsorption on reactive sites on the corroding surface reducing the corrosion rate of the metal. It was revealed that the adsorption of these surfactants obey Langmuir adsorption isotherm. The inhibition effectiveness increases with the length of the aliphatic hydrocarbon chain, being a maximum in the presence of surfactant IV (∼96% efficiency). The corrosion inhibition feature of this compound is attributed to the presence of a long hydrocarbon chain that ensures large surface coverage as well as the presence of multiple active centers for adsorption. Scanning electron microscopy, SEM, has been applied to identify the surface morphology of carbon steel alloy in the absence and presence of the inhibitor molecules

  15. Reactivity of polyester aliphatic amine surfactants as corrosion inhibitors for carbon steel in formation water (deep well water)

    Energy Technology Data Exchange (ETDEWEB)

    Alsabagh, A.M. [Department of Petroleum Applications, Egyptian Petroleum Research Institute (EPRI), Ahmed El-Zomor Street 1, Nasr City, Cairo 11727 (Egypt); Migahed, M.A. [Department of Petroleum Applications, Egyptian Petroleum Research Institute (EPRI), Ahmed El-Zomor Street 1, Nasr City, Cairo 11727 (Egypt)]. E-mail: mohamedatiyya707@hotmail.com; Awad, Hayam S. [Chemistry Department, Faculty of Girls for Science, Art and Education, Ain Shams University, Asmaa Fahmi Street, Helliopolis, Cairo (Egypt)

    2006-04-15

    Effect of different concentrations, 40-200 ppm, of various polyester aliphatic amine surfactants on inhibition of the corrosion of carbon steel in the formation water (deep well water) was investigated. These surfactants exhibit different levels of inhibition particularly at high concentration (200 ppm). Inhibition efficiencies in the range 86-96% were determined by weight loss method. Comparable results were obtained from electrochemical measurements using Tafel extrapolation and polarisation resistance methods. It was shown that all the investigated surfactants act primarily as anodic inhibitors; however, they also affect the rate and mechanism of the cathodic reaction. These compounds function via adsorption on reactive sites on the corroding surface reducing the corrosion rate of the metal. It was revealed that the adsorption of these surfactants obey Langmuir adsorption isotherm. The inhibition effectiveness increases with the length of the aliphatic hydrocarbon chain, being a maximum in the presence of surfactant IV ({approx}96% efficiency). The corrosion inhibition feature of this compound is attributed to the presence of a long hydrocarbon chain that ensures large surface coverage as well as the presence of multiple active centers for adsorption. Scanning electron microscopy, SEM, has been applied to identify the surface morphology of carbon steel alloy in the absence and presence of the inhibitor molecules.

  16. Astramol polypropyleneimine dendrimers as Norrish Type II amine synergists

    NARCIS (Netherlands)

    Jansen, J.F.G.A.; Dias, A.A.; Hartwig, H.; Janssen, R.A.J.

    2000-01-01

    UV-curable coatings for various applications . In most of these applications they serve a dual role ie as initiator and as oxygen scavenger. Dimethylethanolamine is one of the more frequently employed aliphatic amines. However, this amine is a highly volatile . AstramolTM polypropyleneimine

  17. Extraction of some acids using aliphatic amines; Extraction de quelques acides par des amines aliphatiques

    Energy Technology Data Exchange (ETDEWEB)

    Matutano, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-06-01

    Hydrochloric, nitric, sulphuric, perchloric, phosphoric, acetic and formic acids in aqueous solution (0.05 to 10 M) are extracted by amberlite LA2 and trilaurylamine in solution, 5 per cent by volume, in kerosene and xylene respectively. The extraction process consists of: neutralization of the amine salt; a 'molecular extraction', i.e. an extraction using an excess of acid with respect to the stoichiometry of the amine salt. According to the behaviour of the acid during the extraction, three groups may be distinguished: completely dissociated acids, carboxylic acids, phosphoric acid. This classification is also valid for the extraction of the water which occurs simultaneously with that of the acid. An extraction mechanism is put forward for formic acid and the formation constant of its amine salt is calculated. (author) [French] Les acides chlorhydrique, nitrique, sulfurique, perchlorique, phosphorique, acetique et formique, en solution aqueuse - 0,05 a 10 M - sont extraits par l'amberlite LA2 et la trilaurylamine en solution, a 5 pour cent en volume, dans le kerosene et le xylene respectivement. L'extraction comprend: une neutralisation de l'amine par l'acide avec formation d'un sel d'amine; une 'extraction moleculaire', c'est-a-dire une extraction d'acide en exces par rapport a la stoechiometrie du sel d'amine. Suivant le comportement des acides au cours de l'extraction nous distinguons trois groupes: acides entierement dissocies, acides carboxyliques, acide phosphorique. Cette classification est egalement valable pour l'extraction de l'eau qui est simultanee a celle de l'acide. Un mecanisme d'extraction pour l'acide formique est propose et nous calculons la constante de formation de son sel d'amine. (auteur)

  18. THE EFFECT OF SULPHURIC ACID CONCENTRATION ON SOLVENT EXTRACTION OF ReO4 - BY THE LONG-CHAIN ALIPHATIC TERTIARY AMINES AND ALCOHOLS

    Directory of Open Access Journals (Sweden)

    Aleksander G. Kasikov

    2010-06-01

    Full Text Available The effect of sulphuric acid concentration on solvent extraction of ReO4- by the long-chain aliphatic tertiary amines and alcohols in a wide range of H2SO4 concentrations in initial solutions is discussed. It has been established that the influence of the sulphuric acid concentration on rhenium solvent extraction is largely due to the extraction process mechanism. In the case of the anion-exchange mechanism, ReO4- is best extracted from weakly acidic solutions, whereas when the hydrate-solvate mechanism takes place – from solutions containing 4-7 mole/l H2SO4.

  19. Inhibition of Tetrahymena pyriformis growth by Aliphatic Alcohols ...

    African Journals Online (AJOL)

    A Quantitative Structure- Activity Relationship (QSAR) study was undertaken to evaluate the relative toxicity of a mixed series of 21 (linear and branched-chain) alcohols and 9 normal aliphatic amines in term of the 50% inhibitory growth concentration (IGC50) of Tetrahymena pyriformis. The applied simple linear regression ...

  20. Nucleophilic addition of amines to the activated ethylene bond in non-aqueous media

    International Nuclear Information System (INIS)

    Perepichka, Igor F.; Popov, Anatolii F.

    1995-01-01

    The kinetics of addition of a number of primary and secondary aliphatic amines to trans-(2-furyl) nitro ethylene (1) has been studied in solvents of various polarities (from acetonitrile, ε 37.5, to heptane, ε 1.89). It has been shown that the reaction is catalysed both by the amine reagent and by tertiary amines. On the basis of analyzing the observed kinetic regularities a stepwise reaction mechanism has been proposed which involves formation of zwitterionic intermediate (3) at the first equilibrium step (k 1 , K 1 ) which is then converted into the reaction product by means of proton transfer in parallel routes, the non-catalytic one (k 2 ) and that catalysed by the initial (K 3 ) or tertiary (K 4 ) amine. The observed high values of the deuterium isotope effects in the reaction (K H /K D ∼ 2.3 - 8.9) confirm that proton transfer occurs in the rate-limiting step of the reaction (primary kinetic isotope effect). The third order by amine kinetic route is observed in low polar media which is due to participation of amine dimers (R 2 NH HNR 2 ) in the reaction. The observed kinetic regularities are compared with those for the nucleophilic aromatic substitution reactions in low-polar media, and the conclusion has been made that the reaction route of the third order by amine proceeds as reversible nucleophilic attack by amine dimer and following base-catalysed transformation of the intermediate into the product. (author)

  1. Chemical modification of carbon powders with aminophenyl and aryl-aliphatic amine groups by reduction of in situ generated diazonium cations: Applicability of the grafted powder towards CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Aurelie Grondein; Daniel Belanger [Universite du Quebec a Montreal, Montreal, PQ (Canada). Departement de Chimie

    2011-08-15

    Aminophenyl, p-aminobenzyl and p-aminoethylphenyl groups were grafted at the surface of carbon Vulcan XC72R by spontaneous reduction of the in situ generated diazonium cations from the corresponding amine. X-ray photoelectron spectroscopy and elemental analysis confirmed an amine loading of about 1 mmol/g. The grafting of amine functionalities leads to a decrease of specific surface area from 223 to about 110 m{sup 2}/g with a drastic loss of microporosity. Acid-base properties of the surface are also affected by the modification. Aminophenyl grafted groups make the surface more acidic while aryl-aliphatic amines groups tends to render it more basic. The grafted layer shows in each case a good thermal stability up to 250{sup o}C. The affinity of the modified powder towards CO{sub 2} and N{sub 2} has been evaluated by thermal swing adsorption. The maximum adsorption capacity of CO{sub 2} of modified carbons is lower than the unmodified carbon but the presence of the amine functionalities involves a better selectivity of the material towards CO{sub 2} adsorption in comparison of N{sub 2} adsorption. 53 refs., 9 figs., 3 tabs.

  2. "Nanorust"-catalyzed benign oxidation of amines for selective synthesis of nitriles.

    Science.gov (United States)

    Jagadeesh, Rajenahally V; Junge, Henrik; Beller, Matthias

    2015-01-01

    Organic nitriles constitute key precursors and central intermediates in organic synthesis. In addition, nitriles represent a versatile motif found in numerous medicinally and biologically important compounds. Generally, these nitriles are synthesized by traditional cyanation procedures using toxic cyanides. Herein, we report the selective and environmentally benign oxidative conversion of primary amines for the synthesis of structurally diverse aromatic, aliphatic and heterocyclic nitriles using a reusable "nanorust" (nanoscale Fe2 O3 )-based catalysts applying molecular oxygen. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Continuous-flow oxidative cyanation of primary and secondary amines using singlet oxygen.

    Science.gov (United States)

    Ushakov, Dmitry B; Gilmore, Kerry; Kopetzki, Daniel; McQuade, D Tyler; Seeberger, Peter H

    2014-01-07

    Primary and secondary amines can be rapidly and quantitatively oxidized to the corresponding imines by singlet oxygen. This reactive form of oxygen was produced using a variable-temperature continuous-flow LED-photoreactor with a catalytic amount of tetraphenylporphyrin as the sensitizer. α-Aminonitriles were obtained in good to excellent yields when trimethylsilyl cyanide served as an in situ imine trap. At 25°C, primary amines were found to undergo oxidative coupling prior to cyanide addition and yielded secondary α-aminonitriles. Primary α-aminonitriles were synthesized from the corresponding primary amines for the first time, by an oxidative Strecker reaction at -50 °C. This atom-economic and protecting-group-free pathway provides a route to racemic amino acids, which was exemplified by the synthesis of tert-leucine hydrochloride from neopentylamine. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Metal and base free synthesis of primary amines via ipso amination of organoboronic acids mediated by [bis(trifluoroacetoxy)iodo]benzene (PIFA).

    Science.gov (United States)

    Chatterjee, Nachiketa; Goswami, Avijit

    2015-08-07

    A metal and base free synthesis of primary amines has been developed at ambient temperature through ipso amination of diversely functionalized organoboronic acids, employing a combination of [bis(trifluoroacetoxy)iodo]benzene (PIFA)-N-bromosuccinimide (NBS) and methoxyamine hydrochloride as the aminating reagent. The amines were primarily obtained as their trifluoroacetate salts which on subsequent aqueous alkaline work up provided the corresponding free amines. The combination of PIFA-NBS is found to be the mildest choice compared to the commonly used strong bases (e.g. n-BuLi, Cs2CO3) for activating the aminating agent. The reaction is expected to proceed via activation of the aminating reagent followed by B-N 1,2-aryl migration.

  5. Efficient and selective N-alkylation of amines with alcohols catalysed by manganese pincer complexes

    Science.gov (United States)

    Elangovan, Saravanakumar; Neumann, Jacob; Sortais, Jean-Baptiste; Junge, Kathrin; Darcel, Christophe; Beller, Matthias

    2016-01-01

    Borrowing hydrogen (or hydrogen autotransfer) reactions represent straightforward and sustainable C–N bond-forming processes. In general, precious metal-based catalysts are employed for this effective transformation. In recent years, the use of earth abundant and cheap non-noble metal catalysts for this process attracted considerable attention in the scientific community. Here we show that the selective N-alkylation of amines with alcohols can be catalysed by defined PNP manganese pincer complexes. A variety of substituted anilines are monoalkylated with different (hetero)aromatic and aliphatic alcohols even in the presence of other sensitive reducible functional groups. As a special highlight, we report the chemoselective monomethylation of primary amines using methanol under mild conditions. PMID:27708259

  6. Sequential metabolism of secondary alkyl amines to metabolic-intermediate complexes: opposing roles for the secondary hydroxylamine and primary amine metabolites of desipramine, (s)-fluoxetine, and N-desmethyldiltiazem.

    Science.gov (United States)

    Hanson, Kelsey L; VandenBrink, Brooke M; Babu, Kantipudi N; Allen, Kyle E; Nelson, Wendel L; Kunze, Kent L

    2010-06-01

    Three secondary amines desipramine (DES), (S)-fluoxetine [(S)-FLX], and N-desmethyldiltiazem (MA) undergo N-hydroxylation to the corresponding secondary hydroxylamines [N-hydroxydesipramine, (S)-N-hydroxyfluoxetine, and N-hydroxy-N-desmethyldiltiazem] by cytochromes P450 2C11, 2C19, and 3A4, respectively. The expected primary amine products, N-desmethyldesipramine, (S)-norfluoxetine, and N,N-didesmethyldiltiazem, are also observed. The formation of metabolic-intermediate (MI) complexes from these substrates and metabolites was examined. In each example, the initial rates of MI complex accumulation followed the order secondary hydroxylamine > secondary amine > primary amine, suggesting that the primary amine metabolites do not contribute to formation of MI complexes from these secondary amines. Furthermore, the primary amine metabolites, which accumulate in incubations of the secondary amines, inhibit MI complex formation. Mass balance studies provided estimates of the product ratios of N-dealkylation to N-hydroxylation. The ratios were 2.9 (DES-CYP2C11), 3.6 [(S)-FLX-CYP2C19], and 0.8 (MA-CYP3A4), indicating that secondary hydroxylamines are significant metabolites of the P450-mediated metabolism of secondary alkyl amines. Parallel studies with N-methyl-d(3)-desipramine and CYP2C11 demonstrated significant isotopically sensitive switching from N-demethylation to N-hydroxylation. These findings demonstrate that the major pathway to MI complex formation from these secondary amines arises from N-hydroxylation rather than N-dealkylation and that the primary amines are significant competitive inhibitors of MI complex formation.

  7. Catalyst- and Reagent-free Electrochemical Azole C-H Amination.

    Science.gov (United States)

    Qiu, Youai; Struwe, Julia; Meyer, Tjark H; Oliveira, Joao Carlos Agostinho Carlos Agostinho; Ackermann, Lutz

    2018-06-14

    Catalyst-, and chemical oxidant-free electrochemical azole C-H aminations were accomplished via cross-dehydrogenative C-H/N-H functionalization. The catalyst-free electrochemical C-H amination proved feasible on azoles with high levels of efficacy and selectivity, avoiding the use of stoichiometric oxidants under ambient conditions. Likewise, the C(sp3)-H nitrogenation proved viable under otherwise identical conditions. The dehydrogenative C-H amination featured ample scope, including cyclic and acyclic aliphatic amines as well as anilines, and employed sustainable electricity as the sole oxidant. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Mechanism of the N-Hydroxylation of Primary and Secondary Amines by Cytochrome P450

    DEFF Research Database (Denmark)

    Seger, Signe T.; Rydberg, Patrik; Olsen, Lars

    2015-01-01

    Cytochrome P450 enzymes (CYPs) metabolize alkyl- and arylamines, generating several different products. For the primary and secondary amines, some of these reactions result in hydroxylated amines, which may be toxic. Thus, when designing new drugs containing amine groups, it is important to be able...... to predict if a given compound will be a substrate for CYPs, in order to avoid toxic metabolites, and hence to understand the mechanism that is utilized by CYPs. Two possible mechanisms, for the N-hydroxylation of primary and secondary amines mediated by CYPs, are studied by density functional theory (DFT...

  9. Production of Primary Amines by Reductive Amination of Biomass-Derived Aldehydes/Ketones.

    Science.gov (United States)

    Liang, Guanfeng; Wang, Aiqin; Li, Lin; Xu, Gang; Yan, Ning; Zhang, Tao

    2017-03-06

    Transformation of biomass into valuable nitrogen-containing compounds is highly desired, yet limited success has been achieved. Here we report an efficient catalyst system, partially reduced Ru/ZrO 2 , which could catalyze the reductive amination of a variety of biomass-derived aldehydes/ketones in aqueous ammonia. With this approach, a spectrum of renewable primary amines was produced in good to excellent yields. Moreover, we have demonstrated a two-step approach for production of ethanolamine, a large-market nitrogen-containing chemical, from lignocellulose in an overall yield of 10 %. Extensive characterizations showed that Ru/ZrO 2 -containing multivalence Ru association species worked as a bifunctional catalyst, with RuO 2 as acidic promoter to facilitate the activation of carbonyl groups and Ru as active sites for the subsequent imine hydrogenation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Determination of aliphatic amines in mineral flotation liquors and reagents by high-performance liquid chromatography after derivatization with 4-chloro-7-nitrobenzofurazan.

    Science.gov (United States)

    Hao, F; Lwin, T; Bruckard, W J; Woodcock, J T

    2004-11-05

    The method described here fulfils the need for a suitable analytical method to determine the concentrations of single and mixed aliphatic amines in the range from hexylamine (C6) to octadecylamine (C18) in flotation test solutions and in commercial flotation collectors. Amines do not have a UV-vis spectrum in aqueous solution but by reacting an amine-containing solution with 4-chloro-7-nitrobenzofurazan solution (chloro-NBD), derivatized products (amino-NBDs) are formed which have absorbance maxima at 470nm. Excess chloro-NBD and the amino-NBDs can be separated from each other by high-performance liquid chromatography (HPLC) and their concentrations measured with a UV-vis detector. Important variables in the derivatization stage are pH, temperature, chloro-NBD concentration, and reaction time, all of which interact with each other. A three-stage statistical procedure was used to determine the optimum conditions. In each stage, an 8-test design was used in which a high and low limit was set for each variable, and the chromatogram peak area of the derived amino-NBD was measured. The optimum derivatization conditions established were pH 8.9, chloro-NBD concentration 0.20% (w/v), temperature 70 degrees C, and reaction time 60 min. Optimum elution conditions for chromatography were an eluent containing 80% (v/v) acetonitrile in aqueous solution containing 40mM acetic acid at pH 4.5. With a flow rate of 2.0 ml/min, dodecylamine had a retention time of about 3 min, whereas octadecylamine had a retention time of 44 min. Straight-line calibration curves were obtained up to at least 200 ppm of amine in solution. The lower limit of detection was estimated to be 0.05 microM (10ppb) with a signal to noise ratio of 3. No interfering substances were found. The method was successfully applied to the analysis of solutions from an actual flotation test and to a solid commercial amine.

  11. Vapor pressure and enthalpy of vaporization of aliphatic propanediamines

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Chernyak, Yury

    2012-01-01

    Highlights: ► We measured vapor pressure of four aliphatic 1,3-diamines. ► Vaporization enthalpies at 298 K were derived. ► We examined consistency of new and available data in the literature. ► A group-contribution method for prediction was developed. - Abstract: Vapor pressures of four aliphatic propanediamines including N-methyl-1,3-propanediamine (MPDA), N,N-dimethyl-1,3-propanediamine (DMPDA), N,N-diethyl-1,3-propanediamine (DEPDA) and N,N,N′,N′-tetramethyl-1,3-propanediamine (4MPDA) were measured using the transpiration method. The vapor pressures developed in this work and reported in the literature were used to derive molar enthalpy of vaporization values at the reference temperature 298.15 K. An internal consistency check of the enthalpy of vaporization was performed for the aliphatic propanediamines studied in this work. A group-contribution method was developed for the validation and prediction vaporization enthalpies of amines and diamines.

  12. Debromination of endo-(+)-3-bromocamphor with primary amines

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, Svetlana; Markovic, Violeta; Joksovic, Milan D.; Joksovic, Ljubinka, E-mail: ljubinka@kg.ac.rs [Department of Chemistry, Faculty of Science, University of Kragujevac (Serbia); Todorovic, Nina [Institute for Chemistry, Technology and Metallurgy, Belgrade (Serbia); Divjakovic, Vladimir [Department of Physics, University of Novi Sad (Serbia); Trifunovic, Snezana [Faculty of Chemistry, University of Belgrade, Belgrade, (Serbia)

    2013-07-15

    Reductive debromination of endo-(+)-3-bromocamphor with different primary amines followed by imine formation was investigated. This reaction requires simple experimental procedure without any organic solvent, metal or conventional reducing agent. A strong influence of amine polarity on the efficacy of debromination process was observed, and ethanolamine and ethylene diamine having sufficiently high boiling points can debrominate 3-bromocamphor giving corresponding camphanimines in good isolated yields. The mechanisms of debromination of 3-bromocamphor with ethanolamine and n-hexylamine were investigated at the B3LYP/6-311+G(d,p) level of theory. The radical mechanism was revealed, and it was shown that the reaction with more polar ethanolamine is energetically more favorable. (author)

  13. The distribution and adsorption behavior of aliphatic amines in marine and lacustrine sediments

    Science.gov (United States)

    Wang, Xu-chen; Lee, Cindy

    1990-10-01

    The methylated amines—monomethyl-, dimethyl-, and trimethyl amine (MMA, DMA, TMA)—are commonly found in aquatic environments, apparently as a result of decomposition processes. Adsorption of these amines to clay minerals and organic matter significantly influences their distribution in sediments. Laboratory measurements using 14C-radiolabelled amines and application of a linear partitioning model resulted in calculated adsorption coefficients of 2.4-4.7 (MMA), 3.3 (DMA), and 3.3-4.1 (TMA). Further studies showed that adsorption of amines is influenced by salinity of the porewaters, and clay mineral and organic matter content of the sediment solid phase. Concentrations of monomethyl- and dimethyl amine were measured in the porewaters and the solid phase of sediment samples collected from Flax Pond and Lake Ronkonkoma (NY), Long Island Sound, and the coastal Peru upwelling area. These two amines were present in all sediments investigated. A clear seasonal increase in the solid-phase concentration of MMA and DMA in Flax Pond sediments was likely related to the annual senescence of salt marsh grasses, either directly as a source of these compounds or indirectly by providing additional exchange capacity to the sediments. The distribution of amines in the solid and dissolved phases observed in all sediments investigated suggests that the distribution of these compounds results from a balance among production, decomposition, and adsorption processes.

  14. Yb(OTf){sub 3}-catalyzed one-pot three component synthesis for tertiary amines

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bum Seok; Kim, Ji Hye; Nam, Tae Kyu; Jang, Doo Ok [Dept. of Chemistry, Yonsei University, Wonju (Korea, Republic of)

    2015-07-15

    Tertiary amine functionality is found in many natural bioactive products such as alkaloids, amino acids, nucleic acids, pharmaceuticals, and agrochemicals. Tertiary amines have also been used as building blocks for nitrogen-containing organic compounds and synthetic polymers. A one-pot method for direct reductive amination of aldehydes has been developed to synthesize tertiary amines using HMDS as a nitrogen source in the presence of Yb(OTf ){sub 3}. With a stoichiometric amount of HMDS, the reaction afforded the desired tertiary amines without competitive reduction of the parent carbonyl compounds. This reaction offers a convenient and efficient protocol for synthesizing aromatic and aliphatic tertiary amines under mild reaction conditions.

  15. Visible Light Induced Green Transformation of Primary Amines to Imines Using a Silicate Supported Anatase Photocatalyst

    Directory of Open Access Journals (Sweden)

    Sifani Zavahir

    2015-01-01

    Full Text Available Catalytic oxidation of amine to imine is of intense present interest since imines are important intermediates for the synthesis of fine chemicals, pharmaceuticals, and agricultural chemicals. However, considerable efforts have been made to develop efficient methods for the oxidation of secondary amines to imines, while little attention has until recently been given to the oxidation of primary amines, presumably owing to the high reactivity of generated imines of primary amines that are easily dehydrogenated to nitriles. Herein, we report the oxidative coupling of a series of primary benzylic amines into corresponding imines with dioxygen as the benign oxidant over composite catalysts of TiO2 (anatase-silicate under visible light irradiation of λ > 460 nm. Visible light response of this system is believed to be as a result of high population of defects and contacts between silicate and anatase crystals in the composite and the strong interaction between benzylic amine and the catalyst. It is found that tuning the intensity and wavelength of the light irradiation and the reaction temperature can remarkably enhance the reaction activity. Water can also act as a green medium for the reaction with an excellent selectivity. This report contributes to the use of readily synthesized, environmentally benign, TiO2 based composite photocatalyst and solar energy to realize the transformation of primary amines to imine compounds.

  16. Visible light induced green transformation of primary amines to imines using a silicate supported anatase photocatalyst.

    Science.gov (United States)

    Zavahir, Sifani; Zhu, Huaiyong

    2015-01-26

    Catalytic oxidation of amine to imine is of intense present interest since imines are important intermediates for the synthesis of fine chemicals, pharmaceuticals, and agricultural chemicals. However, considerable efforts have been made to develop efficient methods for the oxidation of secondary amines to imines, while little attention has until recently been given to the oxidation of primary amines, presumably owing to the high reactivity of generated imines of primary amines that are easily dehydrogenated to nitriles. Herein, we report the oxidative coupling of a series of primary benzylic amines into corresponding imines with dioxygen as the benign oxidant over composite catalysts of TiO2 (anatase)-silicate under visible light irradiation of λ > 460 nm. Visible light response of this system is believed to be as a result of high population of defects and contacts between silicate and anatase crystals in the composite and the strong interaction between benzylic amine and the catalyst. It is found that tuning the intensity and wavelength of the light irradiation and the reaction temperature can remarkably enhance the reaction activity. Water can also act as a green medium for the reaction with an excellent selectivity. This report contributes to the use of readily synthesized, environmentally benign, TiO2 based composite photocatalyst and solar energy to realize the transformation of primary amines to imine compounds.

  17. Carbon Dioxide-Mediated C(sp3)-H Arylation of Amine Substrates.

    Science.gov (United States)

    Kapoor, Mohit; Liu, Daniel; Young, Michael C

    2018-05-25

    Elaborating amines via C-H functionalization has been an important area of research over the past decade but has generally relied on an added directing group or sterically hindered amine approach. Since free-amine-directed C(sp 3 )-H activation is still primarily limited to cyclization reactions and to improve the sustainability and reaction scope of amine-based C-H activation, we present a strategy using CO 2 in the form of dry ice that facilitates intermolecular C-H arylation. This methodology has been used to enable an operationally simple procedure whereby 1° and 2° aliphatic amines can be arylated selectively at their γ-C-H positions. In addition to potentially serving as a directing group, CO 2 has also been demonstrated to curtail the oxidation of sensitive amine substrates.

  18. Determination of rate constants of N-alkylation of primary amines by 1H NMR spectroscopy.

    Science.gov (United States)

    Li, Chenghong

    2013-09-05

    Macromolecules containing N-diazeniumdiolates of secondary amines are proposed scaffolds for controlled nitrogen oxide (NO) release medical applications. Preparation of these compounds often involves converting primary amine groups to secondary amine groups through N-alkylation. However, N-alkylation results in not only secondary amines but tertiary amines as well. Only N-diazeniumdiolates of secondary amines are suitable for controlled NO release; therefore, the yield of secondary amines is crucial to the total NO load of the carrier. In this paper, (1)H NMR spectroscopy was used to estimate the rate constants for formation of secondary amine (k1) and tertiary amine (k2) for alkylation reagents such as propylene oxide (PO), methyl acrylate (MA), and acrylonitrile (ACN). At room temperature, the ratio of k2/k1 for the three reactions was found to be around 0.50, 0.026, and 0.0072.

  19. Photometric Characterization of the Reductive Amination Scope of the Imine Reductases from Streptomyces tsukubaensis and Streptomyces ipomoeae.

    Science.gov (United States)

    Matzel, Philipp; Krautschick, Lukas; Höhne, Matthias

    2017-10-18

    Imine reductases (IREDs) have emerged as promising enzymes for the asymmetric synthesis of secondary and tertiary amines starting from carbonyl substrates. Screening the substrate specificity of the reductive amination reaction is usually performed by time-consuming GC analytics. We found two highly active IREDs in our enzyme collection, IR-20 from Streptomyces tsukubaensis and IR-Sip from Streptomyces ipomoeae, that allowed a comprehensive substrate screening with a photometric NADPH assay. We screened 39 carbonyl substrates combined with 17 amines as nucleophiles. Activity data from 663 combinations provided a clear picture about substrate specificity and capabilities in the reductive amination of these enzymes. Besides aliphatic aldehydes, the IREDs accepted various cyclic (C 4 -C 8 ) and acyclic ketones, preferentially with methylamine. IR-Sip also accepted a range of primary and secondary amines as nucleophiles. In biocatalytic reactions, IR-Sip converted (R)-3-methylcyclohexanone with dimethylamine or pyrrolidine with high diastereoselectivity (>94-96 % de). The nucleophile acceptor spectrum depended on the carbonyl substrate employed. The conversion of well-accepted substrates could also be detected if crude lysates were employed as the enzyme source. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthesis of novel naphthoquinone aliphatic amides and esters and their anticancer evaluation.

    Science.gov (United States)

    Kongkathip, Boonsong; Akkarasamiyo, Sunisa; Hasitapan, Komkrit; Sittikul, Pichamon; Boonyalai, Nonlawat; Kongkathip, Ngampong

    2013-02-01

    Fourteen new naphthoquinone aliphatic amides and seventeen naphthoquinone aliphatic esters were synthesized in nine to ten steps from 1-hydroxy-2-naphthoic acid with 9-25% overall yield for the amides, and 16-21% overall yield for the esters. The key step of the amide synthesis is a coupling reaction between amine and various aliphatic acids using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as a coupling agent while for the ester synthesis, DCC/DMAP or CDI was used as the coupling reagent between aliphatic acids and naphthoquinone alcohol. Both naphthoquinone amides and esters were evaluated for their anticancer activity against KB cells. It was found that naphthoquinone aliphatic amides showed stronger anticancer activity than those of the esters when the chains are longer than 7-carbon atoms. The optimum chain of amides is expected to be 16-carbon atoms. In addition, naphthoquinone aliphatic esters with α-methyl on the ester moiety possessed much stronger anticancer activity than the straight chains. Decatenation assay revealed that naphthoquinone amide with 16-carbon atoms chain at 15 μM and 20 μM can completely inhibit hTopoIIα activity while at 10 μM the enzyme activity was moderately inhibited. Molecular docking result also showed the same trend as the cytotoxicity and decatenation assay. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  1. Two-dimensional inorganic–organic hybrid semiconductors composed of double-layered ZnS and monoamines with aromatic and heterocyclic aliphatic rings: Syntheses, structures, and properties

    International Nuclear Information System (INIS)

    Wang, Sujing; Li, Jing

    2015-01-01

    As an addition to the II–VI based inorganic–organic hybrid semiconductor family, five new two-dimensional (2D) double-layered structures have been synthesized employing monoamines with different aromatic or heterocyclic aliphatic rings. Zn 2 S 2 (bza) (1), Zn 2 S 2 (mbza) (2), Zn 2 S 2 (fbza) (3), Zn 2 S 2 (pca) (4), and Zn 2 S 2 (thfa) (5) (bza=benzylamine, mbza=4-methoxybenzylamine, fbza=4-flurobenzylamine, pca=3-picolylamine, and thfa=tetrahydrofurfurylamine) are prepared by solvothermal reactions and characterized by different analytical methods, including powder X-ray diffraction, optical diffuse reflection, thermogravimetric analysis and photoluminescence spectroscopy. The powder X-ray diffraction patterns show that all five compounds adopt 2D double-layered structures. Optical diffuse reflectance spectra of these compounds suggest that they have notably lower band gaps than those of the similar compounds composed of aliphatic alkyl amines. Their photoluminescence properties and thermal stability are also analyzed. - Graphical abstract: Five new members of two-dimensional double-layered 2D-Zn 2 S 2 (L) (L=Ligand) structures employing monoamines with different aromatic or heterocyclic aliphatic rings have been designed, synthesized, and characterized. - Highlights: • A new sub-family of II-VI based hybrid semiconductors are designed, synthesized, and structurally characterized using amines with aromatic or aliphatic cyclic rings. • These compounds have notably lower band gaps than those made of aliphatic alkyl amines, greatly broadening the range of band gaps of this material family. • They emit strongly with systematically tunable emission intensity and energy

  2. Selective Grafting of Primary Amines onto Carbon Nanotubes via Free-Radical Treatment in Microwave Plasma Post-Discharge

    Directory of Open Access Journals (Sweden)

    Philippe Dubois

    2012-01-01

    Full Text Available A novel strategy to graft functional groups at the surface of carbon nanotubes (CNTs is discussed. Aiming at grafting nitrogen containing groups, and more specifically primary amine covalent functionalization, CNTs were exposed under atomic nitrogen flow arising from an Ar + N2 microwave plasma. The primary amine functions were identified and quantified through chemical derivatization with 4-(trifluoromethylbenzaldehyde and characterized through X-ray photoelectron spectroscopy. The increase of the selectivity in the primary amines grafting onto CNTs, up to 66.7% for treatment of CNT powder, was performed via the reduction of post-treatment oxygen contamination and the addition of hydrogen in the experimental set-up, more particularly in the plasma post-discharge chamber. The analyses of nitrogenated and primary amine functions grafting on the CNT surface suggest that atomic nitrogen (N• and reduced nitrogen species (NH• and NH2• react preferentially with defect sites of CNTs and, then, only atomic nitrogen continues to react on the CNT surface, creating defects.

  3. Mechanistic insights into the oxidative dehydrogenation of amines to nitriles in continuous flow

    DEFF Research Database (Denmark)

    Corker, Emily C.; Ruiz-Martínez, Javier; Riisager, Anders

    2015-01-01

    The oxidative dehydrogenation of various aliphatic amines to their corresponding nitrile compounds using RuO2/Al2O3 catalysts in air was successfully applied to a continuous flow reaction. Conversions of amines (up to >99%) and yields of nitriles (up to 77%) varied depending on reaction conditions...... and the amine utilised. The presence of water was found to be important for the activity and stability of the RuO2/Al2O3 catalyst. The Hammett relationship and in situ infrared spectroscopy were applied to divulge details about the catalytic mechanism of the oxidative dehydrogenation of amines over RuO2/Al2O3...

  4. Photochemical reactions of triplet benzophenone and anthraquinone molecules with amines in the gas phase

    International Nuclear Information System (INIS)

    Zalesskaya, G.A.; Sambor, E.G.; Belyi, N.N.

    2004-01-01

    The intermolecular photoinduced reactions between triplet ketone molecules and aliphatic amines and pyridine are studied by the quenching of delayed fluorescence of anthraquinone and benzophenone vapors by diethylamine, dibutylamine, cyclohexylamine, triethylamine, and pyridine. In the temperature range 423-573 K, the delayed fluorescence quenching rate constants k q are estimated from changes in the decay rate constant and the intensity of delayed fluorescence upon increasing pressure of bath gases. It is ascertained that, in the gas phase, the mixtures under study exhibit both a negative and a positive dependence of k q on temperature, which indicates that some photoinduced reactions do not have activation barriers. The rate constant k q is shown to increase with decreasing ionization potential of the electron donors. This points to the importance of interactions with charge transfer in the photoreaction of triplet ketone molecules with aliphatic amines and pyridine in the gas phase. The relationship between k q and the change in the free energy ΔG upon the photoinduced intermolecular electron transfer, which is the primary stage of the photochemical reaction, is studied. It is shown that the dependence k q (ΔG) for the donor-acceptor pairs under study is described well by the Marcus equation, in which the average vibrational energies of the donor and acceptor are taken into account for the estimate of ΔG

  5. Renewable glycolaldehyde isolation from pyrolysis oil-derived aqueous solution by reactive extraction with primary amines

    NARCIS (Netherlands)

    Vitasari, C.R.; Meindersma, G.W.; Haan, de A.B.

    2012-01-01

    Glycolaldehyde can be separated from a pyrolysis oil-derived aqueous phase by reactive extraction employing primary amines dissolved in organic diluents. This work investigates the occurrence of solid imine formation from glycolaldehyde and amines and the competitive reactions in the organic extract

  6. Nickel-Catalyzed Synthesis of Primary Aryl and Heteroaryl Amines via C–O Bond Cleavage

    KAUST Repository

    Yue, Huifeng

    2017-03-13

    A nickel-catalyzed protocol for the conversion of aryl and heteroaryl alcohol derivatives to primary and secondary aromatic amines via C(sp2)-O bond cleavage is described. The new amination protocol can be applied to a range of substrates bearing diverse functional groups and uses readily available benzophenone imines as an effective nitrogen source.

  7. Nickel-Catalyzed Synthesis of Primary Aryl and Heteroaryl Amines via C–O Bond Cleavage

    KAUST Repository

    Yue, Huifeng; Guo, Lin; Liu, Xiangqian; Rueping, Magnus

    2017-01-01

    A nickel-catalyzed protocol for the conversion of aryl and heteroaryl alcohol derivatives to primary and secondary aromatic amines via C(sp2)-O bond cleavage is described. The new amination protocol can be applied to a range of substrates bearing diverse functional groups and uses readily available benzophenone imines as an effective nitrogen source.

  8. Two-dimensional inorganic–organic hybrid semiconductors composed of double-layered ZnS and monoamines with aromatic and heterocyclic aliphatic rings: Syntheses, structures, and properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Sujing; Li, Jing, E-mail: jingli@rutgers.edu

    2015-04-15

    As an addition to the II–VI based inorganic–organic hybrid semiconductor family, five new two-dimensional (2D) double-layered structures have been synthesized employing monoamines with different aromatic or heterocyclic aliphatic rings. Zn{sub 2}S{sub 2}(bza) (1), Zn{sub 2}S{sub 2}(mbza) (2), Zn{sub 2}S{sub 2}(fbza) (3), Zn{sub 2}S{sub 2}(pca) (4), and Zn{sub 2}S{sub 2}(thfa) (5) (bza=benzylamine, mbza=4-methoxybenzylamine, fbza=4-flurobenzylamine, pca=3-picolylamine, and thfa=tetrahydrofurfurylamine) are prepared by solvothermal reactions and characterized by different analytical methods, including powder X-ray diffraction, optical diffuse reflection, thermogravimetric analysis and photoluminescence spectroscopy. The powder X-ray diffraction patterns show that all five compounds adopt 2D double-layered structures. Optical diffuse reflectance spectra of these compounds suggest that they have notably lower band gaps than those of the similar compounds composed of aliphatic alkyl amines. Their photoluminescence properties and thermal stability are also analyzed. - Graphical abstract: Five new members of two-dimensional double-layered 2D-Zn{sub 2}S{sub 2}(L) (L=Ligand) structures employing monoamines with different aromatic or heterocyclic aliphatic rings have been designed, synthesized, and characterized. - Highlights: • A new sub-family of II-VI based hybrid semiconductors are designed, synthesized, and structurally characterized using amines with aromatic or aliphatic cyclic rings. • These compounds have notably lower band gaps than those made of aliphatic alkyl amines, greatly broadening the range of band gaps of this material family. • They emit strongly with systematically tunable emission intensity and energy.

  9. Equilibrium and Transport Properties of Primary, Secondary and Tertiary Amines by Molecular Simulation

    International Nuclear Information System (INIS)

    Orozco, Gustavo A.; Nieto-Draghi, Carlos; Lachet, Veronique; Mackie, Allan D.

    2014-01-01

    Using molecular simulation techniques such as Monte Carlo (MC) and molecular dynamics (MD), we present several simulation results of thermodynamic and transport properties for primary, secondary and tertiary amines. These calculations are based on a recently proposed force field for amines that follows the Anisotropic United Atom approach (AUA). Different amine molecules have been studied, including n-Butylamine, di-n-Butylamine, tri-n-Butylamine and 1,4-Butanediamine for primary, secondary, tertiary and multi-functional amines respectively. For the transport properties, we have calculated the viscosity coefficients as a function of temperature using the isothermal-isobaric (NPT) ensemble. In the case of the pure components, we have investigated different thermodynamic properties using NVT Gibbs ensemble simulations such as liquid-vapor phase equilibrium diagrams, vaporization enthalpies, vapor pressures, normal boiling points, critical temperatures and critical densities. We have also calculated the excess enthalpies for water-n-Butylamine and n-heptane-n-Butylamine mixtures using Monte Carlo simulations in the NPT ensemble. In addition, we present the calculation of liquid-vapor surface tensions of n-Butylamine using a two-phase NVT simulation as well as the radial distribution functions. Finally, we have investigated the physical Henry constants of nitrous oxide (N 2 O) and nitrogen (N 2 ) in an aqueous solutions of n-Butylamine. In general, we found a good agreement between the available experimental information and our simulation results for all the studied properties, ratifying the predictive capability of the AUA force field for amines. (authors)

  10. Novel primary amine diazeniumdiolates-Chemical and biological characterization.

    Science.gov (United States)

    Puglisi, Melany P; Bradaric, Michael J; Pontikis, John; Cabai, Jonathan; Weyna, Theodore; Tednes, Patrick; Schretzman, Robert; Rickert, Karl; Cao, Zhao; Andrei, Daniela

    2018-05-02

    Hit, Lead & Candidate Discovery Diazeniumdiolates, also known as NONOates, are extensively used in biochemical, physiological, and pharmacological studies due to their ability to release nitric oxide (NO . ) and/or their congeneric nitroxyl (HNO). The purpose of this work was to synthesize a series of primary amine-based diazeniumdiolates as HNO/NO donors and to determine their efficacy as anticancer and antifungal agents in vivo. The seven compounds (3a-3g) were successfully synthesized and characterized, one of which had been previously reported in the literature (3g). Two compounds showed anti-proliferative effects against ovarian (ES2 and SKOV3) and AML monocyte-derived cancer cells (THP-1) when tested with standard MTT assays. Compounds 3a and 3g demonstrated reduced ovarian cancer cell proliferation when treated at doses from 0.033 to 1.0 mg/mL at the 24 hr time point. These compounds also exhibited moderate and selective antifungal activity against Fusarium oxysporum f.sp. lycopersici, one cause of opportunistic infections of immunocompromised patients, inhibiting the growth of the fungi at LD 50 at 10 mg/mL. A third compound (3e) did not exhibit similar activities, possibly due to the alkyl chain. Our results suggest that the primary amine diazeniumdiolates may offer a versatile platform for the development of HNO/NO donors for biomedical applications. © 2018 Wiley Periodicals, Inc.

  11. Bioconversion of Airborne Methylamine by Immobilized Recombinant Amine Oxidase from the Thermotolerant Yeast Hansenula polymorpha

    Directory of Open Access Journals (Sweden)

    Sasi Sigawi

    2014-01-01

    Full Text Available Aliphatic amines, including methylamine, are air-pollutants, due to their intensive use in industry and the natural degradation of proteins, amino acids, and other nitrogen-containing compounds in biological samples. It is necessary to develop systems for removal of methylamine from the air, since airborne methylamine has a negative effect on human health. The primary amine oxidase (primary amine : oxygen oxidoreductase (deaminating or amine oxidase, AMO; EC 1.4.3.21, a copper-containing enzyme from the thermotolerant yeast Hansenula polymorpha which was overexpressed in baker’s yeast Saccharomyces cerevisiae, was tested for its ability to oxidize airborne methylamine. A continuous fluidized bed bioreactor (CFBR was designed to enable bioconversion of airborne methylamine by AMO immobilized in calcium alginate (CA beads. The results demonstrated that the bioreactor with immobilized AMO eliminates nearly 97% of the airborne methylamine. However, the enzymatic activity of AMO causes formation of formaldehyde. A two-step bioconversion process was therefore proposed. In the first step, airborne methylamine was fed into a CFBR which contained immobilized AMO. In the second step, the gas flow was passed through another CFBR, with alcohol oxidase from the yeast H. polymorpha immobilized in CA, in order to decompose the formaldehyde formed in the first step. The proposed system provided almost total elimination of the airborne methylamine and the formaldehyde.

  12. Novel bioreducible poly(amido amine)s for highly efficient gene delivery

    NARCIS (Netherlands)

    Lin, C.; Zhong, Zhiyuan; Lok, Martin C.; Jiang, Xulin; Hennink, Wim E.; Feijen, Jan; Engbersen, Johannes F.J.

    2007-01-01

    A series of novel bioreducible poly(amido amine)s containing multiple disulfide linkages (SS-PAAs) were synthesized and evaluated as nonviral gene vectors. These linear SS-PAAs could be easily obtained by Michael-type polyaddition of various primary amines to the disulfide-containing cystamine

  13. Solvent-free functionalization of carbon nanotube buckypaper with amines

    International Nuclear Information System (INIS)

    Basiuk, Elena V.; Ramírez-Calera, Itzel J.; Meza-Laguna, Victor; Abarca-Morales, Edgar; Pérez-Rey, Luis A.; Re, Marilena; Prete, Paola; Lovergine, Nico

    2015-01-01

    Graphical abstract: - Abstract: We demonstrate the possibility of fast and efficient solvent-free functionalization of buckypaper (BP) mats prefabricated from oxidized multiwalled carbon nanotubes (MWCNTs-ox), by using three representative amines of different structure: one monofunctional aliphatic amine, octadecylamine (ODA), one monofunctional aromatic amine, 1-aminopyrene (AP), and one aromatic diamine, 1,5-diaminonaphthalene (DAN). The functionalization procedure, which relies on the formation of amide bonds with carboxylic groups of MWCNTs-ox, is performed at 150–180 °C under reduced pressure and takes about 4 h including auxiliary degassing. The amine-treated BP samples (BP-ODA, BP-AP and BP-DAN, respectively) were characterized by means of a variety of analytical techniques such as Fourier-transform infrared and Raman spectroscopy, thermogravimetric and differential thermal analysis, scanning and transmission electron microscopy, scanning helium ion microscopy, and atomic force microscopy. The highest amine content was found for BP-ODA, and the lowest one was observed for BP-DAN, with a possible contribution of non-covalently bonded amine molecules in all three cases. Despite of some differences in spectral and morphological characteristics for amine-functionalized BP samples, they have in common a dramatically increased stability in water as compared to pristine BP and, on the other hand, a relatively invariable electrical conductivity.

  14. Ionic liquids as silica deactivating agents in gas chromatography for direct analysis of primary amines in water

    NARCIS (Netherlands)

    Krzyzaniak, A.; Weggemans, W.M.A.; Schuur, B.; Haan, de A.B.

    2011-01-01

    Analysis of primary amines in aqueous samples remains a challenging analytical issue. The preferred approach by gas chromatography is hampered by interactions of free silanol groups with the highly reactive amine groups, resulting in inconsistent measurements. Here, we report a method for direct

  15. Ionic liquids as silica deactivating agents in gas chromatography for direct analysis or primary amines in water

    NARCIS (Netherlands)

    Krzyzaniak, A.; Weggemans, W.; Schuur, Boelo; de Haan, A.B.

    2011-01-01

    Analysis of primary amines in aqueous samples remains a challenging analytical issue. The preferred approach by gas chromatography is hampered by interactions of free silanol groups with the highly reactive amine groups, resulting in inconsistent measurements. Here, we report a method for direct

  16. From caffeine to fish waste: amine compounds present in food and drugs and their interactions with primary amine oxidase.

    LENUS (Irish Health Repository)

    Olivieri, Aldo

    2011-07-01

    Tissue bound primary amine oxidase (PrAO) and its circulating plasma-soluble form are involved, through their catalytic activity, in important cellular roles, including the adhesion of lymphocytes to endothelial cells during various inflammatory conditions, the regulation of cell growth and maturation, extracellular matrix deposition and maturation and glucose transport. PrAO catalyses the oxidative deamination of several xenobiotics and has been linked to vascular toxicity, due to the generation of cytotoxic aldehydes. In this study, a series of amines and aldehydes contained in food and drugs were tested via a high-throughput assay as potential substrates or inhibitors of bovine plasma PrAO. Although none of the compounds analyzed were found to be substrates for the enzyme, a series of molecules, including caffeine, the antidiabetics phenformin and tolbutamide and the antimicrobial pentamidine, were identified as PrAO inhibitors. Although the inhibition observed was in the millimolar and micromolar range, these data show that further work will be necessary to elucidate whether the interaction of ingested biogenic or xenobiotic amines with PrAO might adversely affect its biological roles.

  17. Redox self-sufficient whole cell biotransformation for amination of alcohols.

    Science.gov (United States)

    Klatte, Stephanie; Wendisch, Volker F

    2014-10-15

    Whole cell biotransformation is an upcoming tool to replace common chemical routes for functionalization and modification of desired molecules. In the approach presented here the production of various non-natural (di)amines was realized using the designed whole cell biocatalyst Escherichia coli W3110/pTrc99A-ald-adh-ta with plasmid-borne overexpression of genes for an l-alanine dehydrogenase, an alcohol dehydrogenase and a transaminase. Cascading alcohol oxidation with l-alanine dependent transamination and l-alanine dehydrogenase allowed for redox self-sufficient conversion of alcohols to the corresponding amines. The supplementation of the corresponding (di)alcohol precursors as well as amino group donor l-alanine and ammonium chloride were sufficient for amination and redox cofactor recycling in a resting buffer system. The addition of the transaminase cofactor pyridoxal-phosphate and the alcohol dehydrogenase cofactor NAD(+) was not necessary to obtain complete conversion. Secondary and cyclic alcohols, for example, 2-hexanol and cyclohexanol were not aminated. However, efficient redox self-sufficient amination of aliphatic and aromatic (di)alcohols in vivo was achieved with 1-hexanol, 1,10-decanediol and benzylalcohol being aminated best. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Characterization of the in vitro binding and inhibition kinetics of primary amine oxidase/vascular adhesion protein-1 by glucosamine.

    LENUS (Irish Health Repository)

    Olivieri, Aldo

    2012-04-01

    Primary-amine oxidase (PrAO) catalyzes the oxidative deamination of endogenous and exogenous primary amines and also functions, in some tissues, as an inflammation-inducible endothelial factor, known as vascular adhesion protein-1. VAP-1 mediates the slow rolling and adhesion of lymphocytes to endothelial cells in a number of inflammatory conditions, including inflammation of the synovium.

  19. Influence of nature, concentration and pH of buffer acid-base system on rate determining step of the electrochemiluminescence of Ru(bpy)32+ with tertiary aliphatic amines

    International Nuclear Information System (INIS)

    Pastore, Paolo; Badocco, Denis; Zanon, Francesco

    2006-01-01

    The electrogenerated chemiluminescence (ECL) of Ru(bpy) 3 2+ (bpy 2,2'-bipyridyl) with tertiary aliphatic amines as co-reactants, was theoretically and experimentally studied as a function of the pre-equilibria involved in the ammonium proton lost and in relation to the nature of the rate determining step. Transient potential steps were used with a 3-mm glassy carbon disk electrode or carbon fiber ultramicroelectrodes array to investigate emission behavior in a variety of aqueous solution types, containing phosphate, tartrate and phthalate acid-base systems at differing pH values. The emission of Ru(bpy) 3 2+ resulting from the reaction with n-tripropylamine (TPrA), tri-isobutylamine (TisoBuA), n-tributylamine (TBuA), methyl-di-n-propylamine (MeDPrA) and triethylamine (TEtA) in varying acid-base media was interpreted on the basis of the quoted pre-equilibria, ammonium pK a being known. The nature of the rate determining steps changes depending on pH. Above pH ∼ 5 the amine neutral radical formation is the rate determining step and, is independent of pH with rate constant close to 10 3 s -1 ; below pH ∼ 5 the rate determining step becomes the deprotonation of the ammonium ion, operated by different bases present in solution. Different amines in the same acid-base system showed analogous ECL behavior, conditioned by the chosen acid base system. A single amine in different acid-base systems showed different kinetic behaviors, due to the dissociation constants of the chosen buffers. The concentration of the acid-base system also played an important role and influenced emission intensity and shape. ECL emission were simulated by finite difference methods, implementing a previously proposed mechanism by including the relevant pre-equilibria. Simulation may also give estimates of the pK a values of the ammonium ions. An ion pair formation between R 3 N· + and the mostly charged species present in solution is hypothesized to explain the contradictory experimental

  20. Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters.

    Science.gov (United States)

    Shah, Aamer Ali; Kato, Satoshi; Shintani, Noboru; Kamini, Numbi Ramudu; Nakajima-Kambe, Toshiaki

    2014-04-01

    Biodegradable plastics (BPs) have attracted much attention since more than a decade because they can easily be degraded by microorganisms in the environment. The development of aliphatic-aromatic co-polyesters has combined excellent mechanical properties with biodegradability and an ideal replacement for the conventional nondegradable thermoplastics. The microorganisms degrading these polyesters are widely distributed in various environments. Although various aliphatic, aromatic, and aliphatic-aromatic co-polyester-degrading microorganisms and their enzymes have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. In this review, we have reported some new microorganisms and their enzymes which could degrade various aliphatic, aromatic, as well as aliphatic-aromatic co-polyesters like poly(butylene succinate) (PBS), poly(butylene succinate)-co-(butylene adipate) (PBSA), poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PES), poly(L-lactic acid) (PLA), poly(3-hydroxybutyrate) and poly(3-hydoxybutyrate-co-3-hydroxyvalterate) (PHB/PHBV), poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT), poly(butylene adipate-co-terephthalate (PBAT), poly(butylene succinate-co-terephthalate) (PBST), and poly(butylene succinate/terephthalate/isophthalate)-co-(lactate) (PBSTIL). The mechanism of degradation of aliphatic as well as aliphatic-aromatic co-polyesters has also been discussed. The degradation ability of microorganisms against various polyesters might be useful for the treatment and recycling of biodegradable wastes or bioremediation of the polyester-contaminated environments.

  1. Mesoporous Niobium Oxide Spheres as an Effective Catalyst for the Transamidation of Primary Amides with Amines

    KAUST Repository

    Ghosh, Subhash Chandra; Li, Cheng Chao; Zeng, Hua Chun; Ngiam, Joyce S Y; Seayad, Abdul M.; Chen, Anqi

    2014-01-01

    Mesoporous niobium oxide spheres (MNOS), conveniently prepared by a novel antisolvent precipitation approach, have been shown to be an effective catalyst for the transamidation of primary amides with amines. This novel transamidation can be efficiently carried out under solvent-free conditions and is applicable to a wide range of primary amides and amines to provide N-alkyl amides in good to excellent yields. The catalyst is highly stable and reusable. The application of this transamidation reaction has been demonstrated in the synthesis of antidepressant drug moclobemide and other druglike compounds. © 2014 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim.

  2. Mesoporous Niobium Oxide Spheres as an Effective Catalyst for the Transamidation of Primary Amides with Amines

    KAUST Repository

    Ghosh, Subhash Chandra

    2014-02-06

    Mesoporous niobium oxide spheres (MNOS), conveniently prepared by a novel antisolvent precipitation approach, have been shown to be an effective catalyst for the transamidation of primary amides with amines. This novel transamidation can be efficiently carried out under solvent-free conditions and is applicable to a wide range of primary amides and amines to provide N-alkyl amides in good to excellent yields. The catalyst is highly stable and reusable. The application of this transamidation reaction has been demonstrated in the synthesis of antidepressant drug moclobemide and other druglike compounds. © 2014 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim.

  3. Investigations on organogermanium compounds; III. N-tributylgermyl-substituted aliphatic and heterocyclic amines

    NARCIS (Netherlands)

    Rijkens, F.; Janssen, M.J.; Kerk, G.J.M. van der

    1965-01-01

    A series of new organogermanium compounds containing a germanium‐nitrogen bond, in many of which the nitrogen atom forms part of an heterocyclic ring, are prepared, in some cases by new methods: transamination reactions and reactions of germoxanes with heterocyclic amines. Striking differences in

  4. General Dialdehyde Click Chemistry for Amine Bioconjugation.

    Science.gov (United States)

    Elahipanah, Sina; O'Brien, Paul J; Rogozhnikov, Dmitry; Yousaf, Muhammad N

    2017-05-17

    The development of methods for conjugating a range of molecules to primary amine functional groups has revolutionized the fields of chemistry, biology, and material science. The primary amine is a key functional group and one of the most important nucleophiles and bases used in all of synthetic chemistry. Therefore, tremendous interest in the synthesis of molecules containing primary amines and strategies to devise chemical reactions to react with primary amines has been at the core of chemical research. In particular, primary amines are a ubiquitous functional group found in biological systems as free amino acids, as key side chain lysines in proteins, and in signaling molecules and metabolites and are also present in many natural product classes. Due to its abundance, the primary amine is the most convenient functional group handle in molecules for ligation to other molecules for a broad range of applications that impact all scientific fields. Because of the primary amine's central importance in synthetic chemistry, acid-base chemistry, redox chemistry, and biology, many methods have been developed to efficiently react with primary amines, including activated carboxylic acids, isothiocyanates, Michael addition type systems, and reaction with ketones or aldehydes followed by in situ reductive amination. Herein, we introduce a new traceless, high-yield, fast click-chemistry method based on the rapid and efficient trapping of amine groups via a functionalized dialdehyde group. The click reaction occurs in mild conditions in organic solvents or aqueous media and proceeds in high yield, and the starting dialdehyde reagent and resulting dialdehyde click conjugates are stable. Moreover, no catalyst or dialdehyde-activating group is required, and the only byproduct is water. The initial dialdehyde and the resulting conjugate are both straightforward to characterize, and the reaction proceeds with high atom economy. To demonstrate the broad scope of this new click

  5. Microchip Non-Aqueous Capillary Electrophoresis (MicronNACE) Method to Analyze Long-Chain Primary Amines

    Science.gov (United States)

    Willis, Peter A.; Mora, Maria; Cable, Morgan L.; Stockton, Amanda M.

    2012-01-01

    A protocol was developed as a first step in analyzing the complex organic aerosols present on Saturn's moon Titan, as well as the analogues of these aerosols (tholins) made on Earth. Labeling of primary amines using Pacific Blue succinimidyl ester is effected in ethanol with 25 mM triethylamine to maintain basic conditions. This reaction is allowed to equilibrate for at least one hour. Separation of the labeled primary amines is performed in ethanol with 1.05 M acetic acid, and 50 mM ammonium acetate in a commercial two-layer glass device with a standard crossmicrochannel measuring 50 microns wide by 20 microns deep. Injection potentials are optimized at 2 kV from the sample (negative) to the waste well (positive), with slight bias applied to the other two wells ( 0.4 and 0.8 V) to pinch the injection plug for the 30-s injection. Separation is performed at a potential of 5 kV along the channel, which has an effective separation distance of 7 cm. The use of ethanol in this method means that long-chain primary amines can be dissolved. Due to the low pH of the separation buffer, electro-osmotic flow (EOF) is minimized to allow for separation of both short-chain and longchain amines. As the freezing point of ethanol is much lower than water, this protocol can perform separations at temperatures lower than 0 C, which would not be possible in aqueous phase. This is of particular importance when considering in situ sampling of Titan aerosols, where unnecessary heating of the sample (even to room temperature) would lead to decomposition or unpredictable side reactions, which would make it difficult to characterize the sample appropriately.

  6. Microwave—enhanced Mannich Condensation of Terminal Alkynes,Primary Amines with Paraformaldehyde on cuprous Iodide Doped Alumina under Solvent Free Conditions

    Institute of Scientific and Technical Information of China (English)

    王磊; 李品华

    2003-01-01

    A microwave-enhanced,solventless Mannich condensation of terminal alkynes,primary amines with paraformaldehyde on cuprous iodide doped alumina has been investigated.The structures of products depend on the ratio of alkyne to amine and paraformaldehyde.

  7. Ultrasound accelerated sulfonylation of amines by p-acetamidobenzenesulfonyl chloride using Mg–Al hydrotalcite as an efficient green base catalyst

    DEFF Research Database (Denmark)

    Truong, Binh Nhat; Le, Luong Huu; Chau, Duy-Khiem Nguyen

    2016-01-01

    The sulfonylation reaction of various aliphatic, alicyclic, aromatic, and hetero-aromatic amines with p-acetamidobenzenesulfonyl chloride has been investigated using different types of base catalysis under varied reaction conditions. Mg–Al hydrotalcite, characterizable as an inexpensive, reusable...

  8. Efficient 'One Pot' Nitro Reduction-Protection of γ-Nitro Aliphatic Methyl Esters

    OpenAIRE

    Díaz-Coutiño, Francisco D.; Escalante, Jaime

    2009-01-01

    A simple and efficient protocol has been developed for the direct conversion of γ-nitro aliphatic methyl esters to N-(tert-butoxycarbonyl)amine methyl esters using NH4+HCO2- and Pd/C in the presence of (Boc)2O. There was a significant decrease in the reaction time under these conditions, increased yields and the purity of the products using this 'one pot' procedure. Un protocolo simple y eficiente de síntesis ha sido desarrollado para la conversión directa de metil ésteres de γ-nitro alifá...

  9. Synthesis of Novel Aliphatic N-sulfonylamidino Thymine Derivatives by Cu(I)-catalyzed Three-component Coupling Reaction

    OpenAIRE

    Krstulović, Luka; Ismaili, Hamit; Višnjevac, Aleksandar; Glavaš-Obrovac, Ljubica; Žinić, Biserka

    2012-01-01

    A series of new aliphatic N-sulfonylamidino thymine derivatives containing nucleobase, N-sulfonyl and amidine pharmacophores in the structure were synthesized by Cu(I)-catalyzed threecomponent coupling of 1-propargyl thymine, benzenesulfonyl azides and amines or ammonium salts. Preliminary in vitro antitumor screening (human cervix adenocarcinoma -HeLa and leukemia cells - Jurkat) revealed promising activities of N,N-diethyl- (2) and N-4-cyanobenzyl- (6) derivatives of 4-acetamido...

  10. Kinetics and mechanism of the selective oxidation of primary aliphatic alcohols under phase transfer catalysis

    Directory of Open Access Journals (Sweden)

    K. Bijudas

    2014-03-01

    Full Text Available Kinetics of the oxidation of primary aliphatic alcohols has been carried out using phase transferred monochromate in benzene. Tetrabutylammonium bromide (TBAB and tetrabutylphosphonium bromide (TBPB are used as phase transfer catalysts (PT catalyst. The reaction shows first order dependence on both [alcohol] and [monochromate ion]. The oxidation leads to the formation of corresponding aldehyde and no traces of carboxylic acid has been detected. The reaction mixture failed to induce the polymerization of added acrylonitrile which rules out the presence radical intermediates in the reaction. Various thermodynamic parameters have been evaluated and a suitable mechanism has been proposed.

  11. Artifacts Generated During Azoalkane Peroxy Radical Oxidative Stress Testing of Pharmaceuticals Containing Primary and Secondary Amines.

    Science.gov (United States)

    Nefliu, Marcela; Zelesky, Todd; Jansen, Patrick; Sluggett, Gregory W; Foti, Christopher; Baertschi, Steven W; Harmon, Paul A

    2015-12-01

    We report artifactual degradation of pharmaceutical compounds containing primary and secondary amines during peroxy radical-mediated oxidative stress carried out using azoalkane initiators. Two degradation products were detected when model drug compounds dissolved in methanol/water were heated to 40°C with radical initiators such as 2,2'-azobis(2-methylpropionitrile) (AIBN). The primary artifact was identified as an α-aminonitrile generated from the reaction of the amine group of the model drug with formaldehyde and hydrogen cyanide, generated as byproducts of the stress reaction. A minor artifact was generated from the reaction between the amine group and isocyanic acid, also a byproduct of the stress reaction. We report the effects of pH, initiator/drug molar ratio, and type of azoalkane initiator on the formation of these artifacts. Mass spectrometry and nuclear magnetic resonance were used for structure elucidation, whereas mechanistic studies, including stable isotope labeling experiments, cyanide analysis, and experiments exploring the effects of butylated hydroxyanisole addition, were employed to support the degradation pathways. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. 2,2,2-Trifluoroacetophenone as an organocatalyst for the oxidation of tertiary amines and azines to N-oxides.

    Science.gov (United States)

    Limnios, Dimitris; Kokotos, Christoforos G

    2014-01-07

    A cheap, mild and environmentally friendly oxidation of tertiary amines and azines to the corresponding N-oxides is reported by using polyfluoroalkyl ketones as efficient organocatalysts. 2,2,2-Trifluoroacetophenone was identified as the optimum catalyst for the oxidation of aliphatic tertiary amines and azines. This oxidation is chemoselective and proceeds in high-to-quantitative yields utilizing 10 mol % of the catalyst and H2 O2 as the oxidant. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Diamination by n-coupling using a commercial laccase

    CSIR Research Space (South Africa)

    Wellington, Kevin W

    2010-02-01

    Full Text Available Nuclear diamination of p-hydrobenzoquinones with aromatic and aliphatic primary amines was catalyzed by a immobilised commercial laccase, Denilite II Base, from Novozymes. The amine and the p-hydrobenzoquinone was reacted under mild conditions (at...

  14. Enrichment Mechanism of Semiconducting Single-walled Carbon Nanotubes by Surfactant Amines

    Science.gov (United States)

    Ju, Sang-Yong; Utz, Marcel; Papadimitrakopoulos, Fotios

    2009-01-01

    Utilization of single-walled carbon nanotubes (SWNTs) in high-end applications hinges on separating metallic (met-) from semiconducting (sem-) SWNTs. Surfactant amines, like octadecylamine (ODA) have proven instrumental for the selective extraction of sem-SWNTs from tetrahydrofuran (THF) nanotube suspensions. The chemical shift differences along the tail of an asymmetric, diacetylenic surfactant amine were used to probe the molecular dynamics in the presence and absence of nanotubes via NMR. The results suggest that the surfactant amine head is firmly immobilized onto the nanotube surface together with acidic water, while the aliphatic tail progressively gains larger mobility as it gets farther from the SWNT. X-ray and high-resolution TEM studies indicate that the sem-enriched sample is populated mainly by small nanotube bundles containing ca. three SWNTs. Molecular simulations in conjunction with previously determined HNO3/H2SO4 oxidation depths for met- and sem-SWNTs indicate that the strong pinning of the amine surfactants on the sem-enriched SWNTs bundles is a result of a well-ordered arrangement of nitrate/amine salts separated with a monomolecular layer of H2O. Such continuous 2D arrangement of nitrate/amine salts shields the local environment adjacent to sem-enriched SWNTs bundles and maintains an acidic pH that preserves nanotube oxidation (i.e. SWNTn+). This, in turn, results in strong interactions with charge-balancing NO3- counter ions that through their association with neutralized surfactant amines provide effective THF dispersion and consequent sem-enrichment. PMID:19397291

  15. YCl3-Catalyzed Highly Selective Ring Opening of Epoxides by Amines at Room Temperature and under Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Wuttichai Natongchai

    2017-11-01

    Full Text Available A simple, efficient, and environmentally benign approach for the synthesis of β-amino alcohols is herein described. YCl3 efficiently carried out the ring opening of epoxides by amines to produce β-amino alcohols under solvent-free conditions at room temperature. This catalytic approach is very effective, with several aromatic and aliphatic oxiranes and amines. A mere 1 mol % concentration of YCl3 is enough to deliver β-amino alcohols in good to excellent yields with high regioselectivity.

  16. A reagent for safe and efficient diazo-transfer to primary amines: 2-azido-1,3-dimethylimidazolinium hexafluorophosphate.

    Science.gov (United States)

    Kitamura, Mitsuru; Kato, So; Yano, Masakazu; Tashiro, Norifumi; Shiratake, Yuichiro; Sando, Mitsuyoshi; Okauchi, Tatsuo

    2014-07-07

    Organic azides were prepared from primary amines in high yields by a metal free diazo-transfer reaction using 2-azido-1,3-dimethylimidazolinium hexafluorophosphate (ADMP), which is safe and stable crystalline. The choice of base was important in the diazo-transfer reaction. In general, 4-(N,N-dimethyl)aminopyridine (DMAP) was efficient, but a stronger base such as alkylamine or DBU was more appropriate for the reaction of nucleophilic primary amines. X-ray single crystal structural analysis and geometry optimization using density functional theory (B3LYP/6-31G**) were conducted to study the ADMP structure, and the diazo-transfer reaction mechanism was explained with the help of the results of these analyses.

  17. Concentration, size distribution and dry deposition of amines in atmospheric particles of urban Guangzhou, China

    Science.gov (United States)

    Liu, Fengxian; Bi, Xinhui; Zhang, Guohua; Peng, Long; Lian, Xiufeng; Lu, Huiying; Fu, Yuzhen; Wang, Xinming; Peng, Ping'an; Sheng, Guoying

    2017-12-01

    Size-segregated PM10 samples were collected in Guangzhou, China during autumn of 2014. Nine amines, including seven aliphatic amines and two heterocyclic amines, were detected using a gas chromatography-mass spectrometer after derivatization by benzenesulfonyl chloride. The total concentration of the nine aminesamines) was 79.6-140.9 ng m-3 in PM10. The most abundant species was methylamine (MA), which had a concentration of 29.2-70.1 ng m-3. MA, dimethylamine (DMA), diethylamine (DEA) and dibutylamine (DBA) were the predominant amines in the samples and accounted for approximately 80% of Ʃamines in each size segment. Two heterocyclic amines, pyrrolidine (PYR) and morpholine (MOR), were detected in all samples and had average concentrations of 1.14 ± 0.37 and 1.89 ± 0.64 ng m-3, respectively, in particles with aerodynamic diameters ammonium ranged from 0.0068 to 0.0107 in particles with diameters <1.5 μm, and the maximum ratio occurred in the smallest particles (diameter< 0.49 μm). The average dry deposition flux and velocity of Ʃamines in PM10 were 7.9 ± 1.6 μg m-2 d-1 and 0.084 ± 0.0021 cm s-1, respectively. The results of this study provide essential information on the contribution of amines to secondary organic aerosols and dry removal mechanisms in urban areas.

  18. Extraction of uranyl sulfate with primary amine

    International Nuclear Information System (INIS)

    Mrnka, M.; Bizek, V.; Nekovar, P.; Cizevska, S.; Schroetterova, D.

    1984-01-01

    PRIMENE JM-T was used for extraction. Its composition was found to approach the general formula C 21 H 43 NH 2 . It was found that the extraction of uranyl sulfate is lower in case of a higher steady-state concentration of sulfuric acid in the aqueous phase. Extraction is accompanied with coextraction of water. The results obtained showed that uranyl sulfate passes into the organic phase by two mechanisms: extraction with amine sulfate and extraction with free amine. A mathematical description of the process was made based on the obtained results. (E.S.)

  19. Analysis of primary aromatic amines using precolumn derivatization by HPLC fluorescence detection and online MS identification.

    Science.gov (United States)

    Zhao, Xianen; Suo, Yourui

    2008-03-01

    2-(2-phenyl-1H-phenanthro-[9,10-d]imidazole-1-yl)-acetic acid (PPIA) and 2-(9-acridone)-acetic acid (AAA), two novel precolumn fluorescent derivatization reagents, have been developed and compared for analysis of primary aromatic amines by high performance liquid chromatographic fluorescence detection coupled with online mass spectrometric identification. PPIA and AAA react rapidly and smoothly with the aromatic amines on the basis of a condensation reaction using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) as dehydrating catalyst to form stable derivatives with emission wavelengths at 380 and 440 nm, respectively. Taking six primary aromatic amines (aniline, 2-methylaniline, 2-methoxyaniline, 4-methylaniline, 4-chloroaniline, and 4-bromoaniline) as testing compounds, derivatization conditions such as coupling reagent, basic catalyst, reaction temperature and time, reaction solvent, and fluorescent labeling reagent concentration have also been investigated. With the better PPIA method, chromatographic separation of derivatized aromatic amines exhibited a good baseline resolution on an RP column. At the same time, by online mass spectrometric identification with atmospheric pressure chemical ionization (APCI) source in positive ion mode, the PPIA-labeled derivatives were characterized by easy-to-interpret mass spectra due to the prominent protonated molecular ion m/z [M + H](+) and specific fragment ions (MS/MS) m/z 335 and 295. The linear range is 24.41 fmol-200.0 pmol with correlation coefficients in the range of 0.9996-0.9999, and detection limits of PPIA-labeled aromatic amines are 0.12-0.21 nmol/L (S/N = 3). Method repeatability, precision, and recovery were evaluated and the results were excellent for the efficient HPLC analysis. The most important argument, however, was the high sensitivity and ease-of-handling of the PPIA method. Preliminary experiments with wastewater samples collected from the waterspout of a paper mill and its nearby soil where

  20. Metal-Mediated Couplings of Primary Alcohols with Amines and Carbohydrates

    DEFF Research Database (Denmark)

    Maggi, Agnese; Madsen, Robert

    . The reaction is proposed to proceed by initial dehydrogenation of the alcohol to the aldehyde, which stays coordinated to the ruthenium centre. Then, nucleophilic attack of the amine affords the hemiaminal, which is released from ruthenium and converted into the imine. Project 2: Tin-mediated regioselective 6...... from alcohols and amines catalyzed by a ruthenium N-heterocyclic carbene complex. The successful method development and application of a convenient and direct (one step) synthesis of imines from alcohols and amines is described. The developed method provides quick andextended access to structurally...... and amines have been coupled in the presence of the catalyst to afford the corresponding imines in moderate to good yields. Optically pure amines gave the corresponding imines without any sign of racemization. Moreover, the one-pot diastereoselective addition of different organometallic reagents to the imine...

  1. Primary amines protect against retinal degeneration in mouse models of retinopathies.

    Science.gov (United States)

    Maeda, Akiko; Golczak, Marcin; Chen, Yu; Okano, Kiichiro; Kohno, Hideo; Shiose, Satomi; Ishikawa, Kaede; Harte, William; Palczewska, Grazyna; Maeda, Tadao; Palczewski, Krzysztof

    2011-12-25

    Vertebrate vision is initiated by photoisomerization of the visual pigment chromophore 11-cis-retinal and is maintained by continuous regeneration of this retinoid through a series of reactions termed the retinoid cycle. However, toxic side reaction products, especially those involving reactive aldehyde groups of the photoisomerized product, all-trans-retinal, can cause severe retinal pathology. Here we lowered peak concentrations of free all-trans-retinal with primary amine-containing Food and Drug Administration (FDA)-approved drugs that did not inhibit chromophore regeneration in mouse models of retinal degeneration. Schiff base adducts between all-trans-retinal and these amines were identified by MS. Adducts were observed in mouse eyes only when an experimental drug protected the retina from degeneration in both short-term and long-term treatment experiments. This study demonstrates a molecular basis of all-trans-retinal-induced retinal pathology and identifies an assemblage of FDA-approved compounds with protective effects against this pathology in a mouse model that shows features of Stargardt's disease and age-related retinal degeneration.

  2. Fluorimetric determination of yttrium by methyl-bis(8-hydraxy--- 2-quinolyl)amine

    International Nuclear Information System (INIS)

    Golovina, A.P.; Kachin, S.V.; Runov, V.K.; Fakeeva, O.A.

    1982-01-01

    Using a method of mathematical Box-Wilson experiment planning the optimum conditions of yttrium fluorimetric determination by methyl-bis (8-hydroxy-2-quinolyl) amine (pH 7.5, csub(R)=1.4x10sup(-5) M) with the determination limit=0.05 μg/ml are found. An extraction-fluorimetric method of yttrium determination by methyl-bis (8-hydroxy-2-quinolyl) amine is developed. The extraction has been realized with aliphatic alcohols at pH > 11. The method is characteristic of the lowest determination limit (0.01 μg/ml) as compared with the known ones. The possibility is shown of yttrium determination in the presence of 5000-multiple aluminium contents, stoichiometric contents of La, Lu, Fe (3), U (6), tartrates, citrates

  3. A study on the reactions of plant copper amine oxidase with C3 and C4 aliphatic diamines.

    Science.gov (United States)

    Sebela, M; Frébort, I; Lemr, K; Brauner, F; Pec, P

    2000-12-01

    The paper reports a study on the reactions of grass pea (Lathyrus sativus) amine oxidase (GPAO) with several aliphatic diamines. The influence of the chain length and of unsaturations in the molecules was examined. Kinetic measurements confirmed that trans-, i.e., (E)-2-butene-1,4-diamine (TDABE) and cis-, i.e., (Z)-2-butene-1,4-diamine (CDABE) could be classified as good substrates. Propane-1,3-diamine (DAP) and propene-1,3-diamine (DAPE) were only weakly oxidized, whereas 1,3-diamino-2-propanol (DAPL) was not utilized as a substrate. Contrary to the inactivator 2-butyne-1,4-diamine (DABI), DAPE was shown to be only a competitive inhibitor. DAP itself did not inhibit the catalytic activity. Irreversible inhibition of the activity occurred only after the incubation of GPAO with DABI; other diamines were without this effect. Differential pulse polarography and chromatofocusing confirmed that the aminoaldehyde product of DABI oxidation binds to the enzyme. Activity assay of pea aminoaldehyde dehydrogenase enabled us to detect the products of the oxidation of TDABE, CDABE, and DAP by GPAO. As the product of DAP oxidation, 3-amino-propanal (APAL) was detected by mass spectrometry and confirmed to be a potent noncompetitive inhibitor of GPAO. The absorption changes that occurred in the course of the reaction of GPAO with the diamines were investigated using rapid-scanning spectrophotometry. DABI, TDABE, CDABE, DAP, and DAPE reacted with GPAO providing characteristic maxima of the Cu(I)-semiquinolamine species that is formed in the catalytic cycle. The results presented here confirm that with the exception of DAPL, all the studied diamines could be classified as GPAO substrates, but only DABI can be considered as a mechanism-based inhibitor.

  4. Studies of interaction of amines with TOPO/TOP capped CdSe quantum dots: Role of crystallite size and oxidation potential

    International Nuclear Information System (INIS)

    Sharma, Shailesh N.; Sharma, Himani; Singh, Gurmeet; Shivaprasad, S.M.

    2008-01-01

    This work reports the interaction of aliphatic (triethyl amine, butyl amine) and aromatic amines (PPD, aniline) with CdSe quantum dots of varied sizes. The emission properties and lifetime values of CdSe quantum dots were found to be dependent on the oxidation potential of amines and crystallite sizes. Smaller CdSe quantum dots (size ∼5 nm) ensure better surface coverage of amines and hence higher quenching efficiency of amines could be realized as compared to larger CdSe quantum dots (size ∼14 nm). Heterogeneous quenching of amines due to the presence of accessible and inaccessible set of CdSe fluorophores is indicated. PPD owing to its lowest oxidation potential (∼0.26 V) has been found to have higher quenching efficiency as compared to other amines TEA and aniline having oxidation potentials ∼0.66 and >1.0 V, respectively. Butyl amine on the other hand, plays a dual role: its post-addition acts as a quencher for smaller and enhances emission for larger CdSe quantum dots, respectively. The beneficial effect of butyl amine in enhancing emission intensity could be attributed to enhance capping effect and better passivation of surface-traps

  5. Kinetic analysis of the reactivity of aliphatic cyclic alcohols and carboxylic acids in the T-for-H exchange reaction

    International Nuclear Information System (INIS)

    Tamura, Kiyoshi; Imaizumi, Hiroshi; Kano, Naoki

    2007-01-01

    In order to quantitatively evaluate the influence of tritium ( 3 He or T) on various functional groups in environment, the hydrogen isotope exchange reaction (T-for-H exchange reaction) between tritium-labeled poly-(vinyl alcohol) and each aliphatic cyclic alcohol (or carboxylic acid) has been dynamically observed in the range of 50 to 90degC. Consequently, the activities of the aliphatic cyclic alcohol and carboxylic acid increased with increasing reaction time. Applying in A''-McKay plot method to the observed data, the rate constants (k) for these materials were obtained. Using the k, the relation between the number of carbon atoms in the ring in each alcohol and the reactivity of the alcohol was quantitatively compared. Then, to clarify the effect of relative atomic charge of O atom (connected with the H atom in the hydroxy (or carboxy) group in the material) on the reactivity of the material, the MOPAC method was used. From both the above-mentioned and the obtained previously, the following nine items were found as to aliphatic cyclic alcohols (and carboxylic acids) in the T-for-H exchange reaction. (1) The reactivity of aliphatic cyclic alcohols (and carboxylic acids) depends on the temperature. (2) The reactivity of the cyclic materials decreases with increasing number of carbon atoms in the ring. (3) The reactivity of the aliphatic cyclic carboxylic acid seems to be smaller than that of aliphatic cyclic alcohol, and be larger than that of aliphatic cyclic amine. (4) For aliphatic cyclic alcohols, correlation exists between k and relative atomic charges of O atom obtained by the MOPAC method, but the tendency for aliphatic cyclic carboxylic acid is not clear. (5) As to having the same number of carbon atoms in each ring, the reactivity of the aliphatic cyclic carboxylic acid including the side chain is smaller than of the aliphatic cyclic carboxylic acid including no side chain. (6) The reactivity of aliphatic cyclic carboxylic acid is larger than that of

  6. A metalloenzyme-like catalytic system for the chemoselective oxidative cross-coupling of primary amines to imines under ambient conditions.

    Science.gov (United States)

    Largeron, Martine; Fleury, Maurice-Bernard

    2015-02-23

    The direct oxidative cross-coupling of primary amines is a challenging transformation as homocoupling is usually preferred. We report herein the chemoselective preparation of cross-coupled imines through the synergistic combination of low loadings of Cu(II) metal-catalyst and o-iminoquinone organocatalyst under ambient conditions. This homogeneous cooperative catalytic system has been inspired by the reaction of copper amine oxidases, a family of metalloenzymes with quinone organic cofactors that mediate the selective oxidation of primary amines to aldehydes. After optimization, the desired cross-coupled imines are obtained in high yields with broad substrate scope through a transamination process that leads to the homocoupled imine intermediate, followed by dynamic transimination. The ability to carry out the reactions at room temperature and with ambient air, rather than molecular oxygen as the oxidant, and equimolar amounts of each coupling partner is particularly attractive from an environmentally viewpoint. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Highly efficient and diastereoselective gold(I)-catalyzed synthesis of tertiary amines from secondary amines and alkynes: substrate scope and mechanistic insights.

    Science.gov (United States)

    Liu, Xin-Yuan; Guo, Zhen; Dong, Sijia S; Li, Xiao-Hua; Che, Chi-Ming

    2011-11-11

    An efficient method for the synthesis of tertiary amines through a gold(I)-catalyzed tandem reaction of alkynes with secondary amines has been developed. In the presence of ethyl Hantzsch ester and [{(tBu)(2)(o-biphenyl)P}AuCl]/AgBF(4) (2 mol %), a variety of secondary amines bearing electron-deficient and electron-rich substituents and a wide range of alkynes, including terminal and internal aryl alkynes, aliphatic alkynes, and electron-deficient alkynes, underwent a tandem reaction to afford the corresponding tertiary amines in up to 99 % yield. For indolines bearing a preexisting chiral center, their reactions with alkynes in the presence of ethyl Hantzsch ester catalyzed by [{(tBu)(2)(o-biphenyl)P}AuCl]/AgBF(4) (2 mol %) afforded tertiary amines in excellent yields and with good to excellent diastereoselectivity. All of these organic transformations can be conducted as a one-pot reaction from simple and readily available starting materials without the need of isolation of air/moisture-sensitive enamine intermediates, and under mild reaction conditions (mostly room temperature and mild reducing agents). Mechanistic studies by NMR spectroscopy, ESI-MS, isotope labeling studies, and DFT calculations on this gold(I)-catalyzed tandem reaction reveal that the first step involving a monomeric cationic gold(I)-alkyne intermediate is more likely than a gold(I)-amine intermediate, a three-coordinate gold(I) intermediate, or a dinuclear gold(I)-alkyne intermediate. These studies also support the proposed reaction pathway, which involves a gold(I)-coordinated enamine complex as a key intermediate for the subsequent transfer hydrogenation with a hydride source, and reveal the intrinsic stereospecific nature of these transformations observed in the experiments. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Influence of nature, concentration and pH of buffer acid-base system on rate determining step of the electrochemiluminescence of Ru(bpy){sub 3} {sup 2+} with tertiary aliphatic amines

    Energy Technology Data Exchange (ETDEWEB)

    Pastore, Paolo [Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova (Italy)]. E-mail: paolo.pastore@unipd.it; Badocco, Denis [Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova (Italy); Zanon, Francesco [Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova (Italy)

    2006-07-28

    The electrogenerated chemiluminescence (ECL) of Ru(bpy){sub 3} {sup 2+} (bpy 2,2'-bipyridyl) with tertiary aliphatic amines as co-reactants, was theoretically and experimentally studied as a function of the pre-equilibria involved in the ammonium proton lost and in relation to the nature of the rate determining step. Transient potential steps were used with a 3-mm glassy carbon disk electrode or carbon fiber ultramicroelectrodes array to investigate emission behavior in a variety of aqueous solution types, containing phosphate, tartrate and phthalate acid-base systems at differing pH values. The emission of Ru(bpy){sub 3} {sup 2+} resulting from the reaction with n-tripropylamine (TPrA), tri-isobutylamine (TisoBuA), n-tributylamine (TBuA), methyl-di-n-propylamine (MeDPrA) and triethylamine (TEtA) in varying acid-base media was interpreted on the basis of the quoted pre-equilibria, ammonium pK {sub a} being known. The nature of the rate determining steps changes depending on pH. Above pH {approx} 5 the amine neutral radical formation is the rate determining step and, is independent of pH with rate constant close to 10{sup 3} s{sup -1}; below pH {approx} 5 the rate determining step becomes the deprotonation of the ammonium ion, operated by different bases present in solution. Different amines in the same acid-base system showed analogous ECL behavior, conditioned by the chosen acid base system. A single amine in different acid-base systems showed different kinetic behaviors, due to the dissociation constants of the chosen buffers. The concentration of the acid-base system also played an important role and influenced emission intensity and shape. ECL emission were simulated by finite difference methods, implementing a previously proposed mechanism by including the relevant pre-equilibria. Simulation may also give estimates of the pK {sub a} values of the ammonium ions. An ion pair formation between R{sub 3}N{center_dot} {sup +} and the mostly charged species

  9. Oxidation using quaternary ammonium polyhalides VII. Oxidation of primary amines and hydrazo compounds by use of benzyltrimethylammonium tribromide

    OpenAIRE

    Nishida, Akiko; Kohro, Noriaki; Fujisaki, Shizuo; Kajigaeshi, Shoji

    1990-01-01

    The reactions of primary amines and hydrazo compounds with benzyltrimethylammonium tribromide in aqueous sodium hydroxide or in water gave the corresponding nitriles and azo compounds in satisfactory yields, respectively.

  10. ZnAl2O4@SiO2 nanocomposite catalyst for the acetylation of alcohols, phenols and amines with acetic anhydride under solvent-free conditions

    Institute of Scientific and Technical Information of China (English)

    Saeed Farhadi; Kosar Jahanara

    2014-01-01

    A ZnAl2O4@SiO2 nanocomposite was prepared from metal nitrates and tetraethyl orthosilicate by the sol-gel process, and characterized by X-ray diffraction, Fourier transform infrared, transmission electron microscopy, and N2 adsorption-desorption measurements. The nanocomposite was tested as a heterogeneous catalyst for the acetylation of alcohols, phenols, and amines under solvent-free conditions. Under optimized conditions, efficient acetylation of these substrates with acetic anhy-dride over the ZnAl2O4@SiO2 nanocomposite was obtained. Acetylation of anilines and primary aliphatic amines proceeded rapidly at room temperature, while the reaction time was longer for the acetylation of alcohols and phenols, showing that an amine NH2 group can be selectively acetylated in the presence of alcoholic or phenolic OH groups. The catalyst can be reused without obvious loss of catalytic activity. The catalytic activity of the ZnAl2O4@SiO2 nanocomposite was higher than that of pure ZnAl2O4. The method gives high yields, and is clean, cost effective, compatible with sub-strates having other functional groups and it is suitable for practical organic synthesis.

  11. Ozone Promotes Chloropicrin Formation by Oxidizing Amines to Nitro Compounds.

    Science.gov (United States)

    McCurry, Daniel L; Quay, Amanda N; Mitch, William A

    2016-02-02

    Chloropicrin formation has been associated with ozonation followed by chlorination, but the reaction pathway and precursors have been poorly characterized. Experiments with methylamine demonstrated that ozonation converts methylamine to nitromethane at ∼100% yield. Subsequent chlorination converts nitromethane to chloropicrin at ∼50% yield under the conditions evaluated. Similarly high yields from other primary amines were limited to those with functional groups on the β-carbon (e.g., the carboxylic acid in glycine) that facilitate carbon-carbon bond cleavage to release nitromethyl anion. Secondary amines featuring these reactive primary amines as functional groups (e.g., secondary N-methylamines) formed chloropicrin at high yields, likely by facile dealkylation to release the primary nitro compound. Chloropicrin yields from tertiary amines were low. Natural water experiments, including derivatization to transform primary and secondary amines to less reactive carbamate functional groups, indicated that primary and secondary amines were the dominant chloropicrin precursors during ozonation/chlorination. Ozonation followed by chlorination of the primary amine side chain of lysine demonstrated low yields (∼0.2%) of chloropicrin, but high yields (∼17%) of dichloronitrolysine, a halonitroalkane structural analogue to chloropicrin. However, chloropicrin yields increased and dichloronitrolysine yields decreased in the absence of hydroxyl radical scavengers, suggesting that future research should characterize the potential occurrence of such halonitroalkane analogues relative to natural radical scavenger (e.g., carbonate) concentrations.

  12. Mechanistic insight into benzenethiol catalyzed amide bond formations from thioesters and primary amines

    DEFF Research Database (Denmark)

    Stuhr-Hansen, Nicolai; Bork, Nicolai; Strømgaard, Kristian

    2014-01-01

    The influence of arylthiols on cysteine-free ligation, i.e. the reaction between an alkyl thioester and a primary amine forming an amide bond, was studied in a polar aprotic solvent. We reacted the ethylthioester of hippuric acid with cyclohexylamine in the absence or presence of various quantities...... of thiophenol (PhSH) in a slurry of disodium hydrogen phosphate in dry DMF. Quantitative conversions into the resulting amide were observed within a few hours in the presence of equimolar amounts of thiophenol. Ab initio calculations showed that the reaction mechanism in DMF is similar to the well-known aqueous...... reaction mechanism. The energy barrier of the catalyzed amidation reaction is approximately 40 kJ mol(-1) lower than the non-catalyzed amidation reaction. At least partially this can be explained by a hydrogen bond from the amine to the π-electrons of the thiophenol, stabilizing the transition state...

  13. Liquid chromatographic separation and indirect detection of non-absorbing aliphatic compounds using m-nitrophenol as a detection agent

    International Nuclear Information System (INIS)

    Lee, Seung Seok; Kang, Sam Woo; Moon, Young Ja

    1991-01-01

    m-Nitrophenol(m-NP) was a detection agent for the use of the detection and separation of non-absorbing compounds such as aliphatic acids, alcohols, amines and tetraalkylammonium salts by indirect photometric detection in reversed-phase liquid chromatography. Response of samples was investigated to the several factors such as pH, temperature, and concentration of MeOH as well as concentration of detection reagent in mobile phase. The separation of several mixtures were attempted under optimum condition. (Author)

  14. Biotransformation and bioactivation reactions of alicyclic amines in drug molecules.

    Science.gov (United States)

    Bolleddula, Jayaprakasam; DeMent, Kevin; Driscoll, James P; Worboys, Philip; Brassil, Patrick J; Bourdet, David L

    2014-08-01

    Aliphatic nitrogen heterocycles such as piperazine, piperidine, pyrrolidine, morpholine, aziridine, azetidine, and azepane are well known building blocks in drug design and important core structures in approved drug therapies. These core units have been targets for metabolic attack by P450s and other drug metabolizing enzymes such as aldehyde oxidase and monoamine oxidase (MAOs). The electron rich nitrogen and/or α-carbons are often major sites of metabolism of alicyclic amines. The most common biotransformations include N-oxidation, N-conjugation, oxidative N-dealkylation, ring oxidation, and ring opening. In some instances, the metabolic pathways generate electrophilic reactive intermediates and cause bioactivation. However, potential bioactivation related adverse events can be attenuated by structural modifications. Hence it is important to understand the biotransformation pathways to design stable drug candidates that are devoid of metabolic liabilities early in the discovery stage. The current review provides a comprehensive summary of biotransformation and bioactivation pathways of aliphatic nitrogen containing heterocycles and strategies to mitigate metabolic liabilities.

  15. A versatile family of degradable non-viral gene carriers based on hyperbranched poly(ester amine)s

    NARCIS (Netherlands)

    Zhong, Zhiyuan; Song, Y.; Engbersen, Johannes F.J.; Lok, Martin C.; Hennink, Wim E.; Feijen, Jan

    2005-01-01

    A variety of degradable hyperbranched poly(ester amine)s containing primary, secondary and tertiary amino groups, were synthesized and evaluated as non-viral gene carriers. The polymers were obtained in high yields through a Michael-type conjugate addition of diacrylate monomers with trifunctional

  16. Chemoenzymatic dynamic kinetic resolution of primary amines using a recyclable palladium nanoparticle catalyst together with lipases.

    Science.gov (United States)

    Gustafson, Karl P J; Lihammar, Richard; Verho, Oscar; Engström, Karin; Bäckvall, Jan-E

    2014-05-02

    A catalyst consisting of palladium nanoparticles supported on amino-functionalized siliceous mesocellular foam (Pd-AmP-MCF) was used in chemoenzymatic dynamic kinetic resolution (DKR) to convert primary amines to amides in high yields and excellent ee's. The efficiency of the nanocatalyst at temperatures below 70 °C enables reaction conditions that are more suitable for enzymes. In the present study, this is exemplified by subjecting 1-phenylethylamine (1a) and analogous benzylic amines to DKR reactions using two commercially available lipases, Novozyme-435 (Candida antartica Lipase B) and Amano Lipase PS-C1 (lipase from Burkholderia cepacia) as biocatalysts. The latter enzyme has not previously been used in the DKR of amines because of its low stability at temperatures over 60 °C. The viability of the heterogeneous Pd-AmP-MCF was further demonstrated in a recycling study, which shows that the catalyst can be reused up to five times.

  17. Preparation and Properties of Some Novel Poly benzoxazine Containing Pendent Aliphatic Chains

    International Nuclear Information System (INIS)

    Agag, T.; Akelah, A.; Rehaband, A.; Mostafa, S.

    2005-01-01

    Poly benzoxazine as a newly developed type of phenolic resin has an excellent properties-process ability-price balance. Despite having the usual characteristics of the typical phenolic resins, such as heat resistance, good electronic properties and flame retardance, poly benzoxazine have additional advantageous characteristics superior to the typical phenolic. These characteristics include low melt viscosity of the monomers, no strong acid or basic catalysts needed for the polymerization, and no by-products evolved during the polymerization as well as near-zero shrinkage or expansion upon curing. However, the brittleness is considered the main disadvantage of this new class of thermoset, like all the conventional resins. In the current study, we have prepared a series of new monofunctional and bifunctional benzoxazine monomers from different long chain aliphatic amines, paraformaldehyde and various phenols, using solventless method. The structure of the novel monomers was confirmed by IR and 1H-NMR, indicating the presence of cyclic benzoxazine structure. The thermoset obtained by the thermal cure of benzoxazine monomers showed improved toughness with lower glass transition temperatures than the typical known types of poly benzoxazine due to the flexibilizing effect of the long aliphatic chains in the novel poly benzoxazine

  18. Oxidation of amines by flavoproteins.

    Science.gov (United States)

    Fitzpatrick, Paul F

    2010-01-01

    Many flavoproteins catalyze the oxidation of primary and secondary amines, with the transfer of a hydride equivalent from a carbon-nitrogen bond to the flavin cofactor. Most of these amine oxidases can be classified into two structural families, the D-amino acid oxidase/sarcosine oxidase family and the monoamine oxidase family. This review discusses the present understanding of the mechanisms of amine and amino acid oxidation by flavoproteins, focusing on these two structural families. Copyright 2009 Elsevier Inc. All rights reserved.

  19. Extraction mechanism of Sc(III) from sulphuric acid solution by primary amine N1923

    International Nuclear Information System (INIS)

    Le Shaoming; Li Deqian; Ni Jiazan

    1987-01-01

    The extraction mechanism of Sc(III) from sulphuric acid solution by primary amine N 1923 (RNH 2 ) has been investigated by means of slope, isomolar continuous variation and saturation methods. The effect of temperature on the extraction of Sc(III) is observed. The extraction equilibrium constant and thermodynamic functions (ΔH, ΔS and ΔG) are obtained. The IR and NMR of extracted compound are measured

  20. Probing the Compound I-like reactivity of a bare high-valent oxo iron porphyrin complex: the oxidation of tertiary amines.

    Science.gov (United States)

    Chiavarino, Barbara; Cipollini, Romano; Crestoni, Maria Elisa; Fornarini, Simonetta; Lanucara, Francesco; Lapi, Andrea

    2008-03-12

    The mechanisms of oxidative N-dealkylation of amines by heme enzymes including peroxidases and cytochromes P450 and by functional models for the active Compound I species have long been studied. A debated issue has concerned in particular the character of the primary step initiating the oxidation sequence, either a hydrogen atom transfer (HAT) or an electron transfer (ET) event, facing problems such as the possible contribution of multiple oxidants and complex environmental effects. In the present study, an oxo iron(IV) porphyrin radical cation intermediate 1, [(TPFPP)*+ Fe(IV)=O]+ (TPFPP = meso-tetrakis (pentafluorophenyl)porphinato dianion), functional model of Compound I, has been produced as a bare species. The gas-phase reaction with amines (A) studied by ESI-FT-ICR mass spectrometry has revealed for the first time the elementary steps and the ionic intermediates involved in the oxidative activation. Ionic products are formed involving ET (A*+, the amine radical cation), formal hydride transfer (HT) from the amine ([A(-H)]+, an iminium ion), and oxygen atom transfer (OAT) to the amine (A(O), likely a carbinolamine product), whereas an ionic product involving a net initial HAT event is never observed. The reaction appears to be initiated by an ET event for the majority of the tested amines which included tertiary aliphatic and aromatic amines as well as a cyclic and a secondary amine. For a series of N,N-dimethylanilines the reaction efficiency for the ET activated pathways was found to correlate with the ionization energy of the amine. A stepwise pathway accounts for the C-H bond activation resulting in the formal HT product, namely a primary ET process forming A*+, which is deprotonated at the alpha-C-H bond forming an N-methyl-N-arylaminomethyl radical, A(-H)*, readily oxidized to the iminium ion, [A(-H)]+. The kinetic isotope effect (KIE) for proton transfer (PT) increases as the acidity of the amine radical cation increases and the PT reaction to the base

  1. Metal-Free Oxidation of Primary Amines to Nitriles through Coupled Catalytic Cycles.

    Science.gov (United States)

    Lambert, Kyle M; Bobbitt, James M; Eldirany, Sherif A; Kissane, Liam E; Sheridan, Rose K; Stempel, Zachary D; Sternberg, Francis H; Bailey, William F

    2016-04-04

    Synergism among several intertwined catalytic cycles allows for selective, room temperature oxidation of primary amines to the corresponding nitriles in 85-98% isolated yield. This metal-free, scalable, operationally simple method employs a catalytic quantity of 4-acetamido-TEMPO (ACT; TEMPO=2,2,6,6-tetramethylpiperidine N-oxide) radical and the inexpensive, environmentally benign triple salt oxone as the terminal oxidant under mild conditions. Simple filtration of the reaction mixture through silica gel affords pure nitrile products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Aromatic-aliphatic polyamide/montmorillonite clay nanocomposite materials: Synthesis, nanostructure and properties

    International Nuclear Information System (INIS)

    Zulfiqar, Sonia; Ahmad, Zahoor; Ishaq, Muhammad; Sarwar, Muhammad Ilyas

    2009-01-01

    New type of aromatic-aliphatic polyamide/montmorillonite nanocomposites were produced using solution intercalation technique in dimethylacetamide. The modification of clay was carried out with ammonium salt of long chain alkyl amine. The nanocomposites were probed for organoclay dispersion, mechanical, thermal and water absorption measurements. Formation of delaminated and intercalated nanostructures was confirmed by X-ray diffraction and TEM studies. Improvement in tensile strength and modulus was observed for nanocomposites with optimum organoclay content (8-wt.%). Thermogravimetric analysis indicated an increase in thermal stability of nanocomposites as compared to pristine polyamide. Differential scanning calorimetric results revealed increase in glass transition temperatures (T g ) with augmenting organoclay in the nanocomposites. Water uptake of the nanocomposites reduced than the neat polyamide rendering decreased permeability.

  3. Aromatic-aliphatic polyamide/montmorillonite clay nanocomposite materials: Synthesis, nanostructure and properties

    Energy Technology Data Exchange (ETDEWEB)

    Zulfiqar, Sonia [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Ahmad, Zahoor [Department of Chemistry, Faculty of Science, Kuwait University, P. O. Box: 5969, Safat 13060 (Kuwait); Ishaq, Muhammad [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Sarwar, Muhammad Ilyas, E-mail: ilyassarwar@hotmail.com [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716 (United States)

    2009-11-15

    New type of aromatic-aliphatic polyamide/montmorillonite nanocomposites were produced using solution intercalation technique in dimethylacetamide. The modification of clay was carried out with ammonium salt of long chain alkyl amine. The nanocomposites were probed for organoclay dispersion, mechanical, thermal and water absorption measurements. Formation of delaminated and intercalated nanostructures was confirmed by X-ray diffraction and TEM studies. Improvement in tensile strength and modulus was observed for nanocomposites with optimum organoclay content (8-wt.%). Thermogravimetric analysis indicated an increase in thermal stability of nanocomposites as compared to pristine polyamide. Differential scanning calorimetric results revealed increase in glass transition temperatures (T{sub g}) with augmenting organoclay in the nanocomposites. Water uptake of the nanocomposites reduced than the neat polyamide rendering decreased permeability.

  4. Impact of biogenic amine molecular weight and structure on surfactant adsorption at the air-water interface.

    Science.gov (United States)

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun

    2016-02-01

    The oligoamines, such as ethylenediamine to pentaethylenetetramine, and the aliphatic biogenic amines, such as putrescine, spermidine and spermine, strongly interact with anionic surfactants, such as sodium dodecylsulfate, SDS. It has been shown that this results in pronounced surfactant adsorption at the air-water interface and the transition from monolayer to multilayer adsorption which depends upon solution pH and oligoamine structure. In the neutron reflectivity, NR, and surface tension, ST, results presented here the role of the oligoamine structure on the adsorption of SDS is investigated more fully using a range of different biogenic amines. The effect of the extent of the intra-molecular spacing between amine groups on the adsorption has been extended by comparing results for cadavarine with putrescine and ethylenediamine. The impact of more complex biogenic amine structures on the adsorption has been investigated with the aromatic phenethylamine, and the heterocyclic amines histamine and melamine. The results provide an important insight into how surfactant adsorption at interfaces can be manipulated by the addition of biogenic amines, and into the role of solution pH and oligoamine structure in modifying the interaction between the surfactant and oligoamine. The results impact greatly upon potential applications and in understanding some of the important biological functions of biogenic amines. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Formation mechanism of NDMA from ranitidine, trimethylamine, and other tertiary amines during chloramination: a computational study.

    Science.gov (United States)

    Liu, Yong Dong; Selbes, Meric; Zeng, Chengchu; Zhong, Rugang; Karanfil, Tanju

    2014-01-01

    Chloramination of drinking waters has been associated with N-nitrosodimethylamine (NDMA) formation as a disinfection byproduct. NDMA is classified as a probable carcinogen and thus its formation during chloramination has recently become the focus of considerable research interest. In this study, the formation mechanisms of NDMA from ranitidine and trimethylamine (TMA), as models of tertiary amines, during chloramination were investigated by using density functional theory (DFT). A new four-step formation pathway of NDMA was proposed involving nucleophilic substitution by chloramine, oxidation, and dehydration followed by nitrosation. The results suggested that nitrosation reaction is the rate-limiting step and determines the NDMA yield for tertiary amines. When 45 other tertiary amines were examined, the proposed mechanism was found to be more applicable to aromatic tertiary amines, and there may be still some additional factors or pathways that need to be considered for aliphatic tertiary amines. The heterolytic ONN(Me)2-R(+) bond dissociation energy to release NDMA and carbocation R(+) was found to be a criterion for evaluating the reactivity of aromatic tertiary amines. A structure-activity study indicates that tertiary amines with benzyl, aromatic heterocyclic ring, and diene-substituted methenyl adjacent to the DMA moiety are potentially significant NDMA precursors. The findings of this study are helpful for understanding NDMA formation mechanism and predicting NDMA yield of a precursor.

  6. Analysis of primary aromatic amines (PAA) in black nylon kitchenware 2014

    DEFF Research Database (Denmark)

    Trier, Xenia; Granby, Kit

    is 0,01 mg of substance per kg of food or food simulant. The detection limit applies to the sum of primary aromatic amines released’ Since July 1st 2011, an additional EU regulation has come into place, which states that each consignment of polyamide (nylon) kitchen utensils from China and Hong Kong......% acetic acid as food simulant at an exposure temperature of 100°C and time from ½-4 hours, depending on the foreseeable use of the utensil. The samples were collected by the Norwegian Food Safety Authority at importers and retail shops. Of the 20 PAAs analysed. four PAAs were detected, being aniline (ANL...

  7. Radiolytic crosslinking and chain scission in aliphatic and alkyl-aromatic polyamides: Pt. 2

    International Nuclear Information System (INIS)

    Lyons, B.J.; Glover, L.C. Jr.

    1991-01-01

    Regression analysis of the radiation parameters of nine aliphatic polyamides exposed to ionizing radiation leads to the conclusion that the decline in the ratio of chain scission to crosslinking in higher aliphatic polyamides is best related to the linear increase in the methylene content of, or the number of methylene groups in, the polyamide repeat unit. G(crosslink)[G(X)] and G(chain scission) [G(CS)] values, however, do not correlate well with either of these parameters. Rather it is found that the major determinant of yields [about 80-85% of the variation for G(X), 70% for G(CS)] is the number of hydrogen atoms or methylene groups in the amine residue. Although, logically, the yields of crosslinks and chain scissions in polyamides would be expected to tend to that of polyethylene as the number of methylene groups in the repeat unit increases, use of two models assuming an exponential trend to the G(X) value characteristic of polyethylene in the analysis did not provide better fits to the data than the simple linear model referred to above. Indeed, the assumption of a significant exponential trend factor led to a marked drop in the goodness of fit. (author)

  8. Sodium Perborate Oxidation of an Aromatic Amine

    Science.gov (United States)

    Juestis, Laurence

    1977-01-01

    Describes an experiment involving the oxidation of aromatic primary amines to the corresponding azo compound; suggests procedures for studying factors that influence the yield of such a reaction, including the choice of solvent and the oxidant-amine ratio. (MLH)

  9. Reductive amination with zinc powder in aqueous media

    Directory of Open Access Journals (Sweden)

    Giovanni B. Giovenzana

    2011-08-01

    Full Text Available Zinc powder in aqueous alkaline media was employed to perform reductive amination of aldehydes with primary amines. The corresponding secondary amines were obtained in good yields along with minor amounts of hydrodimerization byproducts. The protocol is a green alternative to the use of complex hydrides in chlorinated or highly flammable solvents.

  10. Role of amine structure on carbon dioxide adsorption from ultradilute gas streams such as ambient air.

    Science.gov (United States)

    Didas, Stephanie A; Kulkarni, Ambarish R; Sholl, David S; Jones, Christopher W

    2012-10-01

    A fundamental study on the adsorption properties of primary, secondary, and tertiary amine materials is used to evaluate what amine type(s) are best suited for ultradilute CO(2) capture applications. A series of comparable materials comprised of primary, secondary, or tertiary amines ligated to a mesoporous silica support via a propyl linker are used to systematically assess the role of amine type. Both CO(2) and water adsorption isotherms are presented for these materials in the range relevant to CO(2) capture from ambient air and it is demonstrated that primary amines are the best candidates for CO(2) capture from air. Primary amines possess both the highest amine efficiency for CO(2) adsorption as well as enhanced water affinity compared to other amine types or the bare silica support. The results suggest that the rational design of amine adsorbents for the extraction of CO(2) from ambient air should focus on adsorbents rich in primary amines. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A colorimetric chiral sensor based on chiral crown ether for the recognition of the two enantiomers of primary amino alcohols and amines.

    Science.gov (United States)

    Cho, Eun Na Rae; Li, Yinan; Kim, Hee Jin; Hyun, Myung Ho

    2011-04-01

    A new colorimetric chiral sensor material consisting of three different functional sites such as chromophore (2,4-dinitrophenylazophenol dye), binding site (crown ether), and chiral barrier (3,3'-diphenyl-1,1'-binaphthyl group) was prepared and applied to the recognition of the two enantiomers of primary amino alcohols and amines. Among five primary amino alcohols and two primary amines tested, the two enantiomers of phenylalaninol show the highest difference in the absorption maximum wavelength (Δλ(max)=43.5 nm) and in the association constants (K(S)/K(R)=2.51) upon complexation with the colorimetric chiral sensor material and, consequently, the two enantiomers of phenylalaninol were clearly distinguished from each other by the color difference. Copyright © 2010 Wiley-Liss, Inc.

  12. Purification and characterization of the amine dehydrogenase from a facultative methylotroph.

    Science.gov (United States)

    Coleman, J P; Perry, J J

    1984-01-01

    Strain RA-6 is a pink-pigmented organism which can grow on a variety of substrates including methylamine. It can utilize methylamine as sole source of carbon via an isocitrate lyase negative serine pathway. Methylamine grown cells contain an inducible primary amine dehydrogenase [primary amine: (acceptor) oxidoreductase (deaminating)] which is not present in succinate grown cells. The amine dehydrogenase was purified to over 90% homogeneity. It is an acidic protein (isoelectric point of 5.37) with a molecular weight of 118,000 containing subunits with approximate molecular weights of 16,500 and 46,000. It is active on an array of primary terminal amines and is strongly inhibited by carbonyl reagents. Cytochrome c or artificial electron acceptors are required for activity; neither NAD nor NADP can serve as primary electron acceptor.

  13. Aliphatic alkenes and alkynes

    International Nuclear Information System (INIS)

    Cserep, Gy.

    1981-01-01

    This chapter describes the decomposition of aliphatic alkenes and alkynes by radiolysis, concentrating on results published after 1968. The radiolysis of individual compounds, product yields and possible mechanisms of radiation chemical reactions are discussed in detail. The radiolysis of mixtures of aliphatic alkenes is also investigated. General information on decomposition and some condensation reactions is also presented. (Auth./C.F.)

  14. The roles of tertiary amine structure, background organic matter and chloramine species on NDMA formation.

    Science.gov (United States)

    Selbes, Meric; Kim, Daekyun; Ates, Nuray; Karanfil, Tanju

    2013-02-01

    N-nitrosodimethylamine (NDMA), a probable human carcinogen, is a disinfection by-product that has been detected in chloraminated and chlorinated drinking waters and wastewaters. Formation mechanisms and precursors of NDMA are still not well understood. The main objectives of this study were to systematically investigate (i) the effect of tertiary amine structure, (ii) the effect of background natural organic matter (NOM), and (iii) the roles of mono vs. dichloramine species on the NDMA formation. Dimethylamine (DMA) and 20 different tertiary aliphatic and aromatic amines were carefully examined based on their functional groups attached to the basic DMA structure. The wide range (0.02-83.9%) of observed NDMA yields indicated the importance of the structure of tertiary amines, and both stability and electron distribution of the leaving group of tertiary amines on NDMA formation. DMA associated with branched alkyl groups or benzyl like structures having only one carbon between the ring and DMA structure consistently gave higher NDMA yields. Compounds with electron withdrawing groups (EWG) reacted preferentially with monochloramine, whereas compounds with electron donating group (EDG) showed tendency to react with dichloramine to form NDMA. When the selected amines were present in NOM solutions, NDMA formation increased for compounds with EWG while decreased for compounds with EDG. This impact was attributed to the competitions between NOM and amines for chloramine species. The results provided additional information to the commonly accepted mechanism for NDMA formation including chloramine species reacting with tertiary amines and the role of the leaving group on overall NDMA conversion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. A Simple Primary Amine Catalyst for Enantioselective α-Hydroxylations and α-Fluorinations of Branched Aldehydes

    OpenAIRE

    Witten, Michael R.; Jacobsen, Eric N.

    2015-01-01

    A new primary amine catalyst for the asymmetric α-hydroxylation and α-fluorination of α-branched aldehydes is described. The products of the title transformations are generated in excellent yields and with high enantioselectivities. Both processes can be performed within short reaction times and on gram scale. The similarity in the results obtained in both reactions, combined with computational evidence, implies a common basis for stereoinduction and the possibility of a general catalytic mec...

  16. Comparison of several solid-phase extraction sorbents for continuous determination of amines in water by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Jurado-Sánchez, Beatriz; Ballesteros, Evaristo; Gallego, Mercedes

    2009-08-15

    A semiautomatic method has been proposed for the determination of different types of amines in water samples including anilines, chloroanilines, N-nitrosamines and aliphatic amines. The analytes were retained on a solid-phase extraction sorbent column and after elution, 1 microL of the extract was analysed by gas chromatography coupled with electron impact ionization mass spectrometry. A systematic overview is given of the advantages and disadvantages of several sorbents (LiChrolut EN, Oasis HLB, RP-C(18), graphitized carbon black, fullerenes and nanotubes) in the retention of amine compounds and based on sensitivity, selectivity and reliability. The retention efficiency for the studied amines was higher (ca. 100%) with LiChrolut EN and Oasis HLB than it was with RP-C(18) and fullerenes (53 and 62%, respectively, on average). Detection limits of 0.5-16 ng L(-1) for the 27 amines studied were obtained when using a sorbent column containing 75 mg of LiChrolut EN for 100mL of sample, the RSD being lower than 6.5%. The method was applied with good accuracy and precision in the determination of amines in various types of water including river, pond, tap, well, drinking, swimming pool and waste.

  17. Specific determination of 20 primary aromatic amines in aqueous food simulants by liquid chromatography-electrospray ionization-tandem mass spectrometry

    DEFF Research Database (Denmark)

    Mortensen, Sarah Kelly; Trier, Xenia Thorsager; Foverskov, Annie

    2005-01-01

    A multi-analyte method without any pre-treatment steps using reversed-phase liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) was developed and applied for the determination of 20 primary aromatic amines (PAA) associated with polyurethane (PUR) products or azo...

  18. Quantification of amine functional groups and their influence on OM/OC in the IMPROVE network

    Science.gov (United States)

    Kamruzzaman, Mohammed; Takahama, Satoshi; Dillner, Ann M.

    2018-01-01

    Recently, we developed a method using FT-IR spectroscopy coupled with partial least squares (PLS) regression to measure the four most abundant organic functional groups, aliphatic C-H, alcohol OH, carboxylic acid OH and carbonyl C=O, in atmospheric particulate matter. These functional groups are summed to estimate organic matter (OM) while the carbon from the functional groups is summed to estimate organic carbon (OC). With this method, OM and OM/OC can be estimated for each sample rather than relying on one assumed value to convert OC measurements to OM. This study continues the development of the FT-IR and PLS method for estimating OM and OM/OC by including the amine functional group. Amines are ubiquitous in the atmosphere and come from motor vehicle exhaust, animal husbandry, biomass burning, and vegetation among other sources. In this study, calibration standards for amines are produced by aerosolizing individual amine compounds and collecting them on PTFE filters using an IMPROVE sampler, thereby mimicking the filter media and collection geometry of ambient standards. The moles of amine functional group on each standard and a narrow range of amine-specific wavenumbers in the FT-IR spectra (wavenumber range 1 550-1 500 cm-1) are used to develop a PLS calibration model. The PLS model is validated using three methods: prediction of a set of laboratory standards not included in the model, a peak height analysis and a PLS model with a broader wavenumber range. The model is then applied to the ambient samples collected throughout 2013 from 16 IMPROVE sites in the USA. Urban sites have higher amine concentrations than most rural sites, but amine functional groups account for a lower fraction of OM at urban sites. Amine concentrations, contributions to OM and seasonality vary by site and sample. Amine has a small impact on the annual average OM/OC for urban sites, but for some rural sites including amine in the OM/OC calculations increased OM/OC by 0.1 or more.

  19. Thermodynamic functions of hydrogen bonding of amines in methanol derived from solution calorimetry data and headspace analysis

    International Nuclear Information System (INIS)

    Zaitseva, Ksenia V.; Varfolomeev, Mikhail A.; Solomonov, Boris N.

    2012-01-01

    Highlights: ► Solution enthalpies and activity coefficients of amines in methanol were measured. ► Thermodynamic functions of H-bonding of amines with methanol were determined. ► Specific interaction entropy of amines in methanol can be about zero or positive. ► Cooperativity of H-bonds in methanol media is smaller than in water solutions. ► A new view on analysis of specific interaction of solute with methanol is presented. - Abstract: Reactivity and equilibrium properties of organic molecules in self-associated liquids greatly depend on the hydrogen bonding with solvent. This work contains comprehensive thermodynamic analysis of hydrogen bonding of aliphatic and aromatic amines in self-associated solvent methanol. Enthalpies of solution at infinite dilution and limiting activity coefficients for the studied systems were measured experimentally. Enthalpies and Gibbs energies of hydrogen bonding of amines with neat methanol were determined. These values were found to be decreased compared with hydrogen bond energy in equimolar complexes “methanol–amine” determined in inert solvent or base media. A linear dependence between enthalpies and Gibbs energies of hydrogen bonding of amines with neat methanol was observed. It was firstly revealed that the entropy of specific interactions of amines with neat methanol can be about zero or positive. Disruption of solvent–solvent hydrogen bonds can be regarded as the most important step during dissolution of amine in methanol. It was found that the cooperative effect influences on the Gibbs energies of hydrogen bonding of amines in methanol, but in a lesser extent than in aqueous solutions. The new results show that the hydrogen bonding process in the self-associated solvents differs significantly from equimolar complexation in aprotic media.

  20. Efficient one-pot synthesis of indol-3-yl-glycines via uncatalyzed Friedel-Crafts reaction in water.

    Science.gov (United States)

    Ghandi, Mehdi; Taheri, Abuzar

    2009-03-05

    The three component reaction of primary aliphatic amines, glyoxalic acid and indole or N-methylindole in water at ambient temperature affords indol-3-yl or N-methylindol-3-yl-glycine in almost quantitative yields.

  1. Silver salt of 4,6-diazido-N-nitro-1,3,5-triazine-2-amine - characterization of this primary explosive

    Czech Academy of Sciences Publication Activity Database

    Musil, T.; Matyáš, R.; Vala, R.; Růžička, A.; Vlček, Milan

    2014-01-01

    Roč. 39, č. 2 (2014), s. 251-259 ISSN 0721-3115 Institutional support: RVO:61389013 Keywords : primary explosive * AgDANT * silver salt of 4,6-diazido-N-nitro-1,3,5-triazine-2-amine Subject RIV: CC - Organic Chemistry Impact factor: 1.604, year: 2014

  2. Thermodynamic functions of hydrogen bonding of amines in methanol derived from solution calorimetry data and headspace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, Ksenia V., E-mail: zaitseva.ksenia@gmail.com [Chemical Institute, Kazan (Volga Region) Federal University, Kremlevskaya 18, Kazan 420008 (Russian Federation); Varfolomeev, Mikhail A., E-mail: vma.ksu@gmail.com [Chemical Institute, Kazan (Volga Region) Federal University, Kremlevskaya 18, Kazan 420008 (Russian Federation); Solomonov, Boris N., E-mail: boris.solomonov@ksu.ru [Chemical Institute, Kazan (Volga Region) Federal University, Kremlevskaya 18, Kazan 420008 (Russian Federation)

    2012-05-10

    Highlights: Black-Right-Pointing-Pointer Solution enthalpies and activity coefficients of amines in methanol were measured. Black-Right-Pointing-Pointer Thermodynamic functions of H-bonding of amines with methanol were determined. Black-Right-Pointing-Pointer Specific interaction entropy of amines in methanol can be about zero or positive. Black-Right-Pointing-Pointer Cooperativity of H-bonds in methanol media is smaller than in water solutions. Black-Right-Pointing-Pointer A new view on analysis of specific interaction of solute with methanol is presented. - Abstract: Reactivity and equilibrium properties of organic molecules in self-associated liquids greatly depend on the hydrogen bonding with solvent. This work contains comprehensive thermodynamic analysis of hydrogen bonding of aliphatic and aromatic amines in self-associated solvent methanol. Enthalpies of solution at infinite dilution and limiting activity coefficients for the studied systems were measured experimentally. Enthalpies and Gibbs energies of hydrogen bonding of amines with neat methanol were determined. These values were found to be decreased compared with hydrogen bond energy in equimolar complexes 'methanol-amine' determined in inert solvent or base media. A linear dependence between enthalpies and Gibbs energies of hydrogen bonding of amines with neat methanol was observed. It was firstly revealed that the entropy of specific interactions of amines with neat methanol can be about zero or positive. Disruption of solvent-solvent hydrogen bonds can be regarded as the most important step during dissolution of amine in methanol. It was found that the cooperative effect influences on the Gibbs energies of hydrogen bonding of amines in methanol, but in a lesser extent than in aqueous solutions. The new results show that the hydrogen bonding process in the self-associated solvents differs significantly from equimolar complexation in aprotic media.

  3. Dicationic and zwitterionic catalysts for the amine-initiated, immortal ring-opening polymerisation of rac-lactide: facile synthesis of amine-terminated, highly heterotactic PLA

    NARCIS (Netherlands)

    Clark, L.; Cushion, M.G.; Dyer, H.E.; Schwarz, A.D.; Duchateau, R.; Mountford, P.

    2010-01-01

    Dicationic, zwitterionic and conventional yttrium compounds act as catalysts for the primary or secondary amine-initiated immortal ROP of rac-lactide; amine-terminated, highly heterotactic poly(rac-lactides) with narrow polydispersities and well-controlled molecular weights are prepared in this

  4. C-11-labeled octadecylamine, a potential agent for positron tomographic pulmonary metabolism studies

    International Nuclear Information System (INIS)

    Washburn, L.C.; Wallace, R.T.; Byrd, B.L.; Sun, T.T.; Coffey, J.L.; Hubner, K.F.

    1984-01-01

    C-11-Labeled straight-chain primary aliphatic amines are rapidly and selectively sequestered by lung endothelial cells, making these agents potentially useful for positron tomographic studies of the lung as a metabolic organ. However, because amines having straight chains containing 4 to 13 carbon atoms are rapidly catabolized in vivo with loss of radiolabel, quantitation of pulmonary concentration is difficult. The authors have studied the effect of structural changes on the uptake and retention of primary aliphatic amines in rat lung and found that the metabolic loss form the lung decreased with increasing length of the straight carbon chain. In fact, the lung concentration of octadecylamine, a straight-chain amine with 18 carbon atoms, was constant between 1 and 30 minutes after intravenous administration. This highly insoluble amine was solubilized using 3% aqueous human serum albumin. Unilateral, radiation-induced lung injury in the rat was used as a model to study the potential of C-11-labeled octadecylamine. Radiation-damaged (3000 and 5000 Rads) lungs had significantly lower 15-minute uptakes of the labeled amine than the corresponding nonirradiated lungs. However, at 8000 Rads the concentration in both lungs was greatly suppressed, indicating that the decrease in metabolism becomes systemic at high radiation doses. These results suggest that C-11-labeled octadecylamine is a potentially useful agent for quantitative evaluation of pulmonary metabolism by positron tomography

  5. Aliphatic semisynthetic amino terminal variants of myoglobin: enrichment with carbon-13, determination and interpretation of terminal pK values and motions

    International Nuclear Information System (INIS)

    Busch, M.R.

    1985-01-01

    The synthesis of a series of myoglobins substituted in the amino terminal residue to provide variation in the aliphatic nature of the side chain and enrichment in 13 C was accomplished by semisynthetic methods. The replacements of valine, the native first residue, included 13 C enriched glycine, alanine, valine, leucine, and isoleucine. The products were extensively characterized and found to be virtually indistinguishable by most physical methods. 13 C NMR spectroscopy showed significant differences in the amino terminal pK value, ranging from 7.72 for myoglobin to 7.15 for myoglobin. Consideration of the electrostatic effects of the charge array indicated a balance of interactions at this site not significantly altered by variations in the side chain. By examination of the crystal structure, consideration of earlier work regarding the interactions of the side chain of Leu-2, and data regarding the motions of the terminal residue, it was concluded that the interaction of the side chain of the first residue with the hydrophobic cluster formed primarily by close contact of invariant residues Leu-2 and Leu-137 was the primary cause for the reduction in the terminal pK values seen for the larger aliphatics. By restricting the freedom of the residue, this interaction limits the available hydration volume, and consequently favors the unprotonated form of the amine. The concurrent observation of both functional elements in the series of α amino terminal residues brings out the interrelated consequences for the two categories of solvent interactions controlling structural and functional properties in a graded way

  6. Efficient One-Pot Synthesis of Indol-3-yl-Glycines via Uncatalyzed Friedel-Crafts Reaction in Water

    Directory of Open Access Journals (Sweden)

    Mehdi Ghandi

    2009-03-01

    Full Text Available The three component reaction of primary aliphatic amines, glyoxalic acid and indole or N-methylindole in water at ambient temperature affords indol-3-yl or N-methylindol-3-yl-glycine in almost quantitative yields.

  7. Analysis of a Buchwald-Hartwig amination: reaction for pharmaceutical production

    DEFF Research Database (Denmark)

    Christensen, Henrik

    The Buchwald-Hartwig amination reaction is widely used in the production of N-arylated amines in the pharmaceutical industry. The reaction is betweenan aryl halogen and a primary or secondary amine in the presence of a base and a homogeneous catalyst giving the desired N-arylated amine. Due to mild...... is to increase the understanding of the chem­ical reaction mechanisms and kinetics for the Buchwald-Hartwig amination reaction. Also, to develop methods for application of these mechanisms and kinetics to optimize and scale up an organic synthesis to an industrial phar­maceutical production. The Buchwald...

  8. Analysis of a Buckwald-Hartwig amination: reaction for pharmaceutical production

    DEFF Research Database (Denmark)

    Christensen, Henrik; Kiil, Søren; Dam-Johansen, Kim

    The Buchwald-Hartwig amination reaction is widely used in the production of N-arylated amines in the pharmaceutical industry. The reaction is betweenan aryl halogen and a primary or secondary amine in the presence of a base and a homogeneous catalyst giving the desired N-arylated amine. Due to mild...... is to increase the understanding of the chem­ical reaction mechanisms and kinetics for the Buchwald-Hartwig amination reaction. Also, to develop methods for application of these mechanisms and kinetics to optimize and scale up an organic synthesis to an industrial phar­maceutical production. The Buchwald...

  9. Bifunctional (cyclopentadienone)iron-tricarbonyl complexes: Synthesis, computational studies and application in reductive amination

    KAUST Repository

    Moulin, Solenne; Dentel, Hé lè ne; Pagnoux-Ozherelyeva, Anastassiya; Gaillard, Sylvain; Poater, Albert; Cavallo, Luigi; Lohier, Jean Franç ois; Renaud, Jean Luc

    2013-01-01

    . Festival of amination: Two series of modified Knölker's complexes were synthesised and applied in the reductive amination of various carbonyl derivatives with primary or secondary amines (see scheme, TIPS = triisopropylsilyl). For a mechanistic insight

  10. Efficient acetylation of primary amines and amino acids in ...

    Indian Academy of Sciences (India)

    bDepartment of Clinical and Experimental Pharmacology, School of Tropical Medicine ... As a result ... methods of acetylation of amines are known using ace- ... vents we report here, environmentally benign, eco- ... It was filtered under suction,.

  11. Aliphatic isocyanurates and polyisocyanurate networks

    OpenAIRE

    Driest, P. J.; Lenzi, V.; Marques, L.; Ramos, M. M. D.; Dijkstra, D. J.; Richter, F. U.; Stamatialis, D.; Grijpma, D. W.

    2017-01-01

    The production, processing, and application of aliphatic isocyanate (NCO)-based thermosets such as polyurethane coatings and adhesives are generally limited by the surprisingly high viscosity of tri-functionality and higher-functionality isocyanurates. These compounds are essential crosslinking additives for network formation. However, the mechanism by which these high viscosities are caused is not yet understood. In this work, model aliphatic isocyanurates were synthesized and isolated in hi...

  12. N-hydroxysuccinimide-mediated photoelectrooxidation of aliphatic alcohols based on cadmium telluride nanoparticles decorated graphene nanosheets

    International Nuclear Information System (INIS)

    Navaee, Aso; Salimi, Abdollah

    2013-01-01

    A simple nonenzymatic electrochemical protocol is proposed for the oxidation of aliphatic alcohols using formed N-hydroxysuccinimide (NHS) radical cation on the graphene nanosheets/L-cysteine/cadmium telluride quantum dot (QD) nanocomposite (GNs/Cys/CdTe) modified glassy carbon (GC) electrode. At first, graphene oxide (GO) is chemically synthesized from graphite after which Cys is covalently functionalized to GO through formation of amide bonds between carboxylic acid groups of GO and amine groups of Cys. The resulting GNs/Cys is used as a capping agent to synthesize CdTe QD nanoparticles. After the characterization of the as-made nanocomposite which confirmed the successful attachment of CdTe nanoparticles to the GNs, the ability of the GNs/Cys/CdTe modified GC electrode toward the nonenzymatic ethanol electrooxidation is examined in the presence of NHS as an effective mediating system. Our results revealed that the proposed system possess a good activity to NHS electrooxidation and subsequently, ethanol oxidation. Moreover, the GNs/Cys/CdTe modified electrode displayed a significant photoelectrocatalytic activity toward the ethanol oxidation upon illumination by visible light. The photoactive GNs/Cys/CdTe nanohybrid presented here showing favorable photoelectrochemical features for nonenzymatic aliphatic alcohols oxidation may hold great promise to the development of electrochemical sensors and biofuel cells

  13. Oxidation of tertiary amines by cytochrome p450-kinetic isotope effect as a spin-state reactivity probe.

    Science.gov (United States)

    Li, Chunsen; Wu, Wei; Cho, Kyung-Bin; Shaik, Sason

    2009-08-24

    Two types of tertiary amine oxidation processes, namely, N-dealkylation and N-oxygenation, by compound I (Cpd I) of cytochrome P450 are studied theoretically using hybrid DFT calculations. All the calculations show that both N-dealkylation and N-oxygenation of trimethylamine (TMA) proceed preferentially from the low-spin (LS) state of Cpd I. Indeed, the computed kinetic isotope effects (KIEs) for the rate-controlling hydrogen abstraction step of dealkylation show that only the KIE(LS) fits the experimental datum, whereas the corresponding value for the high-spin (HS) process is much higher. These results second those published before for N,N-dimethylaniline (DMA), and as such, they further confirm the conclusion drawn then that KIEs can be a sensitive probe of spin state reactivity. The ferric-carbinolamine of TMA decomposes most likely in a non-enzymatic reaction since the Fe-O bond dissociation energy (BDE) is negative. The computational results reveal that in the reverse reaction of N-oxygenation, the N-oxide of aromatic amine can serve as a better oxygen donor than that of aliphatic amine to generate Cpd I. This capability of the N-oxo derivatives of aromatic amines to transfer oxygen to the heme, and thereby generate Cpd I, is in good accord with experimental data previously reported.

  14. Asymmetric Formal Aza-Diels-Alder Reaction of Trifluoromethyl Hemiaminals with Enones Catalyzed by Primary Amines.

    Science.gov (United States)

    Zhang, Sheng; Cha, Lide; Li, Lijun; Hu, Yanbin; Li, Yanan; Zha, Zhenggen; Wang, Zhiyong

    2016-04-15

    A primary amine-catalyzed asymmetric formal aza-Diels-Alder reaction of trifluoromethyl hemiaminals with enones was developed via a chiral gem-diamine intermediate. This novel protocol allowed facile access to structurally diverse trifluoromethyl-substituted piperidine scaffolds with high stereoselectivity. The utility of this method was further demonstrated through a concise approach to biologically active 4-hydroxypiperidine. More importantly, a stepwise mechanism involving an asymmetric induction process was proposed to rationalize the positive correlation between the chirality of the gem-diamine intermediate and the formal aza-Diels-Alder product.

  15. 3,3'-Diaryl-BINOL phosphoric acids as enantioselective extractants of benzylic primary amines.

    Science.gov (United States)

    Verkuijl, Bastiaan J V; de Vries, Johannes G; Feringa, Ben L

    2011-01-01

    We report that 3,3'-diaryl-BINOL phosphoric acids are effective enantioselective extractants in chiral separation methods based on reactive liquid-liquid extraction. These new extractants are capable of separating racemic benzylic primary amine substrates. The effect of the nature of the substituents at the 3,3'-positions of the host were examined as well as the structure of the substrate, together with important parameters such as the organic solvent, the pH of the aqueous phase, and the host stoichiometry. Titration of the substrate with the host was monitored by FTIR, NMR, UV-Vis, and CD spectroscopy, which provided insight into the structure of the host-guest complex involved in extraction. Copyright © 2010 Wiley-Liss, Inc.

  16. Bioinspired organocatalytic aerobic C-H oxidation of amines with an ortho-quinone catalyst.

    Science.gov (United States)

    Qin, Yan; Zhang, Long; Lv, Jian; Luo, Sanzhong; Cheng, Jin-Pei

    2015-03-20

    A simple bioinspired ortho-quinone catalyst for the aerobic oxidative dehydrogenation of amines to imines is reported. Without any metal cocatalysts, the identified optimal ortho-quinone catalyst enables the oxidations of α-branched primary amines and cyclic secondary amines. Mechanistic studies have disclosed the origins of different performances of ortho-quinone vs para-quinone in biomimetic amine oxidations.

  17. A Bioinspired Organocatalytic Cascade for the Selective Oxidation of Amines under Air.

    Science.gov (United States)

    Largeron, Martine; Fleury, Maurice-Bernard

    2017-05-17

    A bioinspired organocatalytic cascade reaction for the selective aerobic oxidative cross-coupling of primary amines to imines is described. This approach takes advantages of commercially available pyrogallol monomeric precursor to deliver low loadings of natural purpurogallin in situ, under air. This is further engaged in a catalytic process with the amine substrate affording, under single turnover, the active biomimetic quinonoid organocatalyst and the homocoupled imine intermediate, which is then converted into cross-coupled imine after dynamic transimination. This organocatalytic cascade inspired by both purpurogallin biosynthesis and copper amine oxidases allows the aerobic oxidation of non-activated primary amines that non-enzymatic organocatalysts were not able to accomplish alone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Amines as extracting agents for the quantitative determinations of actinides in biological samples

    International Nuclear Information System (INIS)

    Singh, N.P.

    1987-01-01

    The use of amines (primary, secondary and tertiary chains and quaternary ammonium salts) as extracting agents for the quantitative determination of actinides in biological samples is reviewed. Among the primary amines, only Primene JM-T is used to determine Pu in urine and bone. No one has investigated the possibility of using secondary amines to quantitatively extract actinides from biological samples. Among the tertiary amines, tri-n-octylamine, tri-iso-octylamine, tyricaprylamine (Alamine) and trilaurylamine (tridodecylamine) are used extensively to extract and separate the actinides from biological samples. Only one quaternary ammonium salt, methyltricapryl ammonium chloride (Aliquat-336), is used to extract Pu from biological samples. (author) 28 refs

  19. Grafting of model primary amine compounds to cellulose nanowhiskers through periodate oxidation

    Science.gov (United States)

    Rajalaxmi Dash; Thomas Elder; Arthur Ragauskas

    2012-01-01

    This study demonstrates regioselective oxidation of cellulose nanowhiskers using 2.80–10.02 mmols of sodium periodate per 5 g of whiskers followed by grafting with methyl and butyl amines through a Schiff base reaction to obtain their amine derivatives in 80–90 % yield. We found a corresponding increase in carbonyl content (0.06–0.14 mmols/g) of the dialdehyde...

  20. Boron-Catalyzed N-Alkylation of Amines using Carboxylic Acids.

    Science.gov (United States)

    Fu, Ming-Chen; Shang, Rui; Cheng, Wan-Min; Fu, Yao

    2015-07-27

    A boron-based catalyst was found to catalyze the straightforward alkylation of amines with readily available carboxylic acids in the presence of silane as the reducing agent. Various types of primary and secondary amines can be smoothly alkylated with good selectivity and good functional-group compatibility. This metal-free amine alkylation was successfully applied to the synthesis of three commercial medicinal compounds, Butenafine, Cinacalcet. and Piribedil, in a one-pot manner without using any metal catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Efficient acetylation of primary amines and amino acids in ...

    Indian Academy of Sciences (India)

    This effort represents the first efficient use of this most reactive but cheap acetylating agent to acetylate amines in excellent yields in aqueous medium. This is a potentially useful green chemical transformation where reaction takes place in environment-friendly brine solution leading to easy work-up and isolation of the ...

  2. Photocatalytic organic transformation by layered double hydroxides: highly efficient and selective oxidation of primary aromatic amines to their imines under ambient aerobic conditions.

    Science.gov (United States)

    Yang, Xiu-Jie; Chen, Bin; Li, Xu-Bing; Zheng, Li-Qiang; Wu, Li-Zhu; Tung, Chen-Ho

    2014-06-25

    We report the first application of layered double hydroxide as a photocatalyst in the transformation of primary aromatic amines to their corresponding imines with high efficiency and selectivity by using oxygen in an air atmosphere as a terminal oxidant under light irradiation.

  3. [Simultaneous determination of 33 primary aromatic amines of free state in fine pigments by ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry].

    Science.gov (United States)

    Man, Zhengyin; Wang, Quanlin; Li, Hesheng; Zhang, Aizhi

    2014-12-01

    A comprehensive analytical method based on ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-MS/MS) has been developed for the simultaneous determination of 33 primary aromatic amines (PAAs) in fine pigments such as gouache paint, oil painting pigment and acrylic paint. The primary aromatic amines in samples were extracted with acetonitrile. Then the extract was concentrated by centrifugation and nitrogen blow, finally diluted to 2 mL with methanol-water (1:9, v/v) and filtered through 0. 22 im membrane before UPLC-MS/MS analysis. The analytes were separated on a BEH Phenyl column (100 mm x 2. 1 mm, 1. 7 1µm) with 0. 07% (v/v) formic acid in methanol-water as mobile phases in gradient elution. The PAAs were detected by UPLC-MS/MS under multiple reaction monitoring (MRM) mode and quantified by the internal standard method. The separation conditions, fragment voltages and collision energies were optimized. The impacts of extraction times, extraction solvents and concentration methods on recoveries were studied. The limits of detection and limits of quantitation for the 33 primary aromatic amines were 5-50 µg/kg and 15-150 µg/kg respectively. The mean recoveries of three different dye products at three spiked levels were 70. 1% - 115. 8%. The relative standard deviations were 2. 1% - 15%. The expenmental results indicated that the method is simple, rapid, sensitive, accurate and can meet the requirements for the determination.

  4. Bioinspired aerobic oxidation of secondary amines and nitrogen heterocycles with a bifunctional quinone catalyst.

    Science.gov (United States)

    Wendlandt, Alison E; Stahl, Shannon S

    2014-01-08

    Copper amine oxidases are a family of enzymes with quinone cofactors that oxidize primary amines to aldehydes. The native mechanism proceeds via an iminoquinone intermediate that promotes high selectivity for reactions with primary amines, thereby constraining the scope of potential biomimetic synthetic applications. Here we report a novel bioinspired quinone catalyst system consisting of 1,10-phenanthroline-5,6-dione/ZnI2 that bypasses these constraints via an abiological pathway involving a hemiaminal intermediate. Efficient aerobic dehydrogenation of non-native secondary amine substrates, including pharmaceutically relevant nitrogen heterocycles, is demonstrated. The ZnI2 cocatalyst activates the quinone toward amine oxidation and provides a source of iodide, which plays an important redox-mediator role to promote aerobic catalytic turnover. These findings provide a valuable foundation for broader development of aerobic oxidation reactions employing quinone-based catalysts.

  5. Important Roles of Enthalpic and Entropic Contributions to CO 2 Capture from Simulated Flue Gas and Ambient Air Using Mesoporous Silica Grafted Amines

    KAUST Repository

    Alkhabbaz, Mustafa A.; Bollini, Praveen; Foo, Guo Shiou; Sievers, Carsten; Jones, Christopher W.

    2014-01-01

    © 2014 American Chemical Society. The measurement of isosteric heats of adsorption of silica supported amine materials in the low pressure range (0- 0.1 bar) is critical for understanding the interactions between CO2 and amine sites at low coverage and hence to the development of efficient amine adsorbents for CO2 capture from flue gas and ambient air. Heats of adsorption for an array of silica-supported amine materials are experimentally measured at low coverage using a Calvet calorimeter equipped with a customized dosing manifold. In a series of 3-aminopropylfunctionalized silica materials, higher amine densities resulted in higher isosteric heats of adsorption, clearly showing that the density/proximity of amine sites can influence the amine efficiency of adsorbents. In a series of materials with fixed amine loading but different amine types, strongly basic primary and secondary amine materials are shown to have essentially identical heats of adsorption near 90 kJ/mol. However, the adsorption uptakes vary substantially as a function of CO2 partial pressure for different primary and secondary amines, demonstrating that entropic contributions to adsorption may play a key role in adsorption at secondary amine sites, making adsorption at these sites less effi cient at the low coverages that are important to the direct capture of CO2 from ambient air. Thus, while primary amines are confirmed to be the most effective amine types for CO2 capture from ambient air, this is not due to enhanced enthalpic contributions associated with primary amines over secondary amines, but may be due to unfavorable entropic factors associated with organization of the second alkyl chain on the secondary amine during CO2 adsorption. Given this hypothesis, favorable entropic factors may be the main reason primary amine based adsorbents are more effective under air capture conditions.

  6. Important Roles of Enthalpic and Entropic Contributions to CO 2 Capture from Simulated Flue Gas and Ambient Air Using Mesoporous Silica Grafted Amines

    KAUST Repository

    Alkhabbaz, Mustafa A.

    2014-09-24

    © 2014 American Chemical Society. The measurement of isosteric heats of adsorption of silica supported amine materials in the low pressure range (0- 0.1 bar) is critical for understanding the interactions between CO2 and amine sites at low coverage and hence to the development of efficient amine adsorbents for CO2 capture from flue gas and ambient air. Heats of adsorption for an array of silica-supported amine materials are experimentally measured at low coverage using a Calvet calorimeter equipped with a customized dosing manifold. In a series of 3-aminopropylfunctionalized silica materials, higher amine densities resulted in higher isosteric heats of adsorption, clearly showing that the density/proximity of amine sites can influence the amine efficiency of adsorbents. In a series of materials with fixed amine loading but different amine types, strongly basic primary and secondary amine materials are shown to have essentially identical heats of adsorption near 90 kJ/mol. However, the adsorption uptakes vary substantially as a function of CO2 partial pressure for different primary and secondary amines, demonstrating that entropic contributions to adsorption may play a key role in adsorption at secondary amine sites, making adsorption at these sites less effi cient at the low coverages that are important to the direct capture of CO2 from ambient air. Thus, while primary amines are confirmed to be the most effective amine types for CO2 capture from ambient air, this is not due to enhanced enthalpic contributions associated with primary amines over secondary amines, but may be due to unfavorable entropic factors associated with organization of the second alkyl chain on the secondary amine during CO2 adsorption. Given this hypothesis, favorable entropic factors may be the main reason primary amine based adsorbents are more effective under air capture conditions.

  7. Important roles of enthalpic and entropic contributions to CO2 capture from simulated flue gas and ambient air using mesoporous silica grafted amines.

    Science.gov (United States)

    Alkhabbaz, Mustafa A; Bollini, Praveen; Foo, Guo Shiou; Sievers, Carsten; Jones, Christopher W

    2014-09-24

    The measurement of isosteric heats of adsorption of silica supported amine materials in the low pressure range (0-0.1 bar) is critical for understanding the interactions between CO2 and amine sites at low coverage and hence to the development of efficient amine adsorbents for CO2 capture from flue gas and ambient air. Heats of adsorption for an array of silica-supported amine materials are experimentally measured at low coverage using a Calvet calorimeter equipped with a customized dosing manifold. In a series of 3-aminopropyl-functionalized silica materials, higher amine densities resulted in higher isosteric heats of adsorption, clearly showing that the density/proximity of amine sites can influence the amine efficiency of adsorbents. In a series of materials with fixed amine loading but different amine types, strongly basic primary and secondary amine materials are shown to have essentially identical heats of adsorption near 90 kJ/mol. However, the adsorption uptakes vary substantially as a function of CO2 partial pressure for different primary and secondary amines, demonstrating that entropic contributions to adsorption may play a key role in adsorption at secondary amine sites, making adsorption at these sites less efficient at the low coverages that are important to the direct capture of CO2 from ambient air. Thus, while primary amines are confirmed to be the most effective amine types for CO2 capture from ambient air, this is not due to enhanced enthalpic contributions associated with primary amines over secondary amines, but may be due to unfavorable entropic factors associated with organization of the second alkyl chain on the secondary amine during CO2 adsorption. Given this hypothesis, favorable entropic factors may be the main reason primary amine based adsorbents are more effective under air capture conditions.

  8. A new and efficient multicomponent solid-phase synthesis of 2-acylaminomethylthiazoles

    NARCIS (Netherlands)

    Henkel, Bernd; Sax, Michael; Dömling, Alexander

    2003-01-01

    A new multicomponent reaction (MCR) for the preparation of 2-substituted thiazole libraries using Rink amide resin is described. Thiazoles are assembled in a one-pot MCR of a thiocarboxylic acid, aldehyde, 3-(N,N-dimethylamino)-2-isocyanoacrylate with a resin-bound primary amine. Aliphatic and

  9. Detection of cometary amines in samples returned by Stardust

    Science.gov (United States)

    Glavin, D. P.; Dworkin, J. P.; Sandford, S. A.

    2008-02-01

    The abundances of amino acids and amines, as well as their enantiomeric compositions, were measured in samples of Stardust comet-exposed aerogel and foil using liquid chromatography with UV fluorescence detection and time of flight mass spectrometry (LC-FD/ToF-MS). A suite of amino acids and amines including glycine, L-alanine, β-alanine (BALA), γ-amino-n-butyric acid (GABA), ɛ-amino-n-caproic acid (EACA), ethanolamine (MEA), methylamine (MA), and ethylamine (EA) were identified in acid-hydrolyzed, hot-water extracts of these Stardust materials above background levels. With the exception of MA and EA, all other primary amines detected in cometexposed aerogel fragments C2054,4 and C2086,1 were also present in the flight aerogel witness tile that was not exposed to the comet, indicating that most amines are terrestrial in origin. The enhanced relative abundances of MA and EA in comet-exposed aerogel compared to controls, coupled with MA to EA ratios (C2054,4: 1.0 ± 0.2; C2086,1: 1.8 ± 0.2) that are distinct from preflight aerogels (E243-13C and E243-13F: 7 ± 3), suggest that these volatile amines were captured from comet Wild 2. MA and EA were present predominantly in an acid-hydrolyzable bound form in the aerogel, rather than as free primary amines, which is consistent with laboratory analyses of cometary ice analog materials. It is possible that Wild 2 MA and EA were formed on energetically processed icy grains containing ammonia and approximately equal abundances of methane and ethane. The presence of cometary amines in Stardust material supports the hypothesis that comets were an important source of prebiotic organic carbon and nitrogen on the early Earth.

  10. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aliphatic polycarboxylic acid metal... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under this...

  11. Gold recovery from acidic leach solutions using as extractants trialkylamines of N,N'-di-alkyl-aliphatic amides

    Energy Technology Data Exchange (ETDEWEB)

    Baroncelli, F.; Carlini, D.; Gasparini, G.M.; Simonetti, E.

    1988-07-01

    TriOctylAmine (TOA) and a di-substituted aliphatic amide, N,N-Di-N-ButylOctanamide (DBOA), were examined in batch and in mini mixer-settler experiments using leachates of Peruvian and Bolivian concentrates. With these minerals, very rich in sulfur (pyrites, stybine), 90-95% gold recovery in 12-24 hours was reached by leaching with 4M aqua regia (HCl 3M nitric acid 1M) at room temperature and with 1/3 solid/liquid ratio. With these leachate solutions (2-3M total acidity, 10-60 ppm ao Au), the two processes with TOA (GAMEX PROCESS) and with DBOA (AUMIDEX PROCESS) were tested and compared. Experimental results strongly support the possibility of using TOA and DBOA on an industrial scale.

  12. Extension of the cubic-plus-association (CPA) equation of state to amines

    DEFF Research Database (Denmark)

    Kaarsholm, Mads Kristian; Derawi, Samer; Michelsen, Michael Locht

    2005-01-01

    The cubic-plus-association (CPA) equation of state has been extended to modeling mixtures containing amines. Special focus was given to primary and secondary amines, which are known to self-associate, thus forming hydrogen bonds in mixtures with alkanes. Pure-compound parameters have been determi...

  13. Fast and Living Ring-Opening Polymerization of α-Amino Acid N-Carboxyanhydrides Triggered by an "Alliance" of Primary and Secondary Amines at Room Temperature

    KAUST Repository

    Zhao, Wei; Gnanou, Yves; Hadjichristidis, Nikolaos

    2015-01-01

    A novel highly efficient strategy, based on an "alliance" of primary and secondary amine initiators, was successfully developed allowing the fast and living ring-opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCAs) at room temperature. (Chemical Equation Presented). © 2015 American Chemical Society.

  14. Fast and Living Ring-Opening Polymerization of α-Amino Acid N-Carboxyanhydrides Triggered by an "Alliance" of Primary and Secondary Amines at Room Temperature

    KAUST Repository

    Zhao, Wei

    2015-04-13

    A novel highly efficient strategy, based on an "alliance" of primary and secondary amine initiators, was successfully developed allowing the fast and living ring-opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCAs) at room temperature. (Chemical Equation Presented). © 2015 American Chemical Society.

  15. Shear bond strength of a self‑etched resin cement to an indirect ...

    African Journals Online (AJOL)

    2014-11-15

    Nov 15, 2014 ... 3M ESPE, St. Paul, MN, USA Silane treated glass powder, substituted dimethacrylate 1‑benzyl‑5‑phenyl‑barbic‑acid, calcium salt, silane treated silica, sodium p‑toluenesulfinate, 1,12‑dodecane dimethycrylate calcium hydroxide methacrylated aliphatic amine methacrylated aliphatic amine titanium dioxide.

  16. Structure, thermal and fracture mechanical properties of benzoxazine-modified amine-cured DGEBA epoxy resins

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available First, traditional diamine hardeners of epoxy resins (EP were checked as potential accelerators for the benzoxazine (BOX homopolymerization. It was established that the acceleration effect depends on both the type and amount of the diamine compounds. In the follow-up work amine-curable diglycidyl ether bisphenol A (DGEBA type EP was modified with BOX keeping the EP/BOX ratio constant (75/25 wt.%. The amine hardeners, added in the EP in stoichiometric amounts, were of aliphatic and aromatic nature, viz. diethylenetriamine (DETA, 4,4'-diaminodiphenyl methane (DDM, and their 1/1 mixture. The thermal, viscoelastic, flexural and fracture mechanical properties of the EP/BOX hybrids were determined and compared to those of the reference EPs. Based on dynamic-mechanical thermal analysis and atomic force microscopy the formation of co-network between EP and BOX was concluded. Homopolymerized BOX was built in the network in nanoscaled inclusions and it was associated with internal antiplasticization. Incorporation of BOX improved the charring, enhanced the flexural modulus and strength, and reduced the glass transition of the parent EP. The fracture toughness and energy were not improved by hybridization with BOX.

  17. Factors influencing phase-disengagement rates in solvent-extraction systems employing tertiary amine extractants

    International Nuclear Information System (INIS)

    Moyer, B.A.; McDowell, W.J.

    1981-01-01

    The primary purpose of the present investigation was to examine the effects of amine size and structure on phase disengagement. Nine commercial tertiary amines were tested together with four laboratory-quality amines for uranium extraction and both organic-continuous (OC) and aqueous-continuous (AC) phase disengagement under Amex-type conditions. Synthetic acid sulfate solutions with and without added colloidal silica and actual ore leach solutions were used as the aqueous phases. Phase disengagement results were correlated with amine size and branching and solution wetting behavior on a silicate (glass) surface. The results suggest that the performance of some Amex systems may be improved by using branched chain tertiary amine extractants of higher molecular weight than are now normally used

  18. A Mild and Green Route for Regio-selective Amination of Oxiranes Using Nanomagnetic Supported Ferrous Ion as a Solid Lewis Acid Catalyst in Water

    Directory of Open Access Journals (Sweden)

    Fariborz Mansouri

    2016-07-01

    Full Text Available A mild, green and highly efficient route for regio-selective amination of oxiranes was developed via incorporation of Mn(II, Fe(II, Co(II, Ni(II, Cu(II and Zn(II cations onto the surface of hydroxyapatite-encapsulated γ-Fe2O3 nanoparticles (γ-Fe2O3@HAp. Among six magnetically recoverable catalytic systems denoted as [γ-Fe2O3@HAp-MII], the catalyst in which M designated as Fe(II showed the best efficiency as well as regio-selectivity in amination of oxiranes under an ambient reaction condition. A wide variety of aromatic and aliphatic amines were reacted with epoxides using magnetically separable iron catalyst to give the corresponding amino alcohols in excellent yields and selectivities in water as solvent at room temperature. In addition, recovery of the catalyst was successfully carried out in subsequent runs without any decrease in activity even after 5 runs. High regio-selectivity toward terminal ring-opening, efficient catalyst reusability using simple magnetic separation, high yields, simplicity in operation and diversity for various substrates are of advantages of this study.

  19. Enhanced reactivities toward amines by introducing an imine arm to the pincer ligand: Direct coupling of two amines to form an imine without oxidant

    KAUST Repository

    He, Lipeng

    2012-07-23

    Dehydrogenative homocoupling of primary alcohols to form esters and coupling of amines to form imines was accomplished using a class of novel pincer ruthenium complexes. The reactivities of the ruthenium pincer complexes for the direct coupling of amines to form imines were enhanced by introducing an imine arm to the pincer ligand. Selective oxidation of benzylamines to imines was achieved using aniline derivatives as the substrate and solvent. © 2012 American Chemical Society.

  20. Enhanced reactivities toward amines by introducing an imine arm to the pincer ligand: Direct coupling of two amines to form an imine without oxidant

    KAUST Repository

    He, Lipeng; Chen, Tao; Gong, Dirong; Lai, Zhiping; Huang, Kuo-Wei

    2012-01-01

    Dehydrogenative homocoupling of primary alcohols to form esters and coupling of amines to form imines was accomplished using a class of novel pincer ruthenium complexes. The reactivities of the ruthenium pincer complexes for the direct coupling of amines to form imines were enhanced by introducing an imine arm to the pincer ligand. Selective oxidation of benzylamines to imines was achieved using aniline derivatives as the substrate and solvent. © 2012 American Chemical Society.

  1. Modulation of the genotoxicity of bleomycin by amines through noncovalent DNA interactions and alteration of physiological conditions in yeast

    International Nuclear Information System (INIS)

    Hoffmann, George R.; Gessner, Gabrielle S.; Hughes, Jennifer F.; Ronan, Matthew V.; Sylvia, Katelyn E.; Willett, Christine J.

    2007-01-01

    The effects of amines on the induction of mitotic gene conversion by bleomycin (BLM) were studied at the trp5 locus in Saccharomyces cerevisiae strain D7. BLM induces double-strand breaks in DNA and is a potent recombinagen in this assay. The polyamine spermidine causes concentration-dependent protection against the genotoxicity of BLM, reducing the convertant frequency by over 90% under the most protective conditions. Spermine, diethylenetriamine, ethylenediamine, putrescine, and ethylamine were also antigenotoxic in combined treatments with BLM. There was a general correspondence between the protective effect and the number of amino groups, suggesting that more strongly cationic amines tend to be stronger antirecombinagens. Electrostatic association of the amines with DNA probably hinders BLM access to the 4' position of deoxyribose where it generates a free radical. Other amines interact with BLM differently from these unbranched aliphatic amines. The aminothiol cysteamine inhibits the genotoxicity of BLM under hypoxic conditions but increases it under euoxic conditions. In contrast, pargyline potentiates the genotoxicity of BLM under hypoxic conditions but not under euoxic conditions. The antirecombinagenic effect of cysteamine apparently involves DNA binding and depletion of oxygen needed for BLM activity, whereas its potentiation of BLM entails its serving as an electron source for the activation of BLM. Pargyline may enhance BLM indirectly by preventing the depletion of oxygen by monoamine and polyamine oxidase. The planar 9-aminoacridine weakly induces gene conversion in strain D7, but it is strongly synergistic with BLM. Enhancement of BLM activity by this compound and by the related nitroacridine Entozon is apparently mediated by intercalation of the acridine ring system into DNA. Thus, the influence of amines on the genotoxicity of BLM in yeast encompasses antigenotoxic, potentiating, and synergistic interactions. The underlying mechanisms involve

  2. Modulation of the genotoxicity of bleomycin by amines through noncovalent DNA interactions and alteration of physiological conditions in yeast

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, George R. [Department of Biology, College of the Holy Cross, One College Street, Worcester, MA 01610-2395 (United States)], E-mail: ghoffmann@holycross.edu; Gessner, Gabrielle S.; Hughes, Jennifer F.; Ronan, Matthew V.; Sylvia, Katelyn E.; Willett, Christine J. [Department of Biology, College of the Holy Cross, One College Street, Worcester, MA 01610-2395 (United States)

    2007-10-01

    The effects of amines on the induction of mitotic gene conversion by bleomycin (BLM) were studied at the trp5 locus in Saccharomyces cerevisiae strain D7. BLM induces double-strand breaks in DNA and is a potent recombinagen in this assay. The polyamine spermidine causes concentration-dependent protection against the genotoxicity of BLM, reducing the convertant frequency by over 90% under the most protective conditions. Spermine, diethylenetriamine, ethylenediamine, putrescine, and ethylamine were also antigenotoxic in combined treatments with BLM. There was a general correspondence between the protective effect and the number of amino groups, suggesting that more strongly cationic amines tend to be stronger antirecombinagens. Electrostatic association of the amines with DNA probably hinders BLM access to the 4' position of deoxyribose where it generates a free radical. Other amines interact with BLM differently from these unbranched aliphatic amines. The aminothiol cysteamine inhibits the genotoxicity of BLM under hypoxic conditions but increases it under euoxic conditions. In contrast, pargyline potentiates the genotoxicity of BLM under hypoxic conditions but not under euoxic conditions. The antirecombinagenic effect of cysteamine apparently involves DNA binding and depletion of oxygen needed for BLM activity, whereas its potentiation of BLM entails its serving as an electron source for the activation of BLM. Pargyline may enhance BLM indirectly by preventing the depletion of oxygen by monoamine and polyamine oxidase. The planar 9-aminoacridine weakly induces gene conversion in strain D7, but it is strongly synergistic with BLM. Enhancement of BLM activity by this compound and by the related nitroacridine Entozon is apparently mediated by intercalation of the acridine ring system into DNA. Thus, the influence of amines on the genotoxicity of BLM in yeast encompasses antigenotoxic, potentiating, and synergistic interactions. The underlying mechanisms involve

  3. Amine functionalized nanodiamond promotes cellular adhesion, proliferation and neurite outgrowth

    International Nuclear Information System (INIS)

    Hopper, A P; Dugan, J M; Gill, A A; Haycock, J W; Claeyssens, F; Fox, O J L; May, P W

    2014-01-01

    In this study, we report the production of amine functionalized nanodiamond. The amine functionalized nanodiamond forms a conformal monolayer on a negatively charged surface produced via plasma polymerization of acrylic acid. Nanodiamond terminated surfaces were studied as substrates for neuronal cell culture. NG108-15 neuroblastoma-glyoma hybrid cells were successfully cultured upon amine functionalized nanodiamond coated surfaces for between 1 and 7 d. Additionally, primary dorsal root ganglion (DRG) neurons and Schwann cells isolated from Wistar rats were also successfully cultured over a period of 21 d illustrating the potential of the coating for applications in the treatment of peripheral nerve injury. (paper)

  4. Primary aromatic amines (PAAs) in black nylon and other food-contact materials, 2004-2009

    DEFF Research Database (Denmark)

    Trier, Xenia Thorsager; Okholm, B.; Foverskov, Annie

    2010-01-01

    Primary aromatic amines (PAAs) were analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in migrates from 234 samples of food-contact materials, including black nylon (polyamide) kitchen utensils (n = 136), coloured plastics (28), and clear/printed multilayer film/laminates (41......), from retailers, importers, and food producers. A further 29 utensils in use were obtained from colleagues. Very high PAA migration was found from black nylon kitchen utensils to the food simulant 3% acetic acid: the 'non-detectable' limit (20 mu g aniline equivalents kg-1 food) was exceeded by up...... migration test conditions influenced the final test results. Long-term release of PAAs was fitted by diffusion modelling experiments and long-term release was also seen as expected from used utensils. Toxicologists consider these migration levels of the suspected carcinogenic PAAs as a problem of major...

  5. Factors influencing the regioselectivity of the oxidation of asymmetric secondary amines with singlet oxygen.

    Science.gov (United States)

    Ushakov, Dmitry B; Plutschack, Matthew B; Gilmore, Kerry; Seeberger, Peter H

    2015-04-20

    Aerobic amine oxidation is an attractive and elegant process for the α functionalization of amines. However, there are still several mechanistic uncertainties, particularly the factors governing the regioselectivity of the oxidation of asymmetric secondary amines and the oxidation rates of mixed primary amines. Herein, it is reported that singlet-oxygen-mediated oxidation of 1° and 2° amines is sensitive to the strength of the α-C-H bond and steric factors. Estimation of the relative bond dissociation energy by natural bond order analysis or by means of one-bond C-H coupling constants allowed the regioselectivity of secondary amine oxidations to be explained and predicted. In addition, the findings were utilized to synthesize highly regioselective substrates and perform selective amine cross-couplings to produce imines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Devulcanization of Waste Tire Rubber Using Amine Based Solvents and Ultrasonic Energy

    Directory of Open Access Journals (Sweden)

    Walvekar Rashmi

    2018-01-01

    Full Text Available This research project focuses on an alternative pathway of devulcanizing waste tire rubber by using amine based chemicals. Waste tire rubbers are known to be as toxic, non-degradable material due to their vulcanized crosslink carbon structure, and disposing of such waste could impose hazardous impacts on the environment. The current rubber recycling methods that are practiced today are rather uneconomical, non-environmentally friendly, and also producing recycled rubber with low quality due to the alteration in the main polymeric chains of waste rubber. This project aims to answer the question of whether the usage of amine can produce high quality rubber, where the properties of recycled rubber is almost the same as new/virgin rubber. With known potential of amine, it is a challenge for the chemical to selectively cleave the sulfur bonds without affecting the main carbon backbone chain in the rubber structure and diminishing much of the rubber properties. To study this research, amine-treated rubber must undergo devulcanisation process by applying heat and sonication energy. Then, the properties of the amine-treated rubber were determined through a set of characterization tests and analysis which are: gel content test to determine the weight of rubber before and after devulcanization, the thermogravimetric analysis (TGA to determine the thermal degradation and stability of rubber, and Fourier Transform Infrared Spectroscopy (FTIR to determine any structural change of the rubber. In this research so far, the first two preliminary analysis tests have been performed. The gel content test has shown that tertiary amine samples possessed a lower gel content (% of (77 – 63 %, compared to primary amine samples (falls within the range of 80%, as well as the TGA test in which tertiary amine samples degrade faster than primary amine samples (suggesting a higher degree of rubber structure breakdown. For each type of amine, the concertation of amine did

  7. Molecular Evolution and Functional Divergence of Trace Amine-Associated Receptors.

    Directory of Open Access Journals (Sweden)

    Seong-Il Eyun

    Full Text Available Trace amine-associated receptors (TAARs are a member of the G-protein-coupled receptor superfamily and are known to be expressed in olfactory sensory neurons. A limited number of molecular evolutionary studies have been done for TAARs so far. To elucidate how lineage-specific evolution contributed to their functional divergence, we examined 30 metazoan genomes. In total, 493 TAAR gene candidates (including 84 pseudogenes were identified from 26 vertebrate genomes. TAARs were not identified from non-vertebrate genomes. An ancestral-type TAAR-like gene appeared to have emerged in lamprey. We found four therian-specific TAAR subfamilies (one eutherian-specific and three metatherian-specific in addition to previously known nine subfamilies. Many species-specific TAAR gene duplications and losses contributed to a large variation of TAAR gene numbers among mammals, ranging from 0 in dolphin to 26 in flying fox. TAARs are classified into two groups based on binding preferences for primary or tertiary amines as well as their sequence similarities. Primary amine-detecting TAARs (TAAR1-4 have emerged earlier, generally have single-copy orthologs (very few duplication or loss, and have evolved under strong functional constraints. In contrast, tertiary amine-detecting TAARs (TAAR5-9 have emerged more recently and the majority of them experienced higher rates of gene duplications. Protein members that belong to the tertiary amine-detecting TAAR group also showed the patterns of positive selection especially in the area surrounding the ligand-binding pocket, which could have affected ligand-binding activities and specificities. Expansions of the tertiary amine-detecting TAAR gene family may have played important roles in terrestrial adaptations of therian mammals. Molecular evolution of the TAAR gene family appears to be governed by a complex, species-specific, interplay between environmental and evolutionary factors.

  8. Aliphatic alcohols in spirits inhibit phagocytosis by human monocytes.

    Science.gov (United States)

    Pál, László; Árnyas, Ervin M; Bujdosó, Orsolya; Baranyi, Gergő; Rácz, Gábor; Ádány, Róza; McKee, Martin; Szűcs, Sándor

    2015-04-01

    A large volume of alcoholic beverages containing aliphatic alcohols is consumed worldwide. Previous studies have confirmed the presence of ethanol-induced immunosuppression in heavy drinkers, thereby increasing susceptibility to infectious diseases. However, the aliphatic alcohols contained in alcoholic beverages might also impair immune cell function, thereby contributing to a further decrease in microbicidal activity. Previous research has shown that aliphatic alcohols inhibit phagocytosis by granulocytes but their effect on human monocytes has not been studied. This is important as they play a crucial role in engulfment and killing of pathogenic microorganisms and a decrease in their phagocytic activity could lead to impaired antimicrobial defence in heavy drinkers. The aim of this study was to measure monocyte phagocytosis following their treatment with those aliphatic alcohols detected in alcoholic beverages. Monocytes were separated from human peripheral blood and phagocytosis of opsonized zymosan particles by monocytes treated with ethanol and aliphatic alcohols individually and in combination was determined. It was shown that these alcohols could suppress the phagocytic activity of monocytes in a concentration-dependent manner and when combined with ethanol, they caused a further decrease in phagocytosis. Due to their additive effects, it is possible that they may inhibit phagocytosis in a clinically meaningful way in alcoholics and episodic heavy drinkers thereby contribute to their increased susceptibility to infectious diseases. However, further research is needed to address this question.

  9. Chemistry of aliphatic sulfurpentafluoride derivatives

    International Nuclear Information System (INIS)

    Bissell, E.R.

    1975-01-01

    This report summarizes the literature through 1974 on aliphatic sulfurpentafluoride compounds. Methods of preparation and methods of transforming one pentafluorothio compound into another are briefly discussed. The physical properties of all known derivatives are tabulated

  10. Hydrodeoxygenation of aliphatic and aromatic oxygenates on sulphided catalysts for production of second generation biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Senol, O.I.

    2007-07-01

    Environmental concerns and diminishing petroleum reserves have increased the importance of biofuels for traffic fuel applications. Second generation biofuels produced from wood, vegetable oils and animal fats have been considered promising for delivering biofuels in large amount with low production cost. The abundance of oxygen in the form of various aliphatic and aromatic oxygenates decreases the quality of biofuels, however, and therefore the oxygen content of biofuels must be reduced. Upgrading of biofuels can be achieved by hydrodeoxygenation (HDO), which is similar to hydrodesulphurisation in oil refining. In HDO, oxygen-containing compounds are converted to hydrocarbons by eliminating oxygen in the form of water in the presence of hydrogen and a sulphided catalyst. Due to the low sulphur content of biofuels, a sulphiding agent is typically added to the HDO feed to maintain activity and stability of the catalyst. The aim of this work was to investigate HDO using aliphatic and aromatic oxygenates as model compounds on sulphided NiMo/gamma-Al{sub 2}O3 and CoMo/gamma-Al{sub 2}O3 catalysts. The effects of side product, water, and of sulphiding agents, H{sub 2}S and CS{sub 2}, on HDO were determined. The primary focus was on the HDO of aliphatic oxygenates, because a reasonable amount of data regarding the HDO of aromatic oxygenates already exists. The HDO of aliphatic esters produced hydrocarbons from intermediate alcohol, carboxylic acid, aldehyde and ether compounds. A few sulphur-containing compounds were also detected in trace amounts, and their formation caused desulphurisation of the catalysts. Hydrogenation reactions and acid-catalysed reactions (dehydration, hydrolysis, esterification, E{sub 2} elimination and SN{sub 2} nucleophilic substitution) played a major role in the HDO of aliphatic oxygenates. The NiMo catalyst showed a higher activity for HDO and hydrogenation reactions than the CoMo catalyst, but both catalysts became deactivated because of

  11. Aza-Michael Mono-addition Using Acidic Alumina under Solventless Conditions

    Directory of Open Access Journals (Sweden)

    Giovanna Bosica

    2016-06-01

    Full Text Available Aza-Michael reactions between primary aliphatic and aromatic amines and various Michael acceptors have been performed under environmentally-friendly solventless conditions using acidic alumina as a heterogeneous catalyst to selectively obtain the corresponding mono-adducts in high yields. Ethyl acrylate was the main acceptor used, although others such as acrylonitrile, methyl acrylate and acrylamide were also utilized successfully. Bi-functional amines also gave the mono-adducts in good to excellent yields. Such compounds can serve as intermediates for the synthesis of anti-cancer and antibiotic drugs.

  12. Degradation of biogenetic amines by gamma radiation process and identification by GC/MS

    Energy Technology Data Exchange (ETDEWEB)

    Cardozo, Monique; Souza, Stefania P. de; Lima, Keila dos S.C.; Lima, Antonio L. dos S., E-mail: santoslima@ime.eb.br [Departamento de Quimica - IME, Instituto Militar de Engenharia, RJ (Brazil)

    2011-07-01

    Biogenic amines are low molecular weight organic bases with aliphatic (putrescine, cadaverine, spermine, spermidine), aromatic (tyramine, phenylethylamine) or heterocyclic (histamine, tryptamine) structures that can be found in several foods, in which they are mainly produced by microbial decarboxylation of amino acids. The reasons to control amines in food are their potential toxicity and their use like food quality markers. The consumption of food containing large amounts of biogenic amines can result in allergic reactions, characterized by difficulty in breathing, rash, vomiting, and hypertension. Biogenic amines are also known as possible precursors of carcinogens, such as N-nitrosamines. Traditionally, biogenic amine formation in food has been prevented, primarily by limiting microbial growth. However, control measures to reduce their levels once formed need to be also considered. The biogenic amines are frequently found in high concentrations and not reduced by high-temperature treatment, which makes difficult to use conventional methods of food preservation for this purpose. Food irradiation has been used in many countries for inhibition of sprouting, destruction of food borne insects, extension of shelf life or improvement of the technological of food. Irradiation is also known as a good method for inactivating pathogens and reducing microorganisms in food materials. Furthermore, besides the sanitary purpose, irradiation technology in new trials can be applied to induce radiolysis of toxic contaminants in food products reducing their content. This study has the objective to evaluate the effect of different gamma irradiation doses (1, 3 and 5kGy) in methanol solutions of three different biogenic amines: tryptamine, tyramine and b-phenylethylamine. The solutions were prepared using standard biogenic amines purchased from Sigma-Aldrich Brazil and methanol HPLC grade with a concentration of 100 {mu}g/mL. They were irradiated in Centro Tecnologico do Exercito

  13. Degradation of biogenetic amines by gamma radiation process and identification by GC/MS

    International Nuclear Information System (INIS)

    Cardozo, Monique; Souza, Stefania P. de; Lima, Keila dos S.C.; Lima, Antonio L. dos S.

    2011-01-01

    Biogenic amines are low molecular weight organic bases with aliphatic (putrescine, cadaverine, spermine, spermidine), aromatic (tyramine, phenylethylamine) or heterocyclic (histamine, tryptamine) structures that can be found in several foods, in which they are mainly produced by microbial decarboxylation of amino acids. The reasons to control amines in food are their potential toxicity and their use like food quality markers. The consumption of food containing large amounts of biogenic amines can result in allergic reactions, characterized by difficulty in breathing, rash, vomiting, and hypertension. Biogenic amines are also known as possible precursors of carcinogens, such as N-nitrosamines. Traditionally, biogenic amine formation in food has been prevented, primarily by limiting microbial growth. However, control measures to reduce their levels once formed need to be also considered. The biogenic amines are frequently found in high concentrations and not reduced by high-temperature treatment, which makes difficult to use conventional methods of food preservation for this purpose. Food irradiation has been used in many countries for inhibition of sprouting, destruction of food borne insects, extension of shelf life or improvement of the technological of food. Irradiation is also known as a good method for inactivating pathogens and reducing microorganisms in food materials. Furthermore, besides the sanitary purpose, irradiation technology in new trials can be applied to induce radiolysis of toxic contaminants in food products reducing their content. This study has the objective to evaluate the effect of different gamma irradiation doses (1, 3 and 5kGy) in methanol solutions of three different biogenic amines: tryptamine, tyramine and b-phenylethylamine. The solutions were prepared using standard biogenic amines purchased from Sigma-Aldrich Brazil and methanol HPLC grade with a concentration of 100 μg/mL. They were irradiated in Centro Tecnologico do Exercito

  14. Electron beam induced electronic transport in alkyl amine-intercalated VOx nanotubes

    International Nuclear Information System (INIS)

    O'Dwyer, C.; Lavayen, V.; Clavijo-Cedeno, C.; Torres, C.M.S.

    2008-01-01

    The electron beam induced electronic transport in primary alkyl amine-intercalated V 2 O 5 nanotubes is investigated where the organic amine molecules are employed as molecular conductive wires to an aminosilanized substrate surface and contacted to Au interdigitated electrode contacts. The results demonstrate that the high conductivity of the nanotubes is related to the non-resonant tunnelling through the amine molecules and a reduced polaron hopping conduction through the vanadium oxide itself. Both nanotube networks and individual nanotubes exhibit similarly high conductivities where the minority carrier transport is bias dependent and nanotube diameter invariant. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Direct amination of secondary alcohols using Ammonia

    NARCIS (Netherlands)

    Pingen, D.L.L.; Müller, C.; Vogt, D.

    2010-01-01

    Hydrogen shuttle: For the first time secondary alcohols and ammonia can be directly converted into primary amines with a selectivity of up to 99¿% by using a simple ruthenium/phosphine catalyst (see scheme; R1, R2= alkyl, aryl, alkenyl; M=[Ru3(CO)12]; and L=phosphine ligand).

  16. Aliphatic isocyanurates and polyisocyanurate networks

    NARCIS (Netherlands)

    Driest, Pieter Job; Lenzi, V.; Marques, L.S.A.; Ramos, M.M.D; Dijkstra, D.J.; Richter, F.U.; Stamatialis, Dimitrios; Grijpma, Dirk W.

    2016-01-01

    The production, processing, and application of aliphatic isocyanate (NCO)-based thermosets such as polyurethane coatings and adhesives are generally limited by the surprisingly high viscosity of tri-functionality and higher-functionality isocyanurates. These compounds are essential crosslinking

  17. Aliphatic isocyanurates and polyisocyanurate networks

    NARCIS (Netherlands)

    Driest, P. J.; Lenzi, V.; Marques, L. S. A.; Ramos, M. M. D.; Dijkstra, D. J.; Richter, F. U.; Stamatialis, D.; Grijpma, D. W.

    2017-01-01

    The production, processing, and application of aliphatic isocyanate (NCO)-based thermosets such as polyurethane coatings and adhesives are generally limited by the surprisingly high viscosity of tri-functionality and higher-functionality isocyanurates. These compounds are essential crosslinking

  18. Fate of aliphatic compounds in nitric acid processing solutions

    International Nuclear Information System (INIS)

    Clark, W.E.; Howerton, W.B.

    1975-01-01

    The reaction of hyperazeotropic iodic acid-saturated nitric acid with short chain aliphatic iodides, nitrates, and acids was studied in order to determine the conditions for complete removal of organic materials from nitric acid systems. The aliphatic iodides are converted to the nitrates and the nitrates in strong HNO 3 are extensively converted into CO 2 and acids. The aliphatic acids are rather stable; acetic acid was unattacked by boiling in 20M HNO 3 and n-butyric acid was 80 percent unattacked. The dibasic acids oxalic and malonic are extensively attacked, but succinic acid is relatively stable. A wet oxidation method is successful in destroying acetic acid in 5 to 8M HNO 3 . (U.S.)

  19. Tsuji-Trost N-allylation with allylic acetates using cellulose-Pd catalyst

    Science.gov (United States)

    Allylic amines are synthesized using heterogeneous cellulose-Pd catalyst via N-allylation of amines; aliphatic and benzyl amines undergo facile reaction with substituted and unsubstituted allyl acetates in high yields.

  20. Maillard reaction of lactose and fluoxetine hydrochloride, a secondary amine.

    Science.gov (United States)

    Wirth, D D; Baertschi, S W; Johnson, R A; Maple, S R; Miller, M S; Hallenbeck, D K; Gregg, S M

    1998-01-01

    Analysis of commercially available generic formulations of fluoxetine HCl revealed the presence of lactose as the most common excipient. We show that such formulations are inherently less stable than formulations with starch as the diluent due to the Maillard reaction between the drug, a secondary amine hydrochloride, and lactose. The Amadori rearrangement product was isolated and characterized; the characterization was aided by reduction with sodium borohydride and subsequent characterization of this reduced adduct. The lactose-fluoxetine HCl reaction was examined in aqueous ethanol and in the solid state, in which factors such as water content, lubricant concentration, and temperature were found to influence the degradation. N-Formylfluoxetine was identified as a major product of this Maillard reaction and it is proposed that N-formyl compounds be used as markers for this drug-excipient interaction since they are easy to prepare synthetically. Many characteristic volatile products of the Maillard reaction have been identified by GC/MS, including furaldehyde, maltol, and 2,3-dihydro-3,5-dihydroxy-6-methyl-4 H-pyran-4-one. Close similarity between the degradation products of simple mixtures and formulated generic products was found; however, at least one product decomposed at a rate nearly 10 times that predicted from the simple models. Maillard products have also been identified in unstressed capsules. The main conclusion is that drugs which are secondary amines (not just primary amines as sometimes reported) undergo the Maillard reaction with lactose under pharmaceutically relevant conditions. This finding should be considered during the selection of excipients and stability protocols for drugs which are secondary amines or their salts, just as it currently is for primary amines.

  1. Thermodynamic study of (heptane + amine) mixtures. III: Excess and partial molar volumes in mixtures with secondary, tertiary, and cyclic amines at 298.15 K

    International Nuclear Information System (INIS)

    Lepori, Luciano; Gianni, Paolo; Spanedda, Andrea; Matteoli, Enrico

    2011-01-01

    Graphical abstract: Highlights: → Excess volumes of (sec., tert., or cyclic amines + heptane) mixtures. → Excess volumes are positive for small size amines and decrease as the size increases. → Group contributions to predict the partial molar volumes of amines in heptane. → The void volume is larger for sec. and tert. than for linear amines in heptane. → The void volume is much smaller for cyclic than for linear amines in heptane. - Abstract: Excess molar volumes V E at 298.15 K were determined by means of a vibrating tube densimeter for binary mixtures of {heptane + open chain secondary (diethyl to dibutyl) and tertiary (triethyl to tripentyl) amines} as well as for cyclic imines (C 2 , C 3 , C 4 , C 6 , and C 7 ) and primary cycloalkylamines (C 5 , C 6 , C 7 , and C 12 ). The V E values were found positive for mixtures involving small size amines, with V E decreasing as the size increases. Negative V E 's were found for tributyl- and tripentylamine, heptamethylenimine, and cyclododecylamine. Mixtures of heptane with cycloheptylamine showed an s-shaped curve. Partial molar volumes V 0 of amines at infinite dilution in heptane were obtained from V E and compared with V 0 of hydrocarbons and other classes of organic compounds taken from literature. An additivity scheme, based on the intrinsic volume approach, was applied to estimate group (CH 3 , CH 2 , CH, C, NH 2 , NH, N, OH, O, CO, and COO) contributions to V 0 . These contributions, the effect of cyclization on V 0 , and the limiting slope of the apparent excess molar volumes were discussed in terms of solute-solvent and solute-solute interactions.

  2. Combinations of Aromatic and Aliphatic Radiolysis.

    Science.gov (United States)

    LaVerne, Jay A; Dowling-Medley, Jennifer

    2015-10-08

    The production of H(2) in the radiolysis of benzene, methylbenzene (toluene), ethylbenzene, butylbenzene, and hexylbenzene with γ-rays, 2-10 MeV protons, 5-20 MeV helium ions, and 10-30 MeV carbon ions is used as a probe of the overall radiation sensitivity and to determine the relative contributions of aromatic and aliphatic entities in mixed hydrocarbons. The addition of an aliphatic side chain with progressively from one to six carbon lengths to benzene increases the H(2) yield with γ-rays, but the yield seems to reach a plateau far below that found from a simple aliphatic such as cyclohexane. There is a large increase in H(2) with LET (linear energy transfer) for all of the substituted benzenes, which indicates that the main process for H(2) formation is a second-order process and dominated by the aromatic entity. The addition of a small amount of benzene to cyclohexane can lower the H(2) yield from the value expected from a simple mixture law. A 50:50% volume mixture of benzene-cyclohexane has essentially the same H(2) yield as cyclohexylbenzene at a wide variation in LET, suggesting that intermolecular energy transfer is as efficient as intramolecular energy transfer.

  3. A practical and catalyst-free trifluoroethylation reaction of amines using trifluoroacetic acid

    Science.gov (United States)

    Andrews, Keith G.; Faizova, Radmila; Denton, Ross M.

    2017-06-01

    Amines are a fundamentally important class of biologically active compounds and the ability to manipulate their physicochemical properties through the introduction of fluorine is of paramount importance in medicinal chemistry. Current synthesis methods for the construction of fluorinated amines rely on air and moisture sensitive reagents that require special handling or harsh reductants that limit functionality. Here we report practical, catalyst-free, reductive trifluoroethylation reactions of free amines exhibiting remarkable functional group tolerance. The reactions proceed in conventional glassware without rigorous exclusion of either moisture or oxygen, and use trifluoroacetic acid as a stable and inexpensive fluorine source. The new methods provide access to a wide range of medicinally relevant functionalized tertiary β-fluoroalkylamine cores, either through direct trifluoroethylation of secondary amines or via a three-component coupling of primary amines, aldehydes and trifluoroacetic acid. A reduction of in situ-generated silyl ester species is proposed to account for the reductive selectivity observed.

  4. Effects of O{sub 2} and SO{sub 2} on the Capture Capacity of a Primary-Amine Based Polymeric CO{sub 2} Sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Hallenbeck, Alexander P; Kitchin, John R

    2013-08-01

    Post combustion CO{sub 2} capture is most commonly carried out using an amine solution that results in a high parasitic energy cost in the stripper unit due to the need to heat the water which comprises a majority of the amine solution. It is also well known that amine solvents suffer from stability issues due to amine leaching and poisoning by flue gas impurities. Solid sorbents provide an alternative to solvent systems that would potentially reduce the energy penalty of carbon capture. However, the cost of using a particular sorbent is greatly affected by the usable lifetime of the sorbent. This work investigated the stability of a primary amine-functionalized ion exchange resin in the presence of O{sub 2} and SO{sub 2}, both of which are constituents of flue gas that have been shown to cause degradation of various amines in solvent processes. The CO{sub 2} capture capacity was measured over multiple capture cycles under continuous exposure to two simulated flue gas streams, one containing 12 vol% CO{sub 2}, 4% O{sub 2}, 84% N{sub 2}, and the other containing 12.5 vol% CO{sub 2}, 4% O{sub 2}, 431 ppm SO{sub 2}, balance N{sub 2} using a custom-built packed bed reactor. The resin maintained its CO{sub 2} capture capacity of 1.31 mol/kg over 17 capture cycles in the presence of O{sub 2} without SO{sub 2}. However, the CO{sub 2} capture capacity of the resin decreased rapidly under exposure to SO{sub 2} by an amount of 1.3 mol/kg over 9 capture cycles. Elemental analysis revealed the resin adsorbed 1.0 mol/kg of SO{sub 2}. Thermal regeneration was determined to not be possible. The poisoned resin was, however, partially regenerated with exposure to 1.5M NaOH for 3 days resulting in a 43% removal of sulfur, determined through elemental analysis, and a 35% recovery of CO{sub 2} capture capacity. Evidence was also found for amine loss upon prolonged (7 days) continuous exposure to high temperatures (120 C) in air. It is concluded that desulfurization of the flue gas

  5. Aliphatic alkenes and alkynes

    International Nuclear Information System (INIS)

    Serep, D.

    1985-01-01

    Papers on radiolysis of aliphatic alkenes and alkynes published after 1968 are analytically reviewed. Kinetics and mechanisms of radiolytic processes, dependences of yields of intermediate and final products on conditions of their procedure and molecular structure of compounds are considered. Certain attention is paid to problems of dimerization and oligomerization at radiolysis of the considered compounds

  6. Nickel-catalysed retro-hydroamidocarbonylation of aliphatic amides to olefins

    Science.gov (United States)

    Hu, Jiefeng; Wang, Minyan; Pu, Xinghui; Shi, Zhuangzhi

    2017-05-01

    Amide and olefins are important synthetic intermediates with complementary reactivity which play a key role in the construction of natural products, pharmaceuticals and manmade materials. Converting the normally highly stable aliphatic amides into olefins directly is a challenging task. Here we show that a Ni/NHC-catalytic system has been established for decarbonylative elimination of aliphatic amides to generate various olefins via C-N and C-C bond cleavage. This study not only overcomes the acyl C-N bond activation in aliphatic amides, but also encompasses distinct chemical advances on a new type of elimination reaction called retro-hydroamidocarbonylation. This transformation shows good functional group compatibility and can serve as a powerful synthetic tool for late-stage olefination of amide groups in complex compounds.

  7. Natural attenuation of diesel aliphatic hydrocarbons in contaminated agricultural soil

    International Nuclear Information System (INIS)

    Serrano, Antonio; Gallego, Mercedes; Gonzalez, Jose Luis; Tejada, Manuel

    2008-01-01

    A diesel fuel spill at a concentration of 1 L m -2 soil was simulated on a 12 m 2 plot of agricultural land, and natural attenuation of aliphatic hydrocarbons was monitored over a period of 400 days following the spill after which the aliphatic hydrocarbon concentrations were found to be below the legal contamination threshold for soil. The main fraction of these compounds (95%) remained at the surface layer (0-10 cm). Shortly after the spill (viz. between days 0 and 18), evaporation was the main origin of the dramatic decrease in pollutant concentrations in the soil. Thereafter, soil microorganisms used aliphatic hydrocarbons as sources of carbon and energy, as confirmed by the degradation ratios found. Soil quality indicators, soil microbial biomass and dehydrogenase activity, regained their original levels about 200 days after the spill. - The effect of aliphatic hydrocarbons contamination on soil quality was monitored over a period of 400 days after a Diesel fuel spill

  8. Simple synthesis of three primary colour nanoparticle inks of Prussian blue and its analogues

    International Nuclear Information System (INIS)

    Gotoh, Akihito; Uchida, Hiroaki; Ishizaki, Manabu; Satoh, Tetsutaro; Kaga, Shinichi; Okamoto, Shusuke; Ohta, Masaki; Sakamoto, Masatomi; Kawamoto, Tohru; Tanaka, Hisashi; Tokumoto, Madoka; Hara, Shigeo; Shiozaki, Hirofumi; Yamada, Mami; Miyake, Mikio; Kurihara, Masato

    2007-01-01

    Historic Prussian blue (PB) pigment is easily obtained as an insoluble precipitate in quantitative yield from an aqueous mixture of Fe 3+ and [Fe II (CN) 6 ] 4- (Fe 2+ and [Fe III (CN) 6 ] 3- ). It has been found that the PB pigment is inherently an agglomerate of 10-20 nm nanoparticles, based on powder x-ray diffraction (XRD) line broadenings and transmission electron microscopy (TEM) images. The PB pigment has been revived as both organic-solvent-soluble and water-soluble nanoparticle inks. Through crystal surface modification with aliphatic amines, the nanoparticles are stably dispersed from the insoluble agglomerate into usual organic solvents to afford a transparent blue solution. Identical modification with [Fe(CN) 6 ] 4- yields water-soluble PB nanoparticles. A similar ink preparation is applicable to Ni-PBA and Co-PBA (nickel and cobalt hexacyanoferrates). The PB (blue), Ni-PBA (yellow), and Co-PBA (red) nanoparticles function as three primary colour inks

  9. Strong cation exchange-type chiral stationary phase for enantioseparation of chiral amines in subcritical fluid chromatography.

    Science.gov (United States)

    Wolrab, Denise; Kohout, Michal; Boras, Mario; Lindner, Wolfgang

    2013-05-10

    A new strong cation exchange type chiral stationary phase (SCX CSP) based on a syringic acid amide derivative of trans-(R, R)-2-aminocyclohexanesulfonic acid was applied to subcritical fluid chromatography (SFC) for separation of various chiral basic drugs and their analogues. Mobile phase systems consisting of aliphatic alcohols as polar modifiers and a broad range of amines with different substitution patterns and lipophilicity were employed to evaluate the impact on the SFC retention and selectivity characteristics. The observed results point to the existence of carbonic and carbamic acid salts formed as a consequence of reactions occurring between carbon dioxide, the alcoholic modifiers and the amine species present in the sub/supercritical fluid medium, respectively. Evidence is provided that these species are essential for affecting ion exchange between the strongly acidic chiral selector units and the basic analytes, following the well-established stoichiometric displacement mechanisms. Specific trends were observed when different types of amines were used as basic additives. While ammonia gave rise to the formation of the most strongly eluting carbonic and carbamic salt species, simple tertiary amines consistently provided superior levels of enantioselectivity. Furthermore, trends in the chiral SFC separation characteristics were investigated by the systematic variation of the modifier content and temperature. Different effects of additives are interpreted in terms of changes in the relative concentration of the transient ionic species contributing to analyte elution, with ammonia-derived carbamic salts being depleted at elevated temperatures by decomposition. Additionally, in an effort to optimize SFC enantiomer separation conditions for selected analytes, the impact of the type of the organic modifier, temperature, flow rate and active back pressure were also investigated. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Aliphatic amine oxides as ligands

    International Nuclear Information System (INIS)

    Garla, L.C.; Betarello, V.H.; Chiericato Junior, G.; De Giovani, W.F.

    1984-01-01

    The reaction between some hydrated lanthanide perchlorates with trimethylamine oxide (TMAO) was studied. Compounds of general formula Ln(Cl 4 ) 3 : . 5,5 TMAO (Ln = La, Pr, Er and Y) were isolated. (Author) [pt

  11. A general A3: coupling reaction based on functionalized alkynes

    International Nuclear Information System (INIS)

    Wendler, Edison P.; Santos, Alcindo A. dos

    2013-01-01

    A range of hydroxypropargylpiperidones were efficiently obtained by a one-pot three-component coupling reaction of aldehydes, alkynols, and a primary amine equivalent (4-piperidone hydrochloride hydrate) in ethyl acetate using copper(I) chloride as a catalyst. The developed protocol proved to be equally efficient using a range of aliphatic aldehydes, including paraformaldehyde, and using protected and unprotected alkynols. (author)

  12. A general A{sup 3}: coupling reaction based on functionalized alkynes

    Energy Technology Data Exchange (ETDEWEB)

    Wendler, Edison P.; Santos, Alcindo A. dos, E-mail: alcindo@iq.usp.br [Universidade de Sao Paulo (IQ/USP), SP (Brazil). Inst. de Quimica

    2013-10-01

    A range of hydroxypropargylpiperidones were efficiently obtained by a one-pot three-component coupling reaction of aldehydes, alkynols, and a primary amine equivalent (4-piperidone hydrochloride hydrate) in ethyl acetate using copper(I) chloride as a catalyst. The developed protocol proved to be equally efficient using a range of aliphatic aldehydes, including paraformaldehyde, and using protected and unprotected alkynols. (author)

  13. Thermodynamic study of (heptane + amine) mixtures. II. Excess and partial molar volumes at 298.15 K

    International Nuclear Information System (INIS)

    Lepori, Luciano; Gianni, Paolo; Spanedda, Andrea; Matteoli, Enrico

    2011-01-01

    Research highlights: → Excess and partial molar volumes of primary (amines + heptane) mixtures. → Excess volumes are positive for small size amines and decrease as the size increases. → Group contributions to predict the partial molar volumes of amines in heptane. → The void volume is larger for branched than for linear amines in heptane. - Abstract: Excess molar volumes V E at 298.15 K were determined by means of a vibrating tube densimeter for binary mixtures of heptane + primary n-alkyl (C 3 to C 10 ) and branched amines (iso-propyl-, iso-, sec-, and tert-butyl-, iso-, tert-pentyl-, and pentan-3-amine) in the whole composition range. The apparent molar volumes of solid dodecyl- and tetradecylamine in heptane dilute solution were also determined. The V E values were found positive for mixtures involving C 3 to C 8 linear amines, with V E decreasing with chain lengthening. Heptane + nonyl and decylamine showed s-shaped, markedly asymmetric, curves. Mixtures with branched C 3 to C 5 amines displayed positive V E 's larger than those observed in the mixtures of the corresponding linear isomers. Partial molar volumes V o at infinite dilution in heptane were evaluated for the examined amines and compared with those of alkanes and alkanols taken from the literature. An additivity scheme, based on the intrinsic volume approach, was applied to estimate group (CH 3 , CH 2 , CH, C, NH 2 , and OH) contributions to V o . The effect of branching on V o and the limiting slope of the apparent excess molar volumes were evaluated and discussed in terms of solute-solvent and solute-solute interactions.

  14. Cell Wall Amine Oxidases: New Players in Root Xylem Differentiation under Stress Conditions

    Directory of Open Access Journals (Sweden)

    Sandip A. Ghuge

    2015-07-01

    Full Text Available Polyamines (PAs are aliphatic polycations present in all living organisms. A growing body of evidence reveals their involvement as regulators in a variety of physiological and pathological events. They are oxidatively deaminated by amine oxidases (AOs, including copper amine oxidases (CuAOs and flavin adenine dinucleotide (FAD-dependent polyamine oxidases (PAOs. The biologically-active hydrogen peroxide (H2O2 is a shared compound in all of the AO-catalyzed reactions, and it has been reported to play important roles in PA-mediated developmental and stress-induced processes. In particular, the AO-driven H2O2 biosynthesis in the cell wall is well known to be involved in plant wound healing and pathogen attack responses by both triggering peroxidase-mediated wall-stiffening events and signaling modulation of defense gene expression. Extensive investigation by a variety of methodological approaches revealed high levels of expression of cell wall-localized AOs in root xylem tissues and vascular parenchyma of different plant species. Here, the recent progresses in understanding the role of cell wall-localized AOs as mediators of root xylem differentiation during development and/or under stress conditions are reviewed. A number of experimental pieces of evidence supports the involvement of apoplastic H2O2 derived from PA oxidation in xylem tissue maturation under stress-simulated conditions.

  15. Design of amine modified polymer dispersants for liquid-phase exfoliation of transition metal dichalcogenide nanosheets and their photodetective nanocomposites

    Science.gov (United States)

    Lee, Jinseong; Hahnkee Kim, Richard; Yu, Seunggun; Babu Velusamy, Dhinesh; Lee, Hyeokjung; Park, Chanho; Cho, Suk Man; Jeong, Beomjin; Sol Kang, Han; Park, Cheolmin

    2017-12-01

    Liquid-phase exfoliation (LPE) of transition metal dichalcogenide (TMD) nanosheets is a facile, cost-effective approach to large-area photoelectric devices including photodetectors and non-volatile memories. Non-destructive exfoliation of nanosheets using macromolecular dispersing agents is beneficial in rendering the TMD nanocomposite films suitable for mechanically flexible devices. Here, an efficient LPE of molybdenum disulfide (MoS2) with an amine modified poly(styrene-co-maleic anhydride) co-polymer (AM-PSMA) is demonstrated, wherein the maleic anhydrides were converted into maleic imides with primary amines using N-Boc-(CH2) n -NH2. The exfoliation of nanosheets was facilitated through Lewis acid-base interaction between the primary amine and transition metal. The results demonstrate that the exfoliation depends upon both the fraction of primary amines in the polymer chain and their distance from the polymer backbone. Under optimized conditions of primary amine content and its distance from the backbone, AM-PSMA gave rise to a highly concentrated MoS2 nanosheet suspension that was stable for over 10 d. Exfoliation of several other TMDs was also achieved using the optimized AM-PSMA, indicating the scope of AM-PSMA applications. Furthermore, a flexible composite film of AM-PSMA and MoS2 nanosheets fabricated by vacuum-assisted filtration showed excellent photoconductive performances including a high I on/I off ratio of 102 and a fast photocurrent switching of 300 ms.

  16. Catalytic chemical amide synthesis at room temperature: one more step toward peptide synthesis.

    Science.gov (United States)

    Mohy El Dine, Tharwat; Erb, William; Berhault, Yohann; Rouden, Jacques; Blanchet, Jérôme

    2015-05-01

    An efficient method has been developed for direct amide bond synthesis between carboxylic acids and amines via (2-(thiophen-2-ylmethyl)phenyl)boronic acid as a highly active bench-stable catalyst. This catalyst was found to be very effective at room temperature for a large range of substrates with slightly higher temperatures required for challenging ones. This methodology can be applied to aliphatic, α-hydroxyl, aromatic, and heteroaromatic acids as well as primary, secondary, heterocyclic, and even functionalized amines. Notably, N-Boc-protected amino acids were successfully coupled in good yields with very little racemization. An example of catalytic dipeptide synthesis is reported.

  17. Estimates of Gibbs free energies of formation of chlorinated aliphatic compounds

    NARCIS (Netherlands)

    Dolfing, Jan; Janssen, Dick B.

    1994-01-01

    The Gibbs free energy of formation of chlorinated aliphatic compounds was estimated with Mavrovouniotis' group contribution method. The group contribution of chlorine was estimated from the scarce data available on chlorinated aliphatics in the literature, and found to vary somewhat according to the

  18. Chemical and Molecular Descriptors for the Reactivity of Amines with CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Anita S.; Kitchin, John R.

    2012-10-24

    Amine-based solvents are likely to play an important role in CO{sub 2} capture applications in the future, and the identification of amines with superior performance will facilitate their use in CO{sub 2} capture. While some improvements in performance will be achieved through process modifications, modifying the CO{sub 2} capture performance of an amine also implies in part an ability to modify the reactions between the amine and CO{sub 2} through development of new functionalized amines. We present a computational study of trends in the reactions between CO{sub 2} and functionalized amines with a focus on identifying molecular descriptors that determine trends in reactivity. We examine the formation of bicarbonate and carbamate species on three classes of functionalized amines: alkylamines, alkanolamines, and fluorinated alkylamines including primary, secondary and tertiary amines in each class. These functional groups span electron-withdrawing to donating behavior, hydrogen-bonding, extent of functionalization, and proximity effects of the functional groups. Electron withdrawing groups tend to destabilize CO{sub 2} reaction products, whereas electron-donating groups tend to stabilize CO{sub 2} reaction products. Hydrogen bonding stabilizes CO{sub 2} reaction products. Electronic structure descriptors based on electronegativity were found to describe trends in the bicarbonate formation energy. A chemical correlation was observed between the carbamate formation energy and the carbamic acid formation energy. The local softness on the reacting N in the amine was found to partially explain trends carbamic acid formation energy.

  19. Microwave-assisted nonionic surfactant extraction of aliphatic hydrocarbons from petroleum source rock

    Energy Technology Data Exchange (ETDEWEB)

    Akinlua, A., E-mail: geochemresearch@yahoo.com [Fossil Fuels and Environmental Geochemistry Group, Department of Chemistry, Obafemi Awolowo University, Ile-Ife (Nigeria); Jochmann, M.A.; Laaks, J.; Ewert, A.; Schmidt, T.C. [Instrumental Analytical Chemistry, University Duisburg-Essen, Universitaetsstr, 5, 45141 Essen (Germany)

    2011-04-08

    The extraction of aliphatic hydrocarbons from petroleum source rock using nonionic surfactants with the assistance of microwave was investigated and the conditions for maximum yield were determined. The results showed that the extraction temperatures and kinetic rates have significant effects on extraction yields of aliphatic hydrocarbons. The optimum temperature for microwave-assisted nonionic surfactant extraction of aliphatic hydrocarbons from petroleum source rock was 105 deg. C. The optimum extraction time for the aliphatic hydrocarbons was at 50 min. Concentration of the nonionic surfactant solution and irradiation power had significant effect on the yields of aliphatic hydrocarbons. The yields of the analytes were much higher using microwave assisted nonionic surfactant extraction than with Soxhlet extraction. The recoveries of the n-alkanes and acyclic isoprenoid hydrocarbons for GC-MS analysis from the extractant nonionic surfactant solution by in-tube extraction (ITEX 2) with a TENAX TA adsorbent were found to be efficient. The results show that microwave-assisted nonionic surfactant extraction (MANSE) is a good and efficient green analytical preparatory technique for geochemical evaluation of petroleum source rock.

  20. Microwave-assisted nonionic surfactant extraction of aliphatic hydrocarbons from petroleum source rock

    International Nuclear Information System (INIS)

    Akinlua, A.; Jochmann, M.A.; Laaks, J.; Ewert, A.; Schmidt, T.C.

    2011-01-01

    The extraction of aliphatic hydrocarbons from petroleum source rock using nonionic surfactants with the assistance of microwave was investigated and the conditions for maximum yield were determined. The results showed that the extraction temperatures and kinetic rates have significant effects on extraction yields of aliphatic hydrocarbons. The optimum temperature for microwave-assisted nonionic surfactant extraction of aliphatic hydrocarbons from petroleum source rock was 105 deg. C. The optimum extraction time for the aliphatic hydrocarbons was at 50 min. Concentration of the nonionic surfactant solution and irradiation power had significant effect on the yields of aliphatic hydrocarbons. The yields of the analytes were much higher using microwave assisted nonionic surfactant extraction than with Soxhlet extraction. The recoveries of the n-alkanes and acyclic isoprenoid hydrocarbons for GC-MS analysis from the extractant nonionic surfactant solution by in-tube extraction (ITEX 2) with a TENAX TA adsorbent were found to be efficient. The results show that microwave-assisted nonionic surfactant extraction (MANSE) is a good and efficient green analytical preparatory technique for geochemical evaluation of petroleum source rock.

  1. Dietary Phenolic Compounds Interfere with the Fate of Hydrogen Peroxide in Human Adipose Tissue but Do Not Directly Inhibit Primary Amine Oxidase Activity

    Directory of Open Access Journals (Sweden)

    Christian Carpéné

    2016-01-01

    Full Text Available Resveratrol has been reported to inhibit monoamine oxidases (MAO. Many substrates or inhibitors of neuronal MAO interact also with other amine oxidases (AO in peripheral organs, such as semicarbazide-sensitive AO (SSAO, known as primary amine oxidase, absent in neurones, but abundant in adipocytes. We asked whether phenolic compounds (resveratrol, pterostilbene, quercetin, and caffeic acid behave as MAO and SSAO inhibitors. AO activity was determined in human adipose tissue. Computational docking and glucose uptake assays were performed in 3D models of human AO proteins and in adipocytes, respectively. Phenolic compounds fully inhibited the fluorescent detection of H2O2 generated during MAO and SSAO activation by tyramine and benzylamine. They also quenched H2O2-induced fluorescence in absence of biological material and were unable to abolish the oxidation of radiolabelled tyramine and benzylamine. Thus, phenolic compounds hampered H2O2 detection but did not block AO activity. Only resveratrol and quercetin partially impaired MAO-dependent [14C]-tyramine oxidation and behaved as MAO inhibitors. Phenolic compounds counteracted the H2O2-dependent benzylamine-stimulated glucose transport. This indicates that various phenolic compounds block downstream effects of H2O2 produced by biogenic or exogenous amine oxidation without directly inhibiting AO. Phenolic compounds remain of interest regarding their capacity to limit oxidative stress rather than inhibiting AO.

  2. A sensitive method using SPME pre-concentration for the quantification of aromatic amines in indoor air.

    Science.gov (United States)

    Lucaire, Vincent; Schwartz, Jean-Jacques; Delhomme, Olivier; Ocampo-Torres, Ruben; Millet, Maurice

    2018-03-01

    Monitoring the levels of aliphatic and aromatic amines (AA) in indoor air is important to protect human health because of exposure to these compounds through diet and inhalation. A sampling and analytical method using XAD-2 cartridges and gas chromatography coupled to mass spectrometry used for assessing 25 AA in different smoking and non-smoking indoor environment was developed. After sampling and delivering 1 m 3 of air (6-8 h sampling), an adsorbent was ultrasonically extracted with acetonitrile, concentrated to 1 mL and diluted in 25 mL of water (pH = 9; 5% NaCl), and then extracted for 40 min at 80 °C using a divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber and injected in a GC/MS system. With this method, 22 of the 25 AA can be analyzed with detection limits up to five times lower than that of classic liquid injection. Benzylamine, 3-aminophenol, and 4-aminophenol were not detected with the solid-phase micro-extraction (SPME) method. It can be assumed that aminophenols required a derivatization step for their analysis by GC as these molecules were not detected regardless of the injection mode used. Graphical abstract Analysis of aromatic amines in indoor air by SPME-GC/MS.

  3. Bioreducible poly(amido amine)s for non-viral gene delivery

    NARCIS (Netherlands)

    Lin, C.

    2008-01-01

    This thesis describes the design and development of bioreducible poly(amido amine)s as non-viral vectors for gene delivery in vitro and in vivo. The structural influences of these polymers on their physico-chemical properties and gene delivery properties, transfection capability and cytotoxicity in

  4. The influence of aliphatic side chain of anacardic acid on molecular ...

    African Journals Online (AJOL)

    Interestingly, the presence of the aliphatic side chain in AnMcr resulted in more uniform imprinted beads as compared to particle agglomerates obtained from SaMcr in the presence of propranolol template. Therefore, the aliphatic side chain of anacardic acid improves both molecular recognition of imprinted polymers as ...

  5. A statistical approach to the interpretation of aliphatic hydrocarbon distributions in marine sediments

    Science.gov (United States)

    Rapp, J.B.

    1991-01-01

    Q-mode factor analysis was used to quantitate the distribution of the major aliphatic hydrocarbon (n-alkanes, pristane, phytane) systems in sediments from a variety of marine environments. The compositions of the pure end members of the systems were obtained from factor scores and the distribution of the systems within each sample was obtained from factor loadings. All the data, from the diverse environments sampled (estuarine (San Francisco Bay), fresh-water (San Francisco Peninsula), polar-marine (Antarctica) and geothermal-marine (Gorda Ridge) sediments), were reduced to three major systems: a terrestrial system (mostly high molecular weight aliphatics with odd-numbered-carbon predominance), a mature system (mostly low molecular weight aliphatics without predominance) and a system containing mostly high molecular weight aliphatics with even-numbered-carbon predominance. With this statistical approach, it is possible to assign the percentage contribution from various sources to the observed distribution of aliphatic hydrocarbons in each sediment sample. ?? 1991.

  6. Substrate specific hydrolysis of aromatic and aromatic-aliphatic esters in orchid tissue cultures

    Directory of Open Access Journals (Sweden)

    Agnieszka Mironowicz

    2014-01-01

    Full Text Available We found that tissue cultures of higher plants were able, similarly as microorganisms, to transform low-molecular-weight chemical compounds. In tissue cultures of orchids (Cymbidium 'Saint Pierre' and Dendrobium phalaenopsis acetates of phenols and aromatic-aliphatic alcohols were hydrolyzed, whereas methyl esters of aromatic and aromatic-aliphatic acids did not undergo this reaction. Acetates of racemic aromatic-aliphatic alcohols were hydrolyzed with distinct enantiospecificity.

  7. Bifunctional (cyclopentadienone)iron-tricarbonyl complexes: Synthesis, computational studies and application in reductive amination

    KAUST Repository

    Moulin, Solenne

    2013-11-15

    Reductive amination under hydrogen pressure is a valuable process in organic chemistry to access amine derivatives from aldehydes or ketones. Knölker\\'s complex has been shown to be an efficient iron catalyst in this reaction. To determine the influence of the substituents on the cyclopentadienone ancillary ligand, a series of modified Knölker\\'s complexes was synthesised and fully characterised. These complexes were also transformed into their analogous acetonitrile iron-dicarbonyl complexes. Catalytic activities of these complexes were evaluated and compared in a model reaction. The scope of this reaction is also reported. For mechanistic insights, deuterium-labelling experiments and DFT calculations were undertaken and are also presented. Festival of amination: Two series of modified Knölker\\'s complexes were synthesised and applied in the reductive amination of various carbonyl derivatives with primary or secondary amines (see scheme, TIPS = triisopropylsilyl). For a mechanistic insight, deuterium-labelling experiments and DFT calculations were undertaken and are also presented. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Amine Analysis Using AlexaFluor 488 Succinimidyl Ester and Capillary Electrophoresis with Laser-Induced Fluorescence

    Directory of Open Access Journals (Sweden)

    Christian G. Kendall

    2015-01-01

    Full Text Available Fluorescent probes enable detection of otherwise nonfluorescent species via highly sensitive laser-induced fluorescence. Organic amines are predominantly nonfluorescent and are of analytical interest in agricultural and food science, biomedical applications, and biowarfare detection. Alexa Fluor 488 N-hydroxysuccinimidyl ester (AF488 NHS-ester is an amine-specific fluorescent probe. Here, we demonstrate low limit of detection of long-chain (C9 to C18 primary amines and optimize AF488 derivatization of long-chain primary amines. The reaction was found to be equally efficient in all solvents studied (dimethylsulfoxide, ethanol, and N,N-dimethylformamide. While an organic base (N,N-diisopropylethylamine is required to achieve efficient reaction between AF488 NHS-ester and organic amines with longer hydrophobic chains, high concentrations (>5 mM result in increased levels of ethylamine and propylamine in the blank. Optimal incubation times were found to be >12 hrs at room temperature. We present an initial capillary electrophoresis separation for analysis using a simple micellar electrokinetic chromatography (MEKC buffer consisting of 12 mM sodium dodecylsulfate (SDS and 5 mM carbonate, pH 10. Limits of detection using the optimized labeling conditions and these separation conditions were 5–17 nM. The method presented here represents a novel addition to the arsenal of fluorescent probes available for highly sensitive analysis of small organic molecules.

  9. Trace amine-associated receptor 1-Family archetype or iconoclast?

    Science.gov (United States)

    Grandy, David K

    2007-12-01

    Interest has recently been rekindled in receptors that are activated by low molecular weight, noncatecholic, biogenic amines that are typically found as trace constituents of various vertebrate and invertebrate tissues and fluids. The timing of this resurgent focus on receptors activated by the "trace amines" (TA) beta-phenylethylamine (PEA), tyramine (TYR), octopamine (OCT), synephrine (SYN), and tryptamine (TRYP) is the direct result of 2 publications that appeared in 2001 describing the cloning of a novel G protein-coupled receptor (GPCR) referred to by their discoverers Borowsky et al. as TA1 and Bunzow et al. as TA receptor 1 (TAR1). When heterologously expressed in Xenopus laevis oocytes and various eukaryotic cell lines, recombinant rodent and human TAR dose-dependently couple to the stimulation of adenosine 3',5'-monophosphate (cAMP) production. Structure-activity profiling based on this functional response has revealed that in addition to the TA, other biologically active compounds containing a 2-carbon aliphatic side chain linking an amino group to at least 1 benzene ring are potent and efficacious TA receptor agonists with amphetamine (AMPH), methamphetamine, 3-iodothyronamine, thyronamine, and dopamine (DA) among the most notable. Almost 100 years after the search for TAR began, numerous TA1/TAR1-related sequences, now called TA-associated receptors (TAAR), have been identified in the genome of every species of vertebrate examined to date. Consequently, even though heterologously expressed TAAR1 fits the pharmacological criteria established for a bona fide TAR, a major challenge for those working in the field is to discern the in vivo pharmacology and physiology of each purported member of this extended family of GPCR. Only then will it be possible to establish whether TAAR1 is the family archetype or an iconoclast.

  10. The economics of amine usage

    International Nuclear Information System (INIS)

    Fountain, M.J.

    1994-01-01

    The EPRI computer programm, 'Aminemod', a PWR chemistry model, has been used to compare the technical advantages of the 'advanced' amines, ethanolamine, 1,2 diaminoethane and 5 aminopentanol over morpholine in generating an elevated pH in the moisture separator and the economics of using these amines has been assessed by using an MS Excel spreadsheet in conjunction with Aminemod. The advanced amines are capable of achieving 1 pH unit above neutrality, the EPRI target for prevention of erosion-corrison, at acceptable cost and, compared with 'conventional' amines, at considerably reduced ionic load on the condensate polisher. The exercise demonstrates that it is essential to evaluate the effect of an amine dosing regime on the total operating cost and that it is not possible to prejudge the economic outcome on the basis of an amine's purchase price. (orig.)

  11. Aliphatic hydrocarbons in surface sediments from South China Sea off Kuching Division, Sarawak

    International Nuclear Information System (INIS)

    Hafidz Yusoff; Zaini Assim; Samsur Mohamad

    2012-01-01

    Eighteen surface sediment samples collected from South China Sea off Kuching Division, Sarawak were analyzed for aliphatic hydrocarbons. These hydrocarbons were recovered from sediment by Soxhlet extraction method and then analyzed using gas chromatography equipped with mass spectrometer (GC/ MS). Total concentrations of aliphatic hydrocarbons in surface sediments from South China Sea off Kuching division are ranged from 35.6 μg/ g to 1466.1 μg/ g dry weights. The sediments collected from Bako Bay, Kuching showed high concentrations of total aliphatic hydrocarbons. Several molecular indices were used to predict the predominant sources of hydrocarbons. Carbon preference index (CPI) value revealed widespread anthropogenic input in this study area (CPI= 0 to 4.1). The ratio of C 31 / C 19 and C 29 / C 31 indicated that major input of aliphatic hydrocarbon mostly transfer by lateral input to the marine environment than atmospheric movements. Generally, the concentrations of aliphatic hydrocarbons in sediment from South China Sea off Kuching division are generally higher compare to other area in the world. (author)

  12. Tailoring Enzyme-Like Activities of Gold Nanoclusters by Polymeric Tertiary Amines for Protecting Neurons Against Oxidative Stress.

    Science.gov (United States)

    Liu, Ching-Ping; Wu, Te-Haw; Lin, Yu-Lung; Liu, Chia-Yeh; Wang, Sabrina; Lin, Shu-Yi

    2016-08-01

    The cytotoxicity of nanozymes has drawn much attention recently because their peroxidase-like activity can decompose hydrogen peroxide (H2 O2 ) to produce highly toxic hydroxyl radicals (•OH) under acidic conditions. Although catalytic activities of nanozymes are highly associated with their surface properties, little is known about the mechanism underlying the surface coating-mediated enzyme-like activities. Herein, it is reported for the first time that amine-terminated PAMAM dendrimer-entrapped gold nanoclusters (AuNCs-NH2 ) unexpectedly lose their peroxidase-like activity while still retaining their catalase-like activity in physiological conditions. Surprisingly, the methylated form of AuNCs-NH2 (i.e., MAuNCs-N(+) R3 , where R = H or CH3 ) results in a dramatic recovery of the intrinsic peroxidase-like activity while blocking most primary and tertiary amines (1°- and 3°-amines) of dendrimers to form quaternary ammonium ions (4°-amines). However, the hidden peroxidase-like activity is also found in hydroxyl-terminated dendrimer-encapsulated AuNCs (AuNCs-OH, inside backbone with 3°-amines), indicating that 3°-amines are dominant in mediating the peroxidase-like activity. The possible mechanism is further confirmed that the enrichment of polymeric 3°-amines on the surface of dendrimer-encapsulated AuNCs provides sufficient suppression of the critical mediator •OH for the peroxidase-like activity. Finally, it is demonstrated that AuNCs-NH2 with diminished cytotoxicity have great potential for use in primary neuronal protection against oxidative damage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    Science.gov (United States)

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1983-09-20

    A process is described for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 1 fig.

  14. Bacterial degradation of monocyclic aromatic amines

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Arora

    2015-08-01

    Full Text Available Aromatic amines are an important group of industrial chemicals, which are widely used for manufacturing of dyes, pesticides, drugs, pigments, and other industrial products. These compounds have been considered highly toxic to human beings due to their carcinogenic nature. Three groups of aromatic amines have been recognized: monocyclic, polycyclic and heterocyclic aromatic amines. Bacterial degradation of several monocyclic aromatic compounds has been studied in a variety of bacteria, which utilizes monocyclic aromatic amines as their sole source of carbon and energy. Several degradation pathways have been proposed and the related enzymes and genes have also been characterized. Many reviews have been reviewed toxicity of monocyclic aromatic amines; however, there is lack of review on biodegradation of monocyclic aromatic amines. The aim of this review is to summarize bacterial degradation of monocyclic aromatic amines. This review will increase our current understanding of biochemical and molecular basis of bacterial degradation of monocyclic aromatic amines.

  15. Amine Measurements in Boreal Forest Air

    Science.gov (United States)

    Hemmilä, Marja; Hellén, Heidi; Makkonen, Ulla; Hakola, Hannele

    2015-04-01

    Amines are reactive, volatile bases in the air with a general formula of RNH2, R2NH or R3N. Especially small amines can stabilize sulphuric acid clusters and hence affect nucleation. Amines react rapidly with hydroxyl radical (OH˙) thus affecting oxidative capacity of the atmosphere. The amine concentrations are higher in forest air than in urban air (Hellén et al., 2014), but the sources are not known. In order to get more information concerning amine sources, we conducted a measurement campaign in a boreal forest. At SMEAR II station at Hyytiälä, Southern Finland (61°510'N, 24°170'E, 180 m a.s.l.) The measurements cover seven months, from June to December 2014. For sampling and measuring we used MARGA (The instrument for Measuring AeRosols and Gases in Ambient air) which is an on-line ion chromatograph (IC) connected to a sampling system. The IC component of the MARGA system was coupled to an electrospray ionization quadrupole mass spectrometer (MS) to improve sensitivity of amine measurements. This new set-up enabled amine concentration measurements in ambient air both in aerosol and gas phases with a time resolution of only 1 hour. With MARGA-MS we analysed 7 different amines: monomethylamine (MMA), dimethylamine (DMA), trimethylamine (TMA), ethylamine (EA), diethylamine (DEA), propylamine (PA) and butylamine (BA). In preliminary data-analysis we found out, that in June and July most of the measured amines were in gas phase, and particle phase amine concentrations were mostly under detection limits (<1.7 pptv). In June the gaseous amine concentrations were higher than in July. The measured concentrations of gaseous amines followed temperature variation, which could indicate that amines are produced and emitted from the environment or re-emitted from the surfaces as temperature rises after deposition during night-time. All measured amines had similar diurnal variation with maxima during afternoon and minima during night. Results from other months will also

  16. Iodine - catalyzed prins cyclization of aliphatic and aromatic ketones

    International Nuclear Information System (INIS)

    Kishore, K.R.; Reddy, K.; Silva Junior, Luiz F.

    2013-01-01

    Iodine-catalyzed Prins cyclization of homoallylic alcohols and ketones was investigated. Anhydrous conditions and inert atmosphere are not required in this metal-free protocol. The reaction of 2-(3,4-dihydronaphthalene-1-yl)propan-1-ol with six aliphatic symmetric ketones gave the desired products in 67-77% yield. Cyclization was performed with four aliphatic unsymmetric ketones, leading to corresponding pyrans in 66-76% yield. Prins cyclization was also accomplished with four aromatic ketones in 37-66% yield. Finally, Prins cyclization of the monoterpene isopulegol and acetone was successfully achieved. (author)

  17. Iodine - catalyzed prins cyclization of aliphatic and aromatic ketones

    Energy Technology Data Exchange (ETDEWEB)

    Kishore, K.R.; Reddy, K.; Silva Junior, Luiz F., E-mail: luizfsjr@iq.usp.br [Universidade de Sao Paulo (IQ/USP), SP (Brazil). Inst. de Quimica. Dept. de Quimica Fundamental

    2013-09-15

    Iodine-catalyzed Prins cyclization of homoallylic alcohols and ketones was investigated. Anhydrous conditions and inert atmosphere are not required in this metal-free protocol. The reaction of 2-(3,4-dihydronaphthalene-1-yl)propan-1-ol with six aliphatic symmetric ketones gave the desired products in 67-77% yield. Cyclization was performed with four aliphatic unsymmetric ketones, leading to corresponding pyrans in 66-76% yield. Prins cyclization was also accomplished with four aromatic ketones in 37-66% yield. Finally, Prins cyclization of the monoterpene isopulegol and acetone was successfully achieved. (author)

  18. Marine ecotoxicity of nitramines, transformation products of amine-based carbon capture technology.

    Science.gov (United States)

    Coutris, Claire; Macken, Ailbhe L; Collins, Andrew R; El Yamani, Naouale; Brooks, Steven J

    2015-09-15

    In the context of reducing CO2 emissions to the atmosphere, chemical absorption with amines is emerging as the most advanced technology for post-combustion CO2 capture from exhaust gases of fossil fuel power plants. Despite amine solvent recycling during the capture process, degradation products are formed and released into the environment, among them aliphatic nitramines, for which the environmental impact is unknown. In this study, we determined the acute and chronic toxicity of two nitramines identified as important transformation products of amine-based carbon capture, dimethylnitramine and ethanolnitramine, using a multi-trophic suite of bioassays. The results were then used to produce the first environmental risk assessment for the marine ecosystem. In addition, the in vivo genotoxicity of nitramines was studied by adapting the comet assay to cells from experimentally exposed fish. Overall, based on the whole organism bioassays, the toxicity of both nitramines was considered to be low. The most sensitive response to both compounds was found in oysters, and dimethylnitramine was consistently more toxic than ethanolnitramine in all bioassays. The Predicted No Effect Concentrations for dimethylnitramine and ethanolnitramine were 0.08 and 0.18 mg/L, respectively. The genotoxicity assessment revealed contrasting results to the whole organism bioassays, with ethanolnitramine found to be more genotoxic than dimethylnitramine by three orders of magnitude. At the lowest ethanolnitramine concentration (1mg/L), 84% DNA damage was observed, whereas 100mg/L dimethylnitramine was required to cause 37% DNA damage. The mechanisms of genotoxicity were also shown to differ between the two compounds, with oxidation of the DNA bases responsible for over 90% of the genotoxicity of dimethylnitramine, whereas DNA strand breaks and alkali-labile sites were responsible for over 90% of the genotoxicity of ethanolnitramine. Fish exposed to >3mg/L ethanolnitramine had virtually no DNA

  19. Metabolism and genotoxicity of aromatic amines in aquatic organisms

    International Nuclear Information System (INIS)

    Knezovich, J.P.; Krauter, P.W.; Lawton, M.P.; Harrison, F.L.

    1987-01-01

    Marine mussels (Mytilus edulis) and bullfrog tadpoles (Rana catesbeiana) were used to investigate the comparative metabolism and genotoxicity of aromatic amines in vivo. These organisms were selected because they possess distinctly different metabolic capabilities: mussels lack an active mixed-function-oxidase enzyme system that is present in most other organisms, including amphibians. Using 14 C-labeled chemical probes (o- and p-toluidine, 2-aminofluorene (2-AF), and 2-acetylaminofluorene (2-AAF)), mussels and tadpoles well dosed with individual compounds by direct immersion in aqueous solutions. The identities of metabolites were then determined by HPLC and GC/MS methods. Results indicate that the N-conjugating pathways used by mussels result primarily in the detoxification of aromatic amines by limiting the amount of primary amine available for activation. The tadpoles excreted a number of 2-AAF metabolites but did form DNA and protein adducts in the liver. Induction of micronuclei in the peripheral red blood cells was also demonstrated. The tadpole was shown to be a sensitive biological indicator of pollution in aquatic ecosystems

  20. Contribution to the study of the mechanism of extraction of uranyl chloride by long chain aliphatic amines

    International Nuclear Information System (INIS)

    Rubinstein, G.R.

    1965-06-01

    After having studied and developed the mechanisms which may 'a priori' explain the extraction process (co-ordination, ion association or intermediate mechanism), experience shows that ion association only should be taken into consideration. The structure of the organic complex of uranyl chloride has been defined on the basis of the study of the variation of the distribution coefficient of uranium between the two phases at the equilibrium as a function of successively the activity of Cl - ions in the aqueous phase, the concentration of amine salt in the organic phase and finally of the concentration of uranium in the aqueous phase. The plotting of the results in bi-logarithmic co-ordinates enables us to propose the following formula for the extracted compound: UO 2 Cl 4 -- (NR 3 H + ) 2 . The calculation of the equilibrium constant of formation of the organic compound of uranyl chloride has been possible in the case of diluted solutions of uranium only. (author) [fr

  1. Comparison between Different Extraction Methods for Determination of Primary Aromatic Amines in Food Simulant

    Directory of Open Access Journals (Sweden)

    Morteza Shahrestani

    2018-01-01

    Full Text Available The primary aromatic amines (PAAs are food contaminants which may exist in packaged food. Polyurethane (PU adhesives which are used in flexible packaging are the main source of PAAs. It is the unreacted diisocyanates which in fact migrate to foodstuff and then hydrolyze to PAAs. These PAAs include toluenediamines (TDAs and methylenedianilines (MDAs, and the selected PAAs were 2,4-TDA, 2,6-TDA, 4,4′-MDA, 2,4′-MDA, and 2,2′-MDA. PAAs have genotoxic, carcinogenic, and allergenic effects. In this study, extraction methods were applied on a 3% acetic acid as food simulant which was spiked with the PAAs under study. Extraction methods were liquid-liquid extraction (LLE, dispersive liquid-liquid microextraction (DLLME, and solid-phase extraction (SPE with C18 ec (octadecyl, HR-P (styrene/divinylbenzene, and SCX (strong cationic exchange cartridges. Extracted samples were detected and analyzed by HPLC-UV. In comparison between methods, recovery rate of SCX cartridge showed the best adsorption, up to 91% for polar PAAs (TDAs and MDAs. The interested PAAs are polar and relatively soluble in water, so a cartridge with cationic exchange properties has the best absorption and consequently the best recoveries.

  2. Stable and Inert Cobalt Catalysts for Highly Selective and Practical Hydrogenation of C≡N and C═O Bonds.

    Science.gov (United States)

    Chen, Feng; Topf, Christoph; Radnik, Jörg; Kreyenschulte, Carsten; Lund, Henrik; Schneider, Matthias; Surkus, Annette-Enrica; He, Lin; Junge, Kathrin; Beller, Matthias

    2016-07-20

    Novel heterogeneous cobalt-based catalysts have been prepared by pyrolysis of cobalt complexes with nitrogen ligands on different inorganic supports. The activity and selectivity of the resulting materials in the hydrogenation of nitriles and carbonyl compounds is strongly influenced by the modification of the support and the nitrogen-containing ligand. The optimal catalyst system ([Co(OAc)2/Phen@α-Al2O3]-800 = Cat. E) allows for efficient reduction of both aromatic and aliphatic nitriles including industrially relevant dinitriles to primary amines under mild conditions. The generality and practicability of this system is further demonstrated in the hydrogenation of diverse aliphatic, aromatic, and heterocyclic ketones as well as aldehydes, which are readily reduced to the corresponding alcohols.

  3. Extraction of beryllium sulfate by a long chain amine

    International Nuclear Information System (INIS)

    Etaix, E.S.

    1968-01-01

    The extraction of sulfuric acid in aqueous solution by a primary amine in benzene solution, 3-9 (diethyl) - 6-amino tri-decane (D.E.T. ) - i.e., with American nomenclature 1-3 (ethyl-pentyl) - 4-ethyl-octyl amine (E.P.O.) - has made it possible to calculate the formation constants of alkyl-ammonium sulfate and acid sulfate. The formula of the beryllium and alkyl-ammonium sulfate complex formed in benzene has next been determined, for various initial acidity of the aqueous solution. Lastly, evidence has been given of negatively charged complexes of beryllium and sulfate in aqueous solution, through the dependence of the aqueous sulfate ions concentration upon beryllium extraction. The formation constant of these anionic complexes has been evaluated. (author) [fr

  4. Synthesis of Guanidines via Reaction of Amines with Carbodiimides in the Presence of Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Foad Shaghayeghi Toosi

    2016-01-01

    Full Text Available Different ionic liquids (ILs were synthesized and evaluated for the preparation of substituted guanidines from the reaction of amines and carbodiimides. 1-methylimidazolium tetrafluoroborate [HMIm]BF4 was found to be the best ionic liquid for this reaction. This IL acted as a promoter for the addition of primary and secondary amines to carbodiimides. By this efficient approach, various guanidines were prepared in excellent yields.

  5. Oral Administration of Semicarbazide Limits Weight Gain together with Inhibition of Fat Deposition and of Primary Amine Oxidase Activity in Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Josep Mercader

    2011-01-01

    Full Text Available An enzyme hitherto named semicarbazide-sensitive amine oxidase (SSAO, involved in the oxidation of primary amines, is abundantly expressed in adipocytes. Although SSAO physiological functions remain unclear, several molecules inhibiting its activity have been described to limit fat accumulation in preadipocyte cultures or to reduce body weight gain in obese rodents. Here, we studied whether oral administration of semicarbazide, a prototypical SSAO inhibitor, limits fat deposition in mice. Prolonged treatment with semicarbazide at 0.125% in drinking water limited food and water consumption, hampered weight gain, and deeply impaired fat deposition. The adiposomatic index was reduced by 31%, while body mass was reduced by 15%. Such treatment completely inhibited SSAO, but did not alter MAO activity in white adipose tissue. Consequently, the insulin-like action of the SSAO substrate benzylamine on glucose transport was abolished in adipocytes from semicarbazide-drinking mice, while their insulin sensitivity was not altered. Although semicarbazide is currently considered as a food contaminant with deleterious effects, the SSAO inhibition it induces appears as a novel concept to modulate adipose tissue development, which is promising for antiobesity drug discovery.

  6. Relation between separation factor of carbon isotope and chemical reaction of CO2 with amine in nonaqueous solvent

    International Nuclear Information System (INIS)

    Takeshita, Kenji; Kitamoto, Asashi

    1989-01-01

    The separation factor for carbon isotope exchange reaction between CO 2 and amine in nonaqueous solvent was related to absorption reaction of CO 2 in a solution. The test solutions were mixtures of primary amine (such as butylamine and tert-butylamine) or secondary amine (such as diethylamine, dipropylamine and dibutylamine) diluted with nonpolar solvent (octane or triethyalmine) or polar solvent (methanol), respectively. The isotope exchange reaction consists of three steps related to chemical reaction of CO 2 in amine and nonaqueous solvent mixture, namely the reaction between CO 2 and carbamic acid, that between CO 2 and amine carbamate, and that between CO 2 and carbamic ion. Above all, the isotope separation factor between CO 2 and carbamic acid had the highest value. The overall separation factor can be higher in amine-nonaqueous solvent mixture where the concentration of carbamic acid becomes higher. (author)

  7. Rigid particle toughening of aliphatic polyketone

    NARCIS (Netherlands)

    Zuiderduin, W.C.J.; Huetink, Han; Gaymans, R.J.

    2006-01-01

    The influence of precipitated calcium carbonate particles on the toughening behaviour of aliphatic polyketone has been studied. The calcium carbonate particles had a particle size of 0.7 mm and a stearic acid coating (1%). Composites of 0e31.5 vol% CaCO3 content have been compounded and injection

  8. The effect of amine protonation on the electrical properties of spin-assembled single-walled carbon nanotube networks

    Energy Technology Data Exchange (ETDEWEB)

    Opatkiewicz, Justin P; LeMieux, Melburne C; Bao Zhenan [Department of Chemical Engineering, Stanford University, Stanford, CA 94305 (United States); Patil, Nishant P; Wei Hai; Mitra, Subhasish, E-mail: zbao@stanford.edu [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States)

    2011-03-25

    Amine-terminated self-assembled monolayers (SAMs) have been shown to selectively adsorb semiconducting single-walled carbon nanotubes (sc-SWNTs). Previous studies have shown that when deposited by spin coating, the resulting nanotube networks (SWNTnts) can be strongly influenced by the charge state of the amine (primary, secondary, and tertiary). When the amine surfaces were exposed to varying pH solutions, the conductivity and overall quality of the resulting fabricated networks were altered. Atomic force microscopy (AFM) topography had shown that the density of the SWNTnts was reduced as the amine protonation decreased, indicating that the electrostatic attraction between the SWNTs in solution and the surface influenced the adsorption. Simultaneously, {mu}-Raman analysis had suggested that when exposed to more basic conditions, the resulting networks were enhanced with sc-SWNTs. To directly confirm this enhancement, Ti/Pd contacts were deposited and devices were tested in air. Key device characteristics were found to match the enhancement trends previously observed by spectroscopy. For the primary and secondary amines, on/off current ratios were commensurate with the Raman trends in metallic contribution, while no trends were observed on the tertiary amine (due to weaker interactions). Finally, differing SWNT solution volumes were used to compensate for adsorption differences and yielded identical SWNTnt densities on the various pH-treated samples to eliminate the influence of network density. These results further the understanding of the amine-SWNT interaction during the spin coating process. Overall, we provide a convenient route to provide SWNT-based TFTs with highly tunable electronic charge transport through better understanding of the influence of these specific interactions.

  9. The effect of amine protonation on the electrical properties of spin-assembled single-walled carbon nanotube networks

    International Nuclear Information System (INIS)

    Opatkiewicz, Justin P; LeMieux, Melburne C; Bao Zhenan; Patil, Nishant P; Wei Hai; Mitra, Subhasish

    2011-01-01

    Amine-terminated self-assembled monolayers (SAMs) have been shown to selectively adsorb semiconducting single-walled carbon nanotubes (sc-SWNTs). Previous studies have shown that when deposited by spin coating, the resulting nanotube networks (SWNTnts) can be strongly influenced by the charge state of the amine (primary, secondary, and tertiary). When the amine surfaces were exposed to varying pH solutions, the conductivity and overall quality of the resulting fabricated networks were altered. Atomic force microscopy (AFM) topography had shown that the density of the SWNTnts was reduced as the amine protonation decreased, indicating that the electrostatic attraction between the SWNTs in solution and the surface influenced the adsorption. Simultaneously, μ-Raman analysis had suggested that when exposed to more basic conditions, the resulting networks were enhanced with sc-SWNTs. To directly confirm this enhancement, Ti/Pd contacts were deposited and devices were tested in air. Key device characteristics were found to match the enhancement trends previously observed by spectroscopy. For the primary and secondary amines, on/off current ratios were commensurate with the Raman trends in metallic contribution, while no trends were observed on the tertiary amine (due to weaker interactions). Finally, differing SWNT solution volumes were used to compensate for adsorption differences and yielded identical SWNTnt densities on the various pH-treated samples to eliminate the influence of network density. These results further the understanding of the amine-SWNT interaction during the spin coating process. Overall, we provide a convenient route to provide SWNT-based TFTs with highly tunable electronic charge transport through better understanding of the influence of these specific interactions.

  10. Using Amines and Alkanes as Thermal-Runaway Retardants for Lithium-Ion Battery

    Science.gov (United States)

    Shi, Yang

    Thermal runaway imposes major challenges to large-scale lithium-ion batteries (LIBs). The working temperature of a LIB is usually around room temperature. However, upon mechanical abuse such as an impact or nail penetration, LIB cell components may fail and internal short circuits could be formed. As a result, a series of exothermic electrochemical reactions and decompositions would take place and the local temperature can rapidly increase. In this thesis, a few novel techniques are investigated to mitigate thermal runaway of LIBs. Mechanically triggered approach has been employed. Thermal-runaway retardant (TRR) is encapsulated in mechanically responsive packages made of materials inert to the battery environment, and upon external mechanical loadings the packages can be broken apart and release the TRR. This mechanism allows for the use of aggressive chemicals to suppress the short circuit discharge and reduce the subsequent exothermic phenomena, immediately after the battery is damaged even before temperature increase begins. The best TRR candidates are identified to be amines and alkanes. Among amines, secondary amines and tertiary amines perform better than primary amines. The reduction in electrolyte ionic conductivity and the displacement of electrolyte are the thermal-runaway-mitigation mechanisms of the secondary and the tertiary amines, respectively. Pentadecane is the best candidate among the alkanes under investigation, with the major working mechanism being electrolyte displacement. Impact tests on large pouch cells and high-energy battery chemistry were also performed; the results were quite encouraging.

  11. Trace Amine-Associated Receptor 1 – Family Archetype or Iconoclast?

    Science.gov (United States)

    Grandy, David K.

    2009-01-01

    Interest has recently been rekindled in receptors that are activated by low molecular weight, non-catecholic, biogenic amines that are typically found as trace constituents of various vertebrate and invertebrate tissues and fluids. The timing of this resurgent focus on receptors activated by the ‘trace amines’ (TAs) β-phenylethylamine (PEA), tyramine (TYR), octopamine (OCT), synephrine (SYN), and tryptamine (TRYP) is the direct result of two publications that appeared in 2001 describing the cloning of a novel G protein-coupled receptor (GPCR) referred to by their discoverers as TA1 (Borowsky et al., 2001) and TAR1 (Bunzow et al., 2001). When heterologously expressed in Xenopus laevis oocytes and various eukaryotic cell lines recombinant rodent and human TA receptors dose-dependently couple to the stimulation of cAMP production. Structure-activity profiling based on this functional response has revealed that in addition to the TAs, other biologically active compounds containing a 2 carbon aliphatic side chain linking an amino group to at least one benzene ring are potent and efficacious TA receptor agonists with amphetamine, methamphetamine, 3-iodothyronamine, thyronamine, and dopamine among the most notable. Almost 100 years after the search for TA receptors began numerous TA1/TAR1-related sequences, now called Trace Amine-Associated Receptors (TAARs), have been identified in the genome of every species of vertebrate examined to date. Consequently, even though heterologously expressed TAAR1 fits the pharmacological criteria established for a bona fide TA receptor a major challenge for those working in the field is to discern the in vivo pharmacology and physiology of each purported member of this extended family of GPCRs. Only then will it be possible to establish whether TAAR1 is the family archetype or an iconoclast. PMID:17888514

  12. Notch sensitivity of aliphatic polyketone terpolymers

    NARCIS (Netherlands)

    Zuiderduin, W.C.J.; Huetink, Han; Gaymans, R.J.

    2004-01-01

    The notch sensitivity of aliphatic polyketone (PK) terpolymers was investigated in this article. The notch-tip radius was varied between the size of an actual propagating crack tip of 1-2 m and the largest notch tip of 1000 m radius. The larger notch-tip radii (1000-15 m) were milled into the

  13. Systematic evaluation and optimization of modification reactions of oligonucleotides with amines and carboxylic acids for the synthesis of DNA-encoded chemical libraries.

    Science.gov (United States)

    Franzini, Raphael M; Samain, Florent; Abd Elrahman, Maaly; Mikutis, Gediminas; Nauer, Angela; Zimmermann, Mauro; Scheuermann, Jörg; Hall, Jonathan; Neri, Dario

    2014-08-20

    DNA-encoded chemical libraries are collections of small molecules, attached to DNA fragments serving as identification barcodes, which can be screened against multiple protein targets, thus facilitating the drug discovery process. The preparation of large DNA-encoded chemical libraries crucially depends on the availability of robust synthetic methods, which enable the efficient conjugation to oligonucleotides of structurally diverse building blocks, sharing a common reactive group. Reactions of DNA derivatives with amines and/or carboxylic acids are particularly attractive for the synthesis of encoded libraries, in view of the very large number of building blocks that are commercially available. However, systematic studies on these reactions in the presence of DNA have not been reported so far. We first investigated conditions for the coupling of primary amines to oligonucleotides, using either a nucleophilic attack on chloroacetamide derivatives or a reductive amination on aldehyde-modified DNA. While both methods could be used for the production of secondary amines, the reductive amination approach was generally associated with higher yields and better purity. In a second endeavor, we optimized conditions for the coupling of a diverse set of 501 carboxylic acids to DNA derivatives, carrying primary and secondary amine functions. The coupling efficiency was generally higher for primary amines, compared to secondary amine substituents, but varied considerably depending on the structure of the acids and on the synthetic methods used. Optimal reaction conditions could be found for certain sets of compounds (with conversions >80%), but multiple reaction schemes are needed when assembling large libraries with highly diverse building blocks. The reactions and experimental conditions presented in this article should facilitate the synthesis of future DNA-encoded chemical libraries, while outlining the synthetic challenges that remain to be overcome.

  14. New insight on aliphatic linkages in the macromolecular organic fraction of Orgueil and Murchison meteorites through ruthenium tetroxide oxidation

    Science.gov (United States)

    Remusat, Laurent; Derenne, Sylvie; Robert, François

    2005-09-01

    Ruthenium tetroxide oxidation was used to examine the macromolecular insoluble organic matter (IOM) from the Orgueil and Murchison meteorites and especially to characterize the aliphatic linkages. Already applied to various terrestrial samples, ruthenium tetroxide is a selective oxidant which destroys aromatic units, converting them into CO 2, and yields aliphatic and aromatic acids. In our experiment on chondritic IOM, it produces mainly short aliphatic diacids and polycarboxylic aromatic acids. Some short hydroxyacids are also detected. Aliphatic diacids are interpreted as aliphatic bridges between aromatic units in the chemical structure, and polycarboxylic aromatic acids are the result of the fusion of polyaromatic units. The product distribution shows that aliphatic links are short with numerous substitutions. No indigenous monocarboxylic acid was detected, showing that free aliphatic chains must be very short (less than three carbon atoms). The hydroxyacids are related to the occurrence of ester and ether functional groups within the aliphatic bridges between the aromatic units. This technique thus allows us to characterize in detail the aliphatic linkages of the IOMs, and the derived conclusions are in agreement with spectroscopic, pyrolytic, and degradative results previously reported. Compared to terrestrial samples, the aliphatic part of chondritic IOM is shorter and highly substituted. Aromatic units are smaller and more cross-linked than in coals, as already proposed from NMR data. Orgueil and Murchison IOM exhibit some tiny differences, especially in the length of aliphatic chains.

  15. Aqueous amine solution characterization for post-combustion CO_2 capture process

    International Nuclear Information System (INIS)

    El Hadri, Nabil; Quang, Dang Viet; Goetheer, Earl L.V.; Abu Zahra, Mohammad R.M.

    2017-01-01

    reaction kinetics between aqueous amine solutions and CO_2, was studied by using stopped-flow equipment to measure the pseudo-first order reaction (k_0, s"−"1) at different amine concentrations. A determination of the second order rate constants (k_2, m"3 mole"−"1 s"−"1) at 298.15, 303.15, 308.15 and 313.15 K was performed by using the proposed reaction mechanisms. The base catalysis mechanism was used to correlate the experimental data of the tertiary amines and the zwitterion mechanism was used to correlate the experimental data of the primary/secondary amines. The kinetics results show that 2EAE, a secondary amine, was very high in comparison with MDEA, 1DMA2P, 2DMAE, 3DMA1P and TMPDA, all of which are tertiary amines that are very close to MEA, which is the reference case. This result shows that 2EAE is a good candidate for CO_2 capture as an alternative to MEA because it has good CO_2 absorption, a low heat of absorption and high kinetic reaction with CO_2. Moreover, the outcomes for the thermodynamic and kinetic properties indicate that the following 5 amine blends have emerged from this study: 2EAE/MDEA, 2EAE/1DMA2P, 2EAE/2DMAE, 2EAE/3DMA1P and 2EAE/TMPDA.

  16. Synthesis of polyhydroxylated compounds from Derythrose: enzymatic inhibition studies

    OpenAIRE

    Noro, Jennifer Martins

    2015-01-01

    Dissertação de mestrado em Química Medicinal This thesis is divided into two parts. At first, two starting synthon compounds were obtained: the benzylidene acetal D-erythrose aldehyde and the unsaturated lactone derived from this aldehyde. Both compounds were obtained following methods reported in the literature. The first part of the work focuses on aldehyde reactions with different primary aliphatic amines, yielding the respective imines. These were reduced to afford the ...

  17. Sillica Gel-Amine from Geothermal Sludge

    Science.gov (United States)

    Muljani, S.; Pujiastuti, C.; Wicaksono, P.; Lutfianingrum, R.

    2018-01-01

    Silica Gel-Amine (SGA) has been made from geothermal sludge by grafting amine method. Sodium silicate solution is prepared by extracted geothermal sludge powder using sodium hidroxide solution then acidification in the range of pH 5 - 9 by using tartaric acid 1N. The grafting process uses 1 ml of ammonia solution and 10 ml of toluene at a rate of 0.1 ml min-1 accompanied by a reflux process. The amine grafting is done in two methods. The first method is grafting amine in silicate solution and the second method is grafting amine in washed gel. Product SGA was confirmed by FTIR, TGA-DTG and BET characterization. The results show that the pH affects the amount of amine that is grafted onto silica gel. Differences in grafting method affect the size of the pore and surface area. SGA product prepared by grafting washed gel at pH 8 have pore diameter of 12.06 nm, surface area of 173.44 m2g-1, and mass of decomposed amine compound 0.4 mg. In the presence of amine groups on the silica gel surface, these adsorbents may be able to selectively adsorb CO2 gas from natural gas.

  18. Vapour pressures and heat capacity measurements on the C7-C9 secondary aliphatic alcohols

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Schick, Christoph

    2007-01-01

    Molar enthalpies of vaporization of secondary C 7 -C 9 alkanols were obtained from the temperature dependence of the vapour pressure measured by the transpiration method. The measured data sets were checked for internal consistency successfully. A large number of the primary experimental results on temperature dependences of vapour pressures of secondary alcohols have been collected from the literature and have been treated uniform in order to derive their vaporization enthalpies at the reference temperature 298.15 K. This collection, together with our experimental results, have helped to ascertain the database for branched aliphatic alcohols

  19. The economics of amine usage

    International Nuclear Information System (INIS)

    Fountain, M.J.

    1994-01-01

    Research carried out over the past decade in the USA (funded by EPRI) and by the CEGB/Nuclear Electric in the UK has identified several thermally stable, low-toxicity 'advanced' amines with good high-temperature basicity and low steam-water distribution ratio. As a direct result of this work several US PWR stations are now evaluating monoethanolamine (ETA) and Nuclear Electric's Wylfa Power Station (magnox) now doses 5 aminopentanol (5AP) instead of AMP, which had successfully combated erosion-corrosion for the past nine years. It has recently been stated that the use of 5AP ''...could save Nuclear Electric up to 1.5M pounds per year''. To provide US power station chemists with a tool for tailoring amine dosage to their own plant requirements EPRI has developed a computer model, Aminmod, which can, with user-defined circuit parameters and amine feed concentrations, calculate amine concentrations and pH(t) values at various points around the circuit. To complement this model a user-friendly spreadsheet program is being developed which will work in conjunction with Aminmod, via active links, to calculate the total operating cost associated with the selected amine dosing regime and compare alternative scenarios. This paper discusses the relationship between the technical and economic aspects of choosing an amine dosing regime and draws on combined Aminmod/spreadsheet results to illustrate how differences in amine properties can influence the optimum economic solution for a typical PWR. (author). 3 figs., 2 tabs., 5 refs

  20. Reduced Reactivity of Amines against Nucleophilic Substitution via Reversible Reaction with Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Fiaz S. Mohammed

    2015-12-01

    Full Text Available The reversible reaction of carbon dioxide (CO2 with primary amines to form alkyl-ammonium carbamates is demonstrated in this work to reduce amine reactivity against nucleophilic substitution reactions with benzophenone and phenyl isocyanate. The reversible formation of carbamates has been recently exploited for a number of unique applications including the formation of reversible ionic liquids and surfactants. For these applications, reduced reactivity of the carbamate is imperative, particularly for applications in reactions and separations. In this work, carbamate formation resulted in a 67% reduction in yield for urea synthesis and 55% reduction for imine synthesis. Furthermore, the amine reactivity can be recovered upon reversal of the carbamate reaction, demonstrating reversibility. The strong nucleophilic properties of amines often require protection/de-protection schemes during bi-functional coupling reactions. This typically requires three separate reaction steps to achieve a single transformation, which is the motivation behind Green Chemistry Principle #8: Reduce Derivatives. Based upon the reduced reactivity, there is potential to employ the reversible carbamate reaction as an alternative method for amine protection in the presence of competing reactions. For the context of this work, CO2 is envisioned as a green protecting agent to suppress formation of n-phenyl benzophenoneimine and various n-phenyl–n-alky ureas.

  1. Amines, Astrocytes and Arousal

    OpenAIRE

    Bazargani, N.; Attwell, D.

    2017-01-01

    Amine neurotransmitters, such as noradrenaline, mediate arousal, attention, and reward in the CNS. New data suggest that, from flies to mammals, a major mechanism for amine transmitter action is to raise astrocyte [Ca2+]i and release gliotransmitters that modulate neuronal activity and behavior.

  2. Extraction of sulphates by long chain amines; Extraction des sulfates par les amines a longues chaines

    Energy Technology Data Exchange (ETDEWEB)

    Boirie, Ch [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-05-15

    The extraction of sulphuric acid by long chain amines in organic solution has been studied with a view to determining the value of the stability constants of the amine sulphates and bi-sulphates formed. We have concentrated chiefly on uranium sulphate and thorium sulphate. The formulae of the complexes extractable with amines have been established, as well as the corresponding dissociation constants. We have observed that for uranium sulphate the formula of the complex depends only on the nature of the amine, whereas for thorium this formula varies with the amine structure. From the formulae determined and the value of the constants calculated, we have been able to establish the best conditions for uranium and thorium extraction and also for a separation of these two elements. Finally we propose an application of this study to the determination of uranium in ores, where the separation of uranium by this method is particularly easy and complete. (author) [French] L'extraction de l'acide sulfurique par des amines a longues chaines en solution organique a ete etudiee en vue de la determination de la valeur des constantes de stabilite des sulfates et bisulfates d'amines formes. Parmi les sulfates, nous nous sommes particulierement interesses au sulfate d'uranium et au sulfate de thorium. Nous avons determine les formules des complexes extractibles avec les amines, ainsi que les constantes de dissociation correspondantes. Nous avons remarque que pour le sulfate d'uranium, la formule du complexe ne depend que de la nature de l'amine, alors que pour le thorium cette formule varie avec la structure de l'amine. Les formules determinees et la valeur des constantes calculees, nous ont permis de decrire les meilleures conditions d'extraction de l'uranium et du thorium ainsi que celles d'une separation de ces deux elements. Nous proposons enfin une application de cette etude au dosage de l'uranium dans les minerais, ou la separation de l'uranium par cette methode est

  3. Impact of primary amine group from aminophospholipids and amino acids on marine phospholipids stability: Non-enzymatic browning and lipid oxidation

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    2013-01-01

    The main objective of this study was to investigate the oxidative stability and non-enzymatic browning reactions of marine PL in the presence or in the absence of primary amine group from aminophospholipids and amino acids. Marine phospholipids liposomal dispersions were prepared from two authentic......) Strecker derived volatiles, (ii) yellowness index (YI), (iii) hydrophobic and (iv) hydrophilic pyrroles content. The oxidative stability of the samples was assessed through measurement of secondary lipid derived volatile oxidation products. The result showed that the presence of PE and amino acids caused...... the formation of pyrroles, generated Strecker derived volatiles, decreased the YI development and lowered lipid oxidation. The lower degree of lipid oxidation in liposomal dispersions containing amino acids might be attributed to antioxidative properties of pyrroles or amino acids....

  4. Amide Synthesis from Alcohols and Amines Catalyzed by Ruthenium N-Heterocyclic Carbene Complexes

    DEFF Research Database (Denmark)

    Dam, Johan Hygum; Osztrovszky, Gyorgyi; Nordstrøm, Lars Ulrik Rubæk

    2010-01-01

    The direct synthesis of amides from alcohols and amines is described with the simultaneous liberation of dihydrogen. The reaction does not require any stoichiometric additives or hydrogen acceptors and is catalyzed by ruthenium N-heterocyclic carbene complexes. Three different catalyst systems...... are presented that all employ 1,3-diisopropylimidazol-2-ylidene (IiPr) as the carbene ligand. In addition, potassium tert-butoxide and a tricycloalkylphosphine are required for the amidation to proceed. In the first system, the active catalyst is generated in situ from [RuCl2(cod)] (cod = 1,5-cyclooctadiene), 1...... chloride and base. A range of different primary alcohols and amines have been coupled in the presence of the three catalyst systems to afford the corresponding amides in moderate to excellent yields. The best results are obtained with sterically unhindered alcohols and amines. The three catalyst systems do...

  5. Biodegradation of aliphatic vs. aromatic hydrocarbons in fertilized arctic soils

    Science.gov (United States)

    Braddock, J.F.

    1999-01-01

    A study was carried out to test a simple bioremediation treatment strategy in the Arctic and analyze the influence of fertilization the degradation of aliphatic and aromatic hydrocarbons, e.g., pristine, n-tetradecane, n-pentadecane, 2-methylnaphthalene, naphthalene, and acenaphthalene. The site was a coarse sand pad that once supported fuel storage tanks. Diesel-range organics concentrations were 250-860 mg/kg soil at the beginning of the study. Replicate field plots treated with fertilizer yielded final concentrations of 0, 50, 100, or 200 mg N/kg soil. Soil pH and soil-water potentials decreased due to fertilizer application. The addition of fertilizer considerably increased soil respiration potentials, but not the populations of microorganisms measured. Fertilizer addition also led to ??? 50% loss of measured aliphatic and aromatic hydrocarbons in surface and subsurface soils. For fertilized plots, hydrocarbon loss was not associated with the quantity of fertilizer added. Losses of aliphatic hydrocarbons were ascribed to biotic processes, while losses of aromatic hydrocarbons were due to biotic and abiotic processes.

  6. Scientific Opinion on the safety and efficacy of straight-chain primary aliphatic alcohols/aldehydes/acids, acetals and esters with esters containing saturated alcohols and acetals containing saturated aldehydes (chemical group 1) when used as flavourings for all animal species

    OpenAIRE

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP)

    2013-01-01

    Chemical group 1 (CG 1) consists of straight-chain primary aliphatic alcohols/aldehydes/acids, acetals and esters with esters containing saturated alcohols and acetals containing saturated aldehydes of which 86 are currently authorised for use as flavours in food. The FEEDAP Panel was unable to perform an assessment of ethyl oleate because of its insufficient purity. The following compounds are considered to be safe for all animal species at the use level proposed for feed flavourings: formic...

  7. Reliability and Maintainability Analysis for the Amine Swingbed Carbon Dioxide Removal System

    Science.gov (United States)

    Dunbar, Tyler

    2016-01-01

    I have performed a reliability & maintainability analysis for the Amine Swingbed payload system. The Amine Swingbed is a carbon dioxide removal technology that has gone through 2,400 hours of International Space Station on-orbit use between 2013 and 2016. While the Amine Swingbed is currently an experimental payload system, the Amine Swingbed may be converted to system hardware. If the Amine Swingbed becomes system hardware, it will supplement the Carbon Dioxide Removal Assembly (CDRA) as the primary CO2 removal technology on the International Space Station. NASA is also considering using the Amine Swingbed as the primary carbon dioxide removal technology for future extravehicular mobility units and for the Orion, which will be used for the Asteroid Redirect and Journey to Mars missions. The qualitative component of the reliability and maintainability analysis is a Failure Modes and Effects Analysis (FMEA). In the FMEA, I have investigated how individual components in the Amine Swingbed may fail, and what the worst case scenario is should a failure occur. The significant failure effects are the loss of ability to remove carbon dioxide, the formation of ammonia due to chemical degradation of the amine, and loss of atmosphere because the Amine Swingbed uses the vacuum of space to regenerate the Amine Swingbed. In the quantitative component of the reliability and maintainability analysis, I have assumed a constant failure rate for both electronic and nonelectronic parts. Using this data, I have created a Poisson distribution to predict the failure rate of the Amine Swingbed as a whole. I have determined a mean time to failure for the Amine Swingbed to be approximately 1,400 hours. The observed mean time to failure for the system is between 600 and 1,200 hours. This range includes initial testing of the Amine Swingbed, as well as software faults that are understood to be non-critical. If many of the commercial parts were switched to military-grade parts, the expected

  8. Fishmeal with different levels of biogenic amines in Aquafeed: Comparison of feed protein quality, fish growth performance, and metabolism

    DEFF Research Database (Denmark)

    Jasour, Mohammad Sedigh; Wagner, Liane; Sundekilde, Ulrik Kræmer

    2018-01-01

    The current study investigated the effects of fishmeal quality (low (LB) and high (HB) levels of endogenous biogenic amines) and feed extrusion temperatures (100 and 130 °C) on protein oxidation indicators and amino acids racemization (AAR) in extruded fish feed. Furthermore, the study investigated......, secondary oxidation products, and racemized methionine correlated positively with a low content of biogenic amines, whereas the primary oxidation product, protein hydroperoxides, and in vivo AAs digestibility correlated positively with high content of biogenic amines. At an extrusion temperature of 100 °C......, the growth performance of the fish decreased when the content of biogenic amines increased. In contrast, at an extrusion temperature of 130 °C, the growth performance was unaffected by the level of biogenic amines. The latter could be a consequence of the higher level of protein oxidation of LB fishmeal...

  9. Controlling Nitrosamines, Nitramines, and Amines in Amine-Based CO₂ Capture Systems with Continuous Ultraviolet and Ozone Treatment of Washwater.

    Science.gov (United States)

    Dai, Ning; Mitch, William A

    2015-07-21

    Formation of nitrosamines and nitramines from reactions between flue gas NOx and the amines used in CO2 capture units has arisen as a significant concern. Washwater scrubbers can capture nitrosamines and nitramines. They can also capture amines, preventing formation of nitrosamines and nitramines downwind by amine reactions with ambient NOx. The continuous application of UV alone, or a combination of UV and ozone to the return line of a washwater treatment unit was evaluated to control the accumulation of nitrosamines, nitramines and amines in a laboratory-scale washwater unit. With model secondary amine solvents ranging from nonvolatile diethanolamine to volatile morpholine, application of 272-537 mJ/cm(2) UV incident fluence alone reduced the accumulation of nitrosamines and nitramines by approximately an order of magnitude. Modeling indicated that the gains achieved by UV treatment should increase over time, because UV treatment converts the time dependence of nitrosamine accumulation from a quadratic to a linear function. Ozone (21 mg/L) maintained low steady-state concentrations of amines in the washwater. While modeling indicated that more than 80% of nitrosamine accumulation in the washwater was associated with reaction of washwater amines with residual NOx, a reduction in nitrosamine accumulation rates due to ozone oxidation of amines was not fully realized because the ozonation products of amines reduced nitrosamine photolysis rates by competing for photons.

  10. Chemical modifications and applications of alternating aliphatic polyketones

    NARCIS (Netherlands)

    Zhang, Youchun

    2008-01-01

    Alternating aliphatic polyketones, produced by co- and terpolymerization of carbon monoxide and olefins (mixtures of ethylene and propylene) using palladium-based homogeneous catalysis represent a very promising class of polymers for a wide range of applications. Besides many interesting chemical

  11. Catalytic Enantioselective Addition of Organometallic Reagents to N-Formylimines Using Monodentate Phosphoramidite Ligands

    NARCIS (Netherlands)

    Pizzuti, Maria Gabriella; Minnaard, Adriaan J.; Feringa, Bernard

    2008-01-01

    The asymmetric synthesis of protected amines via the copper/phosphoramidite-catalyzed addition of organozinc and organoaluminum reagents to N-acylimines, generated in situ from aromatic and aliphatic α-amidosulfones, is reported. High yields of optically active N-formyl-protected amines and

  12. [Simultaneous determination of 33 primary aromatic amines in polystyrene and polyethylene masterbatches for foods by ultra-performance liquid chromatography-tandem mass spectrometry

    Science.gov (United States)

    Man, Zhengyin; Wang, Quanlin; Li, Hesheng; Zhang, Aizhi; Shen, Jian

    2015-03-01

    A comprehensive analytical method based on ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-MS/MS) has been developed for the simultaneous determination of 33 primary aromatic amines (PAAs) in polystyrene (PS) and polyethylene (PE) masterbatches for foods. The PS masterbatches were dissolved with dichloromethane, and methanol was added to precipitate after extraction by ultrasound extraction. Then the extract was purified by passing through a carbon graphite solid phase extraction column. The PE masterbatches were swelled and extracted with dichloromethane by ultrasound. The purified PS solution and PE extract were concentrated, and diluted to 2 mL with methanol-water (1:9, v/v), and filtered through the membranes of 0.22 µm before UPLC-MS/MS analysis. The analytes were separated on a BEH Phenyl column (100 mm x 2.1 mm, 1.7 µm), eluted by gradient with 0.07% (v/v) formic acid in methanol-water (1:9, v/v). The PAAs were detected by UPLC-MS/MS under multiple reaction monitoring (MRM) mode and quantified by the internal standard method. The separation conditions, fragment voltages and collision energies were optimized. The impacts of extraction times, extraction solvents and concentration methods on recoveries were studied. The limits of detection for the 33 primary aromatic amines were 6-10 µg/kg, and the limits of quantitation were 20-30 µg/kg. The mean recoveries of the two different masterbatch products at three spiked levels of 20, 100, 200 µg/kg were 61.3%-119.8%, and the relative standard deviations were 1.4%-14.8%. The experimental results indicated that the method is simple, rapid, sensitive, accurate, and can meet the related requirements for determination.

  13. Cyano-containing ionic liquids for the extraction of aromatic hydrocarbons from an aromatic/aliphatic mixture

    NARCIS (Netherlands)

    Meindersma, G.W.; Haan, de A.B.

    2012-01-01

    Ionic liquids can replace conventional solvents in aromatic/aliphatic extractions, if they have higher aromatic distribution coefficients and higher or similar aromatic/aliphatic selectivities. Also physical properties, such as density and viscosity, must be taken into account if a solvent is

  14. shape selective synthesis of alkylamines over acid catalysts

    NARCIS (Netherlands)

    Veefkind, V.A.

    1998-01-01

    Aliphatic amines are amongst the most important chemical intermediates. The worldwide annual production of these amines is estimated to be several hundreds of thousands of tons. The most practiced production route is the reaction of ammonia with alcohols to produce alkylamines of different

  15. Interaction of biogenic amines with ethanol.

    Science.gov (United States)

    Smith, A A

    1975-01-01

    Ethanol through its primary catabolite, acetaldehyde, competitively inhibits oxidation of aldehyde dehydrogenase substrates. As a consequence biogenic amines form increased quantities of alcohols rather than the corresponding acids. During this biotransformation, condensation reactions between deaminated and intact amines may occur which can yield tetrahydropapaverolines. These compounds are closely related to precursors of opioids which is cause to link ethanol abuse to morphine addiction. There is, however, no pharmacological or clinical evidence suggesting similarities between ethanol dependence or opiod addiction. Acetaldehyde plays an additional role in alkaloidal formation in vitro. Biogenic amines may react with acetaldehyde to form isoquinoline or carboline compounds. Some of these substances have significant pharmacological activity. Furthermore, they may enter neural stores and displace the natural neurotransmitter. Thus, they can act as false neurotransmitters. Some investigators believe that chronic ethanol ingestion leads to significant formation of such aberrant compounds which may then upset autonomic nervous system balance. This disturbance may explain the abnormal sympathetic activity seen in withdrawal. While these ideas about the etiology of alcohol abuse have a definite appeal, they are naturally based on in vitro preliminary work. Much study of the quantitative pharmacology of these compounds in animals is required before judgement can be made as to the merits of the proposed hypotheses. In the meantime, pharmacological studies on the ability of ethanol to depress respiration in the mouse has revealed that unlike opioids or barbituates, respiratory depression induced by ethanol requires the presence in brain of serotonin. This neurotransmitter also mediates the respiratory effects of several other alcohols but curiously, not chloral hydrate, yet this compound is purported to alter biogenic amine metabolism much like ethanol. Thus, the response

  16. Nano-biocomposites based on synthetic aliphatic polyesters and nanoclay

    CSIR Research Space (South Africa)

    Ojijo, Vincent O

    2014-05-01

    Full Text Available This article gives an overview of the recent developments in the preparation, characterisation, properties, crystallisation behaviour, and melt rheology of clay-containing composites of biodegradable synthetic aliphatic polyesters such as poly...

  17. Enantioselective Direct α-Amination of Aldehydes via a Photoredox Mechanism: A Strategy for Asymmetric Amine Fragment Coupling

    OpenAIRE

    Cecere, Giuseppe; Koenig, Christian M.; Alleva, Jennifer L.; MacMillan, David W. C.

    2013-01-01

    The direct, asymmetric α-amination of aldehydes has been accomplished via a combination of photoredox and organocatalysis. Photon-generated, nitrogen-centered radicals undergo enantioselective α-addition to catalytically formed chiral enamines to directly produce stable α-amino aldehyde adducts bearing synthetically useful amine substitution patterns. Incorporation of a photolabile group on the amine precursor obviates the need to employ a photoredox catalyst in this transformation. Important...

  18. Amine synergism in uranium extraction

    International Nuclear Information System (INIS)

    Rinelli, G.; Abbruzzese, C.

    1977-01-01

    Commercial products based on C 8 to C 12 tertiary amine mixtures are now widely used in the solvent extraction of uranium from sulphuric pregnant solutions. The satisfactory results generally obtained have never required an analysis of the synergistic effects of amine combinations similar to that carried out for the organo-phosphorus compounds. In the research described the increase in the extraction power of an organic phase composed of an amine binary mixture was studied with regard to an aqueous solution from the sulphuric acid treatment of uranium ore. On the basis of the experimental results obtained, it is possible to select the best composition of the amine mixture to ensure a percentage increase in uranium recovery. Bearing in mind the tendency for the yellow-cake price to rise, the study is considered to be a useful contribution in the context of commercial products currently available on the market. (author)

  19. Myeloperoxidase-catalyzed incorporation of amines into proteins: role of hypochlorous acid and dichloramines.

    Science.gov (United States)

    Thomas, E L; Jefferson, M M; Grisham, M B

    1982-11-23

    Myeloperoxidase-catalyzed oxidation of chloride (Cl-) to hypochlorous acid (HOCl) resulted in formation of mono- and dichloramine derivatives (RNHCl and RNCl2) of primary amines. The RNCl2 derivatives could undergo a reaction that resulted in incorporation of the R moiety into proteins. The probable mechanism was attack of RNCl2 or an intermediate formed in the decomposition of RNCl2 on histidine, tyrosine, and cystine residues and on lysine residues at high pH. Incorporation of radioactivity from labeled amines into stable, high molecular weight derivatives of proteins was measured by acid or acetone precipitation and by gel chromatography and electrophoresis. Whereas formation of RNCl2 was favored at low pH, the subsequent incorporation reaction was favored at high pH. Up to several hours were required for the maximum amount of incorporation, which was less than 10% of the label in RNCl2. For the amines tested, incorporation was in the order histamine greater than 1,2-diaminoethane greater than putrescine greater than taurine greater than lysine greater than glucosamine greater than leucine greater than methylamine. Initiation of the reaction required HOCl, and oxidized forms of bromide, iodide, or thiocyanate did not substitute. Inhibitors of incorporation fell into three classes. First, ammonia or amines competed with the labeled amine for reaction with HOCl, so that larger amounts of HOCl were required. Second, readily oxidized substances such as sulfhydryl or diketo compounds or thioethers (methionine) reduced RNCl2. Third, certain compounds competed with protein as the acceptor for the incorporation reaction. The amount required to block incorporation into protein depended on protein concentration. Among these inhibitors were imidazole compounds (histidine), phenols (tyrosine), and disulfides (glutathione disulfide, GSSG). Low yields of derivatives of histidine, tyrosine, and GSSG were detected by thin-layer chromatography. Acid-precipitable derivatives were

  20. Towards understanding the role of amines in the SO2 hydration and the contribution of the hydrated product to new particle formation in the Earth's atmosphere.

    Science.gov (United States)

    Lv, Guochun; Nadykto, Alexey B; Sun, Xiaomin; Zhang, Chenxi; Xu, Yisheng

    2018-08-01

    By theoretical calculations, the gas-phase SO 2 hydration reaction assisted by methylamine (MA) and dimethylamine (DMA) was investigated, and the potential contribution of the hydrated product to new particle formation (NPF) also was evaluated. The results show that the energy barrier for aliphatic amines (MA and DMA) assisted SO 2 hydration reaction is lower than the corresponding that of water and ammonia assisted SO 2 hydration. In these hydration reactions, nearly barrierless reaction (only a barrier of 0.1 kcal mol -1 ) can be found in the case of SO 2  + 2H 2 O + DMA. These lead us to conclude that the SO 2 hydration reaction assisted by MA and DMA is energetically facile. The temporal evolution for hydrated products (CH 3 NH 3 + -HSO 3 - -H 2 O or (CH 3 ) 2 NH 2 + -HSO 3 - -H 2 O) in molecular dynamics simulations indicates that these complexes can self-aggregate into bigger clusters and can absorb water and amine molecules, which means that these hydrated products formed by the hydration reaction may serve as a condensation nucleus to initiate the NPF. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Prediction of anticancer activity of aliphatic nitrosoureas using ...

    African Journals Online (AJOL)

    Design and development of new anticancer drugs with low toxicity is a very challenging task and computer aided methods are being increasingly used to solve this problem. In this study, we investigated the anticancer activity of aliphatic nitrosoureas using quantum chemical quantitative structure activity relation (QSAR) ...

  2. Applicability of the theory of thermodynamic similarity to predict the enthalpies of vaporization of aliphatic aldehydes

    Science.gov (United States)

    Esina, Z. N.; Korchuganova, M. R.

    2015-06-01

    The theory of thermodynamic similarity is used to predict the enthalpies of vaporization of aliphatic aldehydes. The predicted data allow us to calculate the phase diagrams of liquid-vapor equilibrium in a binary water-aliphatic aldehyde system.

  3. Amide Synthesis from Alcohols and Amines by the Extrusion of Dihydrogen

    DEFF Research Database (Denmark)

    Nordstrøm, Lars Ulrik Rubæk; Vogt, Henning; Madsen, R.

    2008-01-01

    An environmentally friendly method for synthesis of amides is presented where a simple ruthenium catalyst mediates the direct coupling between an alcohol and an amine with the liberation of two molecules of dihydrogen. The active catalyst is generated in situ from an easily available ruthenium...... complex, an N-heterocyclic carbene and a phosphine. The reaction allows primary alcohols to be coupled with primary alkyamines to afford the corresponding secondary amides in good yields. The amide formation presumably proceeds through a catalytic cycle where the intermediate aldehyde and hemiaminal...

  4. Biogenic amines degradation by microorganisms isolated from cheese

    Directory of Open Access Journals (Sweden)

    Irena Butor

    2017-01-01

    Full Text Available The aim of this study was the isolation and characterization of microorganisms able to degrade biogenic amines and their identification. Individual microorganisms were obtained by isolation from commercially available foodstuffs and food produced in the technological laboratories of Faculty of Technology, Tomas Bata University in Zlín and subsequently identified by MALDI-TOF MS. The results of MALDI-TOF MS identification were verified by 16S rRNA sequenation. In this work was studied the ability of 5 bacterial strains positive to biogenic amines degradation isolated from dairy products to decrease biogenic amines content in vitro and quantified reduction in the concentration of biogenic amines tryptamine, β-phenylethylamine, putrescine, cadaverine, histamine and tyramine. The level of degradation (decrease of biogenic amines was determined on the base of the ability to grow in media with biogenic amines as the sole source carbon and nitrogen. The isolated strains with the ability of degradation of one or more biogenic amines were cultured in medium supplemented with relevant biogenic amines, the media derivatized with dansyl chloride and these amines separated by HPLC at a wavelength of 254 nm. From five tested strains identified as Bacillus subtilis, Bacillus pumilus, Enterobacter cloacae, Rhizobium radiobacter and Acinetobacter pitii, isolated from gouda type cheese, the greatest ability of degradation was observed in Bacillus subtilis, which was capable to degrade almost all amount of histamine, cadaverine and putrescine. Other four strains showed a lower rate of degradation than Bacillus subtilis, but the ability to degrade biogenic amines with these microorganisms was still significant.

  5. Metabolism and Biomarkers of Heterocyclic Aromatic Amines in Molecular Epidemiology Studies: Lessons Learned from Aromatic Amines

    Science.gov (United States)

    2011-01-01

    Aromatic amines and heterocyclic aromatic amines (HAAs) are structurally related classes of carcinogens that are formed during the combustion of tobacco or during the high-temperature cooking of meats. Both classes of procarcinogens undergo metabolic activation by N-hydroxylation of the exocyclic amine group, to produce a common proposed intermediate, the arylnitrenium ion, which is the critical metabolite implicated in toxicity and DNA damage. However, the biochemistry and chemical properties of these compounds are distinct and different biomarkers of aromatic amines and HAAs have been developed for human biomonitoring studies. Hemoglobin adducts have been extensively used as biomarkers to monitor occupational and environmental exposures to a number of aromatic amines; however, HAAs do not form hemoglobin adducts at appreciable levels and other biomarkers have been sought. A number of epidemiologic studies that have investigated dietary consumption of well-done meat in relation to various tumor sites reported a positive association between cancer risk and well-done meat consumption, although some studies have shown no associations between well-done meat and cancer risk. A major limiting factor in most epidemiological studies is the uncertainty in quantitative estimates of chronic exposure to HAAs and, thus, the association of HAAs formed in cooked meat and cancer risk has been difficult to establish. There is a critical need to establish long-term biomarkers of HAAs that can be implemented in molecular epidemioIogy studies. In this review article, we highlight and contrast the biochemistry of several prototypical carcinogenic aromatic amines and HAAs to which humans are chronically exposed. The biochemical properties and the impact of polymorphisms of the major xenobiotic-metabolizing enzymes on the biological effects of these chemicals are examined. Lastly, the analytical approaches that have been successfully employed to biomonitor aromatic amines and HAAs, and

  6. One-Pot Two-Step Multicomponent Process of Indole and Other Nitrogenous Heterocycles or Amines toward α-Oxo-acetamidines.

    Science.gov (United States)

    Martinez-Ariza, Guillermo; McConnell, Nicholas; Hulme, Christopher

    2016-04-15

    A cesium carbonate promoted three-component reaction of N-H containing heterocycles, primary or secondary amines, arylglyoxaldehydes, and anilines is reported. The key step involves a tandem sequence of N-1 addition of a heterocycle or an amine to preformed α-iminoketones, followed by an air- or oxygen-mediated oxidation to form α-oxo-acetamidines. The scope of the reaction is enticingly broad, and this novel methodology is applied toward the synthesis of various polycyclic heterocycles.

  7. Extraction of beryllium sulfate by a long chain amine; Extraction du sulfate de beryllium par une amine a longue chaine

    Energy Technology Data Exchange (ETDEWEB)

    Etaix, E.S. [Commissariat a l' Energie Atomique, Fontenay-Aux-Roses (France). Centre d' Etudes Nucleaires

    1968-06-01

    The extraction of sulfuric acid in aqueous solution by a primary amine in benzene solution, 3-9 (diethyl) - 6-amino tri-decane (D.E.T. ) - i.e., with American nomenclature 1-3 (ethyl-pentyl) - 4-ethyl-octyl amine (E.P.O.) - has made it possible to calculate the formation constants of alkyl-ammonium sulfate and acid sulfate. The formula of the beryllium and alkyl-ammonium sulfate complex formed in benzene has next been determined, for various initial acidity of the aqueous solution. Lastly, evidence has been given of negatively charged complexes of beryllium and sulfate in aqueous solution, through the dependence of the aqueous sulfate ions concentration upon beryllium extraction. The formation constant of these anionic complexes has been evaluated. (author) [French] L'etude de l'extraction de l'acide sulfurique en solution aqueuse par une amine primaire en solution dans le benzene, le diethyl-3,9 amino-6 tridecane (D.E.T.) - autre nom americain 1-3 (ethylpentyl) - 4-ethyloctylamine (E.P.O.) a permis de calculer les constantes de formation du sulfate et de l'hydrogenosulfate d'alkyl-ammonium. La formule du complexe de sulfate de beryllium et d'alkyl-ammonium forme en solution benzenique a ete ensuite determinee pour diverses acidites initiales de la solution aqueuse. Enfin, l'influence de la concentration des ions sulfate de la phase aqueuse sur l'extraction du beryllium a mis en evidence la formation en solution aqueuse de complexes anioniques de sulfate et de beryllium dont la constante de formation a ete evaluee. (auteur)

  8. Extraction of beryllium sulfate by a long chain amine; Extraction du sulfate de beryllium par une amine a longue chaine

    Energy Technology Data Exchange (ETDEWEB)

    Etaix, E S [Commissariat a l' Energie Atomique, Fontenay-Aux-Roses (France). Centre d' Etudes Nucleaires

    1968-06-01

    The extraction of sulfuric acid in aqueous solution by a primary amine in benzene solution, 3-9 (diethyl) - 6-amino tri-decane (D.E.T. ) - i.e., with American nomenclature 1-3 (ethyl-pentyl) - 4-ethyl-octyl amine (E.P.O.) - has made it possible to calculate the formation constants of alkyl-ammonium sulfate and acid sulfate. The formula of the beryllium and alkyl-ammonium sulfate complex formed in benzene has next been determined, for various initial acidity of the aqueous solution. Lastly, evidence has been given of negatively charged complexes of beryllium and sulfate in aqueous solution, through the dependence of the aqueous sulfate ions concentration upon beryllium extraction. The formation constant of these anionic complexes has been evaluated. (author) [French] L'etude de l'extraction de l'acide sulfurique en solution aqueuse par une amine primaire en solution dans le benzene, le diethyl-3,9 amino-6 tridecane (D.E.T.) - autre nom americain 1-3 (ethylpentyl) - 4-ethyloctylamine (E.P.O.) a permis de calculer les constantes de formation du sulfate et de l'hydrogenosulfate d'alkyl-ammonium. La formule du complexe de sulfate de beryllium et d'alkyl-ammonium forme en solution benzenique a ete ensuite determinee pour diverses acidites initiales de la solution aqueuse. Enfin, l'influence de la concentration des ions sulfate de la phase aqueuse sur l'extraction du beryllium a mis en evidence la formation en solution aqueuse de complexes anioniques de sulfate et de beryllium dont la constante de formation a ete evaluee. (auteur)

  9. Amidation of single-walled carbon nanotubes by a hydrothermal process for the electrooxidation of nitric oxide

    International Nuclear Information System (INIS)

    Kan Kan; Xia Tingliang; Li Li; Bi Hongmei; Fu Honggang; Shi Keying

    2009-01-01

    Single-walled carbon nanotubes (SWCNTs) have been amidated by hydrothermal treatment with different aliphatic amines. The amido groups modified on the surface of the SWCNTs were characterized by Fourier transform infrared spectroscopy. The electrooxidation of nitric oxide (NO) at the modified electrodes of amidated SWCNTs was investigated. The modified electrodes of amidated SWCNTs exhibited different electrocatalytic activity for NO when different aliphatic amines were being used. The electrode amidated by ammonia has the highest activity, which is 1.8 times value of the SWCNT modified electrode. The electrocatalytic activity of the amidated SWCNT modified electrodes depends on the length of the alkyl groups. The results demonstrate that hydrothermal treatment is an efficient way to modify SWCNTs with amines, and the reaction rate of NO electrooxidation can be changed by the amidation of SWCNTs.

  10. Amine promoted, metal enhanced degradation of Mirex under high temperature conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jallad, Karim N. [American University of Sharjah, Department of Chemistry, P.O. Box 26666, Sharjah (United Arab Emirates)]. E-mail: kjallad@runbox.com; Lynn, Bert C. [University of Kentucky, Department of Chemistry, Lexington, KY 40506-055 (United States); Alley, Earl G. [Mississippi State University, Department of Chemistry, MS State, MS 39762 (United States)

    2006-07-31

    In this study, zero-valent metal dehalogenation of mirex was conducted with amine solvents at high temperatures. Mirex was treated with excess amine in sealed glass tube reactors under nitrogen. The amines used were n-butyl amine (l), ethyl amine (l), dimethyl amine (g), diethyl amine (l), triethyl amine (l), trimethyl amine (g) and ammonia (g). The metals used were copper, zinc, magnesium, aluminum and calcium. The most suitable amine solvent and metal were selected by running a series of reactions with different amines and different zero-valent metals, in order to optimize the conditions under which complete degradation of mirex takes place. These dehalogenation reactions illustrated the role of zero-valent metals as reductants, whereas the amine solvents acted as proton donors. In this study, we report that mirex was completely degraded with diethyl amine (l) in the presence of copper at 100 deg. C and the hydrogenated products accounted for more than 94 of the degraded mirex.

  11. omega-Amino acid:pyruvate transaminase from Alcaligenes denitrificans Y2k-2: a new catalyst for kinetic resolution of beta-amino acids and amines.

    Science.gov (United States)

    Yun, Hyungdon; Lim, Seongyop; Cho, Byung-Kwan; Kim, Byung-Gee

    2004-04-01

    Alcaligenes denitrificans Y2k-2 was obtained by selective enrichment followed by screening from soil samples, which showed omega-amino acid:pyruvate transaminase activity, to kinetically resolve aliphatic beta-amino acid, and the corresponding structural gene (aptA) was cloned. The gene was functionally expressed in Escherichia coli BL21 by using an isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible pET expression system (9.6 U/mg), and the recombinant AptA was purified to show a specific activity of 77.2 U/mg for L-beta-amino-n-butyric acid (L-beta-ABA). The enzyme converts various beta-amino acids and amines to the corresponding beta-keto acids and ketones by using pyruvate as an amine acceptor. The apparent K(m) and V(max) for L-beta-ABA were 56 mM and 500 U/mg, respectively, in the presence of 10 mM pyruvate. In the presence of 10 mM L-beta-ABA, the apparent K(m) and V(max) for pyruvate were 11 mM and 370 U/mg, respectively. The enzyme exhibits high stereoselectivity (E > 80) in the kinetic resolution of 50 mM D,L-beta-ABA, producing optically pure D-beta-ABA (99% enantiomeric excess) with 53% conversion.

  12. ω-Amino Acid:Pyruvate Transaminase from Alcaligenes denitrificans Y2k-2: a New Catalyst for Kinetic Resolution of β-Amino Acids and Amines

    Science.gov (United States)

    Yun, Hyungdon; Lim, Seongyop; Cho, Byung-Kwan; Kim, Byung-Gee

    2004-01-01

    Alcaligenes denitrificans Y2k-2 was obtained by selective enrichment followed by screening from soil samples, which showed ω-amino acid:pyruvate transaminase activity, to kinetically resolve aliphatic β-amino acid, and the corresponding structural gene (aptA) was cloned. The gene was functionally expressed in Escherichia coli BL21 by using an isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible pET expression system (9.6 U/mg), and the recombinant AptA was purified to show a specific activity of 77.2 U/mg for l-β-amino-n-butyric acid (l-β-ABA). The enzyme converts various β-amino acids and amines to the corresponding β-keto acids and ketones by using pyruvate as an amine acceptor. The apparent Km and Vmax for l-β-ABA were 56 mM and 500 U/mg, respectively, in the presence of 10 mM pyruvate. In the presence of 10 mM l-β-ABA, the apparent Km and Vmax for pyruvate were 11 mM and 370 U/mg, respectively. The enzyme exhibits high stereoselectivity (E > 80) in the kinetic resolution of 50 mM d,l-β-ABA, producing optically pure d-β-ABA (99% enantiomeric excess) with 53% conversion. PMID:15066855

  13. Room temperature aerobic oxidation of amines by a nanocrystalline ruthenium oxide pyrochlore nafion composite catalyst.

    Science.gov (United States)

    Venkatesan, Shanmuganathan; Kumar, Annamalai Senthil; Lee, Jyh-Fu; Chan, Ting-Shan; Zen, Jyh-Myng

    2012-05-14

    The aerobic oxidation of primary amines to their respective nitriles has been carried out at room temperature using a highly reusable nanocrystalline ruthenium oxide pyrochlore Nafion composite catalyst (see figure). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Mechanism of Oxidative Amidation of Nitroalkanes with Oxygen and Amine Nucleophiles by Using Electrophilic Iodine.

    Science.gov (United States)

    Li, Jing; Lear, Martin J; Kwon, Eunsang; Hayashi, Yujiro

    2016-04-11

    Recently, we developed a direct method to oxidatively convert primary nitroalkanes into amides that entailed mixing an iodonium source with an amine, base, and oxygen. Herein, we systematically investigated the mechanism and likely intermediates of such methods. We conclude that an amine-iodonium complex first forms through N-halogen bonding. This complex reacts with aci-nitronates to give both α-iodo- and α,α-diiodonitroalkanes, which can act as alternative sources of electrophilic iodine and also generate an extra equimolar amount of I(+) under O2. In particular, evidence supports α,α-diiodonitroalkane intermediates reacting with molecular oxygen to form a peroxy adduct; alternatively, these tetrahedral intermediates rearrange anaerobically to form a cleavable nitrite ester. In either case, activated esters are proposed to form that eventually reacts with nucleophilic amines in a traditional fashion. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Electrooxidation of aliphatic alcohols on palladium oxide catalyst prepared by pulsed electrodeposition technique

    International Nuclear Information System (INIS)

    Casella, Innocenzo G.

    2009-01-01

    Palladium film can be deposited on gold polycrystalline electrodes, from a deoxygenated alkaline solution containing 50 mM NaOH plus 0.5 mM K 2 Pd(CN) 4 . A multipulse sequence of potentials of equal amplitude and duration was used for the palladium deposition process. In particular, an optimized waveform of potentials of E 1 = 1.0 V vs. SCE and E 2 = -1.0 V vs. SCE for the relevant pulse duration of t 1 = 0.05 s and t 2 = 0.05 s, for 30 s, was used. Cyclic voltammetry and scanning electron microscopy (SEM) were employed to characterize the gold-palladium modified electrode (Au-Pd) towards the electrooxidation of aliphatic alcohols in alkaline solutions. The voltammetric study suggests that the kinetics involved in the alcohol electrooxidation at the Pd-Au electrode are sensibly higher than those observed on the bare Pd and Au electrodes. In addition, the most interesting aspect of the electrooxidation of aliphatic alcohols at the Au-Pd electrode was that as the number of methylene groups on the homologous series of aliphatic alcohols increased, the molar response also increased. Under pulsed chronoamerometric conditions (PCC), using an optimized triple pulse waveform of potentials the modified electrode exhibits interesting catalytic currents without any apparent poisoning effects during the oxidation of aliphatic alcohols.

  16. Preparation, characterization and photocatalytic applications of amine-functionalized mesoporous silica impregnated with transition-metal-monosubstituted polyoxometalates

    International Nuclear Information System (INIS)

    Li Li; Liu, Chunming; Geng Aifang; Jiang Chunjie; Guo Yihang; Hu Changwen

    2006-01-01

    Amine-functionalized mesoporous silica materials impregnated with transition-metal-monosubstituted polyoxometalates, K 5 [M(H 2 O)PW 11 O 39 ]-(EtO) 3 SiCH 2 CH 2 CH 2 NH 2 -MCM-48 (M = Co/Ni), were prepared by coordination of nickel/cobalt centers in the clusters with the amine surface groups in amine-functionalized mesoporous silica supports. The materials obtained were characterized by powder X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (UV-vis-DR), infrared (IR) spectra, magic-angle spinning 31 P MAS NMR, transmission electron microscopy (TEM) and nitrogen adsorption measurements, indicating that the primary Keggin structures remained intact in as-prepared composites, and the composites possessed mesoporous structures. The composites exhibited UV-photocatalytic activity to degrade dye rhodamine B (RB), and the pesticides including hexachlorobenzene (HCB) and methylparathion (MPT). Leakage of K 5 [M(H 2 O)PW 11 O 39 ] from the support was hardly observed during the photocatalytic tests, attributed to strong coordination interactions between the Keggin units and the amine-functionalized silica surface. -- Graphical abstract: The K 5 [M(H 2 O)PW 11 O 39 ]-(EtO) 3 SiCH 2 CH 2 CH 2 NH 2 -SiO 2 composites were prepared by coordination of M centers in the Keggin units with the amine surface groups in amine-functionalized mesoporous silica supports, and the composites exhibited photocatalytic activity to degrade aqueous rhodamine B, hexachlorobenzene and methyl parathion

  17. Synthesis and bioelectrochemical behavior of aromatic amines.

    Science.gov (United States)

    Shabbir, Muhammad; Akhter, Zareen; Ahmad, Iqbal; Ahmed, Safeer; Bolte, Michael; McKee, Vickie

    2017-12-01

    Four aromatic amines 1-amino-4-phenoxybenzene (A 1 ), 4-(4-aminophenyloxy) biphenyl (A 2 ), 1-(4-aminophenoxy) naphthalene (A 3 ) and 2-(4-aminophenoxy) naphthalene (A 4 ) were synthesized and characterized by elemental, spectroscopic (FTIR, NMR), mass spectrometric and single crystal X-ray diffraction methods. The compounds crystallized in monoclinic crystal system with space group P2 1 . Intermolecular hydrogen bonds were observed between the amine group and amine/ether acceptors of neighboring molecules. Electrochemical investigations were done using cyclic voltammetry (CV), square wave voltammetry (SWV) and differential pulse voltammetry (DPV). CV studies showed that oxidation of aromatic amines takes place at about 0.9 V (vs. Ag/AgCl) and the electron transfer (ET) process has irreversible nature. After first scan reactive intermediate were generated electrochemically and some other cathodic and anodic peaks also appeared in the succeeding scans. DPV study revealed that ET process is accompanied by one electron. DNA binding study of aromatic amines was performed by CV and UV-visible spectroscopy. These investigations revealed groove binding mode of interaction of aromatic amines with DNA. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The role of protein crystallography in defining the mechanisms of biogenesis and catalysis in copper amine oxidase.

    Science.gov (United States)

    Klema, Valerie J; Wilmot, Carrie M

    2012-01-01

    Copper amine oxidases (CAOs) are a ubiquitous group of enzymes that catalyze the conversion of primary amines to aldehydes coupled to the reduction of O(2) to H(2)O(2). These enzymes utilize a wide range of substrates from methylamine to polypeptides. Changes in CAO activity are correlated with a variety of human diseases, including diabetes mellitus, Alzheimer's disease, and inflammatory disorders. CAOs contain a cofactor, 2,4,5-trihydroxyphenylalanine quinone (TPQ), that is required for catalytic activity and synthesized through the post-translational modification of a tyrosine residue within the CAO polypeptide. TPQ generation is a self-processing event only requiring the addition of oxygen and Cu(II) to the apoCAO. Thus, the CAO active site supports two very different reactions: TPQ synthesis, and the two electron oxidation of primary amines. Crystal structures are available from bacterial through to human sources, and have given insight into substrate preference, stereospecificity, and structural changes during biogenesis and catalysis. In particular both these processes have been studied in crystallo through the addition of native substrates. These latter studies enable intermediates during physiological turnover to be directly visualized, and demonstrate the power of this relatively recent development in protein crystallography.

  19. Aliphatic amine cured PDMS–epoxy interpenetrating network ...

    Indian Academy of Sciences (India)

    Unknown

    Tg, heat-distortion temperature and reduced the percentage weight loss with ... The siliconized epoxy IPN, with better impact and thermal resistance, ... However, these materials also deteriorate ... the method of compounding remains the state of the art. ... geneity and to ascertain any chemical change during storage.

  20. Structure and properties of porous films based on aliphatic copolyamide developed for cellular technologies

    Czech Academy of Sciences Publication Activity Database

    Dobrovol`skaya, I.P.; Popryadukhin, P.V.; Yudin, V. E.; Ivankova, E.M.; Elokhovskiy, V.Y.; Weishauptová, Zuzana; Balík, Karel

    2015-01-01

    Roč. 26, č. 1 (2015), article number 46 ISSN 0957-4530 Institutional support: RVO:67985891 Keywords : porous film * aliphatic copolyamide * structure * properties Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.272, year: 2015 http://www.stem-art.com/Library/Science/Structure%20and%20properties%20of%20porous%20films%20based%20on%20aliphatic%20copolyamide%20developed%20for%20cellular%20technologies.pdf

  1. Amine Swingbed Payload Project Management

    Science.gov (United States)

    Walsch, Mary; Curley, Su

    2013-01-01

    The International Space Station (ISS) has been designed as a laboratory for demonstrating technologies in a microgravity environment, benefitting exploration programs by reducing the overall risk of implementing such technologies in new spacecraft. At the beginning of fiscal year 2010, the ISS program manager requested that the amine-based, pressure-swing carbon dioxide and humidity absorption technology (designed by Hamilton Sundstrand, baselined for the Orion Multi-Purpose Crew Vehicle, and tested at the Johnson Space Center in relevant environments, including with humans, since 2005) be developed into a payload for ISS Utilization. In addition to evaluating the amine technology in a flight environment before the first launch of the Orion vehicle, the ISS program wanted to determine the capability of the amine technology to remove carbon dioxide from the ISS cabin environment at the metabolic rate of the full 6 ]person crew. Because the amine technology vents the absorbed carbon dioxide and water vapor to space vacuum (open loop), additional hardware needed to be developed to minimize the amount of air and water resources lost overboard. Additionally, the payload system would be launched on two separate Space Shuttle flights, with the heart of the payload-the swingbed unit itself-launching a full year before the remainder of the payload. This paper discusses the project management and challenges of developing the amine swingbed payload in order to accomplish the technology objectives of both the open -loop Orion application as well as the closed-loop ISS application.

  2. Molecular Characterization of MYB28 Involved in Aliphatic Glucosinolate Biosynthesis in Chinese Kale (Brassica oleracea var. alboglabra Bailey

    Directory of Open Access Journals (Sweden)

    Ling Yin

    2017-06-01

    Full Text Available Glucosinolates are Brassicaceae-specific secondary metabolites that act as crop protectants, flavor precursors, and cancer-prevention agents, which shows strong evidences of anticarcinogentic, antioxidant, and antimicrobial activities. MYB28, the R2R3-MYB28 transcription factor, directly activates genes involved in aliphatic glucosinolate biosynthesis. In this study, the MYB28 homology (BoaMYB28 was identified in Chinese kale (Brassica oleracea var. alboglabra Bailey. Analysis of the nucleotide sequence indicated that the cDNA of BoaMYB28 was 1257 bp with an ORF of 1020 bp. The deduced BoaMYB28 protein was a polypeptide of 339 amino acid with a putative molecular mass of 38 kDa and a pI of 6.87. Sequence homology and phylogenetic analysis showed that BoaMYB28 was most closely related to MYB28 homologs from the Brassicaceae family. The expression levels of BoaMYB28 varies across the tissues and developmental stages. BoaMYB28 transcript levels were higher in leaves and stems compared with those in cotyledons, flowers, and siliques. BoaMYB28 was expressed across all developmental leaf stages, with higher transcript accumulation in mature and inflorescence leaves. Over-expression and RNAi studies showed that BoaMYB28 retains the basic MYB28 gene function as a major transcriptional regulator of aliphatic glucosinolate pathway. The results indicated that over-expression and RNAi lines showed no visible difference on plant morphology. The contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate biosynthesis genes increased in over-expression lines and decreased in RNAi lines. In over-expression lines, aliphatic glucosinolate contents were 1.5- to 3-fold higher than those in the wild-type, while expression levels of aliphatic glucosinolate biosynthesis genes were 1.5- to 4-fold higher than those in the wild-type. In contrast, the contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate

  3. Molecular Characterization of MYB28 Involved in Aliphatic Glucosinolate Biosynthesis in Chinese Kale (Brassica oleracea var. alboglabra Bailey).

    Science.gov (United States)

    Yin, Ling; Chen, Hancai; Cao, Bihao; Lei, Jianjun; Chen, Guoju

    2017-01-01

    Glucosinolates are Brassicaceae-specific secondary metabolites that act as crop protectants, flavor precursors, and cancer-prevention agents, which shows strong evidences of anticarcinogentic, antioxidant, and antimicrobial activities. MYB28 , the R2R3-MYB28 transcription factor, directly activates genes involved in aliphatic glucosinolate biosynthesis. In this study, the MYB28 homology ( BoaMYB28 ) was identified in Chinese kale ( Brassica oleracea var. alboglabra Bailey). Analysis of the nucleotide sequence indicated that the cDNA of BoaMYB28 was 1257 bp with an ORF of 1020 bp. The deduced BoaMYB28 protein was a polypeptide of 339 amino acid with a putative molecular mass of 38 kDa and a pI of 6.87. Sequence homology and phylogenetic analysis showed that BoaMYB28 was most closely related to MYB28 homologs from the Brassicaceae family. The expression levels of BoaMYB28 varies across the tissues and developmental stages. BoaMYB28 transcript levels were higher in leaves and stems compared with those in cotyledons, flowers, and siliques. BoaMYB28 was expressed across all developmental leaf stages, with higher transcript accumulation in mature and inflorescence leaves. Over-expression and RNAi studies showed that BoaMYB28 retains the basic MYB28 gene function as a major transcriptional regulator of aliphatic glucosinolate pathway. The results indicated that over-expression and RNAi lines showed no visible difference on plant morphology. The contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate biosynthesis genes increased in over-expression lines and decreased in RNAi lines. In over-expression lines, aliphatic glucosinolate contents were 1.5- to 3-fold higher than those in the wild-type, while expression levels of aliphatic glucosinolate biosynthesis genes were 1.5- to 4-fold higher than those in the wild-type. In contrast, the contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate biosynthesis genes in

  4. Highly Chemoselective Reduction of Amides (Primary, Secondary, Tertiary) to Alcohols using SmI2/Amine/H2O under Mild Conditions

    Science.gov (United States)

    2014-01-01

    Highly chemoselective direct reduction of primary, secondary, and tertiary amides to alcohols using SmI2/amine/H2O is reported. The reaction proceeds with C–N bond cleavage in the carbinolamine intermediate, shows excellent functional group tolerance, and delivers the alcohol products in very high yields. The expected C–O cleavage products are not formed under the reaction conditions. The observed reactivity is opposite to the electrophilicity of polar carbonyl groups resulting from the nX → π*C=O (X = O, N) conjugation. Mechanistic studies suggest that coordination of Sm to the carbonyl and then to Lewis basic nitrogen in the tetrahedral intermediate facilitate electron transfer and control the selectivity of the C–N/C–O cleavage. Notably, the method provides direct access to acyl-type radicals from unactivated amides under mild electron transfer conditions. PMID:24460078

  5. Tandem catalytic allylic amination and [2,3]-Stevens rearrangement of tertiary amines.

    Science.gov (United States)

    Soheili, Arash; Tambar, Uttam K

    2011-08-24

    We have developed a catalytic allylic amination involving tertiary aminoesters and allylcarbonates, which is the first example of the use of tertiary amines as intermolecular nucleophiles in metal-catalyzed allylic substitution chemistry. This process is employed in a tandem ammonium ylide generation/[2,3]-rearrangement reaction, which formally represents a palladium-catalyzed Stevens rearrangement. Low catalyst loadings and mild reaction conditions are compatible with an unprecedented substrate scope for the ammonium ylide functionality, and products are generated in high yields and diastereoselectivities. Mechanistic studies suggested the reversible formation of an ammonium intermediate.

  6. Aliphatic alcohols of illegally produced spirits can act synergistically on superoxide-anion production by human granulocytes.

    Science.gov (United States)

    Arnyas, Ervin M; Pál, László; Kovács, Csilla; Adány, Róza; McKee, Martin; Szűcs, Sándor

    2012-10-01

    Aliphatic alcohols present in illegally produced spirits in a large number of low and middle income countries have been implicated in the etiology of chronic liver disease and cirrhosis. Previous studies have confirmed that chronic alcoholism can lead to increased susceptibility to infectious diseases. Reduced superoxide-anion (O(2)·(-)) production by granulocytes could provide a mechanism by which antimicrobial defense is impaired in alcoholics. In vitro experiments have also demonstrated that ethanol can inhibit granulocyte O(2)·(-) generation. Aliphatic alcohols consumed as contaminants of illicit spirits may also influence O(2)·(-) production thereby contributing to a decrease in microbicidal activity. The aim of this study was to investigate this possibility. It measured the O(2)·(-) production by human granulocytes following treatment of the cells with aliphatic alcohol contaminants found in illicit spirits. Granulocytes were isolated from human buffy coats with centrifugal elutriation and then treated with individual aliphatic alcohols and their mixture. The O(2)·(-) production was stimulated with phorbol-12-13-dibutyrate and N-formyl-methionyl-leucyl-phenylalanine (FMLP) and measured by superoxide dismutase inhibitable reduction of ferricytochrome c. Aliphatic alcohols of illegally produced spirits inhibited the FMLP-induced O(2)·(-) production in a concentration dependent manner. They suppressed O(2)·(-) generation at 2.5-40 times lower concentrations when combined than when tested individually. Aliphatic alcohols found in illegally produced spirits can inhibit FMLP-induced O(2)·(-) production by granulocytes in a concentration-dependent manner. Due to their synergistic effects, it is possible that, in combination with ethanol, they may inhibit O(2)·(-) formation in heavy episodic drinkers.

  7. Palladium-catalyzed aryl C-H olefination with unactivated, aliphatic alkenes.

    Science.gov (United States)

    Deb, Arghya; Bag, Sukdev; Kancherla, Rajesh; Maiti, Debabrata

    2014-10-01

    Palladium-catalyzed coupling between aryl halides and alkenes (Mizoroki-Heck reaction) is one of the most popular reactions for synthesizing complex organic molecules. The limited availability, problematic synthesis, and higher cost of aryl halide precursors (or their equivalents) have encouraged exploration of direct olefination of aryl carbon-hydrogen (C-H) bonds (Fujiwara-Moritani reaction). Despite significant progress, the restricted substrate scope, in particular noncompliance of unactivated aliphatic olefins, has discouraged the use of this greener alternative. Overcoming this serious limitation, we report here a palladium-catalyzed chelation-assisted ortho C-H bond olefination of phenylacetic acid derivatives with unactivated, aliphatic alkenes in good to excellent yields with high regio- and stereoselectivities. The versatility of this operationally simple method has been demonstrated through drug diversification and sequential C-H olefination for synthesizing divinylbenzene derivatives.

  8. Facilitated ion transfer of protonated primary organic amines studied by square wave voltammetry and chronoamperometry

    Energy Technology Data Exchange (ETDEWEB)

    Torralba, E. [Departamento de Química Física, Facultad de Química, Universidad de Murcia, Murcia 30100 (Spain); Ortuño, J.A. [Departamento de Química Analítica, Facultad de Química, Universidad de Murcia, Murcia 30100 (Spain); Molina, A., E-mail: amolina@um.es [Departamento de Química Física, Facultad de Química, Universidad de Murcia, Murcia 30100 (Spain); Serna, C. [Departamento de Química Física, Facultad de Química, Universidad de Murcia, Murcia 30100 (Spain); Karimian, F. [Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2014-05-01

    Highlights: • Facilitated ion transfer of organic protonated amines is studied. • Cyclic square wave voltammetry is used as main technique. • Complexation constants and standard ion transfer potentials are determined. • Diffusion coefficients in the organic and aqueous phases are determined. • The goodness of square wave voltammetry as analytical tool is shown. - Abstract: The transfer of the protonated forms of heptylamine, octylamine, decylamine, procaine and procainamide facilitated by dibenzo-18-crown-6 from water to a solvent polymeric membrane has been investigated by using cyclic square wave voltammetry. The experimental voltammograms obtained are in good agreement with theoretical predictions. The values of the standard ion transfer potential, complexation constant and diffusion coefficient in water have been obtained from these experiments, and have been used to draw some conclusions about the lipophilicity of these species and the relative stability of the organic ammonium complexes with dibenzo-18-crown-6. The results have been compared with those provided by linear sweep voltammetry. Calibration graphs were obtained with both techniques. An interesting chronoamperometric method for the determination of the diffusion coefficient of the target ion in the membrane has been developed and applied to all these protonated amines.

  9. Extraction of sulphates by long chain amines

    International Nuclear Information System (INIS)

    Boirie, Ch.

    1959-05-01

    The extraction of sulphuric acid by long chain amines in organic solution has been studied with a view to determining the value of the stability constants of the amine sulphates and bi-sulphates formed. We have concentrated chiefly on uranium sulphate and thorium sulphate. The formulae of the complexes extractable with amines have been established, as well as the corresponding dissociation constants. We have observed that for uranium sulphate the formula of the complex depends only on the nature of the amine, whereas for thorium this formula varies with the amine structure. From the formulae determined and the value of the constants calculated, we have been able to establish the best conditions for uranium and thorium extraction and also for a separation of these two elements. Finally we propose an application of this study to the determination of uranium in ores, where the separation of uranium by this method is particularly easy and complete. (author) [fr

  10. Dehydrogenative Synthesis of Imines from Alcohols and Amines Catalyzed by a Ruthenium N-Heterocyclic Carbene Complex

    DEFF Research Database (Denmark)

    Maggi, Agnese; Madsen, Robert

    2012-01-01

    A new method for the direct synthesis of imines from alcohols and amines is described where hydrogen gas is liberated. The reaction is catalyzed by the ruthenium N-heterocyclic carbene complex [RuCl2(IiPr)(p-cymene)] in the presence of the ligand DABCO and molecular sieves. The imination can...... be applied to a variety of primary alcohols and amines and can be combined with a subsequent addition reaction. A deuterium labeling experiment indicates that the catalytically active species is a ruthenium dihydride. The reaction is believed to proceed by initial dehydrogenation of the alcohol...

  11. Redox reactions of Cu(II)-amine complexes in aqueous solutions

    International Nuclear Information System (INIS)

    Kumbhar, A.G.; Kishore, Kamal

    2003-01-01

    A number of amines can be employed for all volatile treatment (AVT) of steam generator (SG) systems of nuclear power reactors. These amines form complexes with Cu 2+ and Ni 2+ ions which come into water due to corrosion. The redox reactions of a number of Cu(II)-AVT amine complexes and the stability of the transient species formed have been studied by pulse radiolysis technique. Rate constants for the reaction of e aq - with a number of Cu(II)-amine complexes have been determined by following the decay of e aq - absorption. Stability of Cu(I)-amine complexes was studied by following the kinetics of the bleaching signal formed at the λ max of the Cu(II) amine complex. Except for Cu(I)-triethanolamine complex all other Cu(I)-amine complexes were found to be stable. One-electron oxidation of Cu(II) amine complexes was studied using azidyl radicals for the oxidation reaction as OH radicals react with the alcohol groups present in the amines used in this study. Cu(III)-amine complexes were found to be unstable and decayed by second-order kinetics

  12. Synthesis of amphiphilic aminated inulin via 'click chemistry' and evaluation for its antibacterial activity.

    Science.gov (United States)

    Dong, Fang; Zhang, Jun; Yu, Chunwei; Li, Qing; Ren, Jianming; Wang, Gang; Gu, Guodong; Guo, Zhanyong

    2014-09-15

    Inulins are a group of abundant, water-soluble, renewable polysaccharides, which exhibit attractive bioactivities and natural properties. Improvement such as chemical modification of inulin is often performed prior to further utilization. We hereby presented a method to modify inulin at its primary hydroxyls to synthesize amphiphilic aminated inulin via 'click chemistry' to facilitate its chemical manipulation. Additionally, its antibacterial property against Staphylococcus aureus (S. aureus) was also evaluated and the best inhibitory index against S. aureus was 58% at 1mg/mL. As the amphiphilic aminated inulin is easy to prepare and exhibits improved bioactivity, this material may represent as an attractive new platform for chemical modifications of inulin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Occurrence and Sources of Aliphatic Hydrocarbons in Soils within ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Keywords: Asphalt Plants; Soil; Aliphatic hydrocarbons; Pristane; Phytane. Hot mix asphalt (HMA) plant is an assemblage of mechanical equipment where aggregates or inert mineral materials such as sand, gravel, crushed stones, Slag, rock dust or powder are blended, heated, dried and mixed with bitumen in measured ...

  14. Simple method for preparation of secondary amides of phosphorylacetic acids and their use for actinide extraction and sorption from nitric acid solutions

    International Nuclear Information System (INIS)

    Artyushin, O.I.; Sharova, E.V.; Odinets, I.L.; Lenevich, S.V.; Mastruykova, T.A.; Morgalyuk, V.P.; Tananaev, I.G.; Pribylova, G.V.; Myasoedova, G.V.; Myasoedov, B.F.

    2004-01-01

    An effective method of synthesis of secondary alkylamides of phosphorylacetic acids (APA), based on amidation of ethyl esters of phosphorylacetic acids with primary aliphatic amines, was developed. Extraction of americium(III) complexes with APA solutions in dichloroethane and uranium(VI) sorption by sorbents with non-covalently fixed APA from nitric acid solutions were studied. In the course of americium(III) extraction there is no correlation between Am III distribution factor and APA structure, whereas during uranium(VI) sorption a dependence of U VI extraction degree on the complexing agent structure is observed [ru

  15. Synthesis, docking and in-vitro screening of mannich bases of thiosemicarbazide for anti-fungal activity

    Directory of Open Access Journals (Sweden)

    Sachin A. Pishawikar

    2017-05-01

    Analogs with aromatic and substituted aromatic aldehydes showed least activity, while analogs with aliphatic aldehyde, ketones and amines showed greater activity in C. albicans compared to A. niger. Analogs having morpholine as amine showed comparable activity in both. Compounds K17, K18, K19, and K20 have shown comparable highest activities.

  16. Trace Amines and the Trace Amine-Associated Receptor 1: Pharmacology, Neurochemistry and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Yue ePei

    2016-04-01

    Full Text Available Biogenic amines are a collection of endogenous molecules that play pivotal roles as neurotransmitters and hormones. In addition to the classical biogenic amines resulting from decarboxylation of aromatic acids, including dopamine (DA, norepinephrine, epinephrine, serotonin (5-HT and histamine, other biogenic amines, present at much lower concentrations in the central nervous system (CNS, and hence referred to as trace amines (TAs, are now recognized to play significant neurophysiological and behavioural functions. At the turn of the century, the discovery of the trace amine-associated receptor 1 (TAAR1, a phylogenetically conserved G protein-coupled receptor that is responsive to both TAs, such as β-phenylethylamine, octopamine and tyramine, and structurally-related amphetamines, unveiled mechanisms of action for TAs other than interference with aminergic pathways, laying the foundations for deciphering the functional significance of TAs and its mammalian CNS receptor, TAAR1. Although its molecular interactions and downstream targets have not been fully elucidated, TAAR1 activation triggers accumulation of intracellular cAMP, modulates PKA and PKC signalling and interferes with the β-arrestin2-dependent pathway via G protein-independent mechanisms. TAAR1 is uniquely positioned to exert direct control over DA and 5-HT neuronal firing and release, which has profound implications for understanding the pathophysiology of, and therefore designing more efficacious therapeutic interventions for, a range of neuropsychiatric disorders that involve aminergic dysregulation, including Parkinson’s disease, schizophrenia, mood disorders and addiction. Indeed, the recent development of novel pharmacological tools targeting TAAR1 has uncovered the remarkable potential of TAAR1-based medications as new generation pharmacotherapies in neuropsychiatry. This review summarizes recent developments in the study of TAs and TAAR1, their intricate neurochemistry and

  17. Tunable, chemoselective amination via silver catalysis.

    Science.gov (United States)

    Rigoli, Jared W; Weatherly, Cale D; Alderson, Juliet M; Vo, Brian T; Schomaker, Jennifer M

    2013-11-20

    Organic N-containing compounds, including amines, are essential components of many biologically and pharmaceutically important molecules. One strategy for introducing nitrogen into substrates with multiple reactive bonds is to insert a monovalent N fragment (nitrene or nitrenoid) into a C-H bond or add it directly to a C═C bond. However, it has been challenging to develop well-defined catalysts capable of promoting predictable and chemoselective aminations solely through reagent control. Herein, we report remarkable chemoselective aminations that employ a single metal (Ag) and a single ligand (phenanthroline) to promote either aziridination or C-H insertion by manipulating the coordination geometry of the active catalysts.

  18. The Role of Protein Crystallography in Defining the Mechanisms of Biogenesis and Catalysis in Copper Amine Oxidase

    Directory of Open Access Journals (Sweden)

    Carrie M. Wilmot

    2012-05-01

    Full Text Available Copper amine oxidases (CAOs are a ubiquitous group of enzymes that catalyze the conversion of primary amines to aldehydes coupled to the reduction of O2 to H2O2. These enzymes utilize a wide range of substrates from methylamine to polypeptides. Changes in CAO activity are correlated with a variety of human diseases, including diabetes mellitus, Alzheimer’s disease, and inflammatory disorders. CAOs contain a cofactor, 2,4,5-trihydroxyphenylalanine quinone (TPQ, that is required for catalytic activity and synthesized through the post-translational modification of a tyrosine residue within the CAO polypeptide. TPQ generation is a self-processing event only requiring the addition of oxygen and Cu(II to the apoCAO. Thus, the CAO active site supports two very different reactions: TPQ synthesis, and the two electron oxidation of primary amines. Crystal structures are available from bacterial through to human sources, and have given insight into substrate preference, stereospecificity, and structural changes during biogenesis and catalysis. In particular both these processes have been studied in crystallo through the addition of native substrates. These latter studies enable intermediates during physiological turnover to be directly visualized, and demonstrate the power of this relatively recent development in protein crystallography.

  19. An additive for a petroleum coke and water suspension

    Energy Technology Data Exchange (ETDEWEB)

    Khiguti, K.; Igarasi, T.; Isimura, Y.; Kharaguti, S.; Tsudzina, T.

    1983-03-04

    The patent covers an additive for a petroleum coke and watersuspension which contains soap of an aliphatic acid (AM) and or a salt of a maleic acid copolymer (SMK). The aliphatic acid soap is a salt of an alkaline earth metal of C6 to C22 aliphatic acid, an ammonium salt or a salt of a lower amine. The maleic acid copolymer is a salt (sodium, NH4) of a lower amine of a maleic anhydride copolymer with a copolymerizing vinyl additive. Capric acid, lauric acid, palmatic acid, aleic and other acids may be used as the aliphatic acid, while methylamine, trimethylamine, diethanolamine, morpholine and so on may be used as the lower amine salt. Ethylene, vinylchloride, methyl(meta)acrylate and so on are used as the polymerizing vinyl compound. The molar ratio of the maleic anhydride to the polymerizing vinyl compound is in a range from 1 to 1 to 1 to 10 (preferably 1 to 1 to 1 to 3). The maleic acid copolymer has a mean molecular mass within 1,000 to 5,000. The additive with the optimal composition contains a solvent, a thickener, an anticorrosion substance, anticoagulants, surfacants (PAV) and so on. A highly concentrated suspension of oil coke and water with a 50 to 75 percent concentration of powder form petroleum coke may be produced using the patented additive. Such a suspension is characterized by low viscosity, high stability and forms no foam during processing.

  20. [Fe(F20 TPP)Cl]-catalyzed amination with arylamines and {[Fe(F20 TPP)(NAr)](PhI=NAr)} + . Intermediate assessed by high-resolution ESI-MS and DFT calculations.

    Science.gov (United States)

    Liu, Yungen; Chen, Guo-Qiang; Tse, Chun-Wai; Guan, Xianguo; Xu, Zheng-Jiang; Huang, Jie-Sheng; Che, Chi-Ming

    2015-01-01

    Amination of CH bonds catalyzed by transition metal complexes via nitrene/imide insertion is an appealing strategy for CN bond formation, and the use of iminoiodinanes, or their in situ generated forms from 'PhI(OAc)2 +primary amides (such as sulfonamides, sulfamates, and carbamates)', as nitrogen sources for the amination reaction has been well documented. In this work, a 'metal catalyst+PhI(OAc)2 +primary arylamines' amination protocol has been developed using [Fe(F20 TPP)Cl] (H2 F20 TPP=meso-tetrakis(pentafluorophenyl)porphyrin) as a catalyst. This catalytic method is applicable for both intra- and intermolecular amination of sp(2) and sp(3) CH bonds (>27 examples), affording the amination products, including natural products such as rutaecarpine, in moderate-to-good yields. ESI-MS analysis and DFT calculations lend support for the involvement of {[Fe(F20 TPP)(NC6 H4 -p-NO2 )](PhI=NC6 H4 -p-NO2 )} + . intermediate in the catalysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis.

    Science.gov (United States)

    Chen, Sixue; Glawischnig, Erich; Jørgensen, Kirsten; Naur, Peter; Jørgensen, Bodil; Olsen, Carl-Erik; Hansen, Carsten H; Rasmussen, Hasse; Pickett, John A; Halkier, Barbara A

    2003-03-01

    Cytochromes P450 of the CYP79 family catalyze the conversion of amino acids to oximes in the biosynthesis of glucosinolates, a group of natural plant products known to be involved in plant defense and as a source of flavor compounds, cancer-preventing agents and bioherbicides. We report a detailed biochemical analysis of the substrate specificity and kinetics of CYP79F1 and CYP79F2, two cytochromes P450 involved in the biosynthesis of aliphatic glucosinolates in Arabidopsis thaliana. Using recombinant CYP79F1 and CYP79F2 expressed in Escherichia coli and Saccharomyces cerevisiae, respectively, we show that CYP79F1 metabolizes mono- to hexahomomethionine, resulting in both short- and long-chain aliphatic glucosinolates. In contrast, CYP79F2 exclusively metabolizes long-chain elongated penta- and hexahomomethionines. CYP79F1 and CYP79F2 are spatially and developmentally regulated, with different gene expression patterns. CYP79F2 is highly expressed in hypocotyl and roots, whereas CYP79F1 is strongly expressed in cotyledons, rosette leaves, stems, and siliques. A transposon-tagged CYP79F1 knockout mutant completely lacks short-chain aliphatic glucosinolates, but has an increased level of long-chain aliphatic glucosinolates, especially in leaves and seeds. The level of long-chain aliphatic glucosinolates in a transposon-tagged CYP79F2 knockout mutant is substantially reduced, whereas the level of short-chain aliphatic glucosinolates is not affected. Biochemical characterization of CYP79F1 and CYP79F2, and gene expression analysis, combined with glucosinolate profiling of knockout mutants demonstrate the functional role of these enzymes. This provides valuable insights into the metabolic network leading to the biosynthesis of aliphatic glucosinolates, and into metabolic engineering of altered aliphatic glucosinolate profiles to improve nutritional value and pest resistance.

  2. Kinetics of Oxidation of Aliphatic Alcohols by Potassium Dichromate ...

    African Journals Online (AJOL)

    The kinetics of oxidation of four aliphatic alcohols in acidic aqueous and micellar media were investigated. The reaction was found to be first-order with respect to both alcohol and oxidant. Pseudo-first-order kinetics were found to be perfectly applicable with ethanol, 1-propanol and 2-propanol while deviation was observed ...

  3. Development of I-123-labeled amines for brain studies: localization of I-123 iodophenylalkyl amines in rat brain

    International Nuclear Information System (INIS)

    Winchell, H.S.; Baldwin, R.M.; Lin, T.H.

    1980-01-01

    Localization in rat brain of forty iodophenylalkyl amines labeled with I-123 was evaluated in an attempt to develop I-123-labeled amines useful for brain studies. For the amines studied, the highest activity in brain and the brain-to-blood activity ratios ranked p > m > o as related to iodine position on the benzene ring: for alkyl groups the rank order was α-methylethyl > ethyl > methyl > none; for N additions it was single lipophilic group > H > two lipophilic groups. It is suggested that introduction of a halogen into the ring structure of many amines results in greater concentration of the agent in brain than is seen with the nonhalogenated parent compound. The agent N-isopropyl-p-iodoamphetamine was chosen for further study because, in the rat, it showed high brain activity (1.57%/g) and brain-blood ratio (12.6) at 5 min

  4. Modification of Aliphatic Petroleum Resin by Peracetic Acid

    OpenAIRE

    Bondaletov, Vladimir Grigoryevich; Bondaletova, Lyudmila Ivanovna; Hamlenko, A.; Bondaletov, Oleg Vladimirovich; Starovoit, M.

    2014-01-01

    This work demonstrates the possibility of obtaining modified aliphatic resin (PRC5) by means of petroleum resin oxidation by peracetic acid. We have experimentally determined oxidation conditions that lead to producing resin with maximum epoxy and acid numbers. Ratio of "oxidative system: PRC5" is 0.5:1, process duration is 2 hours. The modified resin structure is determined by IR and NMR spectroscopy.

  5. New insights into controlling tube-bundle fouling using alternative amines

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W.; Klimas, S.J.; Guzonas, D.A.; Fruzzetti, K. [Atomic Energy of Canada Ltd. (Canada); Frattini, P.L. [Electric Power Research Inst. (United States)

    2002-07-01

    A volatile amine is added to the secondary heat-transport system of a nuclear power plant to reduce the rate of corrosion and corrosion product transport in the feedwater and to protect steam generator (SG) crevices and materials exposed to steam condensate. Volatility and base strength of the amine at the SG operating temperature are two important considerations when choosing the optimum amine (or mixture of amines) for corrosion control in the steam cycle. The investigation has found that the rate of tube-bundle fouling is strongly dependent upon the surface chemistry of the corrosion products. For example, the fouling rates of fully oxidized iron oxides, such as hematite and lepidocrocite, are at least an order of magnitude greater than the fouling rate of magnetite under identical operating conditions. The difference is related to the sign of the surface charge on the corrosion products at temperature. The choice of amine for pH-control also influences the fouling rate. This was originally thought to be a surface-charge effect as well, but recent tests have suggested that it is related to the role that the amine plays in governing the rate of deposit consolidation on the heat-transfer surface. Amines that promote a high rate of deposit consolidation result in a low rate of deposit removal and a high fouling rate. Conversely, amines that tend to inhibit deposit consolidation produce a higher rate of deposit removal and a lower fouling rate. Dimethyl-amine and dodecyl-amine have been identified as two amines that inhibit the rate of deposit consolidation and, consequently, result in fouling rates that are up to 5 times lower than rates measured for amines that promote consolidation. A significant difference between morpholine (high fouling rate) and dimethyl-amine (low fouling rate) is that the latter desorbs more slowly from the surface of magnetite. How to account for a correlation between slow desorption kinetics and lower rate constants for deposition and

  6. New insights into controlling tube-bundle fouling using alternative amines

    International Nuclear Information System (INIS)

    Turner, C.W.; Klimas, S.J.; Guzonas, D.A.; Fruzzetti, K.; Frattini, P.L.

    2002-01-01

    A volatile amine is added to the secondary heat-transport system of a nuclear power plant to reduce the rate of corrosion and corrosion product transport in the feedwater and to protect steam generator (SG) crevices and materials exposed to steam condensate. Volatility and base strength of the amine at the SG operating temperature are two important considerations when choosing the optimum amine (or mixture of amines) for corrosion control in the steam cycle. The investigation has found that the rate of tube-bundle fouling is strongly dependent upon the surface chemistry of the corrosion products. For example, the fouling rates of fully oxidized iron oxides, such as hematite and lepidocrocite, are at least an order of magnitude greater than the fouling rate of magnetite under identical operating conditions. The difference is related to the sign of the surface charge on the corrosion products at temperature. The choice of amine for pH-control also influences the fouling rate. This was originally thought to be a surface-charge effect as well, but recent tests have suggested that it is related to the role that the amine plays in governing the rate of deposit consolidation on the heat-transfer surface. Amines that promote a high rate of deposit consolidation result in a low rate of deposit removal and a high fouling rate. Conversely, amines that tend to inhibit deposit consolidation produce a higher rate of deposit removal and a lower fouling rate. Dimethyl-amine and dodecyl-amine have been identified as two amines that inhibit the rate of deposit consolidation and, consequently, result in fouling rates that are up to 5 times lower than rates measured for amines that promote consolidation. A significant difference between morpholine (high fouling rate) and dimethyl-amine (low fouling rate) is that the latter desorbs more slowly from the surface of magnetite. How to account for a correlation between slow desorption kinetics and lower rate constants for deposition and

  7. A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates.

    Directory of Open Access Journals (Sweden)

    Ida Elken Sønderby

    Full Text Available BACKGROUND: Glucosinolates are natural metabolites in the order Brassicales that defend plants against both herbivores and pathogens and can attract specialized insects. Knowledge about the genes controlling glucosinolate regulation is limited. Here, we identify three R2R3 MYB transcription factors regulating aliphatic glucosinolate biosynthesis in Arabidopsis by combining several systems biology tools. METHODOLOGY/PRINCIPAL FINDINGS: MYB28 was identified as a candidate regulator of aliphatic glucosinolates based on its co-localization within a genomic region controlling variation both in aliphatic glucosinolate content (metabolite QTL and in transcript level for genes involved in the biosynthesis of aliphatic glucosinolates (expression QTL, as well as its co-expression with genes in aliphatic glucosinolate biosynthesis. A phylogenetic analysis with the R2R3 motif of MYB28 showed that it and two homologues, MYB29 and MYB76, were members of an Arabidopsis-specific clade that included three characterized regulators of indole glucosinolates. Over-expression of the individual MYB genes showed that they all had the capacity to increase the production of aliphatic glucosinolates in leaves and seeds and induce gene expression of aliphatic biosynthetic genes within leaves. Analysis of leaves and seeds of single knockout mutants showed that mutants of MYB29 and MYB76 have reductions in only short-chained aliphatic glucosinolates whereas a mutant in MYB28 has reductions in both short- and long-chained aliphatic glucosinolates. Furthermore, analysis of a double knockout in MYB28 and MYB29 identified an emergent property of the system since the absence of aliphatic glucosinolates in these plants could not be predicted by the chemotype of the single knockouts. CONCLUSIONS/SIGNIFICANCE: It seems that these cruciferous-specific MYB regulatory genes have evolved both overlapping and specific regulatory capacities. This provides a unique system within which to

  8. BIOGENIC AMINES CONTENT IN DIFFERENT WINE SAMPLES

    Directory of Open Access Journals (Sweden)

    Attila Kántor

    2015-02-01

    Full Text Available Twenty-five samples of different Slovak wines before and after filtration were analysed in order to determine the content of eight biogenic amines (tryptamine, phenylalanine, putrescine, cadaverine, histamine, tyramine, spermidine and spermine. The method involves extraction of biogenic amines from wine samples with used dansyl chloride. Ultra-high performance liquid chromatography (UHPLC was used for determination of biogenic amines equipped with a Rapid Resolution High Definition (RRHD, DAD detectors and Extend-C18 LC column (50 mm x 3.0 mm ID, 1.8 μm particle size. In this study the highest level of biogenic amine in all wine samples represent tryptamine (TRM with the highest content 170.9±5.3 mg/L in Pinot Blanc wine. Phenylalanine (PHE cadaverine (CAD, histamine (HIS and spermidine (SPD were not detected in all wines; mainly SPD was not detected in 16 wines, HIS not detected in 14 wines, PHE and CAD not detected in 2 wines. Tyramine (TYR, spermine (SPN and putrescine (PUT were detected in all wines, but PUT and SPN in very low concentration. The worst wine samples with high biogenic amine content were Saint Laurent (BF, Pinot Blanc (S and Pinot Noir (AF.

  9. One step gold (bio)functionalisation based on CS{sub 2}-amine reaction

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Ines [Centro de Quimica e Bioquimica, Faculdade de Ciencias da Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa (Portugal); Cascalheira, Antonio C. [Lumisense, Lda, Campus Faculdade de Ciencias da Universidade de Lisboa, Ed. ICAT, Campo Grande, 1749-016 Lisboa (Portugal); Viana, Ana S., E-mail: anaviana@fc.ul.p [Centro de Quimica e Bioquimica, Faculdade de Ciencias da Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa (Portugal)

    2010-12-01

    Dithiocarbamates have been regarded as alternative anchor groups to thiols on gold surfaces, and claimed to be formed in situ through the reaction between secondary amines and carbon disulphide. In this paper, we further exploit this methodology for a convenient one step biomolecule immobilisation onto gold surfaces. First, the reactivity between CS{sub 2} and electroactive compounds containing amines, primary (dopamine), secondary (epinephrine), and an amino acid (tryptophan) has been investigated by electrochemical methods. Cyclic voltammetric characterisation of the modified electrodes confirmed the immobilisation of all the target compounds, allowing the estimation of their surface concentration. The best result was obtained with epinephrine, a secondary amine, for which a typical quasi-reversible behaviour of surface confined electroactive species could be clearly depicted. Electrochemical reductive desorption studies enabled to infer on the extent of the reaction and on the relative stability of the generated monolayers. Bio-functionalisation studies have been accomplished through the reaction of CS{sub 2} with glucose oxidase in aqueous medium, and the catalytic activity of the immobilised enzyme was evaluated towards glucose, by electrochemical methods in the presence of a redox mediator. Scanning tunnelling microscopy (STM) and Atomic force microscopy (AFM) were used respectively, to characterize the gold electrodes and Glucose Oxidase coverage and distribution on the modified surfaces.

  10. Biogenic amine formation and bacterial contribution in Natto products.

    Science.gov (United States)

    Kim, Bitna; Byun, Bo Young; Mah, Jae-Hyung

    2012-12-01

    Twenty-one Natto products currently distributed in Korea were analysed for biogenic amine contents and tested to determine physicochemical and bacterial contributions to biogenic amine formation. Among them, nine products (about 43%) had β-phenylethylamine or tyramine contents greater than the toxic dose (30mg/kg and 100mg/kg, respectively) of each amine, although no products showed total amounts of biogenic amines above the harmful level (1000mg/kg), which indicates that the amounts of biogenic amines in some Natto products are not within the safe level for human health. From four different Natto products, that contained noticeable levels of β-phenylethylamine and tyramine, 80 bacterial strains were isolated. All the strains were identified to be Bacillus subtilis and highly capable of producing β-phenylethylamine and tyramine. Therefore, it seems likely that the remarkable contents of β-phenylethylamine and tyramine in Natto predominantly resulted from the strains highly capable of producing those amines present in the food. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. A Catalyst-Free Amination of Functional Organolithium Reagents by Flow Chemistry.

    Science.gov (United States)

    Kim, Heejin; Yonekura, Yuya; Yoshida, Jun-Ichi

    2018-04-03

    Reported is the electrophilic amination of functional organolithium intermediates with well-designed aminating reagents under mild reaction conditions using flow microreactors. The aminating reagents were optimized to achieve efficient C-N bond formation without using any catalyst. The electrophilic amination reactions of functionalized aryllithiums were successfully conducted under mild reaction conditions, within 1 minute, by using flow microreactors. The aminating reagent was also prepared by the flow method. Based on stopped-flow NMR analysis, the reaction time for the preparation of the aminating reagent was quickly optimized without the necessity of work-up. Integrated one-flow synthesis consisting of the generation of an aryllithium, the preparation of an aminating reagent, and their combined reaction was successfully achieved to give the desired amine within 5 minutes of total reaction time. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Aliphatic-aromatic separation using deep eutectic solvents as extracting agents

    NARCIS (Netherlands)

    Rodriguez Rodriguez, Nerea; Fernandez Requejo, Patricia; Kroon, Maaike

    2015-01-01

    The separation of aliphatic and aromatic compounds is a great challenge for chemical engineers. There is no efficient separation process for mixtures with compositions lower than 20 wt % in aromatics. In this work, the feasibility of two different deep eutectic solvents (DESs) as novel extracting

  13. The effect of mechanical loads on the degradation of aliphatic biodegradable polyesters.

    Science.gov (United States)

    Li, Ying; Chu, Zhaowei; Li, Xiaoming; Ding, Xili; Guo, Meng; Zhao, Haoran; Yao, Jie; Wang, Lizhen; Cai, Qiang; Fan, Yubo

    2017-06-01

    Aliphatic biodegradable polyesters have been the most widely used synthetic polymers for developing biodegradable devices as alternatives for the currently used permanent medical devices. The performances during biodegradation process play crucial roles for final realization of their functions. Because physiological and biochemical environment in vivo significantly affects biodegradation process, large numbers of studies on effects of mechanical loads on the degradation of aliphatic biodegradable polyesters have been launched during last decades. In this review article, we discussed the mechanism of biodegradation and several different mechanical loads that have been reported to affect the biodegradation process. Other physiological and biochemical factors related to mechanical loads were also discussed. The mechanical load could change the conformational strain energy and morphology to weaken the stability of the polymer. Besides, the load and pattern could accelerate the loss of intrinsic mechanical properties of polymers. This indicated that investigations into effects of mechanical loads on the degradation should be indispensable. More combination condition of mechanical loads and multiple factors should be considered in order to keep the degradation rate controllable and evaluate the degradation process in vivo accurately. Only then can the degradable devise achieve the desired effects and further expand the special applications of aliphatic biodegradable polyesters.

  14. Dual C-H functionalization of N-aryl amines: synthesis of polycyclic amines via an oxidative Povarov approach.

    Science.gov (United States)

    Min, Chang; Sanchawala, Abbas; Seidel, Daniel

    2014-05-16

    Iminium ions generated in situ via copper(I) bromide catalyzed oxidation of N-aryl amines readily undergo [4 + 2] cycloadditions with a range of dienophiles. This method involves the functionalization of both a C(sp(3))-H and a C(sp(2))-H bond and enables the rapid construction of polycyclic amines under relatively mild conditions.

  15. Catalytic Ester and Amide to Amine Interconversion: Nickel-Catalyzed Decarbonylative Amination of Esters and Amides by C−O and C−C Bond Activation

    KAUST Repository

    Yue, Huifeng

    2017-03-15

    An efficient nickel-catalyzed decarbonylative amination reaction of aryl and heteroaryl esters has been achieved for the first time. The new amination protocol allows the direct interconversion of esters and amides into the corresponding amines and represents a good alternative to classical rearrangements as well as cross coupling reactions.

  16. Transition Metal Free C-N Bond Forming Dearomatizations and Aryl C-H Aminations by in Situ Release of a Hydroxylamine-Based Aminating Agent.

    Science.gov (United States)

    Farndon, Joshua J; Ma, Xiaofeng; Bower, John F

    2017-10-11

    We outline a simple protocol that accesses directly unprotected secondary amines by intramolecular C-N bond forming dearomatization or aryl C-H amination. The method is dependent on the generation of a potent electrophilic aminating agent released by in situ deprotection of O-Ts activated N-Boc hydroxylamines.

  17. Catalytic Ester and Amide to Amine Interconversion: Nickel-Catalyzed Decarbonylative Amination of Esters and Amides by C−O and C−C Bond Activation

    KAUST Repository

    Yue, Huifeng; Guo, Lin; Liao, Hsuan-Hung; Cai, Yunfei; Zhu, Chen; Rueping, Magnus

    2017-01-01

    An efficient nickel-catalyzed decarbonylative amination reaction of aryl and heteroaryl esters has been achieved for the first time. The new amination protocol allows the direct interconversion of esters and amides into the corresponding amines and represents a good alternative to classical rearrangements as well as cross coupling reactions.

  18. Intolerance to dietary biogenic amines: A review

    NARCIS (Netherlands)

    Jansen, S.C.; Dusseldorp, M. van; Bottema, K.C.; Dubois, A.E.J.

    2003-01-01

    Objective: To evaluate the scientific evidence for purported intolerance to dietary biogenic amines. Data Sources: MEDLINE was searched for articles in the English language published between January 1966 and August 2001. The keyword biogenic amin* was combined with hypersens*, allerg*, intoler*, and

  19. Intolerance to dietary biogenic amines : a review

    NARCIS (Netherlands)

    Jansen, SC; van Dusseldorp, M; Bottema, KC; Dubois, AEJ

    Objective: To evaluate the scientific evidence for purported intolerance to dietary biogenic amines. Data Sources: MEDLINE was searched for articles in the English language published between January 1966 and August 2001. The keyword biogenic amin* was combined with hypersens*, allergen intoler*, and

  20. In vitro evaluation of aliphatic fatty alcohol metabolites of ...

    African Journals Online (AJOL)

    From the seeds of P. americana, five known 1, 2, 4-dihydroxy derivatives aliphatic alcohols, called avocadenols were isolated and identified by spectroscopic methodsincluding 1D- and 2D NMR, and comparison with reported data in literature. Antifungal activity for 1, 2, 4-Trihydroxyheptadec-6-en-16-yne (5)(IC50< 8 μg/mL) ...

  1. Vapor Pressure of Selected Aliphatic Alcohols by Ebulliometry. Part 1

    Czech Academy of Sciences Publication Activity Database

    Čenský, M.; Roháč, V.; Růžička, K.; Fulem, M.; Aim, Karel

    2010-01-01

    Roč. 298, č. 2 (2010), s. 192-198 ISSN 0378-3812 R&D Projects: GA AV ČR IAA400720710 Institutional research plan: CEZ:AV0Z40720504 Keywords : vapor pressure * ebulliometry * aliphatic alcohols Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.253, year: 2010

  2. Flotation of zinc and lead oxide minerals from Olkusz region calamine ores

    Directory of Open Access Journals (Sweden)

    Cichy Krystian

    2016-01-01

    Full Text Available The paper presents chemical and mineralogical characteristics of calamine ore from the Pomorzany mine. A flowsheet for recovery of sulphide minerals of zinc and lead in the form of the Zn-Pb bulk concentrate was presented. In the following part, preparation of the feed for flotation of Zn-Pb oxide minerals and optimal conditions for separation from it iron sulphide minerals, represented by marcasite, were determined. In the final section the results of flotation of Zn-Pb oxide minerals with anionic collector AM2 belonging to the hydroxyamide group of collectors and a cationic collector in the form of a coconut amine, being a mixture of primary aliphatic amines, were presented. Basing on the obtained results, a technological flowsheet for the recovery of Zn-Pb sulphide and oxide minerals from the calamine ore of the Pomorzany mine was presented.

  3. Aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil: a review.

    Science.gov (United States)

    Vranova, Valerie; Rejsek, Klement; Formanek, Pavel

    2013-11-10

    Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research.

  4. Aliphatic, Cyclic, and Aromatic Organic Acids, Vitamins, and Carbohydrates in Soil: A Review

    Directory of Open Access Journals (Sweden)

    Valerie Vranova

    2013-01-01

    Full Text Available Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research.

  5. Aliphatic, Cyclic, and Aromatic Organic Acids, Vitamins, and Carbohydrates in Soil: A Review

    Science.gov (United States)

    Vranova, Valerie; Rejsek, Klement; Formanek, Pavel

    2013-01-01

    Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research. PMID:24319374

  6. Primary amine/CSA ion pair: A powerful catalytic system for the asymmetric enamine catalysis

    KAUST Repository

    Liu, Chen; Zhu, Qiang; Huang, Kuo-Wei; Lu, Yixin

    2011-01-01

    A novel ion pair catalyst containing a chiral counteranion can be readily derived by simply mixing cinchona alkaloid-derived diamine with chiral camphorsulfonic acid (CSA). A mixture of 9-amino(9-deoxy)epi-quinine 8 and (-)-CSA was found to be the best catalyst with matching chirality, enabling the direct amination of α-branched aldehydes to proceed in quantitative yields and with nearly perfect enantioselectivities. A 0.5 mol % catalyst loading was sufficient to catalyze the reaction, and a gram scale enantioselective synthesis of biologically important α-methyl phenylglycine has been successfully demonstrated. © 2011 American Chemical Society.

  7. Primary amine/CSA ion pair: A powerful catalytic system for the asymmetric enamine catalysis

    KAUST Repository

    Liu, Chen

    2011-05-20

    A novel ion pair catalyst containing a chiral counteranion can be readily derived by simply mixing cinchona alkaloid-derived diamine with chiral camphorsulfonic acid (CSA). A mixture of 9-amino(9-deoxy)epi-quinine 8 and (-)-CSA was found to be the best catalyst with matching chirality, enabling the direct amination of α-branched aldehydes to proceed in quantitative yields and with nearly perfect enantioselectivities. A 0.5 mol % catalyst loading was sufficient to catalyze the reaction, and a gram scale enantioselective synthesis of biologically important α-methyl phenylglycine has been successfully demonstrated. © 2011 American Chemical Society.

  8. Fluorinated Amine Stereotriads via Allene Amination.

    Science.gov (United States)

    Liu, Lu; Gerstner, Nels C; Oxtoby, Lucas J; Guzei, Ilia A; Schomaker, Jennifer M

    2017-06-16

    The incorporation of fluorine into organic scaffolds often improves the bioactivity of pharmaceutically relevant compounds. C-F/C-N/C-O stereotriad motifs are prevalent in antivirals, neuraminidase inhibitors, and modulators of androgen receptors, but are challenging to install. An oxidative allene amination strategy using Selectfluor rapidly delivers triply functionalized triads of the form C-F/C-N/C-O, exhibiting good scope and diastereoselectivity for all syn products. The resulting stereotriads are readily transformed into fluorinated pyrrolidines and protected α-, β-, and γ-amino acids.

  9. Substituent effects on the photolysis of methyl 2-carboxylate substituted aliphatic 2 H-azirines

    Science.gov (United States)

    Gómez-Zavaglia, Andrea; Kaczor, Agnieszka; Cardoso, Ana L.; Pinho e Melo, Teresa M. V. D.; Fausto, Rui

    2007-05-01

    In this study, the UV induced photochemical reactions of two 2 H-azirines - methyl 2-chloro-3-methyl-2 H-azirine-2-carboxylate (MCMAC) and methyl 3-methyl-2 H-azirine-2-carboxylate (MMAC) - isolated in argon matrices are compared. For both compounds, irradiation with λ > 235 nm led to observation of two primary photoprocesses: (a) C sbnd C bond cleavage, with production of nitrile ylides (P1-type products), and (b) C sbnd N bond cleavage, with production of methylated ketene imines (P2-type products). However, subsequent photoprocesses were found to be different in the two cases. In MCMAC, both primary photoproducts were shown to undergo further reactions: P1-type products decarboxylate, giving [(1-chloroethylidene)imino]ethanide, which bears a C dbnd N +dbnd C - group (P3-type product); P2-type products decarbonylate, yielding a substituted ylidene methanamine (P4-type product). In MMAC, only P2-type primary photoproducts appeared to react, undergoing decarbonylation or decarboxylation (both reactions leading to P4-type products), whereas P1-type products were found to be non-reactive. The non-observation of any secondary photoproduct resulting from photolysis of P1-MMAC revealed the higher photostability of this species when compared with the corresponding photoproduct obtained from MCMAC. The C sbnd N photochemical cleavage is an unusual process in aliphatic 2 H-azirines. In the studied compounds, its preference over the commonly observed C sbnd C azirine-ring bond photocleavage is attributed to the presence of electron withdrawing substituents (methylcarboxy group in both azirines and also the chlorine atom in MCMAC), which accelerates intersystem crossing towards the triplet state from where the cleavage of the C sbnd N bond takes place. The lack of the chlorine atom in MMAC may be partially compensated by the significantly higher stabilization of the P2-type photoproduct derived from this molecule ( ca. -52 kJ mol -1) relatively to the reactant, when

  10. Bulk gold catalyzed oxidation reactions of amines and isocyanides and iron porphyrin catalyzed N-H and O-H bond insertion/cyclization reactions of diamines and aminoalcohols

    Energy Technology Data Exchange (ETDEWEB)

    Klobukowski, Erik [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    conditions, it was found that the oxidative dehydrogenation of dibenzylamine to Nbenzylidenebenzylamine, with N-methylmorpholine N-oxide (NMMO), was nearly quantitative (96%) within 24 h. However, the reaction with oxygen was much slower, with only a 52% yield of imine product over the same time period. Moreover, the rate of reaction was found to be influenced by the nature of the amine N-oxide. For example, the use of the weakly basic pyridine N-oxide (PyNO) led to an imine yield of only 6% after 24 h. A comparison of amine N-oxide and O2 was also examined in the oxidation of PhCH{sub 2}OH to PhCHO catalyzed by bulk gold. In this reaction, a 52% yield of the aldehyde was achieved when NMMO was used, while only a 7% product yield was afforded when O{sub 2} was the oxidant after 48 h. The bulk gold-catalyzed oxidative dehydrogenation of cyclic amines generates amidines, which upon treatment with Aerosil and water were found to undergo hydrolysis to produce lactams. Moreover, 5-, 6-, and 7-membered lactams could be prepared through a one-pot reaction of cyclic amines by treatment with oxygen, water, bulk gold, and Aerosil. This method is much more atom economical than industrial processes, does not require corrosive acids, and does not generate undesired byproducts. Additionally, the gold and Aerosil catalysts can be readily separated from the reaction mixture. The second project involved studying iron(III) tetraphenylporphyrin chloride, Fe(TPP)Cl, as a homogeneous catalyst for the generation of carbenes from diazo reagents and their reaction with heteroatom compounds. Fe(TPP)Cl, efficiently catalyzed the insertion of carbenes derived from methyl 2-phenyldiazoacetates into O-H bonds of aliphatic and aromatic alcohols. Fe(TPP)Cl was also found to be an effective catalyst for tandem N-H and O-H insertion/cyclization reactions when 1,2-diamines and 1,2-alcoholamines were treated with diazo reagents. This approach provides a one-pot process for synthesizing piperazinones and

  11. Evaluation of amine inhibitors for suitability as crevice buffering agents

    International Nuclear Information System (INIS)

    Jayaweera, P.; Hettiarachchi, S.

    1994-03-01

    This report describes the results of a research effort to evaluate the suitability of some selected amines and amino acids as a crevice-buffering agents in pressurized water reactor (PWR) steam generators. The amines may be useful for buffering acid crevices, and the amino acids, because they contain both acidic and basic groups, may be useful for acidic and caustic crevices. Five commercially available amines and two amino acids were studied during this research. The study involved (1) the hydrolysis of these commercially available amines and amino acids, including measurement of their kinetics of decomposition, in simulated steam generator bulk water at 290 C, and (2) determination of their thermal stability in a simulated crevice environment. The study showed that, although the high-molecular-weight amines undergo hydrothermal decomposition, they have a better buffering capacity than their low-molecular-weight counterparts at 290 C. The amines provide effective crevice buffering by increasing the pH of the crevice solution by as much as 2.84 and to 4.24 units in the experimental setup used in this program. It was concluded that polyamines provide excellent buffering of the simulated crevice environment at 290 C and morpholine remains the best low-molecular-weight amine investigated. However, detailed volatility studies of the amines were not considered in this work. Such data would be needed before in-plant testing to ensure that the amines can concentrate in steam generator crevices to the levels assumed in this study

  12. In vivo genotoxicity of nitramines, transformation products of amine-based carbon capture technology

    Directory of Open Access Journals (Sweden)

    Claire Coutris

    2015-05-01

    Full Text Available In times where we need to reduce our CO2 emissions to the atmosphere, it is important to get a clearer picture of the environmental impacts associated with potential mitigation technologies. Chemical absorption with amines is emerging as the most advanced mitigation technology for post-combustion capture of CO2 from fossil fuel power stations. Although the amine solvent used in this technology is recycled during the capture process, degradation products are formed and released into the environment. Among these degradation products, the aliphatic nitramine compounds dimethylnitramine and ethanolnitramine have been identified, whose environmental impact was unknown. In addition to conducting survival, growth and reproduction tests in a range of marine species, we looked into the in vivo genotoxic potential of these two compounds to experimentally exposed fish (Coutris et al. 2015. DNA damage was analyzed in blood samples collected from the caudal vein of juvenile turbot Scophthalmus maximus after 28 day exposure to nitramines, using the 12 mini-gels version of the comet assay, with and without digestion with formamidopyrimidine DNA glycosylase. Although whole organism bioassays indicated that nitramine toxicity through necrosis was low, the genotoxicity assessment revealed contrasting results, with ethanolnitramine found to be more genotoxic than dimethylnitramine by three orders of magnitude. At the lowest ethanolnitramine concentration (1 mg/L, 84 % DNA damage was observed, whereas 100 mg/L dimethylnitramine was required to cause 37 % DNA damage. The mechanisms of genotoxicity were also shown to differ between the two compounds, with oxidation of the DNA bases responsible for over 90 % of the genotoxicity of dimethylnitramine, whereas DNA strand breaks and alkali-labile sites were responsible for over 90 % of the genotoxicity of ethanolnitramine. Fish exposed to > 3 mg/L ethanolnitramine had virtually no DNA left in their red blood cells. The

  13. New potential of the reductive alkylation of amines

    International Nuclear Information System (INIS)

    Gusak, K N; Ignatovich, Zh V; Koroleva, E V

    2015-01-01

    Available data on the reductive alkylation of amines with carbonyl compounds — a key method for the preparation of secondary and tertiary amines — are described systematically. The review provides information on the relevant reducing agents and catalysts and on the use of chiral catalysts in stereo- and enantiocontrolled reactions of amine synthesis. The effect of the reactant and catalyst structures on the reaction rates and chemo- and stereo(enantio)selectivity is considered. The bibliography includes 156 references

  14. Chlorinated aliphatic and aromatic VOC decomposition in air mixture by using electron beam irradiation

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Sun Yongxia; Bulka, S.; Zimek, Z.

    2004-01-01

    Chlorinated aliphatic and aromatic hydrocarbons, which are emitted from coal power station and waste incinerators, are very harmful to the environment and human health. Recent studies show that chlorinated aliphatic and aromatic hydrocarbons are suspected to be the precursors of dioxin's formation. Dioxin's emission into atmosphere will cause severe environmental problems by ecology contamination. l,4-dichlorobenzene(l,4-DCB) and cis-dichloroethylene(cis-DCE) were chosen as representative chlorinated aromatic and aliphatic compounds, respectively. Their decomposition was investigated by electron beam irradiation. The experiments were carried out 'in batch' system. It is found that over 97% cis-DCE is decomposed having an initial concentration of 661 ppm. G-values of cis-DCE decomposition vary from 10 to 28 (molecules/100 eV) for initial concentration of 270-1530 ppm cis-DCE. The decomposition is mainly caused by secondary electron attachment and Cl addition reactions. Comparing with cis-DCE, 1,4-DCB decomposition needs higher absorbed dose. G-value of 1,4-DCB is below 4 molecules/100 eV

  15. Poly(Amido Amine)s Containing Agmatine and Butanol Side Chains as Efficient Gene Carriers.

    Science.gov (United States)

    Won, Young-Wook; Ankoné, Marc; Engbersen, Johan F J; Feijen, Jan; Kim, Sung Wan

    2016-04-01

    A new type of bioreducible poly(amido amine) copolymer is synthesized by the Michael addition polymerization of cystamine bisacrylamide (CBA) with 4-aminobutylguanidine (agmatine, AGM) and 4-aminobutanol (ABOL). Since the positively charged guanidinium groups of AGM and the hydroxybutyl groups of ABOL in the side chains have shown to improve the overall transfection efficiency of poly(amido amine)s, it is hypothesized that poly(CBA-ABOL/AGM) synthesized at the optimal ratio of both components would result in high transfection efficiency and minimal toxicity. In this study, a series of the poly(CBA-ABOL/AGM) copolymers is synthesized as gene carriers. The polymers are characterized and luciferase transfection efficiencies of the polymers in various cell lines are investigated to select the ideal ratio between AGM and ABOL. The poly(CBA-ABOL/AGM) containing 80% AGM and 20% ABOL has shown the best transfection efficiency with the lowest cytotoxicity, indicating that this polymer is very promising as a potent and nontoxic gene carrier. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Surface grafting of poly(ethylene glycol) onto poly(acrylamide-co-vinyl amine) cross-linked films under mild conditions.

    Science.gov (United States)

    Yamamoto, Y; Sefton, M V

    1998-01-01

    Poly(ethylene glycol) (PEG) was grafted onto poly(acrylamide-co-vinyl amine) (poly(AM-co-VA)) film using tresylated PEG (TPEG) at 37 degrees C in aqueous buffers (pH 7.4) with a view to surface-modifying microencapsulated mammalian cells. Poly(AM-co-VA) film was synthesized by Hofmann degradation of a cross-linked poly(acrylamide) film. Conversion to vinyl amine on the surface of the film was approximately 50%, but bulk conversion was not observed; surface specificity was thought to be the result of cleavage of aminated polymer chains at the surface due to chain scission. Reaction between primary amine and TPEG gave a graft yield of 2 mol% (based on XPS) with respect to available surface amine groups, equivalent to 54 mol% ethylene oxide based on monomer units. Physical adsorption of non-activated polymer was done under identical conditions as a control and the difference in oxygen content was significant compared to TPEG. The type of buffer agent and buffer concentration did not influence graft yields. This graft reaction, which was completed in as little as 2 h was considered to be mild enough to be used for a surface modification of microcapsules containing cells without affecting their viability. Such a surface modification technique may prove to be a useful means of enhancing the biocompatibility of microcapsules (or any tissue engineering construct) even after cell encapsulation or seeding.

  17. Fluorescence quenching of Rhodamine B base by two amines

    Science.gov (United States)

    Bakkialakshmi, S.; Selvarani, P.; Chenthamarai, S.

    2013-03-01

    Fluorescence quenching of Rhodamine B base (RhB) in DMF solution has been studied at different concentrations of the amine Triethyl amine (TEA) and n-butyl amine (NBA) at room temperature. It has been observed that the fluorescence intensity of RhB decrease with increase in the concentration of the TEA and NBA. It has been observed that the quenching due to amines proceeds via dynamic quenching process. The rate constants for the quenching process have been calculated using Stern-Volmer equation. Time resolved fluorescence study and 1H NMR spectral study have also been carried out and discussed.

  18. Enzymatic degradation of aliphatic nitriles by Rhodococcus rhodochrous BX2, a versatile nitrile-degrading bacterium.

    Science.gov (United States)

    Fang, Shumei; An, Xuejiao; Liu, Hongyuan; Cheng, Yi; Hou, Ning; Feng, Lu; Huang, Xinning; Li, Chunyan

    2015-06-01

    Nitriles are common environmental pollutants, and their removal has attracted increasing attention. Microbial degradation is considered to be the most acceptable method for removal. In this work, we investigated the biodegradation of three aliphatic nitriles (acetonitrile, acrylonitrile and crotononitrile) by Rhodococcus rhodochrous BX2 and the expression of their corresponding metabolic enzymes. This organism can utilize all three aliphatic nitriles as sole carbon and nitrogen sources, resulting in the complete degradation of these compounds. The degradation kinetics were described using a first-order model. The degradation efficiency was ranked according to t1/2 as follows: acetonitrile>trans-crotononitrile>acrylonitrile>cis-crotononitrile. Only ammonia accumulated following the three nitriles degradation, while amides and carboxylic acids were transient and disappeared by the end of the assay. mRNA expression and enzyme activity indicated that the tested aliphatic nitriles were degraded via both the inducible NHase/amidase and the constitutive nitrilase pathways, with the former most likely preferred. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Lactoperoxidase, an Antimicrobial Milk Protein, as a Potential Activator of Carcinogenic Heterocyclic Amines in Breast Cancer.

    Science.gov (United States)

    Sheikh, Ishfaq Ahmad; Jiffri, Essam Hussain; Kamal, Mohammad Amjad; Ashraf, Ghulam Md; Beg, Mohd Amin

    2017-11-01

    Lactoperoxidase (LPO) is an antimicrobial protein secreted from mammary, salivary and other mucosal glands. It is an important member of heme peroxidase enzymes and the primary peroxidase enzyme present in breast tissues. In addition to the antimicrobial properties, LPO has been shown to be associated with breast cancer etiology. Heterocyclic amines, an important class of environmental and dietary carcinogens, have been increasingly associated with breast cancer etiology. Heterocyclic amines undergo activation in breast tissue as a result of oxidation by LPO. The current study includes three important heterocyclic amines, 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-1-methy-6-phenylimidazo[4,5-b]-pyridine (PhIP), that have carcinogenic activity. The structural binding characterization of IQ, MeIQx and PhIP with LPO was done using in silico approaches. Their binding pattern and interactions with LPO amino acid residues were analyzed. The three compounds bound in the distal heme cavity of LPO without replacing the important water molecule required for oxidation of substrate compounds. PhIP displayed lesser binding affinity for LPO in comparison to IQ and MeIQx. The binding mode of heterocyclic amines in distal heme cavity of LPO resembled to that of substrate binding pattern. The three heterocyclic amines are suggested to act as LPO substrate. The undisturbed water molecule present in distal heme cavity of the LPO is expected to facilitate the oxidation and activation of the three heterocyclic amines. These activated compounds may potentially bind with DNA in breast tissues forming DNA adducts and may subsequently lead to breast cancer initiation. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  20. Kinetics of CO2 with primary and secondary amines in aqueous solutions I. Zwitterion deprotonation kinetics for DEA and DIPA in aqueous blends of alkanolamines

    NARCIS (Netherlands)

    Littel, R.J.; Littel, R.J.; Versteeg, Geert; van Swaaij, Willibrordus Petrus Maria

    1992-01-01

    The deprotonation kinetics of the DEA—CO2 and the DIPA—CO2 zwitterions have been studied in aqueous blends of amines at 298 K. Amine mixtures investigated were: DEA—TEA, DEA—MDEA, DEA—DMMEA, DEA—DEMEA, DIPA—TEA. DIPA—MDEA, DIPA—DMMEA, DIPA—DEMEA. For each blend the zwitterion deprotonation constant

  1. Kinetics of CO2 with primary and secondary amines in aqueous solutions—I. Zwitterion deprotonation kinetics for DEA and DIPA in aqueous blends of alkanolamines

    NARCIS (Netherlands)

    Littel, R.J.; Versteeg, G.F.; Swaaij, W.P.M. van

    1992-01-01

    The deprotonation kinetics of the DEA—CO2 and the DIPA—CO2 zwitterions have been studied in aqueous blends of amines at 298 K. Amine mixtures investigated were: DEA—TEA, DEA—MDEA, DEA—DMMEA, DEA—DEMEA, DIPA—TEA. DIPA—MDEA, DIPA—DMMEA, DIPA—DEMEA. For each blend the zwitterion deprotonation constant

  2. BIOGENIC AMINES CONTENT IN SELECTED WINES DURING WINEMAKING

    Directory of Open Access Journals (Sweden)

    Radka Flasarová

    2012-02-01

    Full Text Available The aim of this study was to describe the development of selected biogenic amines (histamine; tyramine; phenylethylamine; putrescine; agmatine; and cadaverine during the winemaking in 10 selected species grown in Central Europe in 2008. The analysis was performed using ion-exchange chromatography by the sodium-citrate buffers with the post-column ninhydrin derivatization and photometric detection. A comparison of the content of biogenic amines in red and wine varieties showed that red wines have higher concentrations of biogenic amines.

  3. Biogenic amines in dry fermented sausages: a review.

    Science.gov (United States)

    Suzzi, Giovanna; Gardini, Fausto

    2003-11-15

    Biogenic amines are compounds commonly present in living organisms in which they are responsible for many essential functions. They can be naturally present in many foods such as fruits and vegetables, meat, fish, chocolate and milk, but they can also be produced in high amounts by microorganisms through the activity of amino acid decarboxylases. Excessive consumption of these amines can be of health concern because their not equilibrate assumption in human organism can generate different degrees of diseases determined by their action on nervous, gastric and intestinal systems and blood pressure. High microbial counts, which characterise fermented foods, often unavoidably lead to considerable accumulation of biogenic amines, especially tyramine, 2-phenylethylamine, tryptamine, cadaverine, putrescine and histamine. However, great fluctuations of amine content are reported in the same type of product. These differences depend on many variables: the quali-quantitative composition of microbial microflora, the chemico-physical variables, the hygienic procedure adopted during production, and the availability of precursors. Dry fermented sausages are worldwide diffused fermented meat products that can be a source of biogenic amines. Even in the absence of specific rules and regulations regarding the presence of these compounds in sausages and other fermented products, an increasing attention is given to biogenic amines, especially in relation to the higher number of consumers with enhanced sensitivity to biogenic amines determined by the inhibition of the action of amino oxidases, the enzymes involved in the detoxification of these substances. The aim of this paper is to give an overview on the presence of these compounds in dry fermented sausages and to discuss the most important factors influencing their accumulation. These include process and implicit factors as well as the role of starter and nonstarter microflora growing in the different steps of sausage production

  4. Direct α-C-H bond functionalization of unprotected cyclic amines

    Science.gov (United States)

    Chen, Weijie; Ma, Longle; Paul, Anirudra; Seidel, Daniel

    2018-02-01

    Cyclic amines are ubiquitous core structures of bioactive natural products and pharmaceutical drugs. Although the site-selective abstraction of C-H bonds is an attractive strategy for preparing valuable functionalized amines from their readily available parent heterocycles, this approach has largely been limited to substrates that require protection of the amine nitrogen atom. In addition, most methods rely on transition metals and are incompatible with the presence of amine N-H bonds. Here we introduce a protecting-group-free approach for the α-functionalization of cyclic secondary amines. An operationally simple one-pot procedure generates products via a process that involves intermolecular hydride transfer to generate an imine intermediate that is subsequently captured by a nucleophile, such as an alkyl or aryl lithium compound. Reactions are regioselective and stereospecific and enable the rapid preparation of bioactive amines, as exemplified by the facile synthesis of anabasine and (-)-solenopsin A.

  5. Sponges with covalently tethered amines for high-efficiency carbon capture

    KAUST Repository

    Qi, Genggeng

    2014-12-12

    © 2014 Macmillan Publishers Limited. All rights reserved. Adsorption using solid amine sorbents is an attractive emerging technology for energy-efficient carbon capture. Current syntheses for solid amine sorbents mainly based on physical impregnation or grafting-to methods (for example, aminosilane-grafting) lead to limited sorbent performance in terms of stability and working capacity, respectively. Here we report a family of solid amine sorbents using a grafting-from synthesis approach and synthesized by cationic polymerization of oxazolines on mesoporous silica. The sorbent with high amount of covalently tethered amines shows fast adsorption rate, high amine efficiency and sorbent capacity well exceeding the highest value reported to date for lowerature carbon dioxide sorbents under simulated flue gas conditions. The demonstrated efficiency of the new amine-immobilization chemistry may open up new avenues in the development of advanced carbon dioxide sorbents, as well as other nitrogen-functionalized systems.

  6. Kinetic isotope effects and aliphatic diazo-compounds

    International Nuclear Information System (INIS)

    Albery, W.J.; Conway, C.W.; Hall, J.A.

    1976-01-01

    Results are reported for the variation of the rate of decomposition of ethyl diazomalonate (EDM) and diazomalonate anions with pH and for the deuterium solvent isotope effect for EDM. The shape of the pH profile is explained by successive protonations of the anions. Ethyl diazoacetate is observed as an intermediate in the decomposition of EDM. The degree of proton transfer in the EDM transition state is deduced from the solvent isotope effect and the results together with those for other aliphatic diazo-compounds are discussed in terms of the Marcus theory. (author)

  7. Gas-Phase Reactions of Dimethyl Disulfide with Aliphatic Carbanions - A Mass Spectrometry and Computational Study

    Science.gov (United States)

    Franczuk, Barbara; Danikiewicz, Witold

    2018-03-01

    Ion-molecule reactions of Me2S2 with a wide range of aliphatic carbanions differing by structure and proton affinity values have been studied in the gas phase using mass spectrometry techniques and DFT calculations. The analysis of the spectra shows a variety of product ions formed via different reaction mechanisms, depending on the structure and proton affinity of the carbanion. Product ions of thiophilic reaction ( m/z 47), SN2 ( m/z 79), and E2 elimination - addition sequence of reactions ( m/z 93) can be observed. Primary products of thiophilic reaction can undergo subsequent SN2 and proton transfer reactions. Gibbs free energy profiles calculated for experimentally observed reactions using PBE0/6-311+G(2d,p) method show good agreement with experimental results. [Figure not available: see fulltext.

  8. Biogenic amines and radiosensitivity of solitary cells

    International Nuclear Information System (INIS)

    Goncharenko, E.N.

    1978-01-01

    Different stability of cells to ionizing radiation is considered from a position of the ''elevated biochemical radioresistance background'' concept. Experimental evidence presented indicates an important role of endogenic amines (serotonin and histamine) possessing radioprotector properties in the cell radioresistance formation. The concept about their effect as being solely a result of circulatory hypoxia is critically discussed. The experimental results favor the existence of a ''cellular'' component, along with the ''hypoxic'' one, in the mechanism of action of biogenic amines. These compounds can affect the initial stages of peroxide oxidation of lipids, thereby favoring a less intensive oxidation induced by radiation. Biogenic amines can also exert influence on the cyclic nucleotide system

  9. Ni-Catalyzed Carbon-Carbon Bond-Forming Reductive Amination.

    Science.gov (United States)

    Heinz, Christoph; Lutz, J Patrick; Simmons, Eric M; Miller, Michael M; Ewing, William R; Doyle, Abigail G

    2018-02-14

    This report describes a three-component, Ni-catalyzed reductive coupling that enables the convergent synthesis of tertiary benzhydryl amines, which are challenging to access by traditional reductive amination methodologies. The reaction makes use of iminium ions generated in situ from the condensation of secondary N-trimethylsilyl amines with benzaldehydes, and these species undergo reaction with several distinct classes of organic electrophiles. The synthetic value of this process is demonstrated by a single-step synthesis of antimigraine drug flunarizine (Sibelium) and high yielding derivatization of paroxetine (Paxil) and metoprolol (Lopressor). Mechanistic investigations support a sequential oxidative addition mechanism rather than a pathway proceeding via α-amino radical formation. Accordingly, application of catalytic conditions to an intramolecular reductive coupling is demonstrated for the synthesis of endo- and exocyclic benzhydryl amines.

  10. Distribution of aliphatic and polycyclic aromatic hydrocarbon in South China sea sediments

    International Nuclear Information System (INIS)

    Md Suhaimi Elias; Ab Khalik Wood; Zaleha Hashim; Wee Boon Siong; Nazaratul Ashifa; Mohd Suhaimi Hamzah; Shamsiah Ab Rahman; Ariffin Talib

    2006-01-01

    Petroleum hydrocarbon (Hcp) consist of three major components namely alkanes, cyclo-alkanes and aromatics. HCP are pollutant and can cause adverse effect to the marine organisms. The study was done to identify the source of pollution in the South China Sea coastal area. The South China Sea is one of the major oil production area in Malaysia. Sampling was done at 15 stations along the coastal area of South China Sea off Peninsular Malaysia, which involved two zone namely coastal (zone 1) and offshore (zone 2) areas. Samples were analyzed using GC-MS for determination of HCP. The results showed, that concentration of aliphatic and polycyclic aromatic hydrocarbon at coastal area, range from 0.51 - 1.31 mg/g and 0.18 - 0.42 mg/g dry weight, respectively whilst, concentration of aliphatic and polycyclic aromatic hydrocarbon at offshore area, range from 0.44 - 1.09 mg/g and 0.20 - 0.49 mg/g dry weight, respectively. SHCP (Aliphatic + PAH) concentration in the sediment at the study area range from 0.64 - 1.68 mg/g dry weight. In this study, it was found that, pollution source for the South China Sea off Peninsular Malaysia was originated from pyrolytic sources (combustion fossil fuel), while some other area had been polluted by pyrolytic or petrogenic (unburned fossil) sources. (Author)

  11. Potential occupational risk of amines in carbon capture for power generation.

    Science.gov (United States)

    Gentry, P Robinan; House-Knight, Tamara; Harris, Angela; Greene, Tracy; Campleman, Sharan

    2014-08-01

    While CO2 capture and storage (CCS) technology has been well studied in terms of its efficacy and cost of implementation, there is limited available data concerning the potential for occupational exposure to amines, mixtures of amines, or degradation of by-products from the CCS process. This paper is a critical review of the available data concerning the potential effects of amines and CCS-degradation by-products. A comprehensive review of the occupational health and safety issues associated with exposure to amines and amine by-products at CCS facilities was performed, along with a review of the regulatory status and guidelines of amines, by-products, and CCS process vapor mixtures. There are no specific guidelines or regulations regarding permissible levels of exposure via air for amines and degradation products that could form atmospheric oxidation of amines released from post-combustion CO2 capture plants. While there has been a worldwide effort to develop legal and regulatory frameworks for CCS, none are directly related to occupational exposures. By-products of alkanolamine degradation may pose the most significant health hazard to workers in CCS facilities, with several aldehydes, amides, nitramines, and nitrosamines classified as either known or potential/possible human carcinogens. The absence of large-scale CCS facilities; absence and unreliability of reported data in the literature from pilot facilities; and proprietary amine blends make it difficult to estimate potential amine exposures and predict formation and exposure to degradation products.

  12. The chemistry of amine radical cations produced by visible light photoredox catalysis

    Directory of Open Access Journals (Sweden)

    Jie Hu

    2013-10-01

    Full Text Available Amine radical cations are highly useful reactive intermediates in amine synthesis. They have displayed several modes of reactivity leading to some highly sought-after synthetic intermediates including iminium ions, α-amino radicals, and distonic ions. One appealing method to access amine radical cations is through one-electron oxidation of the corresponding amines under visible light photoredox conditions. This approach and subsequent chemistries are emerging as a powerful tool in amine synthesis. This article reviews synthetic applications of amine radical cations produced by visible light photocatalysis.

  13. Characterization of polyoxyethylene tallow amine surfactants in technical mixtures and glyphosate formulations using ultra-high performance liquid chromatography and triple quadrupole mass spectrometry

    Science.gov (United States)

    Tush, Daniel; Loftin, Keith A.; Meyer, Michael T.

    2013-01-01

    Little is known about the occurrence, fate, and effects of the ancillary additives in pesticide formulations. Polyoxyethylene tallow amine (POEA) is a non-ionic surfactant used in many glyphosate formulations, a widely applied herbicide both in agricultural and urban environments. POEA has not been previously well characterized, but has been shown to be toxic to various aquatic organisms. Characterization of technical mixtures using ultra-high performance liquid chromatography (UHPLC) and mass spectrometry shows POEA is a complex combination of homologs of different aliphatic moieties and ranges of ethoxylate units. Tandem mass spectrometry experiments indicate that POEA homologs generate no product ions readily suitable for quantitative analysis due to poor sensitivity. A comparison of multiple high performance liquid chromatography (HPLC) and UHPLC analytical columns indicates that the stationary phase is more important in column selection than other parameters for the separation of POEA. Analysis of several agricultural and household glyphosate formulations confirms that POEA is a common ingredient but ethoxylate distributions among formulations vary.

  14. Cyclohexane/benzene organic glasses and ethylene/styrene copolymers behaviour under ionizing radiations: energy and species transfers between aliphatic and aromatic moieties

    International Nuclear Information System (INIS)

    Ferry, M.

    2008-11-01

    The aim of this study is to understand how aliphatic and aromatic groups interact under ionizing radiations. Three research orientations were explored: the determination of the relative contribution of energy and radical transfers, the determination of the intermolecular and intra-chain relative contribution, and the influence of the repartition of the aliphatic and aromatic units inside the polymer chain. Three systems composed of aromatic and aliphatic units were studied: the cyclohexane/benzene organic glasses (intermolecular reactions), the ethylene/styrene random copolymers (inter-chain and intra-chain reactions) and ethylene/styrene di-blocs copolymers (influence of the repartition of the aliphatic and aromatic units in the material). Considering the results obtained, we have concluded that energy transfers are important in the radiation protection effect of the aliphatic moiety by the aromatic one, although radical transfers are also contributing. Intermolecular transfers are efficient in the solid state and their efficiency seems equivalent to that of the intra-chain ones. Thanks to the use of infrared spectroscopy, we have shown an important effect of radiation sensitization of the aromatic moiety, whatever the irradiation temperature and the system studied: energy transfers to the aromatic moiety are carried out at the detriment of its stability. Finally, the repartition of the aliphatic and aromatic units in the polymer chain is not an important factor in the effects induced by the energy transfers. (author)

  15. Application of ultraviolet, ozone, and advanced oxidation treatments to washwaters to destroy nitrosamines, nitramines, amines, and aldehydes formed during amine-based carbon capture.

    Science.gov (United States)

    Shah, Amisha D; Dai, Ning; Mitch, William A

    2013-03-19

    Although amine-based CO(2) absorption is a leading contender for full-scale postcombustion CO(2) capture at power plants, concerns have been raised about the potential release of carcinogenic N-nitrosamines and N-nitramines formed by reaction of exhaust gas NO(x) with the amines. Experiments with a laboratory-scale pilot unit suggested that washwater units meant to scrub contaminants from absorber unit exhaust could potentially serve as a source of N-nitrosamines via reactions of residual NO(x) with amines accumulating in the washwater. Dosage requirements for the continuous treatment of the washwater recycle line with ultraviolet (UV) light for destruction of N-nitrosamines and N-nitramines, and with ozone or hydroxyl radical-based advanced oxidation processes (AOPs) for destruction of amines and aldehydes, were evaluated. Although amine destruction. Ozone achieved 90% amine removal in washwaters at 5-12 molar excess of ozone, indicating transferred dosage levels of ∼100 mg/L for 90% removal in a first-stage washwater unit, but likely only ∼10 mg/L if applied to a second-stage washwater. Accurate dosage and cost estimates would require pilot testing to capture synergies between UV and ozone treatments.

  16. Swift Heavy Ion Induced Modification of Aliphatic Polymers

    OpenAIRE

    Hossain, Umme Habiba

    2015-01-01

    In this thesis, the high energy heavy ion induced modification of aliphatic polymers is studied. Two polymer groups, namely polyvinyl polymers (PVF, PVAc, PVA and PMMA) and fluoropolymers (PVDF, ETFE, PFA and FEP) were used in this work. Polyvinyl polymers were investigated since they will be used as insulating materials in the superconducting magnets of the new ion accelerators of the planned International Facility for Antiproton and Ion Research (FAIR) at the GSI Helmholtz-Centre of Heavy I...

  17. Mesoporous amine-bridged polysilsesquioxane for CO2 capture

    KAUST Repository

    Qi, Genggeng; Fu, Liling; Duan, Xiaonan; Choi, Brian Hyun; Abraham, Michael; Giannelis, Emmanuel P.

    2011-01-01

    A novel class of amine-supported sorbents based on amine-bridged mesoporous polysilsesquioxane was developed via a simple one-pot sol-gel process. The new sorbent allows the incorporation of a large amount of active groups without sacrificing

  18. Enantioselective catalytic syntheses of alpha-branched chiral amines

    DEFF Research Database (Denmark)

    Brase, S.; Baumann, T.; Dahmen, S.

    2007-01-01

    Chiral amines play a pivotal role in fine chemical and natural product syntheses and the design of novel materials.......Chiral amines play a pivotal role in fine chemical and natural product syntheses and the design of novel materials....

  19. Structure and isotopic ratios of aliphatic side chains in the insoluble organic matter of the Murchison carbonaceous chondrite

    Science.gov (United States)

    Huang, Yongsong; Alexandre, Marcelo R.; Wang, Yi

    2007-07-01

    We report in this paper the first molecular and isotopic characterization of individual aliphatic side chains from the insoluble organic matter (IOM) in the Murchison carbonaceous chondrite using a novel combined approach of RuO 4 oxidation and solid phase microextraction (SPME). The aliphatic side chains in the IOM of Murchison were first released by oxidizing aromatic structures using RuO 4. Because the IOM of carbonaceous chondrites contains predominantly short (C 1 to C 9) aliphatic substitutions, the resulting low molecular weight monocarboxylic acids (MCAs) are highly volatile and water-soluble. The conventional aqueous extraction and derivatization procedures following RuO 4 oxidation are unable to recover MCAs for subsequent analyses. We overcame this problem by employing SPME to directly capture the MCAs from the aqueous solution. We selected a SPME fiber with greater affinity for longer chain monoacids to compensate for the exponential decline of monoacid concentrations with increasing carbon numbers in meteorite IOM, allowing more accurate identification and quantification for the less abundant monoacids. We also determined the carbon and hydrogen isotopic ratios of individual MCAs derived from Murchinson IOM. Our results reveal significant similarity in both molecular structures and hydrogen isotopic ratios between the IOM aliphatic side chains and water-soluble MCAs in Murchison, suggesting that these compounds had common precursors. Our combined new approach of RuO 4 oxidation-SPME provides a new way to probe the molecular and isotopic characteristics of aliphatic side chains in carbonaceous chondrites.

  20. Kinetics of aerobic cometabolic biodegradation of chlorinated and brominated aliphatic hydrocarbons: A review.

    Science.gov (United States)

    Jesus, João; Frascari, Dario; Pozdniakova, Tatiana; Danko, Anthony S

    2016-05-15

    This review analyses kinetic studies of aerobic cometabolism (AC) of halogenated aliphatic hydrocarbons (HAHs) from 2001-2015 in order to (i) compare the different kinetic models proposed, (ii) analyse the estimated model parameters with a focus on novel HAHs and the identification of general trends, and (iii) identify further research needs. The results of this analysis show that aerobic cometabolism can degrade a wide range of HAHs, including HAHs that were not previously tested such as chlorinated propanes, highly chlorinated ethanes and brominated methanes and ethanes. The degree of chlorine mineralization was very high for the chlorinated HAHs. Bromine mineralization was not determined for studies with brominated aliphatics. The examined research period led to the identification of novel growth substrates of potentially high interest. Decreasing performance of aerobic cometabolism were found with increasing chlorination, indicating the high potential of aerobic cometabolism in the presence of medium- and low-halogenated HAHs. Further research is needed for the AC of brominated aliphatic hydrocarbons, the potential for biofilm aerobic cometabolism processes, HAH-HAH mutual inhibition and the identification of the enzymes responsible for each aerobic cometabolism process. Lastly, some indications for a possible standardization of future kinetic studies of HAH aerobic cometabolism are provided. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Coal and biomass-based chemicals via carbonylation, hydroformylation and homologation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sunavala, P.D.; Raghunath, B.

    The paper emphasizes the importance of carbonylation, hydroformylation and homologation reactions in the manufacture of organic chemicals (such as acetic acid, acetic anhydride, cellulose acetate, vinyl acetate monomer, aliphatic amines, isocyanates, methanol, ethanol, n-butanol, ethylene glycol, acrylic acid, etc.) from coal and biomass feedstocks. Topics covered are: synthesis of acetic acid; manufacture of acetic anhydride; synthesis of vinyl acetate monomer by carbonylation; synthesis of aliphatic amines by hydroformylation; synthesis of organic diisocyanates; ethanol synthesis by homologation of methanol; synthesis of ethylene glycol via hydroformylation of formaldehyde; synthesis of n- butanol and n-butyraldehyde by propylene formylation; synthesis of acrylic acid; homologation reaction of carboxylic acid esters with ruthenium catalysts; and synthesis of phenyl isocyanate from nitrobenzene by reductive carbonylation. 26 refs.

  2. Cell Adhesion and Proliferation on Sulfonated and Non-Modified Chitosan Films.

    Science.gov (United States)

    Martínez-Campos, Enrique; Civantos, Ana; Redondo, Juan Alfonso; Guzmán, Rodrigo; Pérez-Perrino, Mónica; Gallardo, Alberto; Ramos, Viviana; Aranaz, Inmaculada

    2017-05-01

    Three types of chitosan-based films have been prepared and evaluated: a non-modified chitosan film bearing cationizable aliphatic amines and two films made of N-sulfopropyl chitosan derivatives bearing both aliphatic amines and negative sulfonate groups at different ratios. Cell adhesion and proliferation on chitosan films of C2C12 pre-myoblastic cells and B16 cells as tumoral model have been tested. A differential cell behavior has been observed on chitosan films due to their different surface modification. B16 cells have shown lower vinculin expression when cultured on sulfonated chitosan films. This study shows how the interaction among cells and material surface can be modulated by physicochemical characteristics of the biomaterial surface, altering tumoral cell adhesion and proliferation processes.

  3. Effects of dietary amines on the gut and its vasculature.

    Science.gov (United States)

    Broadley, Kenneth J; Akhtar Anwar, M; Herbert, Amy A; Fehler, Martina; Jones, Elen M; Davies, Wyn E; Kidd, Emma J; Ford, William R

    2009-06-01

    Trace amines, including tyramine and beta-phenylethylamine (beta-PEA), are constituents of many foods including chocolate, cheeses and wines and are generated by so-called 'friendly' bacteria such as Lactobacillus, Lactococcus and Enterococcus species, which are found in probiotics. We therefore examined whether these dietary amines could exert pharmacological effects on the gut and its vasculature. In the present study we examined the effects of tyramine and beta-PEA on the contractile activity of guinea-pig and rat ileum and upon the isolated mesenteric vasculature and other blood vessels. Traditionally, these amines are regarded as sympathomimetic amines, exerting effects through the release of noradrenaline from sympathetic nerve endings, which should relax the gut. A secondary aim was therefore to confirm this mechanism of action. However, contractile effects were observed in the gut and these were independent of noradrenaline, acetylcholine, histamine and serotonin receptors. They were therefore probably due to the recently described trace amine-associated receptors. These amines relaxed the mesenteric vasculature. In contrast, the aorta and coronary arteries were constricted, a response that was also independent of a sympathomimetic action. From these results, we propose that after ingestion, trace amines could stimulate the gut and improve intestinal blood flow. Restriction of blood flow elsewhere diverts blood to the gut to aid digestion. Thus, trace amines in the diet may promote the digestive process through stimulation of the gut and improved gastrointestinal circulation.

  4. The mysterious trace amines: protean neuromodulators of synaptic transmission in mammalian brain.

    Science.gov (United States)

    Burchett, Scott A; Hicks, T Philip

    2006-08-01

    The trace amines are a structurally related group of amines and their isomers synthesized in mammalian brain and peripheral nervous tissues. They are closely associated metabolically with the dopamine, noradrenaline and serotonin neurotransmitter systems in mammalian brain. Like dopamine, noradrenaline and serotonin the trace amines have been implicated in a vast array of human disorders of affect and cognition. The trace amines are unique as they are present in trace concentrations, exhibit high rates of metabolism and are distributed heterogeneously in mammalian brain. While some are synthesized in their parent amine neurotransmitter systems, there is also evidence to suggest other trace amines may comprise their own independent neurotransmitter systems. A substantial body of evidence suggests that the trace amines may play very significant roles in the coordination of biogenic amine-based synaptic physiology. At high concentrations, they have well-characterized presynaptic "amphetamine-like" effects on catecholamine and indolamine release, reuptake and biosynthesis; at lower concentrations, they possess postsynaptic modulatory effects that potentiate the activity of other neurotransmitters, particularly dopamine and serotonin. The trace amines also possess electrophysiological effects that are in opposition to these neurotransmitters, indicating to some researchers the existence of receptors specific for the trace amines. While binding sites or receptors for a few of the trace amines have been advanced, the absence of cloned receptor protein has impeded significant development of their detailed mechanistic roles in the coordination of catecholamine and indolamine synaptic physiology. The recent discovery and characterization of a family of mammalian G protein-coupled receptors responsive to trace amines such as beta-phenylethylamine, tyramine, and octopamine, including socially ingested psychotropic drugs such as amphetamine, 3,4-methylenedioxymethamphetamine, N

  5. Increased mean aliphatic lipid chain length in left ventricular hypertrophy secondary to arterial hypertension: A cross-sectional study.

    Science.gov (United States)

    Evaristi, Maria Francesca; Caubère, Céline; Harmancey, Romain; Desmoulin, Franck; Peacock, William Frank; Berry, Matthieu; Turkieh, Annie; Barutaut, Manon; Galinier, Michel; Dambrin, Camille; Polidori, Carlo; Miceli, Cristina; Chamontin, Bernard; Koukoui, François; Roncalli, Jerôme; Massabuau, Pierre; Smih, Fatima; Rouet, Philippe

    2016-11-01

    About 77.9 million (1 in 4) American adults have high blood pressure. High blood pressure is the primary cause of left ventricular hypertrophy (LVH), which represents a strong predictor of future heart failure and cardiovascular mortality. Previous studies have shown an altered metabolic profile in hypertensive patients with LVH. The goal of this study was to identify blood metabolomic LVH biomarkers by H NMR to provide novel diagnostic tools for rapid LVH detection in populations of hypertensive individuals. This cross-sectional study included 48 hypertensive patients with LVH matched with 48 hypertensive patients with normal LV size, and 24 healthy controls. Two-dimensional targeted M-mode echocardiography was performed to measure left ventricular mass index. Partial least squares discriminant analysis was used for the multivariate analysis of the H NMR spectral data. From the H NMR-based metabolomic profiling, signals coming from methylene (-CH2-) and methyl (-CH3) moieties of aliphatic chains from plasma lipids were identified as discriminant variables. The -CH2-/-CH3 ratio, an indicator of the mean length of the aliphatic lipid chains, was significantly higher (P hypertensive group without LVH and controls. Receiver operating characteristic curve showed that a cutoff of 2.34 provided a 52.08% sensitivity and 85.42% specificity for discriminating LVH (AUC = 0.703, P-value hypertension.

  6. Decomposition of some amines and amino acids in steam generator environments

    International Nuclear Information System (INIS)

    Jayaweera, P.; Hettiarachchi, S.; Millett, P.J.

    1994-01-01

    Hydrothermal decomposition rate constants and high temperature pH values of some selected high-molecular weight amines and amino acids were measured under simulated steam generator conditions. These amines and amino acids were evaluated as potential crevice buffering agents for steam generator applications in pressurized water reactors. The study showed that, although the high molecular weight amines undergo hydrothermal decomposition, they have a better buffer capacity than their low molecular weight counterparts at 290 C. The amines provide effective crevice buffering by increasing the pH of the simulated crevice solution by as much as 2.84 to 4.24 units. However, volatility data for the amines and amino acids are needed before in-plant testing to ensure that amines can concentrate sufficiently in steam generator crevices to provide effective buffering

  7. Uranium diphosphonates templated by interlayer organic amines

    International Nuclear Information System (INIS)

    Nelson, Anna-Gay D.; Alekseev, Evgeny V.; Albrecht-Schmitt, Thomas E.; Ewing, Rodney C.

    2013-01-01

    The hydrothermal treatment of uranium trioxide and methylenediphosphonic acid with a variety of amines (2,2-dipyridyl, triethylenediamine, ethylenediamine, and 1,10-phenanthroline) at 200 °C results in the crystallization of a series of layered uranium diphosphonate compounds, [C 10 H 9 N 2 ]{UO 2 (H 2 O)[CH 2 (PO 3 )(PO 3 H)]} (Ubip2), [C 6 H 14 N 2 ]{(UO 2 ) 2 [CH 2 (PO 3 )(PO 3 H)] 2 ·2H 2 O} (UDAB), [C 2 H 10 N 2 ] 2 {(UO 2 ) 2 (H 2 O) 2 [CH 2 (PO 3 ) 2 ] 2 ·0.5H 2 O} (Uethyl), and [C 12 H 9 N 2 ]{UO 2 (H 2 O)[CH 2 (PO 3 )(PO 3 H)]} (Uphen). The crystal structures of the compounds are based on UO 7 units linked by methylenediphosphonate molecules to form two-dimensional anionic sheets in Ubip2 and UDAB, and one-dimensional anionic chains in Uethyl and Uphen, which are charge balanced by protonated amine molecules. Interaction of the amine molecules with phosphonate oxygens and water molecules results in extensive hydrogen bonding in the interlayer. These amine molecules serve both as structure-directing agents and charge-balancing cations for the anionic uranium phosphonate sheets and chains in the formation of the different coordination geometries and topologies of each structure. Reported herein are the syntheses, structural and spectroscopic characterization of the synthesized compounds. - Graphical abstract: The Raman spectra of the synthesized compounds and an illustration of the stacking of the layers with the diprotonated triethylenediamine molecules in [C 6 H 14 N 2 ]{(UO 2 ) 2 [CH 2 (PO 3 )(PO 3 H)] 2 ·2H 2 O} UDAB. Solvent water molecules are removed for clarity. The corresponding Raman spectra for the complexes synthesized is also shown. The structure is constructed from UO 7 pentagonal bipyramids (yellow), oxygen=red, phosphorus=magenta, carbon=black, and nitrogen=blue. Highlights: ► Organic amines act both as charge-balancing and as structure-directing agents. ► Extensive hydrogen bonding interactions with solvent water molecules and amines

  8. Process for removing halogenated aliphatic and aromatic compounds from petroleum products. [Polychlorinated biphenyls; methylene chloride; perchloroethylene; trichlorofluoroethane; trichloroethylene; chlorobenzene

    Science.gov (United States)

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1982-03-31

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contracting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible polyhydroxy compound, such as, water, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds in the low polar or nonpolar solvent by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered for recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 2 tables.

  9. Amine Functionalized Porous Network

    KAUST Repository

    Eddaoudi, Mohamed; Guillerm, Vincent; Weselinski, Lukasz Jan; Alkordi, Mohamed H.; Mohideen, Mohamed Infas Haja; Belmabkhout, Youssef

    2015-01-01

    Amine groups can be introduced in porous materials by a direct (one pot) or post-synthetic modification (PSM) process on aldehyde groups, and the resulting porous materials have increased gas affinity.

  10. Amine Functionalized Porous Network

    KAUST Repository

    Eddaoudi, Mohamed

    2015-05-28

    Amine groups can be introduced in porous materials by a direct (one pot) or post-synthetic modification (PSM) process on aldehyde groups, and the resulting porous materials have increased gas affinity.

  11. Monomers for thermosetting and toughening epoxy resins. [glycidyl amine derivatives, propargyl-containing amines, and mutagenic testing of aromatic diamines

    Science.gov (United States)

    Pratt, J. R.

    1981-01-01

    Eight glycidyl amines were prepared by alkylating the parent amine with epichlorohydrin to form chlorohydrin, followed by cyclization with aqueous NaOH. Three of these compounds contained propargyl groups with postcuring studies. A procedure for quantitatively estimating the epoxy content of these glycidyl amines was employed for purity determination. Two diamond carbonates and several model propargly compounds were prepared. The synthesis of three new diamines, two which contain propargyloxy groups, and another with a sec-butyl group is in progress. These materials are at the dinitro stage ready for the final hydrogenation step. Four aromatic diamines were synthesized for mutagenic testing purposes. One of these compounds rapidly decomposes on exposure to air.

  12. Evaluation of certain food additives.

    Science.gov (United States)

    2012-01-01

    This report represents the conclusions of a Joint FAO/WHO Expert Committee convened to evaluate the safety of various food additives, including flavouring agents, with a view to concluding as to safety concerns and to preparing specifications for identity and purity. The first part of the report contains a general discussion of the principles governing the toxicological evaluation of and assessment of dietary exposure to food additives, including flavouring agents. A summary follows of the Committee's evaluations of technical, toxicological and dietary exposure data for five food additives (magnesium dihydrogen diphosphate; mineral oil (medium and low viscosity) classes II and III; 3-phytase from Aspergillus niger expressed in Aspergillus niger; serine protease (chymotrypsin) from Nocardiopsis prasina expressed in Bacillus licheniformis; and serine protease (trypsin) from Fusarium oxysporum expressed in Fusarium venenatum) and 16 groups of flavouring agents (aliphatic and aromatic amines and amides; aliphatic and aromatic ethers; aliphatic hydrocarbons, alcohols, aldehydes, ketones, carboxylic acids and related esters, sulfides, disulfides and ethers containing furan substitution; aliphatic linear alpha,beta-unsaturated aldehydes, acids and related alcohols, acetals and esters; amino acids and related substances; epoxides; furfuryl alcohol and related substances; linear and branched-chain aliphatic, unsaturated, unconjugated alcohols, aldehydes, acids and related esters; miscellaneous nitrogen-containing substances; phenol and phenol derivatives; pyrazine derivatives; pyridine, pyrrole and quinoline derivatives; saturated aliphatic acyclic branched-chain primary alcohols, aldehydes and acids; simple aliphatic and aromatic sulfides and thiols; sulfur-containing heterocyclic compounds; and sulfur-substituted furan derivatives). Specifications for the following food additives were revised: ethyl cellulose, mineral oil (medium viscosity), modified starches and titanium

  13. Nitrile-functionalized tertiary amines as highly efficient and reversible SO2 absorbents

    International Nuclear Information System (INIS)

    Hong, Sung Yun; Kim, Heehwan; Kim, Young Jin; Jeong, Junkyo; Cheong, Minserk; Lee, Hyunjoo; Kim, Hoon Sik; Lee, Je Seung

    2014-01-01

    Highlights: • Nitrile-functionalized tertiary amines physically and reversibly absorb SO 2 . • Tertiary alkanolamines chemically and irreversibly absorb SO 2 through OH group. • SO 2 absorption modes were studied by spectroscopy and computational calculations. -- Abstract: Three different types of nitrile-functionalized amines, including 3-(N,N-diethylamino)propionitrile (DEAPN), 3-(N,N-dibutylamino)propionitrile (DBAPN), and N-methyl-N,N-dipropionitrile amine (MADPN) were synthesized, and their SO 2 absorption performances were evaluated and compared with those of hydroxy-functionalized amines such as N,N-diethyl-N-ethanol amine (DEEA), N,N-dibutyl-N-ethanol amine (DBEA), and N-methyl-N,N-diethanol amine (MDEA). Absorption–desorption cycle experiments clearly demonstrate that the nitrile-functionalized amines are more efficient than the hydroxy-functionalized amines in terms of absorption rate and regenerability. Computational calculations with DBEA and DBAPN revealed that DBEA bearing a hydroxyethyl group chemically interacts with SO 2 through oxygen atom, forming an ionic compound with a covalently bound -OSO 2 − group. On the contrary, DBAPN bearing a nitrile group physically interacts with SO 2 through the nitrogen and the hydrogen atoms of the two methylene groups adjacent to the amino and nitrile functionalities

  14. Production of biogenic amines in "Salamini italiani alla cacciatora PDO".

    Science.gov (United States)

    Coı X0308 Sson, Jean Daniel; Cerutti, Caterina; Travaglia, Fabiano; Arlorio, Marco

    2004-06-01

    Various fermented and seasoned foods such as cheese, sauerkraut, wine, beer and meat products may contain biogenic amines. The aim of this paper was to describe the presence of some biogenic amines (histamine, tyramine, tryptamine, 2-phenylethylamine) in "Salamini italiani alla cacciatora PDO", a typical fermented-ripened dry sausage widely consumed in Italy. Total level of biogenic amines in commercial samples ranged from 71 to 586 mg kg(-1). The amine recovered in higher concentrations was tyramine (372 mg kg(-1)) followed by histamine (165 mg kg(-1)). The second aim of this work was the quality control of the production in order to determine the parameters influencing the presence of biogenic amines in ripened salami. Sausages sampled for analysis during production, manipulation and ripening showed the presence of tyramine (64.4 mg kg(-1)) only after 15 days of fermentation. All investigated biogenic amines were detected in "Salamini" after 21 days of fermentation. We suggest the control of biogenic as important tool to establish the better condition of preservation of "Salamini italiani alla cacciatore PDO" during their shelf-life.

  15. Organic pollutants in the coastal environment off San Diego, California. 2: Petrogenic and biogenic sources of aliphatic hydrocarbons

    International Nuclear Information System (INIS)

    Tran, K.; Yu, C.C.; Zeng, E.Y.

    1997-01-01

    The results from the measurements of aliphatic hydrocarbons suggest that hydrocarbons suggest that hydrocarbons in the Point Loma Wastewater Treatment Plant (PLWTP) effluents are mainly petroleum derived; those in the Tijuana River runoff have largely originated from terrestrial plants with visible petroleum contamination; and those in the sea surface microlayer, sediment traps, and sediments at various coastal locations off San Diego have mostly resulted from biogenic contributions with enhanced microbial products in the summer season. Rainfall in the winter season appeared to amplify the inputs from terrestrial higher plants to the coastal areas. The PLWTP discharged approximately 3.85 metric tons of n-alkanes (C 10 -C 35 ) in 1994, well below the level (136 metric tons) estimated in 1979. The input of aliphatic hydrocarbons from the Tijuana River was about 0.101 metric tons in 1994. Diffusion, solubilization, evaporation, and microbial degradation seemed partially responsible for the difference in the concentrations and compositions of aliphatic hydrocarbons in different sample media, although the relative importance of each mechanism cannot be readily discerned from the available data. The results from analyses of aliphatic hydrocarbon compositional indices are generally consistent with those of polycyclic aromatic hydrocarbons

  16. Spectroscopic Evidence for Covalent Binding of Sulfadiazine to Natural Soils via 1,4-nucleophilic addition (Michael Type Addition) studied by Spin Labeling ESR

    Science.gov (United States)

    Aleksandrova, Olga

    2015-04-01

    Among different classes of veterinary pharmaceuticals, Sulfadiazine (SDZ) is widely used in animal husbandry. Its residues were detected in different environmental compartments. However, soil is a hot spot for SDZ as it receives a large portion of excreted compounds through the application of manure during soil fertilization. Ample studies on the fate of SDZ in soils showed that a large portion forms nonextractable residues (NER) along with transformation products and a low mineralization (Mueller et al., 2013). A common observation was an initially fast formation of NER up to 10% of the applied amount promptly after the application of SDZ to soil, and this portion increased up to 50% within a few days (Mueller et al., 2013; Nowak et al., 2011). A common finding for SDZ, as for other sulfonamides, was biphasic kinetics of the formation of NER, which was attributed to the occurrence of two reaction processes: a rapid, often reversible process and a slower, irreversible process (Weber et al., 1996). A single-phase reaction process was also established under anaerobic treatment (Gulkowska et al., 2014). A major focus of this work is to elucidate a reaction mechanism of covalent binding of SDZ to soil that is currently required to estimate a risk of NER formed by SDZ in soils for human health. Taking into account a key role of the amine functional groups of SDZ on its reactivity in soil, nitroxide radicals with the sewed aromatic or aliphatic amines labeled soil samples and then, were investigated by means of ESR spectroscopy. 2,5,5-Trimethyl-2-(3-aminophenyl)pyrrolidin-1-yloxy and 4-amino-2,2,6,6-Tetramethylpiperidin-1-oxyl modeled decomposition products of SDZ with the aromatic and aliphatic amines, respectively. The application of the defined combination of both spin labels (SL) to different soils well simulated a change of a paramagnetic signal of soil organic radicals interacted with SDZ. After their application to soil, SL were found in soil sites characterized

  17. Colorless triphenylamine-based aliphatic thermoset epoxy for multicolored and near-infrared electrochromic applications.

    Science.gov (United States)

    Chuang, Ya-Wen; Yen, Hung-Ju; Wu, Jia-Hao; Liou, Guey-Sheng

    2014-03-12

    In this study, two novel colorless thermoset epoxy resins with anodically electrochromism were prepared from the thermal curing of two triphenylamine-based diamine monomers, 4,4'-diamino-4″-methoxytriphenylamine (1) and N,N'-bis(4-aminophenyl)-N,N'-di(4-methoxylphenyl)-1,4-phenylenediamine (2) with aliphatic epoxy triglycidyl isocyanurate, respectively. The resulting thermoset epoxy resins showed excellent softening temperature (Ts, 270 and 280 °C) due to the rigid structure and highly crosslinking density. In addition, novel colorless epoxy resin films revealed good reversible electrochemical oxidation and interesting multi-electrochromic behavior with high contrast ratio both in visible and near-infrared regions. The aliphatic thermoset epoxy resins also exhibited high transparency in visible region as colorless and great potential for practical electrochromic applications.

  18. New insights into controlling tube-bundle fouling using alternative amines

    International Nuclear Information System (INIS)

    Turner, C.W.; Klimas, S.J.; Guzonas, D.A.; Frattini, P.L.; Fruzzetti, K.

    2002-01-01

    A volatile amine is added to the secondary heat-transport system of a nuclear power plant to reduce the rate of corrosion and corrosion product transport in the feedwater and to protect steam generator (SG) crevices and materials exposed to steam condensate. Volatility and base strength of the amine at the SG operating temperature are two important considerations when choosing the optimum amine (or mixture of amines) for corrosion control in the steam cycle. Atomic Energy of Canada Limited (AECL) and Electric Power Research Institute (EPRI) have been collaborating in an extensive investigation of the effectiveness of amines at controlling the rate of tube-bundle fouling under SG operating conditions. Tests have been performed using a radiotracing technique in a high-temperature fouling loop facility at Chalk River Laboratories operated by AECL. This investigation has provided new insights into the role played by the amine in determining the rate of tube-bundle fouling in the SG. These insights are being used by AECL and EPRI to develop criteria for the selection of an amine that has optimum properties for both corrosion control and deposit control in the secondary heat transport system. The investigation has found that the rate of tube-bundle fouling is strongly dependent upon the surface chemistry of the corrosion products. For example, the fouling rates of fully oxidized iron oxides, such as hematite and lepidocrocite, are at least an order of magnitude greater than the fouling rate of magnetite under identical operating conditions. The difference is related to the sign of the surface charge on the corrosion products at temperature. The choice of amine for pH-control also influences the fouling rate. This was originally thought to be a surface-charge effect as well, but recent tests have suggested that it is related to the role that the amine plays in governing the rate of deposit consolidation on the heat-transfer surface. Amines that promote a high rate of

  19. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    cobaloxime by aliphatic amine ligands · M Bhoopal N Ravi Kumar Reddy S Satyanarayana .... pp 129-134 Physical and Theoretical. Kinetics and mechanism of the oxidation of substituted benzylamines by cetyltrimethylammonium permanganate.

  20. Extraction separation studies of uranium(VI) by amine oxides

    International Nuclear Information System (INIS)

    Ejaz, M.

    1975-01-01

    The extraction of uranium(VI) by two amine oxides, 4-(5-nonyl)pyridine oxide and trioctylamine oxide has been studied. The extraction behavior of these two N-oxides is compared. The dependence of extraction on the type of amine oxide and acid, nature of organic diluent, and amine oxide concentration has been investigated. The influence of the concentration of the metal and salting-out agents is described. The possible mechanism of extraction is discussed in the light of the results of extraction isotherms, loading radiodata, and log-log plots of amine oxide concentration vs distribution ratio. The separation factors for a number of metal ions are reported, and the separation of uranium from some fission elements has also been achieved

  1. Effect of electron beam irradiation on the biodegradability of aromatic aliphatic copolyester film and their blend with corn starch

    International Nuclear Information System (INIS)

    Silva, Leonardo G. Andrade e; Poveda, Patricia N.S.; Rezende, Maira L.; Rosa, Derval S.

    2009-01-01

    Biodegradable and green plastics have been studied in the last years. The aim of this paper is to study the effect of electron beam irradiation on the biodegradability of aromatic aliphatic copolyester film and their blend with corn starch. The samples were irradiated at different doses 10 and 40 kGy in a linear accelerator. The biodegradability of the materials was evaluated by two methods: soil simulated and enzymatic. In the method enzymatic when it was used α-amylase, the irradiated samples presented faster biodegradation than the references non irradiated. The blend of aromatic aliphatic copolyester with corn starch (Ecobras R ) irradiated presented a bigger biodegradability than the aromatic aliphatic copolyester (Ecoflex R ) film in both methods studied. (author)

  2. Supported polytertiary amines: highly efficient and selective SO2 adsorbents.

    Science.gov (United States)

    Tailor, Ritesh; Abboud, Mohamed; Sayari, Abdelhamid

    2014-01-01

    Tertiary amine containing poly(propyleneimine) second (G2) and third (G3) generation dendrimers as well as polyethyleneimine (PEI) were developed for the selective removal of SO2. N-Alkylation of primary and secondary amines into tertiary amines was confirmed by FTIR and NMR analysis. Such modified polyamines were impregnated on two nanoporous supports, namely, SBA-15PL silica with platelet morphology and ethanol-extracted pore-expanded MCM-41 (PME) composite. In the presence of 0.1% SO2/N2 at 23 °C, the uptake of modified PEI, G2, and G3 supported on SBA-15PL was 2.07, 2.35, and 1.71 mmol/g, respectively; corresponding to SO2/N ratios of 0.22, 0.4, and 0.3. Under the same conditions, the SO2 adsorption capacity of PME-supported modified PEI and G3 was significantly higher, reaching 4.68 and 4.34 mmol/g, corresponding to SO2/N ratios of 0.41 and 0.82, respectively. The working SO2 adsorption capacity decreased with increasing temperature, reflecting the exothermic nature of the process. The adsorption capacity of these materials was enhanced dramatically in the presence of humidity in the gas mixture. FTIR data before SO2 adsorption and after adsorption and regeneration did not indicate any change in the materials. Nonetheless, the SO2 working capacity decreased in consecutive adsorption/regeneration cycles due to evaporation of impregnated polyamines, rather than actual deactivation. FTIR and (13)C and (15)N CP-MAS NMR of fresh and SO2 adsorbed modified G3 on PME confirmed the formation of a complexation adduct.

  3. Nitrile-functionalized tertiary amines as highly efficient and reversible SO2 absorbents.

    Science.gov (United States)

    Hong, Sung Yun; Kim, Heehwan; Kim, Young Jin; Jeong, Junkyo; Cheong, Minserk; Lee, Hyunjoo; Kim, Hoon Sik; Lee, Je Seung

    2014-01-15

    Three different types of nitrile-functionalized amines, including 3-(N,N-diethylamino)propionitrile (DEAPN), 3-(N,N-dibutylamino)propionitrile (DBAPN), and N-methyl-N,N-dipropionitrile amine (MADPN) were synthesized, and their SO2 absorption performances were evaluated and compared with those of hydroxy-functionalized amines such as N,N-diethyl-N-ethanol amine (DEEA), N,N-dibutyl-N-ethanol amine (DBEA), and N-methyl-N,N-diethanol amine (MDEA). Absorption-desorption cycle experiments clearly demonstrate that the nitrile-functionalized amines are more efficient than the hydroxy-functionalized amines in terms of absorption rate and regenerability. Computational calculations with DBEA and DBAPN revealed that DBEA bearing a hydroxyethyl group chemically interacts with SO2 through oxygen atom, forming an ionic compound with a covalently bound OSO2(-) group. On the contrary, DBAPN bearing a nitrile group physically interacts with SO2 through the nitrogen and the hydrogen atoms of the two methylene groups adjacent to the amino and nitrile functionalities. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Chromosomal localization of the human vesicular amine transporter genes

    Energy Technology Data Exchange (ETDEWEB)

    Peter, D.; Finn, P.; Liu, Y.; Roghani, A.; Edwards, R.H.; Klisak, I.; Kojis, T.; Heinzmann, C.; Sparkes, R.S. (UCLA School of Medicine, Los Angeles, CA (United States))

    1993-12-01

    The physiologic and behavioral effects of pharmacologic agents that interfere with the transport of monoamine neurotransmitters into vesicles suggest that vesicular amine transport may contribute to human neuropsychiatric disease. To determine whether an alteration in the genes that encode vesicular amine transport contributes to the inherited component of these disorders, the authors have isolated a human cDNA for the brain transporter and localized the human vesciular amine transporter genes. The human brain synaptic vesicle amine transporter (SVAT) shows unexpected conservation with rat SVAT in the regions that diverge extensively between rat SVAT and the rat adrenal chromaffin granule amine transporter (CGAT). Using the cloned sequences with a panel of mouse-human hybrids and in situ hybridization for regional localization, the adrenal CGAT gene (or VAT1) maps to human chromosome 8p21.3 and the brain SVAT gene (or VAT2) maps to chromosome 10q25. Both of these sites occur very close to if not within previously described deletions that produce severe but viable phenotypes. 26 refs., 3 figs., 1 tab.

  5. Gamma radiolysis of aliphatic sulfur compounds in aqueous solutions. A study to contribute to the analysis of the end products of the OH radical-induced oxidation of aliphatic mercaptanes, sulfides, and disulfides

    International Nuclear Information System (INIS)

    Weiss, J.

    1982-01-01

    By identifying and determining numerous hitherto unknown end products, the study in hand contributes to a better insight into the radiation chemical processes occurring in OH radical-induced oxidation of aliphatic sulfur compounds. An extraction method has been developed for the qualitative and quantitative analysis of end products in aqueous solution in order to determine these compounds down to the level of trace amounts. Separation of endproducts is achieved by means of gas chromatography and high-pressure liquid chromatography, subsequent identification by GC-MS analysis. Aliphatic mercaptanes are oxidized by OH radicals to thiyl radicals which after combination can be detected as disulfide. At high radiation doses, secondary reactions will lead to polysulfides of which the homologues could first be prepared as the pure substance. The end products of the γ-radiolysis of aliphatic thioethers are determined to be dithia compounds, symmetrical or asymmetrical disulfides, or polysulfides, depending on the thioethers. With some end products, the radiation chemical yield is found to be a function of the absorbed dose so that material balances are impossible. Intermediate thiyl, α-alkyl mercaptoalkyl or alkyl radicals can be captured by tetramethyl ethylene, cyclohexene or p-benzoquinone, and can then be identified as the relevant adducts. (orig./RB) [de

  6. Characterization of particulate amines

    International Nuclear Information System (INIS)

    Gundel, L.A.; Chang, S.G.; Clemenson, M.S.; Markowitz, S.S.; Novakov, T.

    1979-01-01

    The reduced nitrogen compounds associated with ambient particulate matter are chemically characterized by means of ESCA and proton activation analysis. Ambient particulate samples collected on silver filters in Berkeley, California were washed with water and organic solvents, and ESCA and proton activation analysis were performed in order to determine the composition of various nitrogen compounds and the total nitrogen content. It is found that 85% of the amines originally present in ambient particulate matter can be removed by water extraction, whereas the ammonium and nitrate are completely removed. An observed increase in ammonium ion in the extract, compared with its concentration in the original sample, coupled with the commensurate decrease in amine concentration, is attributed to the hydrolysis of amide groups, which may cause analytical methods based on extraction to yield erroneous results

  7. Amine-selective bioconjugation using arene diazonium salts.

    Science.gov (United States)

    Diethelm, Stefan; Schafroth, Michael A; Carreira, Erick M

    2014-08-01

    A novel bioconjugation strategy is presented that relies on the coupling of diazonium terephthalates with amines in proteins. The diazonium captures the amine while the vicinal ester locks it through cyclization, ensuring no reversibility. The reaction is highly efficient and proceeds under mild conditions and short reaction times. Densely functionalized, complex natural products were directly coupled to proteins using low concentrations of coupling partners.

  8. Aliphatic Nucleophilic Radio-fluorination

    International Nuclear Information System (INIS)

    Roeda, D.; Dolle, F.

    2010-01-01

    In this review we are looking at some aspects of nucleophilic aliphatic radio-fluorination, notably the labelled fluoride source, design aspects, the leaving group and the solvent. It should be clear that there is more to this branch of radiolabelling than one would suspect from the frequently used standard tosylate replacement with kryptofix/[ 18 F]fluoride in acetonitrile or DMSO. Competitive elimination can be a serious problem that can affect both yield and purification. De-protection of sensitive groups after radiolabelling and its possible side reactions can complicate purification. The right choice of leaving group and protecting groups may be crucial. Newer developments such as the use of tertiary alcohols or ionic liquids as solvents, long-chain poly-fluorinated sulphonate leaving groups facilitating fluorous solid phase extraction, or immobilisation of the precursor on a solid phase support may help to solve these problems, for example the longstanding problems with [ 18 F]FLT, whereas older concepts such as certain cyclic reactive entities for ring opening or even an abandoned reagent as [ 18 F]DAST should not be forgotten. (authors)

  9. STUDIES ON VINYL POLYMERIZATION WITH INITIATION SYSTEM CONTAINING AMINE DERIVATIVES

    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; ZHANG Jingyi; FENG Xinde(S. T. Voong)

    1983-01-01

    Two main types of amine-containing initiation systems were studied in this work. In the case of MMA polymerization initiated by BPO-amine (DMT, DHET, DMA) redox systems, it was found that the polymerization rate and colour stability of the polymer for different amine systems were in the following order: DMT≈DHET>DMA. Accordingly, BPO-DMT and BPO-DHET are effective initiators. In the case of MEMA polymerization by amine (DMT, DHET, DMA) alone, it was found that the polymerization rate and the percentage of conversion for these different amine systems were in the following order: DMT≥DHET>DMA. The polymerization rate and the percentage of conversion also increased with the increase of DMT concentration. From the kinetic investigation the rate equation of Rp=K [DMT]1/2 [MEMA]3/2 was obtained, and the overall activation energy of polymerization was calculated to be 34.3 KJ/mol (8.2 Kcal/mol). Moreover, the polymerization of MEMA in the presence of DMT was strongly inhibited by hydroquinone, indicating the polymerization being free radical in nature. From these results, the mechanism of MEMA polymerization initiated by amine was proposed.

  10. Base metal dehydrogenation of amine-boranes

    Science.gov (United States)

    Blacquiere, Johanna Marie [Ottawa, CA; Keaton, Richard Jeffrey [Pearland, TX; Baker, Ralph Thomas [Los Alamos, NM

    2009-06-09

    A method of dehydrogenating an amine-borane having the formula R.sup.1H.sub.2N--BH.sub.2R.sup.2 using base metal catalyst. The method generates hydrogen and produces at least one of a [R.sup.1HN--BHR.sup.2].sub.m oligomer and a [R.sup.1N--BR.sup.2].sub.n oligomer. The method of dehydrogenating amine-boranes may be used to generate H.sub.2 for portable power sources, such as, but not limited to, fuel cells.

  11. Systems of cerium(3) nitrate-dimethyl amine nitrate-water and cerium(3) nitrate-dimethyl amine nitrate-water

    International Nuclear Information System (INIS)

    Mininkov, N.E.; Zhuravlev, E.F.

    1976-01-01

    Solubility of solid phases in the systems cerium(3)nitrate-water-dimethyl amine nitrate and cerium(3)nitrate-water-dimethyl amine nitrate has been st ed by the method of isothermal sections at 25 and 50 deo. C. It has been shown that one anhydrous compound is formed in each system with a ratio of cerium(3) nitrate to amine nitrate 1:5. The compounds formed in the systems have been separated from the corresponding solutions and studied by microcrystalloscopic, X-ray phase, thermal and infrared spectroscopic methods. On the basis of spectroscopic studies the following formula has been assigned to the compound: [(CH 3 ) 2 NH 2 + ] 5 x[Ce(NO 3 ) 8 ]. The thermal analysis of the compound has shown that its melting point is 106 deg C. The solubility isotherms in the system Ce(NO 3 ) 3 -H 2 O-(C 2 H 5 ) 2 NHxHNO 3 consist of three branches which intersect in two eutonic points

  12. Target analysis of primary aromatic amines combined with a comprehensive screening of migrating substances in kitchen utensils by liquid chromatography-high resolution mass spectrometry.

    Science.gov (United States)

    Sanchis, Yovana; Coscollà, Clara; Roca, Marta; Yusà, Vicent

    2015-06-01

    An analytical strategy including both the quantitative target analysis of 8 regulated primary aromatic amines (PAAs), as well as a comprehensive post-run target screening of 77 migrating substances, was developed for nylon utensils, using liquid chromatography-orbitrap-high resolution mass spectrometry (LC-HRMS) operating in full scan mode. The accurate mass data were acquired with a resolving power of 50,000 FWHM (scan speed, 2 Hz), and by alternating two acquisition events, ESI+ with and without fragmentation. The target method was validated after statistical optimization of the main ionization and fragmentation parameters. The quantitative method presented appropriate performance to be used in official monitoring with recoveries ranging from 78% to 112%, precision in terms of Relative Standard Deviation (RSD) was less than 15%, and the limits of quantification were between 2 and 2.5 µg kg(-1). For post-target screening, a customized theoretical database was built for food contact material migrants, including bisphenols, phthalates, and other amines. For identification purposes, accurate exact mass (<5 ppm) and some diagnostic ions including fragments were used. The strategy was applied to 10 real samples collected from different retailers in the Valencian Region (Spain) during 2014. Six out of eight target PAAs were detected in at least one sample in the target analysis. The most frequently detected compounds were 4,4'-methylenedianiline and aniline, with concentrations ranging from 2.4 to 19,715 µg kg(-1) and 2.5 to 283 µg kg(-1), respectively. Two phthalates were identified and confirmed in the post-run target screening analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. 40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid amine condensate... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts. (a... a fatty acid amine condensate, polycarboxylic acid salts. (PMN P-92-445) is subject to reporting...

  14. Study of the degradation mechanisms of amines used for the capture of CO{sub 2} in industrial fumes; Etude des mecanismes de degradation des amines utilisees pour le captage du CO{sub 2} dans les fumees

    Energy Technology Data Exchange (ETDEWEB)

    Lepaumier, H

    2008-10-15

    Global warming leads to reduce greenhouse gas emissions. Post combustion CO{sub 2} capture with solvent is the most advanced technology to reduce CO{sub 2} emissions in industrial fumes. A major problem associated with chemical absorption of CO{sub 2} using the benchmark ethanolamine (MEA) is solvent degradation through irreversible side reactions with CO{sub 2} and O{sub 2} which leads to numerous harmful impacts to the process: corrosion, solvent loss, foaming, fouling, and viscosity increase. So, developing new amines with higher chemical stability is essential. This work is based on the chemical stability study of 17 different molecules. Their structures have been chosen in order to establish structure-property relationships: alkanolamines, known for gas treatment application (MEA, DEA, MDEA, AMP...), di-amines, and tri-amines without alcohol function. Impact of temperature, CO{sub 2}, and O{sub 2} on degradation has been studied. Strong experimental conditions have been used to observe significant degradation after a 15 days experiment. Separation, identification and quantification of degradation products have been performed by using different testing instructions such as gas chromatography, mass spectrometry, ionic chromatography and NMR. Different mechanisms are proposed to explain most of degradation compounds. Radical reactions (dealkylation, alkylation, ring-closure reactions and piperazinones formation) are involved under O{sub 2} pressure whereas CO{sub 2} induces ionic reactions (dealkylation, alkylation, addition, ring-closure reactions and oxazolidinones or imidazolidinones formation). Large discrepancies of stability are noticed among the different amines. Knowledge of degradation products and reaction mechanisms has thus permitted to establish some relationships between structure and chemical stability: for example, role of the amine function (primary, secondary, tertiary), impact of alkyl chain length between the two amino groups and steric

  15. Development and application of bacterial cultures for the removal of chlorinated aliphatics

    NARCIS (Netherlands)

    Janssen, Dick B.; de Koning, Wim

    1995-01-01

    The possibility of obtaining microbial cultures for the degradation of halogenated aliphatic hydrocarbons is mainly determined by the diversity and activity of catabolic enzymes that exist in nature. If a suitable organism is available, applications for the treatment of different waste streams can

  16. Critical properties of some aliphatic symmetrical ethers

    International Nuclear Information System (INIS)

    Nikitin, Eugene D.; Popov, Alexander P.; Bogatishcheva, Nataliya S.

    2014-01-01

    Highlights: • Critical properties of simple aliphatic ethers were measured. • The ethers decompose at near-critical temperatures. • Pulse-heating method with short residence times was used. -- Abstract: The critical temperatures T c and the critical pressures p c of dihexyl, dioctyl, and didecyl ethers have been measured. According to the measurements, the coordinates of the critical points are T c = (665 ± 7) K, p c = (1.44 ± 0.04) MPa for dihexyl ether, T c = (723 ± 7) K, p c = (1.19 ± 0.04) MPa for dioctyl ether, and T c = (768 ± 8) K, p c = (1.03 ± 0.03) MPa for didecyl ether. All the ethers studied degrade chemically at near-critical temperatures. A pulse-heating method applicable to measuring the critical properties of thermally unstable compounds has been used. The times from the beginning of a heating pulse to the moment of reaching the critical temperature were from 0.06 to 0.46 ms. The short residence times provide little decomposition of the substances in the course of the experiments. The critical properties of the ethers investigated in this work have been discussed together with those of methyl to butyl ethers. The experimental critical constants of the ethers have been compared with those estimated by the group-contribution methods of Wilson and Jasperson and Marrero and Gani. The Wilson/Jasperson method provides a better estimation of the critical temperatures and pressures of simple aliphatic ethers in comparison with the Marrero/Gani method if reliable normal boiling temperatures are used in the method of Wilson and Jasperson

  17. Identification and quantification of phthalates, PAHs, amines, phenols, and metals in tattoo

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ho Sang; Lim, Hyun Hee [Kongju National University, Kongju (Korea, Republic of)

    2015-08-15

    The determination methods of polycyclic aromatic hydrocarbons (PAHs), phthalates, primary amines, phenols, and metals in tattoo dyes have been optimized and validated using gas chromatography-mass spectrometry, liquid chromatography-tandem mass spectrometry, and inductively coupled plasma-mass spectrometry. Twelve PAHs, 3 phthalates, 4 amines, and 15 metals were identified and quantified in 16 different tattoo dyes purchased from shops in the Republic of Korea. Phenols were not detected in any sample. The total PAHs in six inks and benzo(a)pyrene in one tattoo ink exceeded the legal limit set by the Council of Europe, and their maximum detected concentrations were about 10 and 5 times the limits of the compounds, respectively. 3,3′-Dichlorobenzidine and o-anisidine, which should not be present in tattoo inks by Resolution ResAP (2008) of the Council of Europe, were detected in tattoo inks. Also, Cd, Pb, Cu, Ba, Ni, Sb, Zn, and As exceeded the limits. These hazardous compounds should be controlled to the lowest possible concentrations in the raw materials and the production procedure of tattoo ink.

  18. Identification and quantification of phthalates, PAHs, amines, phenols, and metals in tattoo

    International Nuclear Information System (INIS)

    Shin, Ho Sang; Lim, Hyun Hee

    2015-01-01

    The determination methods of polycyclic aromatic hydrocarbons (PAHs), phthalates, primary amines, phenols, and metals in tattoo dyes have been optimized and validated using gas chromatography-mass spectrometry, liquid chromatography-tandem mass spectrometry, and inductively coupled plasma-mass spectrometry. Twelve PAHs, 3 phthalates, 4 amines, and 15 metals were identified and quantified in 16 different tattoo dyes purchased from shops in the Republic of Korea. Phenols were not detected in any sample. The total PAHs in six inks and benzo(a)pyrene in one tattoo ink exceeded the legal limit set by the Council of Europe, and their maximum detected concentrations were about 10 and 5 times the limits of the compounds, respectively. 3,3′-Dichlorobenzidine and o-anisidine, which should not be present in tattoo inks by Resolution ResAP (2008) of the Council of Europe, were detected in tattoo inks. Also, Cd, Pb, Cu, Ba, Ni, Sb, Zn, and As exceeded the limits. These hazardous compounds should be controlled to the lowest possible concentrations in the raw materials and the production procedure of tattoo ink

  19. Effect of electron beam irradiation on the biodegradability of aromatic aliphatic copolyester film and their blend with corn starch

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Leonardo G. Andrade e; Poveda, Patricia N.S., E-mail: lgasilva@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Rezende, Maira L.; Rosa, Derval S. [Universidade Sao Francisco, Itatiba, SP (Brazil)

    2009-07-01

    Biodegradable and green plastics have been studied in the last years. The aim of this paper is to study the effect of electron beam irradiation on the biodegradability of aromatic aliphatic copolyester film and their blend with corn starch. The samples were irradiated at different doses 10 and 40 kGy in a linear accelerator. The biodegradability of the materials was evaluated by two methods: soil simulated and enzymatic. In the method enzymatic when it was used alpha-amylase, the irradiated samples presented faster biodegradation than the references non irradiated. The blend of aromatic aliphatic copolyester with corn starch (Ecobras{sup R}) irradiated presented a bigger biodegradability than the aromatic aliphatic copolyester (Ecoflex{sup R}) film in both methods studied. (author)

  20. Catalyst for hydrogen-amine D exchange

    International Nuclear Information System (INIS)

    Holtslander, W.J.; Johnson, R.E.

    1976-01-01

    A process is claimed for deuterium isotopic enrichment (suitable for use in heavy water production) by amine-hydrogen exchange in which the exchange catalyst comprises a mixture of alkyl amides of two metals selected from the group consisting of the alkali metals. Catalyst mixtures comprising at least one of the alkali amides of lithium and potassium are preferred. At least one of the following benefits are obtained: decreased hydride formation, decreased thermal decomposition of alkyl amide, increased catalyst solubility in the amine phase, and increased exchange efficiency. 11 claims

  1. Influence of amine structure on the post-cured photo-yellowing of novel amine diacrylate terminated ultraviolet and electron beam cured coatings

    International Nuclear Information System (INIS)

    Allen, N.S.; Lo, D.

    1990-01-01

    The post ultraviolet (UV) and electron beam (EB) cured photo-yellowing of nine novel amine terminated diacrylate monomers has been compared with that of standard commercial diethylamine diacrylate monomer using second order derivative UV absorption spectroscopy. Whilst all the UV cured monomers exhibited an initial rapid growth in UV absorption followed by a rapid photo-bleaching, the EB cured monomers exhibited a very slow growth in absorption followed by a plateau and subsequent slow photo-bleaching. In the former case the residual benzophenone photo-initiator is sensitising the photo-yellowing reaction and its subsequent photo-bleaching. Differences in the rates may be determined by the nature of the exciplex between the terminal amine groups and the benzophenone initiator. With regard to the nature of the amine structure all the simple alkylamines exhibit the greatest degree of photo-yellowing whilst hydroxyl containing amines are generally lower. In the former case methylene hydrogen atoms alpha to the nitrogen atom are important for abstraction. Dicyclohexylamine provides the most stable monomer toward photo-yellowing due to the stability of the alpha methylene hydrogen atoms and steric hindrance by the two bulky cyclohexane rings towards the formation of conjugated chromophores. For the EB cured monomers the degree of photo-yellowing increases with increasing alkyl chain length of the amine group due to the increased possibility of the formation of conjugated chromophores. (author)

  2. Structure and activity of Aspergillus nidulans copper amine oxidase

    DEFF Research Database (Denmark)

    McGrath, Aaron P; Mithieux, Suzanne M; Collyer, Charles A

    2011-01-01

    Aspergillus nidulans amine oxidase (ANAO) has the unusual ability among the family of copper and trihydroxyphenylalanine quinone-containing amine oxidases of being able to oxidize the amine side chains of lysine residues in large peptides and proteins. We show here that in common with the related...... enzyme from the yeast Pichia pastoris, ANAO can promote the cross-linking of tropoelastin and oxidize the lysine residues in α-casein proteins and tropoelastin. The crystal structure of ANAO, the first for a fungal enzyme in this family, has been determined to a resolution of 2.4 Å. The enzyme is a dimer...... with the archetypal fold of a copper-containing amine oxidase. The active site is the most open of any of those of the structurally characterized enzymes in the family and provides a ready explanation for its lysine oxidase-like activity....

  3. Study of the degradation mechanisms of amines used for the capture of CO2 in industrial fumes

    International Nuclear Information System (INIS)

    Lepaumier, H.

    2008-10-01

    Global warming leads to reduce greenhouse gas emissions. Post combustion CO 2 capture with solvent is the most advanced technology to reduce CO 2 emissions in industrial fumes. A major problem associated with chemical absorption of CO 2 using the benchmark ethanolamine (MEA) is solvent degradation through irreversible side reactions with CO 2 and O 2 which leads to numerous harmful impacts to the process: corrosion, solvent loss, foaming, fouling, and viscosity increase. So, developing new amines with higher chemical stability is essential. This work is based on the chemical stability study of 17 different molecules. Their structures have been chosen in order to establish structure-property relationships: alkanolamines, known for gas treatment application (MEA, DEA, MDEA, AMP...), di-amines, and tri-amines without alcohol function. Impact of temperature, CO 2 , and O 2 on degradation has been studied. Strong experimental conditions have been used to observe significant degradation after a 15 days experiment. Separation, identification and quantification of degradation products have been performed by using different testing instructions such as gas chromatography, mass spectrometry, ionic chromatography and NMR. Different mechanisms are proposed to explain most of degradation compounds. Radical reactions (dealkylation, alkylation, ring-closure reactions and piperazinones formation) are involved under O 2 pressure whereas CO 2 induces ionic reactions (dealkylation, alkylation, addition, ring-closure reactions and oxazolidinones or imidazolidinones formation). Large discrepancies of stability are noticed among the different amines. Knowledge of degradation products and reaction mechanisms has thus permitted to establish some relationships between structure and chemical stability: for example, role of the amine function (primary, secondary, tertiary), impact of alkyl chain length between the two amino groups and steric hindrance. (author)

  4. SEDIMENT-ASSOCIATED REACTIONS OF AROMATIC AMINES. 2. QSAR DEVELOPMENT

    Science.gov (United States)

    The fate of aromatic amines in soils and sediments is dominated by irreversible binding through nucleophilic addition and oxidative radical coupling. Despite the common occurrence of the aromatic amine functional group in organic chemicals, the molecular properties useful for pr...

  5. Contribution to the study of the mechanism of extraction of uranyl chloride by long chain aliphatic amines; Contribution a l'etude du mecanisme d'extraction du chlorure d'uranyle par les amines aliphatiques a longues chaines

    Energy Technology Data Exchange (ETDEWEB)

    Rubinstein, G R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-06-01

    After having studied and developed the mechanisms which may 'a priori' explain the extraction process (co-ordination, ion association or intermediate mechanism), experience shows that ion association only should be taken into consideration. The structure of the organic complex of uranyl chloride has been defined on the basis of the study of the variation of the distribution coefficient of uranium between the two phases at the equilibrium as a function of successively the activity of Cl{sup -} ions in the aqueous phase, the concentration of amine salt in the organic phase and finally of the concentration of uranium in the aqueous phase. The plotting of the results in bi-logarithmic co-ordinates enables us to propose the following formula for the extracted compound: UO{sub 2}Cl{sub 4}{sup --}(NR{sub 3}H{sup +}){sub 2}. The calculation of the equilibrium constant of formation of the organic compound of uranyl chloride has been possible in the case of diluted solutions of uranium only. (author) [French] Apres avoir expose et developpe les mecanismes qui a priori pouvaient expliquer le processus d'extraction (coordination, association d'ions ou mecanisme intermediaire), le recours a l'experience a finalement permis de ne retenir que l'association d'ions. La structure du complexe organique de chlorure d'uranyle a ete definie a partir de l'etude de la variation du coefficient de partage de l'uranium entre les deux phases a l'equilibre en fonction successivement de l'activite des ions Cl{sup -} en phase aqueuse, de la concentration de sel d'amine en phase organique et enfin de la concentration d'uranium de la phase aqueuse. La representation bilogarithmique des resultats de ces essais a permis de proposer la formule suivante pour le compose extrait: UO{sub 2}Cl{sub 4}{sup --}(NR{sub 3}H{sup +}){sub 2}. Le calcul de la constante d'equilibre de formation du compose organique de chlorure d'uranyle a ete seulement possible pour les solutions diluees en uranium. (auteur)

  6. Fully Biobased Unsaturated Aliphatic Polyesters from Renewable Resources : Enzymatic Synthesis, Characterization, and Properties

    NARCIS (Netherlands)

    Jiang, Yi; Alberda van Ekenstein, Gerhard; Woortman, Albert J. J.; Loos, Katja

    2014-01-01

    Fully biobased saturated and unsaturated aliphatic polyesters and oligoesters are successfully prepared by Candida antarctica lipase B (CALB)-catalyzed polycondensations of succinate, itaconate, and 1,4-butanediol. The effects of monomer substrates and polymerization methods on enzymatic

  7. Manganese-catalysed benzylic C(sp3)-H amination for late-stage functionalization.

    Science.gov (United States)

    Clark, Joseph R; Feng, Kaibo; Sookezian, Anasheh; White, M Christina

    2018-06-01

    Reactions that directly install nitrogen into C-H bonds of complex molecules are significant because of their potential to change the chemical and biological properties of a given compound. Although selective intramolecular C-H amination reactions are known, achieving high levels of reactivity while maintaining excellent site selectivity and functional-group tolerance remains a challenge for intermolecular C-H amination. Here, we report a manganese perchlorophthalocyanine catalyst [MnIII(ClPc)] for intermolecular benzylic C-H amination of bioactive molecules and natural products that proceeds with unprecedented levels of reactivity and site selectivity. In the presence of a Brønsted or Lewis acid, the [MnIII(ClPc)]-catalysed C-H amination demonstrates unique tolerance for tertiary amine, pyridine and benzimidazole functionalities. Mechanistic studies suggest that C-H amination likely proceeds through an electrophilic metallonitrene intermediate via a stepwise pathway where C-H cleavage is the rate-determining step of the reaction. Collectively, these mechanistic features contrast with previous base-metal-catalysed C-H aminations and provide new opportunities for tunable selectivities.

  8. Influence of molecular weight on the fracture properties of aliphatic polyketone terpolymers

    NARCIS (Netherlands)

    Zuiderduin, W.C.J.; Homminga, D.S.; Homminga, D.S.; Huetink, Han; Gaymans, R.J.

    2003-01-01

    The influence of polymer molecular weight on the mechanical properties of aliphatic polyketones was investigated. The molecular weight varied from 100,000 to 300,000 g mol21. The crystallinity was found to be independent of polymer molecular weight, as was the glass transition temperature. The yield

  9. Non-hazardous organic solvents in the paraffin-embedding technique: a rational approach. Aliphatic monoesters for clearing and dewaxing: butyldecanoate

    DEFF Research Database (Denmark)

    Lyon, H; Holm, I; Prentø, P

    1995-01-01

    The aim of this study was to substitute hazardous compounds, used in tissue processing and dewaxing, with compounds having lowest possible toxicity and inflammability without impairing the morphology, staining characteristics, or diagnostic value of the tissue sections. All aromatic compounds...... and aliphatic hydrocarbons (e.g. alkanes, isoparaffins, petroleum distillates, etc.) were rejected, primarily due to their high vapour pressure. Based on a theoretical study of compounds used for clearing, a number of non-hazardous potential substitutes were chosen. The following experimental study narrowed...... the group to three unbranched, saturated, aliphatic monoesters containing 12-14 carbon atoms. On large-scale testing of these compounds, we found butyldecanoate to be the closest to an ideal substitute for aromatic and aliphatic hydrocarbons in the histology department: the section quality is at least equal...

  10. Thermal properties of wood reacted with a phosphorus pentoxide–amine system

    Science.gov (United States)

    Hong-Lin Lee; George C. Chen; Roger M. Rowell

    2004-01-01

    The objective of this research was to improve the fire-retardant properties of wood in one treatment using a phosphorus pentoxide–amine system. Phosphorus pentoxide and 16 amines including alkyl, halophenyl, and phenyl amines were compounded in N,N-dimethylformamide and the resulting solutions containing phosphoramides were reacted with wood. The characteristics of...

  11. Nitrile-functionalized tertiary amines as highly efficient and reversible SO{sub 2} absorbents

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Yun; Kim, Heehwan; Kim, Young Jin; Jeong, Junkyo; Cheong, Minserk [Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Lee, Hyunjoo [Clean Energy Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Kim, Hoon Sik, E-mail: khs2004@khu.ac.kr [Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Lee, Je Seung, E-mail: leejs70@khu.ac.kr [Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of)

    2014-01-15

    Highlights: • Nitrile-functionalized tertiary amines physically and reversibly absorb SO{sub 2}. • Tertiary alkanolamines chemically and irreversibly absorb SO{sub 2} through OH group. • SO{sub 2} absorption modes were studied by spectroscopy and computational calculations. -- Abstract: Three different types of nitrile-functionalized amines, including 3-(N,N-diethylamino)propionitrile (DEAPN), 3-(N,N-dibutylamino)propionitrile (DBAPN), and N-methyl-N,N-dipropionitrile amine (MADPN) were synthesized, and their SO{sub 2} absorption performances were evaluated and compared with those of hydroxy-functionalized amines such as N,N-diethyl-N-ethanol amine (DEEA), N,N-dibutyl-N-ethanol amine (DBEA), and N-methyl-N,N-diethanol amine (MDEA). Absorption–desorption cycle experiments clearly demonstrate that the nitrile-functionalized amines are more efficient than the hydroxy-functionalized amines in terms of absorption rate and regenerability. Computational calculations with DBEA and DBAPN revealed that DBEA bearing a hydroxyethyl group chemically interacts with SO{sub 2} through oxygen atom, forming an ionic compound with a covalently bound -OSO{sub 2}{sup −} group. On the contrary, DBAPN bearing a nitrile group physically interacts with SO{sub 2} through the nitrogen and the hydrogen atoms of the two methylene groups adjacent to the amino and nitrile functionalities.

  12. Impact of thiol and amine functionalization on photoluminescence properties of ZnO films

    International Nuclear Information System (INIS)

    Jayalakshmi, G.; Saravanan, K.; Balasubramanian, T.

    2013-01-01

    In the present study, we have investigated surface functionalization of ZnO films with dodecanethiol (Thiol) and trioctylamine (amine) by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), contact angle (CA) and photoluminescence (PL) measurements. The chemical bondings of thiol and amine with ZnO have been confirmed via the formation of Zn–S and Zn–N bonds by XPS measurements. AFM measurements on ZnO films before and after surface functionalization with thiol and amine provide evidence for the successful functionalization of thiol and amine on ZnO surfaces without any island formation. The CA measurements on ZnO films before and after surface functionalization with thiol and amine show the hydrophobic nature. PL measurements of thiol and amine functionalized ZnO show enhancements of UV emission and quenching of visible emission. The enhanced UV emissions in thiol and amine functionalized ZnO films suggest that the surface defects such as oxygen vacancies are passivated by thiol and amine functionalization. -- Highlights: ► Surface functionalization is a new approach to reduce surface dependent non-radiative process. ► Oxygen vacancies are passivated on surface functionalization. ► Thiol and amine functionalized ZnO show enhancements of UV emission

  13. Ionic networks derived from the protonation of dendritic amines with carboxylic acid end‐functionalized PEGs

    DEFF Research Database (Denmark)

    Gonzalez, Lidia; Skov, Anne Ladegaard; Hvilsted, Søren

    2013-01-01

    The synthesis and characterization of novel ionic networks linked by the ammonium salts of poly(propylene imine) (PPI) dendrimers of the first (PPI G1) and second (PPI G2) generation and two short bis carboxymethyl ether terminated poly(ethylene glycol)s (DiCOOH‐PEG) with different molecular...... weights (Mn ∼ 250 and Mn ∼ 600) are reported. Likewise, an ionic network based on PPI G1 and a long αω‐dicarboxylic acid functionalized PEG (Mn ∼ 4800) were evaluated. Simpler ionic structures based on tris(2‐aminoethyl)amine or hexamethylene diamine and the short DiCOOH‐PEGs are also investigated....... The ionic structures formed were confirmed by differential scanning calorimetry, Fourier Transform Infrared spectroscopy in the attenuated‐total‐reflection mode, and 1H‐13C NMR spectroscopy. A comprehensive 1H NMR analysis revealed that only the primary amines of the PPI G1 dendrimer residing...

  14. Study on synthesis, application and mechanism of benzophenone/amine initiator

    International Nuclear Information System (INIS)

    Xiong Wei; Liu Jinshui; Wen Yinjun; Wan Qizhong; Zhou Xianyan; Xiao Hanling; Yang Jianwen

    1999-01-01

    Through Michael addition reaction of trimethylolpropane triacrylate (TMPTA) with diethylamine (DEA), a new kind of tertiary amine derivative was synthesized and its structure was identified by 'H-NMR. When used in combination with benzophenone, this amine presented excellent curing speed and could be a substitute for initiator Darocur R 1173, which is effective but expensive. If so, the cost of UV-curable coatings can descend apparently. The functioning mechanism of benzophenone/amine bimolecular initiator was studied

  15. Intolerance to dietary biogenic amines: a review.

    Science.gov (United States)

    Jansen, Sophia C; van Dusseldorp, Marijke; Bottema, Kathelijne C; Dubois, Anthony E J

    2003-09-01

    To evaluate the scientific evidence for purported intolerance to dietary biogenic amines. MEDLINE was searched for articles in the English language published between January 1966 and August 2001. The keyword biogenic amin* was combined with hypersens*, allerg*, intoler*, and adverse. Additionally, the keywords histamine, tyramine, and phenylethylamine were combined with headache, migraine, urticaria, oral challenge, and oral provocation. Articles were also selected from references in relevant literature. Only oral challenge studies in susceptible patients were considered. Studies with positive results (ie, studies in which an effect was reported) were only eligible when a randomized, double-blind, placebo-controlled design was used. Eligible positive result studies were further evaluated according to a number of scientific criteria. Studies with negative results (ie, studies in which no effect was reported) were examined for factors in their design or methods that could be responsible for a false-negative outcome. Results of methodologically weak or flawed studies were considered inconclusive. A total of 13 oral challenge studies (5 with positive results and 8 with negative results) were found. Three of them (all with positive results) were considered ineligible. By further evaluation of the 10 eligible studies, 6 were considered inconclusive. The 4 conclusive studies all reported negative results. One conclusive study showed no relation between biogenic amines in red wine and wine intolerance. Two conclusive studies found no effect of tyramine on migraine. One conclusive study demonstrated no relation between the amount of phenylethylamine in chocolate and headache attacks in individuals with headache. The current scientific literature shows no relation between the oral ingestion of biogenic amines and food intolerance reactions. There is therefore no scientific basis for dietary recommendations concerning biogenic amines in such patients.

  16. Tunable properties of novel tetra-functional fluorene-based benzoxazines from mixed amines: Synthesis, characterization and curing kinetics

    International Nuclear Information System (INIS)

    Feng, Tiantian; Wang, Jun; Pan, Lan; Derradji, Mehdi; Ramdani, Noureddine; Liu, Wenbin; Zhou, Haoran

    2016-01-01

    Highlights: • Synthesis of tetra-functional fluorene-based benzoxazines with tunable properties. • Cure reaction could be successfully described with the autocatalytic model. • The benzoxazines show an excellent heat resistance with T_g of 291–307 °C. • The benzoxazines exhibit good thermal stability with T_5 over 340 °C. - Abstract: A series of tetra-functional fluorene-based benzoxazines containing both flexible linear aliphatic chain and rigid aromatic structure in their backbones were synthesized using mixed amines such as aniline and n-octylamine, 2,7-dihydroxy-9,9-bis-(4-hydroxyphenyl)fluorene (THPF) and paraformaldehyde as raw materials via Mannich reaction. The prepared benzoxazine monomers were identified by fourier transform infrared spectroscopy (FTIR), hydrogen nuclear magnetic resonance ("1H NMR). In addition, the curing behavior, curing kinetics and rheological properties of these monomers as well as the thermal and mechanical properties of their cured resins were studied using a rheometer, differential scanning calorimeter (DSC), thermogravimetric analyzer (TGA), and dynamic thermomechanical analyzer (DMA). The newly developed benzoxazines show good processibility, excellent thermal stability and high glass transition temperature (T_g) values ranging from 291 to 307 °C. By varying the proportion of n-octylamine to aniline, the properties of these resins are tuned.

  17. PcMtr, an aromatic and neutral aliphatic amino acid permease of Penicillium chrysogenum

    NARCIS (Netherlands)

    Trip, H; Evers, ME; Driessen, AJM

    2004-01-01

    The gene encoding an aromatic and neutral aliphatic amino acid permease of Penicillium chrysogenum was cloned, functionally expressed and characterized in Saccharomyces cerevisiae M4276. The permease, designated PcMtr, is structurally and functionally homologous to Mtr of Neurospora crassa, and

  18. Composition of amino acids and bioactive amines in common wines of Brazil

    Directory of Open Access Journals (Sweden)

    Bruna Carla Agustini

    2014-10-01

    Full Text Available Since most consumed wines in Brazil are common wines and since their representativeness is not accounted for in scientific research, current study quantifies bioactive amines and their precursors in Brazilian sweet and dry common wines, correlates the formation of amines with physical and chemical parameters and clusters studied areas by their amine and amino acid contents. Forty-seven wine samples varying in type, color and origin were analyzed simultaneously for seventeen amino acids, ammonium ion and five bioactive amines by reversed-phase high performance liquid chromatography and ultraviolet detection after the derivation phase. Physical and chemical analyses comprised titratable acidity, pH, organic acids, sugar and alcohol contents. Sweet wines had lower concentrations of amino acids and bioactive amines. Dry white wines had higher amino acid contents when compared to those in dry red wines. Since multivariate data analysis confirmed similarities between the studied regions, their unity as potential viniculture area was reinforced. Amine levels in Brazilian common wines were reported for the first time and results reinforced the importance of bioactive amines quantification and the use of suitable vinification practices to reduce their formation.

  19. Conditions allowing the formation of biogenic amines in cheese

    NARCIS (Netherlands)

    Joosten, H.M.L.J.

    1988-01-01

    A study was undertaken to reveal the conditions that allow the formation of biogenic amines in cheese.

    The starters most commonly used in the Dutch cheese industry do not have decarboxylative properties. Only if the milk or curd is contaminated with non-starter bacteria, amine

  20. Amine-catalyzed direct aldol reactions of hydroxy- and dihydroxyacetone: biomimetic synthesis of carbohydrates.

    Science.gov (United States)

    Popik, Oskar; Pasternak-Suder, Monika; Leśniak, Katarzyna; Jawiczuk, Magdalena; Górecki, Marcin; Frelek, Jadwiga; Mlynarski, Jacek

    2014-06-20

    This article presents comprehensive studies on the application of primary, secondary, and tertiary amines as efficient organocatalysts for the de novo synthesis of ketoses and deoxyketoses. Mimicking the actions of aldolase enzymes, the synthesis of selected carbohydrates was accomplished in aqueous media by using proline- and serine-based organocatalysts. The presented methodology also provides direct access to unnatural L-carbohydrates from the (S)-glyceraldehyde precursor. Determination of the absolute configuration of all obtained sugars was feasible using a methodology consisting of concerted ECD and VCD spectroscopy.

  1. Blue Chitin columns for the extraction of heterocyclic amines from urine samples

    DEFF Research Database (Denmark)

    Bang, J.; Frandsen, Henrik Lauritz; Skog, K.

    2004-01-01

    During normal cooking of meat, a class of mutagenic/carcinogenic compounds called heterocyclic amines is formed. Heterocyclic amines are rapidly absorbed and metabolised in the human body, and for estimation of the intake of heterocyclic amines, it is useful to determinate their levels in the uri...

  2. Analysis of Biogenic Amines by GC/FID and GC/MS

    OpenAIRE

    Nakovich, Laura

    2003-01-01

    Low levels of biogenic amines occur naturally, but high levels (FDA sets 50 ppm of histamine in fish as the maximum allowable level) can lead to scombroid poisoning. Amines in general are difficult to analyze by Gas Chromatography (GC) due to their lack of volatility and their interaction with the GC column, often leading to significant tailing and poor reproducibility. Biogenic amines need to be derivatized before both GC and HPLC analyses. The objective of this research was to devel...

  3. Identification of amines in wintertime ambient particulate material using high resolution aerosol mass spectrometry

    Science.gov (United States)

    Bottenus, Courtney L. H.; Massoli, Paola; Sueper, Donna; Canagaratna, Manjula R.; VanderSchelden, Graham; Jobson, B. Thomas; VanReken, Timothy M.

    2018-05-01

    Significant amounts of amines were detected in fine particulate matter (PM) during ambient wintertime conditions in Yakima, WA, using a high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Positive matrix factorization (PMF) of the organic aerosol (OA) signal resulted in a six-factor solution that included two previously unreported amine OA factors. The contributions of the amine factors were strongly episodic, but the concentration of the combined amine factors was as high as 10-15 μg m-3 (2-min average) during those episodes. In one occasion, the Amine-II component was 45% of total OA signal. The Amine-I factor was dominated by spectral peaks at m/z 86 (C5H12N+) and m/z 100 (C6H14N+), while the Amine-II factor was dominated by spectral peaks at m/z 58 (C3H8N+ and C2H6N2+) and m/z 72 (C4H10N+ and C3H8N2+). The ions dominating each amine factor showed distinct time traces, suggesting different sources or formation processes. Investigation into the chemistry of the amine factors suggests a correlation with inorganic anions for Amine-I, but no evidence that the Amine-II was being neutralized by the same inorganic ions. We also excluded the presence of organonitrates (ON) in the OA. The presence of C2H4O2+ at m/z 60 (a levoglucosan fragment) in the Amine-I spectrum suggests some influence of biomass burning emissions (more specifically residential wood combustion) in this PMF factor, but wind direction suggested that the most likely sources of these amines were agricultural activities and feedlots to the S-SW of the site.

  4. Electrochemical degradation of aromatic amines on BDD electrodes

    International Nuclear Information System (INIS)

    Pacheco, M.J.; Santos, V.; Ciriaco, L.; Lopes, A.

    2011-01-01

    The electrochemical oxidation of four aromatic amines, with different substituent groups, 3-amino-4-hydroxy-5-nitrobenzenesulfonic acid (A1), 5-amino-2-methoxybenzenesulfonic acid (A2), 2,4-dihydroxyaniline hydrochloride (A3) and benzene-1,4-diamine (A4), was performed using as anode a boron-doped diamond electrode, commercially available at Adamant Technologies. Tests were run at room temperature with model solutions of the different amines, with concentrations of 200 ppm, using as electrolyte 0.035 M Na 2 SO 4 aqueous solutions, in a batch cell with recirculation, at different current densities (200 and 300 A m -2 ). The following analyses were performed with the samples collected during the assays: UV-Vis spectrophotometry, chemical oxygen demand (COD), total organic carbon (TOC), total Kjeldahl nitrogen, ammonia nitrogen, nitrates and HPLC. Results have shown a good electrodegradation of all the amines tested, with COD removals, after 6 h assays, higher than 90% and TOC removals between 60 and 80%. Combustion efficiency (η C ), which measures the tendency to convert organic carbon to CO 2 , was also determined for all the amines, being η CA1 CA2 CA3 CA4 = 0.99.

  5. Control of Biogenic Amines in Fermented Sausages: Role of Starter Cultures

    Science.gov (United States)

    Latorre-Moratalla, M.L.; Bover-Cid, Sara; Veciana-Nogués, M.T.; Vidal-Carou, M.C.

    2012-01-01

    Biogenic amines show biological activity and exert undesirable physiological effects when absorbed at high concentrations. Biogenic amines are mainly formed by microbial decarboxylation of amino acids and thus are usually present in a wide range of foods, fermented sausages being one of the major biogenic amine sources. The use of selected starter cultures is one of the best technological measures to control aminogenesis during meat fermentation. Although with variable effectiveness, several works show the ability of some starters to render biogenic amine-free sausages. In this paper, the effect of different starter culture is reviewed and the factors determining their performance discussed. PMID:22586423

  6. Control of biogenic amines in fermented sausages: role of starter cultures

    Directory of Open Access Journals (Sweden)

    Mariluz eLatorre-Moratalla

    2012-05-01

    Full Text Available Biogenic amines show biological activity and exert undesirable physiological effects when absorbed at high concentrations. Biogenic amines are mainly formed by microbial decarboxylation of amino acids and thus are usually present in a wide range of foods, fermented sausages being one of the major biogenic amine sources. The use of selected starter cultures is one of the best technological measures to control aminogenesis during meat fermentation. Although with variable effectiveness, several works show the ability of some starters to render biogenic amine-free sausages. In this paper, the effect of different starter culture is reviewed and the factors determining their performance discussed.

  7. Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates.

    Science.gov (United States)

    Kleifeld, Oded; Doucet, Alain; Prudova, Anna; auf dem Keller, Ulrich; Gioia, Magda; Kizhakkedathu, Jayachandran N; Overall, Christopher M

    2011-09-22

    Analysis of the sequence and nature of protein N termini has many applications. Defining the termini of proteins for proteome annotation in the Human Proteome Project is of increasing importance. Terminomics analysis of protease cleavage sites in degradomics for substrate discovery is a key new application. Here we describe the step-by-step procedures for performing terminal amine isotopic labeling of substrates (TAILS), a 2- to 3-d (depending on method of labeling) high-throughput method to identify and distinguish protease-generated neo-N termini from mature protein N termini with all natural modifications with high confidence. TAILS uses negative selection to enrich for all N-terminal peptides and uses primary amine labeling-based quantification as the discriminating factor. Labeling is versatile and suited to many applications, including biochemical and cell culture analyses in vitro; in vivo analyses using tissue samples from animal and human sources can also be readily performed. At the protein level, N-terminal and lysine amines are blocked by dimethylation (formaldehyde/sodium cyanoborohydride) and isotopically labeled by incorporating heavy and light dimethylation reagents or stable isotope labeling with amino acids in cell culture labels. Alternatively, easy multiplex sample analysis can be achieved using amine blocking and labeling with isobaric tags for relative and absolute quantification, also known as iTRAQ. After tryptic digestion, N-terminal peptide separation is achieved using a high-molecular-weight dendritic polyglycerol aldehyde polymer that binds internal tryptic and C-terminal peptides that now have N-terminal alpha amines. The unbound naturally blocked (acetylation, cyclization, methylation and so on) or labeled mature N-terminal and neo-N-terminal peptides are recovered by ultrafiltration and analyzed by tandem mass spectrometry (MS/MS). Hierarchical substrate winnowing discriminates substrates from the background proteolysis products and

  8. Aromatic-aliphatic copolyesters based on waste poly(ethylene terephthalate) and their biodegradability

    Czech Academy of Sciences Publication Activity Database

    Prokopová, I.; Vlčková, E.; Šašek, Václav; Náhlík, J.; Soukupová-Chaloupková, V.; Skolil, J.

    -, 052 (2008), s. 1-9 ISSN 1618-7229 R&D Projects: GA ČR GA203/03/0508; GA ČR GA203/06/0528 Institutional research plan: CEZ:AV0Z50200510 Keywords : aromatic-aliphatic colpolyesters * rhodococcus erythropolis * biodegradability Subject RIV: EE - Microbiology, Virology Impact factor: 0.661, year: 2008

  9. Amine oxidases as important agents of pathological processes of rhabdomyolysis in rats.

    Science.gov (United States)

    Gudkova, O O; Latyshko, N V; Shandrenko, S G

    2016-01-01

    In this study we have tested an idea on the important role of amine oxidases (semicarbazide-sensitive amine oxidase, diamine oxidase, polyamine oxidase) as an additional source of oxidative/carbonyl stress under glycerol-induced rhabdomyolysis, since the enhanced formation of reactive oxygen species and reactive carbonyl species in a variety of tissues is linked to various diseases. In our experiments we used the sensitive fluorescent method devised for estimation of amine oxidases activity in the rat kidney and thymus as targeted organs under rhabdomyolysis. We have found in vivo the multiple rises in activity of semicarbazide-sensitive amine oxidase, diamine oxidase, polyamine oxidase (2-4.5 times) in the corresponding cell fractions, whole cells or their lysates at the 3-6th day after glycerol injection. Aberrant antioxidant activities depended on rhabdomyolysis stage and had organ specificity. Additional treatment of animals with metal chelator ‘Unithiol’ adjusted only the activity of antioxidant enzymes but not amine oxidases in both organs. Furthermore the in vitro experiment showed that Fenton reaction (hydrogen peroxide in the presence of iron) products alone had no effect on semicarbazide-sensitive amine oxidase activity in rat liver cell fraction whereas supplementation with methylglyoxal resulted in its significant 2.5-fold enhancement. Combined action of the both agents had additive effect on semicarbazide-sensitive amine oxidase activity. We can assume that biogenic amine and polyamine catabolism by amine oxidases is upregulated by oxidative and carbonyl stress factors directly under rhabdomyolysis progression, and the increase in catabolic products concentration contributes to tissue damage in glycerol-induced acute renal failure and apoptosis stimulation in thymus.

  10. Conformational dynamics of semiflexibly bridged electron donor-acceptor systems comprising long aliphatic tails

    NARCIS (Netherlands)

    Bleisteiner, B.; Marian, T.; Schneider, S.; Brouwer, A.M.; Verhoeven, J.W.

    2001-01-01

    In continuation of our previous work on the conformational dynamics (harpooning mechanism) of semiflexibly bridged electron donor-acceptor systems we have studied a derivative with two long aliphatic chains tethered to the donor and acceptor moieties, respectively. The fitting of the time- and

  11. Using of mass spectrum for prognosis of melting temperature of monatomic aliphatic spirits

    International Nuclear Information System (INIS)

    Vazhev, V. V.

    2004-01-01

    In present article researching possibility of prediction of melting temperature (MT) of monatomic aliphatic spirits with using mass-spectra as descriptors structure of molecules. Mass-spectra of 84 aliphatic spirits were used. Mass-spectra were preliminarily transformed on special formula before calculations for receiving work dates of descriptors. Calculations fulfilled with help of the computer program PROGROC. Quality of prediction characterized by coefficient of R-correlation between predicted and experimental dates MT and standard s-deviation. Coefficient of R-correlation between experimental and calculated dates account for 0.9785, standard s-deviation = 11.25 deg. C. Singly R and S for training and control excerpt equally 0.9789 and 11.31 deg. C, 0,9789 and 8.87 deg. C accordingly. Advantage of workable by us method lie in that, what on comparable with literature data of accuracy for prediction property is enough to have only mass-spectrum of substance

  12. Characterization of cure kinetics and physical properties of a high performance, glass fiber-reinforced epoxy prepreg and a novel fluorine-modified, amine-cured commercial epoxy

    Science.gov (United States)

    Bilyeu, Bryan

    Kinetic equation parameters for the curing reaction of a commercial glass fiber reinforced high performance epoxy prepreg composed of the tetrafunctional epoxy tetraglycidyl 4,4-diaminodiphenyl methane (TGDDM), the tetrafunctional amine curing agent 4,4'-diaminodiphenylsulfone (DDS) and an ionic initiator/accelerator, are determined by various thermal analysis techniques and the results compared. The reaction is monitored by heat generated determined by differential scanning calorimetry (DSC) and by high speed DSC when the reaction rate is high. The changes in physical properties indicating increasing conversion are followed by shifts in glass transition temperature determined by DSC, temperature-modulated DSC (TMDSC), step scan DSC and high speed DSC, thermomechanical (TMA) and dynamic mechanical (DMA) analysis and thermally stimulated depolarization (TSD). Changes in viscosity, also indicative of degree of conversion, are monitored by DMA. Thermal stability as a function of degree of cure is monitored by thermogravimetric analysis (TGA). The parameters of the general kinetic equations, including activation energy and rate constant, are explained and used to compare results of various techniques. The utilities of the kinetic descriptions are demonstrated in the construction of a useful time-temperature-transformation (TTT) diagram and a continuous heating transformation (CHT) diagram for rapid determination of processing parameters in the processing of prepregs. Shrinkage due to both resin consolidation and fiber rearrangement is measured as the linear expansion of the piston on a quartz dilatometry cell using TMA. The shrinkage of prepregs was determined to depend on the curing temperature, pressure applied and the fiber orientation. Chemical modification of an epoxy was done by mixing a fluorinated aromatic amine (aniline) with a standard aliphatic amine as a curing agent for a commercial Diglycidylether of Bisphenol-A (DGEBA) epoxy. The resulting cured network

  13. Long-chain amine-templated synthesis of gallium sulfide and gallium selenide nanotubes

    Science.gov (United States)

    Seral-Ascaso, A.; Metel, S.; Pokle, A.; Backes, C.; Zhang, C. J.; Nerl, H. C.; Rode, K.; Berner, N. C.; Downing, C.; McEvoy, N.; Muñoz, E.; Harvey, A.; Gholamvand, Z.; Duesberg, G. S.; Coleman, J. N.; Nicolosi, V.

    2016-06-01

    We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(iii) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization.We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(iii) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01663d

  14. Tris{2-[(2-aminobenzylideneamino]ethyl}amine

    Directory of Open Access Journals (Sweden)

    Perla Elizondo Martínez

    2010-12-01

    Full Text Available The title Schiff base, C27H33N7, is a tripodal amine displaying C3 symmetry, with the central tertiary N atom lying on the threefold crystallographic axis. The N—CH2—CH2—N conformation of the pendant arms is gauche [torsion angle = 76.1 (3°], which results in a claw-like molecule, with the terminal aniline groups wrapped around the symmetry axis. The lone pair of the apical N atom is clearly oriented inwards towards the cavity, and should thus be chemically inactive. The amine NH2 substituents lie in the plane of the benzene ring to which they are bonded. With such an arrangement, one amine H atom forms an S(6 motif through a weak N—H...N hydrogen bond with the imine N atom, while the other is engaged in an intermolecular N—H...π contact involving the benzene ring of a neighbouring molecule related by inversion. The benzene rings also participate in an intramolecular C—H...π contact of similar strength. In the crystal structure, molecules are separated by empty voids (ca 5% of the crystal volume, although the crystal seems to be unsolvated.

  15. Clustering of amines and hydrazines in atmospheric nucleation

    Science.gov (United States)

    Li, Siyang; Qu, Kun; Zhao, Hailiang; Ding, Lei; Du, Lin

    2016-06-01

    It has been proved that the presence of amines in the atmosphere can enhance aerosol formation. Hydrazine (HD) and its substituted derivatives, monomethylhydrazine (MMH) and unsymmetrical dimethylhydrazine (UDMH), which are organic derivatives of amine and ammonia, are common trace atmospheric species that may contribute to the growth of nucleation clusters. The structures of the hydrazine and amine clusters containing one or two common nucleation molecules (ammonia, water, methanol and sulfuric acid) have been optimized using density functional theory (DFT) methods. The clusters growth mechanism has been explored from the thermochemistry by calculating the Gibbs free energies of adding an ammonia, water, methanol or sulfuric acid molecule step by step at room temperature, respectively. The results show that hydrazine and its derivatives could enhance heteromolecular homogeneous nucleation in the earth's atmosphere.

  16. A multi-purpose tool for food inspection: Simultaneous determination of various classes of preservatives and biogenic amines in meat and fish products by LC-MS.

    Science.gov (United States)

    Molognoni, Luciano; Daguer, Heitor; de Sá Ploêncio, Leandro Antunes; De Dea Lindner, Juliano

    2018-02-01

    This paper describes an innovative fast and multipurpose method for the chemical inspection of meat and fish products by liquid chromatography-tandem mass spectrometry. Solid-liquid extraction and low temperature partitioning were applied to 17 analytes, which included large bacteriocins (3.5kDa) and small molecules (organic acids, heterocyclic compounds, polyene macrolides, alkyl esters of the p-hydroxybenzoic acid, aromatic, and aliphatic biogenic amines and polyamines). Chromatographic separation was achieved in 10min, using stationary phase of di-isopropyl-3-aminopropyl silane bound to hydroxylated silica. Method validation was in accordance to Commission Decision 657/2002/CE. Linear ranges were among 1.25-10.0mgkg -1 (natamycin and parabens), 2.50-10.0mgkg -1 (sorbate and nisin), 25.0-200mgkg -1 (biogenic amines, hexamethylenetetramine, benzoic and lactic acids), and 50.0-400mgkg -1 (citric acid). Expanded measurement uncertainty (U) was estimated by single laboratory validation combined to modeling in two calculation approaches: internal (U = 5%) and external standardization (U = 24%). Method applicability was checked on 89 real samples among raw, cooked, dry fermented and cured products, yielding acceptable recoveries. Many regulatory issues were revealed, corroborating the need for enhancement of the current analytical methods. This simple execution method dispenses the use of additional procedures of extraction and, therefore, reduces costs over time. It is suitable for routine analysis as a screening or confirmatory tool for both qualitative and quantitative results, replacing many time consuming analytical procedures. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Uranium diphosphonates templated by interlayer organic amines

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Anna-Gay D., E-mail: nelsoa@umich.edu [Department of Civil Engineering and Geological Sciences, University of Notre Dame, IN 46556 (United States); Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109-1005 (United States); Alekseev, Evgeny V. [Institute of Energy and Climate Research (IEK-6), Forschungszentrum Juelich Wilhelm-Johnen-Strasse, 52428 Juelich (Germany); Institut fuer Kristallographie, RWTH Aachen University, D-52066 Aachen (Germany); Albrecht-Schmitt, Thomas E. [Department of Civil Engineering and Geological Sciences, University of Notre Dame, IN 46556 (United States); Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556 (United States); Ewing, Rodney C. [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109-1005 (United States)

    2013-02-15

    The hydrothermal treatment of uranium trioxide and methylenediphosphonic acid with a variety of amines (2,2-dipyridyl, triethylenediamine, ethylenediamine, and 1,10-phenanthroline) at 200 Degree-Sign C results in the crystallization of a series of layered uranium diphosphonate compounds, [C{sub 10}H{sub 9}N{sub 2}]{l_brace}UO{sub 2}(H{sub 2}O)[CH{sub 2}(PO{sub 3})(PO{sub 3}H)]{r_brace} (Ubip2), [C{sub 6}H{sub 14}N{sub 2}]{l_brace}(UO{sub 2}){sub 2}[CH{sub 2}(PO{sub 3})(PO{sub 3}H)]{sub 2}{center_dot}2H{sub 2}O{r_brace} (UDAB), [C{sub 2}H{sub 10}N{sub 2}]{sub 2}{l_brace}(UO{sub 2}){sub 2}(H{sub 2}O){sub 2}[CH{sub 2}(PO{sub 3}){sub 2}]{sub 2}{center_dot}0.5H{sub 2}O{r_brace} (Uethyl), and [C{sub 12}H{sub 9}N{sub 2}]{l_brace}UO{sub 2}(H{sub 2}O)[CH{sub 2}(PO{sub 3})(PO{sub 3}H)]{r_brace} (Uphen). The crystal structures of the compounds are based on UO{sub 7} units linked by methylenediphosphonate molecules to form two-dimensional anionic sheets in Ubip2 and UDAB, and one-dimensional anionic chains in Uethyl and Uphen, which are charge balanced by protonated amine molecules. Interaction of the amine molecules with phosphonate oxygens and water molecules results in extensive hydrogen bonding in the interlayer. These amine molecules serve both as structure-directing agents and charge-balancing cations for the anionic uranium phosphonate sheets and chains in the formation of the different coordination geometries and topologies of each structure. Reported herein are the syntheses, structural and spectroscopic characterization of the synthesized compounds. - Graphical abstract: The Raman spectra of the synthesized compounds and an illustration of the stacking of the layers with the diprotonated triethylenediamine molecules in [C{sub 6}H{sub 14}N{sub 2}]{l_brace}(UO{sub 2}){sub 2}[CH{sub 2}(PO{sub 3})(PO{sub 3}H)]{sub 2}{center_dot}2H{sub 2}O{r_brace} UDAB. Solvent water molecules are removed for clarity. The corresponding Raman spectra for the complexes synthesized is also

  18. Degradation of halogenated aliphatic compounds by the ammonia- oxidizing bacterium Nitrosomonas europaea.

    OpenAIRE

    Vannelli, T; Logan, M; Arciero, D M; Hooper, A B

    1990-01-01

    Suspensions of Nitrosomonas europaea catalyzed the ammonia-stimulated aerobic transformation of the halogenated aliphatic compounds dichloromethane, dibromomethane, trichloromethane (chloroform), bromoethane, 1,2-dibromoethane (ethylene dibromide), 1,1,2-trichloroethane, 1,1,1-trichloroethane, monochloroethylene (vinyl chloride), gem-dichloroethylene, cis- and trans-dichloroethylene, cis-dibromoethylene, trichloroethylene, and 1,2,3-trichloropropane, Tetrachloromethane (carbon tetrachloride),...

  19. Pseudomonas sax genes overcome aliphatic isothiocyanate-mediated non-host resistance in Arabidopsis

    Science.gov (United States)

    Jun Fan; Casey Crooks; Gary Creissen; Lionel Hill; Shirley Fairhurst; Peter Doerner; Chris Lamb

    2011-01-01

    Most plant-microbe interactions do not result in disease; natural products restrict non-host pathogens. We found that sulforaphane (4-methylsulfinylbutyl isothiocyanate), a natural product derived from aliphatic glucosinolates, inhibits growth in Arabidopsis of non-host Pseudomonas bacteria in planta. Multiple sax genes (saxCAB/F/D/G) were identified in Pseudomonas...

  20. Evaluation of Efficient and Practical Methods for the Preparation of Functionalized Aliphatic Trifluoromethyl Ethers.

    Science.gov (United States)

    Sokolenko, Taras M; Dronkina, Maya I; Magnier, Emmanuel; Yagupolskii, Lev M; Yagupolskii, Yurii L

    2017-05-14

    The "chlorination/fluorination" technique for aliphatic trifluoromethyl ether synthesis was investigated and a range of products with various functional groups was prepared. The results were compared with oxidative desulfurization-fluorination of xanthates with the same structure.

  1. 78 FR 17656 - Certain New Chemicals; Receipt and Status Information

    Science.gov (United States)

    2013-03-22

    ... Corporation (G) Roof membrane (G) Amine adduct. hardener. P-13-0240 1/25/2013 4/24/2013 Carboline (G) Coating.... P-13-0244 1/30/2013 4/29/2013 CBI (S) Polymeric binder (G) Aliphatic for coatings. polyurethane. P...

  2. Analysis of amines by pH-Metrie in organic media

    International Nuclear Information System (INIS)

    Hamidi, A.; Elias, Abdelhamid; Achache, M.; Didi, M.

    1999-01-01

    Amines with long hydro carbonic strength and principally Trioclkylamines, are characterised by an important complexation mechanism for certain metals. This is the case for trioctylamine (TOA) which is very used in purification and uranium recovery from certain ores (1,2). This substance is generally found mixed with mono and di-octyl amines in commercial products and in synthesis mixtures. The purpose of this work is to develop a pH titration method in an organic media for a mixture consisted of mono, di and tri octyl amines (MOA, DOA et TOA). Adequate operating analysis condition have been proposed, based on intrinsic chemical properties for each precipitated substances (3,4). The obtained results show that this technique is recommended for qualitative and quantitative analysis of precipitated amines mixtures. The method is reproducible and the detection limit can reach 0,0001 molar

  3. Early Post-Irradiation Changes in the Metabolism of Biogenic Amines; Les Changements Precoces du Metabolisme des Amines Biogenes apres Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Deanovic, Z [Institut Rudjer Boskovic, Zagreb, Yugoslavia (Croatia)

    1971-03-15

    There is accumulating evidence for the radiation-induced release of biogenic amines from their body stores. Having in mind the high patho-physiological activity of these ''local'' hormones and ''neuro-hormones'', it is reasonable to assume that they play an important role in the pathogenesis of the acute radiation syndrome. Under these pathological conditions the possible synergic and antagonistic effects of biogenic amines due to their complex interactions must be taken into consideration. The extent and dose-dependence of post-irradiation changes in the metabolism of histamine, serotonin, catecholamines and acetylcholine will be examined regarding particularly the search for biochemical indicators of radiation injury. The determination of bio-amines and their metabolites in urine seems to be a suitable method for following up those metabolic changes which could be of a biodosimetrical and/or prognostical value. Data published on this subject, obtained in experimental animals as well as in man, have been reviewed and the applicability of these tests is discussed. (author) [French] Des preuves se sont accumulees, qui demontrent que les amines biogenes sont liberees de leurs depots sous l'effet des rayonnements ionisants. Etant donne la grande activite pathophysiologique de ces hormones 'locales' et 'neurohormones', il est raisonnable de considerer que ces substances biogenes jouent un role important dans la pathogenese du syndrome aigu d'irradiation. Dans ces conditions pathologiques il faut tenir compte des effets synergiques et antagonistes des bio-amines, lies a des interactions compliquees. Les changements metaboliques en fonction de la dose recue font l'objet d'un examen qui englobe les alterations quantitatives de .'histamine, de la serotonine, des catecholamines et de l'acetylcholine et dont l'objectif est la recherche sur des indicateurs biochimiques de la lesion provoquee par l'irradiation. L'analyse des bio-amines et de leurs metabolites dans les urines

  4. Catalytic enantioselective addition of organometallic reagents to N-formylimines using monodentate phosphoramidite ligands

    NARCIS (Netherlands)

    Pizzuti, Maria Gabriella; Minnaard, Adriaan J.; Feringa, Ben L.

    2008-01-01

    [GRAPHICS] The asymmetric synthesis of protected amines via the copper/phosphoramidite-catalyzed addition of organozine and organoaluminum reagents to N-acylimines, generated in situ from aromatic and aliphatic alpha-amidosulfones, is reported. High yields of optically active N-formyl-protected

  5. OCCUPATIONAL ASTHMA CAUSED BY A HARDENER CONTAINING AN ALIPHATIC AND A CYCLOALIPHATIC DIAMINE

    NARCIS (Netherlands)

    ALEVA, RM; AALBERS, R; KOETER, GH; DEMONCHY, JGR

    An otherwise healthy 44-yr-old man experienced a serious attack of bronchial obstruction after working with resins and hardeners, releasing fumes of a mixture of an aliphatic and a cycloaliphatic diamine hardener. Eight hours after deliberate challenge with the hardener a large increase of airway

  6. Poly(Amido Amine)s containing agmatine and butanol side chains as efficient gene carriers

    NARCIS (Netherlands)

    Won, Young-Wook; Ankone, Martinus J.K.; Engbersen, Johannes F.J.; Feijen, Jan; Kim, S.W.

    2016-01-01

    A new type of bioreducible poly(amido amine) copolymer is synthesized by the Michael addition polymerization of cystamine bisacrylamide (CBA) with 4-aminobutylguanidine (agmatine, AGM) and 4-aminobutanol (ABOL). Since the positively charged guanidinium groups of AGM and the hydroxybutyl groups of

  7. Multi-Objective Optimization for Solid Amine CO2 Removal Assembly in Manned Spacecraft

    Directory of Open Access Journals (Sweden)

    Rong A

    2017-07-01

    Full Text Available Carbon Dioxide Removal Assembly (CDRA is one of the most important systems in the Environmental Control and Life Support System (ECLSS for a manned spacecraft. With the development of adsorbent and CDRA technology, solid amine is increasingly paid attention due to its obvious advantages. However, a manned spacecraft is launched far from the Earth, and its resources and energy are restricted seriously. These limitations increase the design difficulty of solid amine CDRA. The purpose of this paper is to seek optimal design parameters for the solid amine CDRA. Based on a preliminary structure of solid amine CDRA, its heat and mass transfer models are built to reflect some features of the special solid amine adsorbent, Polyethylenepolyamine adsorbent. A multi-objective optimization for the design of solid amine CDRA is discussed further in this paper. In this study, the cabin CO2 concentration, system power consumption and entropy production are chosen as the optimization objectives. The optimization variables consist of adsorption cycle time, solid amine loading mass, adsorption bed length, power consumption and system entropy production. The Improved Non-dominated Sorting Genetic Algorithm (NSGA-II is used to solve this multi-objective optimization and to obtain optimal solution set. A design example of solid amine CDRA in a manned space station is used to show the optimal procedure. The optimal combinations of design parameters can be located on the Pareto Optimal Front (POF. Finally, Design 971 is selected as the best combination of design parameters. The optimal results indicate that the multi-objective optimization plays a significant role in the design of solid amine CDRA. The final optimal design parameters for the solid amine CDRA can guarantee the cabin CO2 concentration within the specified range, and also satisfy the requirements of lightweight and minimum energy consumption.

  8. Effect of foamability index of short chain alkyl amines on flotation of quartz

    Directory of Open Access Journals (Sweden)

    Szczerkowska Sabina

    2016-01-01

    Full Text Available Amines can be used for flotation of various minerals, especially quartz. The flotation efficiency of quartz depends on the amine type and dose. It was proved that the shorter alkyl amine, higher amine concentration has to be used to recover quartz at the same level. In flotation amines play a role of both collectors and frothers. The ability of a amine to collect particles can be expressed in the form of contact angle, while the foaming properties by different parameters including dynamic foamability index (DFI and critical coalescence concentration (CCC. Determination of DFI and CCC requires advanced techniques and methods. Therefore, in this paper a rapid and facile method for determination of foaming properties of amines and also other surfactants was used. It was based on measuring the initial foam and froth heights in a conventional flotation machine at different concentrations of surfactants. The foam height-concentration curve was described by utilizing an empirical equation which was based on one-adjustable parameter called the foamability index (FI. In this work the foamability index was determined for butylamine (ButNH2, hexylamine (HexNH2 and octylamine (OctNH2 as examples of short chain alkyl amines. The determined foamability indices were 92, 12 and 4 mg/dm3 for ButNH2, HexNH2 and OctNH2, respectively. It was shown that when the flotation results of quartz were presented in the form of recovery versus normalized amine concentration in relation to the foamability index (c/FI, all the experimental data points converged to one curve. It indicates that amines act similarly but at different concentrations expressed as FI. The foamability index seems to be a useful parameter for characterizing any flotation frother.

  9. Facile and Green Synthesis of Saturated Cyclic Amines

    Directory of Open Access Journals (Sweden)

    Arruje Hameed

    2017-10-01

    Full Text Available Single-nitrogen containing saturated cyclic amines are an important part of both natural and synthetic bioactive compounds. A number of methodologies have been developed for the synthesis of aziridines, azetidines, pyrrolidines, piperidines, azepanes and azocanes. This review highlights some facile and green synthetic routes for the synthesis of unsubstituted, multisubstituted and highly functionalized saturated cyclic amines including one-pot, microwave assisted, metal-free, solvent-free and in aqueous media.

  10. Calcium(ii)-catalyzed enantioselective conjugate additions of amines.

    Science.gov (United States)

    Uno, Brice E; Dicken, Rachel D; Redfern, Louis R; Stern, Charlotte M; Krzywicki, Greg G; Scheidt, Karl A

    2018-02-14

    The direct enantioselective chiral calcium(ii)·phosphate complex (Ca[CPA] 2 )-catalyzed conjugate addition of unprotected alkyl amines to maleimides was developed. This mild catalytic system represents a significant advance towards the general convergent asymmetric amination of α,β-unsaturated electrophiles, providing medicinally relevant chiral aminosuccinimide products in high yields and enantioselectivities. Furthermore, the catalyst can be reused directly from a previously chromatographed reaction and still maintain both high yield and selectivity.

  11. Amine terminated SAMs: Investigating why oxygen is present in these films

    International Nuclear Information System (INIS)

    Baio, J.E.; Weidner, T.; Brison, J.; Graham, D.J.; Gamble, Lara J.; Castner, David G.

    2009-01-01

    Self-assembled monolayers (SAMs) on gold prepared from amine-terminated alkanethiols have long been employed as model positively charged surfaces. Yet in previous studies significant amounts of unexpected oxygen containing species are always detected in amine terminated SAMs. Thus, the goal of this investigation was to determine the source of these oxygen species and minimize their presence in the SAM. The surface composition, structure, and order of amine-terminated SAMs on Au were characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), sum frequency generation (SFG) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. XPS determined compositions of amine-terminated SAMs in the current study exhibited oxygen concentrations of 2.4 ± 0.4 atomic %, a substantially lower amount of oxygen than reported in previously published studies. High-resolution XPS results from the S 2p , C 1s and N 1s regions did not detect any oxidized species. Angle-resolved XPS indicated that the small amount of oxygen detected was located at or near the amine head group. Small amounts of oxidized nitrogen, carbon and sulfur secondary ions, as well as ions attributed to water, were detected in the ToF-SIMS data due to the higher sensitivity of ToF-SIMS. The lack of N-O, S-O, and C-O stretches in the SFG spectra are consistent with the XPS and ToF-SIMS results and together show that oxidation of the amine-terminated thiols alone can only account for, at most, a small fraction of the oxygen detected by XPS. Both the SFG and angle-dependent NEXAFS indicated the presence of gauche defects in the amine SAMs. However, the SFG spectral features near 2865 cm -1 , assigned to the stretch of the methylene group next to the terminal amine unit, demonstrate the SAM is reasonably ordered. The SFG results also show another broad feature near 3200 cm -1 related to hydrogen-bonded water. From this multi-technique investigation it is

  12. Acid extraction by supported liquid membranes containing basic carriers

    International Nuclear Information System (INIS)

    Danesi, P.R.; Cianetti, C.; Horwitz, E.P.

    1983-01-01

    The extraction of HNO 3 (nitric acid) from aqueous solutions by permeation through a number of supported liquid membranes containing basic carriers dissolved in diethylbenzene has been studied. The results have shown that the best permeations are obtained with long chain aliphatic amines (TLA, Primene JM-T) followed by TOPO (trioctylphosphine oxide) and then by other monofunctional and bifunctional organophosphorous basic carriers. The influence of an aliphatic diluent on the permeability of HNO 3 through a supported liquid membrane containing TLA as carrier was also investigated. In this case the permeability to HNO 3 decreases as a result of the lower diffusion coefficient of the acid-carrier complex in the more vicous aliphatic solvent. 4 figures

  13. Biogenic Amines in Insect Antennae

    Directory of Open Access Journals (Sweden)

    Marianna I. Zhukovskaya

    2017-06-01

    Full Text Available Insect antenna is a multisensory organ, each modality of which can be modulated by biogenic amines. Octopamine (OA and its metabolic precursor tyramine (TA affect activity of antennal olfactory receptor neurons. There is some evidence that dopamine (DA modulates gustatory neurons. Serotonin can serve as a neurotransmitter in some afferent mechanosensory neurons and both as a neurotransmitter and neurohormone in efferent fibers targeted at the antennal vessel and mechanosensory organs. As a neurohormone, serotonin affects the generation of the transepithelial potential by sensillar accessory cells. Other possible targets of biogenic amines in insect antennae are hygro- and thermosensory neurons and epithelial cells. We suggest that the insect antenna is partially autonomous in the sense that biologically active substances entering its hemolymph may exert their effects and be cleared from this compartment without affecting other body parts.

  14. Evaluation of Efficient and Practical Methods for the Preparation of Functionalized Aliphatic Trifluoromethyl Ethers

    Directory of Open Access Journals (Sweden)

    Taras M. Sokolenko

    2017-05-01

    Full Text Available The “chlorination/fluorination” technique for aliphatic trifluoromethyl ether synthesis was investigated and a range of products with various functional groups was prepared. The results were compared with oxidative desulfurization-fluorination of xanthates with the same structure.

  15. Copper(II)-catalyzed electrophilic amination of quinoline N-oxides with O-benzoyl hydroxylamines.

    Science.gov (United States)

    Li, Gang; Jia, Chunqi; Sun, Kai; Lv, Yunhe; Zhao, Feng; Zhou, Kexiao; Wu, Hankui

    2015-03-21

    Copper acetate-catalyzed C-H bond functionalization amination of quinoline N-oxides was achieved using O-benzoyl hydroxylamine as an electrophilic amination reagent, thereby affording the desired products in moderate to excellent yields. Electrophilic amination can also be performed in good yield on a gram scale.

  16. Reaction Pathways in Catechol/Primary Amine Mixtures: A Window on Crosslinking Chemistry.

    Directory of Open Access Journals (Sweden)

    Juan Yang

    Full Text Available Catechol chemistry is used as a crosslinking tool abundantly in both natural organisms (e.g. mussels, sandcastle worms and synthetic systems to achieve the desired mechanical properties. Despite this abundance and success, the crosslinking chemistry is still poorly understood. In this study, to simplify the system, yet to capture the essential chemistry, model compounds 4-methyl catechol and propylamine are used. The reaction of 4-methyl catechol (2 mM with propylamine (6 mM is carried out in the presence of NaIO4 (2 mM in 10 mM Na2CO3 aqueous solution. A variety of spectroscopic/spectrometric and chromatographic methods such as 1H NMR, LC-MS, and UV-VIS are used to track the reaction and identify the products/intermediates. It is found that the crosslinking chemistry of a catechol and an amine is both fast and complicated. Within five minutes, more than 60 products are formed. These products encompass 19 different masses ranging from molecular weight of 179 to 704. By combining time-dependent data, it is inferred that the dominant reaction pathways: the majority is formed via aryloxyl-phenol coupling and Michael-type addition, whereas a small fraction of products is formed via Schiff base reactions.

  17. Silver-Catalyzed Dehydrogenative Synthesis of Carboxylic Acids from Primary Alcohols

    DEFF Research Database (Denmark)

    Ghalehshahi, Hajar Golshadi; Madsen, Robert

    2017-01-01

    A simple silver-catalyzed protocol has been developed for the acceptorless dehydrogenation of primary alcohols into carboxylic acids and hydrogen gas. The procedure uses 2.5 % Ag2 CO3 and 2.5-3 equiv of KOH in refluxing mesitylene to afford the potassium carboxylate which is then converted...... into the acid with HCl. The reaction can be applied to a variety of benzylic and aliphatic primary alcohols with alkyl and ether substituents, and in some cases halide, olefin, and ester functionalities are also compatible with the reaction conditions. The dehydrogenation is believed to be catalyzed by silver...

  18. Synthesis and Characterization of Ethylene DiamineTetera Acetic Acid Polyester-amides polymer with Aminoalcohol

    Directory of Open Access Journals (Sweden)

    Dakhil Nasser Taha

    2017-02-01

    Full Text Available linear aromatic and aliphatic polyester-amides (PEAs have been synthesized by polycondensation of aliphatic and aromatic aminoalcohol (Ethanol amine, 2-amino-2-methyl-propan-1-ol, m-amino phenol with Ethylenediaminetetraacetic acid (EDTA as a favorable and combined complexing compound was joined into the polymer backbone with poly addition reactions. These polymers were characterized by FTIR, 1H NMR, solubility studies , elemental analysis, , Thermal analyses such as TGA were measured, intrinsic viscosity. The poly(ester-amides obtained show good thermal stability.

  19. Catalyst Deactivation Reactions : The Role of Tertiary Amines Revisited

    NARCIS (Netherlands)

    Novarino, Elena; Rios, Itzel Guerrero; van der Veer, Siebe; Meetsma, Auke; Hessen, Bart; Bouwkamp, Marco W.

    2011-01-01

    Decamethylzirconocene cation [Cp*2ZrMe](+) (2) decomposes in bromobenzene-d(5) solution to generate sigma-aryl species [Cp*Zr-2(2-C6H4Br-kappa Br,C)][B(C6F5)(4)] (3). This a-bond metathesis reaction is catalyzed by tertiary amines via a two-step mechanism, in which the amine acts as a proton relay.

  20. Functional expression of amine oxidase from Aspergillus niger (AO-I) in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kolaríková, Katerina; Galuszka, Petr; Sedlárová, Iva; Sebela, Marek; Frébort, Ivo

    2009-01-01

    The aim of this work was to prepare recombinant amine oxidase from Aspergillus niger after overexpressing in yeast. The yeast expression vector pDR197 that includes a constitutive PMA1 promoter was used for the expression in Saccharomyces cerevisiae. Recombinant amine oxidase was extracted from the growth medium of the yeast, purified to homogeneity and identified by activity assay and MALDI-TOF peptide mass fingerprinting. Similarity search in the newly published A. niger genome identified six genes coding for copper amine oxidase, two of them corresponding to the previously described enzymes AO-I a methylamine oxidase and three other genes coding for FAD amine oxidases. Thus, A. niger possesses an enormous metabolic gear to grow on amine compounds and thus support its saprophytic lifestyle.